Re-order No. 1084-01

MICROPOLIS
1040/1050 S-100
FLOPPY DISK SUBSYSTEMS
USER'S MANUAL

MobEL Mo. [0&53-TL

DOCUMENT NUMBER 100089-01
REVISION 10 - APRIL 1979

PROPRIETARY NOTICE

Information contained in this manual may not be duplicated in full or

in part by any person without prior written consent of Micropolis
Corporation. The sole purpose of this manual is to provide the user

with adequately detailed documentation to efficiently install and operate
the equipment supplied by Micropolis and to write programs using
Micropolis Software. The use of this document for all other purposes

is prohibited.

MICROPOLIS CORPORATION, 7959 DEERING AVENUE, CANOGA PARK, CALIFORNIA 91304

MICROPQILIS

COPYRIGHT 1979

FOREWORD

This manual provides operating and programing instructions for the
Micropolis 1040/1050 S-100 Series Floppy Disk Sub-systems. The first
three chapters provide a detailed description of the physical system
integration process from unpacking the system components to defining
system configurations, The fourth chapter deals with the Micropolis
Diskette Operating System. The fifth chapter deals with Micropolis
Disk Extended BASIC. Chapter six indicates disk access techniques
independent of BASIC or DOS.

This manual does not deal with maintenance. See 1040/1050 $-100
Series Floppy Disk Sub-systems Maintenance Manual, document number
100090-01-8.

The latest revision of each page has been included with this manual.
The individual pages of this manual are subject to replacement under
new releases or versions of the software. Such replacement or
additional changes are given the date of the change.

The initial release of a Micropolis software product is given the number
1.0, meaning release 1, version 0. Any corrections and amplifications
to the software are accumulated and issued under a new version number;
thus, the first revision version number is 1.1. When a major group of
new features is added, plus the accumulated corrections of earlier
versions, a new release number is assigned, such as 2.0,

Please read this manual thoroughly as to installation and operation,

Should you require additional assistance in servicing this equipment,
please contact your dealer who sold it (or MICROPOLIS in the case of
direct purchase).

Rev. 8 9/78 i

LIMITED 90 DAY WARRANTY

Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California
91304, telephone (213) 703-1121, warrants the electrical and mechanical
parts of its products to be free from defects in design, materials and
workmanship for a period of ninety (90) days from date of delivery to
the original end user. Should a product prove defective during the
‘warranty period, it will be repaired or replaced free of charge.

Software supplied with the product is warranted to conform to Micropolis'

software product description applicable at the time of order. Micropolis'
sole obligation with respect to the warranty of its software is to remedy
any nonconformance.

In order to validate this warranty, the warranty registration form found
in the front of the user's manual must be completed and returned to
Micropolis within ten (10) days from date of purchase.

If the product was purchased from a computer store, it must be returned
to such store for repair, along with the original shipping carton, if
possible.

If, and only if, the product was purchased directly from Micropolis, in
‘order to obtain repairs, the product should be carefully packaged in the
original shipping carton and sent (preferably by United Parcel Service)

to Micropolis at the above address, attention: Customer Service. Prior
to shipment Return Authorization Number should be obtained from Micropolis
Customer Service. You should include a note in the package giving your
name, address, proof of purchase and delivery date and a brief description
of the problem experienced. Micropolis recommends that you insure the
package for the full value of the product. The product will be repaired
as soon as possible, but, in any event, within thirty (30) days.

This warranty shall be null and void should the product be damaged,
subjected to misuse, improper maintenance, negligence, accident or should
its serial number or any part thereof be altered, defaced or removed.
Further, this warranty will be null and void should the product's design
be altered or should repairs be attempted by one not authorized by
Micropolis to make repairs.

Micropolis shall not be responsible for any incidental or consequential
damages. Some states do not allow the exclusion or limitation of
incidental or consequential damages, so this limitation or exclusion
may not apply to you.

This warranty limits any implied warranty to ninety (90) days from date
of delivery to the original end user. Some states do not allow limita-
tions on how Tong an implied warranty lasts, so this Timitation may not
apply to you.

This warranty gives you specific legal rights and you may also have
other rights which vary from state to state.

Rev. 7 3/78 ii

TABLE OF CONTENTS

SECTION I GENERAL INFORMATION

1.9 INTRODUCTION

1.1 IDENTIFICATION PLATE
1.2 OVERVIEW OF SUBSYSTEMS

—

.2.1 FUNCTION DESCRIPTION
.2.2 MODEL VERSIONS
.2.3 MEDIA

— ot

1.3 PHYSICAL DESCRIPTION AND DIMENSIONS

3.1 1953/1933 DUAL DISK DRIVE MODULE

3.2 1043/1923 AND 10942/1922 SINGLE DISK DRIVE MODULE

.3.3 1941/1921 SINGLE DISK DRIVE MODULE WITHOUT POWER SUPPLY
3.4 1971 CONTROLLER

3.5 INTERFACE CABLES

v d s
. . . .

1.4 SPECIFICATIONS

w—

.4.1 DRIVE PERFORMANCE
.4.2 ENVIRONMENTAL
1.4.3 DRIVE RELIABILITY

—

1.5 SUMMARY OF MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE

-

.5.1 ELEMENTS OF MDOS
.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC

—

SECTION IT INSTALLATION

2.p INTRODUCTION
2.7 HARDWARE INSTALLATION

UNPACKING THE EQUIPMENT

INITIAL CHECKOUT

CONTROLLER HARDWARE REQUIREMENTS
CONTROLLER CONFIGURATION

SISO
it el e ned
PwN —

1.4.1 CHANGING THE CONTROLLER BASE ADDRESS
1.4.2 REJUMPERING FOR 3 MHZ OR 4 MHZ OPERATION

NN

INSTALLING THE CONTROLLER AND INTERFACE CABLE
DAISY CHAINING MULTIPLE DISK DRIVES
APPLYING DC POWER - MODEL 1941/1921 ONLY

NN N

PR S R—
~ Oy Ol

.7.1 REGULATED DC
.1.7.2 UNREGULATED DC

NN
—

CUSTOM MOUNTING OF THE 1941/1921 DRIVES
LOADING AND UNLOADING

NN
—
O 0

0-1
Rev. 7 3/78

PAGE

—
]
]

—
1
_—

et ot —d
LI B |
— — O (Ve O 00 00 0000 o W N —

OO

—_— e e —
L T) i

— ot omd]
| I N | 1

—
]

—

D

1
—

LI I |

1

1

]
OO > > W —

t
[
— et

NN mN™N PN N NN NN ~N
1 i

— el

- N

2
2.

2

2

[A%] N NN N

N NN

)

RN R
NN NN N r\>r\>|\) m
NN OO
craro o

NN N
[ASEASH]
DN

SECTION

NN N -+ W N -

NN NN NN N
NN NN NN L
PP RAD wnN —

SYSTEM SOFTWARE INSTALLATION
PROGRAM DEVELOPMENT SOFTWARE MEMORY REQUIREMENTS

SUPPORTED I/0 DEVICES

LOADING THE PDS MDOS SYSTEM INTO MEMORY FROM THE
MASTER DISKETTE ' ‘ ’
CONFIGURING THE PDS SYSTEMS FOR YOUR TERMINAL

CONFIGURING A STANDARD TERMINAL
CONFIGURING A MODIFIED STANDARD TERMINAL
NON-STANDARD TERMINAL CONFIGURATION

.3.1 THE CONSOLE I/0 TABLE

.3.2 LOGICAL CONSOLE I/O

.3.3 PHYSICAL CONSOLE DEVICE INPUT

.3.4 PHYSICAL CONSOLE DEVICE OUTPUT

.3

.3.6 PHYSICAL CONSOLE DEVICE INITIALIZE
.3.7 STARTING YOUR SYSTEM

SYSTEM PRINTER CONFIGURATION

CONFIGURING THE SUPPLIED PRINTER HANDLER
PRINTER INTERFACE EXAMPLE
CONFIGURING SPECIAL PRINTER HANDLERS

1o
W N~

.3.1 THE LIST I/0 TABLE

.3.2 LOGICAL-LIST I/0

.3.3 PHYSICAL LIST DEVICE OUTPUT

.3.4 PHYSICAL LIST DEVICE ATTENTION ROUTINE
.5.3.5 PHYSICAL LIST DEVICE INITIALIZE

CREATING YOUR SYSTEM DISKETTE
CREATING A BASIC ONLY SYSTEM DISKETTE

'MAKING ADDITIONAL COPIES OF YOUR SYSTEM DISKETTE

USING A SINGLE DRIVE
I1I NORMAL OPERATION

3.0 INTRODUCTION

3.1 BOOTSTRAP PROCEDURE

3.2 OPERATING HINTS

3.3 CONCEPT OF BACKUP

SECTION IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.9 INTRODUCTION TO MDOS
4.1 THE MDOS EXECUTIVE

4.1.1
4.1.2
4.1.3
4.1.4

ENTERING EXECUTIVE COMMANDS
EXECUTIVE STATEMENT FORMAT
CANCELING AN OPERATION
DISPLAY CONTROL

Rev. 7 3/78

.5 PHYSICAL CONSOLE DEVICE BREAK CHECK ROUTINE

=
—

.5

.

.

.

B R N N O N N N N S S N O S S S S 'S
— vl wedd ol p—d —))) — vl —) —t —r i — v wwrwd vl — — ol —

.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.

»

2.2
.2.3
.2.4
2.5
.2.6

=
E =) w AN ~N

PR, PLPPAPRPRAPELPPAPARLPPEAS w

—d ol d ed oo et od d d d ek e ok ek

.1

Rev. 10

EXPLICIT EXECUTIVE COMMANDS

5.1 THE COMP COMMAND
5.2 THE DUMP COMMAND
5.3 THE ENTR COMMAND
5.4 THE FILL COMMAND
5.5 THE MOVE COMMAND
5.6 THE SEAR COMMAND
5.7 THE SEARN COMMAND
5.8 THE CREATE COMMAND
5.9 THE DISP COMMAND
5.1 THE FILES COMMAND
5.11 THE FREE COMMAND
5.12 THE SCRATCH COMMAND
5.13 THE LOAD COMMAND
5.14 THE SAVE COMMAND
5.15 THE RENAME COMMAND
5.16 TYPE COMMAND

5.17 THE APP COMMAND
5.18 THE ASSIGN COMMAND
5.19 THE EXEC COMMAND
5.20 THE MATH COMMAND
5.21 THE PROMPT COMMAND
5.22 THE INIT COMMAND

MDOS DISK FILE I/0
.2.1 TRACK INDEXED FILE STORAGE

FILE NAMES

FILE PROTECTION AND TYPE DEFINITION

FILE AND RECORD STRUCTURE

FILE ACCESS METHODS

COMPATIBILITY BETWEEN MDOS AND BASIC FILES

MDOS SHARED SUBROUTINES

CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

.1 @CIN - CONSOLE INPUT

.2 @COUT - CONSOLE OUTPUT

.3 @CBRK - CONSOLE BREAK CHECK

.4 @CDIN - CONSOLE DEVICE INPUT

.5 @CDOUT - CONSOLE DEVICE OUTPUT

.6 @CDBRK - CONSOLE DEVICE BREAK CHECK

.7 GCDINIT - CONSOLE DEVICE INITIALIZATION
.8 BLOUT - LIST OUTPUT

.9 BLATN - LIST ATTENTION

.19 GLDOUT - LIST DEVICE OUTPUT

.11 BLDATN - LIST DEVICE ATTENTION

.12 GLDINIT - LIST DEVICE INITIALIZATION
.13 @CCRLF - CONSOLE LINE FEED CARRJAGE RETURN
.14 GLCRLF - LIST LINE FEED CARRIAGE RETURN
.15 @ASSIGN - ASSIGN

0-3
4/79

PAGE

=1
1 1
R R~

1 i
e e 1 O OOV NI IO OCOTOTOY

t 1 1 ¢t 1 1t

4-20
4-20
4-20
4-20
4-20
4-20
4-20

NN

4.3.1.16 @CILINE - CONSOLE INPUT LINE _ 4-21
4.3.1.17 @HEXOUT - HEXADECIMAL OUTPUT S 4-21
4.3.1.18 GHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT 4-21
4.3.1.19 @HEXOQUTSPC - HEXADECIMAL OUTPUT WITH SPACE 4-21
4.3.1.20 @SPACEOUT - SPACE OUT 4-21
4.3.1.21 GNLINEOUT - NEW LINE OUTPUT 4-22
4.3.1.22 GLINEOUT - LINE OUTPUT - 4-22
4.3.2 TEXT LINE PARSING SUBROUTINES ' 4-22
4.3.2.7 GPARAM - PARAMETER 4-22
4.3.2.2 @SKIPSPACE - SKIP SPACES 4-23
4.3.2.3 @SCAN - SCAN 4-23
4.3.2.4 @SEAR - SEARCH 4-23
4.3.2.5 GAHEXTBIN - ASCII HEX TO BINARY ‘ 4-24
4.3.3 THE FILE ACCESS ROUTINES 4-24
4.3.3.1 @CREATE - CREATE 4-26
4.3.3.2 @GFILESTAT - GET FILE STATUS , 4-26
4.3.3.3 GDIRSEARCH - DIRECTORY SEARCH ' 4-27
4.3.3.4 GOPENFILE - OPEN A FILE ‘ ' 4-27
4.3.3.5 @CLOSEFILE - CLOSE A FILE 4-27
4.3.3.6 @RFILEINF - READ FILE INFORMATIOM 4-27
4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START 4-28
4.3.3.8 GRRECORDLEN - READ RECORD LENGTH 4-28
4.3.3.9 @RINXPOS - READ INDEX POSITION ' 4-28
4.3.3.1p GSINXPOS - SET INDEX POSITION ’ 4-29
4.3.3.11 GINCINX - INCREMENT INDEX POSITION 4-29
4.3.3.12 GRFINXPOS - READ FROM INDEX POSITION : 4-29
4.3.3.13 GRFINXPOSI - READ FROM INDEX POSITION AND
INCREMENT INDEX 4-30
4.3.3.14 GWTINXPOS - WRITE TO INDEX POSITION 4-30
4.3.3.15 GWTINXPOSI - WRITE TO INDEX POSITION AND :
INCREMENT INDEX ' 4-30
4.3.3.16 GLOADDATA - LOAD DATA - ' 4-31
4.3.3.17 GSAVEDATA - SAVE DATA 4-31]
4.3.3.18 GDFINXPOSTEOR - DELETE FROM INDEX POSITION TO
END OF RECORD 4-31.
4.3.3.19 @EDFINXPOS - DELETE FROM INDEX POSITION TO END OF
FILE 4-32
4.3.3.2p GINCRECPOS - INCREMENT RECORD POSITION 4-32
4.3.4 FILE MANAGEMENT SUBROUTINES 4-32
4.3.4.1 @FREE - FREE ‘ 4-32
4.3.4.2 GRENAME - RENAME -~ 4-32
4.3.4.3 @TYPE - FILE TYPE . 4-33
4.3.4.4 @SCRATCH - SCRATCH A FILE) 4-33

0-4

Rev. 9 1/79

PHYSICAL DISK ACCESS ROUTINES

.5.1 @GETASEC - GET A SECTOR

.5.2 GPUTASEC - PUT A SECTOR

.5.3 GWRITESECTOR - WRITE A SECTOR

.5.4 @VERIFYSECTOR - VERIFY A SECTOR

.5.5 B@SEEKTRACK - SEEK TO A TRACK

.5.6 GRESTOREDISK - RESTORE THE READ/WRITE HEAD

PROCESSOR ORIENTED UTILITY ROUTINES

@GHLADDA - ADD A TO HL

@INXM - INCREMENT MEMORY

GLHLINDEXED - LOAD HL INDIRECT INDEXED

@LHLI - LOAD HL INDIRECT

@TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C
@TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC
@TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF
BC REVERSE

@TRANSFILENAME - TRANSFER A FILENAME

@FILLZER - FILL ZEROES

.19 OFILLSPC - FILL SPACES

.11 @FILLA - FILL FROM THE A REGISTER

.12 GCOMPARE - COMPARE HL TO DE

AN DHO AN
O NOGTHWN -

EXTENDED 808P INTEGER ARITHMETIC (16 BITS)

.7.1 GDEADDHL
.7.2 @DESUBHL
.7.3 @DEMULHL
.7.4 BDEDIVHL
.7.5 @DEMODHL

BC=DE+HL
BC=DE-HL
BC=DE*HL
BC=DE/HL
BC=DEZHL

s e s & s e e e s e e

MESSAGE OUTPUT SUBROUTINES

.8.1 @DISKERROR - DISK ERROR MESSAGES
.8.2 GBCLOSEFILES - CLOSE ALL FILES
.8.3 GERRORMES - ERROR MESSAGES

.8.4 @MESSAGEOUT - MESSAGE OUTPUT

W BEPEE W SPEARRD W SADPAPRDE DDEEDREPRDE W APDBDDAE W
W W W W

.9 SYSTEM BUFFERS AND ENTRY POINTS
LINEEDIT - THE MDOS LINE EDITOR

.4.1 ENTERING LINES TO LINEEDIT
.4.2 KEYING IN A NEW TEXT FILE

3 ENTERING LINEEDIT COMMANDS
THE CLEAR COMMAND

THE NAME COMMAND

THE FILE COMMAND

THE AUTO COMMAND

B = = R =~ N S > o)

4.
4.4
.4.5
4.6
4.7

Rev. 7 3/78

.19 THE
.11 THE
.12 THE
.13 THE
.14 THE
.15 THE
.16 THE
.17 THE
.18 THE
.19 THE
.20 THE
THE
.22 THE
.23 THE

PP RAAERDPPLAPRPEAELED

E~3 PR EAED PrPhAAp,PPREPRPPARAEAPPEAPEEAREPRPRAAEAD
N
ovd

N
£ P (8,] B

a9
BRABRADED O BB D™ VO
UOIIUITTOTAl HW oIl N —

PEDPDIDLADS

Rev. 8 9/78

.8 THE PROMPT COMMAND
.9 THE LOAD COMMAND

APPEND COMMAND
SAVE COMMAND
RESAVE COMMAND
LIST COMMAND
LISTP COMMAND
PRINT COMMAND
PRINTP COMMAND
TAB COMMAND

DELT COMMAND
RENUM COMMAND
SEARCH COMMAND
SEARCHALL COMMAND
CHANGE COMMAND
CHANGEALL COMMAND
EDIT COMMAND

ADVANCING THE EDIT POINTER

CHANGING THE NEXT CHARACTER - C
DELETING THE NEXT CHARACTER - D

INSERTING CHARACTERS - 1

LISTING THE LINE IN THE EDIT BUFFER - L
SEARCHING TO A SPECIFIED CHARACTER - S
DELETING TO A SPECIFIED CHARACTER - K
QUITTING THE EDIT COMMAND MODE - Q

COMPLETING THE EDIT COMMAND

.25 THE DOS COMMAND - EXITING FROM LINEEDIT
4.26 LINEEDIT FILE STRUCTURE

ASSM - THE MICROPOLIS 8p8p/8@85 DISK ASSEMBLER

HOW TO INVOKE ASSM
LANGUAGE ELEMENTS

.2.1 LITERALS

.2.2 SYMBOLIC NAMES
.2.3 OPERATORS

.2.4 OPCODE MNEMONICS

OPERANDS
ASSEMBLER DIRECTIVES

.1 ORG - ORIGIN

.2 LINK - LIND TO A FILE
.3 END - END OF ASSEMBLY
.4 EQU
.5 INP
.6 PRT
.7 TAB

EQUATE
INPUT
PRINT :
TAB SETTINGS

0-6

14

1
ol ot on O

WWWWPRONDRON pmro— O
e e e

U} 1 !

g O QG O O O1 01

T
(8]
w

1

.8 NLIST - NO LIST TO PRINTER
.9 LIST - LIST TO PRINTER

.19 FORM - FORM FEED

.11 DB - DEFINE BYTE

.12 DW - DEFINE WORD

.13 DD - DEFINE DATA

DT - DEFINE TEXT

.17 DS - DEFINE STORAGE
.18 FILL - FILL STORAGE
.19 IFF - IF FALSE
.20 IFT - IFT TRUE
.21 ENDIF - END OF IFF

SO S S N N N N O N O O O '
GOV O G 1 G 1 T 01 GO O O n
'4>l<>'4>lr>'4>'4>'4>}>'4>'4>1>3>3>3>
el
o

.5.5 ASSEMBLER ERRORS

SYMSAVE UTILITY

FILECOPY UTILITY

DISKCOPY UTILITY

MDOS ERROR MESSAGES

.10 COPYFILE UTILITY FOR SINGLE DISK
.11 MICROPOLIS DEBUG

.12 DEBUG-GEN UTILITY

N S NS I
CE~NO B

SECTION V MICROPOLIS DISK EXTENDED BASIC

.15 DTZ - DEFINE TEXT TERMINATED WITH ZERO
.16 DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH

5.0 INTRODUCTION

5.1

5.2 ENTERING A PROGRAM

5.3 IMMEDIATELY EXECUTED LINES

.3.1 THE EDIT COMMAND
.3.2 THE RENUM COMMAND
.3.3 THE MERGE COMMAND

ol o1 Ol

4 DELETE COMMAND

5 LIST COMMAND

.6 SAVE COMMAND

7 LOAD COMMAND

8 DISPLAY COMMAND

.9 SCRATCH COMMAND

RUN COMMAND

.11 INTERRUPTING A RUNNING PROGRAM
.12 CONTINUING AN INTERRUPTED PROGRAM
.13 PROGRAM TRACING COMMANDS

.14 BASIC SYSTEM ERROR HANDLING
.15 BASIC CHARACTER SET

.16 DATA

CTOTOTONT TN T OTOT T OT AN
—
o

5.16.1 CONSTANTS
5.16.2 VARIABLES
5.16.3 OUTPUT FORMATS

0-7
Rev. 8 9/78

ENTERING LINES TO THE BASIC INTERPRETER

PAGE

4-64

4-67
4-68

[SANSA NS, NS,
]

3, K5, K3,
11 1
PPW WN ——

T 1 1 111

1

(S22 N6) mmmmmc'nmmmtnmmm
— - RO LOUWOXO~NNOYOTTOT P PW

n O

1

—

5.17 OPERATORS

5.17.1 NUMERIC OPERATORS
5.17.2 STRING OPERATORS
5.17.3 RELATIONAL OPERATORS
5.17.4 LOGICAL OPERATORS

5.18 FUNCTIONS

5.18.1 INTRINSIC FUNCTIONS
5.18.1.1 NUMERIC FUNCTIONS

5.18.1.2 STRING FUNCTIONS

5.18.1.3 SPECIAL FUNCTIONS

5.18.2 USER DEFINED FUNCTIONS

Rev. 8 9/78

ABS
ATN
cos
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN -
SQR
TAN

ASC
CHARS
FMT
INDEX
LEFTS
LEN
MID$
MAX
MIN
REPEATS
RIGHT$
STR$
VAL
VERIFY

IN

PEEK
PGMSIZE
SPACELEFT

0-8

| IR DU R U RN R |

corTorcitorortoTcrTotor oot oTorT o Ot
]
(O 0 O 00O O OO O 00O 0O 0 CO O

1

1

mmmmmmmclnmmmmwm
PN N
—t d wd) maed] tad o d nd wed (O O O

5.19 Expressions

[R AT NT
Y
CR-RERY)
PLNOH

5,20 BAS

.
NNNNNDNDNDNDDND
[eNoNoNeloNoNo ool
oSN~ LWNE-

Gttt utn
. .« .« e

5.20.10
5.20.11
5.20,12
5.20.13
5.20.14&
5.20.15
5.20.16
5.20,17
5.20.18
5.20.19
5.20.20
5.20.21
5.20.22
5.20.23
5.20.24
5.20,25
5.20.26
5.20,27
5.20.28

5.21 BAS

5.21.1
5.21,2

Evaluation of Expressions
Numeric Expressions
String Expressions
Logical Expressions

IC Statements

DATA

DEF FN
DEF FA
DIM

END

EXEC
FLOW

FOR
GOSUB -
GOTO -
IF, .THEN
INPUT
LET
MEMEND
NEXT
NOFLOW
ON. .GOTO
ON, .GOSUB
ouUT

POKE
PRINT -
READ
REM
RESTORE
RETURN
SIZES
STOP
STRING

IC DISK FILE 1/0

Disk Files
Disk File Commands

1.2,1 DISPLAY
1.2.2 T1OAD
1.2.3 PLOADG
1.2.4 SAVE
1.2,5 SCRATCH
1.2.6 CHAIN
1.2.7 LINK

0-9

5-33

5-33
5-33
5-34
5-35

5-36
5-36

5-37
5-37

. 5-38

5-38
5-39
5-39
5-40
5-42
5-43
5-43
5-44
5-44
5-45
5-45
5-45

5-45

5-46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5-50
5-50
5-50

5.21.3 Disk I/0 Statements 5-54,1

5.21.3.1 OPEN 5-55
5.21.3.2 PUT : 5-57
5.21.3.3 GET ' 5-60
5.21.3.4 CLOSE 5-60
5.21.3.5 ATTRS 5-61
5.21.3.6 EOF 5-61
5.21.3.7 FREESPACE ' 5-62
5.21.3.8 GETSEEK ‘ 5-62
5.21.3.9 PUTSEEK 5-62
5.21.3.10 RENAME 5-63
5.21.4 Disk I/0 Functions 5-63
ATTR 5-64
ERR 5-64
ERR$ - 5-64
NAME 5-64
RECGET 5-64
RECPUT 5-64
SIZE 5-64
TRACKS 5-64
FREETR ; 5-64
5.22 BASIC PRINT FILE OUTPUT ' 5-65

5.22.1 Printer Related Language Features 5-65

5.22.1.1 OPEN 5~65

5.22.1.2 PUT ~ 5-66

5.22.1.3 CLOSE - 5-66

5.22.1.4 ENDPAGE 5-67

5.22.1.5 ASSIGN 5-67

5.22.1.6 LISTP - 5-69

5.22.1.7 PAGESIZE 5-69
5.22.2 Notes on Printer Related 5-70
' Programming

5.22.2.1 Separating Print Files 5-70

and Interactive Messages
5.22.2.2 Paginating Print Files 5-73
5.22.2.3 Spooling Print Files to 5-76
‘ Disk for Later Output
5.22.2.4 Draining File Output to A 5-76

; Null Device
5.22.2.5 Echoing of Terminal 5-77

Output tokPrinter

Rev. 7 3/78

SECTION VI DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0 INTRODUCTION
6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.2 HARDWARE

FUNDAMENTALS

6.3 CONTROLLER REGISTERS
6.4 DISK OPERATIONS

6.5 ERROR HANDLING

6.6 DISK DRIVER

APPENDIX A -
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

APPENDIX G

Rev. 8 9/78

BASIC ERROR MESSAGES

BASIC UTILITY PROGRAM

ACCESSING DISKCOPY FROM BASIC
SUMMARY OF MDOS ERROR MESSAGES
SYSTEM I/0 LISTINGS

MICROPOLIS DISK BOOTSTRAP
FEATURES PROGRAM TO SHORTEN BASIC

o
[] ‘>
o
m

1

]
NN —-O~NWW
— O W

1

1
— d ot) e ek

-4

oOMMoO I ?’OﬁO\O\O\O)O\

I GENERAL INFORMATION AND SPECIFICATIONS

1.0 INTRODUCTION -

This section provides general information, and spetifications of Micropolis
Floppy Disk storage subsystems Model qubers 1021 through 1053.

1.1 IDENTIFICATION PLATE

An identification plate is located on the base chassis (bottom of unit).
It shows model number, serial number, line voltage and fuse rating. Both
model number and serial number should always be quoted in warranty
correspondence.

WARNING - When replacing the fuse always use a fuse of the same type and
rating. These are:

OPERATING VOLTAGE FUSE TYPE AMPERE VOLTAGE LITTELFUSE MICROPOLIS

RANGE VAC RMS ' RATING RATING PART NUMBER PART NUMBER -
100 to 125 3AG SLO-BLO 1.0 250 313001 626-0002-8

200 to 240 3AG SLO-BLO 0.5 . 250 - 313.500 © 626-0001-0

WARNING - This equipment is prov1ded with a 3 pin power plug. The plug
must be inserted in a 3 pin receptable w1th the third pin connected
to: earth ground

1.2 OVERVIEW OF SUBSYSTEMS

1.2.1 FUNCTION DESCRIPTION '

Each subsystem comprises:

° A storage module consisting of an enclosure, drive electronics and
one (or two disk drives) depending on model. Power supplies may
or may not be provided depending on model number.

° A single printed circuit board designed to be physically and
electrically compatible with S-100 bus and 8080/Z80 based micro-
computers.

° A software package together with documentation is provided, which
allows the subsystem to be used effectively by both end users and
system designers having varying levels of experience.

The subsystems are fully automatic and require no operator intervention during

normal operation. Applications include random access mass data storage, data
entry, data output and program storage.

1-1

Rev. 7 3/78

*

1.2.2 MODEL VERSIONS

Each model number is followed by either the notation Mod I or Mod II. These
notations indicate whether the system operates at a track density of 48 TPI
(35 tracks total) or 100 TPI (77 tracks total). Mod I storage modules have
a black disk 'Toad actuator and Mod II modules have a blue disk load actuator.

The mode]s descr1bed in th1s document are

l““"" N

11053 Mod I1:
\

4
i

1053 Mod I

1043 Mod II:

1042 Mod I:

1041 Mod II:

1041 Mod I:

Rev. 10 4/79

!
:5

tm dual- d1sk subsystem w1th a tota] of |

Comp]ete Metaf]oppy
630 kilobytes of formatted on-line storage. Includes two !
disk drives, S-100/8080/Z-80 compatible controller (Model !
1071) dr1ve enc]osure, interface cable A and power supp]y |

Comp]ete Macrof1oppytm dual-disk subsystem s1m11ar to the

1053 Mod II except with a total of 287 k11obytes of formatted
on-line storage.

Complete Metaf]oppytm~single-disk subsystem with a total of
315 kilobytes of formatted on-line storage. Includes one
disk drive, S-100/8080/Z80 compatible controller (Model
1071), drive enclosure, interface cable A and power supply.

Complete Macrof]oppytm single-disk subsystem similar to 1043
Mod II except with a total of 143 kilobytes of formatted
on-1line storage.

Complete Metaf]oppytm single-disk subsystem with 315 kilobytes
of on-line storage. Similar to 1043 except drive is enclosed
in a protective sleeve which does not include a power supply
or regulator/heat sink package, but includes a power cable A
for connection to an external regulated power supply. The
1041 Mod II can be used in a desk- top mode, or the rubber feet
can be removed and the unit mounted in the customer's chassis.

Complete Macroﬂoppyt single-disk subsystem with a total of

143 kilobytes of formatted on-line storage Similar to 1041
Mod II except for storage capacity.

1-2

1033 Mod II: Add-on dual-disk storage module with a total of 630 kilobytes
of formatted on-line storage. Includes two disk-drives, drive
enclosure and power supply. Attaches to a 1053 Mod II using
a Daisy Chain cable.

1033 Mod I: Add-on dual-disk storage module similar to the 1033 Mod II
except with a total of 287 kilobytes of formatted on-line
storage. Attaches to a 1053 Mod I using a Daisy Chain cable.

1023 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Includes one disk drive. drive
enclosure and power supply. Attaches to a 1043/1053 Mod 1I
using a Daisy Chain cable.

1022 Mod I: Add-on single disk storage module similar to the 1023 Mod II
except with a total of 287 kilobytes of formatted on-line
storage. Attaches to a 1043/1053 Mod I using a Daisy Chain
cable.

1021 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Similar to 1023 Mod II except
drive is enclosed in a protective sleeve which does not include
a power supply or regqulator/heat sink package. Attaches to a
1043/1053 Mod II using a Daisy Chain cable and includes a power
cable for connection to an external requlated power supply.

1021 Mod I: Add-on single disk storage module similar to the 1021 Mod II
except with a formatted on-line storage of 143 kilobytes.
Attaches to a 1043/1053 Mod I using a Daisy Chain cable.

1091-01: Regulator kit. Includes heat sink, regulator IC's, cables
and mounting hardware. Provides regulators to convert S-100
bus unregulated voltages to the voltages required to operate
1041/1021 drives and includes a power cable B for connection
to S-100 bus unregulated voltages via a socket on the subsystem
controller.

1.2.3 MEDIA (DISKETTES)

The recording medium used with Micropolis storage subsystems is an industry-
standard 5 1/4-inch diskette (Figure 1.1) in its hard-sectored version with
16 sectors, each defined by a sector hole. Thus, it has one index hole and
16 sector holes. Diskettes of this type are available from Micropolis or
from many local sources, such as computer stores.

NOTE: Do NOT use diskettes with other than 16 hard sectors, or those which
are soft-sectored (no sector holes). They will not work.

Rav 7 /78

/— LABEL
/

DISKETTE NO.

WRITE PROTECT
MICROPQLIS E/

| _——DRIVE SPINDLE HOLE

| SECTOR/{NDEX HOLE
(BOTH SIDES)

N Fga\

Rev. 7 3/78

READ/WRITE HEAD ACCESS \——LSTRESS RELIEF NOTCHES

HOLE (BOTH SIDES)

Figure 1.1 5 1/4 inch Diskette

1-4

New diskettes must be initialized (formatted) before being used for the first
time. See Appendix B for the initialization procedure.

The sub-systems are equipped with a File Protect (Mrite Protect) feature
which protects a suitably treated diskette from inadvertent erasure or over-
writing of important files. File Protect tabs are provided with each package
of diskettes from Micropolis. Installation of these File Protect tabs is
shown in Figure 1.2.

The nature of in-contact recording as used in magnetic tape and floppy disk
drives requires that the medium be replaced from time to time. The intervals
naturally depend on the kind of usage. Continual loading of the head on a
single track will naturally result in its deterioration before that of the
remainder of the diskette. Your diskette is protected as far as possible by
the smooth characteristics of the Micropolis ceramic head and by the automatic
head unload feature which raises the head load pad from the surface of the
diskette if no activity has occurred for 5 seconds.

When a diskette is loaded--that is, when a diskette is inserted and the manual
load actuator is depressed--it begins and continues to rotate inside the jacket.
The user can extend the 1ife of a diskette by unloading the actuator during
periods in which the disk is not in use; this raises the head load pad and
discontinues rotation.

1-5

Rev. 7 3/78

WRITE PROTECT TAB

WRITE ENABLE NOTCH FOLD OVER SIDE OF DISK WRITE PROTECT TAB IN PLACE
: N\ N
®
™S INDEX AND
SECTOR HOLE

Figure 1.2 How To Mount Write Protect Tab

NOTE: Micropolis 1021 through 1053 Series Systems use standard 5 1/4-inch
diskettes with 16 hard sectors ONLY !. Do NOT attempt to use
diskettes with other, non-standard number of sectors or diskettes
which are soft-sectored. They will not work.

1-6

Rev. 7 3/78

CAUTION: The diskette must be treated with care to ensure
good reliability. Figure 1.3 summarizes the DO's
and DON'Ts.

Ptect Proteger

Proteger Schutzen
i*® &

No No

Non Falsch
B

Insert Carefully insertar
Inserer avec soin Sorgfattig tinsetzen

A&

Never Nunca
Jamais Nie
Pl G g Y
10C-52C
SOF-125¢
Never Nunca
Jamais Nie
BT

Figure 1.3

1-7

Rev. 7 3/78

1.3 PHYSICAL DESCRIPTION AND DIMENSIONS

DULE

1.3.1 1053/1033 DUAL DISK DRIVE MO
Height 8.0" 20.3 cm.
Width 9.2" 23.4 cm.
Depth 13.0" 33.0 cm.
Weight 18 1bs. 8.2 Kg.

Input Power requirements: 115/230
Standby 60 VA; Operating 78 VA.

VAC, 50/60 Hz.

1.3.2 1043/1023 and 1042/1022 SINGLE DISK DRIVE MODULE

Height 4.0" 10.2 cm.
Width 5.9" 15.0 cm.
Depth 12.2" 31.0 cm.
Weight 9.0 1bs. 4.1 Kg.

Input Power requirements: 115/230
Standby 30 VA; Operating 45 VA.

1.3.3 1041/1021 SINGLE DISK DRIVE

VAC, 50/60 Hz.

MODULE (WITHOUT POWER SUPPLY)

Height 4.0" 10.2 cm.
Width 5.9" 15.0 cm.
Depth 9.6" 24.3 cm.
Weight 5.0 Tbs. 2.3 Kg.

Input Power requirements: +5V +5%
+12V +5%

1.3.4 1071 CONTROLLER

regulated .5A
regulated 1.15A

The controller is a single printed circuit board, physically and electrically
compatible with S-100 bus and 8080/Z80 microcomputers.

Height (not including the edge connector to the motherboard):

5.0" 12.7 cm.
Width 10.0" 25.4 cm.

The edge connector for the interface cable is recessed to keep the over-

all height at 5.0" when the cable

Rev. 7 3/78

is connected.

1-8

1.3.5 INTERFACE CABLES

The standard Interface Cable A (1083-01) is 54" (137 cm.) long. It uses
34-wire flat cable with card edge connectors at each end. Pin 1 is indicated
by a contrasting wire color along the appropriate edge. This cable is

used to connect the controller directly to any single storage module (which
can in turn contain one or two disk drives). When two or more storage modules
are to be connected to the controller, the appropriate Daisy Chain cable

must be used in place of the standard Cable A.

Daisy Chain Model Total Total
Type Connectors Storage Modules
B 1083-02
C 1083-03
D 1083-04 5 4

The maximum number of storage modules that can be daisy chained to a single
controller is four. This can be any combination of single and dual modules
with the limitation that the total number of drives that can be daisy chained
is four.

1.4 SPECIFICATIONS

1.4.1 DRIVE PERFORMANCE

o Capacity per drive, Mod II: 315K bytes, formatted
Mod T : 143K bytes, formatted

* Transfer rate: 250K bits/second

* Average rotational latency time: 100 milliseconds (ms)

* Access time - track-to-track: 30 ms
settling time: 10 ms

* Head load time: 75 ms

* Head positioner: stepper motor with lead-screw drive
* Drive motor start time: 1 second

* Rotational speed: 300 RPM

* Recording density: 5248 bits per inch (BPI) Mod II
5162 bits per inch (BPI) Mod I

* Recording mode: MFM

* Track density, Mod II: 100 tracks per inch (TPI)
Mod I : 48 tracks per inch (TPI)

* Surfaces used per diskette: 1

1-9
Rev. 7 3/78

1.4.2 ENVIRONMENTAL

Operating temperature: 50°-104°F, 10°-40°C
Relative Humidity: 20%—80% (without condensation)
1.4.3 DRIVE RELIABILITY

MTBF 8000 hrs.

MTTR 0.5 hrs.

Media Life : 3X 106 passes on single track
Head Life 10,000 hrs.

Soft Error Rate 1 in 109

Hard Error Rate 1 in 1022

Seek Error Rate 1 in 10

1.5 SUMMARY OF MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE

Micropolis Program Development Software (PDS) consists of two systems:
. 1) The Micropolis Diskette Operating System (MDOS)
2) Micropolis Disk Extended BASIC

Both PDS systems are included on the PDS MASTER diskette that goes with
each Micropolis disk subsystem. Figure 1.4 pictures the relationship
between the two PDS systems.

A Program Development Software system is a group of programs that aid

the programmer in developing, maintaining, and executing application
programs. MDOS and BASIC provide this aid for assembly language programs
and BASIC programs, respectively. They are both written in the instruction
set of the 8@8@ microcomputer. They can be run on 8(88/8085/783 micro-
computer systems that utilize the S-199 bus and a Micropolis disk subsystem
as the primary file device.

~MDOS and BASIC share a common program module called RES. This module
contains the system console, system printer, and diskette I/0 routines.
These routines are always resident in the computer system memory when
either MDOS or BASIC is running.

As a consequence of the shared RES module both MDOS and BASIC offer the
same console and printer 1/0 support capabilities and it is only necessary
to configure (personalize) the RES module one time for the hardware I/0
interfaces of a particular system. Additionally, both MDOS and BASIC
utilize the same diskette organization and file structure so that files
created under MDOS and files created under BASIC can each be processed

by either system. In particular, BASIC can access assembly language
functions created by the MDOS assembler provided that the functions meet
BASIC's memory requirements and DO NOT call MDOS subroutines; and applica-
tion programs can be written in assembly language to run under MDOS and
process data files created by BASIC.

1-10
Rev. 7 3/78

FIGURE 1.4 MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE (PDS) SYSTEMS

MDOS
EXECUTIVE

- ASSEMBLY
LANGUAGE
APPLICATION
PROGRAMS

ok

\

\

N\
\

ASSEMBLER FILECOPY

EDITOR
SYMSAVE

Rev. 7 3/78

RES MODULE

COMMON CONSOLE
AND PRINTER I/0

COMMON DISK
FILE STRUCTURES

1-1

DISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS

A11 parts of the MDOS and BASIC systems other than the RES module are
completely separate. MDOS consists of the RES module, the MDOS module,
and the applications program area which extends into high memory. BASIC
consists of the RES module, the BASIC interpreter module, and the BASIC
program buffer which extends into high memory. Memory maps of the MDOS
and BASIC systems are shown in Chapter II, Figures 2.6 and 2.7.

Also provided is a BASIC UTILITY program that provides for formatting a
disk and examining and changing memory.

Control of the computer system is easily transferred from the MDOS system
to the BASIC system and vice versa. The MDOS executive responds to the
command BASIC. It reads the BASIC interpreter from a specified disk unit,
loads it into memory after the RES module and transfers control to BASIC.
The BASIC command interpreter responds to the command LINK "MDOS". It
reads the MDOS module from a specified disk unit, loads it into memory
after the RES module and transfers control to the MDOS executive.

1.5.1 ELEMENTS OF MDOS

The Micropolis Diskette Operating System (MDOS) consists of an executive
program, a group of shared subroutines available ‘to user programs, and an
assembly language program development package.

The MDOS executive program implements an interactive command language

that allows the user to control computer system operations from the system
console. It provides commands for memory management, file management,

I/0 control and program control. :

MDOS contains a very large group of subroutines which can be called from

a user's application program. These subroutines provide for console and
printer character I/0, buffered 1ine 1/0, text line parameter parsing,
sequential and random file access, file management, physical diskette
access, and 16 bit integer arithmetic. There are also a number of processor
oriented utility subroutines.

The MDOS application prdgrams that are supplied by Micropolis to support
assembly language program development include:

ASSM - a two pass, 808p/8@85, disk to disk assembler program.

LINEEDIT - a line number oriented assembly language text editor with
character within line editing and global search and change
capabilities.

FILECOPY - a utility that copies disk files.

DISKCOPY - a utility that makes a binary copy of an entire diskette.

SYMSAVE - a utility that creates a source file of symbol equate statements
from the symbol table left in memory immediately after an assembly.

DEBUG - a utility that facilitates checkout and debuggina of 8p8p/80p85
machine language programs.

1-12

Rev. 8 9/78

1.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC

Micropolis Disk Extended BASIC is a complete, self-contained software
package that provides total support for BASIC programming. When BASIC
is loaded you have at hand a powerful set of tools for developing,
testing, executing and maintaining BASIC programs.

Program lines may be as long as 25@ characters in length and may include
multiple statements. The maximum Tine number is 65529.

BASIC has 12 immediate mode commands, including: SAVE a file, LOAD a

file, DISPLAY the file directory, SCRATCH a file, LIST a program, DELETE
lines from a program, RUN a program, CNTL/C to interrupt a running program,
CONT to continue an interrupted program, CNTL/X to cancel an input line,
FLOW and NOFLOW to enable and disable the flow trace debuging aid.

BASIC supports 6 distinct data types, including integers, integer arrays,
floating point numbers in the range 1E-61 to 1E62-1, string arrays, floating
point arrays, and character strings up to 25@ characters long. Integer and
floating point arrays may have up to 4 dimensions. String arrays may have
up to 3 dimensions plus a length parameter.

A unique SIZES statement enables you to select the precision of numeric
variables up to 6@ digits for simple arithmetic and 2@ digits for
transcendental functions. The system defaults to 8 digits for real
numbers and 6 for integers.

BASIC supports numeric operators for addition, subtraction, multiplication,
division, integer division, and exponentiation. There are relational
operators to compare numbers or strings and the logical operators AND, OR,
and NOT. String concatenation is also available.

Numeric functions incliude ABS, ATN, COS, EXP, FIX, FRAC, INT, LN, LOG,
MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHAR$, FMT, INDEX, LEFT$, LEN, MID$, MAX,
MIN, REPEAT$, RIGHT$, STR$, VAL, VERIFY.

The unique FMT(X,Y$) function is the key to a powerful formatted output
capability. It returns a string which is the value of X formatted per
the image defined by format string Y$.

The DEF FN statement is provided to allow construction of user defined
functions. An assembly language function may be linked to using the DEF
FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT, END, EXEC,
FOR-NEXT-STEP, GOSUB, GOTO, IF-THEN, INPUT, LET, LINK, MEMEND, MERGE, NOFLOW,
FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT, READ, REM, RENUM, RESTORE,
RETURN, SIZES, STOP, and STRING.

Rev. 8 9/78

The CHAIN is a true chain that passes variables from the current program
segment to next one loaded from disk.

EXEC is a un1que statement that allows a string variable or constant to be
executed as if it were a predefined. program line. ;

Data file programm1ng in Micropolis Disk Extended BASIC is s1mp1e Files

can be opened simultaneously for both sequential and direct (random) access

in both read and write modes. Up to 1@ files can be open at one time. A

CLEAR option allows a file to be opened for rewrite instead of append. An

END option provides an on-endfile-goto capab111ty An ERROR option provides an
on-error-goto capability. o : :

Data is written to and read from files using GET and PUT statements with
variable 1ists that allow a mixture of numeric and string variables.

Files must be CLOSEd after use.
 The file I/0 structure also extends to printer and console output files

to afford a high degree of device independence. Additional options on
the OPEN statement facilitate the pagination of output reports.

Rev. 7 3/78

[T INSTALLATION

2.0 INTRODUCTION

This chapter describes how to install your Micropolis disk subsystem
hardware in a compatible computer system and how to configure the
Micropolis system software for that computer. The computer must be an
S-100 bus system using an 8080, 8085, or Z80 processor. A keyboard
display console device is required. Figure 2.1 illustrates a typical
installation. - ’

2.1 HARDWARE INSTALLATION

The disk subsystem hardware consists of 1 to 4 disk storage modules,

an associated interface cable and a controller printed circuit board.
Installing the subsystem is accomplished by unpacking and visually in-
specting the equipment; configuring the controller as necessary for
your particular computer system; installing the controller in the S-100
bus and connecting the storage modules to the controller. A diskette
may then be loaded into the disk drive. Hardware installation must

be complete before system software configuration can begin.

2.1.1 UNPACKING THE EQUIPMENT

" The sub-systéms are shipped in a protective container which meets the
National Safe Transit Specification (Project 1A, Category 1). The con-
tainer is designed to minimize the possibility of damage during shipment.

The following procedure describes the recommended method for unpacking
the elements of the sub-system.

1) Place the shipping container on a flat work surface.

2) Cut the sealing tape on the container top carefully; open
the top flaps.

3) Remove the User's Manual shipping box (12" X 12" X 2") and the
controller box (12" X 6" X 1") and set aside.

4) For a Dual Disk Module shipment, slide the Disk Module still
supported by the 3" foam end pieces carefully out of the
container. It will be necessary for the container to be held
while this takes place.

For a Single Disk Module shipment, remove the module box from
the outer shipping container. Cut open the tape sealing the
top of the box, open the top flaps and carefully remove the
Disk Module. For 1041/1921 Modules, the interface cable,
power cable and optional regulator kit will be packed in the
module box.

2-1

Rev. 7 3/78

N_.— CONTROLLER

il - e
Niil 24K $-100/8080

5Y4" FLOPPY

\B

'DUAL (OR SINGLE)
FLOPPY DISC DRIVE

Figure 2.1 Typical Installation

- 2-2

Rev. 7 3/78

MICROCOMPUTER .

5) RETAIN THE PACKING MATERIALS IN CASE IT IS NECESSARY TO RETURN
THE EQUIPMENT TO THE SOURCE OR SUPPLIER. DO NOT ATTEMPT TO
SHIP THE EQUIPMENT EXCEPT IN THE ORIGINAL PACKING.

2.1.2 INITIAL CHECKOUT

Open the plastic bag enclosing the Disk Module and the controller box

and inspect for shipping damage. If shipping damage is evident, call the
origin of the shipment: typically, the dealer from whom the equipment was
purchased or shipped (or Micropolis in the case of a direct factory sale).

DO NOT RETURN THE DAMAGED EQUIPMENT UNTIL THE SHIPPING COMPANY INSPECTOR
HAS REVIEWED THE DAMAGE, SINCE AN INSURANCE CLAIM WILL BE MADE.

Ensure that the model number on the identification plate is as ordered.
If a Mod II (high capacity) drive was ordered check that the disk load
actuator on the front of the drive is blue; for a Mod I the actuator
is black.

2.1.3 CONTROLLER HARDWARE REQUIREMENTS

The disk controller board is accessed as a 1K block of memory using
memory-mapped I/0. This addressing scheme leaves the full 256 standard
I/0 addresses for user devices. The controller is implemented as a
"software controller"; most of the work required to access the disk is
performed in software. The operation of the primitive read/write and
timing loops depends upon instruction timing, which places the following
restrictions on the system environment:

1) RAM memory must be fast enough to operate without wait states.
This implies 450 nsec or less access time with a 2 MHz system
clock. _

2) If dynamic RAM is used, the overhead for refresh must not be
more than 1 CPU clock cycle per 32 usecond period. The refresh
logic must operate properly with approximately 18 usec/32 usec
period spent in wait states. (The controller synchronizes disk
transfers by asserting the PRDY line.)

3) Interrupts are disabled during disk I/0 operations.

4) No cycle-stealing DMA devices may be in operation during disk
1/0 operations.

5) The first 512 bytes of the 1K tontro11er address space are

allocated to the bootstrap, which is implemented in a 70 nsec
ROM. The controller is mapped into the last 512 bytes.

2.1.4 CONTROLLER CONFIGURATION CHANGED 12 CH4 00 H

The Micropolis disk controller is normally configured to operate at a
base address of FAPPH with a 2 MHz processor. You must ensure that there
is no other memory in your system that conflicts with the 1K space

2-3

Rev. 7 3/78

beginning at F4PPH. If a conflict exists follow the procedure in 2.1.4.1
to resolve the conflict. If you want to operate with a 3 MHz or 4 MHz
processor follow the procedure in 2.1.4.2. .

2.1.4.1 CHANGING THE CONTROLLER BASE ADDRESS 7o . C&pg4

The controller may be jumpered for a base address at any 1K boundary
from COPPH to FCPPH by performing the following procedure.

1) Referring to Figure 2.2, 1ocate,thé address jumpers W1 through
W4. (The controller is shipped with W3 only installed.)

2) Referring to Figuke 2.3, determine the jumpers required for the
desired base address.. Install the required jumpers using a short
length of insulated wire.

3) Solder in the new jumper(s) using a 25-30 watt soldering iron
and resin-core solder.

2.1.4.2 REJUMPERING FOR 3 MHz OR:4 MHz OPERATION

To operate the disk subsystem at processor speeds greater than 2 MHz, a
jumper must be installed on the controller as follows. ,

1) Referring to Figure 2.4 locate the ribbon cable edge connector
‘and the resistors R25, R6 and R7.

2) Between R25 and R6 is a jumper location, W9. Install jumper
W9 using a small length of insulated wire and solder in place
using a 25-30 watt soldering iron and resin-core solder.

A significant throughput advantage may be realized by operating the disk
subsystem with a 3 MHz 8@85 or 4 MHz Z80 processor. However, two
important notes apply to this type of operation.

1) System integrity is critical at higher clock rates, particularly
4 MHz. Buss noise in an S-100 buss system which is not specifically
designed for 4 MHz operation may reach unacceptable levels when
a 4 MHz ZPU is used. To obtain best performance, it is suggested
that the user place the Micropolis disk controller as close as
possible to the CPU board, preferably the next slot.

2) Memory speed is extremely critical. Some "250 nsec" memories
may not operate at 4 MHz because of logic delays which degrade
the theoretical access time such that the access requirements
of M1 cycles are not met. These marginal memory boards may be
used if your processor is capable of inserting a wait state in
an M1 cycle.

2.1.5 INSTALLING THE CONTROLLER AND INTERFACE CABLE

There are five steps involved in installing the controller and connecting
the disk drive(s) to it. Figure 2.1 illustrates a typical installation.

2-4

Rev. 7 3/78

Address Jumpers wl
| p w2 ‘%” C 4y

Figure 2.2 Locating The Controller Address Jumpers

2-5

Rev 7 13/78

ADDRESS BIT -

JUMPER
 AIS AI4 AI13 A2 A11 A10 A9 A8 JUMPER INSTALL
BASE ADDRESS N/A | WT W2 W3 Wa | N/A W W W3
| CO! 00 - C3FF 1 1o 0 0o oloo ¥ v oy
—3=1 C41 00 - C7FF 1 10 0 0o 1]0 0 YooYy
| (81 00 - CBFF 1 1]0 0o 1 010 0 Y ooy
1 CC! 00 - CFFF 1 110 o 1 1]00 Y ¥ N
! DO 00 - D3FF 1 10 1 0 0lo 0 Y N Y
' D41 00 - D7FF 1 110 1 0 1]00 A
| D81 00 - DBFF 1 110 1 1 0o o0 Y NN
! DC! 00 - DFFF 1 110 1 1 11]00 Y N N
| EO1 00 - E3FF 1 1|1 0 0 000 NOoY
1E41 00 - E7FF 1 11 0 o 100 0 Ny
' £81 00 - EBFF 1 111 0 1 00 o0 Ny N
L EC! 00 - EFFF 1 111 0 1 1000 N oY N
1 FO! 00 - F3FF 1 11 1 0 o0lo o0 NN Y
2ggggéR' F4§ 00 - FTFF 1 111 1 0 11000 NNy
' F8! 00 - FBFF 111 1 1 0o o NN N
| FC1 00 - FFFF 1 101 1 1 1100 NN N

As an examp]e, if you wish to use base address E400, install Jumpers at
W2 and W3.

Figure 2.3 Controller Base Address Jumper Configurations

2-6

Rev. 7 3/78

1041 Power Connector

Speed Jumper

F1gure 2.4 Locat1ng the controller processor speed jumper and the 1041
power connector

2-7

Rev. 7 3/78

2)

3)

Remove the cover from your microcomputer, exposing the
printed circuit board assemblies.

The Micropalis Controller is designed to be inserted at

any position on the S-100 bus. Choose a position on the bus
which is most convenient for dressing the interface cable
from the back or side of the computer chassis.

Insert the Controller with its component side facing the
same direction as the component side of the already installed
boards.

Install the interface connector by inserting it onto the

34-pin etched connector on the top edge of the Controller

board. Take care to align the contrasting colored wire

in the Interface Cable itself with pin 1 on the Controller

board. The connection is keyed and can be inserted one way

only, so do not force it hard if there is resistance; instead,
remove the connector and recheck the alignment before reinserting.

Connect the other end of the Interface Cable to the Disk
Module.

For the Dual Disk Module, the etched interface connector is
located at the rear of the unit. The connector should be
installed ensuring that the contrasting cable color indicating
pin 1 is located at the top of the flat cable.

For the Single Disk Module except 1041/1&21, the Interface

Cable 1is shipped already installed in the module itself. If

it becomes necessary to remove the Interface Cable, the following
procedure should be followed: :

a) Remove the screws on each side and the single
screw at the top-rear of the cover. Slide the cover
back about one quarter of an inch to disengage it from
the front bezel and raise it carefully to avoid damage
to Teads.

b) Unplug the connector from the circuit board and fold
it through the slot in the base of the module.

c) Replace the cover by reversing the process in a) above,
taking particular care to avoid trapping the head leads
at the front-left of the module.

For 1941/1921 modules, 1nsté]] the connector on. the circuit

board edge connector accessable through the opening at the
rear of the protective sleeve.

2-8

Rev. 7 3/78

2.1.6 DAISY CHAINING MULTIPLE DISK DRIVES

Up to four disk drives (four Single or two Dual modules or two Singles
plus one Dual) may be connected to the Controller. Accessory cables
(daisy chain cables) which allow. connection of two or three or four
modules are available. These consist of lengths of flat cable with
connectors on each end and one or more connectors spliced at appropriate
points down the cable. The method of installation is identical to that
in 2.1.5 above.

Normally, a Single Disk Module shipped as part of a 1043/1042 or 1041
subsystem has 1ine terminators in place and disk address @ (determined
by jumper positions on the printed circuit board in the module). Unless
otherwise notified, Micropolis ships an "add-on" model of a single disk
module (1023/1022/1021) assigned as address "1" without interface 1ine
terminators.

Normally, a Dual Disk Module shipped as part of a 1053 subsystem has 1line
terminators in place and disk addresses set at § and 1. Note that the slide
switch located (from the rear of the unit) on the printed circuit board

just above the interface connector may be used to reverse the address assign-
ments within the dual module, so that the drive formerly addressed as §

is now 1, and vice versa. This is particularly useful, for example, when

a disk.on which data files can only be accessed through programs written

for disk @ can be mounted on disk drive address 1, and by toggling the
switch the necessity for swapping disks or changing software is removed.

An "add-on" Dual Disk Module (1033) is assigned addresses "2" and "3" and
has no interface 1line terminators.

In any multiple disk module system implementation, it is mandatory that:
1) Only one drive module contain line terminators.

2) That module containing the line terminator (usually module 9
for Single Disk Modules or module @/1 for Dual Disk Modules)
should be physically connected to the last connector on the
daisy chain interface cable, i.e. the furthest from the
Controller end of the cable.

2.1.7 APPLYING DC POWER (MODEL 1§41/1921 ONLY)

Model 1041/1021 modules do not include power supplies thereby requiring
the user to supply DC power. The user may provide regulated power
directly or may provide unregulated voltages to modu1es equipped with
the optional regulator kit, Model 1091-01.

2-9

Rev. 7 3/78

o
, J;f_\u ' ‘//’ f::;: = l'.
A TN L ‘
U u
' 2 4 RIR
| Al
W] :f
)
U U
J1g 7 o1 8 k
~L
8 == Y . DRIVE
. 5 6 4 ELECTRONICS
P.C.B.A.
3 U e ?
e = R RIR|[R
35 —— e — T (N 2 bRl H v22
' Efeta | ,
O, ’ o 360 TR
A (5

Figure 2.5 Model 1041/1021 Power Connectors

Rev. 7 3/78

2.1.7.1 REGULATED DC

Regulated DC voltages are applied to J5 of the drive electronics board
(refer to Figure 2.5 for location of J5) as follows:

Jb VOLTAGE CURRENT WIRE

PIN REQUIREMENTS COLOR*
7 +5VDC + 5% .5 AMP VIOLET
6 +5V RETURN | | BLUE
4 +12VDC + 5% 1.15 AMP YELLOW
3 +12V RETURN ORANGE

*Wire color refers to power cable A supplied with 1041/1921 drive.

+5 Return and +12 Return must be connected together at the power supply.
The drive chassis must be connected to the computer chassis or directly
to earth ground.

2.1.7.2 UNREGULATED DC

Unregulated DC power may be applied to modules equipped with the optional
regulator kit Model 1@91-1. Each regulator kit provides regulated DC
power for one 1841 or 10421 module. Install the kit as follows:

Install the heatsink assembly on the rear of the protective sleeve using
the hardware provided. Plug the connector from the heatsink onto J5 of
the drive electronics board (see Figure 2.5 for location of J5).

Unregulated DC power is applied to J2 of the drive electronics board
(see Figure 2.5 for location of J2) as follows:

J2 CURRENT WIRE

PIN | VOLTAGE REQUIREMENTS COLOR*
1 g o) 1.15 AMP BROWN
2 KEY
3 +16V RETURN ORANGE

+8V UNREGULATED | '
. (+8 50, 270) .5 AMP YELLOW

5 +8 RETURN GREEN

*Wire color refers to the 4 wire power cable B supplied with the regulator kit.

Rev. 7 3/78

Unregulated DC may be obtained from an S-100 bus computer by connecting
the 4 wire power cable B supplied with the regulator kit between J2 of
the drive electronics board and J3 on the Controller B board. A maximum
of one drive may be powered by the controller in this manner. It is
suggested that multi-drive systems be powered directly by a separate
power supply. Dual power supplies providing +5 and +12 requlated are
commercially available from several manufacturers.

2.1.8 CUSTOM MOUNTING OF THE 1041/1021 DRIVES

The 1041/1021 disk drive is enclosed in a protective sleeve with four
rubber feet installed for desk- -top use. The rubber feet may be pee]ed
off for custom mount1ng, such as in the front panel of a computer main
frame.

The following guide lines are recommended.
Refer to Figure 2.5-B.
a) The drive may be mounted in any orientation except up-side down.

If the drive is to be mounted vertically, it should be ordered
as such so that the disk eject system can be suitably adjusted.

b) Use the recommended panel opening and insert the drive through the
panel opening from the front so that the drives are restrained from

rotat1ng

c) On no account should the mounting scheme rely on any restraint
‘ to drive motion being applied through the plastic bezel.

d) When mounting the drive with the width dimension (5.9") vertical,

use the outside two screws indicated in Figure 2.5-B on the appropriate

side and two spacers to secure the drive to the base chassis.
Spacers should be at least 0.5" outside diameter.

The screws should be of such a length as to not protrude more
than 0.2" into the inside of the drive.

The holes in the base chassis should have adequate clearance to
take up tolerances. This precludes the use of flat head screws.

e) When mounting the drive with the width dimension (5.9") horizontal,

use brackets made of .060 min. steel mounted to the base chassis
to secure the drive in four places using the outside two screws
on both sides.

- Holes in the brackets should have adequate clearance so that when
all screws are tight, stress is not communicated to the drive.

Rev. 8 9/78

| i 9 ¥ < |
e 9.57
(24.20)
20 e.2s
ﬁ (.51) (20.9%) : ‘
5.80
588 TOP (14.73)
(14.93)
c |
[____l\

\— REGQULATOR x\T (OPTIONAL)

—»

3.38 - (2?5) INCHES
B (e.58) , 1 ‘ (cw)
® }
® \ © @\ 4 @2y
—L——_’_— \\]
__l .56 3.2 ?
Goe) [Ti7.08) &_ \
—_ .09 @-32 HOLE. 3PER SIDE,OUTSIDE TWO SCREWS ON EACH
e TEYCT) Sa— SIDE MAY BE REMOVED € HOLES CAN BE USED FOR
: EXTERNAL MOUNTING.
UNLESS OTHERWISE SPECWIED:] CONTRACT NO.
DIMENSIONS ARE IN INCHES.
FRAC.'O';)EE%A!:%& OTNGLES
1. SUGGESTED PANEL OPENING @ TIONS XX XX = JORBY ' o
+.010 +.010 L 28 by
A 5.825 7" 5 BY 3.305 7" INCHES WATERIAL hK BY
M.795t:g?'g BY 8.395%- 325 cwm FINISH APPROVED BY
NOTES NEXT ASSY USED ON
T ——— APPLICATION DO NOT SCALE DRAWING
* Figure 2.5 - B OUTLINE DRAWIRG
2-13

Rev. 8 9/78

f) When mounting the drive vertically, the drive mounting should not
allow stress to be placed on the plastic bezel.

2.1.9 DISK LOADING AND UNLOADING

The flexible disk is loaded with the load actuator in the "up" position.
Push the disk "home" until an audible click occurs. This means the disk

is properly located in the receiver. Load the disk, by pushing down on
the load actuator, as far as it will go. Move the actuator firmly and
slowly to ensure proper seating of the disk on the locating cone. The
actuator remains in the "down" position indicating that the disk is loaded.

If the disk is absent or if it is not properly "home" it is not possible
to depress the Toad actuator. This feature protects the disk from damage
if not located properly.

To unload the disk, depress the load actuator as far as it will go, and
allow it to rise to the "up" position. In order to eject the disk, place
the tip of the forefinger under the load surface of the actuator and tilt
the actuator upwards. This action unlatches the interlock and pushes the
disk into your hand.

Rev. 7 3/78

2.2 SYSTEM SOFTWARE INSTALLATION

Each Micropolis disk subsystem includes a MASTER diskette which contains
the Program Development Software (PDS) systems. Software installation
consists of building a SYSTEM diskette configured for your I/0 devices
from the unconfigured MASTER diskette.

2.2.1 PROGRAM DEVELOPMENT SOFTWARE MEMORY REQUIREMENTS

The Micropolis Diskette Operating System (MDOS) requires a minimum of
16 kbytes of contiguous RAM starting at @@p@. Figure 2.6 illustrates
these memory requirements.

The Micropolis disk extended BASIC system requires a minimum of 24 kbytes
of contiguous RAM, starting at location @@p@. BASIC automatically sizes
RAM memory when it is started. If you have additional RAM which you desire
BASIC to use, this memory must be strapped to be contiguous with this

first 24K. Figure 2.7 illustrates these memory requirements.

2.2.2 SUPPORTED I/0 DEVICES

The PDS MDOS and the PDS BASIC system support the same I/0 devices through
the common RES module.

1) Micropolis flexible disk subsystems

2) Terminal - (See Figure 2.8)

3) Line Printer

2.2.3 LOADING THE PDS MDOS SYSTEM INTO MEMORY FROM THE MASTER DISKETTE

The first procedure in the sequence leading to a configured SYSTEM disk
is to load the PDS MDOS System from the unconfigured MASTER disk into
memory and determine that the load was successful.

1) Ensure that the Micropolis controller and disk drive are
properly connected to your system. Apply power to your system.

2) Insert the PDS MASTER diskette into your drive (unit @ on multiple
drive systems) and load the diskette by depressing the actuator
lever.

3) Activate the bootstrap ROM on the controller. For Altair/Imsai
type computers with a front panel, this is done by setting the
address switches to the bootstrap address (F&HP#H unless the CHpo ¢
controller base address has been changed), reset, examine, and
run. For computers under control of a resident ROM monitor,
follow the manufacturers instructions on starting program
execution at a given address. Use the address of the bootstrap
ROM €§4Q¢H unless the controller base address has been changed).
4o 4

2-15

Rev. 7 3/78

FIGURE 2.6 MDOS MEMORY MAP - Release 4.f

PPPPH

PP6AH

P1APH
1598H

2BPPH

Cl%gﬁ‘Fé}é;

F6PPH

i

v~ F8PPH

Rev. 10 _4/79

Not used by M%cropo]is hardware/software

In1t1a]1y used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.

The RES module contains all permanently resident
I/0 and Disk Control Routines and associated
buffers.

The MDOS module contains the command executive
and all user callable routines not in RES.

The Applications program area extends from here to the
end of contiguous memory.

BOOTSTRAP ROM as supplied by Micropolis

Micropolis Disk Controller

2-16

FIGURE 2.7 BASIC SYSTEM MEMORY MAP - Release 4.0

POPPH
Not used by Micropolis hardware/software
PP6AH
Initially used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.
PTAPH
' The RES module contains all permanently resident
I/0 and Disk Control Routines and associated
buffers.
1598H
The BASIC Interpreter
5700H
The BASIC current program buffer extends
from here to the end of contiguous memory.
C4po F4%QH
\ ’ BOOTSTRAP ROM as supplied by Micropolis
% F6PPH
6 Micropolis Disk Controller
' Feppu ,
gve

Rev. 8 9/78

When the boot program is started, the unit select indicator.on
the drive will illuminate and the disk head will load with an
audible "click". Computer front panel address lights will flash
while reading is taking place.

- After about 10 seconds, the unit select indicator should go out
and the head will unload with an audible "click". If this has
not occurred within about 20 seconds then the boot program has
been unable to read the system loader into RAM properly. Reset
the system and try again. If a retry is unsuccessful, then remove
the diskette and re-load it into the drive; the d1skette may not
have seated properly the first time.

4) When the unit select indicator goes out, press stop and observe
the address indicators. The halt address should be one of the
following. '

@#397H - Loader error
P4CDH - Good load

To determine if the load was successful in systems without a
front panel, or to ascertain the cause of a loader error,
examine the contents of location @39AH (Loader termination
status). The status code should be one of the following.

47H (ASCII"G") - GOOD LOAD - the RES and MDOS modules are now
in RAM.

55H (ASCII"U") - UNRECOVERABLE DISK ERROR - the loader was
unable to read the system into memory. ‘

Probable causes:

*Diskette is not seated properly.
*Drive did not step properly - remove and reinsert diskette and
retry boot process. .

4DH (ASCII"M") - BAD MEMORY - The loader tried to write into

memory and was unable to read back the same data. Probable
causes are:

*Insufficient contiguous memory - 16K bytes from address

are required. S

*Memory is write protected.

*Defective memory.

@19BH/@19CH contain the RAM address at which the error occurred.

If the status code is not one of the above, the memory into which
the loader was read may be defective or nonexistent.

2-18

Rev. 8 9/78

2.2.4 CONFIGURING THE PDS SYSTEMS FOR YOUR TERMINAL

The Micropolis disk subsystem and the PDS systems are designed to run

in an S-100 bus - 8080 compatible microcomputer. S-100 bus compatibility
does not define the device addresses or I/0 protocol used in communicating
with the various interface boards which may be used to connect a terminal
keyboard/printer to your computer. Therefore, it is necessary to customize
the terminal input-output routines in the RES module to accommodate your
precise equipment configuration.

The MDOS system loaded per Section 2.2.3 contains a special configurator
program which is provided to simplify the terminal configuration task

for specific "standard" terminal interface boards. These boards are
standard in the sense that the port addresses and flag bit assignments
conform to what is used by the manufacturers in their stand-alone software.
Figure 2.8 is a 1ist of computers and interface boards and "standard" ports
and logic. To determine which terminal configuration procedure applies

to your equipment refer to Figure 2.8 and follow these steps.

1) If your equipment is listed in the DEVICE column and your port
addresses and flag bit assignments match the ones listed, then
configure your terminal by following the procedure in Section
2.2.4.1.

2) If your equipment is listed in the DEVICE column but you have
used different port addresses or flag bit assignments, then
configure your terminal by following the procedure in Section
2.2.4.2.

3) If your equipment is not listed in Figure 2.8, then configure
your terminal by following the procedure in Section 2.2.4.3.

~2.2.4.1 CONFIGURING A STANDARD TERMINAL

1) In Altair/Imsai front panel type systems, set the address
switches to P4D1H and examine. Set the program input (sense) switches
to the configuration number corresponding to your configuration
in Figure 2.8 and press run. This activates the configurator
program.

In systems without a front panel, set the desired configuration
number into location @4DPH and start program execution at
location P4D6H. This activates the configurator program.

2) Once started, the configurator program will build the terminal
handler corresponding to the configuration number and will start
MDOS which should output the sign-on message:

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

3) Continue the SYSTEM disk budeing process with Section 2.2.5.

Rev. 7 3/78

FIGURE 2.8

STANDARD TERMINAL CONFIGURATIONS

Config

9 Altair 88-2510

1 IMSAI S§102

2 Altair SIO A,B,C (not rev)
3 Altair SI0 A,B,C (rev @)

4 PTC 3P+S

5 ‘IMSAI MIO

6 Altair 88-4PI0

The above configurations assume a terminal output line wid

Port Assignments (HEX)
Input Output Data Data
Status Status In Out
19 19 - 11 11
3 3 | 2 2

9] 1 1

9 ¢ 1 1

/ 8 1 1
43 43 42 42
19 12 11 13

output stream following a carriage return. ,
See ASSIGN command in MDOS or BASIC for instructions for changing width or number of nulls.

8pH COMPAL - 8¢

Flag Bits
Input Output
Ready Level ~Ready Level Device Type
¢ HIGH 1 HIGH SERIAL
1 HIGH) HIGH SERIAL
9 LOW 7 LOW SERTIAL
5 HIGH 1 HIGH SERIAL
6 HIGH 7 HIGH SERIAL
1 HIGH) HIGH SERIAL
7 * HIGH 7 HIGH PARALLEL

Terminal I/0 is performed through the COMPAL monitor

81H PTC SOL - 2§ WITH SOLOS 1.3 - Terminal I/0 is performed through SOLOS pseudo port #.

Rev. 7 3/78

2-20

th of 72 characters and append 2 nulls to the

2.2.4.2 CONFIGURING A MODIFIED STANDARD TERMINAL

To modify one of the standard terminal handlers to accommodate different
port addresses or flag bit assignments proceed as follows.

1) Refer to the listing of the 1/0 handler and configurator
program in Appendix E. The listing is structured as follows:
Logical input/output routines

.2 General terminal handler

Line printer handler

Configurator (starting with label "CNFIG")

Blocks of configuration parameters corresponding

to the configurations listed in Figure 2.8, labelled

CNFGP, CNFGT...... CNFGn 1

mmmmm
« v . .
P wmn —

2) Locate the parameter block which corresponds to your I/0 board.

The parameter block is organized as follows:

ADDRESS CONTENTS/DESCRIPTION

CNFG +9 Terminal Input Status Port
+1 Terminal Input Status Port
+2 Terminal Output Status Port
+3 Terminal Data Input Port
+4 Terminal Data Input Port
+5 Terminal Data Output Port
+6 Data Input Ready Flag
+7 Data Input Ready Mask
+8 Data Input Ready Flag
+9 Data Input Ready Mask
+A Data Output Ready Flag’
+B Data Output Ready Mask
+C Bytecount For Init Logic = n

D
' Initialize Logic

+E+(n-1)

3) Modify the parameter block for the port addresses and/or flag
bit assignments used by your interface card (don't overlook
changing the addresses in the initialize code as well).

4) The flags and masks are created as follows:
a) Data input/output ready flag byte is ANDed with
the appropriate status byte to extract the desired

status bit. The result is then exclusive - OR'ed
with the associated mask byte.

2-21

Rev. 7 3/78

b) If the status bit is high true, i.e., (1) = condition
true, then the mask associated with the flag byte =
flag byte. :

c) If the status bit is Tow true, i.e., (B) = condition
true, then the mask = §

5) In Altair/Imsai front panel type systems, set the address switches
to P4D1H and examine. Set the program input (sense) switches to the
configuration number corresponding to your configuration in Figure
2.8 and press run. This activates the configurator program.

In systems without a front panel, set the desired configuration
number into location P4DPH and start program execution at location
P4D6H. This activates the configurator program.

6) Once started, the configurator‘program will build the modified
terminal handler and will start MDOS which should output the
sign-on message:

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978
7) Continue the SYSTEM disk building process with Section 2.2.5.

2.2.4.3 NON-STANDARD TERMINAL CONFIGURATION

If your terminal/interface device cannot be found in Figure 2.8, this
section describes the 1/0 requirements of the PDS systems so that you
can write your own terminal handler.

When you boot the MASTER diskette a set of generalized I/0 handlers are
loaded into memory within the RES module. Figure 2.9 is a map of this
area. ‘

2.2.4.3.1 THE CONSOLE I/0 TABLE

The @CIOTABLE has the following form:
ORG @CIOTABLE

WRAPFLAG DB @

NULLS DB 3

WIDTH DB 3FH
DS 1

enable (P) or disable (1) console wrap logic
console null count + 1

console carriage width

must be provided for internal system use

DW CIN ; address of logical console input

DW COouT ; address of logical console output

DW CBRK ; address of logical console break check

DW CDIN ; address of physical console device input.

DW CDOUT ; address of physical console device output

DW CDBRK ; address of physical console device break check
DW CDINIT ; address of physical console device initialize

2-22

Rev. 7 3/78

FIGURE 2.9 I/0 DRIVER AREA IN RES MODULE

P1APH

@INBUFF - system input buffer

4 bytes which hold the addresses of @CIOTABLE
and GLIOTABLE

@CIOTABLE - vectors to
console driver routines

@LIOTABLE - vectors to
1ist device driver
routines

Logical console input
and output routines
A11 of this area is
space for logical and

physical I1/0 drivers. .
reserve space '

Logical printer output It is organized as

routines shown to the left when
the system is first

loaded from the MASTER
disk.

reserve space

- Physical console input

@PCON

and output routines

reserve space

QPLIST
Physical 1list device
output routines

reserve space

Rev. 7 3/78

2-23

2.2.4.3.2 LOGICAL CONSOLE 1/0 (CIN, COUT, CBRK)

The logical input, output and check break routines should not have to be
changed. They are tailored to support all MDOS and BASIC requirements.

2.2.4.3.3 PHYSICAL CONSOLE DEVICE INPUT (CDIN)

The;console physical input routine must have the following characteristics:
1) It must return all registers except A & B unchanged.
2) It can use the A register (destroy it).

3) It must return an ASCII character including the parity bit if any,
in the B register.

4) It must return the carry flag clear (NC). The other status flags
can be in any state.

If the physical character input routine is rewritten, its entry address
must be put into the @CIOTABLE at DW CDIN. ‘

2.2.4. 3 4 PHYSICAL CONSOLE DEVICE OUTPUT (CbouT)

The console physical output routine must have the f0110w1ng characteristics:
1) It must take an ASCII character in the B register.
2) It must return all registers except A unchanged.
3) It can use the A register (destroy it).

4) It must return the carry flag clear (NC). The other status flags
can be in any state.

If the physical character output routine is reWritten,iits éntry address
must be put into the @CIQOTABLE at DW CDOUT. .

2,2.4.3.5 PHYSICAL CONSOLE DEVICE BREAK CHECK ROUTINE (CDBRK)

The console physical check break routine must have the following
characteristics:

1) It must check the console input status port to determine if a
key has been pressed.

2) If no key has been pressed it must return all registers except A
unchanged and the zero flag clear (NZ).

3). If a key has been pressed return the byte 1nc1ud1ng the parity bit
if any, in the B register. ‘

2-24

Rev. 7 3/78

The A register can be used (destroyed). A1l other registérs
must be unchanged. The zero flag must be set (Z)

4) The status flags other than zero can be in any statei

If the physical check break routine is rewritten, its entry address must
be put into the @CIOTABLE at DW CDBRK.

2.2.4.3.6 PHYSICAL CONSOLE DEVICE INITIALIZE (CDINIT)

This routine initializes the input/output interface. Some devices are not
programable and cannot be software initialized, while others: 1ike the .
INTEL 8251, or the Motorola 6850 must be software 1n1t1a11zed ';f“‘ﬁ o

If your equipment needs software initialization, the rout1ne must have the
following characteristics:

1) It must return all the registers except A unchanged.
2) It can use the A register (destroy it).

3) It must return the carry flag clear (NC). The other status flags
. can be in any state. ' ‘ o :

If your equipment does not need to be software initialized your rout1ne
only needs to clear carry (NC) and return.

If you rewrite the initialization routine, you must put its”entryfaddress
into the @CIOTABLE at DW CDINIT.

2.2.4.3.7 STARTING YOUR SYSTEM

After you have written your driver and made the appropriate patches to the
GCIOTABLE, you are ready to start the system. Change the soft“halt-at"
Tocation 4CEH and 4CFH to E7H and P4H. Start execution at location Q4F 7H.
The System will sign on with T o

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

Proceed to Sect1on 2.2.5 to configure your system for other supported
devices.

2.2.5 SYSTEM PRINTER CONFIGURATION

The Program Development system provides line printer support as well a5j
terminal and disk 1/0. If your system does not have a printer separatef
from the terminal, you are not required to build a Tine printér handlerf
and may proceed to Section 2.2.6 to create your system disk. ‘

2-25

Rev. 7 3/78

- PD§ as loaded per Section 2.2.3 contains a generalized line printer handler.
In many cases this handler can be configured to your equipment by patching
the appropriate port addresses and flag bit assignments into the proper
locations, To determine if this handler can support your equipment, refer

to the 1wst1n8 of the physical line printer handler in Appendix E.3 beginning
at the ORG G@PLIST. Section 2.2.5.1 is a procedure for configuring this
handler, if applicable. Section 2.2.5.2 presents a detailed example of
interf cing a TELETYPE Model 40 printer. Section 2.2.5.3 is a procedure

far writing your own pr1nter handler, if necessahy .

~2:2.5.1 CONFIGURING THE SUPPLIED PRINTER HANDLER

The 3upplied printer handler performs three functions; output of an ASCII
character, detection of a printer attention condition, and software
‘ in1t1a1ization of programable printer interface devices.

Refer: to the printer handler in the system I/0 HANDLER Tisting in
‘Appendxx E. The handler accesses the printer through three I/0 port
addresses:

. ‘PTDAT -= Printer Data Port -- Character data to be printed will be output
-t f his port.

PTCTL == Printer Control Port -- READY TO RECEIVE status will be read from
1s port

' PTSTS~ws Printer Status -- PRINTER ATTENTION status will be read from this
. port. If your printer does not generate attention status then this port
- will not be used.

.~ Printer attention detection requires two masks: PMSK1 and PMSK2. The
-handler inputs from port PTSTS and extracts the printer attention bit(s)
by ANDing the status with PMSK1. The result is then exclusive OR'ed
with PMSK2, The resulting condition code will be zero if printer is
: operational or non-zero if an attention condition exists.

Example: Assume a printer generates ON-LINE and PAPEROUT status which
‘are connected to bits 7 and P, respectively, of the status port. PMSK]

will be @81H to extract bits 7 and B. The printer will be operational if
and only if bit 7 = 1 and bit § = @§. PMSK2 must be constructed to yield
~a result of zero for this bit combination. Since Exclusive OR'ing the
status which PMSK2 results in complementing each bit of the status for which
the corresponding bit in PMSK2 = 1, the mask value required is @80H.

- Ready to receive status detection also requires two masks: PMSK3 and
PMSK4. The handler inputs from port PTCTL and extracts the ready to

receive bit(s) by ANDing the status read with PMSK3. The result is then

exclusive OR'ed with PMSK4. The resulting condition code will be zero

if the printer is- ready to receive or non-zero if the printer is busy.

" The maiks are formed in the same manner as illustrated for printer

attent on detact1on

2-26

Rev. 7 3/78

Configure the printer handler as follows:

1)

2)

3)

4)

10)

11)

Determine the values of the port addresses and masks as described
above for your printer and interface board. Determine the
instructions required to initialize your printer/interface board.

You can make the patches with your running MDOS system or with
your front panel switches (or monitor). If you want to use the
system to make the changes, refer to the description of the ENTR
command under MDOS EXECUTIVE in Chapter 4.

Change location @GLIOTABLE+8 invthe listing to the address of
LDOUT.

This change is necessary because when the system boots this
address is set to CDOUT, so both logical output streams go to
the console device, which effectively no ops the printer handler.

If your printer does not support a printer attention condition
skip to Step 8.

To configure the printer attention routine change location LDATN
and LDATN+1 to @ (NOP). The system boots with an XRA A and a

RET in these locations which turns the attention logic off.
Placing the two NOP's in the code activates the printer attention
logic.

Change location LDATN+3 to the value of PTSTS (printer status
port address) for your printer. :

Change location LDATN+6 to the value of PMSK1 and location LDATN+8
to the value of PMSK2. The printer attention logic is configured.

To configure the character output routine, change location LDOUT1+1
to the value of PTCTL (printer control port address).

Change LDOUT2+1 to the value of PTDAT (printer data output port
address). _

Change Tocation LDOUT1+44 to the value of PMSK3 and location
LDOUT1+6 to the value of PMSK4. The printer character output
routine is configured.

If your interface device requires software initialization, enter
the machine code required starting at LDINIT and ending with the
code C9H (RET). The code as assembled in the listing initializes
an INTEL 8251 USART for two stop & 8 data bits with no parity. To
activate this logic change locations LDINIT and LDINIT+] to 9.

If your equipment does not need initialization do not make any
change to this code.

2-27

Rev. 7 3/78

12) The Togical printer output routine pfovides carriage return line
feed after a specified number of characters as an option.

This allows lines 1ongef than'the_carriage to wrap around rather
than banging at the end of the carriage. If you want to disable
this feature, change location PWRAPFLAG to a 1, otherwise disregard.

13) The number of nulls output in conjunction with a carriage return
‘ and the width associated with the wrap logic can be set using the
ASSIGN command. These values are set at 2 nulls and 72 character
width when the system is booted. The ASSIGN command is described
in Chapter 4 under MDOS EXECUTIVE COMMANDS and Chapter 5 under
BASIC PRINT FILE OUTPUT.

14) Some applications and systems programs need to know if the printer
hardware is capable of advancing to the top of a page when a form
feed is output or if the software needs to handle the top of form
by issuing the correct number of line feeds.

A memory location is provided in the RES module which can be set

at configuration time to indicate the type of printer you have.
This memory location is called FORMFLAG and is located at 4C8H.

A FORMFLAG of @ indicates a printer which does not do a top of form
when it receives a form feed. A FORMFLAG of 1 indicates a printer
that does a top of form when it receives a form feed. The value

of the FORMFLAG is @ as the system is shipped. This is the
configuration that would be used with a Teletype 33 that does not
have a hardware top of form feature.

If your printer does a top of form when it receives a form feed
(ASCII code 12 decimal) set this location to a 1 by typing:

ENTR 4C8 and a carriage return.
1/ and a carriage return.

The ASSM program, for example, checks the FORMFLAG and outputs
a form feed if it is a 1 or line feeds if @, to advance to the
top of the next page.

User applications programs can also use the FORMFLAG to make

the software less hardware dependent by providing both form feed
- logic and multiple line feed logic, which is conditionally

executed depending on the sense of the FORMFLAG.

:15) You have finished conf1gur1ng the line pr1nter handler. Type
EXEC 4E7 and a carriage return, to warmstart the system and
initialize the printer.

You can test the printer by typing ASSIGN 2 3 and a carriage
return. The printer should echo all characters typed on the
console. Type ASSIGN 2 2 and a carriage return and the printer
should stop echo1ng

Rev. 8 9/78 2-28

16) Procede to Section 2.2.6 to create a configured SYSTEM disk.
2.2.5.2 PRINTﬁR INTERFACE EXAMPLE

This section presents a comprehensive case study of interfacing a TELETYPE
Model 49 line printer to an IMSAI 8p8p system. This example assumes an
S102-2 SERIAL INTERFACE BOARD with the terminal connected to port A. The
printer is equipped with an ASCII EIA-type interface which 1nterfaces
directly to port B of the SIO02.

The printer interface is illustrated in Figure 2.1@ and consists of the
fo]]owing,signa1s:

1) CHASSIS GROUND

2) SIGNAL GROUND

3) RECEIVED DATA -- Serial data to be printed.

4) CLEAR TO SEND -- The printer interface 1ine "REQUEST NEXT
CHARACTER" (RNC) is applied to the CTS line to enable the USART
device on the serial board. This synchronizes transfers to the
printer and allows the TRANSMITTER READY status bit of the
USART to function as "READY TO RECEIVE".

5) DATA TERMINAL READY -- The printer asserts the DTR line when

printer power is on and no alarm conditions such as paper out
exist. This status line is jumpered to the USART DATA SET READY

Rev. 8 9/78 2-28.1

8L/6 8 "A3Y

2°8¢-¢

FigureFZ.W) Interfacing a Teletype Model 4@ Printer with EIA Interface Option to an

INTEL

8251

IMSAT SI102-2 Port B

CHASSIS GND

n.an !
Lo ' /7[7
| : I
> BA SG6L GND 7 .
[‘ | " 4—‘
} |
TX0 7o !: Rt '3 s Rec_oava 3! TELETYPE
| | : ! I MOD 49
: B ° PRINTER
ers <75’|$8 5! 1ya 58 eTs . 14! (RWE)
! N 1 I
‘ ;
DSR o 5188 | o l“" <o DTR 20
N 1 ! ' 1
| I o ~
OTR 75189 7L 1q . e €¢ DSR 6‘1
L 1 |
PART OF JUMPER | e

IMSAI S102-2

PLATFORM B-8

PRINTER INTERCONNECT

CABLE

S EIA -- EDGE CONNECTOR CABLE

_ FROM BACKPANEL ‘TO 5102 PCBA

 NOT SHOWN

(DSR) 1input line. The state of this line may be read as one of
the USART status bits and serves as PRINTER OPERATIONAL for
printer attention detection.

6) DATA SET READY -- The DATA TERMINAL READY output line from the
USART is applied to the DATA SET READY (DSR) interface line.
When asserted, DSR turns the printer motor on.

This interface requires the user to fabr1cate the pr1nter 1nterconnect
cable shown.

The SI02-2 is to be jumpered so that the USART status*register may bE'read
from port 5 and the USART data register may be written into from port 4.

The status byte read from the USART consists of the following bits:

716 543211p

T

a0no
-<CJZJ><-|

BIT7 -- DSR = (PRINTER OPERATIONAL)
@ = Printer Attention
1 = Printer Operational
BIT 6-1 -- Don't Care
BIT @ -- TRANSMITTER READY -- (READY TO RECEIVE) 1 = the

USART is ready to receive a character to transmit
to the printer.

Since both printer operational and ready to receive are contained in the
same status byte, PTSTS = PTCTL = 5.

The printer data port is the USART data register, so PTDAT = 4.

The masks required for attention and ready status are:

PMSK1 = P8@H
PMSK2 = @8pH
PMSK3 = 1
PMSK4 = 1

Refer to the printer handler in the System I/0 HANDLER 11st1ng in Append1x
E. The handler listed has been assembled for the example given in this
section.

Details of the operation of the 8251 USART may be obtained from the INTEL
application note AP-16 USING THE 8251 USART.

2-29

Rev. 7 3/78

Since all of the port'addresses and other parameters are assembled into
the system printer handler, configuring the handler for this example is

simply a matter of enabling the handler.

However, to illustrate the

procedure given in Section 2.2.5.1 the full dialogue is given below.
The procedure step numbers are annotated to the right of the listing:

>ENTR 5@A
>CB 6/

Sk1p to Step 8 1f Prwnter Attent1on
is not requwred '

>ENTR 658
>p B/ -
>ENTR 6EB
>5/ 3
>ENTR 6EE
>80/ R
>ENTR 6Fp
>89/
>ENTR 6D@ . - -
>5/ S
>ENTR 6DB
>4/ '
>ENTR 603
>1/ :
>ENTR 6D5 -
>1/
>ENTR 6FE
>0 P 3E AAD3 5 SE 49 DS 5 3E.CED35
>3E 17 D3 5 CQ/ ‘
>ENTR 51@ -
>1/
>ASSIGN 2 2 48 1
>EXEC 4E7 o

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

2-30

Step

Step

Step
Step

Step

Step
Step
Step

Step

Step

Steb
Step

10

11

12
13

14

2.2.5.3 CONFIGURING SPECIAL PRINTER HANDLERS

If you are unable to patch the generalized print handler for your system, |
you will have to write your own. A general discussion of the needed routines
follows. See Figure 2.9. .

2.2.5.3.1 THE LIST 1/0 TABLE

ORG @LIOTABLE

PWRAPFLAG DB @

PNULLS DB 3

PWIDTH DB 72
DS 1

enable (@) or disable (1) list device wrap logic
Tist device null count + 1

list device carriage width

must be provided for internal system use

bW p ; place holder corresponding to CIN

DW LOUT ; address of logical Tist output

DW LATN ; address of logical list attention check

oW ¢ ; place holder corresponding to CDIN

DW LDOUT ; address of physical list device output

DW LDATN ; address of physical 1ist device attention check
DW LDINIT ; address of physical list device initialize

The addresses in the table point to the actual routines. PNULLS AND PWIDTH
may be changed at any time in either MDOS or BASIC by using the ASSIGN command.

2.2.5.3.2 LOGICAL LIST 1/0 (LOUT, LATN)

The logical output routines have been tailored to meet the requirements
of MDOS and BASIC. They should not have to be rewritten.

2.2.5.3.3 PHYSICAL LIST DEVICE OUTPUT (LDOUT)

LDOUT is the physical output routine. Most standard interface boards can

be accommodated by patching the output port addresses and the ready mask
values into the supplied printer’hand]er (see the listing in Appendix E).
This generalized printer handler is in place after the system is booted.
However, there are some cases where the genera11zed printer handler cannot
be used. A couple of examples might be systems using an old BAUDOT teletype
as a printer, or DIABLO which uses a non-standard ETX system. In these
‘cases the physical output routine must do considerably more than just output
when the print device is ready. For the BAUDOT teletype the physical output
routine must convert from ASCII to BAUDOT before outputing.

The physical output handler must have the following characteristics to
interface with the rest of the system: v

1) The character to be output is passed to the physical output routine
in the B register in ASCII.

2) The physical output routine can use (destroy) the A register.

2-31

Rev. 7 3/78

3) A1l registers except A must be returned unchanged.

4) Some printers can signal when paper is out, the motor is off, or
they are out of ribbon. The system supports printers which can
signal a PRINTER ATTENTION condition.

If the printer needs attention, the physical output routine should
return with the carry flag set (C). If your printer does not
support a Printer attention condition, then always return with the
carry clear (NC). The other status flags can be returned in any
state. o .

2.2.5.3.4 PHYSICAL LIST DEVICE ATTENTION ROUTINE (LDATN)

LDATN is a routine which checks PRINTER ATTENTION on pr1nters which support
th1s condition.

If your printer does not support pr1nter attent1on, then this routine can
simply clear carry and return.

LDATN XRA A
RET

If your printer is capable of signaling printer attention, your LDATN
routine must have the following characteristics:

1) The LDATN routine can use (destroy) the A register.

2) AT] registers except A must be returned unchanged.

3) If the printer needs attention the routine returns with the carry
set (C), otherwise the carry is returned clear (NC). The other
status flags can be returned in any state.

2.2.5.3.5\PHYSICAL LIST DEVICE INITIALIZE (LDINIT)

LDINIT is a routine which initializes the printer/interface device. Some
devices are not programable and cannot be software initialized in which
case the LDINIT routine needs only clear carry and return.

LDINIT XRA* A
‘ RET

If you need a software initialization sequence, it must have the following
characteristics:

1) The LDINIT routine can use (destroy) the A register.
2) " A11 registers except A must be returned unchanged

3) The carry flag must be returned clear (NC). The other status flags
can be returned in any state.

2-32

Rev. 7 3/78

2.2.6 CREATING YOUR SYSTEM DISKETTE

The Program Development system is shipped with a MASTER diskette and a
SYSTEM diskette, which is a duplicate of the Master.

This is done as a convenience for people with a single drive system, and
provides a simple, fast method for generating your first configured running
SYSTEM diskette. However, to generate additional configured systems on a
blank diskette requires a more detailed procedure if you have only one
drive. This procedure is described in Section 2.2.8.

With a muitiple drive system it is simple to make additional copys using
either the DISKCOPY utility which makes a duplicate diskette on another
drive, or the FILECOPY utility which copies a named file from one drive to
another.)

After the system has been configured to the input/output requirements of
your equipment, you are ready to create your configured SYSTEM diskette.

1) Remove the MASTER diskette and keep it in a safe place. The
MASTER diskette should never be re-written.

2) Insert the nonconfigured SYSTEM diskette in your drive (unit @ on
multiple drive systems).

3) Type FILES and a carriage return. A list of all the files on the
system diskette will be displayed.

4) The first file entry on the diskette is DIR which is the directory.
The second file entry is RES, which is the resident portion of
the Program Development Software systems.

5) Type TYPE "RES" P and a carriage return. This changes the file
type from read only and permanent to a normal data file. This
must be done prior to removing the file from the directory in
preparation to saving the new configured version.

6) Type SCRATCH "RES" and a carriage return. This removes the
file from the directory. :

7) Type SAVE "RES" 2Bl 1598,3 and a carriage return. The unit
select Tight will go on indicating that your configured RES
file is being written onto the diskette.

8) When the system prompt ">" is printed again, the file has been
saved. Type FILES and a carriage return. RES should be the
second file entry.

RESTIRT 4T 04Ey,

2-33
Rev. 8 9/78

9) Due to the addition of the three commands, EDIT, RENUM and MERGE,
the current BASIC is longer than BASICs before version 4.p. If
there is no need to shorten BASIC, ignore this step. If
you want the SYSTEM diskette to have a shortened version of BASIC,
proceed to APPENDIX G, the FEATURES PROGRAM, which describes the
procedure for shortening BASIC. When this procedure is completed,
you are running a shortened BASIC. Do the fo110w1ng to save the
shortened BASIC on the SYSTEM d1skette

In resoonse to BASIC's READY prompt
a) Type OPEN 1 "BASIC".ATTRS(]) 8 and a carriage return.

b) Type SAVE "BASIC" 16R1‘57'2,-.15[<.5DFF. and a carriage return,

c) Type'ATTRS(T)EJGBF:CLQSE 1 and a carriage return.

The System diskette now has a copy of your personalized system. You may want

to make a copy of your personalized system at this time as a backup. If you
have a single system, go to Section 2.2.8. If you have a multiple drive system,
type DISKCOPY and a carriage return. The DISKCOPY program will be brought in
from the disk and type instructions for 1ts use.

2.2.7 CREATING A BASIC ONLY SYSTEM DISKETTE

Some users may only want to program in BASIC or may be developing BASIC
application program packages for sale. You can create a BASIC only system
which will boot up directly to BASIC. The BASIC only system should not use
the SYSTEM diskette provided, rather a new blank diskette should be used.
This procedure should only be followed after you have configured your system
as described in Section 2. 2 4 and 2.2.5, and created a conf1gured System disk -
as in Section 2.2.6.

1) Put a blank diskette in disk drive p.
2) Type INIT @ and a carriage return. |
The system responds ARE YOU SURE? This is done to help prevent
accidentally initializing a diskette. The initialization process
will destroy anything which was previously on the diskette. If
you are sure the diskette you have in drive f§ is to be initialized,
,Type Y and a carr1age return
“When the prompt ">" is printed again, the diskette is initialized.
3) Remove the initialized diskette and put the SYSTEM diskette back
into drive D.

2-34

Rev.]Q, 4/79.

4) Type BASIC and a carriage return.
BASIC will be loaded into memory and sign on with

MICROPOLIS BASIC VS X.X - COPYRIGHT 1978
READY

NOTE: It is possible to optiona]]y‘remove features from BASIC before
creating the BASIC only diskette. See Appendix G for details.

5) Remove the SYSTEM diskette and put the initialized diskette back
into drive 0.

6) Type SAVE "N:BASIC" 16R2B1, 16R5DFF and a carriage return.

BASIC will be.Written onto the initialized disk. When this
is done the system will respond, READY.

7) Type OPEN 1 "BASIC":ATTRS(1)=3:CLOSE 1 and a cafriage return.
This will set the attributes of BASIC to permanent and write
protected. The diskette is now a valid BASIC only configured
system disk.

If you'want to copy the BASIC UTILITY program onto the BASIC only diskette,
proceed as follows.

1) Put the original SYSTEM diskette into drive 0.
2) Type LOAD "UTILITY" and a carriage return.

The UTILITY program will be loaded into BASIC's current program
buffer and BASIC will respond, READY.

3) Remove the SYSTEM diskette and put the BASIC only diskette in
drive p.

4) Type SAVE "N:UTILITY" and a carriage return.

The UTILITY program will be written on the BASIC disk.
Users with multiple drive systems may also wish to place the DISKCOPY
utility on the BASIC disk. This can be done by using the FILECOPY
capability in MDOS.

2.2.8 MAKING ADDITIONAL COPIES OF YOUR SYSTEM USING A SINGLE DRIVE

Micropolis provides two diskettes with your drive as described in Section
2.2.3 to simplify the initial system generation procedure, for single drive
owners. However, after you have configured your system and created your
SYSTEM diskette, it would be a good idea to make a back up copy of your
configured SYSTEM diskette - especially if you have a nonstandard system
which- is harder to personalize.

BEFORE COPYING YOUR CONFIGURED SYSTEM, IT IS RECOMMENDED THAT YOU PUT A WRITE

PROTECT TAB ON THE SYSTEM DISKETTE. IF NECESSARY, THIS WRITE PROTECT TAB CAN
BE REMOVED AFTER THE COPYING PROCESS IS COMPLETE.

Rev. 8 9/78 2-35

There are two utilities which can be used to make a copy of a configured
system diskette:

1)

2)

The DISKCOPY utility can be used to make an exact duplicate image
of a diskette. DISKCOPY can be used on a single drive system,
though the procedure is somewhat more difficult than for multiple
drives. Refer to chapter 4, section 4.8 for instruction on using
DISKCOPY in this manner.

A special utility called COPYFILE is provided for the single drive

owner. COPYFILE is similar to FILECOPY which is designed for

multiple drives. COPYFILE makes it simpler for the single drive
owner to backup disk files on another diskette. Refer to chapter
4, section 4.19 for instructions on using COPYFILE.

When using COPYFILE to backup your configured systems d1skette,
the following steps should be followed:

a) Initialize a blank diskette by tyning the command INIT P
and a carriage return. The system prompts

ARE YOU SURE?

If you are, type a 'Y' Any other response will cancel the
command.

When the system prompts '>', the diskette is initialized.

b) The RES file must be the first file to be copied on the newly
initialized diskette. If any other file is copied before RES,
the new diskette will not boot. Type:

COPYFILE "RES"
and a carriage return.

The COPYFILE progfam leads the user interactively through the
copying process.

c) The second file on the copy diskette should be MDOS. Type:
COPYFILE "MDOS" ‘
and a carriage return.

d) The rest of the system files can be copied in any order you wish.

2-36

Rev. 8 9/78

. IT1 NORMAL OPERATION
3.0 INTRODUCTION -

This section describes the day- -to- -day operat1nq procedure for a user-
configured system.

3.1 BOOTSTRAP PROCEDURE

, 1) Ensure that the diskette. dr1ve and contro]ler are properly inter-
connected with your system and that the ‘proper type of memory
is configured and installed in your system. Apply power to the
diskette drive and system

~2) Insert the configured SYSTEM d1skette 1nto the drive (drive 9
: of dual drives) and load the diskette. - On s1ngle drives, wait
about 5 seconds.to ensure the un1t is up to speed

3) Activate the bootstrap ROM on the contro]]er For A]ta1r/1msa1

-~ type computers with a front panel, this is done by setting the
address switches to the bootstrap address (FA@PH unless the
controller base address has been changed), reset, examine, and
run. For computers under control of a resident ROM monitor,
follow the manufacturers instructions on starting program
execut1on at a given address. Use the-address: of the bootstrap
ROM' (F4gPH unless the controller base . address has been changed).

- Cp M

When the boot program is started, the un1t se1ect indicator on
the drive will illuminate: and the d1sk head will load with an
audible "click".

The address 11ghts on the computer tront panel (if you have
one) will flash the load process which w111 take 4 to 7 seconds.

The bootstrap program br1ngs the system 1oader 1nto RAM and it
Toads and starts the configured system. . When this process is
complete, the loaded system will output a sign-on message to
your termina] The MDOS system signs on with

.MICRQPOLIS MDOS VS X.X - COPYRIGHT 1978

The BASIC system signs on with

MICROPOLIS BASIC VS. X.X - COPYRIGHT 1978
READY

3-1

Rev. 7 3/78

- 4) Approximately 5 seconds after the load is complete, the drive
will automatically be de-selected. This will be evidenced by
the audible "click" of the head unloading and the unit. se]ect
1nd1cat0r will ext1nguish

If the system has not signed on within 10 seconds, observe o
the unit select indicator. If the unit is still seIected after
about 20-30 seconds, the bootstrap program has not been able to
read the loader into memory. Reset your system and remove the
SYSTEM diskette. Inspect the diskette for any obvious damage

- or contamination, Rerload the diskette and retry the bootstrap
operation, . ' S ,

If the system has not signed on but the unit select indicator
haS~extinguished, the loader may not have been able to read the
- system into memory. Stop the system and examine location
P39AH which contains the loader termination status. The status
code should be one of the f0110w1ng

-~ 47H (ASCII "G") - THE SYSTEM WAS LOADED WITHOUT AN ERROR - the
problem is probany with your terminal or 1nterface (ensure
your terminal is on I1ne)

55H (ASCII "U") UNRECOVERABLE DISK ERROR

" The system Ioader was unable to read the system from‘the diskette
properly. Remove the diskette and inspect for ebvious damage or
contamination. Re-insert the diskette and retry ‘the boot operation.

4DH (ASCIT "M") - MEMORY ERROR - the system loader reads the system
into its read buffer sector by sector and moves the data from each
sector into the RAM area where it executes. During this process,
the loader reads the data back to ensure that the move destination

- contains operable RAM. If the data read back does not compare,
then the loader aborts with an "M" error. @19BH/@19CH contains -

- the RAM address at which the error occurred. Try to deposit/
exam1ne Q, FFH, 5AH, ASH at the address which caused the error.

a) If the examine always yields FFH, there is no RAM at
that address (or a memory board fa1]ure wh1ch makes
it appear so) or memory 1s protected.

b) If the exam1ned data does not match the data deposited
at that location, you probably have a defective memory
board or the memory is protected.

c) If memony appears to be OK, retry the boot. operation -
if it fails again you may have noise or some similar
transient memory error problem.

If the status code is not one of the above, the RAM at @PAPH -

@3ABH into which the loader is read may be defective, protected,
or nonexistent.

Rev. 8 9/78

3.2 OPERATING HINTS

Rev.

1) The Micropolis flexible disk drive subsystem was designed to take

every reasonable precaution to protect your diskettes and the data
recorded on them. Examples of this care are the door interlock
which prevents loading of the diskette until it is properly inserted,
and the automatic 5 second deselect feature which relieves the head
load pressure from the recording surface when the drive is not in
use. Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing

the diskette to ensure its long service life. The following
precautions are guidelines for proper handling:

a) The exposed recording surface is easily contaminated - do
not touch or attempt to ciean the surface. Do not smoke,
eat or drink while handling the diskette. Whenever the
diskette is removed from the drive, return it to its
protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which
may be damaged if handled carelessly. Do not place heavy
objects on the diskette; do not expose the diskette to
excessive heat or sunlight; do not use rubber bands or
paper clips on the diskette; do not bend or fold the
diskette.

c) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette
or it may be damaged by the force exerted in writing. A
fiber-tip type of pen is recommended. Return the diskette
to its envelope before writing on' labels.

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may
result in the loss of information.

If a diskette is damaged or contaminated it should be replaced.
If a contaminated diskette is placed in the drive, the receiver
and read/write head may become contaminated and ruin other diskettes.

2) The auto-deselect will ensure.reasonab1e diskette 1life. But, as a

rule you should unload the diskette whenever it is not going to be
accessed for long periods of time. This will give added diskette
life and prolong the 1ife of the drive motor.

3) A1l diskettes used with the Micropolis subsystem must be initialized

before they can be used. The required initialization can be performed
by using the INIT command in the MDOS System or by using the BASIC
UTILITY program provided on the MASTER diskette and described in
Appendix B.

3-3

7 3/78

3.3 THE CONCEPT OF BACKUP

A key concept in the successful operation of any computer system is BACKUP.
System failures are not a matter of probability, they are a matter of
certainty. Failures may occur because of internal problems such as component
failures or defects in media used in storage devices; or because of external
sources such as power failure or line transients. Adoption of a sensible
back-up scheme can minimize the inconvenience and expense of system failures.

In the context of microcomputers equipped with M1ckop011s flexible disk
storage subsystems, backup means taking steps to ensure that your program
and data files are not lost.

Protecting your programs is easy if the convention of master and working
copies of programs is adopted as follows:

1) A master program diskette exists for the pUrpose of backup only.
It is kept in a safe place and is only used when its contents are
copied to a working diskette.

2) In day to day operations, programs are loaded and executed from
working diskettes.

3) Never use the master diskette for program development. Copy its
contents onto a working diskette and perform the program editing
using the working diskette. ,

4) When editing program files, resave the program file periodically.
In the event of a failure, the chance of losing all of a lengthy
editing session is reduced.

5) When the editing of a program is complete, the diskette containing
the source program should be saved as a temporary master. Debugging
of the program should be performed using a copy ‘of the temporary
master. Subsequent program editing may be performed on the temporary
master or a copy of it depending upon how extensive the previous
editing was. The key concept is: If the only copy of a program
under development is destroyed, it should be possible to recreate
the Tatest version from previous masters and documentation of the
changes made to the previous programs. (e.g., marked-up program
Tistings) The extent to which this concept is extended depends
upon weighing the inconvenience and time of making backup copies
against the possible loss and inconvenience caused by a fajlure.

6) Once the program under development is stable and ready to be phased
into operation, the temporary master becomes the new current master
diskette. The previous master should be retained as a 'grandfather'
backup master, until it is certain that the new program functions
properly and there is no need to fall back to the previous program.

Listings of the programs on the master diskette should be saved in
.a safe place as further security.

Rev. 8 9/78 3-4

Protection of data files is more difficult. The extent to which data files
may. be protected depends upon the application but the concept is the same.
In a properly designed system it should be possible to recreate the current
data base from a backup copy and a 1ist of the changes which have occurred
since backup copies of the files were made.

A static data base may be protected by procedures similar to those given for
program protection.

A dynamic data base, such as the data base used in an intereactive order entry
or inventory control system, is difficult to protect. A properly designed
system should include making frequent backup copies and saving the transactions
against the data base in a separate file, preferably on a different device
from the device on which the data base resides. If a failure occurs, the

data base may be reconstructed except for transactions which may have been
processing at the time of the failure. Many books and articles have been
written concerning the design and security of data bases - consult them

for an in depth discussion of the problems and solutions.

In systems which have only one disk drive, the backup process involves
swapping diskettes in and out of the drive. Although the need for backup

is independent of the number of drives in the system, in this context the
time and invonvenience of the process may appear to overshadow the

potential value. Micropolis has attempted to minimize this time and
inconvenience by providing file and disk copy utility programs which support
the single disk drive environment.

In systems which have two or more disk drives, the Micropolis DISKCOPY program

provides the easiest means of making backup copies. The entire contents
of a diskette may be copied onto another diskette in a few minutes.

Rev. 8 9/78 3-5

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.9 INTRODUCTION TO MDOS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MDOS). MDOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MDOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/0 control and program control. _

MDOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
console and printer character 1/0, buffered line I/0, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor oriented utility subroutines.

Six application programs make up the package that supports assembly
language program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8(8p/8@85 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent

symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
language programs.

4-1

Rev. 8 9/78

4.1 THE MDOS EXECUTIVE

The MDOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MDOS is Toaded it signs on with the
message _ v v ,
MICROPOLIS MDOS VS. X.X - COPYRIGHT 1978

>

It is then waiting for an eXecutive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the 1ine. A backarrow is echoed
- to the terminal display for each character deleted.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return Tine
feed combination is echoed to the terminal display. The
executive is positioned to accept entry of a new line.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executfve statement has thé following form:
[unit:INAME ["<ASCII>" "<ASCII>" ... "<ASCII>" <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MDOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only

and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces, double quotes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the executive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found in the table of command names the statement
is executed immediately. If the NAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

4-2
Rev. 7 3/78

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit @ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is. output

to the console stream: COMMAND NOT FOUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at least one space between
the NAME and any parameters. A1l parameters must be separated from each
other by at least one space. Entry of an executive statement with too many
parameters of either type, or without the required spaces between fields

will result in a SYNTAX ERROR.

ASCII parameters consist of from @ to 1@ ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters

in an ASCII parameter will result in a SYNTAX ERROR.

ASCII parameters in executive statements are generally used to specify

disk filenames. In this usage a unit number may be prefixed to the ASCII
filename within the quotation marks by typing the unit number followed by

a colon (:) followed by the filename. This indicates the disk drive unit

on which the file is to be found. If no unit is specified, unit @ is
assumed. The digit of the unit specification and the colon are not included
in the 1@ character length restriction for ASCII parameters. For example,
"DATAFILEOT" and "1:DATAFILEO1" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from § to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

A11 MDOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a

C (CNTL/C) on the console keyboard. The operation will be terminated as soon
as.the CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MDOS executive.

4-3

Rev. 7 3/78

4.1.4 DISPLAY CONTROL

A11 MDOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S (CNTL/S). The process will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional. »

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP_COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block?>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 50P0 5p0F 5019
5094 91 99 5p14

The block of memory from 50P@ to 5@@F is compared with the block of memory
from 5019 to 5P1F. One location fails to compare. Location 5@P4 contains
@1 while the corresponding location, 5@14, in the second block contains £9.

4.1.5.2 THE DUMP_COMMAND

DUMP <start addr.>[<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown

16 to a line with the memory address_at the left margin. If the optional end
address parameter is not entered, only one byte is displayed. Example:

>DUMP 5009 5011 .

5000 50 CP 27 77 4F 33 4F CD 7D 9E 98 PP 6A FD 82 99

5019 77 2B

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78

The ENTR command allows data to be entered into memory directly from the
console device. Example:

>ENTR 7000
>78 89
6F/

Three bytes were entered starting at location 70P@ hex. These were 78
at 7pp@, 89 at 7PP1, and 6F at location 7pp2.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each 1ine of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

>FILL 7¢¢¢ 8ppp 9

Each byte of memory in the block from 7000 to 89@9 is changed to a P9
by this command. '

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

>MOVE 3000 4009 7090

Each byte in the memory block from 3pP@ to 4@pP is copied into the
corresponding position in the memory block from 7000 to 800@.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3pp@ 30929 9F
30p4 9F
3918 9F

The block of memory from 39P@ to 3P2@ is searched for all occurrences of
a 9F. Location 3pP4 and location 3P18 both contain 9F. No other
locations in the block contain 9F.

4-5

Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3008 3019 67
3002 99 67
3006 76 67

The block of memory from 3@ to 3§19 is searched for all non-matches with
the mask 67. Location 3p@2 contained a 9 rather than a 67, and 3006
contained a 76 rather than a 67. :

4.1.5.8‘THE'CREATE COMMAND

CREATE "[unit:]<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette

in the specified unit and allocates the initial track for the file. If
no unit is specified, unit @ is assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to Q.

4.1.5.9 THE DISP COMMAND

DISP "[unit:]<filename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of

a file to the system console. The unit number indicates the disk drive

on which the file is to be found. If no unit is specified, unit § is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed.

Each record is displayed with a header 1ine that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data 1ine has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP “T1:TEST" 29

0p29 3C09 P@p22

@0 12 2A BD 76 8F ED 54 41 89 99 @p 82 BC CC 76 89
19 78 88 3B BB 88 54 58 56 99 88 32 31 3p 0AD P9 7P

20 89 55
Ppp2A 3C80 9993
pp FF FF FF

0028 3FQP 0PP9
PP 45 43 4B 4C 31 37 38 9D 09

@p2C 28pp PORP
END-FILE

4-6

Rev. 8 9/78

The first line of the display shows the record number 29, the load

address 3C@P, and the length of the record 22 bytes (all in hex). The
header 1line is followed by three 1ines which display the data in record

29. Each data 1ine starts with the index position of the first byte in the
Tine. It is followed by two spaces and then the data.

The next header 1is for record 2A which has a load address of 3C83 and
contains @3 bytes of data.

Record 2B has a load address 3FPP and contains @9 bytes of data.

The last header is for record 2C which has a load address of 2B@® and a
record length of @. If the file is an executable object file (1ike ASSM
for example), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1
Rev. 8 9/78

4.1.5.10 THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is
specified, unit P is assumed. Example:

>FILES 1

DIR g3 0PPP
RES g3 0p13
MDOS pF ppic
LINEEDIT 15 pppc
ASSM 15 ppip
SYMSAVE 15 ppp3
FILECOPY 15 0pp3
DISKCOPY gF PPR9
BASIC pF ppaB

The files on drive one are displayed on the console. The Teft column
contains the filename, the second column is the file type, and the
third column contains the number of sectors the file uses. A1l numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>]

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk drive. If no unit is specified, unit @ is assumed. Example:

>FREE 1
P038

The diskette on drive one has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<filename>"

The SCRATCH command removes a named file from the directory of a diskette
and returns its allocated tracks to available status. Disk drive P is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed without first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command Toads (reads) a named file from a diskette into the computers
memory and then returns control to the MDOS executive. If no unit number
is specified, the file is expected to be found on unit 0.

The LOAD command can be used in conjunction with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be loaded. The
process of LOADing an OBJECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.

An OVERLAY file is defined as any file with a file type value in the range

@C - @F hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WRONG FILE TYPE. OVERLAY files are not LOADable because

they generally imply the replacement of the MDOS module and require immediate
execution. Control cannot be returned to the MDOS executive and must be
transferred immediately to the newly overlayed program module. If there is

a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MDOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
ﬂ8 - @B hex or 14 - 1B hex. These ranges include ASSM object files, BASIC
'save memory' files, executable system files, and executab]e user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:
LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
'scatter load' because it permits records in the file to be loaded into
non- cont1guous portions of memory depending on the associated addresses.
The LOAD is terminated when the first @ length record in the file is
encountered.

If the optiona] start address is not specified in the LOAD command, then
the load of an OBJECT file proceeds according to the following example.

The OBJECT file to be loaded is "TEST".

DISP “"TEST"
ppop 2BP@ PPP5
pp 31 32 33 34 35

ppp1 2CpP ppR4
PP 54 45 53 54

pop2 2Bp@ PPRP
END-FILE
4-8

Rev. 8 9/78

Typing LOAD "TEST" Tloads two text strings into memory. The string "12345"
in record @ is loaded starting at 2B@@ hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2C@@ hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2B@@ hex. This file, however, could not be

a run file as it stands as there is no executable code.

If the load address of the first record is less than 2B@@ hex, the message
LOAD ADDRESS ERROR is displayed because file may not be loaded beneath the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
Toad address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are loaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5@@@ loads the
string "12345" starting at memory location 5@@@ hex for five bytes. The

offset is calculated by subtracting the load address in the header of the first
record from the start-address. 5@30-2Bp@=2503 hex. The string "TEST" is
loaded starting at 51P@ hex for four bytes. The load address in the header

of the second record, 2C@p has the offset 250p hex added to it and the result
is the offset-load address

If the optional start-address is less than 2B@@ the message LOAD ADDRESS
ERROR is displayed.

4.1.5.13.2 THE LOAD COMMAND FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as

a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges §-7, 10-13 hex, and 1C-FF hex. These ranges cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD "[unit:] <filename>" <start addr.>

The start address parameter is mandatory. If a start address is not specified
a SYNTAX ERROR message will be displayed. If the start address is less than

2B@® HEX a LOAD ADDRESS ERROR will result. This prevents accidental destruc-
tion of the operating system.

4-8.1

Rev. 8 9/78

Data is loaded starting at the specified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiguously. Only the
number of data bytes in each record are loaded. The LOAD command does not
pad records of less than 256 bytes. If a file were loaded at location
3p@P and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 3p@4. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves (writes) a new file to a diskette from a block

of memory. The file is written sequentially from the memory start

address through the memory end address into full sequential records. If

no unit number is specified, the file is written to unit @. If a file

type is not specified the file type will be zero. If an execution address
is not specified, the execution address of the file will be set to the
start address of the memory block. Note that the type and execution
address' parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "T:NEWFILE" 2Bp@ 37p2 P 3000

A file is created on the diskette in drive one with the name NEWFILE
~and the memory block from 2Bp@ to 379 is written to that file. The file
is given a type of P and the execution address saved with the file is
30P@. If no execution address had been specified then 2Bpg would be
saved as the execution address. '

4.1.5.15 THE RENAME COMMAND

RENAME "[unit:]<filename>" "<new name>"

The RENAME command changes the name of a diskette file to a specified

new name. If no unit number is specified, the file to be renamed is
expected to be found on unit @. Example:

>RENAME "1:0LDFILE" "NEWFILE"

The file named OLDFILE on the diskette in drive one is changed to NEWFILE

on the diskette in drive one. The file type is unchanged by the renaming
process.

4-8.2

Rev. 8 9/78

4.1.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1:PROGRAMX" 15

The type of the file PROGRAMX on disk drive one is changed to a Value
of 15.

4.1.5.17 THE APP COMMAND

APP ["<ASCII>" "<ASCII>"..."<ASCII>"] [<hex> <hex>...<hex>]

The APP command transfers program control from the MDOS executive to

the start of the MDOS applications area at 2B@@ hex. It expects a valid
executable program to be in the applications area with its entry point

at the beginning. Up to four ASCII parameters and four hex parameters

can be passed to the program. For example, if you are doing several

-~ assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.

After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1:SOURCE" "OBJECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembler
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated listing
on the print device.

The APP command functions like the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The logical stream mask must be a #,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and nullcount parameters are optional. If width or nullcount are not.
included, the values corresponding to the referenced physical device

4-9

Rev. 10 4/79

are not changed. If only the device width is included, then the
nullcount is left unchanged. However, if a nullcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command conta1ns only three parameters the third 1s always
the width.

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists of all
output generated by LISTP and PRINTP commands in the 1ine editor, and

by all Tistings in the assembler. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console (see
Section 2.2.4.1 on terminal configuration). Physical device number two
represents the hard copy pr1nt device which is configured as the system
printer (see Section 2.2.4.3).

The output of a 1og1ca1 stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN 1 1
>ASSIGN 2 2

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is Tonger than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The

width can be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currently
assigned to stream one with a width of 8@ characters (decimal), it could
be changed to a width of 72 characters (decimal) as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character

serial devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

Rev. 7 3/78

output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and

no nulls (nullcount=1), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in f1ve nulls being output after a
carriage return.

Because the MDOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

- 4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8@8p's hardware stack by the EXEC command. Therefore, if the
executed program does not set its own stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
PP@9 FFFF 0014 pPPP PPPA

The results are displayed from left to right: 4+5=9 ; 4-5=FFFF ; 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4.1.5.21 PROMPT "<ASCII>"

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-11

Rev. 8 9/78

not allowed. The prompt is initially > when the system is configured.
Example:

>PROMPT "
* ¥k '

The prompt is changed from > to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector

to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of

a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE?. It waits
for a 'Y' or 'N' response to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on drive one will be initialized if a 'Y' is typed. A1l

other replys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78

4.2 MDOS DISK FILE 1/0

MDOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track

P of each diskette contains a directory of the files on that diskette.

Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track § also contains a track map
index that 1lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record.

4.2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOD I subsystems and 77 on

MOD II subsystems), except the directory track #. When MDOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment. '

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MDOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference through
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from @ to 1@ ASCII characters in the code range
2PH to 7EH except for 22H which is the double quote and 5FH and 7FH
which are interpreted as backspace requests by the logical console
input routines.

A unit number may be prefixed to the filename by typing the unit number
followed by a colon (:) followed by the filename. This indicates the

disk drive unit on which the file is to be found. If no unit is specified,
unit @ is assumed. The digit of the unit specification and the colon

are not included in the 10 character length restriction for ASCII para-
meters. For example, DATAFILE@1 and 1:DATAFILE@1 are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not

start with a blank. It may have no imbeded blanks and it may not exist
in the MDOS explicit command table.

4-13
Rev. 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 1§ characters long and use the ASCII
characters from 2D hex through 5A hex except the colon (3A hex). This
should be kept in mind when creating file names for MDOS. The BASIC
file names are a subset of the MDOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MDOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MDOS also allows files to be classified
as to unique information content by assigning a type designation. A files'
access codes and type designation are combined in one byte of the files'
directory entry. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT

1

/)] A normal read/write file
g1 A normal read only file

10 A permanent read/write file
11 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary.

Note that these access code safequards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes @ through 7F hex are reserved for present and future system usage

and should not be assigned other meanings by the user. The codes from 80
to FF hex are available to the user and are not used by the system.

4-14

Rev. 8 9/78

The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE DESCRIPTION

INHEX

p0-03 MDOS & BASIC DATA FILES

pa-p7 EDITOR/ASSEMBLER SOURCE FILES
p8-9B ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
pC-pF EXECUTABLE OVERLAY FILES
19-13 ‘ BASIC PROGRAM FILES

14-17 EXECUTABLE SYSTEM FILES

18-18B EXECUTABLE USER FILES

1C-7F RESERVED FOR FUTURE EXPANSION
8p-FF AVAILABLE FOR USER DEFINITION

The line editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 files.

Executable system files and user files may be loaded with the load command.
Any attempt to load a fiie below the application program area will result

in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an executable file
will result in the message WRONG FILE TYPE.

It is not possible to load an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MDOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functional MDOS code.

4.2.4 FILE AND RECORD STRUCTURE

An MDOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track § of the diskette.

Each record of an MDOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of

@ to 256 data bytes. The memory address tells MDOS where in memory to load
the data from that record. The length indicator tells MDOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 260 bytes to be properly stored.

The records of a MDOS file are stored on the sectors of a diskette, one

for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 26@ bytes are available

for a record. Short records, including § length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any

time by rewriting the sector to make use of the unused bytes.

4-15

Rev. G 1/7Q

The object program file that corresponds to the following assembly
Tanguage program serves to illustrate the MDOS file and record structure.

ADDR B1 B2 B3 E LINE# LABEL OPCODE OPERAND
2000 1009 START ORG 4990H
4000 21 0@ 79 2000 LXI H,7000H
4003 3000 DATA DS 1PH
4013 90 40P0 BYTE DB]

ap14 5009 DATA1 DS 19H
4024 91 600@ BYTE] ‘ DB 1

4925 C3 25 49 7009 BEGIN JMP $

4p28 8000 END BEGIN

The first record of the object file has 4P@@ hex in the memory address
bytes in Intel low/high format. The record length bytes contain 0@@3,
indicating that the record has only three bytes of data. The three data
bytes are 21 P@ 7@0. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4@13 and a
length of @PP1, one byte of data @@. This record is also stored on the
disk as one sector. The third record has a memory address of 4024 and a
length of P@P4, four bytes of data @1 C3 25 4p. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4025 and a length of @#9P@. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MDOS executable

or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file

execution address. Given an executable file type, the records of this file
could be loaded into memory at 4000, 4013 and 4924 by typing its name to
the executive. Direct processor control would transfer to 4925 to begin
program execution. This type of file is called a scatter loadable file
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.

Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record

is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly (randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

4-16

Rev. 8 9/78

until a full 256 byte record is constructed and then writes it to the

next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner

may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may

also be read sequentially a record at a time by starting at the first record,
reading the record Tength and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

BASIC file names are a subset of MDOS file names. Therefore all BASIC files
can be handled by the MDOS file name parsing logic, but not all MDOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 250 bytes of data. The
file and record structure is the same as that used by MDOS as discussed

in Section 4.2.4. The two bytes at the start of the record which hold the
Tength of the record can never be greater than 250 if the file is to be

used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 25@. MDOS can create BASIC readable files as follows:

100@ * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE

2000 START MVI E,250

3009 GET CALL GETDATE

3500 JC EXIT ;CLOSE FILE & EXIT
4000 CALL @WT INXPOSI

5000 DCR E

6000 JINZ GET

7903 CALL @INCRECPOS

3000 JMP START

This partial program illustrates a method for writing 25@ byte records.

For these records to be meaningfull to BASIC, the data must be seven bit
ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETDATE is the users data acquisi-
tion routine which returns the carry flag set when the process is done.
OWTINXPOSI and GINCRECPOS are MDOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17

4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character I1/0, buffered
line I/0, text line parameter parsing, sequential and random file access,
file management, physical diskette access, and 16 bit integer arithmetic.
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQ1 and SYSQ2. These are editor compatible source
files that contain the names of all of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQ1 and SYSQ2 files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.17 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines 1ink the system with
the device handlers described in Chapter II under configuring for
supported devices.

The device handler routines start with a vector table whose address is

@CIOTABLE for the console, and GLIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables

using OCONSOLEADDR, and GLISTADDR which are buffers that hold pointers

to the actual location of @CIOTABLE and GLIOTABLE. By changing the two
bytes at locations GCONSOLEADDR or GLISTADDR the user can have special

purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 GCIN - CONSOLE INPUT

The BCIN routine waits for input from the system console. It strips
parity and changes ASCII codes 5F (backarrow) and 7F (rubout) into @8
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers. .

4.3.1.2 @COUT - CONSOLE OUTPUT

The @COUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code P8 hex (backspace) into a 5F (backarrow).

If the wrap logic for the device assigned to the console stream is enabled
a line feed and a carriage return nulls sequence will be output when the

4-18

Rev. 8 9/78

number of characters on the Tine equals the width. Refer to the ASSIGN
command in the MDOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 GCBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (@3) is
input. It preserves the HL, DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 GCDIN - CONSOLE DEVICE INPUT

The @CDIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT

The GCDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
%t preserves the DE, HL, and BC registers. It returns the carry flag clear
NC).

4.3.1.6 GCDBRK - CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input

is ready it gets the input. Otherwise it returns immediately. It retyrns
the zero flag set (Z) and the input character (8 bits including parity

in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the GCDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 GBCDINIT - CONSOLE DEVICE INITIALIZATION

The GCDINIT routine initializes the console interface device. It preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OUTPUT

The GLOUT routine waits until the list stream is ready to receive and

then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the Tist stream. It changes ASCII code @8 hex (backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the list stream
is enabled a Tine feed and a carriage return nulls sequence will be output

4-19

Rav 8K G/78

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MDOS executive. It expects the character

(7 bit ASCII) in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive.
It preserves the HL, DE, and BC registers. '

4.3.1.9 GLATN - LIST ATTENTION

The GLATN routine checks the list stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MDOS executive. It preserves the HL, DE, and BC registers.

4.3.1.10 @L.DOUT - LIST DEVICE QUTPUT

The BLDOUT routine waits until the 1ist device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag

set (C) if a printer attention occurs.

4.3.1.71 OLDATN - LIST DEVICE ATTENTION

The @LDATN routine checks the list device for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION

The GLDINIT routine initializes the list device. It preserves the HL, DE,
and BC registers. It returns the carry‘flag clear (NC).

4.3.1.13 GCCRLF - CONSOLE LINE FEED CARRIAGE RETURN

The @CCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,
DE, and BC registers.

4.3.1.14 GLCRLF - LIST LINE FEED CARRIAGE RETURN

The GLCRLF routine outputs a line feed carriage return and nulls to the

list output stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,

DE, and BC registers.

4.3.1.15 GASSIGN - ASSIGN

~The QASSIGN routine assigns the physical device to specified logical stream(s)
and sets the width and nullcount associated with the device. It expects the
physical device number in the E register, the logical stream mask in the D

4-20

Rev. 7 3/78

register, the width in the C register, the nullcount (nulls+1) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams).

4.3.1.16 GCILINE - CONSOLE INPUT LINE

The @CILINE routine outputs a specified prompt message to the console

and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the 1ine entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of @ through 1F hex or the high order eight

bit of the last byte set. It returns the input Tine in GINBUFF, and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control char-
acters input during the line entry process are echoed to the console stream
but not entered into QGINBUFF.

4.3.1.17 GHEXOUT - HEXADECIMAL QUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3.1.18 GHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the

HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 GHEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
A register to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 @SPACEOUT - SPACE OUTPUT

The OSPACEQUT routine outputs a space (2@ hex) to the console stream.

It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command in the MDOS executive. It preserves the HL, DE, and

C registers. . .

4-21

Rev. 9 1/79

4.3.1.21A@NLINE0UT - NEW LINE QUTPUT

The GNLINEOUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text T1ine in the HL registers. The message pointed to must be properly
terminated with a byte code in the range @ through 1F hex or the high

order eighth bit of the last byte set. It returns the carry flag

clear (NC) in all cases. It preseryes the HL, DE, and C registers.

4.3.1.22 GLINEOUT - LINE OUTPUT

The Q@LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text line in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range @ through 1F hex or the high order eighth bit of the last byte
set. It returns the carry flag c1ear (NC) in all cases. It preserves

the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines

for the MDOS executive. After the command has been entered into the input
buffer using @CILINE, the OSCAN routine is used to locate the first space
after the command, and @SKIPSPACE skips to the first non-space character.

Then the @PARAM routine separates the command parameters into buffers according
to their type. GPARAM makes use of @SCAN, @SKIPSPACE, and @AHEXTBIN to do

its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADDR and the BSEAR routine
searches the MDOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and GBLHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve

the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 @PARAM - PARAMETER

The GPARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.
It expects the start address of the text to be parsed in the HL registers.
It returns ASCII parameters in @ASCBUFF@ through ®ASCBUFF3.

It returns unit numbers in @DRIVEN® through @DRIVEN3.

4-22
Rev. 8 9/78

It returns binary (numeric) parameters in @BBUFFP through @BBUFF3.
It returns the number of ASCII parameters in GNASCPAR.

It returns the number of unit number parameters in GNDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set (C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 QRSKIPSPACE - SKIP SPACES

The @SKIPSPACE routine skips spaces in a text line.

It expects the text line's start éddress in the HL register.

It returns the address in the HL registers of the first non-space character.
If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 @SCAN - SCAN

The @SCAN routine scans a text line for the first occurrence of a specified
character.

It expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 GSEAR - SEARCH

The BSEAR routine searches a table of argument-function pairs and returns

the address of the function associated with the argument. The last character
of the argument has the most significant bit set high. For example, an

ASCII A is 41 hex. If the most significant bit is set high it is a C1 hex.

4-23

Rev. 7 3/78

The argument is immediately followed by its function. The arguments can be
variable lTength but the functions must all be the same length. The end of
the table is marked by a @ following the last function.

It expects the table's start address in the HL register and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size (number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register. :

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, ie. the address of
the @ after the last function.

It preserves the DE and BC registers.

4.3.2.5 G@AHEXTBIN - ASCII HEX TO BINARY

The GAHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to

. four digits in Tength. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B register.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

 If the number is greater than four digits long or not a hex value, the
routine returns the carry flag clear (NC) and the illegal character's

address in the DE registers. v '

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MDOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number
and a filebuffer. MDOS supports simultaneously open files numbered from
@ through 7. It makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

4-24

Rev. 7 3/78

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. 1Its value may vary from

@ to 256. A @ length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended. :

The index position of the current record is a logical pointer that marks

the next byte in the record to be accessed. The value of the index position
ranges from § to 255. However, the index position may never be greater than
- the length in a particular record. An index position of § indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last

byte in a full record. ' '

+ If the index position in the current record is less than the current record

length, then it points to a valid byte position within the record. That

byte may be read or rewritten. If the index position is equal to the current
record length, then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position
may be written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to @ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current

record is increased by one and the position just written becomes a valid

byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note, however, that incrementing
the index position when it already has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to @.

A new file may be written sequentially by byte by repeatedly writing to

the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequent1a11y write a file of short/mixed length
records.

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 GCREATE - CREATE

The GCREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(@ length) record written to it. . It is left open and ready for access

- Wwith the index position set to @ and the empty record as the current

- record.

It expects the file number in the B register and the disk unit number in the
-C.register and the filename in GASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL, DE,Aand BC registers.
4.3.3.2 @GFILESTAT - GET FILE STATUS

The GGFILESTAT routine checks the open/closed status of a file.
It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
"FILE NOT OPEN" message code in the A register.

It presekves the HL, DE, and BC registers.

If the routine detects an error it returns the carry f]ag set (C) and
the error message code in the A register. .

4-26

Rev. 8 9/78

4.3.3.3 @DIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
@ASCIIBUFF.

It returns the zero flag clear (NZ) and the "FILE NOT FOUND" message
code in the A register if the file is not in the directory. ~

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C)kand
the error message code in the A register.

4.3.3.4 GOPENFILE - OPEN A FILE

The GOPENFILE routine opens a file for processing. It aséigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASCfIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.5 OCLOSEFILE - CLOSE A FILE

The GCLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.6 GRFILEINF - READ FILE INFORMATION

The GRFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file plus one in the DE registers,

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set. (C) and
the error message code in the A register.

4.3.3.7 BSINXTRS - SET INDEX POSITION TO RECORD START

The B®SINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set to @.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registefs.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register. :

4.3.3.8 RRRECORDLEN - READ RECORD LENGTH

The ®RRECORDLEN routine gets the length of the current record in a file.
It expects the file number in the B register.

It returns the 1ength of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.9 GRINXPOS - READ INDEX POSITION

The @RINXPOS routine gets the index pos1t1on of the current record of a
file.

It expects the file number in the B register.
It returns the index position in the C register.
It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-28

Rev. 10 4/79

4.3.3.10 @SINXPOS - SET INDEX POSITION

The GSINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index position in
the C register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX POSITION

The @INCINX routine increments the index position in the current record
of a file. If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary .and the next record of the file becomes the current record
and the index position is set to .

It expects the file number in the B register.

It returns the zero flag set (Z) if the index position is in the same
record. _

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.12 GRFINXPOS - READ FROM INDEX POSITION

The GRFINXPOS routine reads the data byte pointed to by the index position
in the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is

set to @ and the data is read from this position.

It expects the file number in thé B register.

It returns the data in the C register.

It returns the zero flag set (Z) if the data is from the same recaord.

It returns the zero flag clear (NZ) if the data is from a new record.

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-29

Rev. 7 3/78

4.3.3.13 GRFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The @RFINXPOSI routine reads the data byte pointed to by the index position in
the current record of a file and then increments the index position. If the
original index position is at the EOR position, the current record is updated
to disk as necessary and the next record of the file becomes the current
record. The index position is set to @ and the data is read from that position.
Then the increment takes place. If the increment would result in a value
greater than the current record length, the current record is updated to disk
as necessary and the next record from the file becomes the current record. The
index position is set to @ in that case. '

It expects the file number in B.

It returns the data in the C register.

It returns the zero flag set (z) if the data is from the same record.
It returns the zero flag cTear (NZ) if the data is from a new record.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.14 GWTINXPOS - WRITE TO INDEX POSITION

The GWTINXPOS routine writes to the index position in the current record

of a file. If the index position is the EOR position the record length

is extended by one.

It expects the data in the C register, and the filenumber in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.15 GWTINXPOSI - WRITE TO INDEX POSITION AND INCREMENT INDEX

The GWTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the EOR
position the current record length is extended by one. If the increment
would result in an index greater than 255, then the current record is up-
dated to disk as necessary and the next record in the file becomes the
current record. The index position is set to § in this case.

It expects the data in the C register, and the filenumber in the B register.

It returns the zero flag set (Z) if the index position remains on the same
record as before the write.

4-30

Rev. 9 1/79

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

It preserves the HL, DE, BC reaisters.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.16 GLOADDATA - LOAD DATA

The GLOADDATA routine loads a block of data into memory starting from the
index position in the current record and continuing for a specified number
of bytes. It advances the index position 1ike a repeated sequence of reads
and increments.

It expects the file number in the B register.
It expects the start address of the memory block in the HL registers.
It expects the block size in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to OLOADDATA the buffer GMEMORYPNTR contains the address of the
memory byte immediately after the last memory byte loaded. For example, if
5 bytes are loaded into 40@PH through 4PP4H, then GMEMORYPNTR contains the -
address 4@@5H in standard low-high format. This is useful in cases where
the number of bytes loaded is less than the number of bytes requested
because an end of file is encountered during the @GLOADDATA.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.17 BSAVEDATA - SAVE DATA

The ASAVEDATA routine writes a block of memory to a file starting at the
index position of the current record and continuing for a specified number
of bytes. It advances the index position 1ike a repeated sequence of writes
and increments.

It expects the file number in the B register.

It expects the start address of the memory block in the HL registers.

It expects the number of bytes in the memory block in the DE registers.

4-31

Rev. 9 1/79

It returns the zero flag set (Z) if the index position remains on the same
record as before the write.

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

After a call to OSAVEDATA the buffer @®MEMORYPNTR contains the address of the
memory byte immediately after the last memory byte saved. For example, if

5 bytes are saved from 49A@H to 4PP4H then OMEMORYPNTR contains 4@@5H in
standard low-high format. This is useful in cases where a DISK FULL condition
causes less bytes to be saved than are requested in the call to Q@SAVEDATA.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.18 ®DFINXPOSTEOR - DELETE FROM INDEX POSITION TO END OF RECORD

The GDFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record Tength equal to the value of the
index position.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.31.1

Rev. 9 1/79

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation

to other files.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.2p @INCRECPOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary,
reads in the next record which becomes the current record and sets the
index position to @. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary

on occasion to perform housekeeping functions such as removing old files,

- changing file types and names, and determining the amount of space left

on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used d1rectly

by applications programs.

4.3.4.1 GFREE - FREE

The GFREE routine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.
It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.2 GRENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32
Rev. 7 3/78

It expects the file number in the B register.
It expects the new name in @ASCIIBUFF.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type (attributes) of a file. See Section
4.2.3 for type definitions.

It expects the file number .in the B register.
It expects the new file type in the C register.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @RSCRATCH - SCRATCH A FILE

The @SCRATCH routine deletes a specified file from a specified disk unit.
It expects the unit number in the C register.

It expects the file name in Q@ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MDOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MDOS file
system and provide access to a specified Togical block on a specified
track of a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered @ through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from @ through 15.

4-33

Rev. 7 3/78

Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system.

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 12345 6 7 8 91011 1213 14 15 16
PHYSICAL SECTORS #2468 191214 1 3 5 7 9111315

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
If it is necessary to access the sectors of a track in- true physically
sequential order, the application program must use the table above to
unmap the sectors. For example, to access sector @ followed by sector 1
the program wou]d have to spec1fy logical block 1 followed by logical
block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 BGETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a sbecified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.2 GPUTASEC - PUT A SECTOR

The @PUTASEC routine puts (writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This

is called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

It expects the track number'in the D register and the logical block number
in the E register.

4-34

_Rev. 7 3/78

It expects the address in the HL register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.3 GWRITESECTOR - WRITE A SECTOR

The GWRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in’the C register.

It expects the track number in the D register and the 1og1ca1 block
number in the E register.

It expects the address in the HL reg1sters of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.4 GVERIFYSECTOR - VERIFY A SECTOR

The GVERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.5 @SEEKTRACK - SEEK TO A TRACK

The @SEEKTRACK routine moves the read/wr1te head to a specified track on
a specified disk unit.

It expects the unit number in the C register.
It expects the track number in the D register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.6 GRESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35
Rev. 7 3/78

It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register. '

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8088 to
provide for some commonly required operations.

When parentheses enclose an item in the following subsections, this
indicates the contents of the memory location specified by the value
within the parentheses. For example, HL=(HL) means that the HL register
pair is replaced with the bytes at the address in HL and HL+1. If the
HL registers contain the address 40@@ hex, and at location 40@@ there is
a @1, and at location 49@1 there is a P2, then the HL register would be
replaced by §2@1 hex. The low byte goes into L and the high byte into H.

4.3.6.1 @HLADDA - ADD A TO HL

The @HLADDA routine adds the unsigned 8 bit value in the ‘A register to-
the unsigned 16 bit value in the HL registers.

It expects a value in the HL, and the A registers.
It returns HL=HL+A.
It preserves the DE and BC registers.

4.3.6.2 @INXM - INCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
It is similar to an INR M instruction but it operates on a byte pair

(16 bits) in memory.

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 GLHLINDEXED - LOAD HL INDIRECT INDEXED

The GLHLINDEXED routine loads the HL registers indirect from the location
- pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.
It returns HL=(HL+2*A).

It preserves the DE and BC registers.

4-36

Rev. 8 9/78

4.3.6.4 @LHLT - LOAD HL INDIRECT

The‘@LHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL fegisters.
It returns HL = (HL).
It preserves the BC and DE registers.

4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The @TRANSDHC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end. : '

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the C register.

It returns (HL+@...+C) = (DE+p...+C).

It preserves the B register.

4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The @TRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the start of each block and works to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+@...+BC) = (DE+@...+BC).

4.3.6.7 GTRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF BC REVERSE

The OTRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC....+p) = (DE+BC....+D).

4-37

Rev. 7 3/78

4.3.6.8 GTRANSFILENAME - TRANSFER A FILENAME

The GTRANSFILENAME routine copies a filename from one of the ASCII
buffers (@ASCBUFF@ through @ASCBUFF3) to the @ASCIIBUFF. :

It expects the @ASCBUFF number (ie. @ to 3) in the C register.
It preserves the HL, DE, and BC registers.
4.3.6.9 GFILLZER - FILL ZEROES

The @FILLZER routine fills a block of memory up to 256 bytes in length
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.10@FILLSPC - FILL SPACES

The @FILLSPC routine fills a b10ck of memory up to 256 bytes in length
with spaces (hex 2@).

It expects the start address of the memory block in the HL registers/
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 @FILLA - FILL FROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the B register, and a fill value in the
A register.

It preserves the DE and C registers.

4.3.6.12 QCOMPARE - COMPARE HL TOVDE:

The @COMPARE routine compares the va]ue in the HL reg1sters to the
value in the DE registers.

It expects a value in the DE register and the value to compare it to in
the HL register. The forms are Tike-an 8383 CMP B instruction where DE
is analogous to the A register and HL is analogous to the B register.

4-38

Rev. 7 3/78

It returns the following sense:

DE = HL zero flag set (Z), carry flag clear (NC)
DE > HL zero flag clear (NZ), carry flag clear (NC)
DE < HL zero flag clear (NZ), carry flag set (C)
DE >=HL zero flag any state, carry flag clear (NC)
It preserves.the HL, DE, and BC registers.

4.3.7 EXTENDED 8@8p INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8¢8p to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (quotient,
and modulus).

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of GDEDIVHL and
@DEMODHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 @DEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.
It expects the addend in the DE register and the augend in the HL registers.

It returns the sum in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 GDESUBHL - BC=DE-HL

The @DESUBHL routine performs 16 bit unsigned integer subtraction us1ng
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 @DEMULHL - BC=DE*HL

The GDEMULHL routine performs 16 bit unsigned integer multiplication.
It expects the multiplicand in the DE req1sters and the multiplier in the
HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE regigters.

4.3.7.4 GDEDIVHL - BC=DE/HL

The @DEDIVHL routine performs 16 bit unsignéd integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the integer quotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 GDEMODHL - BC=DE%HL

The GDEMODHL routine perfokms 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the remainder of the division in the BC registers.
It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of @DEMODHL.

4.3.8 MESSAGE OUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.

Some of the routines access the system messages while others allow the user
to set up a table of applications messages. The system messages are described
in Section 4.8.

4.3.8.1 GDISKERROR - DISK ERROR MESSAGES

The @DISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MDOS executive which resets
the 80988 stack to the MDOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4) when they return
a carry set (C) condition and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

4-40

Rev.. 7 3/78

4.3.8.2 RCLOSEFILES - CLOSE ALL FILES

The GCLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.

It always returns the carry flag clear (NC).

It preserves the HL, DE and BC registers.
4.3.8.3 GERRORMES - ERROR MESSAGES

The GERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.
It preserves the C register.

4.3.8.4 GMESSAGEQUT - MESSAGE QUTPUT

The OMESSAGEOUT routine is a generalized message-table output routine.

The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with

a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth

bit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. C1 hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in the table. ie., @ is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of QCIOTABLE

GLISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table
GLIOTABLE - Start address of the 1list input/output vector table
OPCON - Start address of physical console driver routines

@PLIST - Start address of physical list driver routines

4-41
Rev. 8 9/78

@WARMSTART - Warm start entry point; initializes console and 1ist devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. Outputs the current MDOS
executive prompt and initializes the MDOS stack. This entry does not output
the signon message. ‘ '

@FILEBUFFER® and @FILEBUFFER1 - @FILEBUFFER® and @FILEBUFFER1 are 288 byte
buffers used by the system for file access. They may be used as applications
program file buffers. See the section on FILE ACCESS ROUTINES.

GAPROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. A1l file types except overlay
(PC-@F hex) must have load addresses greater than or equal to GAPROGRAM or

a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the @SEAR routine. G@MASKADDR points
to the address of the mask string.

@MDOSRETURN - Applications programs that have not changed the 1/0 initializa-
tion return to this entry point instead of @WARMSTART. G@MDOSRETURN outputs

the MDOS signon message and initializes the MDOS stack but does not reinitialize
the I/0 handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.
ONDRVPAR @ONASCPAR @NBINPAR
2) Ten byte buffers which holds ASCII parameters.

@ASCBUFFP @ASCBUFF1
@ASCBUFF2 @ASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEN@ @DRIVENT
@DRIVEN2 @DRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFFQ @BBUFF1
@BBUFF2 @BBUFF3

@ASCIIBUFF - @ASCIIBUFF is a ten byte buffer which holds filenames for
the GCREATE, @RENAME, @SCRATCH, and @TRANSFILENAME routines.

@INBUFF - QINBUFF is the system input buffer. It is 132 bytes long.

4-42
Rev. 9 1/79

4.4 LINEEDIT - THE MDOS LINE EDITOR

LINEEDIT is an MDOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MDOS 8p8p/8085 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD "“LINEEDIT" followed by the command
APP. It signs on with the message MDOS LINE EDITOR VS. X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists

of not more than 132 characters typed in sequence. The entry of a line

is terminated by pressing the RETURN key. During the entry of a line

each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text line are ASCII
characters in the code range 2@H to 7EH with the exception of the backarrow
(5FH). LINEEDIT also uses the MDOS console output system to keep track

of the character count as a Tline is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the 1line count.

Two control features may be used when entering a line.
1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed

to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the 1ine count.

4-43

Rev. 7 3/78

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading 1ine number. Each 1ine number must be in the range @# to 9999. A
text file is entered one 1ine at a time using the normal Tine entry
procedure. As each Tine is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text Tines are
stored in the edit buffer in numeric order by line number. The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing line in the current text file enter the line number
and the new text. The new line will automatically replace the 01d line
that has the same Tine number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The corresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character
of a new line, you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' 1ine number will echo
to the terminal display and LINEEDIT will then be waiting for the first
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' line number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a line is typed which does not begin with a line number,
LINEEDIT attempts to interpret this 1ine as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed. LINEEDIT commands are single words or abbreviations
followed by parameters if required. A1l LINEEDIT commands are uppercase
only. If the command requires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

4-44

Rev. 7 3/78

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y

and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which 1nd1cate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of
the current text file in memory. A text file may be keyed into the edit
buffer before it is named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address 1limits in memory can

be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed, followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the 'next' automatic
Tine number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal va]ue of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing

an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT "message" is the general
form of this command. The message may be from 1 to 1@ characters in
length and include any characters valid in a text line. It must be
enclosed in double quotes as shown, When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The fi]ename must be
a valid MDOS filename. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3 followed by a colon (:).

It designates the disk unit on which the specified file is to be found.
If no unit number is specified, unit @ is assumed.

When a text file is successfully Toaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type N and
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MDOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the disk unit
on which the specified file is to be found. If no unit number is specified,
unit @ is assumed.

4-46

Rev. 7 3/78

When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by 1ine number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.11 THE SAVE COMMAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command

is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from § to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit @ is assumed.

The name of the current text file in the edit buffer is used to create

an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn't conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit @ is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file

type. ,
4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to

the system console by using the LIST command. The forms of this command
are LIST, LIST Tinenumberl, and LIST linenumberl Tlinenumber2. The display
will begin with 1linenumberl or the next highest and continue through
linenumber2 or the next lowest. If linenumberl and 1linenumber2 are the
same, only one line will be displayed. If linenumber2 is less than
Tinenumberl, nothing will be displayed. If 1linenumber2 is not supplied,
the display will begin with Tinenumberl or the next highest, and continue
through the last line currently in the current text file. If no line
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text lines that is
oriented to 8@8p assembly language source text. The format is defined

as four fields each beginning at a specific tab Tocation. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the
text line through the first space or colon (:) that occurs. The third
field is the opcode and operands field. The opcode consists of all
characters following the Tabel field through the next occurrence of a space.
The operand consists of all characters following the opcode through the
next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon (;) following the space that terminates the operands
and continues to the end of the text line.

Refer to the TAB command to change the tab settings which determine the
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This,
effectively removes the tabulation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP 1inenumberl 1inenumber2.

The LISTP command. functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

4-48

Rev. 7 3/78

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT 1linenumberl, and PRINT Tlinenumberl 1inenumber2.
The Tinenumber specifications in the PRINT command function the same as

in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the 1ine numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly language source

text is desired, it can be obtained by setting the tabs to 1 1 1 and using -
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP Tinenumberl, and PRINTP linenumberl
Tinenumber?2.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB number]
number2 number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins. ' ;

The initial and default values of the TAB parameters are 15, 22, 36 decimal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possible or the value
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file

by using the DELT command. The forms of this command are DELT 1inenumberi,
and DELT Tinenumberl Tlinenumber2. Lines will be deleted from linenumberl

or the next highest that exists, through linenumber2 or the next lowest that
exists. If Tinenumber2 is less than linenumberl nothing will be deleted.

If they are equal only that line will be deleted. If only linenumberl is
specified then only that 1ine will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

Rev. 8 9/78 4-49

4.4.19 THE RENUM COMMAND

A11 or part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the 1ine number of the first
line to change and sets it equal to the starting number. The 1line number
of each Tine after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first line in the edit buffer is assumed. If
no increment value is specified, the value 1@ is used. If no starting
number is specified, the value @ is used. Typing RENUM alone will produce
a text file numbered from @ by 18's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH 1inenumberl, or SEARCH linenumberl
linenumber2. SEARCH without a Tinenumber specified will search the whole
buffer. SEARCH 1inenumberl will search from the line number specified

to the end of the buffer. SEARCH linenumberl linenumber2 will search the
buffer starting at the first line specified through the second line
specified. ‘

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters can be
entered. The entry is terminated by pressing the return key. LINEEDIT
searches through the T1ines in the current text file looking for the first
occurrence within each Tine of a substring that matches the specified search
mask. It examines every line except those lines that begin with an asterisk
(*). Every examined 1ine that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly Tanguage source text. Refer to the SEARCHALL command to operate

on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no lines in the current text file contain a match to the specified
search mask, the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.21 THE SEARCHALL COMMAND

A1l lines in the current text file that contain a specified string of
text, including those lines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL 1inenumberl, or SEARCHALL
Tinenumberl Tlinenumber2. SEARCHALL without a Tinenumber specified will
search the whole buffer. SEARCHALL 1inenumberl will search from the 1line
number specified to the end of the buffer. SEARCHALL Tinenumberl linenumber?2
will search the buffer starting at the first line specified through the
second line specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with

an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in lines of the current text

file can be replaced with a different string of same or different length

by using the CHANGE command. The forms of this command are CHANGE, CHANGE
linenumberl, or CHANGE 1inenumberl Tlinenumber2.. CHANGE without a Tinenumber
specified will change all Tlines in the buffer. CHANGE 1inenumberl will
change 1ines from the 1ine number specified to the end of the buffer. CHANGE
Tinenumberl Tinenumber2 will change lines in the buffer starting at the

first line specified through the second line specified.

CHANGE operates on all lines within the specified range except 1lines starting
with an asterisk (*) or semicolon (;). These lines are considered comment
Tines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO ?. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
looking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer length accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHANGE command also respects the universal match character capability
as described under the SEARCH command. If the search mask contains one or
more question marks (?) these characters positions will match any character
in the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST

19 STGLABEL1A

2@ S2@LABEL2A

30 GLABEL3

CHANGE

SEARCH MASK ? S?@
CHANGE TO ? @
19 GLABEL1A

2 GLABELZ2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST

19 TAGQ1A -

2 TAGOFF

39 TAG22A

CHANGE

SEARCH MASK ? TAG??A
CHANGE TO ? LABEL??B
19 LABEL@1B

30 LABEL22B

Lines 10 and 3@ have been changed while 1ine 2@ is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of 1ines 1P and 3@ have been changed. The @1 in line 10 and the
22 in line 30 have been retained.

4.4.23 THE CHANGEALL COMMAND

The first occurrences of a specified string in all lines of the current
text file, including those 1ines that begin with an asterisk (*), or
semicolon (;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL, CHANGEALL Tinenumberl, or CHANGEALL Tinenumberl 1inenumber2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text 1ines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMMAND

The text within a specified line in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT 1linenumber
is the form of this command. If the specified 1inenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT

processes an EDIT command by copying the specified 1ine into a special
editing buffer and displaying the 1ine number at the left margin of the
console. An invisible edit pointer is set to point to the first character
in the text line after the space that terminates the line number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a line in the special edit buffer. ‘

Rev. 8 9/78 4-52

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text 1ine immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (\). The edit pointer is left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - I

Characters may be inserted into the 1ine or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by

the edit pointer. Characters are inserted in sequence as typed until
the insert mode is terminated by typing an escape (1B hex). The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
Tine in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the 1line may be displayed by typing

an 1 or L. The characters are displayed on the console followed by

a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks like before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line

about to be edited without exiting the editing mode.

4-52.1

Rev. 9 1/79

4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing ans or S

followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character

are printed on the console. The edit pointer is left pointing at the
first occurrence of the searched for character. If the search argument
does not exist in the line then the entire 1ine is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by

typing a k. or K followed by the search character, The deleted

characters are displayed on the console, enclosed in backslashes (\).

If the search argument does not exist in the edit 1ine, then all the

" characters from the edit pointer to the end of the line are deleted.

The edit pointer is left po1nt1ng at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited Tine in the

special editing buffer is abandoned. No changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can replace the 1ine in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MDOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is

returned to the MDOS executive which signs on with the message MICROPOLIS
MDOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The DOS command will be processed. Otherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will
be waiting for an alternate command.

4-53

Rev. 9 1/79

4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEDIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count .includes the count byte and the carriage
return at the end of the line. The count byte is followed by four bytes
that hold the digits of the Tine number in ASCII. The line number can
range from @@@P to 9999. At least one space (2@ hex) follows the line
number. The remainder of the line can contain from @ to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest line contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEDIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a @1 to mark the end of the file.

" The current text file is written to a disk file just as it appears in

the edit buffer. A1l records in the disk file with the possible exception
of the last one are full records. A text line may span two records. ‘The
following logic could be used in an MDOS application program designed to
process an editor source file.

100p START CALL @RFINXPOSI
2000 DCR c
3000 JZ ENDOFFILE
4000 MVI D,@

500 MOV E,C

600p LXI H,BUFFER
7000 CALL @LOADDATA
80P *PROCESS THE LINE IN THE BUFFER

900p JMP START

The @RFINXPOS routine gets the line count byte into the C register. If
the count is P1 the end of the file has been reached. Otherwise, all
program lines have a line length of no less than 6. The line length is
moved into the DE registers (D=p) and the buffer address is placed into

the HL registers. The GLOADDATA routine starts at the index position

and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text 1ine. The program can
then process the text line and ‘1oop back to get the next line.

4-54

Rev. 7 3/78

4.5 ASSM - THE MICROPOLIS 8@8p/8@p85 DISK ASSEMBLER

An assembler converts a source program written in an assembly language
into an object program which consists of a sequence of binary codes that
can be loaded into a computer's main memory and executed. ASSM is an
assembler for the 8@8@/8P85 micro-processors. It uses a MICROPOLIS
diskette subsystem as peripheral storage for the source and object files
during the assembly process. Use of a peripheral storage medium allows
the assembly of programs that could not otherwise be assembled because
the source and object files could not fit into the micro-processors main
memory during the assembly.

ASSM produces an absolute object file that can be scatter loaded into
main memory. The object file contains all address references generated
by ORG and DS statements. The operating system puts the object code in
the proper place. Object files on disk do not have to be contiguous
memory images to load correctly.

~4.5.1 HOW TO INVOKE ASSM

From the MDOS executive ASSM is invoked by entering the file name ASSM,
1ike an MDOS command, followed by a list of parameters. The format is

as follows:

ASSM "<source filename>" "<object filename>" "<options>" [<offset>]

The source file must be a TYPE P4 through p7 file which has been created
by the line editor program described in Section 4.4. The object file will
be created by ASSM and given a TYPE of 8. ‘

The option field directs the output from the assembler to different places.
Options are specified by grouping the following letters together as required:

E Only assembly errors will be listed. FHRVES
P The assembly listing will be paginated.

S Only an assembly Tlisting will be produced. No object Sovpcr CODE

code will be written to disk or memory.

M The object code will be written directly into memory at
locations specified in the source unless an offset is specified.

L The Tine numbers used during editing will not be written 40 s/me No-

on the assembly listing.

T The symbol table created by the assembly will be'output Symg. TABLE

at the end of the Tisting..

C A11 output from the assembler will go to the console output device.

4-55

Rev. 8 9/78

Option codes are grouped together within the option string. For example,
ASSM "1:SGAME" "GAME" "PLT" will assemble the source file called SGAME on
disk drive one and create an object file on drive zero by the name GAME.
The assembly listing will be output to the 1ist stream and each page will
be numbered and titled with a field header at the top of each page. The
Tine numbers used by the editor will not appear on the assembly listing.
The symbol table will be added to the end of the assembly listing.

The P option causes the assembler to paginate and title the output listing.
If the FORMFLAG location (see 2.2.5.1) contains a zero value, the pagina- -
tion will be done by outputting linefeeds to advance the paper to the top
of the next page. ' If the FORMFLAG location contains a non-zero value, a
single FORMFEED (ASCII 12) will be output. When using the linefeed mode,
the assembler will assume the paper is at the top of form when the assembly
command is given from MDOS. In the formfeed mode, a formfeed will be out-
- put before any printing to resynchronize to the top of form. The FORMFLAG
location should be configured when the system printer I/0 is configured.

See section 2.2.5.1.

4-56

Rev. 8 9/78

The S and M options are mutually exclusive. S indicates that no object
code is to be produced while M indicates that the object code is to be
placed into memory. The S option is always dominant.

When the options S or M are specified the second ASCII parameter which
holds the filename for the object file can be left out by typing "",
because these options do not produce a disk file. If the second parameter
is present it is ignored. The parameters are positional so the "" must be
used if there is no object file and/or there are no options.

Examples: ASSM “STEST" "TEST" ""
ASSM "STEST" n npgH
The blank parameter is mandatory in both cases.

The optional offset parameter is only used when the object code is to
be placed directly into memory using the M option. The offset is added
to the actual address where the code would be placed as specified by
the programs ORG statement. The code is assembled to run at the ORG
address but is placed at a different address temporarily. The object
code will not run at the resulting offset address and must be moved to
the proper location before being executed. The offset is useful when
the program is intended to run at QAPROGRAM. The program must first be
placed into a memory area that does not conflict with the assembler
program or the generated symbol table.

Example:

P500 LINK 'sysqQil!

1000 LINK 'SysQ2'!

2000 START ORG @APROGRAM ;2BPP HEX

3000 FILL 10H,0 ;2BPP-2RQF FILL @
4009 BEGIN JMP $;SOFT HALT

5000 END BEGIN ;EXADD TO SOFTHALT
ASSM I|STESTII IRl HMII 3ﬂﬂw

After the assembly memory would look as follows:

5800 00 00 PP 9P o0 00 00 00 0D PO 0P 00 00 0P 00 PO
5819 C3 19 2B .

The code will not run at this location because the soft halt jump is
assembled for an ORG of 2B@P hex. A MOVE 5Bp@ 5B12 2BPP command would

move the code down to the proper location and an EXEC 2B10 would run
the program properly.

4-56.1

Rev. 9 1/79

If this program were assembled into memory without the offset parameter,
it would attempt to overwrite the assembler resulting in a LOAD ADDRESS
ERROR. For this reason assembling directly into memory requires great
care and should only be done if you are absolutely sure all the code
produced during the assembly is outside of the operating system; outside
of the assembler program; and does not conflict with the generated symbol
table. The symbol tables starts immediately after the assembler program
and grows toward high memory. Each label requires one byte for each
character of the label plus two bytes for the address or value definition
of the label. The approximate size of the symbol table can be evaluated
by averaging the label size adding two and multiplying by the number of
labels. If the size of the symbol table plus a safety margin is added to
30p@ hex (the start of the symbol table rounded up to the next even page),
the resulting address should be a safe area to put the object code when
using the M option.

4.5.2 LANGUAGE ELEMENTS

The assembler translates assembly language statements into 8@8@ machine
code. A statement consists of a line number, a label, an opcode,
operands, and comments. :

The first element is the line number. The assembler ignores the line
numbers in the source line. Line numbers are only used by the line editor
program and have no meaning to the assembler.

The second element in a statement must be a label or a delimiter to indicate
that there is no label in the statement. ASSM accepts two label delimiters,
the space, and the colon (:). If a label does not appear, then the first
element of the statement must be a space or a colon (:). Additional spaces
are ignored and the next non space character is the start of the third element.

The third element in a statement is the operation code mnemonic. The assembler
uses the standard 8@8%/8P85 opcode mnemonics developed by the manufact:rer,

The fourth element in a statement is the operand field. Some opcodes
require no operands while others need one or two. If an operand is not
required, the fourth element is automatically considered to be a comment
field.

The last element of a statement is the comment field. The comment field
is printed -on assembly listings but is ignored by the assembler. 1It's
only purpose is for program documentation and clarity. If the comment
field is preceded by a semi-colon (;) the comment will be formated on

the assembly listing. If the semi-colon is left out, the comment will
appear after the operand field just as it was entered. This feature does
not effect the assembly in any way. It is only a formating feature.

The statement line looks as follows:

LINE# LABEL OPCODE OPERANDS COMMENTS

4-57

Rev. 8 9/78

A1l spaces shown are mandatory as delimiters, except after a label

where the colon (:) can replace the space as a delimiter. Additional
spaces are ignored with the exception that a label must start immediately
after the space following the 1line number.

A line can be designated as a comment only line. This is done by putting an
asterisk (*) or a semicolon (;) as the character immediately after the space
that follows the Tine number. If the comment line is formed with an asterisk
(*), the Tine will be listed exactly as entered. If it is formed with a semi-
colon (;), it will be tabulated to start on the same column as in-line comments.

4.5.2.1 LITERALS

The assembler provides for numeric and ASCII literals. Numeric literals
can be decimal, hexadecimal, binary, or octa] The following suffixes
designate the appropr1ate base

A capital H is used to designate base 16, hexadecimal.

A capital B is used to designate base 2, binary.

- A capital Q is used to designate base 8, octal.

Base 1@, decimal, can be designated by either a capital D, or no suffix.

A1l numeric literals must begin with a digit in the range zero through nine
regardless of the base. This is done to avoid ambiguity between
hexadecimal literals and symbolic names. For example, the hex address

F9OC must be written as @FI@CH.

ASCII literals appear between single quotes (') and can include any ASCII

character from 20 hex to 7E hex except the backarrow (5F hex), and the
single quote (')7

4.5.2.2 SYMBOLIC NAMES

Labels are symbolic names. Operands may also be symbolic names instead
of literals.

Symbolic names consist of a string of ASCII characters. A symbolic name
can be from 1 to 47 characters long. It is made up of ASCII characters
from 3P hex to 39 hex and 49 hex to 7E hex, except the backarrow (5F hex).

Symbolic names may not start with the digits @ through 9. This avoids
ambiguity between numeric literals and symbolic names. The following
characters are valid within a symbolic name:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
$123456789@[1" [1 17\

Symbolic names are defined when they appear as labels of an opcode or a
pseudo-opcode. This associates a sixteen bit address or value with the
label. Symbolic names that are defined may appear as arguments in operands.

Rev. & 1/79 4-58

Some symbolic names are already defined by ASSM itself and should not
normally be redefined in the source program. ASSM gives the registers
of the 8P8p the following symbolic names:

Register 7 is A.
Register P is B
Register 1 is C
Register 2 is D.
Register 3 is E.
Register 4 is H.
Register 5 is L.
Register 6 is M, PSW, and SP.

ASSM gives the value of the program counter the symbolic name $. It
changes as the assembly proceeds by assuming the value of the program
counter at the start of each statement 1ine being translated.

For example, the following source program line would produce a jump to
itself (also called a soft halt).

0190 JHP$ +JUMP TO SELF
4.5.2.3 OPERATORS

ASSM recognizes 10 operators designated with the characters +, -, *, /,
%, &, 5 #, >, and <. These operators may combine with symbolic names and
literals to form complex expressions, as described in Section 4.5.3.

A1l operators treat their arguments as 16 bit unsigned quantities and
generate 16 bit unsigned quantities as their result. The operations are
from left to right with no hierarchal precedence and no precedence
specifier (no parenthesis).

The operator + produces the arithmetic sum of its operands to 16 bits.
The operator - produces the arithmetic difference of its operands when
used as a subtraction, or the arithmetic negative of its operand when
used as unary minus.

The operator * produces the arithmetic product of its operands.

The operator / produces the arithmetic integer quotient of its operands,
discarding any remainder.

The operator % produces the integer remainder obtained by dividing the
first operand by the second.

The operator & produces the bit-by-bit Togical AND of its operands.
The operator ! produces the bit-by-bit logical OR of its operands.
The operator # produces the bit-by-bit Togical EXCLUSIVE-OR of its
operands.

4-59

Rev. 7 3/78

The operator > produces a 16 bit rotate to the right by the number of
bits specified in the second operand. The least significant bit becomes
the most significant bit and all other bits are shifted to the right.
Example:

11119809111101018>3 evaluates to 18111112090111108

The operator < produces a 16 bit rotate to the left by the number of
bits specified in the second operand. The most significant bit becomes
the Teast significant bit and all other bits are shifted to the left.
Example:

1111000811119101B<3 evaluates to 1000011119101111B

4.5.2.4 OPCODE MNEMONICS

The standard Intel mnemonics for the 8082 and the 8085 are used without
exception. For a detailed discussion of the 8p8@/80p85 opcodes refer to
the "INTEL 808Q ASSEMBLY LANGUAGE PROGRAMMING MANUAL". Opcodes must be
UPPERCASE only.

4.5.3 OPERANDS

Not all opcodes have operands. If an opcode does not have an operand,
the element after the opcode is the comment. Some opcodes have one
operand while others have two. Where two operands are required they
must be separated by a comma (,). There may be no spaces imbedded within
the operands.

An operand may consist of a simple or complex expression. A simple
expression is a numeric or ASCII literal, or a symbolic name. A complex
expression is a combination of numeric or ASCII literals, symbolic names,
and operators. The operand is the evaluation of the expression to 16
bits. :

Examples:

1009 REG7 EQU 1

20p3 TEST EQU 19P0H

3090 INC EQU 6

4090 TEST LXI REG7+4 ,TEST*6+INC&7<8 ;COMPLEX EXP

The LXI opcode takes two operands. Both of the operands in the example

are complex expressions. The expressions are evaluated to 16 bits and
truncated to the size of the operands. In the case of the example the

first operand would be truncated to 8 bits because it represents a

register (§5). The second operand evaluates to 16 bits and is not truncated
because it is a 16 bit operand (P6@@ hex).

4-60

Rev. 7 3/78

4.5.4 ASSEMBLER DIRECTIVES

Assembler directives appear in the source program and provide information
needed by the assembler to allocate memory space, initialize values, and
format listings. Assembler directives are often called pseudo-operations
or pseudo-ops. The assembler directives are mnemonics. They are issued
in statements like opcodes. The general pseudo-op statement form is as
follows:

LINE# LABEL PSEUDO-OP OPERAND COMMENT

The label is optional in all but two of the assembler directives. These
are the EQU and the INP pseudo-ops. For the others the label is used
when necessary and has the same form and restrictions as labels with
opcodes. The END, INP, and PRT pseudo-ops can optionally have operands.
The FORM, LIST, NLIST, and ENDIF never have operands.

Pseudo-op operands have the same form as opcode operands. They can be
simple or complex expressions.

Labels and operands are optional with some pseudo-ops. Comments are
always optional.

Many of the assembler directives are the same as the INTEL pseudo-ops
described in the "INTEL 8@8@% ASSEMBLY LANGUAGE PROGRAMMING MANUAL".
However, some are unique to ASSM. Therefore, all of the pseudo-operations
are described in detail.

4.5.4.1 ORG - ORIGIN

The ORG pseudo-op specifies where a program or routine within a program
is to be placed in memory by setting the assembler's program counter to
the value of the operand. If a program does not have an ORG, then the
program is assembled at zero. Symbolic names used as operands in the
ORG statement must be defined before the ORG statement is encountered.
If a label is present, it is associated with the evaluated operands'
address.

4.5.4.2 LINK - LINK TO A FILE

The LINK pseudo-op allows separate program files on disk to be assembled
to produce one object file. . The LINK operand is a source program file
name enclosed between single quotes. When a LINK statement is encountered
in a source program, assembly continues from the start of the source file
named in the operand field and information is saved to allow ASSM to pick
up from where it was in the linking source file when the linked to source
file is completed.

4-61

Rev. 7 3/78

1000 LXI H,4008H
2000 LINK 'TEST' ;ASSM TEST AND
3000 MOV AM ;COME BACK HERE

In the above example the assembly would assemble all of the file TEST
between the LXI H,4PPPH and the MOV A,M.

The LINK statement allows the assembly of source programs that are much
larger than could possibly fit into memory at one time.

No unit is specified in the LINK operand. The linked to file is located
as follows. The disk that has the source file which was given in the

MDOS command that invoked the assembly is searched. If the Tinked to file
is on that disk the assembly continues as described above. If the linked
to file is not located the search proceeds from unit zero through three.
If a unit is not loaded or does not exist in the system it is bypassed and
the search continues until the filename is found or all units have been
searched.

4-62

Rev. 8 9/78

4.5.4.3 END - END OF ASSEMBLY

The END statement signifies to ASSM that the physical end of a program

has been reached. Because ASSM allows multiple disk files to be assembled
as a single large program, multiple END statements can occur when files
have been LINKed together. Under these conditions the END signals the end
of a source file and not the absolute end of the assembly. The END will
cause the assembler to terminate its current pass on a source file and
proceed to the next source file, cor the next pass. When a program consists
of multiple source files, the END statement can be absent from all but the
last file.

In addition to marking the end of a program, the END pseudo-op also
designates the start-of-execution address by its' operand. If the END
statement is missing, or the operand is left off, the start of execution
address is the physically first ORG of a program. The END statement allows
an execution address to be specified that is different from the physical
start of the program. For example, a program which is structured to have

a data area before the executable code can specify the start of execution
address as follows:

?500 LINK 'Sysqt'
1000 LINK 'sysqz'
1199 ORG 40PPH
1209 INBUF DS 255 ;INPUT BUFFER
1399 BEGIN MVI C,1

1400 LXI H, INBUF
1500 START CALL @CIN

1600 CALL @CcouT
1709 INR C

1800 JZ BEGIN
1900 CPI PDH

2009 JNZ START
2190 LXI H, INBUF
2200 CALL @NLINEOUT
2300 JMP BEGIN
9999 END BEGIN

The name of the object file for this program could be used as an implicit
command in the MDOS executive. By typing the name of the file, the executive
Tfoads the file and transfers program control to the address specified in

the END statement.

Rev. 9 1/79 4-62.1

4.5.4.4 EQU - EQUATE

The EQU pseudo-op equates a literal value to a symbolic name. This
pseudo-op requires a label and an operand.

1009 TEN EQU 19
20Pp TWENTY EQU ; 2*TEN

When the Tabels TEN, TWENTY are used within the program they will have
the value of 1@ and 20 respectively.

4.5.4.5 INP - INPUT

The INP pseudo-op allows the operator to assign a value to a label from
the system console during pass one of the assembly. The INP statement
requires a label. It can have an optional operand. The operand must be
an ASCII literal. If an operand is present, it is output as a prompt to
the console stream during pass one followed by a question mark (?).

ASSM then waits for an input from the console. If no operand is
present the INP statement prompts with a question mark.

The 1input can be in the form of simple or complex expression including
Titerals and/or symbolic names. Symbolic names must have already been
defined before the INP statement is encountered during pass one.
Example:

1900 TEST INP "INPUT'

During pass one of the assembly the prompt would be displayed on the
system console and the assembler would wait for an input.

INPUT
?

4.5.4.6 PRT - PRINT

The PRT pseudo-op outputs the values of its operands to the console
stream during assembly pass two. The operands can be simple or complex
literals and/or symbolic names. If no operands are present the PRT
outputs a carriage return line feed only.

Example:
1909 TEST EQU 70004
2000 PRT 'THIS IS A TEST',TEST

During pass two the message THIS IS A TEST 7000 is displayed on the
system console.

4-63

Rev. 8 9/78

4.5.4.7 TAB - TAB SETTINGS

The TAB pseudo-op changes the tab settings for the assembly listing at
assembly time. The TAB settings are initially 15,22,36. The first column
is defined as the column at which labels start. The positions of the
opcode, operand and comment fields can be changed with the TAB pseudo-op.
The statement expects three operands. The first operand is the opcode
field tab, the second operand is the operand field tab, and the third is
the comment field tab.

If an operand is set to zero, that tab is set to the initial default value.
The operands can be simple or complex expressions.

4.5.4.8 NLIST - NO LIST TO PRINTER

The NLIST pseudo-op- suppresses the listing of the assembly to the 1list
stream from the point in the source file at which it is encountered until
the next occurrence of a LIST pseudo-op.

Note: If the E option (see section 4.5.1) was specified, the LIST and
NLIST pseudo-ops will be ignored. In all cases, however, any assembly
lines which contain errors will be output.

4.5.4.9 LIST - LIST TO PRINTER

The LIST pseudo-op is used to start a 1listing at the point at which it is
encountered in the source file after a previous NLIST statement has sup-
pressed the listing.

4.5.4.10 FORM - FORM FEED

The FORM pseudo-op is used to control output pagination when the P option
is in effect. The FORM statement has two modes. The first causes the
assembler to eject the paper to the top of the next page and continue
printing. To use this mode the FORM statement must have no operand. The
second mode sets the length (in # of lines) of the output page.

1000 FORM 66 ;this sets the form length
1019 FORM ;this ejects the page

The example will cause the assembler to use a page size of 66 lines. This
means that 58 lines of program text will be output with 8 lines for page
number, header and margin.

4-64

Rev. 8 9/78

4.5.4.11 DB - DEFINE BYTE

The DB pseudo-op defines one or more bytes of memory storage. The DB
statement has one or more operands.

1009 TEST DB 1,2PH,11B,76Q,TEST+3 ;DEFINE BYTES

The DB statement's operands can be simple or complex expressions, with
the exception that ASCII literals can only be one byte long per operand.

Example:

1009 DB ‘T','H','T', 'S
Is valid while:

1009 TEST DB 'THIS'

Is not valid.

4-64.1

Rev. 8 9/78

4.5.4.12 DW - DEFINE WORD

The DW pseudo-op defines one or more two byte words of memory storage
in standard Intel low/high address format. The DW statements can have
multiple operands which can be simple or complex expressions.

1009 TEST DW 40PPH,5557H

40PPH would appear as PP 4P and 5557H would appear as 57 55 in the
object file.

4.5.4.13 DD - DEFINE DATA

The DD pseudo-op defines one or more two byte words in high/low format.
1009 TEST DD APPPH ,5557H

40PPH would appear as 4P PP and 5557H would appear as 55 57 in the
object file.

4.5.4.14 DT - DEFINE TEXT

The DT pseudo-op is used to define a line of text enclosed between
single quotes. The text string can contain any ASCII characters as
described in the section on literals.

1009 TEST DT 'ABC'

The following object code would be produced by this example: 41 42 43.

4.5.4.15 DTZ - DEFINE TEXT TERMINATED WITH ZERO

The DTZ pseudo-op is used to define a 1ine of text. When the string is
assembled the ASCII code is terminated by a zero. '

1000 TEST DTZ 'ABC'

The following object code would be produced by this example: 41 42 43
09. : .

4.5.4.16 DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH

The DTH pseudo-op is used to define a 1ine of text. When the string is
assembled the ASCII code of the last character in the string is ORed
with 8@ hex. ‘

1000 TEST DTH '"ABC'

The following object code would be produced by this example: 41 42 C3.

4-65

Rev. 7 3/78

4.5.4.17 DS - DEFINE STORAGE

The DS pseudo-op is used to set aside storage space. It requires one
operand which can be a simple or complex expression that evaluates to
the number of bytes to be set aside as storage (1 to FFFF hex). No code
is written into the storage area. The assembler adds the operand to the
assembler program counter and continues code production at the resulting
address. Because the assembler produces scatter loadable object files,
any code in the DS area will not be disturbed when the object file is
loaded. '

4.5.4.18 FILL - FILL STORAGE

The FILL pseudo-op sets aside storage space and fills it with a specified
byte. It requires two operands which can be simple or complex expressions
that evaluate .to the number of bytes to be filled (1 to FF hex) and the
byte to be stored (@ to FF hex).

1000 TEST FILL PAH,S SFILL 19 BYTES WITH 8

The above example would set aside ten bytes of storage and fill it with
@8's.

4.5.4.19 IFF - IF FALSE

The IFF pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an IFF statement
and the end of the block is marked by an ENDIF statement. The block is
assembled if the operand of the IFF statement evaluates to zero.

2009 TEST IFF LABEL

If LABEL is equal to zero then the code between the IFF and the ENDIF
will be assembled, otherwise it will not be assembled.

4.5.4.20 IFT - IF TRUE

The IFT pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an IFT statement
and the end of the block is marked by the ENDIF statement. The block is
assembled if the operand of the IFT statement evaluates to non-zero.

4.5.4.21 ENDIF - END OF IF

The ENDIF pseudo-op ends a conditional assembly block. Conditional
assemblies can be nested up to 255 deep. A label associated with an IFF
or IFT will always appear in the symbol table. However, a label
associated with an ENDIF will appear only if the block is active.
Statements inside nested conditional assemblies will be active only if
the outer IF is active.

4-66

Rev. 7 3/78

4.5.5 ASSEMBLY ERRORS

The assembler is designed to catch typographical and syntactic errors

and flag them on listings. These errors are typically oversights; improper
use of labels, opcodes, or operands. The assembler cannot catch programming
logic errors. A program with flagged errors may still assemble properly
depending on the type of error. This is true of syntax errors in listing
format statements 1ike TAB. If the TAB statement is used and the operands
are left out a syntax error is printed with the line on the listing. The
assembler defaults the tab settings to the initial value and continues. The
code will be OK (assuming no other errors) and the 1listing will have the default
tabs. In all but one case the assembler will continue the assembly doing the
best with each Tine it encounters and flagging lines that do not make sense.
The one exception is a LINK error when the file named in the operand does not
exist. This error outputs a FILE NOT FOUND message to the console stream
and the assembly is aborted at the point the error is encountered. Syntax
errors in the LINK statement do not abort the assembly. The line is flagged
and the assembly continues.

Because this is a two pass assembler, pseudo-ops which are evaluated during
pass one must have operands that have already been defined before the statement
is encountered. This is true of the following pseudo-ops: EQU, ORG, DS, INP,
IFF, IFT, FILL. If the operand is not defined before the pseudo-op is
encountered, an undefined symbol error (error code U) is output along with the
line 1in error during pass one. Because the program counter is not properly
updated at that point in pass one, a phase error will occur in pass two. That
is, code will be placed in the right place but references (addresses) in branch
instructions will be wrong. The following example illustrates this case:

100@ START ORG 400PH
2PP@ STORAGE DS LENGTH
30PP LENGTH EQU 4PH
4009 JMP $

In the above example line 20@@ has a forward reference to line 3@P@ which is

not defined at this point in pass one. During pass one line 20@p will be flagged
as having an undefined symbol and the assembly continues. The code produced
during pass two will have a phase error as follows: '

ADDR B1 B2 B3
4p4Ap C3 99 4P

The jump to self is in error because the storage could not be properly defined
during pass one due to the forward reference.

A quick reference summary of ASSM error messages is shown below. Refer to
appendix D for explanations of these message conditions.

A ARGUMENT ERROR R REGISTER ERROR

D DUPLICATE LABEL ERROR S SYNTAX ERROR

L LABEL ERROR U UNDEFINED SYMBOL ERROR
M MISSING LABEL ERROR V VALUE ERROR

0 OPCODE ERROR

- 4-67

Rev. 9 1/79

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file and can
be edited by the line editor and assembled by the assembler. The program
is invoked from the MDOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

[unit:]SYMSAVE "<filename>" [“<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
pa0p 1000 ORG 409pH
4pp0 C3 P9 49 20@@ START JMP $

4003 01 30p@ DATA1 DB P21

appa P2 ' 4009 DATA2 DB P2

4pp5 P03 5000 DATA3 DB g3

4006 60P@ FINISH END START

. Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE "TEST"

The file TEST that SYMSAVE creates is an editor compatible source file
which looks as follows:

pP@1 START EQU 4000H
pP@2 DATA1 EQU 4pP3H
pPP3 DATA2 EQU 4pP4H
pPp4 DATA3 EQU 4PP5H

PPP5 FINISH EQU 4PP6H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TEST1" "DATA"
The file TEST1 looks as follows:

PPP1 DATA1 EQU 4pP3H
pPP2 DATA2 EQU 4pP4H
P03 DATA3 EQU 4PP5H

This file contains only the symbols which start with the string DATA.

4-68

DA 7 27710

A symbol equate file can be used in other programs by using the assembler
LINK pseudo-op.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
ppeo 1000 LINK '"TEST'
p0R0 2000 ORG FINISH
4pp6 3E P 30P9 BEGIN MVI A,DATA1
4pp8 32 P3 4P 4000 STA DATAZ
40PB C3 PP 49 5000 JMP START
40PE 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses

all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number by itself if the copied file is to have the same
name as the original. ‘

Lunit:]FILECOPY "<[unit:]filename>" "<[unit:]Inewfilename>"
or
Lunit:JFILECOPY "<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters

an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. ' Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.3 DISKCOPY UTILITY

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MDOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about two
minutes to copy and verify all 315k bytes of a MOD II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY
A sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

4-69
Rev. 7 3/78

DISKCOPY waits until the unit number is entered. When a number between
@ and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (§ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM.DISKETTE IN UNIT 9
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit P is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I/0 ERROR ON DESTINATION DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

4-70
Rev. 7 3/78

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator 1ight goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator light comes on type a control S again. When the select
indicator Tight goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
process is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COPY or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MDOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the-
error message output routines to generate the proper error message.

Example:
A file is created by the following BASIC program:

1@ DIM A$(248)

20 7$=CHAR$(13):REM CARRIAGE RET

3@ OPEN 1 "N:TEXTFILE":REM NEW FILE

49 INPUT A$:REM GET A LINE OF TEXT FROM CONSOLE

50 IF A$="EXIT" THEN 8@:REM END INPUT BY TYPING EXIT
6@ PUT 1 A$+Z$:REM CONCATENATE CARR RTN AT END

79 GOTO 4P:REM LOOP TILL EXIT

8@ CLOSE 1

99 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly language routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78

paop
2010
pp2g
PR30
ppap
pRs5p
po6P
p070
ppsp
p09p
p100
p11p
9129
p13p
p14p
p15p
p16p
p17¢
p189
p190
p20p
p219
p22p
p23p
p249
p25p
p260
p27p
p28p
p29¢
p3p0
p31p
p32p
p33p
p34p
p35p

Note the handling of the errors in lines

START

NEXTCHR

EXIT

31p9-349.

Rev. 8 9/78

CALL
JMP
CPI
JZz
STC
JMP
END

'sysq1!
'sysqz2'
GAPROGRAM
@CCRLF
@NASCPAR

A
@ERRORMES
C,p
@TRANSFILENAME
B,P
@DRIVEND
C,A
H,@FILEBUFFER®
@OPENFILE
@DISKERROR
@RFILEINF
@DISKERROR
A,B

PFCH

A

A,17
@DISKERROR
B,P :
@RFINXPOSI
EXIT

B,C

A,B

@DH

QCCRLF
eCouT
NEXTCHR

2
@CLOSEFILE

@DISKERROR
START

4-72

;MDOS EQUATE BATCH

;MDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURN LINEFEED
;NUMBER OF ASCII PARAMETERS
;IF ZERO

;ERROR

;GASCBUFFp

;MOVE INTO @ASCIIBUFFER
;FILE NUMBER

;UNIT NUMBER

;INTO C FOR OPEN

;USE SYSTEM BUFFER 9
;OPEN THE FILE

;IF ERROR CODE IN A
3CHECK THE FILE TYPE

;IF ERROR CODE IN A

sFILE TYPE

sTYPE NOT ATTRIBUTES
;BASIC DATA FILES=p
;WRONG FILE TYPE MESSAGE
;ERROR

;FILE NUMBER

sREAD FILE BYTE AT A TIME
;END? OR ERROR?

; CHARACTER FOR OUTPUT
;INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF

;OTHER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?

;CLOSE AND RETURN TO MDOS
;ERROR

;ERROR MESSAGE IN A

6%, 140, 160, 210, 24P, and

The error codes are summarized below.

the error messages.

CODE# MESSAGE

P SYNTAX ERROR

1 PERM I/0 ERR

2 END-FILE

3 DISK FULL

4 FILE NOT FOUND

5 DUPLICATE NAME

6 PARM ERR

7 DRIVE NOT UP

8 PERM FILE

9 WRITE PROTECT

19 FILE NOT OPEN

IA COMMAND NOT FOUND
12 BAD FILE #

13 FILE OPEN

14 READ ONLY FILE

15 BAD RECORD #

16 CANCELLED

17 WRONG FILE TYPE
18 INDEX PAST EOR

19 LOAD ADDRESS ERROR

Rev. 8 9/78

4-73

See appendix D for definitions of

4.19 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] filename>"
The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE P
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the destination disk with the same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

If the file dis longer than can be held in memory at one time the COPYFILE
program will prompt:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS. .

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

Rev. 9 1/79 4-74

4.11 DEBUG - THE PDS 8@8p/8#85 PROGRAM DEBUGGER

Micropolis DEBUG is a utility program which facilitates checkout and
debugging of 8080/8885 machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified points and by
examining and/or changing the contents of relevant machine registers and

memory locations.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4K.block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MDOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility (see Section 4.12).
Example:

>DEBUG-70
MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive. ‘ '

The program may be executed one instruction at a time (referred to as
"single-stepping") with the machine state displayed after each step.
Alternatively, the results of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '*'.

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed

character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8 9/78 ‘ 4-75

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:
NAME [<hex> <hex>...<hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.

If the command name is not recognized by DEBUG a SYNTAX error message is -
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. A1l parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
illustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
- optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block
of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

*DUMP 5009 5911
5000 50 C@ 27 77 4F 33 4F CD 7D 9E 98 ﬂﬂ 6A FD 82 90
5019 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

*DUMP 5pp2 5p1F
5002 27 77 4F 33 4F CD 7D 9E 98 PP 6A FD 82 99 ‘
5019 77 2B 54 56 F4 3E 23 2A 34 87 19 3D 21 2C 2A 2B

Rev. 8 9/78 ' 4-76

4.11.2.2 THE ENTR COMMAND

ENTR <start addr.> _

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7000
*78 89
6F/

Three bytes were entered starting at location 7p@@ hex. These were 78
at 7p@@, 89 at 7pP1, and 6F at location 70P2.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each 1ine of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The Tast value on the last 1ine must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte> -

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7000 80@p 9

Each byte of memory in the block from 7092 to 8@P@ is changed to a §9
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

*MOVE 3000 4900 7000

Each byte in the memory block from 30P@ to 40PP@ is copied into the
corresponding position in the memory block from 7090 to 80@0.

Rev. 8 9/78 g 4-77

4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

*SEAR 3000 3p2@ 9F
3pp4 9F
3918 9F

The block of memory from 3009 to 3P2@ is searched for all occurrences of
a 9F. Location 3PP4 and location 3@18 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

*SEARN 3009 3010 67
3002 99 67
3006 76 67

The block of memory from 30@P to 3P1@ is searched for all non-matches
with the mask 67. Location 3802 contained a 9 rather than a 67, and
3Pp@6 contained a 76 rather than a 67. :

4.11.2.7 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

*COMP 5ppp 5pPF 5019
5004 p1 99 5014

The block of memory from 5@pp to 5PPF is compared with the block of memory
from 5019 to 5p1F. One location fails to compare. Location 5@P4 contains
P1 while the corresponding location, 5@14, in the second block contains §9.

4.11.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 8p8@/8@85 mnemonic form of the bytes contained
in the specified memory block.

*DUMP 3009 3008
3099 CA p2 37 B7 C3 1A 37 CB

Rev. 8 9/78 ' 4-78

*LIST 3pp@ 30p8
3000 JZ 3792
3093 ORA A
3094 JMP 371A
3¢gp8 CB *

The memory block from 308@ to 3P07 contains three 8P80/8P85 instructions.
The byte following the third instruction is not a valid 8P8@/8085 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display and/or
~alter the state of the 8p8@/8@85 registers and flags as they are relative
to the Tast instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address -
contained in BC) along with the word on the top of the stack are displayed.
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

Pp ZCMEH pOP 0APP PPAP 1234 PP PP AP ROV
pPpP LXI SP,1234

The second 1ine of the display indicates the processor state. The columns
@B, @D, OH and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence

of any character indicates the opposite condition on the same flag.

The third 1ine displays the address and mnemonic of the next instruction

to be executed. The address of the instruction corresponds to the current
value of the 808@ program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by
using a command such as the CONT or RET commands. Note that the state of

the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8 9/78 4-79

4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8080/8(p85 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

AB CDEWUHIL
BC DE HL SP PC @SP

The first 1ine shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack. :

The following examples would change the program counter value to 6QF3, the
A register value to 7, and the value at the top of the stack to C172.

*PC 6PF3
*A 7
*@SP C172

'4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 8@8@/8885 processor flags
to be set or reset prior to the execution of next instruction in the program .
being monitored. The commands set the flag state according to the mnemonic
form used in. assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPO FH FNH

The FZ and FNZ commands set the state of the ZERO flag to zero or non-zero.
The FC and FNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.
The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry. '

Rev. 8 9/78 4-80

4.11.4 DEBUG MISCELLANEQUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
PPO9 FFFF

4+5 equals 9 and 4-5 equals FFFF.
4.11.4.2 THE RST COMMAND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 8080 or 8@85 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility

used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

Breakpoints provide a means to stop program execution at a given point. When
program execution reaches that point control of the processor is transferred

to DEBUG. Once in DEBUG, -the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 | 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address

with one of the 'RST' instructions of the 8p8p/8p85 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then Tloads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpo1nted instruction and the RST
vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will display
the contents of the program registers in the following format:

A FLAGS BC DE HL SP @B GD @H @SP
13 popp POPP 0P P1A2 PP PP PP 14FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPOINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent

breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not Teave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor.

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

The SET command defines a permanent breakpoint. The breakpoint # and the

hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint #'s may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).

Rev. 8 9/78 4-82

4.11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DISB
@1 2354
P3 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints will be cleared. If a breakpoint ,
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed. '
Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:
*EXEC 3014
A FLAGS BC DE HL SP @B @D GH @SP

PP Z C PP12 P341 3674 §195 PP 9B 0P 3p54
3507 JMP 3643
*

Program execution was started at location 3P14 (hex). A breakpoint was
encountered at location 35@7 returning control back to DEBUG.

Rev. 8 9/78 4-83

4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count specifies the numbe
of times it must be hit before control is transferred back to DEBUG. If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operat1on is cance]]ed If the
breakpoint # specified in the REPT command 1s not set, a SYNTAX error is displaye
Example:

*SET 1 3009

*p E 2¢¢ﬂ PPoP PPPG P1AR 00 00 0P PARP
30p@ DCR

*0p 1F¢¢ popP PPA ATAQ 00 0P 00 PPRP

3001 JMP 3pP0
*REPT 1 8

A FLAGS BC DE HL SP @B @D GH @SP
Do £ 180D 000D PORD PIAD P 20 0P PAPD

The breakpoint at location 3p@@ (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed.

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CONT or RET commands. When
control of the processor returns to DEBUG, the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CONT [<break 1> [<break 2> [<break 3> [<break 4>1]]]

The CONT command continues execution of the user's program at the current

PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F

A FLAGS BC DE HL SP @B @D @H @SP
P9 M P120 p341 3674 9195 PP PP PP 3054
357 DCR A
*

Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) is encountered, which returns control back to DEBUG.

Rev. 9 1/79 4-84

4.11.5.10 THE RET COMMAND
RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
'CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction
has been executed or when the top of the stack contains a known return
address. Otherwise a breakpoint might be placed at an address which is not

a part of the program. (e.g. the last instruction was a 'PUSH' and therefore
the top of the stack contains a data word instead of a return address)
Example:

*DISR : :

A FLAGS BC DE HL SP @B @D @H @SP
0p Z P00Q 0P0D 0P PPRD PP 0P B0 PO3P
2APP LXT SP,3¢00

*P0 1 o0p0 PPOY POPR 3000 0P 0P 0@ 3243
2AP3 CALL 2B@P :
*0p Z pp00 0000 PPID 2FFE 0P 0P PP 2AP6 -
2Bpp STC
- *RET
A FLAGS BC DE HL SP @B @D @M @SP
pg ZC peod 0000 PARE 3008 20 AP PP 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at location 2A@6 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2A@6
control of the processor is returned to DEBUG and the processor state is
displayed. \

Exception Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

TEXT Call MESSAGE
DTH "SIGNON"
RET

MESSAGE XTHL
CALL @LINEOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 9 1/79 4-85

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a detailed inspection
of what the program is doing on an instruction by instruction basis. Each
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays

the contents of the processor registers.

Example:
*DISR

A FLAGS BC DE HL SP @B @D GH @SP
13 goog P30 P0G B1A2 00 0P 0P 14FE
2Ap@ STC
*13 C NOP0 00PP PROA PI1A2 PP @9 GO T4FE
2APT XRA A

*0p Z E pOOP PpOp PROR P1A2 PP P@ PP 14FE
2AP2 STA 345F

At the '*' prompt the user typed a space which caused DEBUG to single-step

an instruction and print the resulting register contents on the same line.

In the single-step mode of operation, DEBUG makes a local copy of the instructio
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify
the program in any way which allows programs in ROM may be stepped through
without problem.

4.11.5.12 THE TRACE MODE COMMAND
TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. During a TRACE the
Control S / Control C functions provide pause and break control.

Example:

*TRACE
PP E 1800 2000 0000 D1AD PP 0P DD POOP
3981 JMP 300D
@0 E 1800 poep 0000 D1AD P2 PP 00 POND
3000 DCR B
20 E 1720 00p0 00pD P1AQ 0P PO PP POPD
3p91 JMP 3099
pp E 1709 0000 0000 D1AD 00 09 PO 000D
3¢@p DCR B
)] 1600 0pPP PO0P B1AD 0P 0P 03 PPPY
3991 JMP 3p0p

*

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after_S instructipns had been executed.

Rev. 9 1/79 4-86

Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MDOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction.

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the MDOS executive. DEBUG is then invoked from the MDOS executive

by typing the name of a configured DEBUG version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAM"

>DEBUG

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

If the program to be monitored is one which runs in the MDOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MDOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MDOS Executive at the warmstart address which is 4E7H.
Example: :

*SET 1 2Bp@

*EXEC 4E7

MICROPOLIS MDOS V.S. X.X - COPYRIGHT 1978
>APP "ASCIIPARM" 12

A FLAGS BC DE HL SP @B @D @H @SP

2BPY LXI SP, Q1AQ

Permanent breakpoint number 1 is set at the program entry point 2B@#@ hex
and execution is begun at the system warmstart address. The MDOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the application area and to pass

one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands. "

Rev. 8 9/78 4-87

If the program to be monitored is one which can be executed directly without
requiring any parameters from the MDOS executive, then the simplest way

to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then -
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3000
*SP 1A
*CONT 3029

The program counter is set to 30P@ hex and the stack is set at 1Ap hex. A
temporary breakpoint is set at 3020 hex and program execution is begun at
the PC value, 300@ hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

. The user may exit DEBUG in one of two ways. -First, the user may simply
transfer control of the processor to the program permanently. This is done
- by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second, the
user may simply return to the MDOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This warmstarts the MDOS executive and leaves the program without any
breakpoints set. ' ' ‘

4.11.8 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the 1K bgoundary on which
DEBUG is running. This 'warmstart' procedure will cause any breakpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, -the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only
way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is listed in 4.11.9.1.
Assume that the program and DEBUG are on disk unit @ along with an MDOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-88

4.11.9.1 SAMPLE PROGRAM LISTING

3000 16 PP ppop MVI D,p
3pp2 21 8p 92 PR1P LXI H,280H
3p@5 CD 13 33 @p2@ LOOP: CALL SuB
39p8 25 PR30 DCR H
3p@9 C2 05 3p 0QpAp JNZ LOOP
3ppC 7D pasp MOV A,L
309D pF ppep RRC
3PPE 6F pa70 MOV L,A
300F D2 p5 30 pp8p. JNC LOOP
3012 €9 P99 RET
3013 F5 pipp SuB: PUSH PSW
3014 7C p1ip MOV A,H
3015 B5 pi2p ORA L
3016 F1 P13p POP PSW
3917 C9 p14g RET

- 4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows. >

The first three Tines show the test program being loaded into memory along
with the load and execution of the DEBUG. Once DEBUG is loaded and running
it signs on and displays its executive prompt '*'. At that point the PC

and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location 3P@C using
the CONT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3@@5. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL, DCR H and JNZ) to
execute twice.. After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted. ‘

MICROPOLIS MDOS V.S. 4.9 - COPYRIGHT 1978

>LOAD "TEST" load program into memory
>DEBUG-70 - run debug (7008 hex)

MICROPOLIS DEBUG V.S. 4.p - COPYRIGHT 1978

*SP 1AQ ~ set up a stack
*PC 3000 set up PC

Rev. 9 1/79 4-89

*DISR

A FLAGS BC DE HL SP @B

@D @H @SP

80 ZC E 0p0p PRGP PP@P @1AP C3 C3 C3 5845

3ppp MVI D,p@
*SET

1 3912
*DISB

g1 3912
*8p 7C E
3pp2 LXI
*8p 7C E
3p@5 CALL 3913
*80 7C E
3913 PUSH PSHW |
*RET |
A FLAGS BC DE HL -SP @B
p2 M

poep PPRP 9283 @1AP C3
3¢@8 DCR H ‘
*CONT 3¢@C

H,p28p

A FLAGS BC DE HL SP @B
P17 E Ppap PPPP PP8H P1AP C3
3ppC MOV A,L

*TRACE
80 Z E 0pPP 0009 P8P P1AP C3
39pD RRC

40 7 E PPOO POPD PRSP PIAD C3
30PE MOV L,A
40 7 E 0PPD POEP PRAD PIAP C3
3P@F JINC 30@5
40 7 E (pAD POPP PPAP P1AB C3
39p5 CALL 3p13
*SET 2 3p@C
*REPT 2 2
A FLAGS BC DE HL SP @B
20 Z E pO0p POP@ PP2P PIAP C3
3ppC MOV A,L
*CLR 2 '
*DISB
p1 3P12
*CONT
A FLAGS BC DE HL SP @B
80 ZC E {0ppp 0pP® 0PSP P1AP C3
3012 RET
*CLR
*EXEC 4E7

popp POPP APPP P1AP C3 C3 C3 5845
p000 popP 9280 P1AP C3 C3 11 5845
poPP PPEP 9289 PI9E C3 C3 11 3pP8

set breakpoint on»fina] RET

return from SUB call
@D @H @SP
C3 11 5845

set temporary break and go
@D @H @SP
C3 PA 5845

execution
5845 -

trace
C3 PA

C3 PA
C3 PA

C3 PA 5845

Control C hit here

set permanent break
execute inner Toop twic
@D @H @SP :
C3 PA 5845

5845
5845

clear breakpoint 2
display breakpoints

complete program
@D @H 8SP
C3 QA 5845

clear all breakpoints
warmstart MDOS

MICROPOLIS MDOS V.S. 4.§ - COPYRIGHT 1978

Rev. 9 1/79

4-90

single-step
single-step

single-step

4.11.70 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MDOS executive. The
only part of PDS on which DEBUG relies is the console and printer 1/0
logic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MDOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor
" by using the statement LINK "DEBUG-XX". Example:

'MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

LOAD "BASICPGM"
READY

LIST

19 DEF FAA=16R791p
20 A=FAA (1)

3@ PRINT A

4% END

READY

MEMEND 16R7009
READY

LOAD “"MROUTINE"
READY

LINK "DEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7910
*EXEC 4E7

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

RUN

A FLAGS

............ . DEBUG Register display
7019 PUSH H

*

Rev. 8 9/78 4-91

From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine language routine beginning at address 7919
hex. BASIC's end of memory is.set to 709 hex and the machine routine
"MROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 740@ hex is then linked to. In DEBUG a permanent breakpoint

is set at 701D hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUN command starts execution of the BASIC program, which accesses
the machine routine when line 2@ is executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required.

4.12 THE DEBUG-GEN UTfLITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
-within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
1K boundary above the beginning of the MDOS applications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEN 1ike an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GEN" followed by the command APP.

The program signs on with the message
DEBUG GENERATION PROGRAM VS. X.X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2B-Fp) ?

Type a two digit hexadecimal number that corresponds to the high-order byte
of the start address where the DEBUG will run. This address may only be on

a 1K boundary. The program will ignore the lowest 2 bits of the response.
DEBUG-GEN creates a type 14 file on disk unit @ and fills it with the

relocated DEBUG system. The file name is "DEBUG-XX" where XX (hex) is the
page address entered by the user.

Rev. 9 1/79 4-92

Example:

MICROPOLIS MDOS V.S. 4.8 - COPYRIGHT 1978
>DEBUG-GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS (2B-Fp) ? 79

RUN FILE NAMED DEBUG-7@

>

In this example a program file named "DEBUG-79" is created on disk unit @.
This file is a running DEBUG package which will use the memory space from
708@8H to 7FFFH.

Rev. 9 1/79 4-93

V_MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCTION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-Tload bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MDOS to BASIC by

typing the filename BASIC to the MDOS executive. It is also possible to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system. See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user. interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program 1ines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original BASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs.. The details of these language elements and the rules for com-
bining them are described in sections following.

5.1 ENTERING LINES TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from MDOS

or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A 1ine consists of not more than 250 characters typed in sequence. The
entry of a line is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will ignore the
extra characters and respond only to the RETURN, RUBout or CNTL/X keys.

During the entry of a line each character that is typed is echoed by the
Interpreter on the .terminal display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the line entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

: 5-1
Rev. 9 1/79

the count exceeds the width of the display device. This combination is not
included in the 1ine count. _

Two control features may be usedkwhen entering a line.

1) Each time the RUBOUT key is depressed the next previously
typed character will be deleted from the Tine. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the line count.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
Tine feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new]1ne

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program 11ne by the presence

" of a 1ead1ng line number. A BASIC program is entered one program line at
a time using the normal line entry procedures. The message READY is not
~displayed after the entry of a program line. This permits consecutive
program lines to be entered conveniently. As each program line is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system S main memory.

Each Tine of a BASIC program is composed of a line number fo]]owed by one
or more statements (see Section 5.20) which are separated from each other
by a colon (:). The 1ength of a program line may not exceed 250 characters
including the digits in the Tine number. Each 1ine number must be within
the range 0 - 65529. Spaces preced1ng the first digit of a line number
are ignored. Spaces embedded in a line number are not legal. All other
spaces in a program line are preserved as entered.

Program lines are stored in the program buffer in numeric order by line
number. The lines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new 1ine in the
program buffer in proper sequence.

To modify an existing program line enter the 1ine number and the new
statement or statements. The new line will automatically replace the
old T1ine in the program buffer that has the same line number."

To delete an existing program line type the line number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Note that mu1t1p1e 1ines may also be eliminated by using the DELETE command
as described in 5.4.

Rev. 8 9/78

5.3 IMMEDIATELY EXECUTED LINES

Whenever a T1ine is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a 1ine number and the line
is treated as a program line. (see Section 5.2). If the first non blank
character is not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate 1ine by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate line is the command. Commands are operations
which generally make sense only in immediate mode. Most of the commands
in BASIC system relate to the program buffer and to the manipulation and
execution of BASIC programs. The available commands are described in the
following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT linenumber

A specified 1ine in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified linenumber is not found in the current program
buffer, the message STMI # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified 1ine into a special editing buffer and
setting an invisible pointer to point to the first digit of the Tinenumber
that begins the text 1ine. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole 1ine including the Tinenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
Tline can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

5-3
Rev. 8 9/78

5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.1.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by

typing an i or I followed by the characters to be inserted. The

insertion begins immediately before the character pointed to by the

edit pointer. Characters are inserted in sequence as typed until the

insert mode is terminated by typing an escape (1B hex). The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the line may be displayed by typing an

1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning position.
This command is useful to see what the 1ine looks like before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the 1ine about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire 1ine is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
‘argument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is left
pointing at the search character or at the end of the line.

5-4

Rev. 8 9/78

5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the 1line in the current
text file by typing a q or Q. The partially edited 1ine in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The T1ine in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the line number of the 1ine in the special edit buffer
matches a Tine number in the current program buffer, then the edited line
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no line in the current program buffer with the same
line number as the line in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM COMMAND

RENUM

RENUM (starting-number)

RENUM (starting-number, increment)

RENUM (starting-number, increment, first-1ine-to-change)

Some or all of the 1lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
line numbers, and line number references that follow branch statements.

These statements are GOTO, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), RENUM (starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the 1ine number of the first-line-to-change and sets it equal to

the starting-number. The line number of each line after the first-line-to-change
is then set to the value of the preceding new 1ine number plus the increment
value. If no first-line-to-change is specified, the first Tine in the program
buffer is assumed. If no increment value is specified, the value 19 is used.

If no starting-number is specified, the value 19 is used. Typing RENUM alone
will produce a program numbered from 19 by 18's. Examples:

Assume that the current program buffer contains the following program:
9 REM RENUM EXAMPLE PROGRAM
25 INPUT "VALUE";A
3@ PRINT "THE SQUARE ROOT OF";A; "IS” ;SQR(A)
45 GOTO 25
The command RENUM (5@,38,3@) would produce the following:
9 REM RENUM EXAMPLE PROGRAM
25 INPUT "VALUE":;A
5@ PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
8¢ GOTO 25
5-4.1

Rev. 8 9/78

The command RENUM would produce the following:

1@ REM RENUM EXAMPLE PROGRAM

20 INPUT "VALUE";A

39 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
49 GOTO 20

The command RENUM (10@) would produce the following:

. 109 REM RENUM EXAMPLE PROGRAM
119 INPUT "VALUE";A
129 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
13¢ GOTO 119

The command RENUM (1909,10@) would produce the following:

1009 REM RENUM EXAMPLE PROGRAM

T119p INPUT "VALUE";A :
1209 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
1309 GOTO 1199

Several error conditions are checked before any renumbering is done. This

is to safeguard the program against possible damage. As errors are detected
error messages are printed along with the Tines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the errors-are corrected.

Entering a RENUM command may result in the message NUMBER OUT OF RANGE
followed by the line where the error occurred. This is an indication that
the renumbering attempt lead to a line number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a 1ine number greater than 65529.

Entering a RENUM command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may result in the message STMT # NOT FOUND without
printing the offending line. This occurs when the specified
first-1ine-to-change does not exist in the program. No change is made.
Example; if the program is:

19 PRINT "TEST" .
20 GOTO 19

The command RENUM (19@,19,30) would cause a STMT # NOT FOUND error because
there is no line 3@ at which to start renumbering.

Entering a RENUM command may result in the message STMT # NOT FOUND followed
by the 1ine where the error occurred. This indicates that a branch statement
(GOT0,GOSUB, etc.) contained a reference to a 1ine number that does not exist
in the program. If this is intentional a stub Tine should be placed in the
program to allow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

5-4.2
Rev. 8 9/78

Entering a RENUM command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or .parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a sequence error in the line numbering (e.g. the
1ines were numbered 19,2@,30,49 and you typed RENUM (19,10,30). This would
result in numbers 10,20,10,20 which is not allowed.).

The RENUM command does not change 1ine numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manually.

RENUM will not renumber 1line number references in scientific notation (1E3),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTO's, GOSUB's or RESTORE's are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumber1nq parameters.

Example; if the program is:

lﬂ DATA THIS,IS,A,TEST

2 DATA MORE,TEST,HERE,END

3@ INPUT "WHICH DATA,T1 or 2",A
49 RESTORE (19*A)

5@ READ A$,B$,C$,D$

The command RENUM (102,10,39) would renumber the executable part of the
program while Teaving the DATA statements unchanged.

19 DATA THIS,IS,A,TEST

20 DATA MORE,TEST,HERE,END

199 INPUT "WHICH DATA,1 OR 2",A
119 RESTORE (1¢*A)

12p READ A$,B$,C$,DS$

The computed RESTORE on line 118 would still function after the program is
renumbered. However, if lines 1@ and 2@ had been renumbered, then the
program would not perform as intended.

The RENUM command can cause a line to expand to a length greater than 250
characters. Such a long line can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 250 characters
long. The Basic EDIT command uses the 25@ character input buffer during
ed1t1ng If renumber1ng causes a line longer than 25@ characters and that
line is later edited using the Basic EDIT command the Tine will be truncated
at 25p characters by the editor.

5.3.3 THE MERGE COMMAND

MERGE "unit#:filename"

The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE "unit#:filename". The unit# is a number from @ to three
followed by a colon. If no unit number is specified, unit zero is assumed.

5-4.3
Rev. 8 9/78

Lines are merged one at a time from the merge file into the current program
buffer, starting with the first line in the merge file. If the line number
in the merge file is the same as a line number presently in the program
buffer, then the line from the file replaces the line in the buffer. If the
1ine number in the merge file does not match any line number in the program
buffer, then the 1ine from the file is inserted in the current program
buffer in proper 1ine number order. When all 1lines from the merge file have
been placed in the program buffer the MERGE is complete. /

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY OVERFLOW is output
and the merge does not take place.

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and talleys the vote.
This module is allocated line numbers from 1083 to 20@@. The data has been
allocated lines 10 to 188 and the printer output module is allocated lines
5000 to 600Q. ~ :

The program under test uses lines 18-3@ as test data, and lines 5@p@39-5019
prints the test results. The program looks as follows in the program buffer:

19 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM

2(-REM TEST DATA.

39 DATA 1,1,2,2,3,3,4,4,0,1,4,1,99

10P@ REM PROCESS SURVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

192@ REM VALID DATA IS P=NO OPINION,1=YES,2=N0O,99=END OF DATA.
1925 READ C : '

103 IF C=@ THEN T1=T1+]

1949 IF C=1 THEN T2=T2+1

1950 IF C=3 THEN T3=T3+]

1969 IF C=99 THEN T=T-1:GO0TO 50@p

1970 IF C<p OR C>2 AND C<>99 THEN PRINT "ITEM";T;"NOT VALID"
108p T=T+1

1999 GOTO 1925

5p@@ REM TEST PRINT OUT ROUTINE

5019 PRINT "NO OPINION=";T1;" YES=";T2;" NO=";T3;" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE

500p REM PRINT MODULE

5019 OPEN 1 "*P" ERROR 5200

5020 A$="779":B$="VZ9"

5030 P1=T1/T:P2=T2/T:P3=T3/T

5040 IF P1+P2+P3<>1@P THEN PRINT"PERCENT ERROR":STOP
5@5@ PUT 1 TAB(6@);"NO"

5-4.4
Rev. 8 9/78

5060 PUT 1 TAB(10@);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %";

5079 PUT 1 TAB(GQ)"OPINION %"

5p8p PUT 1 REPEATS$("=",72)

5099 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(30);FMT(P1,BS$);
5109 PUT 1 TAB(45);FMT(T2,A$);TAB(51);FMT(P2,B$);TAB(6@) ;FMT(T3,A%);
5119 PUT 1 TAB(69);FMT(P3,B$)

5129 PUT 1 REPEATS$("-",72)
5139 CLOSE 1: STOP
520@ PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5020

When the real print module is debugged the command SAVE "PART2" saves it on
the disk.

To test the system PART1 and PART2 are combined by typing the commands
LOAD "PART1" and a carriage return, and then the command MERGE "PART2" and

a carriage return. The combined programs are RUN using the test data. When

these parts are debugged they are saved on disk by typing the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as follows:

DELETE

1@ REM LIVE DATA
29 DATA 1,1,1,2
3@ DATA 9,2,2,2
49 DATA 1,1,1,2
5@ DATA 99

32’]’¢!
»1,2,2,
»2,1,2,

°

&=

2,1
1,1
8,0

?

-

b 3

And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

19 REM LIVE DATA

2p DATA 1,1,1,2,2,1,0,1,2,1
3p DATA 9,2,2,2,1,2,2,1,1,1
4p DATA 1,1,1,2,2,1,2,1,0,0
50 DATA 99

19@@ REM PROCESS SERVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

1920 REM VALID DATA IS @§=NO OPINION,1=YES,2=N0O,99=END OF DATA.
1925 READ C

1930 IF C=@ THEN T1=T1+1

1949 IF C=1 THEN T2=T2+1

1950 IF C=3 THEN T3=T3+]

1960 IF C=99 THEN T=T-1:GOTO 5ppP

1979 IF C<@ OR C>2 AND C<>99 THEMN PRIMNT "ITEM";T;"NOT VALID"
1080 T=T+1

1999 GOTO 1925

5-4.5

Rev. 8 9/78

5009 REM PRINT MODULE

5019 OPEN 1 "*P" ERROR 5209

5020 A$="779":B$="VZ9"

5@3p P1=T1/T:P2=T2/T:P3=T3/T

5040 IF P1+P2+P3<>1@p THEN PRINT"PERCENT ERROR":STOP

505p PUT 1 TAB(6@);"NO"

5060 PUT 1 TAB(1P);"RESPONSES";TAB(25);"YES %";TAB(46)"NO %";
5079 PUT 1 TAB(6¢)“0PINION %"

5p80 PUT 1 REPEAT$("=",72)

5099 PUT 1 TAB(12); FMT(T A$) ;TAB(25);FMT(T1,A$); TAB(3) sFMT(P1,B$);
5190 PUT 1 TAB(45);FMT(T2,A$); TAB(51) FMT(PZ B$);TAB(ﬂ),FMT(TS A$);
5119 PUT 1 TAB(69);FMT(P3,B$)

512¢ PUT 1 REPEAT$("-",72)

513p CLOSE1: STOP
52@@ PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5020

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-Y to eliminate the lines numbered X through Y. Line number

Y must be greater than line number X. If either 1ine X or line Y or both

are not in the current program buffer a LINE NOT FOUND message will be displayec
and nothing will be deleted.

Type DELETE X- to eliminate line X through the last line in the current
program buffer. If line X is not in the buffer a LINE NOT FOUND message
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first line through line Y in the current
program buffer. If line Y is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

A1l or part of the program in the current program buffer can be listed
on the terminal display device by us1ng the LIST Command. There are four
forms of this command.

Type LIST X-Y to display fhe Tines numbered X through Y. Line number Y must
be greater than line number X. If either Tine X or Y are not in the current
program buffer the first present line number greater than X or Y will be used
instead.

- Type LIST X- to display the lines from line X through the last line in the

current program buffer. If line X is not in the current program buffer the
first present line number greater than X will be used instead.

5-4.6
Rev. 8 9/78

Type LIST -Y to display the first line through 1ine number Y in the current
program buffer. If 1ine Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.
5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command. ‘

SAVE "N: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 19 characters long. The characters

5-4.7

Rev. 8 9/78

which are legal in a file name are the letters A through Z, the digits @
through 9, and ten special characters including comma (,), dash (-),
period (.), slash (/), semi-colon (;), less than (), equal (=), greater
than ()), question mark (?) and at sign (@).

The N: is optional. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten
and replaced by the program in the program buffer, If no such file exists
the message FILE NOT FOUND will be output. However, if the N: is included
in the SAVE command then a new file will be created with the designated
name on the designated unit. If N: is used and the file already exists

on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from ¢ to 3 followed by the colon (:). It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit @ is assumed.

5.7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by using the LOAD command.

LOAD "unit number: name of file" is the general form of the command.

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 10 characters and may use the
letters A-Z, the digits P-9 and the special characters (,), (-), (.), (/),
(;)’ (‘)’ (=)9 (?)s(@))(>)' ‘

The unit number: is optional, If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of

the disk unit on which the specified file is to be found. If no unit number
is specified, unit ¢ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost. If

the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5.8 THE DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette, This special file is known as the
diskette directory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal display by using the
DISPLAY command,

DISPLAY 'unit number: DIR" is the general form of the command.

5-5
Rev. 2 5/77

The word DISPLAY and the quotation marks and the name DIR must be nresent.

The unit number: is optional. If it is not present unit @ is assumed. If

it is used it must consist of a single digit from @ to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command outputs the filenames five to a line. The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC.

If the diskette in the specified unit does not contain a valid directory file
a PERM I/0ERR message will result because the disk cannot be accessed by
the BASIC system.

5.9 THE SCRATCH COMMAND

A file that is stored on disk may be eliminated by usirg the SCRATCH command.
SCRATCH '"unit number: name of file'" is the general form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 1@ characters, including
the letters A-Z, the digits @¢-9 and the special characters (,), (~), (.),

(/)’ (;)’ (()’(=)’ ())’ (?), (@)0

The unit number: is optional. If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no
unit number is specified, unit @ will be assumed, If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be
output,

When a file is SCRATCHed the storage space yaused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buffer it may be executed by using the
RUN command.

RUN is the form of the command.
When the RUN command is entered, the interpreter resets all disk files to
"closed", and frees all memory space previously allocated to variables from

the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

5-6

Rev. 2 5/77

ascending order of line number. This sequence is altered only when
particular program statements deliberately change the sequence by trans-
ferring control.: Each.pregram line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence. At this point the interpreter
displays the message READY and waits for a line to be entered,.

5.11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be interrupted prior to completion by

holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by display$fng the message INTERRUPT followed
by the message READY,.

The interruption generally occurs after the end of whatever program line
was being executed when the CONTROL' C was entered. In the case of the
input statement and ywhenever characters are being output, the interrupt
will occur immediately. Under these circumstances the remainder of the
input or output will be lost if a continue is attempted (see section 5.12).

When program execution is interrupted, the value of all program variables
remain as last assigned. Any-open disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assignment statements. These are frequently
used aids in debugging programs., However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the CONT command.

. CONT is the form of the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed.

5-7
Rev. 2 5/77

5.13 PROGRAM TRACING COMMANDS

| Often, when developing a new program, it is useful to be able to follow
the execution on a line by line basis. This capability is provided in
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability. When the FLOW trace capability is enabled and the RUN command
is entered the interpreter displays each program line immediately before
it is executed. The FLOW trace remains enabled after the end of a program
execution. It must be specifically disabled.

NOFLOW is the form of the command whiéh disables the program line tracing
capability.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter trieé to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error message will
be directly followed by the message READY. All or part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message. All or part of the erroneous program line may not have been
executed. Program execution is not continuable. after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes.

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT 0 (5F HEX)
backspace character and the RUB OUT (7F HEX) character. However, Tower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of th
corresponding ASCII codes are listed in table 5.1. : ~

5-8

Rev. 8 9/78

5,16 BASIC DATA

BASTIC programs operate on two types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers, Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks. A data item
may be a constant which has an unchanging value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and referenced as a member of the array,

5.16.1 CONSTANTS

A constant is an unvarying value, It is expressed as its actual value. A
constant may be a numeric value, or a character string value.

5.16,1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be: '

Integer format: -nn....n - Example: -93784
Radix format: -xXxRnn....n Example: -16R7B2

Where (-) is an optional sign, xx is the number base, R indicates radix
format, and nn....n is the number expressed with the digits #-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is 1-5E (2*%ISIZE) to 5E (2%ISIZE). See SIZES statement
for definition of ISIZE, The maximum value of an integer specified in
radix format is 65535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified.

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notation.
The formats of a real number may be:

Real format: -nn....n.nn... Example: -2.677

Scientific format: -nn...nE-xx Example: 257E-4
-nn...n.nn,..E-xx Example: -12.231E14

Where nn...n.nn... represents the number expressed using the digits §-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent; E specifies scientific notation and xx represents the
exponent expressed with the digits §-9.

~ The range of a real number is 1E-61 to (1E62)-1.

5-9
Rev. 2 5/77

BASIC CHARACTER SET IN COLLATING SEGUENCE

- CHAR DECIMAL HEX OCTAL

(space) 32

IV A ORI RORUNEONG | » k k™o s AR R § -~

222 EESIERATSBENRERE

~ Table 5.1 Standard Collating Sequence

Rev, 1 5/77

20
21
22

.23

24
25
26
{4
28
29
2A
2B
20
2D
2B
2F
30
31
32
33

34

36
37
38
39
3A
3B
3C
3D
3B
37

040
041
042
045
044
045
046
047
050
051
052
083
054
055
056
087
060
061

Pt w7 mad N dOg U YeBORRHNUNTOEH MBS OW D ®

CHAR DECIMAL HEX OCTAL

64
65
66
67
e
52
70
7
72
73
74

40
41
42
43
44
45
46

47 .

48
49
4A
43
4C
4D
4E
4F

50

51
52

53

54
55
56
87
58
&9
54
5B
5C
5D
SE
sy

5-9.1

100
101
102
103
104
105
106
107
110

111

112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
138
136
137

5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered

as a constant, a string must be enclosed in quotes (").‘ Quotes

within a string must be doubled (the constant " is entered as " " " "),
The length of a string is the number of characters, The maximum

length of all character strings within a program is set by the SIZES
statement,

5.16.2 VARIABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program, TISIZE defines the memory space for
integers; RSIZE for real variables; and SSIZE for character strings.

5.16.2.1 TINTEGER VARIABLES

Integer variables are designated by any letter followed by a percent
sign (%). ‘

The range of an integer is from 1-5E(2*ISIZE) to 5E(2*ISIZE).

The internal format is 2 BCD digits per byte stored in tens complement.
If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs.

5.16.2.2 REAL VARIABLES

Real variables are indicated by any letter (not enclosed in quotes)
or a letter followed by a digit. The range of a real is 1E-61 to

(1E62)~1. The precision or level of accuracy is 2(RSIZE-1) decimal
digits.

The Internal Storage Format Is:
Byte 1: 1 bit sign and 7 bit exponent (excess 64)
Byte 2 thru RSIZE: 2 BCD digits per byte.

5.16.2,3 STRING VARIABLES

A string variable is designated by a letter followed by a dollar

sign ($). String variables may have a length of up to 250 characters.
The default value of maximum string length is defined by the SSIZE
parameter of the SIZES statement. The maximum SIZE of any particular
string may be declared in a DIM statement, which supercedes the

SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on. the right.

The internal format of a string variable is:

5-10

Rev. 2 5/77

Byte 1: Maximum string length

Byte 2: Current string length

Byte 3 thry N: Any character, 1 character per byte
(N= 2+ Maximum string length found in Byte 1)

5.,16.2.4 CONVERSIONS

Automatic conversion between integer and real data types is pro-
vided which allows mixed-mode arithmetic, A real value is con-
verted to an integer by truncating the fractional part while
preserving the sign of the number.

Conversion between string and numeric data types is provided by
the STR$, VAL, FMT, CHARS$, and ASC functions. See section 5,18.1.2
for description of these functioms.

5.16.2,5 ARRAYS

Numeric and character string data may be stored in memory as
arrays, An array is a set of variables of one data type (numeric
or character) identified by a single variable name, A numeric
array is denoted by a single letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions, A string
array is denoted by a single letter followed by a dollar sign ($)
and may have 1 to 3 dimensions, Both types of array are zero
indexed, An array must be declared in a DIM statement which
defines the number of dimensions and the index range in each
dimension. An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DIM statement. ‘

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory. For
example, an array A which has a dimension of 4 is stored:

A (®
A (1)
A (2)
A (3)
A (B

An element of a one dimensional array is referenced by the array
name and by the index of the element within the array, enclosed in
parentheses, The 4th element of array A in the above example is
A (3). The index may be specified by a constant, as in this
example, a numeric variable, or a numeric expression.

: 5-11
Rev. 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns., An array B dimensioned as B (3,2) would
be represented as: :

S|SHoCO
RO 0
PO OO

ROW ¢ L
ROW 1 ' Array 3(3,2)
ROW 2 %

~ROW 3

An element of a 2 dimensional array is referenced by the array
name and the row and column indices. The shaded element in the
above illustration is referred to as B(2,2), where the first
index is the row index and the second is the column index,

The elements. of a 2 dimensional #rray are stored sequentially in
memory in column major order, that is column by column. The
elements of the array B would be stored:

(¢,¢)1:
(1,9)
(2,9
(3,9)
(é,1)
(1,1)
(2,1)
(331)
(9,2)
(1,2)
(2,2)
(3,2)

WO W

As with one-dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression,

3 and 4 dimensional arrays are extensions of the two dimensional
concept, . An element of one of those arrays is referenced by the
array name and the appropriate number of indices.

5.16.3 OUTPUT FORMATS

A numeric data item is converted to a string when it is output to

5-12
Rev. 1 5/77 :

the terminal,

Unless the output format is explicitly specified

by use of the FMT function, a numeric value will be output in
one of three default formats according to the following rules:

1)
2)
3)
4)

5)

6)
7)

The negative sign (if present) precedes the number

A space is
A space is

output in place of a positive sign
output following the number.

A number is either-a whole number or a decimal

number. A whole number is a number without a
fractional part. A decimal number is a number

with a whole and a fractional part.

The output formats are: Whole, Decimal and Scientific.

(-)xxxxxxx¥
(-)xxx ... x.xxx¥
(-)n.xxxxx E(-) TT¥

minus sign if negative, blank if positive
digit position

one non-zero digit

signifies exponent

exponent

blank

of an integer variable is output in whole format.

A constant or the value of a real variable is output as

Whole:
Decimal :
Scientific:
)
X
n
E
TT
¥
The value
follows:
a)
b)

If the constant or value is a whole number

having less than or equal the number of digits

specified by RSIZE, then whole format is used.

If the constant or value is a decimal number greater
than or equal to ,l1 and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

c) Otherwise, scientific format is used.

String data is output without modification.

The maximum output line length is 25@ characters. If an attempt
is made to output a line longer than the maximum length, e.d.,by
trying to output 2 strings of 250 characters with the same print
statement, the message OUTPUT OVERFLOW is d1sp1ayed and the line
is not pr1nted

Rev. 9

1/79

5-13

‘sz

5.17

BASIC OPERATORS

Operators are symbols which specify operations to be performed upon data
items, BASIC recognizes 4 classes of operations:

Numeric (arithmetic); String; Relational; and Logical.

e

5.17.1 Numeric Operatdrs

Numeric operators. specify arithmetic operations to be performed
upon numeric data items and numeric function references. A numeric
data item may be-a constant, a simple numeric variable or a numeric
array element. Numeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

£t

T
&%

el

Symbol Az T 14 ?
A VSE A (ﬁ\g Exponentiation
/ ~ Division
* Multiplication’
N Integer Division (X\Y = Int(X/Y))
- Subtraction
+ .

Addition

The unary operators are listed below:

Symbo1l Ogeration?
- | Negation

No effect

The '"+" symbol is recognized as a unary operator to allow constructs
such as A= +7 and A= +B to be syntactically correct although the "+"
has no effect.

5.17.2 String Operators

One operator is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Szmbol ORefafidﬁ
+ Concatenation

5-14

Rev. 2 5/77

The '+'" operator yields a strihg composed of the characters in the
string data item to the left of the operator followed by the char-
acters in the string data item to the right of the operator.

EXAMPLE: 1f A$ = "ABCD" and BS$ = "EFGH" the operation AS + BS
yields the string "ABCDEFGH"

5.17,3 Relational Operators

Relational gperators allow the comparison of the values of numeric
or string data items.

The relational operators are listed below:

_Meaning

Less Than

Greater Than

Equal to

. Less than or equal to
Greater than or equal to
Not equal to

N
150 18/

AY
7

A relational operator is used in an expression of the form (Data Item 1
poperator Data Item 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comparison
if the expression is true, the value 'true" (1) is returned. If the
expression ig false, the value ''false' (@) is returned.

EXAMPIE: TIf A=1 and B=2 then

A(,B Yields a value of 1
A=B Yields a value of §

The data items compared must both be the same data type (numeric or
string) or a type error results.

String comparison is performed as follows: Starting from the leftmost
character, two strings are compared character-by-character until there
is a mis-match or the end of one of the strings is reached. If there
is a mis-match, the string containing the character which is higher in
the collating sequence is considered ''greater'" than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
“"greater". If the end of one string is reached and the strings are

of the same length then the strings are ''equal'.

5-15

Rev. 2 5/77

5.17.4 Logical Operators

The relational operators as described in section 5.17.3 return a
value of "true' or '"false'"., This type of value is referred to as
a boolean value and is represented in Micropolis BASIC as an integer,
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least significant bit of the~binary number .is
@ then the value is false, else the value is true. -Logical operators
specify operations to be performed with boolean values as descr1bed
below: K ; ~

Binary Logical Operators

Operator Expression Truth Table
AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
' True True True
True False False
False True False
False False False

Operator Expression Truth Table
OR VAL 1 OR VAL 2 VAL, 1 VAL 2 RESULT
: True True True .
True False True |
False True True
False False False

Unary Logical Operators

Operator Expression - Truth Table.
NOT NOT VAL VAL RESULT
True False

alse True

The primary function of the logical operators is to allow the"
formation -of complex exnressions which evaluate to a 31ngle va]ue of
"true" or "false'. :

‘EXAMPLE: A(=B AND C=0

5-16

Rev. 2 5/77

A secondary function is nrovided by the 16 bit imPlementation of
Boolean values. The logical operators perform the above defined
functions across the full 16 bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8@8Q instructions. The utility of this feature is illus-
trated in the following example which is a serial I/0 handler for
an IMSAI SIO board.

80@® REM INPUT ROUTINE - RETURNS CHAR IN A

8168 A = IN (3) AND 2: IF A =f GOTO 810¢ ;! WAIT INPUT READY
8209 A = IN (2) AND 16R7F: RETURN:. MASK PARITY AND RETURN
830¢ REM OUTPUT CHARACTER IN A

840¢ B= IN (3) ANDl: IF B=p GOTO 8409 :! WAIT OUTPUT READY
85@@ OUT(2) = A: RETURN :! OUTPUT AND RETURN

NOTE: This example will not work for I/0 to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTL/C.

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas,

A function returns a single value.

BASIC recognizes two typres of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5.18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, string, special
and file. The functions relating to files are discussed in the file
I/0 section.

5.18.1.1 Numeric Functions

The numeric functions provide most of the commonly used trigonometric

and math functions. The math package computes these functions with up
to 20 digits of precision, which requires RSIZE to be set less than or
equal to 1f. Attempting to use the math functions with RSIZE greater
than 1§ will cause a PRECISTON ERROR. The numeric functions are detailed
in table 5.2, ’ : '

Rev. 8 9/78 5-17

Table 5.2 NUMERIC FUNCTIONS

Function

Rev, 2 5/77

‘Reference Value
"ABS (%) The absolute value of x, where x is a
' numeric expression,
ATN(x) The arctangent of x, where x is a
numeric expression. Returns value ‘in the
range -T/2 toW/2. -
COoS (%) The cosine of x, where x is a numeric
exrression in radians.
EXP(x) The value of e raised to the power x,
v where x is a numeric expression. ‘
' The whole number part of x with any frac-
FIX(x) tional part truncated-and the sign preserved
where x is a numeric expression,
The fractional part of x with the sign
FRAC (x) . . e »
preserved, where x is a numeric expression,
INT (%) The greatest integer not greater than x,
where x is a numeric expressijon.
LN(x) The logarithm of x to the base e, where
x is a numeric expression with a value
greater than §.
LOG (x) The logarithm of x to base 1f, where x
is a numeric expression with a value
greater than §. :
MAX(x,y) The greater value, X or y, where both x
and y are numeric expressions.
MIN.(x,y) The lesser value, x or y, where both x
and y are numeric expressions.
MOD(x,y) x modulo y which is equal to x-(y*INT(x/y)).
- Both x and vy must be numeric expressions.

5-18

Table 5, 2 (cont)
Function . C
Reference Value

Generates a pseudo random number between
® and 1. The argument X is a numeric
expression which controls the number generated
as follows: .
If x is non zero, RND generates a number

RND(x) using x as the seed. If x=@, the last
random number generated is used as the seed.
Reneatedly calling RND with x=@ generates
a sequence of pseudo random numbers,

SGN(x) +1 if the sign of x is positive, -1 if the
sign of x is negative, @ if x is @.

SIN(X) The sine of x where x is a numeric exp-
ression in radians.

SQR (x) The positive square root of x, where x is
a positive numeric expression,

TAN (%) " The tangent of x, where x is a numeric
expression in radians.

Rev., 2 5/77

5-19

'5.18.1.2 String Functions

String functions are provided to compare strings, manipulate substrings
and to convert between numeric and string data types. The string functions
are detailed in table 5. 3.

Table 5. 3. STRING FUNCTIONS

Function ; v v
Reference ‘ Value

ASC(s$) The ASCII code of the first character
in string s§. Returns a numeric value

CHARS (x) Returns the character whose ASCII code
v is x

Returns a string consisting of the value
x formatted by the picture contained in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
, string. The following characters are
FMT (x,y$) used to format the digits of a number:

9-- A digit position of the number
leading zeroes are output as "@"

Z-- A digit position. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. If V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional part of the number.

$-- A digit position. If more than 1
$ appears in the string then the
digit position closest to theleading
non-zero digit of the numbercontains|
a "$" and the leading zeroes are
blanked.

%-~ A digit position. Leading zeroes

: are replaced by asterisks,

,~= A comma appearing before the leading
digit is replaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unchang
If the number is too large to fit in th

_ format srecified, the entire string is
filled with question marks (7).

Rev., 2 5/77 5-20

Table 5.3 (continued)

Function

‘Reference © Value

INDEX (x$, y$) The position in string x$ of the first occurrence
of string y$. If string y$ is not a substring of
x$, then @ is returned.

LEFT$ (x%$, n) Returns n leftmost characters of x$,

LEN (x$) . Returns length of x$.

MID$ (x$,n,y) Returns y characters from string x§$ starting with
character n,

MAX (x$,y$) The greater, string x$ or string y$. See the

' collating sequence in Table 5.1.

MIN (x$,y$) | The lesser, string x$ or string y$.‘ See the
collating sequence in Table 5.1.

REPEATS (x$, n) The character string with string x$ repeated
n number of times.

RIGHTS (x$, n) | The n rightmost characters of string x$.

STRS (n) Converts the number n to a string.

VAL (x$) Converts the string x$ to a number. The contents
of x$ may be numeric digits or a numeric expression
EXAMPLE: If AS$ = "2+2", then VAL (A$)=4

VERIFY (x$, v$) Verifies that all characters in string x$ are also
in y$. Returns the position of the first character
in x$ which is not found in y$. If all characters
in x$ are in y$ returns @.

5-21

Rev. 2 5/77

5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which pertain
neither to numbers nor strings. These special functions are
detailed in Table 5.4.

Table 5.4 SPECIAL FUNCTIONS
Function
Reference Value
IN(k) Inputs a value from I/0 port x. The
: value of x must be greater than @ and
_less than 256.
PEEK (%) ' Réturns the contents of memory
" location x. The value of x must he.
greater than @ and less than 65536.
: I Réturns~the size of the program
PGMSIZE currently occupying the program buffer
in bytes. : :
SPACELEFT - . Returns the amount of space left in
the program buffer in bytes.

5.18,2 User Defined Functions

Micropdlis BASIC provides the ability to define two types of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = ekpressiod
Function Optional Expression which provides
Name Parameter the value of the function
5-22

Rev, 2 5/77

The characteristics of a function definition are:

1) Function Name--consists of the characters "FN'" and one of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter'. For example, consider the function defined by:

16 DEF FNZ(X) = X}34xfD+a+B

The parameter X is a '"'dummy" in the sense that when the function
is referenced, the value passed in the function reference is
used in the place of '"X". The parameter is only used in the
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression. '

3) Expression--a function may be defined as either a string function
or a numeric function by the form of the expression. The ex-
pression may be any BASIC expression which ytelds a single value
of the appropriate data type. ' ‘ '

A function reference consists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program using the above
defined function is given below as an example:

10 DEF FNA(X)=x}3+x42+a+8
20 INPUT A,B,C
39 PRINT FNA(C)
40 GOTO 20
READY
RUN
7 2,3,1

7
7 0,1,2
13
L

INTERRUPT
REABY.

5-23
Rev. 6 9/77

Below is an example of a4string function.

5 SIZES(5,4,80)

10. DEF FNB(S$)=REPEATS$ (S$,N)

20 INPUT A$,N .

30 B$=FNB(AS$)+"ISN'T THIS REPETITIVE9"A
40 PRINT B$.

READY

RUN

2 MAGAIN AND ",4

AGAIN AND AGAIN AND. AGATN AND. AGAIN AND ISN'T THIS REPETITIVE?
READYV

See the '"DEF FN'" statement for more detailed information.

-5.18.2.2 Assembly Language. Functions

Micropolis BASIC allows the user to define Assembly Language
"Functions" which provide linkage to assembly language subroutines,
The linkage allows a BASIC program to pass from 1 to 4 arguments

to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub-
routine returns control, : ,

An Assembly Language Functlon is deflned as follows
DEF FA (letter)= expression

The function name consists of the characters "FA" and one of the
letters A-Z yielding up to 26 assembly language functions. The
expression is a numeric exnression which specifies the memory address
of the subroutine entry point,

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in parentheses.

Examples:
100 A = FAA
209 A$ = FAB (BS, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the vaiuwe of the function reference.

5-24

Rev. 7 3/78

The arguments and result are passed through the following locations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION
P4BCH ARG1 ~ Pointer to the first argument
P4BEH ARG2 Pointer to the second argument
P4COH ARG3 Pointer to the third argument
P4aC2H ARG4 Pointer to the fourth argument
P4C4H NARGS Number of arguments passed
PaC5H RSIZE Values of RSIZE, ISIZE
P4CeH ISIZE and SSIZE as described
P4AC7H SSIZE in Section 5.20.26

P1APH RESULT - 25 byte result buffer

When an assembly language subroutine is referenced, the basic interpreter
sets the pointers in the linkage table to point to the values of the
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find
the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARGI-4 and of the result returned
is: _

BYTE P - Type Indicator

1 - Real
2 - Integer
3 - String ‘
BYTE 1-N- Refer to Section 5.16.2 "Variables" for the

internal storage format for each variable type.
The Tength of each variable type is specified
by RSIZE, ISIZE and SSIZE.
The general procedure for using assembly language subroutines is as follows:
1) Load BASIC from MDOS or directly from a BASIC only SYSTEM DISK.

2) Set the memory space used by BASIC using the MEMEND statement
to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may now be}uSed.

- 5-25

Rev. 7 3/78

The assembly language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly language development tools of the

MDOS system. The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by
BASIC. ' T ' ‘ :

The CONCAT subroutine expects two string arguments to be passed and returns

a string which is composed of the second argument concatenated with the first

argument. If only one argument is passed, the result string is "“argument

error". If both arguments are not strings, the string returned is "type
error’. v ' : Fon ' "

Note: This example is not complete - a/proper subroutine of this type
would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded, etc.

5-26

Rev. 7 3/78

2002 ook o o ok o ok ade ake o o afeake ok e o ol s o abe o o ok s o ol abe ake ok ok de o o o

00Ce * *
2000 * ASSEMBLY LANGUAGE *
2200 x SUBROUTINE LINKAGE *
2000 * DEMO 1978 o
ecoo I | - *
20080 e bk e e o o ol o afe ol ake e ok e ol o e o e ol afe o abe ok ok o o o e okl deade ok o
2ceo % ‘

0200 o

2003 *

ceeo 21lAQ RESULT EQU 1A0H
ooee 24BC ARG1 EQU 4BCH
20092 24 BE LRGZ2 EQU ARG1+2
eeee 04C0O ARGZ EQU ARG1+4
veoe 24C2 - ARG4 EQU ARG1+6
42072 24C4 NARGS EQU ARG1+8
v2oe 04CS RSIZE EQU ARG1+9
2220 24C6 ISIZE EQU ARG1+10
2232 24C7 SSIZE EQU ARG1+11

o2 %

2208 g |

2208 ORG 6040H

6240 £ , |

6242 * THIS DEMO ACCEPTS TWO ARGUMENTS

6043 % WHICH ARE STRINGS AND RETURNS

6242 * ARG1 CONCATENATED WITH ARG2.

6242 o |

6242 *

624¢ 3A C4 04 NBRCK LDA NARGS ;CHECK FOR TWO

6243 ¥E 02 CPI 2 3 ARGUMENTS .

6245 C2 8D €2 | JNZ NBRER ;IF NOT TWO - EREOR,

604 2A BC 84 TYPCK LHLD ARG1 ELSE, CHECK TYPE OF

624B 7E | MOV A,M ARG1. IT MUST

604C FE 03 CPI 3 SBE A STRING.

624E C2 87 60 JNZ TYPERR ;IF NOT ~- ERROR,

6051 2A BE 04 LELD ARG2 jELSE, CHECK ARG?

6054 7E MOV AM ;IT ALSO MUST

6255 FE 23 B)3 G $BE A STRING.

6257 C2 87 60 JNZ TYPERR ;IF NCT - ERROR.

625A %

68EA * BOTH ARGUMENTS ARE VALID STRINGS

6254 # | \

6U5A 11 AQ 01 ; LXI D,RESULT ;SETUP RETURN

6050 3E 83 MVI A3 s PARAMITER AS A

605F 12 STAX . D 5STRING TYPE.

6262 13 INX D ;SKIP OVER

6261 13 INK D ; LENGTH FOR

6262 13 - INX D i NOW

62€3 AT “XRA - A ; ZERO ‘LENGTH

6264 47 MOV B,A s COUNTER.

6265 24 BC 04 'LELD ARG1 {MOVE FIRST

6268 CD 79 €8 MSTR CALL MOVE ; ARGUMENT TO RESULT

6663 2A BE 04 LHLD ARG2 MOVE SECOND

60€E CD 79 60 | CALL MCVE ; ACRUMENT TO RESULT

€871 78 MOV A,R 5GET LENGTH COUNT

6072 32 A1 01 STA RESULT+1 ;PUT COUNT INTO

6275 32 A2 01 STA RESULT+2 ;RESULT. |

6978 CS RET - iDONE, RETURN TO BASIC
5-27

Rev. 7 3/78

6279 S L
* MOVE ARGUMENTS TO RESULT.

€279 %

6879 - % HL REGISTERS HAS ARGUMENT ADDRESS.
6275 * DE REGISTERS HAS POSITION IN RESULT.
6279 * B REGISTER IS COUNT

6279 % '

6279 23 MOVE INX O H ;SKIP TYPE

6274 23 INX H ;SKIP MAX LENGTH
6273 4E MOV C,M 5GET LENGTH OF STRING
6270 22 INX H

607D 7E MOVEL MOV AM ;GET CHARACTER
€27F 12 STAX D 5PUT. IT INTO RESULT
627F 13 | INX D 3 NEXT o
6082 23 ~INX H ,

62€1 @4 INR B ; COUNT +1

6CE2 @D DCR C SLENGTH -1

633 C2 7D 82 INZ MCVELl ~ 3LOCCP TILL DONE
6L&E CQ ~ RET . ;DONE

6287 # |

6287 *

6287 21 9% €2 TYPERR LXI H, TYPMSG

60EA C2 92 67 JMP EMSG

608D &

628D 21 AR €2 . NBRFR LXI H,NBRMSG :
éece 11 A2 €1 EMSG ~ LXI ~ D,RESULT ;PUT MESSAGE IN RESULT

5253 3E 83 | MV I £,3 ;STRING TYPE
6355 12 | ST&X D |

6256 13 | INY D

5257 13 o INX D

6298 12 INX D

6299 AT . XRA A ZERO COUNT
6004 47 MOV B,A

€29% C3 66 68 JMP MSTR . ;MOVE TO RESULT
6¢ 9% €

829E % ERPROR MESSAGES

£2SE E |

6¢CE @2 20 2h TYPMSG DB 2,0,10

62A1 54 59 58 DT *TYPE ERROR’

60A4 45 20 45

62A7 52 52 4F

60AL 52 ,

EZAR ¢ D

6¢A3 @0 20 ¢E NBRMSG DB @,0,14

62AE 41 52 47 . DT *ARGUMENT ERROR’
62B1 55 4D 45 . '

6234 4% 54 20

6287 45 52 52

62BA 4F 52

6CBC N :

62BC . f END NBRCK

5-28

Rev. 7 3/78

—

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

KEADY

LIST

12 TIM AS(25@),B%(250",C5(250)
2¢ MEMEND 16ESFFF

22 LCAD "CONCAT

42 TEF FAA=16R6240

52 INPUT AS

62 INPUT B$

7¢ CS=FAA(AS,BS)

8¢ PFINT C¢

92 GOTO 52

READY

KUN

? 123458

? 67892

122456789¢

? NCW IS THE TIME

? FOR ALL GCOD MEN

NCW IS THE TIMEFCR ALL GOOD MEN

?
INTERRUPT

62 INPUT BS

READY

PERINT FAA LS,

ARGUMENT ERFCE

REZADY

PRINT FAA(A,B)

TYPE ERROR

EEATY)

PRINT FAA(12345 ,"67362")
12245676892

READY

5-29

Rev. 7 3/78

Pages 5-30 through 5-32 left blank intentionally.

5-30 |

Rev. 7 3/78

5.19 BASIC EXPRESSIONS

A BASIC expression is a combination of data items and function references
connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression.
elements.

Data items may be constants, simple variables, or array
Operators may be arithmetic, string, relational, and logical.

5.19.1 Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

;1)

2)

3)

4)

Operator . Precedence -- Operators encountered in an
expression are performed in the following order:

1) Function references

2) TUnary operators

3) Arithmetic & string operators

4) Relational operators

5) Logical onerators
Operators which have the same level of precedence are

performed in the order in which they are encountered
in scanning the expression from left to right.

The normal rules of precedence & order of evaluation

may be overridlenby the use of parentheses to partition
an expression into subexpressions. Nesting of sub-
expressions is limited by the overall complexity of the
expression. If an expression is too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

Expressions containing subexpressions are evaluated
from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation

apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators,

Operations are performed in the following order:

Rev.

2

5/717

and numeric data items and evaluates to a numeric result.

' 5-33

1) Function references

2) Unary #:dnd -

3) Exponentiation

4) Division and Multiplication
5) Integer division

6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order desired.

EXAMPLES:
1. 2%347%4

This expression is evaluated as follows: (V(x) indicates the value
' of x)

1) 2%3 yields 6

2) 7%4 yields 28

3) V(2%3) + V(7%*4) yields 84

2. 2%(347) *4
This expression is evaluated as follows:
1) 347 yields 10
2) 2% V(3+7) yields 20
3) V(2*V(3+7)) *4 yields 80

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result,
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let B$ = "The number is"
| B$+STR$(134)
This expression is evaluated as follows:
1) STR$(134) yields " 134 "

2) V (STRS$(134)) is concatenated with the current
value of B$ which yields "The number is 134 "

5-34

Rev, 2 5/77

5.19.4 Logical Expressions

A logical expression consists of numeric and string expressions
combined with relational and logical operators. The value of a
logical expression is a Boolean value. Operations are performed
as follows:

1) Function references are performed,
2) The NOT operation is performed.
3) Numeric and string expressions are evaluated.
4) Relational operations are performed
5) The AND operations are performed
6) The OR operations are performed
7) Parentheses may be used to force evaluation in the exact order
desired
EXAMPLE :
A+2{=3 AND B+3¢{5 OR NOT (B$="A'")

This expression is evaluated as follows:

1% The value of BS$ is compared with "A" (Note: if parentheses
had not been used, BASIC would have tried to nerform NOT
BS which would have given an error) Temporary result Tl is
set =1 if B$="A" else is set =0

2) Tl is complemented

3) A+2 is evaluated

4) B+3 is evaluated

5) The value of A+2 is compared with 3 and a temporary result
T2 is set =0 if A+2)3 or 1 otherwise.

6) The value of B+3 is compared with 5 and T3 is set =@
if B+3 is greater than or equal to 5 else is set =l.

7) T2 is ANDed with T3 yielding T4

8) The value of the expression is obtained by OR'ing T&4
with T1 '

Note: The NOT operator complements the 16 bit representation of

Boolean values so the final value of this expression is
65535 if true and 65534 if false,.

Rev., 2 5/77

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program ‘and
describe the data and operating environment of the program.

Every BASIC statement consists of a keyword followed by a list of zéro or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same program 11ne separated by
the colon (:) (see section 5.2). ‘

The statements included in the BASIC language are listed alphabetically
and described in detail in the following pages. Conventions of notation
used are:

1) .
{B} Indicates a choice of one of the items enclosed.
C

2) [] Indicates optional items.

3) Parentheses () used in definitions must be included as
illustrated.

5.20.1 DATA {numeric constant} {numeric constant}'
string constant s string constant ,

15¢ DATA 25, "APRIL 1, 1977", 26E-3

The DATA statement is used to define a list of data internal
to a BASIC rrogram which may be accessed with the READ state-
ment. When a BASIC program is started, the DATA nointer is
initialized to point to the first data item in the first DATA
statement in the program. When a READ statement is .executed,
one value is read from the list for each variable specified
and the pointer is advanced to point to the next ddta item.
When the data items in a DATA statement are depleted, the
pointer is set to point to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-
tiguous list. The RESTORE statement can be used to re-position
the DATA pointer to point to the first data item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

Rev., 2 5/77

5.20.2 DEF FN letter [(function parameter nanm)] = expression

10 DEF FNA = X+Y+Z
10 DEF FNL(A)= (4%3.1415%A)/3
159 DEF FNR(MS$)= REPEATS (M$,5)

The DEF FN statement is used to define a function.
The name of the function defined is "FN" followed

by one of the letters A-Z, Each function name may be
defined only once in a given program,

For example, if the statement 110 DEF FNN= 3.1415%R2
were used in a program. 260 DEF FNN (M$)=REPEAT(MS,5)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)=REPEAT(MS,5)
would be legal.

A function parameter is optional. If nresent, it is a
dummy narameter and its name may be any simple variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN statement is non-executable and may appear
anywhere in a program,

5.20.3 DEF FA letter = numeric expression
9¢ DEF FAA = 16R70¢0¢

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.

The function name consists of the letters "FA'" and one

of the letters A-Z, The expression contains the starting
address of the assembly language subroutine. " See section
5.18.2,2 "Assembly Language Functions" for details of
linkage and passing arguments.

5-37
Rev. 2 5/77

5020.4

5.20.5

DIM letter [%] (11, 12, ... I4)
DIM letter $(length)
DIM letter $(I1, ... I3,length)

1§ DIM A (2,4)
20 DIM B%(2,3,4,5)
390 DIM AS$(49)

49 DIM AS$(2,3,40)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z, An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
sions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension,

The second form is used to set the maximum length of a
string variable, The name of the variable is one of the
letters A-~Z followed by the dollar sign ($). The length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement.

The third form is used to define a string array. The array
name consists of one of the letters A-Z followed by the dollar
sign ($). A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified, The value
of each I defines the maximum value of the index for that
dimension., The last parameter specified in the parameter

list is the maximum length of each string element,

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions,

END
16094 END

The END statement is optional in BASIC, Execution will
terminate when the END statement is executed and may not
be continued with the CONT command, It is recommended
that an END statement be the last statement of a program
to serve as a listing aid, Its presence ensures that the
listing is complete,

5-38

Rev., 2 5/77

5.20.6 EXEC string expression

160 EXEC AS$

The EXEC statement is a feature unique to Micropolis BASIC,
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by colons(:). The expression passed is checked for
syntax errors and then executed if valid. The following
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator.

LIST

10 INPUT A$: EXEC '""PRINT "+A$: GOTO 10
READY

RUN

? 242

4

? SIN(3.14159/4)

.70710595
? N

5.20.7 FLOW

Rev.

1§ FLOW

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out-
put to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IF . ., . THEN statement is executed. The
program trace is turned off by the NOFLOW statement.

5-39

2 5/77

5.20.8 FOR numeric = humeric TO numeric STEP numeric :]
n

variable expression expression expressio
30 FOR X =1 TO 3¢
49 FOR Y = 30 to @ STEP -1
5¢ FOR X = A to B

The FOR statement initiates the repeated execution of a set

of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the

FOR statement, The numeric variable controls the number of
times the set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR , , NEXT loop. '

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass

_ through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used.

The statements within the FOR . . . NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:

20 FOR I = 108 to ¢ STEP -14 .
This statement would cause the initial value of the loon
variable I to be set at 1p@#, subtract 1@ from the loop
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value .

The statement 15 FOR J = f TO @ would cause the FOR loop

to be executed one time, That is, the statements between
the FOR J. . . . and the NEXT J statements would be executed
once before the loop variable of f + 1 would be compared to
the limit value of @. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number.

A set of FOR , , .TO, . .NEXT statements may be nested within
one or more sets of FOR, . .TO. . .NEXT statements, For

example:

16 FORK =1 TO 94

2d FOR L 1 TO 15
30 PRINT K,L
40 NEXT L
50 NEXT K
5-40

Rev. 2 5/77

When nesting FOR. . ,TO. . .NEXT statements it is imperative
that the inside loop (in this case the L loop) be completely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

14 FORK =1 To 99
26 FORL =1 TO 15
3¢ PRINT K,L

4@ NEXT K

5¢ NEXT L

The error message 'MISSING FOR" would occur when the "NEXT L."
statement is encountered,

If a GOTO or IF, , .THEN statement is executed from within a
loop, the program execution will continue in a normal manner.
BASIC will continue the loop from the current value of the

loop variable if the loop is re-entered at some later point.

5-41
Rev. 2 5/77

5.20,9

€¢Q$UB {Elnenumberjdx“

numeric expre881o;} Q"
. 210.GOSUB 1006

The GOSUB statement causes a set of statements to be executed as
a subroutine.

When a GOSUB statement is executed, "coﬁtrol is transferred to the
first statement whose line number is specxfled in the GOSUB
statement. The referenced line number and all statements following

el will be executed. until a RETURN. statement is encountered,
Control is then returned to the statement follow1ng the GOSUB,

Consider the following:

%;15¢ GOSUB v21¢ PRINT A + B
~ '160 END :,““ ‘
210 INPUT X,2 ;
220 A =X i 1: B = z2-10
23p RETURN

When line number 15@ is executed, control is transferred to line
number 21¢, Line 21¢ and 22@ are executed, then 23@, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number. If
this is done, care must be taken to insure that the value of

the expression is a positive real number. The fractional part

of the number will be truncated in forming the line number.

A QNUMBER OUT OF RANGE error will occur if the number is invalid.

5-42

Rev, 2 5/77

5.20.10

5.20.11

Rev. 2

GOTO line number
numeric expression

108 GOTO 50¢0
208 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line. A GOTO statement may
reference any line in a program, including its own line., The

line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value, The fractional part of the number will be
truncated in forming a line number, If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression (THEN] STATEMENT [:STATEMENT]
THEN line number
19 IF ALB THEN PRINT "*"

20 IF A =2 GOTO 106

3¢ IF A

4 THEN 100
49 IF A =2 ANDC =3 THEN D = 2: GOTO 100¢

The first form of the TF statement provides conditional ex@cution
of one or more statements based upon the value of a logical
expression,

The statements subject to conditional execution must all reside
within the same program line as the IF statement. If the logical
expression evaluates to "true', then the statements are executed.
If the expression evaluates to 'false'", then all remaining state-
ments within the line are ignored. The keyword THEN is optional
in this form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.

If the expression evaluates to 'true', control is transferred
to the first statement in the specified program line. If the
expression evaluates to '"false', program execution continues

at the next sequential program line. The line number must be
specified as a constant. If the line number snrecified does not
exist in the program, a STMT # NOT FOUND error occurs.

5-43

5/77

5.20.12

5.20.13

Rev. 6 9/77

INPUT ["prompstring"{i}] variable 1list

19 INPUT A,A$
2P INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolon (;) is included, the
string is output, followed by a question mark (?) before
waiting. If a prompt string followed by a comma (,) is
included, the string is output and then the question mark
is output on the next Tine before waiting for entry. If

no prompt string is included, a question mark is output

to the next terminal line before waiting for input.

One value must be entered for each variable in the variable
list. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a

TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable Tist
should be entered again in proper order. The last value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT 1is output to the terminal and
the statement waits for more input to satisfy the variable
list. If too many values are entered, EXTRA INPUT IGNORED

is output to the terminal and the program continues execution.

I

[LET] variable = expression

19 LETA =5 -
2p A$ = "FAT HIPPO"

The LET statement causes the expression to be evaluated and
assigns the resulting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44

5.20.14 MEMEND numeric expression
1§ MEMEND 16R70@0

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

5.20.15 NEXT numeric variable
1§ NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution
of a FOR statement naming the same loop variable, a MISSING
FOR error occurs.

5.20.16 NOFLOW
50¢ NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

5.20.17 ON numeric expression GOTO line number list

16¢ ON K+5 GOTO 20@, 300, 400
208 ON J GOTO A+50, 40¢,B

The ON...GOTO statement causes control to be transferred to
the line number whose positional value in the line number list
is equal to the expression. If the expression is zero or
greater than the number of lines in the list, control is
passed to the next statement. If the expression is fractional,
the fraction is truncated prior to the GOTO being executed.

If the expression is negative a ‘NUMBER OUT OF RANGE error
occurs. The line numbers in the line number list may be
numeric constants or numeric expressions. If a line number

in the list does not exist a STMT # NOT FOUND error occurs,

5-45
Rev. 2 5/77

5.20.18 ON gumeric €xpression GOSUB line fumber list

10 ON X GOSUB 504, 600, 700, 800
200 ON Z+2 GOSUB B,C, 60¢

The ON,,.GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in

the line number list is equal to the value of the numeric
expression.

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement.
If the expression is fractional, the fraction is truncated
prior to the GOSUB being executed., If the expression is
negative a NUMBER OUT OF RANGE error occurs.

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
list does not exist a STMT # NOT FOUND error occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON.,,GOSUB
statement,

5.20.19 OUT (numeric expressioh 1) = numeric expression 2
169 OUT (16R1H) = 2¢

The OUT statement causes the value of expression 2 to be
output to the I/0 port specified by expression 1. Both
expressions must be numeric expressions with values in the
range @ to 255 or a ‘NUMBER OUT OF RANGE error occurs.

5.20.20 POKE (numeric expression 1) = numeric expression 2

1¢¢ POKE (16R603G) = 200
20 POKE (A) = B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range § to 65535 and expression 2
must be in the range ¢ to 255. If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE ' error occurs. Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46

Rev. 2 5/77

5.20.21

PRINT expression {i} [TAB(numeric expressioq]. o«

1@ PRINT A;B;C ‘
209 PRINT TAB(1¢); "THE ANSWER IS"; FMT(A,'"ZZZ9V.99")

The PRINT statement causes the value of the expressions in
the expression list to be output to the terminal Exprressions
are output in the formats described in section 5.16.3.
"Output Formats'',

An output line conSists of up to 250 characters and is
partitioned into 16 character print fields. Print nosition
within an output line is controlled as follows:

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semicolon ().

2) 1If the expression is followed by a semicolon,
the print position is set to the next position
following the last character output for the
expression. If the expression is the last
expression of the PRINT statement then output
generated by -subsequent PRINT statements will
start at this position on this line of the output
on the terminal,.

3) 1If the expression is followed by a comma, the
print position will be set to the beginning of
the next 16 character print field after out-
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this position on this line of output
on the terminal.

4) 1If the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
exnression.

5) The print position may be explicitly set by including
references to the tab function which operates only
in PRINT or PUT statements. TAB moves the »nrint
position to the position snecified by the value of
the tab function parameter, If the position is
already beyond the specified value when the print

5=47

Rev. 6 >5/77

statement is executed then the specified value is
simply ignored. ’

BASIC contains a parameter which specifies the length of a
physical output line on the terminal., If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

548
Rev. 2 5/77

5.20.22 READ variable list
14 READ A,B,CS$

The READ statement reads values from the BASIC programs
internal data list which is created by including data
statements within the program. One value is read from

the data list for each variable appearing in the variable
list. If there is insufficient data in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output. If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
statement.

5.20.23 REM remark text
1§ REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (!) may also be used to include comments in a
program line. The REM statement and any characters fol-
lowing a (!) character in a program line are non-executable
and are ignored.

5.20.24 RESTORE numer ic expressioA]

1¢ RESTORE
2@ RESTORE 25

The RESTORE statement is used to position the data list
pointer which allows control of the sequence in which

data items are read from the program's internal data list,
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression, If an expression is not specified, the pointer
will be set to the first item in the first data statement
appearing in the program.

5.20.25 RETURN
10¢ RETURN

The RETURN statement transfers control to the statement
immediately following the last GOSUB statement executed.

If a RETURN statement is encountered prior to the execution
of a GOSUB statement the error message ‘NOTHING TO RETURN
TO 1is output to the terminal.

5-49
Rev. 2 5/77

constant

5.20.26 SIZES (numeric numeric numeric [nui’neric J)
4

5.20.27

5.20.28

Rev. 6 9/77

constant 1, constant 2, constant 3,

20 SIZES (5,4,8p)

30 SIZES (6,5,4P,3000) ‘
The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSIZE), integer
variables (ISIZE) and string variables. (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 3p. The value of constant 3 specifies
SSIZE which must be greater than @ and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for program
size, after which variable space allocation begins.

If no SIZES statement is executed, the default SIZES are

(5,3,49).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

STOP
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

STRING string expression
19 STRING " ;"

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

5-50

5.21

BASIC DISK FILE I/0

A file is a data structure which may be accessed as a named entity and consists

of a

collection of data grouped into elementary units called records, The file

structure is generally used for storing data on mass storage devices such as a

disk.

Disk Extended BASIC provides the ability to create and access files stored

on the disk, Common maintenance operations such as renaming or deleting a file
are included.

Rev,

5.21.1 Disk Files

Each file stored on a diskette is identified by a file name, which may be

from 1 to 1§ characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The minimum amount of space required to store a file is one track. When a
"new'" file is opened, a complete track is allocated. This track and any
other track assigned by the BASIC file system to this file remain una¥ail-
able to any other file until released by the user. The maximum number of
files that can be stored on a disk is a function of the number of tracks
available on the disk. The Mod T disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector, A
file is accessed sector by sector; therefore a 'record" is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is allocated for each '"new'" file opened. When 16 records have been
written to a particular file, another track is allocated. The file
appears contiguous to the program, even if it is not stored on contiguous
tracks. It is not possible to store one file on more than one disk; that
is, a file may not span disks,

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files - A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6. The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression. A LOAD command will load the data from a
program file into the BASIC program buffer.

2) Object Files - An object file is-an image of a block of memory
which was saved using the memory range option of the SAVE command.
A TOAD command will read the data back into the memory locations
from which it was saved.. This is the format in which assembly
language programs may be stored on the disk.

5-51
2 5/77

3) Data Files - Data files contain data created by and are
accessible to BASIC programs by use of the PUT and

GET statements.

Each execution of a PUT statement

stores 1 record in the file. Data within each record
is represented as ASCII characters.

Each record is a

25 character string. A data file

may not be loaded using the LOAD command. Micropolis
BASIC provides the ability to access the records of a

data file either

sequentially or directly. (commonly

referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes.

1) Write Protect - A file which is Write
Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided

by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installed on a diskette, all
operations which attempt to modify a

file or

the directory will yield a

WRITE PROTECT error.

2) Permanent - A Permanent file may be re-

written

but may not deleted by a SCRATCH command.

A file may be both Permanent and Write Protected.

Several keywords are provided to manipulate disk files as described

below:

5.21,2 Disk File Commands

Commands are provided to load and save program or object files, delete
a file, and to display a list of the files which reside on a diskette,
Although commands may appear in a BASIC program, commands will generally
be executed in Immediate mode. All disk commands reference the directory

of the desired diskette,

If the diskette is not loaded or a malfunction

exists in the disk drive which causes it to return a not ready status

the message ~"DRIVE NOT UP

will be output to the terminal when a command

is executed. If the drive is unable to read or write on the diskette
properly then a PERM I/0 ERROR will result.

Rev. 2 5/77

5-52

5.21.2.1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY A$

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

" [unit’.] DIR'" where unit is the drive

unit address in the range of § to 3. If omitted, drive @ is assumed.
If the string is a constant it must be enclosed in quotes ("). 1If

a directory does not exist on the diskette a ‘FILE NOT FOUND - error
results,

5.21.2.2 LOAD string expression
LOAD ''2:DEMOPGM"

The LOAD command loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [Pnit{] filename" where unit is the

unit address in the range § to 3., If omitted, unit @ is assumed,

The file name may be any valid filename. If the string is a constant
it must be enclosed in quotes ("), If the desired file does not
reside on the diskette a FILE NOT FOUND ' error results, If the

file is a data format file, a NOT A LOAD FILE error results.

5.21.2,3 PLOADG string expression
PLOADG "@:NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the fiist line of the new program.

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. - This is accomplished by using
a PLOADG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from one program or segment to the next.

5-53

Rev. 3 6/77

The string expression in the PLOADG statement must evaluate to the
following form:

" [Pnit{l filename"

where unit is the unit address in the range § to 3. If omitted,
unit @ is assumed, The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ('), If
the desired file does not reside on the diskette a FILE NOT FOUND
error results, If the file is a data format file, a NOT A LOAD
FILE error results, If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing w1th the
statement after the PLOADG statement,

5.21.2.4 SAVE string expression [ﬁemory address rangé]

SAVE 'N:1:NEWPRG"
SAVE '"N:LOADER" 16R78@@#, 16R7DFF

The SAVE command stores program format or object format files on the
diskette, The file is specified by the string expression which must
evaluate to the following form:

" {N:] Emit :]filename"

If the file to be saved does not already exist on the diskette, the
"N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range ¥-3. If omitted, unit @ is assumed. If the
string is a constant it must be enclosed in quotes ('").

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in ~rogram
format.

If the memory range option is specified it must be of the form:
numeric expression 1, numeric expression 2

The numeric expressions must evaluate to positive real values in

the range @ - 65535. Fractional parts will be truncated. The

contents of memory from expression 1 to expression 2 will be
stored in the desired file in object format.

5-54
Rev. 3 6/77

If "N:" is not specified for a new file, a FILE NOT FOUND

error results. If a file has a Write Protect attribute,

it cannot be overwritten and a WRITE PROTECT error will
~occur if an attempt is made to save it. If a file specified

as new already exists a DUPLICATE NAME error occurs.

5.21.2.5 SCRATCH string expression
SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
~and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

"[unit:] filename" where the unit is

the drive unit address in the range § - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit P is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

5.21.2.6 CHAIN string expression
990 CHAIN "NEXTPART"

The CHAIN statement loads the BASIC program file specified

in the string expression into the current program buffer and

. then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the last program segment.
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC

- functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. This means that the filenumber is disassociated

from the filename and made free for reuse; but the directory
‘is ‘'not updated and therefore any changes in the length of

the file are not recorded. In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

Rev. 6 9/77 5-54.1

Rev. 6 9/77

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available
system memory would otherwise permit. It makes it possible
to transfer data and control from section to section of a
very large program that has been divided into separately
loadable segments. To use the CHAIN statement effectively
certain rules must be observed.

1)

2)

3)

The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If

this condition does occur a LOAD OVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSIZE function (see section 5.18.1.3).
Assuming a set of three program files named

SEG1, SEG2, SEG3, the following example illustrates
the procedure:

LOAD "SEG1"
READY

PRINT PGMSIZE
472

READY

LOAD "SEG2"
PRINT PGMSIZE
526

READY

LOAD "SEG3"
PRINT PGMSIZE
126

READY

In this example the largest PGMSIZE is 526. If
SEG1 were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5,3,40,526) would be included

as the first statement of SEGT.

A1l files should be closed before executing a
CHAIN statement.

A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this is done only
the current value of the loop index variable will
be preserved across the CHAIN.

5-54.2

4) A CHAIN statement should not normally be executed from within
a subroutine. If this is done the RETURN information for that
subroutine is lost across the CHAIN.

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MDOS"
LINK "DISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MDOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the
disk unit is not ready, control will return to BASIC where the error will

be reported. If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This is done because BASIC
has already been partially destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs in high memory above the end of BASIC

(see MEMEND statement). It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/0 STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/0 statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/0 statements refer to files through a program
"File Number"/ An OPEN statement must be executed to
associate a file on the diskette with a nrrogram file
number, ' '

2) When all I/0 operations on a file are complete, a file
must be closed by executing a CLOSE statement. Closing
a file consists of updating the directory to reflect all
operations which have been performed since the file was
opened, and ‘disassociating the file from the program
file number., CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost,

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not

loaded or a malfunction exists which prevents the drive from
performing operations then a DRIVE NOT UP error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/0 ERROR results.

A program file number may be in the range # to 9. As many as 1§
filesmay be open at once within a program. If an I/0 statement
attempts to access a file which has not been opened by an OPEN
statement then a ‘FILE NOT OPEN error results.

If an I/0 statement specifies a file number outside the range @
to 9 then a 'NOT A FILE# error occurs.

5.21.3.1 OPEN file number string expression options

1 OPEN 1 "N: NEWFILE"
20 OPEN 2 "JOE" END 1009 ERROR 50¢0

The OPEN statement opens the specified file for access by disk
I/0 statements. The file is selected by the string expression
which must evaluate to the form:

"EN:]Ein it :] filename"

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file., The
unit specifies the drive unit address which must be in the range §-9.
The filename may be any valid filename. If the string is a constant,
it must be enclosed in quotes ("), If the unit address is omitted,
unit @ is assumed., If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified as new already exists, a DUPLICATE NAME error occurs.

5-55
Rev, 8 9/78

The filenumber must be a numeric expression with a value of # - 9,
The filename specified will be associated with this file number

until the file is closed and all file I/0 directed to the file number
will be performed using this file.

Each open file has two associated pointers which point to the next

record to be accessed in a sequential PUT or GET statement. When

a file is opened, the sequential GET pointer is initialized to

point to the first record. The sequential PUT pointer is initialized

to point to the record following the last record. The last record in

the file is considered the end of the file for GET statements. The

last record +1 is considered the end of file for PUT statements.

For example a 5 record file woudd have pointers initialized as follows:
FEOF for a GET (Read)

R ¥ EOF for a PUT (Write)
RECORD 1] 2| 3] 4 | 5 l 6 |
Sequential Sequential
GET pointer PUT pointer

An open file may be read from and written to both sequentially and
directly by record.

The open statement includes several options which are listed below:

1) CLEAR - The CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an: end-of-file, A PUT will write into
record 1, This option is generally used to initialize the
pointers for re-writing a file sequentially.

2) END pumeric expression

The END option specifies the line number to GOTO when the
end-of~file is encountered during a read operation. The
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. If the line does
not exist, a STMT # NOT FOUND error occurs. This option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an END-FILE' error.

5-56
Rev. 2 5/77

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/0 error occurs., The numeric expression must
evaluate to a positive real number which is a valid
program line within the program when the fractional part,
if any, is truncated. If the line does not exist, a
‘STMT # NOT FOUND : error occurs. This option allows

a BASIC program to handle disk I/0 errors without being
aborted. If the error option is not included, a disk
I/0 error will cause the appropriate error message to

be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT filenumber RECORD record number expression List

108 PUT 1 A;B;C
206 PUT 1 A;A$+","; B
3¢9 PUT 1 RECORD 3 A;B;C

The PUT statement causes the values of the expressions in the ex-
pression list to be written onto a record of the file specified by
the filenumber expression. The filenumber must be a numeric ex-
pression having a value of the digits @ - 9 when the fractional
part, if any, is truncated.

Each execution of a PUT statement writes one record into the file.

Each disk record is composed of a 25§ character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that print lines
are built. The rules for building the string are as follows:

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char-
acter in the string keeps track of the next position in
the string to be loaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 '"Output Formats'. The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma(,) or a
semicolon(;).

‘Rev. 6 9/77 >=37

3) If the expression is followed by a comma(,) after the
expression has been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4) If the expression is followed by a semicolor(;), after the
expression has been loaded into the string the pointer is
set to the character position following the last character
of the expression.

5) After all expressions have been loaded into the record.
string, any remaining characters in the string are padded
with blanks and the record string is written onto the
diskette.

EXAMPLE: If A = 10@ and B = -2.5, the statement:

190 PUT 1-A;B

would cause the following record to be written on
the disk: (Note: P denotes a blank)

'B100B, - 2.5 Bp ... B",
L—‘*J
A B 24P Character pad

The Statement
199 PUT 1 A,B

would cause the following record to be written to

the disk:
L1DDBPBBBEEBILEYE, < 2.5 BY ... B"_,
A PAD B 229 Character pad

The expressions in the expression list may be numeric and string in any
order subject to the following restrictions: (1) If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. (2) The last character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Followed or the expression will not be properly read back.

On Input, numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank, so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk looks for the current string delimiter to denote the end of a
string. If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current string
delimiter precedes the string.

Rev. 8 9/78 5-58

Rev. 9

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in all
string constants, -and precede all string expressions following numeric

expressions with the string delimiter.
EXAMPLE :

To write the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

]_¢¢ PUT 1 A;] ,"+B$+" ,u ',C;" ’II+E$+II ’II;F$+II ’n
(This example uses the default delimiter, comma (,))

If it is desjred to change the string delimiter, the following approach
could be used to implement the previous example:

1§ D$ = ";" ¢! SET STRING DELIMITER
2¢ STRING D$

18 PUT 1 A;D$+B$+D$;C;D$+ES+D$;F$+D$

If this approach is used, the string delimiter must be the same
when a record is read as when it was written or incorrect results
will be obtained.

If the record option is not included, the record is written into the
file at the record number specified by the sequentialPUT pointer. The
pointer is then incremented by 1.

If the record number option is included, the record is written into
the record specified by the record number expression. The record
number expression must have a value which is a positive real number.
The fractional part is truncated. If the record number is greater
than .the end-of-file as described in 5.21.3.1, a PARM ERROR

occurs,

NOTE; Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The prointer will
only be moved by a sequential PUT or execution of a PUTSEEK
statement,

If an attempt is made to write more than 25§ characters into a

record, the message QUTPUT OVERFLOW will be output to the terminal
and nothing will be written.

5.21.3.3 GET filenumber RECORD record number variable list

168 GET 1 A,B,CS$
20 GET 1 RECORD 1#8 A,B C$

The GET statement reads a record from the file specified by the
filenumber expression and assigns the values read to the wvariable
list. The filenumber expression must evaluate to one of the digits
@ - 9. The fractional part, if any, is truncated.

If a string is read for numeric variable, a 'TYPE ERROR results.
If too few values exist in the record string to satisfy the
variable list, a RAN OUT OF DATA error occurs. If an attem;t
is made to get a record which is past the last record, an END
FILE error occurs,

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET pointer will then be incremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression. The expression must
evaluate to a positive real number. The fractional part will be
truncated.

NOTE: The sequential GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement.

5.21.3.4 CLOSE filenumber
169 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/0. The filenumber expression
must evaluate to one of the digits @ - 9.when the fractional part
is truncated.

Closing a file consists of updating the file entry in the diskette
directory to reflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As a rule, all files which are opened in a
program should be closed before the program terminates. All files
which have been written into must be closed or the directory will
not be updated and data written into the file may be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the program buffer, such as a DELETE,

. 5-60
Rev. 2 5/77

LOAD or line insertion/deletion. Implicit closure does not update
the directory.

5.21.3.5 ATTRS (filenumber) = numeric expression
169 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the numeric expression. The file-
number expression must evaluate to one of the digits -9 when the
fractional part is truncated. The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE ATTRIBUTE
1 Program File

6

8 Object File

2 Permanent File

1 Write Protect

A file which does not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

19 = 16+42+1 = Write protected, permanent, program file

9 = 8+1 = Write protected, object file ‘

26 = 16+8+2 = Invalid combination - This would identify
a file as being a Permanent Program file and
Object file, which is not possible,

A main intent of the ATTRS statement is to allow the user to change
the Write Protect and Permanent attributes only. The File Format
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR function.

5.21.3.6 EOF (filenumber) = expression
159 EOF (9) = 50

The EOF statement sets the file length parameter of the file
referenced by the file number to the value of the expression.
The filenumber expression must evaluate to one of the digits

® - 9 when the fractional part is truncated. The expression
must evaluate to a positive real number. The fractional part
will be truncated. The EOF statement is used to decrease the
length of a file. The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 1#@ records and it is desired to delete the last 50
records, the statement

149 EOF (1) = 51

5-61
Rev. 2 5/77

would cause record 5@ to be the last accessable record. The following
cautions apply to the use of EOF statement:

1) The EOF statement does not reset the sequential PUT/GET
pointers. If they are set beyond the new EOF an ‘END-FILE
error will occur if a PUT or GET is attempted. Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements,

2) Do Not Set The EOF Beyond the true length of the file.
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage. ,

3) Resetting the EOF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3.7 FREESPACE filenumber
19@ FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by filenumber which are beyond the current end of
file. Filenumber expression must evaluate to one of the digits

- 9 when the fractional part is truncated. If there are no
excess tracks allocated an "END FILE" error results.

5.21.3.8 GETSEEK (filenumber) = numeric expression
5¢ GETSEEK (1) = 20

The GETSEEK statement sets the sequential GET pointer associated
with the filenumber to the value of the numeric expression. The
filenumer expression must evaluate to one of the digits @ - 9 when
the fractional part is truncated. The numeric expression must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater than zero and less than or
equal to the last record number or a PARM ERROR or “END FILE
error will occur when a sequential GET is performed. The current
position of the pointer may be accessed by using the RECGET function,

5.21.3.9 PUTSEEK (filenumber) = numeric expression

140 PUTSEEK (2) = 30
The PUTSEEK statement sets the sequential PUT pointer associated
with the filenumber to the value of the numeric exnression. - The

filenumber expression must evaluate to one of the digits @ - 9
when the fractional part is truncated., The numeric expression must

5-62
Rev. 8 9/78

evaluate to a positive real number, The fractional part is truncated.
The value must be greater than zero and less than the last record
number +2 or a PARM ERROR will occur when a sequential PUT is

- performed. The current value of the pointer may be accessed by
using the RECPUT function.

5.21.3.10 RENAME (filenumber) = string expression
1@ RENAME (1) = "NEWNAME"

The RENAME statement changes the name of the file referenced by
the filenumber to the value of the string exrression. The file-
number expression must evaluate to one of the digits @ - 9 when
the fractional part is truncated, The string expression must
evaluate to a valid file name. The current name can be accessed
using the NAME function.

5.21.4 DISK I/0 FUNCTIONS

Disk File I/0 functions are included within BASIC to provide information
about a currently open file, Each function reference includes a file
number expression which must evaluate to one of the digits # - 9 when the
fractional part is truncated. If the specified file number does not

have a file currently opened to it a FILE NOT OPEN error occurs. The
disk file I/0 functions are detailed in table 5.5,

5-63
Rev. 2 5/77

TABLE 5.5 DISK I/0 FUNCTIONS

Function
Reference

VALUE

ATTR (n)

Returns the attribute parameter associated with
file n. See section 5.21.3.5 for a description
of the value, '

ERR

Returns the error code associated with the last
disk error. The error codes are:

- No Error

- Permanent I/0 Error
- End-File

- Disk Full

File Not Found

- Duplicate Name

- Parameter Error

- Drive Not Up

- Permanent File

- Write Protect

OCONOGTHRWN -
1

12 - Printer Attention

The error code is not reset by a successful operation,
so is meaningless unless an error occurs,

ERR$

Returns the error message string associated with the
last disk error.

NAME (n)

Returns a string containing the name of the file
associated with file number n.

RECGET (n)

Returns the value of
associated with file

the sequential GET pointer
number n.

RECPUT (n)

Returns the value of
associated with file

the sequential PUT pointer
number n.

SIZE (n)

Returns the SIZE (in

records) of the file associated

with file number n,

TRACKS (n)

Returns the number of disk tracks currently
allocated to file number n.

FREETR (n)

Returns the number of disk tracks currently
available for allocation (free) on the disk
unit associated with file number n.

Rev.

9 1/79

5-64

5.22 BASIC PRINT FILE OUTPUT

Micropolis BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems.

terminal.

" Rev.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option
They achieve a high flexibility of output control by expanding the

keywords.

disk file I/0 scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

6

9/77

19 OPEN 1 "*P" PAGESIZE 66 ENDPAGE 9pp
2p OPEN 2 "*T"
30 OPEN 7 "*N"

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a filenumber with a filename specified in the string expression.

The filenumber must be a numeric expression with a value of 9 - 9.

The string expression which contains the filename must have one of
three specific values which designate a particular output print device.

1)

2)

3)

Filename *P associates the filenumber being opened with the
system printer.

Filename *T associates the filenumber being opened with the
display element of the system terminal.

Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.7.

There are two print file options available with the OPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a limit value for
an internal system counter which counts the number of lines
output to the associated filenumber. The counter is incre-
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon (see section
5.22.1.2). Each time the 1imit count is reached, the

5-65

Rev. 6

5.22.1.2

5.22.1.3

9/77

counter is reset and the system checks for a correspond-
ing ENDPAGE option.

The numeric expression must evaluate to a whole number from
P - 65535. If a print file is opened without a PAGESIZE
option the internal 1imit value defaults to a value of 66
which is the number of lines per page on standard 11 inch
forms.

b) ENDPAGE 1linenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the Timit is
reached on the internal lines per page counter. The line-
number must be a numeric expression which evaluates to a
legal Tinenumber. That line should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no ENDPAGE option is specified for a given file the
internal lines per page counter is just reset each time the
limit is reached and processing continues normally.

PUT fi]enumber expression list

15 PUT @ "TOTAL = "; Al, "ITEM NAME ="; B$
25 PUT 7 A, B;

The PUT statement causes the values of the expressions in the
expression 1ist to be assembled into an output record which is then
output to the print file device associated with the filenumber.

The filenumber must be a numeric expression with a value in the
range @ - 9. The expression 1list consists of a sequence of
constants and/or variables separated by commas or semicolons. The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.21. Separate
carriage width wraparound control is provided for the printer
device. If the expression Tist ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
lines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option). The TAB and FMT func-
tions may be used in PUT statements.

CLOSE filenumber

9p CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be in
the range § - 9. When a print file is closed the associated
filenumber is freed for use in a subsequent OPEN to another file.

5-66

5.22.1.4

5.22,1.5

Rev. 6

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or line insertion change.

ENDPAGE f1ilenumber
25 ENDPAGE 7
28 ENDPAGE R6

The ENDPAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated filenumber and thereby position the output device to the
beginning of the next logical page. The filenumber must be a numeric
expression with a value in the range § - 9. When the ENDPAGE state-
ment is executed the current value of the lines per page counter
associated with filenumber is subtracted from its 1imit value. The
result determines the number of empty lines which are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

ASSIGN (physical device number, logical stream indicator, device
width, null count)

16 ASSIGN (2,1,88,6)

26 ASSIGN (2,2,132)

30 ASSIGN (1,1)

The ASSIGN statement is a dual purpose statement which provides the
ability to specify the connections of physical output print devices
to logical output streams and the values for carriage width and
nullcount of the referenced physical device. The physical device
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
evaluates to a 1, 2 or 3. The device width and nullcount must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in-

- cluded, the values corresponding to the referenced physical device

9/77

are not changed. If only the device width is included, then the
nulicount is left unchanged. Note however that specifying a null-
count requires that a device width also be specified, i.e., if the
statement only contains three arguments, the third will always be
treated as a device width. _

Logical ‘output stream number 1 consists of all output generated by
system messages, keyboard echoing, PRINT statements, LIST commands,
and PUT statements when the corresponding filenumber is open to *T.

.Logical output stream 2 consists of all output generated by LISTP

commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a value of
3 to represent both logical output streams 1 and 2.

5-67

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is conf1gured
as the system printer. (see section 3.3.4).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to

one or both logical streams. Whenever a physical device is ASSIGNed
its previous assignment state is effectively cancelled. A list of
legal device connections follows:

ASSIGN (1,1)

connects terminal display to stream 1 only

ASSIGN (1,2)

connects terminal display to stream 2 only

ASSIGN (1,3) connects terminal display to stream 1 and

stream 2

ASSIGN (2,1)

connects printer to stream 1 only

ASSIGN (2,2) connects printer to stream 2 only

ASSIGN (2,3) connects printer to stream 1 and stream 2

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device
has a carriage width and a nullcount parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parameter determines the maximum number of spaces on each
line for the given device. When a line is output that is Tonger
than width the autowrap feature is activated and a carriage return
Tine feed is inserted between character number width and width +1.
The autowrap feature may be disabled at configuration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width

of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). Note that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re-
loaded. The nullcount parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device. It is important with unbuffered character serial devices
which may lose characters while the carriage is being returned.

- The nd1count parameter for a given device may be dynamically changed
by restating the current device assignment and WIDTH with a new
‘nullcount. For example, if the printer were currently assigned to
stream 2, 132 columns, no nulls (nullcount = 1), it could be changed
to stream 2, 132 columns, 5 nulls by using the statement ASSIGN
(2,2,132,6). :

Rev. 6 9/77 / : 5-68

Rev.

5.22.1.6

5.22.1.7

6 9/77

Because BASIC is an interactiye language it depends on the ayail-
ability of a display device for system Jnessages and keyboard

echoing. An interlock is therefore built in to ensure that stream

1 always has at least one device assigned to it. If an ASSIGN state-
ment is processed the result of which would yiolate this condition,
then physical device 1 is automatically assigned to stream 1 as part
of the ASSIGN being processed.

LISTP X - Y

LISTP

LISTP 10
LISTP -10
LISTP 10-
LISTP 1¢-10¢

The LISTP command causes a listing of the program in the current
program buffer to be directed to logical output stream 2 which is
normally connected with the system printer. This COMMAND is anal-
ogous to the LIST command (see section 5,5) with two exceptions.
The LIST command directs its output to logical stream 1 which is
normally connected to the system terminal display. The LISTP
command outputs a paginated listing with three blank Tines at the
top and bottom of each page and 6p lines of listing as standard.
(see 5.22.1.7).

X and Y must be legal linenumber constants.
LISTP prints the entire program buffer.

LISTP X prints only 1ine X if present or the first line greater than
X if no Tine X exists.

LISTP X- prints all lines starting with X or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru Tine Y or
the first greater than Y.

LISTP X-Y prints from 1ine X or first greater than X through line Y
or first greater than Y.

PAGESIZE numeric expression
PAGESIZE 42

The PAGESIZE command is related to the LISTP command. It causes the
number of Tines of 1listing per page of the LISTP command to be set
to the value of the numeric expression in the PAGESIZE statement,
This number is the number of actually printed 1ines not including the
3 blank 1ines at the top and bottom of each page. For example, to
list a program on paper which holds 48 lines per page, the statement
PAGESIZE 42 would be the proper value to use, When BASIC is config-
ured the default value for this parameter is 60.

5-69

NOTE that the PAGESIZE statement as described here {s syntactically
and functionally distinct from the PAGESIZE option of the OPEN
statement as described in 5.22,1,1 .

5.22.2 Notes On Printer Related Programming

Used properly and with care the printer related language features in
Micropolis BASIC provide for highly flexible and efficient programming
of many common print file related functions. This section provides some
examples and commentary.

5.22.2.1 Separating Print Files and Interactiye Messages

There is a large variety of applications which can be programmed in
the following three part structure:

1) Output to the terminal display a sequence of prompting
messages which lead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de-
sired output data.

3) Output to the printer one or more pages which present the
desired output data with proper labelling in an appropriate
report format.

This structure requires the ability to separate output which is
normally intended for the operators terminal from output which is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminal
display messages and PUT statements to open print files for system
printer output. The technique is illustrated by the following program
for building a depreciation schedule chart.

Rev. 6 9/77 5-70

100 8 ¢ee DIHTAH INHFUT ZECTION
]

120 PRINT "THIZ PROSEAM WILL EUILD A DEFFECIATION ZCHEDULE"

120 PRIMT "SHOWINHGS YEARR EBY YEARR DEFRECIATION OF A FIMED RIZET®

140 PRINT "AT ZTRRIGHT LIME AHD 200 ACCELERRATED RRTE:. "

150 FRINT '

160 PRINT "FPLERZE EMTER AZIET “ALUE "3

170 IMPUT R

120 FPRIMT “FLERZE EMTER TEEM IH YEARRZ"S

120 IHFUT T

200 PRINT "FPLERZE EMTER FIRZT YEARR OF TERM CEG. 13772"s
S21n IHPUT v

[

0l +ee FRINT OUT CHRET HERDIMGE
sIen ! .
20 OFPEH 3 "ep”
240 PUT S:PUT =
250 FUT 9 "DEPRECIATIOM SCHEDULE FOR F "iRs " OYER "sT8" YERR ("
SED PUT tRPUT =

Y0 OPUT 2" YERRE"«"ZT. LHM. DEF."s« "BERLAMCE"« "=00% DEF."s "BHLAMCE"
FUT =

Ry

+++ COMFUTE AMD PRINT EACH LIME

E2=E2-D

FUT 2 YaFMT CEaFE s FMT CELFEI s FMT (Do FEY s FMT CEEs FED
B W=Y+1

S00 MHEST K

=10 CLOZE 2

993 END

Rev. 6 9/77 ‘ 5-71

FUH

THIZ PrROGRAM WILL EBEUILD A DEFPRECIATION SCHEDULE
SHOWIMG YEARR EY YERR DEPRECIARTION OF A FIXED RZZET
AT STRAIGHT LIME AWHD 200% ACCELERATED RATE:.

FLEAZE ENTER ASSET YALLUE 7 100000

FLERSE ENTER TERM IN YERRIZT 23
FLERZE EMTER FIRET YERR OF TEREM <EG. 137F7F»7F 1320

DEPRECIATION =CHEDULE FOR % 100000 DHEH 25 YERROZH

m .
I
A

=ZT. LM. DEF. EALANCE SNy DEF. ‘ ERLAMCE

4000, 00

®

o, oo
b, il

£ B e

RSN}

d

T

[W n X

(¥

o o0 0 D 00 00 00 00 00 00 00 0D

D8 T I SO I OO S R I i N A X S D SR 1 IS OO Y I

[Ny

O00, 00
G000, 00
4000, 00
S000, 00 F oFE000, 00

o

XU AR N A RN

S g B A 51

G000, o Foe2000, 00

Gooo, 0 F oed4000, 00

S000, 00 F OS0000. 00
o000, 00 F OSE000, 00

N RS RN Y]
» (T N =3 o D=

o oun

B R ER R R B R R R

BB B SR ST B S R R 0T R R R S R
A %
g =
J =
-J ¢
1 =)
L))
el o N e e S

ORI R D I e o S e O N N O S S e e
= At

4000, 00
G000, 00
SOo00, o0

SO0, 00
SOon, 00
i)

1277,

cnns
cong

o]] =
! Soon, oo B OSo000, 00] (=
99 oo, an Fod=000, 00 2941, 32
L] o000, 0 o34 000. 00 Pl L N ey
5 O oS4000, 00 F oS0000, 00 2429, 54
k] F O 4000, 00 F Ze000, 00 Zoen, =7
23 ¥ o4000,00 £ o000, 00 o 2l07. 14
i) 0 oS000,00 200000 T 193,87 R
39 o000, 00 24000, 00 EO1723.49 3
99 EooS000, 00 F 20000, un % 1=, =51 Y
2000 4000, 00 F 1000, 00 T O1509.54 B3
S0l 4000, 00 E 12000, 00 R4 FEE, Ve E
k3
k3
R

oo Lo T
[SR X
R

-]
[
e
—._J XK
i I

i
B B B
BB R R

1=

RERDY

"Rev. 6 9/77 572

5.22.2.2

Rey. 6

9/77

Paginating Print Files

When the number of T1ines in a print file spans several printed

-pages it is often required to print the file with page numbers,

headings and an equal number of 1ines on each page. The ENDPAGE
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of tools for accomplishing this goal. The
following example shows the depreciation schedule program of section
5.22.2.1 modified to print on 2@ line pages with each page numbered
and titled. Note the use of the PAGESIZE and ENDPAGE options in

line 320 in conjunction with the page heading subroutine at line 6@@.
NOTE also the use of the ENDPAGE statement in line 518 which ejects
the last report page and leaves the printer at the top of the next
blank page.

5-73

100

! e+e LIATH IMFUT ZECTION

AZZET"

110 ! :

120 PRINT “THIZ PROGEAM WILL EBUILD A DEFRECIRARTIOMN SCHEDULE"
120 PRINT "SHOMINMG YERR EBY YERR DEFRECIATION OF A FIXED
140 PRINT "RAT ETEAIGHT LIME AHD 00X ACCELERATED RATE=. ™
150 PRINT

160 FRINT “FLERZE ENTEER ARZZET “ALLUE "3

170 IMFUT R

120 FRINT "PLERSE ENTER TEEM IH YERRZ"S

120 INPUT T

200 PRINT "FLERZE EMTER FIREZT YEHRR OF TERM (EG. 13772"s
210 INFUT Y ,

o0t

305
310
ZEn
30
2310
G010
410
a0
4410
450
4l
470
G50
4310
SO

T T T T T T T
=) =3 T N d L3 N
o D D

"'J -

s S o

NI

L) -

Rev, 6 9/77

1 EMDPRSE 9:CLOZE

eee OUTFUT INITIALIZATION

!
:
OPEH 9 "eF" PARAGEZIZE 20 ENDPAGE &00
F=1:05UE 00

Bl=A: Be=A: Z=A-T:FE="$22I22V. 93"

L]
]

eee COMFUTE AMD PRINT ERCH LIMNE

FOR K=1TOT

E1=B1-%

D=2eE2-T

E2=E2-D

PUT 9 YsFMTCSsFE> s FMT CB1s FEY s FMT (Ds FEX s FMT ¢E25 FE2
Y=Y+1

NEXT K

v

ETOP

1

: see PASE HEADING ZUEROUTINE
'

FUT

9
PUT 9 TRECFS» S "PRGE "3
o

FUT é “DEPRECIATION SCHEDULE FOR % “3$As™ OVER "sTE Y

9:1PUT 9 -
FUT =" YEAR"s"ZT. LH. DEF. "s "EALAMCE" s "200% DEF.
=

5-74

YERR C50 "

+ "BEALAMCE™

ERDY
L]

"HIZ PROGEAM WILL BUILD AR DEPRECIATION =CHEDULE

HOWING YERR EY YEAR DEFPRECIATION OF A FIXED AZZET

T ZTRAIGHT LINE AND 200X ACCELERATED RRTEZ.

*LERSE ENTER RSSET VALUE 7 100000

LEAZE ENTER TERM IN YERRST
*LERZE ENTER FIRST YEAR OF TEREM <EG.

JEFEECIRTION =CHEDULE FOR ¥

m
T

YOS RN]

'.D‘ A

(5]
000 Q00D Q0 Q0 00 00 O
3 =g T e O3 P

[Ty SO S e

DEFRECIATION ZCHEDULE FOR %

R

m
I
£

-

1332 R
19232 ¥
1334 %
1335 ¥
1396 3
1237 ¥
133 B3
13349 R
cann R
2001 R
Zons %
200z R 3

ET. LH.

=T

So000, 00
4000, 00
G000, 00
4000, 00
000,00
4000,00
000, 00
S000, 00
000,00
G000, 00
G000, 00
G000, 00

LM.

4000, 00

4000, 00
S000, 00
G000, 00
G000, 00
4000, 00
o000, 00
4000, 00
4000, 00
G000, 00
4000, 00
4000, 00

DEF.

DEP.

&5

100000 OVEER

ERLAMCE

F TEO00, 00
¥ FoO000,. 00

T Se00n, oo

¥ Sz000,. 00

ta0ooo OVER

EALANCE

42000, 00
44000, 00
4000000
SE000. 00
22000, 00
23000, 00
Z4000, 00
coong, on
15000, 00
12000, o0
S000, 00
4000, 00

DEFFRECIATION SCHEDULE FOR § 100000 DOVER

YERR

cong : $

Rev. 6 9/77

iT.

LK.

4000, 00

LEP.

BRLANCE

& Y

' 5-75

‘+
R
RS
R 3
B3
'+
RS
kY
3
3
+
kY

M
n

Fae0, 00
EVFl.20
eca. i
S¥EL.14
Seve.en
4250, 24
442,77
4105.75
IFVT.ED
2473.10
213709

;‘ﬁ
I
e

c00x DEF.

L
a

SN

k3

(SR PR
27 0e, 02
c489, 54

]
i

1
J

I SN I

=} 1= N

=g =) 00 = L Q0 0D S0

CA=J 00 w0 e 0 0)

e oI e S e e E A g
N o
¥ 0200 b e o0) S

FO RS

— oLl O O

YEARR (2

LEF.

1021.42

T 20510,
T 128893,
17353,
F 15971,
FO14593,
132517,

T o
o1
N

RN KO N

Jo 00 =)

2]
MU N oS N s UA GRS BRu¥ R

T 0 =) o R

(o]
(]
[
=4
[n)

[}

L]

ERLHAMCE

[~ 2]
]
[OUN SS9
i
L
[X

NN =R R

T

BERLAMCE

T o1e4ze.

el

o=
Lo 0 e D0 0

Ty =)

X
a1
m

O SR BN LT S K Y B
SO SOOI s SO TR R Y

00 00

I
i) O I R
m

42

5.22.2.3

5.22.2.4

" Rev. 8

Spooling Print Files To Disk For Later Output

The commonality of the OPEN, CLOSE and PUT statements to both disk
and print files makes it possible to alter a print file program so
that the output is saved in a disk file instead of sent to the printer.
The procedure is to change the filename in the relevant OPEN statement
from "*P" to some appropriate disk filename. For example, line 320

in the depreciation program listing might be changed to

320 OPEN 9 "N:DEP-REPORT" PAGESIZE 2@ ENDPAGE 60@

A print file that has been spooled to disk in this manner can be
printed out at a Tater time by using the following program:

5 INPUT "ENTER PAGE WIDTH OF FILE TO BE PRINTED";A
10 DIM A$(A)

20 STRING CHARS$(16RFF)

3@ INPUT "ENTER NAME OF FILE TO BE PRINTED";A$
4@ OPEN 1 A$ END 94

5@ OPEN 2 "*p"

60 GET 1 AS

76 PUT 2 AS

8¢ GOTO 60

99 CLOSE 1

109 CLOSE 2

110 END

Note that the string into which each disk record is read must be
dimensioned to a Tength which matches the expected page width of
the report (lines 5 and 1@). This ensures that the extra blank
padding that fills each disk record will not be printed out causing
extra blanks Tines on most printers.

Note also that 1ine 2@ changes the system string delimiter to a
value that is illegal in normal print files. This ensures that the
entire content of each line will be assigned to and printed from A$
regardless of which characters appear in the print file. If this
were not done any commas in the print file would cause erroneous
output. '

Draining File OQutput To A Null Device

During the program development and test process or in a reduced
system hardware environment it is sometimes useful to run a program
which outputs one or more files and be able to suppress one or more
of the output files while the rest of the program runs normally.

In Micropolis BASIC this is easily accomplished by changing the
filename in the open statement of each file to be suppressed to a

""*N". When the program is run all output to "*N" files will be

9/78

suppressed or drained away without otherwise affecting program
operation. The following program illustrates this idea.

5-76

5.22.2.5

Rev. 8 9/78

19 DIM A$(4,30)

20 FOR J=1 TO 4:A$(J)="U:NEXT J
3¢ INPUT " FIRST LINE ":A$(1)
4@ INPUT “SECOND LINE ":A$(2)

5¢ INPUT " THIRD LINE ";A$(3)

6@ INPUT "FOURTH LINE ";A$(4)

7@ B$="LABELS"

8@ INPUT "ADD TO DISK FILE (Y/N)";X$
9@ IF X$ ="Y" THEN B$="=N"

108 C$="+pP"

118 INPUT "PRINT LABEL (Y/N)":X$
12¢ IF X$= "Y" THEN C$="*N"

'I 3¢ X$_|l n

14@ OPEN 1 B

15@ PUT 1 A$(1)+X$+A$(2)+X$+A$(3)+X$+A$(4)+A$
16@ CLOSE 1

170 OPEN 2 C$

189 FOR J=1 TO 4:PUT 2 A$(J):NEXT J
19@ CLOSE 2

200 GOTO 20

The file output section attempts to add four Tines of input to a
label file and then print a copy of the new label entry. If either
or both of these functions is refused by the operator during the
input section, the program changes the filename variable for the
associated OPEN statement to "*N". When the output section exe-
cutes the refused function output is simply drained, i.e. not
output anywhere.

Echoing 0f Terminal Output To Printer

On systems with a video terminal and printer device it is often
desirable to obtain a hard copy audit trail of all system program
operation, including all of the prompts and system messages normally
directed to the terminal only. This is easily done by using the
statement

ASSIGN (2,3).

This statement causes the hard copy printer to be connected to logical
output stream 1 which includes all print statements, input dialogue,
keyboard echoing, *T files, and system messages; and to logical out-
put stream 2 which includes all *P print files. Thus everything
aimed at the terminal thru stream 1 will also go to the printer.

This echo mode remains active until changed. The statement ASSIGN
(2,2) will restore the system to normal which is device 1

" (terminal) connected to stream 1 and device 2 (printer) connected to

stream 2.

5-77

(This page left blank deliberately.)

6-1

Rev. 4 7/77

/— LABEL
' 7

DISKETTE NO.

) WRITE PROTECT
MICROPQLIS E/

/—DRIVE SPINDLE HOLE

/—SECTOR/I NDEX HOLE

BOTH SIDES
51/4" ()

AN mn)

READ/WRITE HEAD ACCESS \————Asmss RELIEF NOTCHES

HOLE (BOTH SIDES)

Figure 6.1

6-2
Rev. 4 7/77

VI, DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0 INTRODUCTION

This section describes the Micropolis flexible disk subsystem in
sufficient detail to enable an experienced 808@ assembly language
programmer to implement a disk driver.

6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1.1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6.1. The medium consists
of a thin, oxide coated circular disk permanently housed in
a protective plastic jacket. The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates., Several holes in the plastic jacket
allow a disk drive to access the disk. When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which presses the disk against the head,
access the disk through the read/write head access holes.

A photo detector senses sector and index holes through the
sector/index hole. A switch in the disk drive senses the
Write Protect cutout. If a Write Protect tab is placed

over the cutout, the diskette may be read, but may not be
written on, 1If the cutout is open, both read and write
operations may be performed,

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette. Data is recorded on the diskette on concentric
tracks. The outermost track is Track @ and the innermost
track is 76 in Mod II subsystems and Track 34 in Mod I
subsystems. Each track has an unformatted capacity of
6250 bytes. Disk data transfers are performed on a block
basis, which would require a 6250 byte RAM buffer in the
computer for a full track size block. This buffer size

is wasteful of memory, so the actual format used divides

a track into blocks of more manageable size called sectors.
The format used in the Micropolis flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index sensor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector @ and indicates the next hole is
seé¢tor 0.

6-3
Rev. 4 7/77

ROTATION

SECTOR HOLES

SECTOR PULSE

DISK DATA

8 TRACK ZERO
9 TRACK 76 (34)
10 5
N 4
12 3
13 2
14
INDEX HOLE 15 0
-l 12.5 MSEC: -
/ HEADER
PREAMBLE DATA POSTAMBLE
SYNC CHECKSUM
TRACK ID SECTOR ID
Figure 6,2
Rev., & 7/77

Each sector has an unformatted capacity of anproximately 390
bytes. However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and to allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives.
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder.

The recommended sector format is illustrated in Figure 6.2,

This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board, This format

was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond

the scope of this section.

A disk sector consists of the following fields:

1) Preamble: The preamble is composed of anproximately 4@ bytes
of zero (@) data bits. The preamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics

- of the sector/index sensor. It also provides a field of known
data pattern for synchronization of the read data decoder.

2) Sync: The sync byte is a byte of @FFH data which is used in
the disk controller to define the beginning of useful data.

3) Header: The header is a 2 byte block consisting of the binary
track address of the track on which the sector resides (§-76 (34))
and the address of the sector (0-~15). The header is used to
verify that the proper sector is being accessed in a disk I/0
operation. :

4) Data: The data field consists of 266 bytes of user data.

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. 1In write operations, the computed
checksum is written immediately following the data field. 1In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

o 6-5
Rev. 4 7/77

COMPUTER INTERFACE

UNIT ADDRESS |

UNIT SELECTED
-

4 BIT SECTOR
| ADDRESS

4 SECOND TIMER

SELECT LOGIC

DRIVE SELECT

INDEX SEPARATOR

SECTOR FLAG

SECTOR COUNTER

SECTOR INTERRUPT

TRACK ZERO STATUS

|

TRACK ZERO

1 STEP i

| DIRECTION | POSITIONER
CONTROL

APRDY '

__ XFER READY

" WRITE PROTECT
STATUS

READ/WRITE

WRITE

|

|
WRITE PROTECT

T WRITE/ERASE

CONTROL

I
WRITE ENABLE

8BITDATA
8 BITDATA

WRITE DATA

—

SERIAL WRITE DATA

STEPPER
MOTOR
DRIVE

READ/WRITE/ERASE

ENCODER

SERIAL READ DATA

CONTROL LOGIC

__ READY STATUS

DATA DECODER I

CONTROLLER

|
|
l |
|

S—

MOTOR

LoGIC

CONTROL -

"
DRIVE ELECTRONICS

o
.
O
[
]
3
ol
<3
SECTOR/INDEX PULSE
/— DISKETTE
HEAD LOAD
SOLENOID
HEAD LOAD PAD
SECTOR/INDEX
TRACK ZERO SWITCH PULSE SENSOR
(¢}
o osee VO &/)
MOTOR 1
w4 o Vs
4;0 CARRIAGE
WRITE PROTECT
WRITE PROTECT
SWITCH
READ/WRITE/ERASE CONTROL AND DATA
~
I~
~
~
SPINDLE MOTOR CONTROL ~
) -
I~
DISKETTE LOADED SWITCH nq(‘)

DRIVE MECHANICS

6.2

Rev.

4

6)

Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector holes on the disk and tolerance for disk speed and
write clock variations,

HARDWARE FUNDAMENTALS

Figure 6,3 is a block diagram of the Micropolis flexible disk
subsystem, The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

1

2)

3)

Spindle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 30@ RPM,
After an appropriate delay to allow the speed to stabilize,
the drive is ready to accept commands. If the drive is
selected by the controller, the drive will indicate this
state by asserting ready status.

Sector Logic: When the disk is rotating, the sector/index

hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk, The controller
separates the sector and index pulses and counts the sector
pulses, thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head., A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operatio
may be initiated, '

Position Control Logic: The read/write head is mounted on a
carriage which is moved from track to track by a stepper
motor-driven lead screw. Positioning is accomplished by
specifying the desired direction (in or out) and issuing

a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction. When a drive is
first selected, such as at power on, the track position of
the drive is indeterminate. Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is positioned at track @, a
microswitch associated with the positioning mechanism is
made, The state of this '"track §'" switch is provided as

a status bit., Recalibration consists of examining the

track @ status and if it is not true, issuing a command to
step out. After an appropriate delay to allow the command
to be executed, the process is repeated. Once the positioner
has been calibrated, the software must keep track of the
current position,

6-7

7/77

Rev,

4

4)

Read/Write Logic: Data is transferred between the computer
and the controller on a byte-by-byte basis. For write
operations, the controller generates the preamble and then
converts 8-bit byte data from the computer to the serial
data which is recorded on the disk. When the computer
stops supplying data, the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed. For read operations, the controller converts
the serial data stream coming from the disk to 8-bit bytes
and automatically detects the sync byte to determine when
valid data is available.

The controller generates a "'transfer ready'" status flag
which indicates that the controller is ready to accept
data in a write operation, or that data is available in
a read operation.

The controller is accessed using a technique called
"memory-mapped I/0". This means that the controller
command, status and data registers are treated as ,
memory addresses and that controller read/write commands
are actua lly memory reference instructions. When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
until the controller is ready to transfer data. From
the computer's point of view, the controller appears to
be slow memory. '

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head, Whenever the drive is performing
a write operation, the positioner control and read logic
is disabled and the appropriate signals are generated to
drive the read/write and erase heads, The erase head used
in flexible disk drives is a "trim'" erase head. 01d data
written on a sector is implicitly erased by being written
over by new data. However, any slight track positioning
errors could eause sufficient remnant old data to be left
in the space between tracks to cause data reliability
problems. To eliminate this error source, an erase head
which erases the disk a small distance on either side of
the newly written data is provided. This erase head is
located a small distance behind the read/write head and
cleans up the inter-track gap after data is written.

When a write operation is terminated by the occurrence of

a sector pulse, the erase head is left on a sufficient
amount of time for the last data written to be trimmed.
Since the position control and read logic will be inhibited
until the write operation is complete (including the erase),
a new operation must not be attempted for at least one
millisecond after the termination of a write operation.

6-8

7/77

The drive contains a microswitch which senses the write
protect cutout in the diskette jacket. When the write
protect tab is installed, the write/erase control logic
is inhibited. The state of the write protect switch is
available as a status bit.

5) Select and Head lLoad Logic: The controller will support
up to 4 disk drive units connected in a ''daisy chain"
configuration., The drive electronics in each unit are
conditioned by the drive select such that only one drive’
at a time will respond to, or provide, signals on the
controller/drive interface. When a drive is not selected,
the spring-loaded pressure pad which holds the disk in
contact with the read/write head is moved away so that there
is no contact and the head is '"unloaded'". When the drive is
selected, a solenoid is energized, which allows the load pad
to contact the disk so read or write operations may be
performed. The controller contains a 4-second timer which
automatically deselects all units if the controller has not
been accessed for four seconds.

6.3 CONTROLLER REGISTERS

The disk controller occupies a 1K byte block of memory from F4@@H to F7FFH.

The first half (F4@@H to F5FFH) is reserved for on-board bootstrap ROM, The

controller command, status and data registers start at address F6fPH and are
defined as follows:

1) Output Registers

Command Register

F6@PH or Vi 6 3 4 3 2 1 0
F6@1H COMMAND ,f’g)// /4 1 MoD
‘ CODE S Sy

MOD = Command Modifier

The commands available are:

Code Command Modifier ,
gg1 Select drive Contains drive unit address (@-3)
g10 Set interrupt enable @1 = enable interrupt

(controls sector §¢ = disable interrupt

pulse interrupt)

g11 Step 1 track]

, = gstep out
f1 = step in
100 Enable write Not used
141 Reset controller Not used
6-9

Rev, & 7/77

Write Data Register

F602H If the write data register is referenced when the
transfer flag is set during a write operation, the
controller expects a data byte to be on the S1¢¢
buss data lines. The PRDY line will be held false
until the controller has accepted the data, then
the PRDY line will be set true for 1 bit time
(4 usec). (See the status register description
for the definition of the transfer flag.)

2) Input Registers

Sector Register

F600H 7 6 3 2 1)
S I
c N
T T, SECTOR
R. ADDRESS

F

F | L
L G,
G‘

Bits Definition

0-3 Sector Address: Address of the sector currently
passing under the read/write head of the selected
drive.

4,5 Reserved,

6 Sector Interrupt Flag: Indicates an interrupt
request has been generated by a sector pulse,
Flag is reset by issuing a reset or an interrupt
disable command,

7 Sector Flag: Indicates the sector address is

Status Register

F6@1H

Rev., & 7/77

valid and that a read or write operation may be
performed, Flag is true for 30 usec at the start
of each sector, All data transfers must be
initiated within 100 u seconds of the flag going
true,

yi 6 5 4 3 2 1 1)
X P R |'W T 8 U A
F I E P K L N D
E N A T ¢ T I D
R.,| T D D T R
E Y
F
L
Go
6-10

F6@2H

Rev.

8

Bits Definition
g-1 Unit Address: Address of the currently selected
drive. Address is valid only if SLTD is true,
2 SLTD: Unit selected. This flag is low true,
i.e.,
P =-Selected
1 = Not selected
SLTD is true if a drive has been selected and
the 4-second timer has not expired, SLTD is
low true so that the software may detect when
the controller is not installed (non-existent
memory references yield @FFH).
3 TR@: Track @ status from selected drive.
4 WPT: Write protected status from selected drive.
5 READY: = Ready status from the selected drive.
When trueé, indicates the drive is ready to
perform commands,
6 PINTE: PINTE status from the S1¢@ BUSS,
7 XFER FLAG: Transfer flag., In write operations,

indicates that the controller is ready to accept
data from the computer. 1In read operations,
indicates the controller has data available to
the computer. When the software detects the
transfer flag has set, all data transfers are
performed by accessing the controller data
register, which automatically synchronizes the
transfer by use of the PRDY line. '

' Read Data Register

If the read data register is accessed when the transfer flag is
set during a read operation, the controller will hold the PRDY
line false until a byte of data is available. The controller
will then place the data on the S1@#f BUSS data lines and set
PRDY ttrue for 1 bit time (4 usec). The data will only be
available for this 1 bit time period,.

9/78

6-11

Figure 6.4

Rev, &4

DRIVE SELECT LOGIC

(s&LECT)

WUNIT
= DFS!$FD
WML

DELAY

25@
MhSEC

READ
CTATLS

N MILLISECOND TIMER

Status Read
Re-triggers.
4 second
timer

(petay)

DRivE Aot uP

7/77

{ FRrRROR !

6-12

6.4

DISK OPERATIONS

The following paragraphs describe in detail the steps involved in performing

each

of the operations required to operate the Micropolis flexible disk drive

subsystem,

Rev.

6.4,1 Select a Drive

A drive must be selected prior to any status read, step or data transfer
operation. Selectien must be performed for each operation since the 4
second timer may have deselected a unit since it was last accessed, The
important considerations in selecting a drive are:

1) When the drive is selected, the head will be loaded, A
minimum of 75 milliseconds must be allowed for the head
to load and settle.

2) The sector counter is located in the controller. When a
drive is selected, a minimum of 250 milliseconds must be
allowed for the sector counter to synchronize to the drive.

Figure 6.4 is a flowchart of the select operation,

NOTE that all delays are generated by a software timing loop

subroutine. A read status command is included to re-trigger

the 4 second timer every time the delay routine is entered.

6.4.2 Position the Head

A drive must be selected before a step command can be issued to cause

the head to move 1 track, One step command of the appropriate direction
(in or out) must be issued for each track moved. A minimum delay of 30
milliseconds must be allowed between each step command, (Note a step
in moves the head toward the center of the disk and therefore to a higher
track number,) Typical logic to implement a 1 track step is illustrated
in Figure 6.5,

After the head is positioned to the desired track, an extra delay must be
allowed for the head to settle before read/write operations are attempted.
The complete process for an N track move is illustrated in Figure 6.6.

6.4.3 Restore to Track]

When a drive is first selected, the position of the read/write head is
indeterminate, Prior to performing disk data transfers, the positioner
must be '"recalibrated' which consists of stepping the head out until the
track @ switch is made, If the drive already indicates track § status
when first selected, the head is stepped in 8 tracks, then out to ensure

a good track f position. Once calibrated, the software must keep track of
the current head position for each drive. The restore logic recommended
is illustrated in Figure 6.7.

6-13
4 7/77

Figure 6.5

STEP 1 TRACK

ﬁsTEPIN') | (srepouT)

ISSuic TosSUL
STEPIN : STEPOULT
COMMAND commnanD

Figure 6.6
POSITION N TRACKS

(POSITION)

SELECT
DRIVE

§TEP
IN/OUT

YES

DELRY
1d MSEC

Ne=nan)

6-14
Rev. & 7/77

Rev.

Figure 6.7

RESTORE TO TRACK @

(ResTORE)

SELECT
DRIVE

READ
STATUS

8 NO
TRALKS

YES

DELAY
V@ MSEC

If already a
off 8 tracks
ensure a goo

-
-~

STEP
ouT

DELAY
1@ MsSEC

(

E)(!T'

)

(ErroR)

4 7777

RESTORE FRROR

6-15

t track #, move
then restore to
d position.

If 85 step out commarids have
been given and track @ has

not been reached, something
is wrong. :

Rev.

6.4.4 Write Operation

Figure 6.8 illustrates the logic necessary to perform a sector write
operation., The program illustrated requires a 268 byte memory buffer
with the first two bytes set to the track and sector address., The
sync byte and checksum are generated in the program. The steps
involved in writing a sector are:

4

D
2)
3)

4)

5)

6)

7)

7177

Move the data to the write buffer,
Select the drive,

Wait for sector flag., When the flag goes true compare the
sector address with the desired sector address. When the
desired sector is found, issue an enable write command.

The enable write command causes the controller to generate
the preamble. Wait for transfer ready flag to indicate the
controller is ready to receive data. The software must then
write the sync byte. The timing of the software loop which
tests for XFER ready and then outputs the sync byte is
extremely critical. The sync byte must be on the S100 buss
data lines within 32 usec after XFER ready sets, The
following code satisfies the timing requirements:

(HL = F6f1H and A = @ when this loop is entered)

*Wait for XFER ready flag

WAIT ORA M
JP WAIT
*INSERT SYNC BYTE
INX H
MVI M, @FFH

Each successive data byte must be made available within 32
useconds of the previous byte. When the data register is
accessed, the controller will hold PRDY false until it accepts
the data and then allow PRDY to go true for 1 bit time. The
timing constraints on the write loop are therefore a maximum
loop time of 32 useconds and a minimum loop time of 1 bit time
(4 useconds). These figures do not include any margin for
clock tolerance, so the actual design goals should be about

28 and 6 useconds for a conservative design.

When the checksum has been written, stop accessing the controller
write register, The controller will automatically zero fill the
rest of the sector,

After the checksum is written, the program waits for the next
sector flag, At this time the controller terminates the write
operation and the erase delay in the drive starts. The 1 milli-
second software delay allows sufficient time for the erase delay
to expire so that step and read functions are again enabled.

6-16

Figure 6.8

Controller
generates
preamble

Write
sync
byte

Main
write
loop

Rev. 4

SECTOR WRITE

(writTe)

SELECT
DRIVE

WAIT
SECTOR

ENABLE
WRITE

RERD
STATUS

DATA =~
GFFH

WRITE

(vnwrsafoa

<.

----Wait for

desired
sector

W RITE
CHECASUM
BYTE

~-=~~Zero

£ill

oRTA

7/77

FRO M
BUFFER

GET 0RTA

ADD DATA
TO

CRECK SUN

DELAY
1 MSEC

(7 ExyT

sector
to next
sector
mark

7 Rev.

6.4.5 Read Operation

Figure 6.9 illustrates the logic necessary to perform a sector read
operation, The program illustrated requires a 268 byte read buffer.
The track/sector ID will be read into the first two bytes of the
buffer and when the operation is complete, will be compared against
the desired track/sector address. The steps involved in reading a
sector are: '

1) Select the drive,

2) Wait for the sector flag. When the sector flag is true,
compare the sector address with the desired sector.

3) When the desired sector is found, wait for the transfer
flag to set to indicate disk data is available. Note
that no command is necessary to start a read operation,
but you must always wait for a sector flag to indicate
the start of the read.

4) When the transfer flag is set, the sync byte will be
available in 25-28 wuseconds., The sync byte will only
be available for 3-4 useconds so the timing of the loop
which checks for the transfer ready flag is critical., The
following code satisfies the timing requirements:

(HL = F6@1H and A = § when this loop is entered)
% Wait for XFER RDY flag

WAIT ORA M
JP WAIT
*GOBBLE SYNC BYTE
INX H
MOV A,M

5) Each successive data byte will be available within approximately
25 useconds and will be available for about 3 useconds,
When the controller data register is accessed, the
controller will hold PRDY false until the data is
ready, then will place the data on the S1(§ buss data
lines and allow PRDY to go true for 1 bit time. Once
the software has read a byte, it must not access the
data register again until this bit time has expired.
The timing constraints on the read loop are therefore
a maximum loop time of 25 useconds and a minimum loop
time of 5-6 useconds. These figures reflect a
conservative margin to allow for timing variations
in the disk read data.

6) The last byte to be read from the disk is the checksum.
The checksum read should be compared with the re-computed
checksum, to determine if a read error has occurred.

6-18
4 7/77

Rev,

Fi

4

gure 6.9 SECTOR READ
(READ)

SELECT

DRIVE

waT

SECTOR

READ Wait for

STATUS controller
to detect
sync

READ
DATA
cere

ADD DpTH
TO
CHECKSUM

MmoveE DATA

TO
BUFFER

Capture sync
byte and
discard

7/77

6-19

CHECKRSUM FERIOW

3_____,(ERROQ)

KesS

HEADER, ERROIL

ErReR 7

) First 2 bytes of
buffer should be
track/sector ID

6.5

7) If no checksum error is detected, the first two bytes
read should be compared with the desired track and
sector addresses to ensure the correct sector was read.

ERROR HANDLING

An important consideration which may not be ignored im the design of a
flexible disk driver is the handling of errors which occur. Magnetic
storage devices in general dre subject to errors. The succeptability
of the diskette to damage or contamination due to handling makes error
handling particularly important in flexible disk systems, Most errors
are of a temporary nature and will be invisible to the system with a
properly designed driver,

Most errors can be attributed to one or more of the following sources:

1) Transient Electrical Noise

2) Media Contamination - Particles of foreign substances may become
lodged between the head and the recording surface of the disk and
cause data errors,

3) Head Positioning - The read write head may be positioned to the
wrong track if the specified step rate is exceeded or may be
marginally positioned if a drive is misadjusted.

4) Disk Centering - Due to the flexible material of which the disk
is constructed, or in the event the disk is damaged or distorted
due to mis-handling, it is possible that a diskette may be
improperly clamped to the spindle in the disk drive.

The following procedures are recommended to perform proper error handling
in disk read/write operations:

Rev,

Read Operations

1) Step the positioner to the desired track.

2) Perform the read operation as described in Section 6.9.5. If a

header or checksum error occurs, re-read the sector up to 5 times,

3) If the 5 retrys were unsuccessful, step the positioner off one
track and then back to the desired track. WRepeat Step 2. 1If
still unsuccessful, step the positioner off one track 1n the
other direction and then back. Repeat Step 2. :

4) Perform the restep procedure given in Step 3 up to 4 times. If
still unsuccessful, deselect the unit and wait about 200+milli-
seconds for the head to unload. Reselect the unit; restore to
track @, and re-seek to the desired track, Repeat Steps 2 and 3.

5) Perform the reselect function given in Step 4 up to 3 times, If
still unsuccessful, abort the operation with a permanent I/0 error,.

6-20
4 7/77

Write Operation

1) Step the positioner to the desired track.

2) Read the sector immediately preceding the desired sector. Any
errors which occur should be handled in the manner described
for normal read operations, This operation ensures the head is
properly positioned to the right track and the sector counter is
synchronized with the disk.

3) Write the desired sector as described in Section 6.4.4,

4) Read the sector just written to ensure the data was recorded
properly. If an error occurs, repeat Steps 2, 3, and 4 up to 5 times.

5) 1If unsuccessful, perform the restep operation as described for the
read operation and repeat Steps 2, 3, and 4.

6) If 4 restep operations are unsuccessful, perform the reselect
operation as described for the read operation.

7) If 3 reselect operations are unsuccessful, abort the operation
with a permanent I/0 error.

If a permanent I/0 error occurs, the disk may be improperly centered, there
may be a defect in or damage to the recording surface of the disk, or the
disk may have been written on a marginal drive,

The "restep' procedure described takes advantage of the hysteresis present
in all positioning systems, Friction in the positioner causes the head
position to deviate slightly from the nominal track position. This position
will be different when the head is stepped to a track from different directions.
In normal operations, this slight position error is well within the tolerance
limits for proper operations. However, if errors are encountered in reading
a disk which was written on another drive that is marginally aligned, the
slight difference may be enough to recover the data.

The ''reselect'" procedure serves to dislodge any foreign particles and to
recalibrate the positioner, should it be positioned to the wrong track,

6.6 DISK DRIVER

As a comprehensive example of all the principles presented in this section, a
sample disk driver is presented here. This driver provides the facilities to
seek to a track, seek and read a sector, seek and write a sector, and seek
and verify a sector, This verify operation is a special case of a sector
read but only the header bytes are transferred into the buffer. This allows
the use of a single disk buffer to perform write operations, which consist

of a header check prior to write, writing the sector, and a read-after-write
check, ' :

The power-on recalibration is transparent. The driver maintains a table
containing the current track address of each drive connected to the controller.
The user's power on initialize software must set the entries in this table to
@FFH, The first time a drive is accessed, the driver will recognize this

flag and recalibrate the positioner on the drive before performing the
specified operation. :

6-21
Rev. & 7/77

When the driver is called, the HL register must point to.a parameter block
(referred to as a disk control block) which specifies the operation to be
performed., When the driver returns, the condition code will reflect the
status of the operation, (See the listing for details,)

The DCB is structured as follows:

;
ADDRESS 7 6___ 5 4 3 2 1 ¢
>_'—""-— o o ,.»’// /,z) s /,) Vs : N
DCB + ¢ S cone
m| R |/ :
DCB + 1 F A jﬂ,fff, UNIT
L W S ADDR,
A F g
L
G A
C
DCB + 2 SECTOR ADDRESS
DCB + 3 TRACK ADDRESS
DCB + 4 BUFFER ADDRESS LSB
DCB + 5 BUFFER ADDRESS MSB

The DCB entries are described as follows:

Rev.

FN CODE Function code

= Seek only
Seek and read sector
Seek and write sector
Seek and verify sector

i

1
2
3
ID FLAG Pre-Write Header (ID) Check Flag

- @ = Perform check
1 = Inhibit check

RAW FIAG Read-After-Write Check Flag
= Perform check
1 Inhibit check

]

UNIT ADDR, Drive Unit Address
g -3

Sector and Track Address are the address of the sector which is to be
written or read and the address of the track upon which the sector
resides, The driver will seek as necessary to move the head to the
desired track.

The Buffer Address 1is a 16 bit memory address stored in standard
8080 low/high format. This must be the address of a 268 byte read/
write buffer, The first two bytes of the buffer are reserved for the
header.

6-22
L7777

To perform a write operation, move the data to the read/write buffer,
set up the DCB, and call the driver,

To perform a read operation, set up the DCB and call the driver. When
the operation is complete, the data from the desired sector will be in
the read buffer,

6-23
Rev., 4 7/77

Rev. 4

LR R B R AR R R R 2R R CEE BE SR CEECEE R R EE BE BE R S R B R R CNE K AR B IR AR B IR A AR 2R AR BE A BE N N R R I I W R K X B I R

3k 2 3k 2k ok >k 3 3k ok 3 3k 30 2 236 3 23 e 24 He o e Ak o 3¢ oK 3 2k Sk 3k o e ok 3k 2 O o ¢ o ok ok

1)

7/77

COPYRIGHT MICROPOLIS CORPORATION

ke 2k 3k 3k 3k 3 3k oK ok ok o 3 3k ok 2 ok 3 3 3 ok o ok 3 ok e ok ok 3 3 ok ok ok ok ok ok ok ok

DISK DRIVER FOR MICROPOLIS
FLEXIBLE DISK SUBSYSTEM

*

*

*

*

*
8 JUNE 1977 *
*
*
CALLING SEQUENCE:

LXI H,LUDCB POINT HL TO USER
CALL DSKIO DCB & PERFORM

.JNZ ERROR OPERATION

UDCB IS THE USER'S DISK CONTROL
BLOCK WHICH DEFINES THE OPERATION
TO BE PERFORMED AND IS STRUCTURED
AS FOLLOWS:

UDCB+@ FUNCTION CODE
SEEK TRACK ONLY
! SEEK AND READ SECTOR
2 SEEK AND WRITE SECTOR
3 SEEK AND VERIFY SECTOR

WRITE OPERATIONS CONSIST OF:
1) VERIFY THE TRACK/SECTOR 1ID
IN THE SECTOR IMMEDIATELY
PRECEEDING THE DESIRED SECTOR
2) PERFORM THE VWRITE OPERATION -
3) THE SECTOR VWRITTEN IS THEN
VERIFIED BY A READ-AFTER-WRITE
CHECKSUM READ
NOTE:THE 1D CHECK AND READ AFTER
WRITE CHECKS CAN BE OVERRIDDEN
BY CONTROL FLAGS IN UDCB+!
FOR WRITING ON UNFORMATTED DISKS

UDCB+1 CONTROL FLAGS/UNIT SELECT
BIT FUNCTION
@-1 UNIT ADDRESS
6 READ-AFTER«WRITE . CHECK
CONTROL:@=PERFORM.,
' 1=INHIBIT
7 PRE-WRITE ID CHECK
CONTROL: 2=PERFORM,
. 1 =INHIBIT
uDCB+2 SECTOR ADDRESS (@-15)
UDCB+3 TRACK ADDRESS (@2-76)(34)
UDCB+4&5 BUFFER ADDRESS
BUFFER ADDRESS IS THE START
ADDRESS OF THE READ/WRITE
BUFFER TO BE USED IN
PERFORMING THE OPERATION.

6-24

ALL OPERATIONS

REQUIRE A 268 BYTE BUFFER
ORGANIZED AS FOLLOWS:
BYTE 8 -~ TRACK ID

BYTE | -~ SECTOR 1D

BYTE 2-267 -- DATA

BYTES @ AND | ARE FILLED
IN A5 NECESSARY BY THE
DRIVER

2) THE DISK 1,0 DRIVER RETURNS WITH
THE CONDITION CODE SET TO Z IF
THE OPERATION WAS SUCCESSFUL AND
NZ IF AN ERROR OCCURRED. THE
A REGISTER WILL CONTAIN AN ERROR
CODE AS FOLLOWS:
1 -- PERMANENT 1/0 ERROR - AN
UNRECOVERABLE DISK ERROR
OCCURRED
2 -- PARAMETER ERROR - ONE OF THE
PARAMETERS IN THE DCB IS
INVALID
3 -- DRIVE NOT UP - THE SELECTED
DRIVE IS NOT READY
4 =-- WRITE PROTECT - THE SELECTED
DRIVE IS WRITE PROTECTED AND
A WRITE OPERATION WAS
SPECIFIED
3) INITIALIZATION REQUIREMENTS

1) THE DRIVER CONTAINS A TABLE
LABLED “TRACK'" WHICH CONTAINS
THE CURRENT TRACK POSITION FOR
EACH DRIVE CONNEXTED TO THE
CONTROLLER. EACH ENTRY MUST BE
INITIALIZED TO FFH TO CAUSE THE
TRACK POSITION OF EACH DRIVE TO
BE RE~-CALIBRATED THE FIRST TIME
IT IS ACCESSED

2) THE PARAMETER LABELED "TRKMX"
MUST BE SET TO THE HIGHEST

TRACK ADDRESS WHICH IS 76 FOR
MOD II SUBSYSTEMS AND 34 FOR

MOD I SUBSYSTEMS

3> THE 16 BIT PARAMETER LABELED
“"DADE"MUST BE SET TO THE ADDRESS
OF THE DISK CONTROLLER WHICH IS
THE BOCT PROM ADDRESS+280H

L R L A R R R A B B A K B NE R R R R CEE R K BRI B A SR AR K BE AR AR R IR IR N IR NI AR A A I 2R R R K N N

2e00 ORG X‘'4g0°
g4age F3 DSKIO DI

6-25

gagl
o402
2423
Bad 4y
gas7
P48
24068
B4aecC
Q40D
g4ale
g4q12
0413
gal4
0415
2416
2al7

B4ala
241D
B4lE
P42
8423
B4az24
2425
B427
2429
g42C
p4a2Db
B42E
2439
2433
@434
2437
2438

@43B

B43E

Ba4l
Q444
445

Rev, 4

CS

DS

ES
210000
39
220807
El

ES
11F506
0606
7E

12

23

13

@5
c21204

21F586
7E
FE@4
D2D205
23

7E
E63F
FE@4

D2p2gs

23

7E
FE10
D2D2@5
23
3AFEB6
96
FAD28S

CDE4®5S

CDD5@4

3AF506
B7
CACCB4

7/77

DS@1o

* % %

* * ¥

»*

* ¥ Kk X ¥

* K ¥ * *

PUSH B SAVE REGISTERS
PUSH D

PUSH H

LX1I H,@ SAVE STACK POINTER
DAD SP

SHLD STACK

POP H GET POINTER TO
PUSH H USER'S DCB

LXl D,DCB COPY USER DCB TO
MVI B,DCBLEN INTERNAL DCE

MOV AL.M ‘
STAX D

INX H

INX D

DCR B

JNZ DS@12

VALIDATE DCB PARAMETERS

LX1 H,DCB FUNCTION MUST BE
MOV ALM 3 OR LESS
CPl 4

JNC PARMER PARAMETER ERROR
INX H

MOV ALM UNIT ADDRESS MUST
ANI X*'3F°* BE LESS THAN 4
CPl 4

JNC PARMER

INX H

MOV ALM SECTOR MUST BE
CPl 16 15 OR LESS

JNC PARMER

INX H :

LDA TRKMX TRACK MUST BE LESS
SUB M THAN OR EQUAL TO

JM PARMER MAX TRACK
ENSURE DRIVE 1S OPERATIONAL
CALL SLCT

SEEK TO DESIRED TRACK

CALL SEEK

GET FUNCTION PARAMETER FROM DCB
AND PERFORM ANY OTHER REQUIRED
FUNCTION

LDA DCBFN DONE IF FUNCT=

ORA A ‘SEEK ONLY(2)
JZ DS1¢0 DONE

PERFORM READ/VWRITE FUNCTION

RETRY CONTROL FOR READ/WRITE

6-26

8448
g4a4A
P4a4D
Q44F
@452
p4as4

2457
P45SA
245D
P46o
g461

o464
0467
p4a6A
046B

P46E
o471
0473
2476
2479
e47A
047C

Rev, 4

3E@B3
320607
3EQ4
320507
3E@S
320407

2AF906
2200087
3AF506
3D

C26A84

CDE106
C3A2024
3D

C29704

3AF606
E680
C28304
3AF706
3D
E6QF
47

7177

LR 2 B R IR 2R AR R R IR R AR BE 2 BE B SR BE BE K K B N B

O
0
[~
N
©

DS@ 30

DSe4o

* *

DSBé60

*

%K
L 3

OPERATIONS:

A 3 LEVEL RETRY STRUCTURE 1S
PROVIDED AS FOLLOWS:

1 =-- IF AN ERROR OCCURS,UP TO §
RETRYS OF THE OFFENDING OPERATION
WILL BE PERFORMED

2-- IF THE LEVEL | RETRYS ARE NOT
SUCCESSFUL,L,THE POSITIONER VWILL

BE STEPPED OFF TRACK AND BACK
AND THE LEVEL | RETRYS WILL BE
PERFORMED. THE LEVEL 2 RETRYS
WILL BE PERFORMED UP TO 4 TIMES

3 =~ IF THE LEVEL 2 RETRY
PROCEDURE IS5 NOT SUCCESSFUL,LTHE
UNIT VWILL BE DESELECTED TO UNLOAD
THE HEAD THEN THE UNIT WILL BE
RESELECTED,THE POSITIONER WILL

BE RECALIBRATED AND MOVED BACK

TO THE DESIRED TRACK AND THE
LEVEL 1| AND 2 RETRY PROCEDURES
WILL BE PERFORMED. THIS WILL BE
DONE UP TO 3 TIMES.IF NOT
SUCCESSFUL,A PERMANENT /0

ERROR WILL RESULT

MVI A,L3 PRESET RETRY .
STA L3RTRY COUNTERS

MVI A,4

STA L2RTRY

MVI A,S

STA LIRTRY

SELECT DESIRED FUNCTION AND.
PERFORM

LHLD DCBAD PRESET BUFFER
SHLD BUFADR ADDRESS

LDA DCBFN = GET FUNCTION
DCR A

JNZ DS@60

" READ SECTOR

CALL READAL READ SECTOR

JMP D509@ CHECK FOR ERROR
DCR A
JNZ DSQ&®

WRITE SECTOR

LDA DCBUN IF HEADER CHECK

ANI HCI INHIBIT SET GO
JNZ DS070 WRITE
LDA DCBSC BACKSPACE SECTOR
DCR A COUNT MOD 16
ANl X'9F°
MOV B.,A

6-27

847D
8480
0483
8486
2489
248A
848D
@48F
2491
8494
8497
0498

249B
P4SE
B4SF

P4A2
B4AS
P4AB
p4A9
B4AC

P4AF
@4B2
@4B5
04B6
B4B9

24BC
P4BF
g4cC2
@4C3
24cCé6

24C9o

24CC
@4CF
P4D@
24Dt

Rev., &

cpeloeé6

C2Aa204

CD2F96
3AF706
47
3AF606
E640
EE40
C4Bl@6
C3A204
3D
c2D2es

3AF706
47
CDBl126

CACCo4
3AR4BT
3D

3204087
Ca25704

CD3685
3A0507
3D

320587
cas2e4

CD63@85
3A0607
3D

320627
C24D04

€3CcCes

2AB807
F9
El
D1

7177

DS@78

DSP80

* *

S@90

* % * % X * ¥ ¥ ¥

% % % *

*

*
*

DS109

CALL READCK DO PRE=-WRITE HDR

JNZ DS©90 CHECK -~ ABORT ERR
CALL VWSECT GO WRITE

LDA DCBSC DO RAV CHECKSUM
MOV B,A READ CHECK

LDA DCBUN UNLESS INHIBITED
ANl RAFI

XRl RAFI

CNZ READCK

JMP DSP9@ GO CHECK FOR ERR
DCR A :

JNZ PARMER TRAP~-JUST IN CASE
VERIFY SECTOR

LDA DCBSC

MOV B.L,A

CALL READCK DO CHECKSUM READ

CHECK FOR ERROR

Ji DS109 - NO ERROR-EXIT
LDA LIRTRY LEVEL | -« RETRY
DCR A UP TO 5 TIMES
STA LI1RTRY

JNZ DS5@S0

RETRIED 5 TIMES - STEP OFF TRACK
AND BACK AND REPEAT

CALL RESTEP

LDA L2RTRY PERFORM UP TO 4
DCR A TIMES

STA L2RTRY

JNZ DS940

STEPPED OFF 4 TIMES - DESELECT
DRIVE TO UNLOAD HEAD THEN
SELECT,RESTORE AND RE=-SEEK

CALL RESLCT
LDA L3RTRY PERFORM UP TO 3

DCR A TIMES
STA L3RTRY
JNZ DS@30

UNSUCCESSFUL -~ ABORT VITH
PERMANENT 1/0 ERROR

JMP PERMER

END OF OPERATION

LHLD STACK RESTORE STACK PTR
SPHL |
POP H RESTORE REGISTERS
POP D

6-28

pap2
24D3
p4D4a

o4D5
o4D8
@4D9
24DC
P4DE
B4DF
B4E2
B4ES
P4LE8
P4ES
RAEA

B4ED
B4F0
B4F3
B4F4
B4F7
Z4FA
G4aFD
B4FE
8501
2504
2525
2506

2587
2508
2589
gseA
2588
J50E
@511
2513
8516
@519
g51a
2518
251C

851D
@SI1E

Rev. 4

Ci
20
co

CDE485
ES
CDBDES
JEFF
BE
C2ES@4
Cb79@5
JAFB@6
4F

S6

CAd 405

FAFAQ4
CD@785
3D
C2FQoe4
C30185
CD1DRS
3C
C2FAB4
cpepes
71
El
co

FS

DS

E5

AF
320707
2Ag207
3661
111E60
CD1726
El

D1

Fl

co

F5
DS

7/77

EIADR

0N * * % #*

EEK

SEEKI

X ¥ ¥ ¥ ¥

SEKIN

SEKOUT

SEEKRI
SEEKR

*

*
%

STEPIN

STP1

*
*
*

STPOUT

POP B

NOP SPACE FOR EI

RET

SEEK TO DESIRED TRACK

CALL SLCT ENSURE DRIVE SLTD
PUSH H AND READY

CALL LDTRK POINT HL TO TRACK
MUI ALX'FF! SEE 1F DRIVE HAS
CMP M BEEN INITIALIZED
JNZ SEEKI YES-CONTINUE

CALL RESTOR CALIBRATE POSITION
LDA DCBTK GET TRACK FROM DCB
MOV C.,A SAVE IN C

SUB M ALREADY AT TRACK?
JZ SEEKR YES-RETURN

NOT AT TRACK =-- ISSUE THE

APPROPRIATE NUMBER OF STEPS TO

MOVE

JM
CALL
DCR
JNZ
JMP
caLL
INR
JNZ
CALL
MOV
POP
RET

STEP

PUSH
PUSH
PUSH
XRA
STA
LHLD
MVI
LX1
CALL
POP
POP
POP-
RET

STEP

PUSH
PUSH

TO THE DESIRED TRACK

SEKOUT

STEPIN

A

SEKIN

SEEKFR1

STPOUT

A

SEKOUT

SETTLE WAIT HEAD SETTLE
M.C STORE TRACK
H

POSITIONER IN 1 TRACK

PSW

D

H

A SET DIRECTION FLAG
DIRCTN ‘
DADR STEP IN ONE TRK
M,STEP+1 '

D,3@ WAIT STEP TIME
TIMER

H

D

PsSvW

POSITIONER OUT | TRACK

PSVW
D

6-29

@S1F
8520
@522
@525
8528
252A

852D
@52E
P531
0534
@535

8536
8539
P53A
©53B
@53E
0541
@542
@545
0546
8549
254C
P54F
@552
@555
#6556
8559
B55C
PSSF
@562

8563
8564
8567
8569
856C
O56F
2572
9573
B576

ES
3EFF
320707
2A0207
3660
C313@5

DS
110A00
CD1706
D1
c9

CDBD#@S
7E
B7
C24205
CD7905
c9
3AR707
B7
C25605
CD@705
CD2D@S
CDIDPS
CD2DB5
co
CD1D@5
CcD2Dbes
Che 785
CD2De5S
co

ES
2A0207
36A0
11C800
CD1706
CDE4®@5
El
CD7985
C3DS5g4

Rev., 4 7/77

PUSH
MV1
STA
LHLD
MVl
JMP

*

%*

* WAIT

*

SETTLE PUSH
LX1
caLL

POP
RET

H
A X'FF? SET DIRECTION FLAG
DIRCTN

DADR

M, STEP STEP OUT ONE TRK
STP1 GO WAIT STEP TIME
HEAD SETTLE TIME

D

D,1@ 190 MILLISECONDS
TIMER

D

STEP OFF TRACK ONE AND BACK TO CORRECT

POSSIBLE

MARGINAL TRACK POSITION
WVHICH WROTE THE DISK

IF TRACK @ SUBSTITUTE RESTOE

*
*
*
* OF DRIVE
*
*
R

ESTEP CALL
MoV
ORA
JNZ
CALL
RET
RSTPA LDA
ORA
JNZ
CALL
CALL
CALL
CALL
RET
RSTPB CALL
CALL
CALL
CALL
RET
*

LDTRK GET CRNT TRK ADDR
ALM GET CRNT TRK

A

RSTPA

RESTOR USE RESTOR IF TK 0

DIRCTN
A
RSTPB
STEPIN
SETTLE
STPOUT
SETTLE

STPOUT
SETTLE
STEPIN
SETTLE

* RETRY ROUTINE TO RESTORE TO @ THEN

* LIFT HEAD,

*

RESLCT PUSH
LHLD
MV1I
LX1
CALL
CALL
POP
CALL
JMP

L IR K

LOWER HEAD AND RESEEK

H

DADR

ML,RESET RESET CONTROLLER
D,200

TIMER

SLCT RESELECT,LOWR HEAD
H ‘

RESTOR

SEEK GO RE-SEEK

RESTORE POSITIONER TO TEACK 0
POSITIONER MUST BE STEPPED 0OUT
UNTIL THE TRACK @ SWITCH IS MADE

6-30

@579
B57A
2578
BSTE
p580
@SB3
@585
pseéé6
0587

@588
@589
psg8c
P58D
@S8E
#591
@592
@593
8595

2598
B59A
259D
@S9E
25A1

Z25A4
25A6
2SAT
@5A9
25AC
PSAF
@SB@

P5SB3

Rev.

ES

C5
CDBDB5
36FF
CD8&@S
3600
cl

El

co

ES
CDE4@5
D5

CS
280207
23

7E
E688
CAA4QS

JE@E
CDB7¢s
3D
C29Aa@5
CL2Dp@s

@ESS
7E
E6g8
C2B6@S
CD1DB5
2D
€C2Aa605

C3CCoe5

4 7/77

* TO CALIBRATE TRACK POSITION
*

RESTOR PUSH H

PUSH B
CALL LDTRK POINT HL TO TRACK
MVI ML,X°'FF! PRESET TO BAD TRK
CALL RESTRI RESTORE TO TK @
MVUI M,0 SET TRACK=@
FOP B
POP H
RET
*
* RESTORE TO TK @
*
RESTR!1 PUSH H
CALL SLCT ENSURE UNIT SLCTD
PUSH D AND READY
PUSH B '
LHLD DADR POINT TO STATUS
INX H BYTE
MOV ALM ALREADY AT
ANI TK@ TRACK © ?
JZ REST3 NO ~ PRESS ON
*
* ALREADY AT TRACK © =- STEP
* IN 8 TIMES THEN RESTORE
* TO ENSURE GOOD POSITION
*
MUI A,8
REST2 CALL STEPIN STEP IN 8
DCE A TRACKS
JNZ REST?2
CALL SETTLE WAIT SETTLE TIME
%*
* STEP OUT UNTIL TRACK @ SWITCH
* IS ACTUATED OR UNTIL g5 STEPS
* HAVE BEEN ISSUED SO THAT VE
* DONT BANG AGAINST THE STOP
* FOREVER IF TK@® SVITCH 1S
* BROKEN ’
%
REST3 MVI C,85 LOAD MAX STEPCNT
REST3A MOV ALM TRACK 27
ANI TK®@
JNZ REST4 YES- PRESS ON
CALL STPOUT STEP QUT ONE TK
DCR C MAX STEPS ?

JNZ REST3A NO - TEY AGAIN
*
* MAXIMUM NUMBER OF STEPS HAVE
* BEEN ISSUED ~ ERROR ABORT
*
JMP PERMER
*
*FOQUND TRACK @ =~ WAIT
* SETTLE TIME THEN EXIT
*

6-31

¢5B6 CD2D@5 REST4 CALL SETTLE WVAIT HEAD SETTLE

2S5BS Cl1 POP B
PSBA DI POP D
@5BB El POP H

@5BC C9 RET
: *
* LOAD ADDRESS OF CURRENT TRACK ON
* CURRENT UNIT INTO HL
*

@5BD D5 LDTRK PUSH D
@5SBE 3AF606 LDA DCBUN
@5C1 E603 ANI 83 MASK OUT UNIT
g5C3 SF MOV E.A
25C4 1600 MVI D,®
¢5C6 21FCB6 LXI H,TRACK POINT KL INTO
@5C9 19 DAD D TRACK TABLE
@5Ca DI POP D
@5CB C9 RET
%
o
*
*
* ERROR EXITS
*
@5CC 3E@1 PERMER MVI A,1
@5CE B7 ORA A
@5CF C3CCo4 JMP DS120
@5D2 3Eg2 PARMER MVI A,2
@5D4 B7 ORA - A
@5D5 C3CCo4 JMP DS100
' @5D8 3E@G3 DRIVER MVI 4,3
@5DA B7 ORA A
@5DB C3CCO4 JMP DS120
@SDE 3E@4 PROTER MVI A,4
@SEQ B7 ORA A
25E1 C3CC@4 JMP DS109
*
*
%K
sk 2k >k e 5k ok Sk 5 3k 3k 3k >k vk 3k 3 ok 35 ok 3k 3K e ok 3k Sk sk 3k 5k dk 3 sk e Ak 3K 3K Ok 3k ok K koK
* REGISTER DEFINITIONS AND *
* FLAG EQUATES FOR MICROPOLIS *
* FLEXIBLE DISK CONTROLLER B *
3k 3k 3k 3¢ ok ok ok 3k 3K Sk kK 3k 3K oK 3k 3k 3 oK 3K 2k K 3K 3 3k sk 3k 3¢ 3Kk 3K oK s 3K ok 3k ok K ok Ok kK
* _
b 3
>k
Fupo BPROM EQU X'Fag@'
F620 DIADR EQU EPROM+X'0200"°
. * .
* DATA REGISTERS
*
F622 VDATA EQU DIADR+X'g2"
F622 RDATA EQU VWDATA
*
* STATUS REGISTERS

*
6-32

Rev. & 7/77

Fé600

po40
0o80o
P29

Fé6@1l

o080
oe4ap
o020
pele
ooo8
o004

Féoe

0020

0040

po6o

2280

POAD

Rev. & 7/77

DSECTR EQU
* 2-3

* 4

* 5

* 6

* 7

%

* FLAG
*®

SIFLG EQU
SFLG EQU
DTMR EQU
%

*

DSTAT EQU
* g-1

* 2

* 3

* 4

* 5

* 6

* 7

x*

* FLAG
* s
TFLG EQU
INTE EQU
RDY EQU
WPT EQU
TK®O EQU
USLT EQU

*
*
*
*

DIADR

SECTOR COUNT

SPARE
SPARE

SCTR INTERRUPT FLAG
SECTOR FLAG

BITS
Xr40°

X809
X'20"

DIADR+1

UNIT ADDRESS
UNIT SELECTED (LOVW TRUE)

TRACK @

WRITE PROTECT
DISK READY

PINTE

TRANSFER FLAG

BITS

X €0°
Xv4qg?
X 2"
X119’
X'p8"
X4

COMMAND REGISTER

DCMND EQU DIADR
*(ALSO WILL RESPOND TO DISK+1)

¥ VI FR X WEUL ¥ F X X X ¥

WTCMD

RESET

MODIFIER

SELECT UNIT

MODIFIER CONTAINS UNIT ADDRESS

SET INTERRUPT

=1 ENABLE INTERRUPT

=@ DISABLE INTERRUPT

2-1 COMMAND
5-7 COMMAND
COMMANDS
EQU X'20°
EQU X'48°
MODIFIER
EQU X'68°
MODIFIER =80
=91
EQU X'8@"

STEP CARRIAGE
STEP OUT
STEP IN

ENABLE WRITE

NO MODIFIER USED

EQU

X'AQ"

RESET CONTROLLER

NO MODIFIER USED

6-33

086

P5E4
@SES
BS5E6
@SE7
BSEA
@5ED
@SEF
O5FQ
@5F1

B5F2
BSF3
@SFS

BSF6
@5F17
@5FA
BSFB
@SFD

OSFE
ge@l
0604
B6@85
e6a7
P608
2629
262C
Q6QE
gele
g6l1l
@612
B613

g6l4

0617
B618
2619
g6l1cC
261D
P61F
09620
ge22

Rev. 4

DS

C5

ES
2A0207
3AF606
E683
47

e3

7E

4F
E687
A8

79
CaApCgé
78
Fé620
77

11FABG
CD1706
7E
E687
A8

7E
calgee
E620
EE20
El

cl

Dl

c8

C3D&85

CS

ES
2A8207
7E
066D
78
D601
B7

7777

SLo1®

SL@20¢

IMER

TiZ21@

EQU

134

SECTOR LNGTH/2

SELECT DRIVE SPECIFIED
BY UNIT ADDRESS IN DCB

PUSH
PUSH
PUSH
LHLD
LDA
ANI
MOV
INX
MOV
MOV
AN1
XRA

D

B

H
DADR
DCBUN
X'g3*
B,A
H
A,M
C,A
Xeg7°
B

GET CONTROLLER ADR
GET UNIT ADR FROM
DCB

AND SAVE

POINT TO STATUS
AND READ

SAVE STATUS

MASK USLD & ADDR
DESIRED UNIT PREV

NOTE-THIS TEST WILL FAIL IF
CONTROLLER IS NOT PLUGGED IN

MOV A,C
JZ SLO1D
MOV ALB
ORI SLUN
MOV M,A
LX1I D,250
CALL TIMER
MOV ALM
ANI X'*@7°
XRA B

MOV ALM
JNZ SLe208
ANI RDY
XRI RDY
POP H

POP B

POP D

RZ

DRIVE NOT

JMP DRIVER

SELECTED?
YES-CHECK RDY

GET UNIT ADDRESS
BUILD COMMAND
OUTPUT COMMAND
WAIT 256 MSEC FOR
SECTOR CNTR TO
GET IN SYNC

GET STATUS
SELECTED NOW?

GET STATUS AGAIN
ERROR IF NOT SLTD
ENSURE UNIT IS
READY

RETURN IF OK

UP ERROR

! MILLISECOND TIMER
DE=(DELAY) TIME IN MSEC

A 1S DESTROYED

PUSH B
PUSH H
LELD DADR
MOV ALM
MVI B,96
MOV ALB
sSul 1
ORA A

6-34

RE-TRIGGER 4
SECOND TIMER
COUNT

DELAY LOOP=1.0088
MSEC @588 NSEC

0623

0626
0627
2628
2629
p6ezC
262D
g62E

P62F
B632
$635
P636
2637
2639
R63C
263D
@63E
@63F
pé6al
P64a4a
64t
g64ag
ge4as
264C
264D
P64E
@64F
2652

0655
2657

0658
2659

265C
265D

265SF
P66@
v661

Rev, & 7/77

ceczoees

1B
7B
B2

"C21F0P6

El
Cl
c9

CDE485
3AF 706
417

C5
PEB6
2A0207
ES

23

7E
E6l10
C2DE®@5
2A0C0B7
ES

Dl
3AF806
77

23

79
2A02017
CDES@6

3680
23

Bé6
F258@6

23
36FF
AF

EB
p6eo

* ¥ ¥ ¥

* ¥ H ¥

WSECT

* R X X

JNZ TIG18+]

IMSEC EXPI1RED - DECREMENT DELAY
MULTIPLIER & CHECK FOR DONE

DCX D
MOV ALE -
ORA D

JNZ TIBI1D
POP H

POP B

RET

WRITE 1 SECTOR

CALL SLCT ENSURE UNIT SLD

LDA DCBSC AND READY
MOV B,A T

PUSH B

MUI C,SCLEN C <= BYTCT/2

LHLD DADR GET CONTROLLER ADR
PUSH H o

INX H READ STATUS

MOV ALM ABORT IF ,
ANI WPT WRITE PROTECTED
JNZ PROTER o

LHLD BUFADR GET BUFFER ADDR
PUSH H

POP D MOVE TO DE

LDA DCBTK MOVE TRACK AND

MOV M,A SECTOR ID TO WRITE
INX H BUFFER ‘

MOV M,B :

LHLD DADR GET CONTROLLER ADR
CALL GETSEC WAIT FOR SECTOR

FOUND DESIRED SECTOR-
ENABLE VRITE

MUI "M,WTCMD
INX H

VAIT FOR TRANSFER FLAG

ORA M
JP wsel1o

INSERT SYNC BYTE

INX H

MVI M,X'FF°*

XRA A CLEAR CARRY

XCHG : :

MVl B.@ AND CHECKSUM
6-35

2663
0664
0665
0666
8667
B668
2669
pesa
2668
266C
966D
P66E

2671
B672

2673
0674
0675
0676
0679
267C
067F
P68

0681

g684
0687
2688
2689
268B

P68E
P68F

8691
2692

Rev. &4

7E
12
88
417
23
7E
12
g8
47
23
@D
C26306

78
12

El
AF
Bé6
F27506
112100
CD17@6
C1
co

CDE485

3AF786
47

Cs
BEB6
CDDé6@6

EB
o600

1A
77

7/77

wsea2e

* *

*

wSe3e

EADAL

* 0K KR KX K F X

* ¥ X H *

DAlO

WRITE HEADER & DATA FIELD

MOV A,M GET BYTE FROM MEM
STAX D WRITE TO DISK
ADC B ADD TO CKSUM
MOV B,A SAVE CKSUM
INX H ' NEXT BYTE

MOV ALM ~ETC~

STAX D

ADC B

MOV B,A

INX H

DCR C

JNZ W5028

END OF DATA -~ INSERT CHECKSUM

MOV ALB
STAX D

WAIT END OF SECTOR

POP H.

XRA A

ORA M WAIT SCTR FLAG
JP WS@30 |
LXI D,! WAIT 1 MSEC FOR
CALL TIMER ERASE DELAY

POP B

RET

READ 1 SECTOR
VERIFY CHECKSUM AND HEADER

RETURNS Z=0K

NZ=ERROR
CALL SLCT ENSURE UNIT IS
) RDY + SLTD
LDA DCBSC GET SECTOR ADDR

MOV B.,A FROM DCB

PUSH B’ '

MVl C,SCLEN C <~ BYTCT/s2

CALL WTSYNC WAIT DESIRED
SECTOR & STRIP
SYNC BYTE

FOUND DESIRED SECTOR - READ

XCHG

MVI B,0 CLR CHECKSUM
READ LOOP

LDAX D ' READ FROM DISK
MOV M,A MOVE TO BUFFER

6~36

2693
2694
2695
2696
0697
2698
8699
g69A
P69k
R69C

PE9F
P6AD
gé6Al
B6A2

26A3
P6A6
P6AT7
B6AA
P6AB
@6AC
P6AD
B6AE
P6AF
26B0O

P6B1
g6EB2
26BS
P6B7

geBA
g6BC
26BD
@6BE
26BF

Rev. 4

e3
88
47
1A
77
23
88
47
@D
ca91g6

Ia
B8
Cl
co

240067
EB
CDBD@5
1a
BE
Co
13
1a
B8
co

C5
CDE4@5
UEBS
CDD606

0600
TE
12
88
47

71717

*
*
*

RDAG20G

* ¥

o B0 BE K JE BE B SE 5 R I BE BE EE K BRI

EADCK

*

INX H NEXT LOC

ADC B ADD TO CHECKSUM
MOV BLA AND SAVE

LDAX D NEXT READ

MOV M,A -ETC~

INX H

ADC B

MOV BLA

DCR C END OF DATA?
JNZ RDALlD NO~-LOOP

END OF DATA=-READ CHECKSUM

LDAX D
CMP B COMPARE VITH
POP B COMPUTED CHECKSUM

RNZ RETURN IF ERROR
CHECKSUM OK=-VERIFY HEADER

LHLD BUFADR POINT DE TO READ

XCHG BUFFER

CALL LDTRK POINT TO CURRENT
LDAX D TRACK AND COMPARE
CMP M WITH TRACK ID READ
RNZ

INX D

LDAX D COMPARE SECTOR 1ID
CMP B WITH DESIRED SCTR
RET

VERIFY SECTOR

READ THROUGH SECTOR WITHOUT
MOVING DATA INTO MEMORY AND
VERIFY TRACK AND SECTOR 1ID

AND CHECKSUM

ONLY TRACK AND SECTOR ID ARE READ
INTO MEMORY AND CHECKSUM IS
VERIFIED

SECTOR IS SPECIFIED BY B REG

RETURNS Z=0K
NZ=ERROQOR

PUSH B SAVE SECTOR

CALL SLCT "ENSURE SLTD&RDY

MVI C,SCLEN=-]! C <~ BYTCT/2-1

CALL WTSYNC WAIT SECTOR & STRP
OFF SYNC BYTE

MVl B,@ CLR CHECKSUM
MOV A.M READ TRACK 1ID
STAX D SAVE IN BUFFR
ADC B ADD TO CHECKSUM
MOV Bs,A AND SAVE

6-37

6C02 13
g6Cl 7E
gecz 12
p6C3 88
B6Ca 47
26CS 00

26C6 TE
@6C7 88
v6Ce8 47
g6C9 @@
g6CAa 20
P6CE 7E
g6CC 88
06CD 47
p6CE @D
B6CF C2C606

gé6p2 7E
©@6D3 C3ABE6

P6D6 2A02007
¥6D9 EB
@6DA 2A0287
@6DD CDE906
P6ER 23
P6E1 B6
@6E2 F2E106
B6ES 23
P6E6 TE
B6ET AF
@6E8 C9

@6ES 7TE
G6EA B7
@6EB FRE906
@6EE E6OF
P6F8 A8
@6F1 C2E906
@6F4 C9

‘Rev. 4 7/77

DCK19

¥*

EoNE BE B K 2 B B

TSYNC

VTS@10

0 * ¥ % %

ETSEC

SYNC
LHLD BUFADR
XCHG
LHLD DADR
CALL GETSEC
INX H
ORA M
JP - WTSQ12
INX H)
MOV A,M
XRA A
RET
ARQUND
MOV A.M
ORA A
JP. GETSEC
ANl X'@F°*

" XRA B
JNZ GETSEC
RET
REAM

* *

INX
MOV
STAX
ADC
MoV
NOP

D
ALM
D
B
B,A

READ SCTR 1D
AND SAVE

READ THROUGH REMAINDER OF SECTOR
TO COMPUTE & VERIFY CHECKSUM

MOV
ADC
MOV
NOP
NOP
MOV
ADC
MOV
DCR
JNZ

END

MOV
JMP

AsM
B
B,A

A,M

B
B.,A
c
RDCK1®@

READ FROM DISK
ADD TO CHECKSUM
SAVE CKSUM

-ETC-

OF DATA - READ CHECKSUM

ALl
RDAG20

GO CHECK HDR &
CHECKSUM

WVAIT FOR DESIRED SECTOR
TO COME AROUND AND STRIP OFF
BYTE FOR READ ROUTINES

GET BUFFER ADDRESS

AND CONTROLLER ADR
VAIT FOR SECTOR

WAIT FOR XFER RDY
FLAG

OK-READ IN SYNC
BYTE = - THROVW IT
AWAY,CLEAR CARRY
AND GO READ

WAIT FOR DESIRED SECTOR TO COME

WAIT FOR SCTR FLAG

0K =-1S THIS THE
ONE WE WANT?
NO=-WAIT

PRESS ON

STORAGE REQUIRED FOR DRIVER

6-38

@6FS
P6F5S
06F6
@6F7
@6F8

26F9.

Beoe6

Ro8L
2240
@6FB

B6FC
@6FD
P6FE
B6FF

2700

o782

0784
2705
2706

2707
8708

278A

Rev.

4C

FF

FF
FF

BOF6

4

*
*

*

DCB
DCBFN
DCBUN
DCBSC-
DCBTK
DCBAD
DCBLEN
*

*

HCI
RAFI
TRKMX

3% R X ¥ X K X ¥ W

3

*
*
BUFADR
*

*

*

DADR

*

*
L1RTRY
L2RTRY
L3RTRY
*
DIRCTN
STACK
*

%

7177

*

INTERNAL DISK CONTROL BLOCK

EQU
DS
DS
DS
DS
bs
EQU

EQU
EQU
DC

*
l
1
1
1
2
*-DCB

X'g0°
Xr40"
76

HEADER CHECK INH
RAW CHECK INHIBIT
MOD 2

CURRENT TRACK TABLE

MUST BE INITIALIZED TO FF

AT POWER ON TO CAUSE DISK TO

BE RESTORED TO TRACK @

THE FIRST TIME IT IS ACCESSED TO
CALIBRATE TRACK POSITION

DC
1919
DC
DC

DS

DC

X'FF*
X°'FF?
X'FF?*

. X!FF"

CURRENT BUFFER ADR

B(DIADR) DISK CTLR ADDR

RETRY COUNTERS

DS
DS
DS

DS
DS

END

i
1
1

SAVED SP

6-39

APPENDIX A_~ BASIC ERROR. MESSAGES

ARGUMENT -~ Akgument in a fuhétion réferenté is the wrong data type or missing,

ARRAY INDEXING ERROR - ~ A reference to an array element contains an invalid
index. May also be caused if an attempt is made to reference an array ele-
ment before the array is defined in a DIM statement,

CONVERSION ERROR - Attempt to ass1gn a rea] va1ue to an integer variab]e and
the converted value is too large. . \ _

DIGIT BEYOND RADIX - A number spec1f1ed in radix format includes a d1g1t which
is invalid: for the specified radix. o , :

DISK FULL - An attempt was made to allocate another track for a file and no
free tracks remain.

DRIVE NOT UP -~ The desired disk unit does not have a diskette loaded, is not
up to speed, or has a malfunction which prevents it from accepting commands.

DUPLICATE NAME - An attempt was made to OPEN a file name which already exists
as a new file.

END-FILE ~ :The end-of-file was encountered in a disk file read.
EXTRA INPUT IGNORED - The response to an INPUT statement contained more values

than were needed to satisfy the var1ab1e list and the extra values were
ignored.

FILE ALREADY OPEN - File number specified in an OPEN statement already has a
file opened to it. - ' :

FILE NOT FOUND - File namé specified in a disk I/0 command does not exist on
the specified diskette.

FILE NOT OPEN - File number specified in a disk I/0 statement does not have
a file name opened to it.

FILE TYPE ERROR - The attributes of the referenced file are inconsistent with
the requirements of the statement or command that referenced it. ~

ILLEGAL IMMEDIATE - An attempt was made to use a statement as a direct command
but the statement is only valid within a BASIC program.

INPUT OVERFLOW - A program line greater than 250 characters in 1ength was en-
tered - the entire program 1ine is cancelled. :

INSUFFICIENT INPUT - . The response to an INPUT statement conta1ned 1nsuff1c1ent
va]ues to sat1sfy the var1ab1e 11st .

INTERRUPT - Execut1on of a program was 1nterrupted by entry of a CNTL/C key at
the terminal.

INVALID DISK FILE NAMEV - Disk file name specified is not a valid disk file
name.

A=<l
Rey, 7 3/78

LOAD OVERRUN - The Iength of the BASIC program be1ng Ioaded exceeds the
' ‘memory space currently available to BASIC.

LOG OF NEG # - Attempt was made ‘to pass a negat1ve or- zero vaIue to the
LOG or LN funct1on

MEMORY OVERFLOW - Insuff1c1ent memory ex1sts for execut1on of the program

MISSING FOR - A NEXT statement was encountered prior to execut1on of a
FOR statement specifying the loop variable.

NOT A FILE # - File number specified in a d1sk I/O statement is not one of
the digits 0 - 9.

NOT A LOAD FILE - Attempt to Ioad a data format disk file.

NOT A RECORD # - The value following the RECORD option in a GET or PUT
- statement is not a valid record number.

- NOTHING TO RETURN TO - A RETURN statement was encountered prior to executing
a GOSUB statement.

NUMBER OUT OF RANGE - The value of an expression referenced is illegal.
Refer to the descr1pt1on of the statement in error for the range of
vaI1d values.

OVERFLOW - Numer1c overrow - ResuIt of an operat1on is too large to be
contained in a varlabIe

OUTPUT OVERFLOW - A PRINT or PUT statement has attempted to create an output
line (record) greater than 25@ characters in length. This exceeds the
~maximum internal buffer capacity. The line (record) is not output.

PARM ERR - Disk I/0 Parameter error - usually caused by setting the sequential
~GET/PUT pointers to an invalid value.

PERM FILE - An attempt was made to SCRATCH a permanent file.

PERM 1/0 ERROR --A d1sk 1/0 error occurred whtch was not recoverable 1n the
disk I/0 retry logic.

PRECISION ERROR - A numeric function or the 4+ operator was referenced with
RSIZE greater than 10. :

READY - The BASIC 1nterpreter is ready for entry of commands or program
Ilnes at the term1naI

RAN OUT OF DATA - A READ statement depleted the data Ilst before satisfying
the variable Tist. A GET statement encountered the end of the current
- record without satisfying the var1ab1e Tist.

A-2

Rev. 8 9/78

SIZES ERROR - One of the parameters of a SIZES statement is invalid or
there are already variables allocated when the statement is encountered.

SQRT OF NEG # - Attempt to pass a negative number to the SQR function.
STACK OVERFLOW - The statement in error contains an expression which is
too complex. Break the expression into multiple expressions which are
less complex.

STMT # NOT FOUND - The statement in error tried to transfer control to a
program line number which does not exist.

SYNTAX - The statement in error is not recognizable or contains an invalid
structure such as unequal right and left parentheses.

TYPE ERROR - Attempt to assign a value of the wrong data type to a variable.

WRITE PROTECT - An attempt was made to write on a file with a write protect

- attribute or the diskette on which the file resides has a write protect
tab installed.

UNDERFLOW - Numeric underfliow - The result of an operation is too small to
be assigned to a variable.

X4+Y INDETERMINATE - Attempt to take a fractional power of a negative number
or § or to raise @ to a negative or @ power, which are undefined operations.

ZERO DIVIDE - Attempt to divide by zero which is an undefined operation.

Rev. 8 9/78

APPENDIX B - BASIC UTILITY PROGRAMS

The PDS MASTER diskette included with each Micropolis disk subsystem
contains a BASIC UTILITY program which provides the following functions:

B.1 FORMAT A DISKETTE

A blank diskette must be initialized (formatted) before it can be used with
the Micropolis Disk Extended BASIC. Initialization consists of writing

track and sector address information in each sector of the data area of the
diskette and writing an empty Directory on the Directory track. Once initial-
~ized, a diskette may be used as a data diskette, or it may be configured as

a system diskette by saving BASIC on it.

Diskettes may be initialized by the following procedure. Read this procedure
through completely and carefully before attempting to initialize a diskette.
Follow the procedure exactly.

1) With BASIC in the computer and running, insert a MASTER diskette
or a system diskette with the program "UTILITY" previously saved
on it into drive P and load the diskette by depressing the actuator.

2) Enter the command LOAD "UTILITY" ¥. When the system responds with
READY, enter RUN +. (¥ denotes Carriage Return.) The Utility
program will output its sign-on message and prompt for a function
selection as follows:

DISK UTILITY PGM REV 4.X
ENTER KEY TO SELECT DESIRED FUNCTION

F FORMAT DISK
M MEM EXAM/MODIFY
S SAVE BASIC
E EXIT
3) Enter F ¥. The Utility program will output the message:
SPECIFY UNIT NUMBER?

4) Type the number of the disk unit (@-3) that is to be used and
press return. The UTILITY program vwill output the message:

INSERT BLANK DISKETTE IN UNIT X
ARE YOU READY?

Load the dwskette you wish to format into the specified unit.

5) Enter Y ¢ (for Yes). The Utility program will initialize the
diskette in approximately 70 seconds and then output:

FUNCTION ?

’

B-1

Rev. 8 9/78

6) At this point, the initialized diskette is ready to be used as
a data diskette. If you wish to create a system diskette, enter
S+¥. The Ut111ty program will output

- ARE YOU READY ?

Enter Y +. A copy of BASIC will then be written on the diskette,
in approximately 60 seconds, and then the Ut1]1ty program will
output ,

. FUNCTION ?

7) If you wish to 1n1t1a11ze more d1skettes, repeat this procedure
from Step 3. :

B.2 MEMORY EXAMINE/MODIFY

This function provides the means of examing or altering the contents of
RAM memory. To examine or modify memory, respond to the FUNCTION ? prompt
with M . = , . ~

The Utility will output:
ENTER ADDRESS ?

Type the hexadecimal representation of the desired memory address followed by
a carriage return. The Utility will print a carriage return linefeed, the hex
address and the hexadecimal value of the contents of the desired memory loca-
tion, followed by a question mark (?). Enter one of the following responses:

1) If a hexadecimal number from @ - FF followed by a carriage return
- is entered, the contents of the memory location just displayed are
set to the value entered. The address and contents of the next
sequential memory location are then displayed and the Utility prompts
for the next response.

2) If a carriage return .is entered, the address and contents of the next
sequential memory location are d1sp1ayed and the Utility prompts
for the next response.

3) If a colon (:) followed by a carriage return is entered, the
Utility prompts for the entry of a new address to display/modify
as described above.

4) If an exclamation mark (!) followed by a carriage returnk1s'entered,
the Utility exits the memory mod1fy/d1sp]ay funct1on and prompts
for a new function select.

B.3 SAVE BASIC

This function writes a copy of the BASIC system software currently resident
in memory onto a diskette. This function may only be used in conjunction with
the disk initialization procedure for creating BASIC system diskettes.

B-2
Rev. 8 9/78

B.4 EXIT
Enter E¥ to exit the utility program.
CAUTION: Each version of BASIC requires its own version of the utility

program. Attempting to run utility with the wrong version of
BASIC may result in catastrophic errors. ‘

B-3

Rev. 7 3/78

APPENDIX C - ACCESSING DISKCOPY FROM BASIC

DISKCOPY is a special overlay utility that writes an absolute binary copy

of one disk onto another. The utility overlays MDOS or BASIC. It uses

all available memory during the copying process. The more memory in a system
the faster the copying process. On average it takes about two minutes to
copy and verify all 315k bytes of a MOD II disk.

NOTE 1: Previous versions of DISKCOPY will not run with BASIC 3.0 and
DISKCOPY 3.9 will not run with earlier versions of Micropolis
BASIC.

NOTE 2: In multiple drive systems DISKCOPY can be copied onto another
disk by using the FILECOPY utility under MDOS (Section 4.7).

The DISKCOPY utility is invoked from BASIC by using the LINK command.
LINK "[unit:]DISKCOPY"
a sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

DISKCOPY waits until the unit number is entered. When a number between
P and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (@ to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write destina-
tion cycles by typing a control S. The process is restarted by typing any’
other key except a control C. ' '

The control C will cancel the eﬁtry or copy process and prompt:

CANCELLED
MORE ?

c-1
Rev. 7 3/78

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT @
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I/0 ERROR ON DESTINATION DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. 1In this case it is imperative that the
original diskette be .write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks from
the source disk as can be contained in main memory and then pause. When the
select indicator light goes out, remove the source diskette and insert the
destination diskette. Press the return key and as soon as the select
indicator 1ight comes on type a control S again. When the select indicator
light goes out again the data from the source disk has been written to the
destination disk and one complete cycle is finished. This process is
repeated, swaping the source and destination disks in and out until the
entire disk is copied. After the last data is written onto the destination
disk, the program goes directly into a verifying process and will not pause
until this is over. When the source is placed back into the drive and the
return key is pressed the system will prompt: GOOD COPY or output an error
message as discussed above. At this point the copy is complete.

C-2

Rev. 7 3/78

APPENDIX D - SUMMARY OF MDOS ERROR MESSAGES

D.1 MDOS EXECUTIVE AND SHARED SUBROUTINES

BAD FILE #

The file number specified is greater than 8.

BAD RECORD #

The record number specified is greater than exists in the specified file.
CANCELLED

A control C was typed at the con$o1e, canceling an operation.

COMMAND NOT FOUND

The word typed as a command name, or implicit command (file name) does
not exist. The command was spelled incorrectly or the file name was
not found on the specified disk.

DISK FULL

An attempt was made to allocate an additional track to a file, and no
free tracks exist. The file is closed and the message is output. Some
data may have been successfully written to the file before additional
track space was needed.

DRIVE NOT UP

The disk unit specified is not loaded.

DUPLICATE NAME

The file name already exists on the unit specified. A1l files on a disk
must have unique names.

END-FILE

The end of the file has been reached during a disk read.

FILE NOT FOUND

The file name specified does not exist on the unit specified.
FILE NOT OPEN

The file with the specifiéd number has not been opened.

Rev. 7 3/78

INDEX PAST EOR
The index position is beyond the end of the record.
LOAD ADDRESS ERROR

The address specified with a file to be Toaded into memory would cause
the file to overwrite the operating system.

PARM ERR

A parameter is out of range for a particular command, to big or to small.

This is different than a syntax error caused by a parameter beyond the maximum
input range.

PERM FILE

The file specified with a SCRATCH command or with the @SCRATCH subroutine
has an attribute with bit 1 set high indicating a permanent file.

PERM I/0 ERR

A disk I/0 error occurred which was not recoverable by the disk I/O retry
logic.

READ ONLY FILE

The specified file has an attribute with bit @ set high. This inhibits
rewriting of the file.

SYNTAX ERROR

The syntax of a command is wrong. This may be due to incorrect spelling,
or parameters beyond the maximum input ranges; 1§ characters for ASCII
and four hex digits for numeric.

SYSTEM VERSION ERROR

An attempt was made to run a system program on the wrong version of the
system.

WRITE PROTECT

The unit specified with a SAVE command or a subroutine that writes to the
disk has a disk in it with a write protect tab in place.

WRONG FILE TYPE

The file type does not correspond to the type of operation that is to
be performed. '

D.2 EDITOR
FILEBUFFER OVERFLOW

Rev. 8 9/78

This message occurs whenever there is less than 256 bytes of buffer space
remaining in the edit buffer. Input can continue until the buffer is
completely full, but the message will be repeated after each carriage
return. The file should be written to disk and a new file started. If

a file is loaded from disk and is too large to reside in the buffer, this
message is output and the load is aborted. No data is loaded. This is
most 1ikely to occur in conjunction with the APPEND command. If an APPEND
causes an overfollow, it is aborted and the files that were in the buffer
prior to the command are not changed.

FILE ON DISK NOT UPDATED, PROCEED?

The current working file in the editor buffer has not been saved or resaved
to disk. If you want to continue without updating the disk then type a Y
in response, otherwise type an N.

FILE NOT NAMED

A name has not been given to the current editor file prior to trying to
save it onto a disk.

LINE NOT FOUND

A Tine number which does not exist in the current text file was specified
in an EDIT command.

LINE NUMBER OVERFLOW

The editor command RENUM specified an increment that caused the Tine number
to exceed 9999 decimal. The file is only partially renumbered and care
should be taken to do an additional RENUM with a smaller increment to assure
that the file is properly numbered prior to doing any editing on the file.

STRING NOT FOUND

The SEARCH MASK specified with a SEARCH or CHANGE command in the editor
does not exist in the text.

D.3 ASSEMBLER

A

ARGUMENT ERRORs. are flagged with a capital A. They are caused when the
operand field contains and invalid character or a three byte opcode has

a ASCII literal which is out of range. In the later case the value is
truncated to the left. The error is flagged during pass two of the
assembly.

D ' '
DUPLICATE LABEL ERRORs are flagged with a capital D. They are the result
of the same symbolic name being used more than once as a label. The error
is flagged during pass one. The assembler uses the value of the first
label during the assembly.

Rev. 7 3/78

L

LABEL ERRORs are flagged with a capital L. They are caused by labels
containing illegal characters. Refer to the section on symbolic names.
The error is flagged during pass two of the assembly.

M

MISSING LABEL ERRORs are flagged with a capital M. They are caused when
a label is missing from a pseudo-op that requires a label. Only two
pseudo-ops require labels. They are the EQU and the INP pseudo-ops. The
~error is flagged during pass one of the assembly.

0

OPCODE ERRORs are flagged with a capital 0. They are caused by illegal
or missing opcodes. The error is flagged during pass two of the assembly.

R

REGISTER ERRORs are flagged with a capital R. They are caused when a
value greater than 7 or less than @ is used in the operand file where a
register value should occur. The error is flagged during pass two of
the assembly.

S

SYNTAX ERRORs are flagged with a capital S. They are caused by missing
operands, or improper use of operators. The error is flagged during pass
two of the assembly.

U

UNDEFINED SYMBOL ERRORs are flagged with a capital U. They are caused

when a symbolic name that has never been defined as a label is used as

an operand. Or, the label is used as a forward reference in a DS, EQU,

ORG, or INP statement. When the error is the result of a forward reference,
it is flagged during pass one of the assembly. Otherwise it is flagged during
pass two.

)

VALUE ERRORs are flagged with a capital V. They are caused when the
operand of a two byte opcode, or a DB, is beyond the range @ to FF hex
(one byte). The assembler truncates the expression to the left and uses

the least significant byte. The error is flagged during pass two of the
assembly. : '

D-4

Rev. 9 1/79

APPENDIX E - SYSTEM I/O LISTINGS

Supplied in this appendix are the assembly listings of the I/0 routines and
the configuration program.

The I/O routines are broken into three Sections E1, E2 and E3.

Section E1 is the logical I/0 routine for the console and list streams.
These routines should not normally have to be changed as they are tailored
to support BASIC and MDOS system requirements.

- Section E2 is the console physical I/0 handler which is modified as necessary
during the configuration process described in Chapter 2.

Section E3 is the printer physical output handler which must be modified or
rewritten as described in Chapter 2.

‘Section E4 is the configuration logic which is provided for information only
and should not be changed.

Section E5 contains the configuration tables which may in some cases have
to be changed as described in Chapter 2.

E-1

Rev. 7 3/78

Rev. 9 1/79

E.1 LOGICAL I/0 ROUTINES FOR PDS 4.9

J4E8
@4BA
- @4BA
24BC
@43BE
04C@Q
g4acCz
@4C4
24C5
24C¢€
04C7
@4C8
@4C¢

- 24CB

24CD
24CD
2773
R77B
2778
g77R
@778
@778
@77E
@778
@778
@77E
@778
@778
@778
@778
@778
B77B
@778
@778
23778
@778
@77B

24

¢
29

2o

ee.

Qe
2o

@5

22
28
2¢
40

2A
@4BA
0e
20
oe
20
20

Qoe
22 ¢

220D
2218
eees
2eeA
2057
0e7E
2003
201
eo10

eees
200z
Rgenz
aege2

GEIADDR
@SYNTABLOC
ARGQ

ARG1

ARG2

 ARG3

ARG4
NARGS
RSIZE
ISIZE
SSIZE
CFORMFLAG
GIDWCRD

sk

P

CR

CNTX

BS

LF
BACKARROV
RUBOUT
CNTC

CNTS
CANCELLED

%% 3% %

* CONSOLE DEVICE PORT

TISmAT
TDIN
TOSTAT
TDOUT

DW
EQU
Dw
LW
Tw
DW
Dw
DB
DB
LB
OB
DB
oW
FILL

IFT
ENDIF

CENERAL EQUATES

EQU
ECU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

E-2

QGREIADDE

[(SEORGEOESESESESESESET

N
- S
®m m

APPENDIXE

@TLH
18H

8

12

S5FH
7FH
‘C"-64
‘S°-64
16

ASSIGNMENTS

3
TISTAT
TDIN

SUSED IN SYMSAVE AND ASSM

s7=LINEFEEDS NZ=FORMFEEDS
;s CURRENTLY ONLY FIRST BYTE
$ZEPOS FILL

"JCONTROL X

Q77 R
2773
7738
2778 008z
977B 2002
o778 @001
@77B 2001

0773
2778
0778
9778 00805
@778 0005
@778 0004
877F
8778
2773 :
2778 2080
2778 2080
2778 @001
977E 0891
07738
277R
277 R
BB
@4EC FE 04
94LE 22 5
04¥¢
04Fe
3470
0470
0470 14 05
@4¥z 24 05
04F4 29 05
@4F6 1B 06
04F8 3B 26
@4FA 54 06
@4FC 6B 26
 Q4FE 20
04FF 23
@5¢¢ 3F
2521 021

Rev. 9 1/79

xS
*
o,
-

3

DIFLG EQU
MSK1 EQU
DOF LG EQU
MSK2 EQU
%
* LIST DEVICE PORT
*
PTSTS EQU
PTCTL EQU
PTDAT EQU
3
%
PMSKL £QU
PMSK2 EQU
PMSK3 EQU
PMSK4 EQU
3
* VECTORS TO
e
ORG
bW
DW
%

< CONSOLF REALY FLAG AND VMASK ASSIGNMENTS

2
DIFLG

1
DOFLG

ASSIGNMENTS

5 "
PTSTS
4 .

8eH
PMSK1
1
PMSK3

GCIOTABLE
@LIOTABLE

-

* LIST READY FLAG AND MASK ASSIGNMENTS

10 TABLES AT GCONSOLEADDR AND GLISTADDR
@CONSOLEADDR |

CONSOLE 10 TABLE
;LIST 10 TABLE

* CONSOLE DEVICE 10 TABLE- “VECTORS TO 10 HANDLER RTINS
% :

WRAPFLAG

WIDTH
CURSOR

ORG
W
W
DY
DW
DV
W
W
DB
DB
DB
DB

@CIOTABLE
CIN |
couT
CBRK
CDIN
CDOUT
CDBRK
CDINIT

2

3

3FH

1

E-3

sNULL COUNT

Rev. 9 1/79

2302
2582
0502
2522
8522
2524

3506

- @508

2524
252C
PSCE
0510
2511
0512
2513
2514
2514
2514
2514
2514
2514
2514
2514
2517
2518
051A
©51B
2511
Po1E
2520
3523
@528
2526
2528
529
D524
I52A
2E2A

2e
64

74

3B
E8

20
93
48
21

€D
78
E6
47
FE
c8
FE

EE
ce
26
3C
co

20

25

25
2]
26
26
26

8D
¥
23
26
7F
28

A

sk

3

At
prd

E-4

* CONSCLE TLCGICAL OQUTPUT PQUTINE

* LIST DEVICE I0 TABLE- -VECTORS TO 10 HANDLER RTNS
% .

sNULL COUNT

;CET RAW CHR
ySTRIP PARITY

yIF BK ARROW

s TURN INTO CNT H

;PORCE TO NOT ZERO

ORG @LIOTABLE

¥ 2

DW LCUT

DV LATN

W 2

DW - CDOUT

D¥ LDATN

DW LDINIT
PWRAPFLAG DB 7

) 3
PWIDTH DB 48H
PCURSOR D3 1
s , o -
* CONSOLE LOGICAL INPUT ROUTINE
* STRIPS PARITY FROM INPUT BYTE LEAVING 7 BIT ASCII
* CHANCES BACKARROR AND RUBCUT INTO BACKSPACE
* AND IF A CONTROL C RETURNS THE ZERO FLAG SFT
* CARRY FLAG ALWAYS RETURNED CLEAR (NC)
CIN CALL QCDIN

MOV AB

ANI 7FH

MOV B,A

CPI CNTC

RZ A

CPI BACKARROW

J? BSPC

XRI RUBOUT

RNZ
BSPC MV B,RE

INR A

RET

RS52A
252D
52K
831
P53<
BE35
8538
8539
0339
8539
539

2539

8539
8539
2539

2539

8539
2539
253C
853D
- 953K
0540
2542

2545

0548
2549
09543
284D
055@
gs52
0554
@555
2564
8564
2564
25€4
2567
2S68
@25€3
geer
@57¢
2573

Rev. 9 1/79

<A
EB
2A
SE
CD
22
c9o

FE
/1%

7C
00

10
12

21

7C
12

24
25

25
@5

07

es

a7

25

29

25

2s
25

couT LHLD

3* 3 3

3% 3% 3% 3 3k ¥ %

XCHG
LELD
XRA

CALL -

SHLD
RET

CHECK CONSOLE READY

WRAPFLAG

s D=NULLS, E=WRAP
WIDTH y H==CURSOR, L=WIDTH
A 7@ FLAG FOR DEVOUT
DEVOUT
WIDTH s UPDATE CURSOR

IF A KEY HAS BEEN PRESSED

IF NOT RETURN IMMEDIATLY.
IF A KEY PRESSED GET IT AND IF A CONTROL S WAIT

UNTIL SOME OTHER KEY IS PRESSED.

IF A CONTROL C, THEN PUT ERROR CODE IN A REG.
AND RETURN WITH THE ZERC FLAG SET (Z).

ANY OTHER CHARACTER RETURN WITH THE ZERO FLAG

CLEAR (NZ).

BRK CALL

RNZ
MCV
ANI
CPI
JNZ

PAUSE CALL

MOV
ANI
CPI
JZ

CANC CPI

%

LIST DEVICE LOGICAL

MVI
RET
FILL

" LOUT LHLD

XCHG
LHLD
MVI
CALL
SHLD
RET

QGCDBRK
A,B
7FH sy STRIP PARITY
CNTS 3 PAUSE
CANC yIS IT A CNTC
QRCDIN WAIT FOR INPUT
A,B sGET CHAEACTER
RUBCUT s STRIP PARITY
CNTS sIS IT A CNTS
- PAUSE yYES LOOP
- CNTC 3IS IT A CNTC

A,CANCELLED ;ERROR CODE
15,2 |
OUTPUT ROUTINE

PWRAPFLAG
: +D=NULLS E=WRAP
PWIDTH y H==CURSOR, L=WIDTH
A,1 yFLAG FOE DEVOUT
DEVOUT
PWIDTH ; UPDATE PCURSOR

E-5

Rev. 9 1/79

RS74

@574

2574
@574
@577
2578
@E7B
€578
Bo57EB
@578
2578

957E

8578
@578
2578
@o7R
8578
2578
@578
0578

cD

Do
C3

@57E

05738
@578
@573
@578
@578
8578
@578
@578
257R
@578
@57C
857C
@STF
2582
2581
Qe8Z
2586
2588

2o

32
48

FE
CA
FE
CA

EA 07
D1 @5

7B @5

2D
BE 25
cC @5

s
>3

ES

*

E-6

'LCGICAL LIST ATTENTION CHECK

LATN CALL @LTATN 5 PRNT ATTN

% 3 3 3 3% 3%

36 3 38 3 JF Sk I 3E 3% 3k 2% 3 36 3 3 ok

RNC
JMP ATT

COMMON TEVOUT ROUTINE FOR CCUT AND LOUT

LF IS OUTPUT WITHOUT ANY CHANGE IN THE COLM PCSITION
CE IS CHANGED TO CR + NULLS :

BS IS CHANGED TO BACKAFROW ,

CTLX IS CHANGED TO \ LF CR NULLS

WRAP, IF REQUIRED, OCCURS WHEN THE WIDTH+1 CHARACTER
IS PPESENTED FOR OUTPUT

DEVCOUT EXPECTS A=@ FOR COUT STREAM OR A=1 FOR LOUT STREAM
D=NULLS PARAMETER FOR SPECIFIED STREAM
E=@ FOR WRAP ENABLED OR E=1 FOR DISABRLEFD
L=WIDTH PARAMETER OF SPECIFIED STREFAM
H=LAST COLM PRINTED ON SPECIFIED STREAM
B=CHARACTER TO BE OUPTOT

DEVOUT PRESERVES D, E, H
DEVOUTIRETUHNS L=NEW LAST COLM OR L=@ IF CE WAS LAST OUT
DEVOUT RETURNS CARRY CLEAR (NC) IF OUTPUT WAS SUCCESSFUL

IF A PRINTER ATTENTION OCCURS IT RETURNS CARRY SET (C)
AND THE DEVICE ASSIGNMENTS ARE FORCED TO 1,1 AND 2,2.

ﬁFLAG DB e - 3@ FOR COUT, 1 FOR LOUT
DEVCUT STA DFLAG s SAVE WHICH STREAM FLAG
MOV c,B ~ 3SAVE MAIN CHAR IN C
MOV A,B _
CPI CR 3IF CR THEN
- Jz DEV@32 3 OUTPUT CR + NULLS & COLM=0

?
CPI LF yIF LF THEN
Jz DEV252 i OUTPUT LF & COLM UNCHANGED

@563
258D
gexely)
259z
2595
2596
2599
J59B
@59k
2oA0
25A1
@5AZ2
2SA3
@546
QSAY
@oA8
25AB
J5AE
QSAF
J5B2
@582
25B4
J5B5
@ERS
0586
25BE

SBB
25BC
d5BE
@ ZBF
@5C2
@5C3
25C5
25Ceé
BsC9
@5CA
25CR

cC

AF
B6

cC

aA
CD

@D
Cr
20
BF

Rev. 9 1/79

25
25

25

25

@5
@5

25

25

25

25

DEVZ12

DEV222

DEV@25

,}u

DEV238

DEV23Z2
DEVO3E

CPI
JNZ
MVI
CALL

JMP
CPI
JINZ
MVI
NOP
MCV
ORA
JNZ
MOV
CMP
JINZ

CALL
RC
CALL
RC
INR
ORA
RET

MVI
CALL
RC
MVI
MOV
CALL
RC
MVI
DCR
JNZ
XRA
MOV
RET

CNTX
DEVO1D
C,"\’
DEV@22

DEVQ30

BS

DEV@232
C,BACKARROW

A,E

A
DEV252
A,H

L
DEV@25

DEV@32
DEVESE

H
A

B,L¥
DEV255

B,CR
E,D
TEV@55

B,

E
DEV@35
A

E-7

;IF CONTROL X TEEN

SUBSTITUTE BACKSLASH

WRAP IF REQUIRED, OUTPUT \

ATTENTION EFROR EXIT

OUTPUT LF,CR+NULLS,COLM=0
IF BACKSPACE THEN

.9 wo wo we wo

) SUBSTITUTE BACKARROW
yPATCH PLACEHOLDER

y TEST WRAP ENABLED
y IF NOT, JUST CUTPUT CHAR

yTEST COLM=WIDTH

yIF SC D LF CE NULLS
sATTENTION ERROR EXIT
yOUTPUT IT

yATTENTICN ERKOR FEXIT
s INCREMENT COLM

s ENSURE CARRY CLEAR

y NORMAL EXIT

s OUTPUT LF

sy ATTENTION ERROR EXIT -
;SET CR FOR OUTPUT

i SET NULL COUNTER

y OUTPUT SET CHAR

s ATTENTION ERROR EXIT
ySET NULL CHAR FOR OUTPUT

yLOOP UNTIL NULLS COMPLETE
y ENSURE CARRY CLFAR
s AND FORCE COLM=2

Rev. 9 1/79

25CC
@5CC
25CD
0519
9501
@502
@5L5
@508
3509
@5TA
@5DA
@5DT
@5DE
@5F1
25F4

E.2 CONSOLE PHYSICAL I/0 HANDLERS

41
cr
De
F5
21
22
k1l
He)

SA
B7
Ca
€3

DA

a1
EA

7B
92

27

25

2z
24

e
a7
4%

ts

DEV@se
DEV255

ATT

o

DEV269

96138

B€E1R

@61B
. 0618
@613
@613B
@61B

0618
261D
@61F
2620
J622

DB 23

E6 02
EF 02
CA 2C 26

b 3% 3 3k 3 3%

CDIN

MOV
CALL
RNC
PUSH
LXI
SHLD
POP
RET

LDA
ORA
JZ
JMP
FILL

ORG

IN
NOP
ANI
XRI
JZ

E-8

B,C
DEV262

H
H,201H
@D1PORT

H

DFLAG

A

@CDOUT
@LDOUT
@PCON-$,0

PEYSICAL DRIVERS START HERF
FIRST THE CONSOLE DRIVERS

ePCON
TISTAT
DIFLG

MSK1
INO10

yRECOVER MAIN OUTPUT CHAR
y OUTPUT CHAR FROM B

sy SUCCESSFUL EXIT

ySAVE WIDTH '

; FORCE ASSIGNMENT STATF
sPRESERVING CARRY

y RESTCRE WIDTH

sATTENTION ERROR RETURN

3¢ FORE COUT
yOR

31 FOR LOUT

SCET STATUS

;IF READY GET CHE

0625
@625
2625
625
2625
REcE
o627
2628
262R
062C
ge2c
BE2E
geE2Y¥
263¢
2631
06338
6338
ge3r
JB3E
2649
9€4z2
2645
0E46
2648
@64¢
0644
2654
624
2654
2654
gEc4
@654
2654
R6EE
v657
2659
@658
265C

265E
265¥% .
vEED
geel

0
ee
€2
e
DB
47
co
DB
E6

EE
ce

1B 26

22

JA 20
z3
21

21
3B 26

78 -

D3

co

DB |

29
k6
EE
ce
DB

@2

oL 20

oe

47
co

s 20

Rev. 9 1/79

*SPACE HERE FOR NON-STANDARD BREAK CHK
fPUT CALL INPALCE OF NC OPS

s

INg102

e

CDouT

0UT22¢

ES

* CHECK BREAK
* IF NC KEY RET

* IF KEY GET IT AND PUT INTC 3

* RETURN ZERO
*

CDBRK

CDBRK2

NOP-
NOP
NOP
JNZ
RET

IN
NOP
MOV
RET
FILL

IN
NCP
ANI
XRI
JNZ
MOV
ouT
NOP
RET
FILL

NZ

IN
NOP
ANI
XRI
RNZ
IN

NCP

MOV
RET
FILL

CDIN

TDIN
B,A
10,0
TOSTAT
DOFLG
MSK2
CDOUT

A,B
TDOUT

12,0

TISTAT

DIFLG
MSK1

TDIN

B,A

1e,¢
E-9

yNOT READY SO WAIT

;GET CHR FROM DATA PORT
{CHR INTO R

; DONE

;OUTPUT STAT READY PORT
; READY FLAG

; LOOP

;INTO A FOR OUT

;OUTPUT IT

sy DONE

yREADY STATUS

'NO KEY IS WAITING
sy IF READY GET KEY

yCHR IN B ANT RZ

Rev. 9 1/79

JEEER

2661

Z66B
26€ER
0663
@66D
J66F
0671
2673
2675
o677
2679
@ETH

@67 C

3k
D3
3E
I3
3k
D3
2K
D3
Cco

AA
23
492
22
CE
g2
17
23

4F 00

>

b

E-10

* SPACE FCP AN INITIALIZATION ¥OR THE

* CONSOLE DEVICE. LIKE A TTY USING A USART ETC
*

CCINIT

E.3 PRINTER PHYSICAL I/0 DRIVERS

@6CB
2€CE
26CB
06CB
2€ECE
PECB

- ©06CB

26C3
@6C3B
26C3B
Q6CB
@6CE
@6CF
2671
96702
06L4
3616
2619
@6TA
26DC

. @6ID

@6LE

CD
D8
DB

E6
EE
Cz2
78
D3

€S

EA @7

21
21
CB ¢6

24

oh 20

LR 2 - 3

* 3*

3 3% 3%

o
b7

LDOUT

-«

 LDOUT1

LDOUTZ

MVI
ouUT
MVI
ouT
MVI
oUT
MVI
ouT
RET
FILL

ORG

CALL
RC
IN
NOP
ANI
XRI
JNZ

MOV

oUT
NOP
RET

-~ FILL

A,ZAAK
TISTAT
A,209

TISTAT
A,@CEH
TISTAT
A,17H

TISTAT

@PLIST-$,0

FCR THE IMSAI 2SI0-2 PORT B

@GPLIST

QBLDATN
PTCIL

 PMSK3

PMSK4
LpOoUT
A,B

PTDAT

19,0

5 DUMMY

;PESET THE 8251
s SETUP EQUIP
sTRUN IT ON

PEYSICAL HANDLER ¥OR THE LIST DEVICE

LIST QUTPUT CHECKS FOR PRINTFR ATTENTION
IF PRINTER ATTENTION CARRY SET (C) ON RETURN

sPRINTER ATTENTION
sYES RETURN CARRY SET
sPRINTER READY

{READY FLAG

s LOOP

- 3CHR INTC A FOR OUT

y OUTPUT CHR

iDONE

E¥S
06EE
26k6
2658
0618
96 ES
OEEA
G6EC
@SED
O6EF

- 26F1

06Fz
QoF3
C6¥F 4

O6FE

QEFE
CEFE
QEFE
JEFF
gree
@702
2724
27¢6
@7e8
B7ZA
@7ec
C70E
2710

AF
Co
DB

E6
EE

Ce

37
¢e

AT
co
SE
D3
Sk

3k
D3

z

D3
co

2711 -

2773

87
83

ZA 20

AA
05
42
23
CE
25

22
6A ¢©

Rev. 9 1/79

*oxow o

LDATN

*®

* INITIALIZE THE LIST

LDINIT

LINIT1
LINIT2
LINIT3
LINTT4

XRA
RET
IN
NOP
ANI
XRI
K2
STC
RET
FILL

XPA
RET
MVI

OUT

MVI
ouT
MVI
ouT
MVI
ouT
RET
FILL

PRINTER ATTENTION CHECK
CARRY SET=ATTENTION

A
PTSTS

PMSK1
PMSX2

12,9

yNO CP TC ACTIVATE
+yIF SUPPORTED
s ATTENTICN STATUS

sATT FLAG
s 0K

sy SET CARRY FOR ATT
sy DONF

DEVICE. LIKE A USART ETC

A

A,0AAH
PTCTL
A,42H
PTCTL
A,2CEE
PTCTL
A,17H
PTCTL

@PLIST+ZBOH-$

E-11

yNO OP
3y TO ACTIVATE
y DUMMY
s RESET
y SETUP EQUIP

sy TURN ON

Rev. 9 1/79 E-12
§j4v§ONFIGURATION LOGIC

2A2F g

2A2F * CONFIG FOR MDOS

2A2F * CONFIG FESIDES AT THE APP AFEA

242F * WEEN THE SYSTEM IS BOOTED DOWN.

2427 * TEE USER SETS THE DESIRED CONFIG ON TTE

242F * PEOGRAM INPUT SWITCHES AND JMP TO CONFIG.

242F ** CONFIG INITIALIZES THE TERMINAL HANDLER

2A2F * AND MOVES THE APPROPRTATE INITIALIZE CODE

2427 % INTO PLACE. CHANGES SOFTHALT TO A JMP TO MDOSSTART

2427 &

2A2F OKG GAPROGRAM ;CONFIG BEGINS

2822 0

2B@Q 21 AZ 21 CNFIG LXI SP,@STACK

2823 34 D2 ¢4 LDA CNBR ;CHK FOR VALID CONFIC #

2B26 B7? ORA A

2BC7 FA 48 2B IM CND4D 5SPECIAL CONFICS

2B2A * »

2BOA #IF¥ BIT? LCW THEN USE GENFRAL HANDLER

2B@A *ENSURE # IS VALID (

2B2A %

2BOA FE 07 CPI NUMBER ;NUMB OF CONFIGS

2BCC DA 12 2B JC CNa1e ; 0K

2B@F C3 AF ZB JMP % ; INVALID CODE TRAP

2B12 *

2B12 21 SA 2B CN@10 : IXI H,CNTBL ;TABLE OF CONFIGURATIONS

231 87 ADD A §A%2

2B16 SF | MOV E,A ;SET UP DE TO ADL TO HL

2B17 16 20 MVl D,8 DE=A*2

2815 19 DAD T

2B1A SE MOV E,M ; ADDRESS FROM

ZB1B 23 INX H 5CONFIG TABLE

2B1C 56 | MOV I,M |

2B1D 21 72 ZB LXI H,GHT3L ;TABLE OF LOCATIONS
C.N

2B2¢ CE 2C MVI UMITEMS +TO BE CONFIGED

2B2Z 1A
2B23 13
2B24 D5
2825 5%
2B26 23
2B27 56
2B28 23
2B29 12
2B2A Il
2B2B @D
2B2C C2 22
2B 2F

2B2F

2BZF

2B2F

2B2F EB
2R30 4E
2BZ1 23
2B32 11 63
2B2Z5 CD 3F
2B36E

2B38 21 99
2BZB 22 CE
2B3E E9
2B3F

2B23

2B3F

2BZF 7E
2840 12
2B41 23
2B42 13
2B43 2D
2B44 C2 3F
2B47 C9

Rev. 9 1/79

<B

76
2B

15
24

CN220

e 3 38 %

STARTUP
P

*
CN222

LDAX
INX
PUSH
MOV
INX
MCV
INX
STAX
POP
DCR
JNZ

XCHG
MoV
INX
LXI
CALL

LXI
SHLD
PCHL

MOV
STAX
INX
INX
DCR
JINZ
RET

C,M
H

D,CDINIT

CNo@32

H,2MDOSSTART
GSOFTHALT+1

AWM
T

GET VALUE FRCM TABLE
JNEXT POSIT IN TABLE
'SAVF THIS ALDR

s LOCATION IN HANDLER
3T0O BE CONFIGURED

s INTC DE

$PUT CONFIG INTO HANDLER

sGET ADDR BACK -
;NUMBER OF LOCATIONS-1
$LOOP TILL DONE

HANDLER JAS NOW BEEN CONFIGURED FROM TABLE
MCVE INITIALIZATION CODE INTO CINIT

yADDR OF CINIT LENG
yLENG INTO C

SINIT RTN IN HANDLER

+MOVE HL TO DE FOR C

y CHANGE SOLF HALT
yTO START MDOS
y RESTART MDOS

* SIMPLE MOVE CODE - MOVE FROM HL TO DE FOR A LENGTH C

Rev. 9

2B4§&
<B48
2B48
2B48
2B4A
2B4C
2B4F
2BS52
ZB53
2B54
2BS5S6
2B57
2BS58
2B59
2BSA
2BSB
2B5C

1/79

E6 7F
FE 02

Dz 4C 2B
21 5C 2B
87

5F

16 9¢

19

35E

23

56

ES

s

E-14

*SPECIAL CONFIGURATIONS

3%

CND42

ANI
CPI
JNC
IXI
ADD
MOV
MVI
DAD
MOV
INX
MoV
XCHG

PCHL

7FH
NUMSPEC

3
H,5CTBL

;STRIP OFF SPECIAL CODE
yNUMB SPFCIAL CONFIGS

s ERROR THAP SOFT HALT

s INDEX INTO TABLE

A*2

yHL=HL+2%A

yGET ADDR

yOF SPECIAL

s CONFIG FROM TABLE

3GO TO SPECIAL CONFIG

E.5 CONFIGURATION TABLES

2B5C
2B5C
2BEC
2B5C
ZB5C
2B5C
ZB5E
2BEQ
2B6¢
2B7Z
2B72
2872

2R72

2B74
2B76
2B78
2874
2B7C
2R7E
2BED
2BE2
2B84
2BE6
zBeg
2B8A
2BEA
2B8A
ZB8A
2EEA
2B8A
2BEC
2BSE
2559
2892
2B94
2B96
2898
2BS8

39
8A

1C
3C
58
2D
5T
47
iF
21
58

5A

2F

41

AC
€2

EE
¥C

JA

1B

2C
<C
2B62
12 ¢@

2B
2B
2B
2B
2B

2C

14 22

Rev. 9 1/79

% 3¢ Sk % 3%

SCTBL

ENDSPECIAL

oy
%

E3

GHTRL

b
s

%
3

CNTBL

Dl
3

ENDCNTBL

DW
Dw
EQU
FILL

Dw
Tw
DV
DW
W
Dw
DV
oW
DW
Dw
Tw
W

D
D
D
W
W
DV
TW

FILL

COMPAL
SOL

&

3

18,2

CDIN+1
CDCUT+1
CDBRF+1
ING12+1
CDBRKZ+1
0UTR22+1
CDIN+4
CPIN+6
CDBRK+4
CDBEK+6
CLCUT+4
CDOUT+6

CNF(2
CNFG1
CNFG2
CNFG3
CNFG4
CNFG5
CNFG6

22,9

TARLES skesieoleateslesieofeslesfoodeol sfe o o oot o st she sfe ol s s afe sl ool ofe s ool

TABLE CF SUPPORTED SPECIAL CONFIGURATIONS

s EXTRA SPACE

* PATCH LOCATIONS IN THF RESIDENT HANDLER

s TISTAT
s TOSTAT
y TISTAT
y TDIN |
3y TDIN

s TDOUT

s DIFLG

yMSK1

y DIFLG

yMSK1

y DOFLG

yMSK2

*TABLE CF THE SUPPORTED STANDARD CONFIGURATIONS

ALTAIR 38-FI0

s IMSAI 8102

y ALTAIR SIO A,3,C

;ALTAIR SIO A,B,C (REV 2)
yPTC ZP+S

y IMSAI MIO

yALTAIR 88-4PI0

Rev. 9
2BAC
<BAC
2ZBAC
2BAC
2BAC

2BAC
2BAC
2BAC
2BAC
ZBAC
2BAF
2BB2
2BB5
2BBE
2BB9
2BBB
2BBD
2BBF
2BC1
2BC2
2BC2
2BCz2
23C2
2BC2
2BCZ
2BC2
2BC2
2BCZ
2BC2
2BC5
2BC8
2BC3B
2BCF
2BCF
2BI1
2BD3
2BL5
2BD7
2BI9
ZBDE
2BID
2BIF

1/79

12
11
21
21
29
3E
D3
SE
D3
He

12

11

21
g2

23

11
10

23
gz

21

. AA

23
42
23
CE
22
17

2
«

12
11
21
22

23
gz
2

*SERIAL INTERFACES
b3

Sfesleste sle e slesfesie slesesle sheole e e s sfesfesie et sfe slele stestesfe e sfe sfestesfesfeofe Sfe dfe e sle dese sl e e

*CONFIGURATION @-- ALTAIR 88-2SIC

*OR OTHER SIO USING MOTORCLA

*6852 UART -
sfefesede e s e e e ek sl afe sk ol okt ke e e e dede e et e e

* : .
CNFG2 DB 16,16,16,17,17,17,1,1,1,1,2,2

DB 9 $INIT LENGTH
MYT 4,3 | ;RESET 6850
oUT 16 ;PROGRAM FOR 8 BITS
MVI A,11H s 2STOP, NOPARITY
OUT 16 16 CLOCK
RET ; DONE
S
*

3% sfestestesfe siestedesteafesk e ool sfesfesiestesle sleslesieoleskesesie st steoleslede e skl el ek Mok

#CONFIGURATION 1-- IMSAI SIO2

*OR OTEER SIO USING TEE INTEL 8251 USART
et e e skslestesee et oot ek e kol sl delelee e de ook ek ok ok

X
E S

CNFG1 DB 3,3,3,2,2,2,2,2,2,2,1,1
DB 17 ;INIT LENGHT
MVI A ,DAAH ~ ;DUMMY
oUT 3 v
MVI A,40H sRESET
ouT 3
MVI A,¢CEH
oUT 3
MYIT A,17H ; TURN ON
oUT 3

RET ~ ;DONE

 2BF2 *

2BEQ X

2BEQ *

2RE2 e e 3 she ol ske e e she o e o afe o o o sfe ke ofe o e ol ol o ol e ool ofe e e st el ol sfeofe e e dfe el o
2BE? *CONDIGURATION 2-- ALTAIR SIO A,B,C

2BEQ ‘ *(NOT REV 2) OR OTHER UART TYPF SERIAL
232 *1/0 BOARD NOT REQUIRING INITIALIZATION
2RED %5 2 o e ol e e she e sfe e e e ofe o e e afe e e oo o sl ol o e o she ol sfe el sde sde e ook e ok sk e ok
2BEC *

2BE2 . *

ZBE2 # o -
2BE0 ¢ 82 @@ CNFG2 LB ¢,2,0,1,1,1,1,2,1,0,82H,0

2BI3 01 21 &1

2BEE 21 28 01

2BE0 20 80 0C |
2BEC 21 DB 1

2BEL C9 ' RET 'y DONE
2BEE e :

2BER *

2BIE % .

2BEE stese s e se s e fese o st e sl sl st e e ool st stole e e e s sfesfe e slofe st e
2BEE #CONFIGURATION 3-—— ALTAIR SIO A,B,C (REV 2)
SBFE st s st e o ofe st e e o st oo e oo ofe ok ofe e o e s ek oo s e ool st feafe st s st sk ek
2BEE %

2BEE %

2BEE # - ;

2BREE 22 0C 20 CNFGZ DB ¢,2.9,1,1,1,20E,20H,20K,204,2,2

2B¥1 21 ¢1 @1

2B¥4 22 20 29

2BY¥7 20 02 @22

2BF¥A 01 LB 1

ZRTR (9 RET ' DONE

Rev. 9 1/79 E-17

Rev. 9 1/79 E-18

255C

2BFC : *

2BFC , *

2BFC e oottt ek ok dotolate ootk dololodolol dolok ootk dokoskol

2B¥C *CONFIGURATION 4-- PROCESSOR TECHNOLOGY 3P+S

2BFC *SERIAL I/0

2BFC . fek ekttt etestetoolootek otk e ek ool etk otk ol e el

2BFC * - 8 o

2BFC *

<BFC : * A T o
2BF¥C 2¢ 0e ¢¢ CNFC4 : DB ¢,2,0,1,1,1,40H,40H,40H,409H,80H,82H

ZBFF 21 21 21
2002 408 42 42
2C0@5 4¢ 8¢ 89

2028 01 D3 1

2009 C9 RET .~ iDONE

2C0A o | ‘ I

2CeA #

2CoA * .
2CCA 3¢ e e i e sje de o oo e o ajeale e Ak e st sfe sl ofe e e e ek sfe shesie sle shesdesfesfe e o ek e e e e e ke oo ek
2CoA *CONFIGURATION 5-- IMSAI MIO SERIAL 1/0

2C2A she e Heafl s sfe sl s ok o ool st e e o shesfe ole st sfe steskesle e e ste st e e slesleoe e sl e ek e e ok ok
2COA * |

2CoA %

2COA &

2COA 43 43 43 CNFCS DB 43H,43H,43H, 42H,42H,420,2,2,2,2,1,1
2COL 42 42 <2 | ’ - _ o ,
2C1¢ 22 92 02

2013 22 @1 21

2C16 24 , D3 4 ;INIT LENGHT
2C17 AF , XRA A _ '
2C18 D3 43 : oUT 43F

2C1A €9 RET ~ ;DONE

2C1B

2018

2C1B
2C13
2C1B
2C1®
2C1B
2013

<C1B.

2C1B
2C13B
2C1B
2C1B
2C1E
2Cz1
2024
2c27
2028
2029
2C2zB
etzer
2027
2032
203z
2024

€36

-~
20 28

Rev. 9

1¢
11
82
8¢
11
AF
ik
D3
L3
oF
L3
32
I3
D3
co

10
11
82
g3

10
11

12

13
z4
1g

1z

1/79

1
1
8
g

@

)
7

L%

3% RN

*

PARALEL INTERFACES

#****$%**$**************************************

*CONFIGURATION 6-- ALTAIR 88-4PI0

*OR OTHER PIO USING THE MOTOTCLA 6822 PIA

3fe 3¢ afe dle e Sl die e sfesfe e ool e e ol e e sk el e afe e vl sfe s ol o e sfe e dlesle ofr ool dfesk sheofe el ool sk

3

%k '

CNFG6 B 16,16,16,17,17,19, 80H,82H,834,80HK,3, 2

DB
XRA
oUT

- OUT
oUT
CMA
oUT
MVI
oUT
ouT
RFT

17
16
17
18

1¢

A,24H

16
18

$INIT LENGTH
$SELTCT DATA DIRFCTION

- SREGESTEF AND SET
3SPORT A=INK

s PCRT B=CUT

; CA2/CB2=0UTPUT
y LEVIL HANDSHAKE

s DONE

Rev. 9

2C&9
2029
2C39
2C39
2C36S
2C39
2C39
2C39
2C3C
2C3E
2041
2044
2C46
2049
204C
2C4F
2C&1
2C54
2CE7
2CSA
2CEC
2C5F
2C€z2
2C6¢
2C€8
2CER
2C€EE
<C6E

CEE
2C71
2072
2C73
2074
=074
2C75
2C78
2C79
2C7A
- 2C7A
<C73B
2C7E
2C7F
2C20

cD
47
B7
€9

78
CD
AF
e

FB
SA
47
B7
CA

1/79

B8
FB
6F
13
26
3F
74
3B
2€

7A
£4
10

AF
€3
21
FE

AD

74

L»)
&

26

2B
<C
26

2B
2C
26

2B
€9

21

24
<B

2

D

Qo o

.
b3

E-20

stttk et oot gk otk ko el s etk ool et ol ol ok
*SPECTIAL CONFIGURATION @ -— COMPAL 82
*TERMINAL I/0 1S PERFORMED THROUGH THE COMPAL

*MONITOR

3 3 e 3 s sje e e Sfe e 3 s e e e 3 s afeae s o e o e 3 o ajede e ik sl sfeafe ok o o s o o o e e seale o e o

3

COMPAL LALD
MVI
LXI
LXI
MVI
CALL
LXI
LXI
MVI
CALL
LXI

LXI

MVT
CALL
LX1
SHLD
LXI
SELD
IMP

I B ; CALL
MOV
ORA
RET

3%

Co MOV
' ' CALL
XRA
RET
b
CCITBRK EI
LDA
MCV
OkA
JZ

QEIADDR
M,ZFBY
H,CI
D,CDIN
CNe32
H,C
D,CLOUT

C,CCDBRE-CO

CNe3e

 H,CCDBRK

D,CDBRK

C,CEND-CCDBRK

CNO32
H,0COAFH
CDINIT
H,1¢1H
WRAPFLAG
STARTUP

@EJADH
B,A

A

A,B
QEZCZ2H
A

QEDF¥DH
B,A

CDBRK+14

y ENABLE INTERUPT AFTER
y DISK ACCESS
yCHR IN RTN IN MONITOR

;CI LENGHT |
;MOVE IT INTO PLACE

3 COMPAL CHR OUT
50 LENGTH .

sXRA A RET
yDISABLE CDINIT
yWRAP OFF NULLS ¢
yWRAP AND NULLS

" $CHR IN COMPAL MONITOR

;CLEAR CARRY

s CHR OUR COMPAL MONITOR
s CLEAR CARRY

s CHR FROM INTERUPT KEYBRD

2083
2084
2087
2088
2089
-2C84A
2C8A
2C84A
2CEA
2083
2084
2084
2CEA
2C84A
2084
Z08C
208F
2091
2094
2007
2C9A
209¢C
2COF
2CA2
2CA5
2CA7
2CAA
2CAD
2CB0
20382
2035
2C B8
2CBR
2CBE
20C1
20C4
20C4
20C4
20CE
20ce
ZCCB
20CC

> alala

AVAVEY]

AR

Co
3C
Co

z
~

32
QFE
11
21
CT
gE
11
21
CT
OF
11
21
CD
2E
11
21
CD
21
22
€3

AT

Ch
CA
47
B7
C9

Rev. 9

2 FD

kD

2084

SF
20
CA
1B
C4
3F

26
26

3B

3F
2D

D4
S¥
@5
€B
k1l

21

FE

28

22
1€

1/79

25

26
20
2B

2B

06
2C
2B

26
2C
<B
21
24
2B

ce
26

CEND

O R

3

w3 3 3% 3%

0L

N,
"

SCLIN

XRA
STA
RET
INR

RET -

EQU

MVI
STA
MVI
LXI
LXI
CALL
MVI
LXI
LXI
CALL
MVI
LXI
LXI
CALL
MVI
LXI
LXI
CALL
LXI
SHLD
JVP

XEA
CALL
JZ
MOV
OFA
RET

A

A

$
**********************************#*%*******¢****
SPECIAL CONFIGURATION
PROCESSOR TECHNCLCGY SOL-29

WITH SCLOS 1.3
e seaie s e e lesie e s ook sl el sk s st seole sk e sesdesofe o s e el el skeske e el

JEDFDE

A,83

WIDTH
C,SOLOUT-SOLIN ;INPUT LEN
D,CDIN

H,SCLIN

CNo2e
C,SOLCDBRK~SOLOUT

D,CDOUT -
H,S0LOUT

CNO3@
C,SOLINIT-SOLCDBRK

D,CDBRK
4,SOLCDBPK

CNGZ3 |
C,SCLEND-SOLINIT

D,CDINIT
H,SOLINIT

CND32
H,121H

WRAPFLAG
STARTUP

202221

CDI
B,A
A

N+1

E-21

1 -~

yWIDTH

yMOVE SOLIN TO CDIN

$WRAPOFF, NULLS 2

yPSUTO PCRT €

Rev. 9 1/79

2CCE

2CCE
2CCF
2CIz2
2CL3
2CT4
2CL4
2CrE
2CI8
2CDB
2CIC
2CDD
2CTE
2CLF
2CEQ
2CEk1
2CE1l
2CE3
2CKk6
2C k6
<CE6
2Ckc
2CE6
2CE6
<CEE

AF

cDh
B7

AF
CcD
CA
47
AF
co
AF

z
~

co

2k
€3

1C C@

22 @
5F 26

9B
3B @6
<CE€

peec
ae07
goce

o
b

SOLCDBRK

v _

SOLINIT
SOLEND

ate
B

*
NUMITEMS
NUMBER
NUMSPEC

XRA
CALL

ORA .

RET

XRA
CALL
Jz

. MOV
‘XRA

RET
XEA
INR
RET
MVI
JMP
EQU

EQ
ECQU
EQU

E-22

A
2Ce1CH
A ;

A
@ceg221
CDBRK+12
B,A

A

"

A

A,2BH
CDOUT -

CNTBL-GHTRL/2

"3sPSUDO PORT @

} ZERO=READY
y CDBRK+12

sNO ZERO CARRY CLEAR

;CLEAR SCREEN SET CWRSOR

ENDCNTBL-CNTBL/2
ENDSPECIAL-SCTBL/2

APPENDIX F - MICROPOLIS DISK BOOTSTRAP

T