


































































































































































































































































































































































































































































































































































































































































































































































































































































SMM:16-2 SENDMAIL - An Internetwork Mail Router 

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic functions 
of the system. In section 3, details of usage are discussed. Section 4 compares sendmail to other internet 
mail routers, and an evaluation of sendmail is given in section 5, including future plans. 

1. DESIGN GOALS 

Design goals for send mail include: 

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell version 7 mail 
[UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully UUCP mail 
[Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Postel77] was also required. 

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at least 
brought to the attention of a human for correct disposal; no message should ever be completely 
lost. This goal was considered essential because of the emphasis on mail in our environment. It 
has turned out to be one of the hardest goals to satisfy, especially in the face of the many 
anomalous message formats produced by various ARPANET sites. For example, certain sites 
generate improperly formated addresses, occasionally causing error-message loops. Some hosts 
use blanks in names, causing problems with UNIX mail programs that assume that an address is 
one word. The semantics of some fields are interpreted slightly differently by different sites. In 
summary, the obscure features of the ARPANET mail protocol really are used and are difficult to 
support, but must be supported. 

(3) Existing software to do actual delivery should be used whenever possible. This goal derives as 
much from political and practical considerations as technical. 

(4) Easy expansion to fairly complex environments, including multiple connections to a single net­
work type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal requires con­
sideration of the contents of an address as well as its syntax in order to determine which gateway 
to use. For example, the ARPANET is bringing up the TCP protocol to replace the old NCP pro­
tocol. No host at Berkeley runs both TCP and NCP, so it is necessary to look at the ARPANET 
host name to detennine whether to route mail to an NCP gateway or a TCP gateway. 

(5) Configuration should not be compiled into the code. A single compiled program should be able 
to run as is at any site (barring such basic changes as the CPU type or the operating system). We 
have found this seemingly unimportant goal to be critical in real life. Besides the simple prob­
lems that occur when any program gets recompiled in a different environment, many sites like to 
"fiddle" with anything that they will be recompiling anyway. 

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let individuals 
specify their own forwarding, without modifying the system alias file. 

(7) Each user should be able to specify which mailer to execute to process mail being delivered for 
him. This feature allows users who are using specialized mailers that use a different format to 
build their environment without changing the system, and facilitates specialized functions (such 
as returning an "I am on vacation" message). 

(8) Network traffic should be minimized by batching addresses to a single host where possible, 
without assistance from the user. 

These goals motivated the architecture illustrated in figure 1. The user interacts with a mail gen­
erating and sending program. When the mail is created, the generator calls send mail, which routes the 
message to the correct mailer(s). Since some of the senders may be network servers and some of the 
mailers may be network clients, sendmail may be used as an internet mail gateway. 

2. OVERVIEW 

2.1. System Organization 

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it collects a 
message generated by a user interface program (UIP) such as Berkeley Mail, MS [Crocker77b], or 
MH [Borden79], edits the message as required by the destination network, and calls appropriate 
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senderl sender2 sender3 

sendmail 

mailerl mailer2 mailer3 

Figure 1 - Sendmail System Structure. 

mailers to do mail delivery or queueing for network transmission l
. This discipline allows the inser­

tion of new mailers at minimum cost. In this sense sendmail resembles the Message Processing 
Module (MPM) of [posteI79b]. 

2.2. Interfaces to the Outside World 

There are three ways sendmail can communicate with the outside world, both in receiving 
and in sending mail. These are using the conventional UNIX argument vector/return status, speak­
ing SMTP over a pair of UNIX pipes, and speaking SMTP over an interprocess( or) channel. 

2.2.1. Argument vector/exit status 

This technique is the standard UNIX method for communicating with the process. A list 
of recipients is sent in the argument vector, and the message body is sent on the standard input. 
Anything that the mailer prints is simply collected and sent back to the sender if there were any 
problems. The exit status from the mailer is collected after the message is sent, and a diagnostic 
is printed if appropriate. 

2.2.2. SMTP over pipes 

The SMTP protocol [posteI82] can be used to run an interactive lock-step interface with 
the mailer. A subprocess is still created, but no recipient addresses are passed to the mailer via 
the argument list. Instead, they are passed one at a time in commands sent to the processes stan­
dard input. Anything appearing on the standard output must be a reply code in a special format. 

lexcept when mailing to a file. when sendmail does the delivery directly. 
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2.2.3. SMTP over an IPC connection 

This technique is similar to the previous technique, except that it uses a 4.2bsd IPC chan­
nel [UNIX83]. This method is exceptionally flexible in that the mailer need not reside on the 
same machine. It is normally used to connect to a sendmail process on another machine. 

2.3. Operational Description 

When a sender wants to send a message, it issues a request to sendmail using one of the three 
methods described above. Sendmail operates in two distinct phases. In the first phase, it collects 
and stores the message. In the second phase, message delivery occurs. If there were errors during 
processing during the second phase, sendmail creates and returns a new message describing the 
error andlor returns an status code telling what went wrong. 

2.3.1. Argument processing and address parsing 

If sendmail is called using one of the two subprocess techniques, the arguments are first 
scanned and option specifications are processed. Recipient addresses are then collected, either 
from the command line or from the SMTP RCPT command, and a list of recipients is created. 
Aliases are expanded at this step, including mailing lists. As much validation as possible of the 
addresses is done at this step: syntax is checked, and local addresses are verified, but detailed 
checking of host names and addresses is deferred until delivery. Forwarding is also performed 
as the local addresses are verified. 

Sendmail appends each address to the recipient list after parsing. When a name is aliased 
or forwarded, the old name is retained in the list, and a flag is set that tells the delivery phase to 
ignore this recipient. This list is kept free from duplicates, preventing alias loops and duplicate 
messages deliverd to the same recipient, as might occur if a person is in two groups. 

2.3.2. Message collection 

Sendmail then collects the message. The message should have a header at the beginning. 
No formatting requirements are imposed on the message except that they must be lines of text 
(Le., binary data is not allowed). The header is parsed and stored in memory, and the body of 
the message is saved in a temporary file. 

To simplify the program interface, the message is collected even if no addresses were 
valid. The message will be returned with an error. 

2.3.3. Message delivery 

For each unique mailer and host in the recipient list, send mail calls the appropriate mailer. 
Each mailer invocation sends to all users receiving the message on one host. Mailers that only 
accept one recipient at a time are handled properly. 

The message is sent to the mailer using one of the same three interfaces used to submit a 
message to sendmail. Each copy of the message is prepended by a customized header. The 
mailer status code is caught and checked, and a suitable error message given as appropriate. 
The exit code must conform to a system standard or a generic message ("Service unavailable") 
is given. 

2.3.4. Queueing for retransmission 

If the mailer returned an status that indicated that it might be able to handle the mail later, 
sendmail will queue the mail and try again later. 

2.3.5. Return to sender 

If errors occur during processing, send mail returns the message to the sender for 
retransmission. The letter can be mailed back or written in the file "dead.1etter" in the sender's 
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home directory2. 

2.4. Message Header Editing 

Certain editing of the message header occurs automatically. Header lines can be inserted 
under control of the configuration file. Some lines can be merged; for example, a "From:" line 
and a "Full-name:" line can be merged under certain circumstances. 

2.S. Configuration File 

Almost all configuration information is read at runtime from an ASCII file, encoding macro 
definitions (defining the value of macros used internally), header declarations (telling sendmail the 
format of header lines that it will process specially, i.e., lines that it will add or reformat), mailer 
definitions (giving information such as the location and characteristics of each mailer), and address 
rewriting rules (a limited production system to rewrite addresses which is used to parse and rewrite 
the addresses). 

To improve performance when reading the configuration file, a memory image can be pro­
vided. This provides a "compiled" form of the configuration file. 

3. USAGE AND IMPLEMENTATION 

3.1. Arguments 

Arguments may be llags and addresses. Flags set various processing options. Following flag 
arguments, address arguments may be given, unless we are running in SMTP mode. Addresses fol­
low the syntax in RFC822 [Crocker82] for ARPANET address formats. In brief, the format is: 

(1) Anything in parentheses is thrown away (as a comment). 

(2) Anything in angle brackets ("< >") is preferred over anything else. This rule implements the 
ARPANET standard that addresses of the form 

user name <machine-address> 

will send to the electronic "machine-address" rather than the human "user name." 

(3) Double quotes (tt) quote phrases; backslashes quote characters. Backslashes are more 
powerful in that they will cause otherwise equivalent phrases to compare differently - for 
example, user and "user" are equivalent, but \user is different from either of them. 

Parentheses, angle brackets, and double quotes must be properly balanced and nested. The 
rewriting rules control remaining parsing3• 

3.2. Mail to Files and Programs 

Files and programs are legitimate message recipients. Files provide archival storage of mes­
sages, useful for project administration and history. Programs are useful as recipients in a variety of 
situations, for example, to maintain a public repository of systems messages (such as the Berkeley 
msgs program, or the MARS system [Sattley78]). 

Any address passing through the initial parsing algorithm as a local address (i.e, not appear­
ing to be a valid address for another mailer) is scanned for two special cases. If prefixed by a verti­
cal bar (" I ") the rest of the address is processed as a shell command. If the user name begins with 
a slash mark ("I' ') the name is used as a file name, instead of a login name. 

Files that have setuid or setgid bits set but no execute bits set have those bits honored if send­
mail is running as root. 

2Qbviously. if the site giving the error is not the originating site, the only reasonable option is to mail back to the sender. Also, 
there are many more error disposition options, but they only effect the error message - the "return to sender" function is always 
handled in one of these two ways. 

3Disclaimer: Some special processing is done after rewriting local names; see below. 
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3.3. Aliasing, Forwarding, Inclusion 

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows each 
user to reroute incoming mail destined for that account Inclusion directs sendmail to read a file for 
a list of addresses, and is normally used in conjunction with aliasing. 

3.3.1. Aliasing 

Aliasing maps names to address lists using a system-wide file. This file is indexed to 
speed access. Only names that parse as local are allowed as aliases; this guarantees a unique 
key (since there are no nicknames for the local host). 

3.3.2. Forwarding 

After aliasing, recipients that are local and valid are checked for the existence of a ".for­
ward" file in their home directory. If it exists, the message is not sent to that user, but rather to 
the list of users in that file. Often this list will contain only one address, and the feature will be 
used for network mail forwarding. 

Forwarding also permits a user to specify a private incoming mailer. For example, for­
warding to: 

" I/usr/locallnewmail myname" 

will use a different incoming mailer. 

3.3.3. Inclusion 

Inclusion is specified in RFC 733 [Crocker77a] syntax: 

:Include: patbname 

An address of this form reads the file specified by pathname and sends to all users listed in that 
file. 

The intent is not to support direct use of this feature, but rather to use this as a subset of 
aliasing. For example, an alias of the form: 

project: :inc1ude:/usr/projectJuserlist 

is a method of letting a project maintain a mailing list without interaction with the system 
administration, even if the alias file is protected. 

It is not necessary to rebuild the index on the alias database when a :inc1ude: list is 
changed 

3.4. Message Collection 

Once all recipient addresses are parsed and verified, the message is collected. The message 
comes in two parts: a message header and a message body, separated by a blank line. 

The header is formatted as a series of lines of the form 

field-name: field-value 

Field-value can be split across lines by starting the following lines with a space or a tab. Some 
header fields have special internal meaning, and have appropriate special processing. Other headers 
are simply passed through. Some header fields may be added automatically, such as time stamps. 

The body is a series of text lines. It is completely uninterpreted and untouched, except that 
lines begiMing with a dot have the dot doubled when transmitted over an SMTP channel. This 
extra dot is stripped by the receiver. 

3.S. Message Delivery 

The send. queue is ordered by receiving host before transmission to implement message 
batching. Each address is marked as it is sent so rescanning the list is safe. An argument list is 
built as the scan proceeds. Mail to files is detected during the scan of the send list. The interface to 
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the mailer is performed using one of the techniques described in section 2.2. 

After a connection is established, sendmail makes the per-mailer changes to the header and 
sends the result to the mailer. If any mail is rejected by the mailer, a flag is set to invoke the 
return-to-sender function after all delivery completes. 

3.6. Queued Messages 

If the mailer returns a "temporary failure" exit status, the message is queued. A control file 
is used to describe the recipients to be sent to and various other parameters. This control file is for­
matted as a series of lines, each describing a sender, a recipient, the time of submission, or some 
other salient parameter of the message. The header of the message is stored in the control file, so 
that the associated data file in the queue is just the temporary file that was originally collected. 

3.7. Configuration 

Configuration is controlled primarily by a configuration file read at startup. Sendmail should 
not need to be recomplied except 

(1) To change operating systems (V6, V7/32V, 4BSD). 

(2) To remove or insert the DBM (UNIX database) library. 

(3) To change ARPANET reply codes. 

(4) To add headers fields requiring special processing. 

Adding mailers or changing parsing (i.e., rewriting) or routing information does not require recom­
pilation. 

If the mail is being sent by a local user, and the file ".mailcr' exists in the sender's home 
directory, that file is read as a configuration file after the system configuration file. The primary use 
of this feature is to add header lines. 

The configuration file encodes macro definitions, header definitions, mailer definitions, 
rewriting rules, and options. 

3.7.1. Macros 

Macros can be used in three ways. Certain macros transmit unstructured textual informa­
tion into the mail system, such as the name sendmail will use to identify itself in error messages. 
Other macros transmit information from sendmail to the configuration file for use in creating 
other fields (such as argument vectors to mailers); e.g., the name of the sender, and the host and 
user of the recipient. Other macros are unused internally, and can be used as shorthand in the 
configuration file. 

3.7.2. Header declarations 

Header declarations inform sendmail of the format of known header lines. Knowledge of 
a few header lines is built into sendmail, such as the "From:" and "Date:" lines. 

Most configured headers will be automatically inserted in the outgoing message if they 
don't exist in the incoming message. Certain headers are suppressed by some mailers. 

3.7.3. Mailer declarations 

Mailer declarations tell sendmail of the various mailers available to it. The definition 
specifies the internal name of the mailer, the patbname of the program to call, some flags associ­
ated with the mailer, and an argument vector to be used on the call; this vector is macro­
expanded before use. 

3.7.4. Address rewriting rules 

The heart of address parsing in sendmail is a set of rewriting rules. These are an ordered 
list of pattern-replacement rules, (somewhat like a production system, except that order is criti­
cal), which are applied to each address. The address is rewritten textually until it is either 
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rewritten into a special canonical form (Le., a (mailer, host, user) 3-tuple, such as {arpanet, 
usc-is if, postel} representing the address "postel@usc-isif"), or it falls off the end. When a 
pattern matches, the rule is reapplied until it fails. 

The configuration file also supports the editing of addresses into different formats. For 
example, an address of the form: 

ucsfcgl!tef 

might be mapped into: 

tef@ucsfcgl.UUCP 

to conform to the domain syntax. Translations can also be done in the other direction. 

3.7.5. Option setting 

There are several options that can be set from the configuration file. These include the 
pathnames of various support files, timeouts, default modes, etc. 

4. COMPARISON WITH OTHER MAILERS 

4.1. Delivermail 

Sendmail is an outgrowth of delivermail. The primary differences are: 

(1) Configuration information is not compiled in. This change simplifies many of the problems 
of moving to other machines. It also allows easy debugging of new mailers. 

(2) Address parsing is more flexible. For example, delivermail only supported one gateway to 
any network, whereas sendmail can be sensitive to host names and reroute to different gate­
ways. 

(3) Forwarding and :include: features eliminate the requirement that the system alias file be writ­
able by any user (or that an update program be written, or that the system administration 
make all changes). 

(4) Sendmail supports message batching across networks when a message is being sent to multi­
ple recipients. 

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but can 
potentially be delivered later is stored in this queue for a later retry. The queue also provides 
a buffer against system crashes; after the message has been collected it may be reliably 
redelivered even if the system crashes during the initial delivery. 

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct interface net­
works such as the ARPANET andlor Ethernet using SMTP (the Simple Mail Transfer Proto­
col) over a TCP/IP connection. 

4.2. MMDF 

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the domain of 
MMDF includes a "phone network" mailer, whereas sendmail calls on preexisting mailers in most 
cases. 

MMDF and sendmail both support aliasing, customized mailers, message batching, automatic 
forwarding to gateways, queueing, and retransmission. MMDF supports two-stage timeout, which 
sendmail does not support. 

The configuration for MMDF is compiled into the code4
• 

Since MMDF does not consider backwards compatibility as a design goal, the address pars­
ing is simpler but much less flexible. 

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either compiled or 
dynamic tables. 
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It is somewhat harder to integrate a new channels into MMDF. In particular, MMDF must 
know the location and format of host tables for all channels, and the channel must speak a special 
protocol. This allows MMDF to do additional verification (such as verifying host names) at sub­
mission time. 

MMDF strictly separates the submission and delivery phases. Although sendmail has the 
concept of each of these stages, they are integrated into one program, whereas in MMDF they are 
split into two programs. 

4.3. Message Processing Module 

The Message Processing Module (MPM) discussed by Postel [posteI79b] matches sendmail 
closely in terms of its basic architecture. However, like MMDF, the MPM includes the network 
interface software as part of its domain. 

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allowing simpler 
handling of errors by the mailer than is possible in sendmail. When a message queued by sendmail 
is sent, any errors must be returned to the sender by the mailer itself. Both MPM and MMDF 
mailers can return an immediate error response, and a single error processor can create an appropri­
ate response. 

MPM prefers passing the message as a structured object, with type-length-value tuples6• 

Such a convention requires a much higher degree of cooperation between mailers than is required 
by sendmail. MPM also assumes a universally agreed upon internet name space (with each address 
in the form of a net-host-user tuple), which sendmail does not. 

s. EVALUATIONS AND FUTURE PLANS 

Send mail is designed to work in a nonhomogeneous environment. Every attempt is made to 
avoid imposing unnecessary constraints on the underlying mailers. This goal has driven much of the 
design. One of the major problems has been the lack of a uniform address space, as postulated in 
[posteI79a] and [posteI79b]. 

A nonuniform address space implies that a path will be specified in all addresses, either explicitly 
(as part of the address) or implicitly (as with implied forwarding to gateways). This restriction has the 
unpleasant effect of making replying to messages exceedingly difficult, since there is no one "address" 
for any person, but only a way to get there from wherever you are. 

Interfacing to mail programs that were not initially intended to be applied in an internet environ­
ment has been amazingly successful, and has reduced the job to a manageable task. 

Send mail has knowledge of a few difficult environments built in. It generates ARPANET 
FfP/SMTP compatible error messages (prepended with three-digit numbers [Neigus73, Postel74, Pos­
te182]) as necessary, optionally generates UNIX-style "From" lines on the front of messages for some 
mailers, and knows how to parse the same lines on input. Also, error handling has an option custom­
ized for BerkNet 

The decision to avoid doing any type of delivery where possible (even, or perhaps especially, 
local delivery) has turned out to be a good idea. Even with local delivery, there are issues of the loca­
tion of the mailbox, the format of the mailbox, the locking protocol used, etc., that are best decided by 
other programs. One surprisingly major annoyance in many internet mailers is that the location and 
format of local mail is built in. The feeling seems to be that local mail is so common that it should be 
efficient This feeling is not born out by our experience; on the contrary, the location and format of 
mailboxes seems to vary widely from system to system. 

The ability to automatically generate a response to incoming mail (by forwarding mail to a pro­
gram) seems useful ("I am on vacation until late August. ... ") but can create problems such as for­
warding loops (two people on vacation whose programs send notes back and forth, for instance) if these 
programs are not well written. A program could be written to do standard tasks correctly, but this 

'TIte MMDF equivalent of a sendmlJil "mailer." 

~is is similar to the NBS standard. 
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would solve the general case. 

It might be desirable to implement some form of load limiting. I am unaware of any mail system 
that addresses this problem, nor am I aware of any reasonable solution at this time. 

The configuration file is currently practically inscrutable; considerable convenience could be 
realized with a higher-level format. 

It seems clear that common protocols will be changing soon to accommodate changing require­
ments and environments. These changes will include modifications to the message header (e.g., 
[NBS80]) or to the body of the message itself (such as for multimedia messages [posteI80D. Experi­
ence indicates that these changes should be relatively trivial to integrate into the existing system. 

In tightly coupled environments, it would be nice to have a name server such as Grapvine [Bir­
re1l82] integrated into the mail system. This would allow a site such as "Berkeley" to appear as a sin­
gle host, rather than as a collection of hosts, and would allow people to move transparently among 
machines without having to change their addresses. Such a facility would require an automatically 
updated database and some method of resolving conflicts. Ideally this would be effective even without 
all hosts being under a single management. However, it is not clear whether this feature should be 
integrated into the aliasing facility or should be considered a "value added" feature outside sendmail 
itself. 

As a more interesting case, the CSNET name server [Solomon81] provides an facility that goes 
beyond a single tightly-coupled environment Such a facility would normally exist outside of sendmail 
however. 
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On the Security of UNIX 

Dennis M. Ritchie 

Recently there has been much interest in the security aspects of operating systems and software. At 
issue is the ability to prevent undesired disclosure of information, destruction of information, and harm to 
the functioning of the system. This paper discusses the degree of security which can be provided under the 
UNIXt system and offers a number of hints on how to improve security. 

The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind; 
this fact alone guarantees a vast number of holes. (Actually the same statement can be made with respect 
to most systems.) The area of security in which UNIX is theoretically weakest is in protecting against 
crashing or at least crippling the operation of the system. The problem here is not mainly in uncritical 
acceptance of bad parameters to system calls- there may be bugs in this area, but none are known- but 
rather in lack of checks for excessive consumption of resources. Most notably, there is no limit on the 
amount of disk storage used, either in total space allocated or in the number of files or directories. Here is 
a particularly ghastly shell sequence guaranteed to stop the system: 

while:; do 
mkdirx 
cdx 

done 

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be 
consumed, thus preventing anyone from writing files on the device. 

In this version of the system, users are prevented from creating more than a set number of processes 
simultaneously, so unless users are in collusion it is unlikely that anyone can stop the system altogether. 
However, creation of 20 or so CPU or disk-bound jobs leaves few resources available for others. Also, if 
many large jobs are run simultaneously, swap space may run out, causing a panic. 

It should be evident that excessive consumption of disk space, files, swap space, and processes can 
easily occur accidentally in malfunctioning programs as well as at command level. In fact UNIX is essen­
tially defenseless against this kind of abuse, nor is there any easy fix. The best that can be said is that it is 
generally fairly easy to detect what has happened when disaster strikes, to identify the user responsible, and 
take appropriate action. In practice, we have found that difficulties in this area are rather rare, but we have 
not been faced with malicious users, and enjoy a fairly generous supply of resources which have served to 
cushion us against accidental overconsumption. 

The picture is considerably brighter in the area of protection of information from unauthorized 
perusal and destruction. Here the degree of security seems (almost) adequate theoretically, and the prob­
lems lie more in the necessity for care in the actual use of the system. 

Each UNIX file has associated with it eleven bits of protection information together with a user 
identification number and a user-group identification number (UID and OlD). Nine of the protection bits 
are used to specify independently permission to read, to write, and to execute the file to the user himself, to 
members of the user's group, and to all other users. Each process generated by or for a user has associated 
with it an effective UID and a real UID, and an effective and real OID. When an attempt is made to access 
the file for reading, writing, or execution, the user process's effective UID is compared against the file's 
UID; if a match is obtained, access is granted provided the read, write, or execute bit respectively for the 
user himself is present If the UID for the file and for the process fail to match, but the OlD's do match, 

t UNIX is a trademark of Bell Laboratories. 
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the group bits are used; if the GID's do not match, the bits for other users are tested. The last two bits of 
each file's protection information, called the set-UID and set-GID bits, are used only when the file is exe­
cuted as a program. If, in this case, the set-UID bit is on for the file, the effective UID for the process is 
changed to the UID associated with the file; the change persists until the process terminates or until the 
UID changed again by another execution of a set-UID file. Similarly the effective group ID of a process is 
changed to the GID associated with a file when that file is executed and has the set-GID bit set. The real 
UID and GID of a process do not change when any file is executed, but only as the result of a privileged 
system call. 

The basic notion of the set-UID and set-GID bits is that one may write a program which is execut­
able by others and which maintains files accessible to others only by that program. The classical example 
is the game-playing program which maintains records of the scores of its players. The program itself has to 
read and write the score file, but no one but the game's sponsor can be allowed unrestricted access to the 
file lest they manipulate the game to their own advantage. The solution is to tum on the set-UID bit of the 
game program. When, and only when, it is invoked by players of the game, it may update the score file but 
ordinary programs executed by others cannot access the score. 

There are a number of special cases involved in determining access permissions. Since executing a 
directory as a program is a meaningless operation, the execute-permission bit, for directories, is taken 
instead to mean permission to search the directory for a given file during the scanning of a path name; thus 
if a directory has execute permission but no read permission for a given user, he may access files with 
known names in the directory, but may not read (list) the entire contents of the directory. Write permission 
on a directory is interpreted to mean that the user may create and delete files in that directory; it is impossi­
ble for any user to write directly into any directory. 

Another, and from the point of view of security, much more serious special case is that there is a 
"super user" who is able to read any file and write any non-directory. The super-user is also able to 
change the protection mode and the owner UID and GID of any file and to invoke privileged system calls. 
It must be recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on 
any protection scheme. 

The first necessity for a secure system is of course arranging that all files and directories have the 
proper protection modes. Traditionally, UNIX software has been exceedingly permissive in this regard; 
essentially all commands create files readable and writable by everyone. In the current version, this policy 
may be easily adjusted to suit the needs of the installation or the individual user. Associated with each pro­
cess and its descendants is a mask, which is in effect and -ed with the mode of every file and directory 
created by that process. In this way, users can arrange that, by default, all their files are no more accessible 
than they wish. The standard mask, set by login, allows all permissions to the user himself and to his 
group, but disallows writing by others. 

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to make one's 
files inaccessible to others. The lack of sufficiency could follow from the existence of set-UID programs 
created by the user and the possibility of total breach of system security in one of the ways discussed below 
(or one of the ways not discussed below). For greater protection, an encryption scheme is available. Since 
the editor is able to create encrypted documents, and the crypt command can be used to pipe such docu­
ments into the other text-processing programs, the length of time during which cleartext versions need be 
available is strictly limited. The encryption scheme used is not one of the strongest known, but it is judged 
adequate, in the sense that cryptanalysis is likely to require considerably more effort than more direct 
methods of reading the encrypted files. For example, a user who stores data that he regards as truly secret 
should be aware that he is implicitly trusting the system administrator not to install a version of the crypt 
command that stores every typed password in a file. 

Needless to say, the system administrators must be at least as careful as their most demanding user to 
place the correct protection mode on the files under their control. In particular, it is necessary that special 
files be protected from writing, and probably reading, by ordinary users when they store sensitive files 
belonging to other users. It is easy to write programs that examine and change files by accessing the device 
on which the files live. 
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On the issue of password security, UNIX is probably better than most systems. Passwords are stored 
in an encrypted form which, in the absence of serious attention from specialists in the field, appears reason­
ably secure, provided its limitations are understood. In the current version, it is based on a slightly defec­
tive version of the Federal DES; it is purposely defective so that easily-available hardware is useless for 
attempts at exhaustive key-search. Since both the encryption algorithm and the encrypted passwords are 
available, exhaustive enumeration of potential passwords is still feasible up to a point We have observed 
that users choose passwords that are easy to guess: they are short, or from a limited alphabet, or in a dic­
tionary. Passwords should be at least six characters long and randomly chosen from an alphabet which 
includes digits and special characters. 

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For example: 
write a program which types out "login: " on the typewriter and copies whatever is typed to a file of your 
own. Then invoke the command and go away until the victim arrives. 

The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The first 
thing to keep in mind is that a writable set-UID file can have another program copied onto it. For example, 
if the super-user (su) command is writable, anyone can copy the shell onto it and get a password-free ver­
sion of suo A more subtle problem can come from set-UID programs which are not sufficiently careful of 
what is fed into them. To take an obsolete example, the previous version of the mail command was set­
UID and owned by the super-user. This version sent mail to the recipient's own directory. The notion was 
that one should be able to send mail to anyone even if they want to protect their directories from writing. 
The trouble was that mail was rather dumb: anyone could mail someone else's private file to himself. 
Much more serious is the following scenario: make a file with a line like one in the password file which 
allows one to log in as the super-user. Then make a link named" .mail" to the password file in some writ­
able directory on the same device as the password file (say Itmp). Finally mail the bogus login line to 
Itmp/.mail; You can then login as the super-user, clean up the incriminating evidence, and have your will. 

The fact that users can mount their own disks and tapes as file systems can be another way of gaining 
super-user status. Once a disk pack is mounted, the system believes what is on it. Thus one can take a 
blank disk pack, put on it anything desired, and mount it. There are obvious and unfortunate consequences. 
For example: a mounted disk with garbage on it will crash the system; one of the files on the mounted disk 
can easily be a password-free version of su; other files can be unprotected entries for special files. The 
only easy fix for this problem is to forbid the use of mount to unprivileged users. A partial solution, not so 
restrictive, would be to have the mount command examine the special file for bad data, set-UID programs 
owned by others, and accessible special files, and balk at unprivileged invokers. 





Password Security: A Case History 

Robert Morris 

Ken Thompson 

ABSTRACT 

This paper describes the history of the design of the password security scheme on a 
remotely accessed time-sharing system. The present design was the result of countering 
observed attempts to penetrate the system. The result is a compromise between extreme 
security and ease of use. 

INTRODUCTION 

Password security on the UNIXt time-sharing system [1] is provided by a collection of programs 
whose elaborate and strange design is the outgrowth of many years of experience with earlier versions. To 
help develop a secure system, we have had a continuing competition to devise new ways to attack the secu­
rity of the system (the bad guy) and, at the same time, to devise new techniques to resist the new attacks 
(the good guy). This competition has been in the same vein as the competition of long standing between 
manufacturers of armor plate and those of armor-piercing shells. For this reason, the description that fol­
lows will trace the history of the password system rather than simply presenting the program in its current 
state. In this way, the reasons for the design will be made clearer, as the design cannot be understood 
without also understanding the potential attacks. 

An underlying goal has been to provide password security at minimal inconvenience to the users of 
the system. For example, those who want to run a completely open system without passwords, or to have 
passwords only at the option of the individual users, are able to do so, while those who require all of their 
users to have passwords gain a high degree of security against penetration of the system by unauthorized 
users. 

The password system must be able not only to prevent any access to the system by unauthorized 
users (Le. prevent them from logging in at all), but it must also prevent users who are already logged in 
from doing things that they are not authorized to do. The so called' 'super-user" password, for example, is 
especially critical because the super-user has all sorts of permissions and has essentially unlimited access to 
all system resources. 

Password security is of course only one component of overall system security, but it is an essential 
component Experience has shown that attempts to penetrate remote-access systems have been astonish­
ingly sophisticated 

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats at 
the remote terminal, along the communications link:, as well as at the computer itself. Although the secu­
rity of a password encryption algorithm is an interesting intellectual and mathematical problem, it is only 
one tiny facet of a very large problem. In practice, physical security of the computer, communications 
security of the communications link, and physical control of the computer itself loom as far more important 
issues. Perhaps most important of all is control over the actions of ex-employees, since they are not under 
any direct control and they may have intimate knowledge about the system, its resources, and methods of 
access. Good system security involves realistic evaluation of the risks not only of deliberate attacks but 
also of casual unauthorized access and accidental disclosure. 

t UNIX is a trademark of Bell Laboratories. 
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PROLOGUE 

The UNIX system was first implemented with a password file that contained the actual passwords of 
all the users, and for that reason the password file had to be heavily protected against being either read or 
written. Although historically, this had been the technique used for remote-access systems, it was com­
pletely unsatisfactory for several reasons. 

The technique is excessively vulnerable to lapses in security. Temporary loss of protection can 
occur when the password file is being edited or otherwise modified. There is no way to prevent the making 
of copies by privileged users. Experience with several earlier remote-access systems showed that such 
lapses occur with frightening frequency. Perhaps the most memorable such occasion occurred in the early 
60's when a system administrator on the CTSS system at MIT was editing the password file and another 
system administrator was editing the daily message that is printed on everyone's terminal on login. Due to 
a software design error, the temporary editor files of the two users were interchanged and thus, for a time, 
the password file was printed on every terminal when it was logged in. 

Once such a lapse in security has been discovered, everyone's password must be changed, usually 
simultaneously, at a considerable administrative cost. This is not a great matter, but far more serious is the 
high probability of such lapses going unnoticed by the system administrators. 

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible with 
this system because, for example, if the contents of the file system are put on to magnetic tape for backup, 
as they must be, then anyone who has physical access to the tape can read anything on it with no restric­
tion. 

Many programs must get information of various kinds about the users of the system, and these pro­
grams in general should have no special permission to read the password file. The information which 
should have been in the password file actually was distributed (or replicated) into a number of files, all of 
which had to be updated whenever a user was added to or dropped from the system. 

THE FIRST SCHEME 

The obvious solution is to arrange that the passwords not appear in the system at all, and it is not 
difficult to decide that this can be done by encrypting each user's password, putting only the encrypted 
form in the password file, and throwing away his original password (the one that he typed in). When the 
user later tries to log in to the system, the password that he types is encrypted and compared with the 
encrypted version in the password file. If the two match, his login attempt is accepted. Such a scheme was 
first described in [3, p.9lff.]. It also seemed advisable to devise a system in which neither the password file 
nor the password program itself needed to be protected against being read by anyone. 

All that was needed to implement these ideas was to find a means of encryption that was very 
difficult to invert, even when the encryption program is available. Most of the standard encryption 
methods used (in the past) for encryption of messages are rather easy to invert. A convenient and rather 
good encryption program happened to exist on the system at the time; it simulated the M-209 cipher 
machine [4] used by the U.S. Army during World War II. It turned out that the M-209 program was 
usable, but with a given key, the ciphers produced by this program are trivial to invert. It is a much more 
difficult matter to find out the key given the cleartext input and the enciphered output of the program. 
Therefore, the password was used not as the text to be encrypted but as the key, and a constant was 
encrypted using this key. The encrypted result was entered into the password file. 

ATTACKS ON THE FIRST APPROACH 

Suppose that the bad guy has available the text of the password encryption program and the complete 
password file. Suppose also that he has substantial computing capacity at his disposal. 

One obvious approach to penetrating the password mechanism is to attempt to find a general method 
of inverting the encryption algorithm. Very possibly this can be done, but few successful results have 
come to light, despite substantial efforts extending over a period of more than five years. The results have 
not proved to be very useful in penetrating systems. 
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Another approach to penetration is simply to keep trying potential passwords until one succeeds; this 
is a general cryptanalytic approach called key search. Human beings being what they are, there is a strong 
tendency for people to choose relatively short and simple passwords that they can remember. Given free 
choice, most people will choose their passwords from a restricted character set (e.g. all lower-case letters), 
and will often choose words or names. This human habit makes the key search job a great deal easier. 

The critical factor involved in key search is the amount of time needed to encrypt a potential pass­
word and to check the result against an entry in the password file. The running time to encrypt one trial 
password and check the result turned out to be approximately 1.25 milliseconds on a PDP-llnO when the 
encryption algorithm was recoded for maximum speed. It is takes essentially no more time to test the 
encrypted trial password against all the passwords in an entire password file, or for that matter, against any 
collection of encrypted passwords, perhaps collected from many installations. 

If we want to check all passwords of length n that consist entirely of lower-case letters, the number 
of such passwords is 26". If we suppose that the password consists of printable characters only, then the 
number of possible passwords is somewhat less than 95". (The standard system "character erase" and 
"line kill" characters are, for example, not prime candidates.) We can immediately estimate the running 
time of a program that will test every password of a given length with all of its characters chosen from 
some set of characters. The following table gives estimates of the running time required on a PDP-l 1170 to 
test all possible character strings of length n chosen from various sets of characters: namely, all lower-case 
letters, all lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and 
finally al1128 ASCII characters. 

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII 
n letters and digits characters characters characters 

1 30 rnsec. 40 rnsec. 80 rnsec. 120 msec. 160 rnsec. 
2 800 rnsec. 2 sec. 5 sec. 11 sec. 20 sec. 
3 22 sec. 58 sec. 5 min. 17 min. 43 min. 
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs. 
5 4 hrs. 21 hrs. 318 hrs. 
6 107 hrs. 

One has to conclude that it is no great matter for someone with access to a PDP-II to test all lower-case 
alphabetic strings up to length five and, given access to the machine for, say, several weekends, to test all 
such strings up to six characters in length. By using such a program against a collection of actual 
encrypted passwords, a substantial fraction of all the passwords will be found. 

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a list of 
names. For example, a large commercial dictionary contains typicallly about 250,000 words; these words 
can be checked in about five minutes. Again, a noticeable fraction of any collection of passwords will be 
found. Improvements and extensions will be (and have been) found by a determined bad guy. Some 
"good" things to try are: 

The dictionary with the words spelled backwards. 

A list of first names (best obtained from some mailing list). Last names, street names, and city 
names also work well. 

The above with initial upper-case letters. 

All valid license plate numbers in your state. (This takes about five hours in New Jersey.) 

Room numbers, social security numbers, telephone numbers, and the like. 

The authors have conducted experiments to try to determine typical users' habits in the choice of 
passwords when no constraint is put on their choice. The results were disappointing, except to the bad guy. 
In a collection of 3,289 passwords gathered from many users over a long period of time; 

15 were a single ASCII character; 

72 were strings of two ASCII characters; 
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464 were strings of three ASCII characters; 

477 were string of four alphamerics; 

706 were five letters, all upper-case or all lower-case; 

605 were six letters, all lower-case. 

Password Security: A Case History 

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A total of 
2,831, or 86% of this sample of passwords fell into one of these classes. 

There was, of course, considerable overlap between the dictionary results and the character string 
searches. The dictionary search alone, which required only five minutes to run, produced about one third 
of the passwords. 

Users could be urged (or forced) to use either longer passwords or passwords chosen from a larger 
character set, or the system could itself choose passwords for the users. 

AN ANECDOTE 

An entertaining and instructive example is the attempt made at one installation to force users to use 
less predictable passwords. The users did not choose their own passwords; the system supplied them. The 
supplied passwords were eight characters long and were taken from the character set consisting of lower­
case letters and digits. They were generated by a pseudo-random number generator with only 215 starting 
values. The time required to search (again on a PDP-llnO) through all character strings of length 8 from a 
36-character alphabet is 112 years. 

Unfortunately, only 215 of them need be looked at, because that is the number of possible outputs of 
the random number generator. The bad guy did, in fact, generate and test each of these strings and found 
every one of the system-generated passwords using a total of only about one minute of machine time. 

IMPROVEMENTS TO THE FIRST APPROACH 

1. Slower Encryption 

Obviously, the first algorithm used was far too fast. The announcement of the DES encryption algo­
rithm [2] by the National Bureau of Standards was timely and fortunate. The DES is, by design, hard to 
invert, but equally valuable is the fact that it is extremely slow when implemented in software. The DES 
was implemented and used in the following way: The first eight characters of the user's password are used 
as a key for the DES; then the algorithm is used to encrypt a constant. Although this constant is zero at the 
moment, it is easily accessible and can be made installation-dependent Then the DES algorithm is iterated 
25 times and the resulting 64 bits are repacked to become a string of 11 printable characters. 

2. Less Predictable Passwords 

The password entry program was modified so as to urge the user to use more obscure passwords. If 
the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters, or a 
password from a larger character set shorter than five characters, then the program asks him to enter a 
longer password. This further reduces the efficacy of key search. 

These improvements make it exceedingly difficult to find any individual password. The user is 
warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not prevented 
from using his spouse's name if he wants to. 

3. Salted Passwords 

The key search technique is still likely to tum up a few passwords when it is used on a large collec­
tion of passwords, and it seemed wise to make this task as difficult as possible. To this end, when a pass­
word is first entered, the password program obtains a 12-bit random number (by reading the real-time 
clock) and appends this to the password typed in by the user. The concatenated string is encrypted and 
both the 12-bit random quantity (called the salt) and the 64-bit result of the encryption are entered into the 
password file. 
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When the user later logs in to the system, the 12-bit quantity is extracted from the password file and 
appended to the typed password. The encrypted result is required, as before, to be the same as the remain­
ing 64 bits in the password file. This modification does not increase the task of finding any individual pass­
word, starting from scratch, but now the work of testing a given character string against a large collection 
of encrypted passwords has been multiplied by 4096 (212). The reason for this is that there are 4096 
encrypted versions of each password and one of them has been picked more or less at random by the sys­
tem. 

With this modification, it is likely that the bad guy can spend days of computer time trying to find a 
password on a system with hundreds of passwords, and find none at all. More important is the fact that it 
becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted dictionary could be 
used to crack new passwords in milliseconds when they appear. 

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find out 
whether a person with passwords on two or more systems has used the same password on all of them, 
unless you already know that. 

4. The Threat of the DES Chip 

Chips to perform the DES encryption are already commercially available and they are very fast The 
use of such a chip speeds up the process of password hunting by three orders of magnitude. To avert this 
possibility, one of the internal tables of the DES algorithm (in particular, the so-called E-table) is changed 
in a way that depends on the 12-bit random number. The E-table is inseparably wired into the DES chip, 
so that the commercial chip cannot be used. Obviously, the bad guy could have his own chip designed and 
built, but the cost would be unthinkable. 

5. A Subtle Point 

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user name, 
and then the correct password for that user name. It is poor design to write the login command in such a 
way that it tells an interloper when he has typed in a invalid user name. The response to an invalid name 
should be identical to that for a valid name. 

When the slow encryption algorithm was first implemented, the encryption was done only if the user 
name was valid, because otherwise there was no encrypted password to compare with the supplied pass­
word. The result was that the response was delayed by about one-half second if the name was valid, but 
was immediate if invalid. The bad guy could find out whether a particular user name was valid. The rou­
tine was modified to do the encryption in either case. 

CONCLUSIONS 

On the issue of password security, UNIX is probably better than most systems. The use of encrypted 
passwords appears reasonably secure in the absence of serious attention of experts in the field. 

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have 
instituted what is called an "external security code" that must be typed when dialing into the system, but 
before logging in. If this code is changed periodically, then someone with an old password will likely be 
prevented from using it. 

Whenever any security procedure is instituted that attempts to deny access to unauthorized persons, 
it is wise to keep a record of both successful and unsuccessful attempts to get at the secured resource. Just 
as an out-of-hours visitor to a computer center normally must not only identify himself, but a record is usu­
ally also kept of his entry. Just so, it is a wise precaution to make and keep a record of all attempts to log 
into a remote-access time-sharing system, and certainly all unsuccessful attempts. 

Bad guys fallon a spectrum whose one end is someone with ordinary access to a system and whose 
goal is to find out a particular password (usually that of the super-user) and, at the other end, someone who 
wishes to collect as much password information as possible from as many systems as possible. Most of the 
work reported here serves to frustrate the latter type; our experience indicates that the former type of bad 
guy never was very successful. 
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We recognize that a time-sharing system must operate in a hostile environment. We did not attempt 
to hide the security aspects of the operating system, thereby playing the customary make-believe game in 
which weaknesses of the system are not discussed no matter how apparent. Rather we advertised the pass­
word algorithm and invited attack in the belief that this approach would minimize future trouble. The 
approach has been successful. 

References 

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 (July 1974), 
pp. 365-375. 

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register 
(40FR12134), March 17, 1975 

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968). 

[4] U. S. Patent Number 2,089,603. 



A Tour Through the Portable C Compiler 

S. C. Johnson 

AT &T Bell Laboratories 

Donn Seeley 

Department of Computer Science 
University of Utah 

ABSTRACT 
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Introduction 

A C compiler has been implemented that has proved to be quite portable, serving as the basis for C 
compilers on roughly a dozen machines, including the DEC v AX, Honerwell 6000, IBM 370, and Interdata 
8/32. The compiler is highly compatible with the C language standard. 

Among the goals of this compiler are portability, high reliability, and the use of state-of-the-art tech­
niques and tools wherever practical. Although the efficiency of the compiling process is not a primary 
goal, the compiler is efficient enough, and produces good enough code, to serve as a production compiler. 

The language implemented is highly compatible with the current PDP-II version of C. Moreover, 
roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is machine indepen­
dent. The compiler also serves as the major portion of the program lint, described elsewhere. 2 

A number of earlier attempts to make portable compilers are worth noting. While on CO-OP assign­
ment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was the basis of his Master's 
Thesis at M.I. T. 3 This compiler was very slow and complicated, and contained a number of rather serious 
implementation difficulties; nevertheless, a number of Snyder's ideas appear in this work. 

Most earlier portable compilers, including Snyder's, have proceeded by defining an intermediate 
language, perhaps based on three-address code or code for a stack machine, and writing a machine 
independent program to translate from the source code to this intermediate code. The intermediate code is 
then read by a second pass, and interpreted or compiled. This approach is elegant, and has a number of 
advantages, especially if the target machine is far removed from the host. It suffers from some disadvan­
tages as well. Some constructions, like initialization and subroutine prologs, are difficult or expensive to 
express in a machine independent way that still allows them to be easily adapted to the target assemblers. 
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Most of these approaches require a symbol table to be constructed in the second (machine dependent) pass, 
and/or require powerful target assemblers. Also, many conversion operators may be generated that have 
no effect on a given machine, but may be needed on others (for example, pointer to pointer conversions 
usually do nothing in C, but must be generated because there are some machines where they are 
significant). 

For these reasons, the first pass of the portable compiler is not entirely machine independent. It con­
tains some machine dependent features, such as initialization, subroutine prolog and epilog, certain storage 
allocation functions, code for the switch statement, and code to throw out unneeded conversion operators. 

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C compiler has 
roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 out of 3400 in Pass 2. In 
total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% in Pass 1, 30% in Pass 2). 
These percentages can be expected to rise slightly as the compiler is tuned. The percentage of machine­
dependent code for the IBM is 22%, for the Honeywell 25%. If the assembler format and structure were 
the same for all these machines, perhaps another 5-10% of the code would become machine independent. 

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the 
machine dependent code can be converted in a straightforward, almost mechanical way. On the other 
hand, a certain amount of the code requires hard intellectual effort to convert, since the algorithms embo­
died in this part of the code are typically complicated and machine dependent. 

To summarize, however, if you need a C compiler written for a machine with a reasonable architec­
ture, the compiler is already three quarters finished! 

Overview 

This paper discusses the structure and organization of the portable compiler. The intent is to give the 
big picture, rather than discussing the details of a particular machine implementation. After a brief over­
view and a discussion of the source file structure, the paper describes the major data structures, and then 
delves more closely into the two passes. Some of the theoretical work on which the compiler is based, and 
its application to the compiler, is discussed elsewhere. 4 One of the major design issues in an? C compiler, 
the design of the calling sequence and stack frame, is the subject of a separate memorandum. 

The compiler consists of two passes, pass1 and pass2 , that together turn C source code into assem­
bler code for the target machine. The two passes are preceded by a preprocessor, that handles the #define 
and #include statements, and related features (e.g., #ifdef, etc.). The two passes may optionally be fol­
lowed by a machine dependent code improver. 

The output of the preprocessor is a text file that is read as the standard input of the first pass. This 
produces as standard output another text file that becomes the standard input of the second pass. The 
second pass produces, as standard output, the desired assembler language source code. The code improver, 
if used, converts the assembler code to more effective code, and the result is passed to the assembler. The 
preprocessor and the two passes all write error messages on the standard error file. Thus the compiler itself 
makes few demands on the I/O library support, aiding in the bootstrapping process. 

The division of the compiler into two passes is somewhat artificial. The compiler can optionally be 
loaded so that both passes operate in the same program. This "one pass" operation eliminates the over­
head of reading and writing the intermediate file, so the compiler operates about 30% faster in this mode. 
It also occupies about 30% more space than the larger of the two component passes. This "one pass" 
compiler is the standard version on machines with large address spaces, such as the v AX. 

Because the compiler is fundamentally structured as two passes, even when loaded as one, this docu­
ment primarily describes the two pass version. 

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also constructs 
parse trees for expressions, and keeps track of the types of the nodes in these trees. Additional code is 
devoted to initialization. MaChine dependent portions of the first pass serve to generate subroutine prologs 
and epilogs, code for switches, and code for branches, label definitions, alignment operations, changes of 
location counter, etc. 
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The intermediate file is a text file organized into lines. Lines beginning with a right parenthesis are 
copied by the second pass directly to its output file, with the parenthesis stripped off. Thus, when the first 
pass produces assembly code, such as subroutine prologs, etc., each line is prefaced with a right 
parenthesis; the second pass passes these lines to through to the assembler. 

The major job done by the second pass is generation of code for expressions. The expression parse 
trees produced in the first pass are written onto the intermediate file in Polish Prefix form: first, there is a 
line beginning with a period, followed by the source file line number and name on which the expression 
appeared (for debugging purposes). The successive lines represent the nodes of the parse tree, one node 
per line. Each line contains the node number, type, and any values (e.g., values of constants) that may 
appear in the node. Lines representing nodes with descendants are immediately followed by the left sub­
tree of descendants, then the right Since the number of descendants of any node is completely determined 
by the node number, there is no need to mark the end of the tree. 

There are only two other line types in the intermediate file. Lines beginning with a left square 
bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source); lines beginning with 
right square brackets (']') represent the end of blocks. The remainder of these lines tell how much stack 
space, and how many register variables, are currently in use. 

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the information 
in the '[' and 'J' lines, and devotes most of its effort to the '.' lines and their associated expression trees, 
turning them turns into assembly code to evaluate the expressions. 

In the one pass version of the compiler, the expression trees contain information useful to both logi­
cal passes. Instead of writing the trees onto an intermediate file, each tree is transformed in place into an 
acceptable form for the code generator. The code generator then writes the result of compiling this tree 
onto the standard output Instead of '[' and ']' lines in the intermediate file, the information is passed 
directly to the second pass routines. Assembly code produced by the first pass is simply written out, 
without the need for')' at the head of each line. 

The Source Files 

The compiler source consists of 25 source files. Several header files contain information which is 
needed across various source modules. Manifest.h has declarations for node types, type manipulation mac­
ros and other macros, and some global data definitions. Macdefs.h has machine-dependent definitions, 
such as the size and alignment of the various data representations. Config.h defines symbols which control 
the configuration of the compiler, including such things as the sizes of various tables and whether the com­
piler is "one pass". The compiler conditionally includes another file, onepass.h, which contains 
definitions which are particular to a "one pass" compiler. Ndu.h defines the basic tree building structure 
which is used throughout the compiler to construct expression trees. Manifest.h includes a file of opcode 
and type definitions named pcclocal.h ; this file is automatically generated from a header file specific to the 
C compiler named localdefs.h and a public header file lusrlinclude/pcc.h. Another file, pcctokens , is gen­
erated in a similar way and contains token definitions for the compiler's Yacc 6 grammar. Two machine 
independent header files, passl.h and pass2.h, contain the data structure and manifest definitions for the 
first and second passes, respectively. In the second pass, a machine dependent header file, mac2defs.h, 
contains declarations of register names, etc. 

Common.c contains machine independent routines used in both passes. These include routines for 
allocating and freeing trees, walking over trees, printing debugging information, and printing error mes­
sages. This file can be compiled in two flavors, one for pass 1 and one for pass 2, depending on what con­
ditional compilation symbol is used. 

Entire sections of this document are devoted to the detailed structure of the passes. For the moment, 
we just give a brief description of the files. The first pass is obtained by compiling and loading cgram.y, 
code.c, common.c, local.c, optim.c, pftn.c, scan.c, stab.c, trees.c and xdefs.c. Scan.c is the lexical 
analyzer, which provides tokens to the bottom-up parser which is defined by the Yacc grammar cgram.y. 
Xdefs.c is a short file of external definitions. Pftn.c maintains the symbol table, and does initialization. 
Trees.c builds the expression trees, and computes the node types. Optim.c does some machine indepen­
dent optimizations on the expression trees. Common.c contains service routines common to the two passes 
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of the compiler. All the above files are machine independent. The files local.c and code.c contain 
machine dependent code for generating subroutine prologs, switch code, and the like. Stab.c contains 
machine dependent code for producing external symbol table information which can drive a symbolic 
debugger. 

The second pass is produced by compiling and loading allo.c, common.c, local2.c, match.c, 
order.c, reader.c and table.c. Reader.c reads the intermediate file, and controls the major logic of the 
code generation. Allo.c keeps track of busy and free registers. Match.c controls the matching of code 
templates to subtrees of the expression tree to be compiled. Comnwn.c defines certain service routines, as 
in the first pass. The above files are machine independent Order.c controls the machine dependent details 
of the code generation strategy. Local2.c has many small machine dependent routines, and tables of 
opcodes, register types, etc. Table.c has the code template tables, which are also clearly machine depen­
dent. 

Data Structure Considerations 

This section discusses the node numbers, type words, and expression trees, used throughout both 
passes of the compiler. 

The file manifest.h defines those symbols used throughout both passes. The intent is to use the same 
symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, parsing, tree building, 
and code generation phases. Manifest.h obtains some of its definitions from two other header files, 
localdefs.h and pcc.h. Localdefs.h contains definitions for operator symbols which are specific to the C 
compiler. Pcc.h contains definitions for operators and types which may be used by other compilers to 
communicate with a portable code generator based on pass 2; this code generator will be described later. 

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a unary or 
binary operator; clearly, it is necessary to know this by the time the parse tree is constructed. Thus, an 
operator (really a macro) called UNARY is provided, so that MINUS and UNARY MINUS are both dis­
tinct node numbers. Similarly, many binary operators exist in an assignment form (for example, -=), and 
the operator ASG may be applied to such node names to generate new ones, e.g. ASG MINUS. 

It is frequently desirable to know if a node represents a leaf (no descendants), a unary operator (one 
descendant) or a binary operator (two descendants). The macro optype(o) returns one of the manifest con­
stants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number o. Similarly, asgop(o) 
returns true if 0 is an assignment operator number (=, +=, etc. ), and logop( 0) returns true if 0 is a rela­
tional or logical (&&, II, or !) operator. 

C has a rich typing structure, with a potentially infinite number of types. To begin with, there are the 
basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR, USHORT, 
UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure), UNIONTY, and 
ENUMTY. Then, there are three operators that can be applied to types to make others: if t is a type, we 
may potentially have types pointer to t, function returning t, and array of t' s generated from t. Thus, an 
arbitrary type in C consists of a basic type, and zero or more of these operators. 

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the basic 
type, and the remaining bits are divided into two-bit fields, containing 0 (no operator), or one of the three 
operators described above. The modifiers are read right to left in the word, starting with the two-bit field 
adjacent to the basic type, until a field with 0 in it is reached. The macros PTR, FTN, and ARY represent 
the pointer to, function returning, and array of operators. The macro values are shifted so that they align 
with the first two-bit field; thus PTR+INTrepresents the type for an integer pointer, and 

ARY + (PTR«2) + (FTN«4) + DOUBLE 

represents the type of an array of pointers to functions returning doubles. 

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives the basic 
type. ISPTR(t) , ISARY(t), and ISFTN(t) ask if an object of this type is a pointer, array, or a function, 
respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t) gives the type resulting from 
removing the first operator from t. Thus, if t is a pointer to t' , a function returning t' , or an array of t' , 
then DECREF(t) would equal t'. INCREF(t) gives the type representing a pointer to t. Finally, there are 
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operators for dealing with the unsigned types. ISUNSIGNED(t) returns true if t is one of the four basic 
unsigned types; in this case, DEUNSIGN(t) gives the associated 'signed' type. Similarly, 
UNSIGNABLE(t) returns true if t is one of the four basic types that could become unsigned, and 
ENUNSIGN(t) returns the unsigned analogue of t in this case. 

The other important global data structure is that of expression trees. The actual shapes of the nodes 
are given in ndu.h. The information stored for each pass is not quite the same; in the first pass, nodes con­
tain dimension and size information, while in the second pass nodes contain register allocation information. 
Nevertheless, all nodes contain fields called op, containing the node number, and type, containing the type 
word. A function called talloc() returns a pointer to a new tree node. To free a node, its op field need 
merely be set to FREE. The other fields in the node will remain intact at least until the next allocation. 

Nodes representing binary operators contain fields, left and right, that contain pointers to the left and 
right descendants. Unary operator nodes have the left field, and a value field called rval. Leaf nodes, with 
no descendants, have two value fields: Ivai and rval. 

At appropriate times, the function tcheck() can be called, to check that there are no busy nodes 
remaining. This is used as a compiler consistency check. The function tcopy(p) takes a pointer p that 
points to an expression tree, and returns a pointer to a disjoint copy of the tree. The function walkf(pf} 
performs a postorder walk of the tree pointed to by p, and applies the function f to each node. The func­
tionfwalk(p.f,d) does a preorder walk of the tree pointed to by p. At each node, it calls a function!, pass­
ing to it the node pointer, a value passed down from its ancestor, and two pointers to values to be passed 
down to the left and right descendants (if any). The value d is the value passed down to the root. Fwalk is 
used for a number of tree labeling and debugging activities. 

The other major data structure, the symbol table, exists only in pass one, and will be discussed later. 

Pass One 

The first pass does lexical analysis, parsing, symbol table maintenance, tree building, optimization, 
and a number of machine dependent things. This pass is largely machine independent, and the machine 
independent sections can be pretty successfully ignored. Thus, they will be only sketched here. 

Lexical Analysis 

The lexical analyzer is a conceptually simple routine that reads the input and returns the tokens of the 
C language as it encounters them: names, constants, operators, and keywords. The conceptual simplicity 
of this job is confounded a bit by several other simple jobs that unfortunately must go on simultaneously. 
These include 

• Keeping track of the current filename and line number, and occasionally setting this information as 
the result of preprocessor control lines. 

• Skipping comments. 

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as character 
strings. 

To achieve speed, the program maintains several tables that are indexed into by character value, to 
tell the lexical analyzer what to do next To achieve portability, these tables must be initialized each time 
the compiler is run, in order that the table entries reflect the local character set values. 

Parsing 

As mentioned above, the parser is generated by Yacc from the grammar cgram.y. The grammar is 
relatively readable, but contains some unusual features that are worth comment. 

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem is to keep 
track of the basic type and the storage class while interpreting the various stars, brackets, and parentheses 
that may surround a given name. The entire declaration mechanism must be recursive, since declarations 
may appear within declarations of structures and unions, or even within a sizeof construction inside a 
dimension in another declaration! 
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There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle con­
structions where a lot of left context information must be kept around. The problem is that the original 
PDP-II compiler is top-down in implementation, and some of the semantics of C reflect this. In a top­
down parser, the input rules are restricted somewhat, but one can naturally associate temporary storage 
with a rule at a very early stage in the recognition of that rule. In a bottom-up parser, there is more free­
dom in the specification of rules, but it is more difficult to know what rule is being matched until the entire 
rule is seen. The parser described by cgram.y makes effective use of the bottom-up parsing mechanism in 
some places (notably the treatment of expressions), but struggles against the restrictions in others. The 
usual result is that it is necessary to run a stack of values "on the side", independent of the Yacc value 
stack, in order to be able to store and access information deep within inner constructions, where the rela­
tionship of the rules being recognized to the total picture is not yet clear. 

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully kept 
immediately to the left of the declarator (that part of the declaration involving the name). In this way, 
when it is time to declare the name, the name and the type information can be quickly brought together. 
The "$0" mechanism of Yacc is used to accomplish this. The result is not pretty, but it works. The 
storage class information changes more slowly, so it is kept in an external variable, and stacked if neces­
sary. Some of the grammar could be considerably cleaned up by using some more recent features of Yacc, 
notably actions within rules and the ability to return multiple values for actions. 

A stack is also used to keep track of the current location to be branched to when a break or continue 
statement is processed. 

This use of external stacks dates from the time when Yacc did not pennit values to be structures. 
Some, or most, of this use of external stacks could be eliminated by redoing the grammar to use the 
mechanisms now provided. There are some areas, however, particularly the processing of structure, union, 
and enumeration declarations, function prologs, and switch statement processing, when having all the 
affected data together in an array speeds later processing; in this case, use of external storage seems essen­
tial. 

The cgram.y file also contains some small functions used as utility functions in the parser. These 
include routines for saving case values and labels in processing switches, and stacking and popping values 
on the external stack described above. 

Storage Classes 

C has a finite, but fairly extensive, number of storage classes available. One of the compiler design 
decisions was to process the storage class information totally in the first pass; by the second pass, this infor­
mation must have been totally dealt with. This means that all of the storage allocation must take place in 
the first pass, so that references to automatics and parameters can be turned into references to cells lying a 
certain number of bytes offset from certain machine registers. Much of this transformation is machine 
dependent, and strongly depends on the storage class. 

The classes include EXTERN (for externally declared, but not defined variables), EXTDEF (for 
external definitions), and similar distinctions for USTATIC and STATIC, UFORTRAN and FORTRAN 
(for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and AUTO are obvi­
ous, as are STNAME, UNAME, and ENAME (for structure, union, and enumeration tags), and the associ­
ated MOS, MOU, and MOE (for the members). TYPEDEF is treated as a storage class as well. There are 
two special storage classes: PARAM and SNULL. SNULL is used to distinguish the·case where no expli­
cit storage class has been given; before an entry is made in the symbol table the true storage class is 
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made before the 
declaration of function parameters is completed. 

The most complexity in the storage class process comes from bit fields. A separate storage class is 
kept for each width bit field; a k bit bit field has storage class k plus FIELD. This enables the size to be 
quickly recovered from the storage class. 
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Symbol Table Maintenance 

The symbol table routines do far more than simply enter names into the symbol table; considerable 
semantic processing and checking is done as well. For example, if a new declaration comes in, it must be 
checked to see if there is a previous declaration of the same symbol. If there is, there are many cases. The 
declarations may agree and be compatible (for example, an extern declaration can appear twice) in which 
case the new declaration is ignored. The new declaration may add information (such as an explicit array 
dimension) to an already present declaration. The new declaration may be different, but still correct (for 
example, an extern declaration of something may be entered, and then later the definition may be seen). 
The new declaration may be incompatible, but appear in an inner block; in this case, the old declaration is 
carefully hidden away, and the new one comes into force until the block is left Finally, the declarations 
may be incompatible, and an error message must be produced. 

A number of other factors make for additional complexity. The type declared by the user is not 
always the type entered into the symbol table (for example, if a formal parameter to a function is declared 
to be an array, C requires that this be changed into a pointer before entry in the symbol table). Moreover, 
there are various kinds of illegal types that may be declared which are difficult to check for syntactically 
(for example, a function returning an array). Finally, there is a strange feature in C that requires structure 
tag names and member names for structures and unions to be taken from a different logical symbol table 
than ordinary identifiers. Keeping track of which kind of name is involved is a bit of struggle (consider 
typedef names used within structure declarations, for example). 

The symbol table handling routines have been rewritten a number of times to extend features, 
improve performance, and fix bugs. They address the above problems with reasonable effectiveness but a 
singular lack of grace. 

When a name is read in the input, it is hashed, and the routine lookup is called, together with a flag 
which tells which symbol table should be searched (actually, both symbol tables are stored in one, and a 
flag is used to distinguish individual entries). If the name is found, lookup returns the index to the entry 
found; otherwise, it makes a new entry, marks it UNDEF (undefined), and returns the index of the new 
entry. This index is stored in the rval field of a NAME node. 

When a declaration is being parsed, this NAME node is made part of a tree with UNARY MUL 
nodes for each *, LB nodes for each array descriptor (the right descendant has the dimension), and 
UN AR Y CALL nodes for each function descriptor. This tree is passed to the routine tymerge, along with 
the attribute type of the whole declaration; this routine collapses the tree to a single node, by calling 
tyreduce , and then modifies the type to reflect the overall type of the declaration. 

Dimension and size information is stored in a table called dimtab. To properly describe a type in C, 
one needs not just the type information but also size information (for structures and enumerations) and 
dimension information (for arrays). Sizes and offsets are dealt with in the compiler by giving the associ­
ated indices into dimtab. Tymerge and tyreduce call dstash to put the discovered dimensions away into 
the dimtab array. Tymerge returns a pointer to a single node that contains the symbol table index in its 
rval field, and the size and dimension indices in fields csi: and cdim, respectively. This information is 
properly considered part of the type in the first pass, and is carried around at all times. 

To enter an element into the symbol table, the routine defid is called; it is handed a storage class, and 
a pointer to the node produced by tymerge. Defid calls fixtype, which adjusts and checks the given type 
depending on the storage class, and converts null types appropriately. It then calls fixclass, which does a 
similar job for the storage class; it is here, for example, that register declarations are either allowed or 
changed to auto. 

The new declaration is now compared against an older one, if present, and several pages of validity 
checks performed. If the definitions are compatible, with possibly some added information, the processing 
is straightforward. If the definitions differ, the block levels of the current and the old declaration are com­
pared. The current block level is kept in blevel, an external variable; the old declaration level is kept in the 
symbol table. Block level 0 is for external declarations, 1 is for arguments to functions, and 2 and above 
are blocks within a function. If the current block level is the same as the old declaration, an error results. 
If the current block level is higher, the new declaration overrides the old. This is done by marking the old 
symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will skip over hidden 
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entries. When a block is left, the symbol table is searched, and any entries defined in that block are des­
troyed; if they hid other entries, the old entries are "unbidden". 

This nice block structure is warped a bit because labels do not follow the block structure rules (one 
can do a goto into a block, for example); default definitions of functions in inner blocks also persist clear 
out to the outermost scope. This implies that cleaning up the symbol table after block exit is more subtle 
than it might first seem. 

For successful new definitions, defid also initializes a "general purpose" field, offset, in the symbol 
table. It contains the stack offset for automatics and parameters, the register number for register variables, 
the bit offset into the structure for structure members, and the internal label number for static variables and 
labels. The offset field is set by lalloe for bit fields, and dclstruet for structures and unions. 

The symbol table entry itself thus contains the name, type word, size and dimension offsets, offset 
value, and declaration block level. It also has a field of flags, describing what symbol table the name is in, 
and whether the entry is hidden, or hides another. Finally, a field gives the line number of the last use, or 
of the definition, of the name. This is used mainly for diagnostics, but is useful to lint as well. 

In some special cases, there is more than the above amount of information kept for the use of the 
compiler. This is especially true with structures; for use in initialization, structure declarations must have 
access to a list of the members of the structure. This list is also kept in dimtab. Because a structure can be 
mentioned long before the members are known, it is necessary to have another level of indirection in the 
table. The two words following the esiz entry in dimtab are used to hold the alignment of the structure, 
and the index in dimtab of the list of members. This list contains the symbol table indices for the structure 
members, terminated by a-I. 

Tree Building 

The portable compiler transforms expressions into expression trees. As the parser recognizes each 
rule making up an expression, it calls buildtree which is given an operator number~ and pointers to the left 
and right descendants. Buildtree first examines the left and right descendants, and, if they are both con­
stants, and the operator is appropriate, simply does the constant computation at compile time, and returns 
the result as a constant Otherwise, buildtree allocates a node for the head of the tree, attaches the descen­
dants to it, and ensures that conversion operators are generated if needed, and that the type of the new node 
is consistent with the types of the operands. There is also a considerable amount of semantic complexity 
here; many combinations of types are illegal, and the portable compiler makes a strong effort to check the 
legality of expression types completely. This is done both for lint purposes, and to prevent such semantic 
errors from being passed through to the code generator. 

The heart of buildtree is a large table, accessed by the routine opaet. This routine maps the types of 
the left and right operands into a rather smaller set of descriptors, and then accesses a table (actually 
encoded in a switch statement) which for each operator and pair of types causes an action to be returned. 
The actions are logical or's of a number of separate actions, which may be carried out by buildtree. These 
component actions may include checking the left side to ensure that it is an lvalue (can be stored into), 
applying a type conversion to the left or right operand, setting the type of the new node to the type of the 
left or right operand, calling various routines to balance the types of the left and right operands, and 
suppressing the ordinary conversion of arrays and function operands to pointers. An important operation is 
OTHER, which causes some special code to be invoked in buildtree, to handle issues which are unique to a 
particular operator. Examples of this are structure and union reference (actually handled by the routine 
stre!), the building of NAME, ICON, STRING and FCON (floating point constant) nodes, unary * and &, 
structure assignment, and calls. In the case of unary * and &, buildtree will cancel a * applied to a tree, 
the top node of which is &, and conversely. 

Another special operation is PUN; this causes the compiler to check for type mismatches, such as 
intermixing pointers and integers. 

The treatment of conversion operators is a rather strange area of the compiler (and of C!). The intro­
duction of type casts only confounded this situation. Most of the conversion operators are generated by 
calls to tymatch and ptmateh, both of which are given a tree, and asked to make the operands agree in 
type. Ptmateh treats the case where one of the operands is a pointer; tymateh treats all other cases. Where 
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these routines have decided on the proper type for an operand, they call makety, which is handed a tree, 
and a type word, dimension offset, and size offset If necessary, it inserts a conversion operation to make 
the types correct. Conversion operations are never inserted on the left side of assignment operators, how­
ever. There are two conversion operators used; PCONV, if the conversion is to a non-basic type (usually a 
pointer), and SCONV, if the conversion is to a basic type (scalar). 

To allow for maximum flexibility, every node produced by buildtree is given to a machine depen­
dent routine, cloeal, immediately after it is produced. This is to allow more or less immediate rewriting of 
those nodes which must be adapted for the local machine. The conversion operations are given to cloeal 
as well; on most machines, many of these conversions do nothing, and should be thrown away (being care­
ful to retain the type). If this operation is done too early, however, later calls to buildtree may get con­
fused about correct type of the subtrees; thus cloeal is given the conversion operations only after the entire 
tree is built. This topic will be dealt with in more detail later. 

Initialization 

Initialization is one of the messier areas in the portable compiler. The only consolation is that most 
of the mess takes place in the machine independent part, where it is may be safely ignored by the imple­
mentor of the compiler for a particular machine. 

The basic problem is that the semantics of initialization really calls for a co-routine structure; one 
collection of programs reading constants from the input stream, while another, independent set of programs 
places these constants into the appropriate spots in memory. The dramatic differences in the local assem­
blers also come to the fore here. The parsing problems are dealt with by keeping a rather extensive stack 
containing the current state of the initialization; the assembler problems are dealt with by having a fair 
number of machine dependent routines. 

The stack contains the symbol table number, type, dimension index, .and size index for the current 
identifier being initialized. Another entry has the offset, in bits, of the beginning of the current identifier. 
Another entry keeps track of how many elements have been seen, if the current identifier is an array. Still 
another entry keeps track of the current member of a structure being initialized. Finally, there is an entry 
containing flags which keep track of the current state of the initialization process (e.g., tell if a '}' has been 
seen for the current identifier). 

When an initialization begins, the routine beginit is called; it handles the alignment restrictions, if 
any, and calls instk to create the stack entry. This is done by first making an entry on the top of the stack 
for the item being initialized. If the top entry is an array, another entry is made on the stack for the first 
element. If the top entry is a structure, another entry is made on the stack for the first member of the struc­
ture. This continues until the top element of the stack is a scalar. Instk then returns, and the parser begins 
collecting initializers. 

When a constant is obtained, the routine doinit is called; it examines the stack, and does whatever is 
necessary to assign the current constant to the scalar on the top of the stack. gotseal is then called, which 
rearranges the stack so that the next scalar to be initialized gets placed on top of the stack. This process 
continues until the end of the initializers;endinit cleans up. If a '{' or '}' is encountered in the string of 
initializers, it is handled by calling ilbraee or irbraee, respectively. 

A central issue is the treatment of the "holes" that arise as a result of alignment restrictions or expli­
cit requests for holes in bit fields. There is a global variable, ina!!, which contains the current offset in the 
initialization (all offsets in the first pass of the compiler are in bits). Doinit figures out from the top entry 
on the stack the expected bit offset of the next identifier; it calls the machine dependent routine inforee 
which, in a machine dependent way, forces the assembler to set aside space if need be so that the next 
scalar seen will go into the appropriate bit offset position. The scalar itself is passed to one of the machine 
dependent routinesfineode (for floating point initialization), ineode (for fields, and other initializations less 
than an int in size), and cinit (for all other initializations). The size is passed to all these routines, and it is 
up to the machine dependent routines to ensure that the initializer occupies exactly the right size. 

Character strings represent a bit of an exception. If a character string is seen as the initializer for a 
pointer, the characters making up the string must be put out under a different location counter. When the 
lexical analyzer sees the quote at the head of a character string, it returns the token STRING, but does not 
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do anything with the contents. The parser calls getstr, which sets up the appropriate location counters and 
flags, and calls lxstr to read and process the contents of the string. 

If the string. is being used to initialize a character array, lxstr calls putbyte , which in effect simulates 
doinit for each character read. If the string is used to initialize a character pointer, lxstr calls a machine 
dependent routine, bycode, which stashes away each character. The pointer to this string is then returned, 
and processed normally by doinit. 

The null at the end of the string is treated as if it were read explicitly by lxstr. 

Statements 

The first pass addresses four main areas; declarations, expressions, initialization, and statements. 
The statement processing is relatively simple; most of it is carried out in the parser directly. Most of the 
logic is concerned with allocating label numbers, defining the labels, and branching appropriately. An 
external symbol, reached, is 1 if a statement can be reached, 0 otherwise; this is used to do a bit of simple 
flow analysis as the program is being parsed, and also to avoid generating the subroutine return sequence if 
the subroutine cannot "fall through" the last statement 

Conditional branches are handled by generating an expression node, CBRANCH, whose left descen­
dant is the conditional expression and the right descendant is an ICON node containing the internal label 
number to be branched to. For efficiency, the semantics are that the label is gone to if the condition is 
false. 

The switch statement is compiled by collecting the case entries, and an indication as to whether there 
is a default case; an internal label number is generated for each of these, and remembered in a big array. 
The expression comprising the value to be switched on is compiled when the switch keyword is encoun­
tered, but the expression tree is headed by a special node, FORCE, which tells the code generator to put the 
expression value into a special distinguished register (this same mechanism is used for processing the 
return statement). When the end of the switch block is reached, the array containing the case values is 
sorted, and checked for duplicate entries (an error); if all is correct, the machine dependent routine 
genswitch is called, with this array of labels and values in increasing order. Genswitch can assume that the 
value to be tested is already in the register which is the usual integer return value register. 

Optimization 

There is a machine independent file, optim.c, which contains a relatively short optimization routine, 
optim. Actually the word optimization is something of a misnomer; the results are not optimum, only 
improved, and the routine is in fact not optional; it must be called for proper operation of the compiler. 

Optim is called after an expression tree is built, but before the code generator is called. The essential 
part of its job is to call clocal on the conversion operators. On most machines, the treatment of & is also 
essential: by this time in the processing, the only node which is a legal descendant of & is NAME. (Possi­
ble descendants of * have been eliminated by buildtree.) The address of a static name is, almost by 
definition, a constant, and can be represented by an ICON node on most machines (provided that the loader 
has enough power). Unfortunately, this is not universally true; on some machine, such as the mM 370, the 
issue of address ability rears its ugly head; thus, before turning a NAME node into an ICON node, the 
machine dependent function andable is called. 

The optimization attempts of optim are quite limited. It is primarily concerned with improving the 
behavior of the compiler with operations one of whose arguments is a constant In the simplest case, the 
constant is placed on the right if the operation is commutative. The compiler also makes a limited search 
for expressions such as 

(x+a)+b 

where a and b are constants, and attempts to combine a and b at compile time. A number of special cases 
are also examined; additions of 0 and multiplications by 1 are removed, although the correct processing of 
these cases to get the type of the resulting tree correct is decidedly nontrivial. In some cases, the addition 
or multiplication must be replaced by a conversion operator to keep the types from becoming fouled up. In 
cases where a relational operation is being done and one operand is a constant, the operands are permuted 
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and the operator altered, if necessary, to put the constant on the right. Finally, multiplications by a power 
of 2 are changed to shifts. 

Machine Dependent Stuff 

A number of the first pass machine dependent routines have been discussed above. In general, the 
routines are short, and easy to adapt from machine to machine. The two exceptions to this general rule are 
clocal and the function prolog and epilog generation routines, bfcode and efcode . 

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by buildlree. 
There are two major areas where this is important: NAME nodes and conversion operations. In the case of 
NAME nodes, clocal must rewrite the NAME node to reflect the actual physical location of the name in 
the machine. In effect, the NAME node must be examined, the symbol table entry found (through the rval 
field of the node), and, based on the storage class of the node, the tree must be rewritten. Automatic vari­
ables and parameters are typically rewritten by treating the reference to the variable as a structure refer­
ence, off the register which holds the stack or argument pointer; the siref routine is set up to be called in 
this way, and to build the appropriate tree. In the most general case, the tree consists of a unary * node, 
whose descendant is a + node, with the stack or argument register as left operand, and a constant offset as 
right operand. In the case of LABEL and internal static nodes, the rval field is rewritten to be the negative 
of the internal label number; a negative rval field is taken to be an internal label number. Finally, a name 
of class REGISTER must be converted into a REG node, and the rval field replaced by the register 
number. In fact, this part of the clocal routine is nearly machine independent; only for machines with 
addressability problems (IBM 370 again!) does it have to be noticeably different. 

The conversion operator treatment is rather tricky. It is necessary to handle the application of 
conversion operators to constants in clocal, in order that all constant expressions can have their values 
known at compile time. In extreme cases, this may mean that some simulation of the arithmetic of the tar­
get machine might have to be done in a cross-compiler. In the most common case, conversions from 
pointer to pointer do nothing. For some machines, however, conversion from byte pointer to short or long 
pointer might require a shift or rotate operation, which would have to be generated here. 

The extension of the portable compiler to machines where the size of a pointer depends on its type 
would be straightforward, but has not yet been done. 

Another machine dependent issue in the first pass is the generation of external "symbol table" infor­
mation. This sort of symbol table is used by programs such as symbolic debuggers to relate object code 
back to source code. Symbol table routines are provided in the file slab.c, which is included in the machine 
dependent sources for the first pass. The symbol table routines insert assembly code containing assembly 
pseudo-ops directly into the instruction stream generated by the compiler. 

There are two basic kinds of symbol table operations. The simplest operation is the generation of a 
source line number; this serves to map an address in an executable image into a line in a source file so that 
a debugger can find the source code corresponding to the instructions being executed. The routine psline is 
called by the scanner to emit source line numbers when a nonempty source line is seen. The other variety 
of symbol table operation is the generation of type and address information about C symbols. This is done 
through the outstab routine, which is normally called using the FIXDEF macro in the monster defid routine 
in pftn.c that enters symbols into the compiler's internal symbol table. 

Yet another major machine dependent issue involves function prolog and epilog generation. The 
hard part here is the design of the stack frame and calling sequence; this design issue is discussed else­
where. 7 The routine bfcode is called with the number of arguments the function is defined with, and an 
array containing the symbol table indices of the declared parameters. Bfcode must generate the code to 
establish the new stack frame, save the return address and previous stack pointer value on the stack, and 
save whatever registers are to be used for register variables. The stack size and the number of register vari­
ables is not known when bfcode is called, so these numbers must be referred to by assembler constants, 
which are defined when they are known (usually in the second pass, after all register variables, automatics, 
and temporaries have been seen). The final job is to find those parameters which may have been declared 
register, and generate the code to initialize the register with the value passed on the stack. Once again, for 
most machines, the general logic of bfcode remains the same, but the contents of the printj calls in it will 
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change from machine to machine. efcode is rather simpler, having just to generate the default return at the 
end of a function. This may be nontrivial in the case of a function returning a structure or union, however. 

There seems to be no really good place to discuss structures and unions, but this is as good a place as 
any. The C language now supports structure assignment, and the passing of structures as arguments to 
functions, and the receiving of structures back from functions. This was added rather late to C, and thus to 
the portable compiler. Consequently, it fits in less well than the older features. Moreover, most of the bur­
den of making these features work is placed on the machine dependent code. 

There are both conceptual and practical problems. Conceptually, the compiler is structured around 
the idea that to compute something, you put it into a register and work on it. This notion causes a bit of 
trouble on some machines (e.g., machines with 3-address opcodes), but matches many machines quite well. 
Unfortunately, this notion breaks down with structures. The closest that one can come is to keep the 
addresses of the structures in registers. The actual code sequences used to move structures vary from the 
trivial (a multiple byte move) to the horrible (a function call), and are very machine dependent. 

The practical problem is more painful. When a function returning a structure is called, this function 
has to have some place to put the structure value. If it places it on the stack, it has difficulty popping its 
stack frame. If it places the value in a static temporary, the routine fails to be reentrant. The most logically 
consistent way of implementing this is for the caller to pass in a pointer to a spot where the called function 
should put the value before returning. This is relatively straightforward, although a bit tedious, to imple­
ment, but means that the caller must have properly declared the function type, even if the value is never 
used. On some machines, such as the Interdata 8/32, the return value simply overlays the argument region 
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough room if the 
returned value is larger than the arguments. This also assumes that the caller declares the function prop­
erly. 

The PDP-II and the VAX have stack hardware which is used in function calls and returns; this makes 
it very inconvenient to use either of the above mechanisms. In these machines, a static area within the 
called function is allocated, and the function return value is copied into it on return; the function returns the 
address of that region. This is simple to implement, but is non-reentrant. However, the function can now 
be called as a subroutine without being properly declared, without the disaster which would otherwise 
ensue. No matter what choice is taken, the convention is that the function actually returns the address of 
the return structure value. 

In building expression trees, the portable compiler takes a bit for granted about structures. It 
assumes that functions returning structures actually return a pointer to the structure, and it assumes that a 
reference to a structure is actually a reference to its address. The structure assignment operator is rebuilt so 
that the left operand is the structure being assigned to, but the right operand is the address of the structure 
being assigned; this makes it easier to deal with 

a=b==c 

and similar constructions. 

There are four special tree nodes associated with these operations: ST ASG (structure assignment), 
STARG (structure argument to a function call), and STCALL and UNARY STCALL (calls of a function 
with nonzero and zero arguments, respectively). These four nodes are unique in that the size and alignment 
information, which can be determined by the type for all other objects in C, must be known to carry out 
these operations; special fields are set aside in these nodes to contain this information, and special inter­
mediate code is used to transmit this information. 

First Pass Summary 

There are may other issues which have been ignored here, partly to justify the title' 'tour", and par­
tially because they have seemed to cause little trouble. There are some debugging flags which may be 
turned on, by giving the compiler's first pass the argument 

-x [flags] 

Some of the more interesting flags are - Xd for the defining and freeing of symbols, -Xi for initialization 
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comments, and -Xb for various comments about the building of trees. In many cases, repeating the flag 
more than once gives more information; thus, -Xddd gives more information than -Xd. In the two pass 
version of the compiler, the flags should not be set when the output is sent to the second pass, since the 
debugging output and the intermediate code both go onto the standard output 

We turn now to consideration of the second pass. 

Pass Two 

Code generation is far less well understood than parsing or lexical analysis, and for this reason the 
second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is in understand­
ing the issues and the strategies employed to meet them. Any particular function is likely to be reasonably 
straightforward. 

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy in the 
code generator, and will not get too intimate with the details. 

Overview 

It is difficult to organize a code generator to be flexible enough to generate code for a large number 
of machines, and still be efficient for anyone of them. Flexibility is also important when it comes time to 
tune the code generator to improve the output code quality. On the other hand, too much flexibility can 
lead to semantically incorrect code, and potentially a combinatorial explosion in the number of cases to be 
considered in the compiler. 

One goal of the code generator is to have a high degree of correctness. It is very desirable to have 
the compiler detect its own inability to generate correct code, rather than to produce incorrect code. This 
goal is achieved by having a simple model of the job to be done (e.g., an expression tree) and a simple 
model of the machine state (e.g., which registers are free). The act of generating an instruction performs a 
transformation on the tree and the machine state; hopefully, the tree eventually gets reduced to a single 
node. If each of these instructiOn/transformation pairs is correct, and if the machine state model really 
represents the actual machine, and if the transformations reduce the input tree to the desired single node, 
then the output code will be correct. 

For most real machines, there is no definitive theory of code generation that encompasses all the C 
operators. Thus the selection of which instruction/transformations to generate, and in what order, will have 
a heuristic flavor. If, for some expression tree, no transformation applies, or, more seriously, if the heuris­
tics select a sequence of instruction/transformations that do not in fact reduce the tree, the compiler will 
report its inability to generate code, and abort. 

A major part of the code generator is concerned with the model and the transformations. Most of 
this is machine independent, or depends only on simple tables. The flexibility comes from the heuristics 
that guide the transformations of the trees, the selection of sub goals, and the ordering of the computation. 

The Machine Model 

The machine is assumed to have a number of registers, of at most two different types: A and B . 
Within each register class, there may be scratch (temporary) registers and dedicated registers (e.g., register 
variables, the stack pointer, etc.). Requests to allocate and free registers involve only the temporary regis­
ters. 

Each of the registers in the machine is given a name and a number in the mac2defs.h file; the 
numbers are used as indices into various tables that describe the registers, so they should be kept small. 
One such table is the rstatus table on file locaI2.c. This table is indexed by register number, and contains 
expressions made up from manifest constants describing the register types: SAREG for dedicated 
AREG's, SAREGISTAREG for scratch AREG's, and SBREG and SBREGISTBREG similarly for 
BREG's. There are macros that access this information: isbreg(r) returns true if register number r is a 
BREG, and istreg(r) returns true if register number r is a temporary AREG or BREG. Another table, 
rnames, contains the register names; this is used when putting out assembler code and diagnostics. 
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The usage of registers is kept track of by an array called busy. Busy[r] is the number of uses of 
register r in the current tree being processed. The allocation and freeing of registers will be discussed later 
as part of the code generation algorithm. 

General Organization 

As mentioned above, the second pass reads lines from the intermediate file, copying through to the 
output unchanged any lines that begin with a')', and making note of the information about stack usage and 
register allocation contained on lines beginning with ']' and '['. The expression trees, whose beginning is 
indicated by a line beginning with '.', are read and rebuilt into trees. If the compiler is loaded as one pass, 
the expression trees are immediately available to the code generator. 

The actual code generation is done by a hierarchy of routines. The routine delay is first given the 
tree; it attempts to delay some postfix + + and -- computations that might reasonably be done after the 
smoke clears. It also attempts to handle comma (' ,') operators by computing the left side expression first, 
and then rewriting the tree to eliminate the operator. Delay calls codgen to control the actual code genera­
tion process. Codgen takes as arguments a pointer to the expression tree, and a second argument that, for 
socio-historical reasons, is called a cookie. The cookie describes a set of goals that would be acceptable 
for the code generation: these are assigned to individual bits, so they may be logically or'ed together to 
form a large number of possible goals. Among the possible goals are FOREFF (compute for side effects 
only; don't worry about the value), INTEMP (compute and store value into a temporary location in 
memory), INAREG (compute into an A register), INTAREG (compute into a scratch A register), INBREG 
and INTBREG similarly, FORCC (compute for condition codes), and FORARG (compute it as a function 
argument; e.g., stack it if appropriate). 

Codgen first canonicalizes the tree by calling canon. This routine looks for certain transformations 
that might now be applicable to the tree. One, which is very common and very powerful, is to fold together 
an indirection operator (UNARY MOL) and a register (REG); in most machines, this combination is 
addressable directly, and so is similar to a NAME in its behavior. The UNARY MUL and REG are folded 
together to make another node type called OREG. In fact, in many machines it is possible to directly 
address not just the cell pointed to by a register, but also cells differing by a constant offset from the cell 
pointed to by the register. Canon also looks for such cases, calling the machine dependent routine noto!! 
to decide if the offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 
bytes). Another optimization is to replace bit field operations by shifts and masks if the operation involves 
extracting the field. Finally, a machine dependent routine, sucomp, is called that computes the Sethi­
Ullman numbers for the tree (see below), 

After the tree is canonicalized, codgen calls the routine store whose job is to select a subtree of the 
tree to be computed and (usually) stored before beginning the computation of the full tree. Store must 
return a tree that can be computed without need for any temporary storage locations. In effect, the only 
store operations generated while processing the subtree must be as a response to explicit assignment opera­
tors in the tree. This division of the job marks one of the more significant, and successful, departures from 
most other compilers. It means that the code generator can operate under the assumption that there are 
enough registers to do its job, without worrying about temporary storage. If a store into a temporary 
appears in the output, it is always as a direct result of logic in the store routine; this makes debugging 
easier. 

One consequence of this organization is that code is not generated by a treewalk. There are theoreti­
cal results that support this decision. 7 It may be desirable to compute several subtrees and store them 
before tackling the whole tree; if a subtree is to be stored, this is known before the code generation for the 
subtree is begun, and the subtree is computed when all scratch registers are available. 

The store routine decides what subtrees, if any, should be stored by making use of numbers, called 
Sethi-Ullman numbers, that give, for each subtree of an expression tree, the minimum number of scratch 
registers required to compile the subtree, without any stores into temporaries. 8 These numbers are com­
puted by the machine-dependent routine sucomp, called by canon. The basic notion is that, knowing the 
Sethi-Ullman numbers for the descendants of a node, and knowing the operator of the node and some 
information about the machine, the Sethi-Ullman number of the node itself can be computed If the Sethi­
Ullman number for a tree exceeds the number of scratch registers available, some subtree must be stored. 
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Unfortunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple machines and 
operators. For the rich set of C operators, and for machines with asymmetric registers, register pairs, dif­
ferent kinds of registers, and exceptional forms of addressing, the theory cannot be applied directly. The 
basic idea of estimation is a good one, however, and well worth applying; the application, especially when 
the compiler comes to be tuned for high code quality, goes beyond the park of theory into the swamp of 
heuristics. This topic will be taken up again later, when more of the compiler structure has been described. 

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, and returns 
the subtree and the associated cookie in the external variables stotree and stocook. If a subtree has been 
selected, or if the whole tree is ready to be processed, the routine order is called, with a tree and cookie. 
Order generates code for trees that do not require temporary locations. Order may make recursive calls 
on itself, and, in some cases, on codgen ; for example, when processing the operators &&, II, and comma 
(' ,'), that have a left to right evaluation, it is incorrect for store examine the right operand for subtrees to be 
stored. In these cases, order will call codgen recursively when it is permissible to work on the right 
operand. A similar issue arises with the? : operator. 

The order routine works by matching the current tree with a set of code templates. If a template is 
discovered that will match the current tree and cookie, the associated assembly language statement or state­
ments are generated. The tree is then rewritten, as specified by the template, to represent the effect of the 
output instruction(s). If no template match is found, first an attempt is made to find a match with a dif­
ferent cookie; for example, in order to compute an expression with cookie INTEMP (store into a temporary 
storage location), it is usually necessary to compute the expression into a scratch register first If all 
attempts to match the tree fail, the heuristic part of the algorithm becomes dominant. Control is typically 
given to one of a number of machine-dependent routines that may in turn recursively call order to achieve 
a subgoal of the computation (for example, one of the arguments may be computed into a temporary regis­
ter). After thissubgoal has been achieved, the process begins again with the modified tree. If the 
machine-dependent heuristics are unable to reduce the tree further, a number of default rewriting rules may 
be considered appropriate. For example, if the left operand of a + is a scratch register, the + can be 
replaced by a += operator; the tree may then match a template. 

To close this introduction, we will discuss the steps in compiling code for the expression 

a+=b 

where a and b are static variables. 

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is found. 
Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose we are dealing 
with the Interdata 8/32 for the moment It is recognized that the left hand and right hand sides of the += 
operator are addressable, and in particular the left hand side has no side effects, so it is permissible to 
rewrite this as 

a=a+b 

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it is recog­
nized that the left hand side of the assignment is addressable, but the right hand side is not in a register, so 
order is called recursively, being asked to put the right hand side of the assignment into a register. This 
invocation of order searches the tree for a match, and fails. The machine dependent rule for + notices that 
the right hand operand is addressable; it decides to put the left operand into a scratch register. Another 
recursive call to order is made, with the tree consisting solely of the leaf a, and the cookie asking that the 
value be placed into a scratch register. This now matches a template, and a load instruction is emitted. The 
node consisting of a is rewritten in place to represent the register into which a is loaded, and this third call 
to order returns. The second call to order now finds that it has the tree 

reg+b 

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a += operator, 
since the left operand is a scratch register. When this is done, there is a match: in fact, 

reg += b 
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simply describes the effect of the add instruction on a typical machine. After the add is emitted, the tree is 
rewritten to consist merely of the register node, since the result of the add is now in the register. This 
agrees with the cookie passed to the second invocation of order, so this invocation terminates, returning to 
the first level. The original tree has now become 

a= reg 

which matches a template for the store instruction. The store is output, and the tree rewritten to become 
just a single register node. At this point, since the top level call to order was interested only in side effects, 
the call to order returns, and the code generation is completed; we have generated a load, add, and store, as 
might have been expected. 

The effect of machine architecture on this is considerable. For example, on the Honeywell 6000, the 
machine dependent heuristics recognize that there is an "add to storage" instruction, so the strategy is 
quite different; b is loaded in to a register, and then an add to storage instruction generated to add this 
register in to a. The transformations, involving as they do the semantics of C, are largely machine 
independent. The decisions as to when to use them, however, are almost totally machine dependent 

Having given a broad outline of the code generation process, we shall next consider the heart of it: 
the templates. This leads naturally into discussions of template matching and register allocation, and 
finally a discussion of the machine dependent interfaces and strategies. 

The Templates 

The templates describe the effect of the target machine instructions on the model of computation 
around which the compiler is organized In effect, each template has five logical sections, and represents 
an assertion of the form: 

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2), and 
we have sufficient free resources (3), then we may emit an instruction or instructions (4), and rewrite 
the subtree in a particular manner (5), and the rewritten tree will achieve the desired goals. 

These five sections will be discussed in more detail later. First, we give an example of a template: 

ASGPLUS, INAREG, 
SAREG, 
SNAME, 

TINT, 
TINT, 
0, 
" 

RLEFT, 
add AL,AR\n", 

The top line specifies the operator (+=) and the cookie (compute the value of the subtree into an AREG). 
The second and third lines specify the left and right descendants, respectively, of the += operator. The left 
descendant must be a REG node, representing an A register, and have integer type, while the right side 
must be a NAME node, and also have integer type. The fourth line contains the resource requirements (no 
scratch registers or temporaries needed), and the rewriting rule (replace the subtree by the left descendant). 
Finally, the quoted string on the last line represents the output to the assembler: lower case letters, tabs, 
spaces, etc. are copied verbatim. to the output; upper case letters trigger various macro-like expansions. 
Thus, AL would expand into the Address form of the Left operand - presumably the register number. 
Similarly, AR would expand into the name of the right operand. The add instruction of the last section 
might well be emitted by this template. 

In principle, it would be possible to make separate templates for all legal combinations of operators, 
cookies, types, and shapes. In practice, the number of combinations is very large. Thus, a considerable 
amount of mechanism is present to permit a large number of subtrees to be matched by a single template. 
Most of the shape and type specifiers are individual bits, and can be logically or'ed together. There are a 
number of special descriptors for matching classes of operators. The cookies can also be combined. As an 
example of the kind of template that really arises in practice, the actual template for the Interdata8/32 that 
subsumes the above example is: 
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ASG OPSIMP, INAREGIFORCC, 
SAREG, TINTITUNSIGNEDITPOINT, 
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT, 

0, RLEFfJRESCC, 
01 AL,AR\n", 

Here, OPSIMP represents the operators +, -, I, &, and". The 01 macro in the output string expands into 
the appropriate Integer Opcode for the operator. The left and right sides can be integers, unsigned, or 
pointer types. The right side can be, in addition to a name, a register, a memory location whose address is 
given by a register and displacement (OREG), or a constant. Finally, these instructions set the condition 
codes, and so can be used in condition contexts: the cookie and rewriting rules reflect this. 

The Template Matching Algorithm 

The heart of the second pass is the template matching algorithm, in the routine match. Match is 
called with a tree and a cookie; it attempts to match the given tree against some template that will 
transform it according to one of the goals given in the cookie. If a match is successful, the transformation 
is applied; expand is called to generate the assembly code, and then reclaim rewrites the tree, and reclaims 
the resources, such as registers, that might have become free as a result of the generated code. 

This part of the compiler is among the most time critical. There is a spectrum of implementation 
techniques available for doing this matching. The most naive algorithm simply looks at the templates one 
by one. This can be considerably improved upon by restricting the search for an acceptable template. It 
would be possible to do better than this if the templates were given to a separate program that ate them and 
generated a template matching subroutine. This would make maintenance of the compiler much more 
complicated, however, so this has not been done. 

The matching algorithm is actually carried out by restricting the range in the table that must be 
searched for each opcode. This introduces a number of complications, however, and needs a bit of sym­
pathetic help by the person constructing the compiler in order to obtain best results. The exact tuning of 
this algorithm continues; it is best to consult the code and comments in match for the latest version. 

In order to match a template to a tree, it is necessary to match not only the cookie and the operator of 
the root, but also the types and shapes of the left and right descendants (if any) of the tree. A convention is 
established here that is carried out throughout the second pass of the compiler. If a node represents a unary 
operator, the single descendant is always the "left" descendant. If a node represents a unary operator or a 
leaf node (no descendants) the "right" descendant is taken by convention to be the node itself. This 
enables templates to easily match leaves and conversion operators, for example, without any additional 
mechanism in the matching program. 

The type matching is straightforward; it is possible to specify any combination of basic types, gen­
eral pointers, and pointers to one or more of the basic types. The shape matching is somewhat more com­
plicated, but still pretty simple. Templates have a collection of possible operand shapes on which the 
opcode might match. In the simplest case, an add operation might be able to add to either a register vari­
able or a scratch register, and might be able (with appropriate help from the assembler) to add an integer 
constant (ICON), a static memory cell (NAME), or a stack location (OREG). 

It is usually attractive to specify a number of such shapes, and distinguish between them when the 
assembler output is produced. It is possible to describe the union of many elementary shapes such as 
ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To handle at least the sim­
ple forms of indirection, one can also match some more complicated forms of trees: ST ARNM and ST AR­
REG can match more complicated trees headed by an indirection operator, and SFLD can match certain 
trees headed by a FLD operator. These patterns call machine dependent routines that match the patterns of 
interest on a given machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie 
on word boundaries: this may be of some importance on word addressed machines. Finally, there are some 
special shapes: these may not be used in conjunction with the other shapes, but may be defined and 
extended in machine dependent ways. The special shapes SZERO, SONE, and SMONE are predefined and 
match constants 0, 1, and -1, respectively; others are easy to add and match by using the machine depen­
dent routine special. 
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When a template has been found that matches the root of the tree, the cookie, and the shapes and 
types of the descendants, there is still one bar to a total match: the template may call for some resources 
(for example, a scratch register). The routine allo is called, and it attempts to allocate the resources. If it 
cannot, the match fails; no resources are allocated If successful, the allocated resources are given numbers 
1, 2, etc. for later reference when the assembly code is generated The routines expand and reclaim are 
then called The match routine then returns a special value, MDONE. If no match was found, the value 
MNOPE is returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule. 
Mate h is also used to select rewriting rules, although the way of doing this is pretty straightforward. A 
special cookie, FORREW, is used to ask match to search for a rewriting rule. The rewriting rules are 
keyed to various opcodes; most are carried out in order. Since the question of when to rewrite is one of 
the key issues in code generation, it will be taken up again later. 

Register Allocation 

The register allocation routines, and the allocation strategy, play a central role in the correctness of 
the code generation algorithm. If there are bugs in the Sethi-Ullman computation that cause the number of 
needed registers to be underestimated, the compiler may run out of scratch registers; it is essential that the 
allocator keep track of those registers that are free and busy, in order to detect such conditions. 

Allocation of registers takes place as the result of a template match; the routine aUo is called with a 
word describing the number of A registers, B registers, and temporary locations needed. The allocation of 
temporary locations on the stack is relatively straightforward, and will not be further covered; the book­
keeping is a bit tricky, but conceptually trivial, and requests for temporary space on the stack will never 
fail. 

Register allocation is less straightforward. The two major complications are pairing and sharing. 
In many machines, some operations (such as multiplication and division), and/or some types (such as longs 
or double precision) require even/odd pairs of registers. Operations of the first type are exceptionally 
difficult to deal with in the compiler; in fact, their theoretical properties are rather bad as well. 9 The second 
issue is dealt with rather more successfully; a machine dependent function called szty(t) is called that 
returns 1 or 2, depending on the number of A registers required to hold an object of type t. If szty returns 
2, an even/odd pair of A registers is allocated for each request. As part of its duties, the routine usable 
finds usable register pairs for various operations. This task is not as easy as it sounds; it does not suffice to 
merely use szty on the expression tree, since there are situations in which a register pair temporary is 
needed even though the result of the expression requires only one register. This can occur with assignment 
operator expressions which have int type but a double right hand side, or with relational expressions where 
one operand is 80at and the other double. 

The other issue, sharing, is more subtle, but important for good code quality. When registers are 
allocated, it is possible to reuse registers that hold address infonnation, and use them to contain the values 
computed or accessed. For example, on the IBM 360, if register 2 has a pointer to an integer in it, we may 
load the integer into register 2 itself by saying: 

L 2,0(2) 

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the target 
register first, and then inserting the desired character: 

SR 3,3 
IC 3,0(2) 

In the first case, if register 3 were used as the target, it would lead to a larger number of registers used for 
the expression than were required; the compiler would generate inefficient code. On the other hand, if 
register 2 were used as the target in the second case, the code would simply be wrong. In the first case, 
register 2 can be shared while in the second, it cannot 

In the specification of the register needs in the templates, it is possible to indicate whether required 
scratch registers may be shared with possible registers on the left or the right of the input tree. In order that 
a register be shared, it must be scratch, and it must be used only once, on the appropriate side of the tree 
being compiled. 
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The allo routine thus has a bit more to do than meets the eye; it callsfreereg to obtain a free register 
for each A and B register request. Freereg makes multiple calls on the routine usable to decide if a given 
register can be used to satisfy a given need. Usable calls shareit if the register is busy, but might be 
shared. Finally, shareit calls ushare to decide if the desired register is actually in the appropriate subtree, 
and can be shared 

Just to add additional complexity, on some machines (such as the IBM 370) it is possible to have 
"double indexing" forms of addressing; these are represented by OREG's with the base and index regis­
ters encoded into the register field. While the register allocation and deallocation per se is not made more 
difficult by this phenomenon, the code itself is somewhat more complex. 

Having allocated the registers and expanded the assembly language, it is time to reclaim the 
resources; the routine reclaim does this. Many operations produce more than one result. For example, 
many arithmetic operations may produce a value in a register, and also set the condition codes. Assign­
ment operations may leave results both in a register and in memory. Reclaim is passed three parameters; 
the tree and cookie that were matched, and the rewriting field of the template. The rewriting field allows 
the specification of possible results; the tree is rewritten to reflect the results of the operation. If the tree 
was computed for side effects only (FOREFF), the tree is freed, and all resources in it reclaimed. If the 
tree was computed for condition codes, the resources are also freed, and the tree replaced by a special node 
type, FORCC. Otherwise, the value may be found in the left argument of the root, the right argument of 
the root, or one of the temporary resources allocated In these cases, first the resources of the tree, and the 
newly allocated resources, are freed; then the resources needed by the result are made busy again. The 
final result must always match the shape of the input cookie; otherwise, the compiler error "cannot 
reclaim" is generated There are some machine dependent ways of preferring results in registers or 
memory when there are multiple results matching multiple goals in the cookie. 

Reclaim also implements, in a curious way, C's "usual arithmetic conversions". When a value is 
generated into a temporary register, reclaim decides what the type and size of the result will be. Unless 
automatic conversion is specifically suppressed in the code template with the T macro, reclaim converts 
char and short results to int, unsigned char and unsigned short results to unsigned int, and float into 
double (for double only floating point arithmetic). This conversion is a simple type pun; no instructions for 
converting the value are actually emitted. This implies that registers must always contain a value that is at 
least as wide as a register, which greatly restricts the range of possible templates. 

The Machine Dependent Interface 

The files order.e, loeaI2.e, and table.e, as well as the header file mae2defs, represent the machine 
dependent portion of the second pass. The machine dependent portion can be roughly divided into two: the 
easy portion and the hard portion. The easy portion tells the compiler the names of the registers, and 
arranges that the compiler generate the proper assembler formats, opcode names, location counters, etc. 
The hard portion involves the Sethi-Ullman computation, the rewriting rules, and, to some extent, the tem­
plates. It is hard because there are no real algorithms that apply; most of this portion is based on heuristics. 
This section discusses the easy portion; the next several sections will discuss the hard portion. 

If the compiler is adapted from a compiler for a machine of similar architecture, the easy part is 
indeed easy. In mae2defs, the register numbers are defined, as well as various parameters for the stack 
frame, and various macros that describe the machine architecture. If double indexing is to be permitted, for 
example, the symbol R2REGS is defined. Also, a number of macros that are involved in function call pro­
cessing, especially for unusual function call mechanisms, are defined here. 

In loeaI2.e, a large number of simple functions are defined. These do things such as write out 
opcodes, register names, and address forms for the assembler. Part of the function call code is defined 
here; that is nontrivial to design, but typically rather straightforward to implement. Among the easy rou­
tines in order.e are routines for generating a created label, defining a label, and generating the arguments 
of a function call. 

These routines tend to have a local effect, and depend on a fairly straightforward way on the target 
assembler and the design decisions already made about the compiler. Thus they will not be further treated 
here. 
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The Rewriting Rules 

When a tree fails to match any template, it becomes a candidate for rewriting. Before the tree is 
rewritten, the machine dependent routine nexteook is called with the tree and the cookie; it suggests 
another cookie that might be a better candidate for the matching of the tree. If all else fails, the templates 
are searched with the cookie FORREW, to look for a rewriting rule. The rewriting rules are of two kinds; 
for most of the common operators, there are machine dependent rewriting rules that may be applied; these 
are handled by machine dependent functions that are called and given the tree to be computed. These rou­
tines may recursively call order or eodgen to cause certain subgoals to be achieved; if they actually call 
for some alteration of the tree, they return 1, and the code generation algorithm recanonicalizes and tries 
again. If these routines choose not to deal with the tree, the default rewriting rules are applied. 

The assignment operators, when rewritten, call the routine setasg. This is assumed to rewrite the 
tree at least to the point where there are no side effects in the left hand side. If there is still no template 
match, a default rewriting is done that causes an expression such as 

a +=b 

to be rewritten as 

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and b an 
character) that otherwise might need separate table entries. 

Simple assignment, structure assignment, and all forms of calls are handled completely by the 
machine dependent routines. For historical reasons, the routines generating the calls return 1 on failure, 0 
on success, unlike the other routines. 

The machine dependent routine setbin handles binary operators; it too must do most of the job. In 
particular, when it returns 0, it must do so with the left hand side in a temporary register. The default 
rewriting rule in this case is to convert the binary operator into the associated assignment operator; since 
the left hand side is assumed to be a temporary register, this preserves the semantics and often allows a 
considerable saving in the template table. 

The increment and decrement operators may be dealt with with the machine dependent routine 
senner. If this routine chooses not to deal with the tree, the rewriting rule replaces 

x ++ 

by 

((x+=J)-J) 

which preserves the semantics. Once again, this is not too attractive for the most common cases, but can 
generate close to optimal code when the type of x is unusual. 

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The machine 
dependent routine offstar is extremely important for the efficient generation of code. Offstar is called with 
a tree that is the direct descendant of a UNARY MUL node; its job is to transform this tree so that the com­
bination of UNARY MUL with the transformed tree becomes addressable. On most machines, of/star can 
simply compute the tree into an A or B register, depending on the architecture, and then canon will make 
the resulting tree into an OREG. On many machines, offstar can profitably choose to do less work than 
computing its entire argument into a register. For example, if the target machine supports OREG's with a 
constant offset from a register, and of/star is called with a tree of the form 

expr + eonst 

where eonst is a constant, then offstar need only compute expr into the appropriate form of register. On 
machines that support double indexing, offstar may have even more choice as to how to proceed. The 
proper tuning of of/star, which is not typically too difficult, should be one of the first tries at optimization 
attempted by the compiler writer. 
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The Sethi-Ullman Computation 

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This computation is 
closely linked with the rewriting rules and the templates. As mentioned before, the Sethi-Ullman numbers 
are expected to estimate the number of scratch registers needed to compute the subtrees without using any 
stores. However, the original theory does not apply to real machines. For one thing, the theory assumes 
that all registers are interchangeable. Real machines have general purpose, floating point, and index regis­
ters, register pairs, etc. The theory also does not account for side effects; this rules out various forms of 
pathology that arise from assignment and assignment operators. Condition codes are also undreamed of. 
Finally, the influence of types, conversions, and the various addressability restrictions and extensions of 
real machines are also ignored. 

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly useful in a 
real compiler. The notion that one should attempt to estimate the resource needs of trees before starting the 
code generation provides a natural means of splitting the code generation problem, and provides a bit of 
redundancy and self checking in the compiler. Moreover, if writing the Sethi-Ullman routines is hard, 
describing, writing, and debugging the alternative (routines that attempt to free up registers by stores into 
temporaries "on the fly") is even worse. Nevertheless, it should be clearly understood that these routines 
exist in a realm where there is no "right" way to write them; it is an art, the realm of heuristics, and, con­
sequently, a major source of bugs in the compiler. Often, the early, crude versions of these routines give 
little trouble; only after the compiler is actually working and the code quality is being improved do serious 
problem have to be faced. Having a simple, regular machine architecture is worth quite a lot at this time. 

The major problems arise from asymmetries in the registers: register pairs, having different kinds of 
registers, and the related problem of needing more than one register (frequently a pair) to store certain data 
types (such as longs or doubles). There appears to be no general way of treating this problem; solutions 
have to be fudged for each machine where the problem arises. On the Honeywell 66, for example, there 
are only two general purpose registers, so a need for a pair is the same as the need for two registers. On the 
IBM 370, the register pair (0,1) is used to do multiplications and divisions; registers ° and 1 are not gen­
erally considered part of the scratch registers, and so do not require allocation explicitly. On the Interdata 
8/32, after much consideration, the decision was made not to try to deal with the register pair issue; opera­
tions such as multiplication and division that required pairs were simply assumed to take all of the scratch 
registers. Several weeks of effort had failed to produce an algorithm that seemed to have much chance of 
running successfully without inordinate debugging effort. The difficulty of this issue should not be minim­
ized; it represents one of the main intellectual efforts in porting the compiler. Nevertheless, this problem 
has been fudged with a degree of success on nearly a dozen machines, so the compiler writer should not 
abandon hope. 

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather subtle 
ways. As already discussed, the store routine uses the Sethi-Ullman numbers to decide which subtrees are 
too difficult to compute in registers, and must be stored. There are also subtle interactions between the 
rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree such as 

A-B 

where A and B are expressions; suppose further that B takes two registers, and A one. It is possible to 
compute the full expression in two registers by first computing B, and then, using the scratch register used 
by B , but not containing the answer, compute A. The subtraction can then be done, computing the expres­
sion. (Note that this assumes a number of things, not the least of which are register-ta-register subtraction 
operators and symmetric registers.) If the machine dependent routine setbin, however, is not prepared to 
recognize this case and compute the more difficult side of the expression first, the Sethi-Ullman number 
must be set to three. Thus, the Sethi-Ullman number for a tree should represent the code that the machine 
dependent routines are actually willing to generate. 

The interaction can go the other way. If we take an expression such as 

*(p+i) 

where p is a pointer and i an integer, this can probably be done in one register on most machines. Thus, its 
Sethi-Ullman number would probably be set to one. If double indexing is possible in the machine, a 
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possible way of computing the expression is to load both p and i into registerst and then use double index­
ing. This would use two scratch registers; in such a caset it is possible that the scratch registers might be 
unobtainable, or might make some other part of the computation run out of registers. The usual solution is 
to cause offstar to ignore opportunities for double indexing that would tie up more scratch registers than 
the Sethi-Ullman number had reserved 

In summaryt the Sethi-Ullman computation represents much of the craftsmanship and artistry in any 
application of the portable compiler. It is also a frequent source of bugs. Algorithms are available that will 
produce nearly optimal code for specialized machines, but unfortunately most existing machines are far 
removed from these ideals. The best way of proceeding in practice is to start with a compiler for a similar 
machine to the target, and proceed very carefully. 

Register Allocation 

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does register alloca­
tion, if appropriate. This routine does relatively little, in general; this is especially true if the target 
machine is fairly regular. There are a few cases where it is assumed that the result of a computation takes 
place in a particular register; switch and function return are the two major places. The expression tree has 
a field, rail, that may be filled with a register number; this is taken to be a preferred register, and the first 
temporary register allocated by a template match will be this preferred one, if it is free. If not, no particular 
action is taken; this is just a heuristic. If no register preference is present, the field contains NOPREF. In 
some cases, the result must be placed in a given register, no matter what. The register number is placed in 
rail, and the mask MUSTDO is logically or' ed in with it. In this case, if the subtree is requested in a regis­
ter, and comes back in a register other than the demanded one, it is moved by calling the routine rmove. If 
the target register for this move is busy, it is a compiler error. 

Note that this mechanism is the only one that will ever cause a register-to-register move between 
scratch registers (unless such a move is buried in the depths of some template). This simplifies debugging. 
In some cases, there is a rather strange interaction between the register allocation and the Sethi-Ullman 
number; if there is an operator or situation requiring a particular register, the allocator and the Sethi­
Ullman computation must conspire to ensure that the target register is not being used by some intermediate 
result of some far-removed computation. This is most easily done by making the special operation take all 
of the free registers, preventing any other partially-computed results from cluttering up the works. 

Template Shortcuts 

Some operations are just too hard or too clumsy to be implemented in code templates on a particular 
architecture. 

One way to handle such operations is to replace them with function calls. The intermediate file read­
ing code in reader.c contains a call to an implementation dependent macro MYREADER; this can be 
defined to call various routines which walk the code tree and perform transformations. On the VAX, for 
example, unsigned division and remainder operations are far too complex to encode in a template. The 
routine hardops is called from a tree walk in myreader to detect these operations and replace them with 
calls to the C runtime functions udiv and urem. (There are complementary functions audiv and aurem 
which are provided as support for unsigned assignment operator expressions; they are different from udiv 
and urem because the left hand side of an assignment operator expression must be evaluated only once.) 
Note that arithmetic support routines are always expensive; the compiler makes an effort to notice common 
operations such as unsigned division by a constant power of two and generates optimal code for these 
inline. 

Another escape involves the routine zzzcode. This function is called from expand to process tem­
plate macros which start with the character Z. On the v AX, many complex code generation problems are 
swept under the rug into zzzcode. Scalar type conversions are a particularly annoying issue; they are pri­
marily handled using the macro ZA. Rather than creating a template for each possible conversion and 
result, which would be tedious and complex given C's many scalar types, this macro allows the compiler to 
take shortcuts. Tough conversions such as unsigned into double are easily handled using special code 
under ZA. One convention which makes scalar conversions somewhat more difficult than they might oth­
erwise be is the strict requirement that values in registers must have a type that is as wide or wider than a 
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single register. This convention is used primarily to implement the "usual arithmetic conversions" of C, 
but it can get in the way when converting between (say) a char value and an unsigned short. A routine 
named collapsible is used to determine whether one operation or two is needed to produce a register-width 
result. 

Another convenient macro is ZP. This macro is used to generate an appropriate conditional test after 
a comparison. This makes it possible to avoid a profusion of template entries which essentially duplicate 
each other, one entry for each type of test mUltiplied by the number of different comparison conditions. A 
related macro, ZN, is used to normalize the result of a relational test by producing an integer 0 or 1. 

The macro ZS does the unlovely job of generating code for structure assignments. It tests the size of 
the structure to see what VAX instruction can be used to move it, and is capable of emitting a block move 
instruction for large structures. On other architectures this macro could be used to generate a function call 
to a block copy routine. 

The macro ZG was recently introduced to handle the thorny issue of assignment operator expres­
sions which have an integral left hand side and a floating point right hand side. These expressions are 
passed to the code generator without the usual type balancing so that good code can be generated for them. 
Older versions of the portable compiler computed these expressions with integer arithmetic; with the ZG 
operator, the current compiler can convert the left hand side to the appropriate floating type, compute the 
expression with floating point arithmetic, convert the result back to integral type and store it in the left hand 
side. These operations are performed by recursive calls to zzzcode and other routines related to expand. 

An assortment of other macros finish the job of interpreting code templates. Among the more 
interesting ones: ZC produces the number of words pushed on the argument stack, which is useful for 
function calls; ZD and ZE produce constant increment and decrement operations; ZL and ZR produce the 
assembler letter code (I, w or b) corresponding to the size and type of the left and right operand respec­
tively. 

Shared Code 

The lint utility shares sources with the portable compiler. Lint uses all of the machine independent 
pass 1 sources, and adds its own set of "machine dependent" routines, contained mostly in lint.c. Lint 
uses a private intermediate file format and a private pass 2 whose source is Ipass2.c. Several modifications 
were made to the C scanner in scan.c, conditionally compiled with the symbol LINT, in order to support 
lint's convention of passing "pragma" information inside special comments. A few other minor 
modifications were also made, e.g. to skip over asm statements. 

The [17 and pc compilers use a code generator which shares sources with pass 2 of the portable com­
piler. This code generator is very similar to pass 2 but uses a different intermediate file format Three 
source files are needed in addition to the pass 2 sources. fort.c is a machine independent source file which 
contains a pass 2 main routine that replaces the equivalent routine in reader.c, together with several rou­
tines for reading the binary intermediate file. fort.c includes the machine dependent file fort.h, which 
defines two trivial label generation routines. A header file lusrlincludelpcc.h defines opcode and type sym­
bols which are needed to provide a standard intermediate file format; this file is also included by the For­
tran and Pascal compilers. The creation of this header file made it necessary to make some changes in the 
way the portable C compiler is built These changes were made with the aim of minimizing the number of 
lines changed in the original sources. Macro symbols in pcc.h are flagged with a unique prefix to avoid 
symbol name collisions in the Fortran and Pascal compilers, which have their own internal opcode and type 
symbols. A sed (1) script is used to strip these prefixes, producing an include file named pcclocal.h which 
is specific to the portable C compiler and contains opcode symbols which are compatible with the original 
opcode symbols. A similar sed script is used to produce a file of Yacc tokens for the C grammar. 

A number of changes to existing source files were made to accommodate the Fortran-style pass 2. 
These changes are conditionally compiled using the symbol FORT. Many changes were needed to imple­
ment single-precision arithmetic; other changes concern such things as the avoidance of floating point 
move instructions, which on the VAX can cause floating point faults when a datum is not a normalized float­
ing point value. In earlier implementations of the Fortran-style pass 2 there were a number of stub files 
which served only to define the symbol FORT in a particular source file; these files have been removed for 
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4.3BSD in favor of a new compilation strategy which yields up to three different objects from a single 
source file, depending on what compilation control symbols are defined for that file. 

The Fortran-style pass 2 uses a Polish Postfix intermediate file. The file is in binary format, and is 
logically divided into a stream of 32-bit records. Each record consists of an (opcode, value, type) triple, 
possibly followed inline by more descriptive information. The opcode and type are selected from the list 
in pcc.h ; the type encodes a basic type, around which may be wrapped type modifiers such as "pointer to" 
or "array of' to produce more complex types. The function of the value parameter depends on the 
opcode; it may be used for a flag, a register number or the value of a constant, or it may be unused. The 
optional inline data is often a null-terminated string, but it may also be a binary offset from a register or 
from a symbolic constant; sometimes both a string and an offset appear. 

Here are a few samples of intermediate file records and their interpretation: 

Opcode 

ICON 

NAME 

OREG 

PLUS 

FTEXT 

Type 

int 
char 

char 

80at 

Compiler Bugs 

Value 

flag=O 

flag=l 

reg=11 

size=2 

Optional 
Data 

binary=5 

binary=l, 
string=ft_foo_1t 

offset=l, 
string=ltv .2-v .11t 

string= It .text 0" 

Interpretation 

the integer constant 5 

a character·1 element in a Fortran common block 
/00 at offset 1 

the second element of a Fortran character*l array, 
expressed as an offset from a static base register 

a single precision add 

an inline assembler directive of length 2 (32-bit 
records) 

The portable compiler has an excellent record of generating correct code. The requirement for rea­
sonable cooperation between the register allocation, Sethi-Ullman computation, rewriting rules, and tem­
plates builds quite a bit of redundancy into the compiling process. The effect of this is that, in a surpris­
ingly short time, the compiler will start generating correct code for those programs that it can compile. The 
hard part of the job then becomes finding and eliminating those situations where the compiler refuses to 
compile a program because it knows it cannot do it right. For example, a template may simply be missing; 
this may either give a compiler error of the form "no match for op ... " ,or cause the compiler to go into an 
infinite loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the 
beginning of an expressions, and incremented at key spots in the compilation process; if this parameter gets 
too large, the compiler decides that it is in a loop, and aborts. Loops are also characteristic of botches in 
the machine-dependent rewriting rules. Bad Sethi-Ullman computations usually cause the scratch registers 
to run out; this often means that the Sethi-Ullman number was underestimated, so store did not store some­
thing it should have; alternatively, it can mean that the rewriting rules were not smart enough to find the 
sequence that sucomp assumed would be used. 

The best approach when a compiler error is detected involves several stages. First, try to get a small 
example program that steps on the bug. Second, tum on various debugging flags in the code generator, and 
follow the tree through the process of being matched and rewritten. Some flags of interest are -e, which 
prints the expression tree, -r, which gives information about the allocation of registers, -a, which gives 
information about the performance of rallo, and -0, which gives information about the behavior of order. 
This technique should allow most bugs to be found relatively quickly. 

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty arises 
because a fix to the particular bug of interest tends to break other code that already works. Regression 
tests, tests that compare the performance of a new compiler against the performance of an older one, are 
very valuable in preventing major catastrophes. 
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Compiler Extensions 

The portable C compiler makes a few extensions to the language described by Ritchie. 

Single precision arithmetic. "All floating arithmetic in C is carried out in double-precision; when­
ever a float appears in a an expression it is lengthened to double by zero-padding its fraction." -Dennis 
Ritchie. 1 Programmers who would like to use C to write numerical applications often shy away from it 
because C programs cannot perform single precision arithmetic. On machines such as the v AX which can 
cleanly support arithmetic on two (or more) sizes of floating point values, programs which can take advan­
tage of single precision arithmetic will run faster. A very popular proposal for the ANSI C standard states 
that implementations may perform single precision computations with single precision arithmetic; some 
actual C implementations already do this, and now the Berkeley compiler joins them. 

The changes are implemented in the compiler with a set of conditional compilation directives based 
on the symbol SPRECC; thus two compilers are generated, one with only double precision arithmetic and 
one with both double and single precision arithmetic. The cc program uses a flag -f to select the 
single/double version of the compiler (lIiblsccom) instead of the default double only version (lliblccom). It 
is expected that at some time in the future the double only compiler will be retired and the single/double 
compiler will become the default. 

There are a few implementation details of the single/double compiler which will be of interest to 
users and compiler porters. To maintain compatibility with functions compiled by the double only com­
piler, single precision actual arguments are still coerced to double precision, and formal arguments which 
are declared single precision are still "really" double precision. This may change if function prototypes of 
the sort proposed for the ANSI C standard are eventually adopted. Floating point constants are now 
classified into single precision and double precision types. The precision of a constant is determined from 
context; if a floating constant appears in an arithmetic expression with a single precision value, the constant 
is treated as having single precision type and the arithmetic expression is computed using single precision 
arithmetic. 

Remarkably little code in the compiler needed to be changed to implement the single/double com­
piler. In many cases the changes overlapped with special cases which are used for the Fortran-style pass 2 
(lIiblfl). Most of the single precision changes were implemented by Sam Leffler. 

Preprocessor extensions. The portable C compiler is normally distributed with a macro preprocessor 
written by J. F. Reiser. This preprocessor implements the features described in Ritchie's reference manual; 
it removes comments, expands macro definitions and removes or inserts code based on conditional compi­
lation directives. Two interesting extensions are provided by this version of the preprocessor: 

• When comments are removed, no white space is necessarily substituted; this has the effect of re­
tokenizing code, since the PCC will reanalyze the input Macros can thus create new tokens by 
clever use of comments. For example, the macro definition "#define foo(a,b) a/**/b" creates a 
macro [00 which concatenates its two arguments, forming a new token. 

• Macro bodies are analyzed for macro arguments without regard to the boundaries of string or charac­
ter constants. The definition "#define bar(a) "a\n'''' creates a macro which returns the literal form of 
its argument embedded in a string with a newline appended. 

These extensions are not portable to a number of other C preprocessors. They may be replaced in the 
future by corresponding ANSI C features, when the ANSI C standard has been formalized. 

Summary and Conclusion 

The portable compiler has been a useful tool for providing C capability on a large number of diverse 
machines, and for testing a number of theoretical constructs in a practical setting. It has many blemishes, 
both in style and functionality. It has been applied to many more machines than first anticipated, of a much 
wider range than originally dreamed of. Its use has also spread much faster than expected, leaving parts of 
the compiler still somewhat raw in shape. 

On the theoretical side, there is some hope that the skeleton of the sucomp routine could be gen­
erated for many machines directly from the templates; this would give a considerable boost to the portabil­
ity and correctness of the compiler, but might affect tunability and code quality. There is also room for 
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more optimization, both within optim and in the form of a portable' 'peephole" optimizer. 

On the practical, development side, the compiler could probably be sped up and made smaller 
without doing too much violence to its basic structure. Parts of the compiler deserve to be rewritten; the 
initialization code, register allocation, and parser are prime candidates. It might be that doing some or all 
of the parsing with a recursive descent parser might save enough space and time to be worthwhile; it would 
certainly ease the problem of moving the compiler to an environment where Yacc is not already present. 
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Writing NROFF Terminal Descriptions 

1. INTRODUCTION 

Eric Allman 
Britton-Lee, Inc. 

As of the Version 7 Phototypesetter release of UNIX, * NROFF has supported terminal description files. 
These files describe the characteristics of available hard-copy printers. This document describes some of 
the details of how to write terminal description files. 

Disclaimer. This document describes the results of my personal experience. The effects of changing 
some of the fields from the norms may not be well defined, even if it seems like it "ought" to work given 
the descriptions herein. These tables are known to vary slightly for different versions of UNIX. I have not 
seen UNIX 3.0 at this time, so this may be irrelevant in that context 

2. GENERAL 

When NROFF starts up, it looks for a - T flag describing the terminal type. For example, if the com­
mand line is given as 

nroff - TIOOs 

NROFF prepares output for a DTC300S terminal. This terminal is described in the file lusr/lib/termltab300s 
on most systems. 

If no -T flag is given, the terminal type 37 (ASR 37 - a relic assumed for historical humor only) is 
assumed. 

The terminal description table is a stripped" .0" file generated from a data structure, shown in figure 
one. This structure can be dealt with in two sections: the terminal capability descriptor (everything to 
c ode tab ), and the output descriptor. 

3. TERMINAL CAPABILITIES 

The section of the data structure up to but excluding code tab describes the basic functions and setup 
requirements of the terminal. Distances are measured in "units," which are 11240 of an inch in NROFF. In 
general, NROFF assumes that there is a "plot mode" on the terminal that allows you to move in small incre­
ments. A terminal has a resolution when in plot mode that is measured in units. This limits how well the 
terminal can simulate printing Greek and special characters. 

3.1. bset, breset 

These fields define bits in a vanilla stty(2) word (sg flags) to set and clear respectively when NROFF 
starts. They are normally represented in octal, although you could include <sgtty.h>. [Note: these fields 
are presumably different in UNIX 3.0.] 

3.2. Hor, Vert 

These represent the horizontal and vertical resolution respectively of the terminal when it is in plot 
mode. They are given in units. 

·UNIX is a trademark of Bell Laboratories. 



SMM:20-2 

#define INCH 240 
struct 

1* one inch in units *1 

{ 
int bset; 1* stty bits to set *1 
int breset; 1* stty bits to reset *1 
int Hor; 1* horizontal resolution in units *1 
int Vert; 1* vertical resolution in units *1 
int Newline; 1* the distance a newline moves *1 
int Char; 1* the distance one char moves *1 
intErn; 1* size of an Em *1 

Writing NROFF Terminal Descriptions 

int Halfline; 1* the distance a hal1line upldown moves *1 
int Adj; 1* default adjustment width *1 
char *twinit; 1* string to init the terminal *1 
char *twrest; 1* string to reset the terminal *1 
char *twnl; 1* string to send a newline (CR-LF) *1 
char *hlr; 1* half line reverse string *1 
char *hlf; 1* half line forward string *1 
char *flr; 1* full line reverse string *1 
char *bdon; 1* string to turn boldface on *1 
char *bdoff; 1* string to turn boldface off *1 
char *ploton; 1* string to turn plot on *1 
char *plotoff; 1* string to turn plot off *1 
char *up; 1* move up in plot mode *1 
char *down; 1* move down in plot mode *1 
char *right; 1* move right in plot mode *1 
char *left; 1* move left in plot mode *1 
char *codetab[256-32]; 1* the codes to send for characters *1 
int zzz; 1* padding *1 

}; 

Figure 1 - the terminal descriptor data structure 

3.3. Newline 

This field describes the distance that the twnl field (below) will move the paper; it is literally the size 
of a newline. 

3.4. Char 

This is the distance that a regular character will move the print head to the right 

3.5. Em 
The "em" is a typesetting unit, approximately equal to the width of the letter "m". In NROFF driver 

tables, this must be the distance a space or backspace character will move the carriage. 

3.6. Halfline 

This is the distance that the hlr or hlfstrings move the print head (reverse or forward respectively). 

3.7. Adj 

This is the resolution that NROFF will normally adjust your lines to horizontally. Typically this is the 
same as Char. If the -e flag is given to NROFF, output resolution will be to the full device resolution. 
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3.8. twinit, twrest 

These strings are output when NROFF starts and finishes respectively. 

3.9. twnl 

This string is output when NROFF wants to do a carriage return. Typically it will be "\r\n". 
Remember, the terminal will normally have CRMOD turned off when this is set. 

3.10. hlr, hlf 

These strings are sent to move the carriage back or forward one half line respectively. The actual 
amount that they moved is defined by Halfiine. The carriage should be left in the same column. 

3.11. fir 

The string to send to move a full line backwards. This should leave the carriage in the same column. 

3.12. bdon, bdotT 

These strings are sent to turn boldface mode on and off respectively. Normally this will set the ter­
minal into overstrike mode. If they are not given, some newer versions of NROFF will output the characters 
four times to force overstriking. 

3.13. ploton, plototT 

These strings turn plot mode on and off respectively. In plot mode, the carriage moves a very small 
amount, and only under specific control; i.e., characters do not automatically cause any carriage motion. 

3.14. up, down, right, left 

These strings are only output in plot mode. They should move the carriage up, down, left, and right 
respectively; they will move the carriage a distance of Hor or Vert as appropriate. 

3.1S. An Example 

Consider the following table describing a DTC3OOS: 

/*bset*/ 0, 
/*breset*/ 0177420, 
I*Hor*1 INCH/6O, 
I*Vert*! INCH/48 , 
I*Newline*1 INCH/6, 
/*Char*/ INCH/1O, 
I*Em*! INCH/1O, 
1 *Halfline* 1 INCH/12, 
1* Adj*! INCH/10, 
l*twinit*1 "\033\006" , 
/*twrest*/ "\033\006" , 
l*twnl*1 "\0 1 5\n", 
I*hlr*! "\033H", 
I*hlf*! "\033h", 
!*flr*1 "\032", 
!*bdon*/ "" , 
I*bdoff*! "" , 
!*ploton*! "\006", 
/*plotoff*1 "\033\006" , 
!*up*1 "\032", 
I*down*! "\n" , 
l*right*1 " " , 
I*left*/ "\b", 
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This describes a terminal that should have the ALLDELA Y and CRMOD bits turned off, 1/60" horizontal 
and 1/48" vertical resolution, six lines per inch and ten characters per inch, including space, halfline takes 
1/12" (one half of a full line), should send ESC-control-F to initialize and reset the terminal (to insure that 
it is in a normal state), takes <CR><LF> to give a newline, <ESC>H to move back one half line, <ESC>h 
to move forward one half line, control-Z to move back one full line, has no bold mode, takes control-F to 
enter plot mode and escape-control-F to exit plot mode, and uses control-Z, linefeed, space, and backspace 
to move up, down, right, and left respectively when in plot mode. 

4. CHARACTER DESCRIPTIONS 

There is one character description for each possible character to be output. The easiest way to find 
what character corresponds to what position is to edit an existing character table; one is given in the appen­
dix as an example. Character representations are represented as a string per character. 

The first character of the string is interpreted as a binary number giving the number of character 
spaces taken up by this character. For regular characters this will always be "\001", but Greek and special 
characters can take more. If the 0200 bit is set in this character, it indicates that the character should be 
underlined if we are in italic (underline) mode. Thus, alphabetic and numeric descriptions will begin 
"\201" . 

The remainder of the string is output to represent the character. If the first output character (Le., the 
second character in the total string) has the 0200 bit set, the character will be output in plot mode so that 
fancy characters can be built up from existing characters. If necessary, the "\200" character can be used 
as a null character to force NROFF to set the terminal into plot mode. All characters without the 0200 bit are 
output literally; characters with the 0200 bit are not output, but are used to indicate local carriage move­
ment The next two bits (0140 bits) represent direction: 

0200 right 
0240 left 
0300 down 
0340 up 

The bottom five bits represent a distance in terminal resolution units. This is rather confusing, but the 
examples should make this much more clear. 

4.1. Some Examples 

The following examples are from the DTC300S table: 

"\001", 
"\001=", 
"\20 1 A" , 

l*space*1 
1*=*1 
I*A*I 

These entries show that all of these characters take one character width when output. The letter A is under­
lined in italic mode, but neither space nor equal sign is. 

"\OOlo\b+", l*bullet*1 
"\0020", l*square*1 
"\202fi", l*fi*1 

The bullet character takes only one character position, but is created by outputing the letter "0" and over­
striking it with a plus sign. The square character is approximated with two brackets; it takes two full char­
acter positions when output. The "fi" ligature is produced using the letters "r' and "i" (surprise!); it is 
underlined in italic mode. 

"\OOl\241c\202(\241",I*alpha*1 
"\00 l\200B\242\3021\202\342" , I*beta* 1 

The letters alpha and beta both take a single character position. The alpha is output by entering plot mode, 
moving left 1 terminal unit (1/60" if you recall), outputing the letter "c", moving right 2/60", outputing a 
left parenthesis, and finally moving left 1/60"; it is critical that the net space moved be zero both horizon­
tally and vertically. The beta first has a dummy 0200 character to enter plot mode but not output anything. 
It then outputs a "B", moves left 2/60", moves down 2/48", outputs a vertical bar (which is designed to 
particallyoverstrike the left edge of the "B", and finally move right 2/60" and up 2/48" to set us back to 
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the right place. 

5. INSTALLATION 

To install a terminal descriptor, make it up by editing an existing terminal descriptor. Assuming your 
terminal name is term, call your new descriptor tabterm.c. Then, execute the following commands: 

cc -c tabterm.c 
strip tabterm.c 
cp tabterm.o lusr/lib/termltabterm 

The directory lusrlsrc/cmdltroff/term typically has a shell file to do this. 



This table describes the DTC 300S. 

#define INCH 240 
/* 
DASI300S 
nroff driving tables 
width and code tables 
*/ 

struct { 
int bset; 
int breset; 
intHor; 
int Vert; 
int Newline; 
intChar; 
intErn; 
int Halfiine; 
intAdj; 
char *twinit; 
char *twrest; 
char *twnl; 
char *hlr; 
char *hlf; 
char *flr; 
char *bdon; 
char *bdoff; 
char *ploton; 
char *plotoff; 
char *up; 
char *down; 
char *right; 
char *left; 
char *codetab[256-32]; 
int zzz; 
} t= { 

/*bset*/ 0, 
/*breset*/ 0177420, 
/*Hor*/ INCH/60, 
/*Vert*/ INCH/48, 
/*Newline*/ INCH/6, 
/*Char*/INCH/10, 
/*Ern*/ INCH/10, 
/*Halfiine*/ INCH/12, 
/* Adj*/ INCH/10, 
/*twinit*/ "\033\006", 
/*twrest*/ "\033\006", 
/*twnl*/ "\Ol5\n", 
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APPENDIX 

A Sample Table 
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l*hlr*1 
l*hlf*l 
l*flr*1 
l*bdon*1" " , 
l*bdoff*1 
l*ploton*1 
l*plotoff*1 
l*up*1 
l*down*1 
l*right*/" ", 
1*left*1 "\b", 

tI\033HtI , 
tI\033h tl

, 

tI\032", 

t'" , 
"\006", 
"\033\006", 
"\032", 
"\n", 

l*codetab*1 
"\001 ", l*space*1 
"\001!", I*!*I 
"\001\'''',1*''*1 
"\001#",1*#*1 
"\001$", 1*$*1 
"\001%", 1*%*1 
"\001&", 1*&*1 
"\001''', 1*' close*1 
"\001(", 1*(*1 
"\001)", 1*)*1 
"\001 *",1***1 
"\001+",1*+*1 
"\001,", 1*,*1 
"\001-", 1*- hyphen*1 
"\001.", 1*.*1 
"\0011", 1*1*1 
"\2010",1*0*1 
"\2011",1*1*1 
"\2012",1*2*1 
tI\2013", 1*3*1 
"\2014", 1*4*1 
tI\2015", 1*5*1 
"\2016",1*6*1 
tI\2017" , 1*7*1 
"\2018",1*8*1 
"\2019",1*9*1 
tI\OOI:", 1*:*1 
"\001;", 1*;*1 
"\001<",1*<*1 
"\001=",1*=*1 
"\001>",/*>*1 
tI\OOl 1",1*1*1 
"\001@", I*@*I 
"\201A",I* A *1 
"\201B" ,I*B*I 
"\201C",I*C*1 
"\2010" ,1*0*1 
"\20 IE" ,I*E*I 
"\20 IF" , I*F*I 
"\201G" ,I*G*I 
"\20 1H",I *H*I 
"\2011", 1*1*1 
"\20 U", 1* J* 1 
"\201K" ,I*K*I 
n\201L",I*L*1 

SMM:20-7 
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"\201M", I*M*I 
"\20 IN" ,I*N*I 
"\2010" ,1*0*1 
"\201P",I*P*1 
"\201Q",I*Q*1 
"\201R" ,I*R *1 
"\2015",1*5*1 
"\201T",I*T*1 
"\201 U" ,I*U* I 
"\201V" ,I*V*I 
"\201W", I*W*I 
"\201X" ,I*X*I 
"\201Y",I*Y*1 
"\201Z" ,I*Z*I 
"\001[", 1*[*1 
"\001\\",1*\*1 
"\001]", 1*]*1 
"\001"''', I*A*I 
"\001 ",1* dash *1 
"\001"\ 1*' open*1 
"\201a", l*a*1 
"\201b",I*b*1 
"\201e", l*e*1 
"\201d",I*d*1 
"\201e", l*e*1 
"\201f', 1*f*1 
"\201g", l*g*1 
"\201h",I*h*1 
"\20li", l*i*1 
"\201j", l*j*1 
"\201k",I*k*1 
"\2011", 1*1*1 
"\20 1m" , l*m*1 
"\201n",I*n*1 
"\2010",1*0*1 
"\201p",I*p*1 
"\201q",I*q*1 
"\201r", 1*r*1 
"\2018", 1*8*1 
"\20 It'' , l*t*1 
"\201u",I*u*1 
"\201v",I*v*1 
"\201 w" ,I*w* I 
"\201x",I*x*1 
"\201y", l*y*1 
"\201z", l*z*1 
"\001 {", I*{*I 
"\0011", 1*1*1 
"\001}",1*}*1 
"\OOr", 1*-*1 
"\000\0", I*narrow sp*1 
"\001-", l*hyphen*1 
"\OOlo\b+", l*bullet*1 
"\002(] " , l*square*1 
"\001-", 1*3/4 em*1 
"\001 ", l*rule*1 
"\000\0" , 1* 114 *1 

Writing NROFF Terminal Descriptions 
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"\000\0" , 1* 112*1 
"\000\0", 1*3/4*1 
"\001-", l*minus*1 
"\202fi", l*fi*1 
"\202fl", I*fl * 1 
"\202ff', l*ff*1 
"\203ffi", l*ffi*1 
"\203ffl", l*ffl*1 
"\000\0", l*degree*1 
"\000\0" , l*dagger*1 
"\000\0", 1* section *1 
"\001''', I*foot mark*1 
"\001''', I*acute accent*1 
"\001 "', I*grave accent*1 
"\001 ", l*underrule*1 
"\001(', I*slash (longer)*1 
"\000\0", I*half narrow space*1 
"\001 ", I*unpaddable space*1 
"\001\241c\202(\241",I*alpha*1 
"\001\2ooB\242\3021\202\342",I*beta*1 
"\001\200)\2011\241",I*gamma*1 
"\001\2000\342<\302",I*delta*1 
"\001 <\b-" , l*epsilon*1 
"\001\200c\201\301,\241\343<\302",I*zeta*1 
"\001\200n\202\3021\242\342", l*eta*1 
"\0010\b-",I*theta*1 
"\00 li" , l*iota*1 
"\oolk", l*kappa*1 
"\001\200\\\304\241 '\301\241 '\345\202", 1*lambda*1 
"\001\200u\242,\202",I*mu*1 
"\001\241(\2031\242",I*nu*1 
"\001\200c\201\301,\241\343c\241\301 '\201\301", l*xi*1 
"\0010", l*omicron*1 
"\001\341-\303\"\301\"\343",I*pi*1 
"\001\2000\242\3021\342\202",I*rho*1 
"\001\2000\301\202,341\242",I*sigma*1 
"\001\200t\301\202'\243,\201\341",I*tau*1 
"\00 1 v", I*upsilon * 1 
"\OOlo\b/",I*phi*1 
"\00 Ix" , l*chi*1 
"\001\2001-\302\202'\244'\202\342",I*psi*1 
"\001\241u\203u\242",I*omega*1 
"\001\2421\202\343-\303\202'\242", I*Gamma*1 
"\001\2421\303-\204-\343\\\242", I*Delta *1 
"\0010\b=", I*Theta*1 
"\001\2421\204\\\242",I*Lambda*1 
"\000\0", I*Xi*1 
"\001\2420\204[]\242\343-\303", I*Pi*1 
"\001\2oo>\302-\345-\303",I*Sigma*1 
"\000\0", 1**1 
"\OOIY",I*Upsilon*1 
"\oolo\b[\b]",I*Phi*1 
"\001\2000-\302\202'\244'\202\342",I*Psi*1 
"\001\2000\302\241-\202-\241 \342", I*Omega*1 
"\000\0", I*square root*1 
"\000\0", I*terminal sigma*1 
"\000\0", I*root en*1 
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"\OOl>\b ", /*>=*/ 
"\OOl<\b -It /*<=*/ -' "\00 l=\b_" , /*identicallyequal*/ 
"\001-", /*equation minus*/ 
"\OOl=\b-", /*approx =*/ 
"\000\0", /* approximates */ 
"\OOl=\b/", /*not equal*/ 
"\002->", /*right arrow*/ 
"\002<-", /*left arrow*/ 
"\OOll\bA

", /*up arrow*/ 
"\000\0", /*down arrow*/ 
"\001=", /*equation equal*/ 
"\OOlx", /*multiply*/ 
"\00l/", /*divide*/ 
"\OOl+\b_", /*plus-minus*/ 
"\OOlU", /*cup (union)*/ 
"\000\0", /*cap (intersection)*/ 
"\000\0", /*subset of*/ 
"\000\0", /*superset of*/ 
"\000\0", /*improper subset*/ 
"\000\0", /* improper superset*/ 
"\00200", /*infinity*/ 

Writing NROFF Terminal Descriptions 

"\00 1\2000\201\301 '\241 \341 '\241\341 '\201\30 I" , /*partial derivati ve* / 
"\001\242\\\343-\204-\303/\242", /*gradient*/ 
"\001\200-\202\341,\301\242" , /*not*/ 
"\001\200/'\202'\243\306'\241 '\202\346", /*integral sign*/ 
"\000\0", /*proportional to*/ 
"\000\0", /*empty set*/ 
"\000\0", /*member of*/ 
"\001+", /*equation plus*/ 
"\00 1r\bO" , /*registered*/ 
"\00 1c\bO" , /*copyright*/ 
"\0011", /*box rule */ 
"\OOlc\b!", /*cent sign*! 
"\000\0", /*dbl dagger*! 
"\000\0", /*right hand*/ 
"\001 *", /*left hand*! 
"\001 *'\ /*math * */ 
"\000\0", /*bell system sign*/ 
"\0011", !*or (was star)*! 
"\0010", /*circle*/ 
"\0011", /*left top (of big curly)*/ 
"\0011", /*left bottom*/ 
"\0011", /*right top*! 
"\0011", /*right bot*/ 
"\0011", /*left center of big curly bracket*! 
"\0011", /*right center of big curly bracket*! 
"\0011", !*bold vertical*! 
"\0011", !*left floor (left bot of big sq bract)*! 
"\0011", /*right floor (rb of ")*/ 
"\0011", /*left ceiling (It of ")*/ 
"\ooll"};/*right ceiling (rt of ")*! 
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ABSTRACT 

A network of over eighty UNIXt computer systems has been established using the 
telephone system as its primary communication medium. The network was designed to 
meet the growing demands for software distribution and exchange. Some advantages of 
our design are: 

1. Purpose 

The startup cost is low. A system needs only a dial-up port, but systems with 
automatic calling units have much more flexibility. 

No operating system changes are required to install or use the system. 

The communication is basically over dial-up lines, however, hardwired communi­
cation lines can be used to increase speed. 

The command for sending/receiving files is simple to use. 

Keywords: networks, communications, software distribution, software mainte­
nance 

The widespread use of the UNIX system ritchie thompson bstj 1978 within Bell Laboratories has pro­
duced problems of software distribution and maintenance. A conventional mechanism was set up to distri­
bute the operating system and associated programs from a central site to the various users. However this 
mechanism alone does not meet all software distribution needs. Remote sites generate much software and 
must transmit it to other sites. Some UNIX systems are themselves central sites for redistribution of a par­
ticular specialized utility, such as the Switching Control Center System. Other sites have particular, often 
long-distance needs for software exchange; switching research, for example, is carried on in New Jersey, 
illinois, Ohio, and Colorado. In addition, general purpose utility programs are written at all UNIX system 
sites. The UNIX system is modified and enhanced by many people in many places and it would be very 
constricting to deliver new software in a one-way stream without any alternative for the user sites to 
respond with changes of their own. 

Straightforward software distribution is only part of the problem. A large project may exceed the 
capacity of a single computer and several machines may be used by the one group of people. It then 
becomes necessary for them to pass messages, data and other infonnation back an forth between comput­
ers. 

Several groups with similar problems, both inside and outside of Bell Laboratories, have constructed 
networks built of hardwired connections only. dolotta mas hey 1978 bstj network unix system chesson Our 
network, however, uses both dial-up and hardwired connections so that service can be provided to as many 
sites as possible. 

t UNIX is a trademark of Bell Laboratories. 
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2. Design Goals 

Although some of our machines are connected directly, others can only communicate over low-speed 
dial-up lines. Since the dial-up lines are often unavailable and file transfers may take considerable time, we 
spool all work and transmit in the background. We also had to adapt to a community of systems which are 
independently operated and resistant to suggestions that they should all buy particular hardware or install 
particular operating system modifications. Therefore, we make minimal demands on the local sites in the 
network. Our implementation requires no operating system changes; in fact, the transfer programs look 
like any other user entering the system through the normal dial-up login ports, and obeying all local protec­
tion rules. 

We distinguish "active" and "passive" systems on the network. Active systems have an automatic 
calling unit or a hardwired line to another system, and can initiate a connection. Passive systems do not 
have the hardware to initiate a connection. However, an active system can be assigned the job of calling 
passive systems and executing work found there; this makes a passive system the functional equivalent of 
an active system, except for an additional delay while it waits to be polled. Also, people frequently log into 
active systems and request copying from one passive system to another. This requires two telephone calls, 
but even so, it is faster than mailing tapes. 

Where convenient, we use hardwired communication lines. These permit much faster transmission 
and multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud; 
hardwired connections are asynchronous up to 9600 baud and might run even faster on special-purpose 
communications hardware. fraser spider 1974 ieee fraser channel network datamation 1975 Thus, systems 
typically join our network first as passive systems and when they find the service more important, they 
acquire automatic calling units and become active systems; eventually, they may install high-speed links to 
particular machines with which they handle a great deal of traffic. At no point, however, must users 
change their programs or procedures. 

The basic operation of the network is very simple. Each participating system has a spool directory, 
in which work to be done (files to be moved, or commands to be executed remotely) is stored. A standard 
program, uucico, performs all transfers. This program starts by identifying a particular communication 
channel to a remote system with which it will hold a conversation. Uucico then selects a device and estab­
lishes the connection, logs onto the remote machine and starts the uucico program on the remote machine. 
Once two of these programs are connected, they first agree on a line protocol, and then start exchanging 
work. Each program in turn, beginning with the calling (active system) program, transmits everything it 
needs, and then asks the other what it wants done. Eventually neither has any more work, and both exit 

In this way, all services are available from all sites; passive sites, however, must wait until called. A 
variety of protocols may be used; this conforms to the real, non-standard world. As long as the caller and 
called programs have a protocol in common, they can communicate. Furthermore, each caller knows the 
hours when each destination system should be called. If a destination is unavailable, the data intended for 
it remain in the spool directory until the destination machine can be reached. 

The implementation of this Bell Laboratories network between independent sites, all of which store 
proprietary programs and data, illustratives the pervasive need for security and administrative controls over 
file access. Each site, in configuring its programs and system files, limits and monitors transmission. In 
order to access a file a user needs access permission for the machine that contains the file and access per­
mission for the file itself. This is achieved by first requiring the user to use his password to log into his 
local machine and then his local machine logs into the remote machine whose files are to be accessed. In 
addition, records are kept identifying all files that are moved into and out of the local system, and how the 
requestor of such accesses identified himself. Some sites may arrange to permit users only to call up and 
request work to be done; the calling users are then called back before the work is actually done. It is then 
possible to verify that the request is legitimate from the standpoint of the target system, as well as the ori­
ginating system. Furthermore, because of the call-back, no site can masquerade as another even if it knows 
all the necessary passwords. 

Each machine can optionally maintain a sequence count for conversations with other machines and 
require a verification of the count at the start of each conversation. Thus, even if call back is not in use, a 
successful masquerade requires the calling party to present the correct sequence number. A would-be 
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impersonator must not just steal the correct phone number, user name, and password, but also the sequence 
count, and must call in sufficiently promptly to precede the next legitimate request from either side. Even a 
successful masquerade will be detected on the next correct conversation. 

3. Processing 

The user has two commands which set up communications, uuep to set up file copying, and uux to 
set up command execution where some of the required resources (system andlor files) are not on the local 
machine. Each of these commands will put work and data files into the spool directory for execution by' 
uucp daemons. Figure 1 shows the major blocks of the file transfer process. 

File Copy 

The uucico program is used to perform all communications between the two systems. It performs 
the following functions: 

Scan the spool directory for work. 

- Place a call to a remote system. 

Negotiate a line protocol to be used. 

Start program uucico on the remote system. 

Execute all requests from both systems. 

Log work requests and work completions. 

Uucico may be started in several ways; 

a) by a system daemon, 

b) by one of the uucp or uux programs, 

c) by a remote system. 

Scan For Work 

The file names in the spool directory are constructed to allow the daemon programs (uucieo. uuxqt) 
to determine the files they should look at, the remote machines they should call and the order in which the 
files for a particular remote machine should be processed. 

Call Remote System 

The call is made using information from several files which reside in the uucp program directory. At 
the start of the call process, a lock is set on the system being called so that another call will not be 
attempted at the same time. 

The system name is found in a "systems" file. The information contained for each system is: 

[1] system name, 

[2] times to call the system (days-of-week and times-of-day), 

[3] device or device type to be used for call, 

[4] line speed, 

[5] phone number, 

[6] login information (multiple fields). 

The time field is checked against the present time to see if the call should be made. The phone 
number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial sequences using a 
"dial-codes" file. This permits the same "phone number" to be stored at every site, despite local varia­
tions in telephone services and dialing conventions. 

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an available dev­
ice for the connection. The program will try all devices which satisfy [3] and [4] until a connection is 
made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a lock file is 
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created so that another copy of uucico will not try to use it. If the connection is complete, the login infor­
mation is used to log into the remote system. Then a command is sent to the remote system to start the 
uucico program. The conversation between the two uucico programs begins with a handshake started by 
the called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to receive 
the system identification and conversation sequence number. The response from the MASTER is verified 
by the SLAVE and if acceptable, protocol selection begins. 

Line Protocol Selection 

The remote system sends a message 

Pproto-list 

where proto-list is a string of characters, each representing a line protocol. The calling program checks the 
proto-list for a letter corresponding to an available line protocol and returns a use-protocol message. The 
use-protocol message is 

Ucode 

where code is either a one character protocol letter or a N which means there is no common protocol. 

Greg Chesson designed and implemented the standard line protocol used by the uucp transmission 
program. Other protocols may be added by individual installations. 

Work Processing 

During processing, one program is the MASTER and the other is SLAVE. Initially, the calling pro­
gram is the MASTER. These roles may switch one or more times during the conversation. 

There are four messages used during the work processing, each specified by the first character of the 
message. They are 

S send a file, 
R recei ve a file, 
C copy complete, 
H hang up. 

The MASTER will send R or S messages until all work from the spool directory is complete, at which 
point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding to 
yes or no for each request 

The send and receive replies are based on permission to access the requested file/directory. After 
each file is copied into the spool directory of the receiving system, a copy-complete message is sent by the 
receiver of the file. The message CY will be sent if the UNIX cp command, used to copy from the spool 
directory, is successful. Otherwise, a CN message is sent The requests and results are logged on both sys­
tems, and, if requested, mail is sent to the user reporting completion (or the user can request status informa­
tion from the log program at any time). 

The hangup response is determined by the SLA VE program by a work scan of the spool directory. If 
work for the remote system exists in the SLAVE's spool directory, a HN message is sent and the programs 
switch roles. If no work exists, an HY response is sent. 

A sample conversation is shown in Figure 2. 

Conversation Termination 

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols 
are turned off. Each program sends a final "OOtl message to the other. 

4. Present Uses 

One application of this software is remote mail. Normally, a UNIX system user writes Hmail dan" to 
send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on system "usg". 
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The primary uses of our network to date have been in software maintenance. Relatively few of the 
bytes passed between systems are intended for people to read. Instead, new programs (or new versions of 
programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has implemented a 
"stockroom" which allows remote users to call in and request software. He keeps a "stock list" of avail­
able programs, and new bug fixes and utilities are added regularly. In this way, users can always obtain the 
latest version of anything without bothering the authors of the programs. Although the stock list is main­
tained on a particular system, the items in the stockroom may be warehoused in many places; typically 
each program is' distributed from the home site of its author. Where necessary, uucp does remote-to­
remote copies. 

We also routinely retrieve test cases from other systems to determine whether errors on remote sys­
tems are caused by local misconfigurations or old versions of software, or whether they are bugs that must 
be fixed at the home site. This helps identify errors rapidly. For one set of test programs maintained by us, 
over 70% of the bugs reported from remote sites were due to old software, and were fixed merely by distri­
buting the current version. 

Another application of the network for software maintenance is to compare files on two different 
machines. A very useful utility on one machine has been Doug McIlroy's "diff" program which compares 
two text files and indicates the differences, line by line, between them. hunt mcilroy file Only lines which 
are not identical are printed. Similarly, the program "uudiff" compares files (or directories) on two 
machines. One of these directories may be on a passive system. The "uudiff" program is set up to work 
similarly to the inter-system mail, but it is slightly more complicated. 

To avoid moving large numbers of usually identical files, uudiff computes file checksums on each 
side, and only moves files that are different for detailed comparison. For large files, this process can be 
iterated; checksums can be computed for each line, and only those lines that are different actually moved. 

The "uux" command has been useful for providing remote output There are some machines which 
do not have hard-copy devices, but which are connected over 9600 baud communication lines to machines 
with printers. The uux command allows the formatting of the printout on the local machine and printing on 
the remote machine using standard UNIX command programs. 

5. Performance 

Throughput, of course, is primarily dependent on transmission speed. The table below shows the 
real throughput of characters on communication links of different speeds. These numbers represent actual 
data transferred; they do not include bytes used by the line protocol for data validation such as checksums 
and messages. At the higher speeds, contention for the processors on both ends prevents the network from 
driving the line full speed. The range of speeds represents the difference between light and heavy loads on 
the two systems. If desired, operating system modifications can be installed that permit full use of even 
very fast links. 

Nominal speed 
300 baud 

1200 baud 
9600 baud 

Characters/sec. 
27 

100-110 
200-850 

In addition to the transfer time, there is some overhead for making the connection and logging in ranging 
from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can be 
transferred in four minutes instead of the 2 days that might be required to mail a tape. 

Traffic between systems is variable. Between two closely related systems, we observed 20 files 
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single system 
would be around a dozen files per day. 

The total number of sites at present in the main network is 82, which includes most of the Bell 
Laboratories full-size machines which run the UNIX operating system. Geographically, the machines range 
from Andover, Massachusetts to Denver, Colorado. 

Uucp has also been used to set up another network which connects a group of systems in operational 
sites with the home site. The two networks touch at one Bell Labs computer. 
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6. Further Goals 

Eventually, we would like to develop a full system of remote software maintenance. Conventional 
maintenance (a support group which mails tapes) has many well-known disadvantages. brooks mythical 
man month 1975 There are distribution errors and delays, resulting in old software running at remote sites 
and old bugs continually reappearing. These difficulties are aggravated when there are 100 different small 
systems, instead of a few large ones. 

The availability of file transfer on a network of compatible operating systems makes it possible just 
to send programs directly to the end user who wants them. This avoids the bottleneck of negotiation and 
packaging in the central support group. The "stockroom" serves this function for new utilities and fixes to 
old utilities. However, it is still likely that distributions will not be sent and installed as often as needed. 
Users are justifiably suspicious of the "latest version" that has just arrived; all too often it features the 
"latest bug." What is needed is to address both problems simultaneously: 

1. Send distributions whenever programs change. 

2. Have sufficient quality control so that users will install them. 

To do this, we recommend systematic regression testing both on the distributing and receiving systems. 
Acceptance testing on the receiving systems can be automated and permits the local system to ensure that 
its essential work can continue despite the constant installation of changes sent from elsewhere. The work 
of writing the test sequences should be recovered in lower counseling and distribution costs. 

Some slow-speed network services are also being implemented. We now have inter-system "mail" 
and "diff," plus the many implied commands represented by "uux." However, we still need inter-system 
"write" (real-time inter-user communication) and "who" (list of people logged in on different systems). 
A slow-speed network of this sort may be very useful for speeding up counseling and education, even if not 
fast enough for the distributed data base applications that attract many users to networks. Effective use of 
remote execution over slow-speed lines, however, must await the general installation of multiplexable 
channels so that long file transfers do not lock out short inquiries. 

7. Lessons 

The following is a summary of the lessons we learned in building these programs. 

1. By starting your network in a way that requires no hardware or major operating system changes, you 
can get going quickly. 

2. Support will follow use. Since the network existed and was being used, system maintainers were 
easily persuaded to help keep it operating, including purchasing additional hardware to speed traffic. 

3. Make the network commands look like local commands. Our users have a resistance to learning 
anything new: all the inter-system commands look very similar to standard UNIX system commands 
so that little training cost is involved. 

4. An initial error was not coordinating enough with existing communications projects: thus, the first 
version of this network was restricted to dial-up, since it did not support the various hardware links 
between systems. This has been fixed in the current system. 
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The Time Synchronization Protocol (TSP) has been designed for specific use by the program timed, a 
local area network clock synchronizer for the UNIX 4.3BSD operating system. Timed is built on the 
DARPA UDP protocol [4] and is based on a master slave scheme. 

TSP serves a dual purpose. First, it supports messages for the synchronization of the clocks of the 
various hosts in a local area network. Second, it supports messages for the election that occurs among 
slave time daemons when, for any reason, the master disappears. The synchronization mechanism and the 
election procedure employed by the program timed are described in other documents [1,2,3]. 

Brieft.y, the synchronization software, which works in a local area network, consists of a collection of 
time daemons (one per machine) and is based on a master-slave structure. The present implementation 
keeps processor clocks synchronized within 20 milliseconds. A master time daemon measures the time 
difference between the clock of the machine on which it is running and those of all other machines. The 
current implementation uses ICMP Time Stamp Requests [5] to measure the clock difference between 
machines. The master computes the network time as the average of the times provided by nonfaulty 
clocks.1 It then sends to each slave time daemon the correction that should be performed on the clock of its 
machine. This process is repeated periodically. Since the correction is expressed as a time difference 
rather than an absolute time, transmission delays do not interfere with synchronization. When a machine 
comes up and joins the network, it starts a slave time daemon, which will ask the master for the correct 
time and will reset the machine's clock before any user activity can begin. The time daemons therefore 
maintain a single network time in spite of the drift of clocks away from each other. 

Additionally, a time daemon on gateway machines may run as a submaster. A submaster time dae­
mon functions as a slave on one network that already has a master and as master on other networks. In 
addition, a submaster is responsible for propagating broadcast packets from one network to the other. 

To ensure that service provided is continuous and reliable, it is necessary to implement an election 
algorithm that will elect a new master should the machine running the current master crash, the master ter­
minate (for example, because of a run-time error), or the network be partitioned. Under our algorithm, 
slaves are able to realize when the master has stopped functioning and to elect a new master from among 
themselves. It is important to note that since the failure of the master results only in a gradual divergence 

t UNIX is a trademark of Bell Laboratories. 
This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval Electronics 
Systems Command under contract No. NOOO39-84-C-0089, and by the Italian CSELT Corporation. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as representing official 
policies, either expressed or implied, of the Defense Research Projects Agency. of the US Government, or of CSEL T. 

1 A clock is considered to be faulty when its value is more than a small specified interval apart from the majority of the 
clocks of the machines on the same network. See [1,2] for more details. 
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of clock values, the election need not occur immediately. 

All the communication occurring among time daemons uses the TSP protocol. While some mes­
sages need not be sent in a reliable way, most communication in TSP requires reliability not provided by 
the underlying protocol. Reliability is achieved by the use of acknowledgements, sequence numbers, and 
retransmission when message losses occur. When a message that requires acknowledgment is not ack­
nowledged after multiple attempts, the time daemon that has sent the message will assume that the addres­
see is down. This document will not describe the details of how reliability is implemented, but will only 
point out when a message type requires a reliable transport mechanism. 

The message format in TSP is the same for all message types; however, in some instances, one or 
more fields are not used. The next section describes the message format. The following sections describe 
in detail the different message types, their use and the contents of each field. NOTE: The message format 
is likely to change in future versions of timed. 

Message Format 

All fields are based upon 8-bit bytes. Fields should be sent in network byte order if they are more 
than one byte long. The structure of a TSP message is the following: 

1) A one byte message type. 

2) A one byte version number, specifying the protocol version which the message uses. 

3) A two byte sequence number to be used for recognizing duplicate messages that occur when mes­
sages are retransmitted. 

4) Eight bytes of packet specific data. This field contains two 4 byte time values, a one byte hop count, 
or may be unused depending on the type of the packet 

5) A zero-terminated string of up to 256 ASCII characters with the name of the machine sending the 
message. 

The following charts describe the message types t show their fields, and explain their usages. For the 
purpose of the following discussion, a time daemon can be considered to be in one of three states: slave, 
master, or candidate for election to master. Also, the term broadcast refers to the sending of a message to 
all active time daemons. 

Adjtime Message 

Byte 1 I Byte 2 I B!te 3 1 Byte 4 
Type l Version No. 1 Sequence No. 

Seconds of Adjustment 
Microseconds of Adjustment 

Machine Name 
... 

Type: TSP _ADJTIME (1) 

The master sends this message to a slave to communicate the difference between the clock of the 
slave and the network time the master has just computed The slave will accordingly adjust the time of its 
machine. This message requires an acknowledgment 
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Acknowledgment Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ ACK (2) 

Both the master and the slaves use this message for acknowledgment only. It is used in several 
different contexts, for example in reply to an Adjtime message. 

Master Request Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 

Type I Version No. I Sequence No. 
(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _MASTERREQ (3) 

A newly-started time daemon broadcasts this message to locate a master. No other action is implied 
by this packet. It requires a Master Acknowledgment 

Master Acknowledgement 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

( unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _MASTERACK (4) 

The master sends this message to acknowledge the Master Request message and the Conflict 
Resolution Message. 
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Set Network Time Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

Seconds of Time to Set 
Microseconds of Time to Set 

Machine Name 

· .. 

The master sends this message to slave time daemons to set their time. This packet is sent to newly 
started time daemons and when the network date is changed It contains the master's time as an 
approximation of the network time. It requires an acknowledgment. The next synchronization round will 
eliminate the small time difference caused by the random delay in the communication channel. 

Master Active Message 

Byte 1 I Byte 2 I Byte 3 I Bvte4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ MASTERUP (6) 

The master broadcasts this message to solicit the names of the active slaves. Slaves will reply with a 
Slave Active message. 

Slave Active Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
( unused) 

Machine Name 

· .. 
Type: TSP _ SLA VEUP (7) 

A slave sends this message to the master in answer to a Master Active message. This message is also 
sent when a new slave starts up to inform the master that it wants to be synchronized. 
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Master Candidature Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ELECTION (8) 

A slave eligible to become a master broadcasts this message when its election timer expires. The 
message declares that the slave wishes to become the new master. 

Candidature Acceptance Message 

Byte 1 I Byte 2 J Bxte3 J Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ACCEPT (9) 

A slave sends this message to accept the candidature of the time daemon that has broadcast an 
Election message. The candidate will add the slave's name to the list of machines that it will control 
should it become the master. 

Candidature Rejection Message 

Byte 1 I Byte 2 J Bj'te 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _REFUSE (10) 

After a slave accepts the candidature of a time daemon, it will reply to any election messages from 
other slaves with this message. This rejects any candidature other than the first received. 
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Multiple Master Notification Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type 1 Version No.1 Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _CONFLICT (11) 

When two or more masters reply to a Master Request message, the slave uses this message to inform 
one of them that more than one master exists. 

Conflict Resolution Message 

Byte 1 I Byte 2 J Byte 3 1 Byte 4 

Type I Version No. I Sequence Noo 
(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _RESOLVE (12) 

A master which has been informed of the existence of other masters broadcasts this message to 
determine who the other masters are. 

Quit Message 

Byte 1 I Byte 2 I Byte 3 1 Bj'Je 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _QUIT (13) 

This message is sent by the master in three different contexts: 1) to a candidate that broadcasts an 
Master Candidature message, 2) to another master when notified of its existence, 3) to another master if a 
loop is detected. In all cases, the recipient time daemon will become a slave. This message requires an 
acknowledgement 
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Set Date Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 

Type I Version No. J Sequence No. 

Seconds of Time to Set 

Microseconds of Time to Set 

Machine Name 

· .. 
Type: TSP _ SETDA TE (22) 

The program date (1) sends this message to the local time daemon when a super-user wants to set the 
network date. If the local time daemon is the master, it will set the date; if it is a slave, it will communicate 
the desired date to the master. 

Set Date Request Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 

Type I Version No. I Sequence No. 

Seconds of Time to Set 

Microseconds of Time to Set 

Machine Name 

· .. 
Type: TSP _ SETDATEREQ (23) 

A slave that has received a Set Date message will communicate the desired date to the master using 
this message. 

Set Date Acknowledgment Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 

Type I Version No. I Sequence No. 

(unused) 

(unused) 

Machine Name 

· .. 
Type: TSP _ DATEACK (16) 

The master sends this message to a slave in acknowledgment of a Set Date Request Message. The 
same message is sent by the local time daemon to the program date( 1) to confirm that the network date has 
been set by the master. 
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Start Tracing Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ TRACEON (17) 

The controlling program timedc sends this message to the local time daemon to start the recording in 
a system file of all messages received. 

Stop Tracing Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _TRACEOFF (18) 

Timedc sends this message to the local time daemon to stop the recording of messages received. 

Master Site Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 
Type I Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _MSITE (19) 

Timedc sends this message to the local time daemon to find out where the master is running. 
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Remote Master Site Message 

Byte 1 J Byte 2 I Byte 3 I Byte 4 

Type 1 Version No. I Sequence No. 

(unused) 
(unused) 

Machine Name 

· .. 
Type: TSP _ MSlTEREQ (20) 

A local time daemon broadcasts this message to find the location of the master. It then uses the 
Acknowledgement message to communicate this location to timedc. 

Test Message 

Byte 1 I Byte 2 I Byte 3 I Byte 4 

Type I Version No. I Sequence No. 
(unused) 

(unused) 

Machine Name 

· .. 
Type: TSP _TEST (21) 

For testing purposes, timedc sends this message to a slave to cause its election timer to expire. 
NOTE: timed is not normally compiled to support this. 

Loop Detection Message 

Byte 1 Byte 2 I Byte 3 I Byte 4 

Type Version No. J Sequence No. I 

Hop Count (unused) 
(unused) 

Machine Name 

· .. 

This packet is initiated by all masters occasionally to attempt to detect loops. All submasters forward 
this packet onto the networks over which they are master. If a master receives a packet it sent out initially, 
it knows that a loop exists and tries to correct the problem. 
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