
























































16.
<

a DOUBLY OPTIMUM
(1) and (2)

Left (5) Location of instruction
Optimum for left instruction
Optimum for rig right instruction
if left has an optimum.

/ : WQHU TimMg
\ (5MiLS) / £
v S

Figure 4
OPTIMUM ADDRESS DIAGRAM
Digits are LAST digits of
addresses

b

0

SINGLY OPTIvUM

A non-optimum address of in-

struction in left half of any w rd

whose last address-digit is @
throughfa} are optimum addresSes.



INSTRUCTION CODES ALWAC III-E
Sequentially listed with Basic Opecration Times in Milliseconds

* Flexowriter, 100 milliseconds per character
Photoelectric reader, 2.5 milliseconds per character
High speed punch, 17 milliseconds per character

02 Reverse overflow 1.0 99 Neither
11 Jump 10-1.5 9b Type
13 Control jump 1 1.0-1.5 9d Punch
15 Control jump 2 1.0-1.5 9f Both
17 Count dow‘n 1.0-1.5 al Double shift right
iz 1;3:; Zero jump L0-1.5 a3 Double shift left
—— i igh
1d Less than zero jump L0-1.5 :3 giiﬁ f;;%t ¢
1f Overflow jump 1.0-1.5 ab Float
22 Round off 1.0 b5 Copy M to A
2¢ Absolute A 10 £ L bt t
2e Reverse Sign A 1.0 P ong :‘;u r\;c :
ot
30 Exchange A and B 1.0 2; ggg B to W
32 Copy Bto A 1.0 c7 Copy Dto W
34 Copy Eto A 1.0 _
36 Exchange A and E 1.0 d5 Sign out
38 Copy Dto A 1.0 dd Number out
3a Exchange A and D 1.0 el Add multi ‘
, ply by D
. 3e Complement A 1.0 e3 Add multiply
41 Copy W to B 1.0 e5 Multiply by D
49 Copy AtoW 1.0 e7 Multiply
4d Copy address to W 1.0 e9 Long divide by D
4f Copy half to W 1.0 eb Long divide
51 Overflow if | A} smaller 1.0 :? g;z;g: by D
57 Copy Wto E 1.0
5b Copy W to D 1.0 fl Hexadecimal in
f3 Alphabet in
2; ﬁdd Add }.8 f5 Hexadecimal out
wus g £7 Alphabet out
65 Minus subtract 1.0 £9  Sign in
67 Subtract ‘ 1.0
69 Exchange A and W 1.0
6d Copy address to A 1.0
6f Copy half to A 1.0
71 Extract (D) 1.0
75 Extract 1.0
79 Copy W to & 1.0
Copy to 1 91.0 Av. '
83 Copy to Il 9L0 "
85 Copy to III - 9L0 "
87 Copy to IV 9L0 "
89 Copy from I 107.0 v
8b Copy from II 107.0 "
8d Copy from III 107.0 "
8f Copy from IV 107.0

R e e e o
NNNNNNNaay R F
coocococooo

* % ¥R %

17.

. 5N
. 5N
. BN
. 5N
. 5N



AUTOMATIC ADDRESS MODIFICATION 18

To cause automatic modification of an instruction address by the E register
subtract 1 from the related instruction code, which is normally an odd number.
Such an alteration of the instruction code causes the left half of E (modulo 256)
to be subtracted from the address. In its use as a tally, the E register is
counted down (the 17 instruction), so that the effect of the subtraction is to
assign successive addresses, in ascending order, to repetitive operations. For
- example, if the basic form of an instruction calls for adding word 28, and E con-
tains 28, the instruction operates, when decreased by 1, on word 00 because of
the subtraction of E from the address. When E is now counted down, the next
occurrence of the same altered instruction will operate on word 01, because 27
is now subtracted from the address.

The following example shows the kind of economy in coding that can be effected
by making use of the automatic address modification feature.

WITHOUT AUTOMATIC ADDRESS MODIFICATION
Arithmetic used: sum of eight numbers, a, a ...a

Stored Data

In 01 00080000
In 09 00000001
In20,21...2.7 aya. ..
LOCATION OF INSTRUCTION OPERATION
INSTRUCTION AND ADDRESS
00 57 01 Copies contents of 01 to E
' (left half)
80 41 04 Copies contents of 04 to B
04 , 28 00 Clears A register
84 > 61 20 Adds a; to contents of A
08 ‘ bd 09 Adds 00000001 to B, in-
creasing instruction address
(of 61 instruction) by 1.
88 ‘ c5 04 Copies B to 04 putting the
new instruction address in
Loop place for further addition.
Oc L : 17 84 Counts E down 1 (left half)
jumpinc 4 84 if result is

nci zero.

8c etc.



19.

WITH AUTOMATIC ADDRESS MODIFICATION

Same data storage except for 00000001 in 09,
which is no longer needed.

LOCATION OF : INSTRUCTION OPERATION
INSTRUCTION AND ADDRESS
00 57 01 Copies contents of 01 to E. (left
half)
80 28 00 Clears A register
- 04 | > 60 28 Adds contents of 28 - E to A
Loo register. (Since the instruction
P in 04is 60, E register (left half)
is subtracted from 28.)
84 17 04 Counts E down 1 (left half) jump-
ing to 04 if result is not zero.
(The next 60 operation will be
carried out on the contents of
the subsequent word).
08 etc.

Automatic address modification has saved five in-
struction spaces (or half words), and eliminated
one operation plus two more per loop. The time
saved, therefore, increases proportionately with
the number of times through a given loop.



INSTRUCTION CODES, ALWAC III-E BY GROUPS

ARITHMETIC COPY & EXCHANGE
61 Add atw « A 69 Exhange A and W
67 Subtract o -w o A 49 Copy Ato W
63 Minus add —0-W (A 79 Copy Wto A
65 Minus subtract -0 w2} b5 Copy Mto A wpigl, walen,, oo
bd Long add baw uB o LA 30 Exchange A and B
‘bf Long subtract b-w.R ., c5 CopyBto W
, 41 Copy Wto B
e7 Multiply bxw « 43 | wid)32 Copy Bto A

e5 Multiply by D boxd w46 | s 32 Exchange A and D
e3 Add multiply baws Y %o o 4B\ p €7 Copy Dto W
el Add multiply by D iz, _ae)  5b Copy W to D

38 Copy Dto A

ef Divide st (B3 B, wdi ik 36 Exchange A and E
ed Divide by D RCYY NN £ G c3 Copy Eto W
odan ¢ eb Long divide lobTiwW 2 5 57 Copy Wto E
neg b e9 Long divide by Dewy:gh wp o 34 Copy Eto A
Fro s 4d Copy address to W
ACCUMULATOR 4f Copy half to W

6d Copy address to A
22 Round off asT¥_ A ow byY'  6f Copy half to A

28 Clear A ) 71 Extract (D)
2c Absolute value ni, A 75 Extract
2e Reverse A sign .. & :
3e Complement A f-a @ -ia o A BLOCK COPY
G R
- SHIFT 81 Copytol

83 Copy to II
85 Copy to III
87 Copy to IV

al Double shift right’

Ao § [P
N r YRAEN B §
a3 Double shift left .| ° e L0

a5 Shift right TR 89 Copy from I
a7 Shift left i o =8 8b Copy from II
ab Float ravan ols S TOUYY 8d Copy from III

‘ - 8f Copy from IV
INPUT-OUTPUT

JUMP & RELATED

f1 Hex. in

f3 Alphabet in 11 Jump

f5 Hex. out 13 Control jump 1

f7 Alphabet out 15 Control jump 2

£9 Sign in 17 Count down

d5 Sign out 19 Non-zero jump

dd "Number out , 1b Stop

9b Type - 1d Less than zero jump
9d Punch 1f Overflow jump

9f Both 51 Overflow if |A| smaller
99 Neither 02 Reverse overflow

Two instructions can be doubled up if the first is an even-numbered instruc-
tion; but it must be made odd by adding 1. The second can be any instruction
not requiring an address.

Odd numbered instructions will have their addresses automatically modified
if the instruction is made even by subtracting 1.

10552-B



ALWAC III-E MAGNETIC TAPE UNITS

Magnetic tape employed with the ALWAC III-E computer as high-
capacity storage or high-speed input consists of the following units:

Buffer and Control Unit: Provides high-speed random access memory
for magnetic tape blocks of 32 words (each 32 bits plus sign). Controls modes
of operation of tape transports, and furnished interlock signals to the com-
puter for maximum simultaneous utilization of search and rewind times by
the computer program. Can control up to 16 tape transports.

Tape Transport Unit: Passes one-half inch magnetic tape past
read-record head at 100 inches per second forward or backward under control
of Buffer Unit. Records and reads pulses on seven tracks (4 information, one
check, one clock, one block marker) at 100 pulses per inch. Starts and stops
tape in approximately 10 ms. Rewinds at greater than 500 inches per second.
Holds up to 32 bits of search and comparison information for locating an in-
dividual block on the tape.

The ALWAC III-E commands associated with the magnetic tape units,
as well as operation times and modes are listed in detail below:

91 Instruction

91 ON Rewind tape on transport N.

91 1IN Prepare to read from transport N.

91 2N Set transport N to search in the first mode,
and prepare to read.

91 3N Set transport N to search in the second mode,
and prepare to read.

91 4N If transport N is searching, turn on overflow.

91 5N Prepare to write in transport N.

91 6N Set transport N to search in the first mode,

and prepare to write.

91 7N Set transport N to search in the second mode,
and prepare to write.

93 Instruction

a. The least significant address digit chooses the transport
to be used.

b. The most significant address digit selects the type of
operation.



-2-

93 1IN Read the last block, if transport is set to read.
93 2N Read the next block, if transport is set to read.
93 3N Read this block, if transport is set to read.

93 5N Write the last block, if transport is set to write.
93 6N Write the next block, if transport is set to write.
93 TN Write this block, if transport is set to write.

95 Instruction

The most significant address digit selects the type
of operation.

95 1X Copy the contents of the buffer to working storage IV.

95 2X Copy the contents of working storage IV to the buifer.

95 3X Exchange the contents of the buffer with working
storage IV.

Time for Operations:

1. All 91 and 93 operations take 1 ms of computer time, unless
computer must wait on interlocks.

2. 95 instructions take from 16 to 32 ms. unless computer must
wait for interlocks.

3. Read/write operations take 43 to 86 ms. transport time.

Search Modes

1. When a search order is given, contents of the A register are
stored in the transport addressed, after which the computer
may continue with its program. This word is used in the
search comparison. The tape transport starts forward, and
compares the first word of each block with the given word.
When the correct block is found, the transport positions the
tape to read or write. :

2. Search Mode I: Tape transport will choose the first block whose
first word is greater than or equal to the given word.

3. Search Mode II: The tape transport will choose the first block
which has the least significant hexadecimal digit of the first
word equal to the least significant digit of the given word.

4. The 914N order turns on the overflow flip-flop if tape unit N
is searching. This permits the computer to continue a program
if the tape unit is still searching.



Read/Write Modes

1.

The tape transport must be set to write, if a write order is
given, or to read, if a read order is given. Alarm No. 2 will
be turned on in the computer if this procedure is not followed.

When a 933N or 937N order is given, the tape unit moves forward,
reads or writes the first block, and moves the tape into position
to read or write the same block.

When a 932N or 936N order is given, the transport advances one
block forward and proceeds as in the 933N or 937N order.

When a 931N or 935N order is given, the transport reverses
one block and proceeds as in 933N or 937N.



ALWAC III-E CARD CONVERTER

The ALWAC III-E can punch or read IBM cards at a rate of one hundred per minute

when connected by its Card Converter attachment either to a 514 Reproducing Funch
or to a pair of 523 Summary Card Punches --- one to read, and one to punch. Each
word can be read or punched in any of three forms: : :

Alphabetic (up to five characters per word)
Hexadecimal (up to eight characters per word)

Decimal (up to eight digits per word, automatically
converted binary-to-decimal or decimal-to-binary.)

The Card Converter utilizes an extra channel on the drum as a buffer storage for in-
formation being read or punched so that computation may continue during the card
cycle. This buffer channel is divided into a control half and an information half,
either of which may be exchanged with either half of Working Channel IV:

v Buffer
6 0 - 6f Control
¢ 70 - 7f Information

The control half containspulses that indicate the card columns which correspond to
each word of information, and also pulses that indicate in which of the three forms
each word is to be interpreted --- alphabetic, hexadecimal, or decimal.

Signs are all taken to be positive when interpretation is alphabetic. When interpreta-
tion is hexadecimal or decimal, negative signs are indicated by an X-overpunch in the
same column as the least'significant character of the word.

All card operations are accomplished with operation code 97. Different addresses are
used with this code to specify the different operations. Each operation is performed in
two steps: :

1.) Exchange between Working Channel IV and buffer.

2.) Read or punch and convert if decimal.

The conversion and reading or punching is done according to what is in the control half
of the buffer after the exchanges are over. Likewise, the information half is punched
on a card or filled from a card after the exchanges are over, so that when a card has
been read a subsequent 97 operation is required to place the information in Working
Channel IV.

The effects of the different address digits are these:

An 8-bit prevents the card machine from executing a card cycle.

A 10-bit causes punching and also causes all conversions to be
from binary to decimal. If no 10-bit is present, reading will
occur and all conversions will be from decimal to binary.

A 20-bit causes the control half of the buffer to be exchanged
with half of Working Channel IV. The 40-bit indicates which
half of Working Channel IV this is.

A 40-bit causes the upper half of the buffer to be exchanged
with the lower half of Working Channel IV, and vice versa.



Card Converter - page 2

An 80-bit causes the information half of the control channel to be
exchanged with half of Working Channel IV. The 40-bit indicates
which half of Working Channel IV this is.

8 NO CARD CYCLE

v 10 PUNCH. Buffer
20 | CONTROL
60 - 6f o
}{\40
70 - 71

80 | INFORMATION

The left-hand hexadecimal digit of each word in the control half carries information
about alphabetic, hexadecimal, or decimal interpretation. The other twenty-eight bltS
and the sign bit of words in the control half govern card column selection.,

No indication is needed if an information word is to be interpreted alphabetically. If it
is to be interpreted hexadecimally, then a 4 must be placed in the left-hand hexadecimal
digit of the word in the control half which corresponds to the word numbered one less
;than the word in question.

For example, suppose that Working Channel IV is going to be stra:.ghtforwardly excha.nged
ithh the buffer and punched. This will take a 97b0 operation. If it is desired to punch :
word 78 in hexadecimal form, then the left-hand hexadecimal digit of word 67 should be 4.
If it is desired to punch word 70 in hexadecimal form, then the left-hand digit of word 6f
should be 4.

‘An identical rule applies to decimal interpretation, except that the digit 8 should be used
:m place of the digit 4.

Decnnal conversion is on an integer basis. When a number is to be punched in decimal-
form, it is interpreted as an integer, converted to decimal, and the eight least signi-
ficant digits of this decimal number are stored in the eight hexadecimal positions of the:
word in question. Column selection for the punching of these digits is the same as for
hexadecimal punching (described below.) Conversion from decimal to binary follows the
exact reverse process.

By blockmg the card cycle with an 8-bit in the address of the 97 operation, the Converter
may be used to convert between binary and decimal for other forms of input and output.

Conversxon takes some time, which must be allowed for in settmg up the card machine
interlocks. It sometimes happens that a second 97 instruction is given before the first .
one is finished, but the second card cycle can be started immediately provided conver-
gion has proceeded far enough to be completed before the new information must be handled.
To assure that no time is lost in these cases, the coder should count the number of words
that are to be decimally 1nterpreted and add a 1l to the left-hand hexadecimal d1g1t of the
\gord this many positions down in the control channel. Consider the example given above.
If three of the sixteen words are to be decimally interpreted, then 1 should be added to the
teft-hand digit of control word 62. If one or none of the words are decimal, a 1 should be
added to the left-hand digit of word 60. The number of decimal words is of course just
the number of 8's that appear in the left ends of control words.



Card Converter - page 3

If the procedure outlined is not followed, the card machine may run on alternate cycles,
giving a card rate of fifty instead of one hundred per minute. The card machine will :
also run slow if successive 97 operations are separated by more than about four hundred
and eighty milliseconds of routine. '

“There is not complete flexibility in the way card columns are assigned to words by the

control channel, but any desired rearrangement of columns can be made on the wiring
boards of the 523's or 514.

‘To understand the assignment of card columns by pulses in the control channel, it is
necessary to bear in mind that the buffer storage is of a serial-serial recirculating type.
The words are recirculated one after another in numerical order, and the binary digits
within words are recirculated one after another, but in inverse order of significance.
Thus the last bit in the control channel is the most significant bit of word 6f, and the
first bit in the control channel is the sign bit of word 60.

With this time-relation established, successive card columns starting with column 1 are
assigned to successive control pulses (not counting those in the left-hand hexadecimal
character of any word.) Thus if control word 60 has a pulse in the sign position ---
i.e., is positive --- then this pulse will correspond to card column 1. If word 60 is
negative, the least significant bit in it will correspond to card column 1. If it is negative
zero (with the possible exception of the left-hand hexadecimal digit) then the least signi-
ficant bit in word 61 will correspond to card column 1.

In the information half of the buffer, alphabetic card columns correspond to six consecu-
tive bits, while hexadecimal or decimal card columns correspond to four consecutive bits.
These bits are the six (or four) immediately to the left of the bit correspondmg in p051t10n
to the control bit for that column. The coding of these six (or four) bits is as shown on’
the "ALWAC III-E Code Conversion Chart.!" Control bits may be spaced as widely as
desired, but should not be placed closer together than six (or four) bits, or nonsensical
;results will occur.

For example, if it were desired to punch word 7a as eight hexadecimal columns, then
word 69 would have a 4 in the left-hand position, and word 6a would be 08888888+ (the
left-hand character being immaterial to word 7a, since it determines the form of inter-
pretation of word 7b. )

After eighty pulses for the eighty card columns have been placed in the control channel,
later pulses are disregarded and have no effect, with the exception of the left-hand hex-
adecimal character of the last word, which determines the form of interpretation of the
flrst word.

The connections on the wirmg boards of the 523's are as follows: Information to be ,
punched from the computer is presented on the '"Comp Mag or Ctr Tot Exit or M S Out”
“hubs and should be wired to the '"Punch Magnets'' hubs. Information to be read into the
computer should be wired from the '"Punch Brushes'' to the "Comp Mag or Ctr Tot Exit or
M S Out' hubs.

The connections on the wiring board of the 514 are as follows: Information to be punched
- should be wired from the '"Comp Mag or Ctr Tot Exit or M S Out'' hubs to the "Punch
Magnets'' hubs. Information to be read should be wired from the '"Reproducing Brusheq”
to the ""Selector 1'' and “Selector 2'" hubs.

In all cases it should be remembered that since columns are counted from right to left "
within a word, wiring must exchange end-for-end to present digits in their proper order.

9/24/56



FLEXOWRITER
PUNCH PRINT
.35 Space
1 .35 ° 1
2.3 5 "2
12.3 5 + 3
. 5 = 4
. b % 5
2. 5 ? 6
12. 5 't 7
. 345 2 8
1 .345 ( 9
2. 345 A a
12. 345 B b
. 45 C c
1. 45 D d
2. 45 E e
12. 45 F f
.3 G g
1.3 H h
2.3 I i
12.3
. Tape feed
1.
2.
12.
.34
1 .34
2.34
12. 34
. 4
1. 4
2. 4 -
12, 4 JJ

AB/nb 6/28/56

HEX

HEHOO Whroo Noud WN=o

ALWAC

ALWAC III-10

CODE CONVERSION

01 0000
01 0001
01 0010
01 0011

01 0100
01 0101
01 0110

01 0111

01 1000
01 1001
01 1010
01 1011

01 1100
0l 1101
011110
01 1111

CARDS

Space

N0 U W e

YT QB0 QOwr e ® =

) N

HEX

HEHUOO W00 Noubh WN~O

FLEXOWRITER
PUNCH PRINT

6 .35 K k

61 .35 L1

6 2.3 5 M m
612.3 5 N n

6 . 5 O o

61 . 5 Pp

6 2. 5 Q q

612. 5 Rr

6 345 Lower case
61 .345 Upper case
6 2.345 Color shift
612. 345 Code delete
6 . 45 Tabulate
61 . 45 Carriage return
6 2. 45 Back space
612. 45

6 .3 }J O

61 .3 r/

6 2.3 S s
612.3 Tt

6 . Uau

61 . Vv

6 2. W w

612. X x

6 .34 Yy

61 .34 Z z

6 2.34 A8

612. 34 ¥ ]

6 . 4 Stop

61 . 4

6 2. 4 K

612. 4 :

ALWAC

100000
100001
100010
100011

100100
100101
100110
100111

101000
101001
101010
101011

101100
101101
101110
101111

110000
110001
110010
110011

110100
110101
110110
110111

111000
111001
111010
111011

111100
111101
111110
111111

CARDS

* A WD WOZZ BR@

N HES<CO Hu~o0o

* -



working channel 1 nOo.
00 8o (|01 811102 82 {03 83
04 84 (05 85106 86|07 87
08 88 095 89 ||[0a 8al(Ob 8b
Oc 8c||Od 8d |||Oe 8e|[OF 8f
'IO‘ 90|[i 11 91|12 92 /(13 93
14 94 15» 95 ||[16 96|(17 97
18 98119 99 {l[1a 9alll1b 9b
lc 9¢|/{1d 9d|||1e 9 ||[1f 9f
alwac TI E Logistics Research Inc.

Redondo Beach, Calif.




working channel 1II no.
20 ao ||{21 al 11122 a2 |||23 a3
24 as 1125 as 1126 a6 (|27 a7
28 as ||[29 a9l/[2a aa||[2b ab
2¢ ac ||[2d ad ||| 2e ael|[2f af
30 bo ||| 31 b /|32 b2 |||33 b3 |
34 ba ||| 35 bs ||[36 be |37 b7
38 bs ||| 39 b9 |||3a be |/|3b bb
3¢ be |/[3d bd ||| 3e be ||| 3f bf
alwac III E

Logistics Research Inc.

Redondo Beach, Cadlif.




m

Logistics Research Inc. |
| Redondo Beach, Calif.

working channel no.
40 co |||41 c1 /|42 c2 |||43 c3
|44 lca ||| 45 C5‘46 c6|(|47 c7
48 cs 49 co 4a call[4b Ch
Ac << ||[4d ca ||[4e ce||[4F cf
50 dol|[ 51 d1 |52 | d2 ||| 53 ds
154 d4|||55 ds |||56 ds ||| 57 d7
58 ds|||59 d? ([|5a da ||| 5b db
5¢ de |||5d .dd 5e de 5F | df
alwac ]I[E




working channel [V no.
60 eo ||| 61 el 162 e2 ||| 63 e3
64 e4 l|l65 es ||| 66 e6(|67 e7
68 |es]|l69 e9][6a eal[6b eb
b¢ ec »6d ed ||| be ee|l6f ef
70 foll|71 f1]]| 72 f2 [||73 f3
74 fall75 £5)|76 f6 |77 f7
78 f8 ||| 79 £9 ||| 7a falll7b fb
7c fe |I| 7d fd|l|7e fe||7F ff
alwac IIT E

Logistics Research Inc.

Redondo Beach, Calit.




LOGISTICS APPLICATION ENGINEERING

Experienced I.oglshcs Application Engineers are
. . . to survey your data-handling and computat'“

_neering . .. I.oglshcs can help.



