
Microdata

Microdata MICRO·ONE
USER'S MANUAL

I_ Microdata

; ,

MICRO-ONE I

98820751011A
© 1975 Microdata Corporation
TM Trademark of Mlcrodata Corporation
Printed in U.S.A.

®
MICRO·ONE

USER'S MANUAL

UM 20001506
OCTOBER, 1975

PROPRIETARY INFORMATION

The information contained herein is proprietary to and
considered a trade secret of Microdata Corporation
and shall not be reproduced in whole or part without
the written authorization of Microdata Corporation.

I~ III'" Microdam
Microdata Corporation
17481 Red Hill Avenue
Irvine, California 92714 D 6(714) 540-6730 TWX, 910-595-1764

SECTION 1
1.0
1.1
1.2
1.2.1
1.2.2
1. 2. 3
1. 2.4
1. 2. 5
1. 2 •. 6
1.2.7
1. 2. 8
1..2.9
1.3
1..3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.4
1.4.1
1.4.2
1.5
1. 5.1
1.6
1.7
1.8
1.9

SECTION 2
2.0
2.1
2.1.1
2.1. 2
2 •. 1. 3
2.1. 4
2.1.5
2.1. 6
2.1. 7
2.2
2 •. 2.,1
2.2.2
2.2.3
2.2.4
2.2.5

MICRO ONE USER'S W\NUAL .

TABLE OF CONTENTS

ARCHITECTURE
SYSTEM ORGANIZATION
General Characteristics
Registers and File
T Register
M Register
N Register
L Register
U Register
R Register
LINK Register
I/O Control Register
File Registers
Memory Descriptions
Core Memory
MOS Memory
Control Memory
Memory Busy Delays
Memory Data Delays
Read-Only Memory Delays
Status and Condition Flags
Internal Status
Condition Flags
Byte I/O Interface
Byte I/O Bus
External Priority Interrupts
Real-Time Clock
Power-Fail/Automatic Restart
Arithmetic Functions

MICROCOMMAND REPERTOIRE
GENERAL
Connnand Formats
Litera1,Commands
Operate Commands
Execute Conunand
Formats for Execute Commands
Literal Commands
Operate Commands
Terms and Symbols Used in the command Descriptions
Microcommands - Formats, Descriptions, and Examples
LT Load T
LM Load M
LN Load N
LU Load U
LZ Load Zero Control

i

Page

1-1
1-1
1-6
1-6
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-11
1-11
1-13
1-13
1-13
1-14

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6

2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2.2.21
2.2.22
2 •. 2 .. 23
2.2 .. 24
2.2.25

SECTION 3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4

SECTION 4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.4.5
4 •. 2.4 •. 6
4 .. 3
4.3.1
4.3.2
4.3.3
4.3.4
4.4

L8 Load Seven Control
JP Jump
L Register Organization
LF Load File
AF Add to File
TZ Test If Zero
TN Test If Not Zero
CP Compare
K Control
Standard Output Functions
Standard Input Functions
A Add
S Subtract
R Read Memory W Write Memory
C Copy
o Or
X Exclusive Or
NAnd
H Shift
E Execute

MICRO-ONE I/O AND MEMORY INTERFACE
General Discussion
1/0 Organization
Serial 1/0 Interface
Byte I/O Interface
Program-Controlled 1/0
Concurrent I/O
External Priority Interrupts
Direct Memory Access Port

BYTE 1/0 INTERFACE
Introduction
Byte I/O Bus
Input Data Lines
Output Data Lines
Input Control Lines
Output Control Lines
Control Lines IOlX/ through I03X/
Lines CPH1 and CPH2/.
Control Line MRSTI
Control Line PROT/, PRIN/
Spare Lines
Control Line SELO/, SELI/.

·Byte I/O Fundamentals
Device Addresses
Device Orders
Status Bytes
Function Bytes
Byte I/O Operations and Timing

ii

Page

2-7
2-8
2-8
2-10
2-10
2-11
2-13
2-14
2-15
2-17
2-17
2-23
2-26
2-28
2-33
2-33
2-37
2-39
2-41
2-42

3-1
3-1
3-1
3-1
3-3
3-3
3-3
3-4

4-1
4-1
4-1
4-1
4-1
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-9
4-9
4-10

4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.1.5
4.5
4~5.1
4.6
4.6.1
4.6.2
4.6.3

SECTION 5
5.1
5.1.1
5.1. 2
5.1.3
5.1.4
5.2

SECTION 6
6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3 •. 2
6.3 •. 2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6

SECTION 7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4

SECTION 8
8.1
8.2
8.3

Program Controlled I/O Operations
Address/Order Phase
Transfer Phase
Data Output Operations
Function Output Operations
Data Input Operations
Concurrent I/O Operation
Concurrent I/O Timing
External Interrupt Operation
Priority Determination
External Interrupt Requests
Interrupt Sequence and Timing

MICRO-ONE CPU READ/WRITE MEMORY INTERFACE
Processor and Memory Interface
Control Section
Memory Read Data Selection Logic
Memory Write Data Gating Logic
M and N Register Address Gating Logic
Memory Control Interface

DIRECT MEMORY ACCESS PORT
Introduction
Functional Description
DMA Interface
DMA Memory Control Logic
DMA Memory Read Data Receivers
DMA Memory Write Gating Logic
DMA Memory Address Gating Logic
DMA Port/Memory Control Interface Timing
Clock Signals
DMA Port Signals
DMA Request (DMAR/)
DMA Write (DMAW/)
Memory Busy (MBSY)
Memory Addresses
Write Data
Read Data

SERIAL I/O INTERFACE
Introduction
Use as Teletype Controller
General Operation
Character Assembly and Disassembly
Serial I/O Instructions
Teletype Interface Connection

MICRO-ONE BACKPLANE CONNECTOR SIGNAL LIST
I/O Controllers and DMA Interface Signal List
Serial TTY (J2)
Front Panel (Cable) Connector (J3)

iii

Page

4-10
4-11
4-12
4-12
4-12
4-13
4-14
4-14
4-16
4-17
4-18
4-18

5-1
5-1
5-3
5-3
5-3
5-3

6-1
6-1
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-5
6-6
6-6
6-6
6-8

7-1
7-1
7-1
7-1
7-4
7-4

8-1
8-1
8-1

SECTION 9

SECTION 10
10.1
10.1.1
10.1. 2
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.3
10.3.1
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10 • .4.5
10.4.6
10.4.7
10.4.8
10.5
10.6
10.6.1
10.6.2
10.7

SECTION 11
11.1
11.1.1
11.1. 2
11. 2
11.3
11.4
11.5
11.5.1
11.,6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11~14

11.15
11.16

SECTION 12

I/O INTERFACE SIGNAL GLOSSARY

OPERATOR CONTROLS
Consoles
System Console (Standard 1600 System Console)
Basic Console
Displays on System Console
Data Display
Run
Halt
Lock
Scan
Panel
Address Stop
Switches and Syst~ Console
Display Selector
Connnand Switches
Pa,nel. Switch
Sense Switches
Run
Step
Interrupt
Clock
Reset
On 'Off-Lock
Address Sync
Register Display and Entry
Display
Enter
Operating Procedures -- System Console

MICRO ONE CPU OPERATIONAL DESCRIPTtON
General
Arithmetic Logic Unit and Multiplexer
Carry In
T. Register
File Registers
Rand U Registers
L Register
L or K Destination in an Operate Command
Condition and Link Logic
Memory Address Registers (M and N)
Destination Register Clock Logic
Command Decode ROMs
Programmed Input/Output
Interrupts
Memory Sequencer (Core Memory Version)
Computer. Clock and Run Control .
Run/Ha1t·Control .
Computer Start Logic
Automatic Power Fail and Power on Detection Function

SCHEMATICS

'iv

Page

10-1
10-1
10-1
10-1
10-3
10-3
10-3
10-3
10-3
10-3
10-3
10-3

··10-3
10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-5
10-5
10-6

11-1
11-1
11-3
11...,7
11-9
11-9
11-:-9
11-12

11-;14
11-14
11-14
.1~-18
11-19
11-19
i1-22
11-26
11-26
11-29
1i-29

Figure No.

1-1
1-2
3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
5-1
5-2
6-1
6-2
7 1
7-2
10-'1
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16

LIST OF ILLUSTRATIONS

Title

Micro-One Block Diagram
Backplane Interconnections
Typical Micro-One Series I/O Configuration
Micro-One I/O Bus Lines
Relationship of Control Signals CPHI q.nd CPH2/
Data or Function Output Timing
Data or Status Input Timing
Concurrent I/O Timing
Typical Priority Scheme
Typical Selection Acknowledgment Scheme
External Interrupt Timing
Interrupt Sequencer States
CPU and DMA Memory Interface
Half Cycle Read
DMA/Processor Core Memory Interface
DMA Port/Memory Control Timing
Serial I/O Interface Circuit
Serial I/O Timing
MICRO 1600 System Control
Arithmetic/Logic unit Block Diagram
2-Register Block Diagram
Fill Registers Block Diagram
Rand U Register Block Diagram
L Register Block Diagram
Condition & Link Register
M and N Address Registers
Destination Register Clock Logic
Command Decode ROM's Block Diagram
Programmed I/O Block Diagram
Interrupts
Memory Controller Block Diagram
Clock Generation Logic, Block Diagram
Run/Halt Control Block Diagram
Computer Star.t Logic, Block Diagram
Power Fail Detect Block Diagram

v

. 'Page

1-2
1-12
3-2
4-2
4-4
4-12
4-14
4-15
4-17
4~18

4-19
4-20
5-2
5-5
6-2
6 7
7-2
7-3
10-2
11-2
11-8
11-10
11-11
11-13
11-15
11-16
11-l7
11-18
11-20
11-21
11-23
11--27
11-28
11-30
11-31

Table No.

1-1

1-2

1-3'

2-1

2-2

2-3

2 4

2-5

2-6

4-1

4-2

4-3

4-4

4-5

8-1

8-2

9-1

11-1

LIST OF TABLES

Title

Microcommand Set

File Register 0 Flags

Inter,nal Status Bits

Register Designation for op~rate Co~ands

Standard I/O Control Codes

I/O Control States

Standard I/O Device Addresses

Standard Device Order

Typical Status Byte Definition

Interrupt Sequence States

Micro-One Backplane Connector Signal List

MOS Memory Interface Connector. List

I/O Interface Signal Glossary

ALU MUX Addresses, ALUModes, and Carry In

vi

. Page

1-3

l""~

1-10

2-2

2-2.0

2-24

2-25

2-26

2-26

4-4

4-7

4-9

4""10

4-2Q

8-2

8-4

9:",,1

11 ... 4

SECTION 1

ARCHITECTURE

1.0 SYSTEM ORGANIZATION

SECTION 1

ARCHITECTURE

The Micro-One Computer is a bus-organized system~ constructed around a file
of 15 programmable registers, which feature microprogrammed control. The
basic elements of the system are shown in the block diagram of Figure I-I.
The system executes 15 basic microcommands with many variations, plus a
code-variable execute command shown in Table 1-1. All microcommands are
l6-bits long and are in one of three standard formats. Micro-One micro­
programs are established in a Read-Only~Memory (ROM) and thereafter become
an integral part of the system's hardware. The microprogram can be changed
by replacing the ROM devices. Commands read out of the ROM control all
aspects of Micro-One's operation and are executed in a single 200 nanosecond
machine clock cycle.

Micro-One's 8-bit Arithmetic/Logic Unit (ALU) performs all data manipulation,
including: addition, subtraction, logical AND, logical OR, logical Exclusive
OR, and I-bit left and right shifts. The output of the logic network is the
A-bus which is the input to the files and other system registers; all data
byte movement occurs on this bus. The A-bus extends to the backplane and
can be used for special I/O functions. The output of the register file is
one of the inputs to the ALU, the other input is the B-,bus. B-bus inputs are
determined by the type of command, its options, and the I/O mode. B~bus
inputs are the true and the complement outputs of the T register, the input
bus, and the 8-bit literal contained in certain commands, and four external
sense lines.

The memory data and address buses communicate between the core memory
modules, the processor, and the Direct Memory Access (DMA) port. Either the
processor or the DMA port may operate with the memory, with DMA having
operational priority.

1.1 GENERAL CHARACTERISTICS

The heart of the Micro-One system is mounted on a single 8-1/2 x l2-inch
printed circuit board which contains the basic CPU and the lK ROM. There is
a connection and interface control for a piggyback MOS memory of up to 8K
bytes in lK increments. Additional characteristics include:

• Core memory addressing to 64Kbytes, or strap selectable to 32K bytes
for operation with Micro-One/2l firmware.

• 1.0 Microsecond memory speed (full cycle)

• 8-Bit memory bytes

• Up to 1024 words of read only storage

• Two versions of control consoles

1-1

DATA,
STATUS,
REQUESTS,
CONTROL

JUMPERED FOR
32K OR 64K BYTES

~~--~--~--~~--

DIRECT
MEMORY
ACCESS

MEMORY OAT
BUS

CORE MEMORY
0-32K BYTES

101X}
102X

CoNTRoL.r---------~

103X

3UNES I/O CONTROL ~_ SET BY COMMAND
REGISTER DECODE AND CONTROL

INPUT BUS (8 BITS)

CONSOLE
DATA
SWITCHES
8 BITS

R BUS (16 BITS)

FILE
REGISTERS
(15 x 8)

READ ONLY
STORAGE
256-1024
WORDS (16)

"-___ 8~B"-'IT;....;:.L;...;IT...;;E"_R"_A.;.;;L;,;;S;..;F...;R.:..;O:;.;M~R.;..;O:o.;.M"__ _ ___I R REG ISTER
(16) BITS

CONDITIONS
(ZERO
POSITIVE,
OVERFLOW)

TO ALL FUNCTIONS
COMMAND
DECODE AND- CONSOLE CONTROL
CONTROL SWITCHES

Figure 1-1. Micro-One Block Diagram

1-2

I-'
I

w

No.

0

1

2

3

4

5

6

7

Name

Execute

Literal
to

Register

Load File

Add to File

Test If Zero I

Test Not Zero I

Compare

Control

Class In-
struction

Execute

Literal
Class

Commands

I

I

Operate
Class
Commands

C fie

--

Table 1-1. Microcommand Set

Literal to Register
Code Mnemonic Subfunctions

OXXX E NA

10XX LZ Load Zero
11XX LT Load T
12XX LM Load M
13 XX LN Load N
14XX JP Jump
1SXX JP Jump
1CXX JP Jump
1DXX JP Jump
16xx LU Load U
17XX LS Load Seven

2fXX LF N/A

3fXX AF N/A

4fXX TZ I N/A

Sf XX TN N/A

6fXX CP N/A

7fc*r K !

IdJ L estination register
r ,M,N,L, U

N/A

Operations

OX is ORed with U Register

No operation
XX replace contents of T
XX-replace contents of M
XX replace N & M is cleared.
to page O.
to page 1.
to page 2.
to page 3.
XX replaces contents of U. i

Internal Controls I

f = file number

f = file number

Skip on no bits match, if file
f of the ones in the XX.
Skip on any bits match in file I
f of the ones in X. I

Skip on f + XX>28 -1
c Field (Binary) I

I
0000 No operation
0001 Enter Sense Switches

I 0010 Shift Right Four Bits

I
0100 Enter Internal Status
0111 Enter Console Switches
1000 Clear I/O Mode
1001 Control Output
1010 Data Output
1011 Space Serial TTY

Table 1-1. Microcommand Set (Continued)

Class In- Literal to Register
No. Name struction Code Mnemonic Subfunctions C field (binary)

Operate 7fc*r N/A 1100 Concurrent Acknowledge

7 Control Class 1101 Interrupt Acknowledge
Commands 1110 Data Input

1111 Spare

I
---- I

8fc*r A N/A 0001 Modify Flags
8 Add 0010 File + T

1 0100 Sum + 1
1000 Sum + Link Bit

I 9fc*r S N/A 0001 Modify Flags I
I

0010 File + T Complement

I 9 Subtract 0100 Inhibit Increment
1000 Difference + Line I

1

Afc*r R/S N/A OOXX Transfer
01XX Decrement

10 Read/Write 10XX Add Link
Memory 11XX Increment

XXlX Half Cycle
XXX1 Write (Not Read)

I Bfc*r C N/A XXX1 Modify Flags
I XXlX Select T

11 Copy XlXX Select + 1
1XXX Select Link

12 OR Cfc*r 0 N/A XXX1 Modify Flags
XXlX Select T
XlXX Select T Complement
1XXX Linked Zero Test

_~ __ . ___ l---.-.-._. _________
j

Table 1-1. Microcommand Set (Continued)

Literal to Register

I
I No. Name Code Mnemonic Subfunctions C field (binary)
I

13 Exclusive OR Dfc*r X I Same as OR

14 AND Efc*r I N Same as OR

Ffc*r I
I

15 Shift H XXXl Modify Flags
XXlX Shift Right
XlXX Insert ONE
lXXX Insert Link

NOTE: If* = 0, result of operation
is placed in file (f) •

(!) f = file address
I-' ® c = sub op code field I
Vt

G) * = inhibit file write

@ r = destination field

• TTL integrated circuitry

• Operating temperature 0 to 500 C; relative humidity 90%

• Compatibility with Micro 1600 interface controllers

• Power: +5V, 3A with lK ROM

• Power fail detect and auto restart standard ,(requires full wave
rectified 8V peak signal supplied from power supply)

• 120 Hz real-time-clock standard

• Serial TTY interface standard

• Single channel external interrupt

• Concurrent I/O using the programmed I/O bus

• Bidirectional memory data bus

• Separate 8-bit output and input data buses

• ROM memory sequencer which can be programmed for CORE OR MOS
memory timing

1.2 REGISTERS AND FILE

There are eight CPU registers and 15 file registers. Each,of the eight CPU
registers has a specific use in the processor, while the files are used for
general storage and flags.

1.2.1 T Register

The 8-bit T register serves as the operand register for moSt of the operate
class commands, and as a buffer register for output and memory operations.
Both the true and complement output of the T register can be gated to the
B-bus as an operand. When 'both the contents of T and its complement are
selected as operands, the effective operand is all l-bits; if neither is
selected the operand is all O-bits.

The T register can be loaded directly from ROM 'using a Load T instruction,
from core memory on a Read instructioI1~ or it may, be loaded from a file '
register from the input bus, or fro~ itself (such as when incrementing T) by
designating T as the destination register of an, operate class command. All
programmed outputs, including contro1ancJ data bytes, go out via the T register.

1.2.2 M Register

The eight-bit M register contains the eight high-order bits of the processor
memory address. This register is gated onto the Memory Address bus at all
times except during a DMA op~ration. The M register can be loaded directly
from ROM using a Load M command, or can be loaded by designating M as the
destination register of an operate class command. The M register is cleared
on a Load N command.

1.2.3 N Register

The eight-bit N register contain the eight 10~order bits of the processor
memory address. This register is gated onto the Memory Address bus at all
times except during a DMA memory operation. The N register can be loaded
directly from ROM using a Load N command, or by being designated as the
destination register of an operate class command.

1.2.4 L Register

The 10-bit L register is the program counter and contains the read-only
storage address of the next command to be executed, unless it is altered
by a Jump command. The eight low-order bits of the L register serve as a
counter which is incremented by one at each clock time when the processor
is running unless a command execution delay is imposed. L is loaded by
a Load L command, or as a destination register of an operate class command.

1.2.5 U Register

The eight-bit U register is used to modify the output of the read-only storage.
For commands with Op Code 0 or non1itera1 instructions with destination of 7,
the contents of the U register are Inc1usive-ORed with the eight high order
bits of the ROM output as it is gated into the R register. This allows for
dynamic modification and changing of operation codes and file register
designators. U is loaded by a Load U command or as a destination register
of an operate class command.

1.2.6 R Register

The 16-bit R register holds the present microcommand being executed. Its
output is decoded and controls the operation of the processor at each clock
time.

1.2.7 LINK Register

The one-bit LINK register holds the ALU'S high order carry from Add, Subtract,
and Compare commands and the shifted off end bit from the Shift command.

1.2.8 I/O Control Register

This three-bit register generates the control signals for the I/O bus,
Seven separate control signals can be developed by decoding the register
outputs. It is loaded and cleared by a control command, placing the timing

1-7

of I/O control signals under command control. There are three output modes
and four input modes. The high-order bit of the register is the input flag.
When this bit is aI-bit, the input bus is esupstituted for the T regi,~ter
when it is selected, and is the source of data when executing an'external
I/O control command.

1.2.9. File Registers

Files consist of 15 eight-bit operational registers plus one File Zero
register. All commands, except Load Register with Literal (Op-l), specify
the file which will provide one input to the ALU. All file registers are
functionally identical except for file register 0 which contains eight
flags, and cannot be used for g,eneral storage. The flags of file register
o are given in Table 1-2.

Table 1-2. File Register 0 Flags

Bit Flag
r-----~--------------~--~--~--~

o Overflow Result Condition

1 Negative Result Condition

2 . Zero Result Cond! ton

3 Concurrent I/O Request Line

4 Internal Interrupt

5 I/O Reply Line

6 Serial Teletype

7 External Interrupt Line
r-----------.-------------~------------------------------------~--------~

1.3 MEMORY DESCRIPTIONS

A brief functional description of the Micro-One·s memories, memory busy, and
memory data delays is provided in paragraphs 1.3.1 through 1.3.6.

1.3.1 Core Memory

The magnetic core memory of the Micro-One is organized into pluggable modules
of 8K or 16K bytes. Addressed at the byte level, the memory is operated in
read or write, and full or half-cycle operations. The full-cycle memory
timing is five 200 ns clock cycles (1.0 microsecond); the half.,..cYcle timing
in the system is three clock cycles (600 ns). For a read operation, the
acce.ssed data is placed in the T register two clock cyclesa:fter the start
of the memory operation. Full cycle regeneration of the data in the memory
does not require the use of the T register and'! may be modified'by the
microprogram before completion of the restore part of the cycle.

1-8

1.3.2 MOS Memory

The MOS memory of the Micro-One is organized into modules of lK bytes with
up to 8K bytes available. The memory is mounted piggyback on the Micro~One
circuit board so that additional connectors are not required.

1.3.3 Control Memory

The read-only memory provides storage for commands and constants of the
microprogram. Its output is gated into the R register where it controls
system operation at the next clock time.

The ROM is always accessed for the next command while the current command
is being executed. This look-ahead ability achieves faster command execution
time. When the sequence of command execution is altered by a jump or skip,
and additional cycle must be taken to perform an access before the next
command is executed. When the unit is halted. theL register contains the
address of the first command to be executed when operation is resumed.

Each command is executed in a single clock cycle time although execution
may be delayed because of core memory or read-only memory operations. The
system clock rate is 20 MHz, and the clock cycle is 200 nanoseconds.

1.3.4 Memory Busy Delays

When the memory is busy due to processor or D}~ operations and a read/write
command or a command to modify M or N registers awaits execution, a delay
will occur until the memory operation is completed. These commands are
executed on the last clock of the memory half or full cycle. If a DMA
request is pending at the time a read or write memory command is to be
executed, execution is delayed to give the DMA memory priority.

1.3.5 Memory Data Delays

Operate class commands which select the contents of either the T register
or its complement during the first two cycles of a processor memory read
operation are executed during the third cycle of the read operation. This
allows time for the accessed byte to be placed in the T register.

1.3.6 Read-Only Memory Delays

An extra cycle is required for command execution for the following conditions
because of the look-ahead nature of the read-only memory:

a. Jump command.

b. Test if Zero command when a skip occurs.

c. Test if not Zero command when a skip occurs.

d. Compare command when a skip occurs.

e. Operate class commands which have the L register designated
as a destination.

1-9

1.4 STATUS AND CONDITION FLAGS

Status and Condition flags are described in the following paragraphs.

1.4.1 Internal Status

Eight internal status bits are provided in Micro-One to designate a
particular internal interrupt condition. When any of the internal status bits
is a I-bit, the internal interrupt flag (bit-4) in file register 0 is also a
I-bit. This flag is tested by the microprogram to detect the presence of
the internal interrupt condition. The internal status bits are entered
via the B-bus into the selected file register by a control command, at which
time the status bits are cleared. The assignments for the eight internal
status bits are given in Table 1-3.

Table 1-3. Internal Status Bits

Bit Interrupt Status

o Console Interrupt

1 DMA termination

2 Real-Time Clock Interrupt

3 (Spare 0)

4 (Spare 1)

5 (Spare 2)

6 Console Step Switch

7 Power Fail/Restart Interrupt
~ _____________________ -L __ ~ __ ~

1.4.2 Condition Flags

The Overflow, Negative and Zero conditions resulting from an operation
involving the ALU can be stored in File Register 0, (See Table 1-2,)
condition flags are updated for command 7 and for commands 8, 9, B-F if
bit 4 is a I-bit. These condition flags can be tested by the microprogram
for implementing various conditional operations. Definitions of the
condition flags follows:

a. Overflow - The Overflow Condition Flag stores the arithmetic
overflow condition during an add, subtract or copy command. It
stores the shifted off end bit during a shift command. Arithmetic
overflow occurs when the result exceeds the range of the computer's
8-bit registers.

1~0

b. Negative - The Negative Condition Flag stores the high-order bit
of the result on the A-bus since the 2's complement number system
uses the most significant bit as the sign bit.

c. Zero - The Zero Condition flag stores the zero condition of the
result. The zero test can be linked over multiple byte operations
under control of the LINK modifier (bit 7) of operate instructions,
When this bit is 1, the Zero Condition flag may not be set to indicate
the zero condition of the current byte, but may only be reset to
indicate a non-zero result. For this flag to indicate zero over
multiple bytes it must be set by a zero result on the first
operation which will have the LINK modifier zero, and not be reset
by non-zero conditions on succeeding bytes which will have the
LINK modifier a one.

1.5 BYTE I/O INTERFACE

The Micro-One provides an extremely fast elementary I/O capability. (The
basic interconnections are shown in Figure 1-2.) The data paths and control
functions are simple elements, sequenced from the control memory with
flexible disciplines. With the fast (200 ns/step) control memory, firmware
microprograms in control memory can react with a high degree of versatility
in timing, data paths and I/O capabilities. This inc1ude~ priority interrupts,
fully-buffered data channels, macroprogrammab1e transfers, and special
purpose communication multiplexer channels.

The byte I/O interface provides the facility for transferring bytes over a
party line I/O bus under microprogram control. Standard Micro~One firmwave
provides both programmed I/O and concurrent I/O transfer capability, along
with a priority interrupt system. The basic I/O element is the Byte I/O
bus.

1.5.1 Byte I/O Bus

Data transfers through the byte I/O interface are basically two'"'phase
operations. During the first phase, a control byte is placed on the Byte
I/O bus before the actual transfer of data. The control byte contains a
device address specifying the address of one of the I/O controllers on the
bus, and a device order code signifying the type of operation. to. be
performed during the transfer (data, status, or function transfer. etc).

All controllers on the bus examine the device number, but only the addressed
controller accepts the control byte and logically connects itself' to" the bus
for the subsequent data byte transfer. During the second phase of the
byte I/O operation, a single byte is transferred to or from the controller.
After each byte transfer the controller disconnects itself from the bus.

CPH , & CPH2

-- BYTE OUT

10XX
DMA MEM ADDR
INTERFACE

MEM OAT
..- DMA CTL

BYTE IN

~ CPH, & CPH2

- BYTE OUT
BYTE I/O BYTE INPUT
INTERFACE 10XX

THE 1600 SYSTEM
PANEL CAN BE R
USED WITH THE EXTERNAL L
STANDARD' ROM
MICRO ONE

.ACKPLAN~~
s::

- L
SYSTEM A
PANEL

Mj:MADDR -
~

-10-PIN s:: s:: ~~ lDlD 0 l> r .- CONNECTOR m m -<-< 0 ."

ON MICRO ONE s:: s:: S::l> -1-1 X I-J:
'CD lD

mm X ~ e
BACKPLANE 0 0 00 (I)

10LEAD~
:II :II :II 0 0- ~

Q!I
Ci) -< -< -<z e Z g -

CABLE -I'" lD a, 9
::! 0 »-1 ."e

~ PIGGYBACK » 0:II e-l J:

~
lD

PANEL MOS s:: '-I

~ i! 0 0 -IS
CONTROL MEMORY Z :Il r Sa, G) lD m

BASIC "'0 e ~ a,:::j
f0- e (I) -(I)

PANEL lD -I -,

J4 ~HtJI~
r S e ~ (I)
m III (I)

(1)-

:l ~ -
Lt. I

MEMTIMING '?I
J3 lD

I MEM OAT ~ ... --J10 I-- MEM ADDR
+5 P DMACTL

(;
:II
0
0 »
-I

:II »
lD -e 8 (I) - 0

'?I 0
lD s::

~
." »
::!
lD
r
m

+12
. W P, BYTE OUT .

POWER
R

-16.75 MICRO ONE BYTE IN
GND T 10XX -

PWR FAIL& : E CPH , & CPH2
R

RTC ..
M ABUS

REFERENCE r-' L BUS
I *+-

~ J2:ROM~ _ R BUS -
l-+

SERIAL
TTY

Figure 1-2. Backplane Interconnections

1-12

1.6 EXTERNAL PRIORITY INTERRUPTS

The Micro-One external interrupt system operates through the byte I/O interface
in the computer mainframe. Interrupts can originate from device controllers
or from an optional Priority Interrupt interface board connected to the Byte
I/O bus. This interface board controls eight external interrupt signals.

The byte I/O interface contains a single external interrupt request line
common to all controllers on the Byte I/O bus, and a priority line that
progresses sequentially through all controllers on the bus, Each I/O
controller receives priority from the preceding controller in the priority
chain and, if it is not ready to request an interrupt, passes it along to
the next controller in the line. When a controller has priority and is ready
to request an interrupt the priority signal is halted and the Interrupt
Request signal is activated. After the I/O request is acknowledged, the
controller places an address byte on the I/O bus. The processor uses this
byte to transfer program control to the proper interrupt servicing routine.

1.7 REAL-TIME CLOCK

The standard real-time clock function provides an internal interrupt at
a 120 Hz rate. This can be used at the macroprogramming level as a real­
time clock. The timing is derived from the power line where it is full~wave
rectified. An optional input and jumper select is provided to make it
possible to use an externally supplied real-time clock signal at rates
other than 120 Hz.

When the timing signal occurs, it provides an internal interrupt by setting
condition flag bit 4 and bit 2 of the internal status byte. The timing signal
internal interrupt may be disabled and enabled by commands 1710 and 1720
respectively. The microprogram must detect the internal interrupt and take
appropriate action. (Special real-time clock interrupt handling firmware
is available with the Micro-One.)

1.8 POWER-FAIL/AUTOMATIC RESTART

The power-fail and automatic restart function provides the following;

a. An internal interrupt by setting condition flag bit 5 and bit 7 of
the internal status byte upon detection of primary power loss.

b. A processor reset when the computer is halted after loss of
primary power.

c. A processor rest for over 100 milliseconds after power is applied.

d. Automatic switch to run mode after the power-on reset period.

e. Power-restart interrupt immediately after automatic switch to
run mode.

1-13

I

A power-fail interrupt detected while the processor is in the Run mode
can be used to store processor registers and to halt the processor. The
automatic processor reset that follows the halt and the one following
power-on prevents any spurious operations in the core memory. At power~n,
the processor reset clears the L register causing the processor to start
at ROM location O. The power-fail interrupt which occurs at this time can
be detected and treated as a restart interrupt to cause a restoring of
the processor registers. Standa.rd power-fail/automatic restart interrupt
firmware is available. The +12V power to the Micro~One must remain.
above +SV during a power-fail as the two voltages collapse.

1.9 ARITHMETIC FUNCTIONS

The Micro One uses a 2's complement binary number system. The registers
and memory cells are 8 bits in length. For programming convenience,
entering data, printing out, and preparing punched paper tape~ the 8 bits
are organized into two hexadecimal digits. The hexadecimal digits, with
their decimal and binary equivalents, are as follows:

Decimal I Hexad:Cimal

0
1 I 1
2 I 2
3

I ~ 4
S S
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
IS F

Binary

0000
0001
0010

I
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

. Throughout this document
hexadecimal numbers are
identified with single
quotes:

For addition functions, the two numbers are added directly with the carry
out of the most significant bit going to Link, and overflow setting the
overflow bit, if designated in the command.

For subtraction, one number is converted to a 2 1s complement and added to
the other.

1-14

For single byte operations, with a 2's complement number system, the range
of numbers is as follows:

Binary Hexadecimal Decimal

01111111 '7F' +127 POSITIVE

00000001 '01' + 1
00000000 '00' 0

11111111 'FF' 1 NEGATIVE
11111110 'FE' 2

10000000 '80' -128

In general, arithmetic overflow occurs whenever the number range (+127 to
-128) of the Micro One is exceeded on an arithmetic operation. As can be
seen in the examples, the link bit may be set even though an overflow did
not occur. This is the result of using a 2's complement number system.

1-15

SECTION 2

MICROCOMMAND REPERTOIRE

SECTION 2

MICROCOMMAND REPERTOIRE

2.0 GENERAL

This section contains description of all Micro-One commands. With each
description is a diagram showing the format of the command and its operation
code, given in hexadecimal. Above each diagram is the command's mnemonic
code and the name of the command. Under each diagram is a description of
the command, followed by a list of the registers and indicators that can
be affected by the command. The timing of each command is one clock cycle
(200 nsecs) unless the L register is designated as the destination of the
result, in which case the command execution time is two cycles.

2.1 COMMAND FORMATS

There are three basic command formats. Each command is 16 bits long and is
contained in a single read-only memory location.

The formats are literal commands, operate commands and execute commands.

2.1.1 Literal Commands

The literal class commands have the following formatj

I OP fir Literal 1

1514131211109876543210

In this format the operation code occupies the four high-order bits. Bits
11-8 contain either a file register designator (f) or a register or control
group designator (r). Bits 7-0 comtain an 8~bit literal which is trans­
ferred as an operand to the B bus.

2.1.2 Operate Commands

The operate class commands have the following format:

I OP f c 1*1 r 1
1514131211109876543210

In this format the operation code occupies the four high-order bits.
Bits 11-9 contain a file register designator (f) which specifies 1 of the
16 file registers to be used in command execution. Bits 7-4 contain control
option bits (c) which are unique to the specific command. When bit 3 is a 1,
the result of an operate class command is inhibited from being placed in
the designated file register. Symbolically, this is specified to the
program assembler by appending an * to the command mnemonic. The register
designator (r) in bits 2-0 specifies a processor register destination to
receive the result of the operation.

2-1

Since there is only one file register selected at a time, the only file
register that can receive the result of a particular operate command is
the same file register selected for the operand. The register's identifier
is added as a second character of the command mnemonic. Table 2-1 contains
the register codes.

Table 2-1. Register Designators for Operate Commands

Designator Mnemonic Register

0 none
1 T T Register
2 M M Register
3 N N Register
4 L L Register~addresses: OOO~FF and 200...-2FF
5 K L Register~ddressesc lOO""lFF and 300-3FF
6 U U Register
7 S U Register ORed into command (except for

Control command)
--

2.1.3 Execute Command

The execute command causes the contents of the U register to be ORed with
the 8 high-order bits of the command to form an effective command~ This
operation is also performed when r=7 for the operate class commands, The
execute command has zero bits in the four high order bits, The remainder
of the command has the format required for the effective command to be
executed.

2.1.4 Formats for Execute Commands

o f c 1*1 r 1
15141312111098765 432 1 0

If U contains Operate
command OP code.

I 0 fir Literal I ~f U contains Literal
. . command OP code.
1514131211109876543210

2-2

2.1.5 Literal Commands

The literal commands, listed by Op Code are as follows:

Op Code Command

1 Load Register

2 Load File

3 Add to File

4 Test Zero

5 Test Not Zero

6 Compare

The literal commands are used to load constants into various Micro-One
registers, to test for bit configurations and data values in file registers,
and to load or add constants to file registers. Eight of the 16 bits are
used as command, and the other 8 are available as data.

2.1.6 Operate Commands

The operate commands, listed by Op Code are as follows:

Op Code Command

7 Control

8 Add

9 Subtract

A Memory

B Copy

C OR

D EXCLUSIVE OR

E AND

F SHIFT

The operate commands are used to control the flow of data in or out and
through the Micro-One computer, and to perform the arithmetic and logic
functions in the computer.

With this powerful command set, it is possible to implement all of the
data handling and control functions of a larger computer.

2-3

2.1.7 Terms and Symbols Used in the Command Descriptions

Contents of file 1

Contents of file 1 to T register

Indeterminate value or function

'AA' Hexadecimal number in flow chart

X'AA' Hexadecimal constant in assembly language statement

Affected Register States

For each command, certain registers are modified. These are described in
examples as affected registers.

A LOGICAL AND
vLOGICAL OR
¥LOGIC:::AL EXCLUSIVE OR

Effective address of L register as used in e.xamples. Because
of the lookahead feature of the Micro-One, the actual L address
is one higher than indicated in the examples.

2.2 . MICROCOMMANDS - FORMATS, DESCRIPTIONS, AND EXAMPLES

The formats of the examples for each command have been selected to facilitate
explanation of that particular command. Because of the difference in
characteristics and utili2;ation of the various commands, and associated
data patterns, the example formats are different for each command category.

2.2.1 LT LoadT

I 11/19 Literal I
1514131211109 8 7 6 5 4 3 2 1 0

The contents of the 8-bit literal field are placed in the T register. The
condition flags and Link register are not effected.

This command is used to provide constant data values, bit patterns for
comparison tests, masks, and I/O control codes, which are most conveniently
used in the T register.

Example: Load T with hexadecimal value 'AA'

L

'024'

Machine
Code

'11AA'

Assembly
Language

LT X'AA'

2-4

Flow Chart
Notation

'AA'---+T'

Effected register states:

Register Before After

L '024' '025
T 'M'

Command execution time - 200 nsecs

2.2.2 LM Load M

12 . Literal I
151413121110987 6 5 4 3 2 1 0

The contents of the 8-bit literal field are placed in the M register. The
condition flags and Link register are not effected.

This command is used to set the M register for accessing dedicated core
locations. The M register is also modified by designation as destination
register in operate commands.

Example: Load M with page address hexadecimal value '55'

Machine Assembly
L

Flow Chart
Notation Code Language

--------------~~~------------------------

'134 ' '1255' LMX'55' '55'--..M

Effected register states

Register Before After

L , 134' '135'

M '55'

Command execution time - 200 nsecs

2.2.3 LN Load N

13 Literal I
1514131211109876543210

The contents of the8-bit literal field are placed in the N register and the
M register is cleared. The condition flags and Link register are not
effected.

2-5

The command is used to set the N register for accessing dedicated core locating
locations. If the location is in page 0 of core ('OOOO'-'OOFF'), only this
command is required to set both the M and N registers, since M is automatically
cleared. If M is not to be page 0, then N must first be set, followed by M.

Example: Load N with address hexadecimal value

Machine Assembly
L Code Language

'235' '13FF' LN X'FF'

Effected register states

Register Before

L '235'

M

N

Command execution time - 200 nsecs

2.2.4 LU Load U

I 16 Literal I
151413121110 9 8 7 6 5 4 3 2 1 0

"F" and set M = '00'

Flow Chart
Notation

'FF'--"N
'OO'--..M

After

'236'

'FF'

'00'

This command is used to place specific command codes into the U register,
which is used in conjunction with general function EXECUTE class commands.
The U register can also be modified by being designated as the destination
register in an operate command. The differences in utilization of these two
approaches for modifying the U register are described in a later paragraph
which discusses U register applications.

When modifying the U register, it is necessary to place at least one command
between the modifying command and a command which uses the U register as an
input. Otherwise an undefined value of U may be used.

2.2.5 LZ Load Zero Control

10 Literal I
15 14 13121110 9 8 7 6 5 4 3 2 1 0

When this command or an operate command with destination 0 is executed, a
pulse called CGLO of approximately 50 nsecs width is generated. CGLO is

2-6

available on the I/O and option board connectors of the Micro-One. During
the CGLO of a literal command, the literal value is on the A bus, which is
available on the back plane. An 8-bit control latch can be set by this
command and used for any purpose, such as enabling counters, interrupts,
or control lines. Since the CGLO also occurs on dest. 0, logic must be
provided to detect the literal command (OPl) and enable the CGLO only when
an OPI has occurred.

2.2.6 LS Load Seven Control

17 Literal I
1514131211109 8 7 6 5 4 3 2 1 0

The 8 bits of the literal perform control functions as described below:

1700 - No operation

1701 - Enable serial teletype. The serial teletype input is gated into
bit 6 of file register O. The serial teletype value is available
at all times.

1704 - Disable external interrupts: recognition of external interrupts
is inhibited.

1708 - Enable external interrupts: recognition of external interrupts
is enabled.

1710 - Disable real-time clock: the real-time clock and interrupt are
disabled.

1720 - Enable real-time clock: the real-time clock and interrupt are
enabled.

1740 - Spare

1780 Halt: the processor is halted.

Command execution time - 200 nsecs.

Non-conflicting commands can be executed simultaneously. For example,
enable external interrupts can be combined with enable real-time clock.
The bits of the literal parts of the commands are ORed to produce the
hexadecimal code.

Example:

Enable Interrupts

Enable Real-Time Clock

Composite Command

Machine
Code

1708

1720

1728

2-7

0000

0010

0010

Literal
Bits

1000

0000

1000

2.2.7 JP Jump

I 14/15/1 C/1 D Literal I
151413121110 9 8 7 6 5 4 3 2 1 0

The contents of the 8-bit literal are placed in the 8 low-order bits of the
L register; the content of bit 8 is placed in La and the content of bit 11
is placed in L9. The location of the next command to be executed is at the
address specified by the new contents of the L register. The execution
time of the command is two cycles. The jump operation codes for the four
256-word pages in read-only memory are as follows:

14 Jump to locations OOO-OFF (page 0)

15 Jump to locations 100-lFF (page 1)

lC Jump to locations 200-2FF (page 2)

lD Jump to locations 300-3FF (page 3)

In order to fully explain this command, a detailed description of the
L register follows.

2.2.8 L Register Organization

9 8 7 o

8 BITS

Bits 0 to 7 act somewhat like a counter as they are incremented like a
counter after each command execution except conditional skips, jumps, or
operate commands containing L or K as a destination. If the L count is at
XFF, and the next command causes L to be incremented, the L count will go
to XOO, with no indication of a carry. If a command causes L to skip,
L will go from XFF to XOI prior to execution of a micro command.

, To change pages, it is necessary to change bit 8 or 9. Bit 9 can only be
changed with a jump (literal to L) command. With the jump .command, any
part of L can be reached.

Bit 8 can be changed with either a jump command or by designating the L
register as the destination register in an operate command.

As shown in
L register.
set. In the
labeled K.

Table 2-1, a destination designator of 4 or 5 effects the
The designator 4 causes bit 8 to reset, and 5 causes bit 8 to
assembly language mnemonics, a 4 is labeled L, and a 5 is

2-8

The various methods of changing L are shown in the following read-only
map outline.

Variations of L Register

I I

Page 3 I 1
I 1 Page 2

I I
Page 1

I 1-~
I

,
I

I
JUMP I L I

IDest.,

I ,

Page 0

I

-1-1 Increment L
or Skip

I

Page

o

o

L Register
Address

Within Page

~o~ ___ o~ _____________________]

Since L is always addressing the next command to be executed, any condition,
such as a skip, jump, or L destination results in a clock cycle skip because
the "next" command must be discarded for a new "next" command.

Examples:

Machine Assembly Flow Chart
L Code Language Notation

1) Jump to page o location ' 33'

'021' '1433' JP X' 033' '033'-"L
Sometimes
just shown
as a line
from one block
to another
in a flow
chart

2) Jump to page 2 location '46'

'150' 'lC46' JP X'246' '246'-..L

3) Jump to page 3 location '31'

'230' 'lD3l' JP X'33l' '33l''-''L

L Register States

Example Before After

1 '021 ' '033'

2 '150' '246'

3 '230' '331'

Command execution time - 400 nsecs

2-9

2.2.9 LF Load File

I 2 f Literal I
1514131211109876543210

The contents of the 8-bit literal field are placed in the file register
designated by f. File register 0 cannot be loaded by this command. The
condition flags and Link register are not affected.

This command is used for initializing or clearing the registers. It is
also used for setting relative and absolute jump addresses into files. It
can also be used as part of a table look-up routine. Another use is for
setting indirect return addresses into files.

Example of load file command:

L
. Machine

Code --_._. __ ._ .. __ .. ---'. -... ---------.----- ---

'025' '2355'

Affected register states:

Assembly
Language

LF 3,X'55'

Register Before
------------.. ---.--.-..

L

file 3

Execution time - 200 nsec

2.2.10 AF Add to File

I 3 f Literal I
1514131211109876543210

'025'

Flow Chart
Notation

'55'--'f3

After

'026'

'55'

The contents of the 8-bit literal field are added to the contents of the file
register designated by f and the sum replaces the original contents of the
file register. Subtraction is performed by placing the 2's complement of
the number in the literal field. The condition flags and Link register are
not affected. File 0 may not be selected by this command.

This command is used when it is desired to add a number other than 1 (in
which case the operate class is used) to a file register. Specific cases
are where a file is used for a pointer or to update the U register and
changes of 2 or greater ,are required. Another use is to clear out higher
order bits from a register. This command can also be used to set a flag
bit in a file without resetting the other flag bits.

2-10

Examples:

1) Add '2A' to file 3 which contains '31'

2) Subtract '03' from file 5 which contains '54'

3) Set flag bit 6 in file 9 which has flag bit 1 set

Example Machine Assembly
Number L Code Language

1) '015' , 332A' AF 3,X'2A'

2) '105' '35FD' <D AF 5,X'FD'

3) , 250' , 3940' @ AF 9,X'40'

<D 2' s complement of '03'

GD Hexadecimal equivalent of bit 6 = 1

Affected register states:

Example
Number

1)

2)

3)

Execution time - 200 nsecs

2.2.11 TZ Test If Zero

L
file 3

L
file 5

L
file 9

4 f I Literal I
1514131211109876543210

Before

'015'
'31'

'105'
'54'

'250'
'02'

Flow Chart
Notation

(f3)+' 2A '-.f3

(f)-'03'~f
5 5

(f9)+'40'~fA

After

'016'
'5B'

'106'
'51'

'251'
'42'

If, for all the I-bits of the literal field, the corresponding bits of the
file register designated by fare O-bits, the next command is skipped. The
condition flags, Link register and the file register are not effected. If
the skip is taken, the timing of the command is two clock cycles.

2-11

This is a conditional branch type of command designed to test for the
~ollowing conditions or functions existing in the referenced file register:
negative or positive number, odd or even number, interrupt or internal
status bits, sense switch bits, condition flags set or not set, teletype
input bit set or not set. Since all of the selected bits must be 0, this
is a logical AND type function. If a test bit is 0, the corresponding
bit in the file does not affect the skip.

Bit Pattern Examples:

File Register 10001000
Test Zero Literal 00111000 NO SKIP

File Register 11100111
Test Zero Literal 00011000 SKIP

File Register 10110000
Test Zero Literal 01001010 SKIP

File Register 00010000
Test Zero Literal 00010000 NO SKIP

Since all bits tested must be 0, this command is good for testing for the
occurence of any of a number of possibilities, such as testing for the
presence of any of 3 interrupt flags.

The conditional skip can be used for branching, the skip is followed by a
jump connnand.

Example of Branch:

Skip the
Jump to
Interrupt

Test Zero file 3 bit 1 bit 1 = interrupt

Jump to Interrupt routine

Next Instruction if no Interrupt

A three-way branch can be implemented with two test and skip commands and
two jump commands.

Example:

JUMP

BRANCH 1

TEST AND
SKIP

BRANCH 2

2-12

JUMP

BRANCH 3

Example: Skip if bits 3, 4, and 7 are not set in file O.

L

'OOE'

Machine
Code

'4098'

Effected register states:

Register

Case 1 L
FO

Case 2 L
FO

Mnemonic

TZO,'X'98'

Before

'OOE'
'43'

'OOE'
'80'

Command execution time - 200 nsecs - no skip
400 nsecs skip

Flow Chart
Notation

Flow Chart
Notation

Skip
After

'010' SKIP
'43'

y

No Skip

'OaF' NO SKIP
, 80'

This timing applies to test not zero, and compare, as well.

2.2.12 TN Test If Not Zero

5 f Literal I
1514131211109876543210

If, for any bit of the literal field which is a 1-bit, the corresponding
bit of the file register designated by f is also a 1-bit, the next command
is skipped. The condition flags, Link register and file register are not
effected. If the skip is taken, the timing of the command is 2 clock cycles.

This command differs from the test zero command in two ways. First, it
skips on l's instead of O's, and it skips on any 1 as opposed to all a's
on the test zero instruction.

If both tests (zero and not zero) were reduced to one bit comparisons, the
only variation would be that one command produces the opposite result of
the other. If a jump was wanted, the choice would then be, if the tested
bit was a 1 or o.

2-13

If multiple bits are tested, the test not zero is the MAX TERM, ana test
zero is the MIN TERM logic equivalent. Bit pattern examples for test not
zero:

File register 01101100 SKIP Test not zero literal 00110001

File register 01000001 NO SKIP Test not zero literal 00011010

File register 01100110 SKIP Test not zero literal 01101000

File register 11100111 NO SKIP Test not 'zero literal 00010000

Example: Skip if bit 0 in file 1=1

Machine
L Code Mnemonic

'OlC' '5101' TN 1,X'01'

Effected register states:

Register Before

Case 1 L 'OlC'
Fl '01'

Case 2 L 'OlC'
Fl '80'

Command execution time - 200 nsecs - no skip
- 400 nsecs - skip

2.2.13 CPCompare

6 f -I Literal I
1514131211109 8 7 6 5 4 3 2 1 0

Flow Chart
Notation

FLOWCHART
NOTATION

After

'OlE'
SKIP '01'

'DID' NO SKIP '80'

If the sum of the contents of the file register designated by f and the
contents of the 8-bit literal is greater than 28-1, the next command is

2-14

,-,

skipped. The condition flags, and file register are not effected. If the
skip is taken, the timing of the command is 2 clock cycles. The Link stores
the carry out of the adder. File 0 may not be selected by this command.

This command is used for looping control, and for data value testing. It
is also used to test OP codes in instructions for selection of a particular
class of Op codes, such as memory reference, having Op code greater than 5,
for example. To test if the content of a file register exceeds a selected
number, the l's complement is placed on the literal part of the compare
command.

EXAMPLE: SKIP IF (11) >'5F'
FLOWCHART
CHART

MACHINE
L CODE MNEMONIC

'014' '61AO' CP 1 X'AO'

AFFECTED REGISTER STATES:

REGISTER BEFORE AFTER

CASE 1 L '014' '016'

F1 '52' '52'

CASE 2 L '014' '015'

F1 '66' '66"

COMMAND EXECUTION TIME - 200 NANOSECONDS - NO SI5IP
400 NANOSECONDS - SKIP

2.2.14 K Control

7 f c 1.1 r 1
1514131211109876543210

N NO
SKIP

NOSKIP

SKIP

This command is used to control special data flow operations, and I/O
functions. The prime usage is:

• Enter sense switches from panel to selected file register

• Shift selected file right 4 bit places

• Enter internal status to selected file register

• Set and clear the 3 I/O control flip flops (IOXX)

2-15

The prime functions of this command are determined by the value of the c field
as follows:

c

o

1

2

3

4

5

6

7

Operation

No operation

Enter Sense Switches

Shift File Right 4

Unused

Enter Internal Status

Unused

Unused

Enter Console Switches

2-16

Explanation

Status of the 4 console sense
switches are placed in the 4 high
order bits of the file file
register designated by f. The 4
low order bits are set to 1 bits.
The status can also be placed in
the designated destination register.

The 4 high order bits of the file
register designated by f are placed
in 4 low order bits of the file
register. The 4 high bits are set
to 1 bits. The result can also be
transferred to the designated
destination register.

The 8 internal status bits are placed
in the file register designated by f,
and the designated destination
register. The internal interrupt
flag in file 0 is reset by this
command, along with the console
interrupt, real-time clock, memory
parity, and power fail/restart.
Console step is reset upon release
of the console switch and spare bits
are controlled according to their
individual implementation in h
hardware.

The contents of the 8 low or.der con­
sole command switches are ANDed with
8 low order bits of the next command.
File register 0 and the destination
register 0 must be selected to pre­
vent any modification of the file or
register during execution of the con­
trol command. The command physically
preceding this operation must not
cause a read-only memory delay.

c ~peration __________________________ . ___ Ex_p~l_a_n_a_t_i_o __ n

8 Clear I/O Mode

9-F Set I/O Modes

The I/O control register is cleared.
Data from the designated file or input
bus ANDed with the designated file can
be transferred to the designated file
register and register (r).

The I/O control register is set to
equal the 3 low order bits of the c
field. Data from the designated file
or input bus ANDed with the designated
file can be transferred to a designated
file register and register (r). For
all values of c, except 0,3,5,6,7,
source data is placed in the designated
files if bit 3=0 and also in the desig­
nated register. Destination r=7 is
undefined for this command. In other
words, the U register is not used.

2.2.15 Examples of Control Commands

C = 1 Enter sense switches into file 1

L

'005'

Machine
Code

, 7110'

Affected Register Status:

Case 1

Case 2

Register

L
file 1
Sense SW (Binary)
File 0 (Bits 2-0)

L
file 1
Sense SW (Binary)
File 0 (Bits 2-0)

C = 2 Shift file 1 right 4

L

'012'

Machine
Code

'7120'

Mnemonic

K 1,1

Before

'005'

1001

'005 '

0010

Mnemonic

K 1,2

2-17

Flow Chart
Notation

After

'006'
'9F'

1001
010

'006' .
'2F'

0010
000

Flow Chart
Notation

Affected Register States:

Register

L
file 1
file 0 (Bits 2-0)

Before

'012'
'EO'

C = 4 Enter internal status to file 1

L

'lE3'

Machine
Code

, 7140'

Affected Register Status:

Register

L
file 1
Status
file 0 (Bits 2-0)

Mnemonic

K 1,4

Before

'lE3'

'45'

After

'013'
'FE'
010

Flow Chart
Notation

After

'lE4'
'45'
'40'
000

Note: Sense switch 4 can be tested by testing negative condition flag
after entering SSW to file O.

C = 7 Enter console switches into file 5

L

'112'
, 113'

Machine
Code

'7070'
'25FF'

Affected Register Status:

Register

L
file S
Console SW
file 0 (Bit 2-0)

Mnemonic

K 0,7
LF 5,X'FF'

Before

'112'

, AS'

Flow Chart
Notation

fSI\CSW-. f5

After

'114'
'AS'
'AS'
010

This command cannot be executed via the front panel because it requires a
dynamic situation, and two separate functions entered on the front panel.

2-18

2.2.16 Standard Output Functions

The two output codes COXX and DOXX represent a two byte output sequence,
where the first byte is for control, and the second byte is for data. A
device select control byte is first placed in the T register (which is
also the output bus) and then COXX is set and reset. Following this, a
data value is placed in T and DOXX is set and reset.

COXX and DIXX control codes are used for data input routines. A device
select control byte is first placed in T, and COXX is set and reset.
Following this, DIXX is set, data is input while DIXX is set and then DIXX
is reset.

While DIXX is set, data can be entered in two ways:

1. Operate commands involving T get the input bus instead of T as
long as I03X is set. These commands are ADD, OR, COPY, EXCLUSIVE
OR, and AND. Any of these can be used to input data while DIXX
is set as long as T complement is not selected.

2. The control command with the c field = 8-F causes the input bus to
be ANDed with the selected file register as long as I03X is set.
This method allows inputting on the same command that resets DIXX
(providing the selected file has first been set to 'FF').

C = 8-F Input/Output Control

When c equals 8-F, the operations are associated with external I/O, and
the 3 low order bits of c are placed in the I/O control register. On the
same operation, data can be moved from the designated file register or the
input bus ANDed with the designated file register as determined by the
current contents of the I/O control register, to the designated file or
destination register. The data source is specified as follows:

I/O Control Regi~ter MOde

0-3

4-7

Source

Designated file register

Input bus ANDed with designated
file register

The values 4-7 correspond to the I03X control flip-flop. This flip-flop
must be set in order to transfer data from the input bit to the computer's
internal registers. Other than this restriction, the three I/O control
register bits can be used in any manner desired at the microprogramming
level of the Micro One and as long as standard I/O interface modules are
not used.

2-19

For purposes of standardization of common interface modules, and implementa­
tion of standard I/O software instructions, a convention for I/O codes
have been adopted as shown in Table 2-2.

Table 2-2. Standard I/O Control Codes

cField I/O IOXX
(Hex) Mode 3 2 1 Control Activity

8 0 000 None
9 1 o 0 1 Control Output (COXX/)

{output A 2 o 1 0 Data Output (DOXX/) Codes
B 3 o 1 1 Space Serial Teletype
C 4 1 0 0 Concurrent Acknowledge (CACK/)
D 5 1 0 1 I/O Acknowledge (IACK/) {Input
E 6 1 1 0 Data Input (DIXX/) Codes
F 7 1 1 1 Spare

2-20

Note that the
I/O mode is
directly
represented
as the 3
LSB's of
c field

I/O Examples:

1. Generate following output waveform:

OUTPUT ----1
BUS

DEVICE SELECT U DATA

COXX

DOXX

__ ~, COXX 1'--____________ _

DOXX

CLOCK 2 3 4 5 6 7 8 9 10 11

I/O CONTROL
FLOW CHART: MACHINE

CODES

DEVICE SELECT CODE-T ----

'7090'

'1000'

'7080'

JUMP CAUSES 2
CLOCK DELAY

OUTPUT DATA BYTE-T - - --

'70AO'

'1000'

'7080'

2-21

2. Input data according to following waveform:

OUTPUT ---1
BUS .

COXX

INPUT
BUS

DEVICE SELECT

COXX

DATA READY L
DIXX L

DIXX

INPUT
DATA
SAMPLE

------------------~~
CLOCK

FLOW CHART:

DEVICE SELECT CODE-T

I/O CONTROL
MACHINE
CODES

-- '7090'

'1000'

'7080'

Jump to next
inst. 2 clock delay

'70EO'

Jump to next
inst. 2 clock delay

Operate class
command

'7080'

For a very simple interface having only 3 data registers to set,
a single byte sequence will suffice for outputtting data.

2-22

3. Output a byte to interface Latch No.2, where only 3 interfaces
latches exist in the system, using the simple interface technique
mentioned above.

FLOW CHART:

OUTPUT DATA BYTE-T

SET I/O MODE = 2

RESET I/O MODE

I/O CONTROL
MACHINE CODES

'70AO'

'7080'

On an input cycle it is necessary to wait at least one clock cycle after
generating DIXX to input data. The I/O controls a~e set in time at the com­
pletion of the control command. An input on the next clock would attempt to
transfer data before the interface unit has the correct response data ready
for input.

c field = B which is I/O mode 3 is used to set the serial teletype mode to
SPACE, which ties up the I/O channel.

c fielp = D which is I/O mode 5 is used to acknowledge interrupts.

2.2.17 A Add

'---- Inhibit File Write

The selected operand is added to the contents of the file register designated
by f. The sum is placed in the file register (f), if * is an 0 bit, and in the
register designated by r.

The state of the carry out of the high order bit of the adder is placed in
Link. File 0 may not be selected by this command. The c field controls
selection of the operand, incrementing the result and modification of the
condition flags is as follows:

2-23

c-bits
765 4

1 x x x Link Control: The content of LINK is added to the sum. The zero
condition flag can be reset but cannot be set, providing a
linked zero test over multiple bytes. A linked zero over mu1ti­
p1ebytes functions as follows: Assume a 2-byte add is to be
performed. Two file registers contain a 16-bit number to be
added to another 16-bit number in core memory. The add is per­
formed one byte at a time with the LINK used for carry into the
second add. On the first byte addition the condition flags are
modified. If the result of the first byte addition is not zero,
then of course the entire addition results in a non-zero condi­
tion, so that the zero condition flag should not be set on the
second byte add even if its result is zero. On the other hand,
if the first add produces a zero condition, the second may not,
therefore the zero condition flag should be reset table on the
second byte add.

The add function can be used to move data from a file to
another register by not selecting any input in the c field.

x 1 x x Add One: One is added to the sum.

x x 1 x Select T: The contents of
selected as the operand.
the operand is zero.

the T register or the input bus are
If the T register is not selected,

x x x 1 Modifying Condition Flags: The condition flags are updated
according to the result.

Eight different examples have been selected to illustrate various c
states, data values, and destination registers. Since the L register
advances 1 unless it is the destination, its state will not be shown in
the affected register state chart. File 1 will be used in all examples.

The various functions selected for each example are shown in Tables 2-3, 2-4,
and 2-5.

Table 2-3.

The general form of the examples is

Add the contents of file 1 to one or more of the following:

Link, 1, T

Destination register choices are

T, F1 , or N

Link is always updated.

Condition flags are updated on selected examples.
------------.--~---~~--~, ------------- ------------------------

2-24

N
I

N
VI

Add command uses file 1 for all examples
Table of functions selected for each example.

Add Add
Example Link 1

1. Add (file 1) to (T), put result 0 0
in T and f1' and update
condi tion flags.

2. Add (file 1) to (T), put result 0 0
in T, update condition flags.

3. Add (file 1) to T, put result 0 0
in N, update condition flags.

4. Add (file 1) to T, +1, put 0 1
result in fl and N.

5. Add (file 1) to (LINK) , put 1 0
result in fl'

6. Add one to fl and put result 0 1
in f1' update C.

7. Add (f l) to T and (LINK). I 1 0
Put result in fl' I

I
8. Add (file 1) to (T) plus 1. I 0

I

1
Put result in T, fl'

I l

Table 2-4.

c Field Destination
Hexa-

Modify decimal Selected Hexa-
Select Condo Code for Register Binary decimal

T Flags c Field Symbol Code Code

1 1 3 T, fl 0001 1

1 1 3 T 1001 9

I
1 1 I 3 N 1011 B

I I
I
I
I
I

1 0 I 6 N, f1 0011 3 I
i

i
I I

0 0 I 8 fl 0000 0
I

I

I
I

I

0 1

I
5 fl 0000 0

1 I 0 I A fl 0000 0
I

I
I

I I I
I

1
I

0

I
6

I

T, fl 0001 I 1

I I
I

\

I I I

Table 2-5.

The coding for the 8 Addition examples is shown below.

Machine Assembly
Code Language Flow Chart

Example (Hex) Mnemonics Notation

1 8131 AT 1, T, C (f1) + (T)~T, f1, C

2 8139 AT* 1, T, C (f1) + (T)~T, C

3 813B AN* 1, T, c (f1) + (T)---N, C

4 8163 AN 1, I, T (f1) + (T) +l~N, f1

5 8180 A 1, L (fl) + (L)-.f1

6 8150 A 1, I, C (f1) + 1--...f1

7 81AO A 1, L, T (£1) + T + (L)~fl

8 8161 AT 1, L, T (f1) + (T) + l~T,

NOT E

If both Link and 1 are selected as inputs, they are ORed instead of
added, thus the effective input is 1 regardless of the value of L.

Table 2-6. Effected Register State Chart

f1

Conditions

Example File T Link N Zero Neg Ovf1ow

1 Before '65' '9B' · ... · ... · ...
After 00 00 1 · ... 1 a a

2 Before '65' '15' · ... · ... · ...
After '65' '7A' a · ... a a a

3 Before '65' '65' · ... · ... · ...
After '65' '65' a 'CAY a 1 1

4 Before '65' '00' · ... · ... · ... , After '66' '00' a '66' · ...
5 Before '00' · ... 1 · ... · ...

After '01' · ... a · ... · ...
6 Before ' FF' · ... · ... · ... · ...

After '00' · ... 1 · ... 1 a a

7 Before '00' '00' 1 · ... · ...
After '01' '00' I a

I · ... · ...
8 Before '01' '01'

I · ... · ... · ...
After '03' '03' a · ... · ...

Table 2-6 shows the results for the eight ADDITION EXAMPLES:

2-26

Command execution time - 200 nsecs

2.2.18 S SUBTRACT

The complement of the selected operand plus one is added to the contents of
the file register designated by' f. The difference is placed in the file
register (f) if * is a 0 bit, and in the register designated by r. The result
is a 2's complement subtraction. The state of the carry out of the high
order bit of the adder is placed in Link. File 0 may not be, selected by this
command. The c field controls selection of the operand, incrementing the
result, and modification of the condition flags as follows:

c-bits
7 6 5 4

1 x x x

Operation

Link control: The content of LINK is added to the sum.
tion of the LINK inhibits the automatic addition of one.

Selec­
The

zero condition flag cannot be set, providing a linked zero test
over multiple bytes. Refer to the add description for details
on linked zero test.

x 1 x x Inhibit add one: If link control is not selected, one is auto­
matically added to the result to produce a 2's complement sub­
traction. This control bit inhibits this addition, providing a
l's complement subtraction. '

x x 1 x Select T: This complement of the contents of the T register are
selected as the operand to the adder. If not selected, the
operand consists of a I-bit in each bit position.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result.

Affected: F, LINK, Condition Flags, r.

If the input bus is enabled (I03X), this command will yield an unpredic­
table result because the complement of the input bus is not available.

2-27

Examples:

1. Subtract zero from file 1.

Machine Code Mnemonic

9100 S 1

Effected register states:

Register

Link
file 1

Before

'00'

After

1
'00'

Even though 0 is subtracted from 0, since 2's complement
adding is used there is a carry of 1 all through the adder
to the Link.

2. Subtract T, 1 from file 1
Destination T Update condition flags

Machine
Code

'9179'

Mnemonic

ST* 1,D,T,C

Effected register states:

~egister Before

'31'
'31'

Flow Chart
Notation

After

. '31'
'FF'.-2's complement for -1

o
010

! t \
Zero Neg Overflow

Command execution time -- 200 nanoseconds.

2.2.19 R READ MEMORY W WRITE MEMORY

A f c 1*1 r I
151413121110 9 8 7 6 5 4 3 2 1 0

The primary function of this command is to initiate a core memory cycle in
which one byte is transferred between the T register and core memory. The
address in core is determined by the contents of the M and N registers. File
o may not be selected by this command.

2-28

The lower two bits of the c field determine whether the memory operation is
read or write and whether the operation is a full or half cycle.

The c-bits control the type of memory operation as follows:

c-bits
765 4

x x I x

x x x I

Memory Access Operation

Half Cycle: If this bit is a I-bit, a half cycle memory
operation is performed; otherwise a full cycle operation is
selected.

Write: If this bit is a l-bit, a write memory operation is per­
formed; otherwise a read operation is selected.

A full cycle takes 5 clock times.

A half cycle takes 3 clock times.

A full cycle read leaves the data in core unchanged.

A full cycle write causes the old data to be cleared so the new value is
unaffected by the old.

A half cycle read leaves all ones in the core location.

A half cycle write ANDS the data to be written with the data already in core.

If a half cycle write into a particular memory cell was preceded by a half
cycle read, the data value gets stored without modification since it is
ANDed with l's, left from the previous half cycle read.

A secondary function of this command is to simultaneously move data between
registers while initiating the memory cycle.

The contents of the file register designated by f is unaltered, incremented,
or decremented as controlled by the c field. The result is placed in the file
register (f) if * is a O-bit, and in the register designated by r. At the
same time, a read (R) or write (W) memory operation is initiated as controlled
by bit 4. If the operation is a memory read, the T register is cleared and
the accessed data is set into the T register after two clock cycle times.
Data to be written into memory must be placed in the T register during or
before the write memory conunand, if the operation is a half cycle write, and
by the first clock cycle time after the write memory command on a full cycle
write. The condition flags and LINK are not affected. Execution of the
memory command is delayed if the memory is in a busy condition from a previous
R or W command or DMA operation.

The bits of the c field control the transfer of data from the file register
as follows:

2-29

c-bits
7 6 5 4

o 0 x x

o 1 x x

lOx x

1 1 x x

Operation

Transfer: The contents of the file register are transferred
unaltered.

Decrement: The contents of the file register minus one are
routed as specified. If the M register is selected as the
destination and the content of LINK is a I-bit, the contents of
the file register are transferred without being decremented.
This provides a decrement with link control when M is the
destination.

Add Link: The content of LINK is added to the contents of the
file register, and the sum is transferred as specified.

Increment: The contents of the file register plus one are
transferred as specified.

This data transfer feature permits setting up one of the registers directly
involved with the memory access eM, N, or T) at the same time the memory
cycle is initiated. There are some timing restrictions pertaining to modifica­
tion of M, N, or T registers during a m~ory cycle. Some of the functions
have logic interlocks to prevent errors, and some do not. These restrictions
must be carefully considered with respect to data errors, and unexpected pro­
gram time delays. The restrictions must be carefully considered with respect
to data errors, and unexpected program time delays. The restrictions are as
follows:

1. Attempting to change M or N while a memory cycle is in progress
stops the computer clock until the memory cycle is over. No data
errors result. Either M or N can be changed by the command initiating
the memory cycle without causing delay.

2. Accessing T during a read cycle causes the clock to stop until the
new data value from core is correctly in T. This causes delay but
no data error.

3. Changing T during a write cycle will cause a delay if it occurs
during WTXX/ and it may cause a data error if it occurs on the
clock immediately preceeding WTXX/.

The memory access restrictions are specifically defined in the following chart:

2-30

Full Cycle Full Cycle Half Cycle Half Cycle
Read Write Read Write

--- -

Delay from changing Up to 4 Up to 4 Up to 2 Up to 2
M and N clocks clocks clocks clocks

Delay due to T Up to 2 o clocks Up to 2 o clocks
access clocks I clocks

Data in T available 3rd clock 2nd clock
(on Read) after after

memory memory
connnand command

T must be loaded by 1st clock Memory
(on Write) after Cycle

memory Connnand
cycle
connnand

T must stay loaded 2 clocks i
I

until (on Write) after
I I me=ry

connnand

I ---- ---- --~---~ ------ ----~--

Timing Diagram for Memory Accesses:

t I t t t I I I
MEMORY 3RD I COMMAND I

2ND CLOCK 4TH

CLOCK CLOCK AFTER CLOCK I
1ST I AFTER MEMORY AFTER 5TH

M & N MUST I
CLOCK MEMORY INST. MEMORY \ CLOCK
AFTER I INST. I T CAN BE

INST.
\

BE SET ON I MEMORY I M, NAND T
OR BEFORE INST. I CHANGED I CAN BE
THIS CLOCK I I I ON OR AFTER I CHANGED ON

THIS CLOCK THIS CLOCK
T MUST BE I T MUST BE I TMUST I ON A WRITE I WITHOUT

NOT BE SET ON OR I SET ON OR I CHANGED
I COMMAND I DELAY OR

BEFORE BEFORE ERROR
THIS CLOCK I THIS CLOCK I ON THIS DATA IS I CLOCK ON I AVAILABLE ON A WRITE ON A WRITE I
HALF CYCLE I FULL CYCLE A WRITE liN TON I
COMMAND COMMAND COMMAND THIS CLOCK

AFTER A
READ
COMMAND

2-31

N

I
w
N

Examples:

Example

1) Full cycle write
(file 1) + l---'N, fl

Machine
Code

f d
i e

o 1 s
p e c t

A 1 D 3 WN

2) Half cycle read A 2 2 2 RM
(file 2) ~ M, f2

3) Half cycle write A 2 B 2 WM
(file 2) + (Link)-.M, f2

4) Full cycle write A3ll WT
(file 3) ~ T, f3

Mnemonics

1, I

2, H

2, L, H

3

5) Half cycle read Inhibit file write
(fl) - l----'N
followed
(f3) + (T)------+T, f3

6) Half cycle write followed
by loading T
(f3)------.T, f3

7) Full cycle read, decrement
(file 1) and transfer to M

~
A 1 6 B RN'~

8 3 2 1 AT

A 0 3 0 W
8 301 AT

(J 1) - 1 ----. M, f 1 A 1 4 2 RM

1, D, H
3, T

0, H
3

1, D

c Field Binary
Functions and Codes for

Memory Commands

Increment

1 1

Transfer

0 0

Add Link

1 0

Transfer

0 0

Decrement

0 1
- -

Transfer

0 0
- -

Decrement

o 1

Full cycle
write

o 1

Half cycle
read

1 0

Half cycle
write

1 1

Full cycle
write

0 1

Half cycle
read

1 0
- -

Half cycle
write

1 1
- -

Full cycle
read

o o

c
Field
Hex.
Code

D

2

B

1

6
-

3
-

4

General Description

Full cycle write memory is initiated
and N register is updated as well as

fl'

Half cycle read memory is initiated
while M register is updated directly
from f 2 •

Half cycle write memory is initiated
while file 2 and M are updated by
adding (LINK).

Full cycle write memory is initiated,
T is updated from f3 on the same
command.

Half cycle read memory is initiated,
followed by T register access on the
next instruction. This will cause a
program delay until the third clock.

Half cycle write memory is initiated,
followed by loading T on next
instruction. No time delay occurs,
but data written into memory may
be incorrect.

A full cycle read is initiated (fl)
is decremented and transferred to M.
If (LINK) = 1 the contents of the
file are transferred without being
decremented.

2.2.20 C COpy

B f C 1*1 r 1
1514131211109876543210

The selected operand is placed in the file register designated by f, if * is
a O-bit, and in the register designated by r. The LINK is not affected. The
c filed controls selection of the operand, incrementing the operand, and
modification of condition flags as follows:

c-bits
765 4

1 x x x

x 1 x x

x x 1 x

Operation

Link Control: The content of LINK is added to the sum. The
zero condition flag can be reset but cannot be set, providing
a linked zero test over multiple bytes.

Add One: One is added to the sum.

Select T: The contents of the T register or input bus are
selected as the operand. If the T register is not selected,
the operand is zero.

x x x 1 Modify condition flags: The condition flags are updated
according to the result.

Affected: F, Condition Flags, r.

This command is used to transfer T to a selected file register, with the option
of incrementing or adding LINK while transferring. It is also used for
inputting data, because when the input control flip flop (I03X) is set during
an input mode. operate commands selecting T get the input bus instead.

The command can be used to test the condition of T by selecting fO as the file
register (which is unaffected) and setting the modify condition flag in the c
field.

The command can also be used to clear one file and another selected register
by not selecting any input in the c field.

Command Execution Time -- 200 nanoseconds.

File register 1 is used for all examples except setting condition flag example.
Examples of Copy Command:

2.2.21 o OR

c f

15141312111098 7 6 5 4 3 2 1 0

2-33

N
I

w
.p..

Examples

(T)--. f1

(T) + 1--. f1' N

(T) + (LINK)~f1

0~f1' N

(T)----. fO' C

Set Condition Flags

Set DIXX

Delay

(T)~f1' T

Reset DIXX

Machine
Code
f d
i e

o 1 s
p e c t

B 1 2 0

B 1 6 3

B 1 A 0

B 1 0 3

B 1 3 0

7 0 E 0

1 0 0 0

B 1 2 1

708 0

c field for Copy Corrunands

Mod.
Add Select Condo Hex.

Link 1 T Flags Code

0 0 1 0 2

0 1 1 0 6

1 0 1 0 A

0 0 0 0 0

0 0 1 1 3

0 0 1 0 2

Destination for
Copy Corrunands

Selected Binary Hex.
Registers Code Code Mnemonics General Discussion

f1 0000 0 C I, T (T) is transferred, unaltered
to file 1.

f 1 , N 0011 3 CN I, I, T (T) is incremented and trans-
ferred to file I, and to the
N register.

f1 0000 0 C 1, T, L (T) is added to (LINK) and
transferred to fl.

f 1 , N 0011 3 CN 1 File 1 and N registers are
cleared because no input is
selected.

fO 0000 0 C 0, T, C Condition flags are set
according to the state of (T) •
File 0 can't be loaded by this
instruction so is unchanged.

K 0, X'E' The input flip flop is set by

LZ X'OO' the DIXX command, so the copy
T command transfers the Input

f 1 , T 0001 1 CT 1, T bus to file 1 and to T.

K 0, 8

The selected operand is logically inclusive-ORed on a bit-for-bit basis with
the contents of the file register designated by f and the result is placed
in the file register, if * is a O-bit, and in the register designated by r.
The LINK is not affected. The c field controls selection of the operand and
modification of the condition flags as shown below:

c-bits
7 6 5 4 Operation

1 x x x Link control: The zero condition flag can be reset but can­
not be set, providing a linked zero test over multiple bytes.
See the description of the add command for a detailed descrip­
tion of linked zero test.

x 1 x x Select complement T: The complement of the contents of the T
register is selected as the operand. If the T register is also
selected, the effective operand contains a 1-bit in each bit
position.

x x 1 x Select T: The contents of the T register or Input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is zero.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result.

Affected: F, Condition Flags, r.

If both complement T and T are selected, the operand is alII's. If the
input bit is enabled (I03X), complement T must not be selected.

This command is used for the general function of logical ORing as needed in a
microprogram. It also has the following specific applications: Setting flag
bits without disturbing other bits (with the OR function it doesn't matter if
the flag is already set since there is no carry); moving data from a file to
another register by not selecting any operand; setting alII's in a file
register and/or one other selected register by selecting both T and T comple­
ment as operands; combining two numbers into one byte, such as for assembling
hexadecimal digits into multiple digit numbers after the digits have been input
to the computer as a string.

Bit pattern example of OR function:

file 1
T
Result

Binary

01101000
00110100
01111100

Command Execution Time -- 200 nanoseconds.

2-35

Hexadecimal

'68'
'34'
'7C'

N
I
w
0'\

File register I is used for all examples.
Examples of OR command:

Machine
Code c field

f d
i e Select

o 1 s Compo
Flow Chart Notation p e c t Link T

(f1) V (T)~T C 1 2 9 a a

(f1) V O---..N, f1 CIa 3 a a

(f1) V (T)~f1 C 1 2 a a a

(f1) V (T), (T)---.N C 1 6 B 0 1

(f1) V (T) (T)-+f1 C 1 6 0 0 1

(f1) V (T)--.Link, C C 1 B 8 1 a

for OR commands

Mod.
Select Condo Hex.

T Flags Code

1 a 2

a a a

1 a 2

1 a 6

1 0 6

1 1 B

-- ~-.-.-- ._--.-------

Destination for
OR command results

Selected Binary Hex.
Registers Code Code Mnemonics General Discussion

1 1001 9 OT* 1, T OR (file 1) with
(T), inhibit file
write put result
in T.

N, f1 0011 3 ON 1 Move (file 1) to N
by ORing with a
and putting result
in N.

f1 0000 a 0 1, T OR (file 1) with
(T) and put result
in file 1.

N 1011 B ON* 1,T,F Set N = FF (all
ones) by ORin£
(f1) with T, T and
putting result
in N.

f1 0000 a 0 1,T,F Set f1 = FF by -
ORing f1 with T, T
and putting result
in fl.

none 1000 8 0* 1, T,L,C Perform conditional
test on (f1) V (T)
without changing f1
or T Select L to
perform linked zero
test with a pre-
vious command.

--~.-~~~-".-- - --

2.2.22 x EXCLUSIVE OR

Inhibit File Write

The selected operand is logically exc1usive-ORed on a bit for bit basis with
the contents of the file register designated by f and the result is placed in
the file register, if * is aD-bit, an& in the register designated by r. The
LINK is not affected. The c field controls selection of the operand and the
modification of the condition flags as shown below:

c-bits
7 6 5 4 Operation

1 x x x Link Control: The zero condition flags can be reset but cannot
be set, providing a linked zero test over multiple bytes. See
the description of the Add command for a detailed description
of linked zero test.

x 1 x x Select Com1ement T: The complement of the contents of the T
register is selected as the operand. If the T register is also
selected, the effective operand contains a l-bit in each bit
position.

x x 1 x Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is zero.

x x x 1 Modify Condition Flags: The condition flags are updated
according to the result.

Affected: F, Condition Flags, r.

If both complement T and T are selected, this command produces the one's
complement of the value in the file register. If the input bus is enabled
(I03X), complement T must not be selected.

This command is used for the following functions: general purpose exclusive
OR; data comparison, ones complementing; and flipping selected bits such as
controls and status flags.

Bit pattern example of exclusive OR.

file 1
T
Result

Binary

01101100
00011010
01110110

Command execution time -- 200 nanoseconds.

2-37

Hexadecimal

'6C'
'lA'
'76'

N
I
w
00

File register I is used for all examples.
Examples of Exclusive OR command:

Machine
Code c field for OR commands

f d
i e Select Mod.

Example o 1 s Compo Select Condo
Flow Chart Notation p e c t Link T T Flags

(£1) ¥ (T)---..T D 1 2 9 0 0 1 0

-

(£1) ¥ O-.+N, Fl D 1 0 3 0 0 0 0

(fl) ¥ (T)---.fl D 1 2 0 0 0 1 0

(fl) ¥ (T), (T)-+T D 1 6 B 0 1 1 0
..

fl ¥ (T), (T)-+fl D 1 6 0 0 1 1 0

(f1) V (T)~Link, C D 1 B 8 1 0 1 1

Hex.
Code

2

0

2

6

6

B

Destination for Exclusive
OR command results

Selected Binary Hex.
Registers Code Code Mnemonics General Discussion

T 1001 9 XT* 1,T Exclusive OR (file
1) with (T)
inhibit file
write, put result
in T.

N, fl 0011 3 XN 1 Move (file 1) to N
by exclusive
ORing with 0
(same result as
OR), put resul t
in N.

fl 0000 0 X 1,T Exclusive OR (file
1) with (T) and
put result in
file 1.

N 1001 9 XT* 1,T,F Produce ones com-
plement of (fl)
and place result
in T.

fl 0000 0 X 1,T,F Produce ones com-
plement of (£1)
and put it back
into fl'

none 1000 8 x* 1,T,L,C Perform conditional
test and linked
zero test on (fl)
It (T) without
changing (f 1) or
(T) •

2.2.23 N AND

File Write

The selected operand is logically ANDed on a bit-for-bit basis with the contents
of the file register designated by f and the result is placed in the file
register, if * is a O-bit, and in the register designated by r. The LINK is
not affected. The c field controls selection of the operand and modification
of the condition flags as shown below:

c-bits
7 6 5 4 Operation

1 x x x Link control: The zero condition flag can be reset but cannot
be set, providing a linked zero test over multiple bytes. See
the description of the add command for a detailed description
of a linked zero test.

x 1 x x Select complement T: The complement of the contents of the T
register is selected as the operand. If the T register is also
selected, the effective operand contains a I-bit in each bit
position.

x x 1 x Select T: The contents of the T register or input bus are
selected as the operand. If neither the T register nor the
complement of the T register is selected, the operand is zero.

x x x 1 Modify condition flags: The condition flags are modified by
execution of the command. Updated according to the result.

Affected: F, Condition Flags, r.

If both complement T and T are selected and AND command moves the data,
from the selected file register to the designated destination register.
input bus is enabled (I03X), complement T must not be selected.

unchanged
If the

The AND command is used for the following functions: General purpose ANDing
of files and T; resetting selected flag or status bits, without disturbing
other flags; and marking out parts of a byte.

Bit pattern examples of the AND function.

Binary Hexadecimal

file 1 01101011 '6B'
T 10101101 'AD'
Result 00101001 '29'

Command execution time - 200 nanoseconds.

2-39

N

!.
o

File register 1 is used for all examples.
Examples of AND Command:

Machine
Code c field

f d
Example i e Select

o 1 s Compo
Flow Chart Notation p e c t Link T

(fl) /\ (T)---+fl E 1 2 0 0 0

(fl) /\ O--.N, fl E 1 0 3 0 0

(fl) /\ (T)-+T E 1 2 9 0 0

-
(f l) /\ (T), (T)-.. N E 1 6 B 0 1

(fl) /\ (T)-+-fl E 1 4 0 0 1

(fl) /\ (T)-+- Link, C E 1 B 8 1 0

for And connnands

Mod.
Select Condo Hex.

T Flags Code

1 0 2

0 0 0

1 0 2

1 0 6

0 0 4

1 1 B

------~--

Destination for
And command results

Selected Binary Hex.
Registers Code Code Mnemonics General Discussion

fl 0000 0 N 1,T (fl) is anded with
(T) • The result
is put into fl'

N, fl OOll 3 NN 1 (fl) is anded with
O. The result
(which is 0) is
put into N, and fl'

T 1001 9 NT* 1,T (fl) is anded with
(T) • The result
is put in T and
inhibited from fl'

N lOll B NN* 1,T,F (!1) is anded with
(T) which is same
as anding with FF
(all ones). Result
is put in Nand
inhibited from fl'

fl 0000 0 N 1,F (f}) is anded wi th
(T • The result
is put into fl.

none 1000 8 N 1,T,L,C (fl) is anded with
(T) • The result
is not put in any
register. Only
the condi t ion
flags are set. Use
of link results in
multi byte zero
test.

--.--------------~.------.- .. -

file 1
T
Result

file 1
T
(Select T complement)
Result

file 1
T, T complement
Result

Binary

01000010
10111111
00000010

\set
10100101
11010011

(00101100)
00100100

10100101
11111111
10100101

He:xadec:lma1

'42'
'BF'
'02'

a flag

'AS'
'D3'

(' 2C')
'24'

'AS'
'FF'
'AS'

Command Execution Time -- 200 nanoseconds.

2.2.24 H SHIFT

Inhibit File Write

The contents of the file register designated by f is shifted left or right one
bit position and placed in the file register, if * is a O-bit, and in the
register designated by r. The high order or low order bit which is shifted
off is placed in LINK and in the overflow flag if the modify condition flag is
selected. The c field controls the direction of shift, entry of an end bit,
and modification of the condition flags as follows:

c-bit
7 6 5 4

1 x x x

x 1 x x

x x 1 x

Operation

Link control: The content of the LINK is inserted into the
vacated low order or high order bit position. The zero
condition flag can be reset but cannot be set, providing a
linked zero test over multiple bytes. See the description of
the add command for a detailed description of the linked zero
test.

Insert 1: A 1-bit is unconditionally inserted into the vacated
low order or high order bit position; otherwise a O-bit is
inserted unless the contents of LINK is selected.

Shift right: if bit 5 is a 1-bit, the operation is a right
shift; otherwise a left shift is performed.

2-41

c-bit
7 6 5 4 Operation

x x x 1 Modify condition flags: The zero and negative flags are
updated according to the result. The content of the bit
shifted out is placed in the overflow flag.

Affected: F, LINK, Condition Flags, r.

This command provides great flexibility for various shifting functions mecha­
nized by microprogramming. These are as follows:

I
I

• Left or right shifting;

• End around carry or no end around carry;

• Arithmetic or logical shifts;

• Multiple byte shift register implementations in either file registers
or core memory;

• Pattern rotations by successive shifting of 8 files, one bit at a
time, and assembling into a 9th file;

• Set or reset link bit by shifting with no destination register.

Bit pattern examples of shift command.
All examples are for shift (f1) and put result back in fl.

File 1
Sequence File 1 Hexa- Condition

Instruction Number Binary Link decimal Flags

Shift Right before 01101001 0 '69' ----
after 00110100 1 '34' ----

Shift Left before 01101001 1 '69' ----
after 11010010 0 'D2' ----

Shift
Right before 00111000 1 '38' ----
Enter after 10011100 0 'ge' ----
Link

Shift before 10001010 0 '8A' Left
Enter 1 after 00010101 1 '15'

Shift Left
Modify before 11001011 0 'CB' -~-... '
Condition after 10010110 1 '96' 011
Flag

Shift Right
Modify before 00000001 0 '01' ---
Condition after 00000000 1 '00' 101
Flag

2-42

2.2.25 E EXECUTE

o I
1514131211109876543210

The 8-bit contents of the U register are ORed with the 8 high order bits of
the execute command to form an effective command. This provides a means of
partially modifying the contents of a read only storage location. The ~Ring
is performed before the output of the read only storage is gated into the R
register. The meaning of bits present in positions 0-11 is dependent upon the
desired effective operation code after the modification. Due to the look­
ahead feature of the read-only memory, the new contents of the U register are
not available until after one machine cycle following the transfer of data to
it.

The execute command provides a means for program modification of a command.
This capability is used for many different functions, three of which are as
follows:

• Indexing of file registers in a program loop.

• Having a general purpose instruction which may take on different
specific functions, such as load a register, add to the register,
AND with the register, etc., depending on program variables.

• Selection of alternate file registers depending on program variables.

Sometimes a combination of two of the above is used.

The U register can be set with the load U command, or by being designated as
the destination register of an operate class command, such as Add, Copy, etc.

For the file register indexing, a separate file register is designated as an
index register. It is loaded with an initial value, then incremented, with
the result being put in U each time through the loop, until the loop is
exited.

Examples of execute commands:

U register

EXecute Command

Effective Command

'84'

'0021'~------ This command is stored in
ROM ET 0, 2

'8421'

2-43

~f4 T
4, T'

Lnstruction codes for bit pattern examples of shift command
These examples are the same except for additional Destination Registers

Machine Destination for
Code c field Shift Command results

f d
i e Mod.

o 1 s Insert Insert Shift Condo Hex. Selected Binary Hex.
Example Flow Chart Notation p e c t Link 1 Right Flags Code Registers Code Code Mnemonics General Discussion

Shift right (fl)@R ----- f l , T F 1 2 1 0 0 1 0 Z f l , T 0001 1 HT 1,R (file 1) is shifted right
result to one bit, link, or 1 are
f l , T. not inserted. The result

is put in T and fl.

Shift left (fl)@L--.. Fl FlO 0 0 0 0 0 0 fl 0000 0 R 1 (file 1) is shifted left
result to one bit, link or 1 are
fl· not inserted. The result

is put in fl.

Shift right (fl)@R+LK--.fl' N F 1 A 3 1 0 1 0 A f l , N 0011 3 HN 1,R,1 (file 1) is shifted right
insert link one bit, (Link) is
result to inserted in vacated left
f l , N. hand bit. Result is put

in fl and N.

Shift left (f 1) @L+l ---+ f 1 ' M F 1 4 2 0 1 0 0 4 f l , M 0010 2 HM 1, I (file 1) is shifted left
insert 1 1 is inserted into the
result to vacated right hand bit.
f l , M. Result is put in fl and

M.

Shift left (fl)@L ~fl' C F 1 1 0 0 0 0 1 1 fl 0000 0 H 1,C (file 1) is shifted left.
modify condo The result is put into
flag. Result file l. Condition flags
to fl. are modified.

Shift right (fl)@R--.F'l' C F 1 3 0 0 0 1 1 3 fl 0000 0 H 1,R,C (file 1) is shifted right.
Modify condo The result is put into
flag. Result file l. Condition flags
to fl· are modified.

Incrementing the U register value leaves the command the same, but changes the
file register number to 5. If this continued to file F, the next increment
would· change the command to a subtract.

U Register 'Fl"
This

'0020'/ E

command is stored in ROM
Executive 0,2
Command

Effective 'Fl20' { ~hift Right file 1

command l,R

The meaning of the cfield of the lower two hexadecimal digits in the
execute command changes with the OP code value in the U register. Therefore
the c field is left as a digit in the MNEMONIC for the execute command.

Commands can also be modified by the U register by using the operate commands
with a 7 in the destination register. This method is advantageous if there
are two variable functions to be done in one loop, with one U register
setting. For example, a program may be indexing through a set of files
where it is necessary to add to a file, and shift the same file in the same
program loop. This could be mechanized as follows:

(fF) + l---..~ U, fF

--- Nap

(fo) + (T)----1~ .. fO, Destination 7 (OR U with command)

(F 0) @ R • F 0' Destination = 7

The coding for this is:

another command

Machine
Code

'8F46'

'8027'

'F027'

Assume U = '04' after the first command.

The effective commands following are:

'8427'

'F427'

2-45

Mnemonic

AU F, 1

AS 0, T Add to file 0

HS 0, R Shift file 0

Add to file 4

Shift file 4 right

This method of command modification has the limitation of no destination
register since the destination register code position is tied up selecting U
as a modifier to the command. The execute connnand does not have this
restriction.

COMMAND REFERENCE TABLE

Mnemonic

Command Operation Code Comments

Load T LT 11/19 I Literal I
151413121110987 6 5 4 3 2 1 0

Load M LM 12 Literal I
15141312111098 7 65432 1 0

Load N LN I, 13 Literal I
15141312111098 7 65432 1 0

Load U LU 16 Literal I
15141312111098 7 6 5 4 3 2 1 0

Load Zero LZ 10 Literal I
151413121110987 65432 1 0

Load Seven LS 17 Literal I
151413121110 9 8 7 654 3 2 1 0

7 0 0 NoOp

7 0 Enable Serial TTY
7 0 2 Reset T 8
F 0 2 Set TS
7 0 4 Disable} External
7 0 S Enable Interrupts

7 1 0 Disable} Real Time
7 2 0 Enable Clock

7 4 0 Load Protect Bit

7 S 0 Halt

2-46

Mnemonic

Operation Code Comments
Command

I JUMP JP
14 Literal ODD-OFF

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0

15 Literal I 100-1 FF

15141312111098 7 65432 1 0

1C Literal I 200-2FF

1514131211109 8 7 6 5 4 3 2 1 0

10 Literal 300-3FF

1514131211109 8 7 6 5 4 3 2 1 0

Load File LF
2 f Literal

151413121110 9 8 7 6 5 4 3 2 1 0

Add To File AF
3 f Literal I

151413121110987 6 5 4 3 2 1 0

Test Zero TZ
4 f Literal I

151413121110 9 8 7 6 5 4 3 2 1 0

5 f Literal
Test Not Zero TN

151413121110 9 8 7 6 5 4 3 2 1 0

CP
6 f Literal

Compare
1514131211109 8 7 6 5 4 3 2 1 0

2-47

Mnemonic
Operand

Command Operation Code Comments Field

7
1

f
1

c 1*1 r I Control K
15141312111098 7 654321 0

0 No Op

1 Enter Sense SW

2 Shift Right 4

4 Enter I nternal Status

7 Enter Console SW

8 Clear I/O

9 Set COXX (in MICRO ONE/20)

A Set DOXX (in MICRO ONE/20)

8 Space Serial TTY

C Set CACK (in MICRO ONE/20)

D Set lACK (in MICRO)

E Set DIXX (in MICRO)

F Spare

Add Ar 8 f c 1*1 r I
15141312111098 7 6 5 4 3 2 1 0

X X x Link L

x 1 x x Add 1 I

x x 1 x Select T T

x x x Modify Condition Flags C

Subtract Sr*
9 f c 1*1 r I

151413121110987 654 3 2 1 0

X X x Link L

x 1 x x Decrement D
x x 1 x Select T T

x x x Modify Condition Flags C

2-48

Mnemonic
Operand

Command Operati on Code Comments Field

Memory
Wr I A f 1*1 1 Rr

c

1514131211109 8 7 6 5 4 3 2 1 0

X X x Link L

x 1 x x Decrement D

x x Increment I

x x 1 x Half Cycle Operation H

x x x Write Operation (supplied by OP Codel

Copy I B f c 1*1 r I Cr
1514131211109 8 7 6 5 4 3 2 1 0

X X x Link L

x 1 x x Add 1
,

x x 1 x Select T T

x x x Modify Condition Flags C

OR Or*
C f 1 c 1*1 r I

1514131211109 8 7 654 3 2 1 0

X X x Link L

x 1 x x T F

x x 1 x T T

x x x Modify Condition Flags C

Exclusive I D
OR Xr

f c 1*1 r I
15 14 1 3 12 11 1.0 9 8 7 6 5 4 3 2 1 0

X X x Link L

x 1 x x T F

x x 1 x T T

x x x Modify Condition Flags C

Mnemonic
Operand

Command Operation Code Comments Field

AND Nr*
E f c 1*1 r]

1514131211109 8 7 654 3 2 1 0

X X x Link L
x 1 x x T F

x x 1 x T T
x x x Modify Condition Flags C

Shift Hr* I F f c 1*1 r I
1514131211109 8 7 654 3 2 1 0

X X x Link L
x 1 x x Insert I

x x 1 x Shift R R

x x x Modify Condition Flags C

2-50

SECTION 3

I/O AND MEMORY INTERFACE

SECTION 3

MICRO-ONE I/O AND MEMORY INTERFACE

3.1 GENERAL DISCUSSION

There are three primary input/output interfaces on the Micro-One computers for
connecting external equipment to the interfaces: Byte I/O, Direct Memory
Access and Serial I/O. In the Micro-One, I/O and memory operations are
performed under control of microcommands. A standard set of I/O macro­
instructions is used for performing program-controlled and concurrent I/O
operations.

Information in Sections 3 through 8 discuss I/O and memory, and are arranged
as follows: Section 3 provides general information on the various Micro-One
I/O interface systems; Section 4 provides a detailed description of the pro­
grammed Byte I/O interface system, including programmed transfers, block auto­
matic (concurrent) transfers, and external interrupts. Section 5 describes
the CPU Memory interface; Section 6 contains a detailed description of the DMA
port; Section 7 describes the Serial I/O interface, and Section 8 is an I/O
connector signal list. Section 9 is an I/O and memory term glossary.

3.2 I/O ORGANIZATION

Figure 3-1 is a block diagram of a typical Micro-One serial computer system
showing the three primary I/O interfaces: Serial I/O channel, Parallel Byte
I/O channel, and DMA port. These three interfaces provide the system designer
with the flexibility to structure efficient I/O systems for a wide range of
applications. The serial I/O interface, although most commonly used with a
teletype, can be used for other bit-serial devices as well. The byte I/O
interface can be used by controller circuit boards that. plug into the main­
frame ch~ssis. The DMA interface provides the method for external I/O devices
to communicate directly with core memory. The user can design his own inter­
face controller for the DMA port, or use standard Microdata DMA interfaces.

3.3 SERIAL I/O INTERFACE

The serial I/O interface is designed primarily for communicating with a full­
duplex teletype. Character assembly and disassembly, with all timing and
synchronization, are performed at the microprogram level. Two macro instruc­
tions, Input Byte Serially (IBS) and Output Byte Serially (OBS), are used for
communicating with the serial channel device.

Note that the Micro-One firmware (-13) for these instructions was designed to
operate with a 110-baud teletype. The designer can alter the timing of the
serial channel for teletype (or other serial device) compatibility by perform­
ing a simple change in firmware.

3.4 BYTE I/O INTERFACE

The byte I/O interface provides for transfer of bytes over a party line I/O
bus under microprogram control. The standard Micro-One computer firmware
provides both programmed and concurrent I/O transfer capability, along with
a priority interrupt system.

3-1

PERIPHERAL DEVICE/CONTROLLER

r-; - ~ - - - -,- - - - -- -;-]
CORE MEMORY
(8K BYTES)

TO
DEVICE ----I

DEVICE
CONTROLLER

PERIPHERAL DEVICE

CORE MEMORY
(8K BYTES)

MEMORY BUS

SERIAL
I/O
CHANNEL

r
I

MEMORY
CONTROL LOGIC

CENTRAL
PROCESSOR
UNIT (CPU)

BYTE I/O BUS

I/O LINE DRIVER I AND RECEIVER
. OPTION L __

DIRECT
MEMORY
ACCESS
PORT

DMA
CONTROL
LINES

DEVICE
CONTROLLER

DEVICE
CONTROLLER

_-.J
PERIPHERAL DEVICE PERIPHERAL DEVICE

fEXtERNALDM:ES-- - - - - - - - - - - - - -,

I ~' ____ ~ ____ ~ ______________ -W~_BY_T_E __ I/_O_B_U_S_(_E_X_T_E_N_D_E_D~)~ __________________ ~~ ____ ~ I
I I
I UP TO I I 8 UNITS I
L ~I~~ I __ _.-..-__ ~ -...l

, I
UP TO 64 INTERRUPT LINES PERIPHERAL DEVICE PERIPHERAL DEVICE

Figure 3-1, Typical Micro One Series I/O Configuration

3-2

Data transfers through the byte I/O interface are basically two-phase
operations. First, a control byte is placed on the byte I/O bus before the
actual transfer of data. The control byte contains an I/O controller device
address and a device order code for the type of operation to be performed
during the transfer (data transfer, status/function transfer, etc.)

All controllers on the bus examine the device number, but only the addressed
controller accepts the control byte and logically connects itself to the bus
for the subsequent data byte transfer. During the second phase of the byte
I/O operation a single byte is transferred to or from the I/O controller.
After each byte transfer, the controller disconnects itself from the bus.

3.4.1 Program-Controlled I/O

In standard firmware sets, such as the Micro-One/21, two basic instructions
(one for input and one for output) are used for transferring information to
and from controllers on the byte I/O bus under programmed control. These
instructions permit transfers between the device controller and the A Register,
B Register, or Memory. Up to eight types of input and eight types of output
instructions may be defined for a particular controller. Generally these
include function output, data output, status input, and data input, and are
determined by a 3-bit device order in the control byte of the I/O instruction.

3.4.2 Concurrent I/O

The concurrent I/O feature provides the capability for automatic block
transfers between core memory and I/O controllers connected to the byte I/O
interface. The concurrent mode transfer rate is a function of the firmware
set used in the computer. As an example, standard Micro-One/21 firmware
performs concurrent transfers at rates up to 20,000 bytes per second.

Once started, the transfers are fully automatic and proceed without program
intervention. Concurrent I/O operations take priority over instruction
execution, and force a break in the execution of long instructions such as
multiply, divide, and shifts to ensure that concurrent I/O servicing delays
are not excessive. Concurrent I/O operations make use of pairs of two-byte
address control words stored in dedicated core memory locations. One pair of
address words is used by each controller. The control words, which contain
the address of the current byte being transferred and the address of the last
byte in the block, are initially set by the software program and thereafter
are manipulated automatically by firmware for each byte transferred.

3.4.3 External Priority Interrupts

The external interrupt system of Micro-One series computers operates through
the byte I/O interface in both the computer mainframe and expansion chassis.
Interrupts can originate from device controllers or from the optional Priority
Interrupt interface board connected to the byte I/O bus. The Priority Inter­
rupt interface board provides control of eight external interrupt signals.

The byte I/O interface contains a single external interrupt request line,
common to all I/O controllers on the byte I/O bus, and a priority line that
is carried sequentially through all controllers on the bus. Each I/O
controller receives priority from the preceding controller in the priority

3-3

chain. Priority is passed a long to the next controller in line only if the
previous controller is not ready to request an interrupt. When a controller
receives priority and is ready to request an interrupt, it stops the progression
of the priority signal and activates the interrupt request signal.

After receiving acknowledgment of the interrupt request, the interrupting
controller places an address byte on the I/O bus that the processor uses to
transfer program control to the proper interrupt servicing routine.

3.4.4 Direct Memory Access DMA Port

All Micro-One series computers contain a DMA Port through which data can be
transferred between core memory and I/O devices at rates up to one million
bytes per second. The DMA Port provides this high transfer rate and low
access latency time, for use with high-speed, demand-type devices such as
rotating memories.

The DMA Port consists of the memory bus and various DMA memory control lines
which are available in the computer mainframe. It is up to an external DMA
controller to Eanipulate the control lines and place data and addresses on the
memory bus at the proper times when DMA transfers take place. The DMA
controller may be designed and constructed by the user, or a standard Micro­
data DMA controller can be used.

The standard programmed I/O instructions are used to set up the DMA Controller
and, if so designed, I/O device controller(s) attached to the DMA Controller
with the parameters of the transfer. Program communication with these device
controllers takes place over the byte I/O bus. Once the transfer is initiated,
the DMA Controller and attached device controller supervise the transfer, and
only minimum attention from the microprogram is required. Standard Microdata
DMA Controllers can accommodate several external device controllers.

3-4

SECTION 4

BYTE I/O INTERFACE

4.1 IN!RODUC!LON

SEC!LON 4

aYTE L/O LN!ERFACE

The Byte I/O interface, to which the parallel-byte device controllers are
connected, contains input control lines, input data lines, output control
lines, output data lines and spare lines. The points of origin or destina­
tion in the CPU of the byte I/O interface lines are shown in Figure 4-1.

4.2 BYTE I/O BUS

The following paragraphs describe the I/O data and control lines of the byte
I/O bus. Unless noted, descriptions apply to both internal and external buses.

4.2.1 Input Data Lines

Input data lines lDOO/through ID07/ are terminated on the CPU input bus
by lK pullups to +SV. The lines are driven by 7438 TTL power gates, or
equivalent, with uncommitted collectors on each controller. When a gate
switches on, the connected line swings to ground potential and places a logical
1 on the B bus. When the gate is switched off, the line swings to +SV. The
input data lines are handled the same whether the device controller is located
in the mainframe or in an external chassis.

4.2.2 Output Data Lines

Output data lines ODOO/through OD07/ originate at the processor Output Data
Register. Data or address information to be transferred over the output data
lines is transferred from the A Register, the B Register, or Memory, into the
Output Data Register and onto the lines. Lines ODOO/through OD07/ are present
at all CPU I/O backplane connectors.

To preserve the expansion capability 6f the byte I/O bus, each device control­
ler on the bus is restricted to a single unit load (one TTL gate, 1.6 ma
maximum) on each of the output data lines. Two loads are allowed if one load
is a low power TTL gate such as a 74L04.

Output Data Register

Binary 1

Binary 0

4.2.3 Input Control Lines

The input control lines on the byte I/O bus are:

• ECIO/ - Concurrent I/O request

• IRPY/ - I/O Reply (spare)

• EINT/ - External interrupt

4-1

ODOX/

OV

+4V nominal

::::
1-"
n
Ii
o

~
(1)

H -o
t::Id
c:: en
t""
!j
(1)
en

r-J\~v-----~--~+5V

9312
MUX

1Kn

+5

RECOMMENDED CONFIGURATION
N ";;TEN GATES .
M";;FIFTEEN GATES

DEVICE CONTROLLER

~ N __________ +-+--<l OUTPUT
BUS

7438

7438

M

DATA

ENABLE

1--------DATA

I--------ENABLE

~----------~----------~--DATA

~----------~---ENABLE

TRANSMITTERS

INPUT
BUS

These lines are present in thelIa card connectors in the backplane. The
lines are driven by 7438 TTL power gates (or equivalent) with uncommitted
collectors in each controller. A lK pullup resistor for each. line is
included in the processor, except for EINT/ which has a 470 ohm pullup.
All lines are active (indicate assertion) when they are at ground potential.
For example. ground potential on the EINT/ line causes an external interrupt
request.

4.2.4 Output Control Lines

The output control lines on the byte I/O bus are:

• IOlX/

• I02X/

• I03X/

• CPRl

• CPR2

• MRST/

• PRIN/

• PROT/

• SELl

• SELO

I/O control bits 1 - 3 from I/O Control Register

Processor Clock

Processor Clock (inverted & delayed 33 nsec from
CPRl)

Master Reset

Priority In

Priority Out

Select In

Select Out

4.2.4.1 Control Lines IOlX/ through I03X/

These lines are tied to the buffered inverted outputs of the I/O Control
Register in the CPU which is set and reset at the microcommand level. Device
controllers connected to the I/O bus decode these lines into eight assigned
states, indicating various I/O control modes. Table 4-1 provides standard
definitions of the eight control flip-flop states. Other definitions can be
devised for systems not using standard Microdata firmware and I/O controllers.

Subsequent discussions refer to the conditions of IOlX/ through I03X/ by
the logic terms assigned to the eight states of these lines (COXX/, DOXX/.
etc) which are decoded in the I/O controllers.

4-3

Table 4-1. I/O Control States

I/O Control
Register State

(Binary)
IOIX = LSB Control Definition Logic Term
I03X = MSB

a None None
I Control output COXX/
2 Data output DOXX/
3 Space serial Teletype SPI
4 Concurrent I/O acknowledge CACK/
5 Interrupt acknowledge IACK/
6 Data input DIXX/
7 Spare SP3/

4.2.4.2 Lines CPHI and CPH2/.

These lines provide processor clock signals to device controllers. Each line
can be used independently as a 5 MHz square wave source, or the lines may be
NANDed together to produce a 33-nanosecond clock pulse (CPHI is inverted and
delayed approximately 33 nanoseconds to form CPH2/). The relationship of the
signals on lines CPHI and CPH2/ is shown in Figure 4-2.

/""' .. ----- 200 NS ----.. ""'1

CPH1 ---.1 __ - I
CPH2/

J I-- APPROXIMATELY 33 NS

U U
I.. 200 NS ---,-.... """1

Figure 4-2. Relationship of Control Signals CPHI and CPH2/

4.2.4.3 Control Line MRST/

This line is the master reset line which is activated by the front panel RESET
switch, or by the power fail or restart. It is used to clear all control
flip-flops to their initialized condition. Ground potential is applied to
this line when the RESET switch is pressed.

4-4

4.2.4.4 Control Line PROT/, PRIN/

This line carries interrupt request priority from controller to controller
along the CPU backplane. The line is labeled PROT/ (priority Out) as it
leaves the CPU and each controller, and enters each controller as term
PRIN/ (Priority In).

Relative priority of each controller is determined by the positions of the
controller boards. The first controller in the mainframe (nearest the CPU)
has highest mainframe priority with the last controller having lowest main­
frame priority.

4.2.4.5 Spare Lines

Spare lines SP2 and SP7 are applied to the byte I/O bus. They are provided
only for special requirements and are not terminated in any way on the
standard Micro-One.

4.2.4.6 Control Line SELO/, SELI/.

This line carries external interrupt and concurrent I/O select priority from
controller to controller along the CPU backplane. It is labeled SELO/
(Select Out), as it leaves the CPU, and each controllers, and enters each
controller as term SELl/ (Select In).

Selection priority of the controllers is determined by the positions of the
controller boards in the mainframe and expansion chassis (para 4.2.4.4).

NOTES

• A controller must receive PRIN/ to make an external interrupt
request. The requesting controller removes PROT/ from all
lower priority controllers to lock out lower priority interrupt
requests. The requesting controller must receive SELl/ from
the preceding controller to respond to an interrupt acknowledg­
ment (lACK/).

• Any controller can make a concurrent I/O request (ECIOI) at
any time. Simultaneous concurrent requests are handled in
order of priority as a requesting controller must receive SELI/
in order to respond to the concurrent I/O acknowledgment (CACK/).
A controller requesting a concurrent I/O transfer will not pass
SELO/ to the next controller until it has transferred one data
byte.

• Descriptions of the PROT/, PRIN/, SELO/, and SELI/ functions are
provided in paragraphs 4.6 through 4.6.3.

4-5

4.3 BYTE I/O FUNDAMENTALS

Though the flexibility of the byte I/O technique lends itself to individualized
applications, certain standard conventions have been adopted for byte I/O.
operations in the Micro 1600 and Micro-one series computers. These conventions
are described in the following paragraphs.

Byte-programmed I/O operations provide transfers of data, control, and status
information over the byte I/O bus. This multiplex channel permits intermixed
program and concurrent I/O transfers. More than one device on the bus can be
operating in a concurrent block transfer mode at the same time. A maximum of
32 controllers can normally be addressed on the byte I/O bus.

The second byte of an I/O instruction is a control byte containing a 3-bit
device order and a 5-bit device address.

DEVICE
ORDER
(f)

DEVICE
ADDRESS

(d)

7 6 543 210

The two-phase operations used with the Micro-One I/O concept are discussed in
paragraph 1.6.

4.3.1 Device Addresses

Each I/O controller on the byte I/O bus is assigned a unique 5-bit device
address. On Microdata device controllers, standard addresses are assigned
by printed circuitry on the controller board. Other addresses may be assigned
by cutting the etch and installing jumper wires.

Each device controller on the I/O bus determines if it is being addressed by
comparing its assigned address to the 5-bit device number in the control byte
sent to all controllers on the output data lines. The device address portion
of the control byte appears on data lines ODOO/ through OD04/. The assigned
device address is also used to identify the I/O controller requesting an
interrupt or concurrent I/O transfer. The processor acknowledges each request
with signal IACK/ (for interrupts) or CACK/ (for concurrent I/O). On receiv­
ing the acknowledgment signal, the requesting controller places its address
on input data lines IDOI/ through ID05/. For concurrent I/O operations, the
controller indicates the direction of data transfer by bit ID07/; a 1
indicates output, a 0 indicates input.

Table 4-2 lists the device addresses assigned to Microdata standard interface
units. Customer-designed controllers should not use the addresses assigned
to standard Microdata controllers which are to be used. Each priority inter­
rupt group listed in the table is one set of eight priority interrupt levels
on the optional (8-level) Priority Interrupt Board.

4-6

Table 4-2. Standard LIO Device Addresses

ADDRESS
(HEXADECIMAL)

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
1B
1C
1D
1E
1F

I------------ I/O_'_DEV_I_C_E _______ ---l
I Teletype (Model 2610 or Integral)
I Asynchronous Modem or TTY/CRT Controller
I High Speed Paper Tape Reader
I High Speed Paper Tape Punch

I
Card Reader
Line Printer
Unassigned

I
I Unassigned

Input/Output Expander (32 X 32)
Magnetic Tape (1 to 4 Drives)
Magnetic Tape (1 to 4 Drives)
8 Channel Asynchronous Modem Controller
8 Channel Asynchronous Modem Controller
8 Channel Asynchronous Modem Controller
8 Channel Asynchronous Modem Controller
Unassigned
Synchronous Modem Controller
Synchronous Modem Controller
Unassigned
Unassigned
Disc Controller (1 to 4 Drives)
Disc Controller (1 to 4 Drives)
DMA Channel Controller
Unassigned
Unassigned
Unassigned
4 or 8 Channel Communications Controller
4 or 8 Channel Communications Controller
4 or 8 Channel Communications Controller
4 or 8 Channel Communications Controller
4 or 8 Channel Communications Controller
ACM or Priority Interrupt Group 1

-_._--- --_ .. _-- - ... ----_._----------_._------------~~-

4.3.2 Device Orders

Accompanying the S-bit device address in the control byte is a 3-bit device
order specifying the I/O operation to be performed by the controller. The
device order portion of the control byte appears on output data lines ODOS/
through OD07/.

Table 4-3 provides a list of standard device orders. Not all device control­
lers use all orders listed in the table. Their use is dictated by controller
design and device requirements. Many controllers have unique device order
definitions.

4-7

DEVICE
ORDER

(Value of f)

0

I
I
I

I
1

I I
I I I

I
I

2 I

I
I

I I
I
!

3 I
I

I

4

Table 4 ... 3.. Standal'd Dev1.ce Ol'del:'s

OPERATION

Data

Status/function I

Block input
with interrupt

Arm interrupt

Disconnect

4-8

DESCRIPTION

Data order causes a data byte
to be transferred between
processor and addressed
controller. Direction of
transfer depends on the type
of instruction (input or
output).

Status/function order causes a
status byte to be transferred
from addressed controller to
processor, or a function byte
to be transferred from
processor to controller
depending on the type of
instruction (input or output).

Block input with interrupt
order notifies the addressed
controller to proceed with a
concurrent block input to
memory, and to generate an
interrupt at end of transfer
unless controller has been
subsequently disarmed. This
order is sent with an output
instruction.

Arm interrupt order permits
addressed controller to make
an external interrupt request
on satisf in the interru t y g p
condition. This order is sent
with an input instruction.

Disconnect order causes the
addressed controller from
making an. external interrupt
request under any condition and
releases priority to lower
devices. This order is sent
with an output instruction.

,
I

Table 4-3~ Standard Device Orders (Continued}

DEVICE
ORDER

(Value of f) OPERATION
""-

5 Disarm interrupt

6 Block output
,
, ,

with interrupt

t

7 Not assigned

4.3.3 Status Bytes

DESCRIPTION

Disarm interrupt order inhibits
the addressed controller from
making an external interrupt
request under any condition and
releases priority to lower
devices. This order is sent
with an output instruction.

Block output with interrupt
order notifies addressed
controller to proceed with
concurrent block output from
memory, and to generate an
interrupt at the end of the
transfer unless the controller
has been subsequently disarmed.
This order is sent with an
output instruction.

This order, if assigned, may
perform any required function
as interpreted by the individual
controller. The order can be
sent with either an input or
output instruction to cause a
corresponding byte transfer.

In response to a status order from the processor (specified by the device
order), the addressed I/O controller places a status byte on input data lines
IDOO/ through ID07/. Four of the status bits are common to most device
controllers; the other four are device dependent and differ from controller
to controller. The status byte is transferred into the A Register, the B
Register, or Memory by an input instruction, generally with device order 1.
The significance of each bit in a typical status byte is described in
Table 4-4.

4.3.4 Function Bytes

Some device controllers perform a greater number of operations than are
specified by the 3-bit device order. In these cases, a function byte is
output to the controller by an I/O command to further specify the desired
operation. The byte is defined as a function byte by proper coding of the
device order field (f).

4-9

BIT
NO.

o

I

2

3

Table 4-4. Typical Status Byte Definition

CONDITION

Ready

Input flag

Output flag

Error

DESCRIPTION

Set to I when I/O controller is in a
ready state and not performing a
concurrent I/O operation.

Set to 1 when I/O controller has a
byte ready for input to the processor.

Set to 1 when I/O controller is ready
to receive a byte from the processor.

Set to I when an error has occurred
during a transfer operation. The
error may be the result of timing,
parity, or a device malfunction. The
bit is cleared when the status byte
is transferred.

4- 7 Undefined Unique for each I/O controller.

4.4 BYTE I/O OPERATIONS AND TIMING

The following paragraphs describe the program-controlled and concurrent I/O
operations of the Micro-One computer. Timing diagrams are included for each
operation, and typical controller logic for performing the operations is shown.
For a description of the I/O instructions that pertain to the byte I/O opera­
tions, refer to MiCJ;'o-One/21 Computer Ref'erence Manual, publication No.
RM2000 1551~421.

4.4.1 PrQgram<Contro11ed I/O Operations

The four basic types of program controlled I/O operations are:

• Out~ut of data to I/O controller

• Output of function (control) information to I/O controller.

• Input of data to computer

• Input of controller status information to computer. ,

Each type of I/O operation consists of two phases; the address/order phase and
the transfer phase. The address/order phase is the portion of the operation
during which the desired controller is addressed and the device order bits are
sent to the controller. The second phase transfers .one byte of information
between the I/O controller and the computer. Timing diagrams for output and
input operations are shown in Figures 4-3 and 4-4, respectively.

4-10

4.4.1.1 Address/Order Phase

The address/order phase is identical for all types of I/O operations
regardless of whether the information is an input command (IBA, IBB, IBM) or
an output command (DBA, OBB, OBM), or if the type of information transferred
is data, a controller function, or controller status.

All input and output instructions consist of either three or four bytes. The
first byte specifies the direction of transfer and the source/destination
within the CPU (A or B Register, or Memory). The second byte contains as-bit
device address specifying the desired controller, and a 3-bit device order
code containing control information for the controller. During the address/
order phase, this second instruction byte is placed on the I/O bus and applied
to the inputs of all device controllers. If the source/destination is memory,
the instruction consists of four bytes, with the last two bytes specifying a
core memory address.

Two hundred nanoseconds after the second byte is placed on the I/O bus, the
I/O Control Register changes from state 0 to state 1. The controllers decode
state 1 of IOlX/ through I03X/ to produce control output signal COXX/. During
COXX/, each controller examines lines ODOO/ through OD04/ to determine which
controller is being addressed. The controller whose address is on the lines
connects itself for service and decodes and stores the device order code on
lines ODOS/ through OD07/. The I/O Control Register remains in the COXX/
state for at least 800 nanoseconds, after which it returns to state 0 (no func­
tion) and the address/order byte is removed from the output data lines. This
marks the end of the address/order phase.

At this point, the addressed controller has been connected to the I/O bus and
has received, decoded, and (in most cases) stored the function information
contained in the device order code. The device order code may specify:

a. Transfer of data byte between the processor and controller.

b. Transfer of a status/function byte between the processor and controller.

c. One of several possible control functions to be performed by the
controller (i.e., rewind magnetic tape, set up for concurrent transfer,
enable interrupt, etc.).

If the device order code specifies transfer of data, the controller readies
itself for a transfer to or from its data register. The direction of transfer
is specified by the computer during the second phase.

A device order specifying a status/function transfer causes the controller to
ready itself for transfer to or from its status/function register. In most
standard controllers, the status/function register is used only to hold
controller status information for transfer to the computer. In these control­
lers, all necessary control functions can be specified in the device order
alone. Some controllers, however, require a wider range of control than is
provided by the 3-bit device order. In these cases, the next byte output to
the controller is sent to the status/function register where it specifies
controller and/or device actions. When the device order specifies a device/
controller function, the byte transferred during the second phase may be
ignored by the controller.

4-11

4.4.1.2 Transfer Phase

Transfer of the data, function, or status byte takes place during the second
(transfer) phase of the I/O operation. During the transfer phase the I/O
Control Register changes to one of two states to specify the direction of
transfer. For input operations, the controller places the byte being trans­
ferred onto the input data lines IDOO/ through ID07/ and the CPU strobes the
byte into the destination register or memory location. During output opera­
tions, the byte is applied to output data lines ODOO/ through OD07/ by the
computer and is strobed into the appropriate controller register. At the end
of the transfer phase, the I/O Control Register returns to state O.

4.4.1.3 Data Output Operations

The transfer phase of a data output transfer begins when the computer places
the data byte on the output data lines. Two hundred nanoseconds later, the
I/O Control Register changes to state 2. The controller decodes the state of
IOlX/ through I03X/ to produce data output signal DOXX/, indicating the
presence of data on the lines. The controller then strobes the data byte into
its data register. When the I/O Control Register returns to state 0, the
controller disconnects itself from further service. A timing diagram for data
output operations is shown in Figure 4-3.

FUNCTION CODE AND DATA TRANSFER
DEVICE ADDRESS OCCURS HERE

TRANSFER OCCURS I
HERE ~ _ I

OUTPUT DATA LINES , . ~I i~ _ '-........ _--
(0000/-OD0711 11.21lS --J ~I :-1 2 -lls- 1

CONTROL OUTPUT
COXX/

DATA OUTPUT
DOXX/

--I 800 NS MIN
200 NS J--- 4.0 IlS MAX

----------~I ~I------~N------------------~

800 NS;.j ~ --l ~ 200 NS

------------------1N~--~1 .--.--------
--I ~800NS

Figure 4-3. Data or Function Output Timing

4.4.1.4 Function Output Operations

The timing diagram of Figure 4-3 for a data output operation is also valid for
a function output operation. The function output operation is typically used
to control a discrete action in an I/O device requiring no data transfer.
Rewinding tape is an example of such an action. The most efficient way to
perform this operation is to issue a single instruction containing all the
information necessary to alert the device and cause the tape to rewind.

4-12

In the Micro-One computer, the output byte instructions (OBA, OBB, OBM) are
also used to perform the function output operation. The only difference in
the instructions is the value of the device order (bits 5 through 7) in the
second byte of the instruction.

When an output byte instruction is used for function output the device order
code of the second byte designates the unique function in the I/O device to
be controlled. The assignment of device order codes for function operations
precludes the use of the same codes for data transfer operations.

The function output operation is executed exactly like the data output opera­
tion previously described. A data byte is transferred from either the A
Register, the B Register, or Memory, depending on the output instruction used.
This data byte is usually ignored by the device controller since the device
order code of the control byte contains enough information to describe most
function operations. However, should a controller require more function
definition than is possible in the control byte, the data byte transferred
during the function operation could be used to carry additional function
information, as described in Paragraph 4.3.4.

4.4.1.5 Data Input Operations

The timing diagram for a typical data input operation is shown in Figure 4-4.
Four hundred nanoseconds after the address/order byte is removed from the data
output lines the I/O Control Register changes from state 0 to state 6. The
controller decodes the state of IOlX/ through I03X/ to produce data input con­
trol signal DIXX/. DIXX/ causes the controller to place the data byte (from
the controller data register) on input data lines IDOO/ through ID07/. The
data must be settled no later than 400 nanoseconds after DIXX/ goes low, and
remains stable until DIXX/ again goes high. When DIXX/ goes low, I03X/ is
low. This causes selection of the input bus as a data source whenever the
firmware command designates T Register as a source.

Note: The controller may place the data byte on the lines as early as the
beginning of signal COXX/.

Input data must be removed from the input data lines no later than 400 nano­
seconds after DIXX/ goes high. For normal operation on the external byte I/O
bus with less than a 30-foot twisted pair cable, the DIXX/ signal can be used
for gating or qualifying data applied to the input data lines.

The timing diagram shown in Figure 4-4 is also valid for a status input
operation. A similar relationship exists between status and data input opera­
tions as exists between data and function output operations. In the Micro-One
computer, the input byte instructions (IBA, IBB, IBM) are used both for data
and status input operations. The only difference is the source of the data
byte in the controller. In status input operations, the source of the input
byte is the status/function register. To differentiate between the two opera­
tions, a device order code of 000 is used in the control byte for data transfer
and a code of 001 is normally used for status transfer.

4-13

OUTPUT DATA LINES
(0000/-0007 f)

CONTROL OUTPUT
COXX/

DATA INPUT
DIXX/

INPUT DATA LINES
1000/-1007/

FUNCTION CODE AND DEVICE
ADDRESS TRANSFER OCCURS HERE ,

~~~. --I 200 NS_,--i I . 
~~. -----------------------------

600 NS ~ --i-- j--800 NS 

I 
I I"" ~4oo NSMAX 

400 NS MAX ---t .-, I 
------r.I~"'7""I0J"'7""I~"'7""I~~"'7""I~~~ I 

INPUT STATUS BYTE 
OR DATA BYTE 

Figure 4-4. Data or Status Input Timing 

4.5 CONCURRENT I/O OPERATION 

Concurrent I/O operation is the name given to the block transfer technique 
used in the standard Micro-One computer. The software program sets up start­
ing and stopping addresses for the block transfer in dedicated memory locations 
and executes an input or output instruction to initiate the transfer; there­
after, firmware controls the data transfer operation automatically on demand 
from the device controller. In terms of controller design, the additional 
logic required for concurrent I/O operations can be thought of as an overlay 
to the program-controlled logic discussed earlier. All that is required is 
additional logic to recognize a data ready condition and to assert a concur­
rent I/O request at that time instead of waiting for an input or output 
instruction, as is the case with program-controlled operations. A device 
performing a concurrent I/O operation initiates its own data transfers when it 
is ready. 

4.5.1 Concurrent I/O Timing 

The timing for a typical concurrent I/O operation is shown in Figure 4-5. 
When the device controller is ready to transfer data, it causes the concurrent 
I/O request line (ECIO/) to go low. After recognizing the request, processor 
firmware causes it to respond by setting the I/O Control Register to state 4, 
producing the· I/O acknowledge signal CACK/ in the controller. While CACK/ is 
low, the device controller applies an address byte containing its own address 
and a bit indicating the- direction of transfer (input or output) to input data 
lines IDOl/ through ID07/. 

Concurrent I/O operations utilize four dedicated memory locations to hold the 
l6-bit starting and final addresses of the block to be transferred. In 
Micro-One computers, the first of these 4 bytes is at the location specified 
by the controller ~evice address times 4. When the processor acknowledges a 

4-14 



CONCURRENT I/O 
REQUEST ECIO/ 

CONCURRENT I/O 
ACKNOWLEDGE 
CACK/ 

DATA INPUT BUS 
1000/'-1007/ 

DATA INPUT 
DIXX/ 

DATA OUTPUT 
DOXX/ 

DATA OUTPUT BUS 
1000/-1007/ 

I 
>1.0 J.lS 
<20.8J.1S --1 r- _1.6J.1S 

---~--il I 
400 NS MAX --l 1-1.. 2.8J.1S 

ADDRESS AND STATUS 
TRANSFER 

I--- 3.4 J.lS --~.-! 
U I 
200NS~ 

I , 

'-- 800 NS 

!--1.0J.lS 

I 
OUTPUT DATA 
TRANSFER 

Figure 4-5. Concurrent I/O Timing 

concurrent I/O request with 
lines IDOO/ through ID07/. 
(shifted left 1 bit) in the 
the direction of transfer. 

CACK/, the controller places a byte on data input 
This byte contains the device address times 2 
lower 6 bits with bit 7 set or reset to specify 

This byte is shown in the following diagram. 

DEVICE ADORES X2 
(SHIFTED LEFT ONE BIT) 
~ .... ___ A ___ , 

765432 0 

1/0 DEVICE 
ADDRESS 

(ALWAYS ZERO) 

DIRECTION OF TRANSFER: 

o : INPUT 
1 = OUTPUT 

4-15 



When the computer receives this byte, it obtains the actual dedicated memory 
address (4 X device address) by shifting the 2X address (supplied by the 
controller) left 1 more bit position. The direction bit (7) is shifted out 
and used by the computer to specify an input or output operation. Examples 
of device addresses, addresses supplied by the controller, and dedicated 
memory addresses are as follows: 

Actual Device Address Supplied Dedicated Memory 
Address (Hex) By Controller (Hex) Address (Hex) 

00 00 00 thru 03 
01 02 04 thru 07 
02 04 08 thru OB 

IF 3E 7C thru 7F 

The firmware uses the address byte to initiate a normal input or output 
operation to or from memory. If an input is specified, the firmware asserts 
DIXX/ and the controller responds by placing a data byte on IDOO/ through 
ID07/. The addresses of the block of memory locations to or from which the 
transfer takes place is specified by software. Prior to starting the block 
transfer, the program loads the 4 dedicated memory locations with a l6-bit 
starting (current) address and a l6-bit ending address. After each byte is 
transferred, the starting (current) address is incremented by the firmware. 
Thus, each byte is transferred to or from the next sequential location. After 
each transfer (but before the current address is incremented) firmware com­
pares the current address with the final address. If the two are equal, the 
firmware tells the controller that the transfer is complete by essentially 
executing an output instruction with a device order of 4. Upon receipt of the 
second byte of this instruction (strobed by DOXX/) , the controller issues an 
external interrupt to indicate to the CPU that the operation is complete. 

4.6 EXTERNAL INTERRUPT OPERATION 

Interface lines PROT/, PRIN/, SELO/, SELI/, EINT/, lACK/, and IDOO/ through 
ID07/ are used by device controllers or the optional Priority Interrupt board 
on the byte I/O bus for external interrupt operations. Lines PROT/ and PRIN/ 
(paragraph 4.2.4.4) make up the hard-wired priority chain that determines the 
relative priority of each controller and Priority Interrupt board on the byte 
I/O bus. These lines determine priority for interrupt requests. Line EINT/ 
(paragraph 4.2.3) carries the interrupt request from the controller to the 
processor. I/O control register state 5 is decoded in the controller as 
interrupt acknowledge IACK/. Input data lines IDOO/ through ID07/ carry an 
interrupt address byte from the interrupting controller to the processor in 
response to the interrupt acknowledge signal on line IACK/. The interrupt 
address byte is used by the processor to locate the entry address of the 
interrupt servicing subroutine. 

4-16 



4.6.1 Priority Determination 

Interface units on the byte I/O bus are assigned priority for control of 
external interrupts and concurrent I/O request operations. The priority is 
achieved by the manner in which lines PRIN/, PROT/, SELI/, and SELO/ are used 
to link the interface units together. A typical example of priority wiring 
is shown in Figures 4-6 and 4-7. In these examples, three device controllers 
in the mainframe chassis are connected in the priority chain. The figures 
show that the priority of an interface unit is the same as the physical loca­
tion of that interface on the byte I/O bus. With special priority wiring, 
however, the relative priorities can be independent of backplane positioning. 

A device may make a concurrent I/O request at any time. However, to make an 
external interrupt request, the device must have priority in (PRIN/). Signal 
IS02 of Figure 4-6 on each interface unit inhibits propogation of PRIN/ if the 
interrupt servicing routine is not complete. This establishes a true-level 
priority among all interface units for generating an external interrupt. A 
controller never passes a low signal on line PROT/ if it is making a request 
or until the interrupt servicing routing is complete. 

PRINX/ PROTX/ PRINX/ PROTX/ 

CONTROLLER CONTROLLER CONTROLLER 

HIGHEST PRIORITY SECOND HIGHEST PRIORITY THIRD HIGHEST PRIORITY 

Figure 4-6. Typical Priority Scheme 

4-17 



SELOX/ 

SELIX/ SELOX/ SELIX/ SELOX/ SELIX/ 
r---------------~ ~--------------~ 

HIGHEST PRIORITY SECOND HIGHEST PRIORITY THIRD HIGHEST PRIORITY 

Figure 4-7. Typical Selection Acknowledgment Scheme 

4.6.2 External Interrupt Requests 

External interrupt requests from interface units are carried on line EINT/ to 
the processor. The internal microprogram recognizes the presence of an exter­
nal interrupt request and responds as dictated by interrupt handling firmware. 
External interrupt line EINT/ can be used both by device controllers and by 
the optional Priority Interrupt interface board. The Priority Interrupt 
option provides the proper interface to the I/O bus, contains priority logic 
for each interrupt level, and permits processor control over the handling of 
interrupts. This standard option provides, on one circuit board, convenient 
hardware for 8 levels of system interrupts. Because the basic interrupt 
facility makes use of the byte I/O bus, all device controllers have access to 
the interrupt request line and can react to the firmware interrupt handling 
sequences in the processor (provided they operate according to the design 
guidelines given in paragraph 4.6.3. 

Note: Requesting an interrupt removes priority for interrupt operations 
from all controllers lower on the priority chain 

4.6.3 Interrupt Sequence and Timing 

Figure 4-8 shows the timing for a typical external interrupt sequence. The 
sequential firmware, processor and I/O device operation is: 

a. The I/O device controller lowers line EINT/ to signal a request 
for microprogram attention. The controller must receive priority 
signal PRIN/ from the higher priority controllers. The request­
ing controller does not pass the priority signal to lower 
controllers. 

b. At the end of the macro instruction currently being executed 
(if not a privileged instruction like I/O or jump), the micro­
program senses the interrupt request and jumps to a firmware 
subroutine to handle it. 

4-18 



EXTERNAL INTERRUPT ------~ r-----------------------------
REQUEST EINT/ 1 

~----(SS 

TIME DEPENDENT ON -.j ~ I 
CURRENT INSTRUCTION I ~1.6I1S~ 

INTERRUPT {f-; ;.1--------------
ACKNOWLEDGE I 
lACK/ 

INPUT DATA LINES 
IDOO/-ID07/ 

300 NS MAX ~ j.- -...j j.- 400 NS MAX 

IS I I 
INTERRUPT ADDRESS 1].-------------, INTERRUPT ADDRESS 
PLACED ON INPUT REMOVED FROM LINES 
DATA LINES 

Figure 4-8. External Interrupt Timing 

c. The microprogram causes line LACK/ to go true to acknowledge 
the request. All controllers in the priority chain decode LACK/ 
and each requesting controller passes SELO/ down the chain to 
the lower priority controllers (SELO/ becomes SELI/ at the input 
to each controller). 

d. The controller that issued the interrupt request does not pass 
SELO/ to the next controller. This prevents any lower priority 
controller that may have simultaneously requested an interrupt 
from responding to signal LACK/. 

e. In response to the acknowledgement and receipt of SELI/, the 
requesting controller places a 6-bit interrupt address on input 
data lines (IDOl/ through ID06/. The interrupt address speci­
fies the location (in core memory page 1) of the 2-byte entry 
address for the interrupt servicing subroutine. 

f. The processor accepts the 6-bit interrupt address and causes 
line IACK/ to go high. 

g. The processor fetches the 2-byte interrupt subroutine entry 
address from the first 256-word page of memory using the inter­
rupt address supplied by the controller as the lower 6-bits, 
and 01 as the upper two bits. 

h. Using the 2-byte entry address, the microprogram executes a 
pseudo return jump or call instruction to the interrupt 
servicing subroutine at that address. 

i. The interrupt servicing subroutine then proceeds to service 
the interrupt according to the macroprogram. 

j. At the end of the servicing routine, priority is released by 
any of the 3 actions listed oelow. Any of these will cause 

4-19 



the requesting controller to pass signal PROT/ to the lower 
priority controllers. 

1. Rearmi~g (if another request is expected) 
2. A concurrent I/O request 
3. Disarming (if no further requests are desired) 

The interrupt sequencer in the controller contains two J-K flip-flops (and 
associated circuits) which generate the interrupt request (EINT/) and control 
the priority line PROT/ to the next controller. The 4 states of the flip-flops 
determine the priority interrupt status of the controller. These 4 states are 
illustrated in Figure 4-9 and described in Table 4-5. 

DISARMED 
0 

I~ 

State 

o 

1 

2 

3 

ARM+ 
CCIX+ DEVICE 
CCOX .. ARMED ACTION WAIT lACK ACTIVE 

~ 1 2 3 

DSM ARM + CCIX + CCOX I 

yigure 4-9. Interrupt Sequencer States 

Table 4-5. Interrupt Sequencer States 

Flip-Flop 
States 

IS02 ISOl 

o o 

0 1 

1 1 

1 0 

Function 

Disarmed state. Disregards any received 
interrupt and does not move to requesting 
state. 

Armed state. Allows system to move to 
requesting state when peripheral conditions 
are met. 

Wait state. Generates an external interrupt 
to the processor when priority in is received. 

Active state. Inhibits propagation of 
priority to lower level priority controllers. 

4-20 



When the controller is initialized, the sequencer is set to state zero 
(disarmed). When disarmed, the controller cannot generate an interrupt 
request and always passes PROTI to the next controller. 

In order to allow an interrupt, the program must execute an instruction to 
arm the controller interrupt, setting the sequencer to state one (armed). 
In this state, the controller can generate EINTI providing it has priority 
from the preceding controller on the priority chain. 

When the controller is ready to interrupt the CPU, the sequencer advances to 
state two (wait), the priority line (PROT/) is removed from the next control­
ler, and interrupt request EINT/ is generated. The firmware responds to the 
interrupt with the acknowledgment (LACK/). The first interrupting controller 
in the string that has SELl places its address on the input data lines. Its 
sequencer then advances to state three (active) and removes EINT/. 

While the sequencer is in the active state, PROTI is not passed to the next 
controller. This prevents a lower priority controller from generating an 
interrupt while the interrupt handling subroutine is in process. One of the 
functions of the interrupt subroutine is to execute an instruction to rearm 
the controller if another interrupt is expected, or to disarm the controller 
if no further interrupts are desired. The rearming or disarming normally 
takes place near the end of the subroutine and restores priority (PROT/) to 
the lower priority controllers. 

Concurrent 1/0 operations are normally terminated with an end-of-operating 
interrupt to inform the CPU that the block of data has been transferred. The 
concurrent I/O request automatically arms the controller interrupt. 

4-21 



SECTION 5 

MICRO-ONE CPU READ/WRITE MEMORY INTERFACE 



SECTION 5 

MICRO-ONE CPU 
READ/WRITE MEMORY INTERFACE 

5.1 PROCESSOR AND MEMORY INTERFACE 

Figure 5-1 illustrates a portion of the processor and memory interface 
consisting of the following elements: 

• Control Section 

• Memory Read Data Selection Logic 

• Memory Write Data Gating Logic 

• M and N Register Address Gating Logic 

The remainder of this section discusses each element in turn. 

5.1.1 Control Section 

The Control Section is the main control element of the Micro-One CPU. However, 
only that part of the Control Section pertaining to memory is discussed. 
One function of the Control Section is to decode the CPU memory micro command 
OPAl. OPAl requests memory service for the CPU, and eventually results in a 
Memory Busy (MBSY) condition while the memory services the CPU. While 
MBSY is high, due to memory use by the CPU, the DMA is prevented from 
issuing a request for memory service. While memory is being used by the 
DMA channel, the Control Section is inhibited from executing OPAl. 

The Control Section also generates Timing Hold signal THLD/. In a DMA 
operation, THLD/ is used to stop the main CPU clocks while a DMA memory 
cycle is occurring. This essentially freezes execution of microcommands 
and prevents CPU me1llory_request while meIl1o~y:i.s servicing the DMA channel. 
Signal THLD/ is generated by either of two sets aT-conditions relative to 
DMA operations: 

1. Simultaneous OPAl and DMAR/ 

2. OPAl while MBSY/ is active 

The third function of the Control Section which relates to memory operations 
is generation of Transfer Memory Clock signal LT2/. LT2/ clocks the memory 
read data through the Memory Read Data Selection Logic to the CPU T Register. 
When the DMA interface is using memory, LT2/ is inhibited. Inhibiting LT2/ 
prevents the data being transferred from memory to the. controller from 
entering the CPU T Register. 

5-1 



~ 
1-" 

IN 
~ 
I'i 
(t) 

V1 
r-- I 
t:11-' 
(t) • 
rt 
III 
1-" n 
1-'l-tI 
(t) c::: 
0.. 

III 
0:;::;1 

V1 1-'0.. 
I 0 

N n t:1 
:>;"'~ 
t:1 
1-" :s: 
III (t) 
IN S 
I'i 0 
III I'i 
S'<: 
'-" 

H 
::;I 
rt 
(t) 
I'i 

"'" III 
n 
(t) 

DMAS/ 
----, . 

I FROM M&N FROM MD TOT I 
REG~STERS REG~STER REtSTER 

~ 
+ LOAD T 

CPU MEM 1~ I 
REQUEST RTXX/ I 

M&N ADDRESS MEMORY MEMORY 

GATING WRITE DATA READ DATA 
GATING SELECTION 

I 
I 
L .--- r-- --- -

-
.. 

~ 
I 

- ---. --- - -MA 
NTERFACE 

• 
DMA MEMORY DMA MEMORY DMA MEMORY 
ADDRESS WRITE DATA READ DATA I 
GATING GATING RECEIVERS 

I 
L -~-- -- - -
FROM 
CURRENT 
ADDRESS 
COUNTER 

FROM 
CONTROLLER 
WRITE DATA 
BUFFER 

TO 
CONTROLLER 
READ'OATA 
BUFFER 

r I 
CLOCK MEMORY 

CONTROL WTXX/ 
CONTROL MRST/THOUl. INTERFACE I 

SECTION ON MICRO MRST/ 
ONE I 

MBSY PROCESSOR READ ...> 

-------____ J 
BIDIRECTIONAL 
MEMORY DATA 
BUS (8·BIT) 

MEMORY ADDRESS 
BUS (16·BIT) 

---- I 
I I DMAR/ 

I DMAW/ 

DMA MEMORY I CONTROL ... MBSY 

I DMAS/ 

j J - --r-

DMA CONTROL 
REQUESTS SIGNALS 
FROM TO 
CONTROLLER CONTROLLER 

.. 
r 

r 

READ/ 
WRITE 
FROM 
MEMORY 

-
--"" 



5.1.2 Memory Read Data Selection Logic 

During CPU memory accesses (read mode), this element gates data read from 
memory into the CPU T Register. As explained in the preceding paragraph 
the Transfer Memory Clock LT2/ signal from the Control Section intiates 
the gating operation. To prevent read data gating to the CPU during DMA 
operations, DMAS/ inhibits generation of LT2/. 

5.1.3 Memory Write Data Gating Logic 

During C?U memory write operations this element gates the write data from 
the MD Register onto the Memory Data bus. Gating signal WRIT, originating 
in the Memory Control Interface, is inhibited during DMA operations. 

5.1.4 M and _~ Register Address Gating Logic 

During CPU memory accesses (read~Qr write), this element gates the l6-bit 
memory address onto the Memory Address bus from the M and N Registers. 
During DMA operations, when the memory address is applied by the DMA 
interface, this function is inhibited. 

5.2 MEMORY CONTROL INTERFACE 

The Memory Control Interface is the principal memory controlling element 
of the system. Its primary functions are: 

• Generating memory status and control signals, 

• Monitoring requests ,for memory service from the DMA and CPU, 

• When memory is not busy, determining which requesting device 
(CPU or DMA) is to receive access. Determination is based on 
DMA having highest priority and the CPU having second priority, 

• Initiating memory read or write operations and timing out the 
memory cycles. 

The Memory Control Interface generates the Memory Busy (MBSY) signal to 
the CPU and to the DMA interface. When memory is available, this signal 
goes low and either or both DMA and CPU can request service. If both 
elements request simultaneously, the DMA has priority and will receive 
memory service. The DMA memory request signal is DMAR/; CPU memory request 
signal is OPAl. 

5-3 



When the DMA or CPU request sequence occurs~ the Memory Control Inter~ace 
generates the appropriate memory control signals (listed below) and times 
out the memory cycles, as ShOWll inF1gure 5-2. 

• RTXX/ - Start read portion of cycle, 

• WTXX/ - Start write portion of cycle, 

• READ - Low level = clear/write or half-cycle write; 
High level = read/restore or half-cycle read. 

• MBSY/ - Active low during all memory sequences. Used internally 
by the CPU and externally to control DMA interface devices. 

5-4 



I I 
1'-200 NSEC-l 

I I 
I I 

TT4/ U wtfJ I u 
RTXXy/ 

~~70o-~} •• -------400NSEC~~ 
NSEC r 

u u u 

WTxx7/-r----------------------~I~·::=_ __ 4_0_0_N_SE_C ________ .J~ 

READ 

READ L _____ ____ W..B ILE ________ _ J' ..... 

MBSY/ r 
FULL CYCLE READ/WRITE 

TT~ lfJ 2 CON 
SEC 

u u u u 
RTXX/ __ -+ __________ r-
WTXX/ 

READ 

MBSY/ __ --+-_________ f 

HALF CYCLE READ 

Figure 5-2. Half Cycle Read (Sheet 1 of 2) 

5-5 



f"lj 
1-" 

CJQ 
C 
~ 
CD 

\J1 

N 

~ 

\J1 ~ 
I 0 
~ ~ 

'<! 

t-3 
1-" 
S 
1-" 
~ 

()Q 

Cf.l 
1-" 

()Q 
~ 
Pl ..... 
Ul 

TT4/ ~ ~ U U U U 
RTXX/ 

F~ONSEC1 

WTXX/ 

I I r 

READ 

~--r---------~~ 

MBSY/ ------~~--~ ~-------------------------------------------
~~~------------~~ 

HALF CYCLE WRITE

NOTE: FOR MOS MEMORY OPERATIONS, THE WAVEFORMS FOR RTXX/, WTXX/, READ, AND MBSY CAN BE REPROGRAMMED
IN THE MICRO ONE MEMORY SEQUENCER ROM. MINIMUM PULSE WIDTH IS 200 NANOSECONDS. MAXIMUM CYCLE
TIME FOR THE SEQUENCER IS 1.6 MICROSECONDS.

SECTION 6

DIRECT MEMORY ACCESS PORT

SECTION 6

DIRECT MEMORY ACCESS PORT

6.1 INTRODUCTION

The Direct Memory Access (DBA) Port is a channel to/from the Micro-One
core memory through which data may be transferred at very high speeds
without involving the Micro-One CPU. DMA transfers are controlled entirely by
an external DMA interface and occur at the rate of the external device up
to full memory speed. At maximum memory speed, transfers take place at
1 million bytes per second using back-to-back, 1.0 microsecond memory cycles.
The DMA Port consists of the set of lines used for DMA control and data
transfer. These lines are available at all backplane card slots.

A simplified functional block diagram of the Micro-One DMA system is provided in
Figure 6-1. The external peripheral device is conventionally controlled by
a device controller connected to the byte I/O bus. Function output and status
input are accomplished via the byte I/O bus. This includes commands to
intiate the DMA transfer. As indicated in Figure 6-1, these latter functions
may be performed within the DMA interface.

The DMA interface logic/buffers and device controller may be
circuit board or on separate boards. If separate boards are
interconnected by cables attached to the rear of the boards.
DMA interface_is available from Microdata.

6.2 FUNCTIONAL DESCRIPTION

on one printed
used they are

A separate

In systems utilizing the Micro-One's DMA capability, core memory is shared
by the DMA interface and the CPU. When either element requires a read or
clear/write memory cycle it issues a request for memory service. To ensure
minimum latency time in answering DMA requests and to prevent the~CPU from
interrupting DMA operations, the DMA interface always has priority over the
CPU for memory service. When the DMA interface requests memory service it
essentially freezes any CPU activities from occurring.

The memory responds to a DMA interface request as soon as the current CPU
memory cycle is completed. The DMA interface then selects the read or
clear/write mode and gates a l6-bit address onto the memory address bus
from a DMA interface address counter or the device controller. The data byte
is then transferred.

This process is repeated every time the device controller is ready to do a
data transfer. Sequential addresses are gated onto the lines until an
entire, predetermined block has been transferred. Determining the end of
the DMA block transfer is made in the interface or device controller by two
l6-bitregisters; the starting (current) address register, and the final
address register, which are loaded with the desired limits of the block prior
to transfer. Following the transfer of each byte, the current address register
is incremented to the next sequential address and compared to the final
address register.

6-1

I'rj MICRO ONE
f-'.

OQ c:
p PROCESSOR AN D

CONTROL SECTION
Ii
ct>

0\

(16-BITl (8-BIT) ~ ,
MEMORY ADDRESS BUS (16-BIT)

~ ..
I

f-' ,...... . BIDIRECTIONAL MEMORY DATA BUS (8-BIT) CORE
CI.l
f-'. t:I

.§ ~
f-' -f-'. 1-0
I-hli
f-'·O
ct> n

BYTE
MEMORY

I 8K TO 64K
I/O PROCESSOR BYTES
BUS CONTROL SIGNALS MEMORY

MEMORY CONTROL .. DMA CONTROL
CONTROL SIGNALS INTERFACE

o..ct>
(fJ

0\
t;;d(fJ
f-'O

I 0 Ii
N n

:>;"'(')
0

t:l1i

06-BIT) (8-BIT) +
DMA PORT I

f-'. ct>
III

OQ ~
Ii ct>

16-BIT ADDRESS DATA DMA
CONTROL

~ S
0

'-'Ii
'-< r----' DMA

INTERFACE

H
:;l
rt ~
ct>
Ii
I-h 1
III
n
ct> ~-. DEVICE TO PERIPHERAL

CONTROLLER(S) DEVICE(S)
r

An end-of-b1ock interrupt should be generated in the DMA inter~ace or device
controller. This may be either an external " interrupt via the I/O bus or
an internal DMA interrupt which sets bit 1 of the CPU's internal status
register.

The following paragraphs describe the various elements in the DMA system
and their functions in DMA operations. (See Figure 5-1.)

6.2.1 DMA Interface

The DMA interface provides interface and controls required for use of the
Micro-One DMA capability. A standard Microdata DMA interface or an individually
designed interface may be used.

The elements of the DMA interface are:

• DMA Memory Control Logic

• DMA Memory Read Data Receivers

• DMA Memory Write Gating Logic

• DMA Memory Address Gating Logic

6.2.2 DMA Memory Control Logic

When the DMA interface has been readied for DMA operation this element
monitors contoller requests for DMA transfers. After receiving a controller
request, the DMA Memory Control Logic intitiates a DMA memory cycle
sequence as soon as the CPU memory cycle is completed (MBSY = low level).
The DMA memory cycle sequence consists of a DMA request (DMAR/) , DMA selection
(DMAS/), and read or write mode selection (DMAW or DMAW/, respectively).
These signals originate in the DMA Memory Control section and are sent to the
Memory Control Interface in the Micro-One.

Signal DMAS/ performs the following functions in both the DMA interface and
the Memory Control Interface:

• Gates memory address from current address counter of DMA controller
onto memory address bus.

• For memory write operations, gates write data from DMA controller
onto bidirectional memory data bus.

Signal DMAW is set low (DMAW/) by the DMA Memory Control if a clear/write
cycle is being requested. It is set high (DMAW) if a read cycle is requested.

6-3

6.2.3 DMA Memory Read Data Receivers

Data read from memory during a DMA transfer is buffered from the bidirectional
data bus by eight receivers in the DMA interface. The outputs of the
receivers are applied to the controller.

6.2.4. DMA Memory Write Gating Logic

This element gates the 8-bit data byte from the controller onto the
bidirectional· data bus and is written into memory during memory write
operations. The data byte is gated onto the bus by DMA Selection signal
DMAS/.

6.2.5 DMA Memory Address Gating Logic

This element gates the l6-bit address stored in the current address register
(contained in either the DMA interface or the controller) onto the memory
address bus. Address gating occurs at DMASI time.

6.3 DMA PORT/MEMORY CONTROL INTERFACE TIMING

To simplify the timing of essential DMA Port/Memory Control Interface
signals, Figure 6-2 illustrates a DMA clear/write memory cycle, followed
immediately by a DMA read/restore cycle, followed by a Micro-One
processor read/restore memory cycle. The sequences shown are not necessarily
typical, but serve to define all DMA signal and timing requirements.

At the start of the timing sequence, the memory is not busy and theDMA
request (DMAR/) and CPU request for memory service OPA occur during the same
clock period (to to ti). Since the DMA channel has priority over the CPU
for memory service, the DMA is granted service before the CPU in cases of
simultaneous requests. The DMA receives memory service on the TT4/ computer
clock pulse tl, provided the timing requirements of paragraphs 6.3.1 and
6.3.2 are met. .

TT4/ clock pulses occur every 200 nsecs, and 5 pulses (1 microsecond total)
occur during each complete read/restore or clear/write memory cycle. There­
fore, the DMA is granted service for the second memory cycle (read/restore) on
clock pulse t6, which occurs 1 microsecond after tl (start of the first memory
cycle). The processor memory service request is not answered until the e~d
of the second DMA cycle (tll). The CPU has been locked out of memory service
for 2 consecutive memory cycles by the DMA. Since the DMA is not requesting
memory service for the third memory cycle starting at time t11' the
processor is allowed to perform its read/restore operation at this time.

During the two DMA cycles, the processor operation freezes. Clock Stop
signal THLD/ stops or inhibits certain computer clocks so that the memory
type microcommand OPA is not executed. OPA remains true until THLD/ is
removed at time tlO to t11' allowing DMA use of memory during THLD/. It is
assumed that. a non-memory type microcommand will be decoded and executed
during clock period tl1 to t 12 •

6-4

6.3.1 Clock Signals

The clock signals TT4/, CPH1, and CPH2/ are used by the Micro-One processor,
Memory Control interface, and the DMA interface to time and synchronize all
memory operations. These clocks are generated by a single crystal oscillator
clock generator located on the CPU control board. TT4/ is the main reference
clock signal for all ciming requirements and is used to generate CPH1 and
CHP2/. CPH1 and CPH2/ are phased clock signals, available to the DMA
interface at any backplane connector at which the DMA interface board is
installed. Combining CPH1 and CPH2/ produces a clock pulse similar to, and
almost in phase with, TT4/. The clock developed from CPH1 and CPH2/ is used
in the DMA interface to time the channel's control functions in synchronism
with the processor and Memory Control interface.

6.3.2. DMA Port Signals

The following paragraphs describe the DMA Port signals generated in the DMA
interface, along with their timing requirements. Figure 6-2 is referenced
as an aid in conveying the timing relationships.

6.3.2.1 DMA Request (DMAR/).

DMAR/ directly generates THLD/ during clock pulse t1 if OPA is present.
CSTP/ in turn, inhibits processor execution of OPA and fetching of another
microcommand. DMAR/ also enables setting of the Memory Sequencer on clock
periods t1 and t6 to begin each DMA memory cycle. The MBSY and THLD/
signals are held true during the DMA cycles by the Memory Sequencer.

DMAR/ must go low not later than 60 nsec before the leading edge (low-to­
high) of TT4/ pulse tl, and remain true until 20 nsecs after the trailing
edge of t6 in order to initiate a DMA cycle of time tl' It must return
to the false (high) state before the leading edge of time t2' Once DMAR/
goes high after initiating a DMA memory cycle, it must remain high until
after memory becomes not busy (MBSY = low level) at the end of the current
DMA cycle.

The DMAR/ line must be driven by a power gate (SN7438 or equivalent) with
an uncommitted collector. The terminating resistor is located in the
processor, allowing the line to swing between +5V and virtually OV.

6.3.2.2 DMA Write (DMAW/)

When DMAW/ is true (low level), it is applied to the Memory Control
sequencer to enable a clear/write memory cycle. (See Figure 6-2, time to')
A false (high level) state of DMAW/ enables a read /restore DMA memory
cycle as shown at time t6'

DMAW/ must be stable in the desired state no later than 55 nsecs before the
trailing edge of TTY/ clock pulse t1' It must remain true until the memory
goes not busy (MBSY = low level) after the trailing edge of clock pulse t5'

6-5

The DMAW/ line must be driven by a power gate (SN7438 or equivalent) with an
uncommitted collector. The terminating resistor is located in the processor
which allows the line to swing between +5V and virtually OV.

6.3.2.3 Memory Busy (MBSY)

MBSY is generated by the Memory Control interface to inform the DMA interface
when memory is not busy so a DMA request can be issued. MBSY is used in
the DMA interface to inhibit DMAR/ and DMAS/ until MBSY goes false (low level).

MBSY will go true (high) at the DMA interface about 40 nsecs after the
trailing edge of the TT4/ clock pulse on which the memory cycle begins
(tl, t6, and tIl of Figure 6-2) for A CPU memory cycle, and is 80 nanoseconds
for DMA cycles. It remains true for four clock periods during a full mem-
ory cycle and goes false no later than 80 nsec after the trailing edge of the
fifth clock pulse. During half memory cycles (initiated and controlled by the
processor only), MBSY remains true for two elock periods, going false not
more than 70 nsecs after the third clock pulse.

MBSY line must be terminated in a single unit lo~d (one TTL gate input)
which is equivalent to a maximum load of 2 mao

6.3.2.4 Memory Addresses

The DMA interface must have the current address on the Memory Address bus
at least 15 nsecs before the leading edge of TT4/ pulse on which the DMA
memory cycle begins (tl and t6). The address must remain stable on the bus
until MBSY goes false (low)

Memory address lines M07A/ through MOOA/ and N07A/ through NOOA/ are
terminated on the computer backplane. The lines must be driven by power gates
(type SN7438 or equivalent) with uncommitted collectors. B~cause of the
termination network, the lines are allowed to swing between virtually OV
and +3.6V.

6.3.2.5 Write Data

During clear/write operations the DMA interface must place the desired
write data on the bidirectional memory data bus no later than the leading
edge of the t3 clock pulse (Figure 6-2). The data must remain stable
until MBSY goes false (low).

Bidirectional memory data lines MD07 through MDOO are terminated on the
computer backplane. The memory write data must be driven to the memory
data bus by power gates (type SN7438 or equivalent) ·with uncommitted
collectors. Because of the termination network the lines are allowed to
swing between virtually OV and +3.6V.

6-6

TT4/

I--- 200 NS ----1
~ tjr------~~r------~~ £1 12:l---

OPA

MBSY

DMAR/

DMAS/ W/I

DMAW/

THLD/

0'> RTXX/
I

--.J

I. 400NS----·~1 14 400NS:------·~1
I rl ---------------------1 r--

---..j I-- 15 NS MIN --11--15 NS MIN

~~~ORY ADDRESS 2Z/@ a;/Mr-----------------------------------------.:t(;,..,/,'7~"77"">2X X'-____________________ __ 

WTXX/ 

MEMORY DATA 
BUS 

READ 

CPH1 

CHP2/ 

DMACLOCK 

_ u , _U 
/' WRITE DATA MUST BE TRUE 

~~~----------~---- ~A 1---------------- V///////A 

i-----------------------------~ I _________________________________ U

U
1--------- DMA CLEAR/WRITE MEMORY CYCLE --~-------+l-------- DMA READ/RESTORE MEMORY CYCLE ------..... +-/ .. PROCESSOR READ/

RESTORE MEMORY CYCLE

""CPU MEMORY REQUEST NOT ACTED ON UNTI L THE
TWO BACK TO BACK OMA REQUESTS HAVE BEEN
SERVICED.

Figure 6-2. DMA Port/Memory Control Timing

NOTE'

THE SHADED AREAS SHOW
WHERE THE SIGNALS ARE
NOT REQUIRED TO BE
DEFINED.

6.3.2.6 Read Data

The data read from memory during a read/restore cycle will be available
on the bidirectional memory data bus 445 osee after the trailing edge of the
TT4/ clock pulse on which the cycle started (t6 of Figure 6-2). The data
will remain stable for gating into the DMA interface until the trailing edge
of the DMA clock pulse corresponding to TT41 clock pulse t lO '

Read data, received from the bidirectional memory data bus, must be buffered
by gates whose inputs load each line with only one unit load (one TTL gate
input) that is equivalent to a maximum load of 2 mao

6-8

SECTION 7

SERIAL I/O INTERFACE

7.1 INTRODUCTION

SECTION 7

SERIAL I/O INTERFACE

The Serial I/O interface is an optional feature of M-l series computers.
It is a hardware/firmware option using microprogramming to control a serial
device such as a teletype or modem.

7.2 USE AS TELETYPE CONTROLLER

The following paragraphs describe operation of the serial I/O channel with
a 4-wire, full-duplex, 20 ma teletype. A cable is provided with the serial
channel to connect directly to the teletype.

7.2.1 General Operation

The 4-wire I/O interface circuit is shown in Figure 7-1. The transmit
portion of the circuit contains a 20-ma current source that can be turned on
or off depending on the state of the I/O control register. When the I/O
control register is in any state other than state 3, output of gate 9E is
high, emitter follower Q3 conducts, and approximately 20 rna of current flows
through resistor R24. This current holds the teletype iIi the mark condition.
When the I/O control register is set to state 3 by a microcommand, the out­
put of gate 9E is low, emitter follower Q3 cuts off, and no current flows to
the teletype.

The receive portion of the interface circuit contains a low-pass filter
network connecting the teletype distributor to bit 6 of File Register 0
where it may be sensed by microcommands. One side of the teletype distributor
is connected to -16.75 volts through resistor R23. The other side of the dis­
tributor is connected to 3M, which forms bit 6 of File Register O. When the
teletype sends a mark signal, the output of 3M is held low and a 0 bit appears
in bit 6 of File Register O. When the teletype sends a space signal a 1 bit
appears in bit 6 of File Register O.

7.2.2 Character Assembly and .Disassembly

Teletype character assembly, disassembly, synchronization, and timing is
accomplished by a firmware routine initiated by the macro instructions for
the serial I/O interface. Figure 7-2 illustrates the timiIig for transmis­
sion or reception of IIO-band teletype characters.

Note: The Micro One/13 is the only standard firmware set which has
these serial I/O macro instructions.

During an input operation the firmware program searches for the leading
edge of the start bit by continuously testing bit 6 of File Register O.

7-1

SERIAL INTERFACE CIRCUIT ,------
I
I
I

101X/

I/O CONTROL I
REGISTER 102X/

101X
102X 9E
103X/ 7410

STATES ----------------------~
FROM 7475
LATCH 90

TTY X1

FROM
TELETYPE

103X/

R38
P11J2 1.3K

1 1

+12 +5V

R37
5.6K

C25 CR10

CR11
FOH600

TTYI

0.1,uF FOH600

+5V

FILE 0
ENABLE

TTY B Hrl--I
2

I
I
L

2

R23
150

-16.75V

7403
3M

~
I
I
I
I
I
I

:~-+--I TTY 0

TO
TELETYPE

TTY G

TO FILE
U--..... ;...;.;...:.:;..-REGISTER 0

I
I
I
I
I
I
I
I

BIT6

_____ J

Figure 7-1. Serial I/O Interface Circuit (For ASR 33 TTY)

7-2

START BIT

~ \1 MARK

SPACE

TEST FOR SPACE 14.51 9.09
- - MS MS

SAMPLE POINTS

MARK

SPACE

START

1
9.09
MS

2 3

19.09
MS

I 9.09
MS

2 3

STOP BITS

4 5 6 7 8 ~ U
EIGHT DATA BITS

9.09 I 9.09 19.09 9.09 1 9.09 9.09
MS MS MS MS MS MS

(A) INPUT TIMING

STOP
4 5 6 7 8

U

SETI/OCONTRO~L~~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~'I ____ ~
REGISTER -

(B) OUTPUT TIMING

Figure 7-2. Serial I/O Timing

]-3

Once a s~ace level is detected the firmware ~rogram delays 4.5 milliseconds
and samples the input every 9.09 milliseconds, shifting each bit into the
least significant byte of the A Register (File Register 4). The initial delay
of 4.5 milliseconds, after detecting the leading edge of the start bit,
causes sampling to occur in the middle of each bit. The firmware routine
exists after eight bits have been assembled.

During a~ output operation the firmware program sets the I/O control
register to the appropriate mark or space condition every 9.09 milliseconds
according to the start and stop bits and the data to be serially transmitted.
Before the first information bit is transferred, the I/O control register is
set to mode 3 to ~ransmit the start bit. The firmware program for transmitting
a teletype character remains active for 11 intervals (100 milliseconds) to
assure the proper stop interval before the next character is transmitted.

7.2.3 Serial I/O Instructions

Two macro instructions affect the operation of the serial I/O interface:

In~ut Byte Serially (IBS). and Output Byte Serially (OBS).

The Input Byte Serially instruction transfers an 8-bit character from
the teletype into the eight low-order bits of the A Register. The execu­
tion of this instruction terminates when a complete teletype character
has been received for proper operation, execution of the instruction must
be started before the start of the teletype character. Once the
instruction is started, the computer becomes tied up until a teletype
character is received. The execution time of the instruction extends
approximately 84 milliseconds after the leading edge of the teletype
character start bit. When the program echoes input characters back to
the teletype the effective input rate cannot exceed five characters per
second (no input can be handled during the 100 milliseconds required fGr
output).

The Output Byte Serially macro instruction disassembles the eight low-order
bits of the A Register and transfers them serially, as a teletype character,
through the serial I/O interface. During the execution of this instruction
the eight low-order bits of the A Register are set to l's, the eight high­
order bits remain unchanged.

7.2.4 Teletype Interface Connection

The standard Teletype Model ASR-33TY with 20 rna loop interface is directly
compatible with all Microdata TTY controllers.

7-4

SECTION 8

MICRO-ONE BACKPLANE CONNECTOR SIGNAL LIST

SECTION 8

MICRO-ONE BACKPLANE CONNECTOR SIGNAL LIST

8.1 I/O CONTROLLERS AND DMA INTERFACE SIGNAL LIST

This section contains a signal list of the Micro-One backplane connectors
which can be used for I/O controllers and the DMA interface. (See Table 8.1.)

8.2 SERIAL TTY (J2)

1. TTYXI

2. TTY B

3. TTY 0

4.

5. TTY G

6 TTY G

8.3 FRONT PANEL (CABLE) CONNECTOR (J3)

1.

2. ES07/

3. ES04/

4. ES05/

5. HLTL/

6. INTF/

7. ES06/

8. RUNF/

9. STPF/

10. CLKF/

8-1

Table 8-1. Micro-One Backplane Connector Signal List

SIGNAL SIGNAL SIGNAL SIGNAL
PIN NAME TYPE PIN NAME TYPE

Al GND -- Bl +SVDC 1.
A2 GND -- B2 +SVDC 1.
A3 SPARE -- B3 -16.7SVDC l.
A4

I

-16.7SVDC l. B4 SPARE --
AS +1 2 VDC l. BS SPARE --
A6 CHPI 2. B6 SPARE --
A7 SPARE -- B7 M04A/ 5.
A8 -16.7SVDC 1. B8 SPIll 3.lKO
A9 N07A/ 5. B9 M06A/ 5.
AIO ODOS/ 4.-4700 BIO ODOlf 4.-4700
All MOIA 5. Bll A04L/ 2.
Al2 M02A/ 5. B12 MSI 7.
Al3 AOOL/ 2. B13 M03A/ 5.
Al4 AOIL/ 2. B14 MOOA/ 5.
Al5 N06A/ 5-. Bl5 RSOO 3.-4700
Al6 LOOX 2. B16 MS2 7.
A17 LllX (GND) 2. Bl7 RS04 3.-4700
A18 L04X 2. Bl8 M05A/ 5.
A19 RSOI 3.-4700 B19 LIOX
A20 LOIX 2. B20 RTXX/ 4.-470n
A21 WTXX/ 4.-4700 I B21 RS05 3.-4700
A22 L05X 2 B22 CPH2/ 4.-4700
A23 RS02 3.-4700 B23 i READ 4.-4700
A24 L02X 2. B24 I CGLO/ 2
A25 L06X 2. B25 I RS06 3.-4700
A26 OD02/ 4.-470n B26 OD06/ 4.-4700
A27 RS03 3.-470n B27 MD07 6.-4700
A28 L03X 2. B28 MD03 6.-4700
A29 A02L/ 2. B29 RS07 3.-4700
A30 L07X 2. B30 MD05 6.-470n
A3l I02X/ 4.-470n B3l IOlX/ 4.-4700
A32 I ID04/ 3.-lKO B32 IDOO/ 3.-lKO
A33 ! CPEN/ 3.-lKO B33 L08X 2.
A34 A03L/ 2. B34 MDOO 60-470n
A3S MDOI 6.-4700 B35 L09X 2.
A36 MD04 6.-470n B36 RS08 3.-4700
A37 RS09 3.-4700 B37 OD04 4.-470n
A38 EINT/ 3.-470n B38 AOSL/ 2.
A39 SPARE B39 ODOO/ 4.-4700
A40 AENP B40 MD06 6 4700
A4I RUNX 2. B4I A06L/ 2.
A42 RSIO 3.-4700 B42 ECIO/ 3.-IKO
A43 RSll 3.-4700 B43 MD02 6.-4700
A44 DMAR/ 3.-lKn B44 MRST/ 6.-lKO
A45 DMAS/ 3.-lKO B45 MS3 7.
A46 SP2 SPARE B46 RTCI
A47 RS13 3.-470n B47 M07A/ 5.
A48 RSl4 3.-470n B48 A07L/ 2.
A49 CONT (GND) GND B49 DMAT/ SPARE
ASO N03A! 5. BSO IRPY/ 3.-lKO -

8-2

Table 8-1. Micro-One Backplane Connector Signal List (continued)

SIGNAL
PIN NAME

A5l RS12
A52

I
SELO/

A53 N04A/
A54 I N05A/
ASS I PROT/
A56 I DMAW/ i
A57 I MBSY
A58 I

OD07/ i
A59 I RS15
A60 I IDOI/
A6l i ID06/
A62 I ID03/
A63 I -16.75 V
A64 I GND
A65 I GND

SIGNAL
TYPE PIN

SIGNAL
NAME

3.-470n B5l NOOA/
8. B52 SELI/
5. B53 NOIA/
5. B54 PRIN/
8. B55 N02A/
3. -lKn B56 SPI2/

I 2. B57 SPIO/
4.-470n B58 OD03/
3.-470n B59 ID05/

I 3.-lKn B60 ID07/
I 3.-lKn B6l I03X/

DC 1. B63 -16.75 VDC
B64 +5 VDC
B65 +5 VDC

5.
8.
5.
8.
5.

SIGNAL
NAME

3.- NO PLP.
3.- NO PLP.
4.-470n
3.-lKn
3.-1Kn
4.-470n
3.-lKn
1.
1.
1.

Li.-lKn B62 ID02/

-- ----- - ------------------'-------------------'-

Signal Types:

1. POWER

2. TTL OUT

3. OPEN COLLECTOR INTO TTL (Pull Up)

4. TTL OPEN COLLECTOR OUT (Pull Up)

5. TRI STATE OUT

6. BIDIRECTIONAL TTL OPEN COLLECTOR

7. JUMPER

8. THROUGHPUT

8-3

Table 8-2. MOS Memory Interface Connector List

J3 J4

1 M06A/ 1 MD04
2 MDOO 2 MD02
3 RTXI/ 3 MD01
4 M03A/ 4 MD06
S M04A/ S GND
6 RFSH 6 GND
7 READ/ 7 GND
8 MBSY/ 8 GND
9 WTXI/ 9 GND
10 GND 10 N03A/
11 GND 11
12 12
13 CPH2/ 13
14 -16.7SV 14 NOOA/
IS IS N01A/
16 MDOS 16 N04A/
17 MD03 17 N02A/
18 N07A/ 18 NOSA/
19 M01A/ 19 +SV
20 M02A/ 20 +SV
21 MSEX/
22 MOOA/
23 N06A/
24 GND
2S MOSAI
26 GND
27 RTXX/
28 WTXX/
29 -16.7SV
30 -16.7SV
31 READ
32 +5V
33 +SV
34 MD07

8-4

SECTION 9

I/O INTERFACE SIGNAL GLOSSARY

SECTION 9

I/O INTERFACE SIGNAL GLOSSARY

This section contains a glossary of the signals used to interface byte I/O
controllers and DMA Port interfaces to the Micro-One computer. The list is
arranged alphabetically by signal mnemonic. The origin for each signal
(computer or controller), the connector pin number, and its f~nction, are
provided in Table 9-1.

NOTE: A slash (/) at the end of a signal or line mnemonic denotes that the
line is low when the function specified by the mnemonic is occurring.

SIGNAL
MNEMONIC

CPRl

CPR2/

DMAR/

DMAS/

DMAW/

ECIO/

EINT/

PIN
NO.

A6

B22

A44

A45

A56

B42

A38

Table 9-1. I/O Interface Signal Glossary

FUNCTION

Processor Clock. 5.0 MHz square
wave.

Processor Clock. Inverted version
of CPR1, delayed 33 nsec.

DMA Request. DMAR/initiates a
memory cycle for DMA.

DMA Select. DMAS/ selects memory
for a DMA operation by enabling
DMA controller access to memory.

DMA Write. Causes the data byte
on memory data lines MDOO through
MD07 to be written into memory.

Concurrent I/O Request. Low
signal from I/O device request~ng
a concurrent I/O transfer. ECIO/
appears in CPU as bit 3 of File
Register 0 where it acts as an
interrupt to the macroprogram and
initiates a firmware routine for
handling a concurrent transfer.

External interrupt. Low Signal
from I/O device requesting inter­
ruption of the macroprogram.
EINT/ appears in CPU as bit 7 of
File Register 0 where it initiates
a firmware routine for transferring
control to a macroprogram interrupt
handling routine.

9-1

x

x

Table 9-1. tlo Interface Signal Glossary (continued)

SIGNAL PIN ORIGIN
MNEMONIC NO. FUNCTION CPU CONT

IDOO/ B32 Data Input Bit O. Connects to X
CPU via B Bus gating.

IDOI/ A60 Data Input Bit 1. Connects to X
CPU via B Bus gating.

ID02/ B62 Data Input Bit 2. Connects to X
CPU via B Bus gating.

ID03/ A62 Data Input Bit 3. Connects to X
CPU via B Bus gating.

ID04/ A32 Data Input Bit 4. Connects to X
I CPU via B Bus gating.
!

IDOS/ BS9 Data Input Bit 5. Connects to X

I
I

CPU via B Bus gating.
r

I

ID06/ A6l Data Input Bit 6. Connects to X
I CPU via B Bus gating. I
I

I ID07/ B60 Data Input Bit 7. Connects to X

I
CPU via B Bus gating.

I IOIX/ I B31 Bit 1 of I/O Control Register X
I
i I

I02X/ I A31 Bit 2 of I/O Control Register X I I

I03X/ B6l Bit 3 of I/O Control Register X

MBSY AS7 Memory Busy. MBSY is a status X
signal from memory indicating that
memory is busy.

MDOO B34 Bidirectional data line (bit 0) to
I

X X
memory for DMA operation.

I
MDOI A3S Bidirectional data line (bit 1) X to X

memory for DMA operation.

MD02 B43 Bidirectional data line (bit 2) to X X
memory for DMA operation.

MD03 B28 Bidirectional data line (bit 3) to X X
memory for DMA operation.

MD04 A36 Bidirectional data line (bit 4) to X X
memory for DMA operation.

9-2

Table 9-1. I/O Interface Signal Glossary (continued)
-~ - - ------------.--~--

MNEMONIC NO. FUNCTION ~I~~~~ PIN

-- ~------- --- -- - - ----- _.---_._----------_._------_._----------_.

I MOOS B30

I

I
i

M006

MOO7

MOOA/

MOlA/

M02A/

M03A/

M04A/

MOSA/

M06A/

M07AI

NOOA

NOIA/

N02A/

N03A/

B40

B27

B14

All

A12

B13

B7

B18

B9

B47

BSI

BS3

BSS

ASO

Bidirectional data line (bit 5)
memory for DMA operation.

Bidirectional data line (bit 6)
memory for DMA operation.

Bidirectional data line (bit 7)
memory for DMA operation.

Bit 0 of upper half of memory
address (used by DMA)

Bit 1 of upper half of memory
address (used by DMA)

Bit 2 of upper half of memory
address (used by DMA)

Bit 3 of upper half of memory
address (used by DMA)

Bit 4 of upper half of memory
address (used by DMA)

Bit 5 of upper half of memory
address (used by DMA)

Bit 6 of upper half of memory
address (used by DMA)

Bit 7 of upper half of memory
address (used by DMA)

Bit 0 of lower half of memory
address (used by DMA)

to

to

to

I
I
I
I

I
I
i
!
i
I

I
i
I

I

I
I

i
I

I
i
I

I

I

Bit 1 of lower half of memory II

address (used by DMA)

Bit 2 of lower half of memory I

:::r:s:f (::::rb:a:~:f memory 11

address (used by DMA)

ORIGIN
CPU

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

CONT

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X N04A/ I AS3 L;B;it 4 of lower half of memory .1 X
address (used by DMA)

l--____ ~J_____ _~ ________ . ___ --'-~ ___ _

9-3

SIGNAL
MNEMONIC

N05A/

N06A/

N07A/

MRST/

ODOO/

ODOlf

OD02/

OD03/

OD04/

OD05/

OD06/

OD07/

PRIN/

PROT/

RTCl

SELI/

Table 9-1. I/O Interface Signal Glossary (continued)

PIN
NO.

A54

A15

A9

B44

B39

BIO

A26

B58

B37

Ala

B26

A58

B54

A55

B46

B52

ORIGIN
FUNCTION CPU CaNT

Bit 5 of lower half of memory
address (used by DMA)

Bit 6 of lower half of memory
address (used by DMA)

Bit 7 of lower half of memory
address (used by DMA)

x

X

X

Master Reset. Signal used to clear X
all control flip-flops in controllers.

Output Data Bit a x
Output Data Bit 1 X

Output Data Bit 2 X

Output Data Bit 3 X

Output Data Bit 4 X

Output Data Bit 5 X

Output Data Bit 6 X

Output Data Bit 7 X

Priority In. Low signal from pre­
ceding controller indicating I/O
controller has priority to request
interrupt operation. PRIN/ is
passed serially from CPU to con­
troller to controller, etc.

Priority Out. 'Low signal origi­
nating in CPU and passed from
controller to controller carrying
interrupt request priority.
PROT/ becomes PRIN/ on input to
each controller.

Real-Time Clock input, for user
supplied RTC frequencies other than
the standard power line freq (120 Hz)

X

X

Select in. A low signal from pre- X
ceding controller .which occurs after
an interrupt or concurrent I/O
request during acknowledge time.

x

X

X

X

X

X

X

'----------<------------.-

9-4

Table 9-1. I/O Interface Signal Glossary (continued)

SIGNAL PIN ORIGIN
MNEMONIC NO. FUNCTION CPU CONT

SELl/ indicates controller has
priority to place its address on
data lines for an interrupt or
concurrent I/O operation. SELI/
is passed serially from CPU to
controller to controller, etc.

SELO/ A52 Select Out. Low signal originating X X
i
!

in CPU and passed from controller i
to controller which passes select I
priority from controller to con- I
troller. SELO/ becomes SELI/

i
at I

input to each controller. I
I

SPARE/ B49 Spare. Available for use by DMA X I
'controller or other customer- I
designed option as an internal CPU

I interrupt. Enters CPU at internal
status register bit I where it is
OR'ed with other internal status
bits, and ultimately sets bit 4 of
file register O.

'----------_. -

PANEL TERMS:

CLKF/, STPF/, RUNF/ INTF/
ES04/-ES07/

Panel CPU Control Switches
Panel Sense Switches
Enable Console Switches
CPU in RUN MODE

ANEP/
RUN/

TTY TERMS:

TTYXI
TTY B
TTY 0
TTY G

9-5

Serial TTY Input
Serial TTY Reference Voltage
Serial TTY Output
Serial TTY Ground

SECTION 10

OPERATOR CONTROLS

SECTION 10

OPERATOR CONTROLS

10.1 CONSOLES

Two control console options are available: system console and basic console.
These consoles differ in their number of displays and controls. This range of
consoles permits the user to tailor the cost to meet the control and display
capability required for a particular application. The system console is
shown in Figure 10-1, and the basic console in Figure 10-2.

10.1.1 System Console (Standard 1600 System Console)

When using a standard Micro One backplane, the 1600 system panel can be used
providing complete control and display facilities. It is primarily used for
maintenance, system and firmware checkout. The console provides for display
of the micro-one registers in addition to the functions of the basic console.
The features include:

• Run and halt indicators

• Display of A bus

• Display of M, N, and L registers

• Display of read-only-memory output

• Four sense switches

• Six control switches, including run, step, interrupt, clock and
reset

• Manual command execution

10.1.2 Basic Console

The basic console provides minimal control capability and is designed for
dedicated system application where operator control is not required. The
features include:

• Run and halt indicators

• Four sense switches

• Five control switches including run, step, interrupt, clock and
reset

10.2 DISPLAYS ON SYSTEM CONSOLE

The following paragraphs define the usage of the displays on the system
console.

10-1

II REGISTER DISPLAY
.--

I @]
c:::J c::J ~ D

DODD DODD DDDD DDDD
II]
[9

'COMMAND SWITCHES
~

STEP CLOCK RESET LOCK
RUN INT RESET PANEL 4 3 2 1 HALT PANELLOCK

1000001 [Q IDDD 01 I I I I ION(@)
OFF

I MICRODATA I 1600 I

Figure 10-1. MICRO 1600 System Console

Figure 10-2. Micro One Basic Console

10-2

10.2.1 Data Display

The l6-bit data indicators (16 lamps on console) display the 8-bit A bus,
Memory Address, 16-bit Control Memory output, or 12-bit control Memory
Address as selected by the Display Selector switches.

10.2.2 RUN

The RUN indicator is on when the processor is running.

10.2.3 HALT

The HALT indicator is on when the power is applied and the processor is not
running.

10.2.4 LOCK

The LOCK indicator is on when the panel is disabled.

10.2.5 PANEL

The PANEL indicator is on when the command switches are enabled and substitut­
ing for the control memory.

10.3 SWITCHES ON SYSTEM CONSOLE

System console switches are defined as follows:

10.3.1 Display Selector

The 4 interlocked switched located in the upper right corner select 1 of the 4
displays as follows:

D - Data: This 8-bit display is the processor's A bus. The data on
the A bus when the processor is halted and in the panel enable
mode depends on the setting of the command switches.

M - Memory Address: This l6-bit display is of the memory address lines.
This is normally the contents of the M and N registers.

L - Control Memory Address: This la-bit display is the contents of the
L register.

10-3

C - Control Memory: This l6-bit display is of the output of the control
memory. When the processor is halted the R register contains
the same data.

10.4 COMMAND SWITCHES

These 16 locking switches are substituted for the control memory when the
PANEL switch is in the down position. When the processor is halted, the
switch setting is constantly clocked into the R register and depressing the
CLOCK switch causes the command set in the switches to be executed. The
command may also be executed repeatedly by depressing the RUN switch. These
switches are used to gate registers onto the A bus for display and for enter­
ing data into register.

10.4.1 Panel Switch

This locking switch selects the source of commands. When in the normal up
position the control memory is used and when in the down position the 16 com­
mand switches on the panel are substituted for the control memory.

10.4.2 Sense Switches

The four locking sense switches are available on the control panel. These
switches may be read by an Enter Sense Switch command.

10.4.3 Run

This momentary contact switch places the processor in the run mode causing it
to execute microcommands.

10.4.4 Step

This momentary contact switch places the processor in the run mode and as long
as the switch is depressed causes an internal interrupt. The halt internal
interrupt is bit 7 of the internal status. This switch is normally micro­
programmed to cause a processor halt. Since the processor is forced to run
when the switch is depressed, the computer can be microprogrammed to cause a
single macro instruction to be executed.

10.4.5 Interrupt

This momentary contact switch places the processor in the run mode and causes
an internal interrupt. The_console interrupt is bit 0 of the internal status.
This switch is normally microprogrammed to cause a console interrupt.

10.4.6 Clock

This momentary contact switch causes the processor to execute a single micro­
command. If the processor is running at the time the switch is depressed,
the processor will come to a forced halt following the current microcommand
execution.

10-4

10.4.7 Reset

This momentary contact switch halts the processor and clears the L register,
I/O control register and other control flip-flops. The reset is made available
to I/O devices. Since the current microcommand execution will not be completed,
the computer should not be stopped by this switch.

10.4.B On-Off-Lock

A 3-position key lock switch enables and disables the panel. The key can be
removed in any position. In the OFF position, the panel is inactive. In the
ON position, the panel is active. In the LOCK position, power remains on, but
the panel switches are not active except for the sense switches.

10.5 ADDRESS SYNC

A sync jack is mounted on the rear of the front panel for maintenance purposes.
A positive pulse of 200 nsec duration is obtained when the contents of the
L register are the same as the address set into command switches 14-0.

10.6 REGISTER DISPLAY AND ENTRY

Use of the register Display and Entry is discussed in the following paragraphs.

10.6.1 Display

The processor registers can be displayed directly be selecting the proper
display selector or indirectly by use of commands set into the command switches
to cause the register to be gated to the A bus where it can he displayed by
selecting 'D'.

The R, U, MD and aD registers cannot be displayed, but the R register will hold
the same information as on the R bus when the processor is halted. The M, N
and L registers can be displayed by selecting them with the display selector.

The file registers, T register and LINK can be displayed indirectly by setting
the commands shown below into the command switches and selecting the data
display (A bus). Panel switch must be on.

Register Command Setting

Selected File Register X CXOO

T Register B020

LINK (AL) BOBO

LINK (ML) BOB2

10.6.2 . Enter

Information can be entered into a register by executing a command from the
panel. This requires turning on the PANEL switch, setting the command into

10-5

the command switches and pressing the CLOCK switch. In addition, control
functions such as interrupt enable or the file select can be performed by
executing the appropriate command. The commands for placing the literal 'ZZ,
in a register are shown as follows:

Register Command

T 11ZZ

M l2ZZ

N l3ZZ

U l6ZZ

File Register X 2XZZ

L (Page 0) l4ZZ
(Page 1) l5ZZ
(Page 2) lCZZ
(Page 3) lDZZ

10.7 OPERATING PROCEDURES - SYSTEM CONSOLE

The following list of commands is a minimum that should be tried out when first
becoming acquainted with the Micro-One.

1. Loading and stepping the L register

a. Load L

1) Set CLOCK, RESET

2) Set PANEL on

3) Select L display

4) Set the following commands into the command switches and
press the CLOCK switch one for eacho On the Micro-One
manual loading of L causes L + 1 to be loaded into L.

Settings Switches Display

l4A9 OAA

1454 055

l5FE IFF

lClO 211

lDED 3EE

10-6

2.

3.

b. Step L

Test

1)

2)

3)

Test

1)

2)

3)

4)

1) Set PANEL off

2) Set RESET

3) Select L display

4) Each time the CLOCK switch is pressed, the L count should
increment, skip, or jump. If no ROM board is plugged in,
the L count will step.

M and N

Set PANEL on

Display to M or N

Set the following command into the command switches and press
the clock switch once for each.

1255 Load M M 55

13AA Load N N AA, M a

Try other values and repeat

ROM and L register (with Micro One/10 firmware)

Set PANEL off

Set RESET

Select L, C

L C

000 BF02

001 2BOO Repeatedly press the

002 2AOO CLOCK

003 4010

After this, the L value depends on computer register states,
because of conditional skips and jumps.

4. Test the T register

1) Set PANEL on

2) Set DISPLAY to D (A bus)

10-7

3)

5. Test

a.

Set the following sequences into the command switches and press
the CLOCK switch.

11AA CLOCK Load T

B020 Display T = AA with copy T

1155 CLOCK Load T

B020 Display T = 55 with copy T

Try other values and repeat

the File Registers

Load and Read each File.

1) Set PANEL on

2) Set DISPLAY to D (A bus)

3) To load file f, set the following command into the
command switches and press the clock switch once:

2fXX xx data value

4) To read file f, set the following command into the
command switches:

cfOO

Load file f
Read file f

2fXX
cfOO

clock
Do not clock

10-8

SECTION 11

MICRO-ONE CPU OPERATIONAL DESCRIPTION

SECTION 11

MICRO ONE CPU OPERATIONAL DESCRIPTION

11.1 GENERAL

This section describes, separately, each major function of the Micro-One
processor. The individual descriptions include a verbal portion and a block
diagram. The block diagrams contain references to the accompanying annotated
logic schematics. The references identify integrated circuit chips by logic
page number and chip number.

The breakdown of the operational description is as follows:

1. Arithmetic Logic Unit and Multiplexer

2. T Register

3. File Register

4. Rand U Registers

5. L Register

6. Condition and Link Logic

7. l1emory Address Registers (M and N)

8. Destination Register Clock Logic

9. Command Decode ROMs

10. Programmed Input/Output

11. Interrupts

12. Memory Sequencer

13. Computer Clock and Run Control

14. Computer Start Logic

15. Automatic Power Fail and Power On Detection Function

11.1.1 Arithmetic Logic Unit and Multiplexer

The Arithmetic Logic Unit (ALU) shown in figure 11-1 consists of an 8-bit,
2-input, programmable arithmetic logic function generator; an 8-bit latch to
provide A bus and A bus outputs as well as to prevent logical racing. It
further consists of logic to determine carry-in; and an 8-bit, 8-channel
multiplexer to select 1 of 8 possible inputs to one port '(B) of the ALU
function generator. The function generator consists of 2 74181 chips, which

11-1

LITERAL FROM REG ----__.
BITS 0-7
~~~----~~O 

SHIFT R4 AND 
SENSE SWITCH 

INTERNAL STATUS 

FILE BUS 

2 

.:,;R;,,;.T..;S::..:.H,;.;I,;..F.;,.T...;,1 ____ .. 3 

,;..1 .;;,B.;;,U.::;S/:...-______ -t ... 4 ALU 

FILE REG 
BUS 
(ALAX/ 

ALU 
MODE 

(PORT A) (S) ALU 

S·BIT LATCH 

A BUS 

(S) 
MUX 
S 

ALU MUX PROGRAMMABLE 
~~,:....;..;.;..:;..;...;,....-_ ... ARITHMETIC 

BUS LOGIC ALU 
L--r-~ A BUS/ 

,;..I.;;,B.;;,U.;;,S _______ -t ... 5 CHANNELS 

..:.T...;,R.:.,:E:..:G=---______ --t ... 6 

...;T....;R.;,.E;;;..G;:.:/ ________ ~ 7 

MUX ADDRESS 3 

MUX ENABLE 2 

(ALBX/l (S) FUNCTION CARRY OUT 
GENERATOR 

CARRY·IN 
LOGIC 

LATCH ENABLE CLOCK 
(TT2 + TT3) 

CARRY TERM FROM 

DECODE ROM 

OP A' R7/ 

L-____ R REG, BITS 0,1,2,6 

'------- LINK 

Figure 11-1. Arithmetic/Logic Unit Block Diagram 

11-2 



have 16 arithmetic and 16 logic functions, selectable by 5 ALU mode input 
lines (ALSl, ALS2, ALS3, ALS4, ALM). One input channel, A, consists of the 
file register bus and the other, B, is from the ALU }IDX. 

The ALU MUX channels are as follows: 

Channel 0 - 8-Bit literal from R register, used for all literal class 
commands such as literal-to-register, literal-to-file, 
add-literal-to-file, and skip commands. ' 

Chennel 1 - Shift file right 4 to lower 4 bits, and 4 sense switches to 
upper 4 bits. For each of these, the alternate 4 bits are 
equal to l's, which value is achieved by disabling either 
the upper or lower 4 bits of the ALU MUX (with EALBL or 
EALBU). 

Channel 2 - Internal status consisting of console interrupt, DY~ 
termination, real-time clock, step switch input, power 
fail interrupt and 3 spare inputs. ' 

Channel 3 - Shift right input. Since the ALU function generator has 
the capability of left shifts only, the 8 lines from the 
file register are entered into the MUX and displaced one 
bit position to the right to generate right shifts. 

Channel 4 - Input bust. 

Channel 5 - Input bus. Whenever T register is designated as a data 
source by a firmware command and I/O control bit I03X is 
set, the input bus is actually selected by the ALU MUX 
instead of T. When T/ is designated, input bust is selected. 

Channel 6 - T Register. 

Channel 7 - T Register/. T or T/ may be designated by firmware commands 
as data sources. 

The ~rux addresses, and ALU modes for implementation of the firmware commands 
are shown in Table 11-1. 

11.1.2 Carry In 

Carry In (CIN) to the ALU is determined by the firmware operation as follows: 

Firmware Operation Carry In 

1. Literal to register Not applicable 

2. Add to file o 

3. Test zero and test NOT zero Not applicable 

11-3 



Mode 

1rxx 

2fxx 

3fxx 

4fxx 

5fxx 

6fxx 

7f1r 

7f2r 

7f4r 

7f70 

7f8r 

7f8r 

7F9r) 

to ) 
7fFr 

8fOr 

8f2r 

8f4r 

8f6r 

8f8r 

Table 11-1. ~~U MUX Addresses, ALU Modes, and Carry In 

Firmware Conunand 

Function 

Literal to register 

Literal to file 

Add literal to file 

Test if Zero 

Test if not Zero 

Compare 

Enter Sense Switches 

Shift Right 4 

Enter Internal Status 

Enter Console Switches 

Clear I/O, I03x = 
Clear I/O, I03x = 

Set I/O} I03x = 0 

States I03x = 1 

File + 0 -+ r 
File + T-+r 

File + l-+r 

File + T + 1~ r 

File + Link ~ r 

A = FILE BUS INPUT 
B = ALU MUX INPUT 
+ = ADD 
- = SUBTRACT 

0 

1 

i 

ALU ML~ Address (3 lines) 

Address 

0 

0 

0 

0 

0 I 
0 

1 

1 

2 

7 

7 

5 

7/5 

7 

6/5 

7 

6/5 

7 

MUX Channel 

Literal 

Literal 

Literal 

Literal 

Literal 

Literal 

Enter Sense Switches 

Shift Right 4 

Internal Status 

T/ 

Ti 
Input bus 

Ti /Input bus 

NA 

T/lnput bus 

NA 

T/lnput bus 

NA 

C = CARRY 
/\ = AND 
V = OR 
¥= EXCLUSIVE OR 

ALU Mode 

Mode (HEX) 

'lA' 

'1A ' 

'09' 

'lE' 

'lE' 

'09 ' 

'15' 

'15' 

'15' 

'lF' 

'IF'/ 

'lE' 

'IF'/'lE' 

'OF' 

'09' 

'OF' 

'09' 

'OF' 

(5 lines) 

Function Carry In 

B N/A 

B N/A 

A+B+C 0 

AI\B N/A 

AI\B N/A 

A+B+C I 0 
I 

B/ N/A 

B/ N/A 

B/ i N/A I 
I A 

I 
N/A 

I 

A N/A I 

AAB I 
I 

I 
I 

I 

j 
AjA 1\ B I N/A 

I 
I 

I A+C 0 

A+.B+ C 0 

A+C 1 

A+B+C 1 

A+C Link 

A/ A NOT 
T = T REGISTER 



f-' 
f-' 
I 

Ln 

Table 11-1. ALD MUX Addresses, ALD Modes. and Carry In (continued) 
-----~-~--

Fi rmware Command 

C~~::FFi~e-~F::::n- .... -
ALU MUX Address (3 lines) 

Address 

7 

6/5 

}lUX Channel 

NA 

T/lnput bus 

NA 

---------- , .-.--~---------- -- --

AID Mode (5 lines) 
----~-~---

~o_d~ __ ~EX) Func tion 

'00' I A - C/ 

'06' I A- B -I 

'00' I A - C/ I 

C/ 9f2r I File - T~r 
9f4r I File - l~r 
9f6r I File - T - l-..r 

9f8r File - Link ---. r 

7 

6/5 

7 

T/lnput bus 

T/ 

'06' 

~ 
A - B - C/ I 

'00' A - C/ 

AfOr 

I 
Af4r 

Af4m 

Af8r 

read. 
mem • 

read 
mem • 

read 
mem • 

read 
mem ' 

T/ 

f - l~r 7 T/ 

f - 1 7 T/ 

f + L----+r 7 T/ 

AfCr 
read 

I--___ + __ m_(~_m_=_'_l_: __ n __ :_) _l_---. ___ r ___ L _ .7 __ 

BfOr I 0 -----.. r I 7 

T/ 

I 

Bf2r (T)-.. r 6/5 

Bf4r 1---. r 7 

Bf6r (T) + 1----+ r 6/5 

Bf8r (T) + (L)---. r 6/5 

'------------------------ -

NA 

l/Input bus 

NA 

T or Input bus 

T or Input bus 

I 

I 

.L 
-----------------

I 
I 
I 

'FF' A I 

I 
I 
! 

'00' I A - C/ I 
• 

, 

'00' A - C/ 

I 
'OF' I A+ C 

I 
I 

'OF' I A + C 

I -------1 'OF' A + C* 

'09' 
I 

A+B+ C* 

'OF' A + C* 

'09' A+B + C* 

'09' A+B + C* 

*FILE OUTPUT DISABLED 

Carry In 

1 

1 

0 

0 

Link/ 

N/A 

0 

Link/ 

Link 

1 

0 

a 
a 
1 

Link 



I-' 
I-' 
I 

0\ 

Mode 

CfOr 

Cf2r 

Cf4r 

Cf6r 

DfOr 

Df2r 

Df4r 

Df6r 

EfOr 

Ef2r 

Ef4r 

Ef6r 

FfOr 

Ff4r 

Ff8r 

Ff7r 

Ff6r 

FfAr 

Table 11-1. ALU MUX Addresses, ALU Modes, and Carry In (continued) 

Firmware Command ALU MUX Address (3 lines) ALU Mode 

Function Address MUX Channel Mode (HEX) 

(f)--.r 7 NA 'IF' 

(f) OR (T)~r 6/5 T or Input bus 'lB' 

(f) OR (TI)-. r 7/4 T/ or Input bus/ 'lB' 

'FF'--.. r 7 NA '03' 
" 

(f) EXOR O~r 7 NA 'IF' 

(f) EXOR (T)~r 6/5 T or Input bus '19' 

(f) EXOR (TI)-..r 7/4 T/ or Input bus '19 ' 

(f) EXOR l-+r 7 NA '10' 

(f) AND O-.r 7 I NA 'IC' 

(f) AND (T)-.r 6/5 

I 

T or Input bus 'IE' 

(f) AND (TI) ---+ r 7/4 T/ or Input bus/ 'IE' 
I 

(f) AND l~r 7 I 
i 

NA 'IF' 
---+------ --'--,-

Shift File Left I 
I 

Enter 0 3 t Shift Rl 'oc' 

;_J;ift Enter 1 R1 'OC' 

Enter Link 3 Shift R1 'OC' 
- ~----

Shift File Right I 
Enter 0 3 Shift R1 '15' 

Enter 1 3 Shift R1 '15' 

Enter Link 3 
I Shift R1 'IS' I 
! 

.. 

(5 lines) 

Function Carry In 

A N/A 

AVB N/A 

AvB N/A 

'FF' N/A 

A N/A 

A~B 
I N/A 
I A'r:/B I N/A i 

AI I N/A I 
I I 

0 

I 
N/A 

AAB 
I 

N/A 
I 

A A B I N/A i 

A I N/A 
I 

i I 
A+A+C i 0 r 

I 
! 

A+A+C I 1 
I 

A+A+C : Link i 
I I 
r I --I 

i 

! 
i B I N/A 
I 

I N/A B 

B I N/A 



Firmware Operation 

4. Op Code 7 

~. Op Code 8, 9, B, F 

6. Op Codes C, D, E 

7. Op Code A 

Carry In 

Not applicable 

Determined by Carry In 
(CIN/) ROM which decodes 
the Op Code (bits 15-12) 
and the C field (bits 5, 
6, 7) to result in CIN/ 
of LINK/, 0, or 1 as shown 
in Table 11-1 

Not applicable 

When Op Code A (Memory) is 
processed, CARRY IN is 
determined by the CIN/ 
ROM for all C field condi­
tions, except for C = 10XX 
in which case a special 
CIN source is selected when 
the M register is designated 

The special Carry In for Memory command with decrement, and M destination, 
1,s as follows: 

15 14 13 12 7 6 5 4 3 2 0 

OPA I 0 x x I x 0 0 

....... 'V 
~ ~ ----MEMORY R7/R6 M 

COMMAND DECREMENT DESTINATION 

For this condition the Carry In term (CIN/) = LINK " R7/ " R6 
~ 

" R2/ 1\ Rl" RO 
'-- -~ 

M 
Destination 

11.2 T. REGISTER 

" OPA 
-v-' 

Memory 
Command 

DECREMENT 

The T register is the hub of data flow through the Micro-One. It is a 
primary input to the ALU via the ALU MUX. It drives the Memory Data bus on 
Memory Write functions, and it drives the Output Data bus. T is loaded from 
either the CPU A bus on firmware operations, or the Memory Data bus on Memory 
Read functions. The T register is illustrated in Figure 11-2. 

11-7 



WRITE DATA ENABLE 

I"lj 
1-" 

OQ 
~ 
Ii 
(D 

I-' 
I-' MEMORY MEMORY DATA J 
N DATA BUS (MDX) (S) . BUS 

MEMORY DATA T/(S) DRIVERS 
t-3 BUS (MDX) (S) 
I 

J;>j T REGISTER (8) 
T REGISTER 

I-' 
(D INPUT MUX 

I-' 
OQ A BUS (8) 
1-" I C/l 

T(8) 
00 rt OUTPUT OUTPUT DATA 

(D DATA BUS (OTBX/) (8) 
Ii BUS 

to LOAD T FROM DRIVERS 
I-' MEMORY DATA BUS 0 
C"l (LT2) 
~ 

t:;j LOAD T FROM 
T-LOAD 

1-'. 
A BUS (L Tll 

ENABLE 
Pl 

OQ 
Ii 
Pl 
S 

TI 

TOALU 

T 
MUX 



Gated drives, activated by Memory Write (WRIT), drive the Memory Data bus 
while non-gated drivers drive the Output Data bus. T and T complement go 
directly to the ALU MUX. 

The input to T is selected by a 2-channel MUX. Loading of T is strobed by 
either the firmware generated T destination strobe (LTl), or by a Load T 
strobe derived from the Memory Read strobe (LT2). The T register is a D type 
latch in which the output follows the input as long as the strobe is present. 

11.3 FILE REGISTERS 

There are 16 8-bit registers designated as File Registers in the Micro-One. 
See Figure 11-3. Of the 16, 15 are general purpose random-access and the 
remaining one (File 0) is for condition flags, interrupts and I/O flags. Two 
16 X 4-bit chips are used for the general purpose files (address 0 being 
nonaccessible). An array of 2-input gates is used for File O. When File 
Address 0 is selected, a File 0 Enable is generated by the File Control logic, 
otherwise a File Chip Enable is generated. The general purpose files and 
File 0 are tied together, open collecter, to form the File Register bus. 

11.4 R AND U REGISTERS 

The R register contains the l6-bit firmware command being executed. It is 
loaded at the beginning of each cycle by the TT4 phase clock. The R register 
is always loaded, even if the CPU is halted, except when Thold is active. 
The Rand U registers are shown in Figure 11-4. 

Thold temporarily prevents execution of a command; therefore, the command 
must be saved in R until Thold goes inactive and then is executed. 

If the firmware command from· the Control ROM has either a 0 Op Code (Execute) 
or is an operate command with 8 or higher op code and has a 7 destination, the 
contents of the U register are ORed with the upper 8 bits of the command prior 
to loading the R register. This is done by use of a 2-channel multiplexing 
latch for the upper 8 bits of R, which selects either the ROM output directly 
or the ROM output ORed with U. 

The U register is loaded by a firmware command from the A bus. 

11.5 L REGISTER 

The L register, shown in Figure 11-5, is the Control ROM Address Register 
containing 10 bits, thus it can address lK words of ROM or 4 pages. The 
lower 8 bits of the L register consist of a counter which can be clocked, 
parallel loaded, or reset. The upper two bits are latches which can be 
individually loaded, or reset. The lower 8 bits address a page size of ROM 
and cycle independently of the upper two bits when in the L count mode. 

Unless L is loaded, L is incremented 1 count for each firmware instruction. 
Counting is suspended when in Halt or Thold. During idle periods, the 
counting continues. 

11-9 



A BUS (8) 
------.......... FILECHIPS 

FILE ADDRESS 
R8-Rl0 (4) 

FILE CHIP 
WRITE Few/ 

FILE CHIP 
ENABLE FCE/ 

FILE ZERO 
ENABLE FOE 

FCW/ 

FCE/ 

FOE 

CONDITION FLAGS 

INTERNAL & EXTERNAL 

INTERRUPTS 

SERIAL TTY INPUT 

READ 
WRITE 
MEMORY 

FILE 0 
GATES 

+5V 

PULL UPS 

FILE REGISTER BUS (ALAX/) 
(OPEN COLLECTOR) 

Figure 11-3. File Registers Block Diagram 

11-10 



UPPER R BUS (RB8-RB15) 

~----,~ 

A BUS (8) 
----__ .t U REGISTER 1------IIw 

'--__ -..I 

U LOAD CLOCK 

LOWER R BUS (ABO-RB7) 

PULL 
UPS 

UPPER R 
REGISTER 
MUx/LATCH 

U SELECT 
LOGIC 

LOWER R 
REGISTER 
LATCH 

UPPER R 
REGISTER 
(R8-R15) 

UPPER R CLOCK 

LOWER R 
REGISTER 
(RO-R7) 

LOWER R CLOCK 



L is parallel loaded by the following commands: 

Literal to L firmware command 

1 4 X X 

1 5 X X 

1 C X X 

1 D X X 

The literal is loaded into the lower 8 bits via the A bus. The upper 2 bits 
of L are loaded by 4, 5, C, or D as follows: 

11 10 9 8 

I/O [ ~JJ I/O 

L BIT9 L BIT8 
(R11) LOAD L (RSO) 

DESTINATION 
(RS1/RS2) 

11.5.1 L or K Destination in an Operate Command 

2 1 0 

OP CODE I I ----4 = L DESTINATION 

5 = K DESTINATION 

The lower 8 bits of L are loaded directly from the A bus. Bit 8 is loaded from 
bit 0 of the destination via RSO, providing odd or even page selection. Bit 9 
is not affected by this operation, therefore the effective jump is confined to 
the half of the ROM at which the previous address was located. 

When L is loaded, or a skip operation occurs, the instruction immediately 
after the load or skip is inhibited by the IDLE function. This is necessary 
because of the "look ahead" feature of the CPU during execution of a micro­
command, the next microcommand is being fetched from the ROM. 

When L is loaded from the system panel using the load L instruction, setting 
of IDLE causes clocking of L one count higher than the value set on the 
front panel. 

11':"'12 



Rll 

OP CODE 1 

RSO 

LOAD L ENABLE 

A BUS (8) 

L CLOCK 

(COUNT AND 
LOAD) 

L BIT9 
LATCH 

L BIT 8 
LATCH 

LCOUNTER 
BITS 0-7 

L BIT9 

L BIT8 

LO TO L7 

Figure 11-5. L Register Block Diagram 

11-13 

L REGISTER 
OUTPUT 

MICRO-
COMMAND 
ADDRESS 



11.6. CONDITION AND LINK LOGIC 

The Micro-One condition and link logic is shown in Figure 11-6. There are 
three ALU operational conditions maintained and utilized in the Micro-One: 
overflow, negative, and zero. The negative condition is simply bit 7 of the 
A bus and zero condition is simply the eight input AND of A bust. Overflow 
is divided into two categories, arithmetic and shift. For shift overflow, 
overflow is the same as Link; namely, the bit shifted out of the file (ALA7 
for left shift and ALAO for right shift). For arithmetic operations, overflow 
is defined as when the carry in to the most significant bit does not equal 
carry out. Expressed logically: 

OVFL = (ALA7/\ AB7 /\ A7/) v (ALA7/ /\ ALB 7 / /\ A7) 

In the Micro-One, a combination ROM and 8-channel multiplexer are used to 
generate both the arithmetic and shift type overflows. The ROM selects one of 
four overflow sources, based on the firmware command Op code and ALU mode. The 
four sources are A7, A7/, Shift out bit, or O. 

Zero, Overflow, and Negative condition terms are stored in latches which are 
updated on command from the firmware. Zero and overflow conditions are also 
used directly for the firmware skip tests. The zero condition latch has 
separate update logic because.of the requirement for "reset but not set" on 
linked zero tests over mUltiple bytes. 

Link is determined from either ALU carry out or the shifted out bit from the 
selected File depending on whether an arithmetic or shift operation is taking 
place. Link is unconditionally updated on both arithmetic and shift operations 
except for the Op Code 3 Add to File command for which neither Link or Condition 
flags are affected. 

11.7 MEMORY ADDRESS REGISTERS (M AND N) 

The M and N registers, shown in Figure 11-7, are each 8-bit tristate registers 
which contain the read/write memory addresses while a memory cycle is taking 
place. M and N are loaded from the A bus by firmware command. Whenever the 
N register is loaded by a l3XX command the M register is cleared to O. This 
is accomplished in the Micro-One by disabling the M register output on a load 
N command without actually~ clearing M. 

11.8 DESTINATION REGISTER CLOCK LOGIC 

The Destination Register Clock Logic, shown in Figure 11-8, generates the load 
register strobes for M, N, U, T, L, and interrupt enable registers. Also, a 
Load 0 strobe is generated for external use. 

Destination addresses are located in two places in the firmware command. 

11-14 



A BUS BIT 7 

FILE BUS CARRY OUT 

R REG 

OVERFLOW 
DETECT 

FILE BUS BIT 7 ROM -..;;....----..... 
MUX BUS BIT7 

A BUS (8) ZERO 
CONDITION 
DETECT 

UPDATE 
CONDITION 
FLAG COMMANDS UPDATE 

CONDITION 
CLOCK FLAG 

LOGIC 

LINK SELECT 

ALH CARRY OUT 

FILE BUS BIT 0 

FILE BUS BIT 7 

OVERFLOW 

ISOFIl OVERFLOW QFLO 
CONDITION 1-":::';"=-. 

CLOCK LATCH 

ZERO 
CONDITION 
LATCH 

ZERO 
DETECT 

ZERO CONDITION 
UPDATE LOGIC 

CLOCK 

NEGATIVE 
CONDITION 

A7 LATCH 

FILE BUS CARRY OUT 
TO OVERFLOW DETECT 
MUX 

LINK 

LINK UPDATE LATCH 

CLOCK 

Figure 11-6. Condition & Link Register 

11-15 



ABUS----~----------~ 
N 
REGISTER 

M 
REGISTER 

~ADN M 
COMMAND RESET 

LATCH 

DMA MEMORY 
CYCLE 

1----+-------. N ADDRESS 
LINES 

1---+------.. M ADDRESS 
LINES 

Figure 11-7. M and N Address Registers 

11-16 



CLOCK 

R REG 

BITS 0-3 

R REG 

BITS 8-10 

OPI tUPPER/LOWER SELECT 

DESTINATION 
REGISTER 
CODE 
SELECT 
MUX 

MI,IX AND DECODER ENABLE OPOP/ 

LOAD L 
LOGIC 

DESTINATION 
REGISTER 
DECODER 
AND 
CLOCK LOGIC 

UN DECODED 

DESTINATION 
REGISTER 
TERMS 

LOADL 

CLOCK (GT4) 

Figure 11-8. Destination Register Clock Logic 

11-17 

LDO/ 

LT1/ 

LM/ 

LN/ 

LU/ 

LD7/ 



LITERAL COMMANDS 
WITH OP CODE 1 

OPERATE COMMANDS 

OPCODE 

OPCODE 

11 10 9 8 7 

I L:J 
DESTINATION 
ADDRESS 

o 

LITERAL 

320 

CONTROL ADDRESS 

A 2-channel multiplexer is used to select the correct destination address 
according to the op code. Most of the destination register strobes are 
generated by a decoder having one of its inputs a GT4 clock. In some places, 
non-clocked or differently clocked destination register terms are needed. 
These terms, identified as RSO to RS3, are provided for generation of Load L 
clock, file write clock, and indication of M, N, and T destination terms to 
generate T hold. 

11.9 COMMAND DECODE ROMS 

Firmware commands in the R register are decoded by read only memory chips to 
generate control terms. The ALU mode and MUX addresses are generated directly 
by the ROM's. Other terms are generated, such as 10 decoded OP code terms, 
which are used as inputs to discrete MSI and SSI logic functions to generate 
all of the register update control terms. In addition, the command decode 
ROM's are used to generate a carry-in and link, skip, and idle updates. 

5 
ALU MODE 

R REGISTER 
3 

ALU MUX ADDRESS 

LINK 
31 K 
ROMS 
PLUS 2 10 

DECODED OP CODE TERMS 
256 BIT 

103X ROMS 

CARRY IN TERM 

IDLE 
4 LINK, SKIP, AND 

IDLE UPDATE 

Figure 11-9. Command Decode ROM's Block Diagram 



11.10 PROGRAMMED INPUT/OUTPUT 

The programmed I/O, shown in Figure 11-10, consists of separate 8-bit input 
and output data buses. The output bus is driven from the T register through 
inverter drivers. Zero true logic is used. The input bus goes directly to 
the ALU input MUX. Both input and input/ go to the MUX. Input/output control 
is accomplished with three lines, identified as I01X/, I02X/, and I03X/. 
These lines are set or reset by the firmware command: 

15 12 11 8 76543 o 

7 FILE II03XII02X II01XI DESTINATION 

Clock time for setting the registers is GT4. The IOXX/ register is a D type 
latch where the outputs follow the inputs as long as the clock is present. ' 

The Serial Teletype output is driven by I01X, I02X, and I03X/, and TTY0 
from transistor driver. 

11.11 INTERRUPTS 

The Micro-One features two types of interrupts: internal and external. A 
block diagram of the Micro-One interrupt structure is shown in Figure 11-11. 
The internal interrupts consist of: console interrupt, power fail/restart, 
stepswitch interrupt, real-time clock, and four spares. The internal 
interrupts are input to the Micro-One individually via the internal status 
channel of the ALU MUX, and collectively via the eight input OR gate to bit 4 
of File O. 

Internal interrupt latches are reset by either Master reset or the firmware 
command, enter internal status. The console interrupt consists of a clocked 
latch which is always enabled, and thus always responds when the console 
interrupt switch is depressed. 

The power fail/restart interrupt consists of an RS latch which is set by 
power fail and held in a clamped-on state during power-on with release of 
clamping taking place immediately after releasing Master reset. 

Real-time clock consists of an interrupt latch which is set each time a real­
time clock pulse occurs, if the real-time clock enable latch is set. Real­
time clock pulses are generated by a level sensor which has a full wave 
rectified power line signal as an input (120 Hz) or (100 Hz). The Step switch 
interrupt contains no latch and is tied directly to internal status input and 
to the internal interrupt input gate. 

11-19 



OUTPUT 
BUS 

ALU 
MUX 

INPUT B 

8 

ALU MUX ADDRESS 

TREGISTER 
DRIVERS 

ALU 8 
ALU 
LATCH 

A BUS 

8 
FILES 

M. N. l. U 
REGISTERS 

TREG MUX 

AND 

T REGISTER 

tOXX 3 INPUT/OUTPUT 3 
~-..... CONTROL ...... I----t 

INPUT/OUTPUT 3 R4,5,6 
CONTROL I·~~----------------------~~ 

SERIAL 

TTY 
OUTPUT 

DRIVERS 

SERIAL 
TTY 
OUTPUT 
LOGIC 

LATCHES 

I/O CONTROL 
DETECT 
LOGIC 

Figure 11-10. Programmed I/O Block Diagram 

11-20 

I/O CONTROL 
CODES 



FROM 
REGISTER 

FROM POWER 
SUPPLY 

CONSOLE 
INTERRUPT 

INTERRUPT 
ENABLE 
COMMAND 
lOGIC 

FULL-WAVE 
RECTIFIED 
POWER 
SIGNAL 

REAL-TIME 
CLOCK 
DETECTION 

RC 
NETWORK 

CLOCK 

EXTERNAL INTERRUPT 

EXTERNAL 
INTERRUPT 
ENABLE 
LATCH 

REAL-TIME 
ENABLE 
LATCH 

TO 
ALU MUX 

REAL-TIME 
CLOCK 
INTERRUPT 
LATCH 

CLEAR 

RTC! 

SPARES 

STOP 
SWITCH 

CINT/ 

EXTERNAL 
INTERRUPT 
GATE 

1---.- TO FILE 0 

INTERAL 
INTERRUPT 

INTERNAL TO FILE 0 
INTERRUPT 1-__ .­
DETECT 
LOGIC 

L-+-____ .... ~ TO ALU MUX 
CLEAR 

L--!:::~~ __ .. TO ALU MUX 

FROM 
REGISTERS 

ENTER INTERNAL 
STATUS 
COMMAND 
DETECT 
LOGIC 

SET INPUT 
FROM POWER FAIL 
DETECT CIRCUITS POWER FAIL 

INTERRUPT CLEAR 
LATCH 

Figure 11-11. Interrupts 

11-21 



11.12 MEMORY SEQUENCER (CORE MEMORY VERSION) 

Memory timing pulses are generated by a state sequencer (shown in Figure 11-12) 
which is organized around a ROM, a command latch, and a sequence counter. The 
six primary outputs from the sequencer consist of Memory Read Strobe (RTXX/), 
Memory Write Strobe (WTXX/), Memory Ready Command (READ), Memory Write (WRIT), 
Load T Strobe (LT2), and Memory Busy State (MBSY). 

The inputs to the sequencer consist of: DMA Request (DMAR), DMA Write (DMAW), 
CPU Memory.Request (OPA) , CPU Write (R4), and CPU 1/2 cycle (RS). Commands 
are loaded any time Memory Busy is inactive. If there is no active command 
at load time the sequencer goes through one idle step and immediately loads 
again. There are five command input lines; therefore 32 different sequences 
are possible. When a command is loaded, memory busy becomes active, so the 
command remains loaded, and the sequence counter advances until memory busy 
becomes inactive. There are a maximum of eight 200 nanosecond steps possible 
for each command sequence. For Core Memory Control, the 32 command sequences 
are organized as follows in the ROM: 

-
CPU DMA 

I 
READ WRITE 

CPU CPU DMA DMA 
full cycle full cycle read write 
read read 

CPU CPU DMA DMA 
CPU 1/2 cycle 1/2 cycle read write 
memory read read 
active CPU CPU DMA DMA 

full cycle full cycle read write 
I I write write 

I CPU CPU I DMA DMA I 
1/2 cycle 1/2 cycle read write 
write write 

__ '. __ o ____ •• 

idle idle DMA DMA 
read write 

CPU idle idle DMA DMA 
read write memory 

idle idle idle DMA DMA 
read write 

idle idle DMA DMA 
read write 

All DMA memory operations are full cycle. 

The outputs from the ROM consist of RTXX/, WTXX/, READ/ and MBSY/ 

The 8-step sequence patterns for memory control are as follows: 

11-22 



DMA 
REQUEsT------__ ~ 

DMA 
WRITE ------__ ~ 

CPU MEM MEMORY 
REQUEST------__ ~ SEQUENCE 

COMMAND 
LATCH 

CPU 
WRITE------........ 

LOAD 

CPU 1/2 
CYCLE ----If-_-I 

CLOCK ----Ir-....... 

CLOCK ---+--..... ~ 

MEMORY 
SEQUENCE 
COUNTER 

LOAD 

SEQUENCER 

4 

4 

MEMORY 
SEQUENCE 
ROM 

~~~R~T~X~X~/------------~READSTROBE 

WTXX/ WRITE
~-+-~.;,.;,.;,.:.;.,;;------------. STROBE

~~ __ ~R~E~A~D~--.. READ
COMMAND

~4---------~~M~B~S~Y~/--__.MEMORY
BUSY

DEGLITCH
INDOW WRITE

DATA
ENABLE

~ __ -ILOAD ~~~------~ LOADT
STROBE
LOGIC MBSY --------41~

CPU MEM
REQUEST------..... ~

LOGIC

EARLY
MBSY
LATCH

NOTDM

MBSY/

Figure 11-12. Memory Controller Block Diagram

11-23

Table 11-1.1. 8 Step 200 Nanosecond per Step Sequence Patterns
for Memory Control

11.1.1 DMA or CPU Full Cycle Write

RTXX/ wrxx/ READ/ MBSY/

0 1 1 0

0 1 1 0

1 0 1 0

1 0 1 0

1 1 1 1

1 1 1 1

1. 1 1 1

1 1 1 1

11.1.2 DMA and CPU Full Cycle Read

RTXX/ WTXX/ READ/ MBSY/

0 1 0 0

0 1 0 0

1 0 0 0

1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

11-24

11.1.3 CPU 1/2 Cycle Write

RTXX/ WTXX/ READ/ MBSY/

1 0 1 0

1 0 1 0

1 1 1 1

I 1 1 1 1
I
I

i 1 1 1 1
i

I 1 1 1 1
I

I 1 1 1 1
I
I

I
1 1 1 1

11.1.4 CPU 1/2 Cycle Read

RTXX/ WTXX/ READ/ MBSY/

0 1 0 0

0 1 0 0
I

1 1 1 1 I
1 1 1 1

,
I

1 1 1 1

1 1 1 1

1 1 1 1

1 1 'I 1
-

Priority

Priority is established by the following methods:

1. When any memory sequence is in process, MBSY prevents loading a new
command (either CPU or DMA).

2. On simultaneous DMA and CPU requests, the CPU request is held off by
the T hold logic until the memory becomes unbusy, and another DMAR
request is not present.

11-25

11.13 COMPUTER CLOCK AND RUN CONTROL

The clock generation logic (as shown in Figure 11-13) consists of a 20 MHz
oscillator with a 4-bit shift register to generate a 4-phase 200 nanosecond
clock. Each of the phases is approximately 50 nsec wide. The phases are
identified as TT1/, TT2/, TT3/, and TT4/. The repeating cycle is maintained
by reloading a binary 0111 pattern each time TT4/ = O. Starting of the clock
is achieved by entering a 0 into the serial input any time all phases are
simultaneously high, which state will occur whenever the clock goes into
improper operation.

Control of the CPU is established by enabling the clock phases under various
operating conditions. The enabled clocks are as follows:

GT3 RUNX A TT3 Used to set Halt on Firmware Command and panel clock.

GT4 = RUNX A TT4 Used for register update, Condition flag update, file
update, I/O control register update, interrupt clocks.

Load L Clock = (RUNX/) A (TTl + TT2) /

LOAD R = TT4/ A THOLD/

L COUNT CLOCK = TT4/ A THLD/ A HLT/

ALU LATCH UPDATE = TT2 + TT3

LOAD MEMORY SEQUENCER = TT4/ AMBUSY/

11.14 RUN/HALT CONTROL

RUNX (see Figure 11-14) is made up of three terms as follows: RUNX = Halt/A
ATHOLD/ A Id1e/. Ha1t/ is the main run enable term of the CPU and is manually

set by panel control, or automatically by the power fail/power on function.
The Halt state can be caused by Firmware command, Panel Clock, or by Master
Reset.

Tho1d (see Figure 11-14) is a temporary run disable which is caused by
simultaneous occurrence of memory activity requests. There are four functions
which cause Thold:

1. Attempting to alter M or N during a memory cycle.

2. Requesting a Memory cycle while one is in process.

3. Selecting T as a source before a read is complete.

4. DMA and CPU simultaneously requesting a memory access.

5. Changing T during a write strobe.

Tho1d stops all CPU firmware functions, including R register update and M, N,
L, U, and File update and Input/Output register update.

11-26

LOAD

20 MC 20 MC
OSCI LLATOR ~C~LHO~C~K~-""''''

TT3/

RUN XI

TT4/

REGISTER
RESET

CLOCK
START
LOGIC

GATED CLOCKS

o

SHIFT
REGISTER

PRELOAD
INPUTS

I----II~ TT 4

TTl/ TT2/ TT3/

TTl/--. ...

TT4/--. ...

TT2/

4 PHASE
CLOCK GENERATOR

TTl + TT2

Figure 11-13. Clock Generation Logic, Block Diagram.

11-27

M OR N DESTI NA TI ON
WITH CPU MEMORY
CYCLE IN PROCESS

CPU MEMORY REQUEST
WHILE MEMORY CYCLE
IN PROCESS

SELECTION OF T
SOURCE DURING --,---,~
MEMORY READ

SIMUL TANEOUS
CPU AND DMA
MEMORY REQUEST

GO/

CLKF/---~ HALT
DET
LOGIC

FIRMWARE
HALT
CODE

CLOCK ..

THOLD
LOGIC

RESET

HALT
LATCH

SECONDARY IDLE,
FIRST
COMMAND

RUN X GATE

IDLE

AFTER RUN :§
GO/ BYPASS
______________ ~~_L~A-T-C-H--------~~ SH~~T1

CLEAR PRESET
TT1/

SKIP
LOAD---"

SKIP
COND
MUX

UPDATE IDLE

LOAD L

HALT

TT1/

IDLE
UPDATE
CLOCK

CLOCK

MRST/

PRIMARY
IDLE
LATCH

IDLE/

Figure 11-14. Run/Halt Control Block Diagram.

11-28

RUN X

Idle (see Figure 11-14) is a temporary run-disab1e which occurs for one
firmware clock cycle and is caused by a skip or load L action. During idle,
the R register is still updated so that the next firmware command can be
fetched, but all other functions are disabled. Idle disables Tho1d to pre­
vent false Tholds on non-executed memory-related functions immediately
following a jump command.

11.15 COMPUTER START LOGIC

There are five different inputs for starting the Micro One as shown in
Figure 11-15.

1- Panel Interrupt

2. Panel Step Mode

3. Panel Run

4. Panel Clock

5. Power Fail/Restart Interrupt

All of these inputs share a common computer start latch and computer start
pulse logic. The computer start latch is set asynchronously to the computer
clock and re1l1ains active until reset by halt, or released by the power fail
interrupt input. The computer start pulse is synchroniZed by clock phase
TT3/, at which time GO/ is generated. GO/ is input to the clear side of the
Halt latch. Halt/ is input to the computer start pulse logic to inhibit
subsequent GO/ pulses.

Four of the computer start inputs are for panel control. These utilize a
common RC pulse network, and separate diode isolators. The CPU differentiates
between the four as follows:

Panel Interrupt and Panel Step mode are also input to the internal interrupt
portion of the CPU, where they are recognized by the firmware. Panel clock
is also input to the Halt Detect logic to generate halt after one Firmware
Command has been executed, and to the First Command by-pass logic to prevent
bypass when Panel Clock is activated as opposed to either of the other three
panel start modes.

The Power Fail/Restart Interrupt generates the rema1n1ng start term. For
~ither Power Failor Restart, it is necessary to generate a GO/pulse. The
Power Fail Interrupt will always be activated during these times, and will
force the computer start latch to an active state where it will remain until
released by acknowledging the Power Fail Interrupt. Multiple GO/ pulses are
inhibited by the Halt/ input to the computer start pulse logic.

11.16 AUTOMATIC POWER FAIL AND POWER ON DETECTION FUNCTION

The Power Fail Detect logic (shown in Figure 11-16) consists of an RC filter
and an analog level detector. The input is a full-wave rectified signal from
the power supply. The level sensor has a feedback resistor to generate
hysteresis. This hysteresis prevents fluttering of the power fail circuitry

11-29

~--------------~ .. TO INTERNAL INTERRUPT

PANEL DIODE
HALT INTERRUPT ISOL HALT/

PANEL
DIODE STEP
ISOL MODE

RC COMPUTER SET PULSE START

PANEL---1 ~
NETWORK LATCH

DIODE
ISOL RUN

PANEL
CLOCK

DIODE
ISOL

TO HALT DETECT
LOGIC

Figure 11-15. Computer Start Logic, Block Diagram

11-30

TT3/

GOI

ZEN EO
l-rj +12V REGULATED
/-'. REFERENCE OQ

VOLTAGE (:!
l'i
(\)

~ 1ST
~ LEVEL
I

RC SENSOR
~ SUPPLY

'" FILTER .
""d °1 0
~
(\)

RC 2ND MASTER I'i
TIME LEVEL RESET MRST/

'"':I DELAY SENSOR TRANSISTOR Pl
1-"

~ ~
~

°2 I I;:j
VJ (\)
~ rt

(\)
RC POWER ON ("l
PULSE INTERRUPT rt

t"" NETWORK CLAMP
0 TRANSISTOR

OQ
1-"
("l

td
~
0

POWER FAIL/ ("l

i'" RESET INTERRUPT POWER ON PFINT/
FROM FIRMWARE INTERRUPT TO CPU I;:j
OR MRST/ LATCH 1-"

Pl
OQ
I'i INPUTTO Pl ---. COMPUTER a

START
LOGIC

at the power fail threshold levels. The input RC time constant is set so
that the first missing power line pulse will be detected. When power fail is
detected, two things occur: the power fail interrupt is immediately set, and
after approximately a 2 msec delay, Master Reset is activated and remains
activated while the power supply voltages decay. The function of setting of
the CPU for power fail, such as saving the registers in core and coming to
halt, is accomplished by software and firmware during the time between Power
Fail Interrupt and Master Reset. During the initial part of power on, the
Power Fail Interrupt is clamped to an active state. When power reaches a
correct level (plus a delay) the level sensor switches output levels and
starts a delay of approximately 100 milliseconds, at which time Master Reset
is released, leaving Power Fail Interrupt in an active state, to be
acknowledged by the firmware/software.

For manual operations, the Power Fail Interrupt can be made momentarily
inactive by depressing the Master Reset switch.

11-32

SECTION 12

SCHEMATICS

-
REV EO ZONE DESCRIPTION OWN CHKD APPD DATE

D ~bl2. PILOT RELeASE J.N. \\). ~ j;''II7>
COMPONeNTS LAST 1<1EF" I<£F" DeS E -'1<.6>2- REY/SED AND

NeW I?EL54SeD
M.F. -:J.P. -i 4,:

cQ7S
USfiD DeS USED NOT USED

F 40';'e. SEE E.O. 4T. 4) -i 1;1{ 10,-
ReSISTOR 1<~2 1</1

4 lie. 5EE E.O. c21.' Ftr) I-.E '5f:I)S G
RES MOOUL. ZZO

CAPACITOR CZ7

0 DIOOE: CRI4 D
TRANSISTOR Q3

CHOKE LI

CRYSTAL YI

E:. POINT fil'

-
10 9 8 7 '" 5 4 2

t--
3 I

17 I 17 15 I /I
15

15 I 15 151 I I~

A 17 I 17 I 17 15 I 15 151151 4 A
14 14

A
LM 339" 74279 7475 7402 74H04 SPA12E 7425

~240 ~240

18 I 17 15 151/51 4
15 I I~

17 sl 15
15 1 5 115 B 15 I 13 4 B 14 14

05C 74HOO 7474 5304 0 7417 SPA12E 1410 7420 8

C 15 1/8118 15
IP240 1<>240

C 15 B B 5
C 151 /8118 18 15 C

13 13
7404 74H74 7420 741(,,1 9322 9322 9312 SPARE C

J 18 15 I 15 BIB I~ 741~1 741G.1
I", 15 8 B .3

D 17 I 18 4 I 8 81B liP 0 13
7~OZ 7475 74195 7400 7475 7475 5303-1 7417

IS
13 0

8 I II<> I", I 4 41 15 113 B I 8 B I 8
.3 5 HH74 74175

E I I lIP I 12 1514 14 8 I 8 B I 8 E:
121/0

74/0 74HOO 74H04 7438 7436 5303-3 5303-4 12 - 121 10 Ii: l-I 18 4 I 4 15 110 8 18 I 8
4 4 .3 12 74175 74H04 , I 18 10 I 4 9 I 5 8 1151/~ ,

1402 7402 7408 7442 7417 9322 5.503-2 7475 12
12 I 12

110 10 I!O 1/0 I 4 71717 71711<> 12 I 12 r::
18 3 12

H liP 9 14 19 I 9 71717 1.>11.>1"' f.I 74298 7432

74504 7474 74H04 7410 74H04 74H04 5302-1 7475 12112
12

13 I 4 181 18 1 9 I 9 9 12 t 12 H

110 i 10 I Iq 18 I 9
7 10 4

J II; J 74298 7132 B 7402 74fW4 7402 74H22 9312 ~312 5PA12E 5302-2
B

t1~. 51 110

.. _,.
II II 10

liP --_. 9 7 '" 1/ II J I< 12 '3 I 9 9 I<
74173 74173

7427 74HOO 7474 7430 93/2 9312 74173 74173

II.> 9 '3 10 L 10 .5 5
L

10 7 I<> 10
10 I 10 I< '3 9 9 L

74109 9309 7474 7474 9312 9312 310lA 7403 7475 7475

10 9 10 I 10 I&> 7 10 10 5 5 - M 10 10 10 I 10 M L -
7451 SPARE 7430 7425 9312 9312 310lA 7403 74161 74/81

10 9 8 7 '" 5 4 3 Z I

PI IV I

(I< OF)
CURf2E:NT REV IGlolololololololGlolololOlolGlolO FI
SHE£T NO. 1'lzI314Isl"'17IsI9110IullzI/31/41ISII"I" 16 1

UNINCORPORATED o SIGNAL NOT USED ON THIS BOAJ;>D THE INFORMATION CONTAINED HEREIN IS PROPRIETARY TO AND ENGINEERING ORDERS
CONSIDERED A TRADE SECRET OF MICRODATA CORPORATION AND

A [i] ,OR -21 FI~MWA~o SeT ~UT fiTCH BETWEEN SHALL NOT BE REPRODUCED, IN WHOLE OR PART, WITHOUT THE A
fil <' E2 (COMPONENT SIDE)

WRITTEN AUTHORIZATION OF MICRO DATA CORPORATION.

@]>J.C AT LOCATION 78 TO Bfi SELeCTeD Ci)
ORAFTSMAN 3Itm.~ TITLE
JODI NEWELL PC. BOARD III T~icrodata ~CCOIi!DING TO NEE.D FOR MOS ME:MORY () (,~~E~

(-2~ OR CO!eE. Mr=MORY C-I). f\)
"/·7·7,

SC4{;MA TlC-
0 Em~ q-8-?5

z. ALL CAPACITORS A Rfi J,-,/,25V. D A1t)J:~b 1-6-75 MICRO-ONE
IRVINE, CALIFORNIA

D
I. ALL RESISTORS Al<fi '/4 W, 5% VALU€O IN OHMS. iJ; APP~/Yw. If 1/-·8-7$ c.pu. C SC cOOOl500 G

r;- 0 t1!Y)1,uC,;J.;J.< NOTES, UNLESS OTHERWISE SPECIFIED
~ J .. 10ENT CODE 5293(0 owe . ,";~ .. ,,;.,, ry-7!-/ SCALE (/)

SIZE SHEET I OF 16 REV

,.OIllM ._ ... _, 4 I 3 v I 2 I 1

o

c

B

A

SHT
IJO. A

GNO

GNO

1ft, -1ft;.75V

/~ fl2 v
15 CPI</

PI

I

2
3

4

5

"

B
SHT.
NO

+SV
+5V

-/~,75V /0

7 M04AI /I

/&, -1&,75V B SP1J / 7

1/ N07A / 9 MOGJA/ /I

8 00051 10 00011 8
II MOIA/ If A'J4L/ 5

/I M02A / 12
5 AOOL / 13 M03A / 1/

5 AOIL / 14 MODAl

/I NO&A I 15 RSOO 12

13 LOOX /0

LIIX(6NO) 17 PS04 13

13 L04X /3 M05A / II

12 PSOI 19 LlOX(GNO)

13 LO/X 20 RTXX / /5

/5 wryx / 2/ RSOS /~

13 LOSX 22 (PH2 I 15

12 RS02

13 L02X

/3 LO&X

~ ¢002 /

23 READ

24 CGLO /

25 RSOh

2& $DOC, I

15

4

13

B

/2 RS03 27 MOO? 8

13 L03X 28 MD03 8

5 A02L / 29 RS07 13

/3 L07X 30 MOOS 8

", I$2X / 31 li/JIX I I"
1004 I 32 J 000 I

14 CPEN I 33 L08X 13

5 AD3L I 34 MDOO B

8 MOO/ 35 L09X 13

6 1.1004 3, RS08 12

12 PS09 37 ¢004 / B

10 EINT I 38 A05L I S
39 ¢ODO / 8

9 AENPI 40 1.1000 8

18 PUNX

12 RSIO

/2 R5/ I

15 OMAI< /

41 A OC,L / 5
42 ECI¢ I 10

43 MOOZ 8

44 MRST I I,
DAlASI 45

17 P~OI 41" RTC[17

12 RSI3 47 1.1074 I II

."::.514 18 ,,!,D7:....,/ :;

~ C~NT (6/J0) 49 OMAT I r"

/I 1J03A I 50 JPPY I 10
12 RStZ 5/ NOOA / /I

Z 5£L~/ 52,s£,LI/ 2.
/I N04A / 53 NOtA / 1/

{' NOSA / 54 PRIN /

PRJiT I 55 ND2A I /I

/5 OMAWI 51" SPIZ/ 7

15 M8SY 57 SPIO I "

8 $007 / 5~ !POD3 I 8
/2 RSI5 59 1005/ 7

" IDOl I 00 [007 I 7
7 IOOr" I (", 1[J3X I /"
(, I D03 I .2 1002 / Ii>

-1r".75V r", -1I,,75V

GND
GIJO

+5V
+5V

J2

I

2
3
4
5

"

J3

SHT
NO.

TTYX I 1("
TTYB 1("

TTY!jJ 1("

TTYG I"
TTYG lip

SIlT
NO

MO"AI /I
MOOD 8

PTX/ / 15

4 M03A/ II

5 M04AI II

'" "PSI< 15
kTAD/ 1.5

8 UBSY I 15

)1'/,(// 15
10 GND
II GND

12

13 CPH2 I 15

/4 -/G.Z5"V

15

1(" MOOS B

/7 MD03 8

/8 A/07A/ If

19 MOIA I II

20 M02A / /I

21 ,uSE'(/ IS

22 MOOA / II

23 IJOroA I II

24 eND
25 M05A I /I

2(' eND
27 I< TXX / 15

28 WTXX I 15

29 -/':;.75V
30 -/6.75V

31 READ 15

32 ,L5V
.33 +5V
.34 M007 8

+5,.

J4

I

2
3
4
5
(,

M004

MDOZ

MOOI

MOO"

eND
eND

7 eND
BeND
9 eND

5HT.
NO.

6
8
a
8

/0 N03AI /I

/I
12
13
14 NOOA I /I

/5 NOlA / /I

/" IJ04A I 1/
/7 N02A / 1/

18 NCJ5A I /1

/9 +5V
20 +5V

SI<T.
J9 IVO

I

2 E507 7

3 £504 7
",,' £505 7

5 HLTLI 9
~ IIJTF I I~

7 E $0(" 7

B RUNFI 17

9 STPFI /'"
/0 ClK;:"1 /7

cz +IC4
?i?I.H' 2<.',,1'
/5V I5V

~rP~R~I~N~/ ___ ~~ ______ ~P~R~¢~T~/~

~SELI/ SELal/~

4J __________ . ____ 3 ________ ._-"-__

o

c

B

A

o
REV

0

-

C

-

B

-

A

RIS r RI4
OP \'1.
CODE 12 RI3

RI'2.
1Z

r
Rl

CFIELD Rt.
FOR 1:'
OPERATE

R5 COMMAND 1'3

R4 1,

Ii. I03X

FROM I/O
CONTROL
REGISTER

g LINK

t'Z. RIS" I

NOTE 1: ALU INPUT ADDRESS
IS DETERMINED BY

-OPCODE
-I03X (INPUT SELECT)
.SUB QPCODE (BITS 4-7)

NOTE 2: THIS ROM OUTPUT IS USED
TO GENERATE A MEMORY
COMMAND DEPENDENT
CARRY TERM

1i. IDLE

4 _. _____ . ___ .1

PR2DDO,3D3-1

R15 l'i "l
40

R14
,,~ 04 q

R13 'I. CTG

"" -"
R12 3 A4 03 10

R7 4 . (~ZOO)
A:.

R6 1
AZ tJ'l

II

R5 ("
"I

R4 S AD 0\ 1'2-

Ij EI
14

.2

ZIO +5V

1----1
I IK IK IK IK I
L ~- c-:.--J

7 r. 5 4
AU'" S"

ALS'2. S"

AI..S \ '5

AlU
CONTROL
TERMS

+5V

ALU DECODE ROM ZII
1- -I

PR2000,)3D3-3 I
L

II< IK It<.
--' - -'

• 7 2
103XIS 4E

AI
R14 I A&, 04

g

R13 Z eTC;
AS -c

R123 A4 01
10

R7 4 (.'1.00)
A,

~-+--+-I__~R~6~7~A'Z. 02~-----+-~~-~
R5 [, AI

IK
--'

5

LINKS AD 01 rl '2.=------Ir--+--_I--_ ..
GNDI3 EI

R~ EZ

~

ALU, CARRY, AND MUX ADDRESS ROM NO.1
I I

ALU, CARRY, AND MUX ADDRESS ROM NO.2
PR2 ODD ;303-2

I03X 4 F
l-~AI

R14 I AI, 04
9

R13 2 CTo,
AS -e,

I
I~

4

eINI 47
PARTIAL CARRY FUNCTION1
NO.1, DETERMINED BY DPCDDE
SUBOP CODE, AND LINK

AL'O.O '5 AlU
CONTROL
TERM

o

-

c

BS'2. 1
-'-'. _______ . ___ ~~- t-___ +-_6~_S;;;.-.0.1_ :~:: B

R12
3 A4 0~ 10

R7 4 (/,;/00
A<, ,

R6 I M I I A7
R5 {,

AI

LINK S f>.O

GND 13
EI

R15 14
E'2.

7

01 1'2. P-'~ ___________ -----+---'e.=-">=-O=- 1.,1 AlU

ZI2
+5V

i! 10 r--- -- -,
r---r ~-~-~--~--<~.~ I

II< II<, II<,

INPUT
MUX
ADDRESS
TERMS
NOTE 1

PR2D005302- I
II(I IK

1--
4

IK ~.:J
1---

'" 7 2lPII OPCODE 1
f-!-..... ---+--+---+---+--i /---+--"'-'-= 4, 'I, 10,13
p __ --<>-_+_--+ ___ + __ t-_+_-+..-'C0Pl+ 0 1'.1. \ 8"g~D3E 2

01' 1·,,1/ ~.,\.I<O

0P7·R, 110

41-1 Z
R15 14 1\4

01

Ct;'-'M 'I.
R14 I·~l

A1 0~ :,

R13 12 (~no 4 A2 04

3 5

R12 II
AI

05

IiJID
R7 10 AD

rill

~~77~~~~~~~~~_+-_~_-+~0~P~AL·~'4 NOTE2

r-"====-'--"""'=="-__ ~-+---+--'!l)"'Pc:.!:A'-:Ic.. 15, /8 MEMORY A
~--------------..... --+-~0~P~B"'/-lO COPYT

,
ALL OPCODE 7 EXCEPT I/O

is, INPUT/OUTPUT COMMANDS

I

IDLE 15
E P8

'I

OPCODE ROM NO.1

CONTROL DECODE ROMS

.. 1

DECODED OPCODE TERMS

I c I SC2000/S001 0

I ~~~ I SHEET a OF 1<5 I REV

1

Z8 +5V
r - - - - - - - - - - - -1

K UPDATE 1 I Zh SELECTS LIN

>IK
TERMS IPG 91 AND

PR. 20005'l02.-2 ~ IK IK IK IK II(I IK CONDITIONA L SKIP

.-J TERMS -- ----
3J I Z 3 '" 5 ~ 7 ~ FSO

10 01 q.l<D
A.D CTG.-E 2. F"Il

USED TO SELECT-

/
LiNK UPDATE FROM
SHIFT DIRECTION QPCDDE DECODE

~1,~R~5~~~ ________________________ RO_M __ N_O_._2 ____ ~ __ ~

9,1<0 02
II Al :l UL q UPDATE; .,3 D l'l.~R~IZ~ ______________________ ~~

C

B

A

1'2 OPCODE 1'Z~R~I~~~ __________________________________ ~~
TERMS

I'> ~~~~ 1'Z~R~14~ ____________________________________ ~~

1'l. R ,<;
DISABLES GT3 AND GT4 GATED CLOCKS

1~ IDLE ~~~'~~~~?P~~~;: ~~g~~;~~~SUI
WHICH BECOMES UNCONDITIONALLY
ACTIVE DURING SKIP/JUMP

5

<P

14

IS"

4

A!l.

A.~

A.4-

E

("'Z30)
1<14 4

~S .2
r)6 t. UPDATE REGISTER ENABLE

0, 7

9 ALL CONTROL opcaDES
08 EXCEPT MEMORY

5

LOAD L CLOCK

LINK
Ul

11. UPDATE
iDLE

iJ Pi3 PI 4
'25P7/ OPCODE

5
0PA/RIS

S
RUNX·TTI·TT2

I I!S
RSZ/

/8
1/

18 RUNX /'

/5 TT/ -I- TTZ
9 7H o.:8:-__ ..::L:;.,;L=-/ /3 LOAD L ----------------------"-1 74/ 0

'"
/0

UNCQDED DESTINATION REGISTER

mo' "00. ""."0 ~
RSl

!c[llTU::.!-l .::.:lO::..::9c::JS!'---_1L...32ioJ 18

RSO
'-----"'

LITERAL TO RE

~~~i~~~~'ON t 2 
TERMS 

i1f12 FROM 
A REG 

11 

'*12 

12 

12 

12 

3 

4 

GATED T4 18 

~'H { 
13 

RIGHT 4 
AND 

3 ENTER 
SENSE 
SWITCH 13 
COMMANDS 

*13 

:3 

'-----"' DESTINATION 
G CONTROL REGISTER 

MUX 

RB 2. lA 5" 

~~ " iB lY 
4 

Rq 14 'n'l.2. / 
ZA. 

RI 13 'l.B 2.Y 
121 

RO , I 
3A I 

R2. (" -'I 

DESTINATION REGISTER 
DECODER 

7F U 
\ 

- , IS ~pESTlNATION 
/ , A t REGISTER 

1 
"1442. ~~PDATE 

2 TERMS 

'14 
B 3 

4 
I 

4::r2-I 
/ 

13 / 

CGLO/~ 

LTll 

LM I 

LN I' 

6 LOAD T 

11 LOAD M 

11 LOAD N 

3& 3Y '- C. 5~ 

~ 4A. 
R"'!I/ - 10 ~ OPCODE 1 SELECTS DESTINATION 4B 4Y 
0Pl/ FOR LITERAL CO MAND 1 '> 
0PDP/~ IS" 

E 

::~,~~:;::"" <~ 
741104 2 70 

3 
6T4 CLOCKS UPDATE OF REG 1 ,400 

R5/ 

0P7·RI/ 10 el£. 8 
RiD/ ;) 74HOO 

R5 

9 

~IO -. 1402 

9 

/OK 
RS_LlNK_RO/ 

UNK/ /0 8 e. 
rv RO 1/ 4 

~'" I RI I 
1'400./ r QlPA.R7/ 5 

R2./ I 
, PARTIAL CARRY FUNCTION NO.2, 

DETERMINED BY MEMORY COMMAND 
WITH M DESTINATION 

c: IN I CARRY IN FROM ROM 

'" 
1 LU/ 

~ 0 7 
q LP,/ 

ap!Q. 
~PU-

FILE WRITE CONTROL R';"!I/ 

8 
9" 10 I:.AlBU/ 

9 1402. 
" - _ .. _---

/I 
EAL8L.L ':I" 13 

12 740e. 

a 8 '" C,M/ 

~HO<I / 
CLEAR M WHEN LOADING 
N WITH A LITERAL 

RSI\L I N KI\ROIJ\R ,I\OPAI\R711\R21 

2 "8 ~ 5 SA 6 eIN 
74H04 741, 

I COMBINED 
TO ALU FU 

WIRED OR 

12 LOAD U 

10 LOAD 7 

10 

os 
CARRY IN 
NCTION 

"* INDICA TeS TWICE' ON rillS PAGe: cSceOOOI.501'L> 0 

"'EET 4 OF /8 REV 

___ ~4 ___ ---1. ___ ---'~ __ ._--l.. ____ ~!!.--___ ...l-.-___ j 

D 

c 

A 



o 

--

INPUTS 
FROM 
FILE 
REG 
BUS 

4 ~C~IN~ _______________ -. ___ 

10 ALF\O/ /~7 LOWER4BITS 10 I-'-______________ ...!A~O!L_ 8,IO,Ii'.,13 

10 ALAI/ 2.3 AI FO 9 OFALU <: ID ABUSO-3 MOLl '1,11 

10 ALAe! / i'.1 Ai'. IQ I~ I PI'AI3 I 
10 AL A 3! I 19 A 3 74181 4Q f-"'8 _____________ ...cA=' - 8,10, Ii'., 13 

PROGRAMMABLE ARITHMETIC/LOGIC 
FUNCTION GENERATOR 

INPUTS <0 --'-A"Lc::B::,:O"'!'--________ !-i _____ '-dBe FI t:}'10"--________ 7'd4D 7475 AD!L / '1,11 

~~3M ,,_'-'Ac::L.::cBo.:l'-! ________ !-I ___ --=2c:-2.Cj 40 ~9---------~I>_--_{~PII ~AII4D 
MUX BilL IK r-
BUS G ALB2.! 20 Bi'. 3QN.;"-____________ .,;A=<:_ 8,10,1<:,13 

t: =A=A=~~:~::/===============~:=====::='8~<o : Fe \I G 3D 3Q ~ I A O;/L IA:'~ 
~~~E 3 ALSI 5 SI i'.G 14 \\\ A3 8,IO,lc,13 

SELECT 3
3

ALse \ 4 'Oco F3 13 3 2.D A03LI'1,1I

ALS3 \ 3 13 15 [
-'-'~-c:c------__ -+__"\+--+--='i'03 .-= E "''- i'.G \ P /- A 34

ALM e M ~ E';-4

ALU LATCH

/
/

/ A4
10 ~--I-------------'-'2-- B,IO,le,13 INPUTS

A BUS 4 - 7

D

C ~~L~M

10 ALA4/

10 ALAS/ 2.3
AI Fa 9 2. ID / A04L/ q ,1I

10 Ie, i I c

--

B

-

A

REG
BUS 10 ALAG! 2,1

~ 10 _A=L",AL7,-! ----+--j---1--+-+-'-' q-'cl:~ 74181

7 F\LB~/ Be

~~~~S 7 ~A~L"B~5~/ ____ _+-_+-+-+-~2.~2.~BI 
~~~ 7 ,A~L~B~,,~! ____ _+-_+-+-+-~~~O~ 2L 
BUS - B<'.

*7 ALB7; 18
53

FI
10

UPPER 4 BITS
OF ALU

II
Fe.

40. 8 I
7 4D

PI,BII I
F\5

8,IO,le,I'"

A05L/ q ,1I 7~7S _J [
2K 4Qb~t-,--------------~----~P~I-~B~3Bl~J

~3Q,-J-:C'I'-_____________ ~A~"''- 8,10, le,13

'" 3D
AOH/ 9 ,1I

~so
5 '01

L--------"4'-1se

PI-B41
r 3Q 10

i'-_CQ;!-'-=14'------.---------.!:.Ac.:7-8,q,'Q,lc,'3 t---

L-__________ ~3~S3

ALU LATCH UPDATE
CLOCK

8 M
CN+4

I''''

F3 1:\

eQ 15 I
A07L 1 9 ,11

PI-B481

+5V

~ ~~:

15 TT2 + TT3

IL __ 4-__ ~A~L~U~C~A~R~R~Y~0~U~TL---~C~0~U~T_
'1,110

3 ~ 4 1. SHIFT OUT BIT
~B>-'----~·~2---~-'--~~"-'----

74/7 PR200053D3-4 1
r--_--"5"-1 A7 L-f--+--'-1' DO

,,'- "R-'-'-'4'---+ _________ +--__ --'-1A£TG.:F Q4~
+5V

Ii'- ",;R,,;,I"'3'--+ ________ -+ __ -"'-1E'. AS (",eoo) I - - - '1
I t---

12. -'-.:R""2.=----f+ ________ +-__ -"-I:l M Q3~ I <'9 :

13 -R-''''---IH---------+----''-1F\3 3E L _'~_:J
13 -'-'R..:':>=--_+========+-__ --'-j7 Ae Q2. II "' 5

MSBAL~IO-A-=L~A~7~!--~6~~~s~~~~NA~:~~~E~~~E:~DM~AS~T~~~HGL'C_H_+------''''~AI :U I OF CONDITION FLAG
INPUTS*7 ALB7/ 5 AO

~DI
L---"''''ID2.

r---~-'-jD3

~D4

~D~
-.lOb
~D7

"e-~ 13 EI

J ~_--,14.0E2.
OVERFLOW CONDITION
DECODE ROM

__ --c:'3::j:,c

L--+ __ -"I2.:::;SB

L---+--..:I~"'OA
IOE

w 14 OVERFLOW CONDITION

9312.

OVERFLOW CONDITION
SELECT MUX

* INDICATE'S TI1IICE'ON THIS PAGE

4 _____ 1 ._. ________ ~ ___________ _'____ ___ _ 2 __ T

9

1

B

I---

A

o

-

c

-

B

--

A

12. RO LITERAL BIT 0
DO

'" to ALII4 /SHIFT RIGHT • INPUT 2. Dl 5M

3 DZ Ito C [N T /CONSOLE INTERRUPT STATUS

10 ALA 1 /SHIFT RIGHT 1 INPUT 4 D3 'BIZ

r P/-B32 1000/ INPUT BUSO ., 04

~H>~4,--__________ -=~ D5

'8 TO TREGO r h4f\04 , Dt.

8 TO/ TREGO/ "I D7

+SV

i! /4
IK

,---------...:'-'-1' SO

,-____ ---"=-j2. S 1

,-__ -'-'3=-, 5 2.

~ E

12. R 1 LITERAL BIT 1 DO

W 14

'Y~

10 _A~L'2Ac''5.c/:....:cSH~I''_F.:.T:_R..:.T:.: .• :.:':::N:..PU:.T~ __ _+-+_j-t-_+-...=.21 D 1 S L

~._-*_++-+_t-_3,,-- D2
10 A LA'Z. / SHIFT RT. 1 INPUT 4 03 '1312

1001/INPUTBUS1 S 04
P/-AI.O ~

I 5 H>--=-'2-J--I--.f---+--=-{,-~ 05

8 Tl TREG 1 74HD4 7 DiD

8 TI/TREG1/ '" 07

12 R2. LITERAL BIT 2

10 ALAe. I SHIFT RT.' INPUT

'-+-1--+-~I_', 50
+-++-,-,12.'-1 S 1

.--+---"13",, S2

~E

DO
2. 01 SK

3 D2

w 14

y~

lID RTC. / REAL·TIME CLOCK STATUS

10 ALA":> / SHIFT RT. 1 INPUT
I ..,. 03 'BIZ

I[P~/i::-]8~"'E;z[.}JI~D2.<0~z?.!./1'~N"'.P':!.UT~BU~S~2~--_:_+_1--+__t-~'S D 4

+-__ -"-9.q5H'>-'8'--+--+-+-j_~t._, D S
8 T2. TREG2

8 T2/TREG2/

12 R"- LITERAL BIT 3

to ALP-.7 /SHIFT RT.' INPUT

SPARE

B4H04

+5V

'l Dc;.

"l D7

.--+-J--I,-,-,II'-1 SO

._+-+---,I,-,'2.~, S 1

+-+--,-,\'3'-1 S2

~E

DO
2 Dl 5,)

cepil-~8[5[7[}~~~?~IUO~/~~~-t~~---r-l~t--t--~~ O~
* to ALA4/SHIFTRT.1INPUT 403

W 14

Y~

[E~~¥I!?0~0'.:3~/~IN~P~U~T.!:BrU~S~3~::--:-__ !-+-i __ t-~Sl 0 4 931 '2. PI-A!.Z

~,>",0'--.f---+--+---l_-"iD'-1 OS W U4
8 To T REG 3 V74H04 "7 0" y r!L
g T3/TREG3/ q 0, ! JB~S~O~ ____________ ~-+-1 __ t-~I~' '30

ALU MUX 3 B 1~"':2..!.1 __________________________ -<i>-t-_+-,-1-=-j2. ~ I
ADDRESS ~ ~ ~

SELECT ~ B'52 1:1 '32.

4 EALBL / ENABLE MUX LOWER 10 E

ALU INPUT MUX BITS a - 3

7f INDICA TES TWICE ON TNI$. PAGE

ALU INPUT MUX
BIT 0

ALU INPUT MUX
BIT 1

ALU INPUT MUX
BIT 2

ALU INPUT MUX
BIT 3

ALBO/ ;; __

DMA.T / II.

A\..BV ;;

AlB2/ '5

SPIO / II.

ALB;?,/ S

I
I
I
1 - - - --,
I

I
I
1

1

1 ,
TOALU
INPUT
CHANNEL B

1

I
- - - __ I

I
I
I
I
1

I

Ie ISC2000150<:a 10
I ~I~ I SHEET ~ OF 18 I REV

___ . _____ 4 ____ . __ J.'-_____ .~ _______ _____',_'_1 ___ ._--"'2, _____ 1'___._. __ 1 ___

D

c

B

A

"
i. 'C , 5v ':::'1'- l.ll ll.

1, R"T LITERAL BIT 4 r IK I 1 DO
ES04 1 13 ~ 12 SENSE SW , 2 ~M

J9 -" IoH 01

~.
[.::/'74 H 0 4 1 :,

02.

ALASI SHIFT RT. 1 INPUT 4
0" 10

I D04 / INPUT BUS BIT 4 S 931Z. 14 ALU INPUT MUX ALB41
PI-A32. 04 W BIT 4

'5---- - --I

D IIJS/r 10 in '(...!..'L
,

D OS ,
1/l4K04

1
8 T4 T REG 4 r DGo I

I

8
T4/TREG41 q

Dl I
I , +sv II SO
I
I

1'2- 0,1
I

ffi ZI8 1
IK IK 13 '0.2 I

1
4 4 ----S: E I

I

r- ':.PI z. I It. I - I--
Ro; LITERAL BIT 5 I I

" 1 II~/O
DO I

[J9~ E'505' SENSE SW 2 2. H I
C,H

-1-
01 I

I PI-85~ "PIZI ~H04 -~ D2 I

ALr..b I SHIFTRT 1 INPUT 4
1

10 --,~

r

D3 I
1005/ INPUT BUS BIT 5 S '1312- 14 ALU INPUT MUX ALB5'1 I ~' D4- W BIT 5

5'----- -
I

13 5H 12 (,
OS '(~ I

TS T REG 5 V,4H04 ,
I I

C 8 OiO I C ,

"
TS/TREG51 ._----- 9 Ol I

I
+SV II SO I

12. I

I ZIB 51 I

IK IK 1'1
52 I

~
I

2 3 E I
I I

I I
-.--~

I

1'3 Rin LITERAL BIT 6 I I

1 3~ 4

DO I - ~ E50io SENSE SW 3 Z. t-K I-DI I

STPF/ V74H04 3 I

1" 02 I

10
ALA, / SHIFT RT. 1 INPUT I 4

03
,

~IDO!.i/ I S ''1312. 14 ALV INPUT MUX
ALBl./ 5 ____ TO ALU

D4- W INPUT
BIT 6 CHANNEL B

9 IoH 8 in DS y r--!2- • Tu. T REG 6 T1'4l-\04- I I
8 0", I
8

Tlo IT REG 61 -.-~ D, I

B II
I B +Sy '50 I

I I 1'2 urS
liB ZI8 '51 I

IK IK IK I'> 0,2 I

~
I

v 7 5 E I
I

I I

13
Rr LITERAL BIT 7 I I DO

ESD, 111>,.2 SENSE SW 4 Z r.J I
09-2 .,H Dl 1

17
PFl NI I 74H04V'" 3 02- I

- 3 ---"l.N.LsHIFT RT. 1 INPUT
1 I-

4 03 1 ,
1007/ INPUT BUS BIT 7 S q'!>IZ 14 ALU INPUT MUX ALB,I 5-----.-.! L PI- 8/00 04 W

BIT 7

~~ {"
OS '(f-'2-,

8 Tr T REG 7 74li04 I Dt.

8 Ti I TREG71 9 01

ALU r ElSO 11 SO

A MUX BSt 12. 0,1 A ADDRESS 3 '.

SELECT 3 BS2 13
52-

EALl'>1l1 ENABLE MUX UPPER 10
E ..

ALU INPUT MUX BITS 4 - 7 I c I SC2000lS0G I D
I OWG I . SIZE SHEET 7 OF Id I flEV

...... ',II ... 4 1 __ .~_~_ I 2 I 1
--~.---~~ . -~ -

~-.--.----- --

o

c

B

A

15· WRIT

/8 MDOO

MEMORY :.

~C~A I
AO

MDOI
INPUTS~8
TO

TREG??Stj5)-
A BUS

~~UTS/

AI

MDOZ

Ai:.

T REG 8 MD03

"""5 A~

MD04

A4

MDOS

~.~

MDOG,

Aro

MOO?

A1

LOAD T FR

MEMDRY D

OM

ATABUS,
LT'2. / 15

LOADT
FROM A 4
BUS

LTII

T REGISTER INPUT
MUX BITS 0 - 3

5C 'L 11>.
0- lB lY 4

ILl 21<
13 9322 \2

2B 2-;
5 3A
(.

3B 3Y
7

II
4A

10
4B '1Y

9

rJt S

I It E MUX

-

T REG INPUT
MUX BITS 4-7

t.c Z. lA
3 18 IV 4

14 'LA
13 'En 12

28 ZV
5" 3A
G.

3B 3Y 7

II 4A
10 48 4Y 'I

I
7 5 I

~ E MUX

-
5

70 .,
4 7400

+SV Z7 ZI3

r: ----,------,
WRITE ,DATA ENABLE

< I • '470
_.

470 I
I • < • I 1

T REG BITS 0 - 3
L_ .-l: -l - - - --

5"0 I I 3 4 .. 5 7 ~ 4 3 TO It.
lQ I

~J3-2 ! Z I I
tel 1(11 I M OC ~1 2Q IS ~ / 74,5 :

4PI'B34! , 7'115 lH· ~~4 :
'LO 2QI h- _.-< ¢qQ~[£!.[J J91

30. \0

t. 3D 3Q/ 1\

4Q
1 4D 4-QI

,.J2 E 1·2

~ E~-4
LATCH

TREG
BITS 4 - 7

t.O
10-

2 lD IIlI

2&
3 7415

2D 'LQI

3Gi

(, 3D ,al
4Q.

1 4D 4G/

~ E. \·2

~ E,A
LATCH

T LOAD ENABLE

....:L-
p§-

~
p!-

\'5

W4

10

II

9 r
8

DEFINITION.OFTEAMS

T'x' T REGISTER

T'x'! T REGISTER!

OTB'x'! OUTPUT DATA BUS!

MO'x' MEMORY DATA BUS

I
7411 I TO!_

I
I

Tl I
1

rV4-3 l '~I I 5E II MODI
I /2 74~5 I

~PI-A35! I I
I II 3 /0 I ¢OOI/ PI-810-1

~c:%411 1
I I T1I

I I T2
I 1 ~-! '~ ~ MOO2
I 4 14'38

1
PI-B43l

1 I

!~3D 12 I tPDOZ~A4IiJ
I l/';4-17 I T'L/
I I TO.

1
~J3-17 J '~ I I 51E 8 MOOB

I 9 7438 I l~ I I
1

I 3D 2 I ¢DO.3/~

I vi/-]411 1 T3/

I I

I +15 V i!1/P Zl7

I fI -- -r.: - - - ---,
I 470 1' I 1470
I I' I I

: ~r (;- -L" 'i- S- 'rT
..J

5 4 T4

'~ 1 ~J4-1 l
I ~c 3 MOOI/
I I 1438 1 ~'PI-A3G,1 I I

I I t.f! 2. I ¢D04/
PI-B3f!

I V7411 1 1'41
I

.----~--

I 1'S"

'~'
,)3-1 ..

I ",IE /I I MOO')
I /2 7438 I

~
: I /3 ~F /2 tPD05"1 PI-AIO
I ~l/7411 I 1''51

I I T6
I

r~1iiJ~~ I~~
14 7438 ' T I P!-B40 I I

!/JDOt.1 I II", 10 P!~.?f.I : ~V1411 I r-(p/

I
1
1 1'1

I 10 I-----f J3 - 34
I .,IE 13 MOO?
1 9 -7438 I

P1-f3Z7l

;~B I
!/JDD?I jPI-A5BI

I 74\1 I
I I T")/
1
~MEMORY BUS &

OUTPUT DATA Ie .B.US DRIVERS SC2000150 W

CJ OF /8

o

8

tD

8

8

c

8

1

8

B
7

1

5

1

7

B

")

7

R
A

1

D

REV

o

c

B

A

FIRMWARE
HALT
COMMAND
CODES

A
BUS

CONTROL
CODES FOR
ENTERING
PANEL
SWITCH
COMMAND

ARITHMETIC &
SHIFT CARRY
OUT TERMS

CARAY OUT &
SKIP CONDITION
DETECT LOGIC MUX
ADDRESS SELECT

4

HALT IS SET BY FIRMWARE COMMAND 1780 AND BY PANEL CLOCK SWITCH INPUT

9K 3 ;;LTL!
z 74HOO 18

J9-S ~ HALT LATCH f-lLT (fp,17

~: ~~:F SWITCH INPUT '~TI!KL'L~ <D

17 581 GO COMMAND PULSE

AOOL / /I

AOIL / 12

A02L/ I r~
..:..c.A.:::O'-'J'''"'-=-L-<-/-------z-1f7K\", 12 PR/D 9

A04L / 3 74,0 t~-i-'=-dD apz
~=-~~---------~~.~
~A~a~"'~L~/ _______________ 4~ OVERFLOW

S Aa~L / 5 g~~~6~~~
5 ...:..A.:.:O=7.=L::..:./ ______________ -'-(,-I

7L
7474

HLT/ ~/7

ZERtZ! 10 ZERO CONDITION
LATCH

m -~'=r; 8 T::,
i!ZO 17 PLUPX
IK L---·...jI----*-''--.. ----'-=''-'''-IO,11o

3.f'lPlR7/ 12 8

13 Rw 13 ~~ ~' ~8~.je.~H~A'1.!E:!.N:!.!p~/i~I-~A~A!.f08
13 R, 9 17-4HZy 8J 13 '/ "

10 I 12 7402. 74H04
13 R4

R,~U~N~XL-/ ________________ ~
Ie -

~r;::

I 8J
9 7402. 8J <\ 5 6

I
L.._

IO~-1.~J-
~ G 7402. I 74H04 __ _ __J

~
5 SQlF! OVERFLOW CONDITION 2 PR h~ ,~~~--~~~~~~--_+~~OD Q~

8L OVERFLOW
7474 CONDITION

LATCH

.... ~{'K 01 i2>
C'L

1

~ NEGATIVE
/0, CONDITION

A7 BIT 7 OF A BUS 12 D PRQ . 9 LATCH
!5

6L
7474

lICF UPDATE CONDITION

4~
~ CK Olp;!.

FLAG 9K 10 ~~
GT4 5 74H(x) /3

/8

ZERO CONDITION
UPDATE LOGIC

NEG.

ENABLE ENTRY OF
PANEL SWITCHES
BY FIRMWARE

10

SHIFT OUT TERM TO OVERFLOW

P
C0UT 4 lCO
ALAO S g30g "-let J'N
ALA7 f-l-10 t- IC?

..2 9L

~---+--'-F;:O:.;R.:O:.:V.:E::.R::.F.:L;:O:.;W'---_+----------..:5:.l0"- ~ DETECT MUX

4

2. ,.--'pT .5 UNKI
h"'+--=-d D Qt>==-------+---~='-- 4

8K:
7474

LINK LATCH

{:
F50 I~

SA

FSI ':I S8

LINK a
*INDICATES TWICE ON THIS PAGE

MUX

I~ 81' 3
UL UPDATE LINK 2 7~08

S-C20001.50r;, D
4 LINK & SHIFT OVERFLOW SELECT MUX

(REST OF MUX ON PAGE 16)

__ . __ ~ __ _______ 3 ... ____ .. _-'---__ 2
S"EET 9 OF fCJ REV

1

D

c

B

A

0

c

-,

B

{l
A BUS
BITS
0-3

~-

1 II<

- - -. ---, +5V

I
AO ~~ ____________________ ~4D04L I IK I/<: IKI i!4

AI

1'12.

--'-'-'-____________________ <O~ D I 00f--:-c _ f-:,.

~~ ____ ~-----------~'OD2. 2 3
A:; ~~-------------------~142.D3 0IW7~--+_~

1

~-~

.---------'-1' AO '3101A _.....J---+--+-+--- FILEREGISTERBITSO-3
.-__________ ',"15 A I 0e. >:gl----l--l---<i

.-____ -""'14 1'12.

.-___ -el""j' 1'13

,--__ -'ye :I t5V
1,:---+-,

I' 1
'1M 1 II<. II<. IK' 1/(1 Z/4

00 ~5'-----I-+-+--I--"L: __ f- _ ~
2 '3 -4 5

A BUS {~~ BITS
4-7

{
""e.

A4 4DO
1'15 <0 DI
A<O lODe
A7 leD:;
R8 I

~I ~7~_--+_-+_~_+-__ -4_-+
--L--i--.+--_!--__ -+_-+_+-_+--_ FILE REGISTER BITS 4 ~ 7

~~~R ::~ 
"'Ie. 

10 

10 

Cj 

R9 I': 1'10 
AI 

RIO 14 Ae 
RII 131'13 

'31011'1 

0e.~g~--~--~-+--+-----~--+--. 

03~1~1---l--~--~-+------~-+--+-~ 

~~ __ ~~~~~~~ ____ ~ye. ~ FCE/ FILE CHIP ENABLE 

FCW/ FILE WRITE 

0FLi15 OVERFLOW 

ALAO 

74004 

10 
FOE FILE 0 ENABLE 

3L <0 
~~_~~~~~ _______ ~ __ ~5 7403~~----~--+--4--~----~~-+--~--t-------+----------r~~~ 

~IO 
ALAO/ 

ALAI/ 
q NEG ;) BL 

~B 
CONDITION 

Cj 1:ER0 CONDITION 12 3 L. II 

i~I~A~ ~ 13'740:Jo~~------~-+----+--+-4--+-----------~~~"-
£Clt/J/" lOt II IE 10 1 3L 

ALA2./ 

PI- 842. CONCURRENT 1 2 17;~3 'p3 
110 REQUEST 74H04 ~ 

IG, IINT INTERNAL INTERRUPT 4 3M 

+L:'~,,~ ~" 
FILE 0 
SELECT LOGIC 

FILE 
REGISTER 
BUS 

ALA3/ 

ALA4/ 

PI-B50 lRPy/"sl 5 IE" 9 3M a 

~ loI7403~~~--~----------~-+-+-----------~~~"-
SERIAL TTY 74H0'1 

IG, TTYI. INPUT STATUS 123M II 

ALA~ 

+5V~ ~. f 1:17403~~~----------------~-+-------------------~~~L-
i:I~8 3M rr3~ ________________________ ~---, __ ~-----~~~c-

{I~~~A::! ~~;~~! 51 7403 ~ r 15 ~1D.:.1=2--,~.=-,,-_ 
"Ie. RCj ~ i7M\" 9 8 8 9 81= 8 ~H04 

~~';R "Ie RIO 4 1742.5 J\-=-~>----"d 10 7408 ~'--"'FI'""L"'E'""Z"ER"'O""E'"'NA""B"'L"'E'----~'--
"Ie ...:R.:.:..:II _______ +-________ -'-ql-----'. ~f04 1:\ 

., 1 10M 

ALA,,/ 

ALA7/ 

ALA7 

F0E 

q 

5 

5,10 

5,10 

5,,,, 

5,,, 

~,~,7 

5,(",7 

5,"',7 

9 

10 

3~0~P~B~/_0~p~C~O~D~E~B~ ______________________ ~--------------------------~--~1 7451 

9 
10M ",,8 FeE/ 
74~1 FILE CHIP ENABLE 10 

10M 

18 
~~ ______ ~~~~~~~ _____________ ~ ________________________ ~~~074~1 6T4 GATED T4 CLOCK 

3 0Pe.+ QlP3 LOAD FILE OR ADD TO FILE OP CODES 

4 R53/ 

~ 
R5 

l.!l R4/ 

12 RZ 

a $P// 

.; LD7/ 

/2 R.3/ 

17 MRST/ 
<) PLUPX 

4 

FILE WRITE ENABLE 

INTERRUPT ENABLE 
CODES 

3 

~
IOM 

4 74,1 10M ""Go Few! 
3 7451 FILECHIPWRITE 10 

10M 
'--____ -'e.""I 74 S I 

~ 
14 <i PR Q 10 REAL-TiME CLOCK ENABLE RTce /'" 

IOL 1-.. i-~EAL-TIME CLQCK & 

J.....@ 1>74109 ~~i5~NAL INTERRUPT 

~ K ap: * INOIC'ATi:$ TWIC'E' ON THIS' PA6£ 

~ 
'1/-" 

I C ISC20001S0C; 0 

SHEET /0 OF la .EV 

1 

o 

C 

B 

A 



o 

--

c 

--

B 

-

A 

A 
BUS 

r-
.5" "coLI 

5 AOILI 

5" AOa! 
5 AO'3L/ 

M 
E 
M 
o 
R 
Y 

A 
D 
D 
R 

,15 
CLR IJOOA/--'" 

14 10 IG.I-~=------------'-l-~ ~ 
10. ZD741l1Cl 4 L-...j <.14-/4 

12 '3D 1.1 361 S 1 NOIA/ _~ 
114D 4Q.'" 1 J4-15 

~ EI fiB I NOlA/, PI-B55 I 

~ 10.2 0EZp1- <.14 -17 I 
elK IJO,A/ PI-A50 

17TRI STATE r-+-------' LATCH <.14-10 

i lis 
~ A04L./ CLR .~ ~ -+--+--l __ C-14-'j \ D tQ f-:'=--+---1~ _____ --,N.::O .. ",-,A':':/1 PI - A 5 3 I 

I-
I 

s "OSL/ k I, ZJ417lQ 4 4J4-1", I 
-,A-,-O=cIO=cL::.t-/ __ ~'-+--+---1f-+--+--+_ ~ I Z 3 D 3 K 361. S 1 IJ OSA / P 1_ AS" 

'5 A07LI ~N.+--+--+--,I,-,I-l4D 4Q /-"''''--+_1--_-, I <.14 - 18 I 
4 LN/ ~ Et (2)E\P-'---+-~ IJOr.A/ PI-AISI 

LOAD N ... 

4 Ltv\/ 
LOAD M 

~ EZ G!l:2.;L... <.1!i-23 I 
CJ~ -= N07A/ PI-A91 

'-_____ --' ~~~~1ATE 1.13.,8 

t~ ~ 
"-___ -+--1--'1;..4'-\ ID \Q:' MOOA / J - r ~PI-BI4 

'-----+-+-1'-'"'''1 2D 2<.1 'Ul r-=4'-_+ _____ , '--f <.18 - 2 Z 

'--_____ +-+--'-1 Z"-i 3 r?41"3G 5 II MOIA / P 1_ 1\ III 

II 40) 4Cl. &, <.I!i- 19 

M 
E 
M 
o 
R 
Y 

A 
o 
D 

~ E \ lJE 10-:.--.. M02A/ PI- A 12 I 
....l9c i::'2. (;lEl::rL ,)3-20 

CLK M03A/PI_BI31 
17TRI STATE .--+-____ ...J LATCH '--------QELJ 

R 

~ liS 
S 

ClR ~~-t-t------------~M~Of4~A~/~~~2 '------- ~ -+_+-+--,1,-,4'-1 lD Hi:' I ~ P 1- B 7 
1-___ - ____ ? 13 2. D "K '2G r-=4C-.+-+ _____ , L-...j J 3 - 5 

'---------1 \'2 3D7417~6l S" 1 M05A/ PI-BIB 

'-----------~M-:: .. +--+-t-I:..:I-f4D 4G. t. T MOr.A/ .)p31_-B295 

~ E 1 (lEl P-'--!--' 

f--!2c 102 0 .. '2 p-L- <.13-1 
CLI( E2 E I M07A/ 

17TRI STATE 
'--------' LATCH 

IK 

LOWER EIGHT 
BITS OF 
MEMORY 
ADDRESS 

UPPER EIGHT 
BITS OF 
MEMORY 
ADDRESS 

[±] ~6 ~4 PI-B::: ~ 

THIS JUMPER USED TO DISABLE 
UPPER BIT OF MEMORY ADDRESS 

4 eM /' 

/5 DMA¢N 

III 

IL.:.~=-Z I,---Cj} 8 A 

I 
I 
1-

101 
SA 

DISABLE M 8< N DURING OMA CYCLE 

WHEN RUNNING 821 FIRMWARE 

I C 18C2000150~ I D 
I ~ I SHEET 1/ OF lei J REV 

_____ ~4 __ . ______ JL _______ 3~ ________ ~I ______ ~2 ________ ~I _____ _ 1 

o 

-

c 

B 

--

A 



o 

c 

B 

A 

14 RSO"l 

R508 
14 

I PI- B3t" 
RSOtJ j 

* 
lPI-A,? 

RS09 

IIPI-A4Z 
RSIQ 

I[PI-A43 
RSII 

T RSII 
14 

14 
RSIO 

A 
BU { 

5 

5 

5 

:> 

AO 

AI 

Ae 

A':> 

* 

A 
BUS 

* 

~ 
LLV I 

IE 
z 

4H04 

110 J1$RU 

15 TT4/ S 

~ 10K,,, 
THlll 4 74 c.7 

18 

/" FiSl3 
14 

FiSIe. 
14 

~RSIZ 1 
PI-A47 

R513 

PI-M8 
RSI4 

pj·A59 
RSI5 

T 14 '£'015 

14 
R'OI4 

U 
A4 

AS 

A" 

A7 

r:.. 

14-----.....J 

PI- AI9 
RSOI 

14 

PI-AZ3 
RSOZ 

14 

PI-A27 
RS03 

14 

rr4 

U REGISTER 
BITSO-3 

e tJ 10 3F IQ 
':> , 15 

CD 7475eQ 

"'3D 3Qtl 
74D • 4Q~ 

G EH'. 

E3·4 

OR 'u' WITH r.{I.ICROCOMMAND 

I CLOCK UPPER A REGISTER 

U REGISTER 
BITS4-7 W 

e 10 lID 
3H /0 

:0 I~ ?D7475ZQ 

"'3D sat-l 
7 4D 4Q~ 

~ £1-2 

~ £'.3-4 

+5V ,t--- - -f-- J 
I 470 470 470 470 , i!S 

L,-- __ L--.J 

+ Y 

,- - 1- -, 

1 
I ZZ 
1470 

L 
~- 3- 5- .J z 

A REGISTER MUX LATCH 
BtTS8-11 

r ---
2 I IF 3 

I / 743e. e. Ae QA 15 
I 

I I ~ AI 
e.F 

5 
IF I I <0 I, Be. Qe 14 

4 743e. -

I I ~ 61 
12 IF I I 13 h43a 

/1 5CZ 74e.Q8QC 13 

I I g CI 
9 IF I 

I 10 h4:la 
8 <Ore QDle. 

I 
L 701 ___ -1 

U REGISTER 5 CLK 
'OR'LOGIC 

10 1" 
1 

t5V 

r '-.-
'i!3 

1 
< 

1470 

L ",- 3- 's-
-.l 
2 

R REGISTER MUX LATCH 

r~~1 
B.(;S12-15 

.<; Ae 15 
I I 74:3e. QA 

ZI-I 

I 5 I ~ AI 
IH (, I I Be Qe 14 I 4 743c. 

I I ~ 
74aQa 

12 11-1 
Ell 

I 13 h43c. 
1/ I 5 Cc. 13 

QC 

I 
L._ I "l CI 

9 I 11-1 8 "'DC. I lo174:1e QD'e 

I 7 DI L ___ --..J 

U REGISTER 
'OR'LOGIC r L 

5 an 
R REGISTER 
BITS 0 - 3 

10 

3Q II 

13 4D 4Q 
15 

q a.K 4Q 14 

z 25 +5V 

470 

R8 

R"I 

RIO 

RII 

Rle. 

RI:' 

RI'! 

RI5 

~_IZ R15/ 

4H04 

RO 

RI 

Ri:. 

Rei 

RS 

R",/ 

4,10,"1 

4,10:-1 

4,10,9 

10,1:' 

",,4,5 

",,4,5 

3,4,'5 

3,4 

3,5 

4.'" 

4,", 

4,<0,10 

4 

'" 
4,10 

I~ 

Ie 
THLD/ 

~~ ________ ~s~ 8£ ~ 

~~~ _____ ~"-~HOO~C;LrO;C;K~LrO;w~E;R~P~R~E;.G~IS;T;ER~---__________________________________ ~~L 10 

* MICROCOMMAND FROM CONTROL ROM
S'C2000 1.50c;, 0

SHEET 12 .0' la AEV

4 1

o

c

B

A

o

-

c

-

B

-

A

12 RII UPPER OR LOWER HALF
OF ROM SELECT CONTROL

+fiV

ZiP
II(

r-__ .. 7
r+ ______ +-________________________________ ~L~L~Ir;,

L09X
14

OPCODE 1 2D
LOAD L --r--,=IZI:.:P-,--I ,--/--~/.c,1 ~OJ 13 74H14

L---{Jp~,~-~B]s~sJl

L IS CLOCKED
AT ALL TIMES
EXCEPT DURING
HALT & T HOLD

~lll 12 7402. .=.. ______ -t-I1--8~C G ~
4' LATCH

4 R';',O
ODD/EVEN PAGE SELECT
FOR. ~OM DESTINATION

T
10

IZ D PRQ 9

ZD

~
741-174

9 7£">--8"-_____ _ j-.... __ .'-/~I C Q/P:!"
74H04

{qH~ ~~
18 THLD/ : 48 <0 L CLOCK I Cy~

5~ /~REGISTER

r
L08X 14

PI-B33l

{

15 ~Z~LOCK ~ C K 2C QA I--VCCI-l0 :..-.:;B.!.-'IT.:;S..o4c::-'--''------<L=.-----I-P-1 ~::'A:::O.'-:-,-,-: t

/ i .!!-'--':.::5 ___________________ +-+ __ ""-!: rr:: ~:~:1----------:-----<L===i:~PI, L~_ ~:~;u:1 14

~ QD~IJ4~~------------<L=====c~~~ --- -::.:c L D C lI2. ~
E'P ET

~
T 10

T
L05X 1"t-

PI·Azzl
L04X

r 14
PI-AlB I

A BUS L REGISTER

\

IS ~BITSO-3

2. CO Q,A II L03X 14

--=- CK T PI.A15 I tS: ..:.::.:.::~=-------------f----':"-! ~ 7:~~B, .1.:!.2.-j ________ ""T>--___ p_I-=-\=-O.:.:~: 1\4
~~ ____________ 1-_.4. C g QC ,23 LOI X

~=_ _____________________ -4 ____ _'3~D u ~ 14

~ OD 14 LOOX 14
~ lD ~ ell< ~I . /

EP ET -r----oo PI·AI" -

j7 II()

n MRST /

ZI +5Y
,--- I ~~REGISTER

BITS 4 - 7

470 470 470 I ..-
J 10

MICROCOMMAND
ADDRESS
LO - L9

~o~ \-- Z RS04 5 4" 4 10 R4 3,S,7, '1,IS,l£" PI. e 17
/p

ID

14 126'04 T
l[>1'_BZI

RS05 S

T \4 RS05
RSOr. 12 MICROCOMMAND I PI'B25 FROM T CONTROL ROM 14 RSOC:;
RS07 13

rPI BZ9 T RS07
14
Ie RCK/ 9

10.1 3
74115 7 2D za

ZGlI
t.

3D 3& 10

)GIl
II

4D 4(1 15

eLI(4QI
14

LATCH

'(I

R41 10
RS

3,4,5,7,'1,0,15, I"
RSI 4,1l.
RIP 3,5,l~,\1.o

RIO! 4
R7 3,7
R7/ q

1 C ISC2000!500 ID
I ~~ I SHEET /8 OF /6 I REV

:":::, ... __ A _______ l_-___ 3 ___ -'-I __ ~ ___ ~ _______ T.L _______ J

o

c

B

I-

A

4K FIRMWARE ROMS (4 PAGES TOTAL) lA ~ UPPER HALF WORD OF
1l PAGES 0 AND 1 .;rtS'/5

23 08

~
12,IGo

1 AE! (t.24 01 P.5'14
I£:', It.

? ~~ 01 , 15 ,12.5'1.3
A'S "r. lZ, II.

D ~ A4 D 5
A~ o2lS 14- RSI2

lZ, Ie.
I. A?.
7 t~ PSII

At 04 lZ
8 AO

1\ R810
0'3 1'2

I')
E3

18 10 PS09
E4- 02 1"-

~. Ell RSOrfi rEV 1271 Cf 1'2

-
IB

.oK 11-
23

AI:I(r.Z40) 1 It. Al ,,,
Z At.

" A5 010
15

4 A4-
S A3 RfC;

14- UPPER HALF WORD OF
t. AZ .. PAGES 2 AND 3

C 7 AI 04 13 C
8 AO

03 11

~ E3
10 15 E4 02

Ii Ell
'I

E2/
01

'LA LOWER HALF WORD OF

il8 ~PAGESOANDl
RSO?

13 - Z3 -
1 A5((.Z40i IG. R80<» 13 Al 0
Z At.
3 A"l 0& 1 S R80S

13
4 A4
'5 A:' 85 14 RSQ4.

13
t. AZ
7

Al £)4 13 Rsoa
I£:.

8 AD
03 II RS02

I£:., It.
B 1'1 B E3

i8 E4 IiJZ 10 PSOI
12,1""

~ Ell
.1:'.5'00 9

~
1iJ1 IZ,I"

E2I

'2B

LOCiX 23
05 .lI-

13 A8(~24R)
13

L07X 1 11.

I I I
.:..CC;X

fJ,7 u7

I I
- 13 2 Af-

13
LOSX 3 A5 1ZJt. 5 LOWER HA LF WORD OF

I'>
L04X 4 A4 PAGES 2 AND 3

13
LO.3X 5 A'3 05 14

13
L02X '" AZ

13
LO.lX 7 Al 134

I:'

B
LDDX 8 AO

03 II

1'3
LD9X I')

E3
I PI-A3~ CPEN/ 18

E4 1ZJ2 10
A

~
Ell A

Z9 £11 'i
+5. 7 ZQ

IK. EV

4K FIRMWARE ROMS (4 PAGES TOTAL)

Ie ISC20001.50w /D
I ~:-I SHEET /~ OF /<'1 I REV

4 3 I 2 1 ____ J

0

c

B

A

.3

1/3

la

PI A5~

¢PA /

RUNX/

R4

MEMORY
SEQUENCER
LATCH

I

I - -- - -,
I I ZI9

I 1"170
I 1

~
J

, .- 1 -/-5 V
1 I 215

I
. I ~70

I I DMAR/ 18 , - - -'
3 ~ 2

RTXX/
15

(j),tJAO
18

¢PA . RUNX

I /3 ~D</j.:2-. __ ---.J

--!;:.s;W041141 - - - - "I

I~A I E~IP
L-___________ ___' ~:=_i' 48 12 L TZ/ CJ

~--------'/_dSA };'i04 13~ J MEMORY 0
SEQUENCER I I ..L
INHIBIT DURING ~ \-= MRsT� ____ , 1/3 _

51 84 £. 7 /7 ,f,fRST/

15~R~TX!X~/~~_+~--+_--~
L __ ~~7::J

+5V

R<I 110
7D II

7D 8 ~
o

9 7400 I--

123

f/~~/2
~5A <I LTZ R3

74H04
LOAD T
STROBE FOR

LI 7404 . RI
• S&, '---"'V\~-- + 5 V

UH 5(,,0

..L C18

~
-r-47P'"

1 2
lOG

7404 RZ

2?0
YI

L-.-----4~--l?;Jl t:;

20-MHz
OSCILLATOR

MEMORY
READ

o

c

,B
~-----__ -------------T~T~/-+~T~T=Z-- 4

.R-f8<'\ '1 ' TT2 -I TT3

4
RUNX·TTI·

15
MBSY/

.-

15
TT3/

9 ~~~'~~-4---------------~~=-~~~---5
>---

HZ

'-~~-+~II~~.:~I
~

1_t-t-____ -i_-+ ____ ~C~L~O~C~K~P~H~A~S~E~3 _________ ~r_TL3~/_/~,IB,8
". I'?, 17,

l~=~~~~~t~~~~~[~~~~d-----+-+----;;_:~;_;;;:;;~;_--------~T~r~4~1;,:.13
CLOCK PHASE 4 r r4/ 12,15,18

~2 8e " ___ S-\:~~~
7420 LOGIC

5 ,---- CLOCK PHASE 1 * TT I /

13

B r r1z"r---Bc\ L*: Ie:. pe 9 Be
~ 17420/

D QJ.,..:.

~s I BB
~ 7474-

0..£. D 01-=- ~Q~ 88
7474 CLE

MEMORY BUSY MaSY PI-A~71

1L-_______ 18

DEGLITCHER
MEMORY SEQUENCER ~

~c Q
12>

CLi:

~~EARLY MEMORY
BUSY LATCH

4 3

*UNGATED CPU CLOCKS

EACH 50 NANOSECONDS OUR I NG
ONE 200 NANOSECOND PERIOD

.-L ______ 2 _____ _

SC20001S0r;-, E

SHEET /5 OF /~ REV

1

A

SKIP o CONDITIONS

9 PLUPX

jfl l/'l1RSTI

4 Ul UPDATE IDLE

COUT COMPARE

A'lR0 SKIP ZERO

A ~ R0 / SKIP ZERO NOT

12.

11

10

II1R<;'TI
PI- 6<14

9

~8 --
10 7~H ~

9L ~ IZ PR 9
2CO lY f12- IDLE D Q

ZC{30Q 14 8A::
7474

3,4,IB

{
9

5q

2C2. II t!I IDLE"/
(! Q 14 F50

F<5'/
!'LIZ

~E~~i.r'~NEA~

I r 2C3 SKIP

LL 1 ~ CONDITION

~
~ I fop., SELECT IOJ I PRIMARY

(REF 56 MUX 2..:!3.2 IDLE
LATCH

10 RTCE L
15 TTl!

HLT I
~ ~

\

\
1: 1<51'2. :13 ~Ir-'OR' U DETECT

I LOGIC

EXECUTE 14
COMMANDS
SELECT U 14

14

14

C DESTINATION 14
CODE 7
SELECTS U 14

17

ENTER {3
~~l~~~AL * 13
CODE 13

*18

RSl?~ 13A\8 I
I

R514 :!2.c 742'> I
R51S 19 /I I

~ I
I

I 1
1<500 I 13

I 3B \3 I
R501 112 74'2.0 I

I I
RSoe 110 I
RTCCK ,---------,
0P7·R7/ 4

RIO 2~ RS/ ~ 74H2Z
GT4

4

z~T .S'
D QF-

REAL-TIME
9H CLOCK

7474 INTERRUPT
LATCH

a c Q/~

~~

IJ9-t, I I NT F / CONSOLE INTERRUPT CLOCK

B

A

"",," { OUTPUT
CGDE
FROM R
REGISTER *

B

L PI- A 4

I PI- 83

I PI- AS

TTYX1
J 2-1

R4

13 R'i

1'3 Rw

ggDSEE~"3 0P7-R1

* 16 GT4

*17MR5T/

CONSOLE' ClNTI INTERRUPT U.

G, DMI';T I

POWER FAIL PFINTI INTERRUPT 17

-1(".15V

1 +5V

T
R37
S.G,K

.I ... f
a~v '2.

3

(,

13

220 +5V
;,-----

L_
IK IK

G.

CRII
FOH("OO

DATA I/O CONTROL
REGISTER-IQXX

I 9D wl L~_
7415

10 IQI

2<1
IS

2D 2QI 14

3G 10

3D

EI·e.

E'3'~

I
...... ~~~TE

13 10.l(Ie. CLOCK

e. ~
c!R/!i

FDIIC,OO
I2!RU

f-SV

1C40

~ IK

+5V ~ PI? '" D QI-'- >-
r----< 9H

R 39 7474 ~~T~S~~L
CRI2 T

FJ)/-I(.OO
2.2K LATCH

R41 II C Q CI CINT/
g.31< -r -:f C 2"

13 .

300 PI'
RllNTI

R,CI

INTF/
R23

IfiO,2W TT"B J2-2

R4Z
If(. SERIAL TELETYPE E/

+5V REFERENCE VOLTAGE

SERIAL TELETYPE INPUT LINE T,,,1

+SV

27 ~5 2/7
~70 470 470

7 3 '" 30 101 X I PI-B31
741l

5 3D
... 102X /

PI-A31
7411

103X I
PI- 8",1

+SV

R2S
410

fT'''C; :.12-5
.,,-

.12-(,

,TY"-
.12- 3

I0'3X
5TI'1=/

lIN\"
{

~SP~IO~/ ____________ ~-4 __ 4-~ ____ 2Q
f~~r~NAL G, ~Pll/ 8M ~B~ ____ ~I~N~T£ER~'N~A~L~IN~T~E~R~R~U~P~T ______________ _
INTERRUPTS 7 74'301

STEP SWITCH 7 _S"-'-P.:.l.=2o.;1'--____________________ __ +-__ --'!£<1

:~i~~~~~T---.[~~~J--~S~T~P~FL/-----~---------J~---U~ J9-'j
'* INDICA TES TWICE: ON THIS PAGE.

12

1

I

to

J
I/O
CONTROL
LINES

SERIAL
TELETYPE
OUTPUT
LINE

3
7,17

JO

D

SkEET I~ OF /d REV

~~~~;IME 1(,_R~T-=C~/~ _____________________________ ~~ 
INTERRUPT 

4 3 1 

o 

C 

B 

A 



0 

c 

B 

A 

1'5 
TT3/ ~~--------------------------------------------------~2qIOD 

I", 

1<0 

'I 

q 

INTF/ 

~TPF/ 

HLT/ 

HLT 

PANEL INTERRUPT 

STEP MODE INPUT 

+5V 

R35 
IK 

J q _ a PANEl RUN INPUT 

CR0 
I~ 

FDHGOO 
CR7 

FDHtDOO 

+'5V 
CRI 

R34 FDH 
CR9 IK IDOO 

.--__ -::.3 q 7402 

+5V 

GO CLOCK 

[~~~]-~R~':!.!::!.EL-__ -l~~~~~~~~~t-__ ,-~~~CI1-5 __ ~~~ ____ ~~~q 8A 

FOHGOO 300PF ;) ~COMPUTER START I -=(,80 L __ 7::!2"-- -.J COMMAND LATCH 

J"I- 10 
CLKF 

+IZV 

+ 

eez 
/N4001 

/214 

10 
+/iV 

CI~ 

1 22 U.P 
15 V 

CR5 -=-
FDHfi,OO 

I opTi6i\iii.L. --l 
I I. 

lose I 
I lOB I 
I 8 I 
I I 
L: ________ J 

PI-B"!" RTCI 

I", RU.NT 

+5V 

RI5 
;)K 

"'3 
£12 "" 

I 

CRB START COMMAND 
PULSE GENERATION 
RG NETWORK 

+5V 

R22 
IK 1213 

30K 
DELAYED 
MASTER 
RESET 

3 DRIVER 

+5V 

RI9 
IK .... ______________ "'M..:-R"'SocT.LI_ q ,IO.13,'5.11O 

;0 A >'2.'----e~-----*----+--____1>--_t_I 
r-----~. LMf339/V 

C23 

Tl"2u.f 
...Le.5V,!5% 

R 3 a (H~~~R~S~-fI-2~'1 
I K I NE1WORK i.8K I 

(o..,.. .-. ___ J 
I R21 
I 3K I q 

Ral 

14 

R30 

IMEG 

CR3 

FDHGOO 
+SV 

R21 
IK 

~
e5K 

POWER FAIL 
DETECT LEVEL 

C 2~ SENSOR 

1<32 
22K. 

101.uf' 
Z5V 

ADJUSTABLE 
POWER LEVEL 
DETECTION 
REFERENCE 

+5V 

RS 
10K 

R7 
ZZK. 

3 

POWER OFF 
& ON DELAY 
RC NETWORK 

R29 
.12K 

CI9 

R20 -= 
200 

t5V 

POWER FAIL 
MASTER RESET 
GENERATOR 

Q2. 
2N;)72.5 

RIO CRI4 
2.2K FDH 

(,00 

300PF 
129 
3.3K 

RESET POWER 
FAIL INTERRUPT 

+5V 

Ret:. 
IK. 

REAL·TlME CLOCK 
POWER LINE FREQ 
120 Hz OR 100Hz 

_____ 2 __ 

h PFlNT/ 1,110 

I 

POWER FAIL & 
POWER ON 
INTERRUPT 
LATCH 

S'C20001.50G 0 
SHEET 17 OF /a REV 

1 

o 

c 

B 

A 



o 

c 

B 

4~~------------------~ 

I'" IDL~ INHIBITS T HOLD DURING IDLE 

4~R.~~~2~/ __________________ ~/~/-r-

PAC CPU MEMORY OPERATION 12 /oH 
/5 

13 

15 UBSY 

3 
(iJPA/ 9 

.3 
eS2 

.3 
eSI 

15 
LT2 

DMAR/ 
15 DMA REQUEST 

9 
HLT/ 

TT.3/ 
15 

UNGATED 
TT4/ COMPUTER CLOCKS 

15 

Iii 
IDLE/ 

17 CLKF/ PANEL CLOCK INPUT 

COMPUTER II 
17 Gtj/ START PULSE 

15 TTl /CLDCK PHASE 1 

CHANGE M OR N WHILE 
CPU MEMORY CYCLE 
IS I PROGR ESS 

SELECTING T AS A 
SOURCE DUR ING A 
MEMORY READ 
BEFORE T IS LOADED 
FRQM MEMORY 

CPU MEMORY REQUEST 
SIMULTANEOUS WITH 
DMA REQUEST 

2 

CONTROL LATCH 
WHICH INHIBITS 
DOUBLE EXECUTION OF 
1ST FIRMWARE COMMAND 
AFTER RUN IS ACTIVATED 

0' 
7404 

TIMING HOLD 
GENERATION 
FOR MEMORY 
OPERATIONS 

rHLD/ IZ,t,;1 

rHLD 
~-------------t----------~~~-12 

HALT 2 9E 
7410 /0 Gr.:J 9 

4 GT4 
4,9.10. 
A:; 

~ ________ -,Rc:.U=N.:.;Xc.:/_ 4,9,15 

c 

c 

B 

A A 

SC 2000 /50 G D 

SHEET 1& OF 1& REV 

4 3 2 


	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	03-00
	03-01
	03-02
	03-03
	03-04
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-00
	07-01
	07-02
	07-03
	07-04
	08-00
	08-01
	08-02
	08-03
	08-04
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18

