RISC/os (UMIPS)
User’s Reference Manual

Volume I (System V)
Order Number 3204DOC

B i

7, mips

The power of RISC is in the system.

Mfg. Part Number 02-00130-002/84-00133-002

RISC/os (UMIPS)
User’s Reference Manual
Volume I (System V)
Order Number 3204DOC

March 1989

Your comments on our products and publications are wel-
come. A postage—paid form is provided for this purpose
on the last page of this manual.

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Séwice Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg. Part Number 02-00130-002/84-00133-002

TABLE OF CONTENTS

1. Commands and Application Programs

a.cleanlib(l) . . . v v v vt e e e e e e e e e e e e e reinitialize library directory
a.db(l) .. e source level debugger
T 1 summarize library disk usage
a.error(l) v v v e e e e e e e e e e e e e e e analyze and disperse error messages
ahelp(1) « v v v i i e e e e e e e e e e e interactive help utility
ainfo(l) oo PR hst or change VADS library options
ald(l) & . e prelinker
alist(l) .« v v v v i i e e e e e e e produce program listing with line numbers
als(l) . v v v i e e e e e e e e e e list compiled programs
amake(l) recompile source files in dependency order
amklb(l) . .. o e e e e e e e e e e e e e e make library directory
apath(l) 0o v v v i oo report or change VADS library search list
apr(l) oo e . . format source code
arm(l) .0 e e e e e e e e remove source unit and library information
armlib(l)o e e e e e e e e e e . remove compilation library
aran(l) download and execute a program on the target board cross compilers
TR T 1 create a tags file
avadsrc(l) display available VADS versions and create a default library
aview(l) establish command abbreviations and history mechanism for C shell
awhich(l) determine which project library contains a unit
admin(1) e e e e e « create and administer SCCS files
ar(l) e e e e e e e e e e e e e e archive and library maintainer
T (1) MIPS assembler
at(l) execute commands at a later time
awk(l) . .o e e e e e e e e e e pattern scanning and processing language
banner(l) .« v v v v v i e make posters
be(l) v v e e e e e e e e e e e e e e e e e arbitrary-precision arithmetic language
BES(I) v v e big file scanner
1 (1 print calendar
calendar(l) v ¢ v v b it e e e e e e e e e e e e e e e e e e e reminder service
Cat(l) o e concatenate and print files
CB(1) e C program beautifier
oo 1 MIPS C compiler.
cde(l) v v v v i e e e e e e e e e change the delta commentary of an SCCS delta
low(l) & v e generate C flowgraph
chmod(1) & v o v v i e change mode
chown(l) . & v v v i i i e e e e e e e e e e e e e e e change owner or group
6 1 check in RCS revisions
6 120 1 compare two files
0T 1 check out RCS revisions
cobol e e s e e s s s s e et e e s s s e s e e e e e e MIPS COBOL compiler
o701 filter reverse line feeds
10703 v Lo (1) combine SCCS deltas
comm(l) ... 0i i e e e select or reject lines common to two sorted files
cordl) rearranges procedures in an executable file to facilitate better
cord2(1) . . . v v oo e rearranges basic blocks in an executable file to facilitate
1 1 copy, link or move files
cpio(l) e e e e e e e e e e e copy file archives in and out
6707 01 (1 1) the C language preprocessor
16303 41721 o (1 1 L crontab
6 o4+ 11 (1) encode decode
csh(l) & v vt e e e e e e e e e e e e e e e e e a shell (command interpreter)
CSplit(1) v v i e context split

MIPS Computer Systems, Inc. February 1989 Page iii

Table of Contents RISC/os Programmer’s Reference Table of Contents

Page iv

7 {1 spawn getty to a remote terminal
ctags(l) v v e . . . create a tags file
ctrace(l) v ¢« v v v e e e e e e e e e e e e e e e e e e + -+ C program debugger
Cu(l) v e e e e e e e e e e e e e e call another UMIPS-V system or UNIX system
Cut(l) v v v v e e e e e e e e e e e e e cut out selected fields of each line of a file
cxref(1) & v v v e e e e e e e e e e e e e e generate C program cross-reference
2= (1 T print and set the date
dbX(1) v e source level debugger
de(1) e desk calculator
delta(l) e e e e e e e e e e e e e e e e e make a delta (change)
deroff(1) .« v v v v v i i oo e remove nroff troff, tbl, and eqn constructs
diff(l) e e e e e e e e e e e e e e e differential file comparator
diff3(1) . . e e e e e e e e e e e e e e e 3-way differential file comparison
diremp(1) « ¢ v v v v v v v e e e . R directory comparison
T disassemble an object file
domainname(l) e e e e set or display name of current domain system
echo(l) c e e e e e e e e et e e e e e e e e echo arguments
ed(1) P s e s s e s e e s e s ee aas e e s e s e . text editor
L) text editor (variant of ex for casual users)
egrep(l) « v o v oo o e . search a file for a pattern using full regular expressions
enable(1) .« v ¢ v v v it e e e e e e e e e e e e e e e enable disable LP printers
env(l) C h e e e e e e e e set environment for command execution
ex(1) text editor
expr(1) o e e e e s e e e e e e e e e e e evaluate arguments as an expression
MIPS Fortran 77 compiler
factor(1) ¢ ¢ ¢ v v v v e e e e e e e e e e e obtain the prime factors of a number
farep(l) v v ¢ v v e e e e e e e e e e e e e e search a file for a character string
Ale(l) & v v v vt e e e e e e e e e e e e e s e e e e e determine file type
51 L1 find files
fold(1) « v v v v v v e e e e e e . fold long lines for finite width output device
ftoc(1) v v v v e e e e e e e e e e e e e interface between prof and cord
ftp(lc) e e e e e e e e e e e e e e e e e e ARPANT file transfer program
get(1) v v i e s get a version of an SCCS file
o) 1 1) J . parse command options
getopts(1) v v e parse command options
glossary(1) . . « . ¢ o definitions of common UNIX system terms and symbols
3 €3 1 1) T display call graph profile data
o= o) (11 search a file for a pattern
havetcp(l) ¢ ¢ v v o ¢ v v e e e e e e e e e e e e e e test system for TCP support
help(1) v v v o e e e e e e e e e e e e e e e e e e e UNIX system Help Facility
hostid(1) .« v ¢ v v v v vt v oo . set or print identifier of current host system
hostname(1) e ¢« « « s « . setor print name of current host system
ident(l) v v v v v v e . . . identify files
intro(1) .« ¢ o v o v e e e introduction to commands and application programs
iperm(1) 0. remove a message queue, semaphore set or shared memory id
ipes(1) . v e e e e e e e report inter-process communication facilities status
JOIN(L) v v e relational database operator
Kill(h) + 0 v v v e e oo ee s e s s e s e e e s e e e terminate a process
d1) ..o . s e e e e e e e et MIPS link editor
1€SS(L) v v o o v e file browser
lex(1) e e e e e e e e e e e e e e e e e generate programs for simple lexical tasks
line(1) P s e s e e s s e s e e s e ke e e s e read one line
lint(1) s 6 e s s s e e e e s s e e e s e a C program checker
list() .« ¢ 0 v v v v * s s s s b s produce C source listing from a common object file
locate(1) v« ¢ v v v v v v v oo v identify a UNIX system command using keywords
10gin(1) v v vt e sign on

February 1989 MIPS Computer Systems, Inc.

Table of Contents RISC/os Programmer’s Reference Table of Contents

logname(l) & v v v v v i i i e e e e e e e e e e e e e e e e e get login name
lorder(1) . ¢« v v v v v v i i v e . find ordering relation for an object library
Ip(1) .00 e e e e e e e e send cancel requests to an LP line printer
Ipstat(1) ¢ .. e e e e e e e e e e e e e print LP status information
) list contents of directory
5 mMacro processor
machid(1) . ¢ ¢ ¢ v v v e e et e e e e e e e e e e e get processor type truth value
mail(1) . v v v e e e e e e e e e e e e e e e send mail to users or read mail
mailg(l) « v vt e print sendmail mail queue
mailx(1) .+ ¢ v v v v i e e e e e e e e e interactive message processing system
make(1) T e e e e e maintain, update, and regenerate groups of programs
makekey(l) ¢ v v vt e e e e e e e e e e e e e e e e e generate encryption key
man(l) . . vt ot e view online manual pages
merge(l) v v v i e three-way file merge
mesg(l) e e e e e e e e e e e e e e e permit or deny messages
1911 5 1 make directories
mkshlib(1) . . v v ¢t v v it e e e e e e e e e e e e . create a shared library
mkstr(1)00 oo create an error message file by massaging C source
more(l) v v i v e e e e e e e e e e e i i e e e e e file perusal filter for crt viewing
mt(l) « v v i e e e e e e e e e e ". . . magnetic tape manipulating program
Comultivol(1) v e handle multivolume files
netstat(l) . . v i . e i e e e e e e e e e e e e e e e e e e e show network status
newaliases(1) e e e e e e e e rebuild the data base for the mail aliases file
newform(l) o i i it e e e e e e e e change the format of a text file
NEWS(L) v v it e e e e e e e e e e e e e e e e e ee e e e e e e print news items
mee(l) « v vt e e e e e e e e e e e e e e e e e e run a command at low priority
5) line numbering filter
nm(l) .. e e e e e e e e e e e e e e e e name list dump of MIPS object files
nohup(l) .+ . v v v v v v b i e e e e run a command immune to hangups and quits
od(1) v e octal dump
odump(l) v v v v e e e e e e e e e e dumps selected parts of an object file
Pack(l) ¢ i e compress and expand files
Passwd(l) v .t i e change login password
paste(l) merge same lines of several files or subsequent lines of one file
pe(l) MIPS Pascal compiler
pixie(1) S e e st s sl a s, add profiling code to a program
pixstats(1) v . ¢ v e e e e e e e e e e e e e e e e e e analyze program execution
5 e e e e e e e e e e e e e e MIPS PL I compiler
pg(l) oo oo e e e e e e e e e e e e e file perusal filter for CRTs
3 40 print files
printenv(l) e e e e e e e e e e e e e e e print out the environment
153 007 {1 R analyze profile data
23 €1 (11 print an SCCS file
51 report process status
pwd(l)o oo e e e e e e e e e e e e e working directory name
ranlib(1) . . . 0 e e e e e e e e e e e convert archives to random libraries
070 () P remote file copy
res(1) e change RCS file attributes
resdiff(1) . v 0 0 0 e e e e e e e e compare RCS revisions
resintro(l) o . v e v e e e e e e e e e e e e e e e introduction to RCS commands
resmerge(l) . . v e h e merge RCS revisions
regemp(l) . . i e regular expression compile
rlog(l) .« .o v v v v oo print log messages and other information about RCS files
rlogin(l) . v . i e remote login
s 3d(1) . v v e e e e e e e e e e e e e e e e e e generate release identification file
m(l) L e remove files or directories

MIPS Computer Systems, Inc. February 1989 Page v

Table of Contents RISC/os Programmer’s Reference Table of Contents

rsh(1c) v v v o e . . . remote shell
ruptime(1c) « o e e e e e e e e e e e show host status of local machines
wall(1) . v v v v e e e e e s e e e e e e e e e e write to all users over a network
who(I€) v v v v i e e e e e e e e e e e e e e who’s logged in on local machines
o1 1 (1 print current SCCS file editing activity
T2 ¢ 1 e e e e system activity reporter
scesdiff(1) o v v v v e e e e e e e e e e e e compare two versions of an SCCS file
seript(1) ¢ v v v v i e e e e e e e e e e make typescript of terminal session
sdiff(l) . o v v v v oo oL « « e+ ... sideby-side difference program .
SEA(I) ¢ v e stream editor
SETUP(1) ¢ o v e initialize system for first user
sh(l) ..o v oo oo shell, the standard restricted command programming language
size(1) ¢ v v i i e e e e e e e e e e e e e prints the section size of an object file
sleep(1) © ¢« v v v o v e e C e e e e e . . . suspend execution for an interval
sort(1) e e e e e e e e e e e e e e e e sort and or merge files
spell(1) « v v v o oo e e e e e e e e e e e e e e e e find spelling errors
70) L1 1 split a file into pieces
starter(1) + e+ «+es ... information about the UNIX system for beginning users
strings(1) . ¢ . o .00 o o find the printable strings in an object or other binary file
strip(1) o v v v e e e e e e e e e e e e e e remove symbols and relocation bits
T T set the options for a terminal
T substitute user id temporarily
sum(l) . v e e e e e e e e e e e e e e e e print checksum and block count of a file
sysadm(l) ¢ o v v v e e e e e e e e e e menu interface to do system administration
tail(1) e e e e e e e e e e e e e e e e e e . « « « . deliver the last part of a file
1224) T « s « « ... tapearchiver
tee(1) ® s o s s s s ¢ e s s s e e e e e e« e e e « s s« « . pipe fitting
telnet(lc) f e e e e e e e e user interface to the TELNET protocol
B 7 {1 . . condition evaluation command
15155 1 ~ trivial file transfer program
13100 =X (1) e e e e e e e e e time a command
timex(1) 0. time a command; report process data and system activity
touch(1) . . . o v v v v v i i oo update access and modification times of a file
tput(l) ¢ v o e e e e e e e e e e initialize a terminal or query terminfo database
194 (115 translate characters
true(l) e e e e e e e e « « « + .+« .. provide truth values
tsort(l) 4 s s s s s s s s e s 0 s e e e topological sort
tty(l) .0 e e e e e e e e e e e e e e get the name of the terminal
Ul(l) e s o s e s o s s do underlining
umask(l) .. ¢ .0 ... e e e e e e e e e e . . set file-creation mode mask
uname(l) c b e e e e s e e e e obtain current system information
unget(l) « . v v e v e e e e e e e e e e e e e e undo a previous get of an SCCS file
uniq(l)00 c e s e et e e ae e report repeated lines in a file
units(1l) . . . o0 ... e e e e e e e e e e e e e “. . . conversion program
uptime(1) s+ o e e e s+ e .. display system uptime and load statistics
usage(l) « v v v v e e e e e e . retrieve a command description and usage examples
Wep(l) v e UNIX-to-UNIX system copy
uuencode(l) . . . ¢ .. 0.0 . encode decode a binary file for transmission via mail
uustat(l) . . . L. e e e e e v e oo e e uucp status inquiry and job control
wux(l) .. e e e e e e e e e e e e e e UNIX-to-UNIX system command execution
Val(1) o e o e validate SCCS file
ve(l) v v e i e e e e e e e ® s s s s e s e s s s s e e e version control
12) « « « . screen-oriented (visual)
vmsbackup(l)o 0. e e e e e e e e read a VMS backup tape
vsar(1) o s v s e s s e e e s ss e e e s e o visual system activity reporter

Page vi

rmdel(1) B e s e e e . remove a delta from an SCCS file

February 1989 MIPS Computer Systems, Inc.

Table of Contents RISC/os Programmer’s Reference Table of Contents

wailt(1) + v v e await completion of process
R 721 1 (1) . . write to all users
WC(L) v vt e word count
what(1) identify SCCS files
who(l) oo et e e e e s e e e e s e . . who is on the system
winsize(1) « ¢ ¢ o v v e e e o0 .. e e e e e e e e e e set print window size
WHEE(L) ¢ v v v e write to another user
b€ ¢4 (1) construct argument list(s)
xstr(l) o 0 0 e e e . extract strlngs from C programs to implement shared strings
yace(1) .+ e e e e e e e e e e e e e e e . yet another compiler-compiler

MIPS Computer Systems, Inc. February 1989 Page vii

PERMUTED INDEX

comparison diff3
ftp

cb

ctrace

cc

pll

pc

as

1d

help

execution uux

uucp, uulog, uuname
lint

file to an original patch
with C-like syntax csh
pixie

messages a.error
messages a.error

prof

pixstats

language bc

ar

wait

- . bdiff

. bfs

UNIX system cu

rcs

passwd

chmod

chown, chgrp

file newform

ci

co

comb

resdiff

cmp

file scesdiff

pack, pcat, unpack

cat

test

execute command xargs
csplit

units

libraries ranlib

cpio

cp, In, mv

mkshlib

a.tags

a.tags

ctags

massaging C source mkstr
files admin

line of a file cut

system terms and glossary
tail

‘dc

file

contains a unit a.which
contains a unit a.which
diff
dircmp
dis
a.vadsrc
a.vadsrc
gprof
statistics uptime
ul

and create a default
and create a default

MIPS Computer Systems, Inc.

February 1989

: 3-way differential file 0000000 . diff3(1)

: ARPANT file transfer program + « v v o « o« + & ftp(1c)

: C program beautifier + v « v 4 4 4 . e 00w ... cb(1)

: C program debugger ctrace(1)
*MIPS Ccompiler « v v v v v v v v v v v v v e cc(l)
:MIPS COBOL compiler « v v o v v o o v o o s o . cobol

: MIPS Fortran 77 compiler « « + v v v v v o v o o & 77

: MIPS PLI compiler e e e e e e pl(1)

: MIPS Pascal compiler + « « + o & & e e e e e e pe(1)
:MIPS assembler .+ v v 0 v v b e e e e e . as(1)
MIPS link editor « & & 4 v 4 4 0 e e e e e e .. 1d(1)

: UNIX system Help Facility help(1)

: UNIX-to-UNIX system command uux(1)

: UNIX-to-UNIX system COPY « + o v o o o o o o + & uucp(1)
raCprogramchecker « v v v v v o v v o v v v s lint(1)

:a program for applying adiff patch(1)

: a shell (command interpreter)+« .. csh(l)

: add profiling code to aprogram ¢ . pixie(1)

: analyze and diSperse €rror « + « « o 4 o s 0 0 . o s a.error(1)
: analyze and diSperse error + . 4 4 4 4 . e 4 e 04 . a.error(1)
ranalyze profiledata 0 0000 e 0. prof(1)

: analyze program execution pixstats(1)
: arbitrary-precision arithmetic + + « + v ¢ v . . . be(1)

: archive and library maintainer .+ . « « & « o 4 o o . ar(1)

: archive (library) file format . . . « v v v o v o . . ar

: archive (library) file format s xar

: await completion of process « .+ 4 0 v e 0 . o0 s wait(1)
S . e bdiff(1)
tbyfilescanner .+ . .o v e v e e e e e e 0 e e e bfs(1)

: call another UMIPS-V system or + « « & o & + & & & cu(1)

: change RCS file attributes + « v o ¢« v v o 4 v v .. res(1)

: change login password . « « ¢ 0 0 0 0 00 .. passwd(1)
:changemode .+ « v v v 4 o 4 b v b e e e e e chmod(1)
:change OWNEr Or group v « v o ¢ v o 4 o v v & 4 . chown(1)
: change the formatof atext . . « ¢« ¢ v o v v o o« & newform(1)
icheck iIn RCS revisions o + « o s s o o o o s o o« ci(1)
:check out RCSrevisions + ¢ v v o v o ¢ 0 o o 4 o co(1)
:combine SCCS deltas v v v« v o 0 v é v 0 v o v s s comb(1)
:compare RCS revisions o + o o v o v o v 0 v o o & resdiff(1)
:comparetwofiles 000 . cmp(1)

: compare two versions of an SCCS scesdiff(1)
: compress and expand files 0 0.0 0. pack(1)

: concatenate and print files D = 1(¢))

: condition evaluation command .o oo test()

: construct argument list(s)and . « « « . xargs(1)
tcontext split o ¢ o 0 o 0 0 e e e 0 e e e e o . csplit(1)

I CONVErsion program o « o o o s s o 0 s 0 s 0 oo s units(1)

: convert archives torandom = + o v v 4 ¢ 4 o 4 0 . ranlib(1)

: copy file archives in and out e o s e s s cpio(1)
:copy, link ormovefiles « . v o i 000w e . cp(1)

: create a shared library . . . « mkshlib(1)
tcreateatagsfile .« . v 4 v 0 v e v e e s e e e .. a.tags(1)
tcreateatagsfile 0000000 .. a.tags(1)
tcreate atagsfile0 000 .. . ctags(1)

: create an error message fileby e e e mkstr(1)

: create and administer SCCS . « v v v o v v v o 4 admin(1)

: cut out'selected fieldsof each + « v v v v v v . . . cut(l)

: definitions of common UNIX glossary(1)
: deliver the last part of afile e tail(1)
tdeskcalculator & v v v v v e e e h e e e e e e de(1)
tdetermine filetype 0 e v 0 e 0 e e e . file(1)

: determine which project library a.which(1)
: determine which project library a.which(1)
: differential file comparator .« « « v 0 0 0 e ... diff(1)

: directory comparison .+ « + + 4 0 0 0 . e s ee s dircmp(1)
: disassemble an objectfile00 0. 0. dis(1)

: display available VADS versions « « v ¢ ¢ o v o .« . a.vadsrc(1)
: display available VADS versions .« « « « + « + o o a.vadsrc(1)
: display call graph profiledata . « « v o v o 4 o . gprof(1)

: display system up timeandload uptime(1)
:dounderlining .« ¢ 4 v 4. e 00 . . ul(1)

Page ix

Permuted Index

on the target board cross a.run
on the target board cross a,run
object file odump

echo

enable, disable

crypt

transmission uuencode,uudecode
and history mechanism for a.view
and history mechanism for a.view
expression expr

time at, batch

to implement shared strings xstr
less

_ Pg.
viewing more, page

col

find

object library lorder
hashmake, spellin, hashcheck
an object or other strings
width output device fold

a.pr

a.pr

cflow

cross-reference cxref
makekey

lexical tasks lex

file rls_id

get

logname

mips, pdp1l, u3b, u3b2, u3b5, vax
tty

multivol

~ what

using keywords locate

ident

system for beginning starter

terminfo database tput
user setup

a.help

a.help

system mailx

ftoc

resintro

application programs intro
nl

als

als

Is

options a.info
options a.info

m4

program mt
regenerate groups of make
SCCS file delta

mkdir

a.mklib

a.mklib

banner

session script
administration sysadm
rcsmerge

files or subsequent lines paste
files nm

- information uname
number factor

od

getopt

getopts, getoptcvt
language awk

mesg

tee

ald

a.ld

Ipstat

prs

Page x

RISC/as Programmer’s Reference

* download and execute a program e e s
: download and execute a program e e e e

: dumps selected parts of an e
: echo arguments Cee e e e
: enable disable LP printers . , . « . .
tencodedecode

: encode decode a binary ﬁle for .00 v .
: establish command abbreviations e e e e e
: establish command abbreviations W e e s e e e

: evaluate arguments as an o
: execute commands at a later . . , . .
: extract strings from C programs
: file browser “ b e 4 s

: file perusal filter for CRTs e
; file perusal filter forert v v o o 4 e w0 0w s s e

: filter reverse line feeds .
; find files

: find ordering relation for AN e s e ey e e e e e
: find spelling errors spell, & & o 4 o o 0 0 0 s 0

: fold long lines for finite , . . .

find the printable stringsin =« « .« ¢ .0 . W

:format source coOde o 4 s s s e s 8 4. s e 8 e

: format source code

s generate C flowgraph « v o o s v o v 0 0 e 0 s

: generate C program . . .

: generate encryption Key + o 4 v o 4 0 0 0 0 04 e s
: generate programs for simple « o 00 0 s

1 get a version of an SCCS file
: get login name

generate release identification . .+ 4 4 40 4 ..

s o & s

: get processor type truth value . . Fe e e s

: get the name of the terminal
: handle multivolume files
: identify SCCS files

: identify files o« s e e ey

: initjalize system for first . . .
:interactive help utility . . . « + &+ & < o .
: interactive help utility
: interactive message processing .

! initialize a terminal or query . s ¢ 4 0 e 4 e e w0 e s

" e s o s 5 8 4 ® @ s 8 8 5 o ®

identify a UNIX system command + « o ¢ v o + « o

information about the UNIX

e 9 5 s o s s 8 9 u s » s .0

: interface between prof andcord « « + ¢ 4 o s 4 . .

: introduction to RCS commands

; introduction to commands and e ee e e e s e e e

: line numbering filter i s e w ge e
rlist compiled programs

: list contents of directory + « ¢« o v 0 4 .
: list or change VADS library . + « o o o o o o o s »
: list or change VADS library . « + « « « « »
! Macro processor . e
: magnetic tape manipulating
: maintain, vpdate, and
: make a delta (change)toan ., . « &

list compiled programs . . 4

® o 8 ® 8 v s o o o

:make directories « « « v o o e s 4 s s e e .
: make library directory . ¢ s 0 0 0 00 0 e s ..
: make library directory < « i 4 4 0 S0 0 0 e e e
:make POSLEIS o o o o o s s 4 6 o 6 4w o 0 s 4 s
: make typescript of terminal 4 .00 s e
: menu interface to do system C e e e e e e
imerge RCSrevisions « « v v o v 0 v o v 0 0 o a s
: merge same lines of several . . . 40 4 0 e 0 4 e
: name list dump of MIPS object « « ¢ « o s ¢ v v o
Tobtain current System . . 4 4 0 s s 0 s s s e s e e
: obtain the prime factors of a 2 e w.wm se 4% & s
: octal dump C r e ee sy e e ey s
: parse command OPtioNS « « ¢ o 4 0 0 4 a4 a8 s
1 parse command Options .+ 4 . 4 4 e 0 s s s 0 s o8

: pattern scanning and processing » « « » o+ 4 4 s .

T permit or deny messages « . s o s 4 o 0 o4 s s oo

: pipe fitting
cprelinker . oo 0 0 0 0w e e e s

tprelinker o s v o 0 b e s e e e s s e s s e s
: print LP status information <« + ¢« s 0 0 a0 e
tprintan SCCSfile o v v 0 v v v 0 0 v 0000 e

February 1989

Permuted Index

a.run(1)
a.run(1)
odump(1)
echo(1)
enable(1)
crypt(1)
uuencode(1)
a.view(1)
a.view(1)
expr(1)
at(1)
xstr(1)
less(1)
pg(1)
more(1)
col(1)
find(1)
lorder(1)
spell(1)
strings(1)
fold(1)
a.pr(1)
a,pr(1)
cflow(1)
cxref(1)
makekey(1)
lex(1)
rls_id(1)
get(1)
logname(1)
machid(1)
tty(1)
multivol(1)
what(1)
locate(1)
ident(1)
starter(1)
tput(1)
setup(1)
ahelp(1)
a.help(1)
mailx(1)
ftoc(1)
resintro(1)
intro(1)
nl(1)
a.ls(1)
a.ls(1)
Is(1)
a.info(1)
a,info(1)
m4(1)
mt(1)
make(1)
delta(1)
mkdir(1)
a.mKlib(1)
a.mklib(1)
banner(1)
script(1)
sysadm(1)
rcsmerge(1)
paste(1)
nm(1)
uname(1)
factor(1)
od(1)
getopt(1)
getopts(1)
awk(1)
mesg(1)
tee(1)
ald(1)
ald(1)
Ipstat(1)
prs(1)

MIPS Computer Systems, Inc.

Permuted Index

date

cal

of a file sum

activity sact

pr

information about RCS files rlog
news

printenv

mailq

object file size

common object file list
line numbers a.list

line numbers a.list

true, false

" copy uuto, uupick
vmsbackup

line

executable file to cord2
executable file to cord
mail aliases file newaliases
dependency order a.make
dependency order a.make
regcmp

a.cleanlib

a.cleanlib

join

calendar

rcp

rlogin

rsh, remsh

file rmdel

semaphore set or shared ipcrm
a.rmlib

a.rmlib

rm, rmdir

eqn constructs deroff
information a.rm
information a.rm

bits strip

communication facilities ipcs
search list a.pathxs
search list a.pathxs

ps

uniq

and usage examples usage
nice

and quits nohup

display editor based on ex vi
string fgrep

grep

using full regular egrep
to two sorted files comm
line printer lp, cancel
mail, rmail

execution env

umask

domain system domainname
current host system hostid
host system hostname
winsize

stty

command programming sh, rsh
machines ruptime

netstat

sdiff

login

sort

a.db

a.db

dbx

terminal ct

split

sed

su, ssu

a.du

a.du

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

: print and set the date . . .
: print calendar
: print checksum and block count
: print current SCCS file editing
: print files .
: prlnt log messages and other
: print news items
: print out the environment . . .
: print sendmail mail queue
: prints the section size of an . . .
: produce C source listing from a
: produce program listing with
: produce program listing with
: provide truth values
: public UNIX-to-UNIX system file .
:read a VMS backup tape
:read one line
: rearranges basic blocks in an
: rearranges procedures in an . .
: rebuild the data base forthe,
: recompile source filesin . . .
: recompile source files in
: regular expression compile s e e
: reinitialize library directory
: reinitialize library directory
: relational database operator . .
: reminder service
: remote file copy
: remote login . . .
: remote shell
: remove a delta from an SCCS . . .
I TemOove a message qUeUe, + « .+ o o »
: remove compilation library
: remove compilation library
: remove files or directories
: remove nroff troff, tbl; and . . .
: remove source unit and library
: remove source unit and library
: remove symbols and relocation ,
: report inter-process
: report or change VADS library
: report or change VADS library . .
: report process status . .

: report repeated lines in a file
: retrieve a command description
: run a command at low priority
: run a command immune to hangups
: screen-oriented (visual)
: search a file for a character
: search afile for a pattern
: search a file for a pattern .
: select or reject lines common
: send cancel requests toanLP
: send mail to users or read mail e s e e e s e e
: set environment for command
: set file-creation modemask 0
: set or display name of current
: set or print identifierof
: set or print name of current
: set print window size
: set the options for a terminal

:51de—by—51de difference program c e e
: sign on
: sort and or merge files
: source level debugger
: source level debugger . .«
: source level debugger . . o . . .
: spawn getty to a remote
: split a file into pieces .+ . .
:stream editor
: substitute user id temporarily
: summarize library disk usage
: summarize library disk usage . .

......
..........

.......
......

........

.........

............
.....

: shell, the standard restricted
: show host status of local . « « v v 4 ¢« o o . .
: show network status ® 2 s o s s s s s e s .

« s e 0

February 1989

Permuted Index

date(1)
cal(1)

pr(1)
rlog(1)
news(1)
printenv(1)
mailq(1)
size(1)
list(1)
a.list(1)
alist(1)
true(1)
uuto(1)
vmsbackup(1)
line(1)
cord2(1)
cord(1)
newaliases(1)
a.make(1)
a.make(1)
regcmp(l)
a.cleanlib(1)
a.cleanlib(1)
join(1)
calendar(1)
rcp(.lc)
rlogin(1)
rsh(lc)
rmdel(1)
ipcrm(1)
a.rmlib(1)
a.rmlib(1)
rm(1)
deroff(1)
arm(l)
a.rpa(l)
§tr1p(1)
ipes(1)
a.path(1)
a.path(1)
ps(1)
uniq(1)
u§age(1)
nice(1)
nphup(l)
vi(1)
fgrep(1)
grep(1)
egrep(1)
comm(1)
Ip(1)
mail(1)
env(1)
umask(1)
domainname(1)
hostid(1)
hostname(1)
winsize(1)
stty(1)
sh(1)
ruptime(1c)
netstat(1)
sdiff(1)
login(1)
sort(1)
a.db(1)
a.db(1)
dbx(1)
ct(1)
split(1)
sed(1)
su(1)
a.du(l)
a.du(l)

Page xi

Permuted Index

interval sleep
sar
tar
kill
havetcp
ed, red
ex
casual users) edit
PP
merge
time
data and system activity timex
tsort
tr
tftp
file unget
times of a file touch
crontab
protocol telnet
control uustat
val
ve
man
vsar
who
machines rwho
wc
pwd
wall
network rwall
write
" yacc
comparison diff3 :
: MIPS Fortran
ftp :
cc : MIPS
cflow : generate
cpp : the
cb :
lint :

cxref generate

ctrace :
xstr ; extract strings from
and history mechanism for
and history mechanism for
error message file by massaging
object file list : produce
: MIPS
pg : file perusal filter for
shell (command interpreter) with
help : UNIX system Help
: MIPS
help : UNIX system
: send cancel requests to an
enable, disable : enable disable
Ipstat : print
cc:

pll:

pc:

as :

Id:

nm : name list dump of

© pll : MIPS

pc : MIPS

rcsintro @ introduction to

rcs : change

and other information about
ci : check in

co : check out

resdiff : compare

rcsmerge ; merge

change the delta commentary of an
comb : combine

: make a delta (change) to an

Page xii

RISC/os Programmer’s Reference

February 1989

: suspend execution for an

.. s e e e e
: system activity reporter . . . 4 4 . e s e e 4 e
stapearchiver « « o v o o 6 0 v 0 e e 0 0w e e

: terminate a ProCESS « » » ¢ o + & £ 0 4 o4 0 s o4 s e
: test system for TCP support o « v v 0 v 0w o ¢ ¢ o o
ttext edItOr w o v e a e e w e e e e e e e s e s

ttext editor . . . s e e e s 0. s Ve e s e e
: text editor (vanant of eXfor & 4 v v v h e e e e e
: the C language preprocessor « « + « « o o & + & ..
: three-way file merge + + + o v v o 0 e b0 000
ctimeacommand . . 4 4 s e s 0 e 0w e e s e e
: time a command; report process
: topological sort B T T TV T e
: translate characters , te s s e s e v e e
: trivial file transfer program 0 0. . .
: undo a previous get of an SCCS e eTe e a8 e n e e

: update access and modification 4 4 0 4 .
cusercrontab file . v 4 . 6 e 4 e e 6 0w 0 66w
: user interface to the TELNET v o 4 s ¢ &
:uucp status inquiry and job . . . e e w0 0 4 e s
cvalidate SCCSfile « v 4 s v v v v 0 v 0 0 o 4 o
IVErsion CONIOl v v v o s o s o w v e s e w e e e
:view online manual pages + « « « » o 0 s e s oo s .
: visual system activity reporter . + . . 0 . 0
:whoisonthesystem o, o o o0’ e v ¢ o ¢ ¢ « v o
:who'sloggedinonlocal . , « v o v o 0 v 00 0.
: word count st e e e e e e e T
: working directory name .+ . . 4 40 o . e e
cwriteto allusers .« v . 0 0 o 0 a . oo s s e e
cwriteto allusers over a .« . 4 o s 4 0 @ 0 s e s oe s
: write to anotheruser™ &+ « o « o 4 . . . e e e e e

: yet another compiler-compiler e s e e
3-way differential file « « 4 « 4 4 0 0 a0 e e s 0.
77 compiler . 4 . 44 00 e e e 0w e e v e
ARPANT file transfer program . + « + « + « » . e
Ccompiler .+« « « . . e ee s e e e e s s .
Cflowgraph « ¢ o o 4 5 v 0 0 s o o s 0 o 0 s o o s
C language preprocessor o s s » o s « + s .
C program beautifier . « .« o « ¢ 4 o4 0 4 e 0. e
C program checker « « v ¢ 4+ o & c e e e e e
C program cross-reference ¢ . +» s o 0 4 s oo o ’
C program debugger .+ . o .+ e e e a e e e

C programs to implement shared . « « « ¢« ¢+ 4 o s
C shell command abbreviations P e e aea e e e
C shell command abbreviations e e e e s e s e
C source mkstr:create an’ o « ¢ s o o o o o 0 o o s
C source listing from a common . « « « o s &+ + o .
COBOL compiler « « « + « . - cr s e e v
CRTS « v o o v s o T T S Tt T
C-like syntax csh:a
Facility « & ¢ o ¢ o v o 0 o0 n o o s s s 0 s o o
Fortran 77 compller T T NS .« oo
Help Facility . .« « « « o . C e e e b e e e e e
LP line printer lp, cancel e e hm e s e a s
IPprinters o« o« o o s ¢ s o o o o o e e e e e
LP status information c ot e e e e e e .
MIPS Ccompiler « v o ¢ o o = o » e e ane e
MIPS COBOL compiler e b e b e s e e .
MIPS Fortran 77 compiler “ e e s e a e s oae
MIPS PL I compiler .+ . « . . e e e e e e e
MIPS Pascal compiler « « ¢ o o o o 4 o o o 0 s o o
MIPS assembler e r e e e e ne e e e
MIPS link €ditor & « o o o o o a o o s o o o s o o »
MIPS object files C e e e e e et e e e
PLIcompiler . « ¢ « v o o o s o o a0 o 0 o o o
Pascal compiler « . v ¢ 0 0 0e o 0w C e e e e e
RCS commands « « « ¢ o « s o s o o s » e v e e
RCS file attributes . « + ¢« o e s s s e e ae
RCS files : print log messages < « o . 0 00 0 o0 0.
RCSrevisions =+ « s ¢ o ¢ o o o o o & e o a e s
RCS revisions « '« o o o o o 0 o » s ea e e e e
RCSrevisions v o o s ¢ o o o o o s s 0 o o o o ' e
RCS revisions .+ o+ o . o P i v ey ' oo
SCCS delta cdc; * s s s 8 s s s n e s s e s s e
SCCSdeltas « s o o o o s o s 6 » s s e e e e e
SCCSfile delta 4 4 o o ¢ o o o o o o o o s o o o s

Permuted Index

tar(1)
Kill(1)
havetcp(1)
ed(1)
ex(1)
edit(1)
cpp(1)
merge(1)
time(1)
timex(1)
tsort(1)
tr(1)
tftp(1)
unget(1)
touch(1)
crontab(1)
telnet(1c)
uustat(1)
val(1)
ve(1)
man(1)
vsar(1)
who(1)
rwho(1c)
we(l)
pwd(1)
wall(1)
rwall(1)
write(1)
yacc(1)
diff3(1)
£77
ftp(1c)
ce(1)
cflow(1)
epp(l)
cb(1)
lint(1)
cxref(1)
ctrace(1)
xstr(1)
a.view(1)
a.view(1)
mkstr(1)
list(1)
cobol
ps(1)
csh(1)
help(1)
77

help(1)
Ip(1)
enable(1)
Ipstat(1)
ce(1)
cobol

77

pI(L)
pe(1)
as(1)
1d(1)
nm(1)
pI(1)
pe(1)
resintro(1)
res(1)
rlog(1)
ci(1)
co(1)
resdiff(1)
rcsmerge(1)
cde(1)
comb(1)
delta(1)

MIPS Computer Systems, Inc.

Permuted Index

get : get a version of an

prs : print an

rmdel : remove a delta from an
: compare two versions of an
unget : undo a previous get of an
val : validate

sact : print current

admin : create and administer
what : identify

havetcp : test system for

telnet : user interface to the

cu : call another

: call another UMIPS-V system or
help :

keywords locate : identify a
starter : information about the
glossary : definitions of common
execution uux :

uucp, uulog, uuname :

uuto, uupick : public

a.info : list or change

a.info : list or change

a.pathxs : report or change
a.pathxs : report or change
a.vadsrc : display available
a.vadsrc : display available
vmsbackup : read a

a.view : establish command
a.view : establish command

a file touch : update

directory

directory

: print current SCCS file editing
report process data and system
sar : system

vsar : visual system

pixie :

SCCS files

admin : create and

: menu interface to do system
usage

usage

error messages

eIror messages

library options
library options

the data base for the mail
with line numbers
with line numbers

in dependency order
in dependency order

messages a.error :

messages a.error :

prof :

pixstats :

library search list

library search list

: introduction to commands and
original patch : a program for

maintainer
language bc :
ar :

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

SCCS file
SCCS file sccsdiff
SCCS file
SCCSAile v v v o v v v o v v vt v o v s a v v oo
SCCS file editing activity
SCCS files

SCCS files

TCP support
TELNET protocol + v v v ¢ ¢ v o v s o o s 0 o o o
UMIPS-V system or UNIX system « o o o o o ¢ & o
UNIX system cu e s e e s e e e s e e e
UNIX system Help Facility .« « « v ¢ 0 v ¢ o o v o

UNIX system command using « « « « s o o o o o o &«
UNIX system for beginning users . « + « « o « o« &
UNIX system terms and symbols . . . «
UNIX-to-UNIX system command « « « « o o« o « » &
UNIX-to-UNIX system COPY « + o s s o o o s o o o
UNIX-to-UNIX system file copy e e s e e e e e e
VADS library options « o « « v v o 4 . & e e

VADS library options « « ¢« v v 4 v 0 0 v 00 ..

VADS library search list ¢ « o v v ¢ o 0o 0 0 0 0 o

VADS library search list & ¢ ¢ o ¢ 4 o ¢ o 0 o o o &
VADS versions and create a
VADS versions and create a .
VMS backuptape « . ¢ ¢ ¢ ¢ v 0 i e 000 e s
abbreviations and history e e e e e e e e e e
abbreviations and history
access and modification times of
a.cleanlib : reinitialize library
a.cleanlib : reinitialize library
activity sact
activity timex :
activity reporter
activity reporter

time a command;

a.db : source level debugger v et e e e
a.db : source level debugger e e e e e
add profiling code to a program
admin : create and administer
administer SCCS files
administration sysadm

a.du : summarize library disk . .« . o 0 000 0.
a.du : summarize library disk
a.error : analyze and diSperse .+ « + o+ o o o 0 o o o o
a.error : analyze and disperse
a.help : interactive help utility . . « . . ¢« « o v+ . .
a.help : interactive help utility
a.info : list or change VADS
a.info : list or change VADS
ald : prelinker T
ald : prelinker . . .
aliases file : rebuild
alist : produce program listing .+ « « ¢ ¢« o ¢ v o . .
a.list : produce program listing
a.ls : list compiled programs

a.ls : list compiled programs

a.make : recompile source files . .
a.make : recompile source files .« « o 4 0 000 .
a.mklib : make library directory
a.mklib : make library directory « « « « « v @ . o
analyze and disperse error .+ .+
analyze and disperse error « « « ¢ 4 4 0 . 0. 0w
analyze profile data .
analyze program execution
a.pathxs : report or change VADS e e e
a.pathxs : report or change VADS 0o
application programs intro
applying a diff file to an e e e e s e s e
a.pr : format source code . ¢« . ¢ 0 ¢ 0 . o

e o s o s 8 s o 0 6 o 8 e 8 &

a.pr : format source code .« + o s 4 0 00 046 .o
ar : archive and library s e s s e e s e
arbitrary-precision arithmetic « + o o ¢ ¢ o o o o o

archive and library maintainer . « « o o « o o o o o o
archive (library) file format . . « ¢« ¢ v ¢ o o o v ..
archive (library) file format . « v ¢ ¢ ¢ 4 o v 4 v o &

February 1989

Permuted Index

get(1)
prs(1)
rmdel(1)
scesdiff(1)
unget(1)
val(1)
sact(1)
admin(1)
what(1)
havetcp(1)
telnet(1c)
cu(1)
cu(l)
help(1)
locate(1)
starter(1)
glossary(1)
uux(1)
uucp(1)
uuto(1)
a,info(1)
a.info(1)
a.path(1)
a.path(1)
a.vadsrc(1)
a.vadsrc(1)
vmsbackup(1)
a.view(1)
a.view(1)
touch(1)
a.cleanlib(1)
a.cleanlib(1)
sact(1)
timex(1)
sar(1)
vsar(1)
a.db(1)
a.db(1)
pixie(1)
admin(1)
admin(1)
sysadm(1)
a.du(1)
a.du(l)
a.error(1)
a.error(1)
a.help(1)
a.help(1)
a.info(lg
a.info(1
ald(1)
ald(1)
newaliases(1)
alist(1)
a.list(1)
als(1)
a.ls(1)
a.make(1)
a.make(1)
a.mklib(1)
a.mklib(1)
a.error(1)
a.error(1)
prof(1)
pixstats(1)
a.path(1)
a.path(1)
intro(1)
patch(1)
a.pr(1)

Page xiii

Permuted Index

tar : tape

cpio : copy file

ranlib : convert

command xargs : construct
echo : echo

expr : evaluate

be @ arbitrary-precision
library information

library information

library

library

program on the target board
program on the target board
as : MIPS

later time

rcs : change RCS file
versions and create a default
versions and create a default
create a a.vadsrc : display
create a a.vadsrc : display
abbreviations and history
abbreviations and history
wait :

library contains a unit

library contains a unit
processing language
vmsbackup : read a VMS

newaliases : rebuild the data
(visual) display editor

file to cord2 : rearranges
later time at,

arithmetic language

cb : C program
about the UNIX system for
an executable file to facilitate

bdiff :

strings in an object or other
mail :encode decode a

: remove symbols and relocation
sum : print checksum and
cord? : rearranges basic

execute a program on the target
execute a program on the target
less : file

dc : desk
cal : print

UNIX system cu :

gprof : display

an LP line printer lp,

printer lp, cancel : send

: text editor (variant of ex for

of an SCCS delta

rcs :
a.info : list or
a.info : list or
a.pathxs : report or
a.pathxs : report or
passwd :

chmod :

chown, chgrp :
SCCS delta cdc:
newform :

delta : make a delta
fgrep : search a file for a
tr : translate

Page xiv

RISC/os Programmer’s Reference

. basic blocks in an executable

February 1989

archiver
archivesinand out + « + & & ¢ 4 4 o o 4 o 0 s w0
archives to random libraries
argument list(s) and execute . ,
arguments o . o o o s o o
arguments as an expression
arithmetic language
arm : remove source unit and 0 0 0 0 0 . e
a.rm : remove source unit and .
a.rmlib : remove compilation
a.rmlib : remove compilation
a.run : download and execute a
a.run : download and execute a
assembler .+ . 4 0 0 4 4 e s 4 s e e e 0 e e e e e
at, batch : execute commands ata . + ¢« ¢ ¢ 0 o o o o
a.tags : create atagsfile . . o
a.tags : create a tags file
attributes
avadsrc : display available VADS
a.vadsrc : display available VADS
available VADS versions and + « + ¢« o . o .
available VADS versions and « + v 4 ¢ o 4 0 0 0 0 e
a.view : establish command . .
a.view : establish command
await completion of process .+ ¢« ¢ 4 v 4 0 000 ..
a.which : determine which project . .
a.which : determine which project
awk : pattern scanning and
backup tape
banner : make posters
base for the mail aliases file
based on ex vi: screen-oriented

batch : execute commands ata
bc : arbitrary-precision .
bdiff : big diff
beautifier . . .
beginning users : information
better rearranges procedures in .« 4 4 4 o 0 0 s e
bfs : by file scanner
big diff
binary file : find the printable .
binary file for transmission via
bits strip
block countofafile « .« o ¢ ¢ ¢ v v v 0 00 e
blocks in an executable file to .
board cross compilers and
board cross compilers and . . ¢ ¢ o 0 0 s 0 8 s e
browser
cal : print calendar . .
calculator
calendar B S
calendar : reminder service
call another UMIPS-V system or
call graph profile data
cancel : send cancel requests to
cancel requests to an LP line

casual users) edit e s es
cat : concatenate and print files
cb : C program beautifier
cc :MIPS Ccompiler « « v o o o o o o
cdc: change the delta commentary .« « o o ¢« ¢ o o + &
cflow : generate C flowgraph
change RCS file attributes . .« o « ¢ ¢« o « o« 0 o o
change VADS library options
change VADS library options « « « o ¢« o o o s o o »
change VADS library searchlist . o « « « ¢« o o & o &
change VADS library search list . . « . . .

s o o e o

change login password « ¢ « « ¢ 4 4 4 . . o s e e e
change mode c 5o s e c e e s e
change owner or group =« « « « « o » c e

change the delta commentaryof an ¢ « ¢« « o & « & &
change the format of atextfile . . « « ¢ & o o o & &

(change) to an SCCSfile . . v v v v v o ¢ 0 0 s o
character string .
characters

Permuted Index

cpio(1)

xargs(1)

armlib(1)
arun(l)
a.run(l)
as(1)
at(1)
a.tags(1)
a.tags(1)
res(1)
a.vadsrc(1)
a.vadsrc(l)
a.vadsrc(l)
a.vadsrc(1)
a.view(1)
a.view(1)
wait(1)
a.which(1)
a.which(1)
awk(1)
vmsbackup(1)
banner(1)
newaliases(1)
vi() .
cord2(1)
at(l) -
be(1)
bdiff(1)
cb(1)
starter(1)
cord(1)
bfs(1)
bdiff(1)
strings(1)
uuencode(1)
strip(1)
sum(1)
cord2(1)
a.run(l)
a.run(1)
less(1)
cal(1)
de(1)
cal(1)
calendar(1)

a.path(1)
a.path(1)
passwd(1)
chmod(1)
chown(1)
cde(1)
newform(1)
delta(1)
fgrep(1)
tr(1)

MIPS Computer Systems, Inc.

Permuted Index

ci:

co:

lint : a C program
file sum : print
chown,

group

a.pr : format source
a.pr : format source
pixie : add profiling

comb :

common to two sorted files

test : condition evaluation

time : time a

argument list(s) and execute
mechanism for a.view : establish
mechanism for a.view : establish
nice : run a

examples usage : retrieve a

env : set environment for

uux : UNIX-to-UNIX system

i quits nohup : run a
syntax csh : a shell

getopt : parse

getopts, getoptcvt : parse

: shell, the standard restricted
system activity timex : time a
locate : identify a UNIX system
resintro @ introduction to RCS
intro : introduction to

at, batch : execute

cdc: change the delta

glossary : definitions of

: produce C source listing from a
comm : select or reject lines
ipcs : report inter-process

diff : differential file

resdiff :

cmp :

file sccsdiff :

diff3 : 3-way differential file
dircmp : directory

a.rmlib : remove

a.rmlib : remove

regcmp : regular expression

a.ls : list

a.ls : list

cc : MIPS C

: MIPS COBOL

: MIPS Fortran 77

pc : MIPS Pascal

pll : MIPS PL I

yacc : yet another

program on the target board cross
program on the target board cross
wait : await

pack, pcat, unpack :

cat :

test :

execute command xargs :
remove nroff troff, tbl, and eqn
: determine which project library
: determine which project library
Is : list

csplit :

: uucp status inquiry and job

ve @ version

units :

libraries ranlib :

rcp : remote file

uuname : UNIX-to-UNIX system

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

check in RCS revisions
check out RCS revisions
checker .+ ¢ v v v v v v 6 o ot v e e e e e e e e
checksum and block count of a
chgrp : change owner or group
chmod : changemode
chown, chgrp : change owner or
ci: check in RCS revisions
cmp : compare twofiles 0.0 0. ..
co : check out RCS revisions . . .
code v v h i e e e e e e e e e e e e e e e e
code . .
code to a program
col : filter reverse line feeds
comb : combine SCCS deltas
combine SCCS deltas
comm : select or reject lines
command o . . o e e e e s 0 e e e e e e
command
command xargs :construct . .«
command abbreviations and history
command abbreviations and history
command at low priority
command description and usage
command execution
command execution
command immune to hangups and
(command interpreter) with C-like
command options
command options . . .
command programming language rsh
command; report process data and
command using keywords
commands R
commands and application programs
commands at a later time
commentary of an SCCS delta
common UNIX system terms and
common object file list
common to two sorted files
communication facilities status
COmMPArator & o o & s o o & o s & o 5 2 s 0 s s o0 s
compare RCS revisions
compare two files .
compare two versions of an SCCS . . .
comparison
comparison
compilation library . . .
compilation library
compile .
compiled programs
compiled programs v e
compiler
compiler
compiler
compiler
compiler
compiler-compiler
compilers download and execute a
compilers download and execute a
completion of process
compress and expand files
concatenate and print files
condition evaluation command
construct argument list(s) and
constructs deroff:
contains a unit awhich « + ¢« ¢ o ¢ o ¢ ¢ o v o o &
contains a unit a.which
contents of directory
context split
control uustat
control .+
conversion program
convert archives to random

copy
copy uucp, uulog, =+ « ¢ ¢ ¢ o . .

...........

..........

.....

..............
........

........

..........
.............

e 5 s o e e s s s s s 3 s s s e s s s .

............

e o 8 o o o s o e o s o o @

February 1989

Permuted Index

time(1)
xargs(l)
a.v%ew(l)
a.view(1)
nice(1)
usage(1)
env(1)
uux(1)
nohup(1)
csh(1)
getopt(1)
getopts(1) .
sh(1)
timex(1)
locate(1)
resintro(1)
intro(1)
at(1)
cde(1)
glossary(1)
list(1)
f:omm(l)
ipes(1)
diff(1)
resdiff(1)
cmp(1)
scesdiff(1)
dift3(1)
dircm'p(l)
a.rmlib(1)
a.rmlib(1)
regcmp(1)
als(1)
a.ls(1)
ce(1)
cobol

77

pe(l)
pi(1)
yacc(1)
a.run(l)
a.run(l)
wait(1)
pack(1)
cat(1)
test(1)
xargs(1)
deroff(1)
a.which(1)
a.which(1)
1s(1)
csplit(1)
uustat(1)
ve(l)
units(1)
ranlib(1)
rep(1c)
uucp(1)

Page xv

Permuted Index

: public UNIX-to-UNIX system file
cpio :

cp, In, mv :

ftoc : interface between prof and
an executable file to facilitate

in an executable file to

wc @ word

sum : print checksum and block
files

out

available VADS versions and
available VADS versions and
mkshlib :

a.tags :

a.tags :

ctags :

massaging C source mkstr
admin :

crontab : user

a program on the target board
a program on the target board
cxref : generate C program
page : file perusal filter for

interpreter) with C-like syntax

terminal

or UNIX system

activity sact : print

: set or display name of

: set or print identifier of
hostna.me set or print name of
uname : obtain

each line of a file

line of a file cut :
cross-reference

: display call graph profile

prof : analyze profile

: time a command; report process
file newaliases : rebuild the

a terminal or query terminfo
join : relational

date : print and set the

a.db : source level

a.db : source level

ctrace : C program

dbx : source level

crypt : encode
uuencode,uudecode : encode
VADS versions and create a
VADS versions and create a
terms and symbols glossary :

tail :

the delta commentary of an SCCS
an SCCS file

delta : make a

cdc: change the

rmdel : remove a

comb : combine SCCS

mesg : permit or

: recompile source files in

: recompile source files in

and eqn constructs
retrieve a command
dc:

file :

contains a unit a.which :
contains a unit a.which :
lines for finite width output

usage :

Page xvi

" create a tags file
create atagsfile

RISC/os Programmer’s Reference

copy uuto, uupick
copy file archives in and out .
copy, link or move files
cord
cord :

. w .
« e s o s s .

rearranges procedures in

cord2 : rearranges basic blocks
COUNt & & o s o o o b 0 0w
countofafile ...,

cp, In, mv : copy, link or move
cpio : copy file archives in and
cpp : the C language preprocessor
create a default library display
create a default library display
create a shared library

create a tags file
create an error message file by

create and administer SCCS files
crontab : user crontab file
crontab file
cross compilers
cross compilers
cross-reference
crt viewing more,

e s v s s

and execute

and execute
e e e e e

crypt : encode decode
csh : a shell (command

csplit : context split
ct : spawn getty to a remote

ctags : create a tags file

ctrace : C program debugger . . , . .

cu : call another UMIPS-V system

current SCCS file editing .+
current domain system domainname

current host system hostid . .
current host system
current system information
cut : cut out selected fields of .
cut out selected fields of each .
cxref : generate C program
data gprof
data . . 0 0 0 0.
data and system activity timex
data base for the mail aliases .
database tput : initialize . . .
database operator
date . .

date : print and set the date
dbx : source level debugger
dc : desk calculator . . .
debugger
debugger . ¢ . 0 .0 o
debugger
debugger
decode

s e s s e

decode a binary file for e e ee e

default library available
default library available . . .

definitions of common UNIX system . . .

deliver the last part of a file . .
delta cdc: change
delta : make a delta (change) to

delta (change) to an SCCS file

delta commentary of an SCCS delta .
delta from an SCCSfile

deltas . . .
deny messages
dependency order a. make .
dependency order a.make . .
deroff : remove nroff troff, tbl,
description and usage examples
desk calculator . .« . . .
determine file type .
determine which project hbrary
determine which project library
device fold : fold long

February 1989

e s ¢ o o o @

Permuted. Index

...........

s s » o 8 s & o

........
® 8 & ©o e © o ® o 8 &

......

® o o s o o o e & e o

uuto(1)
cpio(1)
cp(1)

cord(1)

(

cpp(1)
a.vadsrc(1)
a.vadsrc(l)
mkshlib(1)
a.tags(1)
a.tags(1)
ctags(1)
mkstr(1)
admin(1)
crontab(1)
crontab(1)
a.run(1)
a.run(1)
cxref(1)
more(1)
crypt(1)
csh(1)
csplit(1)
ct(1)
ctags(1)
ctrace(1)
cu(1)
sact(1)
domainname(1)
hostid(1)
hostname(1)
uname(1)
cut(1)
cut(1)
cxref(1)
gprof(1)
prof(1)
timex(1)
newaliases(1)
tput(1)
join(1)
date(1)
date(1)
dbx(1)
de(1)
a.db(1)
a.db(1)
ctrace(1)
dbx(1)
crypt(1)
uuencode(1)
a.vadsrc(l)
a.vadsrc(1)
glossary(1)
tail(1)
cde(1)
delta(1)
delta(1)
cdc(1)
rmdel(1)
comb(1)
mesg(1)
a.make(1)
a.make(1)
deroff(1)
usage(1)
de(1)
file(1)
a.which(1)
a.which(1)
fold(1)

(

(

MIPS Computer Systems, Inc.

Permuted Index

bdiff : big

comparator

patch : a program for applying a
comparison

sdiff : side-by-side

diff :

diff3 : 3-way

mkdir : make

rm, rmdir : remove files or
a.cleanlib : reinitialize library
a.cleanlib : reinitialize library
a.mklib : make library
a.mklib : make library

Is : list contents of

dircmp :

pwd : working

printers enable,
enable, disable : enable
dis :

a.du : summarize library
a.du : summarize library
a.error : analyze and
a.error : analyze and

and create a default a.vadsrc :
and create a default a.vadsrc :
gprof :

vi : screen-oriented (visual)
system domainname : set or
statistics uptime :

: set or display name of current
of current domain system

the target board cross a.run:
the target board cross a.run :
od : octal

nm : name list

file odump :

echo :

for casual users)

sact : print current SCCS file
ed, red : text

ex : text

1d : MIPS link

sed : stream

screen-oriented (visual) display
users) edit : text

pattern using full regular

LP printers

enable, disable :

crypt :

transmission uuencode,uudecode :
makekey : generate

execution

printenv : print out the

env : set

: remove nroff troff, tbl, and
source mkstr : create an

a.error : analyze and disperse
a.error : analyze and disperse
hashcheck : find spelling

and history mechanism a.view :
and history mechanism a.view :
expression expr :

test : condition

(visual) display editor based on

edit : text editor (variant of

a command description and usage

: rearranges basic blocks in an

: rearranges procedures in an
board cross a.run : download and
board cross a.run : download and
: construct argument list(s) and

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

diff
diff : differential file
diff file to an original
diff3 : 3-way differential file
difference program
differential file comparator
differential file comparison
dircmp : directory comparison
directories
directories
directory
directory
directory
directory
directory
directory comparison . . < ¢ . . . e e e
directory name
dis : disassemble an object file
disable : enable disable LP . . .
disable LP printers
disassemble an object file
disk usage
disk usage
disperse error messages
disperse error messages
display available VADS versions
display available VADS versions . .
display call graph profile data . . + « ¢« ¢ v ¢ o v o
display editor based on ex
display name of current domain
display system up time and load
domain system domainname
domainname : set or display name
download and execute a program on .« «+ « « + o o
download and execute a program on
dump . . .,
dump of MIPS object files
dumps selected parts of an object
echo : echo arguments
echo arguments
ed, red : text editor
edit : text editor (variant of ex
editing activity
editor
editor
editor
editor « « & . .
editorbased on ex Vi: .+ o o v+ s s 4 s o s 0o oo
editor (variant of ex for casual
egrep : search a file for a
enable, disable : enable disable
enable disable LP printers
encode decode
encode decode a binary file for
encryption key
env : set environment for command
environment e
environment for command execution
eqn constructs deroff
error message file by massaging C
error messages
error messages .
errors spell, hashmake, spellin, . . . <« « o oo o
establish command abbreviations
establish command abbreviations
evaluate arguments as an
evaluation command .
ex vi: screen-oriented
ex :text editor
ex for casual users)
examples usage : retrieve
executable file to facilitate
executable file to facilitate
execute a program on the target . . .+« o . o . .
execute a program on the target . « « « ¢« o o o o .
execute command xargs . . .

........................
................
................
.............

.............
.............

...........

.....................
.....................
s s s
..................
...........

February 1989

Permuted Index

rm(1)
a.cleanlib(1)
a.cleanlib(1)
a.mklib(1)
a.mklib (1)
1s(1)
diremp(1)
pwd(1)
dis(1)
enable(1)
enable(1)
dis(1)
a.du(1)
a.du(1)
a.error(1)
a.error(1)
a.vadsrc(1)
a.vadsrc(l)
gprof(l)
vi(1)
domainname(1)
uptim.e(l)
domainname(1)
domainname(1)
a.run(1)
a.run(1)
od(1)

nm(1)
odump(1)
echo(1)
echo(1)
ed(1)
edit(1)
sact(1)
ed(1)

ex(1)

1d(1)

sed(1)

vi(1)

edit(1)
egrep(1)
enable(1)
enable(1)
crypt(1)
uuencode(1)
makekey(1)
env(1)
printenv(1)
env(1)
deroff(1)
mkstr(1)
a.error(1)
a.error(1)
spell(1)
a.view(1)
a.view(1)
expr(1)
test(1)

vi(1)

ex(1)
edit(1)
usage(1)
cord2(1)
cord(1)
a.run(1)
a.run(l)
xargs(1)

Page xvii

Permuted Index

at, batch :

env : set environment for command
pixstats : analyze program

uux : UNIX-to-UNIX system command
sleep : suspend

pack, pcat, unpack : compress and
expression

evaluate arguments as an
regcmp : regular

for a pattern using full regular
to implement shared xstr :
blocks in an executable file to
in an executable file to
inter-process communication
of a number
obtain the prime
true,

col : ﬁlter reverse line

character string

cut : cut out selected

a.tags : create a tags

a.tags : create a tags

crontab : user crontab

ctags : create a tags

selected fields of each line of a
make a delta (change) to an SCCS
dis : disassemble an object

get : get a version of an SCCS
listing from a common object

data base for the mail aliases

: change the format of a text
dumps selected parts of an object
files or subsequent lines of one

prs : print an SCCS

: generate release identification

: remove a delta from an SCCS

: compare two versions of an SCCS
the section size of an object

in an object or other binary
checksum and block count of a

tail : deliver the last part of a

and modification times of a

: undo a previous get of an SCCS
uniq : report repeated lines in a

val : validate SCCS

expr !

factor :

cpio : copy

cs : change RCS

less :

create an error message
diff : differential

diff3 : 3-way differential
Icp : remote

: public UNIX-to-UNIX system

mkstr :

sact : print current SCCS
fgrep : search a
grep : search a
regular egrep : search a

: encode decode a binary

: archive (library)

: archive (library)

split : split a

merge ; three-way

. . pg :

viewing more, page :

bfs : by

; a program for applying a diff
basic blocks in an executable
procedures in an executable
ftp : ARPANT

tftp : trivial

file : determine

umask : set

: create and administer SCCS
cat : concatenate and print
cmp : compare two

Page xviii

RISC/os Programmer’s Reference

execute commands at alater time

execution . . 4 o ...

execution . . . 4 &
execution . .
execution for an interval
expand files
expr :

evaluate arguments as an

CXPI'GSSK)D s h s e s e

express:on complle .
expressions : search a file

extract strings from C programs

facilitate : rearranges basic
facilitate better procedures
facilities status ipcs : report

factor : obtain the prime factors

factors of a number
false : provide truth values

feeds o+ ¢« v o s o o -
fgrep : search a file for a

fields of each line of a file
file «...0000.0.,
file
file & o o o ¢ o 0 o 0 o«
file oo oo

file cut:cutout . , . o+ .

file delta :
file v o o v o6 o 0 0 4
file - ee a0 o o
file hst produceCsource
file newaliases : rebuild the

DRI I

° s =

file newform . + & s 4 4 & W

file odump: .,

file merge same lines of several

file .
file rmdel + . ¢« ¢ & ¢+ 4
file sccsdiff
file size: prints
file find the printable strmgs
file sum :print ,
file e e v e b s

file touch update access
file unget
file o 0 v v 0 o v n v
file e e s e e e
file : determme file type .

L

------ e s o 8

file rls_,id e

« @ p o 9 e @ e

file archives in and out . . .

file attributes
file browser

file by massaging C source ..

file comparator
file comparison
file copy
file copy uuto, uupick
file editing activity
file for a character string .
file for a pattern . . + oo
file for a pattern using full

file for transmission via mail
file format
file format
file into pieces .+ « « o . W
filemerge v o o o os o o
file perusal filter for CRTs

s e o

e s p o 8 o @

e o s e s o 0

« & o o

file perusal filter for crt . , .

file scanner
file to an original patch
file to facilitate : rearranges

file to facilitate better “ e e se e

file transfer program . . .
file transfer program . . .
file type . .
file-creation mode mask

files admin .+ . . ¢ . .
files T T
files

e e » s 8 s

° s e

February 1989

e ® e o o s o

e s s s

« & 2 e » e

s 2 » o = = @

e © ®» = = & e

-
-
e o @ 3 » 3 »

e 3 e s 3 s e

.
s e ® e e .
e s a s e = & e s s o 2
s s 3 » s % s e @ 8 s @

B

e s s s e s »

e s ® ® 3 = & ®

s e s o o s s o

-

e & o e » ® ° o

* % e @

® e s e s s ® @
.

s s e s o

Permuted Index

at(1)
env(1)
pixstats(1)
uux(1)
sleep(1)
pack(1)
expr(1)
expr(1)
regemp(1)
egrep(l)
xstr(1)
cord2(1)
cord(1)
ipes(1)
factor(1)
factor(1)
true(1)
col(1)
fgrep(1)
cut(1)
a.tags(1)
a.tags(1)
crontab(1)
ctags(1)
cut(1)
delta(1)
dis(1) -
get(1)
list(1)
newaliases(1)
newform(1)
odump(1)
paste(1)
prs(1)

.. 1ls_id(1)

rmdel(1)
scesdiff(1)
size(1)
strings(1)
sum(1)
tail(1)
touch(1)
unget(1)
uniq(1)
val(1)
file(1)
cpio(1)
res(1)
less(1)
mkstr(1)
diff(1)
diff3(1)
rep(1c)
uuto(1)
sact(1)
fgrep(1)
grep(1)
egrep(1)
uuencode(1)
xar
split(1)
merge(1)
pe(1)
more(1)
bis(1)
patch(1)
cord2(1)
cord(1)
ftp(1c)
tftp(1)
file(1)
umask(1)
admin(1)
cat(1)
cmp(1)

MIPS Computer Systems, Inc.

Permuted Index

reject lines common to two sorted
cp, In, mv : copy, link or move
find : find

ident : identify

multivol : handle multivolume

: name list dump of MIPS object
unpack : compress and expand
pr : print

and other information about RCS
sort : sort and or merge

what : identify SCCS

a.make : recompile source
a.make : recompile source

rm, rmdir : remove

: merge same lines of several

nl : line numbering

pg : file perusal

more, page : file perusal

col :

find :

object library lorder :
hashmake, spellin, hashcheck :
object or other binary strings :
fold : fold long lines for

tee : pipe

cflow : generate C

width output device

output device fold :

: archive (library) file

: archive (library) file

newform : change the

a.pr:

a.pr:

cord

program

search a file for a pattern using
cflow :

cross-reference cxref :
makekey :

lexical tasks lex :

file rls_id :

getopts,

command options

ct : spawn

UNIX system terms and symbols
profile data

gprof : display call

pattern

chown, chgrp : change owner or
maintain, update, and regenerate
multivol :

: run a command immune to
. spell, hashmake, spellin,
find spelling errors spell,
support

nohup

a.help : interactive

a.help : interactive

command abbreviations and
command abbreviations and
ruptime : show

or print identifier of current

: set or print name of current
of current host system
current host system
semaphore set or shared memory
su, ssu : substitute user

rls_id : generate release

hostid : set or print
what :

using keywords locate :
ident :

nohup : run a command

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

files comm :
files
files
files
files
files
files
files
files
files
files
files in dependency order
files in dependency order . . .
files or directories
files or subsequent lines of one
filter & ¢ ¢ v v v e e e e e e e e e e s e e e e e
filter for CRTs
filter for crtviewing . + « o 4 4 o 0 0 0 00 0w e
filter reverse line feeds . . .
find : find files
find files e e e s e e ee e
find ordering relation foran 0.0 0.
find spelling errors spell,
find the printable strings in an
finite width output device
fitting . . .
flowgraph . . e e e
fold : fold long llnes for ﬁmte
fold long lines for finite width
format
format
format of a text file
format source code
format source code s s e s e s e s e s ey
ftoc : interface between profand
ftp : ARPANT file transfer
full regular expressions €grep: o ¢ « o 4 o 0 4 4 oo .
generate C flowgraph
generate C program .+ « + .
generate encryption key . .
generate programs for simple

generate release identification

getopt : parse command options e e e e e e
getoptcvt : parse command options
getopts, getoptcvt : parse
getty to a remote terminal
glossary : definitions of common . . .
gprof : display call graph « « ¢« « v o o . .

select or

NN« « ¢« o ¢ o s s s » 6 5 s s o o s o a o &

2 s s s o e s e o s e s &

.........
» s e & & o s o s s e s o »

graph profile data
grep :
group
groups of programs make :
handle multivolume files . . . « . &
hangups and quits « « ¢« + ¢ & 4 o o .
hashcheck : find spelling errors .
hashmake, spellin, hashcheck :
havetcp : test system for TCP e e
help : UNIX system Help Facility . . + « « ¢ « « 4
help utility
help utility
history mechanism for Cshell . . . « « ¢ ¢ o v o o &
history mechanism for Cshell . « + « o ¢ o o v ¢+
host status of local machines « « « « o ¢« o o o o 4
host system hostid :set ’
host system hostname
hostid : set or print identifier .
hostname : set or print nameof . » « + ¢« o o
id :remove a message queue,
idtemporarily « « ¢« 0 s e 0t e e b e e s e e e e
ident : identify files
identification file « « ¢« ¢ ¢ ¢ 4 s 0 e s e e 0. w0
identifier of current host system .
identify SCCS files .+ . « « & e s e s s e e e
identify a UNIX system command T T R
identify files
immune to hangups and quxts c e e s e s e e e e

search a file fora . .

.
.

« e s s o s e e » ® 2 s s e s o

.

“ o & o s s 8 o 8 o e e s s s s o=

February 1989

Permuted Index

comm(1)

nm(1)

a.make(1)
rm(1)
paste(1)
nl(1)

pe(1)
more(1)
col(1)
find(1)
find(1)
lorder(1)
spell(1)
strings(1)
fold(1)
tee(1)
cflow(1)
fold(1)
fold(1)

ar

xar
newform(1)
a.pr(1)
a.pr(1)
ftoc(1)
ftp(lc)
egrep(1)
cflow(1)
cxref(1)
makekey(1)
lex(1)
rls_id(1)
getopt(1)
getopts(1)
getopts(1)
ct(1)
glossary(1)
gprof(1)
gprof(1)
grep(1)
chown(1)
make(1)
multivol(1)
nohup(1)
spell(1)
spell(1)
havetcp(1)
help(1)
a.help(1)
a.help(1)
a.view(1)
a.view(1)
ruptime(1c)
hostid(1)
hostname(1)
hostid(1)
hostname(1)
ipcrm(1)
su(1)
ident(1)
rls_id(1)
hostid(1)
what(1)
locate(1)
ident(1)
nohup(1)

Page xix

Permuted Index

strings from C programs to

: remove source unit and library
: remove source unit and library
Ipstat : print LP status

uname : obtain current system

: print log messages and other
for beginning users starter :
terminfo database tput :

setup :

uustat : uucp status

a.help :

ahelp :

system mailx :

ftoc :

administration sysadm : menu
telnet : user

csh : a shell (command:
facilities status ipcs : report '

sleep : suspend execution for an
and application programs
rcsintro :

application programs intro :
semaphore set or shared memory
communication facilities status
news : print news

uustat : uucp status inquiry and
operator

makekey : generate encryption
a UNIX system command using

: pattern scanning and processing
: arbitrary-precision arithmetic
restricted command programming
cpp : the C

at, batch : execute commands at a

a.db : source

a.db : source

dbx : source

simple lexical tasks

: generate programs for simple

: convert archives to random
a.rmlib : remove compilation
a.rmlib : remove compilation
versions and create a default
versions and create a default
ordering relation for an object
mkshlib : create a shared

a.which : determine which project
a.which : determine which project
a.cleanlib : reinitialize

a.cleanlib : reinitialize

a.mklib : make

a.mklib : make

a.du : summarize

a.du : summarize

: archive

: archive

a.rm : remove source unit and
a.rm : remove source unit and

ar ; archive and

a.info : list or change VADS
a.info : list or change VADS
a.pathxs : report or change VADS
a.pathxs : report or change VADS
line : read one

col : filter reverse

nl :

: produce program listing with
: produce program listing with
: cut out selected fields of each
: send cancel requests to an LP
comm : select or reject

device fold : fold long

Page xx

RISC/os Programmer’s Reference

February 1989

implement shared strings
information a.rm
information aom . . . e 0 . h e e e e e e e e e
information
mformation + ¢ ¢ v v h v e e e e e e e e e e e
information about RCS files rlog

information about the UNIX system
initialize a terminal or query
initialize system for first user
inquiry and job control v 00 00w .
interactive help utility . . . « «o ...
interactive help utility
interactive message processing ¢ 4 o« + o . o0 o0 b o. .
interface between prof andcord
interface to do system . . ¢ 0 o 0 0 0 0 0 e e 0 e
interface to the TELNET protocol c e e e s e e e

extract . « ¢ ¢ o v 0 4 .

interpreter) with C-like syntax .+ o o o v o & v v o . .
inter-process communication . ¢ . 4 ¢ . o . 0 . . .
interval . ¢ 4 v 0 0 e 00 e Pe e e s e e e s
intro : introduction to commands 0 0 ..
introduction to RCS commands . e e e
introduction to commands and e e e e e .
ipcrm : remove a message qUEUe, .+ . . o s o . . .
Ipcs @ report inter-process . . . o v 4 0 4 . .
ems . 4 o 0 0 . o S e e e e s s s e e e s e
job control e e e e e o e e
join : relational database o o e 0 00 . 0.
key o0 v v e et e e e e e e e e e e e s
keywords locate : identify s e e s e s
kill : terminate a process « o « o 4 o o s 2 s 0 . s .
language awk . ¢ s 4 ¢ o v e s e o 0 0 0 0 e 0 oa e
language bc T . .
language ‘'shell, the standard . . . o o & o 0 . o
language preprocessor . v 4 s o v o0 0 s . e e
later time v o o o o ¢ o o 0 o o0 . v e e e e e
Id: MIPS Iink editor + v v v o ¢ ¢ s o s o v s v e
less : filebrowser « ¢« o v v o 0 6 4 0 0 0 .0 0 o0
level debugger . « . & o . . . e e e e e e e e e
level debugger . o« + ¢« + o 4 o . S e e e e e e e e
level debugger e s e e e e .

lex : generate programs for . . . L . 0 0 0w e 0 4
lexical tasks lex o « o 4 4 . & e e w s s e e s e e
libraries ranlib . « o v v 0 e 00 v e e e e
Lbrary o v o v 0 o v v e 0w s o s e ke e s
brary o o o o 0 o 6 0 o 0 s s 0 6 s 0 4 a0 e e s
library : display available VADS . . ¢ o o 0 0 .4
library : display available VADS
library lorder :find . o . o ¢ o 4 v 0 0 000 . e
library + ¢ o o o . e s e e e e e e e e ..
library contains a unit
library contains aunit . « .. o . . . C e e e e
library directory « « « 4 o 4 o 4 . e e e .
library directory « « o ¢ 4 0 00 0 oo . e e e
library directory o « o o o s o o v 0 v 6 8 .06 0.

library dir€Ctory « ¢ v o ¢ o o o 0 o s 0 0 s a4 60w
library disk usage

library disk usage « + « . o)
(library) file format P e e e s ee st
(library) file format e e e e e e
library information .« « « ¢ o ¢ 0 0 . 0 0 . o« .
library information « « « 4+ v 4 0 0 e 0.0 .. e
library maintainer .+ « « « 0 o 0 o o s e e e e
library options « « ¢ ¢« ¢ 4 0 0 s e s e 0w s 0.
library Options « w ¢« v 4 4 4 e e 0. 4 a0 e
library search list e e e e e « o s e s s
library search list B
line «...... s v s n s e e s e s e e nnee
line:readoneline « « v v ¢ v v ¢ v o 0 o 0 o o o
linefeeds « v o o ¢ v o o 0 o o 0 o o 0 o s o 0 o
line numbering filter e e e e s s e s e

line numbers a.list s e e s e s e e s e e s
line numbers alist « « o v o ¢ o 0 000 0 .. e
lineofafile cut .« + o o v v o s o v o 0 o s 0 0 o
line printer lp, cancel c e e e .

lines common to two sorted files e s e e s e s e s
lines for finite width output + « o ¢ v ¢ ¢« o ¢« o ¢ o &

Permuted Index

xstr(1)
a.rm(1)
a.rm(1)
Ipstat(1)
uname(1)
rlog(1)
starter(1)
tput(1)
setup(1)
uustat(1)
ahelp(1)
a.help(1)
mailx(1)
ftoc(1)
sysadm(1)
telnet(1c)
csh(1)
ipes(1)
sleep(1)
intro(1)
resintro(1)
intro(1)
iperm(1)
ipes(1)
news(1)
uustat(1)
join(1)
makekey(1)
locate(1)
kill(1)
awk(1)
be(l)
sh(1)
cpp(1)
at(1)

14(1)
less(1)
a.db(l) -
a.db(1)
dbx(1)
lex(1)
lex(1)
ranlib(1)
a.rmlib(1)
a.rmlib(1)
a.vadsrc(1)
a.vadsrc(1)
lorder(1)
mkshlib(1)
a.which(1)
a.which(1)
a.cleanlib(1)
a.cleanlib(1)
a.mklib(1)
a.mklib(1)
a.du(l)
a.du(l)
xar
a.rm(l)
a.rm(1)
ar(1)
a.info(1)
a.info(1)
a.path(1)
a.path(1)
line(1)
line(1)
col(1)
nl(1)
a.list(1)
a.list(1)
cut(1)
Ip(1)
comm(1)
fold(1)

MIPS Computer Systems, Inc.

Permuted Index

uniq : report repeated

of several files or subsequent
subsequent paste : merge same
1d : MIPS

cp, In, mv : copy,

or change VADS library search
or change VADS library search
from a common object file
als:

als:

Is :

nm : name

options a.info :

options a.info :

list : produce C source

a.list : produce program

alist : produce program

xargs : construct argument

cp,

: display system up time and
ruptime : show host status of
rwho : who’s logged in on
command using keywords
information about rlog : print
rwho : who’s

rlogin : remote

logname : get
passwd : change

for an object library
nice : run a command at
to an LP line printer
information

u3b$, vax : get processor type
: show host status of local
rwho : who’s logged in on local
m4 :

program mt :

: send mail to users or read
binary file for transmission via
: rebuild the data base for the
mailq : print sendmail

or read mail

mail, rmail : send

processing system
groups of programs make :
ar : archive and library

mt : magnetic tape

man : view online

umask : set file-creation mode

: create an error message file by
command abbreviations and history
command abbreviations and history
queue, semaphore set or shared
administration sysadm :

merge : three-way file

rcsmerge :
sort : sort and or
or subsequent lines of paste :

source mkstr : create an error
mailx : interactive

shared memory ipcrm :remove a
: analyze and disperse error

: analyze and disperse error

mesg : permit or deny

about RCS files rlog : print log

: get processor type machid:

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

“merge RCS revisions .

linesinafile . « v v v v v v v v v v v o 0w e
lines of one file same lines
lines of several files or
link editor
link or move files
lint : a C program checker
list a.pathxs : report
list a.pathxs : report
list : produce C source listing
list compiled programs

list compiled programs

list contents of directory
list dump of MIPS object files
list or change VADS library

list or change VADS library

listing from a common objectfile . . . -0 . 0 . o
listing with line numbers
listing with line numbers
list(s) and execute command . .
In, mv : copy, link or movefiles « . « « ¢ s & o . ..
load statistics uptime . . ¢+ 0 0 . 4
local machines
local machines
locate : identify a UNIX system
log messages and other
logged in on local machines
login
login : sign on
login name
login password
logname : get login name
lorder : find ordering relation
low priority
Ip, cancel : send cancel requests e e e
Ipstat : print LP status
Is : list contents of directory
m4 : macro processor
machid: mips, pdpll, u3b, u3b2,
machines ruptime
machines . . .
Imacro processor

magnetic tape manipulating
mail mail, rmail
mail :encode decode a

mail aliases file newaliases
mail qUEUE v ¢ v o v o 4 o b e s e s e e e e e e
mail, rmail : send mail tousers .« « « . . .0 0 0 ..
mail to users or read mail
mailq : print sendmail mail queue .
mailx : interactive message . « « . o . . .
maintain, update, and regenerate
maintainer
makekey : generate encryption key . . .
manipulating program . .+« s e e s 0 4.0 .. e
manual pages
mask . .
massaging C source mkstr
mechanism for C shell establish
mechanism for C shell establish
memory id : remove a message .
menu interface to do system .+ . . 4 o 0 0 o e ...
MEIZE o o o o o o o o o o &
merge : three-way file merge . .

.............
...............
....................

...........
...............

.............

merge files
merge same lines of several files

mesg : permit or deny messages

message file by massaging C . .
message processing system
message queue, semaphore setor . « . . o
messages a.error
messages a.error
messages
messages and other information .
mips, pdp1l, u3b, u3b2, u3bs, vax e e e e e e
mkdir : make directories .

February 1989

Permuted Index

a.list(1)
a.list(1)
xargs(1)
cp(D)
uptn.ne(l)
ruptime(1c)
rwho(1lc)
locate(1)
rlog(1)
rwho(lc)
rlogin(l)
login(1)
logname(1)
passwd(1)
logname(1)
lorder(1)
nice(1)
Ip(1)
Ipstat(1)
1s(1)

m4(1)
machid(1)
ruptime(1c)
rwho(1lc)
m4(1)

mt(1)
mail(1)
uuencode(1)
newaliases(1)
mailq(1)
mail(1)
mail(1)
mailq(1)
mailx(1)
make(1)
ar(1)
makekey(1)
mt(1)
man(1)
umask(1)
mkstr(1)
aview(1)
g.view(l)
iperm(1)
sysadm(1)
merge(1)
merge(1)
rcsmerge(1)
sort(1)
paste(1)
mesg(1)
mkstr(1)
mailx(1)
ipcrm(1)
a.error(1)
a.error(1)
mesg(1)
rlog(1)
machid(1)
mkdir(1)

Page xxi

Permuted Index

file by massaging C source
chmod : change

umask : set file-creation
touch : update access and
for crt viewing

cp, In, mv : copy, link or
program

files
handle
cp, In,
logname : get login

pwd : working directory
files nm :

domainname : set or display
hostname : set or print

tty : get the

multivol :

: write to all users over a

netstat : show
base for the mail aliases file
text file

rwall

news : print
priority

object files

hangups and quits

constructs deroff : remove

: obtain the prime factors of a

nl : line

produce program listing with line
produce program listing with line
dis : disassemble an

C source listing from a common
: dumps selected parts of an

: prints the section size of an

nm : name list dump of MIPS

: find ordering relation for an
find the printable strings in an
uname :

number factor :

od:

an object file

man ; view

join : relational database

: list or change VADS library
: list or change VADS library
. getopt : parse command
getoptevt : parse command
stty : set the

source files in dependency
source files in dependency
library lorder : find

for applying a diff file to an
fold long lines for finite width
chown, chgrp : change
expand files

crt viewing more,

man : view online manual
getopt :

getopts, getoptcvt :

tail : deliver the last

odump : dumps selected

passwd : change login
several files or subsequent
diff file to an original

grep : search a file for a
language awk :

egrep : search a file for a

" expand files pack,

processor type machid: mips,
mesg :

Page xxii

RISClos Programmer’s Reference

mkshlib : create a shared library . . ,
mkstr : create an error message
mode . .
mode mask
modification times of afile « « ¢ 4 0 ¢ 4 0 b0 0w
more, page : file perusal filter .
move files « be .
mt : magnetic tape manlpulatmg ..
multivol : handle multivolume .
multivolume files . . .
mv : copy, link or move files .
name
name . . c e e s e s e e e
name list dump ofMIPS ob]ect Cie e e e e e e
name of current domain system .+
name of eurrent host system A
name of the terminal s e h e W e s e
netstat : show network status . « ¢« ¢ o ¢ 4 o . o 6
network .
network status ., .
newaliases : rebuild the data .
newform : change the format of a .
news : print news items 4 o

news items . .
nice : run a command at low
nl : line numbering filter

nm : name list dump of MIPS . .. v ¢« o v v o v . .
nohup : run a command immuneto . s+ . . 0 0 . .
nroff troff, tbl, and eqn F T

number factor “ b e . ' ..
numbering filter P e e e e e e e e e e
numbers a,list : . e e e s e e e s e e

numbers a.list :

objectfile . ¢ ¢ oo v o v .
object file list : produce
objectfile odump .« v v 0 v 0 v e v e e e 0.0
object file size

objectfiles 000 .
object library lorder
object or other binary file :
-obtain current system information
obtain the prime factors of a
octal dump ..
od:octaldump o
odump : dumps selected parts of e e
online manual pages . + « «
operator
options a.info .+ « ¢« ¢ . 0 . .
options a.info
options
options ‘getopts, .+ . v . < .
options for a terminal .
order a.make :recompile
order a.make : recompile
ordering relation for an object . . ¢ o 4 0 s . .
original patch : a program
output device fold :
owner or group
pack, pcat, unpack : compress and
page : file perusal filter for
pages .« . .
parse command options .+ . . .
parse command options .
part of a file

s e s o

e & o e o 3
e s e o o =
s e © e o o

« s e © 3 o

s s 0 e 8 o e & s e

parts of an object file
passwd : change login password .
password
paste : merge same lines of
patch : a program for applying a c e e e e
pattern = o ¢ ¢« o 4 o o 6 0 s o e s s a8 s e

e s 0 w0

pattern scanning and processing o .
pattern using full regular .
pc : MIPS Pascal compiler « « o o o o s ¢ s 0 0 o
pcat, unpack : compress and . ¢ ¢ o 4 0 0 s o0 0o
pdpll, u3b, u3b2, udb5, vax 1get < . v 4 0o @ 0 .
permit or deny messages « « o o o+ s 0 00 s e o6 e

February 1989

Permuted Index

mkshlib(1)
mkstr(1)
chmod(1)
umask(1)
touch(1)
more(1)
cp(1)
mt(1)
multivol(1)
multivol(1)
cp(1)
logname(1)
pwd(1)
nm(1)
domainname(1)
hostname(1)
tty(1)
netstat(1)
rwall(1)
netstat(1)
newaliases(1)
newform(1)
news(1)
news(1)
nice(1)
nl(1)
nm(1)
nohup(1)
deroff(1)
factor(1)
nl(1)
a.list(1)
a.list(1)
dis(1)
list(1)
odump(1)
size(1)
nm(1)
lorder(1)
strings(1)
uname(1)
factor(1)
od(1)
od(1)
odump(1)
man(1)
join(1)
a.info(1)
a.info(1)
getopt(1)
getopts(1)
stty(1)
a.make(1)
a,make(1)
lorder(1)
patch(1)
fold(1)
chown(1)
pack(1)
more(1)
man(1)
getopt(1)
getopts(1)
tail(1)
odump(1)
passwd(1)
passwd(1)
paste(1)
patch(1)
grep(1)
awk(1)

machid(1)
mesg(1)

MIPS Computer Systems, Inc.

Permuted Index

pg : file
more, page : file

split : split a file into
tee :

program

execution

banner : make

ald:

ald:

cpp : the C language

unget : undo a

factor : obtain the

Ipstat :

prs :

date :

cal :

a file sum :

activity sact :

cat : concatenate and

pr:

system hostid : set or
information about RCS rlog :
hostname : set or

news :

printenv :

mailq :

winsize : set

other binary strings : find the
" environment

cancel requests to an LP line
disable : enable disable LP
object file size :

nice : run a command at low
to facilitate cord : rearranges
kill : terminate a

wait : await completion of
timex : time a command; report
: ps : report
awk : pattern scanning and
mailx : interactive message

m4 : macro

pdpll, u3b, u3b2, u3bs, vax : get
common object file list :
numbers a.list :

numbers a.list :

ftoc : interface between

gprof : display call graph

prof : analyze

pixie : add

ftp : ARPANT file transfer

mt : magnetic tape manipulating
pixie : add profiling code to a
sdiff : side-by-side difference
tftp : trivial file transfer

units : conversion

cb:C

lint:aC

cxref : generate C

ctrace : C

pixstats : analyze

to an original patch : a

alist : produce

alist : produce

a.run : download and execute a
a.run : download and execute a
the standard restricted command
a.ls : list compiled

a.ls : list compiled

to commands and application
update, and regenerate groups of
lex : generate

xstr : extract strings from C

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

perusal filter for CRTs .
perusal filter for crt viewing .« « « « + ¢ o o b . e oo
pg : file perusal filter for CRTs + « v v o« v o o .«

pieces
pipe fitting

pixie : add profiling codetoa e e e e
pixstats : analyze program e e e
pll : MIPS PL I compiler C e e e e e e
POSLEIS & & o o ¢ o ¢ o s s o o s s s 0w .
pr:printfiles e e e e e .
prelinker « « v . 0 0 0 w0 w0 e e e e
prelinker o ¢ v v v 0t v e e e e e e e e .
PIEProOCESSOI o o o s o o s o o o s » e s s e s .
previous get of an SCCSfile ... v ¢ v v v v 0 v o
prime factors of anumber 0 00 ...
print LP status information . « . « « v 4 o 0 0 0.
printan SCCSfile . . . ¢ v v v v o v s ..

print and set the date et e s e e s e s e e e e e
print calendar 0 . 00 . e .

print checksum and block countof
print current SCCS file editing . « « « ¢« « o
print files
print files . . et e e e e e e
print identifier of current host .
print log messages and other . . « « 0. .
print name of current host system . « . 4+ . 0 . .
print news items

? o s & s e s s & s s s s & s 8 s 0

print out the environment e e s e s
print sendmail mail queue 00000 . .
print window size . .+ . . 0 o o ... o e e e e s
printable strings in an objector e
printenv : print outthe e e e
printer lp, cancel :send e e e e e e

printers enable, . . ¢ v 4 v o 0 0 e 0 . e e

prints the section size of an . . C e e e e
Priority o « o o o v o+ o v e s e e e e . 0
procedures in an executable file PR
PIOCESS & o o o o o o o o » . v e e s s o
Process o« « o o o + » e e e e s e e e e .
process data and system activity . « « + 4 4 0 0 .0 . .
process status + . 4 0 0 0 4 0 e . s e . .

processing language . . v o 4 . 0 s e 0 e 0w e
processing SyStem o « s 4 o o o 4 s s 4 w4 s ow o s
PIOCESSOI o o o o o o o = o = o s s o o s s s s o s
processor type truth value mips, + « « « 4+ « ¢ & o

produce C source listing froma .+ « « + + « & ..
produce program listing withline « « « « « « ¢+ & &
produce program listing with line e
prof : analyze profile data v e s e e e e oo
profandcord « ¢ ¢ v v e v e e 0 e e s e e e e e
profiledata o ¢« ¢« ¢ v v 0 s s et 0 4 s e e e e e
profiledata . . 4 4 ¢ s e 0 b et e b e e e e
profiling code to a program .+ « « .+ . . . e
program . ¢« o o 0 . o ae e e e
Program . .+« « . 0 o o . s e e e e
Program o « v o s o o o o @ .
Program o « o « o s o o o s o & o e e e et s .
program . . .« o . . . e e et e e e s
Program s « o « o o o o o e s s e e e s e
program beautifier . . « ¢ o ¢ 0 0 . o . v e e e
program checker
program cross-reference .. e e e e
program debugger . « o ¢ 4 ¢ 0 0 s 0 s e 6 s e o
program execution . .+ . « . . s e e ne e
program for applying a diff file . . .« « v e
program listing with line numbers .« + « + + + . & .
program listing with line numbers .+ « + « « o+ & .
program on the target board cross e e e e e e e e
program on the target board cross e vt e e e aee
programming language :shell,« . ¢ .. .
programs .« « . o« « . o e e s et e e e
programs . « o+ o s o . e e e e e s e e e e .
programs intro : introduction e e e e e s s
programs make : maintain, « ¢ ¢ s o 0 0 000 s o
programs for simple lexical tasks + « « &+ o .
programs to implement shared . . « + ¢ o o 0 o .

February 1989

Permuted Index

pe(1)
more(1)
pe(1)
split(1)
tee(1)
pixie(1)
pixstats(1)
pl(1)
banner(1)
pr(D)
ald(1)
ald(1)
cpp(1)
unget(1)
factor(1)
Ipstat(1)
prs(1)
date(1)
cal(1)
sum(1)
sact(1)
cat(1)

pr(1)
hostid(1)
rlog(1)
hostname(1)
news(1)
printenv(1)
mailq(1)
winsize(1)
strings(1)
printenv(1)
Ip(1)
enable(1)
size(1)
nice(1)
cord(1)
kill(1)
wait(1)

ctrace(1)
pixstats(1)
patch(1)
a.list(1)
a.list(1)
a.run(l)
arun(l)
sh(1)
als(1)
als(1)
intro(1)
make(1)
lex(1)
xstr(1)

Page xxiii

Permuted Index

‘a.which : determine which
a.which : determine which

: user interface to the TELNET
true, false :

copy uuto, uupick :

tput : initialize a terminal or

mailq : print sendmail mail

memory ipcrm : remove a message
a command immune to hangups and
ranlib : convert archives to

random libraries

commands

vmsbackup :

send mail to users or
line :

executable file to cord2 :
executable file to cord :
mail aliases file newaliases :
dependency order a,make :
dependency order a.make :
ed,

compile

make : maintain, update, and
regcmp :

a file for a pattern using full
a.cleanlib :

a.cleanlib :

files comm : select or
lorder : find ordering
join :

rls_id : generate
remove symbols and
calendar :

rcp ;

rlogin :

rsh, remsh :

ct : spawn getty to a
rmdel :

set or shared memory id ipcrm :
a.rmlib :

armlib :

rm, rmdir :

constructs deroff :

information a.rm :

information a.rm :

bits strip :

rsh,

uniq : report

communication facilities 1ipcs :
search list a,pathxs :

search list a.pathxs :

activity timex : time a command;
ps:

uniq :

ar : system activity

vsar : visual system activity

Ip, cancel : send cancel

sh, rsh : shell, the standard

and usage examples usage :

col : filter

ci : check in RCS

co : check out RCS

resdiff : compare RCS

rcsmerge : merge RCS

other information about RCS

rmail :

strip :

identification file
directories
read mail mail,

Page xxiv

RISC/os Programmer’s Reference

February 1989

project library contains a unit
project library contains a unit
protocol telnet Lo o0 h v e e e .
provide truth values . . « « v v v v 4 0 . 00 0. .
prs : print an SCCS file . e
Ps i report process status .+« v v 4 4 e e o0 4 0. s s
public UNIX-to-UNIX system file
pwd : working directory name
query terminfo database
queue
queue, semaphore set or shared
quits nohup : run
random libraries
ranlib : convert archives to. .
rcp : remote file copy
res ¢ change RCS file attributes
rcsdiff : compare RCS revisions
resintro : introduction to RCS
rcsmerge : merge RCS revisions
read a VMS backup tape . . .
read mail mail, . ..
readoneline . . ¢ . oo 0.
rearranges basic blocks in an
rearranges procedures N an « . . 0 0 4 e 00 s e ..
rebuild the data base for the . .
recompile source files in
recompile source files in
red : text editor
regcmp : regular expression 0 0 0 .0 4w e
regenerate groups of programs
regular expression compile
regular expressions : search
reinitialize library directory .
reinitialize library directory v e v o 0 e 0w 0 e e
reject lines common to two sorted
relation for an object library
relational database operator
release identification file
relocation bits .
reminder service .
remote fille COPY & ¢ v v v 0 0 v d e e e e e e e e
remote login
remote shell
remote terminal
remove a delta from an SCCS ﬁle
remove a message queue, semaphore
remove compilation library
remove compilation library
remove files or directories
remove nroff troff, tbl, andeqn
remove source unit and library .
remove source unit and library
remove symbols and relocation . . .
remsh : remote shell
repeated lines in a file
report inter-process
report or change VADS library . . . « o ¢ v o o o .
report or change VADS library
report process data and system
report process status
report repeated lines in a file
reporter ..
reporter C e e
requests to an LP line printer
restricted command programming
retrieve a command description
reverse line feeds . . .
revisions
revisions
revisions
revisions . . “« oe e .
rlog : print log messages and . 0. 4 e e e
rlogin : remotelogin =« + v 4 4 o v 00w .
rls_id : generate release . . .« . o 4 0 0 . .
rm, rmdir : remove filesor . . .
rmail : send mail to USers OF « . . 0 4 4 e b e 4. .

............

Permuted Index

a.which(1)
a.which(1)
telnet(1c)
true(1)

tput(1)
mailg(1)
iperm(1)
nohup(1)
ranlib(1)
ranlib(1)
rep(lc)
res(1)
resdiff(1)
resintro(1)
rcsmerge(1)
vmsbackup(1)
mail(1)
line(1)
cord2(1)
cord(1)
newaliases(1)
a.make(1)
a.make(1)
ed(1)
regemp(1)
make(1)
regcmp(1)
egrep(1)
a.cleanlib(1)
a.cleanlib(1)
comm(1)
lorder(1)
join(1)
rls_id(1)
strip(1)
calendar(1)
rep(lc)
rlogin(1)
rsh(1c)
ct(1)
rmdel(1)
ipcrm(1)
a.rmlib (1)
a.rmlib(1)
rm(1)
deroff(1)
a.rm(1)
a.rm(1)
strip(1)
rsh(1c)
uniq(1)
ipes(1)
a.path(1)
a.path(1)
timex(1)
ps(1)
uniq(1)
sar(1)
vsar(1)
Ip(1)

sh(1)
usage(1)
col(1)

ci(1)

co(1)
resdiff(1)
rcsmerge(1)
rlog(1)
rlogin(1)
rls_id(1)
rm(1)
mail(1)

MIPS Computer Systems, Inc.

(

Permuted Index

SCCS file
directories rm,
restricted command sh,

nice :

and quits nohup :
local machines
network

machines

editing activity

bfs : by file

awk : pattern

of an SCCS file

editor based on ex vi:

terminal session

program

string fgrep :

grep :

full regular expressions egrep :

: report or change VADS library
: report or change VADS library
size : prints the

two sorted files comm :

file cut : cut out

odump : dumps

ipcrm : remove a message queue,
line printer lp, cancel :

mail, rmail :

mailq : print

calendar : reminder

: make typescript of terminal
execution env :

. umask :

domain system domainname :
current host system hostid :
system hostname :

remove a message queue, semaphore
winsize :

date : print and

stty :

first user

of paste : merge same lines of
restricted command programming
mkshlib : create a

a message queue, semaphore set or
from C programs to implement
and history mechanism for C

‘and history mechanism for C
rsh, remsh ; remote

C-like syntax csh:a

command programming sh, rsh :
machines ruptime :

netstat :

sdiff :

login :

lex : generate programs for
winsize : set print window

an object file

size : prints the section

interval

tsort : topological

sort :

or reject lines common to two
error message file by massaging C
a.pr : format

a.pr : format

a.make : recompile

a.make : recompile

a.db :

a.db :

dbx :

object file list : produce C
information a.rm :remove

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

February 1989

Permuted Index

rmdel : remove adeltafroman rmdel(1)
rmdir i removefilesor . . . v 00 0 e 0 0 e e e e rm(1)
rsh : shell, the standard + « « & v v v 0 000w sh(1)
rsh, remsh : remote shell . . « . v v v 0 v 0o u rsh(1c)
run a command at low priority e nice(1)
run a command immune to hangups . + + « . . o .. nohup(1)
ruptime : show host statusof« ¢ . . & . + . ruptime(lc)
rwall : write to all users overa + « + o v o 4 o . . . rwall(1)
rwho : who’s loggedinonlocal .+ « « ¢ o o v v ¢ o rwho(1c)
sact ; print current SCCSfile . . « ¢« v o v v o 4 4 4 sact(1)
sar : system activity reporter .+ . 4 4 . 4 sar(1)
SCAMMET « o o = « s o « o o s s o o + s s o o o o s bfs(1)
scanning and processing language . .« ¢ o 0 0 . . awk(1)
scesdiff : compare two versions . . . v 4 40 0 4. . scesdiff(1)
screen-oriented (visual) display + « ¢« ¢ v 0 0 0 0 4 vi(1)
script : make typescriptof e e e script(1)
sdiff : side-by-side difference . . « « ¢ ¢ o . 0 0. sdiff(1)
search a file for a character . . « « « o+ v v 0 0. fgrep(1)
search afileforapattern . « « v o ¢ o ¢ o v o 0 o grep(1)
search a file for a pattern using . e e e e egrep(1)
search list a.pathxs .+ « v v v v v v v v v v 0w o a.path(1)
search list a.pathxs .+ « v v v v v v o v v v o« .. apath(l)
section size of an objectfile « . . . v . ¢ 00 0.0 size(1)
sed :stream editor . o o 4 e 0 e e e 00 0 e s . sed(1)
select or reject lines commonto . + « ¢« 4 . 4 0 .. . comm(1)
selected fields of eachlineofa « . « . o v ¢ ¢+« cut(1)
selected parts of an object file e e e e e e e e odump(1)
semaphore set or shared memoryid & . iperm(1)
send cancel requeststoanLP Ip(1)
send mail to users orread mail mail(1)
sendmail mail queue . « . 4 o 0 0 e v e e 00w mailg(1)
SEIVICE v v v v s v s s v e s e e e e e e e e calendar(1)
S€SSION SCIIPt o o o o o 0 4 0 s 0w e s 0w e e a s script(1)
"set environment for command . 4 4 . s 0 0 e e oa . env(1)
set file-creation mode mask . + + o ¢ 4 4 0 000 umask(1)
set or display name of current + + ¢ + . 2 4 0 4 o o s domainname(1)
set or print identifier of . ¢« 4 0 0 e 4 0000w hostid(1)
set or print name of currenthost hostname(1)
set or shared memory id ipcrm: . . . o o o 0 . . iperm(1)
set print window size e s e v e e e e e winsize(1)
setthedate . . . o v ..o e e e e e e e e date(1)
set the options for a terminal . . « « v v 4 0 o . ostty(1)
setup : initialize system for . . . 4 0 00 000 e 0 setup(1)
several files or subsequent lines . . « . . 00 o4 paste(1)
sh, rsh : shell, the standard . « « v ¢ « v v o o ¢ . sh(1)
shared library e s s e e e e e e e e s mkshlib(1)
shared memory id ipcrm :remove . . 4 . . 0 4. . ipcrm(1)
shared strings : extract strings e e e e . . xstr(1)
shell command abbreviations e e e e e e e a.view(1)
shell command abbreviations .+ « « « » o« 4 . aview(1)
shell v e e e s s e e 1sh(lc)
shell (command interpreter) with csh(1)
shell, the standard restricted . . « ¢« « o 4 o . . sh(1)
show host status of local . « « ¢ ¢ v 4 o . o . « . ruptime(lc)
show network status + ¢ « « . o v ae s e e e netstat(1)
side-by-side difference program . . « « ¢ ¢ o o . .. sdiff(1)
SIgNON o v v .00 0. e e s e e s e e s e login(1)
simple lexical tasks & o « ¢ ¢ 4 0 0 e e e 0000 a s lex(1)
SIZE 4 s 6 s s s 6 s s e e e e s e e e s e . « winsize(1)
size : prints the sectionsizeof . .« « « o &« o o . . . size(1)
size of an object file T 1)
sleep : suspend execution foran « + « . sleep(1)
SOTE & e o v o o o o o s o o o o o s o s a s . o . tsort(1)
sort : sort and or merge files . . . 4 0 0 0 0. 0. sort(1)
sort and or mergefiles .+ « ¢ ¢ . ¢ 0 0 0 00 . sort(1)
sorted files comm :select ¢ « v 4 v 00 w00 0. comm(1)
source mkstr :createan e e s e s e e mkstr(1)
source code s s s 4 s 8 e e s e a.pr(1)
source code . . 4 . e s s e s s e e e s a.pr(1)
source files in dependency order . . . ¢« ¢ . 0 .. a.make(1)
source files in dependency order .+ . . 4 4 0 0 . .. a.make(1)
source level debugger .« ¢ 4 v v 0 0 0 e e s e 00 a.db(1)
source level debugger t s 8 4 s s e s e e e s a.db(1)
source level debugger « ¢ 4 vt 0 e e e e 00w e dbx(1)
source listing from a common .« « + « ¢ 4+ . . list(1)
source unit and library ¢ « v v ¢ 0 0 e 0 e 0 0w arm(1)

Page xxv

Permuted Index

information a.rm : remove

ct:

hashcheck : find spelling errors
spelling errors spell, hashmake,
spellin, hashcheck : find

csplit : context

split :

temporarily su,

programming sh, rsh : shell, the
UNIX system for beginning users
: display system up time and load
communication facilities

netstat : show network

ps : report process

Ipstat : print LP

uustat : uucp

ruptime : show host

sed :

: search a file for a character

C programs to implement shared
strings in an object or other
implement shared xstr : extract
-strings : find the printable
relocation bits

terminal

temporarily

same lines of several files or

su, ssu :

count of a file

a.du:

a.du:

havetcp : test system for TCP
sleep :

of common UNIX system terms and
strip : remove

(command interpreter) with C-like
system administration

another UMIPS-V system or UNIX
or display name of current domain
print identifier of current host

set or print name of current host
: interactive message processing
who : who is on the

help : UNIX

command; report process data and
sar :

vsar : visual

sysadm : menu interface to do
uux : UNIX-to-UNIX

- locate : identify a UNIX

uulog, uuname : UNIX-to-UNIX
uupick : public UNIX-to-UNIX
havetcp : test

: information about the UNIX
setup : initialize

uname : obtain current

cu : call another UMIPS-V

: definitions of common UNIX
statistics uptime : display

a.tags : create a

a.tags : create a

ctags : create a

file

vmsbackup : read a VMS backup
tar :

mt : magnetic

and execute a program on the
and execute a program on the
programs for simple lexical
deroff : remove nroff troff,

TELNET protocol

su, ssu : substitute user id
ct ; spawn getty to a remote

Page xxvi

RISC/os Programmer’s Reference

February 1989

source unit and library
spawn getty to a remote terminal
spell, hashmake, spellin,
spellin, hashcheck : find
spelling errors spell, hashmake,
split .
split : split a file into pleces . =+ . o .0 4 0. 0 .
split a file into pieces e
ssu : substitute userid . . .
standard restricted command
starter : information about the
statistics Uptime . « 4 v v 4 0 v e e e e ke e .
status : report inter-process
status
status . . .
status information S e e e e
status inquiry and job control
status of local machines
stream editor
string fgrep .« o
strings ; extract strings from 0.0 ..
strings : find the printable . .
strings from C programs to
strings in an object or other
strip : remove symbolsand b 0 0 e 4. . s
stty : set the options for a
su, ssu : substitute user id
subsequent linesof onefile
substitute user id temporarily
sum : print checksum and block
summarize library disk usage . .
summarize library disk usage
support . ..
suspend execution for an interval,
symbols glossary : definitions
symbols and relocation bits . .
syntax csh : a shell
sysadm : menu interface to do
system cu:call,
system domainname : set
system hostid : set or
system hostname :
system mailx
system .. o s 4 s
system Help Facility . .
system activity timex : time a
system activity reporter
system activity reporter
system administration
system command eXecution . .« v« s 4 4 e s o0 o e s
system command using keywords
system copy uucp,
system file copy uuto,
system for TCP support
system for beginning users
system for first user
system information
system or UNIX system e e e s s e e s on
system terms and symbols v na e
system up time and load . . .'.
tags file . .
tags file

tags file . .
tail : deliver the last part of a . .
tape
tape archiver
tape manipulating program
tar : tape archiver
target board cross compilers
target board cross compilers
tasks lex : generate
tbl, and eqn constructs
tee : pipe fitting
telnet : user interfacetothe . . . « . o ¢« o v o o 4
temporarily
terminal . e

..........

............

e 8 o & e »

© ®» » © © s 5 p e s & 5 s e ° ° @ s v 6

Permuted Index

spell(1)
spell(1)
spell(1)
csplit(1)

- split(1)

split(1)
su(1)

sh(1)
starter(1)
uptime(1)
ipes(1)
netstat(1)
ps(1)
Ipstat(1)
uustat(1)
ruptime(lc)
sed(1)
fgrep(1)
xstr(1)
strings(1)
xstr(1)
strings(1)
strip(1)
stty(1)
su(1)
paste(1)
su(l)
sum(1)
a.du(1)
a.du(l)
havetcp(1)
sleep(1)
glossary(1)
strip(1)
csh(1)
sysadm(1)
cu(1) _
domainname(1)
hostid(1)
hostname(1)
mailx(1)
who(1)
help(1)
timex(1)
sar(1)
vsar(1)
sysadm(1)
uux(1)
locate(1)
uucp(1)
uuto(1)
havetcp(1)
starter(1)
setup(1)
uname(1)
cu(1)
glos.sary(l)
uptime(1)
a.tags(1)
a.tags(1)
ctags(1)
tail(1)
vmsbackup(1)
tar(1)
mt(1)
tar(1)
a.run(1)
a.run(l)
lex(1)
deroff(1)
tee(1)
telnet(1c)
su(1)

ct(1)

MIPS Computer Systems, Inc.

Permuted Index

stty : set the options for a

tty : get the name of the

database tput : initialize a

script : make typescript of

kill :

: initialize a terminal or query
definitions of common UNIX system
command

havetcp :

ed, red :

ex :

casual users) edit :

newform : change the format of a
program

merge :

: update access and modification
process data and system activity
tsort :

modification times of a file

query terminfo database

ftp : ARPANT file

titp : trivial file
tr:

: encode decode a binary file for
titp :

deroff : remove nroff

values

u3b5, vax : get processor type
true, false : provide

terminal

file : determine file

u3b2, u3b5, vax : get processor
script : make

processor machid: mips, pdpll,
type machid: mips, pdpll, u3b,
machid: mips, pdpll, u3b, udb2,

mask

information

ul : do

file unget :

SCCS file

file

which project library contains a
which project library contains a
a.rm : remove source

a.rm : remove source

files pack, pcat,

times of a file touch :
programs make : maintain,
and load statistics

a.du : summarize library disk
a.du : summarize library disk
description and usage examples
a command description and
initialize system for first

write : write to another
crontab :

su, ssu : substitute

protocol telnet :

editor (variant of ex for casual
the UNIX system for beginning
wall : write to all

mail, rmail : send mail to

rwall : write to all

: search a file for a pattern

: identify a UNIX system command
ahelp : interactive help

a.help : interactive help
control uustat :
UNIX-to-UNIX system copy

a binary file for transmission
system copy uucp,

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

terminal .« ¢ . 4 e v e e e e e e e .y PR
terminal e e e e e s e e e e e e e e e e e
terminal or query termmfo e e e e e e e e e
terminal session « ¢« 4 4 . 0 0 . e PN

terminate a process .« « + o . 0 e o0 0 e s e

terminfo database tput PN
terms and symbols glossary : . .+ 4 s 0 s 00 0.

test : condition evaluation .« .« o o 4 . 0 00w 0.
test system for TCP support e e e e e e e e
text editor
text editor .
text editor (variant of ex for
text file
tftp : trivial file transfer
three-way file merge « « « ¢« « « o o & .
times of afile-touch + « & v v 4 4 4 0 000w 0
timex : time a command; Teport « « ¢ ¢ ¢ . 0 . o0 oo e
topological SOIt o« ¢ v v v o v o 4 o s o 0 b 08
touch : update access and s e e e e e
tput ! initialize a terminal or .« . . 0 e 0 0 0w e .
tr : translate characters « « « « « o 4 0 0 o 0 00 s
transfer program .
transfer program .« « « « ¢ 4 0 0 e 400 e e s e s

e o s s e 8 5 8 8 0 ° s s 5 @

translate characters s e e s s s e e e s e e

transmission viamail « + 4 4 s 4 s 0 s e e e 0 e s
trivial file transfer program .« « « ¢+ 4 0 0 . . N
troff, tbl, and eqn constructs . .+ o 0. 0. . .

true, false : provide truth . « o ¢« ¢ o o 0 000

truth value pdpll, u3b, u3b2, . . ¢ ¢« o o v o o o
truthvalues « ¢ o ¢« ¢ o o o o o & s e s s s .
tsort : topological sort e e e e e e e
tty : get thename ofthe . « v ¢ o o v ¢ v 0 0 v o &
type o 0 e s e .. P R R R S

type truth value pdpll,u3b,

uname : obtain current system
underlining .
undoaprevmusget ofanSCCS Ce e s e e e e
unget : undo a previous getof an .+ . . ¢ . 0 0 . .
uniq : report repeated lines in a
unit a.which : determine e s e e e s e
unit a.which : determine

typescript of terminal session + + ¢ ¢ . v . s 00 o
u3b, udb2, u3b5, vax : get .« s s m s
u3b2, u3bS, vax : get processor o « + + o s ¢ s o s s
u3b$, vax : get processor type . c e e e e e
ul : do underlining Ve e e e e s
umask : set file-creation mode . c e e .

unit and library information
unit and library information
units : conversion program . .
unpack : compress and expand
update access and modification
update, and regenerate groups of . .
uptime : display system up time .+ + « s @ 0 0 o 0o
usage
usage
usage : retrieve a command
usage examples usage :
user setup
user . .
user crontab file . . . o .
user id temporarily
user interface to the TELNET
users) edit : text
users : information about . .
USEIS o o o s o s o o o s o s o s o o &
usersorread mail . . . ¢ 0 0 0w ..
users over a network
using full regular expressions

using keywords locate
utility
utility
uucp status inquiry and job . . .
uucp, uulog, uuname :
uuencode,uudecode : encode decode . . .
uulog, uuname : UNIX-to-UNIX . « . o ¢ v o v v

retrieve . .

e« e o s & s s @
e o s o .
s e e s »
« s
.
°
e s o ° s @

e o s o o o

s s e s s e e ° & @
e o s s e e @

February 1989

Permuted Index

tput(1)
glossary(1)
test(1)
havetcp(1)
ed(1)

ex(1)
edit(1)
newform(1)
tftp(1)
merge(1)
touch(1)
timex(1)
tsort(1)
touch(1)
tput(1)
tr(1)
ftp(lc)
titp(1)
tr(1)
uuencode(1)
titp(1)
deroff(1)
true(1)
machid(1)
true(1)

file(1)
machid(1)
script(1)
machid(1)
machid(1)
machid(1)
ul(1)
umask(1)
uname(1)
ul(1)
unget(1)
unget(1)
uniq(1)
a.which(1)
a.which(1)
a.rm(1)
a.r.m(l)
units(1)
pack(1)
touch(1)
make(1)
uptime(1)
a.du(1)
a.du(1)
usage(1)
usage(1)
setup(1)
write(1)
crontab (1)
su(1)
telnet(1c)
edit(1)
starter(1)
wall(1)
mail(1)
rwall(1)
egrep(1)
locate(1)
a.help(1)
a.help(1)
uustat(1)
uucp(1)
uuencode(1)

uucp(1)

Page xxvii

Permuted Index

uucp, uulog,

system file copy uuto,

job control

UNIX-to-UNIX system file copy
execution

val :

vax : get processor type truth
true, false : provide truth

edit : text editor

mips, pdp11, u3b, u3b2, u3bs,

ve !

get : get a

a.vadsrc : display available VADS
a.vadsrc : display available VADS
scesdiff : compare two

display editor based on ex

a binary file for transmission

man :

: file perusal filter for crt

ex vi: screen-oriented

vsar :

tape

reporter

process

rwho :
fold : fold long lines for finite
winsize : set print

wC @
pwd :

wall :

rwall :

write :

list(s) and execute command
programs to implement shared
compiler-compiler

yacc :

Page xxviii

RISC/os Programmer’s Reference

Permuted Index

vuname : UNIX-to-UNIX system copy . . « « & o o . uucp(1)
uupick : public UNIX-to-UNIX uuto(1)
uustat : vucp status inquiry and = 0 0 0w . . . uustat(1)
uuto, uupick :public .+00 L o0 uuto(1)
uux : UNIX-to-UNIX system command uux(1)

val : validate SCCSfile val(1)
validate SCCSfile v o v v o .. . val(1)
value pdpll, u3b, u3b2, u3b5, machid(1)
Values & v v v e e e e e e e e e e e e e e e e e true(1)
(variant of ex for casual users) edit(1)
vax : get processor type truth . , Ce e e e machid(1)
veiversion control . v v v e w e w w e s e e b6 e ve(l)
version control . P ve(1)
version of an SCCS ﬁle get(1)
versions and create a default "o e s s e a.vadsre(1)
versions and create adefault a.vadsrc(1)
versions of an SCCSfile . . + v o v v v v 0 v v . scesdiff(1)
vi:screen-oriented (visual) Vi(D)
viamail :encodedecode0 .. uuencode(1)
view online manual pages .+ « « « « « v 4+« .+« . . man(l)
viewing more, Page .+ « v o o s 0 s e 4 0 0 0. e s more(1)
(visual) display editor basedon . « e oo vi(D)
visual system activity reporter . « ¢ o v v 4 o0 4 b . vsar(1)
vmsbackup :read aVMS backup vmsbackup(1)
vsar : visual system activity « + + 0 4 0 4 . 0 0 ... vsar(1)
wait : await completion of . .«40 00 0. . wait(1)
wall :writeto allusers « o v v o v v b 4 e 00w . s wall(1)
wc i word count S we(1)
who’s logged in on local machlncs C e e n s e e e rwho(lc)
width output device v 4 v v v e e e e e e e e e e fold(1)
WINAOW S1ZE€ & o o ¢ + o o o o s s o o s o o o o o & winsize(1)
winsize : set print wmdow SIZE ¢ 0 v e e e e e winsize(1)
word count .« 4« 0 e e e s e e s s f e e e e e we(l)
working directoryname .+ « . o 4 s v o 0 s o v . o pwd(l)
write : write to anotheruser . . + o . o . write(1)
writetoallusers *« « v 4 4 0 0 0 0 w0 0000 ... wall(l)
write to all users over anetwork . . .« rwall(l)
write to another user « + v « ¢ o 4 ¢ v v 4 0. w . write(1)
xargs ; construct argument . . 4 ¢ o 4. 0 40 . oo e xargs(1)
xstr : extract strings from C + . ¢ v 4 0 0 0 00 .. xstr(1)
yacc :yetanother « « v v o v o v o o o 0 0 0 s w s yace(1)
yet another compiler-compiler e e e e e e e e yacc(1)

February 1989 MIPS Computer Systems, Inc.

A.CLEANLIB (1) RISC/os Programmer’s Reference A.CLEANLIB (1)

NAME
a.cleanlib — reinitialize library directory

SYNOPSIS
a.cleanlib [options] [VADS_library]

DESCRIPTION
a.cleanlib preserves all non-compilation information contained in ada.lib, including any addi-
tional libraries contained in the library search list and any other directives found in ada.lib.

The command will empty the files GVAS_table, ada.lib, and gnrx.lib of all separate compila-
tion information and remove the contents of the directories .lines, .imports, - .nets, and
.objects from the named library, or, if no library is specified, from the current library direc-
tory. It will also remove the file name_lib if present.

If a.cleanlib cannot find every library component, it will abort without removing any informa-
tion unless the —f (force) option is given.

The -F option is provided to allow a.cleanlib to clean a library having a reserved name (stan-
dard, verdixlib, publiclib).

OPTIONS
-F (force name) allow the cleaning of a VADS library having a reserved name

-f (force) clean the VADS library structure even if components are missing or if
lock files are found. ',
FILES
GVAS_table address assignment file
gnrx.lib generic instantiation reference file
ada.lib library reference file
dines line number reference files directory
.imports imported Ada units directory
.nets Ada network control files directory
.objects Ada object files directory

DIAGNOSTICS
An error is reported if any VADS component is missing, and no action is taken unless the -f
option is used.

SEE ALSO
[VADS Reference], a.mklib, a.rmlib.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.DB(1) ’ RISC/os Programmer’s Reference A.DB(1)

NAME
a.db - source level debugger

SYNOPSIS
a.db [options] [executable_file]

DESCRIPTION
a.db is a symbolic debugger for Ada programs and for C programs compiled with the -go
option for those using 42 BSD UNIX or the -g option on System V UNIX. Detailed
descnptlons of interactive a.db commands and runtime conﬁguratlon file options are provided
in the VADS Debugger Reference, which is also available on-line using a.help or the debugger’s
internal help command.

VADS _location/bin/a.db is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the
same host. The -sh option prints the name of the actual executable file.

OPTIONS
—i file.name (input) read input from the specified file

—-p VADS library
(program) read program compilation information from the specified VADS
library directory (rather than the current directory)

—sh (show) display the name of the tool executable but d6 not execute it.
-v (visual) invoke the screen-mode débugger directly.

See also

VADS Debugger Reference for a list of all debugger commands.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.DU (1)

NAME

RISC/os Programmer’s Reference ADU(1)

a.du — summarize library disk usage

SYNOPSIS

a.du [options] [VADS_libra'ry]

DESCRIPTION

a.du lists size in bytes for all compiler-generated files in the specified VADS library. If no
library is specified, the current directory.is assumed.

VADS _location/bin/a.du is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the

same host.

OPTIONS
—a

—€

-f

-8

—1i

—sh

FILES

GVAS_table
.imports
dines

.nets
.objects

The -sh option prints the name of the actual executable file.

(address) sort the output by the GVAS address of each unit.

(erroneous) include information for unmits with damaged or out-of-date net
files.

(file) sort output by the name of the file containing the unit.
(GVAS) provide the base address of each unit in the GVAS.
(imports) include information for imported units.

(show) disp_l_aiy the h'ame of the tool executable but do not execute it.

address assignment file

imported Ada units directory

line number reference files directory
Ada network control files directory
Ada object files directory

MIPS Computer Systems, Inc. February 16, 1989 Page 1

- A.ERROR(1) RISC/os Programmer’s Reference A.ERROR (1)

NAME

a.error — analyze and disperse error messages
SYNOPSIS

a.error [options] [error_file]
DESCRIPTION

a.error is generally called from the ada command, but it can also be used separately. a.error
analyzes and optionally disperses diagnostic error messages produced by the- VADS compiler.
It looks at the specified error file or the standard input, determines the source file and line
number to which the error refers, determines whether the error is to be ignored or not, and
outputs the associated source line followed by the error line(s).

a.error will also insert the error lines into the source file and invoke the vi(1) editor if the —v
option is given. Error lines placed into files this way are of two types. The first gives the
position of the error and the second identifies it. Multiple errors on a single line are
referenced by sequential alphabetic characters.

subtype T is range 1..1f;
—————————— A H#HH##
B HHH#
—### A syntax error: "identifier” inserted

—### B: 1¢)_{ical error: deleted

Because all error lines are flagged with ###, the vi editor command :g/###/d can be used to
delete them. However, any source lines containing ### will also be deleted; consequently,
do not use ##+# in any source with which a.error -v may be used.

In the case of source files with multiple links, a.error creates a new copy of the file with only
one link to it.

OPTIONS
- e editor (editor) Insert the error messages in
the source file and invoke the specified editor.

- 1 (listing) Produce a listing on the standard output.
~ N (no) do not display line numbers.

~t number (tabs) Change tab default setting (8).
(No space between -t and the following digit.)

-V (vi) Embed error messages in the source file and call the environment editor
FRROR_EDITOR. (If ERROR_EDITOR is defined, the environment
variable ERROR_PATTERN should also be defined. ERROR_PATTERN is
an editor search command that locates the first occurrence of ‘###° in the
error file.) If no editor is specified, call vi.

- W (warnings) Ignore warnings.
DIAGNOSTICS

a.error produces diagnostics indicating ‘no errors’ if -v is used and no errors were detected
and ‘no such file or directory’ if invoked with an invalid file name.

SEE ALSO
[VADS Reference] ada,

MIPS Computer Systems, Inc. February 16, 1989 Page 1

AHELP (1) RISC/os Programmer’s Reference AHELP(1)

NAME
a.help - interactive help utility
SYNOPSIS
a.help [-options] [subject]
DESCRIPTION
On-line help is available for each of the VADS utilities and for debugger commands and
concepts. Without a specified subject, a.help provides information on use of the help utility
and prompts for additional subject names. Use q to exit from a.help.
Without the -p option, a.help will use the paging program defined by the environment variable
HELPER, requiring the full pathname with surrounding quotes for additional options. If
HELPER is not defined, more is used. .
Reference manual entries for the compiler and tools only are available on-line by using the
. man command if the local system administrator has elected to install them. A list of topics
can be obtained with
man ada
and typing
man VADS_command)
will show the entry for a specific command.
VADS_location\bin\a.help is a wrapper program that executes the correct executable based
upon directives visible in the ada.lib. This permits multiple VADS compilers to exist on the
same host. The -sh option prints the name of the actual executable file.
OPTION
— p pager (pager) Use pager as the paging program. The complete pathname must be
given with surrounding quotes if additional options to the paging program are
desired.
- sh (show) display the name of the tool executable but do not execute it.

ON-LINE HELP FROM THE DEBUGGER

FILES

Access on-line help for the debugger as well as the compiler and tools during a debugging
session by typing
help [subject)]
or
:help[subject] while in screen mode.

If the subject is omitted, a list of debugger commands is displayed. This overview can also
be obtained by typing intro after a help prompt. Help with the help command can be
obtained by typing help at a help prompt.

BVADS_location/sup/help_files/x

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.INFO (1) RISC/os Programmer’s Reference . A.INFO (1)

NAME
a.info — list or change VADS library options

SYNOPSIS
a.info [options]

DESCRIPTION
a.info is used to examine the INFO and LINK directives of the ada.lib. It can also be used to
add or delete those directives from the ada.lib or to display or change the library search list.
All directives have the format) ‘

name:type:value:

where name is the name of the diréctive, type can be the word LINK or INFO, and value is
usually a file name. (More information on directives can be found in discussions of a.ld.)
Without options, a.info displays all directives in the current library.
The -i option executes a.info in interactive mode. In this mode, all command line actions
may be performed interactively. a.info prompts for and checks that the desired directive
names and values are supported.
For a complete list of directive names, BSee also
Implementation Reference, Supported INFO-and LINK Directive Names.
For a discussion of WITHr directives used with the prelinker, See also Users Guide, Program
Generation Tools, a.ld and [VADS Reference], a.ld. _
Regular expressions, shown in the options below, are formed by following the operating
system documentation.

SEE ALSO
Operating system documentation, ed (1).

OPTIONS , 4
-a (all) Display all directives in each library on the library search list.
-F (suffix) Display LINK directives with the suffix (L) and INFO directives with

the suffix (I).

-1 (interactive) Operate in interactive mode.
-p : (path) Print the library search list.
-8 (short) Show just the INFO and LINK names.
-V (verbose) Display maximum information.

v[+—]info name value
Add, delete an INFO directive,

[+-Jlink name value
Add, delete an LINK directive.

[+-Jlink WITHR value
Add, delete an LINK directive.

+link WITH value
Add a LINK directive having the next number: WITHn

[+-]number VADS_library ,
add, delete VADS_library in the number position to the library search list.

—~number removes VADS library in position number from the library search list

"regular_expression"
Print directives whose first name field matches regular_expression.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.INFO (1) RISC/o0s Programmer’s Reference A.INFO (1)

—value "regular_expression"
Print directives whose last value field matches regular_expression.

FILES
VADS_location\sup\LEGAL.INFO A list of legal directives for this implementation.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

ALD(1) ' RISC/os Programmer’s Reference ALD(1)

NAME

a.ld — prelinker

SYNOPSIS

a.ld [options] unit_name [Id_options]

DESCRIPTION

OPTIONS

FILES

a.ld collects the object files needed to make unit_name a main program and calls the UNIX
linker 1d(1) to link together all Ada and other language objects required to produce an
executable image in a.out. unit_name is the main program and must be a non-generic
subprogram. If unit_name is a function, it must return a value of the type
STANDARD.INTEGER. This integer result will be passed back to the UNIX shell as the
status code of the execution. The utility uses the net files produced by the Ada compiler to
check dependency information. a.d produces an exception mapping table and a unit
elaboration table and passes this information to the linker.

a.ld reads instructions for generating executables from the ada.lib file in the VADS libraries
on the search list. Besides information generated by the compiler, these directives also include
WITHr directives that allow the automatic linking of object modules compiled from other
languages or Ada object modules not named in context clauses in the Ada source. Any
number of WITH directives may be placed into a library, but they must be numbered
contiguously beginning at WITH1. The directives are recorded i in the hbrary s ada.lib file and
have the following form.

WI1 H1:LINK:05ject_ﬁle:
WITH2:LINK:archive_file:

WITH directives may placed in the local Ada libraries or in any VADS library on the search
list.

A WITH directive in a local VADS library or earlier on the library search list will hide the
same numbered WITH directive in a library later in the library search list.

Use the tool a.info to change or report library directives in the current library.

All arguments after unit_name are passed on to the linker. These may be options for it,
archive libraries, library abbreviations, or object files.

VADS_location/bin/a.ld is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the
same host. The -sh option prints the name of the actual executable file.

—E unit_name (elaborate) Elaborate unit_name as early in the elaboration order as possible.
-F (files) Print a list of dependent files in order and suppress linking.

—o executable_file

(output) Use the specified file name the name of the output rather than the
default, a.out.

-sh (show) Display the name of the tool executable but do not execute it. -U
(units) Print a list of dependent units in order and suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command but suppress execution.

VADS_location/standard/«
startup and standard library routines

MIPS Computer Systems, Inc. ' February 16, 1989 | Page 1

A.LD(1) _ RISC/os Programmer’s Reference A.LD(1)

.objects/x Ada object files

a.out default output file
SEE ALSO

Operating system documentation, 1d(1)
DIAGNOSTICS

Self-explanatory diagnostics are produced for missing files, etc. Occasional additional
messages are produced by the linker.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

A.LIST (1) RISC/os Programmer’s Reference A.LIST(1)

NAME
a.list - produce program listing with line numbers
SYNOPSIS
a.list [-N] ada_source.a
DESCRIPTION
a.list provides a convenient way of producing a listing for programs containing no errors that

closely resembles the output of a.error. The listing is written to the standard output and may
be piped or redirected to a file.

OPTION
-N (no) Suppress line numbers.

SEE ALSO
[VADS Reference], a.error, a.pr.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ALS(1) - RISC/os Programmer’s Reference : A.LS(1)

NAME
a.ls — list compiled programs

SYNOPSIS
a.ls [options] [unit_name] ... [-f ada_source.a ...]

DESCRIPTION
als provides a list of the units compiled in the current VADS directory. Options are pro-
vided to give more or less extensive information, to change the format of the list, or to pro-
vide a list of compiled units occurring in specified source files. Additionally, unit_name can -
be specified as a regular expression to match groups of units. (If the regular expression con-
tains any of the shell’s meta-characters, the expression must be quoted.)

Without the -1 or —v options, a.ls prints output in multiple columns. This can be overridden
with the -1 (single) option.

The options -F, -1, and —v (in increasing order of listing detail) are mutually exclusive. If
more than one of these three is given, the listing will be that with the most detail.

OPTIONS

-a (all) List all units visible in libraries in the library search list.
-b (body) Limit output to unit bodies.
~f filename (file) List only units found in filename.
~-F (suffix) List unit bodies with a trailing #.
-1 (long) List source file date, net file date, unit, and unit type.
-s (specification) Limit output to unit specifications.
-y ~ (verbose) List source file name, source file date, net file date, and unit.
-1 (single) Print output in a single column.
SEE ALSO

Operating system documentation for regular expressions in ed(1).

MIPS Computer Systems, Inc. February 17, 1989 Page 1

A.MAKE(1) RISC/os Programmer’s Reference A.MAKE (1)

NAME
a.make - recompile source files in dependency order

SYNOPSIS
a.make [options] [unit_name]... [Id_options] [-f ada_source.a ...]
a.make [options] [path/unit_name]... [ld_options] [-f ada_source.a ...]

DESCRIPTION
This utility determines which files must be recompiled in order to produce a current
executable file with unit_name as‘the main unit. It also calls a.ld to create the appropriate
executable, if and only if unit_name is a procedure or an integer function; otherwise, it just
ensures that the named unit is up-to-date, recompiling any dependencies if necessary.
The utility uses DIANA net files to determine the correct order of compilation and
elaboration. '
a.make will have no knowledge of any source file (foo.a) until that file has been compiled in a
way that changes the program library. Unless the —f option is used, this requires that foo.a be
compiled ‘by hand’ at least once. Unless the —U or —D option is given, the file must compile
successfully or else the program library will remain unchanged. A single compilation is
sufficient (unless syntax errors are present) if the —U option is used to force changes to the
program library. In any case, syntax errors must be corrected before the file will be ‘seen’ by
a.make. .
VADS_location/bin/a.make is a wrapper program that executes the correct executable based
upon directives visible in the ada.lib file. This permits multiple VADS compilers to exist on
the same host. The —sh option prints the name of the actual executable file.
Supplied names and unknown options are passed to a.ld.

OPTIONS

—-A VADS_library [-A VADS_library] ...
(add) Bring the listed libraries up to date if necessary.

—-All (all) Bring all libraries on the library search path up to date.

—C "compiler" (compiler) Use the string compiler in recompiling the required units. This
option is normally used to provide specific options to the compiler. For
example, to call the compiler with the optimizing option and invoke the vi(1)
editor on compilation errors, use a command of the following type.
a.make -C "ada -ev" [other commands]

-D (dependencies) List the file-to-file dependencies.

—f ada_source.a ...
(files) Treat remaining non-option arguments as. file names in the current
VADS library to compile. All units in these files will be brought up to date; -f
may be used with one of the other options to print actions or dependencies
without executing them, but must be the last option given.

-X ada_source.a
(if) List actions that would be taken if ada_source.a were changed.

=L "linker" (linker) Use the string linker in linking the required units. This option can be
used to provide unusual options to a.ld when using a.make.

-0[0-9] (optimize) Invoke the code optimizer (no space before the digit). An
optional digit limits the number of optimization passes; without the -O
option, one pass is made; -O0 prevents optimization; O with no digit
optimizes as far as possible.

-gl Have the compiler produce additional symbol tabel informatin for accurate

MIPS Computer Systenis, Inc. February 16, 1989 Page 1

A.MAKE (1)

Page 2

_g norll _g2

RISC/os Programmer’s Reference AMAKE (1)

but limited symbolic debugging of partially optimixes code.

Have the compiler produce additional symbol table information for full
symbolic debugging and not do optimizations that limit full symbolic
debugging. —g2 is the defult.

Have the compiler produce additional symbol table information for full

symbolic debugging for fully optimized code. This option makes the debugger
inaccurate. : :

(suppress) Apply pragma SUPPRESS to the entire compilation.
(show) Display the name of the tool executable but do not ef(ecute it.
(units) List the list of dependent units in order, but do not link.
(verbose) List the recompilation commands as they are executed.

(verify) List the recompilation commands that would be executed, but do not
execute them.

February 16, 1989 MIPS Computer Systems, Inc.

AMKLIB (1) ' RISC/os Programmer’s Reference A.MKLIB (1)

NAME

a.mklib — make library directory
SYNTAX

a.mklib [-F -f -i -v] [-t target] [new_VADS_library [parent_VADS_library]]
DESCRIPTION

a.mklib creates and initializes a new VADS library directory, creating three files (GVAS_table,

ada.lib, and gnrx.lib) and four directories (.lines, .imports, .nets, and

-objects). It constructs library pointers in ada.lib to all libraries available from the parent

library and to the parent library itself. As a result, Ada units in the new library can reference

all Ada units defined by the parent library and all units that were accessible from the parent
library.

If parent_VADS_library is unspecified, the default libraries are verdixlib and standard.

The tool a.vadsre may also be used to create a local configuration file called .vadsrc either in

the current directory, or in the user’s $HOME directory, so that future libraries created in a

directory below the current directory or SHOME directory will reference a particular VADS

version.

If new_VADS_library is unspecified, the current working directory is initialized.

The —f option will force initialization of the VADS library structure, overwriting any existing

components and deleting any existing lock files. o ‘

Without the —F option, a.mklib cannot create libraries named standard, verdixlib, or publiclib.

A list of available targets can be obtained with the —i option or with the tool a.vadsre.

OPTIONS

—f (force) Create VADS library structure even if some components are
already present.

-F (force name) Allow creation of VADS library with a restricted name.

—i (interactive) Display all versions of VADS installed on the system and
prompt for selection of VADS version unless modified with the -t
option.

—t target ' (target) Create a library for a specific target machine.

-y (verbose) Display the library search list and target directives.

EXAMPLE :
If the user is positioned at the directory /usr/babbage/code and the VADS library olddir exists
below it in the UNIX hierarchy, the command
a.mklib newdir olddir

creates the library directory /usr/babbage/code/newdir and provides access to the Ada

compilation units previously compiled in the olddir library directory. Any units available to

olddir from other libraries are now available from newdir as well.
FILES

vadsrc local default configuration file

lusr/lib/VADS VADS version reference file
DIAGNOSTICS

An error is reported and no action is taken (without the -f option) if new_VADS_library
contains any VADS components or lock files or if the name specified exists but is not a
directory.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

AMKLIB (1) RISC/os Programmer’s Reference AMKLIB (1)

SEE ALSO
[VADS Reference], a.cleanlib, a.rmlib, a.vadsrec.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

A.PATH (1) RISC/os Programmer’s Reference A.PATH (1)

NAME
a.pathxs — report or change VADS library search list
SYNTAX
a.path [options] [VADS_libraryl [VADS_library2]]
DESCRIPTION
A list of libraries to be searched during compilation is maintained in the current VADS library
directory in the file ada.lib. a.path changes or reports the list of library names contained
there. During compilation, any program units not found in the current library will be seatched
for in the VADS libraries listed on the search list. If the unit is not found in the first VADS
library, it is searched for in the second, and so on in listed order. When a.path is used with
no options, it reports the contents of the current library search list, one library to a line.
OPTIONS
—a VADS_libraryl [VADS_library2]
(append) Append VADS_libraryl after VADS library2. With a single
argument, append VADS_libraryl to the end of the library search list.
~i VADS _library [VADS_library2]
(insert) Insert VADS_libraryl before VADS_library2. With a single argument
insert VADS_libraryl at the beginning of the list.
~-r VADS _libraryl ..
(remove) Remove VADS_libraryl from the library search list.
-V (verbose) Display path as it is changed.
-t (target) Display library search list and target information.
-x VADS libraryl
(except) Remove all except VADS_libraryl from the list.
BUGS

Removing a library name from the library search list does not remove compilation information
from the referenced libraries.

Maximum length of the library search list is 2048 characters.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

APR(1)

RISC/os Programmer’s Reference APR(1)

a.pr — format source code

SYNTAX

a.pr [options] [ada_source.a]

DESCRIPTION

a.pr reformats Ada source code according to the options specified in a runtime configuration
file with the name .prre. This allows users to tailor a.pr for individual Ada coding standards.
The configuration file may be located either in the user’s current working directory or the

home directory.

Additionally, options can be specified on the command line that override those in the
configuration file. The options are listed below.

Invoked without a filename, a.pr reads its input from standard input.

FError and warning messages are written to standard error.

.prrc CONFIGURATION FILE OPTIONS

(Defaults shown in brackets.)

align_cmts where
chars number
comment case
ident case

indent number

lines number
margin number

no_page
no_warning

page number
page_lu
record where

reserved case

tabs number

align comments to the right of the longest line (line) or the longest line
containing a comment (comment) [comment]

Specify maximum number of characters of code per line including
comment and indentation; any line extending over this limit will be
continued on the next line; valid range is from 20 .. 500 [132].

print all comments in the specified case: upper, lower, same [same]
print all identifiers in the specified case: upper, lower, same [upper|
Specify amount of indentation between levels; valid range is 1 .. 8 [8].

Specify maximum number of lines allowed on a page; valid range is
from 1 .. 1000 [55].

Specify starting margin for top-most level; valid range is from 0 .. 15
[0]-
Paginate only when pragma PAGE is encountered.[page]

" suppress warning messages regarding line length greater than desired

[provide warnings]

Set page size; perform pagination with blank lines; valid range is from 1
.. 1000 [paginate using form feeds].

Start each library unit (indicated by a WITH clause) on a new page [do
not start on new page].

print record on either the same line (same) or on the next one (next)
[same] '

print all reserved words in the specified case: upper, lower, same [lower]

Print tabs for indentation whenever the number of spaces needed for
indentation is greater than or equal to the specified number; valid range
is from 0 .. 8; if rabs 0 is specified, indentation will be performed with
blanks [8].

a.pr COMMAND LINE OPTIONS

(Defaults shown in brackets.)

—ac (align comment) Align comments to the right of the longest line that contains

MIPS Computer Systems, Inc.

February 16, 1989 Page 1

A.PR(1)

—-al

—c number

-cl
-cs
-cu

—i number

-1 number

-m number

—t number

-W

RISC/os Programmer’s Reference A.PR(1)

a comment [default].

(align line) Align comments to the right of the longest line, regardless of
whether it contains a comment [-ac].

(characters) Specify maximum number of characters of source code allowed
on a line. Valid range is from 20 .. 500 [132].

(comments lower) Print comments in lower case [-cs].

(comments same)- Print comments as in source code [default].

(comments upper) Print comments in upper case [—cs}.

(indent) Specify indentation between levels. Valid range is from 1 .. 8 [8].
(identifiers lower) Print identifiers in lower case [-iu].

(identifiers same) Print identifiers as in source code [-iu].

(identifiers upper) Print identifiers in upper case [default].

(lines) Specify maximum number of lines allowed on a page. Valid range is
from 1 .. 1000 [55].

(margin) Specify starting margin for top-most level. Valid range is from O ..
15 [0]. .

(no page library unit) Do not start a new page for each library unit [default].

(no pagination) Specify no pagination. Pagination will occur only when
pragma PAGE is encountered [-pg].

(no warnings) Suppress warning messages regarding line length [-w].

(page) Specify page size. Valid range is from 1 .. 1000 [-pg]. (
(paginatidn) Paginate using form feeds [default].

(page library) Start a new page whenever a library unit is encéuntered [-nl],

(reserved lower) Print reserved words in lower case [default].

(record next) Print RECORD on the line following type or for [-RS].

(reserved same) Print reserved words as in source code [-r1].

(record same) Print RECORD on the same line as fype or for [default].

(reserved upper) Print reserved words in upper case [-r].

(tabs) Specify tabs for indentation whenever the number of spaces needed is
greater than or equal to the specified number. If -t 0 is specified, indentation
will be performed with spaces. Valid range is from 0 .. 8 [8].

(warning) Provide warning messages regarding line lengths greater than desired
[default].

February 16, 1989 MIPS Computer Systems, Inc. \

ARM(1) RISC/os Programmer’s Reference ARM(1)

NAME
a.rm — remove source unit and library information

SYNTAX
a.rm [options] unit_name
a.rm [options] [ada_source.a]

DESCRIPTION
The a.rm command is executed while positioned in a VADS directory. It removes. all
information associated with the named unit(s) or file(s). When unit_name is specified, the

corresponding files in .nefs, .objects, and .lines are removed and the ada.lib entries are
deleted.

When a file name ada_source.a is given, all net, object, and line number files are removed for
each unit defined in the file, and the appropriate entries are deleted from ada.lib. A name
ending in .a is taken to be an Ada source file name unless the —u option is given.

Unit names with dotted notation such as aaa.bbb or aaa.bbb.ccc are taken to be the names of
Ada subunits.

OPTIONS

-b (body) Delete the bodies of the specified units named files.

- (file) Remove the Ada source file in addition to the compiler- generated files
whenever all units in a file are deleted.

=i (interactive) Prompt for confirmation -before deleting information fof any
units.

- (specification) Remove the compilation information for the specifications of
the specified units.

-u (unit) Force the next name to be treated as a unit even though it ends in .a.

-y (verbose) List the units as they are removed.

-V (verify) List the units that would be removed, but do not remove them.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.RMLIB(1) ' RISC/os Programmer’s Reference A.RMLIB (1)

NAME

a.rmlib - remove compilation library
SYNTAX

a.rmlib [-f -F] [VADS_library]
DESCRIPTION

a.rmlib removes all VADS library components from VADS_library or from the current library
if no argument is given. It removes three files (GVAS_table, ada.lib, and gnrx.lib), four
directories (.lines, .imports, .nets, and .objects), and lock files, if the ~f option is used. The
directory itself, any other files it contains, and any other subordinate directories are
untouched.

If VADS library is unspecified, the current VADS library is used.

If a.rmlib cannot find every library component or lock files exist, it will abort without
removing any files unless the —f (force) option is given.

Without the —F option a.rmlib cannot operate in a library bearing the name standard,
verdixlib, or publiclib.

OPTION
~f (force) Clean VADS library structure even if some components are missing or
lock files exist.
-F (force name) Allow the cleaning of the VADS library structure of a library
having a restricted name. ‘
DIAGNOSTICS

An error is reported and no action is taken (without the —f option) if VADS_library contains
an incomplete set of components or a lock file.

An error message will be issued if any files or directories are not accessible for deletion.

SEE ALSO
[VADS Reference], a.mklib, a.cleanlib

BUGS
The directory name for the removed library is left in dependent library paths. This blocks
compilation in any dependent libraries until a.path is used to remove the path entry that
specifies this directory. Compilation could also proceed if a VADS library is re-created in the
named directory from which the library information was removed.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ARUN(1) RISC/os Programmer’s Reference A.RUN(1)

NAME
a.run — download and execute a program on the target board [cross compilers only]

SYNTAX
a.run [options] [executable_file]

DESCRIPTION
a.run downloads and runs a VOX format file on a target board. The interface (TDM or
emulator) must be set up as described, and the target board correctly connected as required by
a.db.

If the Ada program fails with a runtime error on the board, a.run reports the error and the PC
at the time of the failure.

If executable_file is not given, the name g.vox is used.

VADS_location/bin/a.run is a wrapper program that executes the correct executable based
upon the names in the ada.lib file or indicated by the -t option. This permits multiple VADS
compilers to exist on the same host. The -sh option prints the name of the actual executable
file.

OPTIONS
-b (benchmark) print the elapsed time for running the program.

-c (checksum).do not checksum the executable load sections.
-1 ~ (load) load executable_file only, do not execute.

-s address (start) set the starting program counter to address (must be a hexadecimal
number without delimiting characters)

-sh (show) display the name of the tool executable, but do not eﬁecute it.

-t target_name (target) specifies which target to use. Can be used to run in a directory in.
which no ada library present or to override the target named by the ada.lib
file. The -t option requires the -1 or —s option, as it does not get the start
address from the ada.lib file.

~T number (timeout) stop if the program doesn’t return after number seconds. (0 means
no timeout). Default is 240.
-v (verbose) show downloading progress

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A TAGS (1) RISC/os Programmer’s Reference A.TAGS (1)

NAME

a.tags — create a tags file
SYNTAX

a.tags [options] ada_source.a ...
DESCRIPTION

a.tags makes a tags file from the specified Ada source(s). The operation is similar to the
UNIX ctags(1) command with modifications for Ada-specific features.

Fach line of the fags file lists the object name, the file in which it is defined, and search
patterns for locating each object’s definition. UNIX editors such as vi(1) or ex(1) can use the
tags file to locate units and, if the —t option was used to create the tags file, to locate types as
well. Create the tags file with the command

: a.tags x.a

For example, to edit unit END_PROG without specifying the file that contains it, type the following
command.
vi -t END_PROG

Ada allows unit name overloading, and a.tags requires special conventions to access different
units having the same name. Ada specifications are named by prefacing the Ada simple me
with s#. Bodies are named with the unmodified Ada name. Stubs for separates are named
by prefacing the. Ada simple name with stub#. ‘

Nested packages, subprograms, types, generics, and task definitions are always listed with
their full name (Ada expanded name) with any tag prefaces added to the simple name.
Simple names for nested units are listed only if the simple name is unique across all other
tags. Thus the user may use the simple name if it is unique and may always use the full name.

Fully qualified overloaded names within a file are not differentiated. However, the tag
identifies the correct file, and repeated application of the search pattern will find the desired
subprogram. The search pattern is generalized to match all versions of the overloaded
subprogram; this generalization may cause the pattern to recognize things other than the
desired unit. Identical fully qualified names across files are not handled.

The -x and -v options provide listings on the standard output; all other options refer to the file
tags generated for use by ex or vi.

OPTIONS
-a - (append) Append to the tags file.
-B (backward) Record backward searching patterns (?).
-F (forward) Record forward searching patterns (/). Default.
-t (types) Create tags for types also.
-v (vgrind) Generate an index with line numbers for vgrind(1) on the standard
output.
-w (warnings) Suppress warning messages.
-X (cross) Generate an indexed list of all tags on the standard output.
SEE ALSO

Operating system documentation, ctags(1).

BUGS
When using ex or vi with the -t option, the command line must contain the desired unit or
type in the same case (upper or lower) as its occurrence in the source file.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.VADSRC(1) RISC/os Programmer’s Reference AVADSRC(1)

NAME
a.vadsrc — display available VADS versions and create a default library configuration file

SYNTAX
a.vadsre [-i]

DESCRIPTION
When multiple VADS targets or versions are present on the same system, a.vadsre is useful to
control the default version or target processor for which libraries are created.

With no option, a.vadsrc simply reports the installed VADS version.

If the —i (interactive) option is used, the tool prompts for selection of a VADS version and
creates a .vadsrc file in the current directory.

OPTIONS :
-i (interactive) Show all versions of VADS installed on the system and prompt
for a selection.
Files
Jusr/lib/VADS VADS version reference file
SEE ALSO

[VADS Reference], a.mklib.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.VIEW (1) RISC/os Programmer’s Reference A VIEW (1)

NAME v

a.view — establish command abbreviations and history mechanism for C shell
SYNTAX '

source a.view
DESCRIPTION

a.view defines a number of aliases that simplify and enhance the use of the basic VADS
commands for users of the C shell. The alias definitions allow a file name to be set once and
thereafter alias commands use it until it is changed. Similarly, a main unit name need be
entered only once. (It need not be entered at all if it is the same as the last specified file
name prefix.) Compilation and linking aliases enter history and timing information into the
ada.history file.

For a full description, see the VADS Users Guide , Additional Tools, a.view.

To use the aliases without any alteration, put the following smgle line in the .login file.
source VADS_location/bin/a.view

This defines the aliases for interactive use. This line must appear at the beginning of scripts
using these aliases.

Aliases defined in a.view are summarized below. The term ‘tracking’ is used to indicate
whether or not the main unit name is set to the same as the file name prefix.

ALIASES
a Compile established file name, put errors in ada.errors/file_name, and history
entry in ada.history.

ad : Compile and run the debugger.

ah List last entry in ada.history.

al List established file name using more.

ald Link the established main unit.

am Execute a.make using file name specified in sm and put errors in
ada.errors/unit_name.m.

ao compile and optimize code.

av . Edit the established file name with vi.

ax Execute the established main unit.

axtime Execute a main unit and put timing entry into ada.history .

e List erroneous lines and diagnostics from last compilation of established file
name.

el List established file name with diagnostics from last compilation interspersed.

ey Edit the established file name with vi with diagnostics from last coxhpilation
interspersed.

s name Set file name prefix. If new working directory, then set tracking on. If
tracking is on, then set main unit.

sb name Set file name prefix and main unit; set tracking on.

sm name Set main unit and set tracking off, so that the main unit name does not
change with s command.

sp Print settings of file name prefix and main unit.

vs List status for the last executed VADS command.

MIPS Comp\iter Systems, Inc. February 16, 1989 Page 1

A.VIEW (1) RISC/os Programmer’s Reference A.VIEW (1)

In the commands that take name, additional arguments are ignored, and any trailing .a is
stripped. (The prefix is desired for the file name.) In addition, only the tail component of
name (the part following the last /) is used to set the main unit. (Main unit is an Ada unit
name, which does not allow ‘/’). The intention of this convention is to allow the use of file
name substitution for easy specification of a full file name and main unit.

For example, if the current directory contains the files rasking_limit_test.a (Ada source) and
tasking_limit_test.out (executable object) and if there were no other files beginning with tas,

. the command s tasx would set the file name prefix to tasking_limit_test and the main unit to

the same string. When the main unit name differs from the file name, the sm command may
be used.

In all other commands, additional arguments are passed to the underlying VADS command.
Thus

ald -ltermcap

will cause the linker to search the termcap library in addition to standard libraries.

FILES .
ada.history history of compilations and results
ada.errors directory containing error files from compilations

DIAGNOSTICS
Warnings are produced if any set command is used in a non-VADS library directory or if the
specified source file does not exist in the library. ‘

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

A.WHICH (1) - RISC/os Programmer’s Reference A.WHICH (1)

NAME
a.which — determine which project library contains a unit

SYNTAX
~ a.which [options] [unit_name]

a.which [options] [path/unit_name]

DESCRIPTION
a.which lists the name of the source file that defines the version of unit_name visible in the
current VADS library, The program library search sequence may also be printed. The -b
(body) option lists the source file location of the unit body, Without this option, the unit’s
specification is located.

OPTIONS '
-b (body) Give the location of the body.
~sh (show) Display the name of the tool executable but do not execute it.
-V (verbose) Give the library search list,

BUGS

An option is needed so that hidden units can be printed as well to allow programmers to
identify unit naming conflicts,

MIPS Computer Systems, Inc, February 16, 1989 Page 1

ADA (1) | RISC/os Programmer’s Reference ADA (1)

NAME

ada — Ada compiler

SYNTAX

ada [options] [ada_source.a]... [linker_options] [object_file.o]...

DESCRIPTION

The command ada executes the Ada compiler and compiles the named Ada source file,
ending with the Ia suffix. The file must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

The object for each compiled Ada unit is left in a file with with the same name as that of the
source with .01, .02, etc. substituted for .a. The -o option can be used to produce an
executable with a name other than a.out, the default. For cross compilers, the default name
is a.vox.

By default, ada produces only object and net files. If the -M option is used, the compiler
automatically invokes a.ld and builds a complete program wih the named library unit as the
main program.

Non-Ada object files (.o files produced by a compiler for another language) may be given as
arguments to ada. These files will be passed on to the linker and will be linked with the
specified Ada object files.

Command line options may be specified in any order, but the order of compilation and the
order of the files to be passed to the linker can be significant.

Several VADS compilers may be simultaneously available on a single system. Because the
ada command in any VADS_location/bin on a system will execute the correct compiler
components based upon visible library directives, the option -sh is provided to print the name
of the components actually executed.

Program listings with a disassembly of machine instructions are generated by a.db or a.das.

OPTIONS

—a file_name (archive) treat file_name as an ar file. Since archive files end with .a, -a
is used to distinguish archive files from Ada source files.

-d (dependencies) analyze for dependencies only. Do not do semantic
analysis or code generation. Update the library, marking any defined
units as uncompiled. The -d option is used by a.make to establish
dependencies among new files.

—e (error) process compilation error messages using a.error and direct it to
stdout.- only the source lines containing errors are listed. Only one -e
or -E option should be used.

-E

-E file

-E directory (error output) without a file or directory argument, ada processes error
messages using a.error and directs the output to stdout; the raw error
messages are left in ada_source.err. If a file pathname is given, the raw
error messages are placed in that file. If a directory argument is
supplied, the raw error output is placed in dir/source.err. Only one -e
or -E option should be used. '

—el (error listing) intersperse error messages among source lines and direct
to stdout.

-El

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ADA (1)

-El file
-El directory

“‘gO

_-g l'or" __gz
-g3

-1 file_abbreviation

~-M unit_name

-M ada_source.qa

—o executable_file

-R VADS_library
-S
-T

-V

-W

RISC/os Programmer’s Reference ADA (1)

(error listing) same as the -E option, except that source listing with
errors is produced.

(error vi) process syntax error messages using a.error, embed them in
the source file, and call the environment editor ERROR_EDITOR. (If
ERROR_EDITOR is defined, the environment variable
EFRROR_PATTERN should also be defined. ERROR_PATTERN is an
editor search command that locates the first occurrence of ‘###’ in the
error file.) If no editor is specifed, call vi.

Have the compiler produce additional symbol table information for
accurate but limited symbolic debugging of partially optimixed code.

Have the compiler produce additinal symbol table information for full
symbolic debugging and not do optimizations that limit full symbolic
debugging. —g?2 is the default.

Have the compiler produce additional sybol table information for full
symbolic debugging for fully optimized code. This option makes the
debugger inaccurate.

(link) Link this library file. (Do not space between the -land the file
abbreviation.) See also

Operating system documentation, 1d(1).

(main) produce an executable program using the named unit as the main
program. The unit must be either a parameterless procedure or a
parameterless function returning an integer. The executable program
will be left in the file a.out unless overridden with the -o option.

(main) like -M unit_name, except that the unit name is assumed to be
the root name of the .a file (for foo.a the unit is foo). Only one .qg file
may be preceded by -M.

(output) this option is to be used in conjunction with the -M option.
executable_file is the name of the executable rather than the default
a.out. ,

Turn off all optimizations.

Turn on all MIPS optimizations that can be done quickly and do one
pass using the Verdix optimizer. This is the default.

Invoke the MIPS global ucode optimizer and optimize as far as possible
using the Verdix optimizer. (MIPS global ucode optimizer not
supported in this release.) —O is the same as ~O2.

(recompile instantiation) force analysis of all generic instantiations,
causing reinstantiation of any that are out of date.

(suppress) apply pragma SUPPRESS to the entire compilation for all
suppressible checks.

(timing) print timing information for the compilation.

(verbose) print compiler version number, date and time of compilation,
name of file compiled, command input line, total compilation time, and
error summary line.

(warnings) suppress warning diagnostics.

February 16, 1989 MIPS Computer Systems, Inc.

ADA (1) RISC/os Programmer’s Reference - ADA(1)

-W c argl,[arg2...] Pass the argument[s] argi to a compiler pass, where c¢ is one of the
characters in the next table that designates the pass.
Pass Character
include h
backend D
driver
ucgen G
ujoin j
uld u
usplit s
umesrge m
uopt 0
ugen c
asl b
SEE ALSO
[VADS Reference] a.db, a.error, a.ld, a.mklib, a.das and Operating system documentation,
1d(1)
DIAGNOSTICS
The diagnostics produced by the VADS compiler are intended to be self-explanatory. Most

refer to the RM. Each RM reference includes a section' number and optionally, a paragraph
number enclosed in parentheses.

MIPS Computer Systems, Inc. February 16, 1989 Page 3

ADMIN (1-SysV) RISC/os Programmer’s Reference ADMIN (1-SysV)

NAME .
admin — create and administer SCCS files

SYNOPSIS

admin [-n] [=i[name]] [—rrel] [—t[name]] [—fflag[flag-val]] [=dflag[flag-val]] [=—alogin]
[—elogin] [=m[mrlist]] [=y[comment]] [=h] [=z] files

DESCRIPTION
admin is used to create new SCCS files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with =,
and named files (note that SCCS file names must begin with the characters s.). If a named ﬁle
does not exist, it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are assigned a default
value. If a named file does exist, parameters corresponding to specified keyletter arguments
are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a

~ named file, except that non-SCCS files (last component of the path name does not begin with
s.) and unreadable files are silently 1gnored If a name of = is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed since the effects of the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

—ifname] The name of a file from which the text for a new SCCS file is to be
taken. The text constitutes the first delta of the file (see =r keyletter for
delta numbering scheme). If the i keyletter is used, but the file name is
omitted, the text is obtained by reading the standard input until an end-
of-file is encountered. If this keyletter is omitted, then the SCCS file is
created empty. Only one SCCS file may be created by an admin com-
mand on which the i keyletter is supplied. Using a single admin to
create two or more SCCS files requires that they be created empty (no
—i keyletter). Note that the =i keyletter implies the =n keyletter.

=rrel The release into which the initial delta is inserted. This keyletter may be
used only if the —i keyletter is also used. If the =r keyletter is not used,
the initial delta is inserted into release 1. The level of the initial delta is
always 1 (by default initial deltas are named 1.1).

=t/name] The name of a file from which descriptive text for the SCCS file is to be
taken. If the =t keyletter is used and admin is creating a new SCCS file
(the =—n and/or =i keyletters also used), the descriptive text file name
must also be supplied. In the case of existing SCCS files: (1) a =t
keyletter without a file name causes removal of descriptive text (if any)
currently in the SCCS file, and (2) a =t keyletter with a file name causes
text (if any) in the named file to replace the descriptive text (if any)
currently in the SCCS file.

—fflag This keyletter specifies a flag, and, possibly, a value for the flag, to be
placed in the SCCS file. Several f keyletters may be supplied on a single
admin command line. The allowable flags and their values are:

b Allows use of the —b keyletter on a gef(1) command to create branch
deltas.
cceil The highest release (i.e., “ceiling’”’), a number greater than O but less

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ADMIN (1-SysV)

ffloor

dsSID
i[str]

Wist

<list>

qtext

mmod

ttype

vpgm

—dflag

Wist

Page 2

RISC/os Programmer’s Reference ADMIN (1-SysV)

than or equal to 9999, which may be retrieved by a get(1) command for
editing. The default value for an unspecified c flag is 9999.

The lowest release (i.e., “floor”’), a number greater than O but less than
9999, which may be retrieved by a get(I) command for editing. The
default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a get(I) command.

Causes the "No id keywords (ge6)" message issued by get(1) or delta(1)
to be treated as a fatal error. In the absence of this flag, the message is
only a warning. The message is issued if no SCCS identification key-
words [see get(1)] are found in the text retrieved or stored in the SCCS
file. If a value is supplied, the keywords must exactly match the given
string, however the string must contain a keyword, and no embedded
newlines.

Allows concurrent get(I) commands for editing on the same SID of an
SCCS file. This allows multiple concurrent updates to the same version
of the SCCS file.

A list of releases to which deltas can no longer be made (get —e against
one of these “locked” releases fails). The list has the following syntax:

::= <range> | <list> , <range>
<range>":= |a '

The character a in the list is equivalent to specifying all releases for the
named SCCS file.

Causes delta(l) to create a “null” delta in each of those releases (if any)
being skipped when a delta is made in a new release (e.g., in making
delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas
serve as “anchor points” so that branch deltas may later be created from
them. The absence of this flag causes skipped releases to be non-
existent in the SCCS file, preventing branch deltas from being created
from them in the future.

User definable text substituted for all occurrences of the % Q% keyword
in SCCS file text retrieved by get(1).

Module name of the SCCS file substituted for all occurrences of the
%M% keyword in SCCS file text retrieved by get(1). If the m flag is not
specified, the value assigned is the name of the SCCS file with the lead-
ing s. removed. .

type of module in the SCCS file substituted for all occurrences of %Y %
keyword in SCCS file text retrieved by get(1).

Causes delra(I) to prompt for Modification Request (MR) numbers as
the reason for creating a delta. The optional value specifies the name of
an MR number validity checking program [see delta(1)]. (If this flag is
set when creating an SCCS file, the m keyletter must also be used even if
its value is null).

Causes removal (deletion) of the specified flag from an SCCS file. The
—d keyletter may be specified only when processing existing SCCS files.
Several —d keyletters may be supplied on a single admin command. See
the —f keyletter for allowable flag names.

A list of releases to be ‘unlocked”. See the —f keyletter for a

February 5, 1989 MIPS Computer Systems, Inc.

ADMIN (1-SysV) RISC/os Programmer’s Reference ADMIN (1-SysV)

description of the 1 flag and the syntax of a list.

—alogin A login name, or numerical UNIX system group ID, to be added to the
list of users which may make deltas (changes) to the SCCS file. A group
ID is equivalent to specifying all login names common to that group ID.
Several a keyletters may be used on a single admin command line. As
many logins, or numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then anyone may add del-
tas. If login or group ID is preceded by a ! they are to be-denied permis-
sion to make deltas.

=elogin A login name, or numerical group ID, to be erased from the list of users
allowed to make deltas (changes) to the SCCS file. Specifying a group
ID is equivalent to specifying all login names common to that group ID.
Several e keyletters may be used on a single admin command line.

=—m/mrlist] The list of Modification Requests (MR) numbers is inserted into the
SCCS file as the reason for creating the initial delta in a manner identical
to delta(1). The v flag must be set and the MR numbers are validated if
the v flag has a value (the name of an MR number validation program).
Diagnostics will occur if the v flag is not set or MR validation fails.

=y[comment] The comment text is inserted into the SCCS file as a comment for the
. . initial delta in a manner identical to that of delta(1). Omission of the =y
keyletter results in a default comment line being inserted in the form:
date and time created YY/MM/DD HH:MM:SS by login
The =y keyletter is valid only if the =i and/or =n keyletters are
specified (i.e., a new SCCS file is being created).

=h Causes admin to check the structure of the SCCS file [see sccsfile(4)],
and to compare a newly computed check-sum (the sum of all the charac-
ters in the SCCS file except those in the first line) with the check-sum
that is stored in the first line of the SCCS file. Appropriate error diag-
nostics are produced. This keyletter inhibits writing on the file, so that
it nullifies the effect of any other keyletters supplied, and is, therefore,
only meaningful when processing existing files.

=7, The SCCs file check-sum is recomputed and stored in the first line of
the SCCS file (see =h, above).

Note that use of this keyletter on a truly corrupted file may prevent
future detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name. New SCCS files
are given mode 444 [see chmod(1)]. Write permission in the pertinent directory is, of course,
required to create a file. All writing done by admin is to a temporary x-file, called x.file-name
[see get(1)], created with mode 444 if the admin command is creating a new SCCS file, or with
the same mode as the SCCS file if it exists. After successful execution of admin, the SCCS file
is removed (if it exists), and the x-file is renamed with the name of the SCCS file. This
ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files
themselves be mode 444. The mode of the directories allows only the owner to modify SCCS
files contained in the directories. The mode of the SCCS files prevents any modification at all
except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to
644 by the owner allowing use of ed(1). Care must be taken! The edited file should always be
processed by an admin =h to check for corruption followed by an admin =z to generate a

MIPS Computer Systems, Inc. February 5, 1989 Page 3

ADMIN (1-SysV) RISC/os Programmer’s Reference - ADMIN (1-SysV)

proper check-sum. Another admin —h is recommended to ensure the SCCS file is valid.

admin also makes use of a transient lock file (called z.file-name), which is used to prevent
simultaneous updates to the SCCS file by different users. See get(1) for further information.

FILES
g-file Existed before the execution of delta ; removed after completion of delta.
p-file Existed before the execution of delra ; may exist after completion of delra.
q-file Created during the execution of delta; removed after completion of delta.
x-file Created during the execution of delta; renamed to SCCS file after completion
of delta.

z-file Created during the execution of delta; removed during the execution of delia.
d-file Created during the execution of delta; removed after completion of delta.

/usr/bin/bdiff Program to compute differences between the “gotten” file and the g-file.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1).
sccsfile(4) in the Programmer’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations.

Page 4 February 5, 1989 MIPS Computer Systems, Inc.

AR (1) RISC/os Programmer’s Reference AR (1)

NAME

ar — archive and library maintainer
SYNOPSIS

ar option [posname] filel ... fileN
DESCRIPTION

The archiver (ar) maintains groups of files as a single archive file. Generally, you use this util-
ity to create and update library files that the link editor uses; however, you can use the
archiver for any similar purpose. NOTE: This version uses a portable ACII- format archive
that you can use on various machines that run UNIX.

In the text, option refers to a character (from the set drgtpmx) that you can concatenate with
one or more of svaaibelo. A suboption refers to options (from the set abiou) that you can
only use with other options.

The options do these things:
d Deletes the specified files from the archive file.

r Replaces the specified files in the archive file. If you use the suboption u with r, the
archiver only replaces those files that have ‘last-modified’ dates later than the archive
files. If you use a positioning character (from the set abi) you must specify the
posname argument to tell the archiver to put the new files after (a) or before (b or i).
Otherwise, the archiver puts new files at the end of the archive.

q Appends the specified files to the end of the archive file. The archiver does not
accept suboption positioning characters with the q option. It also does not check
whether the files you want to add already exist in the archive. Use the q option only
to avoid quadratic behavior when you create a large archive piece by piece.

t Prints a table of contents for the files in the archive file. If you don’t specify any file
names, the archiver builds a table of contents for all files. If you specify file names,
the archiver builds a table of contents only for those files.

p Prints the specified files from the archive.

m Moves the specified files to the end of the archive. If you specify a positioning charac-
ter, you must also specify the posname (as in option r) to tell the archiver where to
move the files.

X Extracts the specified files from the archive. If you don’t specify any file names, the
archiver extracts all files. When it extracts files, the archiver does not change any file.
Normally, the ‘last-modified’ date for each extracted file shows the date when some-
one extracted it; however, when you use o, the archiver resets the ‘last-modified’ date
to the date recorded in the archive.

s Makes a symbol definition (symdef file) as the first file of an archive. This file con-
tains a hash table of ranlib structures and a corresponding string table. The symdef
file’s name is based on the byte ordering of the hash table and the byte ordering of the
file’s target machine. Files must be consistent in their target byte ordering before the
archiver can create a symdef file. I you change the archive contents, the symdef file
becomes obsolete because the archive file’s name changes. If you specify ‘s’, the
archiver creates the symdef file as its last action before finishing execution. You must
specify at least one other archive option (m, p, q, r, or t) when you use the s option.
For UMIPS-V, archives include member objects based on the definition of a common
object only. For UMIPS-BSD, they define the common object, but do not include the
object.

v Gives a verbose file-by-file description as the archiver makes a new archive file from
an old archive and its constituent files. When you use this option with t, the archiver

MIPS Computer Systems, Inc. February 9, 1989 Page 1

AR (1)

RISC/os Programmer’s Reference AR(1)

lists all information about the files in the archive. When you use this option with p,
the archiver precedes each file with a name.

Suppresses the normal message that the archiver prints when it creates the specified
archive file. Normally, the archiver creates the specified archiver file when it needs to.

Puts temporary files in the local directory. Normally, the archiver puts its temporary
files in the directory /tmp.

The suboptions do these things:

a Specifies that the file goes after the existing file (posname). Use this suboption with
the m or r options.

b Specifies that the file goes before the existing file (posname). Use this suboption with
the m or r options.

i Specifies that the file goes before the existing file (posname). Use this suboption with
the m or r options.

o “ Forces a newly created file to have the ‘last modified’ data that it had before it was
extracted from the archive. Use this suboption with the x option.

u Prevents the archiver from replacing an existing file unless the replacement is newer
than the existing file. This option uses the UNIX system ‘last modified’ data for this
comparison. Use this suboption with the r option.

FILES
/tmp/vxtemporaries
SEE ALSO

BUGS

Page 2

lorder(1), 1d(1), odump(1), ar(4), ranhash(3x).

If you specify the same file twice in an argument list, it can appear twice in the archive file.

The o option does not change the ‘last-modified’ date of a file unless you own the extracted
file or you are the super-user.

February 9, 1989 MIPS Computer Systems, Inc.

AS(1) RISC/os Programmer’s Reference AS(1)

NAME

as — MIPS assembler
SYNOPSIS

as [option] ... file
DESCRIPTION

as, the MIPS assembler, produces files in the following formats: MIPS object code in MIPS
extended coff format (the normal result) and binary assembly language. As never runs the
loader. As accepts one type of argument:

The argument file is assumed to be symbolic asselhbly language source program. It is assem-
bled, producing an object file.

Mas always defines the C preprocessor macros mips, host_mips, unix and
LANGUAGE_ASSEMBLY to the C macro preprocessor. It also defines SYSTYPE_SYSV by
default but this changes if the —systype name option is specified (see the description below).

~ The following options are interpreted by as and have the same meaning in cc(1).

—~g0 Have the assembler produce no symbol table information for symbolic debugging.
This is the default.

—gl Have the assembler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code. - .

=g Or —g2 . . . - v
Have the assembler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

—g3 Have the assembler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

—wW Suppress warning messages.

-P Run only the C macro preprocessor and put the result in a file with the suffix of the
source file changed to ‘.i’ or if the file has no suffix then a ‘.i’ is added to the source
file name. The ‘.i’ file has no ‘#’ lines in it. This sets the —cpp option.

-E Run only the C macro preprocessor on the file and send the result to the standard out-
put. This sets the —cpp option.

=0 output
Name the final output file outpur. If this option is used, the file ‘a.out’ is undisturbed.

=Dname=def

=Dname
Define the name to the C macro preprocessor, as if by ‘#define’. If no definition is
given, the name is defined as "1".

=Uname
Remove any initial definition of name.

=Idir ‘#include’ files whose names do not begin with ‘/* are always sought first in the direc-
tory of the file argument, then in directories specified in =I options, and finally in the
standard directory (/usr/include).

e | This option will cause ‘#include’ files never to be searched for in the standard direc-
tory (/usr/include).

=G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the glo-
bal pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

AS (1)

Page 2

RISC/os Programmer’s Reference AS(1)

-V Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what(1) command.

—cpp Run the C macro preprocessor on assembly source files before compiling. This is the
default for as(1).

=—nocpp _
Do not run the C macro preprocessor on assembly source files before compiling.

Either object file target byte ordering can be produced by as. The default target byte ordering
matches the machine where the assembler is running. The options —EB and —EL specify the
target byte ordering (big-endian and little-endian, respectively). The assembler also defines a
C preprocessor macro for the target byte ordering. These C preprocessor macros are MIP-
SEB and MIPSEL for big-endian and little-endian byte ordering respectively.

—EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the assembler.

—EL Produce object files targeted for little-endian byte ordering. The C preprocessor
macro MIPSEL is defined by the assembler.

The following option is specific for as:
—m Apply the M4 preprocessor to the source file before assembling it.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

-systype name :
Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files. The new items are located in their usual
paths but with /name prepended to their paths. Also a preprocessor macro of the
form SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [a]. It selects the assembler pass in the same way
as the —t option. If this option is used, the symbol table file produced and used by
the passes, is the last component of the source file with the suffix changed to . T’, or a
%1 is added if the source file has no suffix. This file is not removed.

—K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
‘.G’ file for binary assembly language). If the source file has no suffix the conventional
suffix is added to the source file name. These intermediate files are never removed
even when a pass encounters a fatal error.

-Wc/c...],argl[,arg2...]
Pass the argument[s] argi to the compiler pass[es] c/c..]. The c’s are one of [pab].
The c’s selects the compiler pass in the same way as the =t option.

The options —t[hpab], —hpath, and =Bstring select a name to use for a particular pass. These
arguments are processed from left to right so their order is significant. When the =B option is
encountered, the selection of names takes place using the last =h and —t options. Therefore,
the =B option is always required when using =—h or —t. Sets of these options can be used to
select any combination of names.

February 6, 1989 MIPS Computer Systems, Inc.

AS (1) RISC/os Programmer’s Reference AS (1)

~—t[hpab)
Select the names. The names selected are those designated by the characters follow-
ing the ~t option according to the following table: '
Name Character
include h (see note below)

cpp p
as0 a
asl b

If the character ‘h’ is in the —t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files. This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain the include files
for the string release of the compiler. The standard directory is still searched.

~hpath
Use path rather than the directory where the name is normally found.

=Bstring
Append strmg to all names specified by the —t option. If no —t option has been pro-
cessed before the =B, the —t option is assumed to be “hpab”. This list designates all
names.

Invokmg the assembler with a name of the form asstring has the same effecl as- usmg a
=Bstring option on the command line. :

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for the includes rather
than the default /.

If the environment variable ROOTDIR is set, the value is used as the root directory for all
names rather than the default /usr/. This also affects the standard directory for ‘#include’
files, /usr/include .

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

Other arguments are ignored.

FILES
file.o object file
a.out assembler output
/tmp/ctm? temporary
/usr/lib/cpp C macro preprocessor
/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer
/usr/include standard directory for ‘#include’ files

SEE ALSO

Assembly Language Programmer’s Guide
cc(1), asO(1), what(1)

DIAGNOSTICS
The diagnostics produced by the assembler are intended to be self-explanatory.

MIPS Computer Systems, Inc. February 6, 1989 Page 3

AT (1-SysV) RISC/os Programmer’s Reference AT (1-SysV)

NAME

at, batch — execute commands at a later time
SYNOPSIS

at time [date | [+ increment |

at -r

at -1 [job ...] batch
DESCRIPTION

at and batch read commands from standard input to be executed at a later time. at allows you
to specify when the commands should be executed, while jobs queued with batch will execute
when system load level permits. af may be used with the following options:

-r Removes jobs previously scheduled with ar.

-1 Reports all jobs scheduled for the invoking user. Standard output and standard error
output are mailed to the user unless they are redirected elsewhere. The shell environ-
ment variables, current directory, umask, and ulimit are retained when the commands
are executed. Open file descriptors, traps, and priority are lost. Users are permitted
to use at if their name appears in the file /usr/lib/cron/at.allow. If that file does not
exist, the file /usr/lib/cron/at.deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to submit a job. If
at.deny is empty, global usage is permitted. The allow/deny files consist of one user
name per line. These files can only be modified by the superuser. The time may be
specified as 1, 2, or 4 digits. One and two digit numbers are taken to be hours, four
digits to be hours and minutes. The time may alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm may be appended;
otherwise a 24-hour clock time is understood. The suffix zulu may be used to indicate
GMT. The special names noon, midnight, now, and next are also recognized. An
optional dat¢ may be specified as either a month name followed by a day number (and
possibly year number preceded by an optional comma) or a day of the week (fully
spelled or abbreviated to three characters). Two special “days”, today and tomorrow
are recognized. If no dare is given, today is assumed if the given hour is greater than
the current hour and romorrow is assumed if it is less. If the given month is less than
the current month (and no year is given), next year is assumed. The optional incre-
ment is simply a number suffixed by one of the following: minutes, hours, days, weeks,
months, or years. (The singular form is also accepted.)

Thus legitimate commands include:
at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error. batch submits a batch
job. It is almost equivalent to “at now”, but not quite. For one, it goes into a different
queue. For another, ‘“at now” will respond with the error message too late. at -r removes
jobs previously scheduled by at or batch. The job number is the number given to you previ-
ously by the ar or batch command. You can also get job numbers by typing af -1. You can
only remove your own jobs unless you are the super-user.

EXAMPLES

The at and batch commands read from standard input the commands to be executed at a later
time. Sh(1) provides different ways of specifying standard input. Within your commands, it
may be useful to redirect standard output.

This sequence can be used at a terminal:
batch

MIPS Computer Systems, Inc. February 5, 1989 Page 1

AT (1-SysV) RISC/os Programmer’s Reference ' AT (1-SysV)

sort filename >outﬁle
<control-D> (hold down ’control’ and depress 'D’)

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a shell
procedure (the sequence of output redirection specifications is significant):
batch <<!

sort filename 2>&1 >outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the shell procedure, by including code
similar to the following within the shell file:

~echo "sh shellfile" | at 1900 thursday next week

FILES
/usr/lib/cron main cron directory
lusr/lib/cron/at.allow list of allowed users
lusr/lib/cron/at.deny list of denied users
lusr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area

SEE ALSO

kill(1), mail(1), nice(1), ps(1), sh(1), sort(1). »
cron(1M) in the System Administrator’s Reference Manual.

DIAGNOSTICS ,
Complains about various syntax errors and times out of range.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

AWK (1-SysV’) RISC/os Programmer’s Reference AWK (1-SysV)

NAME

awk — pattern scanning and processing language

SYNOPSIS

awk [=d | [=Fc] commands [parameters] [file...]
awk [=d] [=Fc][=f script | [parameters] | file...]

DESCRIPTION

awk scans each input file for lines that match any of a set of patterns specified in the
commandsargument. With each pattern in the commands, there can be an associated action
that will be performed when a line of a file matches the pattern. The set of patterns may
appear literally in the commands, or in a file specified as ~f script. The commands must be
enclosed in single quotes (") to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

A debug option, =d , allows the user to print the entire state of awk as the program runs. Be
forewarned that volumes of data, mostly meaningless unless you are familiar with the internals

“of awk, will be printed on stderr.

Files are read in order; if there are no files, the standard input is read. The file name —
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a
sequence of statements. A statement can be one of the following: '

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and
are built using the operators +, =, , /, %, and concatenation (indicated by a blank). The C
operators ++, ==, +=, ==, =, /=, and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is
present), separated by the current output field separator, and terminated by the output record
separator. The printf statement formats its expression list according to the format [see
printf(3S) in the Programmer’s Reference Manual].

MIPS Computer Systems, Inc. February 5, 1989 Page 1

AWK (1-SysV) » RISC/os Programmer’s Reference AWK (1-SysV)

The built-in function length returns the length of its argument taken as a string, or of the
whole line if no argument. There are also built-in functions exp, log, sqrt, and int. The last
truncates its argument to an integer; substr(s, m, n) returns the n-character substring of s that
begins at position m. The function sprintf(fmt, expr, expr,...) formats the expressions
according to the printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expres-
sions and relational expressions. 'Regular expressions must be surrounded by slashes and are
as in egrep (see grep(l)). Isolated regular expressions in a pattern apply to the entire line.
Regular expressions may also occur in relational expressions. A pattern may consist of two
patterns separated by a comma; in this case, the action is performed for all lines between an
occurrence of the first pattern and the next occurrence of the second.

A relational éxpression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either (for con-
tains) or ! (for does not contain). A conditional is an arithmetic expression, a relational
expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the-first pattern, END the last.

A single character ¢ may be used to séparate the fields by starting the program with:
BEGIN { FS =¢ }
or by using the =Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default new-line); and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=9%1}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; —1i) print $i }
Print all lines between start/stop pairs:

[start/, /stop/
Print all lines whose first field is different from previous one:

. $1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = nt++; }

{ print }

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

AWK (1-SysV) RISC/os Programmer’s Reference AWK (1-SysV)

command line: awk —f program n=>5 input

SEE ALSO
grep(1), lex(1), sed(1).
printf(3S) in the Programmer’s Reference Manual.
ERRORS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be

treated as a number add 0 to it; to force it to be treated as a string concatenate the null string
(") to it.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

BANNER (1-SysV) RISC/os Programmer’s Reference BANNER (1-SysV)

NAME
banner — make posters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on the standard out-
put.

SEE ALSO
echo(1).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BASENAME (1-SysV) RISC/os Programmer’s Reference BASENAME (1-SysV)

NAME
basename, dirname deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname siring

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string, and
prints the result on the standard output. It is normally used inside substitution marks (**)
within shell procedures.

dirname delivers all but the last level of the path name in string.

EXAMPLES .
The following example, invoked with the argument /usr/src/cmd/cat.c, compiles the named
file and moves the output to a file named cat in the current directory:

cc $1
mv a.out “basename $1 \.c~

The following example will set the shell variable NAME to /usr/src/cmd:
NAME=-dirname /usr/src/cmd/cat.c*

SEE ALSO
sh(l)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BC (1-SysV) RISC/os Programmer’s Reference _ BC (1-SysV)

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS
be[=c][=1]]file...]

DESCRIPTION
bc is an interactive processor for a language that resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The bc(1) utility
is actually a preprocessor for dc(I), which it invokes automatically unless the =—e¢ option is

present. In this case the dc input is sent to the standard output instead. The options are as
follows:

-C Compile only. The output is send to the standard output.
-1 Argument stands for the name of an arbitrary precision math library.

The syntax for bc programs is as follows; L means letter a-z, E means expression, S means
statement.

Comments
are enclosed in /% and */.

Names :
simple variables: L

array elements: L [E]

The words “‘ibase”, “obase’’, and “scale”

Other operands |
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators
+ = % / % = (% is remainder; " is power)
++4 —=— (prefix and postfix; apply to names)

== <= >= = < >

= =+ =— =x =/=% =
Statements

E

{S;...;S}

if(E)S

while (E) S

for (E;E;E)S

null statement

break

quit

Function definitions

define L (L,...,L){
autoL, ..., L
S; ... S
return (E) .

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BC(1-SysV) RISC/os Programmer’s Reference BC(1-SysV)

Functions in =1 math library
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Fither semicolons or new-lines may separate statements. Assignment to scale
influences the number of digits to be retained on arithmetic operations in the manner of dc(1).
Assignments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously.
All variables are global to the program. “Auto” variables are pushed down during function
calls. When using arrays as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

EXAMPLE
scale = 20
define e(x){
autoa, b, c, i, s

a=1
b=1
s=1
for(i=1; 1==1; i++){
a = asx
b = b«
c=alb
if(c == 0) return(s)
s = s+C
¥

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

FILES
/usr/lib/lib.b mathematical library
lusr/bin/dc desk calculator proper
SEE ALSO
dc(1).
BUGS

The be command does not yet recognize the logical operators, && and |[|.
for statement must have all three expressions (E’s).
quit is interpreted when read, not when executed.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

BDIFF (1-SysV) RISC/os Programmer’s Reference BDIFF (1-SysV)

NAME

bdiff - big diff

SYNOPSIS

bdiff filel file2 [n | [—s]

DESCRIPTION

FILES

bdiff is used in a manner analogous to diff(1) to find which lines in two files must be changed

to bring the files into agreement. Its purpose is to allow processing of files which are too large
for diff.

The parameters to bdiff are:

filel (file2)
" The name of a file to be used. If filel (file2) is —, the standard input is read.

n The number of line segments. The value of n is 3500 by default. If the optional third
argument is given and it is numeric, it is used as the value for n. This is useful in
those cases in which 3500-line segments are too large for diff, causing it to fail.

-3 Specifies that no diagnostics are to be printed by bdiff (silent option). Note, however,
that this does not suppress possible diagnostic messages from diff(1), which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of each file into
n-line segments, and invokes diff upon corresponding segments. If both optional arguments
are specified, they must appear in the order indicated above.

The output of bdtﬂ is exactly that of diff, with line numbers adjusted to account for the seg-
menting of the files (that is, to make it look as if the files had been processed whole). Note

that because of the segmenting of the files, bdiff does not necessarily find a smallest sufficient

set of file differences.

SEE ALSO

diff(1), help(1).

DIAGNOSTICS

Use help(1) for explanations.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BFS (1-SysV) RISC/os Programmer’s Reference BFS (1-SysV)

NAME
bfs — big file scanner

SYNOPSIS
bfs [=] name

DESCRIPTION
The bfs command is (almost) like ed(I) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes and 32K lines, with up to 512 characters, including new-
line, per line (255 for 16-bit machines). bfs is usually more efficient than ed(I) for sCanning a
file, since the file is not copied to a buffer. It is most useful for identifying sections of a large
file where csplit(1) can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the
w command. The optional = suppresses printing of sizes. Input is prompted with « if P and a
carriage return are typed, as in ed(I). Prompting can be turned off again by inputting another
P and carriage return. Note that messages are given in response to errors if prompting is
turned on.

All address expressions described under ed(1) are supported. In addition, regular expressions-
may be surrounded with two symbols besides / and ?: > indicates downward search without
wrap-around, and < indicates upward search without wrap-around. There is a slight difference
in mark names: only the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p; q, W, =, ! and null commands operate as described under ed(1). Commands
such as === <<4+= +++=, ~12, and +4p are accepted. Note that 1,10p and 1,10 will
both print the first ten lines. The f command only prints the name of the file being scanned;
there is no remembered file name. The w command is independent of output diversion, trun-
cation, or crunching (see the xo, xt and xc commands, below). The following additional com-
mands are available:

xf file
Further commands are taken from the named file. When an end-of-file is reached,
an interrupt signal is received or an error occurs, reading resumes with the file con-
taining the xf. The xf commands may be nested to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo [file] ,
Further output from the p and null commands is diverted to the named file, which,
if necessary, is created mode 666 (readable and writable by everyone), unless your
umask setting (see umask(1)) dictates otherwise. If file is missing, output is
diverted to the standard output. Note that each diversion causes truncation or
creation of the file.

: label
This positions a label in a command file. The label is terminated by new-line, and
blanks between the : and the start of the label are ignored. This command may
also be used to insert comments into a command file, since labels need not be
referenced.

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command succeeds.
It fails under any of the following conditions:

MIPS Computer Systems, Inc. February 5, 1989 Page 1

BFS (1-SysV)

RISC/os Programmer’s Reference BFS(1-SysV)"

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one line in the specified
range, including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This com-
mand is the only one that does not issue an error message on bad addresses, so it
may be used to test whether addresses are bad before other commands are exe-
cuted. Note that the command

xb/"/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a termi-
nal. If it is read from a pipe only a downward jump is possible.

xt number

Output from the p and null commands is truncated to at most number characters.
The initial number is 255. '

- xv[digit] [spaces] [value]

Page 2

The variable name is the specified digit following the xv. The commands xv5100 or
xv5 100 both assign the value 100 to the variable 5. The command xv61,100p
assigns the value 1,100p to the variable 6. To reference a variable, put a % in front
of the variable name. For example, using the above assignments for variables 5
and 6:

1,0/051)
1,%5
%6

will all print the first 100 lines.

¢/ %5/p

would globally search for the characters 100 and print each line containing a
match. To escape the special meaning of %, a \ must precede it.

g/".\%[cds}/p

could be used to match and list lines containing printf of characters, decimal
integers, or strings.

Another feature of the xv command is that the first line of output from a UNIX sys-
tem command can be stored into a variable. The only requirement is that the first
character of value be an'!. For example:

.W junk

xv5!cat junk

Irm junk

lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable 5, print it, and increment the variable 6 by
one. To escape the special meaning of ! as the first character of value, precede it
with a \.

February 5, 1989 MIPS Computer Systems, Inc.

BFS (1-SysV) RISC/ds Programmer’s Reference - BFS (1-SysV)

xv7\ldate
stores the value !date into variable 7.
xbz label

xbn label
These two commands will test the last saved remurn code from the execution of a
UNIX system command (command) or nonzero value, respectively, to the specified
label. The two examples below both search for the next five lines containing the
string size.

xv55
: 1
/size/
xv5lexpr %5 -1
1if 0%5 1= 0 exit 2
xbn 1
xv45
1
/size/
xvélexpr %4 - 1
lif 0%4 = 0 exit 2
xbz |
xc [switch]
If switch is 1, output from the p and null commands is crunched; if switch is 0 it is
not. Without an argument, xc reverses switch. Initially switch is set for no crunch-

ing. Crunched output has strings of tabs and blanks reduced to one blank and
blank lines suppressed.

SEE ALSO
csplit(1), ed(1), umask(1).

DIAGNOSTICS
2 for errors in commands, if prompting is turned off. Self-explanatory error messages when
prompting is on.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CAL (1-SysV) RISC/os Programmer’s Reference CAL (1-SysV)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION ‘
cal prints a calendar for the specified year. If a month is also specified, a calendar just for
that month is printed. If neither is specified, a calendar for the present month is printed.
year can be between 1 and 9999. The month is a number between 1 and 12. The calendar
produced is that for England and the United States.

EXAMPLES
An unusual calendar is printed for September 1752. That is the month 11 days were skipped
to make up for lack of leap year adjustments. To see this calendar, type:
cal 9 1752
ERRORS
The year is always considered to start in January even though this is historically naive.
Beware that cal 83 refers to the early Christian era, not the 20th century.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CALENDAR (1-SysV) RISC/os Programmer’s Reference CALENDAR (1-SysV)

NAME
calendar — reminder service
SYNOPSIS
calendar [— |
DESCRIPTION :

calendar consults the file calendar in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
“Aug. 24,” “august 24,” “8/24,” etc., are recognized, but not “24 August” or “24/8”. On
weekends “tomorrow’’ extends through Monday. '

When an argument is present, calendar does its job for every user who has a file calendar in
his or her login directory and sends them any positive results by mail(1). Normally this is done
daily by facilities in the UNIX operating system.

FILES
/usr/lib/calprog to figure out today’s and tomorrow’s dates

letc/passwd
/tmp/calx

SEE ALSO
mail(l).

ERRORS ‘ .
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of “tomorrow’’ does not account for holidays.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CAT (1-SysV) RISC/os Programmer’s Reference CAT (1-SysV)

NAME
cat — concatenate and print files

SYNOPSIS
cat [~u][=s][=v[=t][~e]]file...
DESCRIPTION ’ .
cat reads each file in sequence and writes it on the standard output. Thus:

cat file
pﬁnts the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument = is encountered, cat reads .from the standard
input file. :

The following options apply to cat.
-u The output is not buffered. (The default is buffered output.)
- Cat is silent about non-existent files.

-y Causes non-printing characters (with the exception of tabs, new-lines and form-feeds)
to be printed visibly, Control characters are printed "X (control-x); the DEL charac-
ter (octal 0177) is printed "?. Non-ASCII characters (with the high bit set) are printed
as M-x, wheré x is the character specified by the seven low order bits.

When used with the —v option, the following options may be used.

-t Causes tabs to be printed as Is.

—e Causes a $ character to be printed at the end of each line (prior to the new-line).
The =t and —e options are ignored if the —v option is not specified.

WARNING

Command formats such as
cat filel file2 >filel

will cause the original data in filel to be lost; therefore, take care when using shell special
characters.

SEE ALSO
cp(1), pg(l), pr(l).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CB (1-SysV) RISC/os Programmer’s Reference CB(1-SysV)

NAME
cb - C program beautifier
SYNOPSIS
cb[=s][=j][=lleng]]|file...]
DESCRIPTION
- The cb comand reads C programs either from its arguments or from the standard input, and
writes them on the standard output with spacing and indentation that display the structure of
the code. Under default options, cb preserves all user new-lines.
cb accepts the following options.
-s Canonicalizes the code to the style of Kernighan and Ritchie in The C
Programming Language.
-j Causes split lines to be put back together.
=1 leng Causes cb to split lines that are longer than leng.
SEE ALSO
cc(l).
The C Programming Language. Prentice-Hall, 1978.
ERRORS

Punctuation that is hidden in preprocessor statements will cause indentation errors. Structure

assignments are not handled properly. The braces ({}) are treated like other braces in that
they cause indentation.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CC(1) / RISC/os Programmer’s Reference CC(1)

NAME

cc — MIPS C compiler
SYNOPSIS

cc [option] ... file ...
DESCRIPTION

cc, the MIPS ucode C compiler, produces files in the following formats; MIPS object code in
MIPS extended coff format (the normal result), binary or symbolic ucode, ucode object files
and binary or symbolic assembly language. cc accepts several types of arguments:

Arguments whose names end with ‘.c’ are assumed to be C source programs. They are com-
piled, and each object program is left in the file whose name consists of the last component of
the source with ‘.0’ substituted for ‘.c’. The ‘.0’ file is only deleted when a single source pro-
gram is compiled and loaded all at once.

Arguments whose names end with ‘.s’ are assumed to be symbolic assembly language source
programs. They are assembled, producing a ‘.0’ file. Arguments whose names end with ‘.i’
are assumed to be C source after being processed by the C preprocessor. They are compiled
without being processed by the C preprocessor.

If the highest level of optimization is specified (with the =03 flag) or only ucode object files
are to be produced (with the =j flag) each C source file is compiled into a ucode object file.
The ucode object file is left in a file whose name consists of the last component of the source
with “.u’ substituted for ‘.c’ :

The suffixes described below primarily aid compiler development and are not generally used.
Arguments whose names end with ‘B’, .0, *.§’, and ‘M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with .G’ are assumed to be binary assembly language, which is produced by the
code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a . T’ suffix.

cc always defines the C preprocessor macros mips, host_mips and unix to the C macro
preprocessor and defines the C preprocessor macro LANGUAGE_C when a ‘.c’ file is being
compiled. cc will define the C preprocessor macro LANGUAGE_ASSEMBLY when a ‘.s’ file

is being compiled. It also defines SYSTYPE_SYSV by default but this changes if the =systype
name option is specified (see the description below).

The following options are interpreted by cc(1). See ld(1) for load-time options.

-C Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

-g0 Have the compiler produce no symbol tablé information for symbolic debuggmg
This is the default.

=gl Have the compiler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code.

=g or =g2
Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

-g3 Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

MIPS Computer Systems, Inc. February 9, 1989 Page 1

CC(1)

Page 2

-W

RISC/os Programmer’s Reference CC(1)

Suppress warning messages.

Do not permit any profiling. This is the default. If loading happens, the standard
runtime startup routine (ertl.o) is used, no profiling library is searched.

=pl or —=p

=00
=01

Set up for profiling by periodically sampling the value of the program counter. This
option only affects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprefl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.out that contains execution-
profiling data for use with the postprocessor prof(1).

Turn off all optimizations.

Turn on all optimizations that can be done quickly. This is the default.

=0 or =02

=03

Invoke the global ucode optimizer.

Do all optimizations, including global register allocation. This option must precede
all source file arguments. With this option, a ucode object file is created for each C
source file and left in a ‘.u’ file. The newly created ucode object files, the ucode
object files specified on the command line and the runtime startup routine and all the
runtime libraries are ucode linked. Optimization is done on the resulting ucode
linked file and then it is linked as normal producing an “a.out” file. No resulting ‘.0’
file is left from the ucode linked result as in previous releases. In fact —e can no
longer be specified with =03.

=feedback file

=cord

=)

Used with the =cord option to specify file to be used as a feedback file. This file is
produced by prof(1) with its —feedback option from an execution of the program
produced by pixie(1).

Run the procedure-rearranger, cord(1l), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program’s text. The output of
cord(1) is left in the file specified by the —o output option or ‘a.out’ by default. At
least one =feedback file must be specified.

Compile the specified source programs, and leave the ucode object file output in
corresponding files suffixed with ‘.u’.

=ko output

=K

Name the output file created by the ucode loader as output. This file is not removed.
If this file is compiled, the object file is left in a file whose name consists of outpur
with the suffix changed to a ‘.0’. If output has no suffix, a ‘.0’ suffix is appended to
output. .

Pass options that start with a =k to the ucode loader. This option is used to specify
ucode libraries (with =klx) and other ucode loader options.

Compile the specified source programs and leave the symbolic assembly language out-
put in corresponding files suffixed with ‘.s’.

Run only the C macro preprocessor and put the result for each source file (by suffix
convention, i.e. ‘.c’ and ‘.s’) in a corresponding ‘.i’ file. The ‘.’ file has no ‘#’ lines
in it. This sets the =cpp option.

Run only the C macro preprocessor on the files (regardless of any suffix or not), and
send the result to the standard output. This sets the —cpp option.

=0 output

February 9, 1989 MIPS Computer Systems, Inc.

CC(1) . RISC/os Programmer’s Reference CC(1)

Name the final output file output. If this option is used, the file ‘a.out’ is undis- (
turbed.

~Dname=def

=Dname
Define the name to the C macro preprocessor, as if by ‘#deﬁne If no definition is
given, the name is deﬁned as "1".

=Uname ‘
Remove any initial definition of name.

=Idir ‘#include’ files whose names do not begin with /> are always sought first in the direc-
tory of the file argument, then in directories specified in =I options, and finally in the
standard directory (/usr/include).

e | This option will cause ‘#include’ ﬁles never to be searched for in the standard direc-
tory (/usr/include).

=G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-V Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what (1) command.

—std Have the compiler produce warnings for things that are not standard in the language.

=cpp Run the C macro preprocessor on C and assembly source files before compiling.
This is the default for cc(l). _ (

~~Rocpp :
Do not run the C macro preprocessor on C and assembly source files before compil-
ing.

=~Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, =02, or =03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

Either object file target byte ordering can be produced by cc. The default target byte ordering
matches the machine where the compiler is running. The options =EB and =EL specify the
target byte ordering (big-endian and little-endian, respectively). The compiler also defines a C
preprocessor macro for the target byte ordering. These C preprocessor macros are MIPSEB
and MIPSEL for big-endian and little-endian byte ordering respectively.

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine.

=EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the compiler.

=EL Produce object files targeted for little-endian byte ordering. The C preprocessor
macro MIPSEL is defined by the compiler.

The following options are specific to cc: ' (.

—signed

MIPS Computer Systems, Inc. February 9, 1989 Page 3

CC(1) RISC/os Programmer’s Reference CC(1)

Cause all char declarations to be signed char declarations, the default is to treat them
as unsigned char declarations.

=volatile
Causes all variables to be treated as volatile.

—varargs
Prints warnings for lines that may require the varargs.h macros.

~float Cause the compiler to never promote expressions of type float to type double.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

—systype name _

Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are searched for. The new items are located in their usual paths but with
/name prepended to their paths. Also a preprocessor macro of the form
SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

The options described below primarily aid compiler development and are not generally used:

=Hc ~~ Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fjusmoca]. It selects the compiler pass in the
same way as the =t option. If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
T’ and is not removed.

=K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
“.B’ file for binary ucode, produced by the front end). These intermediate files are
never removed even when a pass encounters a fatal error. When ucode linking is per-
formed and the =K option is specified the base name of the files created after the
ucode link is ‘u.out’ by default. If —ke output is specified, the base name of the
object file is output without the suffix if it exists or suffixes are appended to output if it
has no suffix. :

=# Converts binary ucode files (*.B’) or optimized binary ucode files (‘.0’) to symbolic
ucode (a ‘.U’ file) using btou(1). If a symbolic ucode file is to be produced by con-
verting the binary ucode from the C compiler front end then the front end option
=~Xu is used instead of brou (1).

-Wc/c...],argl[,arg2...]
Pass the argument(s] argi to the compiler pass[es] c/c..]. The c’s are one of [pfjusme-
cablyz]. The c’s selects the compiler pass in the same way as the =t option.

The options =t[hpfjusmocablyzmt|, =hpath, and =Bstring select a name to use for a particu-
lar pass, startup routine, or standard library. These arguments are processed from left to right
so their order is significant. When the =B option is encountered, the selection of names
takes place using the last =—h and =t options. Therefore, the =B option is always required
when using —h or =t. Sets of these options can be used to select any combination of names.

The =EB or —EL options, the =p[01] options and the —systype option must precede all =B
options because they can affect the location of runtimes and what runtimes are used.
=t[hpfjusmocablyzrnt]
Select the names. The names selected are those designated by the characters follow-
ing the =t option according to the following table:

Page 4 February 9, 1989 MIPS Computer Systems, Inc.

CC(1)

RISC/os Programmer’s Reference - CcC (1)

Name Character

include h (see note below)
cpp P

ccom f

ujoin j

uld u

usplit s

umerge m

uopt o

ugen c

as0 a

asl b

Id 1

ftoc y

cord z

[m]crt[1n].o r

libprofi.a n
btou, utob t

If the character ‘h’ is in the —t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files. This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain the include files
for the string release of the compiler. The standard directory is still searched.

=hpath
Use path rather than the directory where the name is normally found.

=~Bstring
Append string to all names specified by the —t option. If no =t option has been pro-
cessed before the =B, the =t option is assumed to be “hpfjusmocablyzrnt”. This list
designates all names. If no =t argument has been processed before the =B then a
=Bstring is passed to the loader to use with its =Lx arguments.

Invoking the compiler with a name of the form ccstring has the same effect as using a =Bstring
option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. I the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for all include and library
names rather than the default /. This affects the standard directory for ‘#include’ files,
/ust/include, and the standard library, /usr/lib/libc.a. If this is set, the first directory that is
searched for libraries, using the =lx option, is COMP_TARGET_ROOT/ust/lib/cmplrs/cc. The
standard directories for libraries are then searched, see ld(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ . '

If the environment variable RLS_ID_OBJECT is set, the value is used as the name of an object
to link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See ris_id(1) for the tools to
create this information.

Other arguments are assumed to be either loader options or C-compatible object files, typi-
cally produced by an earlier cc run, or perhaps libraries of C-compatible routines. These files,
together with the results of any compilations specified, are loaded in the order given, produc-
ing an executable program with the default name a.out.

MIPS Computer Systems, Inc. February 9, 1989 Page 5

CC(1)

RISC/os Programmer’s Reference CC(1)

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/usr/lib/cpp C macro preprocessor
/usr/lib/ccom C front end
/usr/lib/ujoin binary ucode and.symbol table joiner
/usr/bin/uld ucode loader
/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure intergrator
/usr/lib/uopt optional global ucode optimizer
/usr/lib/ugen code generator
/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer

/usr/lib/crtl.o
/usr/lib/crtn.o
/usr/lib/mertl.o
/usr/lib/libc.a

/usr/lib/libprofl.a

runtime startup

runtime startup

startup for profiling
standard library, see intro(3)
level 1 profiling library

/usr/include standard directory for ‘#include’ files
/usr/bin/ld MIPS loader

/usr/lib/ftoc interface between prof(1) and cord(1)
/usr/lib/cord procedure-rearranger

/usr/bin/btou binary to symbolic ucode translator
/usr/bin/utob symbolic to binary ucode translator
mon.out file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is running on

have the same names but are located in different directories.

For big-endian runtimes on a

little-endian machine the directory is /usr/libeb and for little-endian runtimes on a big-endian
machine the directory is /usr/libel.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorzal

D. M. Ritchie, C Reference Manual

Languages Programmer’s Guide

monstartup(3), prof(1), 1d(1), dbx(1), what(1), cord(1), pixie(1), ftoc(1)
DIAGNOSTICS

The diagnostics produced by cc are intended to be self-explanatory. Occasional messages may
be produced by the assembler or loader.

NOTES
The standard library, /usr/lib/libc.a, is loaded by using the -lc loader option and not a full
path name. The wrong one could be loaded if there are files with the name libc.astring in the
directories specified with the =L loader option or in the default directories searched by the
loader.

The handling of include directories and libc.a is confusing.

Page 6 February 9, 1989 MIPS Computer Systems, Inc.

CD (1) RISC/os Programmer’s Reference CD(1)

NAME -
cd - change working directory
SYNOPSIS

cd [directory |

DESCRIPTION
If directory is not specified, the value of shell parameter $HOME is used as the new working
directory. If directory specifies a complete path starting with /, ., .., directory becomes the
new working directory. If neither case applies, ¢d tries to find the designated directory rela-
tive to one of the paths specified by the $SCDPATH shell variable. $CDPATH has the same syn-
tax as, and similar semantics to, the $PATH shell variable. Cd must have execute (search) per-
mission in directory .

Because a new process is created to execute each command, e¢d would be ineffective if it were
written as a normal command; therefore, it is recognized and is internal to the shell.

SEE ALSO
pwd(1), sh(1).
chdir(2) in the Programmer’s Reference Manual.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CDC (1-SysV) RISC/os Programmer’s Reference CDC (1-SysV)

NAME
cdc— change the delta commentary of an SCCS delta

SYNOPSIS
cdc —r SID [—=m [mrlist |] [-y [comment |] files

DESCRIPTION

cdc changes the deita commentary, for the SID (SCCS IDentification string) specified by the
—r keyletter, of each named SCCS file.

delta commentary is defined to be the Modification Request (MR) and comment information
normally specified via the delta(1) command (=m and =y keyletters).

If a directory is named, cde behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does not begin with
s.) and unreadable files are silently ignored. If a name of = is given, the standard input is
read (see WARNINGS) and each line of the standard input is taken to be the name of an SCCS
file to be processed.

Arguments to ede, which may appear in any order, consist of keyletter arguments and file
names.

All the described keyletter arguments apply independently to each named file:

=rSID Used to specify the SCCS IDentification (SID) string of a delta for which
the delta commentary is to be changed.
=—nwnrlist If the SCCS file has the v flag set [see admin(I)] then a list of MR

numbers to be added and/or deleted in the delta commentary of the SID
specified by the =—r keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same manner as that of
delta(1). In order to delete an MR, precede the MR number with the
character ! (see EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a “comment” line. A
list of all deleted MRs is placed in the comment section of the delta
commentary and preceded by a comment line stating that they were
deleted.

If =—m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see =y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be the
name of a program (or shell procedure) which validates the correctness
of the MR numbers. If a non-zero exit status is returned from the MR
number validation program, cdec terminates and ‘the delta commentary
remains unchanged.

—y[comment] Arbitrary text used to replace the comment(s) already existing for the
delta specified by the =—r keyletter. The previous comments are kept
and preceded by a comment line stating that they were changed. A null
comment has no effect.

If =y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CDC (1-SysV) RISC/os Programmer’s Reference _ CDC (1-SysV)

read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

Simply stated, the keyletter arguments are either (1) if you made the delta, you can change its

delta commentary; or (2) if you own the file and directory you can modify the delta commen-

tary. .
EXAMPLES

n cdc -rl.6 -m"bl78-12345 1b177-54321 bl79-00001" — ytrouble s.file

adds b178-12345- and bl79-00001 to the MR list, removes bl77-54321 from the MR list, and adds
the comment trouble to delta 1.6 of s.file.

n cdc —rl.6 s.file
MRs? bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS ‘ o
If SCCS file names are supplied to the ede command via the standard input (= on the com-
mand line), then the =m and =y keyletters must also be used.

FILES :
x-file ~ [see delra(1)]
z-file [see delra(1)]
SEE ALSO

admin(1), delta(1), help(1), get(1), prs(1).
sccsfile(4) in the Programmer’s Reference Manual.

DIAGNOSTICS
Use help(1) for explanations. '

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CFLOW (1-SysV) RISC/os Programmer’s Reference CFLOW (1-SysV)

NAME
cflow — generate C flowgraph

SYNOPSIS
cflow [=r | [=ix] [=i_] [=d num] [—g file] [—f file] file...

DESCRIPTION

The cflow command analyzes a collection of C, yacc, lex, assembler, and object files and
attempts to build a graph charting the external references. Files suffixed with .y, .1, and .c are
yacc, lex, and C-preprocessed as appropriate. The results of the preprocessed files, and files
suffixed with .i, are then run through the first pass of lint(1). Files suffixed with .s are assem-
bled. Assembled files, and files suffixed with .0, have information extracted from their sym-
bol tables. The results are collected and turned into a graph of external references which is
displayed upon the standard output.

Each line of output begins with a reference number, followed by a suitable number of tabs
indicating the level, then the name of the global symbol followed by a colon and its definition.
Normally only function names that do not begin with an underscore are listed (see the =i
options below). For information extracted from C source, the definition consists of an
abstract type declaration (e.g., char %), and, delimited by angle brackets, the name of the
source file and the line number where the definition was found. Definitions extracted from
object files indicate the file name and location counter under which the symbol appeared (e.g.,
text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain
only the reference number of the line where the definition may be found. For undefined refer-
ences, only < > is printed.

As an example, given the following in file.c:

int i;
main()

£Q;

g0s

£0;
}
£0)
{

i=h();
¥

the command
cflow —ix file.c
produces the output
1 main: int(), <file.c 4>
2 f: int(), <file.c 11>
3 h: <>
4 i: int, <file.c 1>
5 g <>

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CFLOW (1-SysV) ~ RISC/os Programmer’s Reference CFLOW (1-SysV)

When the nesting level becomes too deep, the output of cflow can be piped to pr(I), using the
=e option, to compress the tab expansion to something less than every eight spaces.

In addition to the =D, ~I, and —U options [which are interpreted just as they are by cc(1) and
cpp(1)], the following options are interpreted by cflow:

-r Reverse the “caller:callee” relationship producing an inverted listing showing the call-
ers of each function. The listing is also sorted in lexicographical order by callee.

—ix Include external and static data symbols. The default is to include only functions in
the flowgraph, -

-i_ Include names that begin with an underscore. The default is to exclude these func-

tions (and data if —ix is used).

—d num The num decimal integer indicates the depth at which the flowgraph is cut off. By
default this is a very large number. Attempts to set the cutoff depth to a nonpositive
integer will be ignored. '

—g file Use the named file as the temporary file instead of the default. This is useful when
temporary space is low.

—f file Use the named language source file as input, but do not preprocess the file.

DIAGNOSTICS

Complains about bad options. Complains ‘about' multiple definitions and only believes the
first. Other messages may come from the various programs used (e.g., the C-preprocessor).

SEE ALSO

BUGS

Page 2

as(1), cc(1), cpp(1), lex(1), lint(1), nm(1), pr(1), yacc(])..

Files produced by lex(1) and yacc(1) cause the reordering of line number declarations which
can confuse cflow. To get proper results, feed cflow the yacc or lex input.

February 5, 1989 MIPS Computer Systems, Inc.

CHMOD (1-SysV) RISC/os Programmer’s Reference CHMOD (1-SysV)

NAME

chmod - change mode

SYNOPSIS

chmod mode file ...

chmod mode directory ...

DESCRIPTION

The permissions of the named files or directories are changed according to mode, which may
be symbolic or absolute. Absolute changes to permissions are stated using octal numbers:

chmod nnn file(s)
where n is a number from 0 to 7. Symbolic changes are stated using mnemonic characters:
chmod a operator b file(s)

where a is one or more characters corresponding to user, group, or other; where operator is +,
—, and =, signifying assignment of permissions; and where b is one or more characters
corresponding to type of permission.

An absolute mode is given as an octal number constructed from the OR of the following
modes: :

“4000 set user ID on execution
20#0 - set group ID on execution if # is 7, 5, 3, or 1
enable mandatory locking if # is 6, 4, 2, or 0
1000 sticky bit is turned on ((see chmod(2))
0400 read by owner :
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond both to access classes and to the
individual permissions themselves. Permissions to a file may vary depending on your user
identification number (UID) or group identification number (GID). Permissions are described
in three sequences each having three characters:

User Group Other
WX WX IWX

This example (meaning that user, group, and others all have reading, writing, and execution
permission to a given file) demonstrates two categories for granting permissions: the access
class and the permissions themselves.

Thus, to change the mode of a file’s (or directory’s) permissions using chmod’s symbolic
method, use the following syntax for mode:

[who] operator [permission(s)], ...

A command line using the symbolic method would appear as follows:
chmod g+rw file

This command would make ﬁle‘readable and writable by the group.

The who part can be stated as one or more of the following letters:

u user’s permissions
g group’s permissions
o others permissions

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CHMOD (1-SysV) RISC/os Programmer’s Reference CHMOD (1-SysV')

The letter a (all) is equivalent to ugo and is the default if who is omitted.

Operator can be + to add permission to the file’s mode, — to take away permission, or = to
assign permission absolutely. (Unlike other symbolic operations, = has an absolute effect in
that it resets all other bits.) Omitting permission is only useful with = to take away all permis-
sions.

Permission is any compatible combination of the following letters:
r reading permission

writing permission

execution permission

user or group set-ID is turned on

sticky bit is turned on

mandatory locking will occur during access

— - w o og

Multiple symbolic modes separated by commas may be given, though no spaces may intervene
between these modes. Operations are performed in the order given. Multiple symbolic letters
following a single operator cause the corresponding operations to be performed simultane-
ously. The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file’s ability to have its reading or writing per-
missions locked while a program is accessing that file. It is not possible to permit group exe-
cution and enable a file to be locked on execution at the same time. In addition, it is not pos-
sible to turn on the set-group-ID and enable a file to be locked on execution at the same time.
The following examples, ’

chmod g+x,+1 le
chmod g+s,+ le

are, therefore, illegal usages and will elicit error messages.

Only the owner of a file or directory (or the super-user) may change a file’s mode. Only the
super-user may set the sticky bit. In order to turn on a file’s set-group-ID, your own group ID
must correspond to the file’s, and group execution must be set.

EXAMPLES
chmod a—x file

chmod 444 file

The first examples deny execution permission to all. The absolute (octal) example permits
only reading permissions.

chmod go+rw file
chmod 606 file
These examples make a file readable and writable by the group and others.
chmod +1 file
This causes a file to be locked during access.
chmod =rwx,g+s file
chmod 2777 file

These last two examples enable all to read, write, and execute the file; and they turn on the
set group-1D.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CHMOD (1-SysV) RISC/os Programmer’s Reference - CHMOD (1-SysV)

NOTES
In a Remote File Sharing environment, you may not have the permissions that the output of
the /s —/ command leads you to believe. For more information see the "Mapping Remote
Users" section of Chapter 10 of the System Administrator’s Guide.

SEE ALSO
Is(1).
chmod(2) in the Programmer’s Reference Manual.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CHOWN (1-SysV) RISC/os Programmer’s Reference CHOWN (1-SysV)

NAME
~ chown, chgrp - change owner or group
SYNOPSIS
chown owner file ...
chown owner directory ...
chgrp group file ...
chgrp group directory ...
DESCRIPTION
chown changes the owner of the files or directories to owner. The owner may be either a
decimal user ID or a login name found in the password file.
chgrp changes the group ID of the files or directories to group. The group may be either a
decimal group ID or a group name found in the group file.
If either command is invoked by other than the super-user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000 respectively, will be cleared.
Only the owner of a file (or the superFuser) may change the owner or group of that file.
FILES
letc/passwd
letc/group
NOTES
In a Remote File Sharing environment, you may not have the permissions that the output of
the Is —] command leads you to believe. For more information see the "Mapping Remote
Users" section of Chapter 10 of the System Administrator’s Guide.
SEE ALSOQ

chmod(1).
chown(2), group(4), passwd(4) in the Programmer’s Reference Manual.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CI(1-SysV) - RISC/os Programmer’s Reference CI(1-SysV)

NAME
ci - check in RCS revisions

SYNOPSIS
ci [options | file ...
DESCRIPTION
ci stores new revisions into RCS files. FEach file name ending in ‘,v’ is taken to be an RCS file,

all others are assumed to be working files containing new revisions.. Ci deposits the contents
of each working file into the corresponding RCS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section of
co(1)).
1) Both the RCS file and the working file are given. The RCS file name is of the form

path1/workfile,v and the working file name is of the form path2/workfile, where pathl/ and
path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is assumed to be in the current directory
and its name is derived from the name of the RCS file by removing parh1/ and the suffix ‘,v’.

3) Only the working file is givén. Then the name of the RCS file is derived from the name of
the working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then ci looks for the RCS file first in the
directory ./RCS and then in the current directory. :

For ci to work, the caller’s login must be on the access list, except if the access list is empty
or the caller is the superuser or the owner of the file. To append a new revision to an existing
branch, the tip revision on that branch must be locked by the caller. Otherwise, only a new
branch can be created. This restriction is not enforced for the owner of the file, unless locking
is set to strict (see rcs(1)). A lock held by someone else may be broken with the rcs com-
mand.

Normally, ci checks whether the revision to be deposited is different from the preceding one.
If it is not different, ci either aborts the deposit (if -q is given) or asks whether to abort (if -q
is omitted). A deposit can be forced with the -f option.

For each revision deposited, ci prompts for a log message. The log message should summar-
ize the change and must be terminated with a line containing a single ‘.’ or a control-D. If
several files are checked in, ci asks whether to reuse the previous log message. If the std.
input is not a terminal, ci suppresses the prompt and uses the same log message for all files.
See also -m.

The number of the deposited revision can be given by any of the options -r, -f, -k, -l, -u, or
-q (see -r).
If the RCS file does not exist, ci creates it and deposits the contents of the working file as the

initial revision (default number: 1.1). The access list is initialized to empty. Instead of the log
message, ci requests descriptive text (see -t below).

=r{rev] assigns the revision number rev to the checked-in revision, releases the
corresponding lock, and deletes the working file. This is also the
default.

If rev is omitted, c¢i derives the new revision number from the caller’s
last lock. If the caller has locked the tip revision of a branch, the new
revision is appended to that branch. The new revision number is
obtained by incrementing the tip revision number. If the caller locked a
non-tip revision, a new branch is started at that revision by incrementing
the highest branch number at that revision. The default initial branch

MIPS Computer Systems, Inc. February 5, 1989 Page 1

© CI(1-SysV)

—{[rev]

—k[rev]

~I[rev]

=—u[rev]

—qrev]
—mmsg
—nname
-Nname

==sstate

~t[txtfile]

DIAGNOSTICS

RISC/os Programmer’s Reference CI(1-SysV)

and level numbers are 1, If the caller holds no lock, but he is the owner
of the file and locking is not set to sirict, then the revision is appended
to the trunk,

If rev indicates a revision number, it must be higher than the latest one
on the branch to which rev belongs, or must start a new branch,

If rev indicates a branch instead of a revision, the mew revision is
appended to that branch. The level number is obtained by incrementing
the tip revision number of that branch. If rev indicates a non-existing

. branch, that branch is created with the initial revision numbered rev.1.

Exception: On the trunk, revisions can be appended to the end, but not
inserted.

forces a deposit; the new revision is deposited even it is not different
from the preceding one, '

searches the working file for keyword values to determine its revision
number, creation date, author, and state (see co(l)), and assigns these
values to the deposited revision, rather than computing them locally. A
revision number given by a command option overrides the number in
the working file, This option is useful for software distribution, A revi-
sion that is sent to several sites should be checked in with the -k option
at these sites to preserve its original number, date, author, and state.

works like -r, except it performs an additional co -l for the deposited
revision. Thus, the deposited revision is immediately checked out again
and locked. This is useful for saving a revision although one wants to
continue editing it after the checkin.

works like -1, except that the deposited revision is not locked. This is
useful if one wants to process (e.g., compile) the revision immediately
after checkin.

quiet mode; diagnostic output is not printed. A revision that is not
different from the preceding one is not deposited, unless -f is given.

uses the string msg as the log message for all revisions checked in.

assigns the symbolic name name to the number of the checked-in revi-
sion, Ci prints an error message if name is already assigned to another
number,

same as -n, except that it overrides a previous assignment of name.

sets the state of the checked-in revision to the identifier srate. The
default is Exp. : .

writes descriptive text into the RCS file (deletes the existing text). If
txtfile is omitted, ci prompts the user for text supplied from the std.
input, terminated with a line containing a single ‘.’ or control-D. Other-
wise, the descriptive text is copied from the file txtfile. During initializa-
tion, descriptive text is requested even if -t is not given. The prompt is
suppressed if std. input is not a terminal,

For each revision, ci prints the RCS file, the working file, and the number of both the depo-
sited and the preceding revision. The exit status always refers to the last file checked in, and

Page 2

February 5, 1989 MIPS Computer Systems, Inc.

CI(1-SysV RISC/os Programmer’s Reference CI(1-SysV
Yy

is 0 if the operation was successful, 1 otherwise.

FILE MODES
An RCS file created by ci inherits the read and execute permissions from the working file. If
the RCS file exists already, ci preserves its read and execute permissions. Ci always turns off
all write permissions of RCS files.

FILES
The caller of the command must have read/write permission for the directories containing the
RCS file and the working file, and read permission for the RCS file itself. A number of tem-
porary files are created. A semaphore file is created in the directory containing the RCS file.
Ci always creates a new RCS file and unlinks the old one. This strategy makes links to RCS
files useless.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 1.9 ; Release Date: 89/01/28 .
Copyright © 1982 by Walter F. Tichy.

SEE ALSO
co(1), ident(1), rcs(1), resdiff(1), resintro(1), resmerge(1), rlog(1), rcsfile(4), sccstorcs(IM).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in
Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982. :

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CMP (1-SysV) RISC/os Programmer’s Reference CMP (1-SysV)

NAME :
cmp — compare two files

SYNOPSIS
cmp [=1][=s] filel file2 [offset] [offset2]

DESCRIPTION
The two files are compared. (If filel is ‘~’, the standard input is used.) Under default options,
-cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other,
that fact is noted.
The offset arguments are positive integers that tell how many bytes to skip in each file before
starting the comparison.
Options:
-] ' Print the byte number (decimal) and the differing bytes (octal) for each

difference. :

-8 Print nothing for differing files; return codes only.

SEE ALSO
diff(1), comm(1)

' DIAlGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or
missing argument.
ERRORS

Many versions of emp require =1 and —s to be given in this order. While this version does
not require this, it is a good idea not to depend on this behavior.

Most BSD-based versions of emp can handle the oﬂsei arguments, but they are not docu-
mented. AT&T-based versions generally forbid this (though the code is actually there to han-
dle it).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CO (1-SysV) RISC/os Programmer’s Reference CO(1-SysV)

NAME
co — check out RCS revisions

SYNOPSIS
co [options | file ...

DESCRIPTION
co retrieves revisions from RCS files. Each file name ending in ‘,v’ is taken to be an RCS file.
All other files are assumed to be working files. co retrieves a revision from each RCS file and
stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the example section).

1) Both the RCS file and the working file are given. The RCS file name is of the form
pathl/workfile,v and the working file .name is of the form path2/workfile, where pathl/ and
path2/ are (possibly different or empty) paths and workfile is a file name.

2) Only the RCS file is given. Then the working file is created in the current directory and its
name is derived from the name of the RCS file by removing path1/ and the suffix ‘,v’.

3) Only the working file is given. Then the name of the RCS file is derived from the name of
the working file by removing path2/ and appending the suffix ‘,v’.

If the RCS file is omitted or specified without a path, then co looks for the RCS file first in the
directory ./RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a revision prevents
overlapping updates. A revision checked out for reading or processing (e.g., compiling) need
not be locked. A revision checked out for editing and later checkin must normally be locked.
Locking a revision currently locked by another user fails. (A lock may be broken with the
rcs(1) command.) co with locking requires the caller to be on the access list of the RCS file,
unless he is the owner of the file or the superuser, or the access list is empty. co without lock-
ing is not subject to access list restrictions.

A revision is selected by number, checkin date/time, author, or state. If none of these options
are specified, the latest revision on the trunk is retrieved. When the options are applied in
combination, the latest revision that satisfies all of them is retrieved. The options for
date/time, author, and state retrieve a revision on the selected branch. The selected branch is
either derived from the revision number (if given), or is the highest branch on the trunk. A
revision number may be attached to one of the options -l, -p, -q, -b, or -r.

A co command applied to an RCS file with no revisions creates a zero-length file. co always
performs keyword substitution (see below).

=1[rev] locks the checked out revision for the caller. If omitted, the checked
out revision is not locked. See option -r for handling of the revision
number rev. :

—b[rev] Causes all first branches found to be followed to the end. See option -r
for handling of the revision number rev.

—p[rev] prints the retrieved revision on the std. output rather than storing it in
the working file. This option is useful when co is part of a pipe.

—q[rev] quiet mode; diagnostics are not printed.

—ddate retrieves the latest revision on the selected branch whose checkin

date/time is less than or equal to date. The date and time may be given
in free format and are converted to local time. Examples of formats for
date:

22-April-1982, 17:20-CDT,

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CO(1-SysV) RISC/os Programmer’s Reference _ CO(1-SysV)

2:25 AM, Dec. 29, 1983,
Tue-PDT, 1981, 4pm Jul 21 (free format),
Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. co determines the
defaults in the order year, month, day, hour, minute, and second (most
to least significant). At least one of these fields must be provided. For
omitted fields that are of higher significance than the highest provided
field, the current values are assumed. For all other omitted fields, the
lowest possible values are assumed. For example, the date "20, 10:30"
defaults to 10:30:00 of the 20th of the current month and current year.
The date/time must be quoted if it contains spaces.

—r[rev] retrieves the latest revision whose number is less than or equal to rev. If
rev indicates a branch rather than a revision, the latest revision on that
branch is retrieved. Rev is composed of one or more numeric or sym-
bolic fields separated by ‘.’. The numeric equivalent of a symbolic field
is specified with the -n option of the commands ci and rcs.

=sstate retrieves the latest revision on the selected branch whose state is set to
' state.
~w[login] retrieves the latest revision on the selected branch which was checked in

by the user with login name login. If the argument logm is omitted, the
caller’s login is assumed.

—jjoinlist generates a new revision which is the join of the revisions on joinlist.
Joinlist is a comma-separated list of pairs of the form rev2:rev3, where
rev2 and rev3 are (symbolic or numeric) revision numbers. For the ini-
tial such pair, revl denotes the revision selected by the options -l,

-w. For all other pairs, revl denotes the revision generated by the previ-
ous pair. (Thus, the output of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with respect to rev2. This means that all
changes that transform rev2 into revl are applied to a copy of rev3. This is particularly useful
if revl and rev3 are the ends of two branches that have rev2 as a common ancestor. If revl <
rev2 < rev3 on the same branch, joining generates a new revision which is like rev3, but with
all changes that lead from revl to rev2 undone. If changes from rev2 to revl overlap with
changes from rev2 to rev3, co prints a warning and includes the overlapping sections, delimited
by the lines <<<<<<< revl, =======,, and >>>>>>> rev3,

For the initial pair, rev2 may be omitted. The default is the common ancestor. If any of the
arguments indicate branches, the latest revisions on those branches are assumed. If the option
-1 is present, the initial rev] is locked.

KEYWORD SUBSTITUTION

Page 2

Strings of the form $keyword$ and $keyword:...3 embedded in the text are replaced with
strings of the form fkeyword: value 3, where keyword and value are pairs listed below. Key-
words may be embedded in literal strings or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co replaces these strings
with strings of the form $keyword: value $. If a revision containing strings of the latter form is
checked back in, the value fields will be replaced during the next checkout. Thus, the key-
word values are automatically updated on checkout.

Keywords and their corresponding values:

$Author$ The login name of the user who checked in the revision.

February 5, 1989 MIPS Computer Systems, Inc.

CO(1-SysV) RISC/os Programmer’s Reference CO(1-SysV)

$Date$ The date and time the revision was checked in.

$Header$ A standard header containing the RCS file name, the revision number,
the date, the author, and the state.

$Locker$ The login name of the user who locked the revision (empty if not
locked).

Log The log message supplied during checkin, preceded by a header contain-

ing the RCS file name, the revision number, the author, and the date.
Existing log messages are NOT replaced. Instead, the new log message
is inserted after §Log:...§. This is useful for accumulating a complete
change log in a source file.

$Revision$ The revision number assigned to the revision.

$Source$ The full pathname of the RCS file.

$Sfate$ The state assigned to the revision with rcs -s or ci -s.
DIAGNOSTICS

The RCS file name, the working file name, and the revision number retrieved are written to
the diagnostic output. The exit status always refers to the last file checked out, and is 0 if the
operation was successful, 1 otherwise.

EXAMPLES -
Suppose the current directory contains a subdirectory ‘RCS’ with an RCS file ‘io.c,v’. Then all
of the following commands retrieve ‘the latest revision from ‘RCS/io.c,v’ and store it into

“o.c’.
co io.c; co RCS/io.c,v; co io.c,v;
co io.c RCS/io.c,v; co io.c io.c,v;
co RcCS/io.c,v io.c; co io.c,v io.c;
FILE MODES

The working file inherits the read and execute permissions from the RCS file. In addition, the
owner write permission is turned on, unless the file is checked out unlocked and locking is set
to strict (see rcs(1)).

If a file with the name of the working file exists already and has write permission, co aborts
the checkout if -q is given, or asks whether to abort if -q is not given. If the existing working
file is not writable, it is deleted before the checkout.

FILES
The caller of the command must have write permission in the working directory, read permis-
sion for the RCS file, and either read permission (for reading) or read/write permission (for
locking) in the directory which contains the RCS file.

A number of temporary files are created. A semaphore file is created in the directory of the
RCS file to prevent simultaneous update.

IDENTIFICATION :
Author: Walter F. Tichy, Purdue University, West Lafayette, IN, 47907.
Revision Number: 1.8 ; Release Date: 89/01/28 .
Copyright © 1982 by Walter F. Tichy.
SEE ALSO
ci(1), ident(1), rcs(1), rcsdiff(1), rcsintro(1), rcsmerge(1), rlog(1), rcsfile(4), scestorcs(IM).
Walter F. Tichy, "Design, Implementation, and Evaluation of a Revision Control System," in

Proceedings of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept.
1982.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

“CO(1-SysV) RISC/os Programmer’s Reference CO(1-SysV)

LIMITATIONS (
The option -d gets confused in some circumstances, and accepts no date before 1970. There
is no way to suppress the expansion of keywords, except by writing them differently. In nroff
and troff, this is done by embedding the null-character \&’ into the keyword.

ERRORS
The option -j does not work for files that contain lines with a single ‘.’

Page 4 February 5, 1989 MIPS Computer Systems, Inc,

COBOL (1) RISC/os Programmer’s Reference COBOL(1)

NAME

cobol — MIPS COBOL compiler
SYNOPSIS

cobol [option] ... file ...
DESCRIPTION

Cobol, the MIPS ucode cobol compiler, produces files in the following formats: MIPS object
code in MIPS extended coff format (the normal result), binary or symbolic ucode, ucode
object files and binary or symbolic assembly language. Cobol accepts several types of argu-
ments:

Arguments whose names end with ‘.cob’ are assumed to be Cobol source programs. They are
compiled, and each object program is left in the file whose name consists of the last com-
ponent of the source with ‘.0’ substituted for ‘.cob’. The ‘.0’ file is only deleted when a single
source program is compiled and loaded all at once.

When this command results in a call to the linker the first object the linker encounters on the
command line will be where execution begins when the final load module is executed.

Arguments whose names end with ‘.s’ are assumed to be symbolic assembly language source
programs. They are assembled, producing a ‘.0’ file.

The suffixes described below primarily aid compiler development and are not generally used.
Arguments that end with ‘.il’ are assumed to be a file containing LPI intermediate code opera-
tors and its corresponding file containing the LPI intermediate code symbols is assumed to be
in a file with a ‘.st’ suffix.

Arguments whose names end with “.B’, .0, .§’, and ‘.M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with ‘.G’ are assumed to be binary assembly language, which is produced by the
code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a *.T’ suffix.

The following options are interpreted by cobol(1). See ld(1) for load-time options.

-c Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

-g0 Have the compiler produce no symbol table information for symbolic debugging.
This is the default.

-g1 Have the compiler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code.

-g Oor —g2 .
Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

-g3 Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

-W Suppress waming messages (level 1 (INFORMATIONAL) error messages).

-p0 Do not permit any profiling. This is the default. If loading happens, the standard
runtime startup routine (crtl.o) is used, no profiling library is searched.

MIPS Computer Systems, Inc. February 7, 1989 Page 1

COBOL (1) RISC/os Programmer’s Reference COBOL(1)

Page 2

-=pl or —p
Set up for profiling by periodically sampling the value of the program counter. This
option only affects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprofl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.out that contains execution-
profiling data for use with the postprocessor prof(1).

=00 Turn off all optimizations.

=01 Turn on all optimizations that can be done quickly. This is the default.

=0 or =02
Invoke the global ucode optimizer.

—feedback file
Used with the —cord option to specify file to be used as a feedback file. This file is
produced by prof(1) with its =—feedback option from an execution of the program
produced by pixie(1).

—cord Run the procedure-rearranger, cord(1l), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program ’s text. The output of
cord(1) is left in the file specified by the —o output option or ‘a.out’ by default. At
least one —feedback file must be specified.

-j Compile the specxﬁed source programs, and leave the ucode object file output in
corresponding files suffixed with ‘.u’.

=ko output
Name the output file created by the ucode loader as output. Thls file is not removed.
If this file is compiled, the object file is left in a file whose name consists of output
with the suffix changed to a ‘.0’. X output has no suffix, a ‘.0’ suffix is appended to

output.

-k Pass options that start with a =k to the ucode loader. This option is used to specify
ucode libraries (with =klx) and other ucode loader options.

-S Compile the specified source programs and leave the symbolic assembly language out-
put in corresponding files suffixed with ‘.s’.

-0 output
Name the final output file output. If this option is used, the file ‘a.out’ is undis-
turbed.

-G num

Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-v Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what (1) command.

=Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, =02, or —03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

February 7, 1989 MIPS Computer Systems, Inc.

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

Either object file target byte ordering can be produced by cobol. The default target byte ord-
ering matches the machine where the compiler is running. The options —EB and —EL specify
the target byte ordering (big-endian and little-endian, respectively).

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine.

—EB Produce object files targeted for big-endian byte ordering.
—EL Produce object files targeted for little-endian byte ordering.

The following options are specific to cobol :

-defext

Allows the use of external data. This is required in programs where external data are
defined.

—dline Compiles all source lines having a ‘D’ in the indicator area (column 7). If this option
is not specified, all source lines with a ‘D’ in the indicator area are treated as comment
lines.

"~ =fn Flags all items in the source program that exceed the Federal Information Processing
' Standard (FIPS) Level specified by n, where n stands for one of the following:

1 FIPS Low Level
2 FIPS Low-Intermediate Level
3 FIPS High-Intermediate Level
4 FIPS High Level

—fsc74 Turns off the default ANSI-85 status codes and generates ANSI-74 status codes.
=1 [listing]
Produces a compiler listing file with a suffix ‘.I’. If listing is specified, the listing file is

named by it. This option is only recognized by the cobol front-end; it must be used in
conjunction with the -Wf option.

—supp_cob85
Removes the additional ANSI-85 reserved words from the compiler’s reserved word
table, freeing them for use as user names.

—supp_cod
Removes the supplemental CODASYL reserved words from the compiler’s reserved
word table, freeing them for use as user names.

=comp_trunc
Truncates values in COMPUTATIONAL data items.

—ansi Turns off the extensions to the ACCEPT and DISPLAY statements.

=~]pilock
Specifies LPI record locking.

=nolock
Suppresses record locking.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

MIPS Computer Systems, Inc. February 7, 1989 Page 3

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

Page 4

—-systype name
Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of clanging
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are searched for. The new items are located in their usual paths but with
/name prepended to their paths.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fkjusmoca]. It selects the compiler pass in the
same way as the =t option If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
T’ and is not removed.

=K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
B’ file for binary ucode, produced by the front end). These intermediate files are
never removed, even when a pass encounters a fatal error. When ucode linking is per-
formed and the =K option is specified the base name of the files created after the
ucode link is ‘u.out’ by default. If =ko outpur is specified, the base name of the
object file is ousput without the suffix if it exists or suffixes are appended to ouspur if it
has ne suffix. :

=# Converts binary ucode files (‘.B’) or optlmlzed binary ucode files (*.0’) to symbolic
ucode (a ‘.U’ file) using brou(1).

=Wc/c...],argl[,arg2...]
Pass the argument([s] argi to the compiler passfes] c/c..]. The c’s are one of [fkjusmo-
cablyz]. The c’s selects the compiler pass in the same way as the =t option.

The options =t[fkjusmocablyzrCSO1EMnt], —hpath, and =Bstring select a name to use for a
particular pass, startup routine, or standard library. These arguments are processed from left
to right so their order is significant. When the =B option is encountered, the selection of
names takes place using the last =h and =t options. Therefore, the =B option is always
required when using =h or =t. Sets of these options can be used to select any combination of
names.

The =EB or =EL optiohs, the =p[01] options and the =systype option must precede all =B
options because they can affect the location of runtimes and what runtimes are used.

={[fkjusmocablyzrCSO1EMnt]
Select the names. The names selected are those designated by the characters follow-
ing the =t option according to the following table:
Name Character
cobfe f
ulpi k
ujoin j
uld u
usplit]
umerge m
uopt o
ugen c
asO a
asl b
1d 1
ftoc y

February 7, 1989 MIPS Computer Systems, Inc.

COBOL (1) RISC/os Programmer’s Reference | COBOL (1)

FILES

cord z
[m]crt[In].o r
libcob.a C
libisam.a S -
libsort.a O
libpll.a 1
libexc.a E
libm.a M
libprofli.a n
btou, utob t

=hpath
Use path rather than the directory where the name is normally found.

=Bsiring
Append string to all names specified by the =t option. If no =t option has been pro-
cessed before the —B, the —t option is assumed to be “fkjusmocablyzrCSOIEMnt”.
This list designates all names. If no —t argument has been processed before the =B
then a —Bstring is passed to the loader to use with its =Lx arguments.

Invoking the compiler with a name of the form cobolstring has the same effect as using a
—Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable-
COMP_TARGET_ROOT is set, the value is used as the root directory for library names rather
than the default /. This affects the standard library, /usr/lib/libc.a. If this is set, the first
directory that is searched for libraries, wusing the =Ilx option, is
COMP_TARGET_ROOT/ust/lib/cmplrs/cc. The standard directories for libraries are then
searched, see ld(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBIJECT is set, the value is used as the name of an object
to link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See ris_id(1) for the tools to
create this information.

Other arguments are assumed to be either loader options or cobol-compatible object files, typ-
ically produced by an earlier cobol run, or perhaps libraries of cobol-compatible routines.
These files, together with the results of any compilations specified, are loaded in the order
given, producing an executable program with the default name a.out.

file.cob input file

file.o object file

a.out loaded output

/tmp/ctm? temporary

/usr/lib/cobfe Cobol front end

/usr/lib/ulpi LPI intermediate code to ucode translator
/usr/lib/ujoin binary ucode and symbol table joiner
/usr/bin/uld ucode loader

/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure integrator

/usr/lib/uopt optional global ucode optimizer
/usr/lib/ugen code generator

MIPS Computer Systems, Inc. February 7, 1989 Page 5

COBOL (1) RISC/os Programmer’s Reference : COBOL (1)

/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer
/usr/lib/crtl.o runtime startup

/usr/lib/crtn.o runtime startup

/usr/lib/mertl.o startup for profiling

/usr/lib/libc.a standard library, see intro(3)

/usr/lib/libtermcap.a terminal capabilities library, see rermcap (3X)
/usr/lib/libprofl.a - level 1 profiling library

/usr/lib/libcob.a Cobol library

/usr/lib/libsort.a Sort library

/usr/lib/libisam.a Indexed sequential access method library
/usr/lib/libpll.a PL/I library

/usr/lib/libexc.a exception library

/usr/lib/libm.a math library

/usr/bin/1d MIPS loader

/usr/lib/ftoc interface between prof(1) and cord(1)
/usr/lib/cord procedure-rearranger -

/usr/bin/btou binary to symbolic ucode translator
/usr/bin/utob symbolic to binary ucode translator
mon.out file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is running on -

have the same names but are located in different directories. For big-endian runtimes on a
little-endian machine the directory is /usr/libeb and for little-endian runtimes on a big-endian
machine the directory is /usr/libel. '

SEE ALSO

monstartup(3), prof(1), 1d(1), dbx(1), what(1), cord(1), pixie(1), ftoc(1)

DIAGNOSTICS

NOTES

Page 6

The diagnostics produced by cobol are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

The standard library, /usr/lib/libc.a, and - the terminal capabilities library,
/usr/lib/libtermcap.a, are loaded by using the -lc and -ltermcap loader options and not full
path names. The wrong ones could be loaded if there are files with the name libc.astring or
libtermcap.astring in the directories specified with the =L loader option or in the default
directories searched by the loader.

The handling of libc.a is confusing.

February 7, 1989 MIPS Computer Systems, Inc.

COL (1-SysV) RISC/os Programmer’s Reference ' COL (1-SysV)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [=b] [~f] [=x] [-p]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It performs the line
overlays implied by reverse line feeds (ASCII code ESC-7), and by forward and reverse half-
line-feeds (ESC-9 and ESC-8). col is particularly useful for filtering multicolumn output made
with the .rt command of nroff and output resulting from use of the tbl(1) preprocessor.

If the =b option is given, col assumes that the output device in use is not capable of back-
spacing. In this case, if two or more characters are to appear in the same place, only the last
one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full-line boundary.
This treatment can be suppressed by the =f (fine) option; in this case, the output from col
may contain forward half-line-feeds (ESC-9), but will still never contain either kind of reverse
line motion.

Unless the =x option is given, col will convert white space to tabs on output wherever possi-
ble to shorten printing time. '

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start and end text
in an alternate character set. The character set to which each input character belongs is
remembered, and on output SI and SO characters are generated as appropriate to ensure that
each character is printed in the correct character set. '

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI,
SO, VT (\013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full
reverse line-feed, included for compatibility with some earlier programs of this type. All other
non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are found in its input; the
—p option may be used to cause col to output these sequences as regular characters, subject to
overprinting from reverse line motions. The use of this option is highly discouraged unless the
user is fully aware of the textual position of the escape.sequences.

SEE ALSO
nroff(1), tbl(1) in the DOCUMENTER’s WORKBENCH Software Release 2.0 Technical Discussion
and Reference Manual .

NOTES
The input format accepted by col matches the output produced by nroff with either the —=T37
or =Tlp options. Use =T37 (and the —f option of col) if the ultimate disposition of the out-
put of col will be a device that can interpret half-line motions, and =Tlp otherwise.

ERRORS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the document are
ignored. As a result, the first line must not have any superscripts.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

COMB (1-SysV) RISC/os Programmer’s Reference COMB (1-SysV)

NAME

comb — combine SCCS deltas

SYNOPSIS

comb [-o0] [-s] [-p sid] [-c list] files

DESCRIPTION

FILES

comb generates a shell procedure [see sk(1)] which, when run, will reconstruct the given SCCS
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments
mdy be specified in any order, but all keyletter arguments apply to all named SCCS files. If a
directory is named, comb behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path name does not begin with
s.) and unreadable files are silently ignored. If a name of =— is given, the standard input is

-read; each line of the input is taken to be the name of an SCCS file to be processed; non-

SCCSs files and unreadable files are silently ignored. The generated shell procedure is written
on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed, but the effects of any keyletter argument apply independently to each named
file.

-0 For each ger —e generated, this argument causes the reconstructed file to be accessed
at the release of the delta to be created, otherwise the reconstructed file would be
accessed at the most recent ancestor. Use of the —o keyletter may decrease the size
of the reconstructed SCCS file. It may also alter the shape of the delta tree of the ori-
ginal file.

-8 This argument causes comb to generate a shell procedure which, when run, will pro-
duce a report giving, for each file: the file name, size (in blocks) after combining, ori-
ginal size (also in blocks), and percentage change computed by:

100 * (original —~ combined) / original
It is recommended that before any SCCS files are actually combined, one should use
this option to determine exactly how much space is saved by the combining process.

-pSID The SCCS IDentification string (SID) of the oldest delta to be preserved. All older
deltas are discarded in the reconstructed file.

-clist A list (see get(1) for the syntax of a lisf) of deltas to be preserved. All other deltas are
discarded.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sh(1).
sccsfile(4) in the Programmer’s Reference Manual.

DIAGNOSTICS

Use kelp(1) for explanations.

ERRORS :

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is
possible for the reconstructed file to actually be larger than the original.

MIPS Computer Systems, Inc. February 14, 1989 , Page 1

COMM (1-SysV) RISC/os Programmer’s Reference COMM (1-SysV)

NAME
comm - select or reject lines common to two sorted files
SYNOPSIS :
comm [— [123] | filel file2
DESCRIPTION
comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(1)),

and produces a three-column output: lines only in filel; lines only in file2; and lines in both
files. The file name — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm =12 prints only
the lines common to the two files; comm =23 prints only lines in the first file but not in the
second; comm =123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

MIPS Computer Systems, Inc. February 5, 1989 - Page 1

CORD"(1) RISC/os Programmer’s Reference CORD (1)

NAME
cord — rearranges procedures in an executable file to facilitate better cache mapping.

SYNOPSIS
cord [-v] [-o outfile] [-f] [-c cachesize] [-p maxphases] obj_file reorder_file

DESCRIPTION v

The cord command rearranges procedures in an exectable object file to maximize efficiency in
a machine’s cache. By rearranging the procedures properly, we end up reducing the instruc-
tion cache miss rates. Cord does not attempt to determine the correct ordering, but is given a
reorder file containing the desired procedure order. The reorder file is generated by the froc
program, which in turn generates a reorder file from a set of profile feedback files (see
prof(1)). ’

Processed lines in the reorder file are called procedure lines. Each procedure line must be on
a separate source line. Each procedure line must contain the source name of the file, fol-
lowed by a blank followed by a qualified procedure name. Nested procedures must be

qualified x.y where x is the outer procedure. A newline or blank can follow the procedure
name:

foo.c bar (everything else following is ignored)

Lines beginning with # are comments, lines beginning with $ are considered cord directive
lines. The only directive currently understood is $phase. This directive will consider the rest
of the file (until the end of file or next $phase) as a new phase of the program and will order
the procedures accordingly. A procedure may appear in more than one phase, resulting in
more than one copy of it in the final binary. First, cord will try to relocate procedure refer-
ences to a copy of the procedure belonging to the requesting phase; otherwise it will relocate
the references to a random copy. ‘

We suggest you use the -cord option to a compiler driver like cc(I) rather than execute cord
directly. Cord options can be specified with -Wz,cordarg0,cordargl,.... If you have to run
cord by hand, you may want to run it once with the driver using the -v flag on a simple pro-
gram. This will enable you to see the exact passes and the arguments involved in using cord.

Obj is an executable object file with its relocation information intact. This can be achieved by
passing the -r -z -d options to the linker, ld(I). The linker option -r maintains relocation
information in the object file, but will not make it a ZMAGIC file (hence -z). It also will not
allocate common variables (hence -d) as it would without the option.

WARNING: Since cord works from an input list of procedures generated from profile output,
the resulting binary is data dependent. In other words, it may only preform well on the same
input data that generated the profile information, and may preform worse than the original
binary on other data. Furthermore, if the hot areas in the cache don’t fit well into one
cachepage, performance can degrade.

The cord command accepts these options:

-y Print verbose information. This includes listing those procedures considered
part of other procedures and cannot be rearranged (these are basically assem-
bler procedures that may contain relative branches to other procedures rather
than relocatable ones). The listing also lists those procedures in the flipped
area (if any) and a mapping of old location to new,

-f Flip the first cachepage size procedures. The assumption when cord was writ-
ten was that procedures would be reordered by procedure density
(cycles/byte). This option ensures that the densest part of each page following
the first cachepage would conflict with the least-dense part of the first

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CORD (1) RISC/os Programmer’s Reference CORD (1)

cachepage.

-¢ cachesize
Specify the cachesize (in bytes) of the machine on which you want to execute.
This only affects the -f option. If not specified, 65536 is used.

-0 outputfile
Specifies the output file. If not specified, a.out is used.

-p phasemax
specifies the maximum number phases allowed. The default is 20.

SEE ALSO
prof(1), ftoc(1), cc(1), ld(1), MIPS Languages Programmer Guide

Page 2 February 6, 1989 MIPS Computer Systems, Inc.

CORD2(1) RISC/os Programmer’s Reference CORD2(1)

NAME
cord2 - rearranges basic blocks in an executable file to facilitate better cache mapping.

SYNOPSIS

cord2 [-v] [-o outfile] [-c¢ cachewords] [-d] [-b bridge_limit] [-n] [-A addersﬁle] [[-C countsfile]
«.] 0bf

DESCRIPTION
The cord2 command extracts basic blocks from a program and deposits them in a new area in
the text, making jumps from and to that area as necessary. By separating the basic blocks,
you can reduce instruction cache miss rates. Cord2 takes the output of a pixie profiling run as
input (see pixie(1)).

Obj is an executable object file. Cord2 only requires one addersfile; it will create the filename
by appending .Bbaddrs to the obj filename if none is specified with -A. Many counts files can
be specified from many runs with multiple -C arguments; if none is specified cord2 will create
the counts filename by appending . Counts to the obj name. Multiple counts files will be added
together into an internal counts array represented with C double-type elements. The counts.
array elements contain the density of a block or cycles/byte. If you specify -n, then the
counts are normalized so that each counts array entry is cycles/totalcycles. When one counts is
specified, the default is to favor small blocks; -n negates that. When many counts files are
specified, -n also negates favoring one counts file. This is because its totalcycles may exceed
the totalcycles of another counts file.

Cord2 determines which basic blocks to insert by sorting the counts array and collecting the
blocks with the highest counts that will fit into the new area. Cord2 may skip over huge blocks
that won’t fit at the end of the new area.

Once the blocks are determined, they are inserted into the new area, and their original loca-
tion is modified to jump to the new area. At the end of each block in the new area, a jump is
added back to the original block’s subsequent or fall-through location, and the branch/jump
target (if necessary). Both entering and exiting the new area is optimized to take advantage of
other blocks also in the new area, and jump delay slots.

Many times there may be one or more fall-through blocks of a block in the new area which
are 1) small, 2) hardly ever used, and 3) not in the new area. If the block following these fall-
through blocks is in the new area, the fall-through blocks are called bridge blocks. It may be
more costly to generate jumps to and from bridge blocks rather than to just copy them.
Cord2 allows you to specify that bridge blocks be added to the new area if they total less than
the bridge_limit instructions between two new-area blocks. You may specify the bridge_limit
with -b; the default is zero. Bridge blocks may bump blocks out of the new area that might
normally fit into it.

WARNING: Since cord2 works from profile output, the resulting binary is data dependent. In
other words, it may perform well only on the same input data that generated the profile infor-
mation, and may perform worse than the original binary on other data. Furthermore, if the
hot areas in the cache don’t fit well into one cachepage, performance can degrade.

The cord2 command also accepts these options:

-d Fill the delay slots with nops only when adding jumps to and from the new
area.
-y Print verbose information. This includes statistics about the cord2 process.

-v -v Print all of the -v information but include detailed dissamblies of the code
moved, changed and generated by cord2.

-c cachewords
Specify the number of words in the cache of the machine on which you want

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CORD2(1) RISC/os Programmer’s Reference CORD2 (1)

to execute. This will actually be the size of the new area. Cachesize may be a
misnomer, as you can specify a size other than your machine’s cache size;
however, it is probably the correct number.

-0 outputfile
Specifies the output file. If not specifled, a.out.cord?2 is used.

BUGS

‘ Cord2 adds the new area to the end of text so any program using the etext (see Ild(I)) symbol
may not work.

SEE ALSO
pixie(1), cord(1), MIPS Languages Programmer Guide

Page 2 February 6, 1989 MIPS Computer Systems, Inc.

CP (1-SysV)) RISC/os Programmer’s Reference _ CP(1-SysV)

NAME s
cp, In, mv - copy, link or move files

SYNOPSIS
cp [—p] filel file2
cp [=p]filel [file2...] directory
In [—sf] filel file2
In [—sf] filel [file2] directory
mv [—fp] filel file2 ’
mv [—fp] filel [file2] directory
mv [—fp] directoryl directory2
DESCRIPTION '
The source file(s) is(are) copied (linked, moved) to the target file or
directory. Under no circumstance can the source file and the corresponding target be the
same (take care when using sh(I) metacharacters). If the target is a directory, then one or
more files are copied (linked, moved) to that directory. Otherwise, its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the mode (see
chmod(2)), ask for a response, and read the standard input for one line; if the line begins with
y, the mv or In occurs, if permissable; if not, the command exits. When the —f option is used
or if the standard input is not a terminal, no questions are asked and the mv or In is done. In
—s creates symbolic links. '

Only mv will allow the source to be a dlrectory, in which case the dxrectory rename will occur
only if the two directories have the same parent. If the source file is a file and the target is a
link to another file with links, the other links remain and the target becomes a new file.

When using cp, if the target is not a file, a new file is created which has the same mode as the
source file except that the sticky bit is not set unless you are super-user; the owner and group
of the target are those of the user. If the target is a file, copying a file into the target does not
change its mode, owner, nor group. The last modification time of the target (and last access
time, if the target did not exist) and the last access time of the source file are set to the time
the copy was made. If the target is a link to a file, all links remain and the file is changed.

SEE ALSO
chmod(1), cpio(1), rm(1).

WARNINGS . : :
In will not link across file systems. This restriction is necessary because file systems can be
added and removed. :

ERRORS

If the source file and the target lie on different file systams, mv must copy the file and delete
the original. In this case any linking relatlonsmp with other files is lost.

MIPS Computer Systems, Inc. Februyary 5, 1989 Page 1

CPIO (1-SysV) RISC/os Programmer’s Reference CPIO (1-SysV
Yy . Yy

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio —o[acyBHL] < name-list > collection
cpio —o[acyBHL] =Ocollection < name-list
cpio —i[bedmrstuvfB6HLS] [pattern ... | < collection
cpio —i[bcdmrstuvfB6HLS] —Icollection | pattern ...]
cpio —pladlmruvHL] directory < name-list

DESCRIPTION
cpio —o (copy out) reads the standard input to obtain a list of path names and copies those
files onto the standard output together with path name and status information. Output is pad-
ded to a 512-byte boundary.

cpio —i (copy in) extracts files from the standard input, which is assumed to be the product of
a previous cpio —o. Only files with names that match patterns are selected. patterns are regu-
lar expressions given in the name-generating notation of sh(I). In patterns, meta-characters ?,
¥, and [...] match the slash / character. Multiple parterns may be specified and if no patterns
are specified, the default for patterns is * (i.e., select all files). FEach pattern should be sur-
rounded by double quotes. The extracted files are conditionally created and copied into the
current directory tree based upon the options described below. The permissions of the files
will be those of the previous cpio —o. The owner and group of the files will be that of the
current user unless the user is super-user, which causes cpio to retain the owner and group of
the files of the previous cpio —o. NOTE: If cpio -i tries to create a file that already exists and
the existing file is the same age or newer, cpio will output a warning message and not replace
the file. (The -u option can be used to unconditionally overwrite the existing file.)

cpio —p (pass) reads the standard input to obtain a list of path names of files that are condi-
tionally created and copied into the destination directory tree based upon the options
described below.

The meanings of the available options are

-a Reset access times of input files after they have been copied. Access times are not
reset for linked files when cpio -pla is specified.

-B Input/output is to be blocked 5,120 bytes to the record (does not apply to the pass
option; meaningful only with data directed to or from a character special device, e.g.

/dev/rmt/Om).

-=d Directories are to be created as needed.

-c Write header information in ASCII character form for portability. Always use this
option when origin and destination machines are different types.

-r Interactively rename files. If the user types a null line, the file is skipped. (Not avail-
able with cpio -p.)

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a newer file with the
same name). '

-v Verbose: causes a list of file names to be printed. When used with the t option, the

table of contents looks like the output of an Is =l command (see Is(1)).

-1 Whenever possible, link files rather than copying them. Usable only with the =—p
option.

—m Retain previous file modification time. This option is ineffective on directories that
are being copied.

-f Copy in all files except those in patterns.

-s swap bytes within each half word. Use only with the —i option.

-S swap halfwords within each word. Use only with the =i option.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CPIO (1-SysV) _ RISC/os Programmer’s Reference CPIO (1-SysV)

-b Reverses the order of the bytes within each word. Use only with the =i option.

-6 Process an old (i.e. UNIX System sixth Edition format) file. Only useful with -i (copy
in). ‘

=H Do not follow symbolic links (default). Symbolic link records are saved in the archive
to be extracted on the other side. This is not portable to all system types.

=L Follow symbolic links, placing in the archive records for the files they point to.

=Ocollection E _ :
Specify the name of the output device. By specifying the device this way instead of
using redirection, the prompts for change of media use this as a default,

=Icollection ‘
Specify the name of the input device. By specifying the device this way instead of
using redirection, the prompts for change of media use this as a default.

NOTE: cpio assumes four-byte words.

If cpio reaches end of medium (end of a diskette for example), when writing to (-0) or reading
from (-i) a character special device, cpio will print the message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device name
(/dev/rdiskette for example) and carriage return, unless the —I or —O option was used, in
which case you will be prompted with a default name, which may be changed by typing a new
one, accepted by typing return, or you may abort the job by typing a ’q’. You may want to
continue by directing cpio to use a different device. For example, if you have two floppy
drives you may want to switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio —o, it groups the files so they can be
directed (>) to a single file (../newfile). Instead of Is, you could use find, echo, cat, etc. to
pipe a list of names to cpio. You could direct the output to a device instead of a file.

Is | cpio =0 >../newfile

cpio —i uses the output file of cpio —o (directed through a pipe with cat in the example), takes
out those files that match the patterns (memo/al, memo/bx), creates directories below the
current directory as needed (-d option), and places the files in the appropriate directories. If
no patterns were given, all files from "newfile" would be placed in the directory.

cat newfile | cpio —id "memo/al" "memo/bx"

cpio —p takes the file names piped to it and copies or links (-1 option) those files to another
directory on your machine (newdir in the example). The -d option says to create directories as
needed. The -m option says retain the modification time. (It is important to use the -depth
option of find to generate path names for cpio. This eliminates problems cpio could have try-
ing to create files under read-only directories.)

find . —depth —print | cpio —pdlmv newdir

SEE ALSO

NOTES

Page 2

ar(1), find(1), Is(1), tar(1).
cpio(4) in the Programmer’s Reference Manual.

1) Path names are restricted to 256 characters.
2) Only the super-user can copy special files.
3) Blocks are reported in 512-byte quantities.

February 5, 1989 MIPS Computer Systems, Inc.

CPIO (1-SysV) RISC/os Programmer’s Reference CPIO (1-SysV)

4) The device/inode pair appearing in the headers is created by cpio as one 32-bit number, and
has no correlation to the real device/inode numbers of the file. The cpio number begins with
the number 3 and increments sequentually for each file processed by cpio.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CPP(1) RISC/os Programmer’s Reference , CPP (1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/usr/lib/cpp [option ...] [ifile [ofile]]
DESCRIPTION

Cpp is the C language preprocessor whlch is invoked as the first pass of any C compilation
using the cc(1) command. Thus the output of cpp is designed to be in a form acceptable as
input to the next pass of the C compiler. As the C language evolves, cpp and the rest of the
C compilation package will be modified to follow these changes. Therefore, the use of cpp
other than in this framework is not suggested. The preferred way to invoke cpp is through the
cc(1) command since the functionality of cpp may someday be moved elsewhere. See m4(1)
for a general macro processor.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively the input
and output for the preprocessor. They default to standard input and standard output if not
supplied. ‘

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by the next
pass of the C compiler.

=C By default, cpp strips C-style comments. If the —C option is speciﬁed, all comments
(except those found on cpp directive lines) are passed along.

=Uname
Remove any initial definition of name, where name is a reserved symbol that is
predefined by the particular preprocessor. The current list of these possibly reserved
symbols includes: None of these are defined by c¢pp. Instead, the compiler drivers,
cc(1), as(1), pc(1), and f77(1) define these symbols.

operating system: unix, ibm, gcos, os, tss, dmert

target hardware: mips, interdata, pdpl1, u370, u3b, u3b5 u3b2, u3b20d, vax
host hardware: host_mips

languages: LANGUAGE.C, LANGUAGE_ASSEMBLY,

_ LANGUAGE_PASCAIL, LANGUAGE_FORTRAN
UNIX system variant; RES, RT
lint(1): lint
=Dname
—Dname=def
Define name as if by a #deﬁne directive, If no =def is given, name is s defined as 1.
The =D option has lower precedence than the —U option. That is, if the same name

is used in both a =U option and a —~D option, the name will be undefined regardless
of the order of the options,

—Idir Change the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include
files whose names are enclosed in "" will be searched for first in the directory of the
ifile argument, then in directories named in =I options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the directory of
the ifile argument is not searched.

| This option changes the algorithm for searching for #include files to never look in the
standard list.

=M Print, one per line on standard output; the path names of included files. Each is
prefixed with ifile’s last component name with the suffix changed to ‘.0’ followed by a

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CPP (1) RISC/os Programmer’s Reference ' CPP(1)

Page 2

¢ and a space (for example “hello.o: /usr/include/stdio.h”).

Two special names are understood by cpp. The name __LINE__ is defined as the current line
number (as a decimal integer) as known by cpp, and __FILE__ is defined as the current file
name (as a C string) as known by ¢pp. They can be used anywhere (including in macros) just
as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace subsequent
instances of name followed by a (, a list of comma separated tokens, and a) by
token-string where each occurrence of an arg in the token-string is replaced by the
corresponding token in the comma separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string unchanged. After
the entire token-string has been expanded, cpp re-starts its scan for names to expand at
the beginning of the newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#ident "string"
This directive is recognized for compatibility but ignored.

#include "filename"

#include <filename>
Include at this point the contents of filename (which will then be run through cpp).
When the <filename > notation is used, filename is only searched for in the standard
places. See the —I option above for more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the C compiler.
Integer-constant is the line number of the next line and filename is the file where it
comes from. If "filename" is not given, the current file name is unchanged.

#endif ‘
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test
directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has been the subject
of a previous #define without being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name has been the sub-
ject of a previous #define without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-expression evalu-
ates to non-zero. All binary non-assignment C operators, the ?: operator, the unary
—, !, and ~ operators are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a unary operator
defined, which can be used in constant-expression in these two forms: defined (name)
or defined name. This allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by cpp should be used
in constant-expression. In particular, the sizeof operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

February 6, 1989 MIPS Computer Systems, Inc.

CPP (1) RISC/os Programmer’s Reference CPP(1)

#if defined(foo) || defined(fum)
#else Reverses the notion of the test directive which matches this directive. So if lines pre-

vious to this directive are ignored, the following lines will appear in the output. And

vice versa.

The test directives and the possible #else directives can be nested.

FILES
/usr/include standard directory for #include files
SEE ALSO
cc(1), as(1), pe(l), £77(1), m4(1)
DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The line number
and filename where the error occurred are printed along with the diagnostic.
NOTES

When newline characters were found in argument lists for macros to be expanded, previous
versions of cpp put out the newlines as they were found and expanded. The current version
of cpp replaces these newlines with blanks to alleviate problems that the previous versions had
when this occurred.

MIPS Computer Systems, Inc. February 6, 1989 Page 3

CRONTAB (1-SysV) RISC/os Programmer’s Reference CRONTAB (1-SysV)

NAME

crontab — user crontab file

SYNOPSIS

crontab [file]
crontab -r
crontab —1

DESCRIPTION

FILES

crontab copies the specified file, or standard input if no file is specified, into a directory that
holds all users’ crontabs. The —r option removes a user’s crontab from the crontab directory.
crontab -1 will list the crontab file for the invoking user.

Users are permitted to use crontab if their names appear in the file /usr/lib/cron/cron.allow.
If that file does not exist, the file /usr/lib/cron/cron.deny is checked to determine if the user
should be denied access to crontab. If neither file exists, only root is allowed to submit a job.
If cron.allow does not exist and cron.deny exists but is empty, global usage is permitted. The
allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or tabs
The first five are integer patterns that specify the following:

minute (0-59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0-6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of ele-
ments separated by commas. An element is either a number or two numbers separated by a
minus sign (meaning an inclusive range). Note that the specification of days may be made by
two fields (day of the month and day of the week). If both are specified as a list of elements,
both are adhered to. For example, 0 0 1,15 * 1 would run a command on the first and
fifteenth of each month, as well as on every Monday. To specify days by only one field, the
other field should be set to x (for example, 0 0 x x 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the specified
times. A percent character in this field (unless escaped by \) is translated to a new-line char-
acter. Only the first line (up to a % or end of line) of the command field is executed by the
shell. The other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire to
have their .profile executed must explicitly do so in the crontab file. cron supplies a default
environment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and
PATH(=:/bin:/usr/bin:/usr/lbin).

If you do not redirect the standard output and standard error of your commands, any gen-
erated output or errors will be mailed to you.

lusr/lib/cron main cron directory
/usr/spool/cron/crontabs spool area
lusr/lib/cron/log accounting information
lusr/lib/cron/cron.allow list of allowed users
lusr/lib/cron/cron.deny list of denied users

lusr/spool/cron/crontabs/periodic

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CRONTAB (1-SysV) RISC/os Programmer’s Reference " CRONTAB (1-SysV)

special root file

SEE ALSO

sh(1).
cron(1M) in the System Administrator’s Reference Manual.

WARNINGS

Page 2

If you inadvertently enter the cronfab command with no argument(s), do not attempt to get
out with a CTRL-d. This will cause all entries in your crontab file to be removed. Instead,
exit with a DEL. i

A special root file called periodic exists in the /usr/spool/cron/crontabs directory. Do not
attempt to update this file using the crontab command. If this is done, the root crontab file
will actually be overwritten. This special file can only be submitted to cron at initialization
time.

February 5, 1989 MIPS Computer Systems, Inc.

CRYPT (1-SysV) RISC/os Programmer’s Reference . CRYPT (1-SysV)

NAME
crypt — encode/decode

SYNOPSIS
crypt [password |
crypt [—K]

DESCRIPTION :
crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no argument is given, crypt demands a key from
the terminal and turns off printing while the key is being typed in. If the —k option is used,
crypt will use the key assigned to the environment variable CRYPTKEY. crypt encrypts and
decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the editors ed(1), edit(1), ex(1),
and vi(I) in encryption mode. :
The security of encrypted files depends on three factors: the fundamental method must be
hard to solve; direct search of the key space must be infeasible; ‘“‘sneak paths” by which keys
or clear text can become visible must be minimized.
crypt implements a one-rotor machine designed along the lines of the German Enigma,_but'
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.
The transformation of a key into the internal settings of the machine is deliberately designed
to be expensive, i.e., to take a substantial fraction of a second to compute. However, if keys
are restricted to (say) three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.
If the key is an argument to the crypt command, it is potentially visible to users executing ps(1)
or a derivative. The choice of keys and key security are the most vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(1), edit(1), ex(1), makekey(1), ps(1), stty(1), vi(1).

WARNING .
This command is provided with the Security Administration Ultilities, which is only available
in the United States. If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the first of the original files will
be decrypted correctly.

ERRORS

If output is piped to nroff and the encryption key is not given on the command line, crypt can
leave terminal modes in a strange state (see stty(1)).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CSH (1-SysV) ‘ RISC/os Programmer’s Reference CSH (1-SysV)

NAME

csh — a shell (command interpreter) with C-like syntax
SYNOPSIS

csh [—cefinstvVxX | [arg ...]
DESCRIPTION ‘

csh is a command language interpreter incorporating a hxstory mechamsm (sec History substi-
tutions) and a C-like syntax.

An instance of csh begms by executing commands from the file .cshrc in the home directory
of the invoker. If this is a login shell, then it also executes commands from the file .login
there. It is typical for users on CRTs to invoke tset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting
with %. Processing of arguments and the use of the shell to process files containing command
scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is read and
broken into words. This sequence of words is placed on the command history list and then
parsed. Finally each command in the current line is executed.

When a login shell terminates, it executes commands from the file .logout in the user’s home
directory.

Lexical Structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The
characters &, |, ;, <, >, (,), form separate words. If doubled in &&, | |, << or >>, these
pairs form single words. These parser metacharacters may be made part of other words, or
their special meaning may be prevented, by preceding them with a backslash (\). A newline
preceded by a \ is equivalent to a blank. It is usually necessary to use the backslash to escape
the parser metacharacters when you want to use them literally rather than as metacharacters.

Strings enclosed in matched pairs of quotation marks, either single or double quotation
marks, form parts of a word. Metacharacters in these strings, including blanks and tabs, do
not form separate words. Such quotations have semantics to be described subsequently.

Within pairs of single or double quotation marks, a newline (carriage return) preceded by a \
gives a true newline character. This is used to set up a file of strings separated by newlines, as

for fgrep.

When the shell’s input is not a terminal, the character # introduces a comment which contin-
ues to the end of the input line. It is prevented from having this special meaning when pre-
ceded by \ or if bracketed by a pair of single or double quotation marks.

Commands
A simple command is a sequence of words, the first of which specifies the command to be
executed.

A simple command or a sequence of simple commands separated by | characters forms a
pipeline. The output of each command in a pipeline is connected to the input of the next.

Sequences of pipelines may be separated by ;, and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it to terminate by fol-
lowing it with an &, which means to run it in background.

Parentheses (and) around a pipeline or sequence of pipelines cause the whole series to be
treated as a simple command, which may in turn be a component of a pipeline, etc. Itis also
possible to separate pipelines with | | or && indicating, as in the C language, that the second
is to be executed only if the first fails or succeeds, respectively. (See Expressions.)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CSH (1-SysV) ~ RISC/os Programmer’s Reference CSH (1-SysV)

Page 2

Process ID Numbers
When a process is run in background with &, the shell prints a line which looks like:

1234
This line indicates that the process which was started asynchronously was number 1234.

Status Reporting

This shell learns immediately whenever a process changes state. It normally informs you
whenever a job becomes blocked so that no further progress is possible, but only just before it
prints a prompt. This is done so that it does not otherwise disturb your work.

To check on the status of a process, use the ps (process status) command.

Command Line Editing .
The line editor permits a large number of operations beyond the scope of the current tty
driver — most of the simple editing commands available in the EMACS screen editor (not avail-
able in 4.3) may be used to move around on and change the current line. In addition, line
editing allows interactive expansion of csh history items. Typing "!foo" followed by a space,
for example, will insert the previous command starting with "foo" into the line at the current
location.

The line editing feature, which is off by default, may be enabled by setting the shell variable
“lineedit”. (The variable "lineedit" takes precedence over the variable "filec” and consequently
disables file name completion, though file name completion is still available under the line edi-
tor by using M-ESC, which by default means typing two escape characters.) The variable
"lineeditmin" specifies the minimum size of history list commands that will be seen by the line
editor. The variable "lineeditchars" gives a character map which allows the default assignment
of the keys to be changed. In order to use the history mechanism, you must also set the vari-
able “history” to be the number of previous lines you want remembered.

With “lineedit” set to the empty string, the line editor works on any CRT terminal which
meets the following requirements: (1) ASCII linefeed moves the cursor downward (2) ASCII
backspace moves the cursor one column to the left without erasing the character in that
column (3) ASCII carriage return moves the cursor to the left margin (4) ASCII bell character
rings the bell, and (5) ASCII space character replaces the character in the current column with
a blank space and moves the cursor one column to the right. By setting “lineedit” to a string
beginning with a delimiter and containing character sequences separated by that delimiter, you
can customize the line editor for terminals which do not meet these requirements. For exam-
ple, “set lineedit="/"j/"h/"m/’g/ /" (where you may use the prefix *~ to indicate a control
character) is equivalent to the default.

The special characters you set using the stty(I1) command are still in effect between commands.
If, for example, you set your Unix QUIT character to be DEL, you can use DEL to get your-
self out of a program like mail(1), or to interrupt a program like vi , or even to break out of a
shell “while” loop. But while you are actually editing a line, DEL has a special meaning
described below.

The infallible way to get out of editing is to type "C’D. Immediately after the prompt, "D by
itself is sufficient. ,

The line editor maintains a repetition factor which is initially 1. This factor is multiplied by 4
by the "U command. In the following description, (R) indicates that the command pays atten-
tion to the repetition factor. The repetition factor returns to 1 after each command or error,
even if the command does not pay attention to the repetition factor.

~

@ Mark line (this lets you browse through the remembered lines with P
and "N, mark one, and later use the marked line with M-Y).
A Move cursor to beginning of line.
February 5, 1989 MIPS Computer Systems, Inc.

"CSH (1-SysV)

o

>

us]

>

s]

>

~ o Q

>

"K<char>

"Q<char>

"R<char>

"S<char>

£ c 4

<

RUBOUT

RISC/os Programmer’s Reference CSH (1-SysV)

Move cursor backward (R).
Clear the entire line and reprompt.

Delete character above cursor. (If you type "D immediately after the
prompt, before you type anything else, it has its usual meaning: quit run-
ning the shell). (R)

Move cursor to end of line,

Move cursor forward R).

Abort the current command and ring the bell.
Delete character preceding cursor (R).
Activate the line.

Delete characters until cursor is under <char>. If <char> is “K, use
the same char as the previous 'R, 'S, or 'K command. To delete until
K, say ““"K’QK”. To delete until end of line, say “"K'M”,

Redisplay line on a clean line.
Activate the line.

Go forward one line in the queue of previously-typed lines and make
that be the “line under construction”. Only lines greater in size than the
shell variable "lineeditmin” are considered. (R)

Go backward one line in the queue of previously-typed lines and make
that be the “line under construction”. Only lines greater in size than the
shell variable "lineeditmin" are considered. (R)

Insert <char> before the cursor (useful for quoting characters which
the line editor itself would otherwise recognize).

Search backward for <char>, If <char> is AR then it searches instead
for the same character as the previous K, 'R or 'S command. To
search for ‘R, type ““R'Q'R”. (R)

Search forward for <char>. If <char> is °S, then it searches instead
for the same character as the previous 'K, R or "S command. To
search for 'S, type “"S’Q"S”. (R) '

Interchange the two characters preceding the cursor.
Multiply the repetition count by 4. Does not take a numeric argument.
Delete the entire line.

(Yank) Insert in front of the cursor the previous text deleted with 'K,
M-D, M-H, or M-DEL.

Delete character preceding cursor, (R)

Other control characters are illegal, and most send a bell character to your terminal to try to

make it beep,

There are also a few meta-commands, which you can invoke by typing ASCII “escape” before

the letter.
M-A
M-B
M-D
M-E

MIPS Computer Systems, Inc.

Go to the beginning (bottom or most recent) of the history list.
Move backward by one word. (R)

Delete next word. (R)

Go to the end (top or earlieét) of the history list.

February 5, 1989 Page 3

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

Page 4

M-F Move forward by one word. (R)

M-H Delete previous word. (R)

M-U Undo the last non-trivial change.

M-Y (Yank) Insert in front of the cursor the line marked with ‘@.

M-DEL Delete previous word. (R)

M-ESC Complete listings with "Is" style output. Same as entering Control-D and

ESC in file completion mode.

All ordinary (non-control, non-meta) characters insert themselves before the cursor. Thus to
add characters to a line, simply type them.

If you set the shell variable “lineeditmin” to a posmve integer, the line editor will no longer
consider lines shorter than that number of characters in length. Thus you can prevent N and
“P from showing you trivial lines like vi or “popd”.

The interactive history expansion mechanism is invoked by typing a space or a tab after a
word containing the current history character (which defaults to ““!”). Any history expansioh '
involving just full commands and arguments thereof (no editing) will be done interactively.
addition to esh’s normal “!foo:i-j” (where “i” and “j” are numbers and either may be ehded)
the line editor also allows either of “i”” or “]” to be referenced from the end of the argument
list, as in “!foo:$-2-$” which yields the last three arguments of the previous command starting
with “foo”.

The variable "lineeditchars may be set to change the default functions for each key, but use

meta characters are specified by prefixing them with a dollar’ sign (“$”) In addition, the
delete character may be specified as “"?””. Each position in this string corresponds to one of
the control characters — thus position 0 corresponds to the function for "@, position 1 to the
value for A, etc. In addition to the 32 control positions, position 33 controls the function of
DEL. The value in a position is the default function binding to be used for that character.
Thus, to change the bindings so that "W does a word delete (M-H), "X is the line kill charac-
ter (W), and DEL is the interrupt character (" C), set lineeditchars to

AAAAAA AAA A

“@abc’defgh ik Tmn o' p'q'rstuvsh'wyz [\ _

Substitutions
We now describe the various transformations the shell performs on the 1nput in the order in
which they occur.

History substitutions

History substitutions place words from previous command input as portions of new com-
mands, making it easy to repeat commands, repeat arguments of a previous command in the
current command, or fix spelling mistakes in the previous command with little typing and a
high degree of confidence.

History substitutions begin with the character ~ and may begin anywhere in the input stream
(with the proviso that they do not nest.)

This ! maiy be preceded by a \ to turn off its special meaning; for convenience, a ! is also
passed unchanged when it is followed by a blank, tab, newline, = or (.

Therefore, do not put a space after the ! and the command reference when you are invoking
the shell’s history mechanism. (History substitutions also occur when an input line begins
with ~. This special abbreviation will be described later.)

-~

February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

An input line which invokes history substitution is echoed on the terminal before it is exe-
cuted, as it would look if typed out in full.

The shell’s history list, which may be seen by typing the history command, contains all com-
mands input from the terminal which consist of one or more words. History substitutions
reintroduce sequences of words from these saved commands into the input stream. The his-
tory variable controls the size of the input stream. The previous command is always retained,
regardless of its value. Commands are numbered sequentially from 1.

Consider the following output from the kistory command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff swrite.c

The commands are shown with their event numbers. It is not usually necessary to use event
numbers, but the current event number can be made part of the prompt by placing an ! in the
prompt string. This is done by setting prompt = ! and the prompt character of your choice.

For example, if the current event is number 13, we can call up the command recorded as
event 11 in several ways: /-2 [i.e., 13-2]; by the first letter of one of its command words, such
as /c referring to the ¢ in cat; or /wri for event 9, or by a string contained in a word in the
command as in /?mic? also referring to event 9.

These forms, without further modification, simply reintroduce the words of the specified
events, each separated by a single blank. As a special case /! refers to the previous command;
thus // alone is essentially a redo.

Words are selected from a command event and acted upon according to the following for-
mula:

event:position:action

The event is the command you wish to retrieve. As mentioned above, it may be summoned
up by event number and in several other ways. All that the event notation does is to tell the
shell which command you have in mind.

Position picks out the words from the command event on which you want the action to take
place. The position notation can do anything from altering the command completely to mak-
ing some very minor substitution, depending on which words from the command event you
specify with the position notation.

To select words from a command event, follow the event specification with a : and a designa-
tor (by position) for the desired words.

The words of a command event are picked out by their position in the input line. Positions
are numbered from 0, the first word (usually command) being position 0, the second word
having position 1, and so forth. If you designate a word from the command event by stating
its position, means you want to include it in your revised command. All the words that you
want to include in a revised command must be designated by position notation in order to be
included.

MIPS Computer Systems, Inc. February 5, 1989 Page 5

CSH (1-SysV) RISC/os Programmer’s Reference 'CSH (1-SysV)

The basic position designators are:

0 first (command) word

n nth argument

" first argument, i.e., 1

$ last argument

% matches the word of an ?s? search which immediately precedes it; used to strip one
word out of a command event for use in another command. Example: /?four?:%:p
prints four. -

x-y range of words (e.g., 1-3 means from position 1 to position 3).

-y abbreviates 0—y

« stands for "-$, or indicates position 1 if only one word in event.

X* abbreviates x—$ where
x is a position number.

x— like xx but omitting last word $

The : separating the event speclﬁcatlon from the word designator can be omitted if the argu-
ment selector begins with a , $, %, — or %.

Modifiers, each preceded by a :, may be used to act on the designated words in the specified
command event. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing .xxx component, leaving the root name.
e Remove all but the extension ,xxx part.

s/old/new/ Substitute new for old

Remove all leading pathname components, leaving the tail.
Repeat the previous substitution.

Apply the change globally, prefixing the above, e.g., g&.
Print the new command but do not execute it.

Quote the substituted words, preventing further substitutions.
Like q, but break into words at blanks, tabs and newlines.

.0 TR g

Unless preceded by a g, the modification is applied only to the first modifiable word. With

_substitutions it is an error for no word to be applicable.

Page 6

The left hand side of substitutions are not regular expressions in the sense of the editors, but
rather strings. Any character may be used as the delimiter in place of /; a \ quotes the delim-
iter into the / and r strings. The character & in the right hand side is replaced by the text
from the left. A \ quotes & also. A null / uses the previous string either from a [or from a
contextual scan string s in /?s?. The trailing delimiter in the substitution may be omitted if
(but only if) a newline follows immediately as may the trailing ? in a contextual scan.

A history reference may be given without an event specification, e.g., /§. In this case the
reference is to the previous command. If a previous history reference occurred on the same
line, this form repeats the previous reference. Thus /?foo?” !§ gives the first and last argu-
ments from the command matching ?foo?.

You can quickly make substitutions to the previous command line by using the ~ character as
the first non-blank character of an input line. This is equivalent to /:s providing a convenient
shorthand for substitutions on the text of the previous line. Thus “Iblib fixes the spelling of
lib in the previous command. "Finally, a history substitution may be surrounded with { and }
if necessary to insulate it from the characters which follow. Thus, after Is —Id “paul we might
do KI}a to do Is —Id "paula, while /la would look for a command starting la.

February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) ‘ RISC/os Prdgrammer’s Reference CSH (1-SysV)

Quotations with * and "

The quotation of strings by ’ and " can be used to prevent all or some of the remaining substi-
tutions which would otherwise take place if these characters were interpreted as metacharac-
ters or wild card matching characters. Strings enclosed in single quotes, ’ are prevented any
further interpretation or expansion. . Strings enclosed in " may still be variable and command
expanded as described below,

In both cases the resulting text becomes '(all‘ or part of) a single word; only.in one special case
(see Command Substitution below) doas a' quoted string yield parts of more than one word;

Alias substitution

The shell maintains a list of aliases whmh can be established, dlsplayed and modified by the
alias and unalias commands. After a command line is scanned, it is parsed into distinct com-
mands and the first word of each command, left-to-right, is checked to see if it has an alias.
If it does, then the text which is the alias for that command is reread with the history mechan-
ism available as though that command were the previwus input line, The resulting words
replace the command and argument list. If no reference is made to the history list, then the
argument list js left unchanged,

Thus if the alias for Is is Is —! the command Is /usr would map to Is -/ /usr , the argument list
here being undisturbed. Similarly if the alias for lookup was grep ! r /etc/passwd then lookup
bill would map to grep bill /etc/passwd,

If an alias is found, the word transformation of the input text is performed and the aliasing
process begms again on the reformed input line. Looping is prevented if the first word of the
new text is the same as the old by ﬁaggmg it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax, Thus we can alias
print ‘pr \Ix | Ipr’ to make a command which prs its arguments to the line printer.

Variable substltutim

The shell maintains a set of variables, each of whlch has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it, For instance, the argv vari-
able is an image of the shell’s argument list, and words of this variable’s value are referred to
in special ways.

The values of variables may be dlsplayed and changed by using the ser and unset commands.
Of the variables referred to by the shell a number are toggles; the shell does not care what
their value is, only whether they are set or not, For instance, the verbose variable is a toggle
which causes command input to be echoed The setting of this variable results from the —v
command line option. ‘

Other operations treat variables numerically. The @ command permits numeric calculations
to be performed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string
is considered to be zero, and the second and subsequent words of multiword values are
ignored. ;

After the input line is aliased and parsed, and befom each cqmmand is executed, variable sub-
stitution is performed keyed by $ characters, This expansion can be prevented by preceding
the $ with a \ except within double quotes (") where it always occurs, and within single quotes
(’) where it never occurs, ‘Strings quoted by * are interpreted later (see Command substitution
below) so $ substitution does not occur there until later, if at all. A § is passed unchanged if
followed by a blank, tab, or end-of-line.

MIPS Computer Systems, Inc. ~ February 5, 1989 o Page 7

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

Page 8

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It
is thus possible for the first (command) word to this point to generate more than one word,
the first of which becomes the command name, and the rest of which become arguments.

Unless enclosed in double quotes or given the :q modifier, the results of variable substitution
may eventually be command and filename substituted. Within double quotes, a variable
whose value consists of multiple words expands to a (portion of) a single word, with the words
of the variables value separated by blanks. When the :q modifier is applied to a substitution,
the variable will expand to multiple words with each word separated by a blank and quoted to
prevent later command or filename substitution.

Metasequences for variable substitution

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from following characters which would otherwise be part of it.
Shell variables have names consisting of up to 20 letters and digits starting with a letter.
The underscore character is considered a letter.

If name is not a shell variable, but is sét in the environment, then that value is returned
(but : modifiers and the other forms given below are not available in this case).

$name[selector]

${name[selector]}
May be used to select only some of the words from the value of name. The selector is
subjected to $ substitution and may consist of a single number or two numbers separated
by a —. The first word of a variables value is numbered 1. If the first number of a range
is omitted it defaults to 1. If the last member of a range is omitted it defaults to $#name.
The selector « selects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name
${#name}
Gives the number of words in the variable. This is useful for later use in a [selector].

$0

Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.

$number
${number}
Equivalent to $argv [number].

$x
Equivalent to $argv [«]".

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as may :gh, :gt
and :gr. If braces { } appear in the command form, then the modifiers must appear within
the braces. The current implementation allows only one : modifier on each $ expansion.

The following substitutions may not be modified with : modifiers.

$7name
${?name}
Substitutes the string 1 if name is set, 0 if it is not.

February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) | RISC/os Programmer’s Reference CSH (1-SysV)

$20
Substitutes 1 if the current input filename is known, 0 if it is not.

$$,
Substitute the (decimal) process number of the (parent) shell.

$< :
Substitutes a line from the standard input, with no further interpretation thereafter. It
can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the
arguments of built-in commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to the .
shell, the command name is substituted separately from the argument list. This occurs very
late, after input-output redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in ‘. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null
words being discarded, this text then replacing the original string. Within double quotes ("),
only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible
for a command substitution to yield only part of a word, even if the command outputs a com-
plete line.

Filename substitution

If a word contains any of the characters %, ?, [or { or begins with the character ~, then that
word is a candidate for filename substitution, also known as “globbing”. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names which
match the pattern. In a list of words specifying filename substitution it is an error for no pat-
tern to match an existing file name, but it is not required for each pattern to match. Only the
metacharacters %, ? and [imply pattern matching, the characters ~ and { being more akin to
abbreviations.

In matching filenames, the character . at the beginning of a filename or immediately following
a /, as well as the character / must be matched explicitly. The character x matches any string
of characters, including the null string. The character ? matches any single character. The
sequence [...] matches any one of the characters enclosed. Within [...], a pair of characters
separated by — matches any character lexically between the two,

The character ~ at the beginning of a filename is used to refer to home directories. Standing
alone, i.e., ~ it expands to the invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and — characters, the shell
searches for a user with that name and substitutes their home directory; thus “ken might
expand to /usr/ken and “ken/chmach to /usr/ken/chmach. If the character ~ is followed by a
character other than a letter or / or appears not at the beginning of a word, it is left undis-
turbed.

The metanotation a{b,c,d}e is a shorthand for abeaceade. Left to right order is preserved,
with results of matches being sorted separately at a low level to preserve this order. This con-
struct may be nested. Thus “source/s1/{oldlsIs}.c expands to /usr/source/sl/oldls.c

- Jusr/source/sl/ls.c whether or not these files exist without any chance of error if the home
directory for source is /usr/source. Similarly ../{memo,+box} might expand to ../memo ../box
../mbox. (Note that memo was not sorted with the results of matching *box.) As a special
case {, } and {} are passed undisturbed.

MIPS Computer Systems, Inc. February 5, 1989 : Page 9

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

Input/output

The standard input and standard output of a command may be redirected with the following
syntax:

< name
Open file name (which is first variable, command and filename expanded) as the stan-
dard input.

<< 'word

Read the shell input up to a line which is identical to word. word is not subjected to
variable, filename or command substitution, and each input line is compared to word
before any substitutions are done on this input line. Unless a quoting \, ", “ or °
appears in word, variable and command substitution is performed on the intervening
lines, allowing \ to quote $, \ and *. Commands which are substituted have all blanks,
tabs, and newlines preserved, except for the final newline which is dropped. The
resultant text is placed in an anonymous temporary file which is given to the command
as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not exist then it is created; if
the file exists, it is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special
file (e.g., a terminal or /dev/null) or an error results. This helps prevent accidental
destruction of files. In this case the ! forms can be used and suppress this check.

The forms involving &, route the diagnostic output into the specified file as well as the
standard output. Name is expanded in the same way as < input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like > but places output at the end of the file. If
the variable noclobber is set, then it is an error for the file not to exist unless one of
the ! forms is given. Otherwise similar to >.

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus, unlike some
previous shells, commands run from a file of shell commands have no access to the text of the
commands by default; rather they receive the original standard input of the shell. The <<
mechanism should be used to present inline data. This permits shell command scripts to
function as components of pipelines and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard output. Simply use the
form |& rather than just |. To redirect standard output and standard error to separate files,
use (cmd > filel) >& file2; /dev/tty may be used to redirect input or output to or from your
terminal.

Expressions

A number of the built-in commands (to be described subsequently) take expressions, in which
the operators are similar to those of C, with the same precedence. These expressions appear
in the @, exit, if, and while commands. The following operators are available:

|| && | " & == == I <= >=< > << >> + -/ % ! ~ ()

Page 10 February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) RISC/os Programmer’s Reference) CSH (1-SysV)

Here the precedence increases to the right, ==, !=, =™ and !”; , >=, < and >; << and
>>; + and ~; %, / and % being, in groups, at the same level. The ==, 1=, =" and !” operators
compare thelr arguments as strings; all others operate on numbers. The operators =~ and !”
are like != and == except that the right hand side is a pattern (which may contain %, ? and
instances of [...]) against which the left hand operand is matched. This reduces the need for
use of the switch statement in shell scripts when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are con-
sidered 0. The result of all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear in the same word;
except when adjacent to components of expressions which are syntactlcally significant to the
parser (& | < > ()) they should be surrounded by spaces.

Command executions can be used as primitive operands in expressions. When used in an
expression, the command is enclosed in { and }, e.g., {command}. Command executions
succeed, returning true, i.e., 1, if the command exits with status 0, otherwise they fail, return-
ing false, i.e., 0. If more detailed status information is required, then the command should be
executed outside of an expression and the variable stafus examined.

File enquiries can also be used as pnmltlve Qperands in expressmns They should be of the
form —I name where [is one of:

read access

write access

execute access
existence

ownership

zero size

plain file

directory

character special file
block special file
named pipe (fifo)
set-user-ID bit is set
set-group-ID bit is set
sticky bit is set

size greater than zero
open file descriptor for terminal device

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible, then all
enquiries return false, i.e., 0,

Control Flow
The shell contains a number of commands Wthh can be used to regulate the flow of control
in command files (shell scripts) and (in limited but useful ways) from terminal input. These

commands all operate by forcing the shell to reread or skip in its input and, due to the imple-
mentation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if—then—else form of the if statement

require that the major kKeywords appear in a smglc simple command on an input line as shown
below.

-~ KM ET O AN O O X S

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read
and performs seeks in this internal buffer to accomplish the rereading implied by the loop.
(To the extent that this allows, backward gotos will succeed on non-seekable inputs.)

MIPS Computer Systems, Inc. February 5, 1989 ‘ Page 11

CSH (1-SysV) RISC/0s Programmer’s Reference - CSH(1-SysV)

Built-in Commands
Built-in commands are executed within the shell. If a built-in command occurs as any com-
ponent of a pipeline except the last, then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlist is command and filename
substituted. Name is not allowed to be alias or unalias.

break
Causes execution to resume after the end of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi-
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name '
Change the shell’s working directory to directory name. If no argument is given, then
change to the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not begin with /,
./ or ../); then each component of the variable cdpath is checked to see if it has a sub-
directory name. Finally, if all else fails but name is a shell variable whose value begins
with /, then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case
labels.

dirs

dirs =1
Prints the directory stack; the top of the stack is at the left, the first directory in the stack
being the current directory. In the first form the user’s home directory is represented by

echo wordlist
echo —n wordlist
The specified words are written to the shell’s standard output, separated by spaces, and
terminated with a newline unless the —n option or the \c escape is specified. The follow-
ing C-like escape sequences are available:
backspace
\c print line without new-line
\f form-feed
\n

new-line
\r carriage return
\r - tab

Page 12 February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) ' RISC/os Programmer’s Reference CSH (1-SysV)

\\ backslash
M1 . the character whose ASCII code is the 1-, 2- or 3-digit octal number n.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ... ' _
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s)
executed in the context of the current shell. This is usually used to execute commands
generated as the result of command or variable substitution, since parsing occurs before
these substitutions. See tsef(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit

exit (expr)
The shell exits either with the value of the status variable (first form) or with the value of
the specified expr (second form).

foreach name (wordlist)

end :
The variable name is successively set to each member of wordlist and the sequence of
commands between this command and the matching end are executed. (Both foreach
and end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely and the
built-in command break to terminate it prematurely. When this command is read from
the terminal, the loop is read up once prompting with ? before any statements in the loop
are executed. If you make a mistake typing in a loop at the terminal, you can rub it out.

glob wordlist
Like echo but no \ escapes are recognized and words are delimited by null characters in
the output. Useful for programs which wish to use the shell to filename expand a list of
words.

goto word ,
The specified word is filename and command expanded to yield a string of the form label.
The shell rewinds its input as much as possible and searches for a line of the form label:
possibly preceded by blanks or tabs. Execution continues after the specified line.

history
history n
history —r n
history —h n

Displays the history event list; if 7 is given only the n most recent events are printed. The
—r option reverses the order of printout to be most recent first rather than oldest first.
The —h option causes the history list to be printed without leading numbers. This is used
to produce files suitable for sourceing using the —h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is exe-
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the if command. Command must be a simple command, not a pipeline, a com-
mand list, or a parenthesized command list. Input/output redirection occurs even if expr

MIPS Computer Systems, Inc. February 5, 1989 Page 13

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

is false, when command is nor executed (this is a bug).
if (expr) then

else if (expr2) then
else

endif
If the specified expr is true, then the commands to the first else are executed; else if expr2
is true, then the commands to the second else are executed, etc. Any number of else-if
pairs are possible; only one endif is needed. The else part is likewise optional. (The
words else and endif must appear at the beginning of input lines; the if must appear alone
on its input line or after an else.)

kill pid

kill —sig pid ...
Sends either the TERM (terminate) signal or the specified signal to the specified
processes. Signals are either given by number or by names (as given in
Jusr/include/signal.h, stripped of the prefix SIG). There is no default, saying just "kill"
does not send a signal to the current process.

login ’
Terminate a login shell, replacing it with an instance of /bin/login. This is one way to log
off, included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The second form sets the nice to the given
number. The final two forms run command at priority 4 and number respectively. The

super-user may specify negative niceness by using nice —number Command is always
executed in a sub-shell, and the restrictions place on commands in simple if statements.
apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be run with
hangups ignored. All processes detached with & are effectively nohuped.

onintr

onintr -

onintr label
Control the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts which is to terminate shell scripts or to return to the terminal com-
mand input level. The second form onintr — causes all interrupts to be ignored. The
final form causes the shell to execute a goto label when an interrupt is received or a child
process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands.

Page 14 February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

popd

popd +n
Pops the directory stack, returning to the new top directory. With an argument ‘“+n’ dis-
cards the n th entry in the stack. The elements of the directory stack are numbered from
0 starting at the top.

pushd

pushd name '

pushd +n ‘
With no arguments, pushd exchanges the top two elements of the directory stack. Given
a name argument, pushd changes to the new directory (ala cd) and pushes the old current
working directory (as in csw) onto the directory stack. With a numeric argument, rotates
the n th argument of the directory stack around to be the top element and changes to it.

The members of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while
you are logged in. This should only be necessary if you add commands to one of your

own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command -
The specified command which is subject to the same restrictions as the command in the

one line if statement above, is executed count times. I/O redirections occur exactly once,
even if count is 0,

set

set name

set name=word

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell variables. Variables which
have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note,
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value : .
Sets the value of environment variable name to be value, a single string. The variables
PATH, USER, LOGNAME, HOME, and TERM are automatically imported to and exported
from the csh variables path; user, logname, home, and term, respectively; there is no
need to use setenv for these.

shift

shift variable
The members of argv are shifted to the left, discarding argv/1]. It is an error for argv not
to be set or to have less than one word as value. The second form performs the same
function on the specified variable.

source name
source —h name
The shell reads commands from name. Source commands may be nested; if they are

MIPS Computer Systems, Inc. February 5, 1989 Page 15

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Normally input during source commands is
not placed on the history list; the —h option causes the commands to be placed in the his-
tory list without being executed.

switch (string)
case strl:

breaksw
default:

breaksw

endsw
Each case label is successively matched against the specified string which is first command
and filename expanded. The file metacharacters x, ? and [...] may be used in the case
labels, which are variable expanded. If none of the labels match before a default label is
found, then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default
labels as in C. If no label matches and there is no default, execution continues after the
endsw.

time

time command
With no argument, a summary of time used by this shell and its children is printed. If
arguments are given, the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value (second
form). The mask is given in octal. Common values for the mask are 002 giving all access
to the group and read and execute access to others or 022 giving all access except no write
access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are
removed by unalias *. It is not an error for nothing to be unaliased .

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables
are removed by unset *; this has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment.
See also the setenv command and env(1).

wait
All background jobs are waited for. If the shell is interactive, then an interrupt can dis-
rupt the wait, at which time the shell prints names and job numbers of all jobs known to

Page 16 February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) RISC/os Programmer’s Reference) CSH (1-SysV)

be outstanding.
while (expr)

end A
While the specified expression evaluates non-zero, the commands between the while and
the matching end are evaluated. Break and continue may be used to terminate or con-
tinue the loop prematurely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the foreach statement if the
input is a terminal.

%

% user
The first form toggles the user ID and group ID between that of root and user for all exe-
cuted commands (except built-ins). The prompt is automatically toggled between # and
#%. The second form specifies a user name, listed in /etc/passwd, that should be tog-
gled to and from. ’

@

@ name = expr

@ name[index] = expr ~
The first form prints the values of all the shell variables. The second form sets the
specified name to the value of expr. If the expression contains <, >, & or |, then at
least this part of the expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and its indexth component
must already exist.

The operators =, +=, etc., are available as in C. The space separating the name from
the assignment operator is optional. Spaces are, however, mandatory in separating com-
ponents of expr which would otherwise be single words.

Special postfix ++ and —— operators increment and decrement name respectively, i.e., @
i++.

Pre-defined and Environment Variables

The following variables have special meaning to the shell. Of these, argv, cwd, home, path,
prompt, shell and status are always set by the shell. Except for cwd and status, this setting
occurs only at initialization; these variables will not then be modified unless this is done expli-
citly by the user. '

This shell copies the environment variable HOME into kome, and copies it back into the
environment whenever the normal shell variables are reset. The environment variable PATH
is likewise handled; it is not necessary to worry about its setting other than in the file .cshrc as
inferior csh processes will import the definition of parh from the environment, and re-export it
if you then change it.

argv Set to the arguments to the shell, it is from this variable that positional parame-
ters are substituted, i.e., $1 is replaced by $argv[1], etc.

cdpath Gives a list of alternate directories searched to find subdirectories in chdir com-
mands. '

cwd The full pathname of the current directory.

echo Set when the —x command line option is given. Causes each command and its

arguments to be echoed just before it is executed. For non-built-in commands all
expansions occur before echoing. Built-in commands are echoed before com-
mand and filename substitution, since these substitutions are then done selec-
tively.

histchars ~ Can be given a string value to change the characters used in history substitution.

MIPS Computer Systems, Inc. February 5, 1989 - Page 17

CSH (1-SysV)

history

home
ignoreeof

mail

noclobber

noglob

nonomatch

path

prompt

Page 18

RISC/os Programmer’s Reference CSH (1-SysV)

The first character of its value is used as the history substitution character,
replacing the default character !. The second character of its value replaces the
character 1 in quick substitutions.

Can be given a numeric value to control the size of the history list. Any com-
mand which has been referenced in this many events will not be discarded. Too
large values of history may run the shell out of memory. The last executed com-
mand is always saved on the history list.

The home directory of the invoker, initialized from the environment. The
filename expansion of ~ refers to this variable.

If set the shell ignores end-of-file from input devices which are terminals. This
prevents shells from accidentally being killed by CTRL-ds.

The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed. If
the file exists with an access time not greater than its modify time, the shell says
“You have new mail.”. -

If the first word of the value of mail is numeric, it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘“New mail in name” when
there is mail in the file name.

As described in the section on Input/output, restrictions are placed on output
redirection to insure that files are not accidentally destroyed, and that >>
redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts which
are not dealing with filenames, or after a list of filenames has been obtained and
further expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing files;
rather the primitive pattern is returned. It is still an error for the primitive pat-
tern to be malformed, i.e., echo [still gives an error.

Each word of the path variable specifies a directory in which commands are to
be sought for execution. A null word specifies the current directory. If there is
no path variable, then only full path names will execute. The usual search path
is ., /bin and /usr/bin, but this may vary from system to system. For the super-
user the default search path is /bin, /usr/bin, /etc. A shell which is given neither
the —c nor the —t option will normally hash the contents of the directories in the
path variable after reading .cshrc, and each time the path variable is reset. If
new commands are added to these directories while the shell is active, it may be
necessary to give the rehash or the commands may not be found.

The string which is printed before each command is read from an interactive ter-
minal input. If a ! appears in the string, it will be replaced by the current event
number unless a preceding \ is given. The sequence \\ is replaced with a single \.
The prompt should only be set by the user if it is already defined so that it will
not be printed when processing shell scripts by using the statement

if ($?prompt) set prompt="\!% ’

If the sequence \@x appears, where x is one of the characters listed below, then
it will be replaced by the current time and date in the indicated format.

R time as HH:MM AM/PM, e.g. 8:40PM

February 5, 1989 MIPS Computer Systems, Inc.

CSH (1-SysV) ' RISC/os Programmer’s Reference CSH (1-SysV)

time as HH:MM:SS AM/PM, e.g. 08:40:25 PM
month of year — 01 to 12

day of month —~ 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour - 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month - Jan to Dec
insert a new-line character

insert a tab character

~EErsgHugmg<ag”

‘The default prompt is %, or # for the super-user.

savehist is given a numeric value to control the number of entries of the history list that
are saved in "/.history when the user logs out. Any command which has been
referenced in this many events will be saved. During start up the shell sources
~/.history into the history list enabling history to be saved across logins. Too
large values of savehist will slow down the shell during start up.

shell The file in which the shell resides. This is used in forking shells to interpret files
which have execute bits set, but which are not executable by the system. (See
the description of Non-built-in Command Execution below.) Initialized to the
(system-dependent) home of the shell.

status The status returned by the last command. If it terminated abnormally, then 0200
is added to the status. Builtin commands which fail return exit status 1, all
other built-in commands set status 0.

time Controls automatic timing of commands. If set, then any command which takes
more than this many cpu seconds will cause a line giving user, system, and real
times and a utilization percentage which is the ratio of user plus system times to
real time to be printed when it terminates.

verbose Set by the —v command line option, causes the words of each command to be
printed after history substitution.

Non-built-in Command Execution
When a command to be executed is found not to be a built-in command, the shell attempts to
execute the command via exec(2). Each word in the variable path names a directory from
which the shell will attempt to execute the command. If it is given neither a —c nor a —¢
option, the shell will hash the names in these directories into an internal table so that it will
only try an exec in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the shell was given a —c or —¢
argument, and in any case for each directory component of path which does not begin with a
/, the shell concatenates with the given command name to form a path name of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (c¢d ; pwd) ; pwd prints the
home directory; leaving you where you were (printing this after the home directory), while cd ;
pwd leaves you in the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

MIPS Computer Systems, Inc. February 5, 1989 Page 19

CSH (1-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be a file containing shell commands an a new shell is spawned to read it.

If there is an alias for shell, then the words of the alias will be prepended to the argument list
to form the shell command. The first word of the alias should be the full path name of the
shell (e.g., "$shell"). Note that this is a special, late occurring, case of alias substitution, and
only allows words to be prepended to the argument list without modification.

Argument List Processing
If argument O to the shell is —, then this is a logm shell. The ﬂag arguments are interpreted as

follows:

—c Commands are read from the (single) following argument which must be present. Any
remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a non-zero
exit status.

i The shell will start faster, because it will neither search for nor execute commands
from the file .cshrc in the invokers home directory.

—i The shell is interactive and prompts for its top-level input, even if it appears to not be
a terminal. Shells are interactive without this option if their inputs and outputs are
terminals.

-n Commands are parsed but not executed. Thxs may aid in syntactic checking of shell
scripts.

-5 Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to escape the newline at
the end of this line and continue onto another line.

-V Causes the verbose variable to be set, with the effect that command input is echoed
after history substitution.

-X Causes the echo variable to be set, so that commands are echoed immediately before
execution.

-V Causes the verbose variable to be set even before .cshrc is executed.
-X Isto —x as —Vis to —v.

After processing of flag arguments, if arguments remain but none of the —¢, —i, —s, or —¢
options was given, the first argument is taken as the name of a file of commands to be exe-
cuted. The shell opens this file, and saves its name for possible resubstitution by $0. Remain-
ing arguments initialize the variable argv. csh scripts should always start with

#! /bin/csh —f

which causes the kernel to fork off /bin/csh to process them even if invoked by a Bourne shell
user and inhibits processing of the .cshrc file to prevent interference by the user’s differing
aliases. :

Signal Handling

The shell normally ignores quit signals. Processes running in background (by &) are immune
to signals generated from the keyboard, namely, interrupt and quit, and to hangups. Other sig-
nals have the values which the shell inherited from its parent. The handling of interrupts and
terminate signals in shell scripts can be controlled by onintr. Login shells catch the terminate
signal; otherwise this signal is passed on to children from the state in the shell’s parent. In no
case are interrupts allowed when a login shell is reading the file “/.logout.

Page 20 February 5, 1989 MIPS Computer Systems, Inc.

CSH (1

-SysV) RISC/os Programmer’s Reference CSH (1-SysV)

EXAMPLE

FILES

csh

creates a new C shell which will accept shell commands.

“/.cshrc Read at beginning of execution by each shell.
letc/cshrc Read by login shell, after /cshrc at login.

e&”/.login Read by login shell, after .cshrc at login.

“/.logout Read by login shell, at logout.

/bin/sh ‘Standard shell, for shell scripts not starting with a #.
/tmp/shx Temporary file for <<.

/etc/passwd Source of home directories for "name.

LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 5120 char-
acters. The number of arguments to a command which involves filename expansion is limited
to 1/6th the number of characters allowed in an argument list. Command substitutions may
substitute no more characters than are allowed in an argument list. To detect looping, the
shell restricts the number of alias substitutions on a single line to 20.

SEE ALSO

sh(1), access(2), exec(2), fork(2), pipe(2), signal(2), umask(2), wait(2), environ(5).

An Introduction to the C-Shell, by William Joy.

ERRORS

It suffices to place the sequence of commands in parenthesis to force it to a subshell, i.e., (a
;bjc). ' |

Control over tty output after processes are started is primitive; perhaps this will inspire some-
one to work on a good virtual terminal interface. In a virtual terminal interface much more
interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures
should be provided rather than aliases.

Control structures should be parsed rather than being recognized as built-in commands. This
would allow control commands to be placed anywhere, to be combined with |, and to be
used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. All and
more than one : modifier should be allowed on $ substitutions.

Bourne shell scripts which start with # will be executed by csk unless they use the kernel’s #!
facility, e.g.

#! /bin/shFR

AUTHOR

ORIGIN

William Joy.

43 BSD

MIPS Computer Systems, Inc. February 5, 1989 Page 21

CSPLIT (1-SysV) RISC/os Programmer’s Reference CSPLIT (1-SysV)

NAME
~ csplit — context split
SYNOPSIS .
csplit [=s] [=k] [—f prefix] file argl [. . . argn]
DESCRIPTION
csplit reads file and separates it into n+1 sections, defined by the arguments argl. .. argn.

By default the sections are placed in xx00 ... xxn (n may not be greater than 99). These
sections get the following pieces of file:)

00: From the start of file up to (but not including) the line referenced by argl.
01: From the line referenced by argl up to the line referenced by arg2.

n+1l: From the line referenced by argn to the end of file.
If the file argument is a — then standard input is used.
The options to csplit are:

- csplit normally prints the character counts for each file created. If the =s
option is present, csplit suppresses the printing of all character counts.

-k csplit normally removes created files if an error occurs. If the —k option is
present, csplit leaves previously created files intact.

—f prefix If the —f option is used, the created files are named prefix00 . . . prefixn.
The default is xx00 . . . xxn.

The arguments (argl ... argn) to csplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line up to (but not
including) the line containing the regular expression rexp. The current line
becomes the line containing rexp. This argument may be followed by an
optional + or = some number of lines (e.g., /Page/—5).

Yorexp %o
This argument is the same as /rexp/, except that no file is created for the sec-
tion.

Inno A file is to be created from the current line up to (but not including) Inno.
The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the above arguments. If it
follows a rexp type argument, that argument is applied num more times. If it
follows Inno, the file will be split every Inno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful to the shell
in the appropriate quotes. Regular expressions may not contain embedded new-lines. csplit
does not affect the original file; it is the users responsibility to remove it.

EXAMPLES
csplit —f cobol file '/procedure division/' /par5./ /parl6./

This example creates four files, cobol00 . . . cobol03. After editing the “split” files, they can
be recombined as follows:

cat cobol0[0-3] > file

Note that this example overwrites the original file.

MIPS Computer Systems, Inc. February 5, 1989 . Pagel

CSPLIT (1-SysV) RISC/os Programmer’s Reference CSPLIT (1-SysV)

csplit ~k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The —k option causes
the created files to be retained if there are less than 10,000 lines; however, an error message
would still be printed.

csplit —k prog.c '%main(%’ '/ }/+1 {20}

Assuming that prog.c follows the normal C coding convention of ending routines with a } at
the beginning of the line, this example will create a file containing each separate C routine (up
to 21) in prog.c.
SEE ALSO
ed(1), sh(1). ‘
regexp(5) in the Programmer’s Reference Manual.
DIAGNOSTICS
Self-explanatory except for:
arg — out of range
which means that the given argument did not reference a line between the current position
* and the end of the file. ’

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CT (1-SysV) RISC/os Programmer’s Reference CT (1-SysV)

NAME

ct — spawn getty to a remote terminal

SYNOPSIS

ct[=wn][=xn][=h][=v][—sspeed] telno ...

DESCRIPTION

FILES

ct dials the telephone number of a modem that is attached to a terminal, and spawns a geffy
process to that terminal. telno is a telephone number, with equal signs for secondary dial
tones and minus signs for delays at appropriate places. (The set of legal characters for telno is
0 thru 9, -, =, %, and #. The maximum length telno is 31 characters). If more than one tele-
phone number is specified, ct will try each in success1on until one answers; this is useful for
specifying alternate dialing paths

ct will try each line listed in ‘the file /usr/lib/uucp/Devices until it finds an available line with
appropriate attributes or runs out of entries. If there are no free lines, ¢t will ask if it should
wait for one, and if so, for how many minutes it should wait before it gives up. ct will con-
tinue to try to open the dialers at one-minute intervals until the specified limit is exceeded.
The dialogue may be overridden by specifying the —wn option, where n is the maximum
number of minutes that ct is to wait for a line.

The —xn option is used for debugging; it produces a detailed output of the program execution
on stderr. The debugging level, n, is a single digit; —x9 is the most useful value.

Normally, ¢t will hang up the current line, so the line can answer the incoming call. The =h
option will prevent this action. The =—h option will also wait for the termination of the
specified ct process before returning control to the user’s terminal. If the —v option is used,

‘ct will send a running narrative to the standard error output stream.

The data rate may be set with the =—s option, where speed is expressed in baud. The default
rate is 1200.

After the user on the destination terminal logs out, there are two things that could occur
depending on what type of getty is on the line (getty or uugetty). For the first case, ct
prompts, Reconnect? If the response begins with the letter n, the line will be dropped; other-
wise, getry will be started again and the login: prompt will be printed. In the second case,
there is already a getty (uugetty) on the line, so the login: message will appear.

To log out properly, the user must type control D.

Of course, the destination terminal must be attached to a modem that can answer the tele-
phone.

/usr/lib/uucp/Devices
/usr/adm/ctlog

SEE ALSO

cu(1C), login(1), uucp(1C).
getty(1M), uugetty(1M) in the System Administrator’s Reference Manual.

ERRORS

For a shared port, one used for both dial-in and dial-out, the uugetty program running on the
line must have the —r option specified (see uugetty(1M)).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CTAGS (1-SysV) © RISC/os Programmer’s Reference CTAGS (1-SysV)

NAME

ctags — create a tags file

SYNOPSIS

ctags [=BFatuwvx | [—f ragsfile | name ...

DESCRIPTION

FILES

ctags makes a tags file for ex(1) from the specified C, Pascal, Fortran, YACC, lex, and lisp
sources. A tags file gives the locations of specified objects (in this case functions and
typedefs) in a group of files. Each line of the tags file contains the object name, the file in
which it is defined, and an address specification for the object definition. Functions are
searched with a pattern, typedefs with a line number. Specifiers are given in separate fields on
the line, separated by blanks or tabs. Using the rags file, ex can quickly find these objects

" definitions.

If the —x flag is given, ctags produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable function index.

If the =v flag is given, an index of the form expected by vgrind (1) (currently not supported) is
produced on the standard output. This listing contains the function name, file name, and
page number (assuming 64 line pages). Since the output will be sorted into lexicographic
order, it may be desired to run the output through sort —f. Sample use:

ctags —v files | sort —f > index

vgrind —-x index
Normally ctags places the tag descriptions in a file called tags; this may be overridden with the
-=f option.

Files whose names end in .c or .h are assumed to be C source files and are searched for C
routine and macro definitions. Files whose names end in .y are assumed to be YA CC source
files. Files whose names end in .l are assumed to be either lisp files if their first non-blank
character is ‘;’, ‘(’, or ", or lex files otherwise. Other files are first examined to see if they
contain any Pascal or Fortran routine definitions; if not, they are processed again looking for
C definitions.

Other options are:

-F use forward searching patterns (/.../) (default).
-B use backward searching patterns (?...7).

-2 append to tags file.

-t create tags for typedefs.

—W suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is, all references to
them are deleted, and the new values are appended to the file. (Beware:
this option is implemented in a way which is rather slow; it is usually
faster to simply rebuild the rags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M
to the name of the file, with a trailing .c removed, if any, and leading pathname components
also removed. This makes use of crags practical in directories with more than one program.

tags output tags file

SEE ALSO

ex(1), vi(1)

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CTAGS (1-SysV) RISC/os Programmer’s Reference CTAGS (1-SysV)

AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and —x, replacing
cxref; C typedefs added by Ed Pelegri-Llopart.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

CTRACE (1-SysV) RISC/os Programmer’s Reference CTRACE (1-SysV)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options] [file]
DESCRIPTION

The ctrace command allows you to follow the execution of a C program, statement-by-
statement. The effect is similar to executing a shell procedure with the —x option. ctrace
reads the C program in file (or from standard input if you do not specify file), inserts state-
ments to print the text of each executable statement and the values of all variables referenced
or modified, and writes the modified program to the standard output. You must put the out-
. put of ctrace into a temporary file because the cc(l) command does not allow the use of a
pipe. You then compile and execute this file. As each statement in the program executes it
will be listed at the terminal, followed by the name and value of any variables referenced or
modified in the statement, followed by any output from the statement. Loops in the trace
output are detected and tracing is stopped until the loop is exited or a different sequence of
statements within the loop is executed. A warning message is printed every 1000 times
through the loop to help you detect infinite loops. The trace output goes to the standard out-
put so you can put it into a file for examination with an editor or the bfs(I) or tail(1) com-

‘mands. The options commonly used are:

—f functions Trace only these functions.

—v functions Trace all but-these functions. You may want to add to the default formats for
printing variables. Long and pointer variables are always printed as signed
integers. Pointers to character arrays are also printed as strings if appropriate.
Char, short, and int variables are also printed as signed integers and, if
appropriate, as characters. Double variables are printed as floating point
numbers in scientific notation. You can request that variables be printed in
additional formats, if appropriate, with these options:

-0 Octal

-X Hexadecimal

-u Unsigned

- Floating point These options are used only in special circumstances:

-=ln Check n consecutively executed statements for looping trace output, instead of the

default of 20. Use 0 to get all the trace output from loops.
-s Suppress redundant trace output from simple assignment statements and string copy
function calls. This option can hide a bug caused by use of the = operator in place of
the == operator. A

=t n Trace n variables per statement instead of the default of 10 (the maximum number is
20, which is silently enforced). The Diagnostics section explains when to use this
option.

=P Run the C preprocessor on the input before tracing it. You can also use the =D, =I,

and =U cpp(1) options. These options are used to tailor the run-time trace package
when the traced program will run in a non-UNIX System environment:

=b Use only basic functions in the trace code, that is, those in ctype(3C), prinitf(3S), and

string(3C). These are usually available even in cross-compilers for microprocessors.
In particular, this option is needed when the traced program runs under an operating
system that does not have signal(2) or setjmp(3C).
—=p string’
Change the trace print function from the default of ’printf(’. For example,
"fprintf(stderr,” would send the trace to the standard error output.

—rf Use file f in place of the runtime.c trace function package. This lets you change the
entire print function, instead of just the name and leading arguments (see the —p
option).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CTRACE (1-SysV) RISC/os Programmer’s Reference CTRACE (1-SysV)

EXAMPLE

Page 2

If the file Ic.c contains this C program:

1 #include <stdio.h>

2 main() /% count lines in input %/
34

4 int ¢, nl;

5

6 nl = 0;

7 while ((c = getchar()) != EOF)

8 if (c = "\n’)

9 ++nl;

10 printf("%d\n", nl);

11}
and you enter these commands and test data:

cclc.c
a.out

1
(cntl-d)

the program will be compiled and executed. The output of the program will be the number 2,
which is not correct because there is only one line in the test data. The error in this program
is common, but subtle. If you invoke ctrace with these commands:

ctrace Ic.c >temp.c
cc temp.c

a.out

the output will be:

2 main()
6 nl = 0;
/xnl == 0 +/

7 while ((c = getchar()) != EOF)

The program is now waiting for input. If you enter the same test data as before, the output
will be:

[xc==49 or’1’ «/

8 if (c =’\n’%)
/¥ ¢ == 10 or \n’ %/
9 ++nl;
[xnl==1+/

7 while ((c = getchar()) != EOF)
/x ¢ ==10 or \n’ +/

8 if (c =’\n")
/¥ ¢ ==10 or \n’ +/
9 ++nl;
/xnl ==2 +/

7 while ((c = getchar()) != EOF)

February 5, 1989 MIPS Computer Systems, Inc.

CTRACE (1-SysV) RISC/os Programmer’s Reference CTRACE (1-SysV)

If you now enter an end of file character (cntl-d) the final output will be:

/% c==-13x/

10 printf("%d\n", nl);
/xnl == 2 /2
return '

Note that the program output printed at the end of the trace line for the ml variable. Also
note the return comment added by cirace at the end of the trace output. This shows the
implicit return at the terminating brace in the function. The trace output shows that variable ¢
is assigned the value ’1’ in line 7, but in line 8 it has the value "\n’. Once your attention is
drawn to this if statement, you will probably realize that you used the assignment operator (=)
in place of the equality operator (==). You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL

The default operation for ctrace is to trace the entire program file, unless you use the =f or
=y options to trace specific functions. This does not give you statement-by-statement control
of the tracing, nor does it let you turn the tracing off and on when executing the traced pro-
gram. You can do both of these by adding ctroff() and ctron() function calls to your program
to turn the tracing off and on, respectively, at execution time, Thus, you can code arbitrarily
complex criteria for trace control with if statemerts, and you can even conditionally include
this code because ctrace defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (c =="1 && i > 1000)
ctron();
#endif

You can also call these functions from sdb(1) (currently not supported) if you compile with
the =g option, For example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r .

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and 1, respectively.
This is useful if you are using a debugger that cannot call these functions directly.

DIAGNOSTICS
This section contains diagnostic messages from both ctrace and cc(1), since the traced code
often gets some cc warning messages. You can get cc error messages in some rare cases, all of
which can be avoided.

Ctrace Diagnostics

warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent the C compiler "out of tree
space; simplify expression" error. Use the —t option to increase this number.

warning: statement too long to trace
This statement is over 400 characters long. Make sure that you are using tabs to
indent your code, not spaces.

cannot handle preprocessor code, use —P option
This is usually caused by #ifdef/#endif preprocessor statements in the middle of a C
statement, or by a semicolon at the end of a #define preprocessor statement.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CTRACE (1-SysV) RISC/os Programmer’s Reference CTRACE (1-SysV)

if ... else if’ sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try —P option
Use the —P option to preprocess the ctrace input, along with any appropriate =D, =1,
and —U preprocessor options. If you still get the error message, check the Warnings
section below.

Cc Diagnostics
warning: illegal combination of-pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.
compiler takes size of function
See the ctrace "possible syntax error" message above.
yacc stack overflow
See the ctrace "if ... else if’ sequence too long" message above.
out of tree space; szmplzfy expresszon
Use the —t option to reduce the number of traced variables per statement from the

default of 10. Ignore the "ctrace: too many variables to trace" warnings you will now
get.

redeclaration of signal :
Either correct this declaration of signal(2), or remove it and #include <signal.h>.

SEE ALSO

signal(2), ctype(3C), fclose(3S), printf(3S), setjmp(3C), string(3C).
bfs(1), tail(1) in the User’s Reference Manual.

WARNINGS

You will get a ctrace syntax error if you omit the semicolon at the end of the last element
declaration in a structure or union, just before the right brace (}). This is optional in some C
compilers. Defining a function with the same name as a system function may cause a syntax
error if the number of arguments is changed. Just use a different name. ctrace assumes that
BADMAG is a preprocessor macro, and that EOF and NULL are #defined constants.
Declaring any of these to be variables, e.g., "int EOF;", will cause a syntax error.

ERRORS

FILES

Page 4

ctrace does not know about the components of aggregates like structures, unions, and arrays.
It cannot choose a format to print all the components of an aggregate when an assignment is
made to the entire aggregate. ctrace may choose to print the address of an aggregate or use
the wrong format (e.g., 3.149050e-311 for a structure with two integer members) when printing
the value of an aggregate. Pointer values are always treated as pointers to character strings.
The loop trace output elimination is done separately for each file of a multi-file program. This
can result in functions called from a loop still being traced, or the elimination of trace output
from one function in a file until another in the same file is called. The user must declare gets(
) as char sgets() or include <stdio.h>.

lusr/lib/ctrace/runtime.c run-time trace package

February 5, 1989 MIPS Computer Systems, Inc.

CU (1-SysV)

NAME

RISC/os Programmer’s Reference CU(1—SysV)

cu — call another UMIPS-V system or UNIX system

SYNOPSIS

ca [—sspeed | [=lline] [=h][=t][=~d][=o0 | —e][=n] telno
ca|[=sspeed |[=h][=d][=0 |=e] =—1line
cu[=h][=d][=o | —e] systemname

DESCRIPTION

cu calls up another UMIPS-V-or a UNIX system, a terminal, or possibly a non-UNIX system.
It manages an interactive conversation with possible transfers of ASCII files.

cu accepts the following options and arguments:

—sspeed

=lline

bl 2

telno

systemname

Specifies the transmission speed (300, 1200, 2400, 4800, 9600); The
default value is "Any" speed which will depend on the order of the lines
in the /usr/lib/uucp/Devices file. Most modems are either 300 or 1200
baud. Directly connected lines may be set to a speed higher than 1200
baud.

Specifies a device name to use as the communication line. This can be
used to override the search that would otherwise take place for the first
available line having the right speed. When the =1 option is used without
the —s option, the speed of a line is taken from ‘the Devices file. When
the =1 and ~s options are both used together, cu will search the Dev-
ices file to check if the requested speed for the requested line is avail-
able. If so, the connection will be made at the requested speed; other-
wise an error message will be printed and the call will not be made. The
specified device is generally a directly connected asynchronous line (e.g.,
/dev/ttyab) in which case a telephone number (felno) is not required.
The specified device need not be in the /dev directory. If the specified
device is-associated with an auto dialer, a telephone number must be
provided. Use of this option with systemname rather than telno will not
give the desired result (see systemname below).

Emulates local echo, supporting calls to other computer systems which
expect terminals to be set to half-duplex mode.

Used to dial an ASCII terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed pairs
is set.

Causes diagnostic traces to be printed.

Designates that odd parity is to be generated for data sent to the remote
system.

For added security, will prompt the user to provide the telephone
number to be dialed rather than taking it from the command line.

Designates that even parity is to be generated for data sent to the remote
system.

When using an automatic dialer, the argument is the telephone number
with equal signs for secondary dial tone or minus signs placed appropri-
ately for delays of 4 seconds.

A uucp system name may be used rather than a telephone number; in
this case, cu will obtain an appropriate direct line or telephone number
from /usr/lib/uucp/Systems. Note: the systemname option should not
be used in conjunction with the =1 and =s options as cu will connect to

MIPS Computer Systems, Inc. February 5, 1989 Page 1

CU (1-SysV) RISC/os Programmer’s Reference CU(1-SysV)

Page 2

the first available line for the system name specified, ignoring the
requested line and speed. After making the connection, cu runs as two
processes: the transmit process reads data from the standard input and,
except for lines beginning with , passes it to the remote system; the
receive process accepts data from the remote system and, except for
lines beginning with , passes it to the standard output. Normally, an
automatic DC3/DC1 protocol is used to control input from the remote
so the buffer is not overrun. Lines beginning with have special mean-
ings.

The transmit process interprets the following user initiated commands:

terminate the conversation.

! escape to an interactive shell on the local system.

Iemd. .. run cmd on the local system (via sh —c).

$cmd. . . run cmd locally and send its output to the remote system.

%cd change the directory on the local system. Note: !ed will cause the com-

mand to be run by a sub-shell, probably not what was intended.

%take from [to] copy file from (on the remote system) to file o on the local system. If
to is omitted, the from argument is used in both places.

%put from [to] copy file from (on.local system) to file o on remote system. If fo is
omitted, the from argument is used in both places.

For both %take and put commands, as each block of the file is
transferred, consecutive single digits are printed to the terminal.

line send the line line to the remote system.
%break transmit a BREAK to the remote system (which can also be specified as
%b).
%debug toggles the -d debugging option on or off (which can also be specified as
%d). A
t prints the values of the termio structure variables for the user’s terminal

(useful for debugging).

1 prints the values of the termio structure variables for the remote com-
munication line (useful for debugging).

%onostop toggles between DC3/DC1 input control protocol and no input control.
This is useful in case the remote system is one which does not respond
properly to the DC3 and DC1 characters.

The receive process normally copies data from the remote system to its standard output. Inter-
nally the program accomplishes this by initiating an output diversion to a file when a line from
the remote begins with .

Data from the remote is diverted (or appended, if >> is used) to file on the local system.
The trailing > marks the end of the diversion.

The use of %put requires sity(1) and cat(1) on the remote side. It also requires that the
current erase and kill characters on the remote system be identical to these current control
characters on the local system. Backslashes are inserted at appropriate places.

The use of %take requires the existence of echo(1) and cat(1) on the remote system. Also,
tabs mode (See stty(1)) should be set on the remote system if tabs are to be copied without
expansion to spaces.

February 5, 1989 MIPS Computer Systems, Inc.

CU (1-SysV) RISC/os Programmer’s Reference CU (1-SysV)

When cu is used on system X to connect to system Y and subsequently used on system Y to
connect to system Z, commands on system Y can be executed by using . Executing a tilde
command reminds the user of the local systemn uname. For example, uname can be executed
on Z, X, and Y as follows:

uname

N

[X]'uname
X .
[Y]luname
Y

In general, causes the command to be executed on the original machine, causes the com-
mand to be executed on the next machine in the chain.

EXAMPLES

FILES

To dial a system whose telephone number is 9 201 555 1212 using 1200 baud (where dialtone is
expected after the 9):
cu —-s1200 9=12015551212

If the speed is not specified, "Any" is the default value.

To login to a system connected by a direct line:
cu -1 /dev/ttyXX

or
cu —1 ttyXX

To dial a system with the specific line and a specific speed:
cu -s1200. -1 ttyXX

To dial a system using a specific line associated with an auto dialer:
cu -1 culXX 9=12015551212

To use a system name:
cu systemname

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices
/usr/spool/locks/LCK..(tty-device)

SEE ALSO

cat(1), ct(1C), echo(1), stty(1), uucp(1C), uname(1).

DIAGNOSTICS

Exit code is zero for normal exit, otherwise, one.

WARNINGS

The cu command does not do any integrity checking on data it transfers. Data fields with spe-
cial cu characters may not be transmitted properly. Depending on the interconnection
hardware, it may be necessary to use a . to terminate the conversion even if stty 0 has been
used. Non-printing characters are not dependably transmitted using either the %put or
%take commands. cu between an IMBR1 and a penril modem will not return a login prompt
immediately upon connection. A carriage return will return the prompt.

ERRORS

There is an artificial slowing of transmission by cu during the %put operation so that loss of
data is unlikely.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

CUT (1-SysV)

"RISC/os Programmer’s Reference - CUT (1-SysV)

Use cut to cut out columns from a table or fields from each line of a file; in data base par-
lance, it implements the projection of a relation. The fields as specified by list can be fixed
length, i.e., character positions as on a punched card (=—c option) or the length can vary from
line to line and be marked with a field delimiter character like tab (—f option). cut can be
used as a filter; if no files are given, the standard input is used. In addition, a file name of

A comma-separated list of integer field numbers (in increasing
order), with optional = to indicate ranges [e.g., 1,4,7; 1-3,8;
—=5,10 (short for 1=5,10); or 3= (short for third through last

The list following —¢ (no space) specifies character positions (e.g.,
—c1="72 would pass the first 72 characters of each line).

The list following —f is a list of fields assumed to be separated in
the file by a delimiter character (see =—d); e.g., —f1,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless =—s is
specified.

The character following =d is the field delimiter (—f option only).
Default is tab. Space or other characters with special meaning to
the shell must be quoted.

Suppresses lines with no delimiter characters in case of —f option.
Unless specified, lines with no delimiters will be passed through
untouched.

Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1) to put files
together column-wise (i.e., horizontally). To reorder columns in a table, use cut and paste.

cut —d: —f1,5 /etc/passwd mapping of user IDs to names

to set name to current login name.

NAME

cut — cut out selected fields of each line of a file
SYNOPSIS

cut —clist [file ...]

cut —flist [—d char] [—s] [file ...]
DESCRIPTION

“=? explicitly refers to standard input.

The meanings of the options are:

list

field)].

—~clist

~flist

—dchar

-S

Either the —c or —f option must be specified.
EXAMPLES

name=who am i | cut -f1 -d" "
DIAGNOSTICS

ERROR: line too long

A line can have no more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for c/f option
Missing =—c or =f option or incorrectly specified list. No error occurs if a line has fewer fields

than the list calls for.

ERROR: no fields
The list is empty.

ERROR: no delimeter

MIPS Computer Systems, Inc.

February 14, 1989 Page 1

CUT (1-SysV) RISC/os Programmer’s Reference CUT (1-SysV)

Missing char on —d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed correctly.

WARNING: cannot open <filename>
Either filename cannot be read or does not exist. If multiple filenames are present, prcessing
continues.

SEE ALSO)
grep(1), paste(1).

Page 2 February 14, 1989 MIPS Computer Systems, Inc.

CXREF (1-SysV) RISC/os Programmer’s Reference CXREF (1-SysV)

NAME
cxref — generate C program cross-reference
SYNOPSIS
cxref | options] files
DESCRIPTION
The cxref command analyzes a collection of C files and attempts to build a cross-reference
table. cxref uses a special version of ¢pp to include #define’d information in its symbol table.
It produces a listing on standard output of all symbols (auto, static, and global) in each file
separately, or, with the —c option, in combination. Each symbol contains an asterisk (x)
before the declaring reference.
In addition to the =D, —I and —U options [which are interpreted just as they are by cc(1) and
cpp (1)), the following options are interpreted by cxref:
-c Print a combined cross-reference of all input files.
—-w<num> Width option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is
less than 51.
—o file Direct output to file.
-s Operate silently; do not print input file names.
-t Format listing for 80-column width.
FILES
LLIBDIR usually /usr/lib
LLIBDIR/xcpp special version of the C preprocessor.
SEE ALSO '
cc(1), cpp(1).
DIAGNOSTICS

Error messages are unusually cryptic, but usually mean that you cannot compile these files.

ERRORS
cxref considers a formal argument in a #define macro definition to be a declaration of that

symbol. For example, a program that #includes ctype.h, will contain many declarations of the
variable c.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DATE (1-SysV) RISC/os Programmer’s Reference DATE (1-SysV)

NAME

date - print and set the date
SYNOPSIS

date [mmddhhmm(yy]] | +format]
DESCRIPTION

If no argument is given, or if the argument begins with +, the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day
number in the month; kA is the hour number (24 hour system); the second mm is the minute
number; yy is the last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT. date takes care of the conversion to and from local standard and
daylight time. Only the superuser may change the date.

If the argument begins with +, the output of date is under the control of the user. All output
fields are of fixed size (zero padded if necessary). Each field descriptor is preceded by % and
will be replaced in the output by its corresponding value. A single % is encoded by %%. All
other characters are copied to the output without change. The string is always terminated with
a new-line character.

Field Descriptors:

insert a new-line character
insert a tab character

month of year — 01 to 12

day of month - 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour - 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:S$

day of year — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

T g HnZmO<ay "5

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H: %M:%S'
would have generated as output:
DATE: 08/01/76

TIME: 14:45:05
DIAGNOSTICS
No permission if you are not the super-user and you try to change the date;
bad conversion if the date set is syntactically incorrect; :

bad format character if the field descriptor is not recognizable.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DATE (1-SysV) RISC/os Programmer’s Reference DATE (1-SysV)

FILES
/dev/kmem
WARNING
Should you need to change the date while the system is running multi-user, use sysadm(1)
datetime. A
SEE ALSO
sysadm(1).

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

NAME
dbx - source-level debugger

SYNOPSIS
dbx [~I directory] [—c file] [i] [-1] [-pixie] [object] [core]

DESCRIPTION .
Dbz, a source-level debugger, runs under UMIPS-BSD (4.3 BSD) and UMIPS-V (V.3) versions
of the operating system. It can handle UMIPS-V shared libraries. This enhanced version of
dbx works with cc(1), f77(1), pc(1), as(1), and MIPS machine code.
The object file used with the debugger is produced by specifying an appropriate option (usually
—g) to the compiler. The resulting object file contains symbol table information, including
the names of all source files that the compiler translated to create the object file. These
source files are accessible from the debugger. If —g is not specified, limited debugging is pos-
sible. ,
If a core file exists in the current directory or a coredump file is specified, dbx can be used to
look at the state of the program when it faulted.

Running dbx

If a .dbxinit file resides in the current directory or in the user’s home directory, the commands
in it are executed when dbx is invoked. '

When invoked, dbx recognizes these command line options:

=1 directory or =Idirectory
Tells dbx to look in the specified directory for source files. Multiple directories can
be specified by using multiple —I options. Dbx searches for source files in the current
directory and in the object file’s directory whether or not —I is used.

—c file Selects a command file other than .dbxinit.

=i Uses interactive- mode. This option does not treat #s as comments in a file. It
prompts for source even when it reads from a file. With this option, dbx also has
extra formatting as if for a terminal.

-r Runs the object file immediately.

—pixie Uses pixie output. The executable must be ‘executable.pixie’, and the non-pixie exe-
cutable must be in the same directory as the pixie executable.

—prom Permits debugging in the standalone environment when using the MIPS System
Programmer’s Package. For more information, refer to the System Programmer’s
Package Reference manual.

—sable Permits debugging programs running under the processor simulator when the MIPS
System Programmer’s Package.

The dbx monitor offers powerful command line editing. For a full descripfion of these
emacs-style editing features, see csh(l).

Multiple commands can be specified on the same command line by separating them with a
semicolon (;). If the user types a string and presses the stop character (usually "z; see stty(1)
), dbx tries to complete a symbol name from the program that matches the string.

dbx can also run under emacs as inferior, which means under this mode, dbx is controlled by
emacs and communicates with emacs. When in emacs, command M-x dbx starts’ dbx and will
prompt you for filename to be debugged. In MIPS environment, the following keys are bound
to commonly used dbx commands: M-n, M-s, M-i, M-u, M-d, C-c C-f, C-x space represents
for next, step, stepi, up, down, finish, set breakpoint at current line respectively. Note that in

MIPS Computer Systems, Inc. February 6, 1989 ‘ Page 1

DBX (1) RISC/os Programmer’s Reference DBX(1)

emacs, M-x usually means esc-x, C-x means ctl-x. In emacs you can define your own key bind-
ing.

The Monitor
These commands control the dbx monitor:
![string] [integer] [—integer]
Specifies a command from the history list.

help Prints a list of dbx commands, using the UNIX system more command to display the
list.

history Prints the items from the history list. The default if 20.
quit[!] Exit dbx after verification. If ! is specified, verification isn’t required.

Controlling dbx
alias [name(argl,...argN)"string"]
Lists all existing aliases, or, if an argument is specified, defines a new alias.

unalias alias command_name
Removes the specified alias.

delete expressionl, ...expressionN

delete all _
Deletes the specified item from the status list. The argument all deletes all items
from the status list.

playback input [file]
Replays commands that were saved with the record input command in a text file.

playback output [file]
Replays debugger output that was saved with the record output command.

record input [file]
Records all commands typed to dbx.

record output [file]
Records all dbx output.

sh [shell command)
Calls a shell from dbx or executes a shell command.

status Lists currently set stop, record, and trace commands.

tagvalue (tagname)
Returns the value of ragname. If the tags extends to more than one line, or if it con-
tains arguments, an error occurs. tagvalue can be used in any expression.

set [variable = expression]
Lists existing debugger variables and their values. This command can also be used to
assign a new value to an existing variable or to define a new variable.

unset variable
Removes the setting of a specified debugger variable.

Examining Source
Iregular expression
Searches ahead in the source code for the regular expression.

?regular expression
Searches back in the source code for the regular expression.

Page 2 February 6, 1989 MIPS Computer Systems, Ine.

DBX (1 RISC/os Programmer’s Reference DBX (1
g

edit [file]
Calls an editor from dbx.

file [file] Prints the current file name, or, if a file name is specified, this command changes the
current file to the specified file.

func [expression] [procedure)
Moves to the specified procedure (activation level), or, if an expression or procedure
isn’t specified, prints the current activation level.

list [expression:integer]

list [expression]
Lists the specified lines. The default is 10 lines.

tag tagname
Sets the current file/line to the location specified by tagname. Operations are similar
to the tag operations in vi(1).

use [directoryl ... directoryN] :
Lists source directories, or, if a directory name is specified, this command substitutes
the new directories for the previous list.

whatis variable ‘
Prints the type declaration for the specified name.

which variable
Finds the variable name currently being used.

whereis variable
Prints all qualifications (the scopes) of the specified variable name.

Controlling Programs
assign expressionl = expression2
Assigns the specified expression to a specified program variable.
[n] cont [signal]
cont [signal] to line
cont [signal] in procedure
Continues executing a program after a breakpoint. »n breakpoints are ignored if n is

specified before stepping; If specified, signal is delivered to the processing being
debugged.

goto line
Goes to the specified line in the source.

next [integer]
Steps over the specified number of lines. The default is one. This command does
not step into procedures.

rerun [argl ... argN) [<filel][>file2]

rerun [argl ... argN] [<filel] [> &file2]
Reruns the program, using the same arguments that were specified to the run com-
mand. If new arguments are specified, rerun uses those arguments.

run [argl ... argN] [<fileI] [>file2]
run [argl ... argN] [<filel] [> &file2]
Runs the program with the specified arguments.

return [procedure)
Continues executing until the procedure returns. If a procedure isn’t specified, dbx

MIPS Computer Systems, Inc. February 6, 1989 Page 3

DBX (1) RISC/os Programmer’s Reference DBX (1)

assumes the next procedure.

step [integer]
Steps the specified number of lines. This command steps into procedures. The
default is one line.

Setting Breakpoints
catch [signal]
Lists all signals that dbx catches, or, if an argument is specified, adds a new signal to
the catch list.
ignore [signal]
Lists all signals that dbx does not catch. If a signal is specified, this command adds
the signal to the ignore list.

stop [variable]
stop [variable] at line [if expression]
stop [variable] in procedure [if expression]

stop [variable] if expression
Sets a breakpoint at the specified point.

trace variable [at line [if expression]

trace variable [in procedure: [if expression)
Traces the specified variable.

when [variable] [at line] {command_list}

when [variable] [in procedure] {command_list}
Executes the specified dbx comma separated command list.

Examining Program State
dump [procedure)] [.]
Prints variable information about the procedure. If a dot (.) is specified, this com-
mand prints global variable information on all procedures in the stack and the vari-
ables of those procedures.

down [expression]
Moves down the specified number of activation levels in the stack. The default is
one level.

up [expression]
Moves up the specified number of activation levels on the stack. The default is one.

print expressionl,...expressionN
Prints the value of the specified expression. If expression is a dbx keyword, it must
be enclosed within parentheses. For example, to print out a variable called ’output’
(which is also a variable in the playback and record commands) you must type: print
(output)

printf "string", expressionl,.. expresszonN
Prints the value of the specified express1on using C language string formattmg Asin
the print command, if expression is a dbx keyword, you must enclose it within
parentheses.

printregs
Prints all register values.

where Does a stack trace, which shows the current activation levels.

Page 4 February 6, 1989 MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

where n Prints out only the top n levels of the stack.

Debugging at the Machine Level
[] conti [signal]

conti [signal] to address

conti [signal] in procedure
Continues executing assembly code after a breakpoint. » breakpoints are ignored if n
is specified before stepping; If specified, signal is delivered to the processing being
debugged.

nexti [integer| ‘
Steps over the specified number of machine instructions. The default is one. This
command does not step into procedures.

stepi [integer]
Steps the specified number of machine instructions. This command steps into pro-
cedures. The default is one instruction.

stopi [variable] at address [at address [if expression]
stopi [variable] in procedure [if expression]

stopi [variable] if expression
Sets a breakpoint in the machine code at the specified point.

tracei variable at address [at address if expression]

tracei variable in procedure [at address if expression]
Traces the specified variable in machine instructions.

wheni [variable] [at address] {command_list}

wheni [variable] [in procedure] {command_list}
Executes the specified dbx comma separated command list.

address[?]/<count><mode>
Searching forward (or backward, if ? is specified,) prints the contents address or
disassembles the code for the instruction address; count is the number of items to be
printed at the specified address. mode'is one of the characters in the following table
producing the indicated result:

Print a short word in decimal

Print a long word in decimal

Print a short word in octal

Print a long word in octal

Print a short word in hexadecimal
Print a long word in hexadecimal
Print a byte in octal

Print a byte as a character

Print a string of characters that ends in a null
Print a single precision real number
Print a double precision real number
Print machine instructions

Prints data in typed format.

address/<countL><value><mask> :
Searches for a 32-bit word starting at the specified address; count specifies the
number of word to process in the search; an address is printed when the the word at

Bm om0 TMNX OO0 O

MIPS Computer Systems, Inc. February 6, 1989 Page 5

DBX(1) RISC/os Programmer’s Reference DBX (1)

address, after an AND operation with mask, is equal to value.

Predefined dbx Variables
The debugger has these predefined variables:

$addrfmt
Specifies the format for addresses. This can be set any specification that a C printf
statement can format. The default is zero.

$byteaccess !
Same as $addrfmt.

$casesense
When set to a nonzero value, specifies that uppercase and lowercase letters be taken
into consideration during a search. When set to 0, the case is ignored. The default is
0,

$curevent
Shows the last even number as seen in the status feature. Set only by dbx.
$curline Specifies the current line. Set only by dbx.

$cursrcline ‘
Shows the last line listed plus 1. Set only by DBX

$curpc Specifies the current address. Used with the wi and /i aliases.

$datacache
Caches information from the data space so that dbx must access data space only
once. To debug the operating system, set this variable to 0; otherwise, set it to a
nonzero value. The default is 1.

. $debugflag
For internal use by dbx.

$defin For internal use by dbx.
$defout For internal use by dbx.

$dispix For use when debugging pixie code. When set to 0, machine code is show while
debugging. When set to 1, pixie code is shown. The default is 0.

$hexchars
Output characters are printed in hexadecimal format (set, unset).

$hexin Specifies that input constants are hexadecimal.

$hexints
When set to a nonzero value, changes the default output constants to hexadecimal.
Overrides Joctints.

$hexstrings .
When set to 1, specifies that all strings are printed in hexadecimal; when set to 0,
strings are printed in character format.

$historyevent
Shows the current history line.

$lines number of lines for history. The default is 20

$listwindow
Specifies how many lines the /ist command prints.

$main Specifies the name of the procedure that dbx will start with. This can be set to any
procedure. The default is "main"”

Page 6 ' February 6, 1989 MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

$maxstrlen
Specifies how many characters of a string that dbx prints for pointers to strings. The
default is 128.

$octin When set to non-zero, changes the default input constants to octal. When set, $hex-
int overrides this setting.

$octints Output integers are printed octal format (set, unset).

$page Specifies whether to page long information.! A nonzero value turns on paging; a 0
turns it off. The default is 1.

$pagewindow
Specifies how many lines print when information runs longer than one screen. This
can be changed to match the numbeér of lines on any terminal. If set to 0, this vari-
able assumes one line. The default is 22, leaving space for continuation query).

$pdbxport
port name from /etc/remote[.pdbx] used to connect to target machine for pdbx

$printwhilestep
For use with the step[n] and stepi[n] instructions. A non-zero integer specifies that
all n lines and/or instructions should be printed out. A zero specifies that only the
last line and/or instruction should be printed out. The default is zero.

$pimode
Prints input when used with the playback input command. The default is O.

$printdata
When set to a nonzero value, the contents of registers used are printed next to each
instruction displayed. The default is 0.

$printwide
When se to a nonzero value, the contents of variables are printed in a horizontal for-
mat. The default is 0.

$prompt
Sets the prompt for dbx.

$readtextfile
When set to 1, dbx tries to read instructions from the object file rather than the pro-
cess. dbx executes faster when debugging remotely using the System Programmer’s
Package. This variable should always be set to 0 when the process being debugged
copies in code during the debugging process. The default is 1.

$regstyle
A zero value causes registers to be printed out in their normal r format (r0,rl1,...r31).
A nonzero value causes the registers to be printed out in a special format (zero, at,

v0, v1,...) commonly used in debugging programs written in assembly language. The
default is 0.

$repeatmode
When set to a nonzero value, after pressing the RETURN key (for an empty line),
the last command is repeated. The default is 1.

$rimode
When set to a nonzero value, input will is recorded while recording output . The
default is 0.

$sigtramp
Tells dbx the name of the code called by the system to invoke user signal handlers.
This variable is set to sigvec for UMIPS-BSD and to sigtramp for UMIPS-V

MIPS Computer Systems, Inc. February 6, 1989 Page 7

DBX (1)

$tagfile

RISC/os Programmer’s Reference DBX (1)

Contains a filename, indicating the file in which the tag command and the tabvalue
_macro are to search for tags.

Predefined dbx Aliases
The debugger has these predefined aliases:

Page 8

?

a

a6

e M Y ™R O

nors

ni or Si

pd
pi

po
pr

ro

si

Prints a list of all dbx commands.

Assigns a value to a program variable.

Sets a breakpoint at a specified line.

Stops in a specified procedure.

Continues program execution after a breakpoint.

Deletes the specified item from the status list.

Looks at the specified file.

Moves to the specified activation level on the stack.

Goes to thek specified line and begins executing the program there.
Lists all items currently on the history list.

Shows what items are on the status list.

Lists the next 10 lines of source code.

Lists the next 10 machine instructions.

Step over the specified number of lines without stepping into procedure calls.

Step over the specified number of assembly code instructions without stepping into
procedure calls.

Prints the value of the specified expression or variable.

Prints the value of the specified expression or variable in decimal.
Replays dbx commands that were saved with the record input command.
Prints the value of the specified expression or variable in octal.

Prints values for all registers. px Prints the value for the specified variable or expres-
sion in hexadecimal. :

Ends the debugging session.

Runs the program again with the same arguments that were specified with the run
command.

Records in a file every command typed.

Records all debugger output in the specified file.

Steps the next number of specified lines.

Steps the next number of specified lines of assembly code instructions.
Does a stack trace.

Lists the previous 10 lines.

Lists the 5 lines preceding and following the current line.

Lists the 10 lines preceding and following the current line.

Lists the 5 machine instructions preceding and following the machine instruction.

February 6, 1989 MIPS Computer Systems, Inc.

DBX (1)

SEE ALSO

RISC/os Programmer’s Reference

MIPS Languages Programmer Guide .

MIPS Computer Systems, Inc.

February 6, 1989

DBX (1)

Page 9

DC (1-SysV) RISC/os Programmer’s Reference DC(1-SysV)

NAME
dc — desk calculator

SYNOPSIS
dc [file]

DESCRIPTION

dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but
one may specify an input base, output base, and a number of fractional digits to be main-
tained. (See bc(1), a preprocessor for dc that provides infix notation and a C-like syntax that
implements functions. Bc also provides reasonable control structures for programs.) The
overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input
is taken from that file until its end, then from the standard input. The following constructions
are recognized:

number A :
The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an underscore (_) to input a negative number.
Numbers may contain decimal points.

+=-/+%
The top two values on the stack are added (+), subtracted (=), multiplied (x), divided
(/), remaindered (%), -or exponentiated (7). The two entries are popped off the stack;
the result is pushed on the-stack in their place. Any fractional part of an exponent is
ignored.

sx The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

Lx The value in register x is pushed on the stack. The register x is not altered. All regis-
ters start with zero value. If the 1 is capitalized, register x is treated as a stack and its
top value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.
Interprets the top of the stack as an A SCII string, removes it, and prints it.
All values on the stack are printed.

Exits the program. If executing a string, the recursion level is popped by two.

oL ™ =T a

Exits the program. The top value on the stack is popped and the string execution level
is popped by that value.

X Treats the top element of the stack as a character string and executes it as a string of dc
commands.

X Replaces the number on the top of the stack with its scale factor.
[...] Puts the bracketed ASCII string onto the top of the stack.

<X >x =x
The top two elements of the stack are popped and compared. Register x is evaluated if
they obey the stated relation.

v Replaces the top element on the stack by its square root. Any existing fractional part
of the argument is taken into account, but otherwise the scale factor is ignored.

! Interprets the rest of the line as a UNIX system command.
c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DC (1-SysV) RISC/os Programmer’s Reference DC (1-SysV)

Pushes the input base on the top of the stack.
The top value on the stack is popped and used as the number radix for further output.
Pushes the output base on the top of the stack.

= o o ™

The top of the stack is popped, and that value is used as a non-negative scale factor:
the appropriate number of places are printed on output, and maintained during multi-

- plication, division, and exponentiation. The interaction of scale factor, input base, and
output base will be reasonable if all are changed together.

z The stack level is pushed onto the stack.
z Replaces the number on the top of the stack with its length.
? A line of input is taken from the input source (usually the terminal) and executed.
;e are used by bc(1) for array operations.
EXAMPLE -
This example prints the first ten values of n!:

[la1+dsasplal0>y]sy
0Osal
lyx
SEE ALSO
be(1).

DIAGNOSTICS
x is unimplemented
where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space :
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

Page 2 February 5, 1989 MIPS Computer Systems, Inc.

DELTA (1-SysV) RISC/os Programmer’s Reference DELTA (1-SysV)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [—rSID] [—s] [—n] [—glist] [=m[mrlist]] [=y[comment]] [—p] files

DESCRIPTION
delta is used to permanently introduce into the named SCCS file changes that were made to
the file retrieved by ger(1) (called the g-file, or generated file).

delta makes a delta to each named SCCS file. If a directory is named, delta behaves as though
each file in the directory were specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unreadable files are silently ignored. If a
name of = is given, the standard input is read (see WARNINGS); each line of the standard
input is taken to be the name of an SCCS file to be processed.

delta may issue prompts on the standard output depending upon certain keyletters specified
and flags [see admm(l)] that may be present in the SCCS file (see =m and =y keyletters
below).

Keyletter arguments apply independently to each named file.

=-rSID Uniquely identifies which delta is to be made to the SCCS file. The use
of this keyletter is necessary .only if two or more outstanding gets for
editing (get —e) on the same SCCS file were done by the same person
(login name). The SID value specified with the =—r keyletter can be
either the SID specified on the get command line or the SID to be made
as reported by the get command [see ger(1)]. A diagnostic results if the
specified SID is ambiguous, or, if necessary and omitted on the com-
mand line.

-s Suppresses the issue, on the standard output, of the created delta’s SID,
as well as the number of lines inserted, deleted and unchanged in the
SCCS file.

-n Specifies retention of the edited g-file (normally removed at completion
of delta processing).

~glist a list (see get(1) for the definition of lisf) of deltas which are to be
" ignored when the file is accessed at the change level (SID) created by
this delta.

—m/[mrlist] If the SCCS file has the v flag set [see admin(1)] then a Modification
Request (MR) number must be supplied as the reason for creating the
new delta.

If =m is not used and the standard input is a terminal, the prompt MRs?
is issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes-
caped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be the
name of a program (or shell procedure) which will validate the correct-
ness of the MR numbers. If a non-zero exit status is returned from the
MR number validation program, delta terminates. (It is assumed that
the MR numbers were not all valid.)

=y[comment] Arbitrary text used to describe the reason for making the delta. A null

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DELTA (1-SysV) RISC/os Programmer’s Reference DELTA (1-SysV)

string is considered a valid comment.

If —y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the SCCS file differences
before and after the delta is applied in a diff(1) format.

FILES
g-file Existed before the execution of delta ; removed after completion of delta.
p-file Existed before the execution of delta ; may exist after completion of delta.
q-file Created during the execution of delta ; removed after completion of delta.
x-file Created during the execution of delta; renamed to SCCS file after completion
of delta.

z-file Created during the execution of delra ; removed during the execution of delta.
d-file Created during the execution of delta ; removed after completion of delta.

/ust/bin/bdiff Program to compute differences between the “gotten” file and the g-file.

WARNINGS
Lines beginning with an SOH A SCII character (binary 001) cannot be placed in the SCCS file

unless the SOH is escaped This character has special meaning to SCCS [see sccsfile(4)] and
will cause an error,

A get of many SCCS files, followed by a delta of those files, should be avoided when the get
generates a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (=) is specified on the delta command line, the —=m (if necessary) and
—y keyletters must also be present. Omission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), cdec(1), get(1), prs(1), rmdel(1), sccsfile(4).
bdiff(1), help(1) in the User’s Reference Manual.
DIAGNOSTICS
Use help (1) for explanations.

Page 2 ' February 5, 1989 MIPS Computer Systems, Inc.

DEROFF (1-SysV) RISC/os Programmer’s Reference DEROFF (1-SysV)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

deroff [=mx | [=w] [files]

DESCRIPTION

deroff reads each of the files in sequence and removes all froff(1) requests, macro calls,
backslash constructs, eqn(1) constructs (between .EQ and .EN lines, and between delimiters),
and #bl(1) descriptions, perhaps replacing them with white space (blanks and blank lines), and
writes the remainder of the file on the standard output. deroff follows chains of included files
(.so and .nx froff commands); if a file has already been included, a .so naming that file is
ignored and a .nx naming that file terminates execution. If no input file is given, deroff reads
the standard input.

The =m option may be followed by an m, s, or . The —mm option causes the macros to be
interpreted so that only running text is output (i.e., no text from macro lines.) The =ml
option forces the =mm option and also causes deletion of lists associated with the mm mac-
ros.

The =ms option causes deletion of the ms macro commands.

If the —=w option is given, the output is a word list, one “word” per line, with all other charac-
ters deleted. Otherwise, the output follows the original, with the deletions méntioned above.
In text, a “word” is any string that contains at least two letters and is composed of letters,
digits, ampersands (&), and apostrophes ('); in a macro call, however, a “word” is a string
that begins with at least two letters and contains a total of at least three letters. Delimiters are
any characters other than letters, digits, apostrophes, and ampersands. Trailing apostrophes
and ampersands are removed from “words.”

SEE ALSO

BUGS

eqn(1), nroff(1), tbl(1), troff(1) in the DOCUMENTER’S WORKBENCH Software Release 2.0
Technical Discussion and Reference Manual.

deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
such errors result in too much rather than too little output.
The —ml option does not handle nested lists correctly.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DIFF (1-SysV) RISC/os Programmer’s Reference DIFF (1-SysV)

NAME
diff — differential file comparator
SYNOPSIS ‘
diff [—efbh | filel file2
DESCRIPTION
diff tells what lines must be changed in two files to bring them into agreement. If filel (file2)
is =, the standard input is used. If filel (file2) is a directory, then a file in that directory with
the name file2 (filel) is used. The normal output contains lines of these forms:
nl a n3,n4
nln2 dn3
nl,n2 ¢ n3,n4
These lines resemble ed commands to convert filel into file2. The numbers after the letters
pertain to file2. In fact, by exchanging a for d and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical pairs, where nl = n2 or n3 = n4, are
abbreviated as a single number.
Following each of these lines come all the lines that are affected in the first file flagged by <,
then all the lines that are affected in the second file flagged by >.
The =b option causes trailing blanks (spaces and tabs) to be 1gnored and other strings of
blanks to compare equal.
The =—e option produces a script of a, ¢, and d commands for the editor ed, which will
recreate file2 from filel. The —f option produces a similar script, not useful with ed, in the
opposite order. In connection with —e, the following shell program may help maintain multi-
ple versions of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts
($2,%3,...) made by diff need be on hand. A “latest version” ‘appears on the standard output.
(shift; cat $x; echo '1,$p") |ed — $1
Except in rare circumstances, diff finds a smallest sufficient set of file differences.
Option =h does a fast, half-hearted job. It works only when changed stretches are short and
well separated, but does work on files of unlimited length. Options =e and =f are unavailable
with =h.
FILES
/tmp/d???7?
/ust/lib/difth for =h
SEE ALSO
bdiff(1), cmp(1), comm(1), ed(1).
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
ERRORS
Editing scripts produced under the —e or =f option are naive about creating lines consisting of
a single period (.). - ‘
WARNINGS

Missing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are different, they will
be flagged and output; although the output will seem to indicate they are the same.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DIFF3 (1-SysV) RISC/os Programmer’s Reference DIFF3 (1-SysV)

NAME
diff3 - 3-way differential file comparison
SYNOPSIS
diff3 [—ex3] filel file2 file3
DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes: ' :
==== - all three files differ
====] filel is different
== file2 is different
====3 file3 is different
The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:
finl a Text is to be appended after line number n1 in file f, where f =1, 2,
or 3.
finl ,n2c Text is to be changed in the range line nl to line n2. If nl = n2, the
range may be abbreviated to ni.
The original contents of the range follows immediately after a ¢ indication. When the con-
tents of two files are identical, the contents of the lower-numbered file is suppressed.
Under the —e option, diff3 publishes a script for the editor ed that will incorporate into filel
all changes between file2 and file3, i.e., the changes that normally would be flagged ==== and
====3. Option =x (=3) produces a script to incorporate only changes flagged ==== (====3).
The following command will apply the resulting script to filel.
(cat script; echo '1,$p’) | ed - filel
FILES '
/tmp/d3«
/usr/lib/diff3prog
SEE ALSO
diff(1).
ERRORS

Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

DIRCMP (1-SysV) RISC/os Programmer’s Reference DIRCMP (1-SysV)

NAME

dircmp - directory comparison
SYNOPSIS

dircmp [=d | [=s] [=wn] dirl dir2
DESCRIPTION

dircmp examines dirl and dir2 and generates various tabulated information about the contents
of the directories. Listings of files that are unique to each directory are generated for all the
options. If no option is entered, a list is output indicating whether the file names common to
both directories have the same contents.

-d Compare the contents of files with the same name in both directories and output a list
telling what must be changed in the two files to bring them into agreement. The list
format is described in diff(1).

-$ Suppress messages about identical files.

=wn Change the width of the output line to n characters. The default width is 72.

SEE ALSO
cmp(1), diff(1).

MIPS Computer Systems, Inc. February 5, 1989 : Page 1

DIS(1) RISC/os Programmer’s Reference | DIS(1)

NAME
dis ~ disassemble an object file

SYNOPSIS
dis [-h] [-s] [-p procedure] [file ...]
DESCRIPTION
Dis disassembles object files into machine instructions. Please note that assember code and

machine code can differ on this machine. For a full description of the machine language, see
the R2000 Processor User’s Guide. A file can be an object or an archive.

The —h, flag causes the general register names to be printed, rather than the software register
names. The —p flag disassembles only the specified procedure from the object file. The =S
causes source lisitings to be listed. Otherwise, only instructions will listed.

BUGS
Disassembling an archive is not currently operational.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

DOMAINNAME (1-SysV) RISC/os Programmer’s Reference DOMAINNAME (1-SysV)

NAME

domainname — set or display name of current domain system
SYNOPSIS

domainname | nameofdomain |
DESCRIPTION

Without an argument, domainname displays the name of the current domain. Only the super-
user can set the domainname by giving an argument; this is usually done in the startup script
letc/init.d/nfs.

MIPS Computer Systems, Inc. February 5, 1989 ’ Page 1

ECHO (1-SysV) : RISC/os Programmer’s Reference ECHO (1-SysV)

NAME
echo — echo arguments
SYNOPSIS
echo [arg] ...
DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on the standard
output. It also understands C-like escape conventions; beware of conflicts with the shell’s use
of \:
\b backspace
A print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab
\ backslash
\0n where n is the 8bit character whose ASCII code is the 1-, 2- or 3-digit octal
number representing that character.
echo is useful for producing diagnostics in command files and for sending known data into a
pipe.
SEE ALSO
sh(1).
CAVEATS

When representing an 8-bit character by using the escape convention \0n, the n must always
be preceded by the digit zero (0).

For example, typing: echo "WARNING:\07" will print the phrase WARNING: and sound the
“bell” on your terminal. The use of single (or double) quotes (or two backslashes) is required
to protect the “\” that precedes the “07”.

For the octal equivalents of each character, see ascii(5), in the Programmer’s Reference
Manual.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

NAME

ed, red — text editor

SYNOPSIS

ed [—s] [—p string] [—x] [file]
red [—s] [=p string] [=x] [file]

DESCRIPTION

ed is the standard text editor. If the file argument is given, ed simulates an e command (see
below) on the named file; that is to say, the file is read into ed’s buffer so that it can be
edited. ‘

-3 Suppresses the printing of character counts by e, 7, and w commands, of diagnostics
from e and ¢ commands, and of the ! prompt after a !shell command. Also, see the
WARNING section at the end of this manual page.

-p Allows the user to specify a prompt string.

-X Encryption option; when this option is used, the file will be encrypted as it is being
written and will require an encryption key to be read (see crypt(1)). Also, see the
- WARNING section at the end of this manual page.

ed operates on a copy of the file it is editing; changes made to the copy have no-effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer. There is only one buffer.

red is a restricted version of ed. It will only allow editing of files in the current directory. It
prohibits executing shell commands via !shell command. Attempts to bypass these restrictions
result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in stty —tabs or
stty tab3 mode (see stty(1)), the specified tab stops will automatically be used when scanning
file. For example, if the first line of a file contained:

<:15,10,15 s72:>
tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72 would be
imposed. NOTE: while inputing text, tab characters when typed are expanded to every eighth
column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by
a single-character command, possibly followed by parameters to that command. These
addresses specify one or more lines in the buffer. Every command that requires addresses has
default addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of
text. This text is placed in the appropriate place in the buffer. While ed is accepting text, it is
said to be in input mode. In this mode, no commands are recognized; all input is merely col-
lected. Input mode is left by typing a period (.) alone at the beginning of a line, followed
immediately by a carriage return.

ed supports a limited form of regular expression notation; regular expressions are used in
addresses to specify lines and in some commands (e.g., s) to specify portions of a line that are
to be substituted. A regular expression (RE) specifies a set of character strings. A member of
this set of strings is said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE
that matches itself.

MIPS Computer Systems, Inc. February 5, 1989 ' Page 1

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

Page 2

1.2

1.3
1.4

A backslash (\) followed by any special character is a one-character RE that matches the
special character itself. The special characters are:

a. ., % [, and \ (period, asterisk, left square bracket, and backslash, respectively),
which are always special, except when they appear within square brackets ([]; see
1.4 below).

b. " (caret or circumflex), which is special at the beginning of an entire RE (see 3.1
and 3.2 below), or when it immediately follows the left of a pair of square brackets
(I1) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see 3.2 below).

The character used to bound (i.e., delimit) an entire RE, which is special for that
RE (for example, see how slash (/) is used in the g command, below.)

A period (.) is a one-character RE that matches any character except new-line.

A non-empty string of characters enclosed in square brackets ([]) is a one-character RE
that matches any one character in that string. If, however, the first character of the
string is a circumflex (7), the one-character RE matches any character except new-line
and the remaining characters in the string. The " has this special meaning only if it
occurs first in the string. The minus (=) may be used to indicate a range of consecutive
ASCII characters; for example, [0—9] is equivalent to [0123456789]. The — loses this
special meaning if it occurs first (after an initial ~, if any) or last in the string. The right
square bracket (]) does not terminate such a string when it is the first character within it
(after an initial ~, if any); e.g., []a=f] matches either a right square bracket (]) or one
of the letters a through f inclusive. The four characters listed in 1.2.a above stand for
themselves within such a string of characters.

The following rules may be used to construct RE's from one-character REs:

2.1
2.2

2.3

2.4

2.5

2.6

A one-character RE is a RE that matches whatever the one-character RE matches.

A one-character RE followed by an asterisk (x) is a RE that matches zero or more
occurrences of the one-character RE. If there is any choice, the longest leftmost string
that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or \{m,n\} is a RE that matches a range
of occurrences of the one-character RE. The values of m and n must be non-negative
integers less than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as many occurrences as possible.

The concatenation of REs is a RE that matches the concatenation of the strings matched
by each component of the RE.

A RE enclosed between the character sequences \(and \) is a RE that matches whatever
the unadorned RE matches.

The expression \n matches the same string of characters as was matched by an expres-
sion enclosed between \(and \) earlier in the same RE. Here n is a digit; the sub-
expression specified is that beginning with the n-th occurrence of \(counting from the
left. For example, the expression ~\(.+\)\1$ matches a line consisting of two repeated
appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a
line (or both).

3.1

A circumflex () at the beginning of an entire RE constrains that RE to match an initial
segment of a line.

February 5, 1989 MIPS Computer Systems, Inc.

ED (1-SysV) - RISC/os Programmer’s Reference ED (1-SysV)

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment
of a line.

The construction “entire RE $ constrains the entire RE to match the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered. See also the last paragraph
before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; the exact effect on
the current line is discussed under the description of each command. Addresses are con-
structed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.
4

'x addresses the line marked with the mark name character x, which must be a lower-
case letter. Lines are marked with the £ command described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching forward from
the line following the current line toward the end of the buffer and stopping at the first
line contajining a string matching the RE. If necessary, the search wraps around to the
beginning of the buffer and continues up to and including the current line, so that the
entire buffer is searched. See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching back-
ward from the line preceding the current line toward the beginning of the buffer and
stopping at the first line containing a string matching the RE. If necessary, the search
wraps around to the end of the buffer and continues up to and including the current
line. See also the last paragraph before FILES below. '

7. An address followed by a plus sign (+) or a minus sign (=) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of lines.
The plus sign may be omitted.

8. If an address begins with + or =, the addition or subtraction is taken with respect to the
current line; e.g, =5 is understood to mean .=5.

9. If an address ends with + or =, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and of Rule 8, immediately above, the
address = refers to the line preceding the current line. (To maintain compatibility with
earlier versions of the editor, the character ~ in addresses is entirely equivalent to =.)
Moreover, trailing + and = characters have a cumulative effect, so == refers to the
current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (3)
stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses
regard the presence of an address as an error. Commands that accept one or two addresses
assume default addresses when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be
separated by a semicolon (;). In the latter case, the current line (.) is set to the first address,
and only then is the second address calculated. This feature can be used to determine the
starting line for forward and backward searches (see Rules 5 and 6, above). The second
address of any two-address sequence must correspond to a line that follows, in the buffer, the
line corresponding to the first address.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

Page 4

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any com-
mand (except e, f, r, or w) may be suffixed by I, n, or p in which case the current line is
either listed, numbered or printed, respectively, as discussed below under the I, n, and p com-
mands.

(.)a

<text>

The append command reads the given text and appends it after the addressed line; . is
left at the last inserted line, or, if there were none, at the addressed line. Address 0 is
legal for this command: it causes the “appended” text to be placed at the beginning of
the buffer. The maximum number of characters that may be entered from a terminal
is 256 per line (including the new-line character).

(.)e
<text>

The change command deletes the addressed lines, then accepts input text that
replaces these lines; . is left at the last line input, or, if there were none, at the first
line that was not deleted. :

(o9)d
The delete command deletes the addressed lines from the buffer. The line after the
last line deleted becomes the current line; if the lines deleted were originally at the
end of the buffer, the new last line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in; . is set to the last line of the buffer. If no file name is given,
the currently-remembered file name, if any, is used (see the f command). The number
of characters read is typed; file is remembered for possible use as a default file name
in subsequent e, r, and w commands. If file is replaced by !, the rest of the line is
taken to be a shell (sk(1)) command whose output is to be read. Such a shell com-
mand is not remembered as the current file name. See also DIAGNOSTICS below.

E file
The Edit command is like e, except that the editor does not check to see if any
changes have been made to the buffer since the last w command.

f file
If file is given, the f ile-name command changes the currently-remembered file name to
file; otherwise, it prints the currently-remembered file name.

(1,9$)g/RE/command list

In the global command, the first step is to mark every line that matches the given RE.
Then, for every such line, the given command list is executed with . initially set to that
line. A single command or the first of a list of commands appears on the same line as
the global command. All lines of a multi-line list except the last line must be ended
with a \; a, i, and ¢ commands and associated input are permitted. The . terminating
input mode may be omitted if it would be the last line of the command list. An empty
command list is equivalent to the p command. The g, G, v, and ¥V commands are not
permitted in the command list. See also ERRORS and the last paragraph before FILES
below.

February 5, 1989 MIPS Computer Systems, Inc.

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

(1,$)G/RE/

In the interactive Global command, the first step is to mark every line that matches
the given RE. Then, for every such line, that line is printed, . is changed to that line,
and any one command (other than one of the a, ¢, i, g, G, v, and V commands) may
be input and is executed. After the execution of that command, the next marked line
is printed, and so on; a new-line acts as a null command; an & causes the re-execution
of the most recent command executed within the current invocation of G. Note that
the commands input as part of the execution of the G command may address and
affect any lines in the buffer. The G command can be terminated by an interrupt sig-
nal (A SCII DEL or BREAK).

h
The help command gives a short error message that explains the reason for the most
recent ? diagnostic.
The Help command causes ed to enter a mode in which error messages are printed for
all subsequent ? diagnostics. It will also explain the previous ? if there was one. The
H command alternately turns this mode on and off; it is initially off.

(.)i

<text>

The insert command inserts the given text before the addressed line; . is left at the
last inserted line, or, if there were none, at the addressed line. This command differs
from the a command only in the placement of the input text. Address 0 is not legal
for this command. The maximum number of characters that may be entered from a
terminal is 256 per line (including the new-line character).

(- 9 41)j ’ .
The join command joins contiguous lines by removing the appropriate new-line char-
acters. If exactly one address is given, this command does nothing.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-
case letter. The address 'x then addresses this line; . is unchanged.

(ep
The list command prints the addressed lines in an unambiguous way: a few non-
printing characters (e.g., fab, backspace) are represented by visually mnemonic over-
strikes. All other non-printing characters are printed in octal, and long lines are
folded. An ! command may be appended to any other command other than e, f, r,
or w.

(.p.)ma
The move command repositions the addressed line(s) after the line addressed by a.
Address 0 is legal for a and causes the addressed line(s) to be moved to the beginning
of the file. It is an error if address a falls within the range of moved lines; . is left at
the last line moved.

(-5)n
The number command prints the addressed lines, preceding each line by its line
number and a tab character; . is left at the last line printed. The n command may be
appended to any other command other than e, f, r, or w.

(.5)p '

The print command prints the addressed lines; . is left at the last line printed. The p
command may be appended to any other command other than e, f, r, or w. For
example, dp deletes the current line and prints the new current line.

MIPS Computer Systems, Inc. February 5, 1989 Page 5

ED (1-SysV)

($)r file

RISC/os Programmer’s Reference ED (1-SysV)

The editor will prompt with a * for all subsequent commands. The P command alter-

nately turns this mode on and off; it is initially off.

The guit command causes ed to exit. No automatic write of a file is done; however,
see DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the buffer since the
last w command.

The read command reads in the given file after the addressed line. If no file name is
given, the currently-remembered file name, if any, is used (see e and f commands).
The currently-remembered file name is not changed unless file is the very first file
name mentioned since ed was invoked. Address O is legal for r and causes the file to
be read at the beginning of the buffer. If the read is successful, the number of charac-
ters read is typed; . is set to the last line read in. If file is replaced by !, the rest of the
line is taken to be a shell (s#(1)) command whose output is to be read. For example,
"$r !ls" appends current directory to the end of the file being edited. Such a shell
command is not remembered as the current file name.

(., .)s/RE /replacement/ or
(.,.)s/RE [replacementlg or
(.,.)s/RE/replacement/n n = 1-512

(.,.)ta

Page 6

The substitute command searches each addressed line for an occurrence of the
specified RE. In each line in which a match is found, all (non-overlapped) matched
strings are replaced by the replacement if the global replacement indicator g appears
after the command. If the global indicator does not appear, only the first occurrence
of the matched string is replaced. If a number n appears after the command, only the
n th occurrence of the matched string on each addressed line is replaced. It is an
error for the substitution to fail on all addressed lines. Any character other than
space or new-line may be used instead of / to delimit the RE and the replacement ; . is
left at the last line on which a substitution occurred. See also the last paragraph
before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the
RE on the current line. The special meaning of & in this context may be suppressed
by preceding it by \. As a more general feature, the characters \n, where n is a digit,
are replaced by the text matched by the n-th regular subexpression of the specified RE
enclosed between \(and \). When nested parenthesized subexpressions are present, n
is determined by counting occurrences of \(starting from the left. When the character
% is the only character in the replacement, the replacement used in the most recent
substitute command is used as the replacement in the current substitute command.
The % loses its special meaning when it is in a replacement string of more than one
character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line in the
replacement must be escaped by preceding it by \. Such substitution cannot be done
as part of a g or v command list.

This command acts just like the m command, except that a copy of the addressed
lines is placed after address a (which may be 0); . is left at the last line of the copy.

February 5, 1989 MIPS Computer Systems, Inc.

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

The undo command nullifies the effect of the most recent command that modified
anything in the buffer, namely the most recenta, c,d, g,i,j,m,r,s,t,v, G,or V
command.

(1, $)V/RE Icommand list
This command is the same as the global command g except that the command list is
executed with . initially set to every line that does not match the RE.-

(1,$)V/RE/ .
This command is the same as the interactive global command G except that the lines
that are marked during the first step are those that do not match the RE.

(1, 8$)w file

The write command writes the addressed lines into the named file. If the file does not
exist, it is created with mode 666 (readable and writable by everyone), unless your
umask setting (see umask(1)) dictates otherwise. The currently-remembered file name
is not changed unless file is the very first file name mentioned since ed was invoked. If
no file name is given, the currently-remembered file name, if any, is used (see e and f
commands); . is unchanged. If the command is successful, the number of characters

. written is typed. If file is replaced by !, the rest of the line is taken to be a shell
(sh(1)) command whose standard input is the addressed lines. Such a shell command
is not remembered as the current file name. '

X
An encryption key is requested from the standard input. Subsequent e, r, and w com-
mands will use this key to encrypt or decrypt the text (see crypr(1)). An explicitly
empty key turns off encryption. Also, see the =x option of ed.

($)=

The line number of the addressed line is typed; . is unchanged by this command.

shell command
The remainder of the line after the ! is sent to the UNIX system shell (sk(1)) to be
interpreted as a command. Within the text of that command, the unescaped character
% is replaced with the remembered file name; if a ! appears as the first character of
the shell command, it is replaced with the text of the previous shell command. Thus,
1! will repeat the last shell command. If any expansion is performed, the expanded
line is echoed; . is unchanged. '

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line alone
is equivalent to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (A SCII DEL or BREAK) is sent, ed prints a ? and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, and 64
characters per file name. The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters. Files (e.g., a.out) that contain char-
acters not in the ASCII set (bit 8 on) cannot be edited by ed.

If a file is not terminated by a new-line character, ed adds one and outputs a message explain-
ing what it did.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last character
before a new-line, that delimiter may be omitted, in which case the addressed line is printed.
The following pairs of commands are equivalent:

MIPS Computer Systems,blnc. February 5, 1989 Page 7

ED (1-SysV) RISC/os Programmer’s Reference ED (1-SysV)

FILES

s/sl/s2 s/sl/s2/p
g/sl g/sl/p

?s1 ?s1?

/usr/tmp default directory for temporary work file.

$TMPDIR
if this environmental variable is not null, its value is used in place of /usr/tmp as
the directory name for the temporary work file.

ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS

? for command errors.
file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire
buffer, ed warns the user if an attempt is made to destroy ed’s buffer via the e or ¢ commands.
It prints ? and allows one to continue editing. A second e or ¢ command at this point will
take effect. The —s command-line option inhibits this feature,

SEE ALSO

edit(1), ex(1), grep(1), sed(1), sh(1), stty(1), umask(1), vi(1).
fspec(4), regexp(5) in the Programmer’s Reference Manual.

ERRORS

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if the editor
is invoked from a restricted shell (see sh(1)).

The sequence \n in a RE does not match a new-line character.
Characters are masked to 7 bits on input.

If the editor input is coming from a command file (e.g., ed file < ed-cmd-file), the editor will
exit at the first failure.

WARNINGS

Page 8

The =x option is provided with the Security Administration Utilities, which is available only
in the United States.

The = option, although supported in this release for upward compatibility, will no longer be
supported in the next major release of the system. Convert shell scripts that use the = option
to use the —s option, instead.

February 5, 1989 MIPS Computer Systems, Inc.

EDIT (1-SysV) ‘ RISC/os Programmer’s Reference EDIT (1-SysV)

NAME
edit — text editor (variant of ex for casual users)

SYNOPSIS
edit [=r | [=x | name ..

DESCRIPTION
edit is a variant of the text editor ex recommended for new or casual users who wish to use a
command-oriented editor.

-r Recover file after an editor or system crash.

-X Encryption option; when this option is used, the file will be encrypted as it is being
written and will require an encryption key-to be read (see crypr(1)). Also, see the
WARNING section at the end of this manual page.

The following brief introduction should help you get started with edir. If you are using a CRT
terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command ‘‘edit name” to the shell
edit makes a copy of the file which you can then edit, and tells you how many lines and char-
acters are in the file. To create a new file, just make up a name for the file and try to run edit
on it; you will cause an error diagnostic, but do not worry.

edit prompts for commands with-the character ‘:’, which you should see after starting the edi-
tor. If you are editing an existing file, then you will have some lines in edit’s buffer (its name
for the copy of the file you are editing). Most commands to edit use its ‘“‘current line” if you
do not tell them which line to use. Thus if you say print (which can be abbreviated p) and hit
carriage return (as you should after all edit commands) this current line will be printed. If you
delete (d) the current line, edit will print the new current line. When you start editing, edir
makes the last line of the file the current line. If you delete this last line, then the new last
line becomes the current one. In general, after a delete, the next line in the file becomes the
current line. (Deleting the last line is a special case.)

If you start with an empty file or wish to add some new lines, then the append (a) command
can be used. After you give this command (typing a carriage return after the word append)
edit will read lines from your terminal until you give a line consisting of just a “.”, placing
these lines after the current line. The last line you type then becomes the current line. The
command insert (i) is like append but places the lines you give before, rather than after, the
current line.

edit numbers the lines in the buffer, with the first line having number 1. If you give the com-
mand “1” then edit will type this first line. If you then give the command delete edir will
delete the first line, line 2 will become line 1, and edit will print the current line (the new line
1) so you can see where you are. In general, the current line will always be the last line
affected by a command.

You can make a change to some text within the current line by using the substitute (s) com-
mand. You say “s/old /new/”’ where old is replaced by the old characters you want to get rid
of and new is the new characters you want to replace it with.

The command file (f) will tell you how many lines there are in the buffer you are editing and
will say “[Modified]” if you have changed it. After modifying a file you can put the buffer text
back to replace the file by giving a write (w) command. You can then leave the editor by issu-
ing a quit (q) command. If you run edit on a file, but do not change it, it is not necessary
(but does no harm) to write the file back. If you try to quit from edit after modifying the
buffer without writing it out, you will be warned that there has been “No write since last
change” and edir will await another command. If you wish not to write the buffer out then
you can issue another quit command. The buffer is then irretrievably discarded, and you

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EDIT (1-SysV) RISC/os Programmer’s Reference EDIT (1-SysV)

Page 2

return to the shell.

By using the delete and append commands, and giving line numbers to see lines in the file you
can make any changes you desire. You should learn at least a few more things, however, if
you are to use edit more than a few times.

The change (¢) command will change the current line to a sequence of lines you supply (as in
append you give lines up to a line consisting of only a “.””). You can tell change to change
more than one line by giving the line numbers of the lines you want to change, i.e.,
“3,5change”. You can print lines this way too. Thus “1,23p” prints the first 23 lines of the
file. :

The undo (u) command will reverse the effect of the last command you gave which changed
the buffer. Thus if you give a substitute command which does not do what you want, you can
say undo and the old contents of the line will be restored. You can also undo an undo com-
mand so that you can continue to change your mind. edit will give you a warning message
when commands you do affect more than one line of the buffer. If the amount of change
seems unreasonable, you should consider doing an undo and looking to see what happened.
If you decide that the change is ok, then you can undo again to get it back. Note that com-
mands such as write and quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To look at a number of
lines hit "D (control key and, while it is held down D key, then let up both) rather than car-
riage return. This will show you a half screen of lines on a CRT or 12 lines on a hardcopy ter-
minal. You can look at the text around where you are by giving the command “z.”. The
current line will then be the last line printed; you can get back to the line where you were
before the “z.” command by saying ‘““”’. The z command can also be given other following
characters “z—"" prints a screen of text (or 24 lines) ending where you are; “z+” prints the next
screenful. If you want less than a screenful of lines, type in "z.12" to get 12 lines total. This
method of giving counts works in general; thus you can delete 5 lines starting with the current
line with the command “delete 5.

To find things in the file, you can use line numbers if you happen to know them; since the line
numbers change when you insert and delete lines this is somewhat unreliable. You can search
backwards and forwards in the file for strings by giving commands of the form /text/ to search
forward for rext or ?text? to search backward for rext. If a search reaches the end of the file
without finding the text it wraps, end around, and continues to search back to the line where
you are. A useful feature here is a search of the form /’text/ which searches for rext at the
beginning of a line. Similarly /text$/ searches for fext at the end of a line. You can leave off
the trailing / or ? in these commands.

The current line has a symbolic name ¢.”’; this is most useful in a range of lines as in
“.,$print” which prints the rest of the lines in the file. To get to the last line in the file you
can refer to it by its symbolic name “$”. Thus the command ‘‘$ delete” or “$d” deletes the
last line in the file, no matter which line was the current line before. Arithmetic with line
references is also possible. Thus the line “$-5” is the fifth before the last, and *“.+20” is 20
lines after the present.

You can find out which line you are at by doing “.=”. This is useful if you wish to move or
copy a section of text within a file or between files. Find out the first and last line numbers
you wish to copy or move (say. 10 to 20). For a move you can then say “10,20delete a”” which
deletes these lines from the file and places them in a buffer named a. edit has 26 such buffers
named a through z. You can later get these lines back by doing “put a” to put the contents of
buffer a after the current line. If you want to move or copy these lines between files you can
give an edit (e¢) command after copying the lines, following it with the name of the other file
you wish to edit, i.e., “edit chapter2”. By changing delete to yank above you can get a pattern
for copying lines. If the text you wish to move or copy is all within one file then you can just

February 5, 1989 MIPS Computer Systems, Inc.

EDIT (1-SysV) RISC/os Programmer’s Reference EDIT (1-SysV)

say ‘“10,20move $” for example. It is not necessary to use named buffers in this case (but you
can if you wish).

SEE ALSO
ed(1), ex(1), vi(1).

WARNING
The =x option is provided with the Security Administration Utilities, swhich is available only
in the United States.

MIPS Computer Systems, Inc. February 5, 1989 Page 3

(

EGREP (1-SysV) RISC/os Programmer’s Reference EGREP(1-SysV)

NAME

egrep — search a file for a pattern using full regular expressions
SYNOPSIS

egrep [options] full regular expression [file ...]
DESCRIPTION

egrep (expression grep) searches files for a pattern of characters and prints all lines that contain
that pattern. egrep uses full regular expressions (expressions that have string values that use
the full set of alphanumeric and special characters) to match the patterns. It uses a fast deter-
ministic algorithm that sometimes needs exponential space.

egrep accepts full regular expressions as in ed(1), except for \(and \), with the addition of:

1. A full regular expression followed by + that matches one or more occurrences of the
full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences of the full regu-
lar expression.

3. Full regular expressions separated by | or by a new-line that match strings that are
matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for grouping.

Be careful using the characters $, *, [, ", |,), and \ in full regular expression, because they
are also meaningful to the shell. It is safest to enclose the entire full regular expression in sin-
gle quotes '...".

The order of precedence of operators is [], then x?+, then concatenation, then | and new-
~ line.
If no files are specified, egrep assumes standard input. Normally, each line found is copied to

the standard output. The file name is printed before each line found if there is more than one
input file.

Command line options are:

—b Precede each line by the block number on which it was found. This can be useful in
locating block numbers by context (first block is 0).
—c Print only a count of the lines that contain the pattern.
—i Ignore upper/lower case distinction during comparisons.
—1 Print the names of files with matching lines once, separated by new-lines. Does not
repeat the names of files when the pattern is found more than once.
—n Precede each line by its line number in the file (first line is 1).
—v Print all lines except those that contain the pattern.
—e expression
Search for the given expression. Useful if the expression begins with a —.
~f file
Take the list of full regular expressions from file.
SEE ALSO
ed(1), fgrep(1), grep(1), sed(1), sh(1).
DIAGNOSTICS
Exit status is O if any matches are found, 1 if none, 2 for syntax errors or inaccessible files
(even if matches were found).
ERRORS
Ideally there should be only one grep command, but there is not a single algorithm that spans

a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ characters; longer
lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ENABLE (1-SysV) RISC/os Programmer’s Reference ENABLE (1-SysV)

' NAME .

enable, disable — enable/disable LP printers
SYNOPSIS

enable printers

disable [—c] [—r[reason]] printers
DESCRIPTION

enable activates the named printers, enabling them to print requests taken by Ip(1). Use -
Ipstat (1) to find the status of printers.

disable deactivates the named printers, disabling them from printing requests taken by Ip(1).
By default, any requests that are currently printing on the designated printers will be reprinted
in their entirety either on the same printer or on another member of the same class. Use
Ipstat(1) to find the status of printers. Options useful with disable are:

-c Cancel any requests that are currently printing on any of the designated printers.

—r[reason] Associates a reason with the deactivation of the printers. This reason applies to
all printers mentioned up to the next —r option. If the —r option is not present
or the —r option is given without a reason, then a default reason will be used.
reason is reported by Ipstat(1).

FILES '
/ust/spool/lp/«
SEE ALSO

Ip(1), lpstat(1).

MIPS Computer Systems, Inc. February 5, 1989 Page 1

ENV (1-SysV) RISC/os Programmer’s Reference ENV (1-SysV)

NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value | ... [command args]
DESCRIPTION

env obtains the current environment, modifies it according to its arguments, then executes the
command with the modified environment. Arguments of the form name=value are merged
into the inherited environment before the command is executed. The — flag causes the inher-
ited environment to be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one name-value pair per
line.

SEE ALSO
sh(1).
exec(2), profile(4), environ(5) in the Programmer’s Reference Manual.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EX (1-SysV) RISC/os Programmer’s Reference EX (1-SysV)

NAME

ex — text editor

SYNOPSIS

ex[=][=v][=ttag][=r][=R][=x][+command | name ...

DESCRIPTION

ex is the root of a family of editors: ex and vi. ex is a superset of ed, with the most notable
extension being a display editing facility. ‘Display based editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1),
which is a command which focuses on the display editing portion of ex.

For ed Users

If you have used ed you will find that ex has a number of new features useful on CRT termi-
nals. Intelligent terminals and high speed terminals are very pleasant to use with vi. Gen-
erally, the editor uses far more of the capabilities of terminals than ed does, and uses the ter-
minal capability data base (see Terminal Information Utilities Guide) and the type of the termi-
nal you are using from the variable TERM in the environment to determine how to drive your
terminal efficiently. The editor makes use of features such as insert and delete character and
line in its visual command (which can be abbreviated vi) and which is the central mode of
editing when using vi(1).

ex contains a number of new features for easily viewing the text of the file. The z command
gives easy access to windows of text. Hitting ‘D causes the editor to scroll a half-window of
text and is more useful for quickly stepping through a file than just hitting return. Of course,
the screen-oriented visual mode gives constant access to editing context.

ex gives you more help when you make mistakes. The undo (u) command allows you to
reverse any single change which goes astray. ex gives you a lot of feedback, normally printing
changed lines, and indicates when more than a few lines are affected by a command so that it
is easy to detect when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited them so that you
do not accidentally clobber with a write a file other than the one you are editing. If the system
(or editor) crashes, or you accidentally hang up the telephone, you can use the editor recover
command to retrieve your work. This will get you back to within a few lines of where you left
off.

ex has several features for dealing with more than one file at a time. You can give it a list of
files on the command line and use the next (n) command to deal with each in turn. The next
command can also be given a list of file names, or d pattern as used by the shell to specify a
new set of files to be dealt with. In general, file names in the editor may be formed with full
shell metasyntax. The metacharacter ‘%’ is also available in forming file names and is
replaced by the name of the current file.

For moving text between files and within a file the editor has a group of buffers, named a

through z. You can place text in these named buffers and carry it over when you edit another
file.

There is a command & in ex which repeats the last substitute command. In addition there is
a confirmed substitute command. You give a range of substitutions to be done and the editor
interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. ex also allows regular
expressions which match words to be constructed. This is convenient, for example, in search-
ing for the word “edit” if your document also contains the word “‘editor.”

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EX (1-SysV)

RISC/os Programmer’s Reference EX(1-SysV)

ex has a set of options which you can set to tailor it to your liking. One option which is very
useful is the autoindent option which allows the editor to automatically supply leading white
space to align text. You can then use the "D key as a backtab and space and tab forward to
align new code easily.

Miscellaneous new useful features include an intelligent join (j) command which supplies
white space between joined lines automatically, commands < and > which shift groups of
lines, and the ability to filter portions of the buffer through commands such as sort.

INVOCATION OPTIONS

The following invocation options are interpreted by ex:

-V
—t tagfR
- file

-X

+command

Suppress all interactive-user feedback. This is useful in processing editor
scripts.

Invokes vi
Edit the file containing the fag and position the editor at its definition.

Recover file after an editor or system crash. If file is not specified a list of all
saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Encryption option; when this option is used, the file will be eﬁcrypted as it is
being written and will require an encryption key to be read (see crypt(1)).
Also, see the WARNING section at the end of this manual page.

Begin editing by executing the specified editor search or positioning com-
mand.

The name argument indicates files to be edited.

ex States

Command

Insert

Visual

Normal and initial state. Input prompted for by :. Your Kill character can-
cels partial command.

Entered by a, i, or ¢. Arbitrary text may be entered. Insert is normally ter-
minated by a line having only . on it, or abnormally with an interrupt.

Entered by vi, terminates with Q or "\.

ex command names and abbreviations

abbrev
append
args
change
copy
delete
edit
file
global
insert
join
list
map
mark
move

ab
a

®
-1

=

—e MG "M O QO 6

ma
m

next n unabbrev una
number nu undo u
unmap unm
preserve pre version ve
print p visual vi
put pu write w
quit q xit X
read re yank ya
recover rec window z
rewind rew escape !
set se Ishift <
shell sh print next CR
source so resubst &
stop st rshift >
substitute s scroll D

ex Command Addresses
n line n

Page 2

/pat next with pat

February 5, 1989 MIPS Computer Systems, Inc.

EX (1-SysV)

RISC/os Programmer’s Reference

current ?pat previous with pat
$ last x-n n before x
+ next X5y x through y
- previous x marked with x
+n n forward “ previous context
% 1,%
Initializing options
EXINIT place set’s here in environment var.-
$HOME/.exrc editor initialization file
./.exrc editor initialization file
set x ~ enable option
set nox disable option
set x=val give value val
set show changed options
set all show all options
set x? show value of option x
Most useful options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
list - print I for tab, $ at end
magic . [» special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth sW for < >, and input "D
showmatch sm to) and } as typed
showmode smd - show insert mode in vi
slowopen slow stop updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

Scanning pattern formation

beginning of line

$ end of line

. any character

\< beginning of word

\> end of word

[str] any char in str

[tstr] ... not in str

[x—yl ... between x and y

* any number of preceding

AUTHOR

Vi and ex are based on software developed by The University of California, Berkeley Califor-

EX (1-SysV)

nia, Computer Science Division, Department of Electrical Engineering and Computer Sci-

ence.

FILES
/usr/lib/ex?. ?strings
/usr/lib/ex?.?recover

MIPS Computer Systems, Inc.

error messages
recover command

February 5, 1989

Page 3

EX (1-SysV)

/usr/lib/ex?.?7preserve
fusr/lib/+/+

$HOME/ .exrc

./ .exrc

/tmp/Exnnnnn
/tmp/Rxnnnnn
/usr/preserve/login

SEE ALSO
awk (1), ed(1), edit(1), grep(1), sed(1), vi(1).
curses(3X), term(4), terminfo(4) in the Programmer’s Reference Manual.
The Terminal Information Utilities Guide.
WARNING
The =—x option is provided with the Security Administration Utilities, which is available only

BUGS

Page 4

in the United States.

RISC/os Programmer’s Reference

preserve command

describes capabilities of terminals
editor startup file

editor startup file

editor temporary

named buffer temporary
preservation directory

(where login is the user’s login)

EX(1-SysV)

The undo command causes all marks to be lost on lines changed and then restored if the
marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full
of output may result if long lines are present. '

File input/output errors do not print a name if the command line ‘=’ option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the

editor.

Null characters are discarded in input files and cannot appear in resultant files.

February 5, 1989

MIPS Computer Systems, Inc.

EXPR (1) | RISC/os Programmer’s Reference EXPR (1)

NAME '
expr — evaluate arguments as an expression
SYNOPSIS
expr arguments
DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Terms of the expression must be separated by blanks. Characters special to the
shell must be escaped. Note that 0 is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s
complement numbers.
The operators and keywords are listed below. Characters that need to be escaped are pre-
ceded by \. The list is in order of increasing precedence, with equal precedence operators
grouped within { } symbols.
expr \| expr o
returns the first expr if it is neither null nor 0, otherwise returns the second expr.
expr \& expr '
returns the first expr if neither expr is null or 0, otherwise returns 0.
expr{ =,\>,\>=,\<, \<=, 1=} expr
returns the result of an integer comparison if both arguments are integers, otherwise
returns the result of a lexical comparison.
expr { +, = } expr
addition or subtraction of integer-valued arguments.
~expr { \x, /, % } expr
multiplication, division, or remainder of the integer-valued arguments.
expr : expr
The matching operator : compares the first argument with the second argument which
must be a regular expression. Regular expression syntax is the same as that of ed(1),
except that all patterns are “anchored” (i.e., begin with) and, therefore, is not a
special character, in that context. Normally, the matching operator returns the
number of characters matched (0 on failure). Alternatively, the \(...\) pattern sym-
bols can be used to return a portion of the first argument.
EXAMPLES

1. a=‘expr $a + 1~
adds 1 to the shell variable a.

2. # For $a equal to either "/usr/abc/file” or just "file"~ .
expr $a : “s/\(x\)~ \| $a :

returns the last segment of a path name (i.e., file). Watch out for / alone as
an argument: expr will take it as the division operator (see BUGS below).

3. # A better representation of example 2.
expr //$a : “s/\(+\)”

The addition of the // characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

4. expr $VAR : ‘.~

MIPS Computer Systems, Inc. February 5, 1989 Page 1

EXPR (1) RISC/os Programmer’s Reference EXPR (1)

returns the number of characters in $VAR.

SEE ALSO
ed(1), sh(1).
DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions. ,
syntax error for operator/operand errors

non-numeric argument if arithmetic is attempted on such a string

BUGS

After argument processing by the shell, expr cannot tell the difference between an operator
and an operand except by the value. If $a is an =, the command:

expr $a = =2
looks like:
expr = = =

as the arguments are passed to expr (and they will all be taken as the = operator). The fol-
lowing works:

expr X%a = X=

Page 2 ' February 5, 1989 MIPS Computer Systems, Inc.

FACTOR (1-SysV) RISC/os Programmer’s Reference ‘ FACTOR (1-SysV)

NAME :
factor — obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, ﬂl waits for you to give it an integer. After you give
it a positive integer less than or equal to 107", it factors the integer, prints its prime factors the
proper number of times, and then waits for another integer. facror exits if it encounters a
zero or any non-numeric character.
If you invoke factor with an argument, it factors the integer as described above, and then it
exits.
The maximum time to factor an integer is proport1ona1 to Vn. factor will take this time when
n is prime or the square of a prime.

ERRORS
No check is made that the argument given is a valid integer. Invalid arguments are interpreted
as 0.

MIPS Computer Systems, Inc. February 5, 1989 Page 1

F77(1) RISC/os Programmer’s Reference ‘ F77(1)

NAME

f77 — MIPS Fortran 77 compiler
SYNOPSIS

£77 [option | ... file ...
DESCRIPTION

F77, the MIPS ucode Fortran 77 compiler, produces files in the following formats: MIPS
object code in MIPS extended coff format (the normal result), binary or symbolic ucode,
ucode object files and binary or symbolic assembly language. F77 accepts several types of
arguments:

Arguments whose names end with ‘.f are assumed to be Fortran 77 source programs. They
are compiled, and each object program is left in the file whose name consists of the last com-
ponent of the source with ‘.0’ substituted for .f. The ‘.0’ file is only deleted when a single
source program is compiled and loaded all at once. Files ending in ‘.F’ are assumed to con-
tain Fortran code which is to be run through the C preprocessor first.

Arguments whose names end with ‘.r’ or ‘.e’ are assumed to be RATFOR or EFL source pro-
grams, respectively. These programs are first transformed by the appropriate preprocessor
and then compiled by f77, producing ‘.o’ files.

Arguments whose names end with ‘.s’ are assumed to be symbolic assembly language source
programs. They are assembled, producing a ‘.0’ file. Arguments whose names end with “.i’
are assumed to be Fortran 77 source after being processed by the C preprocessor. They are
compiled without being processed by the C preprocessor.

If the highest level of optimization is specified (with the —O3 flag) or only ucode object files
are to be produced (with the =—j flag) each Fortran 77, RATFOR or EFL source file is compiled
into a ucode object file. The ucode object file is left in a file whose name consists of the last
component of the source with ‘.u’ substituted for ‘.f’, ‘.r’, or ‘.e’.

The suffixes described below primarily aid compiler development and are not generally used.
Arguments whose names end with “B’, ., ‘.§’, and ‘.M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with ‘.G’ are assumed to be binary assembly language, which is produced by the
code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a *. T’ suffix.

F77 always defines the C preprocessor macros mips, host_mips and unix to the C macro
preprocessor. If the =—cpp option is present f77 defines the C preprocessor macro
LANGUAGE_FORTRAN when a ‘.f, “.r’, or ‘.’ file is being compiled. F77 will define the C
preprocessor macro LANGUAGE_ASSEMBLY when a ‘s’ file is being compiled. It also
defines SYSTYPE_SYSV by default but this changes if the —systype name option is specified
(see the description below).

The following options are mterpreted by f77 and have the same meaning in cc(1). See ld(1)
for load-time options.

-c Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

-g0 Have the compiler produce no symbol table information for symbolic debugging.
This is the default.

-gl Have the compiler produce additional symbol table information for accurate but

MIPS Computer Systems, Inc. February 6, 1989 Page 1

F77(1)

Page 2

RISC/os Programmer’s Reference - F77(1)

limited symbolic debugging of partially optimized code.

-g or —g2

-..g3

-—W

_p()

Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

Suppress warning messages.

Do not permit any profiling. This is the default. If loading happens, the standard
runtime startup routine (crtl.o) is used, no profiling library is searched.

—pl or =p

=00
-01

Set up for profiling by periodically sampling the value of the program counter. This
option only effects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprofl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.our that contains execution-
profiling data for use with the postprocessor prof(l).

Turn off all optimizations.

Turn on all optimizatidns that can be done quickly. This is the default.

=0 or =02

Invoke the global ucode optimizer. =—O3 Do all optimizations, including global regis-
ter allocation. This option must precede all source file arguments. With this option,
a ucode object file is created for each Fortran 77, RATFOR, or EFL source file and
left in a ‘u’ file. The newly created ucode object files, the ucode object files
specified on the command line and the runtime startup routine and all the runtime
libraries are ucode linked. Optimization is done on the resulting ucode linked file
and then it is linked as normal producing an “a.out” file. No resulting ‘.0’ file is left
from the ucode linked result as in previous releases. In fact —c¢ can no longer be
specified with —03.

—feedback file

—cord

=J

Used with the =—cord option to specify file to be used as a feedback file. This file is
produced by prof(1) with its —feedback option from an execution of the program
produced by pixie(1).

Run the procedure-rearranger, cord(1), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program’s text. The output of
cord(1) is left in the file specified by the —o output option or ‘a.out’ by default. At
least one —feedback file must be specified.

Compile the specified source programs, and leave the ucode object file output in
corresponding files suffixed with ‘.u’.

~ko output

Name the output file created by the ucode loader as output. This file is not removed.
If this file is compiled, the object file is left in a file whose name consists of output
with the suffix changed to a ‘.0’. X output has no suffix, a ‘.0’ suffix is appended to
output.

Pass options that start with a =k to the ucode loader. This option is used to specify
ucode libraries (with —klx) and other ucode loader options.

Compile the specified source programs and leave the symbolic assembly language out-
put in corresponding files suffixed with ‘.s’.

February 6, 1989 MIPS Computer Systems, Inc.

F77(1)

RISC/os Programmer’s Reference F77(1)

-P Run only the C macro preprocessor and put the result for each source file (by suffix
convention, i.e. ‘.f’, ‘.r’, ‘.¢’ and ‘.s’) in a corresponding ‘.i’ file after being processed
by appropriate preprocessors. The ‘.i’ file has no ‘#’ lines in it. This sets the —cpp

option.

-E Run only the C macro preprocessor on the files (regardless of any suffix or not), and
send the result to the standard output. This sets the —cpp option.

-0 oulput .
Name the final output file output. If this option is used, the file ‘a.out’ is undis-
turbed.

=Dname=def

=Dname

Define the name to the C macro preprocessor, as if by ‘#define’. If no definition is
given, the name is defined as "1".

=Uname
Remove any initial definition of name.

=Idir ‘#include’ files whose names do not begin with ¢/> are always sought first in the direc-
tory of the file argument, then in directories specified in —I options, and finally in the
standard directory (/usr/include).

o | This option will cause ‘#include’ files never to be searched for in the standard direc-
tory (/usr/include).

-G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-V Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what (1) command.

—std Have the compiler produce warnings for things that are not standard in the language.

—cpp Run the C macro preprocessor on all Fortran source files before compiling. This
includes Fortran sources created by RATFOR or EFL .

—nocpp
Do not run the C macro preprocessor on any Fortran source files before compiling.
This is the default for mf77(1). This includes Fortran sources created by RATFOR or
EFL .

=Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, =02, or —03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

Either object file target byte ordering can be produced by f77. The default target byte order-
ing matches the machine where the compiler is running. The options —EB and —EL specify
the target byte ordering (big-endian and little-endian, respectively). The compiler also defines
a C preprocessor macro for the target byte ordering. These C preprocessor macros are MIP-
SEB and MIPSEL for big-endian and little-endian byte ordering respectively.

MIPS Computer Systems, Inc. February 6, 1989 Page 3

Page 4

F77(1)

RISC/os Programmer’s Reference F77(1)

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine.

~EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the compiler.

=EL Produce object files targeted for little-endian byte orderlng The C preprocessor
macro MIPSEL is defined by the compiler. -

The following options are specific for f77:

—i2 Make the default integer constants and variables short. All logical quantities will be
short. =—i4 is the default.

=onetrip or —1
Compile DO loops that execute at least once if reached. (Fortran 77 DO loops are not
executed if the upper limit is smaller than the lower limit.)

=66 Suppress extensions that enhance Fortran 66 compatibility.

=C Generate code for runtime subscript range checking. The default suppresses range
checking.

-=U Do not “fold” cases. F77 is normally a no-case language (for example a equals A).
The =U option causes f77 to treat uppercase and lowercase separately.

-u Make the default type of a variable undefined, rather than using the default Fortran
rules.

—W Suppress all warning messages. If the option is =w66, only Fortran 66 compatibility
warnings are suppressed.

—wl Suppress warnings about unused variables (but permit other warnings unless =w is also
specified). :

=F Apply the EFL and RATFOR preprocessors to relevant files and put the result in files
whose names have their suffix changed to ‘.f’. (No ‘.0’ files are created.)

—m Apply the M4 preprocessor to each EFL or RATFOR source file before transforming it

© with the ratfor(1) or efi(1) preprocessors. The temporary file used as the output of the

m4(1) preprocessor is that of the last component of the source file with a ‘.p’ substi-

tuted for the ‘.e’ or ‘.r’. This temporary file is removed unless if the =K option is
specified. :

-E Use any remaining characters in the argument as EFL options whenever processing a

¢’ file. The temporary file used as the output of the EFL preprocessor has the last

component of the source file with a ‘.f substituted for the ‘.e’. This temporary file is
removed unless the =K option is specified.

-R Use any remaining characters in the argument as RATFOR options whenever process-
ing a ‘.r file. The temporary file used as the output of the RATFOR preprocessor is
that of the last component of the source file with a ‘.f substituted for the ‘.r’. This
temporary file is removed unless the =K option is specified.

—automatic ‘
Place local variables on' the runtime stack. The same restrictions apply for this option
as they do for the automatic keyword. This is the default.

—=static
Cause all local variables to be staticly allocated.

—noextend_source
Pad each source line with blanks or truncate it as need be to make it 72 bytes long.

February 6, 1989 MIPS Computer Systems, Inc.

F77(1)

RISC/os Programmer’s Reierence ' F77(1)

—extend_source
Pad each source line with blanks if need be to make it 132 bytes long, but do not trun-
cate it if it exceeds 132 bytes.

—d_lines
The d_lines option specifies that lines with a D in column 1 are to be compiled and
not to be treated as comment lines. The default is to treat lines with a D in column 1
as comment lines.

=col72 This option sets the SVS Fortran 72 column option mode for source statements.

—col120
This option sets the SVS Fortran default mode for source statements.

-vms
Cause the runtime system to behave like VMS Fortran with regard to interpreting car-
riage control on unit 6.

—N[qgxscnljnnn :
Make static tables in the compiler bigger. The compiler will complain if it overflows its
tables and suggest you apply one or more of these flags. These flags have the following

meanings:

q Maximum number of equivalenced variables. Default is 150.

X ‘Maximum . number of external names (common block names, subroutine and
function names). Default is 200.

s Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (é.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

1 Maximum number of labels. Default is 125.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

—systype name

Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are searched for. The new items are located in their usual paths but with
/name prepended to their paths. Also a preprocessor macro of the form
SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fjusmoca]. It selects the compiler pass in the
same way as the —t option. If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
*T’ and is not removed.

-K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
‘.B’ file for binary ucode, produced by the front end). These intermediate files are
never removed even when a pass encounters a fatal error. When ucode linking is per-
formed and the —K option is specified the base name of the files created after the

MIPS Computer Systems, Inc. February 6, 1989 Page 5

F77(1)

RISC/os Programmer’s Reference F77(1)

ucode link is ‘v.out’ by default. If —ko outpur is specified, the base name of the
object file is output without the suffix if it exists or suffixes are appended to output if it
has no suffix.

—# Converts binary ucode files (*.B’) or optimized binary ucode files (*.O’) to symbolic
ucode (a .U file) using brou(1). If a symbolic ucode file is to be produced by con-
verting the binary ucode from the Fortran 77 compiler front end then the front end
option =Xu is used instead of brou(1).

-Wc/c...],argl[,arg2...]
Pass the argument(s] argi to the compiler pass[es] c/c..]. The c’s are one of [pfjusmo-
cablyz]. The c’s selects the compiler pass in the same way as the —t option.

The options =t[hpfjusmocablyzrFIUSMnt], —hpath, and —Bstring select a name to use for a
particular pass, startup routine, or standard library., These arguments are processed from left
to right so their order is significant. When the —B option is encountered, the selection of
names takes place using the last —h and —t options. Therefore, the =B option is always
required when using =h or =t. Sets of these options can be used to select any combination of
names.

The =EB or =EL options, the =p[01] options and the —systype option must precede all =B
options because they can affect the location of runtimes and what runtimes are used.

“~t[hpfjusmocablyzrFIUSMnt]

Page 6

Select the names. The names selected are those designated by the characters follow-
ing the =t option accoraing to the following table:

Name Character

include h (see note below)

cpp p

fcom f
ujoin j
uld u
usplit S
umerge m
uopt o
ugen c
asO a
asl b
Id 1
ftoc y
cord Z
[m]ert[1n].o r
libF77.a F
libl77.a I
libU77.a U
libisam.a S
libm.a M
libprofl.a n
btou, utob t

If the character ‘h’ is in the =t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files, This directory name has the form
COMP_TARGET_ROOT/ust/includestring . This directory is to contain the include files
for the string release of the compiler. The standard directory is still searched.

=hpath
Use path rather than the directory where the name is normally found.

February 6, 1989 MIPS Computer Systems, Inc.

F77(1) RISC/os Programmer’s Reference F77(1)

—Bstring
Append string to all names specified by the —t option. If no —t option has been pro-
cessed before the —B, the —t option is assumed to be “hpfjusmocablyzrFIUSMnt”.
This list designates all names. If no —t argument has been processed before the —B
then a —Bstring is passed to the loader to use with its —lx arguments.

, Invoking the compiler with a name of the form f77string has the same effect as using a
—Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for all include and library
names rather than the default /. This affects the standard directory for ‘#include’ files,
/usr/include, and the standard library, /usr/lib/libc.a. If this is set, the first directory that is
searched for libraries, using the =lx option, is COMP_TARGET_ROOT/usr/lib/cmplrs/cc. The
standard directories for libraries are then searched, see ld(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBIJECT is set, the value is used as the name of an object
to link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See rls_id(1) for the tools to
create this information.

Other arguments are assumed to be either loader options or Forfran 77-compatible object
files, typically produced by an earlier f77 run, or perhaps libraries of Fortran 77-compatible
routines. These files, together with the results of any compilations specified, are loaded in the
order given, producing an executable program with the default name a.out.

FILES
file.f input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/usr/lib/cpp C macro preprocessor
/usr/lib/fcom Fortran 77 front end
/usr/lib/ujoin binary ucode and symbol table joiner
/usr/bin/uld ucode loader _
/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure intergrator
/usr/lib/uopt optional global ucode optimizer
/usr/lib/ugen code generator
/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer

MIPS Computer Systems, Inc.

/usr/lib/crtl.o
/usr/lib/crtn.o
/usr/lib/mcrtl.o
/usr/lib/libc.a

/usr/lib/libprofl.a

/usr/lib/1ibF77.a
/usr/lib/1ibI77 .a
/usr/lib/1ibU77.a

/usr/lib/libisam.a

/usr/lib/libm.a
/usr/include

runtime startup

runtime startup

startup for profiling

standard library, see intro(3)

level 1 profiling library

Fortran intrinsic function library
Fortran I/O library

Fortran UNIX interface library
Indexed sequential access method library
Math library

standard directory for ‘#include’ files

February 6, 1989

Page 7

F77(1) RISC/os Programmer’s Reference F77(1)

/usr/bin/1d MIPS loader

/usr/lib/ftoc interface between prof(1) and cord(1)
/ust/lib/cord procedure-rearranger

/usr/bin/btou binary to symbolic ucode translator
/usr/bin/utob symbolic to binary ucode translator
/usr/bin/efl extended Fortran language preprocessor
/usr/bin/ratfor rational Fortran dialect preprocessor
mon.out file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is running on
have the same names but are located in different directories. For big-endian runtimes on a
little-endian machine the directory is /usr/hbeb and for little-endian runtimes on a big-endian
machine the directory is /usr/libel. -

SEE ALSO :

Languages Programmer’s Guide
cc(1), as(1), efl(1), ratfor(l), m4(1), monstartup(B) prof(1), 1d(1), dbx(1), what(1), cord(1),
pixie(1), ftoc(1)

DIAGNOSTICS

The diagnostics produced by f77 are intended to be selfvexplanatory Occasional messages can
be produced by the assembler or loader.

NOTES
The standard library, /ust/lib/libc.a, is loaded by using the -lc loader option and not a full
path name. The wrong one could be loaded if there are files with the name libc.astring in the
directories specified with the —L loader option or in the default directories searched by the
loader.

The handling of include directories and libc.a is confusing.

Page 8 February 6, 1989 MIPS Computer Systems, Inc.

FGREP (1-SysV RISC/os Programmer’s Reference FGREP (1-SysV)
g

NAME
fgrep - search a file for a character string

SYNOPSIS
fgrep [options] string [file ...]
DESCRIPTION
fgrep (fast grep) seaches files for a character string and prints all lines that contain that string.

fgrep is different from grep(1) and egrep(1) because it searches for a string, instead of search-
. ing for a pattern that matches an expression. It uses a fast and compact algorithm.

‘The characters $,% [, |, (), and \ are interpreted literally by fgrep, that is, fgrep does not
recognize full regular expressions as does egrep. Since these characters have special meaning
to the shell, it is safest to enclose the entire string in single quotes ... ".

If no files are specified, fgrep assumes standard input. Normally, each line found is copied to
the standard output. The file name is printed before each line found if there is more than one
input file.

Command line options are:

=b Precede each line by the block number on which it was found. This can be useful in
locating block numbers by context (first block is 0).

=~c _ Print only a count of the lines that contain the pattern.

=i Ignore upper/lower case distinction during comparisons.

=1 Print the names of files with matching lines once, separated by new-lines. Does not
repeat the names of files when the pattern is found more than once.

=n Precede each line by its line number in the file (first line is 1).

—=v Print all lines except those that contain the pattern.

—x Print only lines matched entirely.

—e string "
Search for the given string. Useful is string begins with a -).

~f file
Take the list of strings from file.

SEE ALSO
ed(1), egrep(1), grep(1), sed(1), sh(I).

DIAGNOSTICS :
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files
(even if matches were found).

ERRORS

Ideally there should be only one grep command, but there is not a single algorithm that spans
a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ characters; longer
lines are truncated. BUFSIZ is defined in .BR /usr/include/stdio.h .

MIPS Computer Systems, Inc. February 5, 1989 Page 1

FILE (1-SysV) RISC/os Programmer’s Reference FILE (1-SysV)

NAME

file — determine file type
SYNOPSIS

file [—c | [—f ffile] [—m mfile] filename...
DESCRIPTION

The file command tries to classify a file by doing a series of tests. If a file seems to be A SCII,
file examines the first 512 bytes and tries to guess the language. If a file is an executable a.out,
file prints the version stamp, provided it is greater than 0 (see ld(1)).

This version of file differentiates between Berkeley (4.2BSD) and MIPS objects and archives.

The file command recognizes when files have symbolic links to other files. It lists these files
as:

symbolic link to <type>

In the example, <type> shows the type of the file that the symbolic link finally points to (file
does distinguish symbolic links to other symbolic links). If the symbolic link points to noth-
ing, file shows the <type> as "nonexistent filename".

If the ~f option is given, the next argument is assumed to be a file that contains the names of
the files to be examined.

file uses the file /etc/m