
Maniac II is a high speed, genera1 purpose, digi ta1 computer, with

a random access, selt checking, electrostatic storage of 12,288 48-bit

words. It is a binary, single address, paral1el computer. It operates

in fiXed or floating point and baa autOJatic address modification, by

means of B registers (index registers).

The arithmetic unit consists of three shifting registers, U, R,

and S, and an adder~· +. The !!ni versal Register, U, holds the important

operands and results. It is the accumulator and receives the result

of addition or subtraction. It contains the multiplicand, the high

order product, the high order dividend, the quotient, and the argument

and result ot the square root order. The ~mainder Register, R, holds

the low order product and dividend, the remainder, and the extractor,

and can be used for an extra-last-access temporary storage location.

The 2torage Register, S, communicates with the electrostatic storage,

the adder, the R register, the input-output equipment, and the memory

address buses.

The !nstruction Register, I, receives instructions from the

storage. Its Order Part, 0, communicates with the decoding circuits;

its B part selects an index register; and its Address Part, A, com

municates with the B Adder, B+. The B Registers, Bl, B2, _and B3, coa

tain indices for .a.ddressmoditication, which they gate into B+ whenever

selected. B+ communicates with the memory address buses. The Qontrol

£ounter, CC, also communicates with the address buses, and governs the

tetching o~ instructions. It can be set by B+ to effect transfers of

control.

-2-

Input i8 via agnetic tape, paper tape, and a typevri ter. (The

last provides a written record ot all manual. changes.) Output is to

magnetic tape, paper tape. the typewriter, aDd a tast line-printer.

The input and output units are controlled by special instructions

and/or by manual. switches.

The 48-bi t words in which intonation is stored are operands

when brought into the ar1 thmetic unit, and constitute pat,s ot

instructions when brOQght into the Instruction Register. The tetch

ing ot instructions is governed by CC, which counts by halt words

unless set by a Transter Control instruction, or unless caused to make

a double count by certain special instructions. The tetching of

operands (or the storing ot results) is governed by the address part

ot the instruction involved, or by that address as modified by the

contents ot a B Register. In the case of certain orders which require

several operands, stored at consecutive addresses, the contents of

CC (the Control Counter) are dumped temporarily into the ~ath!inder

Register, W, and CC is used to compute the required addresses. The

priary function ot PF i8 to rec,ei ve the contents of CC whenever the

CC is about to be set by a Transter Control instruction, and to make

this IDf'oraation available to the ari tbmetic liDi t.

-3-

STORAGE

The internal storage of Maniac II consists of t~o barrier grid

1
cathode ray tubes per stage, with either 3072 or 6144 bits per tube •

In addition to the normal 48 pairs of tubes, there is a 49th pair

of tubes which contains a parity check bit for each word in the storage.

This bit is set whenever a word is written into the storage, and it is

checked on each regeneration and on each fetch. It a bit should be

dropped or picked up, the Maniac would stop"displaying the address

of the failure.

The regeneration time per word is about 8 microseconds. It takes

about_50 milliseconds to regenerate the full memor,y,or 25 milliseconds

for half the memory. The consultation ratios2 are at least 100 for

the full memory and 500 for the half memory.

The memory cycle ur the electrostatic memory is 8 microseconds.

Under some circumstances, some of this time is covered by other useful

work, such as clearing registers to zero.

The fourteen 8.ense Lights, which will be discussed later~ constitute

storage positions for single bits of information (e.g., for combinations

of yes-no decisions), which can be stored and read by the operator as

well as by the Maniac.

There are ~wo magnetic tape units, which can be used as external

storage. The Maniac can transfer word blocks ot arbitrary -length from

1The choice is made bya Full Memory-Half Memory switch.

~e consultation ratio is the number of consu1tations allowed between
regenerations.

-4-

the internal storage to the tapes, and vice versa, at a rate of 200 words

per second. The parity check bit for each word is recorded on the tape

and checked 0I;l Tape Call. The word sum of each block is recorded at

the end of the block, primarily for block identification.

-5-

INFORMATION

A word can be an instruction, an operand, or both, according to

the use which is made of it. For example, a word ordering the multi-

plication of the contents of U by the contents of, say, memory address

0100 would be an instruction, while the word at address 0100 would be

an operand.

More specifically, an instructional word consists of two half-

word instructions, each having six tetrads of four bits each. The

first two tetrads of an instruction constitute an order, according to

the vocabulary given below. The last four tetrads (sixteen bits)

furnish an address (or some other number relevant to the particular

order) in the following way. The first two bits select a B register

(BO' the zeroth B register, is a mythical register defined as contain

ingzero at all times). The contents of the last fourteen bits are

then added to the contents of the selected B register to furnish the

complete address. (Note that some instructions, such as (R) to U,

are completely specified by the order tetrads; for these, the last four

tetrads are ignored.)

An operand is by nature simply a collection of 48 bits of inform-

ation, which can be interpreted and modified in any finite way by the

available vocabulary. In the majority of cases, however, it is treated

as a number. The bits of a number, or the stages of an arithmetic

register holding a number, are designated as shown in Fig. I.

-4-3-2~1 0.1 23 7 39 43

I~ 1 --&........II 11..--U..-1 ...L--LI 1---1-1 ...L-.-I ------LJ17l _______ 1 _--L--I --JJ

-6-

The binary point is between bits zero and one. Stages one through

43 hold a positive fraction, x, whose range is 0 ~ x ~ 1 - 2-
43•

Stage zero holds a sign for this fraction (0 for plus, 1 for minus).

Stages -3 through -1 hold a positive integer, ~, and stage -4

holds a sign for this integer. This signed integer, ~, is the exponent

of the Maniac's floating point base, which is 216
= 65,536.

Thus a full number, represented by an exponent, ~, and a fraction,

16e
N = 2· x.

The range, for a single word, non-zero number, N, is

2- 155 S N < 2 112,

or, apprOXimately,

The Maniac's large base permits a considerable increase in the speed

of floating point arithmetic. Although such a large base implies the

possibility of many lead zeros, the large word size of 48 bits guarantees

adequate significance.

A number N = (e,x), for which the exponent e = 0, is equal to the

fraction, ~, and may be conSidered fully equivalent to a fixed point

number. The fact that floating and fixed point numbers have identical

fraction bits allows a considerable saving in computer hardware. The

saving is possible because, in many instances, the Maniac need not

distinguish between fixed point operations and floating point operations

which operate on numbers having zero exponents.

-7-

CONTROL

Control of the Maniac, for normal operation, is effected by a

stored progr.am. A problem to be solved must first be put in terms of

the Maniac' s vocabulary. The appropriate instructions must then b~

coded, and the coded instructions put into the internal storage, along

with the necessary coded or numerical input data. (A large part of

this work can be done by the Maniac, using translation and assembly

routines.) The control is then sent to the first instruction.

After executing any instruction (other than Stop), the Maniac

fetches another instruction into I (the Instruction Register) from

a location specified by CC. Unless CC is specially set to a new address,

it counts by half-words and causes the fetching of sequentially stored

instructions. (Exceptions to this can occur on Sense and on Count-

and -Compare, where CC may be made to count twice before the next instruc

tion is fetched.) The sequencing of instructions is the same under

automatic and manual operation, provided the manual operation consists

merely in stepping through the program.

CC can be specially set to a new address in three ways: by a

Transfer Control instruction; by a breakpoint transfer; or manually,

by 'using the Control Counter Switches.

A Transfer Control instruction (for which the conditions, if any,

obtain) invol-ves three steps. First, CC makes an ordinary half-word

count, giving it the address of the next instruction in sequence, i.e.

the instruction which would be fetched next if the transfer did not take

place. Second, this address is placed in the Pathfinder Register, PF,

where it is available to the arithmetic unit (in partiCular," available

-8-

for return from subroutines, etc.). Third, the Control Counter is set

to the address contained in the Tr,ansfer Control instruction (or to

that address modified by the contents of a B Register) and a new instruc

tion is fetched from that address.

Breakpoint transfers involve the interaction of special switches,

set by the operator, with special tags (real or Virtual) on instructions

in the storage. There are two types of breakpoint, called red and purple.

A tag for a red breakpoint is real, and it is a zero placed in the first

bit position of the first order tetrad. Thus the order AB, for example,

becomes 2B if tagged with a red breakpoint, since the hexadecimal digit A

becomes 2 when its first bit is set to zero. The tag for a purple break

point is virtual; only one instruction at a time can be tagged with a

purple breakpoint, and the tagging is done by setting the half-word

storage location of the instruction on a set of Purple Breakpoint Address

Switches.

There are two three-position Breakpoint Switches (one for each

color of breakpoint), the three positions being Off, Stop and Transfer,

If a switch is in the Off pOSition, then all tags of that kind are com

pletely ignored. If a switch is in the Stop position, then. the Maniac

stops after performing any instruction with the corresponding kind of

tag, without fetching the next instruction. If a switch is in the

Transfer pOSition, then the Maniac effectively inserts after any

appropriately tagged iB8truction, an Unconditional Transfer Control

instruction, with an effective address equal to the address set on the

CC Switches (see below). In other words, after performing a tagged

order, the Maniac sets CC to the address on the CC Switches, leaving

-9-

stored in PF the usual. record ot where it was about to go. (Exception:

it a Transter Control, Sense, or Count-and-Compare iDstruction3 has a

tag corresponding to a switch in the Transter positiOD, the Maniac acts

a$ though the sri tch were in the Stop position.)

Manual setting ot the Control Counter is eftected by pushing a

special CC Set Swl tch on the control. panel.. CC sets to the address

on the CC Switches. For this manual setting, the Me.nual-Aut0D8tic

Switch must be on Manual; it it is on Automatic, then the CC Set Switch

is inoperative.

lrhis is also true for either of the two Substitute Right Addressinstruc
tions, if the substitute instruction is on the left, ~ the substitution
is into the right side of the ~ word •.

-10-

MANUAL OPERATION

The facilities for manual operation of the Maniac are on the

Operator's Console. The console consists of a desk, facing a large

panel, and almost surrounded by the input-output eqUipment. The panel

contains rows of lights displaying the contents of the various re~isters,

rows of switches for setting certain registers, and an assortment of

display lights and special switches for a variety of purposes. S, R,

and U are displayed at the top. On the right side are I, B+, the

three B Registers, PF, and the Parity Check Register. On the left

si.de are CC, with the CC Switches and the Purple Breakpoint SWitches,

the Sense Lights, and the Sense Switches. In the middle are the Red

Breakpoint Switch, the Exponent Spill Lights and Allov NES SWitch:

and the Overflow Light. On the right, at the bottom, are the Manual-

Automatic SWitch, and the Fetch and Perform Buttons.

The operator can step through the normal sequence of instructions

with the Manual-Automatic switch on Manual. This can be done by using

alternately the two pushbuttons called Fetch and Perform. However; the

operator can also use these buttons to step through the sequence with

omissions and/or repetitions of instructions. The Fetch button causes

the next Instruction in numerical sequence (not normal program se~nce)

to be fetched into I; no instruction is performed. The Perform button

causes the instruction already in I to be performed; that instruction

remains in I.

A Slow Automatic button allows the operator to step through the

normal sequence of instructions at a rate of about 20 instructioDS per

4 Negative Exponent Spill

-11-

second, for as long as· the button is depressed. This button is operative
I
./

only on Manual.

When the Manual-Automatic Switch is on Manual, it is also possible,

by using the Lead Switch, to enter words into the memory without having

them called in by a program. The Load Switch sets CC to the address on

the Control Counter Switches and then reads full. words from the paper

tape in the Photoelectric Reader into sequential memory positions, start-

ing.with the address contained in CC. This process continues until

a stop-code character is encountered on the paper tape, at which time

the Maniac stops, resetting CC to the address or the first word loaded.

When the Manual-Automatic Switch is on Manual, the input-output

typewriter (Flexowriter) can be enabled. This is done by a three

position switch on the Flexowriter; the three positions are Neutral,

Enter I, and Enter S. (Note: the Maniac will not run on Automatic

unless this three position switch is on Neutral.) Ir the switch is

in the Enter I position, then each Flexowriter key struck causes the

corresponding hexadecimal character to be shifted rrom the right into

the six tetrad instruction register, I. In this manner a full instruc-

tion can be entered, and it can then be performed via the Perform button.

If the typewriter switch is on Enter S, then typed characters will be

shifted from the right into S, whence they can be sent to U or the memory

by appropriate instructions. A typed record of all such characters will

be made on the Flexowriter, ana a Punch On switch will allow the simultane-

ous production of a paper tape record.

-12-

MANUAL INTERVENTION

The fourteen Sense Lights were mentioned in the section on Storage.

These lights are single -bit storages. They can be set independently to

one (on) or zero (off) by the operator, while on Manual .2!: on Automatic.

They can of course be read by the operator, from their on or off status.

They can also be set either way by the Maniac singly or in any combination.

Lastly, they can be tested by the Maniac, using an instruction which asks

whether or not a given combination of' lights is all ones. By means ot

these lights, then, up to fourteen bits of informations at a time can

be exchanged between the Maniac and the operator, without interrupting

the calculation.

-13-

STOPS

There are three normal methods ot stopping the Maniac. Setting

the Manual-Automatic switch to Manual stops the Maniac at the completion

of the instruction being performed. Breakpoint stops have al.ready

been discussed. Thirdly, the Maniac stops when a Stop instruction is

in I; a Stop instruction is, by definition, any instru-ction with order

tetrads not defined in the vocabulary.

In addition to these normal stops, there are several stops designed

to catch programming errors, operator errors, and/or machine malfunctions.

Except for the Parity Check Stop, one may continue the program, after a

stop, by switching to Manual, fetching the next instruction, returning

to Automatic, and pushing the Perform button. In the case ot certain

stops due to input-output equipment's not being ready, the Maniac will

continue automatically as soon as the selected piece of equipment is

made ready.

The spec ial stops are:

Read StoP. When there is no paper tape in the Photo Reader, then a

Read instruction causes a stop.

Fast Punch Stop. When there is no paper tape :in the Fast Punch, then

a Punch instruction causes a stop.

Magne1;ic Tape Stop. When the Magnetic Tape Un! t is not in Ready'

position, then a Magnetic Tape instruction causes a stop.

Flexowriter Stop. When the Punch switch on the Flexo is on, and

there is no paper tape, then a Flexoprint instruction causes a stop.

-14-

Fast Print Stop. When the Fast Printer is not ready, due to printer

failure or to a previous improper print matrix (more than one character

having been requested for the same column), then a Fast Print instruction

causes a stop.

Positive Exponent Spill Stop. Positive exponent spill can occur on

all basic arithmetic operations. When it does, the Positive Exponent

Spill Light goes on and the Maniac stops. The light can be turned off

by a special reset button, and operat~on can be continued as described

above.

Negative Exponent Spill Stop. Negative exponent spill can occur

on normalization, multiplication, or division. When it does, the Negative

Exponent Spill Light goes on and the Maniac stops, unless the Allow Negative

Exponent Spill switch has been turned on. In that case, the Maniac inter

prets numbers with spilled negative exponents as zeros, with exponent -7,

and proceeds accordingly, without interruption or special display. In

the stop case, the operator can continue as for positive exponent spill.

Fixed Point Division Stop. A fixed point division which would yield

a rounded quotient of magnitude greater than or equal to one causes a stop.

Square Root StoE. When the number in U is negative, then a Square

Root instruction causes a stop; the number in U is unchanged.

Illegal Address Stop. When a word is called from the internal storage

from a non-existent address (3000-3FFF for Full Memory or 1800-3FFF for

Half' Memory), then the Maniac stops. Note that this address may be the

result of adding an index to a basic instruction address.

-15-

Parity Check Stop. If any word regenerated in the internal storage,

fetched from the internal storage, or called from magnetic tape, should

not have the parity specified by its associated parity check bit, the

Maniac would stop, displaying a Tilt signal and the storage address of

the offending word. Regeneration would of cOUrse continue, and if, for

example, an entire memory unit had failed, the displayed address might

change as often as every eight microseconds.

-16-

VOCABULARY

Any vocabulary list necessarily involves a compromise between brevity

and completeness. This is particularly true as regards secondary changes

in register contents, changes not of interest in straightforward program-

ming. It is also true in regard to stops which may occur du-ring the

performance of an instruction, such as those due to exponent spill. Since

a separate T-7 pUblication4 describes in detail the secQndary register

changes and since a preceding section of this report describes the various

steps, the following vocabulary list leans toward brevity.

Before giving this list, however, it will be helpful to define some

abbreviated notation.

The instruction notation YZ b m refers as follows to the 2~ bits ---
which constitute an instruction:

-4 -3 -2 -I O. 23456 7 II 15 19

I I I I I I I
~

m ---y z b

When b.andm are not relevant for a particular instruction, they are

replaced by dashes.

Bits -~ through 3 are assigned to the two order tetrads. Bits 4

and 5, when relevant, govern the selection of a B register •

. 4MA.NIAC II: REGISTER CONTENTS UPON LEGAL COMPLETION OF ORDERS, April 18,
1956.

-17-

The letter! is used to represent the sum ef the fourteen bit number

~ and the fourteen bit number contained in the ~th index register (with

the convention that the (mythical) zeroth index register always contains

zero). X is the address or other relevant number referred to in the section

on Information.

The letters U, R, and S stand for the Universal, Remainder, and Storage

Registers, respectively. When necessary or he~pful to distinguish stages

o through 43 of a register from the entire register (-4 through 43), the

notation U', R', or S· will be used. MU, MR, and MS will be used to denote

stages 1 through 43 ~f U, R, and S. (These are the stages which hold the

magnitude of the fraction part of a number.) The notation UR stands for

the effective double length register in which stages 1 through 43 of Rare

taken to be an extension to the right of U. PF stands for the Pathfinder_

Register.

Parentneses will be used to denote "the contents of" or "the in

forma.tion stored at". For example, (U) will mean the word in the Uni

versal Register, and (5-19U) will mean the contents o~ stages 5 through

19 of U. An arrow (~) will be used for "replaces" or "replace" (or

occasionally for "to"). Thus (U)~(X) means that the contents of U replace

the contents of X, i.e. store (U) at address X.

So' referred to in orders B5 through B7, denotes the double address

positions 6-19 and 30-43. It must be noted, however, that the Substitute

Address instructions C4 through C7 substitute the contents of stages (3

and 6-19), for the left address, and stages (27 and 30-43), for the right

address. This is because of the need to substitute half-word addresses

-18-

into the Transfer instructions c8 through CF.

The reader should refer to the section on Control, subsection on

Transfer Control instructions, for the details of the Transfer instruc

tions. Note that the address in PF, after a Transfer, is the normal return

address for a basic linkage, and address substitution from PF is the normal

method of setting an exit. This exit setting will probably be the only

use made of the substitution instructions in straightforward programming

of mathematical problems. It should be added that the programmer, coding

in conventional descriptive form, can ignore the left-right, half-instruc

tion difficulties, which will be taken care of by the assembly routine.

Since a complete verbal description of Shift instructions is always

long-winded, the following diagram may be found more useful than the

descriptions of the Shift 'instructions given in the Vocabulary list.

u rrrr'fI~~t-~-+31 Left Shift ii3rrfrl~f----ri R
Unchanged

U II1III jj-~--fll Right Shift IIIIIIII-f----Il R
Unchanged

~ - f

u ,..~- ---.~- ~-~ Long Left -. ~---- ~ R

~II ,. ,.

u III1I1I £1----fh Long »Right 1llllllif----~ R

.....
~"

, .,

u [, - -- ---- :i Logical Left - -----.. ~
~

" R
,[I

u Hff-fljl- -~ -ijl Logical Right 11111I11-f---31 R
Unchanged

MANIAC II REGISTER CONTENTS UPON

LEGAL COMPLETION OF ORDERS

Sometimes in programming, it is helpful to know the

final contents of other registers than the one primarily

involved in any given order. The accompanying table supplies

this information (i.e. the register contents upon completion

of an order) for all orders of MANIAC II except input and

output. The contents of the registers upon machine stops

occurring as a result of illegal operations on numbers have

not been tabulated since these are not of great use in coding

(as opposed to debugging), and since they may be very compli-

cated. It is intended that this table shQuld supplement,

rather than replace, the vocabulary description.

E, 0, M In most orders, the change in the I, 1*, and B registers

is either uninteresting or obvious, or both; hence, only U,

R, and S have been tabulated. Each of these registers is

broken up into three parts:

E The exponent bits (-4 to -1)

The sign bit (0)

M The unsigned fraction, or magnitude bits

y -inTI I I (II [n [I n II Ii II rill n lilT II n II rr II rr III
~T~---------------~v~~------------------/

Oy MY
Y = U, R, S , m

Subdivisions of a binary number considered

as floating-point

Z'

X

-2-

The contents of the registers upon completion of an order is

for the most part described in terms of the contents !! ~

~ time of other registers, or of the appropriately B-modified

memory location addressed by the order. For this latter, the

symbol m is used. Thus, if the entry EU occurs in the E-column

of H, one should read this as: "The contents of the exponent

bits of H at the completion of this order is equal to the contents

of the exponent bits of· U at this time." Or, if in the M-column

of the S-register is found the notation Mm, this says: "The

contents of the magnitude-bits of S upon completion of this order

will be identical to the final contents of the magnitude bits

of the appropriate B-·modified memory location addressed by this

order. "

It frequently happens that the contents of a part of a

register is unchanged by the performance of an order. This state

of affairs is indicated by a dash (--) in the appropriate spot

in the table.

Occasionally, reference must be made to the contents of

some portion of a register prior to the performance of the o~der.

A prime following the appropriate symbol signifies thiS. Thus,

EU' designates the original contents of theexponent-bits of U.

In some columns of the table, an X will be found. This

implies that a variety of possibilities eXists, depending on

the numbers being compounded by the order. Although the results

are perfectly predictable (obviously!), they have been deemed

so esoteric as to be of minor interest for normal programming.

-3-

If detailed information is desired, one should consult the

engineers, or Roger Lazarus.

The performance of some orders leaves the ones-complement,

or reflection, of a number in some portion of a register. A

bar over the relevant symbol denotes this. Thus,

if am =

am = 0

or if MR = 111111111 ••••••• 111

MR = 000000000 ••••••• 000

0, 1 The character 0 implies that every bit aS80ciated with

the column in which it is found is a zero. Similarly 1 implies

all ones.

In a few cases, an actual binary number is written out,

and elsewhere, a signed decimal number has been used to indicate

the contents of a portion of a register.

() Curly brackets around a pair of symbols imply that, under

various circumstances, one or the other of the quantities indi-

cated may occur.

M* In the addition and subtraction orders, a symbol M* is

used, which indicates either M or the reflection of M, depend-

ing on whether the order is addition or subtraction, and on

whether the signs of the two numbers to be combined are like

or unlike. The values of M* are given in the following table:

ADD SUBTRACT

Like signs M* = M M* =M

-Unlike signs M* = M M* = M

E*

n

a

-4-

In the multiply orders, use is made of the symbol E*.

This has one of two values:

If the signs of the exponents are alike E* = E

If the signs of the exponents are unlike E* has the sign

Example for this case:

of E but the reflec

tion of the 'magnitude

if E = -4 (1100)

E* = -3 (10 11)

In the normalize orders, n is the number of left shifts of

16 required to normalize (UR). The allowed values of n are 0, 1,

2, 3.

The symbol a is frequently used to refer to that answer

obtained by performance of an order--that is, the primary result

of the order. Usually the significance is obvious (thus, in a

multiply oa is 0 or 1 according as the signs of the factors are

like or unlike). In case of doubt, one must appeal to the vocabu

lary description.

A" In orders involving a round, the rounded result is indicated

by a double prime. Thus Ma" in the MU column iD,lplies that a true

round has been performed on the last significant bit (here, the

43rd). It will be noted from the table that in the cases of the

divide and square root orders, the unrounded number Ma appears

in MS.

-5-

The performance of some orders places a "nought-number"

in the S-register. It is to be remembered that a nought-number

is identical on the left and right-hand sides, involves the

address bits only, and is zero elsewhere. The symbol for a

number N expressed as a nought-number is (N). o

nrrn! 14\ ~£trlll n 11
2

j ..
i ') T ~) V" V

L R Address bits desig- l R Address bits desig-
bit nating full word b i 1 nating full word

Nought-numbers appearing in S as

result of transfer orders

The nought-numbers appearing in S resulting from transfer

orders involve, in addition to the regular address-bits "(6-19,

30-43), the "left-right bit" (3, 27 positions), which indicate

by a zero or a 1 the left or right half-word of the address

specified.

U

R

S

m

E

a

M

x

a

Z'

A"

M*

E*

n

(N')O

PresAdd+i

{)

SUMMARY OF MORE IMPORTANT SYMBOLS USED

Universal register

R register

S register

Appropriate memory location

Exponent bits (-4 through -1)}

Sign bit (0) after completion of
the order -----Magnitude bits (1-43)

Contents unchanged

Contents may have various values, not explicitly

enumerated

Answer--i.e. primary result of operation

Reflection of A

Contents of Z before the order was performed

A, rounded

See table in descriptive material

See table in descriptive material

Number of 16-place left shifts in normalizing

Nought-number form of N

The address of the half-word succeeding the memory

location of this order

Alternative possibilities

April 18, 1956

MANIAC II: REGISTER CONTENTS UPON LEGAL COMPLETION OF ORDERS

U R S

E , er I M E l 0 I M E to' M

98 Set Sense to Zero - - - - - - - - -

99 Set Sense to One - - - -- - - - - -

9A Sense - - - -- --- - - - -

AO - Absolute Magnitude to U Em 0 MIn - - - Em am Mm

Al Absolute Magnitude of (R) to U ER a MR - - - ER aR MR

A2 Negative of Absolute Magnitude to U Em 1 Mm. - - - Em om MIn

A3 Negative of Absolute Magnitude of (R) to U ER 1 MR - - - ER aR MR

A4 (Memory) to U Em om Mm - - - Em am Mm

A5 (R) to U ER oR MR - - - ER oR MR

-A6 Negative of (Memory) to U Em am Mm - - - Em om Mm

A7 Negative of (R) to U ER oR MR - - - ER aR MR

A8 Fixed Add - oa Ma - - - Em am M*m

A9 Fixed Add of (R) - aa Ma - - - ER oR M*R

AA Fixed Subtract - oa Ma -- - - Em am M*m

AB Fixed Subtract of (R) - era Ma - - - ER oR M*R

AC Floating Add Ea oa .Ma -- - - X om M*m

AD Floating Add of (R) Ea oa Ma - - - X oR M*R

AE Floating Subtract Ea oa Ma - - - X am M*m

Ai' Floating Subtract of (R) Ea oa ivle. - - - X oR M*R

C REGISTER o~ --Page 2
April 18, 1956

ft" -
U R S

E I a I M E I a I M E I 0 1 M

B1 Set B1 - - - - - - - - -

B2 Set B2 - - - - - - - - -

B3 Set B3 - - - - - - - - -

B5 Count B1 - - - - - - ~ (B1)0 ~

B6 Count B2 - - - - - - ~ (B2)0 ~

B7 Count B3 - - - - - - ~ (B3)0 ~

B9 Count and Compare B1 - - - - - - - - -

BA Count and Compare B2 - - - - - - - - -

BB Count and Compare B3 - - - - - - - - -

Be (s) to Memory - - - - - - - - -

BD (s) to U ES as MS - - - - - -

BE (U) to Memory - - - - - - EU aU MU

BF (u) to R - - - EU aU MU - - -

CO (Memory) to R - - - Em am Mm - - -

Cl (Memory) to R - - - Em am MIn - - -

C2 (R) to Memory - - - - - - ER oR MR

C3 Extract Ea oa Ma - - - Em am Mm

c4 Substitute Left Address from S - - - - - - Em am MIn

C5 Substitute Right Address From S - - - - - - Em am MIn

c6 Substitute Left Address from U - - - - - - Em am MIn

REGISTER co~s--page 3 April 18, 19~

U R S

E I (J I M E T (J I M E I a I M

C7 Substitute Right Address from U - - - - - - Em am MIn

c8 Unconditional Transfer to Left - - - - -- - ~(PresAd.d+~) ~
0

C9 Unconditional Transfer to Right - -- - - .- - ~(PresAdd+~) ~
0

CA Conditional Transfer to Left on Overflow .. "
If trans~er J:eurs

CB Conditional Transfer to Right on Overflow

CC Conditional Transfer to Left on Positive r(presAdd+~b --?>
- - - - -- -

CD Conditional Transfer to Right on Positive

i CE Conditional Transfer to Left on Zero
If transfer does not occur

CF Conditional Transfer to Right on Zero
-'

Dl Normalize

No Spills EU' -n --- 2
16n

MUR' -- - 216~,

and n = 0 - -
and n I 0 {0001}_ -0110

Negative Exponent Spill and "Allow" -7 ° -7 0 {0001}-- - -
0110

D2 Round (overflow!) - - Ma" - - - 0 ° 0

D4 Multiply

No Spills Ea oa lv1a(1-43) Ea aa Ma(44-86) E*m om MU'

Negative Exponent Spill and "Allow" -7 O'a 0 -7 aa 0 E*m am MU'

REGISTER CO~S--page 4
April 18, 1956

'" U R S

E 'a I M E I a (M E I af M

D5 l~ltiply and Normalize

No Spills Ea aa !'fa (1 -1+ 3) Ea aa Ma(44-86)

and n = 0 E*m ·am MU'

and n ~ 0 to°01
;) 0110

am MU'

Negative Exponent Spill and "Allow" -1 aa 0 -1 aa 0 {COOl;}
~0110 am MU'

D6 Multiply and .Round (n.b. overflow impossible)

No Spills Ea aa Ma" Ea aa Ma(44-86) 0 0 0

Negative Exponent Spill and uAllow" -1 aa 0 -7 aa 0 0 0 0

D1 Multiply, Normalize and Round

No Spills Ea aa Ma" Ea aa Ma(44-86) 0 0 0

Negative Exponent Spill and "Allow 11 -7 aa 0 -7 aa 0 0 0 0

D8 Fixed Divide. - aa Man EU' aa REMDR EU' aa Ma.

D9 Floating Divide

No Spills Ea aa Ma" lEu' aa REMDR Ea aa Ma

Negative Exponent Spill and "Allow" -7 aa 0 lEu' aa 0 -1 aa Ma

N .b. If 3 right shifts of 16 are required to

legalize numerator, but otherwise the

operation is legal, "Insignificant

Light" is lit, and operation continues.

REGISTER co~s--page 5 April 18, 1956

U R S
E I a J M E I a I M E I a I M

DA Square Root

Exponent of radicand even Ea a Ma" - 0 a 1111 1 Ma

Exponent of radicand odd Ea a Ma(l-4.3) - 0 Ma"(44-51) 0001 1 2
8MB.

-
EO Change Sign of U - aU' - - - - - -

-El Change Sign of R - - - !-- oR' - - - -

E2 Plus Sign to U - 0 - I-- - - - - -

E3 Plus Sign to R - - - I-- 0 - - - -
E8 Left Shift - - Ma t-- - - - - -
E9 Long Left Shift - - Ma(U) t-- - Ma(R) - - -
EA Logical Left Shift Ea aa Ma(U) I-- .- Ma(R) - - -
EC Right Shift - - Ma - - - - - -

ED Long Right Shift - - Ma(U) - - Ma(R) - - -
EE Logical Right Shift Ea aa Me. - - - - - -

MANIAC II ASSEMBLY ROUTINE

Preliminary

January 4, 1956

The assembly routine for Maniac II is designed to translate

descriptive code into absolute code. The rules for making a des

criptive code are given below. It will be seen that the descriptive

code differs from the absolute code primarily in using logical or

descriptive addresses. An attempt has been made to achieve reasonable

flexibility with maximum simplicity.

The descriptive tape is punched on ordinary five-hole paper

tape. The assembly routine transcribes the descriptive code onto

magnetic tape, after which the paper tape may be discarded. When

changes are to be made in the descriptive code, these changes are

punched on a correction tape and the assembly routine makes the changes

and produces a corrected magnetic tape record.

The first word on a descriptive tape must be OOXXXX, where XXXX

is the desired absolute half-word starting address of the code. The

last word on a descriptive tape must be ~he special control word OCODED.

INSTRUCTIONS

Boxes.

The bulk of the descriptive tape, in general, consists of a series

of half-word (six tetrad) instructions, separated, by control words,

into numbered groups called boxes. These boxes, which may be numbered

in arbitrary sequence, usually correspond to flow-diagram boxes. Since

correction tapes must contain complete boxes, it is important that boxes

be reasonably short.

January 4, 1956

-2-

In the following discussion, X represents an arbitrary tetrad

upon which attention is focused; a dash, - , denotes an irrelev,ant

tetrad, included to show relative position.

The box number control words are in the form OOXXXX, where the

last two tetrads specify the box number. The significance ot the

pair --XX-- will be described later (cf. pp. 4-5).

Instruction Classes

Instructions are punched in the form XXXXXX. The first two tetrads

specify the order, with or without breakpoints, in absolute form. The

interpretation of the address part, --XXXX, depends on the class of

the instruction specified by the order.

Class A instructions are those with address parts which never

refer t~ a memory location. They are: Set Sense, Sense, Round, Select B,

Normalize, Square Root, Change Sign, Plus Sign, the six Shift instruction,

and Position Tape. The address part of a Class A instruction is left

unchanged. (Only one kind of Stop instruction is allowed by the assembly

routine, and that is OFF---. The instruction is in Class A.)

Class B instructions are those which normally address another in

struction. They are Substitute Address and the four Transfer instructions.

In most cases, the address part of a Class B instruction is translated

as the half-word address of Instruction --XX, Box XX--. The exceptions

(F---, 00--, 80--, and --00) will be discussed later.

All other instructions are in Class £. In most cases, the address

part of a Class C instruction is translated as follows: the first two

tetrads, XX--, give the Storage Type, the second pair, --XX, gives the

-3-

full-word address within the particular type.

b, r, and Absolute Addresses.

January 4, 1956

The largest number which is given to a Storage Type is 3F; if it

is desired to have b = lin a Class C instruction (to call for automatic

address modification), then the address part must be increased by 8000

(e.g~!F03 instead of ~03). For b = 1 in a Class B instruction, con

sult the next section. If it is desired to have r = 1 (e.g., to address

the R register) in a Class C instruction, then the address of exactly

4000 must be used. If it is desired that a Class C instruction have an

absolute memory address other than 0000 or 8000, then the descriptive

address must be that absolute address plus 4000. The assembly routine

will remove the 4000. The absolute address may have b = 1 or O. The

absolute addresses 0000 and 8000 should be entered without the extra

4000.

Addressing the Current Box.

If the address part is 00-- or 80--, in a Class B or a Class C

instruction, the reference is to the box containing that instruction.

ror a Class B instruction, with address OOXX, the translation is the

half-word address of Instruction XX, current box. For a Class C in

struction, the -translation is the address of the full word containing

Instruction XX, current box. Note that 80-- for Class B means b = 1;

it 1s only when reference is to the current box that Class B instructions

may have b = 1.

Subroutines.

The allowed box numbers are 01 through EF, 80 excluded. If, in a

January 4, 1956
-4-

Class B instruction, the address is FXXX, then the instruction must be

a transfer,and the transfer is to the subroutine whose call number is

XXX. The most common subroutines are on the same magnetic tape as the

assembly routine, and are brought in automatically. For other sub

routines, the assembly routine stops to allow the appropriate paper

tapes to be put into the photoreader. Maniac II subroutines always

return the control to the instruction next in sequence after that in

struction which transferred control to the subroutine.

Variable Transfers.

If, in a Class B instruction, there is an apparent reference to

an address XXOO, then a special meaning is attached, since instructions

are numbered from 01, not from 00. A Transfer instruction with such

an address is interpreted as Variable Transfer Number XX, and all Sub

stitute Address instructions with the same Address Part are translated

so as to substitute into their corresponding Variable Transfer.

Left and Right Instructions.

An absolute code for Maniac II has two instructions per word. It

is generally irrelevant whether a particular instruction is on the left

or on the right, as far as the programmer is concerned. There are cases,

however; where it may be important. If it is desired that a particular

box have its first instruction on the left, then the box number control

word, OOXXXX, for that box should be OOX~XX. If it is desired that the

first instruction be on the right, then the control word should be

OOX4XX. If the programmer does not care, then he should use OOXOXX.

Insertion of Blank Spaces.

If changes are anticipated in a particular box, it is frequently

useful to leave some blank space for them, so that the rest of the

January 4, 1956
-5-

changed code will have the same absolute translation. If a box number

control word 1s OOX---, then the assembly routine will leave X full-

word blanks at the end of the box, and will insert a transfer over the

blanks. However, the operator may elect to have the assembly routine

ignore this tetrad and leave no blanks; this would generally be done,

it at all, on the final assembly of a completely debugged problem.

STORAGE

The Storage Types are numbered from 01 through 3F, and each type

xx referred to must be introduced by a twelve tetrad control word of

the for.m 8---xx 0-----. The control words may be anywbere on the de-

scriptive tape. For every storage type of the form QX which is 1ntro-

duced, there are two possible interpretations ot storage types lX,

2X, 3X. ?- - -GC ~ t:.f
(~ ~ ,~ / <7i:) t--iJ"'"~ &--.J bil tJC

(i) It any of the latter types is introduced by a control word, sz:,~~--"';''1,.:)

then the interpretation of an address of a Class C instruction

referring to that storage type is as previously described on

pp. 2-3.

(ii) If any of the latter types, say ~, is ~ introduced by a

control word, then the corresponding interpretation is &8

follows: the storage type is 2X and the ~ other tetrads,

in this case g-AX, give the address.

Tetrad X of the control word, ------ -X----, must equal ~ or E.
It this tetrad 1s ~, then ------ --XXXX is the absolute address to

be assigned to the zeroth word* of the aSSOCiated storage type. If

*Note that storage words are counted from 0, whereas instructions 1n

a box are counted from 1.

January 4, 1956

-6-

the identifying tetrad is ~, then these four last tetrads of the COD-

trol word give the number of blanks to be left tor the associated

storage type. Absolute addresses for such types are assigned in the

order in which their introductory control words appear on the de-

scriptive tape. The two variants are checked for possible overlap.

Subroutine Dynamic Storage

~ will B!S. only the 01 storage type I f'rom word 00 on,

as far as necessary. (Subroutine constants will be hidden in the

subroutine code.) If' it is desired that Subrou.tlne XXX have its

dynamic storage moved ahead YY addresses, this can be accomplished

by putting anywhere on the descriptive tape a so-called Delta Control

word, namely 8nXXX.

Input of Basic Constants

Storage types OA through OF have the special property that words

to be stored there may be put on the descriptive tape. These twelve

tetrad words must follow immediately after the control word for the
o;t- D F

tv
particular storage type. If the control word bas provided tor a

~ ..
number of blanks, then the specified number of blanks is left after A. IS Y '-

storing the storage words on the descriptive tape.

Worda for OA storage are treated as instruction pairs; if an

Order Part 1s not in the vocabulary (00, for example), the instruction

will be treated as though it were in Clas8 C. Words for OB storage

are lett unchanged. Words for OC and OD storage are interpreted as

fixed point binary coded decimal, and converted to fixed point binary

numbers. Words tor OE and OF storage are interpreted as binary coded

floating decimal, and converted to normal floating point binary numbers.

January 4, 1956
-1-

OUTPUT

The absolute code produced by the assembly routine is punched on

paper tape and/or recorded on magnetic tape, at the operator's option.

The final code and basic constants are also printed on the Fast

Printer, unless printing is suppressed by the operator. The first page

or pages of the printout list the absolute starting addresses of the

various storage types introduced. Subsequent pages contain sixteen

instruction pairs each (except perhaps the first such page, if the code

does not start at an address which is a multiple of sixteen), with extra

space between boxes. The printout consists of the box and instruction

numbers, the absolute location, the absolute instruction, and the

descriptive Address Part. When an instruction addresses OA through

OF storage, the contents of that address may be printed or not, at

the option of the operator.

When a descriptive code is being reassembled with changes, the

operator may elect to have printed only those pages which differ

from pages ot the unchanged code.

CORRECTIONS

One or more correction tapes may precede the main descriptive

tape (which will, in general, already be on .gnetic tape) to modify,

delete, or insert boxes, or to introduce or reintroduce storage types.

Each correction tape must be terminated by the control yord OCODED.

Each correction tape takes precedence over any tape read in after it.

To modify a box, the box number control word and the instructions

are punched just as on the main tape. To delete a box, the control

January 4, 1956

-8-

word i8 punched with DO instructions following it. To insert a box

immediately preceding Box XX, the normal box number control word for

the box to be inserted muat be immediately preceded by the special

control word FF--XX.

In addition to the normal options of ignoring or not the tetrad

--x--- ot a box nwaber control word (which specifies the number ot

blanks), there is the option to ignore such tetrads of box number

control words on correction tapes only, and attempt to leave unchanged

as much of the or1giual code as possible.

/h ~ 'tf /S-

k-&.-Q ~ ... ~ .. ,,'" 4""..: A

1. First word on
tape:

Last word on
tape:

2. Box number control
word:

3. Class A instruc
tions:

4. Class B instruc
tions:

5. Class C instruc
tions:

January 4, 1956
-9-

OOXXXX Absolute starting address
of the code.

OCODED Also for all correetion tapesQ

00

------------ Box number.
It 8, first instruction of
that box on left side.

------- If 4, first instruction on
right side.

'-------- Number of blanks added at
the end of box.

Address part never refers
to memory location. Left
unchanged.

--~ ___________ Substitutions and transfers.
~ Instruction number.

Box number.

--FXXX Instruction must be a trans
fer to subroutine with call
number XXX.

--~~'---L U

-- -= =-.... Instruction number.
Current box, b=O.

--80XX._ L ___ . __ Current box, b=l.

-~~~~ __________ Indicates variable transfer.
l.c _____________ Variable transfer number.

.. _------

Full word address of storage
type.
Ol-3F: Storage Type, b=O •
Sl-BF: Storage Types Ol-3F,

b=l.

-~~~ _______ Instruction number.
~ CUrrent box, b=O.

--~~---- Current box, b=l.

Translation is address of
full word containing the
instruction.

January 4, 1956

-10-

--~ 40-71 and CO-FF: XXXX is
absolute b-mode address + 4000; .
translate by subtracting 4000.

--q,OOO Addresses R register.

--0000 Special absolute addresses,
--8000 b=O or 1.

6. Storage: 8---~ 0----- Control word.
Storage Types Ol-lF •

8----- o~
Absolute address ot zeroth
word ot associated storage type.

8----- OD~
Number ot blanks reserved for
associated storage type.

It there are COD- 8---OA 0----- Treated aa instruction pairs.
stants on descrip-
tive tape tollow- 8---0B 0----- Lett unchanged.
ing these control
words, they are: 8---oC 0----- Fixed point coded deCimal, to

be converted to fixed point
binary.

8- ... -OE 0----- Floating point coded deCimal,
8---0F 0----- to be converted to floating

point binary.

7. Subroutine dyn-
amic storage
(Delta control

~ word): Subroutine call number.
Dynamic storage advanced
by this number ot addresses.

8. Corrections:

To modify a box: Box number control word,
followed by instructions,
as on main tape.

To delete a box: Box number control word,
with no instructions.

To insert a box: FF--~ __ New box immediately precedes
Box XX.

OOXXXX: Box number control word tor
box being inserted; tollow by
instructions, as on main tape.

End of correction
tape: OCODED

July 18, 1956

The automatic coding scheme for Maniac II is herein described.

The assembly routine for this scheme, hereafter called· "Madcap"

(Mathematical and Descriptive Coding Assembly Program), will trans-

late a series of statemen~s into a computer-ready code. The phi-

losophy has been that these statements should resemble a mathematical

formulation of the problem in terms of a flow diagram. Thus the

first step in preparing a problem for Madcap is to construct.a flow

diagram (perhaps only in the mind) consisting of an aggregate of

defining equations, control equations and information statements

in acceptable notation. ThiS, along with the input quantities,

constitutes the input for Madcap. Madcap will then produce a com-

puter code, including the assignment of all storage, and give the

programmer a printed record and a magnetic tape record of this code.

Notation

The word "literal", when used here as a noun, refers to -the

Ii teral representation of a variable or constant. The word "quantity"

implies number or literal. Any expression containing more than one

factor or term is said to be "compound".

The symbols which may be typed and punche~ as distinguishable

tape characters are:
"-':),,

" ""A ZIt ItO 9" "#" I!-a - z , - , - , . , ,

lilt", "rt", ">", "E", "(.. , ") .. "" '~r"
, " V '

"*" "~" "I" , , ,

"3" "/j." , ,
" 1: .. , " /" ,

"+" , " If - , "x", " " . , " " = • Individual (non-indexed) quantities are repre-

sented in the following way:

-2-

(1) Numbers to be converted to computer floating point form

are written in decimal with a decimal point, e.g., 492.15, 1.0,

0.0016. Numbers written without the decimal point are converted·

as decimal integers and are scaled to be used in address arithmetic,

e.g., 21, 1.

(2) Literals may be written in three ways:

a. A single letter: a, b, ••• , A, B, ••• , ct , ~ , ~ •

b. A single letter followed by any decimal integer: a2,

••• , A149, ••• , d 39, etc.

c. A capital letter followed by a small letter: Rm, Af, etc.

These are not to be confused with subscripted quantities, which will

now be discussed.

A quantit~ dependent ~ ~ index (an element of a one dimensional

array) is indicated by the array name (a single literal) followed by

a period and the index (subscripth which itself is a single quantity,

e.g., "R.i", "A2.3","Pz.f2". Compound subscripts must be entirely

in parenthesis, e.g., "H.(i+l)", "P.(2j)". Markers in one dimensional

arrays, that Is, subscripted subscripts are indicated as in examples:

. "R.i.j" means Hi j

"p .m.(j+l)" means Pmj+1

"R. (P. i+l) It means R... . --Pi+ 1•

A quantity dependent~ two indices (an element of a two dimension_l

array) is indicated by the array name followed by a period and the

two subscripts separated by a comma o Again, compound subscripts are

in p~renthesis. Examples:

-3-

"A . J" A .1, means i,J

1tA.i,14" means Ai ,14

"A. (i+ 1), (2j)" means Ai+l ,2J.

Triple subscripts, superscripts, or subscripted double subscripts

may not be written as such.

The choice of literals to represent constants or variables in

fixed or floating point is left to the discretion of the programmer,

but this choice is communicated to Madcap in the form of an intorma-

tion equation. This is discussed under input.

Algebra

The algebraic formulation of the mathematical equation appears

in the form of defining equations. That is, the quantity to the

left of the equals sign is being defined (or redefined) 1n terms of

the established quantities connected algebraically on the right side

of the equation. Storage is arranged for this new quantity (or

merely located if it is being redefined). The quantities on the

right have storage locations which have previously been determined.

An arrow, II~", acts like an equals sign except that the roles ot lett

and right side are interchanged in 'such equations.

The rules governing the use of the algebraic operation symbols

are as follows:

U+" , " " , and tI X" have their usual binary operati alaI

meaning when inserted between two operands. The symbol "X"

may be omitted when there is no ambiguity, which is most ot the

time. It must be included in such instances as a letter times

-4-

a number, "R X 14", "a X 3", or uppercase letter times lower

case letter, "p X b".

(2) The symbol for division is "/". "/A" is equivalent to

X A -1. Thus, compound denominators must be included in

parenthesis. Examples:

"ac/b" a c
means b

"a/cbl! ab means .c

"a/(cb)" a means c b

"a/b/c" a means b c

(3) The symbol ''J'' means "take square root of" where the

radicand must be in parenthesis.

(4) Simple integral exponentiation is accomplished with the

"2" "3" syniools and and composition thereof. Examples:

"R2" , "(a+b)3", "p2p3", "(CZ.i)2)3u
•

Other exponentiation is accomplished as such, "pC gth) 'f means

pg where g may be a variable or constant; the coding will be a

subroutine.

(5) Functions are indicated by a characteristic three or more

letter symbolic title. The argument (or arguments) appear in

parenthesis. Thus we have "sin (X)", "log (T.i~1.0)" and "max

(R.j)" as examples. The common functions and logical tasks

indicated in this -manner are subroutines included with Madcap.

A list and description of these routines is available.

Examples of defining equations using the above ground rules are:

"y = (a+b) sin (T.i) / (c+d) + Rn2/V(1-g3)",

"i+l ~ i" ,

-5-

"R. i = (R • (i + 1) + R. (i - 1 » / 2.0 + (B X a) (bth) " •

Fixed point quantities may appear in floating point equations

provided the scaling is accounted for, e.g.,

"D.k = (S.k - S.(k-l» Xl/(i.k - i.(k-l»".

The "1", "i.k" and "i.(k-l)" are fixed point.

Logical Control

The code is constructed in the sequence that the equations

appear on the tape. Thus the computer control follows this sequence

unless instructed to the contrary by a control equation. First, the

programmer arranges the equations of his problem into groups, assign

ing a number to each group. A group corresponds to a flow diagram

box, to a simple loop, or, quite often, to a single equation; the

characteristic property is that computation always proceeds through

the group from the beginning (the single entry). The group number

may be a one, two, or three digit number. It is preceded by the

symbol "#; ". A group of equations is introduced by its number.

The control equations refer to these numbers.

There are three types of control equations. The ~ corresponds

to an unconditional transfer of control. If control is being re

linquished, the notation used is

"go to#27".

If a later transfer is to be specified, the notation is

"go to#27 thru#32, then.:#: 18".

That is:

-6-

IITransfer to group number 27; continue until

group 32 has been finished, and then transfer

to groul> 18".

The second type of control equation corresponds to conditional

transfer of control. This type of equation is introduced by the

word "if ll
, followed first by a condition requiring an equality

or inequality, and then by a direct transfer statement indicating

what is to be done provided the condition is met. The usual tape

sequence is not disturbed when the condition is not met. Examples:

"if i > I go to#25",

"if j = 2 m-l go to#25 thru#27, then#4".

The third type of control equation provides a simple method

of writing induction loops. Thus,

"#14 for i = ~(1)1 do#43 thru#19, go to#15"

indicates that a loop should be constructed from groups#43 through

#19. (What comes in between may be governed by other control equation.)

The index i is to take on the values 0 through I in steps of 1;

control is to be transferred to group #15 when the induction is com

plete. If only one group is included in the induction, the "thru

#19" may be omitted. If the IIgo to #15" is omitted, Madcap will

follow the usual tape sequence unless under the influence of a previ

ous loop or variable transfer control equation. Examples:

'~1 j = 1 (l)J do# 2",

'#2 R. j = R. (j -1) + D",

•

-1-

The loop contains only equation~2; following the induction, control

begins with equation .-3.

'#1 i = 1(2)8 do #2 thru#3 ~o#4",

'#2 j = O(p)J do#3",

'#3 A.i = B.i,j X A.j",

"#4

This is a double induction. With completion of the inner J loop,

the control is still under the influence of the i loop, which will

be completed before proceeding to equation#4.

The upper limit of' the induction may be replaced by either of

the words "till" or "int". Following "till" appears a special con

dition to be met to end the induction. The "inf" means infinity;

thus, the induction has no end. In both cases the "go" transfer is

omitted. Examples:

'# 14 i = 1 (1) till A > A. i" ,

''#29 n = o(1) int do #30 thru #90" •

Note that a loop control equation is always a group with its.

own number. It is sometimes necessary to enter a loop not at the

beginning but at the point where the incrementing and comparing of

the index (in that order) 1s taking place. This may be done in

any control equation by the special notation "go#4+", where 4 is

the number of the loop control equation.

The,"go" in the conditional transfer equation or the "do" in

the loop equation may at any time be replaced by the word "let"

followed immediately by one or more defining equations. Examples:

-8-

"if i = 8 let d = S, X = -T",

~ 9 j = 1 (2) J let R. j = Rm. j go #12" •

Tape Organization-Input

A series of information statements are included on the tape,

preceding the control and defining equations which constitute the

computation of the problem. The following information is to be

given:

(1) The starting address of the code, e.g., "start at 02C9".

If this statement does not appear the code will begin at 0000.

(2) The literal assignment of fixed point quantities, usually

indices, e.g., "fixed pOint--i, j, k, A, F, A2, Zk."

(3) The range of the index for indexables, in order that Madcap

may allow sufficient space. For example, "R.i for i = -1(1)50".

The numerical values of the R's mayor may not be given. If

given, they follow the above statement and the word "are"4j

For example, "A.k for k = 1(1)3 are 19.6, 16.2, 12.311
• The

commas may be omitted. If the range of an index is indicated

by a letter (e.g.N), then N must be assigned a value during

the input--see (4) below.

(4) The literal representation of constants, e.g., lie = 0.0492",

liN = 49", "<12 = 46.4". Of' course, constants may be typed in

formulas either literally or numerically.

Punctuation of the problem is required only as indicated by the

examples (that part included in quotation). Commas may optionally

sep~rate equations of a group. Spaces and carriage return characters

-9-

on the tape are completely ignored by Madcap except while a list or

input numbers is being read, at which time it is assumed that some

thing (comma, space, or carriage return) separates two numbers.

Note that any character with a seventh hole is ignored by the com

puter itself. The end of the tape is indicated by the word "end".

There are many special English words which Madcap can interpret.

Thus,

"read (R.k)"

means read and convert one number, calling it R.k;

"print (all i.j)"

means convert and print all of the i.jls. The converting in either

case depends on whether the quantity is fixed or floating point, of

course. Sense light work is accomplished as such:

"set sense to 1 (2, 4., 5)",

"sense (3)".

See the list and description of subroutines for other words Mad

cap can interpret.

Box Instr Order Irag Address Ba 8 2 8 3 U R S Comments

I

ADCRESS NUMBER ADn tFSS NUMBER 1_0.,
!D~~ i;ut~v,.; Abso'ute Deset" i oti\i .

,

90 b m RH

91 b m RW

92 b m PH

93 b m PW

94 b m FPr

95 - - SFP

96 b m Flx

91 RC

98

99

9A

9B

9C b m SSO

9D b m SSl

9E b m Sn

9F b m Sn

AO b m ~

Al - - ~

A2 b m -~U

A3 - - -MR~

A4 b m ~

A5 -- R~U

June 5, 1956

Read Hexad. Read one hexad into X f'rom reader.

Read Word. Read one word into X f'rom reader.

Punch Hexad. Punch one hexad f'rom X.

Punch Word. Punch (X).

Fast Print. Print one line according to the matrix
stored at the 19 consecutive addresses starting with X.

Space Fast Printer. Energize fast printer f'ormat control.

Flexowrite. Flexoprint (X); also Flexopunch (X) if'
Flexopunch switch is on.

Return Carriage. Return Flexowri ter carriage and advance
platen, without printing.

Set Sense to Zero. Set to zerO all Sense Lights corre
sponding to ones in X.

Set Sense to One. Set to one all Sense Lights corre
sponding to ones in X.

Sense. Skip the next instruction if' at least one Sense
Light addressed by X contains a zero.

Sense. Identical to 9E.

MaS,!!itude to U. (X) ~(U).

Masnitude of ~R) to U. (R) ~(U).

Negative Magnitude to U. - (X) ~(U).

Nesative Masnitude of ~R) to U. - (R) ~(U).

Memo~ to U. (X)~(U) •

(R} to U. (R)~(U) •

A6 b m -~

A7 - - -a-;:.u

A8 b m +

A9 - - +R

AA b m

AB - - -R

AC b m F+

AD - - F+R

AE b m F-

AF - - F-R

BO

Bl b m SBl

B2 b m SB2

B3 b m SB3

B4

B5 b m CBl

B6 b m CB2

B7 b m CB3

B8

B9 b m CB1C

BA b m CB2C

BB b m CB3C

BC b m StS

BD - - ~

Negative to U. -(X)~(U).

Negative of (R) to U. -(R)~(U).

Fixed Add. (~,) + (X') ~ (U'), fixed point.

Fixed Add of (R). (U') + (R') ~ (U'), fixed pOint.

Fixed Subtract. (U ,) - (X') ~ (U')-, fixed pOint.

Fixed Subtract of (R). (U·) - (R') ~. (UI), fixed pOint.

Floating Add. (U) + (X) ~ (U), floating pOint.

Floating Add of (R). (U) + (R) ~ (U), floating point.

Floating Subtract. (U) - (X) ~ (U), floating point.

Floating Subtract of (R). (u) - (R) -+ (U), floating po:int.

SetBl. (6-19X)""" (Bl).

Set B2. (6-19X) ~ (B2).

Set B3. (6-19X) ~ (B3).

Count Bl. (Bl) + (6-191) ~ (Bl), then (Bl) to So.

Count B2. (B2) + (6-19X) ~ (B2), then (B2) to S •
0

Count B3. (B3) + (6-19X) ~ (;B3), then (B3) to S •
0

Count Bl and Compare. (Bl) + (6-19X) ~ (Bl), then
skip next instruction unless (Bl) = (30-431).

Count B2 and Compare. (B2) + (6-19X)·~ (B2), then
skip next instruction unless (B2) = {30-431J •

. Count B3 and Compare. (B3) + (6-l9X) ~ (B'3), then
skip next instruction unless (B3) = (30-43X).

Store S. (S~(X) •

~Sl to U. (S)~(U).

BE b m StU

BF - - tJ-+R

CObm ~R

C2bm StR

C3 b m E

C4bm SLP

C5 b m SRP

c6 b m Sill

C7bm SHU

C8 b m TL

C9bm TR

CA b m TLOv

CB b m TROv

CC b m TLP

CDbm TRP

CEbm TLZ

CFbm TBZ

Store U. (U)~X).

(u) to R. (U)~(R).

Memory to R. (X)~(R).

Memory to R. (X)~R).

Store R. (R)~(X).

Extract. Replace those bits of (U) corresponding
to ones in R by the corresponding bits of (X).

Substitute Left Address from PF. (PF) ~ (3 and 6-19X).

Substitute Right Address from PF. (PF) ~ (27 and 30-43X).

Substitute Left Address from U. (3 and 6-19U) ...,..
(3 and 6-19X).

Substitute Right Address from U. (27 and 30-43U) -+
(21 and 30-43X).

Transfer to Left. Transfer control to X, left, uncon
ditionally.

Transfer to Right. Transfer control to X, right, un
conditionally.

Transfer to Left on Overflow. Transfer control to X,
left, if the overflow signal is on, turning it off.

Transfer to Right on Overflow. Transfer control to X,
right, if the overflow signal is on, turning it off.

Transfer to Left on Plus. Transfer control to X, left, .
if the number in U is positive.

Transfer to Right on Plus. Transfer control to X, right,
if the number in U is positive.

Transfer to Left on Zero. Transfer control to X, lett,
if the number in U has zero _gui tude.

Transfer to Right on Zero. T·ransfer control to X, right,
if· the number in U has zero _gni tude.

DO

D1 Nm

D2 Rnd

D3

D4 b m X

D5bm XN

D6bm XR

D7bm XNR

D8bm Dv

DC) b m FDv

DA - - SqR

DB

DC

DD

DE

DF

Norma1ize. Put (UR), treated as a floating point number,
into normal form, unless more than three shifts of six
teen would be required, in which case make the three
shifts and no more.

Round. If (lR) = 1, increase (MO) by 2-43 •

Multiply. Multiply (X) by (U), floating or fixed pOint,
putting the full product into UR.

Multiply and Normalize. Multiply (X) by (u), floating
pOint, putting the full product into UR; then normalize,
as defined by' D1.

Multiply and Round. Multiply (X) by (U), floating or
fixed pOint, putting the full product in UR; then round,
as defined by D2.

Multiply, Normalize and Round. Multiply (X) by (U),
floating point, putting the full product into UR; then
normalize, as defined in D1; then round, as defined in D2.

Fixed Divide. Divide (U'R) by(x'), fixed pOint, putting
the true rounded quotient in U' and the remainder in R'.
Stop if the rounded quotient is greater than or equal to
one.

Floating Divide. Divide (UR) by (X), floating point,
putting the true rounded quotient in U and the remainder
in R. Stop on exponent spill or division by zero.

Square Root. Extract the square root of (U), floating or
fixed pOint, and put it in U. Stop if initial (U) negative.

EO - -

El - -

E2 - -

E3 - -

E4

B5

E6

E7

CSU

CSR

PSU

PSB

B8 b m L

E9bm LL

EA b m LgL

EB

EC b m R

ED b m LR

EEbm LgR

EF

FO b m Dr

Fl

F2 b m CT

F3

F4 b m CTB

F5

Change Sisa or u. -(u·)~(u,).

Cban~e Si~ or R. -(R')~R') •

P1us SiB!! to u. (U') ~(u').

P1us SiS!! to R. (R'),.(R·).

Left Shift. Shift (MU) left X p1aces (mod 128), settIng
the overflow signal if any ones are shifted out of 1U.

Long Left Shift. Shift (MUR) 1eft X p1aces (mod 128),
setting the overf1ow signal if any ones are shifted out
or 1U; (lR)~(43U) and (lU)~(43R).

Logical Left Shift. Shirt (u) and (MR) 1eft X p1aces
(mOd 128); (-4U)~(43R).

Right Shift. Shift (MU) right X-p1aces (mod 128).

Long !!fht Shift. Shift (MUR) right X places (mod 128);
(43U) lR).

Logical Right Shift. Shirt (u) right X places (mod 128).

Dump on Tape.

Call from Tape.

Call rrom Tape Backwards.

F6 b m AT Advance Tape.

F7

F8 b m BT Backspace Tape.

F9

FA

FB

Fe

FD

FE

FF

90 b m
91 b- m

92 b m

4W
b m

. b m
""95 - -
96 b m
97 - ..
98
99
9A
9B
9C b.m
9D b m
9E b m
9F b m

AO b m
A 1 - -
A2 bm
A3 - -
A4 b m
A5 - -
A6 b m
A7 - -
AS b m
A9 - -
AA b m
AB - -

fI ~ m

AE b m
AF - -

BO
B1 b m
B2 b m
B3 b m
B4
B5 b m
B6 b m
B7 b m
B8
B9 b m
BA b m
BB b m
BC b m
ED - -
BE b m
BF - -

CO b m
Cl b m
C2 b m

•
bm
b m

C5 bm
c6 b m
C7 b m

Read Hexad
Rea.d Word
Punch Hexad
Punch Word
Fast Print
Space Fast Printer
Flexowrite
Return Carriage

Set Sense to Zero
Set Sense to One
Sense
Sense

t-'lagni tude to U
Magnitude of (R) to U
Negative Magnitude to U
Negative Magnitude of (R) to U
Memory to U
(R) to U
Negative to U
Negative of (R) to U
Fixed Add
Fixed Add of (R)
Fixed Subtract
Fixed Subtract of (R)
Floating Add
Floating Add of (R)
Floating Subtract
Floating Subtract of (R)

Set B1
Set B2
Set B3

Count B 1, (B 1) to So
C(;)unt B2, (B2) to So
Count B3, (B3) to So

Count B1 and Compare
Count B2 and Compare
Count B3 and Compare
(S) to M
(S) to U
(U) to Memory
(u) to R

Memory to R
Memory to R
(R) to Memory
Extract
Substitute Left Aqdress from ~F)
Substitute Right Address from (PF)
Substitute Left Address from (U)
Substitute Right Address from (U)

c8 b m
C9 b m
CA b m
CB b m
CC b m
CD b m
CE b m
CF b m

DO
D1
D2 - -
D3
D4 b ill

D5 b m
D6 b m
D7 b m
D8 b m
1>9 b m
DA - -
DB
DC
DD
DE
DF

EO
El
E2 - -
E3 - -
&4
E5
E6
E7
E8 b m
E9 b m
EA b m
EB
EC b m
ED b m
EE b m
EF

FO b m
Fl
F2 b m
F3
F4 b m
F5
F6 b m
F7
F8 b m
F9
FA
FB
Fe
FD
FE
FF

May 14, 1956

Transfer to Left
Transfer to Right
Transfer to Left on Overflow
Transfer
Transfer
Transfer
Transfer
Transfer

Normalize
Round

Multiply

to Right on Overflow
to Left on Plus
to Right on Plus
to ::ueft on Zero
to Right on Zero

Multiply and Normalize
Multiply and Round
Multiply, Normal~ze and Round
Fixed Divide
Floating Divide
Square Root

Change Sign of U
Change Sign of R
Plus Sign to U
Plus Sign to R

Left Shift
Long Left Shift
Lo~ical Left Shift

Right Shift
Long Right Shift
Logica.l Right Shift

Call Tape

Call Tape Backwards

Advanc'e Tape

Backsp~ce Tape

s joooolooooloOOOlooooloooojooool 1000010000100001000010000100001 s
-4 -3 -Z -/ 0 / 2. 3 4 5 6 7 8 9 10 // IE 13 14 IS 16 17 18 13 cO 21 E2 23 24 25 P.6 27 28 29 30 3/ 32 33 3435 36 37 38 39 40 41 42 43

R 1000010000100001000010000100001 1000010000100001000010000100001 R

-4 -3 -Z -I ~ 0 / 2. 3 4- S 6 7 8 9 10 1/ Ii? 13 14 If' 16 17 18 19 fCl fl 22- 23 e4 25 26 27 ?e 29 .30 31 32 33 34 3s- 36 37 38 39 40 -1-/ '1-2. 4-3

u 1000010000/00001000010000100001 1000010000100001000010000100001 u

PURPLE 8REAKPClIN7 OlP:JcR 8 ADDRESS

o,,~c5tJoaoOOOOOOOOOOOI Tl~.?OOIOOOOIPOPOlooos:(;::c::..?.oIOOOOI
STOP OFF 0 ALLOW 00/000010000100001

1010 010 0 0 010 0 0 0100 0 O[Q 0010000)0000100001
, CONTROL COUNTER 0 0 0 0 0 0 /01001000610000100001

9000000000000000 666666. TnT

RESET 001000010000100001
o 0100 0 010 0 0 010 0 0 01 AUTOMATIC B DISPLAY

0 0 0 0 000 SENSE

1-3 12 1/ 10 9 <'I ,7 6 -5 4- -'3 2 / C

SLOW 0 0 MANUAL I 2- 3
AUTOMATIC 001000010000100001

FETCH PERFORM

-.-------- -- . -

CONTROL PANEL

UNIVERSITY OF CALIFORNIA
LOS ALAIIOS SCIDmFIC LAIORA"'"

COMPUTER PROJECT

.... M/lNiII< IT - CC"'=~
~H£ T I fW,-U

lIA'lDlAL ~. LAM/COIf) SHECT:~-.5'

(. t 0-...

M AN rAe.. 1I
~

~ vJ ~\\ 0 .

-4" Fe.-\- c.. \r..

A~A

~ s ~\\\. 1..

Co"",,~~~~+
1. V\ \ e,f -1:: ~ \ ~ t,: t \lOt \

CoD"""" \M. ",-"",c.. -

-

F

s
C.

\t.

... Ac.~ \~") V\.o.... S.O-.l.wV-\~-cc.".u J \"..J- c.. .. ""-" ""',\1 -
~ \-_~ __ i""-\-~v--J-c:l..~" vJ ~"'- """'-~c-\;\.VUl.- \ or, I '" o~ d,\-l ~""'*

It' 0 ~~ -\-\"':'5 ~ u.~ ~ ~~c..lI:e.~ -...e..1.. \-0 \. I !,,-S 1o'J

___ t~?~~d) .ck\~')- ('V\J..-S .

..
\/oc..a.h. +'~5

/-\ DJ) '. --IBps

A~~~~ '] \t2..~~ -:ce...i.c;)e..5 (o.\I€.)

t H""':\"":-~ \."\\-s '" 1.Ca"e.)

=-lB

+

M. v\. \ ~ .·\<--o~~A -;: l b j. {

1'\ \..\. \ t .. -lL,- N "v-. l~ e...

I~ 3.s'

"-87-S)7: 1

2' \. ~))=.2.

t>.'; l=- + (-4 3 + Ii 2.. S ;- fA.) 't C.
't

1<. D """"- 1-

3 ~ ,

4 ;- (44.)(<3) -t- 1- +-.3 -t (I B)

4.0~{ +\8)

/..- 1 f £" Kp V"4 J~ C ~ ",d., -7
t)JcJ.....

	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01_Assembler
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01_Madcap
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	D-01
	D-02
	E-01
	E-02

