

manual of operation

alwac III-E

Copyright 1957 by ALWAC CORPORATION 13040 South Cerise Avenue Hawthorne, California

Form 10-0001-0

CONTENTS

	Page
GENERAL	6
Memory Unit	6
Logic Unit	6
Power Supply Unit	6
Magnetic Tape Buffer	6
Magnetic Tape Transport	6
Card Converter	6
Flexowriter	6
Control Panel	6
Oscilloscope	6
High-Speed Punched Tape Console	6
STORAGE	7
General Storage Channels	9
Working Storage Channels	9
WORDS	9
Instructions	10
Numbers	11
LOGIC UNIT	12
Arithmetic Elements	12
Power Supply Unit	14
CONTROL PANEL	16
OSCILLOSCOPE	18

	rage
INSTRUCTIONS	19
ADDRESS LOCATIONS	34
ADDRESS MODIFICATION	34
INSTRUCTION DOUBLING	35
INSTRUCTION TIMING	35
COMPONENTS	37
Flexowriter	37
High-Speed Punched Tape Console	41
Card Converter	42
Magnetic Tape Units	46
SYMBOLIC PROGRAMMING	49
Control Branching	50
Sum of N-Quantities	50
Floating a Fixed-Point Number	51
Subroutines	52
APPENDIX	
A. Binary and Hexadecimal	

Dore

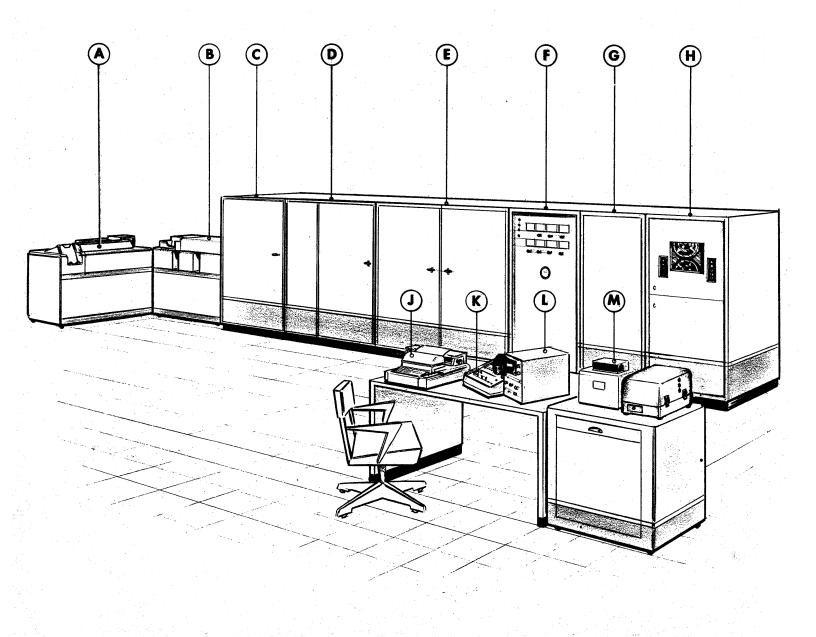
А.	Binary and Hexadecimal Number Systems	53
в.	Table of Powers of 2	56
c.	Hexadecimal-Decimal Integer Conversion Table	57
D.	Hexadecimal-Decimal Fraction Conversion Table	61
E.	Operations by Alphabetic Code	65

ALWAC III-E

MAGNETIC DRUM DATA-PROCESSING MACHINE

The ALWAC III-E is a general purpose modified single-address, numerical, binary computer. It is available in two models with memory capacities of 4096 or 8192 words (135168 or 270336 binary bits). This magnetic drum computer offers a large memory storage (heretofore available only in large scale electronic machines), ease of operation, selfchecking circuits, automatic operation, ease of maintenance, and a very high component reliability. Its great flexibility and large memory storage make it possible to meet the needs of the business, engineering, scientific, and research organizations.

This computer uses a stored-program to perform its computations which permits lengthy computations to be performed at electronic speeds. A wide variety of input-output equipment is available which includes punched tape, magnetic tape, and punched cards.


Page 4 shows the ten units that make up the ALWAC III-E Magnetic Drum Data Processing Machine:

- 1. Memory Unit
- 2. Logic Unit
- 3. Power Supply Unit
- 4. Magnetic Tape Buffer
- 5. Magnetic Tape Transport
- 6. Card Converter
- 7. Flexowriter with punched tape control
- 8. Control Panel
- 9. Oscilloscope
- 10. High-Speed Paper Tape Reader and Punch

alwac II-E

- A. LINE PRINTER
- B. READER-PUNCH
- C. CARD CONVERTER
- D. MEMORY UNIT
- E. LOGIC UNIT
- F. POWER SUPPLY UNIT
- G. MAGNETIC TAPE BUFFER
- H. MAGNETIC TAPE TRANSPORT
- J. FLEXOWRITER
- K. OPERATOR'S CONSOLE
- L. DISPLAY UNIT

M. HIGH-SPEED PAPER TAPE READ AND PUNCH

Memory Unit

The Magnetic Drum and its associated control circuits are contained in this cabinet. The drum rotates at a speed of 3500 revolutions per minute. Both data and instructions are stored in serial manner by means of magnetized spots on the surface of the drum.

Logic Unit

The control logic and certain parts of the arithmetic registers are located in All electronic parts are this cabinet. mounted on removable plug-in units to permit maximum ease of maintenance.

Power Supply Unit

This cabinet contains the power supply for all units which comprise the basic ALWAC III-E. Voltmeters for each of the various supplies are mounted on the front of the cabinet with rheostat controls to permit manual adjustment of voltages.

Magnetic Tape Buffer

Control for the magnetic tape transports is contained in this cabinet. A maximum of 16 magnetic tape transports may be controlled from this unit.

Magnetic Tape Transport

Magnetic tape is used to extend the memory capacity of the basic ALWAC III-E for rapid-access, intermediate storage of information and to provide a most efficient means for input and output of large data files.

Card Converter

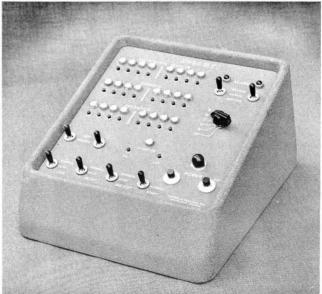
Control of punched card reading and punching equipment and the automatic conversion of decimal, hexadecimal, and alphabetic information is accomplished with the electronic equipment contained in this cabinet.

Flexowriter

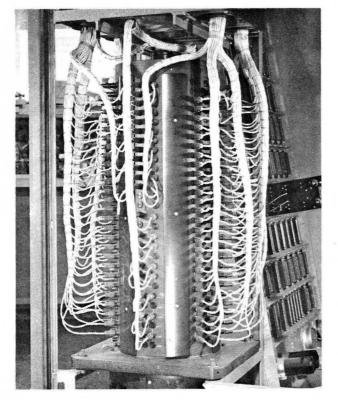
Input and output are accomplished

through the Flexowriter unit by means of the typewriter keyboard or punched paper tape. A maximum input or output rate of 10 characters per second is possible.

Control Panel


The Control Panel contains control switches and banks of lites which display to the operator the contents of the location, instruction, and address registers and the status of the overflow indicator. By means of this the operator may control any of the various machine functions and observe the contents of arithmetic registers or word locations.

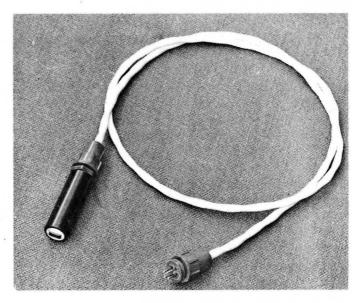
Oscilloscope

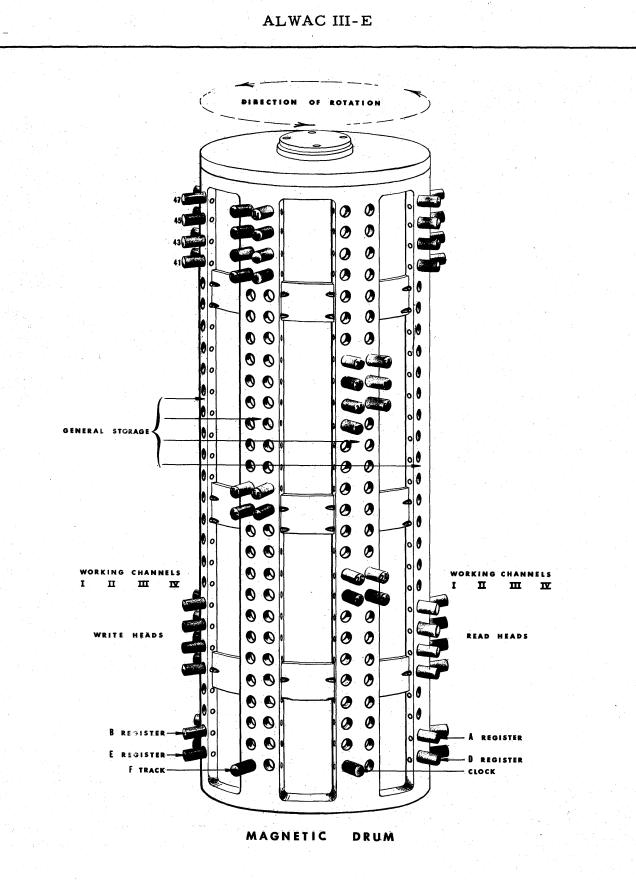

The contents of the A, B, D, and E Registers, or the contents of a word from one of the Working Channels, or General Storage Channels may be viewed on the face of an oscilloscope when the proper switches are set on the Control Panel.

High-Speed Punched Tape Console

Input at effective speed of 150 characters per second and output at a speed of 50 characters per second is accomplished through this unit by means of punched tape.

Figure 2.




Figure 3. Magnetic Drum and Read-Write Head

STORAGE

The arithmetic registers, the 4 working channels, the 256 channels of General Storage, and several channels used for internal timing are stored on the surface of the magnetic drum in the form of magnetic spots. Information stored on the drum will remain permanently, or until erased by recording another spot in the same location. This memory is extremely stable and no danger exists from loss of information when the power is turned off completely.

Recorded information is arranged on separate bands on the drum which are known as channels. By the geometric location of the read and write heads around the surface of the drum, storage lines of various lengths are obtained. Placing the read-write heads closer together provides "short" lines of rapid access for use as arithmetic registers. Information stored in these rapid access lines is retained only as long as power is supplied, the information being lost when the power is turned off. Such lines are used for the A, B, D, and E Registers and for the four Working Storage Channels.

As information is processed in groups of 33 binary digits at a time, the basic unit of storage contains 32 bits and an algebraic sign. Each such group of 32 bits and a sign is known as a word. Each of the General Storage Channels contain 32 words. Magnetic drums are provided with a capacity for either 4096 or 8192 words (135168 or 270336 binary digits), corresponding to 128 or 256 channels.

8.

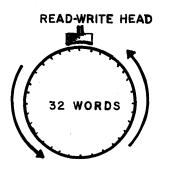
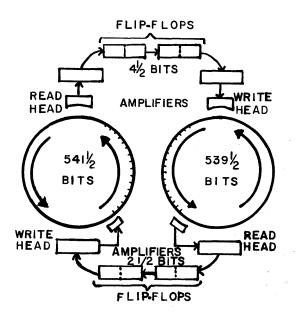
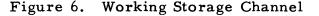


Figure 5. General Storage Channel

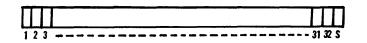

GENERAL STORAGE CHANNELS:


General Storage of the ALWAC III-E computer consists of 128 (or 256) channels located on the outer surface of the drum as shown in Figure 5. Only one read-write head is required for each channel. Matric switching circuits select a particular channel and connect the read or write amplifier to a given read-write After two copy operations, the head. matric switching circuits return to the "Read Channel 00" position and remain in this position until reading or writing operations are to be performed on another channel of General Storage. In this reset position, any of the 32 words of Channel 00 may be copied into the A Register. As a result of this action, Channel 00 is treated as a special channel and is frequently referred to as channel "M".

The contents of any word in one of the four Working Storage channels may be displayed on the surface of the cathoderay oscilloscope by the proper setting of switches on the Control Panel.

WORKING STORAGE CHANNELS:

In order to execute a series of program instructions it is necessary to copy the contents of a General Storage channel into one of the four Working Storage Channels. Each of these four channels comprises 32 word locations which are physically arranged as shown in Figure 6.

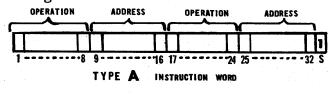


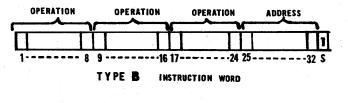
Since information is being constantly read and re-written with intermediate storage in flip-flop units, information is not preserved when power is turned off. No such loss of information occurs for General Storage Channels.

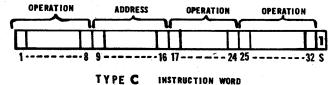
WORDS:

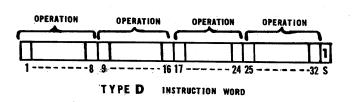
All words in the ALWAC III-E computer consist of 32 binary digits, sign bit and overflow bit (34 bits). These words may be stored in 128 distinct word locations in the four Working Storage channels or in any of the 32 words of the 256 General Storage Channels.

The 33 bit positions of a word are shown in Figure 7 where S refers to the sign position, 1 refers to bit position 1, 2 refers to bit position 2, and so forth.




Figure 7.


When a word contains numerical data, and the sign position contains a 1, the word is positive; if it contains a 0, the word is negative. Used as a binary number (with algebraic sign), a word is equivalent to a decimal number (with algebraic sign) of slightly more than 9 digits. As four binary digits are exactly equal to one hexadecimal digit, a word consists of 8 hexadecimal digits and an algebraic sign.


Instructions

Two, three, or four instructions may be contained within one word as is shown in Figure 8.

Figure 8.

Although the sign bit associated with an instruction does not affect the execution of the instruction, it is generally made positive. From Figure 8 it may be seen that both the operation code and the address part of an instruction each require 8 bits. The operation code is used to designate the particular operation that the machine is to perform and the address part will have one of the following meanings:

1. The number of binary positions that the information in the A (or A and B) register(s) is to be shifted to the left or right.

2. Location in which information is to be stored by the instruction.

3. Location of information which is to be used by the instruction.

4. Number of characters to be read or written by the Flexowriter or High-Speed Tape Unit.

5. Specifies the particular type of operation to be performed when using magnetic tape or punched card equipment.

6. The location of the next instruction to be performed.

An instruction word is divided into four syllables consisting of eight bits each. Because of this four-part division it becomes convenient to use two hexadecimal digits for each syllable of the word. Thus, each hexadecimal digit consists of four binary digits; each syllable consists of two hexadecimal digits; each half-word consists of two syllables; and each word consists of two half-words.

It is emphasized that the ALWAC III-E operates as a binary machine and that the use of hexadecimal notation in no way affects this operation. Hexadecimal notation is used by the programmer as a convenient means to record long sequences of binary ones and zeros.

The counting system used for most of the arithmetic problems one encounters in everyday life is the decimal system. In this system each digit position may assume 10 discrete values after which the entire sequence is repeated, numbers of larger value being indicated by increasing the next most significant digit, Thus, one counts from 0 to 9 and then from 10 to 19, 20 to 29, and so forth. As each digit position can assume 10 discrete values, this system is said to be of "base 10".

The binary system is of "base 2" and, hence, the digits 0 and 1 are the only digits used in each position. For the hexadecimal system which is of "base 16" we use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F to provide 16 discrete values.

To illustrate the relation between the three systems (binary, hexadecimal, and decimal) the following table is presented:

BINARY HEXADECIMAL DECIMAL

0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	Anto 8	8
1001	9	9
1010	Α	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15
10000	10	16
10001	11	. 17
10010	12	18

An instruction word as it appears in the machine (in binary form) would resemble the following example:

0110 0001 0101 0001 0001 0001 0010 1000 +

The equivalent in hexadecimal form would be as follows:

6 1 5 1 1 1 2 8 +

which, as a Type A instruction word, might appear on a coding sheet as shown below:

ADD 51, TRA 28 +

Numbers

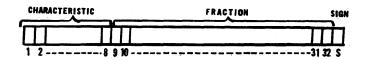

<u>Fixed Point</u>. Fixed - point numbers are represented with a magnitude of 32 bits and a sign bit. The binary point is assumed to be located to the right of position 32. However, the binary point may be located elsewhere

Figure 9.

by proper scale-factoring. For example, the binary number $0000\ 0000\ 0000\ \dots$. $0000\ 0100\ may$ be variously used as the number 4 at a binary point to the right of position 32 (B=32) or as the number 1 at B=30.

Floating Point. No machine operations are provided to handle floating-point numbers automatically. However, several schemes are available to the programmer who may wish to represent numbers in this manner. One such scheme involves the "packing" of several quantities into a single word. These quantities are known as the characteristic, fraction, and sign which comprise each floating-point number.

Figure 10.

A floating-point decimal number N is written as a proper fraction F (with algebraic sign) times some integral power of the base 10, or as $F \times 10^{n}$. The power of ten may be chosen such that the decimal point is located to the left of the most significant digit of F. When the power of ten is chosen in this manner, the number is said to be a normalized floatingpoint number; otherwise, an unnormalized floating-point number. Examples: + $.124 = + .124 \times 10^{\circ}$ - $.012 = - .120 \times 10^{-1}$ + $5.120 = + .512 \times 10^{+1}$

A floating-point binary number N is written in a similar manner with a proper fraction F (with algebraic sign) times some integral power of the base 2, or as $F \ge 2^n$. Examples:

+	.ioo					
-				.100		
+	1.100	=	+	.110	x	2+1
-	10.100	=	_	.101	x	2+2

In the ALWAC III-E, floating-point binary numbers are stored as shown in Figure 10.

1. Bit positions 9-32 contain the magnitude of the fraction F with the binary point located to the left of position 9. A normalized floating-binary number will have a 1 in position 9. Thus, the range for values of F is seen to be:

千く1日く1

2. The sign of the fraction F is placed in the S position of the word.

3. Since signed exponents will occur and since the S position contains the algebraic sign of the fraction, the characteristic, C, of the number is stored in positions 1-8 instead of the exponent. This characteristic is formed by adding + 128 to the exponent. Thus, the range of the exponent is:

- 128 🗸 n 🖌 + 127

whereas the range of the characteristic is:

0 💰 C 💰 255

An exponent of + 12 would use a characteristic of + 12 + 128 = 140 while an exponent of - 12 would use a characteristic of - 12 + 128 = 116.

LOGIC UNIT

Arithmetic and control functions are performed by electronic components located in the Logic Unit. Information passes between the Memory Unit and the Logic Unit for processing. Each machine instruction may be divided into three micro-programming operations which are known as interpretation, search and execution times. During the interpretation time, the machine locates the next instruction to be executed and fills the Operation and Address registers. The Operation register is then examined to determine whether or not the given instruction requires reference to the contents of another word in memory and whether or not the Address register is to be modified. During search time, if required, the machine obtains the contents of the desired word from memory. (Since some operations do not require such reference, these operations do not have search times). During execution time, the given operation is performed. The time required to complete each of these three micro-programming operations is an integral multiple of one word-time (0.523 ms.) and is variable depending upon the given instruction, whether or not a search is to be made, and the time required to locate the given word in memory.

Arithmetic Elements

The A Register. The A Register is an accumulator register consisting of 32 bits, an overflow position, and a sign. See Figure 11.

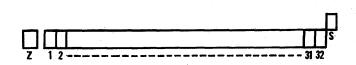
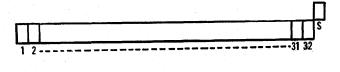


Figure 11.

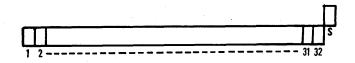

Almost all arithmetic operations make use of the A Register. With some instructions (for example, addition, subtraction) the contents of the A Register may overflow from position 1. When an overflow occurs, with the exception of shifting instructions, the OVERFLOW INDICATOR lite on the operator's Control Panel is turned on and will remain on until turned off by manually depressing the ALARM SWITCH No. 2 to the RESTORE position or by executing one of the instructions COM, COV, or TOV. It should be noted that an overflow from bit position 1 does not always result in causing a 1 to be placed in the Z position of the A Register (for example, ADB and SBB) and that the status of the OVERFLOW INDICATOR lite is not affected by any subsequent operation which causes a change in the Z position. It must be borne in mind that the OVERFLOW INDICATOR lite may be turned on by both arithmetic and control instructions and that any attempt to execute an arithmetic operation when the lite is on will result in the sounding of the ALARM No. 2 buzzer which will prevent the completion of the operation until the OVERFLOW INDICATOR lite is turned off.

The B Register. The B Register consists of 32 bits and a sign and has three major uses:

1. The multiplier must be placed in the B Register prior to execution of a multiplication instruction.

2. After the execution of a division. instruction, the quotient appears in the B Register (the remainder is located in the A Register).

3. After executing a multiplication instruction, the B Register contains the less significant part of the product and, in this respect, may be considered as an extension of the A Register.


The D Register. The D Register consists of 32 bits and a sign and has the following major uses:

1. The D Register is used to contain the multiplicand when performing multiplication operations.

2. The mask word must be placed in the D Register before the execution of the EXD operation.

3. The D Register is used to contain the divisor during division operations.

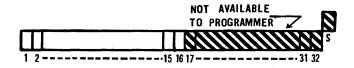

4. The D Register is used to count the number of shifts which occur when using the SCT operation.

Figure 13.

Only the full-word contents of the D Register may be altered by any instruction and hence this register performs no accumulating or shifting functions.

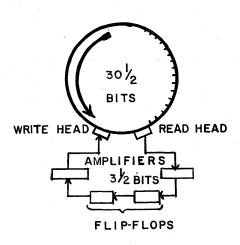

The E Register. The E Register is used for the indexing operations and to provide automatic address modification. This register consists of only 16 bits (without sign) and is associated with bits 1-16 of the A Register and of words in memory.

Figure 14.

Although a transfer of information between the A and E Registers occurs only with the left half-word of the A Register, both the left and right address syllables of instructions stored in the Working Storage channels may be automatically modified according to the contents of the E Register. Although the storage line on the drum which is used to store the E Register contains 32 bits and a sign, the right half of this line is not available for use by the programmer and will, therefore, rarely concern him.

All arithmetic registers are stored on the drum as one-word recirculating lines as shown in Figure 15.

Figure 15.

Since information is being constantly read and re-written and requires intermediate storage in flip-flop units, information is not preserved when power is turned off.

By the proper setting of switches on the Control Panel, the contents of any arithmetic register may be displayed on the surface of the cathode-ray oscilloscope.

When two numbers having the same magnitude, but opposite signs are added algebraically in the A (or A and B) register(s), the result may be either +0 or -0.

The sign of the zero result may be determined from the following tabulation:

ADD and SCS -- same as sign of C(W) SUB and ACS -- opposite to sign of C(W)

ADB and SBB -- same as sign of C(B) before execution of instruction

POWER SUPPLY UNIT

Figure 16 shows the Power Supply unit which includes indicating lites, voltmeters, voltage controls and operating switches.

Master Circuit Breaker. All power to the ALWAC III-E is controlled by this switch. When turning on the computer, this switch mustbe turned on first; when turning off the computer, this switch should be turned off last after all other activity has ceased in the computer. See Figure 16.

Record Switch. The Record switch should be placed in the OFF position until the computer has been allowed to "warmup" and voltages have been adjusted to their power values. When turning off the computer, this switch should be placed in the OFF position to prevent accidental destruction of recorded information due to power transients within the computer. This switch must be in the ON position when the computer is operating to permit information to be written in the general storage channels of the drum.

<u>Compute-Off-Test Switch. This switch</u> operates in conjunction with the Power switch described below. In passing through the OFF position, this switch causes the power to be turned off and it becomes necessary to depress the Power ON switch. Since timing circuits are activated from these two switches a delay of one minute will occur before power is again supplied to the computer.

Power Switch. After the Compute-Off-Test switch has been set in the COM-PUTE or TEST position, the Power ON switch may be depressed. If the thermostats in each cabinet are below dropout temperature, the Power On neon lite will light immediately, and blowers and filaments will be turned on. After a one minute delay all voltages other than filament voltages will be turned on. Power will be supplied to the computer if the Compute-Off-Test switch is in the COM-

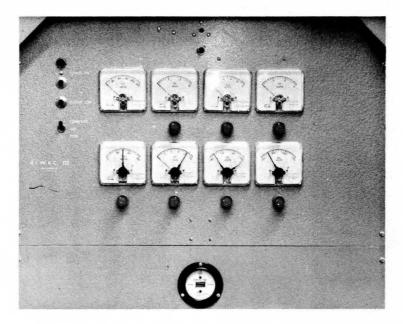


Figure 16.

PUTE position, but will only be supplied to the cable connection for the tester unit when this switch is in the TEST position. The Power switch is also located on the operator's Control Panel and is operated in a similar manner.

Operating Procedure. To prepare the computer for operation the following steps should be observed:

1. The Record switch should be turned to the OFF position.

2. The Master Circuit Breaker should be turned to the ON position. The line voltage meter will then rise to 120 volts and return to zero after a period of one minute.

3. The Compute - Off - Test switch should then be turned to the COMPUTE position.

4. The Power ON switch should be depressed.

5. The voltage regulators beneath each voltmeter should be adjusted to cause the proper reading to be displayed. The proper voltage readings are given beneath each meter.

6. As soon as voltages are indicated on the meters and are adjusted to the values, the Record switch should be turned to the ON position.

7. The computer should now be operative. At this time a standard test program is usually executed to insure correct operation before useful computing is begun. This test may be some standard production problem which provides an adequate check of machine operations. When turning off the computer the following steps should be observed:

1. The Record switch should be turned to the OFF position.

2. The Power OFF switch should be depressed.

3. After the line voltage meter has dropped to zero, the Master Circuit Breaker may be turned to the OFF position.

CONTROL PANEL

Figure 17 shows the operator's Control Panel which includes indicating lites and operating switches. Under normal operating conditions this console unit is used for control of all functions of the computer.

Power Switch. The operation of this switch is identical with the Power switch located on the Power Supply unit which is described on page 14.

Normal - Test - Clear Switch. When this switch is in the NORMAL position, the computer is under the control of the Flexowriter and will not operate unless the Flexowriter is turned ON and the Flexowriter-Computer switch is turned to the COMPUTER position.

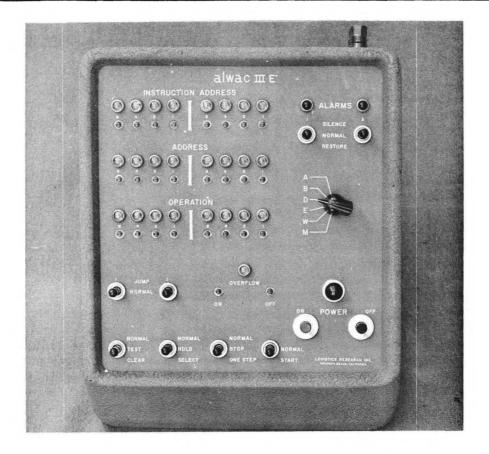
In the TEST position, the computer will execute instructions whether or not the Flexowriter is turned ON.

Upon release from the CLEAR position, the contents of General Storage channel 01 replaces the contents of Working Storage channel I and control is transferred to word 00. A similar switch is located on the Flexowriter. A program known as the Start Routine is located in General Storage channel 01 and is used to cause input and output of programs and to transfer control to a given location in one of the Four Working Storage channels.

Normal - Hold - Select Switch. When

this switch is in the NORMAL position, the computer will execute instructions in their normal sequence.

If in the HOLD position, the computer inhibits the normal sequence and thus this position may be used to cause the computer to repeat a given instruction any number of times.


If in the SELECT position, the General Storage selection relays will select the channel which is indicated by the neon display lites of the Address register. A given word in this channel may then be displayed on the cathode-ray oscilloscope by setting the Instruction Address lites to the address of the desired word and setting the ABDEWM switch to the M position.

Normal - Stop - One Step Switch. In the NORMAL position, the computer will execute instructions in their normal sequence at high-speed.

In the STOP position, all computation is suspended. By alternately moving this switch from the ONE STEP to the STOP position, the computer can be made to execute single instructions in their normal sequence.

Jump Switches. Two switches provide the operator with manual control over the program while it is being executed. At various points in the program, the status of these switches may be tested by the program, which will cause the computer to execute one of two branches of the program.

Overflow Indicator Lite. Arithmetic operations and certain control operations may cause this lite to be turned on and off. If the lite is ON, any attempt to execute arithmetic operations will result in the sounding of ALARM No. 2 and will inhibit the execution of the operation until corrected manually by depressing the Overflow OFF button or by turning Alarm Switch No. 2 to the RESTORE position and then to the NORMAL position.

Figure 17.

Instruction Address Register. This register indicates the memory location of the instruction indicated in the Operation and Address registers, except for instructions calling for input of information in which case this register shows the location from which the next instruction to be executed will be obtained.

Operation Register. This register indicates the instruction which is about to be executed.

Address Register. This register contains the effective address associated with the instruction contained in the Operation Register. The contents of the address part of any instruction before and after modification are called literal and effective addresses respectively. If the least significant bit of the Operation Register is a 0, the contents of the Address Register will be modified by the contents of the E Register before the instruction is performed.

Alarm Switch No. 1. An internal check is made to compare, with the original, the result of copying information between the General Storage and Working Storage channels. If this check fails, either due to the Record switch on the Power Supply unit being in the OFF position, or by the failure to copy information correctly, the status of Alarm Switch No. 1 is tested. If this switch is in the SILENCE position, the machine will continue to attempt the copying operation until the internal check indicates a correct copy has been made, after which the machine will execute the next instruction in normal sequence at high-speed. The alarm buzzer will not sound.

If in the NORMAL position, the buzzer will sound and the machine will stop until this switch is placed in the SILENCE or RESTORE position.

If in the RESTORE position, the buzzer will not sound, the internal check is over-ruled and the machine continues at high speed permitting whatever information was copied to remain. As erroneous information could result under this condition, it is recommended that this switch not be permitted to remain in the RESTORE position.

Since General Storage channel No. 01 is used to contain the Start Routine and since the contents of this channel are to be preserved for normal machine use, it is desirable to prevent accidental recording of information in this channel. Hence, if an attempt is made to record in General Storage channel No. 01, the status of Alarm Switch No. 1 is tested and the machine will then operate as described above. The operator will seldom have occasion to place this switch in the RE-STORE position. A special program to fill General Storage channel No. 01 is provided and is known as the Load Start Routine. This program requires Alarm Switch No. 1 to be placed in the RESTORE position in order to copy the Start Routine into General Storage channel No. 01.

Alarm Switch No. 2. If in the NOR-MAL position, when arithmetic operations are attempted while the Overflow Indicator Lite is ON, the buzzer will sound and the execution of the operation will be inhibited until corrected manually by turning Alarm Switch No. 2 to the RE-STORE position and then to the NORMAL position or by depressing the Overflow OFF button. This action will cause the Overflow Indicator Lite and the buzzer to be turned OFF.

In the SILENCE position, the machine will perform as for the NORMAL position except that the buzzer will not sound. If this switch is allowed to remain in the RESTORE position, the Overflow Indicator Lite and the buzzer will be turned OFF once with the machine returning to high-speed operation. However, if another attempt is made to execute an arithmetic operation when the Overflow Indicator Lite is ON, the machine will again stop and the buzzer will sound. This switch may then be returned to the NOR-MAL position and the sequence repeated.

ABDEWM Switch. This rotary switch controls the selection of information to be displayed on the cathode-ray oscilloscope. The A, B, D, and E positions select the A, B, D, and E registers respectively.

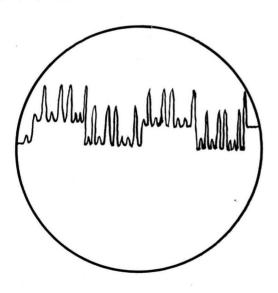
To inspect the contents of a word in one of the four Working Storage channels, this switch is placed in the W position, the Normal - Hold - Select switch to the HOLD position, the Normal - Stop - One Step switch to the STOP position, and the location of the desired full-word set on the Address Register in neon lites. The contents of the desired word will then be displayed on the cathode-ray oscilloscope.

To inspect the contents of a word in one of the General Storage channels, this switch is placed in the M position, the Normal - Hold - Select switch to the SE-LECT position, the Normal-Stop-One Step switch to the STOP position, the desired channel set on the Address Register neon lites, and the desired full-word set on the Instruction Address neon lites. The contents of the desired word will then be displayed on the cathode-ray oscilloscope.

OSCILLOSCOPE

Figure 18 shows a cathode-ray oscilloscope on which the contents of a full-word may be displayed by setting the appropriate switches on the operator's Control Panel. Note that the scope has been set by ALWAC Corporation to sweep from right to left. Sweep should be adjusted to start at the far right of the scope.

Figure 18.


The display presents the bits comprising a word as a series of high and low "pips" on the face of the tube. The high pips represent 1 bits and the low pips represent 0 bits. The word is divided into four syllables by changing the horizontal level of the four syllables as is shown in Figure 19.

Reading the high and low pips from Figure 19 yields the following binary number (a plus sign is represented by a 1):

0101 1001 0101 1001 0101 1001 0101 1001 +

which would be written as the hexadecimal number:

59595959+

INSTRUCTIONS

In this section, the heading for each instruction gives the title, the number of milliseconds required for the execution of the instruction, the alphabetic code for the instruction, and the hexadecimal code for the instruction. The time reguired for execution for certain operations is variable and attention is directed to the section entitled "Instruction Timing". If the instruction requires an address part, the letter W is used to indicate this fact. W may be the number of binary positions to be shifted, the location of a word in memory, a General Storage channel address, or a special code for an input-output operation.

The following definitions apply to information contained in this section:

1. C(W) indicates the contents of location W, where W refers to some location in Working Storage. C(A) indicates the contents of the A Register, C(B) indicates the contents of the B Register, and so forth. Individual bit positions of a word (or register) are denoted by subscripts. Thus, $C(A)_{1-16,S}$ is read "the contents of positions 1, 2, 3, . . . 16, S of the A Register". When subscripts are not present, the entire word is indicated.

2. When a register is cleared, the contents of the register are replaced by 0's and the sign bit set positive (a 1 is placed in this position).

3. The negative of a number is the same number with its sign reversed.

4. The magnitude of a number is the same number with its sign made positive (a l in position S represents a positive sign).

5. When the word "store" is used in the title of an instruction, a word in Working Storage is always one of the agents. When the word "load" is used in the title of an instruction, one of the arithmetic registers is always one of the agents. With both "store" and "load" instructions, the agent from which the information is obtained is unaltered.

6. In the three-letter operation code:

a. The first letter of all load instructions is L.

b. The first letter of all transfer instructions is T.

c. The first letter of all exchange instructions is X.

d. The first letter of all add, subtract, multiply, and divide operations is respectively, A, S, M, and D. Other commands, however, may start with these letters.

ARITHMETIC OPERATIONS

Add

1.0 ADD W 61

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, this operation replaces the contents of the Z position with a 0, adds algebraically the C(W) to the C(A), and replaces the C(A) with this sum. The C(W) are unchanged. Overflow indication is possible and a carry from position 1 in the A Register will be placed in the Z position.

Add and Change Sign 1.0 ACS W 63

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, this operation replaces the contents of the Z position with a 0, adds algebraically the C(W) to the C(A), reverses the sign of this sum, and replaces the C(A) with the result. The C(W) are unchanged. Overflow indication is possible and a carry from position 1 in the A Register will be placed in the Z position.

Add to B 1.0 ADB W BD

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, this operation treats the $C(A)_{1-32}$ and the $C(B)_{1-32}$, S as a 64-bit augend (with the sign of B), replaces the contents of the Z position with a 0, adds algebraically the C(W) to form a 65-bit sum, and replaces the $C(A)_{Z, 1-32}$ and the $C(B)_{1-32, S}$ with the result. The sign of A is replaced by the sign of B. The C(W) are unchanged. The Overflow Indicator is not turned on if a carry from position 1 in the A Register occurs but said carry does enter the Z position.

Subtract 1.0 SUB W 67

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, this operation replaces the contents of the Z position with a 0, subtracts algebraically the C(W)from the C(A), and replaces the C(A)with this difference. The C(W) are unchanged. Overflow indication is possible and a carry from position 1 in the A Register will be placed in the Z position.

Subtract and Change Sign 1.0 SCS W 65

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the operation replaces the contents of the Z position with a 0, subtracts algebraically the C(W)from the C(A), reverses the sign of the difference, and replaces C(A) with the result. Overflow indication is possible and a carry from position 1 in the A Register will be placed in the Z position.

Subtract from B 1.0 SBB W BF

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the operation treats the $C(A)_{1-32}$ and the $C(B)_{1-32}$, S as a 64-bit minuend (with the sign of B), replaces the contents of the Z position with a 0, subtracts algebraically the C(W)to form a 65-bit remainder, and replaces the $C(A)_{Z, 1-32}$ and the $C(B)_{1-32, S}$ with the result. The sign of A is replaced by the sign of B. The C(W) are unchanged. The Overflow Indicator is not turned on if a carry from position 1 in the A Register occurs but said carry does enter the Z position.

Multiply

17.0 MPW W E7

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(D) are replaced with the C(W) and the C(A) are replaced with zeros. Then, the C(B) are multiplied by the C(D) and the 64-bit product placed in the A and B Registers with the most significant part in the A Register. The algebraic sign of the product is placed in both the A and B Registers. Overflow indication is not possible on this instruction and the Z position will contain a zero.

Multiply by D 17.0 MPD E5

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(A) are replaced with zeros, the C(B) are multiplied by the C(D) and the 64-bit product placed in the A and B Registers with the most significant part in the A Register. The algebraic sign of the product is placed in both the A and B Registers. Overflow indication is not possible on this instruction and the Z position will contain a zero. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Multiply and Add 17.0 MPA W E3

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(D) are replaced with the C(W), the C(B) are multiplied by the C(D), the sign of A is replaced by the sign of the product, and the C(A) added algebraically to the least significant half of the 64-bit product. The result replaces the C(A) and C(B) with the most significant part in the A Register. The algebraic sign of the result is placed in both the A and B Registers. Overflow indication is not possible on this instruction and the Z position will contain a zero.

Multiply by D and Add 17.0 MDA EI

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(B) are multiplied by the C(D), the sign of A is replaced by the sign of the product, and the C(A) added algebraically to the least significant half of the 64-bit product. The result replaces the C(A) and the C(B) with the most significant part in the A Register. The algebraic sign of the result is placed in both the A and B Registers. Overflow indication is not possible on this instruction and the Z position will contain a zero. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Round

1.0 RND 22

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm buzzer 2; if OFF, position 1 of the B Register is tested for a 1. If it contains a 1, the magnitude of the C(A) is increased by 1 in position 32. If position 1 of the B Register contains a zero, the C(A) are not altered. Overflow indication is possible and a carry from position 1 of the A Register enters the Z position. The contents of the B Register are not altered.

Divide

17.0 DVW W EF

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(A) are replaced with zeros, the C(D) are replaced with the C(W), and the contents of the A and B Registers are treated as a 64-bit dividend (Z position excluded) with the sign of the B Register. The new C(D) are examined for a zero divisor. If zero, the Overflow Indicator is turned ON and the division is not performed. If nonzero, the contents of the Z position are replaced with a 0, the dividend in the A and B Registers is divided algebraically by the C(D), the quotient (with its algebraic sign) placed in the B Register, and the remainder with the sign of the dividend is placed in the A Register. Overflow indication is possible only if the D Register contains a zero divisor. Whether or not the division is performed, the divisor is left in the D Register.

Divide by D 17.0 DVD ED

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(A) are replaced with zeros, and the contents of the A and B Registers are treated as a 64-bit dividend (Z position excluded) with the sign of the B Register. The C(D) are examined for a zero divisor. If zero, the Overflow Indicator is turned ON and the division is not performed. If non-zero, the contents of the Z position are replaced with a 0, the dividend in the A and B Registers is divided algebraically by the C(D), the quotient (with its algebraic sign) placed in the B Register, and the remainder with the sign of the dividend placed in the A Register. Overflow indication is possible only if the D Register contains a zero divisor. Whether or not the division is performed, the divisor is left in the D Register. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Divide Double Length 17.0 DDW W EB

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the C(D) are replaced with the C(W), and the contents of the A and B Registers are treated as a 64-bit dividend (Z position excluded) with the sign of the B Register. If $|C(A)_{1-32}| \ge |C(D)|$ or if the D Register contains a zero divisor, the Overflow Indicator is turned ON and the division is not performed.

If none of the above error conditions occur, the content of the Z position is replaced with a 0 and the division is performed. The quotient (with its algebraic sign) is placed in the B Register and the remainder with the sign of the dividend is placed in the A Register. Overflow indication is possible under the conditions described above. Whether or not the division is performed, the divisor is left in the D Register.

Divide Double Length by D 17.0 DDD -- E9

The status of the Overflow Indicator is tested: If ON, this instruction is not executed and the machine sounds the alarm 2 buzzer; if OFF, the contents of the A and B Registers are treated as a 64-bit dividend (Z position excluded) with the sign of the B Register. If $|C(A)_{1-32}| \leq |C(D)_{1-32}|$ or if the D Register contains a zero divisor, the Overflow Indicator is turned ON and the division is not performed.

If none of the above error conditions occur, the content of the Z position is replaced with a 0, and the division is performed. The quotient (with its algebraic sign) is placed in the B Register and the remainder with the sign of the dividend is placed in the A Register. Overflow indication is possible under the conditions described above. Whether or not the division is performed, the divisor is left in the D Register. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Load A from W 1.0 LAW W 79

The C(W) replace the C(A) and a zero is placed in the Z position. The C(W)remain unchanged.

Load A from M 9.0 LAM M B5

The $C(M)_{mod 32}$ replaces the C(A) and

a zero is placed in the Z position. The C(M) remain unchanged. At least 34 milliseconds (2 drum revolutions) must be allowed between this instruction and any preceding Copy instruction except one which copies information into channel M (Channel No. 00).

Load A from B 1.0 LAB -- 32

The C(A) are replaced with the C(B)and a zero is placed in the Z position. The C(B) remain unchanged. The address part of this instruction is not examined, thus, this instruction may be doubled if desired.

Load A from D 1.0 LAD -- 38

The C(A) are replaced with the C(D) and a zero is placed in the Z position.

The C(D) remain unchanged. The address part of this instruction is not examined, thus, this instruction may be doubled if desired.

Load A from E 1.0 LAE -- 34

The $C(A)_{1-16}$ are replaced with the $C(E)_{1-16}$. The $C(A)_{17-32, S}$ are left unchanged, and the Z position is filled with a zero. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Exchange A and B 1.0 XAB -- 30

The C(A) and the C(B) are exchanged and a zero is placed in the Z position. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Exchange A and D 1.0 XAD -- 3A

The C(A) and the C(D) are exchanged and a zero is placed in the Z position. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Exchange A and E 1.0 XAE -- 36

The $C(A)_{1-16}$ and the $C(E)_{1-16}$ are exchanged. The $C(A)_{17-32}$ are left unchanged, the Z position is filled with a zero, and the sign of the A Register made positive. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Exchange A and W 1.0 XAW W 69

The C(A) and C(W) are exchanged and a zero is placed in the Z position.

Store A 1.0 SAW W 49

The $C(W)_{1-32, S}$ are replaced with the $C(A)_{1-32, S}$. The C(A) remain unchanged.

Place Address in A 1.0 PAA W 6D

If $W \leq (7F)_{16}$, the C(A)₉₋₁₆ are replaced with the C(W)₉₋₁₆; if $W \gg (80)_{16}$, the C(A)₂₅₋₃₂ are replaced with the C(W)₂₅₋₃₂. The remaining bits of C(W) and C(A) including the sign and Z positions are not affected.

Place Half-Word in A 1.0 PHA W 6F

If $W \leq (7F)_{16}$, the C(A)₁₋₁₆ are replaced with the C(W)₁₋₁₆; if $W \geq (80)_{16}$, the C(A)₁₇₋₃₂ are replaced with the C(W)₁₇₋₃₂. The C(W) and the remaining bits of C(A) including the sign and Z positions are not affected.

Store Address from A 1.0 SAA W 4D

If $W \leq (7F)_{16}$, the $C(W)_{9-16}$ are replaced with the $C(A)_{9-16}$; if $W \geq (80)_{16}$, the $C(W)_{25-32}$ are replaced with the $C(A)_{25-32}$. The C(A) including the sign and Z positions and the remaining bits of C(W) are not changed.

Store Half-Word from A 1.0 SHA W 4F

If $W \leq (7F)_{16}$, the $C(W)_{1-16}$ are replaced with the $C(A)_{1-16}$; if $W \geq (80)_{16}$, the $C(W)_{17-32}$ are replaced with the $C(A)_{17-32}$. The C(A) including the sign and Z positions and the remaining bits of W are not affected.

$\frac{\text{Load B}}{1.0 \text{ LBW } 41}$

The C(B) are replaced with the C(W). The C(W) are not affected.

Store B 1.0 SBW C5

The C(W) are replaced with the C(B). The C(B) are not affected.

Load D 1.0 LDW W 5B

The C(D) are replaced with the C(W). The C(W) are not affected.

Store D 1.0 SDW W C7

The C(W) are replaced by the C(D). The C(D) are not affected.

Load E 1.0 LEW W 57

The $C(E)_{1-16}$ are replaced with the $C(W)_{1-16}$. The C(W) are not affected.

Store E 1.0 SEW W C3

The $C(W)_{1-16}$ are replaced with the $C(E)_{1-16}$. The remaining bits of C(W) and the C(E) are not affected.

$\frac{\text{Clear A}}{1.0 \text{ CLA } 28}$

The $C(A)_{1-32}$ and the Z position are replaced with zeros and the sign of the A Register made positive. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Change Sign 1.0 CHS -- 2E

If the sign bit of the A Register is positive, it is made negative, and vice versa. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Set Sign Plus 1.0 SSP -- 2C

The sign bit of the A Register is made positive. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Complement A 1.0 CPL -- 3E

All zeros are replaced by ones and vice versa in the $C(A)_{1-32}$, S. The Z position is filled with a zero. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

LOGICAL AND CONTROL OPERATIONS

Extract 1.0 EXT W 75

Each bit of the $C(A)_{1-32, S}$ is compared with the corresponding bit of $C(W)_{1-32, S}$. When both bits are ones, the corresponding bit in the A Register is left unaltered (remains a one). However, when either of the bits compared is zero, the corresponding bit in the A Register is replaced with a zero. The Z position is filled with a zero. The C(W) are not affected.

Extract with D Mask 1.0 EXD W 71

Each bit of the $C(A)_{1-32, S}$ is compared with the corresponding bit of $C(D)_{1-32, S}$. When the bit in the D Register is a one,

the corresponding bit in the A Register is a one, is replaced by the bit in W; when the bit in the D Register is a zero, the corresponding bit in the A Register is not changed. The Z position is filled with a zero. The C(D) and C(W) are not affected. Change Overflow Indicator 1.0 COV -- 02

If the Overflow Indicator is ON, turn it OFF and vice versa. The address part of this instruction is not examined; thus, this instruction may be doubled if desired.

Compare Magnitude 1.0 COM -- 51

The status of the Overflow Indicator is tested; if ON, this instruction causes the machine to stop; if OFF, the C(A) and C(W) are compared: If $|C(A)_{1-32}| \leq |C(W)_{1-32}|$, this instruction causes the Overflow Indicator to be turned ON. If $|C(A)_{1-32}| \geq |C(W)_{1-32}|$, the Overflow Indicator remains OFF.

No Operation 1.0 NOP -- 00

The machine takes the next instruction in sequence. (Although no operation is performed, the Address Register will contain the <u>effective</u> address; i.e., after address modification by the E Register has been performed.)

Halt and Transfer 1.0 HTR W 1B

If the START-NORMAL switch on the Control Panel is in the NORMAL position, the machine will stop until this switch is thrown to the START position, after which the machine will obtain the next instruction from location W and proceed from there. If this switch is in the START position, the machine will not stop but, instead, will obtain the next instruction from location W and proceed from there.

Transfer 1.0 TRA W 11

The machine takes the next instruction from location W and proceeds from there.

Transfer on Overflow 1.0 TOV W IF

If the Overflow Indicator is ON as the result of a previous operation, the indicator is turned OFF and the machine takes the next instruction from location W and proceeds from there. If the indicator is OFF, the machine takes the next instruction in sequence.

Transfer on Non-Zero 1.0 TNZ W 19

If the $C(A)_{1-32}$ are non-zero, the machine takes the next instruction from location W and proceeds from there. If the $C(A)_{1-32}$ are zero, the machine takes the next instruction in sequence. Note that the Z and sign positions are not examined.

Transfer on Less than Zero 1.0 TLZ W 1D

If the $C(A)_{1-32,S}$ are non-zero and negative, the machine takes the next instruction from location W and proceeds from there. If the $C(A)_{1-32,S}$ are zero or positive, the machine takes the next instruction in sequence. Note the Z position is not examined.

Transfer on Index 1.0 TIX W 17

The C(E) are decreased by 1 in the least significant position and the result placed in the E Register, after which the contents of this register are tested for the presence of a zero result. If nonzero, the machine takes its next instruction from location W and proceeds from there; if zero, the machine takes the next instruction in the normal sequence. The contents of the other arithmetic registers are not affected. Therefore, the E Register may be used as an index register.

Transfer on Switch One 1.0 TSA W 13

The status of jump switch one is examined. If in the JUMP position, the machine obtains the next instruction from location W and proceeds from there; if in the NORMAL position, the machine takes the next instruction in sequence.

Transfer on Switch Two 1.0 TSB W 15

The status of jump switch two is examined. If in the JUMP position, the machine obtains the next instruction from location W and proceeds from there; if in the NORMAL position, the machine takes the next instruction in sequence.

Shifting Instructions

Shift instructions are used to move the contents of the A (or A and B) Register(s) to the left or right of their original positions. The address syllable is used to indicate the number of positions to be shifted. When a shift instruction is executed, the positions left is cant in the registers are automatically filled with zeros. When a shift instruction is interpreted, the extent of the shift is determined from the six least significant bits of the address syllable. These bits, are, therefore, interpreted modulo 64. Multiples of $(40)_{16}$

used in the address syllable of a shift instruction produce no shift, as the address is interpreted as zero. Thus, addresses greater than $(40)_{16}$ will produce shifts

ranging between hexadecimal 91 and 3F. Hence, the maximum number of shifts is 63 (hexadecimal 3F) bits.

Example 1.	8 modulo 64 = 8 because 8 = 0(64)+8
Example 2.	63 modulo 64 = 63 63 = 0(64)+63
Example 3.	128 modulo 64 = 0 128 = 2(64)+0

Example 4. 136 modulo 64 = 8136 = 2(64)+8

Shifting C(A), C(B), or C(A and B) has the same effect as multiplying C(A), C(B), or C(A and B) by a power of 2 (as long as no significant bits are lost).

Example 1: Shifting a binary number in the B Register two positions to the left has the same effect as multiplying that number by 2^2 . Bits shifted left from position 1 of the B Register enter position 32 of the A Register on the LLS operation.

Example 2: Shifting a binary number in the A Register 30 positions to the right has the same effect as multiplying that number by 2^{-30} . Bits leaving position 32 of the A Register enter position 1 of the B Register on the LRS operation.

A Right Shift 0.5 ARS W A5

The $C(A)_{Z, 1-32}$ are shifted right W modulo 64 positions. Bits shifted past position 32 of the A Register are lost. Positions made vacant are filled with zeros. The sign position is not affected. If $W_{mod 64} = 0$, the $C(A)_{Z, 1-32, S}$ are not affected.

A Left Shift 0.5 ALS W A7

The C(A) $_{1-32}$ are shifted left W modulo

64 positions. Bits shifted past position 1 of the A Register are lost. There is no overflow indication and if there is a bit in the Z position it will be lost, unless $W_{mod \ 64} = 0$, in which case the contents of the Z position are not affected. Positions made vacant are filled with zeros. The sign position is not affected.

Long Right Shift 0.5 LRS W A1

The C(A)_{Z, 1-32} and C(B)₁₋₃₂ are

shifted right W modulo 64 positions. Bits shifted past position 32 in the A Register enter position 1 of the B Register. Bits shifted past position 32 of the B Register are lost. The contents of the Z position will be shifted into position 1 in the A Register and positions made vacant (including the Z position) are filled with zeros; however, if $W_{mod 64} = 0$, the $C(A)_{Z, 1-32, S}$ are not affected.

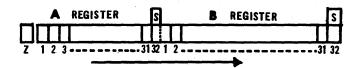


Figure 20.

The C(A)₁₋₃₂ and C(B)₁₋₃₂ are shifted left W modulo 64 positions. Bits shifted past position 1 of the B Register enter position 32 of the A Register. Bits shifted past position 1 of the A Register are lost. There is no overflow indication and if there is a bit in the Z position it will be lost unless $W_{mod 64} = 0$, in which case, the C(A)_Z, 1-32, S are not affected. Positions made vacant are filled with zeros.

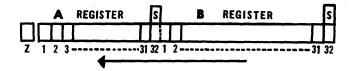


Figure 21.

Shift and Count 1.0 SCT -- AB

If position 1 of the A Register contains a 1, or if the $C(A)_{1-32}$ and C(B)are all zeros, a minus zero replaces the C(D). If position 1 of the A Register contains a 0 but there is at least one nonzero bit in $C(A)_{1-32}$ or C(B), the A and B Registers are shifted left until a 1 bit appears in position 1 of the A Register and the positive value of the number of shifts replaces the C(D). The contents of the sign position of the B Register replace the contents of the sign position of the A Register.

COPY OPERATIONS

Copy instructions are used to copy an entire channel of 32 full-words from a General Storage channel to a Working Storage channel or from a Working Storage channel to a General Storage channel. It should be noted that it is possible to execute the instruction contained in the right half of an instruction word, when the left half contains a copy instruction to the same working channel in which the given instruction word falls, since the right half word is previously placed in the right half of the E Register.

Copy to Working Storage I 91.0 CTA W 81

The contents of General Storage channel W replace the contents of Working Storage I. The contents of General Storage channel W are not changed.

Copy to Working Storage II 91.0 CTB W 83

The contents of General Storage channel W replace the contents of Working Storage II. The contents of General Storage channel W are not changed.

Copy to Working Storage III 91.0 CTC W 85

The contents of General Storage channel W replace the contents of Working Storage III. The contents of General Storage channel W are not changed.

Copy to Working Storage IV 91.0 CTD W 87

The contents of General Storage channel W replace the contents of Working Storage IV. The contents of General Storage channel W are not changed. Copy from Working Storage I 107.0 CFA W 89

The contents of Working Storage I replace the contents of General Storage channel W. The contents of Working Storage I are not changed.

Copy from Working Storage II 107.0 CFB W 8B

The contents of Working Storage II replace the contents of General Storage channel W. The contents of Working Storage II are not changed.

Copy from Working Storage III 107.0 CFC W 8D

The contents of Working Storage III replace the contents of General Storage channel W. The contents of Working Storage III are not changed.

Copy from Working Storage IV 107.0 CFD W 8F

The contents of Working Storage IV replace the contents of General Storage channel W. The contents of Working Storage IV are not changed.

INPUT-OUTPUT OPERATIONS

The most significant bit in the address part of the following Flexowriter inputoutput instructions is used to designate whether the high-speed reader, the highspeed punch, or the Flexowriter is to be used as the input-output device. If this bit position contains a 0, the high-speed reader or punch will be used if this unit is connected to the computer. If the most significant bit of the address part is a 1, or, if the appropriate high-speed unit is not connected to the computer, the computer will use the Flexowriter as the input-output device.

Hexadecimal (or Decimal) Input -- HXI W F1

Hexadecimal input is indicated by placing a 0 in the second most significant bit position of the address part of this instruction; decimal input is indicated by placing a 1 in the second most significant bit position. This instruction causes the contents of the A Register to be shifted left 4 binary positions and the $C(A)_{29-32}$ to be replaced with one hexadecimal character (4 bits) for hexadecimal input; or to multiply the contents of the A Register by 10 and to add the 4 least significant bits of the character read to this product which then replaces the contents of the A Register, for decimal input. For both types of input, this operation is repeated until [[W-1] mod 8 +1] inputs have been supplied after which the Select Lite is turned OFF and the machine resumes high-speed operations. The sign and Z positions in the A Register are not changed.

Hexadecimal (or Decimal) Output -- HXO W F5

Hexadecimal output is indicated by placing a 0 in the second most significant bit position of the address part of this instruction; decimal output is indicated by placing a 1 in the second most significant bit position. This instruction causes the Flexowriter to print (or punch) the hexadecimal character located in the $C(A)_{1-4}$ and to shift the A Register left 4 positions for hexadecimal output; or to multiply the $C(\overline{A})_{1-32}$ by 10, to print (or punch) a decimal character formed from the integral part of the product, and to replace the $C(\bar{A})_{1-32}$ with the fractional part of the product. For both types of output, this operation is repeated $[(W-1)_{mod 8} + 1]$ times. The sign and Z positions in the A Register are not changed.

Number Output -- NMO -- DD

This instruction causes the Flexo-

writer to print (or punch) the hexadecimal character located in the $C(A)_{29-32}$.

The C(A) including sign and Z positions are not changed. The address part of this word is not examined, and, since the operation code is odd, this instruction may be doubled only when used as the address part of a doubled instruction.

Sign Input -- SNI -- F9

This instruction replaces the $C(\mathbb{A})_{1-32}$

with zeros and replaces the sign position with a 0 or 1 (minus or plus) according to the character received from the Flexowriter. The space bar is used for plus and the minus key for minus indications; however, any Flexowriter character code which has a punch in position 4 may be used in place of the minus key. This includes the characters;

> abcdefjyzABCDEFJYZ89 $\Sigma(-|\$., *\Delta;$ and the stop, lower case, color shift, code delete, tabulate, carriage return, and back space codes.

Any Flexowriter character code which has no punch in position 4 may be used in place of the space bar. This includes the characters:

> ghiklmnopqrstuvwx GHIKLMNOPQRSTUVWX 12345670°"+=%?!)

The Select Lite on the Flexowriter is turned ON by this instruction and the machine waits until an input has been supplied, after which the Select Lite is turned OFF and the machine resumes high-speed operations. Note that the Z position of the A Register is not changed.

Sign Output -- SNO -- D5

If the sign of the A Register is positive, a space code is transmitted to the Flexowriter; if the sign of the A Register is negative, a minus code is transmitted to the Flexowriter. The C(A) including the sign and Z positions are not changed.

Alphabetic Input -- ALI W F3

This instruction causes the $C(A)_{2-32}$ to be shifted left 6 binary positions and replaces the $C(A)_{26-31}$ with one alphabetic character (6 bits), and causes this operation to be repeated $[(W-1)_{mod 8} + 1]$ times. Note that if this instruction is repeated more than 5 times, all but the last 5 alphabetic characters will be lost. The Select Lite on the Flexowriter is turned ON by this instruction and the machine waits until [[W-1] mod 8 +1] inputs have been supplied, after which the Select Lite is turned OFF and the machine resumes high-speed operation. The sign and Z positions are not changed but the $C(A)_{32}$ is replaced with the $C(A)_{31}$ after the last alphabetic character has been read.

Alphabetic Output -- ALO W F7

This instruction replaces $C(A)_{32}$ with a zero, causes the Flexowriter to print (or punch) the alphabetic character located in the $C(A)_{2-7}$, the contents of the A Register to be shifted left 6 positions, and causes this operation to be repeated $[(W-1)_{mod 8} + 1]$ times. The bit positions made vacant are filled with zeros. The $C(A)_{Z, 1, S}$ are not changed.

The following instructions are used to control punching and typing functions on the Flexowriter according to the setting of the two switches on the Flexowriter which are labeled "TYPE" and "PUNCH". Two flip-flops, which are known as the Type and Punch flip-flops, operate in conjunction with these switches. The status of these flip-flops may be affected by executing one of the instructions TYP, PNH, BTP, or NTP (9B, 9D, 9F, or 99) or by depressing the Clear switch on the Flexowriter or by placing the Normal - Test - Clear switch on the Control Panel in the CLEAR position. Operating either of these switches causes the Type flip-flop to be turned ON, and the Punch flip-flop to be turned OFF.

Placing the Type and Punch switches on the Flexowriter in the COMPUTE position permits the computer to select the desired output according to the setting of the Type and Punch flip-flops which are controlled by the instructions TYP, PNH, BTP, and NTP (9B, 9D, 9F, and 99) which are described below.

Placing the Type and Punch switches on the Flexowriter in the OFF position will result in the loss of printed or punched information transmitted to the Flexowriter.

Placing the Type and Punch switches on the Flexowriter in the TYPE or PUNCH positions will cause all information transmitted to the Flexowriter to be typed or punched, accordingly, without regard to the setting of the Type and Punch flipflops.

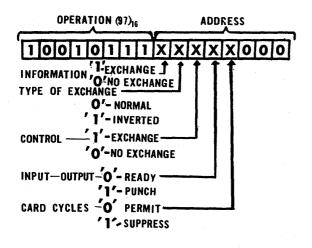
<u>Type</u> 24.0 TYP -- 9B

This instruction causes the Type flipflop to be turned ON and the Punch flipflop to be turned OFF.

Punch 24.0 PNH -- 9D

This instruction causes the Punch flipflop to be turned ON and the Type flipflop to be turned OFF.

Both Type and Punch 24.0 BTP -- 9F


This instruction causes both the Type and the Punch flip-flops to be turned ON. Neither Type nor Punch 24.0 NTP -- 99

This instruction causes both the Type and the Punch flip-flops to be turned OFF.

Punched Cards -- PCD W 97

This instruction is used to control the input and output of information from IBM punched card equipment. This is accomplished by means of a "buffer storage", access to which is provided from Working Storage IV. Buffer storage is divided into two half-channels of 16 words each which are called the CONTROL and IN-FORMATION lines, and refer, respectively, to the first and second half-channels of the buffer storage. Either, or both, of these lines may be exchanged with the first or second half-channel of Working Storage IV by placing a 0 or 1 in the appropriate bit position in the address part of this instruction, as shown in Figure 22.

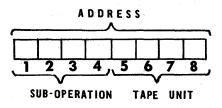
Figure 22.

The CONTROL line in the buffer is used to indicate both the format and the type of conversion desired (decimal, hexadecimal, or alphabetic) for data as it appears in the INFORMATION line of the buffer. If the contents of a half-channel of Working Storage IV are to be exchanged with the INFORMATION or CONTROL lines in the buffer, a l is placed in bit position l or 3 of the address part of this instruction as shown in Figure 22. If a 0 is placed in these positions, no exchange is made with the corresponding line in the buffer.

A normal or inverted exchange is indicated by a 0 or 1, respectively, in bit position 2 of the address part of this instruction, the half-channel(s) affected being indicated by contents of bit positions 1 and 3 of the address part. A normal exchange is one in which either the first half-channel in Working Channel IV is exchanged with the CONTROL line in the buffer or the second half-channel in Working Channel IV is exchanged with the INFORMATION line in the buffer. An inverted exchange is one in which either the second half-channel in Working Channel IV is exchanged with the CONTROL line in the buffer or the first half-channel in Working Channel IV is exchanged with the INFORMATION line in the buffer.

If bit position 4 of the address part of this instruction contains a 0, the card reader is selected; if this bit position contains a 1, the card punch is selected.

Bit position 5 of the address part of this instruction is used to permit or suppress a card cycle when this bit position contains a 0 or 1, respectively. Thus, the buffer may be used as an additional rapid access storage channel, whether or not the punched card equipment is connected to the computer. Note however, that data placed in the INFORMATION line will be converted according to codes placed in the CONTROL line. This permits rapid binary - decimal conversion.


Bit positions 6, 7, and 8 should contain zeros.

Since 5 bit positions of the address part of this instruction are used to indicate the variations of this instruction, a total of 32 different machine operations may be obtained. It should be noted that the contents of the indicated half-channels are exchanged before conversion or card cycles occur. Hence, information from either Working Channel IV or the buffer may be punched on the same card cycle; however, information read into the buffer on the previous card cycle appears in Working Channel IV after the exchange.

In order to operate the punched card equipment at maximum speed, processing of the information placed in Working Channel IV is accomplished during the conversion cycle before the card reaches the "9-time" position. Since a change in format requires exchange with the CON-TROL line, a blank card is usually placed at the end of each file of cards.

MAGNETIC TAPE OPERATIONS

The following instructions are used for control of the magnetic tape buffer and of individual tape units. Bit positions 1-4 of the address part of these instructions are used to indicate the desired sub-operation in accordance with the hexadecimal codes given in the description of the instruction. See Figure 23. When it is necessary to specify an individual tape unit, bit positions 5-8 are used for this purpose. Thus, as many as 16 tape units may be used which are numbered, hexadecimally, from 0 to F.

Figure 23.

Each individual tape unit contains a Comparing Register which is used for searching operations. The C(A) replace the contents of this register before

searching operations are started. In the explanation of instructions which follows, the first word in each tape record is indicated by the symbol W_1 . The contents

of this word are compared with the contents of the Comparing Register during searching operations.

Magnetic Tape Status 1.0 MTS W 91

This instruction is used to prepare the unit to read or to write, to select the searching mode and cause searching operations to be started, to test for completion of searching operations, or to rewind a tape to the load point.

Searching operations cause the contents of the A Register to be stored in the CR (Comparing Register) of the designated tape unit, after which the computer interlocks are released. While the computer continues to execute instructions in their normal sequence, the tape moves in a forward direction until the desired tape record is located. In the following explanation, the symbol W₁ is

used to represent the first word in a given tape record. Two searching modes are available:

Mode 1. The tape unit searches for the tape record until $C(W_1)_{1-32} \gtrsim C(CR)_{1-32}$. Note that the sign positions are not compared.

Mode 2. The tape unit searches for the tape record until $C(W_1)_{29-32} = C(CR)_{29-32}$.

The address part of this instruction contains the designated tape unit and the desired operation as shown in Figure 23. Bit positions 5-8 of the address part of this instruction are used to indicate the desired tape unit. Bit positions 1-4 of the address part of this instruction are used to indicate the desired sub-operation, according to the following hexadecimal code:

- "0" -- Rewind.
- "l" -- Set unit to read status.
- "2" -- Search in mode 1 and set to read status.
- "3" -- Search in mode 2 and set to read status.
- "4" -- Test for completion of searching operation. The status of the Overflow Indicator lite is tested: If ON, the computer sounds the alarm 2 buzzer; if OFF, the status of the tape unit is tested: If the tape unit is still searching, the Overflow Indicator lite is turned ON and the computer takes the next instruction in sequence.
- "5" -- Set unit to write status.
- "6" -- Search in mode 1 and set to write status.
- "7" -- Search in mode 2 and set to write status.

It should be carefully noted that all the above codes except 4 are executed immediately by the individual tape unit and overrule any previous MTS instruction which the unit may be in process of executing. However, this overrule action will not interrupt read-write operations being executed; instead, the computer will wait until completion of the MTC instruction before execution of a MTS instruction.

Magnetic Tape Copy 1.0 MTC W 93

This instruction causes information to be read from a tape and copied into the magnetic tape buffer, or to be copied from the buffer and written on the tape. Before this instruction is executed, the status of the tape unit is tested and compared with the operation specified in the address part of this instruction. Thus, when reading operations are attempted, the tape unit should be in READ status, and for writing operations, the tape unit should be in WRITE status. If the tape unit is in the wrong status for the given operation, the given MTC instruction cannot be executed, the machine sounds the alarm 2 buzzer and stops. If the alarm switch 2 is placed in the RESTORE position, the machine will execute the next instruction in the normal sequence. It should be noted that the tape unit is set to READ status after a rewind operation. This rewind operation may be caused by execution of the MTS operation, by the automatic rewinding of the tape when reaching the physical end of the tape, or by the manual operation of the control switches located on the tape transport.

Bit positions 5-8 of the address part of this instruction are used to indicate the desired tape unit. See Figure 23.

Bit positions 1-4 of the address part of this instruction are used to indicate the desired sub-operation, according to the following hexadecimal code:

- "l" -- Read previous record into the buffer.
- "2" -- Read next record into the buffer.
- "3" -- Read same record into the buffer.
- "5" -- Write previous record from buffer.
- "6" -- Write next record from the buffer.
- "7" -- Write same record from the buffer.

Magnetic Tape Exchange 16.0 MTX W 95

This instruction causes the contents of Working Storage IV to be copied into the magnetic tape buffer, or the contents of the buffer to be copied into Working Storage IV, or causes the contents of the buffer and Working Storage IV to be exchanged.

Bit positions 5-8 of the address part of this instruction are not examined.

Bit positions 1-4 of the address part are used to indicate the desired sub-operation, according to the following hexadecimal codes:

- "1" -- The contents of the buffer replace the contents of Working Storage IV. The contents of the buffer are not changed.
- "2" -- The contents of Working Storage IV replace the contents of the buffer. The contents of Working Storage IV are not changed.
- "3" -- The contents of Working Storage IV and the buffer are exchanged.

ADDRESS LOCATIONS

Each half-word in the four Working Storage channels is addressable, the addresses 00 to 7F being used for left halfword locations and 80 to FF used for right half-word locations. The address locations contained in each of the Working Storage channels are as follows:

- 00 to 1F and 80 to 9F --Working Storage I
- 20 to 3F and A0 to BF --Working Storage II
- 40 to 5F and C0 to DF --Working Storage III
- 60 to 7F and E0 to FF --Working Storage IV

Normal sequencing of instructions is in half-word increments from the left to the right half of an instruction word and, then, to the left half of the next instruction word in sequence as shown in Figure 24 which illustrates the normal sequence for Working Channel I. Note that the instruction which follows 80 is 04 (not 01), that 01 follows 9C, and that 00 follows 9F. Normal address sequencing in the remaining Working Storage channels is similar.

ADDRESS MODIFICATION

Automatic address modification may be achieved when using instructions whose hexadecimal instruction codes are odd numbers. This is accomplished by using a code obtained by subtracting l from the instruction code. When the instruction is executed, the literal address is added to the 2's complement of the contents of the E Register to determine an effective address which is placed in the Address Register and is used for the execution of the instruction.

For example, assume that the ADD instruction is to be used and that the E Register contains the hexadecimal number 0001. The hexadecimal instruction code for the ADD instruction is 61 which would be written as 60 together with an address. Thus, the instruction 6024 with the literal address 24 would be added to the 2's complement of the E Register (which, in this example, is FFFF), thereby obtaining the effective address 23. Hence, when the E Register contains 0001, the instruction 6024 is executed in the same manner as if the instruction 6123 had been given. The distinct advantage to such indexing operations is the manner in which address modification may be used to select one quantity from a set, the elements of which are stored in successive word locations. An example of such usage is given in the section titled "Symbolic Programming".

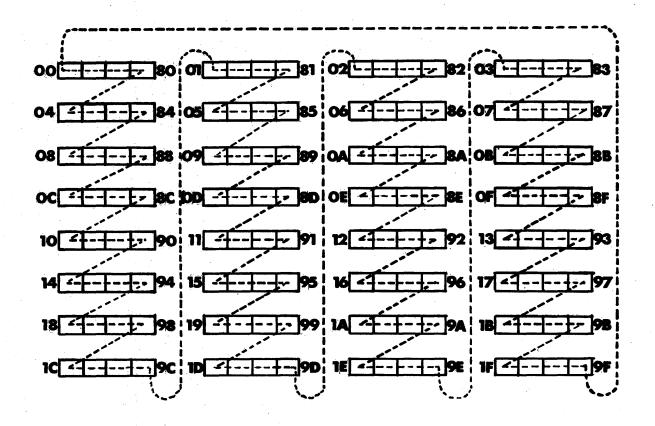


Figure 24.

INSTRUCTION DOUBLING

Two instructions may be doubled to form a single half-word if the first hexadecimal instruction code is an even num-This is accomplished by using a ber. code obtained by adding 1 to the instruction code and placing the instruction code for the second command in the address part of the half-word. Thus, to clear the A Register and exchange the A and B Registers (CLA and XAB) the instructions 28 and 30 are combined to form the half-word 2930. Note that no address part is required for the first command of this doubled instruction and that if doubling of instructions is attempted in which the second instruction requires an address, the execution of the second command will require using the same address part as the instruction code of the second command. Thus, if the instructions CLA

and ADD are doubled in one half-word, the machine code 2961 is obtained. This instruction, when executed, would have the same effect as giving the instructions 2900 and 6161 (CLA and ADD 61). As such doubling is only rarely used by programmers, it is advisable to avoid such practices; indeed, an assembly program should provide for detection of such practices and indicate such coding as an error.

TIMING

The time required to execute instructions is variable and is not only dependent on the specific instruction being executed, but may vary with the choice of the address part of this instruction (if required by the instruction). The following points must be considered in any discussion of instruction timing:

1. The word location at which the drum is positioned at the time of completion of the last instruction. If the current instruction is in the left side of an instruction word, the drum must turn until it is positioned to read this instruction word. If the current instruction is in the right side of an instruction word, and such word is accessible from the right side of the E Register (as the result of execution of the left instruction in the same instruction word), only one wordtime is required to transfer the contents to the instruction and address registers. If the current instruction is a right address and such word is not accessible from the right side of the E Register (as the result of a transfer instruction from some other word location), the drum must turn until it is positioned to readthis instruction word.

In all of the above cases, the minimum access time will be 0.5 milliseconds (one word-time) and the maximum, 8.0 milliseconds (16 word-times).

2. If the instruction requires reference to the contents of a word location specified in the address part of the instruction, a search is required. This search starts immediately, and, therefore, timing considerations must involve the positions of the drum at the time this action starts and at the time when it is positioned to read the word specified in the address part of the instruction. In all cases, however, access time will vary between 0.0 and 8.0 milliseconds.

3. The execution time required for an instruction, after the contents of the operand address have been obtained, is given in the Description of Instructions. See pages 19 to 34.

4. The shifting instructions require 0.5 milliseconds for each shift (modulo 64) specified in the address part of the instruction.

The transfer instructions require varying amounts of time depending upon the result of various testing operations. Maximum time for such instructions is 8.0 milliseconds.

5. Input-output instruction times are dependent upon typing skills or upon the status of punched tape and certain switches and, therefore, only minimum times may be specified for these types of instructions.

Hence, the determination of the amount of time required for the execution of a set of instructions, although computable, is somewhat complex. Such computations may be included in Symbolic Assembly Programs or similar executive programs without significant reductions in the amount of time required for other operations performed by such programs. However, certain programming rules are recommended to permit reduction in the time required for the execution of instructions. These rules produce near-optimum times for execution of instructions.

1. If an instruction appears in the lefthalf of an instruction word, the optimum address is one whose last hexadecimal digit is one greater than the location address of either the left or right half of the instruction word. Thus, for location 05, the optimum addresses are 06, 86, 16, 96, 26, A6, 36, B6, 46, C6, 56, D6, 66, E6, 76, and F6.

2. If an optimum address is used for the left half instruction, the optimum address for the right half instruction is one whose last hexadecimal digit is three greater than the location address of either the left or right half of the instruction word.

3. If a non-optimum address is used for the left half instruction, the optimum address for the right half instruction is one whose last hexadecimal digit is at least two greater than the effective operand address contained in the left instruction or a word location whose last hexadecimal digit is the same as this sum.

4. Transfer instructions are exceptions to the above rules. For left half instructions, the optimum address is one whose last hexadecimal digit is three greater than the location address of either the left or right half of the instruction word, providing that the transfer of control occurs. For right-half instructions, the optimum address is four greater than the effective operand address contained in the left instruction or a word location whose last hexadecimal digit is the same as this sum, provided that the transfer of control occurs. When a transfer of control does not occur, the instruction is as near-optimum as can be obtained.

5. If the optimum address determined by rules 1 to 4 above does not yield the address location of a word which may be used in the programming of the problem, successive word locations from the optimum address may be used with the loss of one word time (0.5 milliseconds) for each word after the optimum location. The worst possible location selected when time considerations are paramount is the word location which precedes the optimum location. Selection of this address will result in no less than 8.0 milliseconds searching time, since the drum must make one half-revolution before the chosen location is accessible.

tain modifications) is the primary inputoutput medium for the ALWAC III-E and consists of three main parts: a keyboard, a paper tape reader, and a paper tape punch. This reading (or punching) of paper tape operates at a maximum speed of 10 characters per second (100 milliseconds per character). When a printed copy is produced by the Flexowriter, a maximum speed of 8 characters per second (120 milliseconds per character) is Various switches located on possible. the Flexowriter permit the operator to select the particular type of output desired. In addition, certain switch settings permit selection of printing and punching operations to be placed under program control.

Of the available 51 key lever positions, 42 levers are used for characters, 7 levers are used for tabulation, color shift, back space, carriage return, upper case shift, and space, and 3 levers are used for the clear, stop, and delete controls. The keyboard is similar to that of most electric typewriters; however, the characters on certain keys have been replaced with some of the more common mathematical symbols. The keys used for hexadecimal input are made of red plastic for easy recognition. See Figure 25.

FLEXOWRITER

The Flexowriter (Model FL with cer-



Figure 25.

Since the same code is used for characters in the upper and lower case, a total of 84 distinct printed characters is available. The shift controls are selflocking and the Flexowriter will remain in the given case until another upper or lower case shift occurs. The color shift, space, back space, carriage return, clear, code delete, and stop codes operate independently of the upper and lower case shifts.

CONTROL SWITCHES

Start Read Switch: When released after being depressed, this momentary contact switch starts the tape reader operation. By rapidly depressing and releasing this switch, the tape may be moved one code position at a time. If this switch is operated when no paper tape is in the reader, the effect is the same as pressing the Clear switch which is described below.

Stop Read Switch: This momentary contact switch is used to stop tape reading operations. In order to resume operation, the Start Read switch must be depressed. Since it is difficult to stop the paper tape manually at a particular punched code position, and, since failure to depress this switch within certain critical time limits can cause double entry of the last character read, the Start Read switch is used to stop the paper tape at the desired code position and then the Stop Read switch is depressed which will stop reading operations.

Punch On Switch: This two - position switch controls tape punching operations and, when in the DOWN position, causes each character typed to be punched also until the switch is returned to the UP position. Note that this switch controls only the punching of information which is read from the tape read station or is entered manually on the keyboard and that this switch does not control the punching of information sent from the computer.

Clear Switch: This momentary con-

trol switch corresponds to the Normal-Test - Clear switch which is located on the Control Panel and is described on page 16. Depressing and releasing the Clear switch causes the contents of General Storage channel 01 to replace the contents of Working Storage channel I and control to be transferred to word 00. A program known as the Start Routine is located in General Storage channel 01 and is used to cause input and output of programs and to transfer control to a given location in one of the four Working Storage channels.

If the Punch On switch is in the DOWN position when the Clear switch is depressed, a special character code will be punched in the tape which is known as a "clear" punch. If this character code is later read by the tape reader, the effect is the same as depressing the Clear switch.

<u>Copy Inputs Switch</u>: When this twoposition switch is in the DOWN position, each character read from the tape reader will be typed at a maximum speed of 10 characters per second; when in the UP position, information read from the tape reader is not typed and tape reading operations can proceed at a maximum speed of 10 characters per second.

Tape Feed Switch: This momentary contact switch is used to feed paper tape from the punch station and to punch feed holes which are used to guide and position the punched tape when placed in the read station. Since paper tape is supplied in unpunched rolls, it is necessary to use this switch to provide approximately three inches of feed holes which are used by the punching station to pull the paper tape past the punch dies.

<u>Code Delete Switch</u>: This momentary contact switch causes a special character code (all six positions) to be punched which will be ignored when interpreted by the reading station. Thus, this switch is used to delete unwanted information on a punched tape. Stop Code Switch: This momentary contact switch causes a special character code to be punched which will have the same effect as depressing the Stop Read switch which is described above. However, if the computer is asking for an input at the time this switch is depressed, a binary code corresponding to the special character code will be placed in the appropriate bit positions in the A Register.

Select Lite: The Select Lite is turned ON when the computer selects the Flexowriter for an input device and remains ON until the proper number of inputs is supplied from the keyboard or from the tape read station.

Computer - Off - Flexowriter Switch: This switch supplies the electrical power to the Flexowriter and determines whether the Flexowriter is to be used independently or with the computer. When in the OFF position, all electrical power to the Flexowriter is turned off and all control switches are inoperative.

When in the COMPUTE position, the Flexowriter and its associated control switches operate in conjunction with the computer and may be used to control various machine functions.

When in the FLEXOWRITER position, the computer and Flexowriter operate independently. Thus, the Flexowriter may be used to prepare punched tapes or to produce a printed copy of information which is punched on a tape without disrupting other computer functions.

Punch - Off - Compute and Type - Off-Compute Switches: These two switches are used to control punching and typing functions on the Flexowriter and operate in conjunction with two flip-flops in the computer which are known as the Type and Punch flip-flops. Placing either of these switches in the COMPUTE position permits the computer to select the desired output according to the setting of the Type and Punch flip-flops which are controlled by the instructions TYP, PNH, BTP, and NTP (9B, 9D, 9F, and 99) which are described on page 30.



Figure 26.

Placing the Type and Punch switches in the OFF positions will result in the loss of printed or punched information transmitted to the Flexowriter.

Placing the Type and Punch switches in the TYPE or PUNCH positions will cause all information transmitted to the Flexowriter to be typed or punched, accordingly, without regard to the setting of the Type and Punch flip-flops.

The proper feeding alignment of the paper tape in the reading and punching stations is shown in Figure 26. Note that small sprockets on the reading and punching stations are used to pull the tape through the mechanisms.

The keyboard will lock, preventing operation, if any of the following conditions occur:

1. The tape guide arm is not against the tape at the reading station.

2. The blank tape which feeds the punching station tears, binds, or runs out.

ALWAC III-E

FLEXOWRITER AND PUNCHED TAPE CODES

			(
	•		e Y		
•••••	a A	00 1010	• • •	Stop Code	11 1100
	ЪB	00 1011		Code Delete	10 1011
• • • •	сC	00 1100	•	Clear	
• • • •	d D	00 1101	•• •••	Upper Case Shift	10 1001
• • • •	еE	00 1110		Lower Case Shift	10 1000
	fF	00 1111	• • •	Space (See note)	00 0000
•	gG	01 0000		Back Space	10 1110
• • • •	h H	01 0001		Color Shift	10 1010
• • •	iI	01 0010	•• • ••	Carriage Return	10 1101
s ● 0 = ●	jJ	01 1111	• • • •	Tab	10 1100
• • •	k K	10 0000	• • •	1°	00 0001
•• •• •	lL	10 0001	•••	2 *	00 0010
• • • • •	m M	10 0010		3 +	00 0011
••••	n N	10 0011	•	4 =	00 0100
• • •	0 0	10 0100	•	5 %	00 0101
•• • •	pР	10 0101	• • •	6 ?	00 0110
	qQ	10 0110	•••	7 1	00 0111
••••	r R	10 0111	• • • •	8Σ	00 1000
• • •	s S	11 0010	• • • • •	9 (00 1001
••••	t T	11 0011	• • •	0) (See note)	11 0000
• •	u U	11 0100	••••	/ 1	11 0001
	v V	11 0101	•••		01 1110
	w W	11 0110		*	11 1011
•••	хX	11 0111	• • • • •	\$ ∆	11 1010
• • • •	уҮ	11 1000	••••	•	11 1111
•• ••	zΖ	11 1001	 • • •	, ;	11 1110

Note: The binary code 00 0000 when used with the ALO instruction provides the space character and with the HXO instruction provides a 0 or) character. The binary code 10 0001 which is used for the 1 and L character may be used as the number 1 when used with the HXI and HXO instructions.

Figure 27.

The punched code system uses seven punching positions (of which the position number 7 is used only for the clear code). The remaining 6 positions provide suitable combinations for the various character and control codes which are shown in Figure 27 together with the appropriate binary codes. The punching positions are numbered 7-6-1-2-3-4-5 from left to right facing the leading edge of the tape with the feed hole placed between the number 2 and 3 holes. An 8th hole position is available but is not used. Either 7/8inch or 1 inch paper tape width may be used.

HIGH-SPEED PUNCHED TAPE CONSOLE

The Punched Tape Console (see Figure 28) is designed as a high-speed inputoutput device. The unit operates at an approximate power consumption of 320 watts, with voltages supplied from the Power Supply unit of the computer.

The reader employs photo - cells to read the punched characters thus permitting the tape to move continuously during reading operations.

The effective speed of the paper tape unit during punch operations (which includes time required to copy information to and from General Storage) is 50 characters per second and during read operations is 150 characters per second. Thus, the unit is capable of punching the contents of 12 channels of memory per minute or the entire memory (256 channels) within 24 minutes. It is possible to read and store information at the rate of 35 channels per minute or the entire memory within 8 minutes. (These speeds include the programming time required for check summing and block transfer instructions.)

The same input and output commands are used with the High-Speed Punched Tape unit as with the Flexowriter; however, the most significant bit position of the address part of the instruction is examined. If the bit position contains a 1, the Flexowriter is selected as the input-output device; if the bit is a 0, the High-Speed Punched Tape unit is selected (providing the Punched Tape unit is turned ON; if it is OFF, then the Flexowriter is selected).

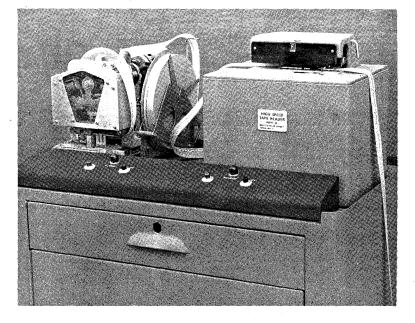


Figure 28.

CARD CONVERTER

Punched cards provide a rapid inputoutput medium because of their great flexibility. Errors are easily detected and corrected, data may be prepared on several key-punches simultaneously, and the cards collected before being processed by the computer. Manual access to files of punched cards is particularly desirable since cards can easily be separated or inserted in the file. Alphabetic, decimal, and hexadecimal numbers, quantities represented in any number system, and special symbols may be represented by appropriate combinations of punched holes in the card. Certain punch combinations are standard for punched card processing machines as is shown in Figure 29.

Either the IBM Type 523 Summary Punch or the IBM Type 514 Reproducing Punch machines, with certain modification, may be used for reading and punching of cards. The card feeding should be 12-edge face down for normal operation. The cables contained in the bases of these machines are attached to connectors located on the Card Converter unit. Plug-boards are available for each of these machines, the wiring for which is described below:

Type 523

The hubs which are labeled COMP MAG or CTR TOT EXIT or MS OUT provide access to the cable connectors. For reading operation, these hubs are wired to the hubs marked PUNCH BRUSHES; for punching operation, these hubs are wired to the hubs marked PUNCH MAG-NETS. The numbers which appear over the hubs marked PUNCH BRUSHES and PUNCH MAGNETS, which are numbered from left to right, refer to card columns 1 through 80. See Figure 30.

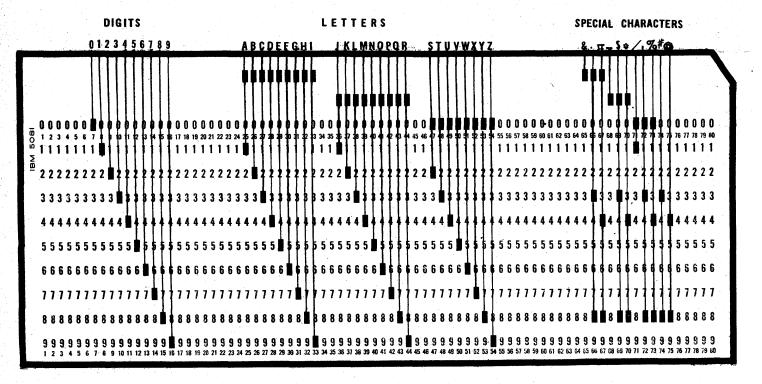
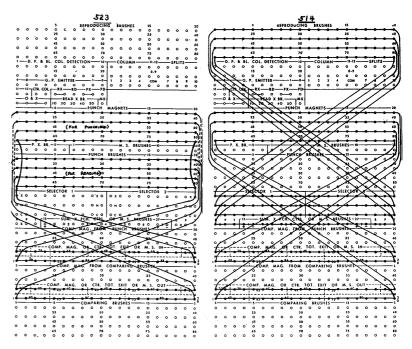


Figure 29.

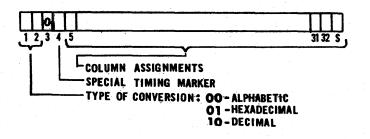
42

Type 514


The hubs which are labeled SELEC-TOR 1 and SELECTOR 2 provide connections to the cable connectors and are wired to the hubs which are labeled RE-PRODUCING BRUSHES for reading operations. COMP MAG or CTR TOT EXIT or MS OUT provide access to the cable connectors and are wired to the hubs which are labeled PUNCH MAGNETS for punching operations. The numbers which appear over the hubs marked PUNCH BRUSHES. **REPRODUCING BRUSHES** which are numbered from left to right, refer to the columns 1 through 80 on the card. See Figure 30.

Types 523 and 514

The 80 hubs which connect to the cable connectors are numbered from right to left and correspond to 80 hub positions within the card converter which are called columns of the card image in the description which follows.


Two half-channels which comprise 16 words each are used to form this card image. These half-channels are called the CONTROL and the INFORMATION lines in the Card Converter unit. The CONTROL line is used to indicate both the card format and the type of conversion desired and the INFORMATION line contains the data read from the card or to be punched on the card. These half-channels may be exchanged with either of the half-channels which comprise Working Storage IV by the execution of the PCD instruction. (See page 31). Upon execution of this instruction, the Card Converter unit examines the contents of the CONTROL line and causes data read from a card to replace the contents of the IN-FORMATION line, or data contained in the INFORMATION line to be punched on a card, according to the contents of the address part of the PCD instruction.

Since the INFORMATION line may contain binary codes which represent decimal, hexadecimal, alphabetic, or special characters, it is necessary to specify which of these types of data is contained in each of the 16 words of the INFORMA-TION line. This is indicated by the binary positions 1-2 of the Control Word. See Figure 31. The number of columns of the card image (not to exceed 8) associated with each word is indicated by the binary positions 5-32 and the sign bit of the Control Word. Binary position 4 of the Control Word is used to indicate a special timing marker.

Figure 30.

To explain the use of these codes a relation between words in the Control and Information lines must be defined: A CONTROL word and an INFORMATION word are said to correspond if the 4 least significant binary positions of the address location of the words are the same. See Figure 24. Thus, word locations 60_{16} correspond to word location 70_{16} , 61_{16} to 71_{16} , and so forth. The previous and succeeding word locations are, then, the locations whose addresses are respectively, one unit greater or less than word location to which reference is made, considering each half-channel to be circular. Thus, word location 60_{16} precedes 61_{16} and 62_{16} succeeds 61_{16} ; however, word location 60_{16} succeeds $6F_{16}$ and $6e_{16}$ precedes $6F_{16}$. To code the CONTROL line for a given card format the following rules are given:

Figure 31.

1. The following binary code, which is determined by the type of data contained in the corresponding INFORMA-TION word, is placed in bit positions 1-2 of the CONTROL word which precedes the corresponding INFORMATION word:

"00" Alphabetic code

"01" Hexadecimal code

"10" Decimal code

2. Bit position 3 of the CONTROL word should contain a zero.

3. If there are 10 or less decimal type INFORMATION words, a 1 may be placed in bit position 4 of any one of the first 10 CONTROL words. All other CONTROL words should contain a 0 in bit position 4. If there are between 11 and 16 decimal type INFORMATION words, the CON- TROL word which should have a l placed in bit position 4 is located by applying the following rules:

- a. Determine the address location of the last decimal type INFOR-MATION word.
- b. Count back 9 decimal INFOR-MATION words (including the starting word as number 1 of the count) and determine the address location of the word.
- c. Determine the corresponding location address in the CON-TROL line.
- d. Count forward 8 CONTROL words (including the starting word as number 1 of the count) and place a 1 in bit position 4.

4. The remaining bit positions (5-32 and the sign) are used to indicate the number of card columns assigned to each IN-FORMATION word and the location of data within the INFORMATION word. To accomplish this, a 1 bit is placed in the corresponding CONTROL word one bit position to the right of each corresponding position of the data characters in the INFORMATION word.

Note that the sign position appears to the right of bit position 32 and that the plus sign is represented by a l bit in the sign position. Thus, if the INFORMA-TION word contains 3 hexadecimal characters which are located at a binary point of 32, the seven least significant hexadecimal positions in the corresponding CONTROL word should contain 0000088+ since the binary l's in this word would appear to the right of the 3 corresponding groups of 4 bit positions in the CON-TROL word. Similarly, if the INFORMA-TION word contains 3 hexadecimal characters which are located at a binary point of 31, the code 0000111- would be placed in the seven least significant hexadecimal characters of the corresponding CON-TROL word.

Decimal words are treated in a similar manner by making provision for 4 binary positions for each card image column but must be placed at a binary point which is an integer multiple of 4; alphabetic words may consist of up to 5 groups of 6 bit positions each.

Thus, the 7 least significant hexadecimal characters of the CONTROL words for INFORMATION words which contain 3 decimal and 3 alphabetic characters which are located at a binary point of 32 are, respectively, 0000088+ and 0000820+. An INFORMATION word containing 3 alphabetic characters at a binary point of 31 would require that the code 0001041 - be placed in the seven least significant hexadecimal characters of the corresponding CONTROL words. It is important to note that, although it is possible to locate the binary points for alphabetic characters, all groups of 6 binary characters must be totally contained within one word.

By examining bit positions 5-32 and the signs of the 16 CONTROL words, card image columnassignments are made beginning with the last word of the CON-TROL line and proceeding in the reverse direction to the first word of the CON-TROL line. One column assignment is made for each non-zero bit contained in bit positions 5-32 and the sign of the 16 CONTROL words. Thus, a total of 16 different fields of alphabetic, decimal, or hexadecimal data may be formed in the card image. Since the number of fields will suffice for most problems, a standard plug-board may be wired for the IBM Type 523 and 514 machines which connects card image columns 1-80 to punch brushes or punch magnet hubs 1-80. This results in a "criss-cross" wiring scheme on the plug-board and permits program control of a wide variety of card formats. In connection with punch program controlusing such plug-board wiring, it should be noted that careful attention should be given to insure that exactly 80 non-zero bits appear in positions 5-32, S of the CONTROL words. Failure to do so will result in the shift (and loss) of information which is punched or read.

If situations occur in which more than 16 fields are required, plug-board wiring together with programming techniques which "pack" several fields in one IN-FORMATION word may be used to eliminate such difficulties.

Blank columns may be obtained by placing zeros in the INFORMATION word and identifying the word as an alphabetic word. It is emphasized that no programming is required for binary-decimal conversion when an INFORMATION word is identified as containing decimal information. Algebraic signs of hexadecimal and decimal words (not alphabetic) are punched over the least significant column of the field.

The binary codes used in conjunction with punched card equipment appear in Figure 32.

Binary Uode	IBM Codes	Char.	Binary Code	IBM Codes
	-	T.	100011	11-3
	•			11-4
	B.C.			11-5
				11-6
				11-7
DEDIC COUR	5)	-		11-8
000007	٦			11-9
				0-2
				0-3
	ĩ.			0-4
	र्द	v		0-5
	6	W		0-6
				0-7
	ė			0-8
				0-9
010001	12 -1	8	010000	12
010010	12-2	•	011011	12-3-8
010011	12-3	Ы	011000	12-4-8
010100	12-4		100000	11
010101	12-5	\$	101011	11-3-8
010110	12-6	*	101100	11-4-8
010111	12-7	1	110001	0-1
011000	12-8		111011	0-3-8
011001	12-9	3	111100	0-4-8
100001	11-1	#	001011	3-8
100010	11-2	Ø	001100	4 -8
	000000 (with Dec.o: Hex.codes) 000000 (with Alpha. betic codes 000001 000010 000010 000010 000101 000100 000111 010000 010011 010010	000000 0 (with Dec.or Hex.codes) 000000 B.C. (with Alpha- betic codes) betic codes) 000010 1 000010 2 000010 4 000101 5 000101 5 000101 6 000101 9 010001 12-1 010001 12-2 010011 12-3 010101 12-5 010101 12-7 010001 12-8 010001 12-9 100001 12-9	000000 0 (with Dec.or L Hex.codes) M 000000 B.C. N (with Alpha- O betic codes) P Q Q 000010 1 R 000010 00010 2 S 000011 000100 4 U 000101 000101 5 V 000101 000101 7 X 001001 001001 12-1 001001 12-2 010001 12-3 010001 12-4 - 010101 12-5 5 010111 12-7 010001 12-8 010001 12-9 3 100001 12-9 3 100001 11-1	000000 0 (with Dec.or L 100011 Hex.codes) M 100100 000000 B.C. N 100101 (with Alpha- 0 100110 (with Alpha- 0 100110 betic codes) P 100111 Q 101000 Q 000010 2 S 110010 000010 2 S 110010 000010 4 U 110100 000100 4 U 110101 000101 5 V 110101 000100 6 W 110101 000101 7 X 11011 001000 12-1 & 010000 010000 010001 12-2 011000 010010 010001 12-5 101011 01000 010001 12-6 + 101100 010011 010001 12-7 / 10001 110011 010001

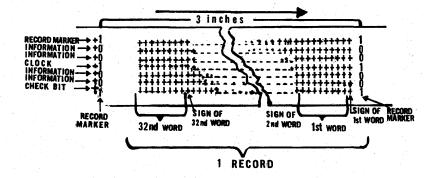
Figure 32.

MAGNETIC TAPE UNITS

In addition to magnetic drum storage, sixteen Tape Transport units with an associated Tape Buffer are available.

Each tape unit may contain a half-inch wide oxide coated plastic tape up to 2400 feet long. Information is stored on magnetic tape as binary bits in the form of magnetized spots. Thus, the same tape may be reused many times.

The reading, writing, and searching speed of the tape is 100 inches per second. The longitudinal density of the tape is 100 bits per inch and reading or writing is done at the rate of 10 records (of 32 words each) per second. The tape can start and stop in approximately 10 milliseconds and rewinds at a speed greater than 500 inches per second.


The Tape Transport has a one word Comparing Register, which may contain up to 32 bits of information for comparison when locating an individual record on the tape.

The Buffer unit controls the modes of operation of each of the Tape Transports and furnishes interlock signals to the computer for maximum simultaneous utilization of search, rewind, read, and write times by the computer program.

ARRANGEMENT OF INFORMATION

Seven bits are recorded laterally on the tape. These seven bits are composed of four information bits, one check bit, one clock bit, and one record marker bit (see Figure 27). One word is made up of nine of these groups (one group contains the sign of the word) and a tape record comprises 32 words ($32 \times 9 = 288$ lateral groups) which correspond to a channel on the drum.

Each record is preceded by a record marker bit and a clock bit record in the same lateral group.

Figure 33.

A tape file is composed of any number of associated records. A tape reel can contain one or more files depending upon the size of the individual files. A 2400 foot tape contains approximately 10,000 records.

SEARCH OPERATION

The tape transport searches the tape for the desired record at 100 inches of tape per second. When a search order is given, the contents of the A Register replace the contents of the Comparing Register in the tape unit, after which the computer may continue with its program. The search order takes one millisecond of machine time providing it does not have to wait on interlocks. The contents of the Comparing Register in the tape unit are used for search comparison. The tape starts forward and a comparison of the first word of each record with the Comparing Register is made. Upon reaching the end of the tape, if the desired record has not been found, the tape will rewind to the start of the tape and continue search operations until the desired record is located after which the tape unit positions the tape in read or write status.

SEARCH MODES

The tape transport is able to search in two different modes of operation. The search mode desired is indicated by the configuration of the address part of the word. During search mode I operations, the tape transport unit will choose the first record whose first word is greater than or equal to the Comparing Register. During search mode II operation, the tape transport unit will choose the first record which has the least significant eight bits of the first word equal to the least significant eight bits of the Comparing Register.

READING

The programming required to read a record from tape is the command Magnetic Tape Copy (MTC). The configuration of the address part indicates which one of three available records to read from, the preceding, the current, or the succeeding record.

If the tape unit is in the WRITE status when the command is given to read, the computer will stop and alarm number 2 buzzer will sound.

If a command to read is given while the tape unit is engaged in a search and prepare to read operation or another read operation, the command to read is held up by interlocks until the completion of the previous instruction. At this time, the interlocks release and the computer takes the next command in sequence while the tape unit performs the read operation.

If the tape unit is engaged in a write operation or search and prepare to write and a command to read is given, the command to read is held up by interlocks until the previous command is completed. At this time, the machine will stop and the alarm number 2 buzzer will sound, indicating the tape unit is not in the correct status for the read operation.

WRITING

The programming required to write a record onto tape is the command Magnetic Tape Copy (MTC). The configuration of the address portion indicates which one of three available records is to be written: the preceding, the current, or the succeeding record.

If the tape unit is in the READ status when the command is given to WRITE, the computer will stop and alarm number 2 buzzer will sound.

If a command to write is given while the tape unit is engaged in a search and prepare to write operation or another write operation, the command to write is held up by interlocks until the completion of the previous instruction. At this time, the interlocks release and the computer takes the next command in sequence while the tape unit performs the write operation.

If the tape unit is engaged in a search and prepare to <u>read</u> or a <u>read</u> operation and a command is given to <u>write</u>, the second command is held in the tape unit until the completion of the first command. At this time, the machine will stop and the alarm number 2 buzzer will sound indicating the tape unit is not in the correct status to carry out a write instruction.

If the tape unit is engaged in a rewind operation and a command is given to write, the write command is held in the tape unit until the completion of the rewind operation. At this time the tape unit is automatically set to READ status and the command to write is released by the interlocks. The computer stops and alarm number 2 buzzer sounds indicating the unit is not in the correct status to perform the write operation.

MANUAL OPERATION

During normal operation the computer controls the tape transport through the buffer. The controls on the front panel of the tape unit are for manual operation of the unit.

The door of the tpae transport must be closed to actuate an interlock which permits the unit to operate from any control. The Interlock Lite on the Control Panel signifies the door is open.

To operate the tape unit manually the Test Switch must be ON. The Test Lite will be turned ON and remains ON until the Test Switch is turned OFF.

With the Test Switch ON, the unit may be run forward, reversed, or rewound with the appropriate switch.

The Ready Lite is ON at any time the unit has found a record commanded by a search operation or when the machine is reading or writing under normal conditions.

The Stop Lite is turned ON at any time the Stop Switch is ON. The Stop Switch may be utilized at any time of normal operation or manual operation.

CALIBRATE OPERATION

The calibration switch is for the purpose of calibrating a new tape or a tape that is suspected of having bad spots on it.

To calibrate a tape, load tape reel and thread tape to the start position. Depress the Calibrate Switch. No further manual operation is needed as the calibration takes place automatically.

The tape will start in a forward direction and traverse the entire length of the tape, saturating it on all seven tracks. Upon reaching the effective end of the tape, the unit reverses tape direction and after inspection of the tape it records a record marker bit and a clock bit as an indication that it has scanned enough consecutive good tpae to hold one record. This process is continued to the beginning of the tape at a speed of 125 inches per second. At this time, the operation is complete and control of the tape unit is again transferred to the computer.

LOAD OPERATION

Loading is accomplished by the following list of operations:

1. Place LOAD Switch in ON position.

2. Place loaded tape reel on lower spindle. End of tape should hang from left side of reel. Place empty reel on upper spindle. Place reel retainer caps on both spindles.

3. Thread end of tape over right hand guide and through right vacuum well guide. (Drop door at top of well to provide access to guides). Tape should loop to half length of well.

4. Thread tape over right capstan and through read-write mechanism.

5. Threadtape through left vacuum well guides. Tape should form loop half the length of the well.

6. Thread tape over left capstan.

7. Thread tape over upper guide and to upper reel. Manually turn the top reel to take up loose tape, but maintaining the tape loops to approximately one half the length of the vacuum wells.

8. Close cover on read-write mechanism and access doors on vacuum wells.

9. Turn LOAD Switch to OFF position.

10. Close and secure the main door on the tape unit.

11. With all switches on the tape unit in the NORMAL position, the unit is loaded and under the control of the computer.

The ALWAC III-E can execute only absolute programs. In such programs, both instruction and data words have definite storage locations assigned, and all program functions which depend on such assignments have been given definite numerical values. Because intelligent assignment of storage locations cannot be made until after the program is written, it becomes difficult to prepare pro-Therefore, some grams in this form. system of program writing is used which permits the use of non-absolute or relative locations. The programming system which incorporates this technique is called symbolic programming.

The program is first written in a symbolic form after which the programmer can make storage assignments of certain quantities. After such assignments are made, the symbolic quantities can be translated into the machine language and an absolute program prepared. To accomplish this conversion, a general program is written and is known as the Assembly Program 1 (AP 1). This program accepts either cards or tape on which the symbolic program has been punched from information contained on the coding form, together with additional information regarding storage specifications, and produces the absolute program in a form suitable for subsequent loading procedures, together with a printed listing of the assembled program. The prepared listing may also contain notations which indicate detection (by AP 1) of errors in the symbolic program. Such notations assist the programmer in the detection and correction of coding errors. The AP1 writeup should be consulted for details.

The following programming examples appear as they would be written in symbolic code on the coding form for assembly by AP 1. To provide a convenient method for location addressing, two numbering schemes are used to refer to specific word locations within a channel. Thus, each word location may be specified by either of two decimal numbers which are called the <u>drum or instruction</u> locations. The first two columns on the coding form provide conversion between the two schemes.

These columns, which are labeled DRUM and INSTR, are decimal locations of half-words within a channel and are used, respectively, in conjunction with the codes 1-4 and 5-9, in the column labeled REG (Region). Note that the halfwords are numbered sequentially from 00 to 63 for instructions and that this numbering conforms to the normal sequence for execution of instructions; however, the data locations are numbered in such a manner as to indicate their actual sequence in storage. It is necessary to specify which numbering scheme is being referenced when specifying the ADDRESS part of an operation and it is for this purpose that the region column is provided. The following code is used in this column:

- "0" -- Absolute addresses (e.g. shifting)
- "l" -- Drum locations Working Storage I
- "2" -- Drum locations Working Storage II
- "3" -- Drum locations Working Storage III
- "4" -- Drum locations Working Storage IV
- "5" -- Instruction locations in the same channel
- "6" -- Instruction locations Working Storage I
- "7" -- Instruction locations Working Storage II
- "8" -- Instruction locations Working Storage III
- "9" -- Instruction locations Working Storage IV

The mnemonic instruction code may be placed in the column labeled OPRNor for doubled operations, may be placed in the column labeled ADDRESS.

If automatic address modification is desired, the letter E is placed in the column labeled TAG.

In the column labeled DATA/REMARKS both data (which may be hexadecimal, octal, decimal, or alphabetic) and remarks are not examined by AP 1.

Control Branching

An example of control branching is shown in Figure 34 in which a quantity (called a "flag") is tested to determine which of two alternate courses of computation is to be executed. If the flag is non - zero, the normal instruction sequence is interrupted and the computer takes the next operation from the location specified in the address; if the flag is a zero, the normal instruction sequence is continued.

LOCAT	10				R		Т	ş	DATA /
DRUM	Ng	T _R	°	PRN	Ē	ADDRESS	Ĝ	Ġ N	REMARKS
000	0	0	L	AW	5	1 1210			FLAG TO A REGISTER
128	0	1	T	N Z	5	1 110	ŀ		TRANSFER TO INSTRUCTION 10 IF NON-ZERO
004	0	2		1 1	Γ	111	ļ	1	CONTINUE IF FLAG IS ZERO

1	4	4	0	9	1		٦		1		1	•	Γ.	Π	
0	2	0	1	0	1	1			 					\square	TRANSFER TO HERE FROM 5.1
T	4	8	1	L	1	1			1	1	1	1	Γ	Π	
0	2	4	1	2	1	1			1		1	1		$\langle \rangle$	
T	5	2	ł	3	1	1			1		1	1	Γ		
0	2	8	I	4		1					1	1		\mathcal{D}	
1	5	6	1	5							1	1			
0	0	.1	1	6		1					,	1		$\langle \rangle$	
Γ	2	9	ī	7		1					L.	1	Γ		
0	0	5	1	8		. 1					L	1		\mathbb{Z}	
1	3	3	1	9				·			Ľ	1			
0	0	9	2	0	M	9	P				1	1		V	FLAG
1	3	7	2	1	N	Q	P				ŀ	1	ſ		FLAG

Figure 34.

The Sum of N-Quantities

The algebraic sum of 13 quantities is desired which are stored in successive data word locations 00, 01, 02, . . . 12, in Working Storage channel I. The coding to accomplish this computation is shown in Figure 35.

LOCAT	ION		R		T	ş	DATA /
DRUM	NST,	OPRN	Ë	ADDRESS	Ġ	G N	REMARKS
0 0 0	0 0	LIBW	5	1 610	1	Ø	SET INDEX TO 12
128	0 1	LAW	1	1,10	Ι	Π	ADD FIRST NUMBER
0 0 4	0 2	ADD	5	1 113	B	Ø	ADD REMAINING NUMBERS
132	03	T, LX	5	1 1 12	Γ	Π	REPEAT INSTRUCTION 2 FOR REMAINING NUMBERS
0 0 8	04	S AW	5	1 612		Ø	STORE RESULT
1 3 6	05			1 1 1		Π	CONTINUE PROGRAM

o	2	2	7	e	0		10	P	0	i		1	12	$\langle \rangle \rangle$	CONSTANT
							1,0					,	1		I
0	1	3	1	6	2	N	0,1	P					1	\mathbb{V}	STORAGE FOR
T	1	5	9	6	3		i,0	P			1	1	1.		SUM

Floating a Fixed-Point Number

To convert a fixed - point number, whose binary point is located 16 places from the left end of a word, into a normalized floating-point number, the coding shown in Figure 36 is used.

L	00	AT	10	N				R				1.	r	ş	DATA /
D	RU	M	I _{NS}	TR	0	PR	N	EG	A	DF	RES	S	A G	G N	REMARKS
0	0	0	0	0	L	B	W	5		1	151	0	ł	\square	CLEAR B REGISTER
1	2	8	0	1	L	A	W	5		1	,5,	2			FIXED-POINT WORD TO A REGISTER
0	0	4	0	2	S	C	T	0		1	11	0	ł	\square	SHIFT LEFT TO NORMALIZE
1	3	2	0	3	X	A	B		X	A	D		Τ		NORM MAGNITUDE TO B AND COUNT TO A REGISTER
0	0	8	0	4	s	C	S	5		1	151	4	ł	\square	Form 128-d
1	3	6	0	5	A	D	D	5		1	151	6			ADD BINARY POINT LOC.
0	1	2	0	6	L	R	S	0		1	1 1	8		\square	PACK WORD IN B REGISTER
1	4	0	0	7	s	B	W	5		1	151	8			STORE FLOATING-POINT NUMBER
0	1	6	0	8	T	IN I	Z	5		1	131	2	-		TRANSFER TO ERROR HALT IF OVERFLOW
1	4	4	0	9		L	1			L					CONTINUE PROGRAM

0	0	7	5	0	N	0	P	0	1	1	10		ZERO
1	3	5	5	1	N	0	P	0	1	1	10		X
0	I	1	5	2	N	0	P		1	1	ŀ	Λ	STORAGE FOR FIXED-POINT
1	3	9	5	3	N	0	P))	1		NUMBER
0	I	5	5	4	N	0	P		1	1	0		128 AT A BINARY POINT
1	4	3	5	5	N	0	P		1	1,	218		OF 32
0	I	9	5	6	N	0	P		1	1	10	\square	16 AT B
1	4	7	5	7	N	0	, P		1	1	1,6		OF 32
0	2	3	5	8	N	0	P		1	1	10		STORAGE FOR FLOATING-POINT
1	5	ł	5	9	N	p	P			1	0		NUMBER

Subroutines

Many routines, such as square root, trigonometric functions, exponential and logarithmic functions, data input-output, interpolation, and integration, are used repeatedly in the execution of a single problem or in different problems. Such routines are called subroutines since their use is subordinate to the control of the main problem of which they are a part. A set of such subroutines is called a library and each computing installation maintains such a basic programming tool. Subroutines are classified as being an open or closed type, accordingly, by the manner in which they are used with regard to the flow of control: An open subroutine is incorporated in a program by inserting the subroutine directly into the main flow of control. It is therefore necessary to insert the subroutine at each point in the main program at which it is required.

A closed subroutine is one which may be executed many times in a program, but the subroutine instructions need appear only once in the program. To transfer control from the main program to the subroutine, a set of instructions (known as a calling sequence) is given. The subroutine obtains sufficient information from this sequence to perform its various functions and to determine the return address to which control is transferred after completion of the subroutine computations. Calling sequences are necessarily unique for each special subroutine; hence, each computing installation maintains a set of such calling sequences for subroutines in their library, which set, together with selected notes pertinent to programming standards used by the installation, constitutes a text known as a coding manual.

APPENDIX A

BINARY AND HEXADECIMAL NUMBER SYSTEMS

In all systems for representing numbers, a number may be expressed as a sum of terms. Each term appears as the product of an integer and some power of a base number. Thus, in the decimal number system, the base is 10 and the integers of the set 0, 1, 2, ... 9, are used. For example:

$$321 = (3x10^{2}) + (2x10^{1}) + (1x10^{0})$$

5.93 = (5x10^{0}) + (9x10^{-1}) + (3x10^{-2})

and, in the binary number system:

$$321 = 256 + 64 + 1$$

= (1x2⁸) + (0x2⁷) + (1x2⁶)
+ (0x2⁵) + (0x2⁴) + (0x2³)
+ (0x2²) + (0x2¹) + (1x2⁰)

If the base used is evident from the discussion in which such numbers appear, it is unnecessary to write more than the coefficients of the above series. Thus, 321 and 101000001 are respectively the decimal and binary representations of the same numerical value. If confusion may occur when the base is omitted, a convenient symbol - a subscript - may be used to indicate the base. In the above example, the numbers 32_{10} and 10100001_2 indicate decimal and binary representations by the subscripts 10 and 2.

It is important to note that the integers 0, 1, 2, . . . (n-1) comprise a set of n quantities and that each coefficient of the series must consist of an integer from this set. Thus, the integers 0, 1, 2, 3, . . . 9 are used for each decimal position, the integers 0 and 1 each for binary position, and the integers 0, 1, 2, . . . 8, 9, A, B, C, . . . F, for each hexadecimal (base 16) position. There are but three rules for binary addition; these are:

$$0 + 0 = 0$$

0 + 1 = 1

1 + 1 = 10 (a 0 with a "carry" of 1)

The following example illustrates these rules for the addition of the numbers 1011001 and 10111101:

Four rules exist for binary subtraction which are:

the next most significant position)

For example:

1011001 is subtracted from 10111101 as follows:

borrows:	_1
	10111101
	-1011001
	1100100

For binary multiplication, the following four rules apply:

> 0 x 0 = 0 0 x 1 = 0 1 x 0 = 0 1 x 1 = 1

53

To multiply 1011 by 1001 proceed as follows:

101	1
	-
100	
101	1
0000	
00000	
1011	
110001	Γ

To convert a number from one number system to another, the number is divided by the base of the new system and the <u>remainder</u> is noted. The quotient obtained is again divided by the base and the remainder again noted; this process is repeated with each successive quotient until a zero quotient is obtained.

The sequence of remainder terms obtained provides the coefficients of the number expressed in the number system of the chosen base and these are written from left to right in the reverse sequence from that in which they are obtained. Thus, to convert the decimal number 321 to its binary representation the following computations are made:

 $321 \div 2 = 160 + \text{remainder of } 1$ $160 \div 2 = 80 + \text{remainder of } 0$ $80 \div 2 = 40 + \text{remainder of } 0$ $40 \div 2 = 20 + \text{remainder of } 0$ $20 \div 2 = 10 + \text{remainder of } 0$ $10 \div 2 = 5 + \text{remainder of } 1$ $2 \div 2 = 2 + \text{remainder of } 1$ $2 \div 2 = 1 + \text{remainder of } 0$ $1 \div 2 = 0 + \text{remainder of } 1$

and, the number is written as:

 $(321)_{10} = (10100001)_2$

To convert a binary number to its decimal representation successive divisions by 1010 (=decimal 10).

For example:

101000001÷1010 = 100000 with remainder of 1 100000 1010 = 11 with remainder of 10

> 11 1010 = 0 with remainder of 11

The remainders obtained are the binary numbers 11, 10, and 1 which represent the decimal integers 3, 2, and 1. Hence, $(101000001)_2 = (321)_{10}$.

To express decimal fractions in their equivalent binary representations successive multiplication by 2 is used to generate the coefficients. The integer generated (a 0 or 1) represents the corresponding binary digits. Using only the resulting decimal fraction the process is continued to the number of positions required or until a zero fractional part is obtained which indicates all further binary digits should be zero. Thus, to convert the decimal fraction .875 to its binary representation, the following computations are performed:

$$\begin{array}{r} 875 \ x \ 2 \ = \ 1.75 \\ 75 \ x \ 2 \ = \ 1.5 \\ 5 \ x \ 2 \ = \ 1.0 \end{array}$$

and, hence, the binary representation of the number $(.875)_{10}$ is $(.11100...)_2$, or more simply, $(.111)_2$.

It may be necessary to round the binary fraction to the amount of accuracy desired since not all terminating decimal fractions can be represented by terminating binary fractions.

Hexadecimal

If the base sixteen is chosen for representation of a number, it is said to be expressed in the hexadecimal number system. The number set used is 0, 1, 2, \dots 9, A, B, \dots F. Thus, the digits 0, 1, \dots 9, correspond directly with the decimal system while the alphabetic characters A through F correspond with the decimal characters 10 through 15 respectively.

The decimal to hexadecimal conversion of an integral number can be effected by dividing successively by 16 (in the dec imal system) until a quotient of 0 is obtained. The remainders, expressed in hexadecimal notation and written in the reverse sequence from that obtained, produce the desired hexadecimal representation. For example, the decimal 736 conversion would be:

- $736 \div 16 = 46$ with a remainder of 0 (decimal)
- $46 \div 16 = 2$ with a remainder of 14 (decimal)
- $2 \div 16 = 0$ with a remainder of 2 (decimal)

The remainders when expressed in hexadecimal notation and arranged in proper sequence yield, 2, E, and 0. Thus, $(736)_{10} = (2E0)_{16}$.

The conversion from hexadecimalto-binary is particularly simple. Since $(10)_{16}$ equals 2^4 , the conversion is carried out simply by replacing the hexadecimal digits with their binary equivalents expressed as four-digit binary numbers. For example, to convert the hexadecimal 2E0, replace the 0 with 0000, E with 1110, and 2 with 0010 and obtain 101110 0000, omitting the zeros at the extreme left. Conversely, to convert from binary to hexadecimal, arrange the binary digits into groups of four, beginning at the binary point. Fill in any zeros necessary at the left. Then replace each group of binary digits with the appropriate hexadecimal character.

Thus, the hexadecimal numbering system furnishes a convenient form for handling a large binary representation.

Moduli

In certain sections of this Manual of Operations, reference is made to numbers reduced to various moduli. To reduce a negative number to a given modulus, the number is first made positive by successive additions of the modulus until a positive integer is obtained, after which the computation proceeds as that for a positive number.

To reduce a positive number to a given modulus, the number is divided by the modulus and a remainder term obtained. The number at the given modulus is equal to this remainder. Thus,

12 modulo 10 = 2 0 modulo 2 = 0 17 modulo 16 = 1 -1 modulo 16 = 15 modulo 16 = 15_{10} or F_{16}

When evaluating algebraic expression involving moduli reductions, the quantities inside the parenthesis should be reduced to the indicated modulus before being combined with the remaining terms. Thus, the expression $[(W-1)_{mod 8} + 1]$ which occurs in several instruction descriptions has the following evaluations:

0 8 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 1	W	$\left[\left(W^{-1}\right)_{mod 8} + 1\right]$
2 2 3 3 4 4 5 5 6 6 7 7	0	8
4 4 5 5 6 6 7 7		1
4 4 5 5 6 6 7 7	2	2
4 4 5 5 6 6 7 7	3	
6 6 7 7	4	4
7 7		
7 7 8 8 9 1	6	6
8 8 9 1	7	7
9 1	8	8
	9	1

TABLE OF POWERS OF 2

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

	0	1	2	3	4	.5	б	7	8	9	A	В	С	D	Е	F
000 010 030 040 050 060 070 080 090 080 090 080 090 0B0 0C0 0D0 0E0 0F0	0000 0016 0032 0048 0064 0096 0112 0128 0144 0160 0176 0192 0208 0224 0240	0001 0017 0033 0049 0065 0081 0097 0113 0129 0145 0161 0177 0193 0209 0225 0241	0002 0018 0034 0050 0082 0098 0114 0130 0146 0162 0178 0194 0210 0226 0242	0003 0019 0035 0051 0067 0083 0099 0115 0131 0147 0163 0179 0195 0211 0227 0243	0004 0020 0036 0052 0068 0100 0116 0132 0148 0164 0180 0196 0212 0228 0244	0005 0021 0037 0053 0069 0085 0101 0117 0133 0149 0165 0181 0197 0213 0229 0245	0006 0022 0038 0054 0070 0086 0102 0118 0134 0150 0166 0182 0198 0214 0230 0246	0007 0023 0039 0055 0071 0087 0103 0119 0135 0151 0167 0183 0199 0215 0231 0247	0008 0024 0056 0072 0088 0104 0120 0136 0152 0168 0184 0200 0216 0232 0248	0009 0025 0041 0057 0105 0121 0137 0153 0169 0185 0201 0217 0233 0249	0010 0026 0058 0074 0090 0106 0122 0138 0154 0170 018 0202 0218 0234 0250	0011 0027 0043 0059 0075 0091 0107 0123 0139 0155 0171 0187 0203 0219 0235 0251	0012 0028 0044 0060 0076 0192 0188 0124 0156 0172 0188 0204 0220 0236 0252	0013 0029 0045 0061 0093 0109 0125 0141 0157 0173 0189 0205 0221 0237 0253	0014 0030 0046 0078 0094 0110 0126 0142 0158 0174 0190 0206 0222 0238 0254	0015 0031 0047 0063 0079 0095 0111 0127 0143 0159 0175 0191 0207 0223 0239 0255
100 110 120 130 140 150 160 170 180 190 140 190 140 100 1E0 1F0	0256 0272 0288 0320 0336 0352 0368 0384 0400 0416 0432 0448 0464 0480 0496	0257 0273 0289 0305 0321 0337 0353 0369 0385 0401 0417 0433 0449 0465 0481 0497	0258 0274 0290 0322 0338 0354 0370 0386 0402 0418 0434 0450 0466 0482 0498	0259 0275 0291 0323 0339 0355 0371 0387 0403 0499 0435 0451 0467 0483 0499	0260 0276 0292 0308 0324 0356 0372 0388 0404 0420 0436 0452 0468 0484 0500	0261 0277 0293 0325 0341 0357 0373 0389 0405 0421 0437 0453 0469 0485 0501	0262 0278 0294 0310 0326 0358 0374 0358 0374 0390 0406 0422 0438. 0454 0470 0486 0502	0263 0279 0327 0327 0343 0359 0375 0391 0407 0423 0455 0471 0487 0503	0264 0296 0312 0328 0344 0360 0376 0392 0408 0424 0440 0456 0472 0488 0504	0265 0281 0297 0313 0329 0345 0361 0377 0393 0409 0425 0441 0457 0473 0489 0505	0266 0298 0314 0330 0346 0378 0394 0410 0426 0442 0458 0474 0490 0506	0267 0283 0299 0315 0347 0363 0379 0395 0411 0427 0443 0459 0475 0491 0507	0268 0380 0316 0332 0348 0364 0380 0396 0412 0428 0412 0428 0414 0460 0476 0492 0508	0269 0285 0301 0317 0349 0365 0381 0397 0413 0429 0445 0461 0477 0493 0509	0270 0286 0302 0318 0350 0366 0382 0398 0414 0430 0446 0462 0478 0494 0510	0271 0287 0303 0319 0335 0351 0367 0383 0399 0415 0431 0447 0463 0479 0495 0511
200 210 220 230 240 250 260 270 280 290 2A0 2B0 2C0 2D0 2E0 2F0	0512 0528 0544 0560 0576 0592 0608 0624 0624 0656 0672 0688 0704 0720 0736 0752	0513 0529 0545 0551 0593 0609 0625 0641 0657 0673 0689 0705 0721 0737 0753	0514 0530 0546 0578 0594 0610 0626 0642 0658 0674 0658 0674 0690 0706 0722 0738 0754	0515 0531 0547 0563 0579 0595 0611 0627 0643 0659 0675 0691 0707 0723 0739 0755	0516 0532 0548 0564 0596 0612 0628 0644 0660 0676 0692 0708 0724 0740 0756	0517 0533 0549 0565 0581 0597 0613 0629 0645 0661 0677 0693 0709 0725 0741 0757	0518 0534 0550 0566 0598 0614 0630 0646 0662 0678 0694 0710 0726 0742 0758	0519 0535 0551 0567 0583 0599 0615 0631 0647 0663 0679 0695 0711 0727 0743 0759	0520 0536 0552 0568 0600 0616 0632 0648 0664 0664 0680 0696 0712 0728 0744 0760	0521 0537 0553 0569 0585 0601 0617 0633 0649 0665 0681 0697 0713 0729 0745 0761	0522 0538 0554 0570 0586 0602 0618 0634 0650 0666 0682 0698 0714 0730 0746 0762	0523 0539 0555 0571 0587 0603 0619 0635 0651 0667 0683 0699 0715 0731 0747 0763	0524 0540 0556 0572 0588 0604 0620 0636 0652 0668 0652 0668 0684 0700 0716 0732 0748 0764	0525 0541 0557 0573 0589 0605 0621 0637 0653 0669 0685 0701 0717 0733 0749 0765	0526 0542 0558 0574 0590 0606 0622 0638 0654 0670 0686 0702 0718 0734 0750 0766	0527 0543 0559 0575 0591 0607 0623 0639 0655 0671 0687 0703 0719 0735 0751 0767
300 310 320 340 350 360 370 380 390 3A0 3B0 3C0 3B0 3E0 3F0	0768 0784 0800 0816 0832 0848 0864 0896 0912 0928 0944 0960 0976 0992 1008	0769 0785 0801 0817 0833 0849 0855 0881 0897 0913 0929 0945 0961 0977 0993 1009	0770 0785 0802 0818 0834 0850 0866 0882 0898 0914 0930 0946 0952 0978 0978 1010	0771 0803 0819 0835 0851 0867 0883 0899 0915 0931 0947 0963 0995 1011	0772 0788 0804 0820 0836 0852 0868 0884 0900 0916 0932 0948 0948 0968 0958 0996 1012	0773 0785 0821 0853 0853 0869 0885 0901 0917 0933 0949 0955 0961 0997 1013	0774 0790 0806 0822 0838 0854 0870 0886 0902 0918 0934 0956 0956 0956 0962 0962 0998 1014	0775 0791 0807 0823 0855 0871 0903 0919 0935 0951 0967 0963 0995 1015	0776 0792 0808 0824 0856 0872 0888 0904 0920 0936 0952 0958 0958 1000 1016	07777 0793 0809 0825 0841 0857 0873 0889 0905 0921 0937 0953 0969 0953 0969 0955 1001	0778 0794 0810 0826 0858 0874 0890 0906 0922 0938 0954 0970 0954 0970 0954 1018	0779 0795 0811 0827 0843 0859 0875 0891 0907 0923 0939 0955 0971 0987 1003 1019	0780 0796 0812 0828 0844 0860 0876 0892 0908 0924 0940 0955 0972 0988 1020	0781 0797 0813 0829 0845 0861 0877 0893 0909 0925 0941 0957 0973 0989 1005 1021	0782 0798 0814 0830 0846 0862 0878 0894 0910 0926 0942 0958 0974 0958 0974 0950 1005	0783 0799 0815 0831 0847 0863 0879 0895 0911 0927 0943 0959 0975 0991 1007 1023

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

																<u> </u>
	0	1	2	3	4	5	ó	7	8	9	A	В.	C	D	Е	F
400 410 420 430 440 450 460 470 480 490 480 490 480 400 400 400 400 400 400 400	1024 1040 1050 1072 1088 1104 1120 1136 1152 1168 1184 1200 1216 1232 1248 1264	1025 1041 1057 1073 1089 1105 4121 1137 1153 1169 1185 1201 1217 1233 1249 1265	1026 1042 1058 1074 1090 1106 1122 1138 1154 1170 1185 1202 1218 1234 1250 1266	1027 1043 1059 1075 1091 1107 1123 1139 1155 1171 1187 1203 1219 1235 1251 1267	1028 1044 1060 1076 1092 1108 1124 1140 1156 1172 1188 1204 1220 1236 1252 1268	1029 1045 1061 1077 1093 1109 1125 1141 1157 1173 1189 1205 1221 1237 1253 1269	1030 1046 1062 1078 1094 1110 1126 1142 1158 1174 1190 1206 1222 1238 1254 1270	1031 1047 1063 1079 1095 1111 1127 1143 1159 1175 1191 1207 1223 1239 1255 1271	1032 1048 1064 1080 1112 1128 1144 1160 1176 1192 1208 1224 1240 1256 1272	1033 1049 1065 1081 1097 1113 1129 1145 1161 1177 1193 1209 1225 1241 1257 1273	1034 1050 1066 1098 1114 1130 1146 1162 1178 1194 1210 1226 1242 1258 1274	1035 1051 1067 1083 1099 1115 1131 1147 1163 1179 1195 1211 1227 1243 1259 1275	1036 1052 1068 1084 1100 1116 1132 1148 1164 1180 1196 1212 1228 1244 1260 1276	1037 1053 1069 1085 1101 1117 1133 1149 1165 1181 1197 1213 1229 1245 1261 1277	1038 1054 1070 1085 1102 1118 1134 1150 1166 1182 1198 1214 1230 1245 1262 1278	$\begin{array}{c} 1039\\ 1055\\ 1071\\ 1087\\ 1103\\ 1119\\ 1135\\ 1151\\ 1167\\ 1183\\ 1199\\ 1215\\ 1231\\ 1247\\ 1263\\ 1279 \end{array}$
500 510 520 540 550 550 570 580 590 580 590 580 500 500 500 500 500 500	1280 1296 1312 1328 1344 1360 1376 1392 1408 1424 1440 1456 1472 1488 1504 1520	1281 1297 1313 1329 1361 1377 1393 1409 1425 1441 1457 1473 1489 1505 1521	1282 1298 1314 1330 1346 1362 1378 1394 1410 1426 1442 1458 1474 1490 1506 1522	1283 1299 1315 1317 1363 1379 1395 1411 1427 1443 1459 1475 1491 1507 1523	1284 1300 1316 1332 1348 1364 1396 1412 1428 1444 1460 1476 1492 1508 1524	$\begin{array}{c} 1285\\ 1301\\ 1317\\ 1333\\ 1349\\ 1365\\ 1381\\ 1397\\ 1413\\ 1429\\ 1445\\ 1445\\ 1445\\ 1461\\ 1477\\ 1493\\ 1509\\ 1525\\ \end{array}$	1286 1302 1318 1334 1350 1366 1382 1398 1414 1430 1446 1462 1478 1494 1510 1526	$\begin{array}{c} 1287\\ 1303\\ 1319\\ 1351\\ 1351\\ 1367\\ 1383\\ 1399\\ 1415\\ 1431\\ 1447\\ 1463\\ 1479\\ 1495\\ 1511\\ 1527\end{array}$	1288 1304 1320 1336 1352 1368 1400 1416 1432 1448 1464 1480 1496 1512 1528	1289 1301 1321 1337 1369 1385 1401 1417 1433 1449 1465 1481 1497 1513 1529	1290 1306 1322 1338 1354 1370 1386 1402 1418 1434 1450 1466 1482 1498 1514 1530	1291 1307 1323 1355 1371 1387 1403 1419 1435 1451 1467 1483 1499 1515 1531	1292 1308 1324 1356 1372 1388 1404 1420 1436 1452 1468 1484 1500 1516 1532	$\begin{array}{c} 1293\\ 1309\\ 1325\\ 1341\\ 1357\\ 1373\\ 1389\\ 1405\\ 1421\\ 1437\\ 1453\\ 1469\\ 1485\\ 1501\\ 1501\\ 1517\\ 1533\end{array}$	1294 1310 1326 1342 1358 1374 1390 1406 1422 1438 1454 1470 1486 1502 1518 1534	1295 1311 1327 1343 1359 1359 1391 1407 1423 1439 1455 1471 1487 1503 1519 1519 1535
500 510 520 630 640 650 660 670 580 680 680 680 600 6E0 6E0 6F0	1536 1552 1568 1584 1600 1616 1632 1648 1664 1680 1696 1712 1728 1744 1760 1776	1537 1553 1569 1585 1601 1617 1633 1649 1665 1681 1697 1713 1729 1745 1761 1777	1538 1554 1570 1586 1602 1618 1634 1650 1666 1682 1698 1714 1730 1746 1762	1539 1555 1571 1587 1603 1619 1635 1651 1667 1683 1699 1715 1731 1747 1763 1779	1540 1556 1572 1588 1604 1620 1636 1652 1668 1684 1700 1716 1732 1748 1764 1780	1541 1557 1573 1589 1605 1621 1637 1653 1669 1685 1701 1717 1733 1749 1765 1781	1542 1558 1574 1590 1606 1622 1638 1654 1670 1686 1702 1718 1734 1750 1766 1782	1543 1559 1575 1591 1607 1623 1639 1655 1671 1687 1703 1719 1735 1751 1767 1783	1544 1560 1576 1592 1608 1624 1640 1656 1672 1688 1704 1720 1736 1752 1768 1784	1545 1561 1577 1593 1609 1625 1641 1657 1673 1689 1705 1721 1737 1753 1769 1785	1546 1562 1578 1594 1610 1626 1642 1658 1674 1690 1706 1722 1738 1754 1770 1786	1547 1563 1579 1695 1611 1627 1643 1659 1675 1691 1707 1723 1739 1755 1771 1787	1548 1564 1580 1596 1612 1628 1644 1660 1676 1692 1708 1724 1740 1756 1772 1788	1549 1565 1581 1597 1613 1629 1645 1661 1677 1693 1709 1725 1741 1757 1773 1789	1550 1566 1582 1598 1614 1630 1646 1662 1678 1694 1710 1726 1742 1758 1774 1790	$1551 \\ 1567 \\ 1583 \\ 1599 \\ 1615 \\ 1631 \\ 1647 \\ 1663 \\ 1679 \\ 1695 \\ 1711 \\ 1727 \\ 1743 \\ 1759 \\ 1775 \\ 1791 \\ 1991 \\ $
(00 710 720 730 740 750 760 760 780 780 780 780 700 700 700 7E0 7F0	1792 1808 1824 1840 1855 1872 1888 1904 1920 1936 1952 1968 1984 2000 2016 2032	1793 1809 1825 1841 1857 1873 1889 1905 1921 1937 1953 1969 1985 2001 2017 2033	1794 1810 1826 1842 1858 1874 1890 1906 1922 1938 1954 1970 1986 2002 2018 2034	1795 1811 1827 1843 1859 1875 1891 1907 1923 1939 1955 1971 1987 2003 2019 2035	1796 1812 1828 1844 1860 1876 1892 1908 1924 1940 1956 1972 1988 2004 2020 2036	1797 1813 1829 1845 1861 1877 1893 1909 1925 1941 1957 1973 1989 2005 2021 2037	1798 1814 1830 1846 1862 1878 1894 1910 1926 1942 1958 1974 1990 2006 2022 2038	1799 1815 1831 1847 1863 1879 1895 1911 1927 1943 1959 1975 1991 2007 2023 2039	1800 1816 1832 1848 1864 1896 1912 1928 1944 1960 1976 1992 2004 2024 2040	1801 1817 1833 1849 1865 1881 1897 1913 1929 1945 1961 1977 1993 2025 2041	1802 1818 1834 1850 1866 1882 1898 1914 1930 1946 1962 1978 1994 2010 2026 2042	1803 1819 1835 1851 1867 1883 1899 1915 1931 1947 1963 1979 1995 2011 2027 2043	1804 1820 1836 1852 1868 1884 1900 1916 1932 1948 1964 1964 1964 1990 2012 2028 2044	1805 1821 1837 1853 1869 1885 1901 1917 1933 1949 1965 1981 1997 2013 2029 2045	1806 1822 1838 1854 1870 1886 1902 1918 1934 1950 1966 1982 1998 2014 2030 2046	1807 1823 1839 1855 1871 1887 1903 1919 1935 1951 1967 1983 1999 2015 2031 2047

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	800 810 820 830 840 850 850 870 880 870 880 890 880 880 880 800 800 800 800 80	2048 2064 2080 2096 2112 2128 2144 2176 2192 2208 2224 2208 2224 2240 2256 2272 2288	2049 2065 2081 2097 2113 2129 2145 2145 2145 2177 2193 2209 2225 2241 2257 2273 2289	2050 2066 2082 2098 2114 2130 2146 2178 2194 2210 2226 2242 2258 2274 2290	2051 2067 2083 2099 2115 2131 2147 2147 2147 2147 2195 2211 2227 2243 2259 2275 2291	2052 2068 2084 2100 2116 2132 2148 2168 2196 2212 2228 2244 2260 2276 2292	2053 2069 2085 2101 2117 2133 2149 2165 2181 2197 2213 2229 2245 2261 2277 2293	2054 2070 2086 2102 2118 2134 2156 2182 2198 2214 22198 2214 2230 2246 2262 2278 2294	2055 2071 2087 2103 2119 2135 2157 2167 2183 2199 2215 2231 2247 2263 2279 2295	2056 2072 2088 2104 2120 2136 2152 2168 2216 2216 2232 2248 22248 2264 2280	2057 2073 2089 2105 2121 2137 2153 2169 2185 2201 2217 2233 2249 2265 2281 2297	2058 2074 2090 2106 2122 2138 2154 2154 2156 2202 2218 2234 2234 2250 2266 2282 2298	2059 2075 2091 2107 2123 2139 2155 2151 2187 2203 2219 2235 2251 2267 2283 2299	2060 2076 2092 2108 2124 2140 2156 2156 2158 2204 2220 2236 2252 2268 2284 2300	2061 2077 2093 2109 2125 2141 2157 2157 2157 2189 2205 2221 2237 2253 2269 2285 2301	2062 2078 2094 2110 2126 2142 2158 2174 2190 2206 2222 2238 2254 2270 2286 2302	2063 2079 2095 2111 2127 2143 2159 2175 2191 2207
	900 910 920 930 950 950 950 950 950 950 950 950 950 95	2304 2320 2352 2368 2384 2400 2416 2432 2448 2432 2448 2464 2480 2496 2512 2528 2544	2305 2321 2353 2353 2385 2401 2417 2433 2449 2465 2481 2497 2513 2529 2545	2306 2322 2338 2354 2356 2402 2418 2434 2450 2466 2482 2498 2514 2530 2546	2307 2323 2359 2357 2387 2403 2419 2435 2451 2467 2483 2499 2515 2531 2547	2308 2324 2356 2357 2388 2404 2420 2436 2452 2468 2452 2468 2450 2516 2532 2548	2309 2325 2341 2357 2389 2405 2421 2437 2453 2469 2485 2501 2517 2533 2549.	2310 2342 2358 2374 2390 2406 2422 2438 2454 2470 2486 2502 2518 2534 2550	2311 2327 2343 2359 2375 2391 2407 2423 2497 2423 2455 2471 2503 2519 2535 2551	2312 2328 2344 2360 2376 2408 2424 2440 2456 2472 2488 2504 2520 2536 2552	2313 2329 2345 2367 2393 2409 2425 2441 2457 2473 2489 2505 2521 2537 2553	2314 2330 2346 2362 2378 2394 2410 2426 2442 2458 2474 2490 2506 2522 2538 2554	2315 2331 2347 2363 2395 2411 2427 2443 2459 2475 2491 2507 2523 2539 2555	2316 2332 2348 2396 2396 2412 2428 2444 2460 2476 2492 2508 2524 2540 2556	2317 2333 2349 2365 2385 2397 2413 2429 2445 2445 2445 2445 2461 2477 2493 2509 2525 2541 2557	2318 2334 2350 2362 2398 2414 2430 2414 2430 2446 2462 2478 2494 2510 2526 2542 2558	2319 2335 2 35 1 2 3 67 2383 2399 2415 2431 2447 2463 2447 2463 2479 2495 2511 2527 2543 2559
<u>ى مەرىپەت تۆلەم مەرەۋىلىدە مەرەۋىلىدە مەرەۋىلىدە تەرەپ مەرىكە تەرىپ تەرىپ مەرىپەت تەرىپ مەرەپ مەرەپ مەرەپ مەرەپ</u>	A00 A10 A20 A30 A40 A50 A60 A70 A60 A70 A80 A90 A80 A80 A80 A80 A80 A80 A80 A80 A80 A8	2550 2576 2592 2608 2624 2656 2672 2688 2704 2720 2736 2752 2768 2784 2800	2561 2577 2593 2609 2625 2641 2657 2673 2689 2705 2721 2737 2753 2769 2785 2801	2562 2578 2594 2610 2626 2642 2658 2674 2690 2706 2706 2706 2722 2738 2754 2770 2786 2802	2563 2579 2595 2611 2627 2643 2659 2675 2691 2707 2723 2707 2723 2739 2755 2771 2787 2803	2564 2596 2612 2628 2644 2660 2676 2692 2708 2724 2740 2756 2772 2788 2804	2565 2581 2597 261 3 2629 2645 2661 2677 2693 2709 2725 2741 2773 2789 2805	2566 2582 2598 2614 2630 2646 2662 2678 2694 2710 2726 2742 2758 2774 2790 2806	2567 2583 2599 2615 2631 2647 2663 2679 2695 2711 2727 2743 2759 2775 2791 2807	2568 2584 2600 2615 2632 2648 2664 2680 2696 2712 2728 2744 2760 2776 2792 2808	2569 2585 2601 2617 2633 2649 2665 2681 2697 2713 2729 2745 2761 2777 2793 2809	2570 2586 2602 2618 2634 2650 2666 2682 2698 2714 2730 2746 2762 2778 2794 2810	2571 2587 2603 2619 2635 2651 2667 2683 2699 2715 2731 2747 2763 2779 2795 2811	2572 2588 2604 2636 2652 2668 2684 2700 2716 2732 2748 2764 2780 2796 2812	2573 2589 2605 2621 2637 2653 2669 2685 2701 2717 2733 2749 2765 2781 2797 2813	2574 2590 2606 2622 2638 2654 2670 2686 2702 2718 2734 2750 2766 2782 2798 2814	2575 2591 2607 2623 2639 2655 2671 2687 2703 2719 2735 2751 2767 2783 2799 2815
· · · · · · · · · · · · · · · · · · ·	BOO BLO B20 B300 B40 B50 B50 B60 B70 B80 B90 BA0 BB0 BC0 BC0 BF0 BF0 BF0	2816 2832 2848 2864 2896 2912 2928 2944 2950 2976 2992 3008 3024 3040 3056	2817 2833 2849 2865 2881 2913 29245 2961 2993 3009 3025 3041 3057	2818 2834 2850 2866 2898 2914 2930 2945 2952 2978 2994 3010 3025 3042 3058	2819 2835 2851 2867 2883 2915 2953 295 295 3011 3027 3043 3059	2820 2835 2852 2868 2906 2916 2932 2948 2954 2964 2980 2995 3012 3028 3012 3028 3044 3050	2821 2837 2853 2869 2865 2901 2917 2933 2945 2965 2981 2997 3013 3029 3045 3061	2822 2838 2854 2870 2886 2902 2918 2934 2950 2956 2982 2998 3014 3030 3046 3062	2823 2839 2855 2871 2887 2903 2959 2951 2951 2951 2959 3015 3031 3047 3063	2824 2840 2856 2872 2888 2904 2936 2952 2952 2968 3000 3016 3032 3048 3064	2825 2841 2857 2873 2905 2921 2953 2953 2969 2965 3001 3017 3033 3049 3065	2826 2842 2858 2874 2906 2922 2938 2954 2970 2986 3002 3018 3034 3050 3050 3066	2827 2843 2859 2875 2891 2907 2923 2939 2955 2975 3003 3019 3035 3051 3067	2828 2844 2860 2876 2892 2908 2924 2940 2956 2972 2988 3004 3020 3036 3052 3068	2829 2845 2861 2877 2893 2909 2925 2941 2957 2973 2973 3005 3021 3021 3053 3053 3053	2830 2846 2862 2878 2910 2926 2942 2958 2974 2974 2976 3006 3022 3038 3054 3070	2831 2847 2863 2879 2911 2927 2943 2959 2975 2975 2975 3007 3023 3039 3055 3071

59

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

					<u> </u>	1.				0]
:		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	C00 C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CC0 CE0 CF0	3072 3088 3104 3120 3136 3152 3168 3200 3216 3232 3248 3264 3280 3296 3312	3073 3089 3105 3121 3137 3153 3169 3185 3201 3217 3233 3249 3265 3281 3297 3313	3074 3090 3106 3122 3138 3154 3170 3186 3202 3218 3234 3250 3266 3282 3298 3314	3075 3091 3107 3123 3139 3155 3171 3187 3203 3219 3235 3251 3257 3283 3299 3315	3076 3092 3108 3124 3140 3156 3172 3188 3204 3220 3236 3252 3268 3284 3300 3316	3077 3093 3109 3125 3141 3157 3173 3189 3205 3221 3237 3253 3269 3285 3301 3317	3078 3094 3110 3126 3142 3158 3174 3190 3206 3222 3238 3254 3270 3286 3302 3318	3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3287 3303 3319	3080 3096 3112 3128 3144 3160 3176 3192 3208 3224 3240 3256 3272 3288 3304 3320	3081 3097 3113 3129 3145 3161 3177 3193 3209 3225 3241 3257 3273 3289 3305 3321	3082 3098 3114 3130 3146 3162 3178 3194 3210 3226 3242 3258 3274 3290 3306 3322	3083 3099 3115 3131 3147 3163 3179 3195 3211 3227 3243 3259 3275 3291 3307 3323	3084 3100 3116 3132 3148 3164 3196 3212 3228 3244 3260 3276 3292 3308 3324	3085 3101 3117 3133 3149 3165 3181 3197 3213 3229 3245 3261 3277 3293 3309 3325	3086 3102 3118 3134 3150 3166 3182 3198 3214 3230 3246 3226 3278 3294 3294 3310 3326	3087 3103 3119 3135 3151 3163 3193 3215 3231 3247 3263 3247 3263 3279 3295 3311 3327
	D00 D10 D20 D30 D40 D50 D60 D70 D80 D90 D80 D80 D00 DD0 DD0 DF0	3328 3344 3360 3376 3492 3408 3424 3440 3456 3472 3488 3504 3552 3536 3552 3568	3329 3345 3351 3377 3399 3425 3441 3457 3473 3489 3505 3521 3537 3553 3559	3330 3346 3362 3394 3410 3426 3442 3458 3474 3490 3506 3522 3538 3554 3570	3331 3347 3363 3395 3411 3427 3443 3459 3475 3491 3507 3523 3539 3555 3571	3332 3348 3364 3396 3412 3428 3444 3460 3476 3492 3508 3524 3508 3555 3572	3333 3349 3365 3381 3397 3413 3429 3445 3461 3477 3493 3509 3525 3541 3557 3573	3334 3356 3366 3398 3398 3414 3430 3446 3446 3446 3446 3494 3510 3526 3542 3558 3574	$\begin{array}{c} 3335\\ 3351\\ 3367\\ 3383\\ 3399\\ 3415\\ 3431\\ 3447\\ 3453\\ 3495\\ 3511\\ 3527\\ 3551\\ 3559\\ 3575\\ \end{array}$	3336 3352 3364 3400 3416 3432 3448 3454 3480 3496 3512 3528 3544 3528 3544 3560 3576	3337 3353 3369 3401 3433 3449 3445 3449 3445 3449 3513 3529 3545 3561 3577	3338 3354 3376 3402 3418 3434 3450 3434 3450 3482 3498 3514 3530 3546 3562 3578	3339 3355 3377 3403 3419 3435 3451 3467 3483 3451 3467 3483 3515 3511 3547 3553 3579	3340 3356 3378 3404 3436 3436 3436 3452 3468 35484 3500 3516 3532 3548 3558 3564 3580	3341 3357 3373 3405 3421 3437 3453 3459 3485 3501 3517 3533 3549 3565 3581	3342 3358 33790 3406 3422 3438 3454 3450 3502 3518 3550 3550 3566 3582	3343 3359 3375 3407 3423 3439 3455 3471 3487 3503 3519 3535 3551 3567 3583
	E00 E10 E20 E30 E40 E50 E50 E30 E30 E30 E30 E30 E40 E00 E10 E10 E10 E10 E10 E10 E10 E10 E1	3584 3600 3616 3632 3648 3664 3696 3712 3728 3728 3728 3744 3760 3775 3792 3808 3824	3585 3601 3617 3633 3649 3665 3681 3697 3713 3729 3745 3761 3777 3793 3809 3825	3586 3602 3618 3634 3650 3666 3682 3698 3714 3730 3746 3762 3778 3794 3810 3826	3587 3603 3619 3635 3651 3683 3699 3715 3731 3747 3753 3779 3795 3811 3827	3588 3604 3620 3636 3652 3688 3684 3700 3716 3732 3748 3754 3754 3796 3812 3828	3589 3605 3621 3637 3653 3669 3685 3701 3717 3733 3749 3765 3781 3797 3813 3829	3590 3606 3622 3638 3654 3670 3686 3702 3718 3734 3750 3766 3782 3798 3814 3814 3830	3591 3607 3623 3655 3671 3687 3703 3719 3735 3751 3767 3783 3799 3815 3831	3592 3608 3624 3640 3656 3672 3688 3704 3720 3736 3752 3768 3784 3800 3816 3832	3593 3609 3625 3641 3657 3673 3689 3705 3721 3737 3753 3769 3785 3801 3817 3833	3594 3610 3626 3642 3658 3674 3690 3706 3706 3722 3738 3754 3770 3786 3802 3818 3834	3595 3611 3627 3643 3659 3675 3691 3707 3723 3707 3723 3739 3755 3771 3787 3803 3819 3835	3596 3612 3628 3644 3660 3676 3692 3708 3724 3740 3756 3772 3788 3804 3804 3820 3836	3597 3613 3629 3645 3661 3677 3693 3709 3725 3741 3757 3773 3789 3805 3821 3837	3598 3614 3630 3646 3662 3678 3694 3710 3726 3742 3758 3774 3790 3806 3822 3838	3599 3615 3631 3647 3663 3679 3695 3711 3727 3743 3759 3775 3791 3807 3823 3839
	F00 F10 F20 F30 F40 F50 F50 F70 F60 F80 F80 FB0 FC0 FF0 FF0	3840 3855 3872 3888 3904 3920 3936 3952 3958 3958 3984 4000 4016 4032 4048 4064 4080	3841 3857 3869 3905 3921 3937 3953 3959 3985 4001 4017 4033 4049 4065 4081	3842 3858 3674 3890 3905 3922 3938 3954 3970 3986 4002 4018 4002 4018 4050 4050 4082	3843 3859 3675 3691 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4035 4063	3844 3860 3876 3908 3908 3924 3940 3956 3972 3988 4004 4036 4030 4035 4052 4068 4084	3845 3861 3877 3893 3909 3925 3941 3957 3973 3939 4005 4005 4005 4005 4005 4005 4005	3843 3862 3878 3994 3910 3926 3942 3958 3974 3990 4005 4022 4032 4054 4070 4086	3847 3863 3879 3895 3911 3927 3943 3959 3975 3991 4007 4023 4039 4055 4071 4087	3848 3864 3880 3912 3928 3944 3960 3975 3992 4008 4024 4024 4040 4056 4072 4068	3849 3865 3881 3913 3929 3945 3961 3977 3993 4009 4025 4041 4057 4073 4089	3850 3866 3882 3898 3914 3930 3946 3962 3978 3994 4010 4026 4026 4074 40790	3851 3867 3883 3915 3931 3947 3963 3979 3995 4011 4027 4059 4059 4091	3852 3868 3900 3916 3932 3948 3964 3980 3996 4012 4028 4028 4028 4028 4070 4070 4070	3853 3869 3885 3901 3933 3949 3965 3981 3997 4013 4029 40051 4093	3854 3870 3886 3902 3918 3934 3950 3966 3982 3998 4014 4036 4052 4078 4094	$\begin{array}{c} 3855\\ 3871\\ 3887\\ 3903\\ 3919\\ 3935\\ 3951\\ 3967\\ 3963\\ 3999\\ 4015\\ 4031\\ 40047\\ 4003\\ 4079\\ 4095 \end{array}$

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

· · ·		1 6 75 15		1		(1
	(N16)	(10-3N)16	(10 ⁻⁶ N)16		(NIS)	(10 ⁻³ N)15	(10 ⁻⁶ N)16
.000 .001 .002 .003 .004 .005 .006 .007 .008 .009	.0000 0000 .0041 8937 .0083 126e .00c4 9ba5 .0106 24dd .0147 ae14 .0189 374b .01ca c083 .020c 49ba .024d d2f1	.0000 0000 .0000 10c6 .0000 218a .0000 3254 .0000 431b .0000 53e2 .0000 64a9 .0000 7570 .0000 8637 .0000 96fe	.0000 0000 .0000 0004 .0000 0008 .0000 000c .0000 0011 .0000 0015 .0000 0019 .0000 001e .0000 0022 .0000 0026	.050 .051 .052 .053 .054 .055 .056 .057 .058 .059	.0ccc cccc .0d0e 5604 .0d4f df3b .0d91 6872 .0dd2 fla9 .0e14 7ae1 .0e56 0418 .0e97 8d4f .0ed9 1687 .0fla 9fbe	.0003 46dc .0003 57a3 .0003 686a .0003 7931 .0003 89f8 .0003 9abf .0003 ab86 .0003 bc4d .0003 cd14 .0003 dddb	.0000 00d6 .0000 00db .0000 00e3 .0000 00e3 .0000 00ec .0000 00f0 .0000 00f9 .0000 00f9
.010 .011 .012 .013 .014 .015 .016 .017 .018 .019	.028f 5c28 .02d0 e560 .0312 6e97 .0353 f7ce .0395 8106 .03d7 0a3d .0418 9374 .045a lcac .049b a5e3 .04dd 2fla	.0000 a7c5 .0000 b88c .0000 c953 .0000 dala .0000 eael .0000 fba8 .0001 0c6f .0001 ld36 .0001 2dfd .0001 3ec4	.0000 002a .0000 002f .0000 0033 .0000 0037 .0000 003c .0000 0040 .0000 0044 .0000 0049 .0000 0044 .0000 0051	.060 .061 .062 .063 .064 .065 .066 .067 .068 .069	.0f5c 28f5 .0f9d b22d .0fdf 3b64 .1020 c49b .1062 4dd2 .10a3 d70a .10e5 6041 .1126 e978 .1168 72b0 .11a9 fbe7	.0003 eea2 .0003 ff69 .0004 102f .0004 20f6 .0004 31bd .0004 4284 .0004 534b .0004 6412 .0004 74d9 .0004 85a0	.0000 0101 .0000 0105 .0000 010a .0000 010e .0000 0112 .0000 0117 .0000 0117 .0000 0115 .0000 011f .0000 0124 .0000 0128
.020 .021 .022 .023 .024 .025 .026 .027 .028 .029	.051e b851 .0560 4189 .05al cac0 .05e3 53f7 .0624 dd2f .0666 6666 .06a7 ef9d .06e9 78d4 .072b 020c .076c 8b43	.0001 4f8b .0001 6052 .0001 7119 .0001 81e0 .0001 92a7 .0001 a36e .0001 b435 .0001 c4fc .0001 d5c3 .0001 e68a	.0000 0055 .0000 005a .0000 005e .0000 0062 .0000 0067 .0000 006b .0000 006f .0000 0073 .0000 0078 .0000 007c	.070 .071 .072 .073 .074 .075 .076 .077 .078 .079	.11eb 851e .122d 0e56 .126e 978d .12b0 20c4 .12f1 a9fb .1333 3333 .1374 bc6a .13b6 45a1 .13f7 ced9 .1439 5810	.0004 9667 .0004 a72e .0004 b7f5 .0004 c8bc .0004 d983 .0004 ea4a .0004 fbll .0005 0bd8 .0005 lc9f .0005 2d66	.0000 012c .0000 0130 .0000 0135 .0000 0139 .0000 0134 .0000 0142 .0000 0146 .0000 0144 .0000 014f .0000 0153
.030 .031 .032 .033 .034 .035 .036 .037 .038 .039	.07ae 147a .07ef 9db2 .0831 26e9 .0872 b020 .08b4 3958 .08f5 c28f .0937 4bc6 .0978 d4fd .09ba 5e35 .09fb e76c	.0001 f751 .0002 0817 .0002 18de .0002 29a5 .0002 3a6c .0002 4b33 .0002 5bfa .0002 6ccl .0002 7d88 .0002 8e4f	.0000 0080 .0000 0085 .0000 0089 .0000 0098 .0000 0092 .0000 0096 .0000 009a .0000 009a .0000 009a .0000 00a3	.080 .081 .082 .083 .084 .085 .086 .087 .088 .089	.147a e147 .14bc 6a7e .14fd f3b6 .153f 7ced .1581 0624 .15c2 8f5c .1604 1893 .1645 alca .1687 2b02 .16c8 b439	.0005 3e2d .0005 4ef4 .0005 5fbb .0005 7082 .0005 8149 .0005 9210 .0005 a2d7 .0005 b39e .0005 c465 .0005 d52c	.0000 0157 .0000 015b .0000 0160 .0000 0164 .0000 0164 .0000 0164 .0000 0171 .0000 0175 .0000 0179 .0000 017e
.040 .041 .042 .043 .044 .045 .046 .047 .048 .049	.0a3d 70a3 .0a7e f9db .0ac0 8312 .0b02 0c49 .0b43 9581 .0b85 leb8 .0bc6 a7ef .0c08 3126 .0c49 ba5e .0c8b 4395	.0002 9f16 .0002 afdd .0002 c0a4 .0002 d16b .0002 e232 .0002 f2f9 .0003 03c0 .0003 1487 .0003 254e .0003 3615	.0000 00ab .0000 00b0 .0000 00b4 .0000 00b8 .0000 00bc .0000 00c5 .0000 00c9 .0000 00ce .0000 00ce	.090 .091 .092 .093 .094 .095 .096 .097 .098 .099	.170a 3d70 .174b c6a7 .178d 4fdf .17ce d916 .1810 624d .1851 eb85 .1893 74bc .18d4 fdf3 .1916 872b .1958 1062	.0005 e5f3 .0005 f6ba .0006 0780 .0006 1847 .0006 290e .0006 39d5 .0006 4a9c .0006 5b63 .0006 6c2a .0006 7cfl	.0000 0182 .0000 0186 .0000 018b .0000 018f .0000 0193 .0000 0198 .0000 019c .0000 019c .0000 01a0 .0000 01a4 .0000 01a9

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

100 .1999 .0006 84b8 .0000 01ad 101 .194b 2240 .0006 977 .0000 01b 102 1ala cacl6 .0000 01b .151 .26a7 6784 .0000 625 .0000 026 103 1abs 153 .272b 02c .000a 069 .0000 021 104 1abs 1bf .0006 125 .26e9 78d+ .0000 022 105 .1bc4 fac .0006 125 .27ea 14ra .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 028 .0000 <th></th> <th></th> <th></th> <th></th> <th>L-DECIMAL</th> <th></th> <th></th> <th>•</th> <th></th>					L-DECIMAL			•	
1.10 .15db 22db0006 9FT0000 01bi .151 .2647 4F34 .0000 9F560000 024 1.02 .1abe 3537006 cood000 01ba .1522697 864 .0009 e5560000 024 1.03 .1abe 3537006 cood000 01ba .153272b 020000b 876230000 024 1.04 .1abf 04760006 d124 .0000 01ba .153272b 020000b 876230000 024 1.06 .1b22 d0e50006 f2260000 01c1 .154276c bh33000c 83380000 024 1.06 .1b22 d0e50007 73570000 01c4 1582872 b020000c 84620000 024 1.10 .1c8 f5c20007 357e0000 01c4 1592873 d#rd0008 g9d80000 024 1.11 .1c6a 7er9007 769a0000 01c4 1612937 d#rd0008 g9d80000 024 1.11 0007 f8ab0000 01c4 1612937 d#rd0008 g9d80000 022 1.1111c4a 01s30007 gaba0000 01c4 1662875 c281000a atrif0000 022 1.1111c4a 01s30007 gaba0000 01c4 1612937 d#rd0000 atrif0000 022 1.1111c4a 01s50007 gaba0000 01c4 1662845 gaba000a atrif0000 022 1.1111c4a 01s50007 gaba0000 01c4 1662845 gaba0000 atrif0000 022 1.1	ſ		N16	(10-3N)16	(10- 6N)16		N 16	(10 ⁻³ N)16	(10-6N)16
1.101 .19db 22d0 .0006 gPTf .0000 01b6 .151 .263 r 6rg dL .0000 026 spfs6 .0000 01b6 1.102 .1afe aco8 .0006 arb6 .0000 01b6 .152 .266 r 76d L .0000 arb6 .0000 01b 1.103 .1afe 3537 .0006 c064 .0000 01ba .154 .2716 bb13 .0000 arb6 .0000 022 1.06 .1b2 does .0006 c122 .155 .2716 bb13 .0000 arb6 .0000 022 1.06 .1b2 does .0007 7357 .0000 01c6 .157 .2821 269 .0000 arb6 .0000 022 1.06 .128 r5c2 .0007 2457 .0000 01c6 .156 .2976 db14 .0000 arb6 .0000 022 1.11 .1c6a 7819 .0007 766 .0000 01c6 .166 .2976 db14 .0000 arb6 .0000 022 1.11 .1c6a 9168 .0007 766 .0000 01c6 .166 .2976 db14 .0000 arb6 .0000 022 1.11 .1c6a 9168 .0007 766 .0000 01c6 .166 .2976 db13 .0000 022 .0000 022 1.11 .1c6a 9168 .0007 re376 .0000 01c6 .166		.100	.1999 9999	.0006 8db8	.0000 0lad	.150	.2666 6666	.0009 a495	.0000 0284
1:03 1.153 2.72b 0.200 0.600 0.000 0.000 0.215 1:04 1.182 1.182 0.006 6.000 0.000 0.002 1.153 2.776 8.043 0.000 0.0		.101		.0006 9e7f	.0000 Olbl	.151	.26a7 ef9d	.0009 e55c	.0000 0288
1:03 1.153 2.72b 0.20c 0.69e 0.0000 0.000 0.22e 1:04 1.1891 berge 0.006 619b 0.0000 0.00e 1.55 2.71e 1.71e 0.00e 0.69e 0.0000 0.22e 1:06 1.1821 47ae 0.0006 619b 0.0000 0.12e 1.156 2.71e 1.71e 0.002 2.87e 0.002e 2.87e 1.92e 0.002e 2.87e 0.002e 2.87e 0.002e 2.87e 0.002e 2.87e 0.000e 0.22e 1.156 2.27e 0.002e 0.002e 2.87e 0.002e 2.87e 0.002e 0.000e 0.000e 0.2e 1.157 2.82e 0.002e 0.000e 0.002e 1.157 2.82e 0.002e 0.000e 0.002e 1.157 2.82e 0.002e 0.000e 0.002e 1.157 2.82e 0.002e 0.000e 0.000e 0.000e 0.002e 1.157 2.81e 0.000e 0.00e 0.000e 0.00e 0.00e 0.00e 0.00e 0.00e 0.00e 0.00e 0.00e <	j	.102	.lalc ac08	.0006 af46	.0000 0166	.152	.26e9 78d4	.0009 f623	.0000 028c
1.04 1.197 1.697 6.0006 0.000 <td< td=""><td></td><td>.103</td><td>.la5e 353f</td><td>.0006 c00a</td><td>.0000 01ba</td><td></td><td></td><td>.000a 06e9</td><td>.0000 0291</td></td<>		.103	.la5e 353f	.0006 c00a	.0000 01ba			.000a 06e9	.0000 0291
1.05 1.121 1.122 0.006 1.22 0.000 0		.104		.0006 d0a4	.0000 01be				.0000 0295
1.06 .1b22 doe5 .0006 r262 .0000 01c7 .107 .1b64 5a12 .0007 1370 .0000 01c4 .109 .1be7 6c8b .0007 1370 .0000 01c4 .110 .1c28 f5c2 .0007 357e .0000 01c4 .111 .1c6a 7er9 .0007 756 .0000 01c4 .112 .1cca 0831 .0007 757c .0000 01c4 .112 .1cca 0831 .0007 766 .0000 01c4 .112 .1cca 0831 .0007 766 .0000 01c4 .113 .1ced 9168 .0007 766 .0000 01c4 .114 .1d70 a347 .0007 7861 .0000 01c4 .115 .1d70 a347 .0007 7861 .0000 01c4 .116 .e35 37c .0000 01c4 .166 .2a7 rep3b .000a d34 .113 .1e6 8b4 .0007 cerd .0000 01f4 .166 .2a7 rep3b .000a d34 .117 .1d8 .e35 37c .0007 red2 .0000 01f4 .166 .2a6 ref 90b .0000 022 .119 .lef 8ba .0007 red2 .0000 023 .177 .2e8 43951 .000b 4292 .00000 023									.0000 0299
$ \begin{array}{c} 106 \\ 106 $	1								.0000 029e
1.08 .1185 .3533 .0007 13r0 .0000 01er .158 .2872 0000 0200 .0000 022 1.10 .1c28 f5c2 .0007 75re .0000 01d .159 .28b4 3958 .0000 022 .0000 022 1.11 .1c6a ref .0007 757c .0000 01d .161 .2937 4bc6 .0000 028 .0000 022 1.12 .1cac 0831 .0007 776c .0000 01d .162 .2978 4Hd .000a aed .0000 022 .0000<									.0000 02a2
.109.1be7.0007 $24b7$.00000144.110.1c28f5c2.0007357e.000001d8.111.1c6a.7ef9.00074645.000001d8.112.1cea0831.0007760c.000001e1.112.1cea0831.00077632.000001e5.113.1ced9168.00077632.000001e5.114.1d271a97.00077896.000001e5.115.1d70a377.00079261.000001e5.116.1d22200e.00079281.000001f6.116.1d23377c.00079261.000001f6.166.2e7e79db.116.1e35377c.00079db.000001f6.166.2e7e79db.00000200.119.1e76.6007d444.00000203.170.2b85leb8.000b2420.00000200.122.1e79db22.0007d444.00000207.171.2c683126.00000221.123.1f7eed91.00086796.00000214.177.2c491800186.20009467.0000022.124.1f7brf68.0008637b.00000214.177.2c491800026.0000023.122.1e78.0088637b.00					.0000 0lcf			-	.0000 02a6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0000 02aa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ī	.110	.lc28 f5c2	.0007 357e	.0000 0148	.160	-28f5 c28f	.000a 7c5a	.0000 02af
1.112 .1cac 0631 .0007 570c .0000 01e1 .162 .2978 d4rd .000a gde8 .0000 022 1.114 .1127 .127 .0007 789a .0000 01e9 .163 .29ba 253 .000a aeaf .0000 022 .115 .1470 a3d7 .0007 789a .0000 01r2 .166 .2276 79a .000a alog .0000 022 .116 .1422 10e2 .0007 789a .0000 01r2 .166 .2287 79a .000a alog .0000 022 .117 .1473 b645 .0007 adr4 .0000 01r2 .166 .2287 79b .000a 129 .0000 022 .0000 022 .119 .1e76 c8b4 .0007 c7d .0000 01r4 .166 .2264 3958 .0000 1359 .0000 020 .120 .1e86 51eb .0007 d4t4 .0000 020 .171 .2b65 1eb8 .0000 1359 .0000 020 .121 .1e79 db22 .0007 red2 .0000 021 .171 .2b65 1eb8 .0000 024 .0000 021 .122 .1f7b c48a .0006 0294 .0000 021 .173 .2c49 ba59 .0000 6735 .0000 021 .122 .1f7b c48a .0006 878 </td <td>j.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0000 02b3</td>	j.								.0000 02b3
113 $1 - \log 9168$ $0 - \cos 7 6733$ $0 - \cos 7 6763$ $0 - \cos 7 6766$ $0 - \cos 7 6766$ <td></td> <td></td> <td></td> <td>• • •</td> <td></td> <td></td> <td></td> <td></td> <td>.0000 02b7</td>				• • •					.0000 02b7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0000 02bc
115 $1470 \ a_3d7$ $0007 \ b_9c1$ $0000 \ 01ed$ $.165$ $.2a_3d \ 70a_3$ $000ca \ d_03d$ $0000 \ 02d$ 117 $1d7 \ b_045$ $0007 \ azef$ $0000 \ 01fa$ $.166$ $2a_7e \ f_9db$ $000ca \ a_104$ $0000 \ 02d$ 118 $1e_35 \ 3f7c$ $0007 \ bb6$ $0000 \ 01fa$ $.166$ $2a_2e \ f_3db$ $000b \ 02g2$ $0000 \ 02d$ 119 $1e_76 \ cb44$ $0007 \ cc7a$ $0000 \ 02d3$ $.166$ $2a_2d \ f_2db$ $000b \ 02g2$ $0000 \ 02d$ 120 $1e_76 \ cb44$ $0007 \ da44$ $0000 \ 02d3$ $.166$ $2b_2d \ oc49$ $000b \ 02g2$ $0000 \ 02d$ 121 $1e_76 \ cb45a$ $0007 \ da44$ $0000 \ 02d3$ $.172 \ cb85 \ lab8$ $000b \ 2420$ $0000 \ 02d$ 122 $1f7b \ db22$ $0007 \ da44$ $0000 \ 02d3$ $.172 \ cb85 \ lab8$ $000b \ 2420$ $0000 \ 02d$ 122 $1f7b \ db2a$ $0007 \ da44$ $0000 \ 02d1$ $.172 \ cb85 \ lab8$ $000b \ 45ae$ $0000 \ 02d$ 123 $1f7b \ cd2a$ $0008 \ dc95$ $0000 \ 02l4$ $.174 \ cb8b \ 4395$ $000b \ 673c$ $0000 \ 02d$ $126 \ c2041 \ 837$ $0008 \ 52b4$ $0000 \ 02l4$ $.177 \ c2d44 \ dr3b$ $000b \ 8b26$ $0000 \ 02d$ $128 \ c204 \ 9be5$ $0008 \ 637b$ $0000 \ 02d2$ $.177 \ c2d44 \ dr3b$ $000b \ bb1f$ $0000 \ 03d$ $133 \ c20c \ 49ba$ $0008 \ 85c9$ $0000 \ 02d2$ $.177 \ c2d44 \ dr3b$ $000b \ bb1f$ $0000 \ 03d$ $133 \ c2147 \ ae14$ $c0088 \ 85c9$ $0000 $	1								.0000 02c0
.116 $.1dc 2 2doe$ $.0007 9a28$ $.0000 01r2$ $.166$ $.2a7e rgdt.000a rldt.0000 02a.117.1dr3 b645.0007 amer.0000 01r6.167.2ac0 8312.000a rldt.0000 02a.118.le35 37rc.0007 cc7d.0000 01r6.168.2bc0 2-d49.000b 0292.0000 02a.119.le76 c8b4.0007 cc7d.0000 01r6.168.2bc0 2-d49.000b 2420.0000 02a.120.le68 5leb.0007 cc7d.0000 0207.171.2bc6 a?ef.000b 34e7.0000 02a.121.le79 db22.0007 red2.0000 0210.172.2c08 3126.000b 45ae.0000 02a.122.175b 645a.0007 red2.0000 021b.172.2c08 3126.000b 45ae.0000 02a.122.17b c6a.0008 0796.0000 021b.177.2c08 3126.000b 45ae.0000 02a.123.1fr ce31.0008 0796.0000 021b.177.2c08 3126.000b 783.0000 02a.127.2003 126e.0008 637b.0000 0221.177.2de 5604.000b 82a.0000 02a.129.2106 24bd.0008 7442.0000 0226.178.2d91 6872.000b ce37.0000 023.133.21ea c683.0008 875e.0000 0226.183.2ef6 0418.000b ce37.0000 033.133.22bc 6978.0008 8575.0000 0$.0000 02c4
.117 $.1d73 b645$ $.0007 eaef$ $.0000 01r6$ $.167$ $.2ae0 8312$ $.000a r1cb$ $.0000 024$ $.119$ $.1e76 c8b4$ $.0007 cc7d$ $.0000 01rf$ $.168 cb20 c49$ $.000b 0292$ $.0000 024$ $.120$ $.1e86 51eb$ $.0007 dd44$ $.0000 0203$ $.169 cb43 9581$ $.000b 1359$ $.0000 024$ $.121$ $.1e79 db22$ $.0007 edb6$ $.0000 0207$ $.171 cb68 1eb8$ $.000b 2420$ $.0000 024$ $.122$ $.1r3b 645a$ $.0007 red2$ $.0000 020b$ $.171 cb68 1eb8$ $.000b 34e7$ $.0000 024$ $.123$ $.1r7c ed91$ $.0006 0r98$ $.0000 021b$ $.1r7$ $.2c88 126$ $.000b 5675$ $.0000 024$ $.125$ $.2000 0000$ $.0008 3126$ $.0000 021b$ $.1r7$ $.2c8b 4395$ $.000b 673c$ $.0000 022$ $.126$ $.2041 8937$ $.0008 41ed$ $.0000 0221$ $.1r7$ $.2c8b 4395$ $.000b 673c$ $.0000 022$ $.127$ $.2083 126c$ $.0008 7bb$ $.0000 0225$ $.1r7$ $.2d4r dr3b$ $.000b 88ca$ $.0000 022$ $.127$ $.2083 126c$ $.0008 8796$ $.0000 022a$ $.1r7$ $.2d4r dr3b$ $.000b bb1f$ $.0000 033$ $.131$ $.2189 374b$ $.0008 8599$ $.0000 022a$ $.1r7$ $.2d4r dr3b$ $.000b cdr4f$ $.0000 033$ $.133$ $.220c 49ba$ $.0008 8593$ $.0000 022a$ $.1r7$ $.2d4r dr3b$ $.000b bc6f$ $.0000 033$ $.133$ $.228f 5c28$ $.0008 8625$ $.0000 023a$ $.183$ $.2e91 887$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.0000 02c8</td>									.0000 02c8
118 $1e_{35}$ $3f^{\circ}c$ $.0007$ $00b6$ 0000 $01fa$ $.168$ $2b02$ $0c_{49}$ 0000 0222 0000 0224 $.120$ $1eb8$ $51eb$ $.0007$ $de44$ $.0000$ 0203 $.169$ $2b43$ 9581 $000b$ 2420 0000 0224 $.121$ $1ef9$ $db22$ $.0007$ $ee0b$ $.0000$ 0207 $.171$ $2bc6$ $aref$ $.000b$ $45ae$ $.0000$ 022 $.122$ $.1f7c$ $ed0$ $.0006$ 0279 $.0000$ 0210 $.172$ $.2c08$ 3126 $.0000$ 0210 $.123$ $.1f7c$ $ed3$ $.0006$ 0257 $.0000$ 0210 $.174$ $.2c08$ 3126 $.0000$ 0210 $.125$ $.2000$ 0006 3226 $.0000$ 0211 $.177$ $.2c49$ $ba59$ $.0000$ 022 $.127$ $.2083$ $126e$ $.0008$ $52b4$ $.0000$ 0221 $.177$ $.2d4r$ $dr3b$ $.0000$ 022 $.128$ $.20c4$ $9ba5$ $.0008$ $637b$ $.0000$ 0222 $.176$ $.22d9$ 6872 $.000b$ $ba52$ $.0000$ 023 $.131$ $.2189$ $374b$ $.0008$ 8509 $.0000$ 0222 $.177$ $.2d4r$ $dr3b$ $.000b$ $ba52$ $.0000$ 033 $.132$ $.2147$ $ae144$ $.0008$ 8509 $.0000$ 0222 $.177$ $.2d4r$ $adad$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.0000 02cd</td></td<>									.0000 02cd
$.119$ $.1e^{-76}$ $.0007$ $cc7d$ $.0000$ $01ff$ $.169$ $.2b^{4}3$ 9581 $.000b$ 1359 $.0000$ $02d$ $.120$ $.1eb8$ $51eb$ $.0007$ dd^{44} $.0000$ 0203 $.171$ $.2b65$ $1eb8$ $.000b$ 2420 $.0000$ $02d$ $.121$ $.1ef9$ $db22$ $.0007$ $ecbb$ $.0000$ 0207 $.171$ $.2bc6$ $aref$ $.000b$ $45ac$ $.122$ $.1f7bc$ edb $.0006$ $078d$ $.0000$ $021d$ $.173$ $.2c4b$ $b325$ $.000b$ $75ac$ $.0000$ $02d$ $.125$ $.2000$ 0006 3126 $.0000$ $021d$ $.174$ $.2c4b$ $b325$ $.000b$ $78c3$ $.0000$ $02d$ $.126$ $.2041$ 8937 $.0008$ $52b4$ $.0000$ 0221 $.177$ $.2db4$ $f33b$ $.000b$ $78c3$ $.0000$ $02d$ $.126$ $.2044$ $89a57$ $.0008$ $52b4$ $.0000$ 0222 $.178$ $.2d91$ 6872 $.000b$ $adaf$ $.0000$ $03d$ $.130$ $.2147$ $ae14$ $.0008$ 8509 $.0000$ $022d$ $.177$ $.2d4f$ $fa2d$ $.000b$ $adaf$ $.0000$ $03d$ $.132$ $.21ca$ $c033$ $.0006$ $022d$ $.177$ $.2d4f$ $13bc$ $.000b$ $adaf$ $.0000$ $03d$ $.123$ $.2147$ $ae14^{1}$ $.0008$ 8509 $.0000$ <									.0000 02dl
1.121 $.1ef9 db22$ $.0007 ee0b$ $.0000 0207$ $.171$ $.2bc6 a7ef$ $.000b 34e7$ $.0000 020$ 1.122 $.1f7b 645a$ $.0007 fed2$ $.0000 020b$ $.172$ $.2c68 3126$ $.000b 45ae$ $.0000 021$ $.124$ $.1fbe 76c 8$ $.0008 205f$ $.0000 0210$ $.172$ $.2c8b 4395$ $.000b 673c$ $.0000 021$ $.125$ $.2000 0000$ $.0008 3126$ $.0000 0214$ $.174$ $.2c8b 4395$ $.000b 673c$ $.0000 021$ $.126$ $.2041 8937$ $.0008 41ed$ $.0000 0214$ $.177$ $.2c49 ba5e$ $.000b 7803$ $.0000 022$ $.126$ $.2004 9b35$ $.0008 637b$ $.0000 0221$ $.177$ $.2de 5604$ $.000b 88ca$ $.0000 022$ $.128$ $.20c4 9ba5$ $.0008 637b$ $.0000 0225$ $.178$ $.2d91 6872$ $.000b a585$ $.0000 023$ $.132$ $.216a c083$ $.0008 8509$ $.0000 0226$ $.179$ $.2d42 f1a9$ $.000b bb1f$ $.0000 033$ $.132$ $.21ea c083$ $.0008 a667$ $.0000 0236$ $.182$ $.2e97 8d4f$ $.000b ced74$ $.0000 033$ $.133$ $.220c 49ba$ $.0008 8576$ $.0000 0243$ $.185$ $.2f5c 28f5$ $.000c 1fe8$ $.0000 033$ $.134$ $.224d d2f1$ $.0008 8dec$ $.0000 0248$ $.187$ $.2f4f 3b64$ $.000c 306f$ $.0000 033$ $.134$ $.2236 560$ $.0008 8aca$ $.0000 0250$ $.183$ $.2e97 8d442$ $.000c 306f$ $.0000 033$ $.135$ $.2236 5628$ $.0008 8dec$ $.000$.0000 0245
1.121 $.1ef9 db22$ $.0007 ee0b$ $.0000 0207$ $.171$ $.2bc6 a7ef$ $.000b 34e7$ $.0000 020$ 1.122 $.1f7b 645a$ $.0007 fed2$ $.0000 020b$ $.172$ $.2c68 3126$ $.000b 45ae$ $.0000 021$ $.124$ $.1fbe 76c 8$ $.0008 205f$ $.0000 0210$ $.172$ $.2c8b 4395$ $.000b 673c$ $.0000 021$ $.125$ $.2000 0000$ $.0008 3126$ $.0000 0214$ $.174$ $.2c8b 4395$ $.000b 673c$ $.0000 021$ $.126$ $.2041 8937$ $.0008 41ed$ $.0000 0214$ $.177$ $.2c49 ba5e$ $.000b 7803$ $.0000 022$ $.126$ $.2004 9b35$ $.0008 637b$ $.0000 0221$ $.177$ $.2de 5604$ $.000b 88ca$ $.0000 022$ $.128$ $.20c4 9ba5$ $.0008 637b$ $.0000 0225$ $.178$ $.2d91 6872$ $.000b a585$ $.0000 023$ $.132$ $.216a c083$ $.0008 8509$ $.0000 0226$ $.179$ $.2d42 f1a9$ $.000b bb1f$ $.0000 033$ $.132$ $.21ea c083$ $.0008 a667$ $.0000 0236$ $.182$ $.2e97 8d4f$ $.000b ced74$ $.0000 033$ $.133$ $.220c 49ba$ $.0008 8576$ $.0000 0243$ $.185$ $.2f5c 28f5$ $.000c 1fe8$ $.0000 033$ $.134$ $.224d d2f1$ $.0008 8dec$ $.0000 0248$ $.187$ $.2f4f 3b64$ $.000c 306f$ $.0000 033$ $.134$ $.2236 560$ $.0008 8aca$ $.0000 0250$ $.183$ $.2e97 8d442$ $.000c 306f$ $.0000 033$ $.135$ $.2236 5628$ $.0008 8dec$ $.000$	t	.120	.leb8 5leb	.0007 dd44	.0000 0203	.170	.2b85 leb8	.000b 2420	.0000 02da
122 11736 $645a$ $.0007$ $fed2$ $.0000$ $020b$ 172 $2c08$ 3126 $.000b$ $45ae$ $.0000$ 024 123 $117c$ $ed91$ $.0008$ 0006 0210 $.173$ $2c49$ $ba5e$ $.000b$ 5675 $.0000$ 024 125 2000 0008 3126 $.0000$ 0214 $.174$ $2c8b$ 4395 $.000b$ 5675 $.0000$ 024 126 2041 8937 $.0008$ $41ed$ $.0000$ 0221 $.177$ $2c4c$ $b673$ $.0000$ 022 128 $.20c4$ $9ba5$ $.0008$ $52b4$ $.0000$ 0221 $.177$ $.2d4f$ $d3b$ $.000b$ 9991 $.0000$ 022 129 $.2106$ $24dd$ $.0008$ 7442 $.0000$ $022a$ $.177$ $.2d4f$ $d3b$ $.000b$ $bb1f$ $.0000$ 023 130 $.2147$ $ae14$ $.0008$ 8509 $.0000$ $022a$ $.179$ $.2d21$ $r1ag$ $.000b$ $bb1f$ $.0000$ 033 132 $.21ca$ $c083$ $.0008$ 8509 $.0000$ $022a$ $.180$ $.2e14$ $rae1$ $.000b$ $bdead$ $.0000$ 033 133 $.220c$ $49ba$ $.0008$ 8509 $.0000$ 0236 $.182$ $.2e97$ $8d4f$ $.000b$ $bdead$ $.0000$ 033 134 $.224d$ 2211 $.0008$ 825 $.0000$ 0				· · · ·	-				.0000 02de
123 $117c$ ed91 0008 0798 0000 0210 173 $2c49$ ba5e $000b$ 5675 0000 024 124 $11be$ 76c8 0008 2051 0000 0214 174 $2c8b$ 4395 $000b$ 673c 0000 022 125 2000 0000 0008 3126 0000 0218 1175 $2ccc$ eccc $000b$ 7803 0000 022 126 2041 8937 0008 41ed 0000 0221 1176 $22dc$ 5604 $000b$ 88ca 0000 022 128 $20c4$ 9ba5 0008 637b 0000 0225 1178 $22de$ 5604 $000b$ 88ca 0000 022 129 2106 24dd 0008 7442 0000 022a 1177 $2d47$ df3b $000b$ bblf 0000 023 130 2147 ael4 0008 8509 0000 022a 1179 $2dd2$ fla9 $000b$ bblf 0000 033 133 $220c$ 49ba 0008 b75e 0000 0236 182 $2e97$ 8d4f $000b$ dcad 0000 033 133 $220c$ 49ba 0008 8625 0000 0237 183 $2e94$ 8d47 $000b$ dcad 0000 033 134 $224d$ d2f1 0008 8d8c 0000 0243 185 $2ff3$ 8d4f $000b$ cf16 0000 033 136 2230 e560 0008 8f7a 0000 0243 186 $2ff3$ bc4 $000c$ 1fc8 0000 033 137 2312 6e97 0008 fa7a 0000 0250 188 $302c$ 44b2 $000c$ 624 0000 033 137 2312 6e97 0009 9b41 0000 0250 186 $302c$ 44b2 $000c$ 624 0000 033 <td< td=""><td></td><td>- 1</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>.0000 02e2</td></td<>		- 1			•				.0000 02e2
124 1176 $268b$ 4395 $000b$ $673c$ 0000 0214 125 2000 0008 3126 0000 0218 1175 $2ccc$ $cccc$ $000b$ 7803 0000 021 126 2041 8937 0008 $41ed$ 0000 $0221d$ 1176 $2dce$ 5604 $000b$ $88ca$ 0000 0221 1127 2083 $126e$ 0008 $52b4$ 0000 0221 1177 $2d417$ $d73b$ $000b$ $88ca$ 0000 0221 1128 $20c4$ $9ba5$ 0000 $677b$ 0000 0225 1177 $2d417$ $d73b$ 0000 023 1130 2147 $ae14$ 0008 8509 0000 $022e$ 1179 $2dd2$ $11a9$ $000b$ $bb1f$ 0000 033 133 $21ca$ $c083$ 0008 8576 0000 $023c$ 182 $2e97$ $8d4f$ $000b$ $cded$ 0000 033 133 $220c$ $49ba$ 0008 $875e$ 0000 $023f$ 182 $2e97$ $8d4f$ $000b$ $cded$ 0000 033 134 $224d$ $d2f1$ 0008 $d8ec$ 0000 0248 185 $215c$ $28f5$ $000c$ 168 0000 033 135 $228f$ $5ce8$ 0008 $47ac$ 0000 0248 186 $217g$ $000c$ 168 $000c$ 168 $000c$.0000 02e7
125 $.2000 0000$ $.0008 3126$ $.0000 0218$ $.175$ $.2ccc cccc$ $.000b 7803$ $.0000 021$ 126 $.2041 8937$ $.0008 41ed$ $.0000 021d$ $.176$ $.2d0e 5604$ $.000b 88ca$ $.0000 022$ 127 $.2083 126e$ $.0008 52b4$ $.0000 0221$ $.177$ $.2d4f d73b$ $.000b 88ca$ $.0000 022$ $.128$ $.20c4 9ba5$ $.0008 637b$ $.0000 0225$ $.178$ $.2d91 6872$ $.000b aa58$ $.0000 022$ $.129$ $.2106 24dd$ $.0008 7442$ $.0000 022a$ $.179$ $.2d22 f1a9$ $.000b bb1f$ $.0000 023$ $.130$ $.2147 ac14$ $.0008 8509$ $.0000 022a$ $.179$ $.2d22 f1a9$ $.000b cbe6$ $.0000 033$ $.131$ $.2189 374b$ $.0008 8509$ $.0000 023b$ $.181$ $.2e56 0418$ $.000b cbe6$ $.0000 033$ $.132$ $.21ca c083$ $.0008 c25$ $.0000 023b$ $.183$ $.2e97 8d4f$ $.000b cdcad$ $.0000 033$ $.133$ $.220c 49ba$ $.0008 c825$ $.0000 023f$ $.183$ $.2e97 8d4f$ $.000b cf3b$ $.0000 033$ $.134$ $.224d a2r1$ $.0008 c825$ $.0000 0248$ $.185$ $.275c 28f5$ $.000c 1fc8$ $.0000 033$ $.136$ $.2230 c560$ $.0008 c953$ $.0000 0248$ $.186$ $.279d b22d$ $.000c 308f$ $.0000 033$ $.137$ $.2317 0a3d$ $.0009 2ccf$ $.0000 0250$ $.188$ $.3020 c49b$ $.000c 521d$ $.0000 033$ $.140$ $.2347 0a3d$ $.0009 2ccf$ $.0000$	1								.0000 02eb
.126 $.2041$ 8937 $.0008$ $41ed$ $.0000$ $021d$ $.176$ $.2d0e$ 5604 $.000b$ $88ca$ $.0000$ 0221 $.127$ $.2083$ $126e$ $.0008$ $52b4$ $.0000$ 0221 $.177$ $.2d4f$ $df3b$ $.000b$ 9991 $.0000$ 022 $.129$ $.2106$ $24dd$ $.0008$ 7442 $.0000$ $022a$ $.177$ $.2d4f$ $df3b$ $.000b$ $b8ca$ $.0000$ 022 $.130$ $.2147$ $ae14$ $.0008$ 8509 $.0000$ $022a$ $.179$ $.2d2d2$ $f1a9$ $.000b$ $bb1f$ $.0000$ 030 $.131$ $.2189$ $374b$ $.0008$ 8509 $.0000$ $022a$ $.179$ $.2d2d2$ $f1a9$ $.000b$ $bb1f$ $.0000$ 030 $.132$ $.21ca$ $c083$ $.0008$ $a559$ $.0000$ $023b$ $.181$ $.2e56$ 0418 $.000b$ $dead$ $.0000$ 030 $.133$ $.220c$ $49ba$ $.0008$ $a525$ $.0000$ $023b$ $.182$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 030 $.134$ $.224bd$ $d2f1$ $.0008$ $a825$ $.0000$ $024s$ $.185$ $.2f5c$ $a56$ $.0000$ 033 $.135$ $.228f$ $5ce7$ $.0008$ $a62c$ $.0000$ $024s$ $.187$ $.2f4d$ $.000c$ 166 $.000c$ 166 $.000c$ 166 $.000c$ 136 $.000c$.0000 02ef
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0000 02f8
.129 $.2106$ $24da$ $.0008$ 7442 $.0000$ $022a$ $.179$ $.2dd2$ $flag$ $.000b$ $bblf$ $.0000$ $03d$ $.130$ $.2147$ $ae14$ $.0008$ 8509 $.0000$ $022e$ $.181$ $.2e14$ $7ae1$ $.000b$ $bblf$ $.0000$ $03d$ $.131$ $.2189$ $374b$ $.0008$ $95d0$ $.0000$ $022e$ $.181$ $.2e56$ 0418 $.000b$ $dcad$ $.0000$ $03d$ $.132$ $.21ca$ $c083$ $.0008$ $a697$ $.0000$ $023b$ $.181$ $.2e56$ 0418 $.000b$ $dcad$ $.0000$ $03d$ $.133$ $.220c$ $49ba$ $.0008$ $b75e$ $.0000$ $023b$ $.182$ $.2e97$ $8d4r$ $.000b$ $dcad$ $.0000$ $03d$ $.134$ $.224d$ $d2f1$ $.0008$ $e825$ $.0000$ $023f$ $.183$ $.2e97$ $8d4r$ $.000b$ $dcad$ $.0000$ $03d$ $.135$ $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f5c$ $28f5$ $.000c$ $1fc8$ $.0000$ $03d$ $.136$ $.2230$ $e560$ $.0008$ $e77a$ $.0000$ 0248 $.187$ $.2fdf$ $3b64$ $.000c$ 4156 $.0000$ $03d$ $.138$ $.2353$ $f7ce$ $.0009$ abf $.0000$ 0255 $.189$ $.30c2$ $4dd2$ $.000c$ $62e4$ $.0000$ $03d$ $.141$ <td< td=""><td></td><td></td><td></td><td></td><td>A CONTRACT OF A CONTRACT OF</td><td></td><td></td><td></td><td>.0000 02fc</td></td<>					A CONTRACT OF				.0000 02fc
.131 $.2189$ $374b$ $.0008$ $95d0$ $.0000$ 0232 $.181$ $.2e56$ 0418 $.000b$ $dead$ $.0000$ 033 $.132$ $.21ca$ $c083$ $.0008$ $b75e$ $.0000$ 0236 $.182$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.133$ $.220c$ $49ba$ $.0008$ $b75e$ $.0000$ $023b$ $.183$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.134$ $.224d$ $d2f1$ $.0008$ $c825$ $.0000$ $023f$ $.183$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.135$ $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f1a$ $9fbe$ $.000c$ $1fc8$ $.0000$ 033 $.136$ $.2240$ $e560$ $.0008$ $e9b3$ $.0000$ 0248 $.186$ $.2f9d$ $b22d$ $.000c$ $308f$ $.0000$ 033 $.137$ $.2312$ $6e97$ $.0008$ $fa7a$ $.0000$ 0250 $.188$ $.3020$ $e49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $2cef$ $.0000$ 0255 $.189$ $.3062$ $4dd2$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d6$ $.0000$ 0256 $.190$ $.30a3$ $d70a$ $.000c$ $73ab$ $.0000$ 033 $.144$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td>.0000 0300</td></td<>							· · ·		.0000 0300
.131 $.2189$ $374b$ $.0008$ $95d0$ $.0000$ 0232 $.181$ $.2e56$ 0418 $.000b$ $dead$ $.0000$ 033 $.132$ $.21ca$ $c083$ $.0008$ $b75e$ $.0000$ 0236 $.182$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.133$ $.220c$ $49ba$ $.0008$ $b75e$ $.0000$ $023b$ $.183$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.134$ $.224d$ $d2f1$ $.0008$ $c825$ $.0000$ $023f$ $.183$ $.2e97$ $8d4f$ $.000b$ $dead$ $.0000$ 033 $.135$ $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f1a$ $9fbe$ $.000c$ $1fc8$ $.0000$ 033 $.136$ $.2240$ $e560$ $.0008$ $e9b3$ $.0000$ 0248 $.186$ $.2f9d$ $b22d$ $.000c$ $308f$ $.0000$ 033 $.137$ $.2312$ $6e97$ $.0008$ $fa7a$ $.0000$ 0250 $.188$ $.3020$ $e49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $2cef$ $.0000$ 0255 $.189$ $.3062$ $4dd2$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d6$ $.0000$ 0256 $.190$ $.30a3$ $d70a$ $.000c$ $73ab$ $.0000$ 033 $.144$ <td< td=""><td></td><td>.130</td><td>.2147 ael4</td><td>.0008 8509</td><td>.0000 022e</td><td>.180</td><td>.2e].4 7ael</td><td>.000b cbe6</td><td>.0000 0305</td></td<>		.130	.2147 ael4	.0008 8509	.0000 022e	.180	.2e].4 7ael	.000b cbe6	.0000 0305
$.132$ $.21ca c083$ $.0008 a697$ $.0000 0236$ $.182$ $.2e97 8d^4f$ $.000b ed7^4$ $.0000 036$ $.133$ $.220c 49ba$ $.0008 b75e$ $.0000 023b$ $.183$ $.2e97 8d^4f$ $.000b ed7^4$ $.0000 036$ $.134$ $.224d d211$ $.0008 c825$ $.0000 023f$ $.183$ $.2e97 8d^4f$ $.000b ed7^4$ $.0000 036$ $.134$ $.224d d211$ $.0008 c825$ $.0000 0243$ $.183$ $.2e99 1687$ $.000b c0701$ $.0000 033$ $.135$ $.228f 5c28$ $.0008 d8ec$ $.0000 0243$ $.185$ $.2f5c 28f5$ $.000c 1fc8$ $.0000 033$ $.136$ $.22d0 e560$ $.0008 fa7a$ $.0000 024c$ $.186$ $.2f9d b22d$ $.000c 308f$ $.0000 033$ $.138$ $.2353 f7ce$ $.0009 0b41$ $.0000 0250$ $.188$ $.3020 c49b$ $.000c 4156$ $.0000 033$ $.139$ $.2395 8106$ $.0009 2ccf$ $.0000 0255$ $.189$ $.3062 4dd2$ $.000c 62e4$ $.0000 033$ $.140$ $.23d7 0a3d$ $.0009 2ccf$ $.0000 0259$ $.189$ $.30e3 d70a$ $.000c 73ab$ $.0000 033$ $.141$ $.2418 9374$ $.0009 3d96$ $.0000 025d$ $.191$ $.30e3 d70a$ $.000c 73ab$ $.0000 033$ $.143$ $.249b a5e3$ $.0009 5f24$ $.0000 0266$ $.193 .3168 72b0$ $.000c c867$ $.0000 033$ $.144$ $.24dd 2f1a$ $.0009 6feb$ $.0000 026a$ $.194 .31a9 fbe7$ $.000c b6c7$ $.0000 033$.2189 374b	.0008 9540	.0000 0232	.181	.2e56 0418	.000b dcad	.0000 0309
.133 $.220c$ $49ba$ $.0008$ $b75e$ $.0000$ $023b$ $.183$ $.2ed9$ 1687 $.000b$ $fe3b$ $.0000$ 033 $.134$ $.224d$ $d2f1$ $.0008$ $c825$ $.000c$ $023f$ $.184$ $.2f1a$ $9fbe$ $.000c$ $0fe3b$ $.0000$ 033 $.135$ $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f5c$ $28f5$ $.000c$ $1fe8$ $.0000$ 033 $.136$ $.22d0$ $e560$ $.0008$ $fa7a$ $.0000$ $024c$ $.186$ $.2f9d$ $b22d$ $.000c$ $308f$ $.0000$ 033 $.138$ $.2353$ $f7ce$ $.0009$ $0b41$ $.0000$ 0250 $.188$ $.3020$ $e49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $2ccf$ $.0000$ 0259 $.189$ $.3062$ $4d22$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d96$ $.0000$ $025d$ $.190$ $.30a3$ $d70a$ $.000c$ 8472 $.0000$ 033 $.142$ $.245a$ $1cac$ $.0009$ $4e5d$ $.0000$ $026d$ $.193$ $.3168$ $72b0$ $.000c$ $66c0$ $.0000$ 033 $.144$ $.24dd$ $2f1a$ $.0009$ $6feb$ $.0000$ $026d$ $.193$ $.3168$ $72b0$ $.000c$ $66c7$ $.0000$ 033 $.144$ <			.21ca c083	.0008 a697					.0000 030d
.134 $.224d$ $d2f1$ $.0008$ $c825$ $.0000$ $023f$ $.184$ $.2f1a$ $9fbe$ $.000c$ $0f01$ $.0000$ 033 $.135$ $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f5c$ $28f5$ $.000c$ $1fc8$ $.0000$ 033 $.136$ $.22d0$ $e560$ $.0008$ $e9b3$ $.0000$ 0248 $.185$ $.2f9d$ $b22d$ $.000c$ $308f$ $.0000$ 033 $.137$ $.2312$ $6e97$ $.0008$ $fa7a$ $.0000$ $024c$ $.187$ $.2fdf$ $3b64$ $.000c$ 4156 $.0000$ 033 $.138$ $.2353$ $f7ce$ $.0009$ $0b41$ $.0000$ 0250 $.188$ $.3020$ $c49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $2ccf$ $.0000$ 0259 $.189$ $.3062$ $4d22$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d96$ $.0000$ $025d$ $.190$ $.30a3$ $d70a$ $.000c$ 8472 $.0000$ 033 $.142$ $.245a$ $1cac$ $.0009$ $4e5d$ $.0000$ 0266 $.193$ $.3168$ $72b0$ $.000c$ $66c7$ $.0000$ 033 $.144$ $.24dd$ $2f1a$ $.0009$ $6feb$ $.0000$ 0266 $.194$ $.31a9$ $fbe7$ $.000c$ $b6c7$ $.0000$ 033					.0000 023b				.0000 0311
.135 $.228f$ $5c28$ $.0008$ $d8ec$ $.0000$ 0243 $.185$ $.2f5c$ $28f5$ $.000c$ $1fc8$ $.0000$ 033 $.136$ $.22d0$ $e560$ $.0008$ $e9b3$ $.0000$ 0248 $.186$ $.2f9d$ $b22d$ $.000c$ $308f$ $.0000$ 033 $.137$ $.2312$ $6e97$ $.0008$ $fa7a$ $.0000$ $024c$ $.187$ $.2fdf$ $3b64$ $.000c$ 4156 $.0000$ 033 $.138$ $.2353$ $f7ce$ $.0009$ $0b41$ $.0000$ 0250 $.188$ $.3020$ $c49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $1c08$ $.0000$ 0255 $.189$ $.3062$ $4dd2$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d96$ $.0000$ 0254 $.190$ $.30a3$ $d70a$ $.000c$ $73ab$ $.0000$ 033 $.142$ $.245a$ $1cac$ $.0009$ $4e5d$ $.0000$ 0261 $.192$ $.3126$ $e978$ $.000c$ 9539 $.0000$ 033 $.143$ $.249b$ $a5e3$ $.0009$ $5f24$ $.0000$ 0266 $.193$ $.3168$ $72b0$ $.000c$ $a600$ $.0000$ 033 $.144$ $.24dd$ $2f1a$ $.0009$ $6feb$ $.0000$ 0266 $.194$ $.31a9$ $fbe7$ $.000c$ $b6c7$ $.0000$ 033			.224d d2f1	.0008 c825	.0000 023f	.184		.000c Of01	.0000 0316
.136 $.22d0 e560$ $.0008 e9b3$ $.0000 0248$ $.186$ $.2f9d b22d$ $.000c 308f$ $.0000 033$ $.137$ $.2312 6e97$ $.0008 fa7a$ $.0000 024c$ $.187$ $.2fdf 3b64$ $.000c 4156$ $.0000 033$ $.138$ $.2353 f7ce$ $.0009 0b41$ $.0000 0250$ $.188$ $.3020 c49b$ $.000c 521d$ $.0000 033$ $.139$ $.2395 8106$ $.0009 1c08$ $.0000 0255$ $.189$ $.3062 4dd2$ $.000c 62e4$ $.0000 033$ $.140$ $.23d7 0a3d$ $.0009 2ccf.$ $.0000 0259$ $.190$ $.30a3 d70a$ $.000c 73ab$ $.0000 033$ $.141$ $.2448 9374$ $.0009 3d96$ $.0000 025d$ $.192$ $.3126 e978$ $.000c 9539$ $.0000 033$ $.143$ $.249b a5e3$ $.0009 5f24$ $.0000 0266$ $.193$ $.3168 72b0$ $.000c a600$ $.0000 033$ $.144$ $.24dd 2f1a$ $.0009 6feb$ $.0000 026a$ $.194$ $.31a9 fbe7$ $.000c b6c7$ $.0000 033$.228f 5c28	.0008 d8ec	.0000 0243	.185	.2f5c 28f5	.000c lfc8	.0000 03la
$.137$ $.2312 \ 6e97$ $.0008 \ fa7a$ $.0000 \ 024c$ $.187$ $.2fdf \ 3b64$ $.000c \ 4156$ $.0000 \ 033$ $.138$ $.2353 \ f7ce$ $.0009 \ 0b41$ $.0000 \ 0250$ $.188$ $.3020 \ c49b$ $.000c \ 521d$ $.0000 \ 033$ $.139$ $.2395 \ 8106$ $.0009 \ 1c08$ $.0000 \ 0255$ $.189$ $.3062 \ 4dd2$ $.000c \ 521d$ $.0000 \ 033$ $.140$ $.23d7 \ 0a3d$ $.0009 \ 2ccf.$ $.0000 \ 0259$ $.189 \ .3062 \ 4dd2$ $.000c \ 73ab$ $.0000 \ 033$ $.141$ $.2418 \ 9374$ $.0009 \ 3d96$ $.0000 \ 025d$ $.191 \ .30e5 \ 6041$ $.000c \ 8472$ $.0000 \ 03$ $.142$ $.245a \ 1cac$ $.0009 \ 4e5d$ $.0000 \ 026d$ $.192 \ .3126 \ e978$ $.000c \ 9539$ $.0000 \ 03$ $.143$ $.249b \ a5e3$ $.0009 \ 5f24$ $.0000 \ 026a$ $.194 \ .31a9 \ fbe7$ $.000c \ b6c7$ $.0000 \ 03$.22d0 e560	.0008 e9b3	.0000 0248	.186	.219d b22d	.000c 308f	.0000 03le
.138 $.2353$ $f7ce$ $.0009$ $0b41$ $.0000$ 0250 $.188$ $.3020$ $c49b$ $.000c$ $521d$ $.0000$ 033 $.139$ $.2395$ 8106 $.0009$ $1c08$ $.0000$ 0255 $.189$ $.3062$ $4d2$ $.000c$ $62e4$ $.0000$ 033 $.140$ $.23d7$ $0a3d$ $.0009$ $2ccf.$ $.0000$ 0259 $.189$ $.3062$ $4d2$ $.000c$ $62e4$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d96$ $.0000$ $025d$ $.191$ $.30e5$ 6041 $.000c$ 8472 $.0000$ 033 $.142$ $.245a$ $1cac$ $.0009$ $4e5d$ $.0000$ 0261 $.192$ $.3126$ $e978$ $.000c$ 9539 $.0000$ 033 $.143$ $.249b$ $a5e3$ $.0009$ $5f24$ $.0000$ 0266 $.193$ $.3168$ $72b0$ $.000c$ $a600$ $.0000$ 033 $.144$ $.24dd$ $2f1a$ $.0009$ $6feb$ $.0000$ $026a$ $.194$ $.31a9$ $fbe7$ $.000c$ $b6c7$ $.0000$ 033			.2312 6e97	.0008 fa7a	.0000 024c	.187	.2fdf 3b64	.000c 41.56	.0000 0323
.139 $.2395$ 8106 $.0009$ $1c08$ $.0000$ 0255 $.189$ $.3062$ $4d2$ $.000c$ $62e4$ $.0000$ 033 $.140$ $.23d7$ $0a3d$ $.0009$ $2ccf.$ $.0000$ 0259 $.190$ $.30a3$ $d70a$ $.000c$ $73ab$ $.0000$ 033 $.141$ $.2418$ 9374 $.0009$ $3d96$ $.0000$ $025d$ $.191$ $.30e5$ 6041 $.000c$ 8472 $.0000$ 033 $.142$ $.245a$ $1cac$ $.0009$ $4e5d$ $.0000$ 0261 $.192$ $.3126$ $e978$ $.000c$ 9539 $.0000$ 033 $.143$ $.249b$ $a5e3$ $.0009$ $5f24$ $.0000$ 0266 $.193$ $.3168$ $72b0$ $.000c$ $a600$ $.0000$ 033 $.144$ $.24dd$ $2f1a$ $.0009$ $6feb$ $.0000$ $026a$ $.194$ $.31a9$ $fbe7$ $.000c$ $b6c7$ $.0000$ 033				.0009 0641	.0000 0250	.188	•3020 c49b	.000c 521d	.0000 0327
.141 .2418 9374 .0009 3d96 .0000 025d .191 .30e5 6041 .000c 8472 .0000 03 .142 .245a lcac .0009 4e5d .0000 0261 .192 .3126 e978 .000c 9539 .0000 03 .143 .249b a5e3 .0009 5f24 .0000 0266 .193 .3168 72b0 .000c a600 .0000 03 .144 .24dd 2fla .0009 6feb .0000 026a .194 .31a9 fbe7 .000c b6c7 .0000 03				.0009 lc08	.0000 0255	.189	·3062 4aa2	.000c 62e4	.0000 032b
.141 .2418 9374 .0009 3d96 .0000 025d .191 .30e5 6041 .000c 8472 .0000 03 .142 .245a 1cac .0009 4e5d .0000 0261 .192 .3126 e978 .000c 9539 .0000 03 .143 .249b a5e3 .0009 5f24 .0000 0266 .193 .3168 72b0 .000c a600 .0000 03 .144 .24dd 2fla .0009 6feb .0000 026a .194 .31a9 fbe7 .000c b6c7 .0000 03		.140	.23d7 0a3d	.0009 2ccf.		.190			.0000 0330
.143 .249b a5e3 .0009 5f24 .0000 0266 .193 .3168 72b0 .000c a600 .0000 03 .144 .24dd 2fla .0009 6feb .0000 026a .194 .31a9 fbe7 .000c b6c7 .0000 03				.0009 3896	.0000 025a	.191			.0000 0334
.143 .249b a5e3 .0009 5f24 .0000 0266 .193 .3168 72b0 .000c a600 .0000 03 .144 .24dd 2fla .0009 6feb .0000 026a .193 .3168 72b0 .000c a600 .0000 03				.0009 4e5d					.0000 0338
.144 .24dd 2fla .0009 6feb .0000 026a .194 .31a9 fbe7 .000c b6c7 .0000 03		.143	1	.0009 5f24					.0000 033c
			.24dd 2fla	.0009 6feb	.0000 026a	.194			.0000 0341
		.145	.251e b851	.0009 80b2	.0000 026e	.195	.31eb 851e	.000c c78e	.0000 0345
			.2560 4189			.196			.0000 0349
		.147	.25al cac0			.197			.0000 034e
			.25e3 53f7	.0009 b307		.198			.0000 0352
.149 .2624 dd2f .0009 c3ce .0000 027f .199 .32fl a9fb .000d 0aaa .0000 03		.149	.2624 dd2f	.0009 c3ce	.0000 027f	.199	.32fl a9fb	.000d 0aaa	.0000 0356

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

1	N / 5	(10-3N)16	(10-0N)10
.200 .201 .202 .203 .204 .205 .206 .207 .208 .209	• 3333 3333 • 3374 bc6a • 33b6 45a1 • 33f7 ced9 • 3439 5810 • 347a e147 • 34bc 6a7e • 34fd f3b6 • 353f 7ced • 3581 0624	.000d 1071 .000d 2c38 .000d 3cff .000d 4dc6 .000d 5e8d .000d 6f54 .000d 801b .000d 90e2 .000d ala9 .000d b270	.0000 035a .0000 035f .0000 0363 .0000 0367 .0000 036c .0000 0370 .0000 0374 .0000 0374 .0000 0374
.210	.35c2 8f5c	.000d c337	.0000 0385
.211	.3604 1893	.000d d3fe	.0000 038a
.212	.3645 alca	.000d e4c5	.0000 038e
.213	.3687 2b02	.000d f58c	.0000 0392
.214	.36c8 b439	.000e 0653	.0000 0397
.215	.370a 3d70	.000e 1719	.0000 039b
.216	.374b c6a7	.000e 27e0	.0000 039f
.217	.378a 4fdf	.000e 38a7	.0000 03a4
.218	.37ce d916	.000e 496e	.0000 03a8
.219	.3810 624d	.000e 5a35	.0000 03ac
.220	.3851 eb85	.000e 6afc	.0000 03b0
.221	.3893 74bc	.000e 7bc3	.0000 03b5
.222	.38d4 fdf3	.000e 8c8a	.0000 03b9
.223	.3916 872b	.000e 9d51	.0000 03bd
.224	.3958 1062	.000e ael8	.0000 03c2
.225	.3999 9999	.000e bedf	.0000 03c6
.226	.39db 22d0	.000e cfa6	.0000 03ca
.227	.3alc ac08	.000e cfa6	.0000 03ca
.228	.3a5e 353f	.000e fl34	.0000 03d3
.229	.3a9f be76	.000f 01fb	.0000 03d7
.230	.3ael 47ae	.000f 12c2	.0000 03db
.231	3b22 dOe5	.000f 2389	.0000 03e0
.232	3b64 5alc	.000f 3450	.0000 03e4
.233	3ba5 e353	.000f 4517	.0000 03e8
.234	3be7 6c8b	.000f 55de	.0000 03ed
.235	3c28 f5c2	.000f 66a5	.0000 03f1
.236	3c6a 7ef9	.000f 776c	.0000 03f5
.237	3cac 0831	.000f 8833	.0000 03f9
.238	3ced 9168	.000f 98fa	.0000 03fe
.239	3d2f la9f	.000f a9c1	.0000 0402
•240 •241 •242 •243 •244 •245 •245 •246 •247 •248 •249	.3d70 a3d7 .3db2 2d0e .3df3 b645 .3e35 3f7c .3e76 c8b4 .3eb8 51eb .3ef9 db22 .3f3b 645a .3f7c ed91 .3fbe 76c8	.000f ba88 .000f cb4f .000f dc16 .000f ecdd .000f fda4 .0010 0e6a .0010 1f31 .0010 2ff8 .0010 40bf .0010 5186	

.

	NIG	(10 ⁻³ N)16	(10-6N)16
050			
.250	.4000 0000	.0010 624d	.0000 0431
.251	.4041 8937	.0010 7314	.0000 0436
.252	.4083 126e	.0010 83db	.0000 043a
.253	.40c4 9ba5	.0010 94a2	.0000 043e
•254	.4106 24da	.0010 a 569	.0000 0442
.255	.4147 ael4	.0010 6630	.0000 0447
.256	•4189 374b	.0010 c6f7	.0000 044b
.257	.41ca c083	.0010 d7be	.0000 044f
.258	.420c 49ba	.0010 e885	.0000 0454
•259	.424d d2fl	.0010 f94c	.0000 0458
.260	.428f 5c28	.0011 0al3	.0000 045c
.261	.42d0 e560	.0011 lada	.0000 0460
.262	.4312 6e97	.0011 2bal	.0000 0465
.263	.4353 f7ce	.0011 3c68	.0000 0469
.264	.4395 8106	.0011 4d2f	.0000 046a
.265	.43d7 0a3d	.0011 5df6	.0000 0472
.265		.0011 Salo	
	.4418 9374		
.267	.445a lcac	.0011 7f84	.0000 047a
.268	.449b a5e3	.0011 9046	.0000 047f
.269	.44dd 2fla	.0011 all2	.0000 0483
.270	.451e b851	.0011 bld9	.0000 0487
.271	.4560 4189	.0011 c2a0	.0000 048b
.272	.45al cac0	.0011 a367	.0000 0490
.273	.45e3 53f7	.0011 e42e	.0000 0494
.274	.4624 dd2f	.0011 f4f5	.0000 0498
.275	.4666 6666	.0012 05bc	.0000 049d
.276	.46a7 ef9d	.0012 1682	.0000 04al
.277	.46e9 78a4	.0012 2749	.0000 04a5
.278	.472b 020c	.0012 3810	.0000 04aa
.279	.476c 8b43	.0012 4847	.0000 04ae
.280	.47ae 147a	.0012 599e	.0000 04b2
.281	.47ef 9db2	.0012 599e	.0000 0466
.282	.4831 26e9	.0012 7b2c	.0000 04bb
.202			.0000 0465
		.0012 8bf3	
•284	.48b4 3958	.0012 9cba	.0000 04c3
.285	.48f5 c28f	.0012 ad81	.0000 04c8
.286	.4937 4bc6	.0012 be48	.0000 04cc
.287	.4978 d4fd	.0012 cf0f	.0000 0400
.288	.49ba 5e35	.0012 dfd6	·0000_04a4
• 289	.49fb e76c	.0012 f09d	.0000 04d9
.290	.4a3d 70a3	.0013 0164	.0000 04aa
.291	.4a7e f9db	.0013 122b	.0000 04el
.292	.4ac0 8312	.0013 22f2	.0000 04e6
•293	.4b02 0c49	.00 1 3 33b9	.0000 04ea
.294	.4643 9581	.0013 4480	.0000 04ee
.295	.4b85 leb8	.0013 5547	.0000 04f3
.296	.4bc6 a7ef	.0013 660e	.0000 0413
•290 •297	.4c08 3126	.0013 000e	.0000 04fb
	.4600 3120 .4c49 ba5e	.0013 7005	.0000 0415 .0000 04ff
• 2 98			
•299	.4c8b 4395	.0013 9863	.0000 0504

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

			JECIMAL F	KACI	ION C	UNVERSION	and the second	
·	N16	(10 ⁻³ N)16	(10 ⁻⁶ N)16			N 16	(10-3N)16	(10-6N)16
• 300 • 301 • 302 • 303 • 304 • 305 • 306 • 307 • 308 • 309	.4ccc cccc .4dOe 5604 .4d4f df3b .4d91 6872 .4dd2 fla9 .4e14 7ae1 .4e56 0418 .4e97 8d4f .4ed9 1687 .4fla 9fbe	.0013 a 92 a .0013 b9f1 .0013 cab8 .0013 db7f .0013 ec46 .0013 fd0d .0014 0dd3 .0014 le9 a .0014 2f61 .0014 4028	.0000 0508 .0000 050c .0000 0511 .0000 0515 .0000 0519 .0000 051d .0000 0522 .0000 0526 .0000 052a		•350 •351 •352 •353 •354 •355 •356 •357 •358 •359	•5999 9999 •59db 22d0 •5alc ac08 •5a5e 353f •5a9f be76 •5ael 47ae •5b22 d0e5 •5b64 5alc •5ba5 e353 •5be7 6c8b	.0016 f006 .0017 00cd .0017 1194 .0017 225b .0017 3322 .0017 43e9 .0017 54b0 .0017 6577 .0017 763e .0017 8705	.0000 05df .0000 05e3 .0000 05e7 .0000 05ec .0000 05f0 .0000 05f4 .0000 05f9 .0000 05fd .0000 0601 .0000 0605
.310 .311 .312 .313 .314 .315 .316 .317 .318 .319	.4f5c 28f5 .4f9d b22d .4fdf 3b64 .5020 c49b .5062 4dd2 .50a3 d70a .50e5 6041 .5126 e978 .5168 72b0 .51a9 fbe7	.0014 50ef .0014 61b6 .0014 727d .0014 8344 .0014 940b .0014 a4d2 .0014 b599 .0014 c660 .0014 d727 .0014 e7ee	.0000 0533 .0000 0537 .0000 053c .0000 0540 .0000 0544 .0000 0548 .0000 0554 .0000 0555 .0000 0558		.360 .361 .362 .363 .364 .365 .366 .367 .368 .369	.5c28 f5c2 .5c6a 7ef9 .5cac 0831 .5ced 9168 .5d2f la9f .5d70 a3d7 .5db2 2d0e .5df3 b645 .5e35 3f7c .5e76 c8b4	.0017 97cc .0017 a893 .0017 b95a .0017 ca21 .0017 dae8 .0017 ebaf .0017 fc76 .0018 0d3c .0018 le03 .0018 2eca	.0000 060a .0000 060e .0000 0612 .0000 0617 .0000 061b .0000 061f .0000 0623 .0000 0628 .0000 062c .0000 0630
.320 .321 .322 .323 .324 .325 .326 .327 .328 .329	.51eb 851e .522d 0e56 .526e 978d .52b0 20c4 .52f1 a9fb .5333 3333 .5374 bc6a .53b6 45a1 .53f7 ced9 .5439 5810	.0014 f8b5 .0015 097c .0015 la43 .0015 2b0a .0015 3bdl .0015 4c98 .0015 5d5f .0015 6e26 .0015 7eed .0015 8fb4	.0000 055e .0000 0562 .0000 0566 .0000 056b .0000 056f .0000 0573 .0000 0578 .0000 0576 .0000 0580 .0000 0585		• 370 • 371 • 372 • 373 • 374 • 375 • 376 • 377 • 378 • 379	.5eb8 51eb .5ef9 db22 .5f3b 645a .5f7c ed91 .5fbe 76c8 .6000 0000 .6041 8937 .6083 126e .60c4 9ba5 .6106 24dd	.0018 3f91 .0018 5058 .0018 611f .0018 71e6 .0018 82ad .0018 9374 .0018 a43b .0018 b502 .0018 c5c9 .0018 d690	.0000 0635 .0000 0639 .0000 063d .0000 0642 .0000 0646 .0000 064a .0000 064e .0000 0653 .0000 0657 .0000 065b
.330 .331 .332 .333 .334 .335 .336 .337 .338 .339	.547a e147 .54bc 6a7e .54fd f3b6 .553f 7ced .5581 0624 .55c2 8f5c .5604 1893 .5645 alca .5687 2b02 .56c8 b439	.0015 a07b .0015 b142 .0015 c209 .0015 d2d0 .0015 e397 .0015 f45e .0016 0525 .0016 15eb .0016 26b2 .0016 3779	.0000 0589 .0000 058d .0000 0591 .0000 0596 .0000 059a .0000 059e .0000 05a3 .0000 05a7 .0000 05ab .0000 05af		.380 .381 .382 .383 .384 .385 .386 .387 .388 .389	.6147 ae14 .6189 374b .61ca c083 .620c 49ba .624d d2f1 .628f 5c28 .62d0 e560 .6312 6e97 .6353 f7ce .6395 8106	.0018 e757 .0018 f81e .0019 08e5 .0019 19ac .0019 2a73 .0019 3b3a .0019 4c01 .0019 5cc8 .0019 6d8f .0019 7e56	.0000 0660 .0000 0664 .0000 0668 .0000 066c .0000 0671 .0000 0675 .0000 0679 .0000 0679 .0000 0682 .0000 0686
.340 .341 .342 .343 .344 .345 .345 .346 .347 .348 .349	.570a 3d70 .574b c6a7 .578d 4fdf .57ce d916 .5810 624d .5851 eb85 .5893 74bc .58d4 fdf3 .5916 872b .5958 1062	.0016 4840 .0016 5907 .0016 69ce .0016 7a95 .0016 8b5c .0016 9c23 .0016 acea .0016 bdb1 .0016 ce78 .0016 df3f	.0000 05b4 .0000 05b8 .0000 05bc .0000 05c1 .0000 05c5 .0000 05c9 .0000 05ce .0000 05d2 .0000 05d6 .0000 05da		• 390 • 391 • 392 • 393 • 394 • 395 • 396 • 397 • 398 • 399	.63d7 0a3d .6418 9374 .645a lcac .649b a5e3 .64dd 2fla .651e b851 .6560 4189 .65al cac0 .65e3 53f7 .6624 dd2f	.0019 8fld .0019 9fe4 .0019 b0ab .0019 c172 .0019 d239 .0019 e300 .0019 f3c7 .001a 048e .001a 1554 .001a 261b	.0000 068b .0000 068f .0000 0693 .0000 0697 .0000 069c .0000 06a0 .0000 06a4 .0000 06a9 .0000 06a4

64

HEXADECIMAL-DECIMAL FRACTION CONVERSION TABLE

	NIG	(10-3N)16	(10-°N)16
.400	.6666 6666	.001a 36e2	.0000 06b5
.401	.66a7 ef9d	.001a 47a9	.0000 06ba
.402	.66e9 78d4	.001a 5870	.0000 06be
.403	.672b 020c	.001a 6937	.0000 06c2
.404	.676c 8b43	.001a 79fe	.0000 06c7
.405	.67ae 147a	.001a 8ac5	.0000 06cb
.406	.67ef 9db2	.001a 9b8c	.0000 06cf
.407	.6831 26e9	.001a ac53	.0000 06d4
.408	.6872 b020	.001a bd1a	.0000 06d8
.409	.68b4 3958	.001a cde1	.0000 06dc
.410	.6815 c281	.001a dea8	.0000 06e0
.411	.6937 4bc6	.001a ef6f	.0000 06e5
.412	.6978 d4fd	.001b 0036	.0000 06e9
.413	.69ba 5e35	.001b 10fd	.0000 06ed
.414	.69fb e76c	.001b 21c4	.0000 06f2
.415	.6a3d 70a3	.001b 328b	.0000 06f6
.416	.6a7e f9db	.001b 4352	.0000 06ff
.417	.6ac0 8312	.001b 5419	.0000 06ff
.418	.6b02 0c49	.001b 64e0	.0000 0703
.419	.6b43 9581	.001b 75a7	.0000 0707
.420 .421 .422 .423 .424 .425 .426 .427 .428 .429	.6b85 leb8 .6bc6 a7ef .6c08 3126 .6c49 ba5e .6c8b 4395 .6ccc cccc .6d0e 5604 .6d4f df3b .6d91 6872 .6dd2 fla9	.001b 866e .001b 9735 .001b a7fc .001b b8c3 .001b c98a .001b da51 .001b da51 .001b fbdf .001c 0ca6 .001c 1d6c	.0000 070b .0000 0710 .0000 0714 .0000 0718 .0000 0714 .0000 0721 .0000 0725 .0000 0729 .0000 0722
.430	.6e14 7ae1	.001c 2e33	.0000 0736
.431	.6e56 0418	.001c 3efa	.0000 073b
.432	.6e97 8d4f	.001c 4fc1	.0000 073f
.433	.6ed9 1687	.001c 6088	.0000 0743
.434	.6f1a 9fbe	.001c 714f	.0000 0748
.435	.6f5c 28f5	.001c 8216	.0000 074c
.436	.6f9d b22d	.001c 92dd	.0000 0750
.437	.6fdf 3b64	.001c a3a4	.0000 0754
.438	.7020 c49b	.001c b46b	.0000 0759
.439	.7062 4dd2	.001c c532	.0000 075d
.440 .441 .442 .443 .444 .445 .445 .446 .447 .448 .449	.70a3 d70a .70e5 6041 .7126 e978 .7168 72b0 .71a9 fbe7 .71eb 851e .722d 0e56 .726e 978d .72b0 20c4 .72f1 a9fb	.001c d5f9 .001c e6c0 .001c f787 .001d 084e .001d 1915 .001d 29dc .001d 3aa3 .001d 4b6a .001d 5c31 .001d 6cf8	.0000 0761 .0000 0766 .0000 076a .0000 076e .0000 0772 .0000 0777 .0000 0775 .0000 077f .0000 0784 .0000 0788

	Nis	(10 ⁻³ N)16	(10 ⁻⁶ N)16
.450 .451 .452 .453 .454 .455 .456 .457 .458 .459	•7333 3333 •7374 bc6a •73b6 45al •73f7 ced9 •7439 5810 •747a el47 •74bc 6a7e •74fd f3b6 •753f 7ced •7581 0624	.001d 7dbf .001d 8e86 .001d 9f4d .001d b014 .001d c0db .001d d1a2 .001d e269 .001d f330 .001e 03f7 .001e 14bd	.0000 078c .0000 0791 .0000 0795 .0000 0799 .0000 079d .0000 07a2 .0000 07a6 .0000 07af .0000 07af .0000 07b3
.460 .461 .462 .463 .464 .465 .466 .466 .467 .468 .469	.75c2 8f5c .7604 1893 .7645 alca .7687 2b02 .76c8 b439 .770a 3d70 .774b c6a7 .778d 4fdf .77ce d916 .7810 624d	.001e 2584 .001e 364b .001e 4712 .001e 57d9 .001e 68a0 .001e 7967 .001e 8a2e .001e 9af5 .001e abbc .001e bc83	.0000 07b7 .0000 07bb .0000 07c0 .0000 07c4 .0000 07c8 .0000 07c4 .0000 07c4 .0000 07d1 .0000 07d5 .0000 07da
.470 .471 .472 .473 .474 .475 .476 .476 .477 .478 .479	.7851 eb85 .7893 74bc .78d4 fdf3 .7916 872b .7958 1062 .7999 9999 .79db 22d0 .7alc ac08 .7a5e 353f .7a9f be76	.001e cd4a .001e dell .001e eed8 .001e ff9f .001f 1066 .001f 212d .001f 31f4 .001f 42bb .001f 5382 .001f 6449	.0000 07e2 .0000 07e6 .0000 07eb .0000 07ef .0000 07f3 .0000 07f8 .0000 07fc .0000 0800 .0000 0804 .0000 0809
.480 .481 .482 .483 .484 .485 .485 .486 .487 .488 .489	.7ael 47ae .7b22 dOe5 .7b64 5alc .7ba5 e353 .7be7 6c8b .7c28 f5c2 .7c6a 7ef9 .7cac 0831 .7ced 9168 .7d2f la9f	.001f 7510 .001f 85d7 .001f 969e .001f a765 .001f b82c .001f c8f3 .001f d9ba .001f ea81 .001f fb48 .0020 0c0f	.0000 080d .0000 0811 .0000 0816 .0000 081a .0000 081a .0000 0823 .0000 0827 .0000 0825 .0000 082f .0000 0834
.490 .491 .492 .493 .494 .495 .496 .497 .498 .499	.7d70 a3d7 .7db2 2dOe .7df3 b645 .7e35 3f7c .7e76 c8b4 .7eb8 51eb .7ef9 db22 .7f3b 645a .7f7c ed91 .7fbe 76c8	.0020 lcd5 .0020 2d9c .0020 3e63 .0020 4f2a .0020 5ff1 .0020 70b8 .0020 817f .0020 9246 .0020 a30d .0020 b3d4	.0000 0838 .0000 083c .0000 0841 .0000 0845 .0000 0849 .0000 0849 .0000 0852 .0000 0856 .0000 085a .0000 085f

AP	$\dot{\mathbf{P}}\mathbf{E}$	NDIX	E

Alpha Code	Hex Code		Operation		Pag
** ACS	63		Add and Change Sign		2
ADB	BD		Add to B		2
ADD	61		Add		2
ALI	F3		Alphabetic Input		3
ALO	F7		Alphabetic Output		3
ALS	A7		A Left Shift		2
ARS	A5		A Right Shift		2
** BTP	9F		Both Type and Punch		3
CFA	89		Copy from Working Storage I		2
CFB	8B		Copy from Working Storage II		2
CFC	8D		Copy from Working Storage III		2
CFD	8F		Copy from Working Storage IV		2
* CLA	28		Clear A		2
* CHS	2E		Change Sign		2
* COV	02		Change Overflow Indicator		2
** COM	51		Compare Magnitude		2
* CPL	3E		Complement		2
CTA	81		Copy to Working Storage I		2
CTB	83		Copy to Working Storage II		2
CTC	85		Copy to Working Storage III	1. A	2
CTD	87		Copy to Working Storage IV	•	2
DDD	E9		Divide Double Length by D	·	2
DDW	EB		Divide Double Length		2
DVD	ED		Divide by D		2
DVW	EF		Divide		2
EXT	75		Extract		2
EXD	71		Extract with D Mask		2
HTR	1 B		Halt and Transfer		2
HXI HXO	F1 F5		Hexadecimal Input Hexadecimal Output		2
IBM	97		IBM Tie-In		3
* LAB	32		Load A from B		2
* LAD	38		Load A from D		2
* LAE	34		Load A from E		2
LAM	B5		Load A from M		2
LAW	79		Load A		2
LBW	41		Load B		2
LDW	5B		Load D		2
LEW	57		Load E	·	2
LLS	A3		Long Left Shift		2
LRS	A1		Long Right Shift		2
MDA	El	e de la composition de la comp	Multiply by D and Add		2
MPA	E3		Multiply and Add		2

APPENDIX E

Alpha Code	Hex Code	Operation	Page
MPD	E5	Multiply by D	21
MPW	E7	Multiply	· 21
MTC	93	Magnetic Tape Copy	33
MTS	91	Magnetic Tape Status	32
MTX	95	Magnetic Tape Exchange	33
* NOP	00	No Operation	26
** NMO	DD	Number Output	29
NTP	99	Neither Type nor Punch	30
PAA	6D	Place Address in A	24
PHA	6F	Place Half-word in A	24
** PNH	9D	Punch	30
* RND	22	Round	22
SAA	4D	Store Address from A	24
SAW	49	Store A	24
SBB	BF	Subtract from B	21
SBW	C5	Store B	24
** SCT	AB	Shift and Count	28
SDW	C7	Store D	24
SEW	C3	Store E	25
SHA	4F	Store Half-word from A	24
** SNI	F9	Sign Input	29
** SNO	D5	Sign Output	30
* SSP	2C	Set Sign Plus	25
SUB	67	Subtract	21
TIX	17	Transfer on Index	.26
TLZ	1D	Transfer on Less Than Zero	26
TNZ	19	Transfer on Non-Zero	26
TOV	1F	Transfer on Overflow	26
TRA	11	Transfer	26
TSA	13	Transfer on Switch One	26
TSB	15	Transfer on Switch Two	26
** TYP	9B	Туре	30
* XAB	30	Exchange A and B	23
* XAD	3A	Exchange A and D	23
* XAE	36	Exchange A and E	24
XAW	69	Exchange A and W	24

* Instructions marked with a single asterisk may be used as the first or second instruction of doubled command pair.

** Instructions marked with a double asterisk require no address but have odd codes; hence, these instructions may be used as the second instruction of a command pair.

To double a pair of instructions, the first instruction code (which must be an even number) is made odd by increasing the value by 1 and placing the second instruction code in the address part of the resulting instruction. See page 35.

Instructions with odd codes can use automatic address modification by using the even code which is one less than the code given in the above table. See page 34.

67

INSTRUCTION CODES, ALWAC HILF BY GROUPS

			II-E BI GROUPS
ARI	THMETIC	49	Copy A to W
61	Add	79	Copy W to A
67	Subtract	ь5	Copy M to A
63	Minus add	30	Exchange A and B
65	Minus subtract	c5	Copy B to W
bd	Long add	41	Copy W to B
bf	Long subtract	32	Copy B to A
е7	Multiply	3a	Exchange A and D
e5	Multiply by D	c7	Copy D to W
e3	Add multiply	5b	Copy W to D
el	Add multiply by D	38	Copy D to A
ef	Divide	36	Exchange A and E
ed	Divide by D	c3	Copy E to W
eb	Long divide	57	Copy W to E
e9	Long divide by D	34	Copy E to A
400	UMULATOR	4d	Copy address to W
22	Round off	4f	Copy half to W
28	Clear A	6d	Copy Address to A
20	Absolute value	6f	Copy half to A
2e	Reverse A sign	71	Extract (D)
	Complement A	75	Extract
3e	•	BLO	
SHI	FT	-	CK COPY
SHII a 1	FT Double shift right	81	Copy to I
sHII a1 a3	FT Double shift right Double shift left	81 83	Copy to I Copy to II
SHII a1 a3 a5	FT Double shift right Double shift left Shift right	81 83 85	Copy to I Copy to II Copy to III
SHII a1 a3 a5 a7	FT Double shift right Double shift left Shift right Shift left	81 83 85 87	Copy to I Copy to II Copy to III Copy to IV
SHII a1 a3 a5	FT Double shift right Double shift left Shift right	81 83 85 87 89	Copy to I Copy to II Copy to III Copy to IV Copy to IV Copy from I
SHII a1 a3 a5 a7 ab	FT Double shift right Double shift left Shift right Shift left	81 83 85 87 89 89	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II
SHII a1 a3 a5 a7 ab	FT Double shift right Double shift left Shift right Shift left Float UT-OUTPUT	81 83 85 87 89 86 86	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II Copy from II
SHII a1 a3 a5 a7 ab INP f1	FT Double shift right Double shift left Shift right Shift left Float UT-OUTPUT Hex. in	81 83 85 87 89 89	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II
SHII a1 a3 a5 a7 ab INP f1 f3	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in	81 83 85 87 89 86 84 86	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II Copy from III Copy from IV
SHII a1 a3 a5 a7 ab INP f1	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out	81 83 85 87 89 86 84 86 JUM	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II Copy from III Copy from IV P & RELATED
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7	FT Double shift right Double shift left Shift right Shift left Float UT-OUTPUT Hex. in Alphabet in Hex. out	81 83 85 87 89 86 86 8f JUM 11	Copy to I Copy to II Copy to III Copy form I Copy from II Copy from III Copy from IV P & RELATED Jump
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7 f9	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in	81 83 85 87 89 86 86 8f JUM 11	Copy to 1 Copy to 11 Copy to 11 Copy to 1V Copy from 1 Copy from 11 Copy from 11 Copy from 11 Copy from 1V P & RELATED Jump Control jump 1
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7 f9 d5	FT Double shift right Double shift left Shift right Shift left Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign out	81 83 85 87 89 86 86 JUM 11 13 15	Copy to I Copy to II Copy to III Copy to IV Copy from I Copy from II Copy from III Copy from IV P & RELATED Jump Control jump 1 Control jump 2
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7 f9	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in	81 83 85 87 89 86 86 81 11 13 15 17	Copy to 1 Copy to 11 Copy to 111 Copy to 111 Copy from 1 Copy from 11 Copy from 111 Copy from 11V P & RELATED Jump Control jump 1 Control jump 2 Count down
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7 f9 d5 dd	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in Sign out Number out	81 83 85 87 89 86 8d 8f 11 13 15 17 19	Copy to 1 Copy to 11 Copy to 11 Copy to 1V Copy from 1 Copy from 11 Copy from 11 Copy from 11 P & RELATED Jump Control jump 1 Control jump 2 Count down Non-zero jump
SHII a1 a3 a5 a7 ab INP f1 f3 f5 f7 f9 d5 dd 9b	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in Sign out Number out Type	81 83 85 87 89 8d 8f 11 13 15 17 19 16	Copy to 1 Copy to 11 Copy to 111 Copy form 1 Copy from 11 Copy from 111 Copy from 111 Copy from 11V P & RELATED Jump Control jump 1 Control jump 2 Count down Non-zero jump Stop
SHII a1 a5 a7 ab F1 f3 f5 f7 g5 d7 g6 g6 g6 g6 g6 g6 g6 g6 g6 g6 g6 g6 g6	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in Sign out Number out Type Punch	81 83 85 87 89 86 86 81 11 13 15 17 19 16	Copy to 1 Copy to 11 Copy to 11 Copy fo 11 Copy from 1 Copy from 11 Copy from 11 Copy from 11 Copy from 11 Copy from 11 P & RELATED Jump Control jump 1 Control jump 2 Count down Non-zero jump Stop Less than zero jump
S HI a a a a a a a b P f 1 f 3 f 5 f 7 f 9 d 4 b d f 9 g	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in Sign out Number out Type Punch Both Neither	81 83 85 87 89 86 8f JUM 11 13 15 17 16 16	Copy to I Copy to II Copy to III Copy to III Copy from I Copy from II Copy from III Copy from IV P & RELATED Jump Control jump 1 Control jump 2 Count down Non-zero jump Stop Less than zero jump Overflow jump
S HI a a a a a a a b P f 1 f 3 f 5 f 7 f 9 d 4 b d f 9 g	FT Double shift right Double shift left Shift right Float UT-OUTPUT Hex. in Alphabet in Hex. out Alphabet out Sign in Sign out Number out Type Punch Both	81 83 85 87 89 86 86 81 11 13 15 17 19 16	Copy to 1 Copy to 11 Copy to 11 Copy fo 11 Copy from 1 Copy from 11 Copy from 11 Copy from 11 Copy from 11 Copy from 11 P & RELATED Jump Control jump 1 Control jump 2 Count down Non-zero jump Stop Less than zero jump

Two instructions can be doubled up if the first is an even-numbered instruction; but it must be made odd by adding 1. The second can be any instruction not requiring an address.

Odd numbered instructions will have their addresses automatically modified if the instruction is made even by subtracting 1.