

SMM:16-2 SENDMAIL - An Internetwork Mail Router

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic functions
of the system. In section 3, details of usage are discussed. Section 4 compares sendmail to other internet
mail routers, and an evaluation of sendmail is given in section 5, including future plans.

1. DESIGN GOALS

Design goals for send mail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell version 7 mail
[UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully UUCP mail
[Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Postel77] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at least
brought to the attention of a human for correct disposal; no message should ever be completely
lost. This goal was considered essential because of the emphasis on mail in our environment. It
has turned out to be one of the hardest goals to satisfy, especially in the face of the many
anomalous message formats produced by various ARPANET sites. For example, certain sites
generate improperly formated addresses, occasionally causing error-message loops. Some hosts
use blanks in names, causing problems with UNIX mail programs that assume that an address is
one word. The semantics of some fields are interpreted slightly differently by different sites. In
summary, the obscure features of the ARPANET mail protocol really are used and are difficult to
support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal derives as
much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a single net­
work type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal requires con­
sideration of the contents of an address as well as its syntax in order to determine which gateway
to use. For example, the ARPANET is bringing up the TCP protocol to replace the old NCP pro­
tocol. No host at Berkeley runs both TCP and NCP, so it is necessary to look at the ARPANET
host name to detennine whether to route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program should be able
to run as is at any site (barring such basic changes as the CPU type or the operating system). We
have found this seemingly unimportant goal to be critical in real life. Besides the simple prob­
lems that occur when any program gets recompiled in a different environment, many sites like to
"fiddle" with anything that they will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let individuals
specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being delivered for
him. This feature allows users who are using specialized mailers that use a different format to
build their environment without changing the system, and facilitates specialized functions (such
as returning an "I am on vacation" message).

(8) Network traffic should be minimized by batching addresses to a single host where possible,
without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with a mail gen­
erating and sending program. When the mail is created, the generator calls send mail, which routes the
message to the correct mailer(s). Since some of the senders may be network servers and some of the
mailers may be network clients, sendmail may be used as an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it collects a
message generated by a user interface program (UIP) such as Berkeley Mail, MS [Crocker77b], or
MH [Borden79], edits the message as required by the destination network, and calls appropriate

SEND MAIL - An Internetwork Mail Router SMM:16-3

senderl sender2 sender3

sendmail

mailerl mailer2 mailer3

Figure 1 - Sendmail System Structure.

mailers to do mail delivery or queueing for network transmission l
. This discipline allows the inser­

tion of new mailers at minimum cost. In this sense sendmail resembles the Message Processing
Module (MPM) of [posteI79b].

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in receiving
and in sending mail. These are using the conventional UNIX argument vector/return status, speak­
ing SMTP over a pair of UNIX pipes, and speaking SMTP over an interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the process. A list
of recipients is sent in the argument vector, and the message body is sent on the standard input.
Anything that the mailer prints is simply collected and sent back to the sender if there were any
problems. The exit status from the mailer is collected after the message is sent, and a diagnostic
is printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [posteI82] can be used to run an interactive lock-step interface with
the mailer. A subprocess is still created, but no recipient addresses are passed to the mailer via
the argument list. Instead, they are passed one at a time in commands sent to the processes stan­
dard input. Anything appearing on the standard output must be a reply code in a special format.

lexcept when mailing to a file. when sendmail does the delivery directly.

SMM:16·4 SENDMAIL - An Internetwork Mail Router

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a 4.2bsd IPC chan­
nel [UNIX83]. This method is exceptionally flexible in that the mailer need not reside on the
same machine. It is normally used to connect to a sendmail process on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one of the three
methods described above. Sendmail operates in two distinct phases. In the first phase, it collects
and stores the message. In the second phase, message delivery occurs. If there were errors during
processing during the second phase, sendmail creates and returns a new message describing the
error andlor returns an status code telling what went wrong.

2.3.1. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the arguments are first
scanned and option specifications are processed. Recipient addresses are then collected, either
from the command line or from the SMTP RCPT command, and a list of recipients is created.
Aliases are expanded at this step, including mailing lists. As much validation as possible of the
addresses is done at this step: syntax is checked, and local addresses are verified, but detailed
checking of host names and addresses is deferred until delivery. Forwarding is also performed
as the local addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a name is aliased
or forwarded, the old name is retained in the list, and a flag is set that tells the delivery phase to
ignore this recipient. This list is kept free from duplicates, preventing alias loops and duplicate
messages deliverd to the same recipient, as might occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the beginning.
No formatting requirements are imposed on the message except that they must be lines of text
(Le., binary data is not allowed). The header is parsed and stored in memory, and the body of
the message is saved in a temporary file.

To simplify the program interface, the message is collected even if no addresses were
valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list, send mail calls the appropriate mailer.
Each mailer invocation sends to all users receiving the message on one host. Mailers that only
accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used to submit a
message to sendmail. Each copy of the message is prepended by a customized header. The
mailer status code is caught and checked, and a suitable error message given as appropriate.
The exit code must conform to a system standard or a generic message ("Service unavailable")
is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle the mail later,
sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, send mail returns the message to the sender for
retransmission. The letter can be mailed back or written in the file "dead.1etter" in the sender's

SENDMAIL - An Internetwork Mail Router SMM:16-S

home directory2.

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be inserted
under control of the configuration file. Some lines can be merged; for example, a "From:" line
and a "Full-name:" line can be merged under certain circumstances.

2.S. Configuration File

Almost all configuration information is read at runtime from an ASCII file, encoding macro
definitions (defining the value of macros used internally), header declarations (telling sendmail the
format of header lines that it will process specially, i.e., lines that it will add or reformat), mailer
definitions (giving information such as the location and characteristics of each mailer), and address
rewriting rules (a limited production system to rewrite addresses which is used to parse and rewrite
the addresses).

To improve performance when reading the configuration file, a memory image can be pro­
vided. This provides a "compiled" form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be llags and addresses. Flags set various processing options. Following flag
arguments, address arguments may be given, unless we are running in SMTP mode. Addresses fol­
low the syntax in RFC822 [Crocker82] for ARPANET address formats. In brief, the format is:

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets ("< >") is preferred over anything else. This rule implements the
ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic "machine-address" rather than the human "user name."

(3) Double quotes (tt) quote phrases; backslashes quote characters. Backslashes are more
powerful in that they will cause otherwise equivalent phrases to compare differently - for
example, user and "user" are equivalent, but \user is different from either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and nested. The
rewriting rules control remaining parsing3•

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival storage of mes­
sages, useful for project administration and history. Programs are useful as recipients in a variety of
situations, for example, to maintain a public repository of systems messages (such as the Berkeley
msgs program, or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address (i.e, not appear­
ing to be a valid address for another mailer) is scanned for two special cases. If prefixed by a verti­
cal bar (" I ") the rest of the address is processed as a shell command. If the user name begins with
a slash mark ("I' ') the name is used as a file name, instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits honored if send­
mail is running as root.

2Qbviously. if the site giving the error is not the originating site, the only reasonable option is to mail back to the sender. Also,
there are many more error disposition options, but they only effect the error message - the "return to sender" function is always
handled in one of these two ways.

3Disclaimer: Some special processing is done after rewriting local names; see below.

SMM:16-6 SENDMAIL - An Internetwork Mail Router

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows each
user to reroute incoming mail destined for that account Inclusion directs sendmail to read a file for
a list of addresses, and is normally used in conjunction with aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is indexed to
speed access. Only names that parse as local are allowed as aliases; this guarantees a unique
key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence of a ".for­
ward" file in their home directory. If it exists, the message is not sent to that user, but rather to
the list of users in that file. Often this list will contain only one address, and the feature will be
used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For example, for­
warding to:

" I/usr/locallnewmail myname"

will use a different incoming mailer.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: patbname

An address of this form reads the file specified by pathname and sends to all users listed in that
file.

The intent is not to support direct use of this feature, but rather to use this as a subset of
aliasing. For example, an alias of the form:

project: :inc1ude:/usr/projectJuserlist

is a method of letting a project maintain a mailing list without interaction with the system
administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :inc1ude: list is
changed

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The message
comes in two parts: a message header and a message body, separated by a blank line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab. Some
header fields have special internal meaning, and have appropriate special processing. Other headers
are simply passed through. Some header fields may be added automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched, except that
lines begiMing with a dot have the dot doubled when transmitted over an SMTP channel. This
extra dot is stripped by the receiver.

3.S. Message Delivery

The send. queue is ordered by receiving host before transmission to implement message
batching. Each address is marked as it is sent so rescanning the list is safe. An argument list is
built as the scan proceeds. Mail to files is detected during the scan of the send list. The interface to

SEND MAIL - An Internetwork Mail Router SMM:16-7

the mailer is performed using one of the techniques described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the header and
sends the result to the mailer. If any mail is rejected by the mailer, a flag is set to invoke the
return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a "temporary failure" exit status, the message is queued. A control file
is used to describe the recipients to be sent to and various other parameters. This control file is for­
matted as a series of lines, each describing a sender, a recipient, the time of submission, or some
other salient parameter of the message. The header of the message is stored in the control file, so
that the associated data file in the queue is just the temporary file that was originally collected.

3.7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Sendmail should
not need to be recomplied except

(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not require recom­
pilation.

If the mail is being sent by a local user, and the file ".mailcr' exists in the sender's home
directory, that file is read as a configuration file after the system configuration file. The primary use
of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer definitions,
rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured textual informa­
tion into the mail system, such as the name sendmail will use to identify itself in error messages.
Other macros transmit information from sendmail to the configuration file for use in creating
other fields (such as argument vectors to mailers); e.g., the name of the sender, and the host and
user of the recipient. Other macros are unused internally, and can be used as shorthand in the
configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines. Knowledge of
a few header lines is built into sendmail, such as the "From:" and "Date:" lines.

Most configured headers will be automatically inserted in the outgoing message if they
don't exist in the incoming message. Certain headers are suppressed by some mailers.

3.7.3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The definition
specifies the internal name of the mailer, the patbname of the program to call, some flags associ­
ated with the mailer, and an argument vector to be used on the call; this vector is macro­
expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are an ordered
list of pattern-replacement rules, (somewhat like a production system, except that order is criti­
cal), which are applied to each address. The address is rewritten textually until it is either

SMM:16-8 SEND MAIL - An Internetwork Mail Router

rewritten into a special canonical form (Le., a (mailer, host, user) 3-tuple, such as {arpanet,
usc-is if, postel} representing the address "postel@usc-isif"), or it falls off the end. When a
pattern matches, the rule is reapplied until it fails.

The configuration file also supports the editing of addresses into different formats. For
example, an address of the form:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl.UUCP

to conform to the domain syntax. Translations can also be done in the other direction.

3.7.5. Option setting

There are several options that can be set from the configuration file. These include the
pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the problems
of moving to other machines. It also allows easy debugging of new mailers.

(2) Address parsing is more flexible. For example, delivermail only supported one gateway to
any network, whereas sendmail can be sensitive to host names and reroute to different gate­
ways.

(3) Forwarding and :include: features eliminate the requirement that the system alias file be writ­
able by any user (or that an update program be written, or that the system administration
make all changes).

(4) Sendmail supports message batching across networks when a message is being sent to multi­
ple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but can
potentially be delivered later is stored in this queue for a later retry. The queue also provides
a buffer against system crashes; after the message has been collected it may be reliably
redelivered even if the system crashes during the initial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct interface net­
works such as the ARPANET andlor Ethernet using SMTP (the Simple Mail Transfer Proto­
col) over a TCP/IP connection.

4.2. MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the domain of
MMDF includes a "phone network" mailer, whereas sendmail calls on preexisting mailers in most
cases.

MMDF and sendmail both support aliasing, customized mailers, message batching, automatic
forwarding to gateways, queueing, and retransmission. MMDF supports two-stage timeout, which
sendmail does not support.

The configuration for MMDF is compiled into the code4
•

Since MMDF does not consider backwards compatibility as a design goal, the address pars­
ing is simpler but much less flexible.

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either compiled or
dynamic tables.

SENDMAIL - An Internetwork Mail Router SMM:16-9

It is somewhat harder to integrate a new channels into MMDF. In particular, MMDF must
know the location and format of host tables for all channels, and the channel must speak a special
protocol. This allows MMDF to do additional verification (such as verifying host names) at sub­
mission time.

MMDF strictly separates the submission and delivery phases. Although sendmail has the
concept of each of these stages, they are integrated into one program, whereas in MMDF they are
split into two programs.

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [posteI79b] matches sendmail
closely in terms of its basic architecture. However, like MMDF, the MPM includes the network
interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allowing simpler
handling of errors by the mailer than is possible in sendmail. When a message queued by sendmail
is sent, any errors must be returned to the sender by the mailer itself. Both MPM and MMDF
mailers can return an immediate error response, and a single error processor can create an appropri­
ate response.

MPM prefers passing the message as a structured object, with type-length-value tuples6•

Such a convention requires a much higher degree of cooperation between mailers than is required
by sendmail. MPM also assumes a universally agreed upon internet name space (with each address
in the form of a net-host-user tuple), which sendmail does not.

s. EVALUATIONS AND FUTURE PLANS

Send mail is designed to work in a nonhomogeneous environment. Every attempt is made to
avoid imposing unnecessary constraints on the underlying mailers. This goal has driven much of the
design. One of the major problems has been the lack of a uniform address space, as postulated in
[posteI79a] and [posteI79b].

A nonuniform address space implies that a path will be specified in all addresses, either explicitly
(as part of the address) or implicitly (as with implied forwarding to gateways). This restriction has the
unpleasant effect of making replying to messages exceedingly difficult, since there is no one "address"
for any person, but only a way to get there from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an internet environ­
ment has been amazingly successful, and has reduced the job to a manageable task.

Send mail has knowledge of a few difficult environments built in. It generates ARPANET
FfP/SMTP compatible error messages (prepended with three-digit numbers [Neigus73, Postel74, Pos­
te182]) as necessary, optionally generates UNIX-style "From" lines on the front of messages for some
mailers, and knows how to parse the same lines on input. Also, error handling has an option custom­
ized for BerkNet

The decision to avoid doing any type of delivery where possible (even, or perhaps especially,
local delivery) has turned out to be a good idea. Even with local delivery, there are issues of the loca­
tion of the mailbox, the format of the mailbox, the locking protocol used, etc., that are best decided by
other programs. One surprisingly major annoyance in many internet mailers is that the location and
format of local mail is built in. The feeling seems to be that local mail is so common that it should be
efficient This feeling is not born out by our experience; on the contrary, the location and format of
mailboxes seems to vary widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding mail to a pro­
gram) seems useful ("I am on vacation until late August. ... ") but can create problems such as for­
warding loops (two people on vacation whose programs send notes back and forth, for instance) if these
programs are not well written. A program could be written to do standard tasks correctly, but this

'TIte MMDF equivalent of a sendmlJil "mailer."

~is is similar to the NBS standard.

SMM:16·10 SENDMAIL - An Internetwork Mail Router

would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any mail system
that addresses this problem, nor am I aware of any reasonable solution at this time.

The configuration file is currently practically inscrutable; considerable convenience could be
realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate changing require­
ments and environments. These changes will include modifications to the message header (e.g.,
[NBS80]) or to the body of the message itself (such as for multimedia messages [posteI80D. Experi­
ence indicates that these changes should be relatively trivial to integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as Grapvine [Bir­
re1l82] integrated into the mail system. This would allow a site such as "Berkeley" to appear as a sin­
gle host, rather than as a collection of hosts, and would allow people to move transparently among
machines without having to change their addresses. Such a facility would require an automatically
updated database and some method of resolving conflicts. Ideally this would be effective even without
all hosts being under a single management. However, it is not clear whether this feature should be
integrated into the aliasing facility or should be considered a "value added" feature outside sendmail
itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility that goes
beyond a single tightly-coupled environment Such a facility would normally exist outside of sendmail
however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill Joy for
pointing me in the correct direction (over and over), and Mark Horton for more advice, prodding, and
many of the good ideas. Kurt and Eric Schmidt are to be credited for using delivermail as a server for their
programs (Mail and BerkNet respectively) before any sane person should have, and making the necessary
modifications promptly and happily. Eric gave me considerable advice about the perils of network
software which saved me an unknown amount of work and grief. Mark did the original implementation of
the DBM version of aliasing, installed the VFORK code, wrote the current version of rmail, and was the
person who really convinced me to put the work into delivermail to tum it into sendmail. Kurt deserves
accolades for using sendmail when I was myself afraid to take the risk; how a person can continue to be so
enthusiastic in the face of so much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this paper, giving
considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at Britton-Lee, who
both knowingly allowed me to put so much work into this project when there were so many other things I
really should have been working on.

[BirreIl82]

[Borden79]

[Crocker77a]

[Crocker77b]

[Crocker79]

. [Crocker82]

[Metcalfe76]

[Feinler78]

[NBS80]

[Neigus73]

[Nowitz78a]

[Nowitz78b]

[posteI74]

[postel77]

[poste179a]

[poste179b]

[PosteI80]

[posteI82]

[Schmidt79]

[Shoens79]

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D., "Grapevine:
An Exercise in Distributed Computing." In Comm. A.C.M. 25,4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Handling Sys­
tem: Users' Manual. R-2367-PAF. Rand Corporation. October 1979.

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr., Standard
for the Format of ARPA Network Text Messages. RFC 733, NIC 41952. In
[Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Message System.
R-2134-ARPA, Rand Corporation, Santa Monica, California. 1977.

Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork Memo
Distribution Facility - MMDF. 6th Data Communication Symposium, Asi­
lomar. November 1979 .

Crocker, D. H., Standardfor the Format of Arpa Internet Text Messages. RFC
822. Network Information Center, SRI International, Menlo Park, California.
August 1982.

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching for Local
Computer Networks", Communications of the ACM 19, 7. July 1976.

Feinler, E., and Postel, J. (eds.), ARPANEI' Protocol Handbook. NIC 7104,
Network: Information Center, SRI International, Menlo Park, California. 1978.

National Bureau of Standards, Specification of a Draft Message Format Stan­
dard. Report No. ICST/CBOS 80-2. October 1980.

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542, NIC
17759. In [Feinler78]. August, 1973.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems. Bell
Laboratories. In UNIX Programmer's Manual, Seventh Edition, Volume 2.
August, 1978.

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In UNIX
Programmer's Manual, Seventh Edition, Volume 2. October, 1978.

Postel, J., and Neigus, N., Revised FTPReply Codes. RFC 640, NIC 30843. In
[Feinler78]. June, 1974.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753, lEN 85. Network Information
Center, SRI International, Menlo Park, California. March 1979.

Postel, J. B., An Internetwork Message Structure. In Proceedings of the Sixth
Data Communications Symposium, IEEE. New York. November 1979.

Postel, J. B., A Structured Formatfor Transmission of Multi-Media Documents.
RFC 767. Network Information Center, SRI International, Menlo Park, Califor­
nia. August 1980.

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting RFC788).
Network Information Center, SRI International, Menlo Park, California. August
1982.

Schmidt, E., An Introduction to the Berkeley Network. University of California,
Berkeley California. 1979.

Shoens, K., Mail Reference Manual. University of California, Berkeley. In
UNIX Programmer's Manual, Seventh Edition, Volume 2C. December 1979.

SENDMAIL - An Internetwork Mail Router SMM:16·11

SMM:16-12

[Sluizer81]

[Solomon81]

[Su82]

[UNIX83]

SENDMAIL - An Internetwork Mail Router

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Network Infor­
mation Center, SRI International, Menlo Park, California. May 1981.

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of the CSNET
Name Server." CS-DN-2, University of Wisconsin, Madison. November 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for Internet
User Applications. RFC819. Network Information Center, SRI International,
Menlo Park, California. August 1982.

The UNIX Programmer's Manual, Seventh Edition, Virtual V AX-ll Version,
Volume 1. Bell Laboratories, modified by the University of California, Berke­
ley, California. March, 1983.

On the Security of UNIX

Dennis M. Ritchie

Recently there has been much interest in the security aspects of operating systems and software. At
issue is the ability to prevent undesired disclosure of information, destruction of information, and harm to
the functioning of the system. This paper discusses the degree of security which can be provided under the
UNIXt system and offers a number of hints on how to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind;
this fact alone guarantees a vast number of holes. (Actually the same statement can be made with respect
to most systems.) The area of security in which UNIX is theoretically weakest is in protecting against
crashing or at least crippling the operation of the system. The problem here is not mainly in uncritical
acceptance of bad parameters to system calls- there may be bugs in this area, but none are known- but
rather in lack of checks for excessive consumption of resources. Most notably, there is no limit on the
amount of disk storage used, either in total space allocated or in the number of files or directories. Here is
a particularly ghastly shell sequence guaranteed to stop the system:

while:; do
mkdirx
cdx

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be
consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number of processes
simultaneously, so unless users are in collusion it is unlikely that anyone can stop the system altogether.
However, creation of 20 or so CPU or disk-bound jobs leaves few resources available for others. Also, if
many large jobs are run simultaneously, swap space may run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and processes can
easily occur accidentally in malfunctioning programs as well as at command level. In fact UNIX is essen­
tially defenseless against this kind of abuse, nor is there any easy fix. The best that can be said is that it is
generally fairly easy to detect what has happened when disaster strikes, to identify the user responsible, and
take appropriate action. In practice, we have found that difficulties in this area are rather rare, but we have
not been faced with malicious users, and enjoy a fairly generous supply of resources which have served to
cushion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theoretically, and the prob­
lems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a user
identification number and a user-group identification number (UID and OlD). Nine of the protection bits
are used to specify independently permission to read, to write, and to execute the file to the user himself, to
members of the user's group, and to all other users. Each process generated by or for a user has associated
with it an effective UID and a real UID, and an effective and real OID. When an attempt is made to access
the file for reading, writing, or execution, the user process's effective UID is compared against the file's
UID; if a match is obtained, access is granted provided the read, write, or execute bit respectively for the
user himself is present If the UID for the file and for the process fail to match, but the OlD's do match,

t UNIX is a trademark of Bell Laboratories.

SMM:17-2 On the Security of UNIX

the group bits are used; if the GID's do not match, the bits for other users are tested. The last two bits of
each file's protection information, called the set-UID and set-GID bits, are used only when the file is exe­
cuted as a program. If, in this case, the set-UID bit is on for the file, the effective UID for the process is
changed to the UID associated with the file; the change persists until the process terminates or until the
UID changed again by another execution of a set-UID file. Similarly the effective group ID of a process is
changed to the GID associated with a file when that file is executed and has the set-GID bit set. The real
UID and GID of a process do not change when any file is executed, but only as the result of a privileged
system call.

The basic notion of the set-UID and set-GID bits is that one may write a program which is execut­
able by others and which maintains files accessible to others only by that program. The classical example
is the game-playing program which maintains records of the scores of its players. The program itself has to
read and write the score file, but no one but the game's sponsor can be allowed unrestricted access to the
file lest they manipulate the game to their own advantage. The solution is to tum on the set-UID bit of the
game program. When, and only when, it is invoked by players of the game, it may update the score file but
ordinary programs executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since executing a
directory as a program is a meaningless operation, the execute-permission bit, for directories, is taken
instead to mean permission to search the directory for a given file during the scanning of a path name; thus
if a directory has execute permission but no read permission for a given user, he may access files with
known names in the directory, but may not read (list) the entire contents of the directory. Write permission
on a directory is interpreted to mean that the user may create and delete files in that directory; it is impossi­
ble for any user to write directly into any directory.

Another, and from the point of view of security, much more serious special case is that there is a
"super user" who is able to read any file and write any non-directory. The super-user is also able to
change the protection mode and the owner UID and GID of any file and to invoke privileged system calls.
It must be recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on
any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories have the
proper protection modes. Traditionally, UNIX software has been exceedingly permissive in this regard;
essentially all commands create files readable and writable by everyone. In the current version, this policy
may be easily adjusted to suit the needs of the installation or the individual user. Associated with each pro­
cess and its descendants is a mask, which is in effect and -ed with the mode of every file and directory
created by that process. In this way, users can arrange that, by default, all their files are no more accessible
than they wish. The standard mask, set by login, allows all permissions to the user himself and to his
group, but disallows writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to make one's
files inaccessible to others. The lack of sufficiency could follow from the existence of set-UID programs
created by the user and the possibility of total breach of system security in one of the ways discussed below
(or one of the ways not discussed below). For greater protection, an encryption scheme is available. Since
the editor is able to create encrypted documents, and the crypt command can be used to pipe such docu­
ments into the other text-processing programs, the length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used is not one of the strongest known, but it is judged
adequate, in the sense that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as truly secret
should be aware that he is implicitly trusting the system administrator not to install a version of the crypt
command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most demanding user to
place the correct protection mode on the files under their control. In particular, it is necessary that special
files be protected from writing, and probably reading, by ordinary users when they store sensitive files
belonging to other users. It is easy to write programs that examine and change files by accessing the device
on which the files live.

On the Security of UNIX SMM:17-3

On the issue of password security, UNIX is probably better than most systems. Passwords are stored
in an encrypted form which, in the absence of serious attention from specialists in the field, appears reason­
ably secure, provided its limitations are understood. In the current version, it is based on a slightly defec­
tive version of the Federal DES; it is purposely defective so that easily-available hardware is useless for
attempts at exhaustive key-search. Since both the encryption algorithm and the encrypted passwords are
available, exhaustive enumeration of potential passwords is still feasible up to a point We have observed
that users choose passwords that are easy to guess: they are short, or from a limited alphabet, or in a dic­
tionary. Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For example:
write a program which types out "login: " on the typewriter and copies whatever is typed to a file of your
own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The first
thing to keep in mind is that a writable set-UID file can have another program copied onto it. For example,
if the super-user (su) command is writable, anyone can copy the shell onto it and get a password-free ver­
sion of suo A more subtle problem can come from set-UID programs which are not sufficiently careful of
what is fed into them. To take an obsolete example, the previous version of the mail command was set­
UID and owned by the super-user. This version sent mail to the recipient's own directory. The notion was
that one should be able to send mail to anyone even if they want to protect their directories from writing.
The trouble was that mail was rather dumb: anyone could mail someone else's private file to himself.
Much more serious is the following scenario: make a file with a line like one in the password file which
allows one to log in as the super-user. Then make a link named" .mail" to the password file in some writ­
able directory on the same device as the password file (say Itmp). Finally mail the bogus login line to
Itmp/.mail; You can then login as the super-user, clean up the incriminating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another way of gaining
super-user status. Once a disk pack is mounted, the system believes what is on it. Thus one can take a
blank disk pack, put on it anything desired, and mount it. There are obvious and unfortunate consequences.
For example: a mounted disk with garbage on it will crash the system; one of the files on the mounted disk
can easily be a password-free version of su; other files can be unprotected entries for special files. The
only easy fix for this problem is to forbid the use of mount to unprivileged users. A partial solution, not so
restrictive, would be to have the mount command examine the special file for bad data, set-UID programs
owned by others, and accessible special files, and balk at unprivileged invokers.

Password Security: A Case History

Robert Morris

Ken Thompson

ABSTRACT

This paper describes the history of the design of the password security scheme on a
remotely accessed time-sharing system. The present design was the result of countering
observed attempts to penetrate the system. The result is a compromise between extreme
security and ease of use.

INTRODUCTION

Password security on the UNIXt time-sharing system [1] is provided by a collection of programs
whose elaborate and strange design is the outgrowth of many years of experience with earlier versions. To
help develop a secure system, we have had a continuing competition to devise new ways to attack the secu­
rity of the system (the bad guy) and, at the same time, to devise new techniques to resist the new attacks
(the good guy). This competition has been in the same vein as the competition of long standing between
manufacturers of armor plate and those of armor-piercing shells. For this reason, the description that fol­
lows will trace the history of the password system rather than simply presenting the program in its current
state. In this way, the reasons for the design will be made clearer, as the design cannot be understood
without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to the users of
the system. For example, those who want to run a completely open system without passwords, or to have
passwords only at the option of the individual users, are able to do so, while those who require all of their
users to have passwords gain a high degree of security against penetration of the system by unauthorized
users.

The password system must be able not only to prevent any access to the system by unauthorized
users (Le. prevent them from logging in at all), but it must also prevent users who are already logged in
from doing things that they are not authorized to do. The so called' 'super-user" password, for example, is
especially critical because the super-user has all sorts of permissions and has essentially unlimited access to
all system resources.

Password security is of course only one component of overall system security, but it is an essential
component Experience has shown that attempts to penetrate remote-access systems have been astonish­
ingly sophisticated

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats at
the remote terminal, along the communications link:, as well as at the computer itself. Although the secu­
rity of a password encryption algorithm is an interesting intellectual and mathematical problem, it is only
one tiny facet of a very large problem. In practice, physical security of the computer, communications
security of the communications link, and physical control of the computer itself loom as far more important
issues. Perhaps most important of all is control over the actions of ex-employees, since they are not under
any direct control and they may have intimate knowledge about the system, its resources, and methods of
access. Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

t UNIX is a trademark of Bell Laboratories.

SMM:18-2 Password Security: A Case History

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual passwords of
all the users, and for that reason the password file had to be heavily protected against being either read or
written. Although historically, this had been the technique used for remote-access systems, it was com­
pletely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protection can
occur when the password file is being edited or otherwise modified. There is no way to prevent the making
of copies by privileged users. Experience with several earlier remote-access systems showed that such
lapses occur with frightening frequency. Perhaps the most memorable such occasion occurred in the early
60's when a system administrator on the CTSS system at MIT was editing the password file and another
system administrator was editing the daily message that is printed on everyone's terminal on login. Due to
a software design error, the temporary editor files of the two users were interchanged and thus, for a time,
the password file was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed, usually
simultaneously, at a considerable administrative cost. This is not a great matter, but far more serious is the
high probability of such lapses going unnoticed by the system administrators.

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible with
this system because, for example, if the contents of the file system are put on to magnetic tape for backup,
as they must be, then anyone who has physical access to the tape can read anything on it with no restric­
tion.

Many programs must get information of various kinds about the users of the system, and these pro­
grams in general should have no special permission to read the password file. The information which
should have been in the password file actually was distributed (or replicated) into a number of files, all of
which had to be updated whenever a user was added to or dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and it is not
difficult to decide that this can be done by encrypting each user's password, putting only the encrypted
form in the password file, and throwing away his original password (the one that he typed in). When the
user later tries to log in to the system, the password that he types is encrypted and compared with the
encrypted version in the password file. If the two match, his login attempt is accepted. Such a scheme was
first described in [3, p.9lff.]. It also seemed advisable to devise a system in which neither the password file
nor the password program itself needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was very
difficult to invert, even when the encryption program is available. Most of the standard encryption
methods used (in the past) for encryption of messages are rather easy to invert. A convenient and rather
good encryption program happened to exist on the system at the time; it simulated the M-209 cipher
machine [4] used by the U.S. Army during World War II. It turned out that the M-209 program was
usable, but with a given key, the ciphers produced by this program are trivial to invert. It is a much more
difficult matter to find out the key given the cleartext input and the enciphered output of the program.
Therefore, the password was used not as the text to be encrypted but as the key, and a constant was
encrypted using this key. The encrypted result was entered into the password file.

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and the complete
password file. Suppose also that he has substantial computing capacity at his disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a general method
of inverting the encryption algorithm. Very possibly this can be done, but few successful results have
come to light, despite substantial efforts extending over a period of more than five years. The results have
not proved to be very useful in penetrating systems.

Password Security: A Case History SMM:18-3

Another approach to penetration is simply to keep trying potential passwords until one succeeds; this
is a general cryptanalytic approach called key search. Human beings being what they are, there is a strong
tendency for people to choose relatively short and simple passwords that they can remember. Given free
choice, most people will choose their passwords from a restricted character set (e.g. all lower-case letters),
and will often choose words or names. This human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a potential pass­
word and to check the result against an entry in the password file. The running time to encrypt one trial
password and check the result turned out to be approximately 1.25 milliseconds on a PDP-llnO when the
encryption algorithm was recoded for maximum speed. It is takes essentially no more time to test the
encrypted trial password against all the passwords in an entire password file, or for that matter, against any
collection of encrypted passwords, perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the number
of such passwords is 26". If we suppose that the password consists of printable characters only, then the
number of possible passwords is somewhat less than 95". (The standard system "character erase" and
"line kill" characters are, for example, not prime candidates.) We can immediately estimate the running
time of a program that will test every password of a given length with all of its characters chosen from
some set of characters. The following table gives estimates of the running time required on a PDP-l 1170 to
test all possible character strings of length n chosen from various sets of characters: namely, all lower-case
letters, all lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally al1128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 30 rnsec. 40 rnsec. 80 rnsec. 120 msec. 160 rnsec.
2 800 rnsec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-II to test all lower-case
alphabetic strings up to length five and, given access to the machine for, say, several weekends, to test all
such strings up to six characters in length. By using such a program against a collection of actual
encrypted passwords, a substantial fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a list of
names. For example, a large commercial dictionary contains typicallly about 250,000 words; these words
can be checked in about five minutes. Again, a noticeable fraction of any collection of passwords will be
found. Improvements and extensions will be (and have been) found by a determined bad guy. Some
"good" things to try are:

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names, and city
names also work well.

The above with initial upper-case letters.

All valid license plate numbers in your state. (This takes about five hours in New Jersey.)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the choice of
passwords when no constraint is put on their choice. The results were disappointing, except to the bad guy.
In a collection of 3,289 passwords gathered from many users over a long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

SMM:18-4

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.

Password Security: A Case History

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A total of
2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the character string
searches. The dictionary search alone, which required only five minutes to run, produced about one third
of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from a larger
character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force users to use
less predictable passwords. The users did not choose their own passwords; the system supplied them. The
supplied passwords were eight characters long and were taken from the character set consisting of lower­
case letters and digits. They were generated by a pseudo-random number generator with only 215 starting
values. The time required to search (again on a PDP-llnO) through all character strings of length 8 from a
36-character alphabet is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible outputs of
the random number generator. The bad guy did, in fact, generate and test each of these strings and found
every one of the system-generated passwords using a total of only about one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES encryption algo­
rithm [2] by the National Bureau of Standards was timely and fortunate. The DES is, by design, hard to
invert, but equally valuable is the fact that it is extremely slow when implemented in software. The DES
was implemented and used in the following way: The first eight characters of the user's password are used
as a key for the DES; then the algorithm is used to encrypt a constant. Although this constant is zero at the
moment, it is easily accessible and can be made installation-dependent Then the DES algorithm is iterated
25 times and the resulting 64 bits are repacked to become a string of 11 printable characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure passwords. If
the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters, or a
password from a larger character set shorter than five characters, then the program asks him to enter a
longer password. This further reduces the efficacy of key search.

These improvements make it exceedingly difficult to find any individual password. The user is
warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not prevented
from using his spouse's name if he wants to.

3. Salted Passwords

The key search technique is still likely to tum up a few passwords when it is used on a large collec­
tion of passwords, and it seemed wise to make this task as difficult as possible. To this end, when a pass­
word is first entered, the password program obtains a 12-bit random number (by reading the real-time
clock) and appends this to the password typed in by the user. The concatenated string is encrypted and
both the 12-bit random quantity (called the salt) and the 64-bit result of the encryption are entered into the
password file.

Password Security: A Case History S:M:M:18-5

When the user later logs in to the system, the 12-bit quantity is extracted from the password file and
appended to the typed password. The encrypted result is required, as before, to be the same as the remain­
ing 64 bits in the password file. This modification does not increase the task of finding any individual pass­
word, starting from scratch, but now the work of testing a given character string against a large collection
of encrypted passwords has been multiplied by 4096 (212). The reason for this is that there are 4096
encrypted versions of each password and one of them has been picked more or less at random by the sys­
tem.

With this modification, it is likely that the bad guy can spend days of computer time trying to find a
password on a system with hundreds of passwords, and find none at all. More important is the fact that it
becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted dictionary could be
used to crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find out
whether a person with passwords on two or more systems has used the same password on all of them,
unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very fast The
use of such a chip speeds up the process of password hunting by three orders of magnitude. To avert this
possibility, one of the internal tables of the DES algorithm (in particular, the so-called E-table) is changed
in a way that depends on the 12-bit random number. The E-table is inseparably wired into the DES chip,
so that the commercial chip cannot be used. Obviously, the bad guy could have his own chip designed and
built, but the cost would be unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user name,
and then the correct password for that user name. It is poor design to write the login command in such a
way that it tells an interloper when he has typed in a invalid user name. The response to an invalid name
should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only if the user
name was valid, because otherwise there was no encrypted password to compare with the supplied pass­
word. The result was that the response was delayed by about one-half second if the name was valid, but
was immediate if invalid. The bad guy could find out whether a particular user name was valid. The rou­
tine was modified to do the encryption in either case.

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use of encrypted
passwords appears reasonably secure in the absence of serious attention of experts in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have
instituted what is called an "external security code" that must be typed when dialing into the system, but
before logging in. If this code is changed periodically, then someone with an old password will likely be
prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthorized persons,
it is wise to keep a record of both successful and unsuccessful attempts to get at the secured resource. Just
as an out-of-hours visitor to a computer center normally must not only identify himself, but a record is usu­
ally also kept of his entry. Just so, it is a wise precaution to make and keep a record of all attempts to log
into a remote-access time-sharing system, and certainly all unsuccessful attempts.

Bad guys fallon a spectrum whose one end is someone with ordinary access to a system and whose
goal is to find out a particular password (usually that of the super-user) and, at the other end, someone who
wishes to collect as much password information as possible from as many systems as possible. Most of the
work reported here serves to frustrate the latter type; our experience indicates that the former type of bad
guy never was very successful.

SMM:18-6 Password Security: A Case History

We recognize that a time-sharing system must operate in a hostile environment. We did not attempt
to hide the security aspects of the operating system, thereby playing the customary make-believe game in
which weaknesses of the system are not discussed no matter how apparent. Rather we advertised the pass­
word algorithm and invited attack in the belief that this approach would minimize future trouble. The
approach has been successful.

References

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 (July 1974),
pp. 365-375.

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register
(40FR12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968).

[4] U. S. Patent Number 2,089,603.

A Tour Through the Portable C Compiler

S. C. Johnson

AT &T Bell Laboratories

Donn Seeley

Department of Computer Science
University of Utah

ABSTRACT

Since its introduction, the Portable C Compiler has become the standard UNIX C
compiler for many machines. Three quarters or more of the code in the compiler is
machine independent and much of the rest can be generated easily using knowledge of
the target architecture. This paper describes the structure and organization of the com­
piler and tries to further simplify the job of the compiler porter.

This document originally appeared with the Seventh Edition of UNIX, and has been
revised and extended for publication with the Fourth Berkeley Software Distribution.
The new material covers changes which have been made in the compiler since the
Seventh Edition, and includes some discussion of secondary topics which were thought
to be of interest in future ports of the compiler.

Revised April, 1986

Introduction

A C compiler has been implemented that has proved to be quite portable, serving as the basis for C
compilers on roughly a dozen machines, including the DEC v AX, Honerwell 6000, IBM 370, and Interdata
8/32. The compiler is highly compatible with the C language standard.

Among the goals of this compiler are portability, high reliability, and the use of state-of-the-art tech­
niques and tools wherever practical. Although the efficiency of the compiling process is not a primary
goal, the compiler is efficient enough, and produces good enough code, to serve as a production compiler.

The language implemented is highly compatible with the current PDP-II version of C. Moreover,
roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is machine indepen­
dent. The compiler also serves as the major portion of the program lint, described elsewhere. 2

A number of earlier attempts to make portable compilers are worth noting. While on CO-OP assign­
ment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was the basis of his Master's
Thesis at M.I. T. 3 This compiler was very slow and complicated, and contained a number of rather serious
implementation difficulties; nevertheless, a number of Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an intermediate
language, perhaps based on three-address code or code for a stack machine, and writing a machine
independent program to translate from the source code to this intermediate code. The intermediate code is
then read by a second pass, and interpreted or compiled. This approach is elegant, and has a number of
advantages, especially if the target machine is far removed from the host. It suffers from some disadvan­
tages as well. Some constructions, like initialization and subroutine prologs, are difficult or expensive to
express in a machine independent way that still allows them to be easily adapted to the target assemblers.

SMM:19-2 A Tour Through the Portable C Compiler

Most of these approaches require a symbol table to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated that have
no effect on a given machine, but may be needed on others (for example, pointer to pointer conversions
usually do nothing in C, but must be generated because there are some machines where they are
significant).

For these reasons, the first pass of the portable compiler is not entirely machine independent. It con­
tains some machine dependent features, such as initialization, subroutine prolog and epilog, certain storage
allocation functions, code for the switch statement, and code to throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C compiler has
roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 out of 3400 in Pass 2. In
total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% in Pass 1, 30% in Pass 2).
These percentages can be expected to rise slightly as the compiler is tuned. The percentage of machine­
dependent code for the IBM is 22%, for the Honeywell 25%. If the assembler format and structure were
the same for all these machines, perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the
machine dependent code can be converted in a straightforward, almost mechanical way. On the other
hand, a certain amount of the code requires hard intellectual effort to convert, since the algorithms embo­
died in this part of the code are typically complicated and machine dependent.

To summarize, however, if you need a C compiler written for a machine with a reasonable architec­
ture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is to give the
big picture, rather than discussing the details of a particular machine implementation. After a brief over­
view and a discussion of the source file structure, the paper describes the major data structures, and then
delves more closely into the two passes. Some of the theoretical work on which the compiler is based, and
its application to the compiler, is discussed elsewhere. 4 One of the major design issues in an? C compiler,
the design of the calling sequence and stack frame, is the subject of a separate memorandum.

The compiler consists of two passes, pass1 and pass2 , that together turn C source code into assem­
bler code for the target machine. The two passes are preceded by a preprocessor, that handles the #define
and #include statements, and related features (e.g., #ifdef, etc.). The two passes may optionally be fol­
lowed by a machine dependent code improver.

The output of the preprocessor is a text file that is read as the standard input of the first pass. This
produces as standard output another text file that becomes the standard input of the second pass. The
second pass produces, as standard output, the desired assembler language source code. The code improver,
if used, converts the assembler code to more effective code, and the result is passed to the assembler. The
preprocessor and the two passes all write error messages on the standard error file. Thus the compiler itself
makes few demands on the I/O library support, aiding in the bootstrapping process.

The division of the compiler into two passes is somewhat artificial. The compiler can optionally be
loaded so that both passes operate in the same program. This "one pass" operation eliminates the over­
head of reading and writing the intermediate file, so the compiler operates about 30% faster in this mode.
It also occupies about 30% more space than the larger of the two component passes. This "one pass"
compiler is the standard version on machines with large address spaces, such as the v AX.

Because the compiler is fundamentally structured as two passes, even when loaded as one, this docu­
ment primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also constructs
parse trees for expressions, and keeps track of the types of the nodes in these trees. Additional code is
devoted to initialization. MaChine dependent portions of the first pass serve to generate subroutine prologs
and epilogs, code for switches, and code for branches, label definitions, alignment operations, changes of
location counter, etc.

A Tour Through the Portable C Compiler SMM:19-3

The intermediate file is a text file organized into lines. Lines beginning with a right parenthesis are
copied by the second pass directly to its output file, with the parenthesis stripped off. Thus, when the first
pass produces assembly code, such as subroutine prologs, etc., each line is prefaced with a right
parenthesis; the second pass passes these lines to through to the assembler.

The major job done by the second pass is generation of code for expressions. The expression parse
trees produced in the first pass are written onto the intermediate file in Polish Prefix form: first, there is a
line beginning with a period, followed by the source file line number and name on which the expression
appeared (for debugging purposes). The successive lines represent the nodes of the parse tree, one node
per line. Each line contains the node number, type, and any values (e.g., values of constants) that may
appear in the node. Lines representing nodes with descendants are immediately followed by the left sub­
tree of descendants, then the right Since the number of descendants of any node is completely determined
by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left square
bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source); lines beginning with
right square brackets (']') represent the end of blocks. The remainder of these lines tell how much stack
space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the information
in the '[' and 'J' lines, and devotes most of its effort to the '.' lines and their associated expression trees,
turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees contain information useful to both logi­
cal passes. Instead of writing the trees onto an intermediate file, each tree is transformed in place into an
acceptable form for the code generator. The code generator then writes the result of compiling this tree
onto the standard output Instead of '[' and ']' lines in the intermediate file, the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written out,
without the need for')' at the head of each line.

The Source Files

The compiler source consists of 25 source files. Several header files contain information which is
needed across various source modules. Manifest.h has declarations for node types, type manipulation mac­
ros and other macros, and some global data definitions. Macdefs.h has machine-dependent definitions,
such as the size and alignment of the various data representations. Config.h defines symbols which control
the configuration of the compiler, including such things as the sizes of various tables and whether the com­
piler is "one pass". The compiler conditionally includes another file, onepass.h, which contains
definitions which are particular to a "one pass" compiler. Ndu.h defines the basic tree building structure
which is used throughout the compiler to construct expression trees. Manifest.h includes a file of opcode
and type definitions named pcclocal.h ; this file is automatically generated from a header file specific to the
C compiler named localdefs.h and a public header file lusrlinclude/pcc.h. Another file, pcctokens , is gen­
erated in a similar way and contains token definitions for the compiler's Yacc 6 grammar. Two machine
independent header files, passl.h and pass2.h, contain the data structure and manifest definitions for the
first and second passes, respectively. In the second pass, a machine dependent header file, mac2defs.h,
contains declarations of register names, etc.

Common.c contains machine independent routines used in both passes. These include routines for
allocating and freeing trees, walking over trees, printing debugging information, and printing error mes­
sages. This file can be compiled in two flavors, one for pass 1 and one for pass 2, depending on what con­
ditional compilation symbol is used.

Entire sections of this document are devoted to the detailed structure of the passes. For the moment,
we just give a brief description of the files. The first pass is obtained by compiling and loading cgram.y,
code.c, common.c, local.c, optim.c, pftn.c, scan.c, stab.c, trees.c and xdefs.c. Scan.c is the lexical
analyzer, which provides tokens to the bottom-up parser which is defined by the Yacc grammar cgram.y.
Xdefs.c is a short file of external definitions. Pftn.c maintains the symbol table, and does initialization.
Trees.c builds the expression trees, and computes the node types. Optim.c does some machine indepen­
dent optimizations on the expression trees. Common.c contains service routines common to the two passes

SMM:19-4 A Tour Through the Portable C Compiler

of the compiler. All the above files are machine independent. The files local.c and code.c contain
machine dependent code for generating subroutine prologs, switch code, and the like. Stab.c contains
machine dependent code for producing external symbol table information which can drive a symbolic
debugger.

The second pass is produced by compiling and loading allo.c, common.c, local2.c, match.c,
order.c, reader.c and table.c. Reader.c reads the intermediate file, and controls the major logic of the
code generation. Allo.c keeps track of busy and free registers. Match.c controls the matching of code
templates to subtrees of the expression tree to be compiled. Comnwn.c defines certain service routines, as
in the first pass. The above files are machine independent Order.c controls the machine dependent details
of the code generation strategy. Local2.c has many small machine dependent routines, and tables of
opcodes, register types, etc. Table.c has the code template tables, which are also clearly machine depen­
dent.

Data Structure Considerations

This section discusses the node numbers, type words, and expression trees, used throughout both
passes of the compiler.

The file manifest.h defines those symbols used throughout both passes. The intent is to use the same
symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, parsing, tree building,
and code generation phases. Manifest.h obtains some of its definitions from two other header files,
localdefs.h and pcc.h. Localdefs.h contains definitions for operator symbols which are specific to the C
compiler. Pcc.h contains definitions for operators and types which may be used by other compilers to
communicate with a portable code generator based on pass 2; this code generator will be described later.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a unary or
binary operator; clearly, it is necessary to know this by the time the parse tree is constructed. Thus, an
operator (really a macro) called UNARY is provided, so that MINUS and UNARY MINUS are both dis­
tinct node numbers. Similarly, many binary operators exist in an assignment form (for example, -=), and
the operator ASG may be applied to such node names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary operator (one
descendant) or a binary operator (two descendants). The macro optype(o) returns one of the manifest con­
stants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number o. Similarly, asgop(o)
returns true if 0 is an assignment operator number (=, +=, etc.), and logop(0) returns true if 0 is a rela­
tional or logical (&&, II, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with, there are the
basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR, USHORT,
UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure), UNIONTY, and
ENUMTY. Then, there are three operators that can be applied to types to make others: if t is a type, we
may potentially have types pointer to t, function returning t, and array of t' s generated from t. Thus, an
arbitrary type in C consists of a basic type, and zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the basic
type, and the remaining bits are divided into two-bit fields, containing 0 (no operator), or one of the three
operators described above. The modifiers are read right to left in the word, starting with the two-bit field
adjacent to the basic type, until a field with 0 in it is reached. The macros PTR, FTN, and ARY represent
the pointer to, function returning, and array of operators. The macro values are shifted so that they align
with the first two-bit field; thus PTR+INTrepresents the type for an integer pointer, and

ARY + (PTR«2) + (FTN«4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives the basic
type. ISPTR(t) , ISARY(t), and ISFTN(t) ask if an object of this type is a pointer, array, or a function,
respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t) gives the type resulting from
removing the first operator from t. Thus, if t is a pointer to t' , a function returning t' , or an array of t' ,
then DECREF(t) would equal t'. INCREF(t) gives the type representing a pointer to t. Finally, there are

A Tour Through the Portable C Compiler SMM:19-5

operators for dealing with the unsigned types. ISUNSIGNED(t) returns true if t is one of the four basic
unsigned types; in this case, DEUNSIGN(t) gives the associated 'signed' type. Similarly,
UNSIGNABLE(t) returns true if t is one of the four basic types that could become unsigned, and
ENUNSIGN(t) returns the unsigned analogue of t in this case.

The other important global data structure is that of expression trees. The actual shapes of the nodes
are given in ndu.h. The information stored for each pass is not quite the same; in the first pass, nodes con­
tain dimension and size information, while in the second pass nodes contain register allocation information.
Nevertheless, all nodes contain fields called op, containing the node number, and type, containing the type
word. A function called talloc() returns a pointer to a new tree node. To free a node, its op field need
merely be set to FREE. The other fields in the node will remain intact at least until the next allocation.

Nodes representing binary operators contain fields, left and right, that contain pointers to the left and
right descendants. Unary operator nodes have the left field, and a value field called rval. Leaf nodes, with
no descendants, have two value fields: Ivai and rval.

At appropriate times, the function tcheck() can be called, to check that there are no busy nodes
remaining. This is used as a compiler consistency check. The function tcopy(p) takes a pointer p that
points to an expression tree, and returns a pointer to a disjoint copy of the tree. The function walkf(pf}
performs a postorder walk of the tree pointed to by p, and applies the function f to each node. The func­
tionfwalk(p.f,d) does a preorder walk of the tree pointed to by p. At each node, it calls a function!, pass­
ing to it the node pointer, a value passed down from its ancestor, and two pointers to values to be passed
down to the left and right descendants (if any). The value d is the value passed down to the root. Fwalk is
used for a number of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be discussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building, optimization,
and a number of machine dependent things. This pass is largely machine independent, and the machine
independent sections can be pretty successfully ignored. Thus, they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the tokens of the
C language as it encounters them: names, constants, operators, and keywords. The conceptual simplicity
of this job is confounded a bit by several other simple jobs that unfortunately must go on simultaneously.
These include

• Keeping track of the current filename and line number, and occasionally setting this information as
the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as character
strings.

To achieve speed, the program maintains several tables that are indexed into by character value, to
tell the lexical analyzer what to do next To achieve portability, these tables must be initialized each time
the compiler is run, in order that the table entries reflect the local character set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar cgram.y. The grammar is
relatively readable, but contains some unusual features that are worth comment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem is to keep
track of the basic type and the storage class while interpreting the various stars, brackets, and parentheses
that may surround a given name. The entire declaration mechanism must be recursive, since declarations
may appear within declarations of structures and unions, or even within a sizeof construction inside a
dimension in another declaration!

SMM:I9-6 A Tour Through the Portable C Compiler

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle con­
structions where a lot of left context information must be kept around. The problem is that the original
PDP-II compiler is top-down in implementation, and some of the semantics of C reflect this. In a top­
down parser, the input rules are restricted somewhat, but one can naturally associate temporary storage
with a rule at a very early stage in the recognition of that rule. In a bottom-up parser, there is more free­
dom in the specification of rules, but it is more difficult to know what rule is being matched until the entire
rule is seen. The parser described by cgram.y makes effective use of the bottom-up parsing mechanism in
some places (notably the treatment of expressions), but struggles against the restrictions in others. The
usual result is that it is necessary to run a stack of values "on the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions, where the rela­
tionship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully kept
immediately to the left of the declarator (that part of the declaration involving the name). In this way,
when it is time to declare the name, the name and the type information can be quickly brought together.
The "$0" mechanism of Yacc is used to accomplish this. The result is not pretty, but it works. The
storage class information changes more slowly, so it is kept in an external variable, and stacked if neces­
sary. Some of the grammar could be considerably cleaned up by using some more recent features of Yacc,
notably actions within rules and the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break or continue
statement is processed.

This use of external stacks dates from the time when Yacc did not pennit values to be structures.
Some, or most, of this use of external stacks could be eliminated by redoing the grammar to use the
mechanisms now provided. There are some areas, however, particularly the processing of structure, union,
and enumeration declarations, function prologs, and switch statement processing, when having all the
affected data together in an array speeds later processing; in this case, use of external storage seems essen­
tial.

The cgram.y file also contains some small functions used as utility functions in the parser. These
include routines for saving case values and labels in processing switches, and stacking and popping values
on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the compiler design
decisions was to process the storage class information totally in the first pass; by the second pass, this infor­
mation must have been totally dealt with. This means that all of the storage allocation must take place in
the first pass, so that references to automatics and parameters can be turned into references to cells lying a
certain number of bytes offset from certain machine registers. Much of this transformation is machine
dependent, and strongly depends on the storage class.

The classes include EXTERN (for externally declared, but not defined variables), EXTDEF (for
external definitions), and similar distinctions for USTATIC and STATIC, UFORTRAN and FORTRAN
(for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and AUTO are obvi­
ous, as are STNAME, UNAME, and ENAME (for structure, union, and enumeration tags), and the associ­
ated MOS, MOU, and MOE (for the members). TYPEDEF is treated as a storage class as well. There are
two special storage classes: PARAM and SNULL. SNULL is used to distinguish the·case where no expli­
cit storage class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made before the
declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate storage class is
kept for each width bit field; a k bit bit field has storage class k plus FIELD. This enables the size to be
quickly recovered from the storage class.

A Tour Through the Portable C Compiler S~:19-7

Symbol Table Maintenance

The symbol table routines do far more than simply enter names into the symbol table; considerable
semantic processing and checking is done as well. For example, if a new declaration comes in, it must be
checked to see if there is a previous declaration of the same symbol. If there is, there are many cases. The
declarations may agree and be compatible (for example, an extern declaration can appear twice) in which
case the new declaration is ignored. The new declaration may add information (such as an explicit array
dimension) to an already present declaration. The new declaration may be different, but still correct (for
example, an extern declaration of something may be entered, and then later the definition may be seen).
The new declaration may be incompatible, but appear in an inner block; in this case, the old declaration is
carefully hidden away, and the new one comes into force until the block is left Finally, the declarations
may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user is not
always the type entered into the symbol table (for example, if a formal parameter to a function is declared
to be an array, C requires that this be changed into a pointer before entry in the symbol table). Moreover,
there are various kinds of illegal types that may be declared which are difficult to check for syntactically
(for example, a function returning an array). Finally, there is a strange feature in C that requires structure
tag names and member names for structures and unions to be taken from a different logical symbol table
than ordinary identifiers. Keeping track of which kind of name is involved is a bit of struggle (consider
typedef names used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend features,
improve performance, and fix bugs. They address the above problems with reasonable effectiveness but a
singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together with a flag
which tells which symbol table should be searched (actually, both symbol tables are stored in one, and a
flag is used to distinguish individual entries). If the name is found, lookup returns the index to the entry
found; otherwise, it makes a new entry, marks it UNDEF (undefined), and returns the index of the new
entry. This index is stored in the rval field of a NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY MUL
nodes for each *, LB nodes for each array descriptor (the right descendant has the dimension), and
UN AR Y CALL nodes for each function descriptor. This tree is passed to the routine tymerge, along with
the attribute type of the whole declaration; this routine collapses the tree to a single node, by calling
tyreduce , and then modifies the type to reflect the overall type of the declaration.

Dimension and size information is stored in a table called dimtab. To properly describe a type in C,
one needs not just the type information but also size information (for structures and enumerations) and
dimension information (for arrays). Sizes and offsets are dealt with in the compiler by giving the associ­
ated indices into dimtab. Tymerge and tyreduce call dstash to put the discovered dimensions away into
the dimtab array. Tymerge returns a pointer to a single node that contains the symbol table index in its
rval field, and the size and dimension indices in fields csi: and cdim, respectively. This information is
properly considered part of the type in the first pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a storage class, and
a pointer to the node produced by tymerge. Defid calls fixtype, which adjusts and checks the given type
depending on the storage class, and converts null types appropriately. It then calls fixclass, which does a
similar job for the storage class; it is here, for example, that register declarations are either allowed or
changed to auto.

The new declaration is now compared against an older one, if present, and several pages of validity
checks performed. If the definitions are compatible, with possibly some added information, the processing
is straightforward. If the definitions differ, the block levels of the current and the old declaration are com­
pared. The current block level is kept in blevel, an external variable; the old declaration level is kept in the
symbol table. Block level 0 is for external declarations, 1 is for arguments to functions, and 2 and above
are blocks within a function. If the current block level is the same as the old declaration, an error results.
If the current block level is higher, the new declaration overrides the old. This is done by marking the old
symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will skip over hidden

SMM:19-8 A Tour Through the Portable C Compiler

entries. When a block is left, the symbol table is searched, and any entries defined in that block are des­
troyed; if they hid other entries, the old entries are "unbidden".

This nice block structure is warped a bit because labels do not follow the block structure rules (one
can do a goto into a block, for example); default definitions of functions in inner blocks also persist clear
out to the outermost scope. This implies that cleaning up the symbol table after block exit is more subtle
than it might first seem.

For successful new definitions, defid also initializes a "general purpose" field, offset, in the symbol
table. It contains the stack offset for automatics and parameters, the register number for register variables,
the bit offset into the structure for structure members, and the internal label number for static variables and
labels. The offset field is set by lalloe for bit fields, and dclstruet for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension offsets, offset
value, and declaration block level. It also has a field of flags, describing what symbol table the name is in,
and whether the entry is hidden, or hides another. Finally, a field gives the line number of the last use, or
of the definition, of the name. This is used mainly for diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the use of the
compiler. This is especially true with structures; for use in initialization, structure declarations must have
access to a list of the members of the structure. This list is also kept in dimtab. Because a structure can be
mentioned long before the members are known, it is necessary to have another level of indirection in the
table. The two words following the esiz entry in dimtab are used to hold the alignment of the structure,
and the index in dimtab of the list of members. This list contains the symbol table indices for the structure
members, terminated by a-I.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recognizes each
rule making up an expression, it calls buildtree which is given an operator number~ and pointers to the left
and right descendants. Buildtree first examines the left and right descendants, and, if they are both con­
stants, and the operator is appropriate, simply does the constant computation at compile time, and returns
the result as a constant Otherwise, buildtree allocates a node for the head of the tree, attaches the descen­
dants to it, and ensures that conversion operators are generated if needed, and that the type of the new node
is consistent with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types are illegal, and the portable compiler makes a strong effort to check the
legality of expression types completely. This is done both for lint purposes, and to prevent such semantic
errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opaet. This routine maps the types of
the left and right operands into a rather smaller set of descriptors, and then accesses a table (actually
encoded in a switch statement) which for each operator and pair of types causes an action to be returned.
The actions are logical or's of a number of separate actions, which may be carried out by buildtree. These
component actions may include checking the left side to ensure that it is an lvalue (can be stored into),
applying a type conversion to the left or right operand, setting the type of the new node to the type of the
left or right operand, calling various routines to balance the types of the left and right operands, and
suppressing the ordinary conversion of arrays and function operands to pointers. An important operation is
OTHER, which causes some special code to be invoked in buildtree, to handle issues which are unique to a
particular operator. Examples of this are structure and union reference (actually handled by the routine
stre!), the building of NAME, ICON, STRING and FCON (floating point constant) nodes, unary * and &,
structure assignment, and calls. In the case of unary * and &, buildtree will cancel a * applied to a tree,
the top node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type mismatches, such as
intermixing pointers and integers.

The treatment of conversion operators is a rather strange area of the compiler (and of C!). The intro­
duction of type casts only confounded this situation. Most of the conversion operators are generated by
calls to tymatch and ptmateh, both of which are given a tree, and asked to make the operands agree in
type. Ptmateh treats the case where one of the operands is a pointer; tymateh treats all other cases. Where

A Tour Through the Portable C Compiler SMM::19-9

these routines have decided on the proper type for an operand, they call makety, which is handed a tree,
and a type word, dimension offset, and size offset If necessary, it inserts a conversion operation to make
the types correct. Conversion operations are never inserted on the left side of assignment operators, how­
ever. There are two conversion operators used; PCONV, if the conversion is to a non-basic type (usually a
pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine depen­
dent routine, cloeal, immediately after it is produced. This is to allow more or less immediate rewriting of
those nodes which must be adapted for the local machine. The conversion operations are given to cloeal
as well; on most machines, many of these conversions do nothing, and should be thrown away (being care­
ful to retain the type). If this operation is done too early, however, later calls to buildtree may get con­
fused about correct type of the subtrees; thus cloeal is given the conversion operations only after the entire
tree is built. This topic will be dealt with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is that most
of the mess takes place in the machine independent part, where it is may be safely ignored by the imple­
mentor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine structure; one
collection of programs reading constants from the input stream, while another, independent set of programs
places these constants into the appropriate spots in memory. The dramatic differences in the local assem­
blers also come to the fore here. The parsing problems are dealt with by keeping a rather extensive stack
containing the current state of the initialization; the assembler problems are dealt with by having a fair
number of machine dependent routines.

The stack contains the symbol table number, type, dimension index, .and size index for the current
identifier being initialized. Another entry has the offset, in bits, of the beginning of the current identifier.
Another entry keeps track of how many elements have been seen, if the current identifier is an array. Still
another entry keeps track of the current member of a structure being initialized. Finally, there is an entry
containing flags which keep track of the current state of the initialization process (e.g., tell if a '}' has been
seen for the current identifier).

When an initialization begins, the routine beginit is called; it handles the alignment restrictions, if
any, and calls instk to create the stack entry. This is done by first making an entry on the top of the stack
for the item being initialized. If the top entry is an array, another entry is made on the stack for the first
element. If the top entry is a structure, another entry is made on the stack for the first member of the struc­
ture. This continues until the top element of the stack is a scalar. Instk then returns, and the parser begins
collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does whatever is
necessary to assign the current constant to the scalar on the top of the stack. gotseal is then called, which
rearranges the stack so that the next scalar to be initialized gets placed on top of the stack. This process
continues until the end of the initializers;endinit cleans up. If a '{' or '}' is encountered in the string of
initializers, it is handled by calling ilbraee or irbraee, respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restrictions or expli­
cit requests for holes in bit fields. There is a global variable, ina!!, which contains the current offset in the
initialization (all offsets in the first pass of the compiler are in bits). Doinit figures out from the top entry
on the stack the expected bit offset of the next identifier; it calls the machine dependent routine inforee
which, in a machine dependent way, forces the assembler to set aside space if need be so that the next
scalar seen will go into the appropriate bit offset position. The scalar itself is passed to one of the machine
dependent routinesfineode (for floating point initialization), ineode (for fields, and other initializations less
than an int in size), and cinit (for all other initializations). The size is passed to all these routines, and it is
up to the machine dependent routines to ensure that the initializer occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the initializer for a
pointer, the characters making up the string must be put out under a different location counter. When the
lexical analyzer sees the quote at the head of a character string, it returns the token STRING, but does not

SMM:19-10 A Tour Through the Portable C Compiler

do anything with the contents. The parser calls getstr, which sets up the appropriate location counters and
flags, and calls lxstr to read and process the contents of the string.

If the string. is being used to initialize a character array, lxstr calls putbyte , which in effect simulates
doinit for each character read. If the string is used to initialize a character pointer, lxstr calls a machine
dependent routine, bycode, which stashes away each character. The pointer to this string is then returned,
and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and statements.
The statement processing is relatively simple; most of it is carried out in the parser directly. Most of the
logic is concerned with allocating label numbers, defining the labels, and branching appropriately. An
external symbol, reached, is 1 if a statement can be reached, 0 otherwise; this is used to do a bit of simple
flow analysis as the program is being parsed, and also to avoid generating the subroutine return sequence if
the subroutine cannot "fall through" the last statement

Conditional branches are handled by generating an expression node, CBRANCH, whose left descen­
dant is the conditional expression and the right descendant is an ICON node containing the internal label
number to be branched to. For efficiency, the semantics are that the label is gone to if the condition is
false.

The switch statement is compiled by collecting the case entries, and an indication as to whether there
is a default case; an internal label number is generated for each of these, and remembered in a big array.
The expression comprising the value to be switched on is compiled when the switch keyword is encoun­
tered, but the expression tree is headed by a special node, FORCE, which tells the code generator to put the
expression value into a special distinguished register (this same mechanism is used for processing the
return statement). When the end of the switch block is reached, the array containing the case values is
sorted, and checked for duplicate entries (an error); if all is correct, the machine dependent routine
genswitch is called, with this array of labels and values in increasing order. Genswitch can assume that the
value to be tested is already in the register which is the usual integer return value register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimization routine,
optim. Actually the word optimization is something of a misnomer; the results are not optimum, only
improved, and the routine is in fact not optional; it must be called for proper operation of the compiler.

Optim is called after an expression tree is built, but before the code generator is called. The essential
part of its job is to call clocal on the conversion operators. On most machines, the treatment of & is also
essential: by this time in the processing, the only node which is a legal descendant of & is NAME. (Possi­
ble descendants of * have been eliminated by buildtree.) The address of a static name is, almost by
definition, a constant, and can be represented by an ICON node on most machines (provided that the loader
has enough power). Unfortunately, this is not universally true; on some machine, such as the mM 370, the
issue of address ability rears its ugly head; thus, before turning a NAME node into an ICON node, the
machine dependent function andable is called.

The optimization attempts of optim are quite limited. It is primarily concerned with improving the
behavior of the compiler with operations one of whose arguments is a constant In the simplest case, the
constant is placed on the right if the operation is commutative. The compiler also makes a limited search
for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of special cases
are also examined; additions of 0 and multiplications by 1 are removed, although the correct processing of
these cases to get the type of the resulting tree correct is decidedly nontrivial. In some cases, the addition
or multiplication must be replaced by a conversion operator to keep the types from becoming fouled up. In
cases where a relational operation is being done and one operand is a constant, the operands are permuted

A Tour Through the Portable C Compiler SMM:19-11

and the operator altered, if necessary, to put the constant on the right. Finally, multiplications by a power
of 2 are changed to shifts.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In general, the
routines are short, and easy to adapt from machine to machine. The two exceptions to this general rule are
clocal and the function prolog and epilog generation routines, bfcode and efcode .

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by buildlree.
There are two major areas where this is important: NAME nodes and conversion operations. In the case of
NAME nodes, clocal must rewrite the NAME node to reflect the actual physical location of the name in
the machine. In effect, the NAME node must be examined, the symbol table entry found (through the rval
field of the node), and, based on the storage class of the node, the tree must be rewritten. Automatic vari­
ables and parameters are typically rewritten by treating the reference to the variable as a structure refer­
ence, off the register which holds the stack or argument pointer; the siref routine is set up to be called in
this way, and to build the appropriate tree. In the most general case, the tree consists of a unary * node,
whose descendant is a + node, with the stack or argument register as left operand, and a constant offset as
right operand. In the case of LABEL and internal static nodes, the rval field is rewritten to be the negative
of the internal label number; a negative rval field is taken to be an internal label number. Finally, a name
of class REGISTER must be converted into a REG node, and the rval field replaced by the register
number. In fact, this part of the clocal routine is nearly machine independent; only for machines with
addressability problems (IBM 370 again!) does it have to be noticeably different.

The conversion operator treatment is rather tricky. It is necessary to handle the application of
conversion operators to constants in clocal, in order that all constant expressions can have their values
known at compile time. In extreme cases, this may mean that some simulation of the arithmetic of the tar­
get machine might have to be done in a cross-compiler. In the most common case, conversions from
pointer to pointer do nothing. For some machines, however, conversion from byte pointer to short or long
pointer might require a shift or rotate operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends on its type
would be straightforward, but has not yet been done.

Another machine dependent issue in the first pass is the generation of external "symbol table" infor­
mation. This sort of symbol table is used by programs such as symbolic debuggers to relate object code
back to source code. Symbol table routines are provided in the file slab.c, which is included in the machine
dependent sources for the first pass. The symbol table routines insert assembly code containing assembly
pseudo-ops directly into the instruction stream generated by the compiler.

There are two basic kinds of symbol table operations. The simplest operation is the generation of a
source line number; this serves to map an address in an executable image into a line in a source file so that
a debugger can find the source code corresponding to the instructions being executed. The routine psline is
called by the scanner to emit source line numbers when a nonempty source line is seen. The other variety
of symbol table operation is the generation of type and address information about C symbols. This is done
through the outstab routine, which is normally called using the FIXDEF macro in the monster defid routine
in pftn.c that enters symbols into the compiler's internal symbol table.

Yet another major machine dependent issue involves function prolog and epilog generation. The
hard part here is the design of the stack frame and calling sequence; this design issue is discussed else­
where. 7 The routine bfcode is called with the number of arguments the function is defined with, and an
array containing the symbol table indices of the declared parameters. Bfcode must generate the code to
establish the new stack frame, save the return address and previous stack pointer value on the stack, and
save whatever registers are to be used for register variables. The stack size and the number of register vari­
ables is not known when bfcode is called, so these numbers must be referred to by assembler constants,
which are defined when they are known (usually in the second pass, after all register variables, automatics,
and temporaries have been seen). The final job is to find those parameters which may have been declared
register, and generate the code to initialize the register with the value passed on the stack. Once again, for
most machines, the general logic of bfcode remains the same, but the contents of the printj calls in it will

SMM:19-I2 A Tour Through the Portable C Compiler

change from machine to machine. efcode is rather simpler, having just to generate the default return at the
end of a function. This may be nontrivial in the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as good a place as
any. The C language now supports structure assignment, and the passing of structures as arguments to
functions, and the receiving of structures back from functions. This was added rather late to C, and thus to
the portable compiler. Consequently, it fits in less well than the older features. Moreover, most of the bur­
den of making these features work is placed on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is structured around
the idea that to compute something, you put it into a register and work on it. This notion causes a bit of
trouble on some machines (e.g., machines with 3-address opcodes), but matches many machines quite well.
Unfortunately, this notion breaks down with structures. The closest that one can come is to keep the
addresses of the structures in registers. The actual code sequences used to move structures vary from the
trivial (a multiple byte move) to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called, this function
has to have some place to put the structure value. If it places it on the stack, it has difficulty popping its
stack frame. If it places the value in a static temporary, the routine fails to be reentrant. The most logically
consistent way of implementing this is for the caller to pass in a pointer to a spot where the called function
should put the value before returning. This is relatively straightforward, although a bit tedious, to imple­
ment, but means that the caller must have properly declared the function type, even if the value is never
used. On some machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough room if the
returned value is larger than the arguments. This also assumes that the caller declares the function prop­
erly.

The PDP-II and the VAX have stack hardware which is used in function calls and returns; this makes
it very inconvenient to use either of the above mechanisms. In these machines, a static area within the
called function is allocated, and the function return value is copied into it on return; the function returns the
address of that region. This is simple to implement, but is non-reentrant. However, the function can now
be called as a subroutine without being properly declared, without the disaster which would otherwise
ensue. No matter what choice is taken, the convention is that the function actually returns the address of
the return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures. It
assumes that functions returning structures actually return a pointer to the structure, and it assumes that a
reference to a structure is actually a reference to its address. The structure assignment operator is rebuilt so
that the left operand is the structure being assigned to, but the right operand is the address of the structure
being assigned; this makes it easier to deal with

a=b==c

and similar constructions.

There are four special tree nodes associated with these operations: ST ASG (structure assignment),
STARG (structure argument to a function call), and STCALL and UNARY STCALL (calls of a function
with nonzero and zero arguments, respectively). These four nodes are unique in that the size and alignment
information, which can be determined by the type for all other objects in C, must be known to carry out
these operations; special fields are set aside in these nodes to contain this information, and special inter­
mediate code is used to transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title' 'tour", and par­
tially because they have seemed to cause little trouble. There are some debugging flags which may be
turned on, by giving the compiler's first pass the argument

-x [flags]

Some of the more interesting flags are - Xd for the defining and freeing of symbols, -Xi for initialization

A Tour Through the Portable C Compiler SMM:19-13

comments, and -Xb for various comments about the building of trees. In many cases, repeating the flag
more than once gives more information; thus, -Xddd gives more information than -Xd. In the two pass
version of the compiler, the flags should not be set when the output is sent to the second pass, since the
debugging output and the intermediate code both go onto the standard output

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this reason the
second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is in understand­
ing the issues and the strategies employed to meet them. Any particular function is likely to be reasonably
straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy in the
code generator, and will not get too intimate with the details.

Overview

It is difficult to organize a code generator to be flexible enough to generate code for a large number
of machines, and still be efficient for anyone of them. Flexibility is also important when it comes time to
tune the code generator to improve the output code quality. On the other hand, too much flexibility can
lead to semantically incorrect code, and potentially a combinatorial explosion in the number of cases to be
considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desirable to have
the compiler detect its own inability to generate correct code, rather than to produce incorrect code. This
goal is achieved by having a simple model of the job to be done (e.g., an expression tree) and a simple
model of the machine state (e.g., which registers are free). The act of generating an instruction performs a
transformation on the tree and the machine state; hopefully, the tree eventually gets reduced to a single
node. If each of these instructiOn/transformation pairs is correct, and if the machine state model really
represents the actual machine, and if the transformations reduce the input tree to the desired single node,
then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encompasses all the C
operators. Thus the selection of which instruction/transformations to generate, and in what order, will have
a heuristic flavor. If, for some expression tree, no transformation applies, or, more seriously, if the heuris­
tics select a sequence of instruction/transformations that do not in fact reduce the tree, the compiler will
report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations. Most of
this is machine independent, or depends only on simple tables. The flexibility comes from the heuristics
that guide the transformations of the trees, the selection of sub goals, and the ordering of the computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A and B .
Within each register class, there may be scratch (temporary) registers and dedicated registers (e.g., register
variables, the stack pointer, etc.). Requests to allocate and free registers involve only the temporary regis­
ters.

Each of the registers in the machine is given a name and a number in the mac2defs.h file; the
numbers are used as indices into various tables that describe the registers, so they should be kept small.
One such table is the rstatus table on file locaI2.c. This table is indexed by register number, and contains
expressions made up from manifest constants describing the register types: SAREG for dedicated
AREG's, SAREGISTAREG for scratch AREG's, and SBREG and SBREGISTBREG similarly for
BREG's. There are macros that access this information: isbreg(r) returns true if register number r is a
BREG, and istreg(r) returns true if register number r is a temporary AREG or BREG. Another table,
rnames, contains the register names; this is used when putting out assembler code and diagnostics.

SMM:19-14 A Tour Through the Portable C Compiler

The usage of registers is kept track of by an array called busy. Busy[r] is the number of uses of
register r in the current tree being processed. The allocation and freeing of registers will be discussed later
as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying through to the
output unchanged any lines that begin with a')', and making note of the information about stack usage and
register allocation contained on lines beginning with ']' and '['. The expression trees, whose beginning is
indicated by a line beginning with '.', are read and rebuilt into trees. If the compiler is loaded as one pass,
the expression trees are immediately available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first given the
tree; it attempts to delay some postfix + + and -- computations that might reasonably be done after the
smoke clears. It also attempts to handle comma (' ,') operators by computing the left side expression first,
and then rewriting the tree to eliminate the operator. Delay calls codgen to control the actual code genera­
tion process. Codgen takes as arguments a pointer to the expression tree, and a second argument that, for
socio-historical reasons, is called a cookie. The cookie describes a set of goals that would be acceptable
for the code generation: these are assigned to individual bits, so they may be logically or'ed together to
form a large number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value), INTEMP (compute and store value into a temporary location in
memory), INAREG (compute into an A register), INTAREG (compute into a scratch A register), INBREG
and INTBREG similarly, FORCC (compute for condition codes), and FORARG (compute it as a function
argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon. This routine looks for certain transformations
that might now be applicable to the tree. One, which is very common and very powerful, is to fold together
an indirection operator (UNARY MOL) and a register (REG); in most machines, this combination is
addressable directly, and so is similar to a NAME in its behavior. The UNARY MUL and REG are folded
together to make another node type called OREG. In fact, in many machines it is possible to directly
address not just the cell pointed to by a register, but also cells differing by a constant offset from the cell
pointed to by the register. Canon also looks for such cases, calling the machine dependent routine noto!!
to decide if the offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095
bytes). Another optimization is to replace bit field operations by shifts and masks if the operation involves
extracting the field. Finally, a machine dependent routine, sucomp, is called that computes the Sethi­
Ullman numbers for the tree (see below),

After the tree is canonicalized, codgen calls the routine store whose job is to select a subtree of the
tree to be computed and (usually) stored before beginning the computation of the full tree. Store must
return a tree that can be computed without need for any temporary storage locations. In effect, the only
store operations generated while processing the subtree must be as a response to explicit assignment opera­
tors in the tree. This division of the job marks one of the more significant, and successful, departures from
most other compilers. It means that the code generator can operate under the assumption that there are
enough registers to do its job, without worrying about temporary storage. If a store into a temporary
appears in the output, it is always as a direct result of logic in the store routine; this makes debugging
easier.

One consequence of this organization is that code is not generated by a treewalk. There are theoreti­
cal results that support this decision. 7 It may be desirable to compute several subtrees and store them
before tackling the whole tree; if a subtree is to be stored, this is known before the code generation for the
subtree is begun, and the subtree is computed when all scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of numbers, called
Sethi-Ullman numbers, that give, for each subtree of an expression tree, the minimum number of scratch
registers required to compile the subtree, without any stores into temporaries. 8 These numbers are com­
puted by the machine-dependent routine sucomp, called by canon. The basic notion is that, knowing the
Sethi-Ullman numbers for the descendants of a node, and knowing the operator of the node and some
information about the machine, the Sethi-Ullman number of the node itself can be computed If the Sethi­
Ullman number for a tree exceeds the number of scratch registers available, some subtree must be stored.

A Tour Through the Portable C Compiler SMM:19-15

Unfortunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple machines and
operators. For the rich set of C operators, and for machines with asymmetric registers, register pairs, dif­
ferent kinds of registers, and exceptional forms of addressing, the theory cannot be applied directly. The
basic idea of estimation is a good one, however, and well worth applying; the application, especially when
the compiler comes to be tuned for high code quality, goes beyond the park of theory into the swamp of
heuristics. This topic will be taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, and returns
the subtree and the associated cookie in the external variables stotree and stocook. If a subtree has been
selected, or if the whole tree is ready to be processed, the routine order is called, with a tree and cookie.
Order generates code for trees that do not require temporary locations. Order may make recursive calls
on itself, and, in some cases, on codgen ; for example, when processing the operators &&, II, and comma
(' ,'), that have a left to right evaluation, it is incorrect for store examine the right operand for subtrees to be
stored. In these cases, order will call codgen recursively when it is permissible to work on the right
operand. A similar issue arises with the? : operator.

The order routine works by matching the current tree with a set of code templates. If a template is
discovered that will match the current tree and cookie, the associated assembly language statement or state­
ments are generated. The tree is then rewritten, as specified by the template, to represent the effect of the
output instruction(s). If no template match is found, first an attempt is made to find a match with a dif­
ferent cookie; for example, in order to compute an expression with cookie INTEMP (store into a temporary
storage location), it is usually necessary to compute the expression into a scratch register first If all
attempts to match the tree fail, the heuristic part of the algorithm becomes dominant. Control is typically
given to one of a number of machine-dependent routines that may in turn recursively call order to achieve
a subgoal of the computation (for example, one of the arguments may be computed into a temporary regis­
ter). After thissubgoal has been achieved, the process begins again with the modified tree. If the
machine-dependent heuristics are unable to reduce the tree further, a number of default rewriting rules may
be considered appropriate. For example, if the left operand of a + is a scratch register, the + can be
replaced by a += operator; the tree may then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+=b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is found.
Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose we are dealing
with the Interdata 8/32 for the moment It is recognized that the left hand and right hand sides of the +=
operator are addressable, and in particular the left hand side has no side effects, so it is permissible to
rewrite this as

a=a+b

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it is recog­
nized that the left hand side of the assignment is addressable, but the right hand side is not in a register, so
order is called recursively, being asked to put the right hand side of the assignment into a register. This
invocation of order searches the tree for a match, and fails. The machine dependent rule for + notices that
the right hand operand is addressable; it decides to put the left operand into a scratch register. Another
recursive call to order is made, with the tree consisting solely of the leaf a, and the cookie asking that the
value be placed into a scratch register. This now matches a template, and a load instruction is emitted. The
node consisting of a is rewritten in place to represent the register into which a is loaded, and this third call
to order returns. The second call to order now finds that it has the tree

reg+b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a += operator,
since the left operand is a scratch register. When this is done, there is a match: in fact,

reg += b

SM:M:: 19-16 A Tour Through the Portable C Compiler

simply describes the effect of the add instruction on a typical machine. After the add is emitted, the tree is
rewritten to consist merely of the register node, since the result of the add is now in the register. This
agrees with the cookie passed to the second invocation of order, so this invocation terminates, returning to
the first level. The original tree has now become

a= reg

which matches a template for the store instruction. The store is output, and the tree rewritten to become
just a single register node. At this point, since the top level call to order was interested only in side effects,
the call to order returns, and the code generation is completed; we have generated a load, add, and store, as
might have been expected.

The effect of machine architecture on this is considerable. For example, on the Honeywell 6000, the
machine dependent heuristics recognize that there is an "add to storage" instruction, so the strategy is
quite different; b is loaded in to a register, and then an add to storage instruction generated to add this
register in to a. The transformations, involving as they do the semantics of C, are largely machine
independent. The decisions as to when to use them, however, are almost totally machine dependent

Having given a broad outline of the code generation process, we shall next consider the heart of it:
the templates. This leads naturally into discussions of template matching and register allocation, and
finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of computation
around which the compiler is organized In effect, each template has five logical sections, and represents
an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2), and
we have sufficient free resources (3), then we may emit an instruction or instructions (4), and rewrite
the subtree in a particular manner (5), and the rewritten tree will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a template:

ASGPLUS, INAREG,
SAREG,
SNAME,

TINT,
TINT,
0,
"

RLEFT,
add AL,AR\n",

The top line specifies the operator (+=) and the cookie (compute the value of the subtree into an AREG).
The second and third lines specify the left and right descendants, respectively, of the += operator. The left
descendant must be a REG node, representing an A register, and have integer type, while the right side
must be a NAME node, and also have integer type. The fourth line contains the resource requirements (no
scratch registers or temporaries needed), and the rewriting rule (replace the subtree by the left descendant).
Finally, the quoted string on the last line represents the output to the assembler: lower case letters, tabs,
spaces, etc. are copied verbatim. to the output; upper case letters trigger various macro-like expansions.
Thus, AL would expand into the Address form of the Left operand - presumably the register number.
Similarly, AR would expand into the name of the right operand. The add instruction of the last section
might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of operators,
cookies, types, and shapes. In practice, the number of combinations is very large. Thus, a considerable
amount of mechanism is present to permit a large number of subtrees to be matched by a single template.
Most of the shape and type specifiers are individual bits, and can be logically or'ed together. There are a
number of special descriptors for matching classes of operators. The cookies can also be combined. As an
example of the kind of template that really arises in practice, the actual template for the Interdata8/32 that
subsumes the above example is:

A Tour Through the Portable C Compiler SMM:19-17

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,

0, RLEFfJRESCC,
01 AL,AR\n",

Here, OPSIMP represents the operators +, -, I, &, and". The 01 macro in the output string expands into
the appropriate Integer Opcode for the operator. The left and right sides can be integers, unsigned, or
pointer types. The right side can be, in addition to a name, a register, a memory location whose address is
given by a register and displacement (OREG), or a constant. Finally, these instructions set the condition
codes, and so can be used in condition contexts: the cookie and rewriting rules reflect this.

The Template Matching Algorithm

The heart of the second pass is the template matching algorithm, in the routine match. Match is
called with a tree and a cookie; it attempts to match the given tree against some template that will
transform it according to one of the goals given in the cookie. If a match is successful, the transformation
is applied; expand is called to generate the assembly code, and then reclaim rewrites the tree, and reclaims
the resources, such as registers, that might have become free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of implementation
techniques available for doing this matching. The most naive algorithm simply looks at the templates one
by one. This can be considerably improved upon by restricting the search for an acceptable template. It
would be possible to do better than this if the templates were given to a separate program that ate them and
generated a template matching subroutine. This would make maintenance of the compiler much more
complicated, however, so this has not been done.

The matching algorithm is actually carried out by restricting the range in the table that must be
searched for each opcode. This introduces a number of complications, however, and needs a bit of sym­
pathetic help by the person constructing the compiler in order to obtain best results. The exact tuning of
this algorithm continues; it is best to consult the code and comments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and the operator of
the root, but also the types and shapes of the left and right descendants (if any) of the tree. A convention is
established here that is carried out throughout the second pass of the compiler. If a node represents a unary
operator, the single descendant is always the "left" descendant. If a node represents a unary operator or a
leaf node (no descendants) the "right" descendant is taken by convention to be the node itself. This
enables templates to easily match leaves and conversion operators, for example, without any additional
mechanism in the matching program.

The type matching is straightforward; it is possible to specify any combination of basic types, gen­
eral pointers, and pointers to one or more of the basic types. The shape matching is somewhat more com­
plicated, but still pretty simple. Templates have a collection of possible operand shapes on which the
opcode might match. In the simplest case, an add operation might be able to add to either a register vari­
able or a scratch register, and might be able (with appropriate help from the assembler) to add an integer
constant (ICON), a static memory cell (NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them when the
assembler output is produced. It is possible to describe the union of many elementary shapes such as
ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To handle at least the sim­
ple forms of indirection, one can also match some more complicated forms of trees: ST ARNM and ST AR­
REG can match more complicated trees headed by an indirection operator, and SFLD can match certain
trees headed by a FLD operator. These patterns call machine dependent routines that match the patterns of
interest on a given machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie
on word boundaries: this may be of some importance on word addressed machines. Finally, there are some
special shapes: these may not be used in conjunction with the other shapes, but may be defined and
extended in machine dependent ways. The special shapes SZERO, SONE, and SMONE are predefined and
match constants 0, 1, and -1, respectively; others are easy to add and match by using the machine depen­
dent routine special.

SMM:19-18 A Tour Through· the Portable C Compiler

When a template has been found that matches the root of the tree, the cookie, and the shapes and
types of the descendants, there is still one bar to a total match: the template may call for some resources
(for example, a scratch register). The routine allo is called, and it attempts to allocate the resources. If it
cannot, the match fails; no resources are allocated If successful, the allocated resources are given numbers
1, 2, etc. for later reference when the assembly code is generated The routines expand and reclaim are
then called The match routine then returns a special value, MDONE. If no match was found, the value
MNOPE is returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Mate h is also used to select rewriting rules, although the way of doing this is pretty straightforward. A
special cookie, FORREW, is used to ask match to search for a rewriting rule. The rewriting rules are
keyed to various opcodes; most are carried out in order. Since the question of when to rewrite is one of
the key issues in code generation, it will be taken up again later.

Register Allocation

The register allocation routines, and the allocation strategy, play a central role in the correctness of
the code generation algorithm. If there are bugs in the Sethi-Ullman computation that cause the number of
needed registers to be underestimated, the compiler may run out of scratch registers; it is essential that the
allocator keep track of those registers that are free and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine aUo is called with a
word describing the number of A registers, B registers, and temporary locations needed. The allocation of
temporary locations on the stack is relatively straightforward, and will not be further covered; the book­
keeping is a bit tricky, but conceptually trivial, and requests for temporary space on the stack will never
fail.

Register allocation is less straightforward. The two major complications are pairing and sharing.
In many machines, some operations (such as multiplication and division), and/or some types (such as longs
or double precision) require even/odd pairs of registers. Operations of the first type are exceptionally
difficult to deal with in the compiler; in fact, their theoretical properties are rather bad as well. 9 The second
issue is dealt with rather more successfully; a machine dependent function called szty(t) is called that
returns 1 or 2, depending on the number of A registers required to hold an object of type t. If szty returns
2, an even/odd pair of A registers is allocated for each request. As part of its duties, the routine usable
finds usable register pairs for various operations. This task is not as easy as it sounds; it does not suffice to
merely use szty on the expression tree, since there are situations in which a register pair temporary is
needed even though the result of the expression requires only one register. This can occur with assignment
operator expressions which have int type but a double right hand side, or with relational expressions where
one operand is 80at and the other double.

The other issue, sharing, is more subtle, but important for good code quality. When registers are
allocated, it is possible to reuse registers that hold address infonnation, and use them to contain the values
computed or accessed. For example, on the IBM 360, if register 2 has a pointer to an integer in it, we may
load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the target
register first, and then inserting the desired character:

SR 3,3
IC 3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of registers used for
the expression than were required; the compiler would generate inefficient code. On the other hand, if
register 2 were used as the target in the second case, the code would simply be wrong. In the first case,
register 2 can be shared while in the second, it cannot

In the specification of the register needs in the templates, it is possible to indicate whether required
scratch registers may be shared with possible registers on the left or the right of the input tree. In order that
a register be shared, it must be scratch, and it must be used only once, on the appropriate side of the tree
being compiled.

A Tour Through the Portable C Compiler SMM:19-19

The allo routine thus has a bit more to do than meets the eye; it callsfreereg to obtain a free register
for each A and B register request. Freereg makes multiple calls on the routine usable to decide if a given
register can be used to satisfy a given need. Usable calls shareit if the register is busy, but might be
shared. Finally, shareit calls ushare to decide if the desired register is actually in the appropriate subtree,
and can be shared

Just to add additional complexity, on some machines (such as the IBM 370) it is possible to have
"double indexing" forms of addressing; these are represented by OREG's with the base and index regis­
ters encoded into the register field. While the register allocation and deallocation per se is not made more
difficult by this phenomenon, the code itself is somewhat more complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim the
resources; the routine reclaim does this. Many operations produce more than one result. For example,
many arithmetic operations may produce a value in a register, and also set the condition codes. Assign­
ment operations may leave results both in a register and in memory. Reclaim is passed three parameters;
the tree and cookie that were matched, and the rewriting field of the template. The rewriting field allows
the specification of possible results; the tree is rewritten to reflect the results of the operation. If the tree
was computed for side effects only (FOREFF), the tree is freed, and all resources in it reclaimed. If the
tree was computed for condition codes, the resources are also freed, and the tree replaced by a special node
type, FORCC. Otherwise, the value may be found in the left argument of the root, the right argument of
the root, or one of the temporary resources allocated In these cases, first the resources of the tree, and the
newly allocated resources, are freed; then the resources needed by the result are made busy again. The
final result must always match the shape of the input cookie; otherwise, the compiler error "cannot
reclaim" is generated There are some machine dependent ways of preferring results in registers or
memory when there are multiple results matching multiple goals in the cookie.

Reclaim also implements, in a curious way, C's "usual arithmetic conversions". When a value is
generated into a temporary register, reclaim decides what the type and size of the result will be. Unless
automatic conversion is specifically suppressed in the code template with the T macro, reclaim converts
char and short results to int, unsigned char and unsigned short results to unsigned int, and float into
double (for double only floating point arithmetic). This conversion is a simple type pun; no instructions for
converting the value are actually emitted. This implies that registers must always contain a value that is at
least as wide as a register, which greatly restricts the range of possible templates.

The Machine Dependent Interface

The files order.e, loeaI2.e, and table.e, as well as the header file mae2defs, represent the machine
dependent portion of the second pass. The machine dependent portion can be roughly divided into two: the
easy portion and the hard portion. The easy portion tells the compiler the names of the registers, and
arranges that the compiler generate the proper assembler formats, opcode names, location counters, etc.
The hard portion involves the Sethi-Ullman computation, the rewriting rules, and, to some extent, the tem­
plates. It is hard because there are no real algorithms that apply; most of this portion is based on heuristics.
This section discusses the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy part is
indeed easy. In mae2defs, the register numbers are defined, as well as various parameters for the stack
frame, and various macros that describe the machine architecture. If double indexing is to be permitted, for
example, the symbol R2REGS is defined. Also, a number of macros that are involved in function call pro­
cessing, especially for unusual function call mechanisms, are defined here.

In loeaI2.e, a large number of simple functions are defined. These do things such as write out
opcodes, register names, and address forms for the assembler. Part of the function call code is defined
here; that is nontrivial to design, but typically rather straightforward to implement. Among the easy rou­
tines in order.e are routines for generating a created label, defining a label, and generating the arguments
of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on the target
assembler and the design decisions already made about the compiler. Thus they will not be further treated
here.

S:MM:19-20 A Tour Through the Portable C Compiler

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the tree is
rewritten, the machine dependent routine nexteook is called with the tree and the cookie; it suggests
another cookie that might be a better candidate for the matching of the tree. If all else fails, the templates
are searched with the cookie FORREW, to look for a rewriting rule. The rewriting rules are of two kinds;
for most of the common operators, there are machine dependent rewriting rules that may be applied; these
are handled by machine dependent functions that are called and given the tree to be computed. These rou­
tines may recursively call order or eodgen to cause certain subgoals to be achieved; if they actually call
for some alteration of the tree, they return 1, and the code generation algorithm recanonicalizes and tries
again. If these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment operators, when rewritten, call the routine setasg. This is assumed to rewrite the
tree at least to the point where there are no side effects in the left hand side. If there is still no template
match, a default rewriting is done that causes an expression such as

a +=b

to be rewritten as

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and b an
character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by the
machine dependent routines. For historical reasons, the routines generating the calls return 1 on failure, 0
on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of the job. In
particular, when it returns 0, it must do so with the left hand side in a temporary register. The default
rewriting rule in this case is to convert the binary operator into the associated assignment operator; since
the left hand side is assumed to be a temporary register, this preserves the semantics and often allows a
considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent routine
senner. If this routine chooses not to deal with the tree, the rewriting rule replaces

x ++

by

((x+=J)-J)

which preserves the semantics. Once again, this is not too attractive for the most common cases, but can
generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The machine
dependent routine offstar is extremely important for the efficient generation of code. Offstar is called with
a tree that is the direct descendant of a UNARY MUL node; its job is to transform this tree so that the com­
bination of UNARY MUL with the transformed tree becomes addressable. On most machines, of/star can
simply compute the tree into an A or B register, depending on the architecture, and then canon will make
the resulting tree into an OREG. On many machines, offstar can profitably choose to do less work than
computing its entire argument into a register. For example, if the target machine supports OREG's with a
constant offset from a register, and of/star is called with a tree of the form

expr + eonst

where eonst is a constant, then offstar need only compute expr into the appropriate form of register. On
machines that support double indexing, offstar may have even more choice as to how to proceed. The
proper tuning of of/star, which is not typically too difficult, should be one of the first tries at optimization
attempted by the compiler writer.

A Tour Through the Portable C Compiler SMM:19-21

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This computation is
closely linked with the rewriting rules and the templates. As mentioned before, the Sethi-Ullman numbers
are expected to estimate the number of scratch registers needed to compute the subtrees without using any
stores. However, the original theory does not apply to real machines. For one thing, the theory assumes
that all registers are interchangeable. Real machines have general purpose, floating point, and index regis­
ters, register pairs, etc. The theory also does not account for side effects; this rules out various forms of
pathology that arise from assignment and assignment operators. Condition codes are also undreamed of.
Finally, the influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly useful in a
real compiler. The notion that one should attempt to estimate the resource needs of trees before starting the
code generation provides a natural means of splitting the code generation problem, and provides a bit of
redundancy and self checking in the compiler. Moreover, if writing the Sethi-Ullman routines is hard,
describing, writing, and debugging the alternative (routines that attempt to free up registers by stores into
temporaries "on the fly") is even worse. Nevertheless, it should be clearly understood that these routines
exist in a realm where there is no "right" way to write them; it is an art, the realm of heuristics, and, con­
sequently, a major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved do serious
problem have to be faced. Having a simple, regular machine architecture is worth quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having different kinds of
registers, and the related problem of needing more than one register (frequently a pair) to store certain data
types (such as longs or doubles). There appears to be no general way of treating this problem; solutions
have to be fudged for each machine where the problem arises. On the Honeywell 66, for example, there
are only two general purpose registers, so a need for a pair is the same as the need for two registers. On the
IBM 370, the register pair (0,1) is used to do multiplications and divisions; registers ° and 1 are not gen­
erally considered part of the scratch registers, and so do not require allocation explicitly. On the Interdata
8/32, after much consideration, the decision was made not to try to deal with the register pair issue; opera­
tions such as multiplication and division that required pairs were simply assumed to take all of the scratch
registers. Several weeks of effort had failed to produce an algorithm that seemed to have much chance of
running successfully without inordinate debugging effort. The difficulty of this issue should not be minim­
ized; it represents one of the main intellectual efforts in porting the compiler. Nevertheless, this problem
has been fudged with a degree of success on nearly a dozen machines, so the compiler writer should not
abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather subtle
ways. As already discussed, the store routine uses the Sethi-Ullman numbers to decide which subtrees are
too difficult to compute in registers, and must be stored. There are also subtle interactions between the
rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is possible to
compute the full expression in two registers by first computing B, and then, using the scratch register used
by B , but not containing the answer, compute A. The subtraction can then be done, computing the expres­
sion. (Note that this assumes a number of things, not the least of which are register-ta-register subtraction
operators and symmetric registers.) If the machine dependent routine setbin, however, is not prepared to
recognize this case and compute the more difficult side of the expression first, the Sethi-Ullman number
must be set to three. Thus, the Sethi-Ullman number for a tree should represent the code that the machine
dependent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where p is a pointer and i an integer, this can probably be done in one register on most machines. Thus, its
Sethi-Ullman number would probably be set to one. If double indexing is possible in the machine, a

SMM:19-22 A Tour Through the Portable C Compiler

possible way of computing the expression is to load both p and i into registerst and then use double index­
ing. This would use two scratch registers; in such a caset it is possible that the scratch registers might be
unobtainable, or might make some other part of the computation run out of registers. The usual solution is
to cause offstar to ignore opportunities for double indexing that would tie up more scratch registers than
the Sethi-Ullman number had reserved

In summaryt the Sethi-Ullman computation represents much of the craftsmanship and artistry in any
application of the portable compiler. It is also a frequent source of bugs. Algorithms are available that will
produce nearly optimal code for specialized machines, but unfortunately most existing machines are far
removed from these ideals. The best way of proceeding in practice is to start with a compiler for a similar
machine to the target, and proceed very carefully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does register alloca­
tion, if appropriate. This routine does relatively little, in general; this is especially true if the target
machine is fairly regular. There are a few cases where it is assumed that the result of a computation takes
place in a particular register; switch and function return are the two major places. The expression tree has
a field, rail, that may be filled with a register number; this is taken to be a preferred register, and the first
temporary register allocated by a template match will be this preferred one, if it is free. If not, no particular
action is taken; this is just a heuristic. If no register preference is present, the field contains NOPREF. In
some cases, the result must be placed in a given register, no matter what. The register number is placed in
rail, and the mask MUSTDO is logically or' ed in with it. In this case, if the subtree is requested in a regis­
ter, and comes back in a register other than the demanded one, it is moved by calling the routine rmove. If
the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move between
scratch registers (unless such a move is buried in the depths of some template). This simplifies debugging.
In some cases, there is a rather strange interaction between the register allocation and the Sethi-Ullman
number; if there is an operator or situation requiring a particular register, the allocator and the Sethi­
Ullman computation must conspire to ensure that the target register is not being used by some intermediate
result of some far-removed computation. This is most easily done by making the special operation take all
of the free registers, preventing any other partially-computed results from cluttering up the works.

Template Shortcuts

Some operations are just too hard or too clumsy to be implemented in code templates on a particular
architecture.

One way to handle such operations is to replace them with function calls. The intermediate file read­
ing code in reader.c contains a call to an implementation dependent macro MYREADER; this can be
defined to call various routines which walk the code tree and perform transformations. On the VAX, for
example, unsigned division and remainder operations are far too complex to encode in a template. The
routine hardops is called from a tree walk in myreader to detect these operations and replace them with
calls to the C runtime functions udiv and urem. (There are complementary functions audiv and aurem
which are provided as support for unsigned assignment operator expressions; they are different from udiv
and urem because the left hand side of an assignment operator expression must be evaluated only once.)
Note that arithmetic support routines are always expensive; the compiler makes an effort to notice common
operations such as unsigned division by a constant power of two and generates optimal code for these
inline.

Another escape involves the routine zzzcode. This function is called from expand to process tem­
plate macros which start with the character Z. On the v AX, many complex code generation problems are
swept under the rug into zzzcode. Scalar type conversions are a particularly annoying issue; they are pri­
marily handled using the macro ZA. Rather than creating a template for each possible conversion and
result, which would be tedious and complex given C's many scalar types, this macro allows the compiler to
take shortcuts. Tough conversions such as unsigned into double are easily handled using special code
under ZA. One convention which makes scalar conversions somewhat more difficult than they might oth­
erwise be is the strict requirement that values in registers must have a type that is as wide or wider than a

A Tour Through the Portable C Compiler SMM:19-23

single register. This convention is used primarily to implement the "usual arithmetic conversions" of C,
but it can get in the way when converting between (say) a char value and an unsigned short. A routine
named collapsible is used to determine whether one operation or two is needed to produce a register-width
result.

Another convenient macro is ZP. This macro is used to generate an appropriate conditional test after
a comparison. This makes it possible to avoid a profusion of template entries which essentially duplicate
each other, one entry for each type of test mUltiplied by the number of different comparison conditions. A
related macro, ZN, is used to normalize the result of a relational test by producing an integer 0 or 1.

The macro ZS does the unlovely job of generating code for structure assignments. It tests the size of
the structure to see what VAX instruction can be used to move it, and is capable of emitting a block move
instruction for large structures. On other architectures this macro could be used to generate a function call
to a block copy routine.

The macro ZG was recently introduced to handle the thorny issue of assignment operator expres­
sions which have an integral left hand side and a floating point right hand side. These expressions are
passed to the code generator without the usual type balancing so that good code can be generated for them.
Older versions of the portable compiler computed these expressions with integer arithmetic; with the ZG
operator, the current compiler can convert the left hand side to the appropriate floating type, compute the
expression with floating point arithmetic, convert the result back to integral type and store it in the left hand
side. These operations are performed by recursive calls to zzzcode and other routines related to expand.

An assortment of other macros finish the job of interpreting code templates. Among the more
interesting ones: ZC produces the number of words pushed on the argument stack, which is useful for
function calls; ZD and ZE produce constant increment and decrement operations; ZL and ZR produce the
assembler letter code (I, w or b) corresponding to the size and type of the left and right operand respec­
tively.

Shared Code

The lint utility shares sources with the portable compiler. Lint uses all of the machine independent
pass 1 sources, and adds its own set of "machine dependent" routines, contained mostly in lint.c. Lint
uses a private intermediate file format and a private pass 2 whose source is Ipass2.c. Several modifications
were made to the C scanner in scan.c, conditionally compiled with the symbol LINT, in order to support
lint's convention of passing "pragma" information inside special comments. A few other minor
modifications were also made, e.g. to skip over asm statements.

The [17 and pc compilers use a code generator which shares sources with pass 2 of the portable com­
piler. This code generator is very similar to pass 2 but uses a different intermediate file format Three
source files are needed in addition to the pass 2 sources. fort.c is a machine independent source file which
contains a pass 2 main routine that replaces the equivalent routine in reader.c, together with several rou­
tines for reading the binary intermediate file. fort.c includes the machine dependent file fort.h, which
defines two trivial label generation routines. A header file lusrlincludelpcc.h defines opcode and type sym­
bols which are needed to provide a standard intermediate file format; this file is also included by the For­
tran and Pascal compilers. The creation of this header file made it necessary to make some changes in the
way the portable C compiler is built These changes were made with the aim of minimizing the number of
lines changed in the original sources. Macro symbols in pcc.h are flagged with a unique prefix to avoid
symbol name collisions in the Fortran and Pascal compilers, which have their own internal opcode and type
symbols. A sed (1) script is used to strip these prefixes, producing an include file named pcclocal.h which
is specific to the portable C compiler and contains opcode symbols which are compatible with the original
opcode symbols. A similar sed script is used to produce a file of Yacc tokens for the C grammar.

A number of changes to existing source files were made to accommodate the Fortran-style pass 2.
These changes are conditionally compiled using the symbol FORT. Many changes were needed to imple­
ment single-precision arithmetic; other changes concern such things as the avoidance of floating point
move instructions, which on the VAX can cause floating point faults when a datum is not a normalized float­
ing point value. In earlier implementations of the Fortran-style pass 2 there were a number of stub files
which served only to define the symbol FORT in a particular source file; these files have been removed for

SMM:19-24 A Tour Through the Portable C Compiler

4.3BSD in favor of a new compilation strategy which yields up to three different objects from a single
source file, depending on what compilation control symbols are defined for that file.

The Fortran-style pass 2 uses a Polish Postfix intermediate file. The file is in binary format, and is
logically divided into a stream of 32-bit records. Each record consists of an (opcode, value, type) triple,
possibly followed inline by more descriptive information. The opcode and type are selected from the list
in pcc.h ; the type encodes a basic type, around which may be wrapped type modifiers such as "pointer to"
or "array of' to produce more complex types. The function of the value parameter depends on the
opcode; it may be used for a flag, a register number or the value of a constant, or it may be unused. The
optional inline data is often a null-terminated string, but it may also be a binary offset from a register or
from a symbolic constant; sometimes both a string and an offset appear.

Here are a few samples of intermediate file records and their interpretation:

Opcode

ICON

NAME

OREG

PLUS

FTEXT

Type

int
char

char

80at

Compiler Bugs

Value

flag=O

flag=l

reg=11

size=2

Optional
Data

binary=5

binary=l,
string=ft_foo_1t

offset=l,
string=ltv .2-v .11t

string= It .text 0"

Interpretation

the integer constant 5

a character·1 element in a Fortran common block
/00 at offset 1

the second element of a Fortran character*l array,
expressed as an offset from a static base register

a single precision add

an inline assembler directive of length 2 (32-bit
records)

The portable compiler has an excellent record of generating correct code. The requirement for rea­
sonable cooperation between the register allocation, Sethi-Ullman computation, rewriting rules, and tem­
plates builds quite a bit of redundancy into the compiling process. The effect of this is that, in a surpris­
ingly short time, the compiler will start generating correct code for those programs that it can compile. The
hard part of the job then becomes finding and eliminating those situations where the compiler refuses to
compile a program because it knows it cannot do it right. For example, a template may simply be missing;
this may either give a compiler error of the form "no match for op ... " ,or cause the compiler to go into an
infinite loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this parameter gets
too large, the compiler decides that it is in a loop, and aborts. Loops are also characteristic of botches in
the machine-dependent rewriting rules. Bad Sethi-Ullman computations usually cause the scratch registers
to run out; this often means that the Sethi-Ullman number was underestimated, so store did not store some­
thing it should have; alternatively, it can mean that the rewriting rules were not smart enough to find the
sequence that sucomp assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to get a small
example program that steps on the bug. Second, tum on various debugging flags in the code generator, and
follow the tree through the process of being matched and rewritten. Some flags of interest are -e, which
prints the expression tree, -r, which gives information about the allocation of registers, -a, which gives
information about the performance of rallo, and -0, which gives information about the behavior of order.
This technique should allow most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty arises
because a fix to the particular bug of interest tends to break other code that already works. Regression
tests, tests that compare the performance of a new compiler against the performance of an older one, are
very valuable in preventing major catastrophes.

A Tour Through the Portable C Compiler SMM:19-25

Compiler Extensions

The portable C compiler makes a few extensions to the language described by Ritchie.

Single precision arithmetic. "All floating arithmetic in C is carried out in double-precision; when­
ever a float appears in a an expression it is lengthened to double by zero-padding its fraction." -Dennis
Ritchie. 1 Programmers who would like to use C to write numerical applications often shy away from it
because C programs cannot perform single precision arithmetic. On machines such as the v AX which can
cleanly support arithmetic on two (or more) sizes of floating point values, programs which can take advan­
tage of single precision arithmetic will run faster. A very popular proposal for the ANSI C standard states
that implementations may perform single precision computations with single precision arithmetic; some
actual C implementations already do this, and now the Berkeley compiler joins them.

The changes are implemented in the compiler with a set of conditional compilation directives based
on the symbol SPRECC; thus two compilers are generated, one with only double precision arithmetic and
one with both double and single precision arithmetic. The cc program uses a flag -f to select the
single/double version of the compiler (lIiblsccom) instead of the default double only version (lliblccom). It
is expected that at some time in the future the double only compiler will be retired and the single/double
compiler will become the default.

There are a few implementation details of the single/double compiler which will be of interest to
users and compiler porters. To maintain compatibility with functions compiled by the double only com­
piler, single precision actual arguments are still coerced to double precision, and formal arguments which
are declared single precision are still "really" double precision. This may change if function prototypes of
the sort proposed for the ANSI C standard are eventually adopted. Floating point constants are now
classified into single precision and double precision types. The precision of a constant is determined from
context; if a floating constant appears in an arithmetic expression with a single precision value, the constant
is treated as having single precision type and the arithmetic expression is computed using single precision
arithmetic.

Remarkably little code in the compiler needed to be changed to implement the single/double com­
piler. In many cases the changes overlapped with special cases which are used for the Fortran-style pass 2
(lIiblfl). Most of the single precision changes were implemented by Sam Leffler.

Preprocessor extensions. The portable C compiler is normally distributed with a macro preprocessor
written by J. F. Reiser. This preprocessor implements the features described in Ritchie's reference manual;
it removes comments, expands macro definitions and removes or inserts code based on conditional compi­
lation directives. Two interesting extensions are provided by this version of the preprocessor:

• When comments are removed, no white space is necessarily substituted; this has the effect of re­
tokenizing code, since the PCC will reanalyze the input Macros can thus create new tokens by
clever use of comments. For example, the macro definition "#define foo(a,b) a/**/b" creates a
macro [00 which concatenates its two arguments, forming a new token.

• Macro bodies are analyzed for macro arguments without regard to the boundaries of string or charac­
ter constants. The definition "#define bar(a) "a\n'''' creates a macro which returns the literal form of
its argument embedded in a string with a newline appended.

These extensions are not portable to a number of other C preprocessors. They may be replaced in the
future by corresponding ANSI C features, when the ANSI C standard has been formalized.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number of diverse
machines, and for testing a number of theoretical constructs in a practical setting. It has many blemishes,
both in style and functionality. It has been applied to many more machines than first anticipated, of a much
wider range than originally dreamed of. Its use has also spread much faster than expected, leaving parts of
the compiler still somewhat raw in shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could be gen­
erated for many machines directly from the templates; this would give a considerable boost to the portabil­
ity and correctness of the compiler, but might affect tunability and code quality. There is also room for

SlYIM: 19-26 A Tour Through the Portable C Compiler

more optimization, both within optim and in the form of a portable' 'peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made smaller
without doing too much violence to its basic structure. Parts of the compiler deserve to be rewritten; the
initialization code, register allocation, and parser are prime candidates. It might be that doing some or all
of the parsing with a recursive descent parser might save enough space and time to be worthwhile; it would
certainly ease the problem of moving the compiler to an environment where Yacc is not already present.

Acknowledgements

I would like to thank the many people who have sympathetically, and even enthusiastically, helped
me grapple with what has been a frustrating program to write, test, and install. D. M. Ritchie and E. N.
Pinson provided needed early encouragement and philosophical guidance; M. E. Lesk, R. Muha, T. G.
Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R. Rowland, S.1. Feldman, and T. B. London have all con­
tributed ideas, gripes, and all, at one time or another, climbed "into the pits" with me to help debug.
Without their help this effort would have not been possible; with it, it was often kind of fun. -So C. John­
son

Many people have contributed fixes and improvements to the current Berkeley version of the com­
piler. A number of really valuable fixes were contributed by Ralph Campbell, Sam Leffter, Kirk
McKusick, Arthur Olsen, Donn Seeley, Don Speck and Chris Torek, but most of the bugs were spotted by
the legions of virtuous C programmers who were kind enough to let us know that the compiler was broken
and when the heck were we going to get it fixed? Thank you all. -Donn Seeley

References

1. B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

2. S.C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65, 1978, updated version TM
78-1273-3.

3. A. Snyder, A Portable Colmpiler for the Language C, Master's Thesis, M.I.T., Cambridge, Mass.,
1974.

4. S.C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles of
Programming Languages, pp. 97-104, January 1978.

5. M.E. Lesk, S.C. Johnson, and D.M. Ritchie, The C Language Calling Sequence, 1977.

6. S.C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No. 32, Bell Labora­
tories, Murray Hill, New Jersey, July 1975.

7. A.V. Aho and S.C. Johnson, "Optimal Code Generation for Expression Trees," J. Assoc. Compo Mach.,
vo123, no.3, pp. 488-501, 1975. Also in Proc. ACM Symp. on Theory of Computing, pp. 207-217, 1975.

8. R. Sethi and J.D. Ullman, "The Generation of Optimal Code for Arithmetic Expressions," J. Assoc.
Compo Mach., vol 17., no. 4, pp. 715-728, October 1970. Reprinted as pp. 229-247 in Computer Tech­
niques, ed by B.W. Pollack, Auerbach, Princeton, NJ (1972).

9. A.V. Aho, S.C. Johnson, and J.D. Ullman, "Code Generation for Machines with Multiregister Opera­
tions," Proc. 4th ACM Symp. on Principles of Programming Languages, pp. 21-28, January 1977.

Writing NROFF Terminal Descriptions

1. INTRODUCTION

Eric Allman
Britton-Lee, Inc.

As of the Version 7 Phototypesetter release of UNIX, * NROFF has supported terminal description files.
These files describe the characteristics of available hard-copy printers. This document describes some of
the details of how to write terminal description files.

Disclaimer. This document describes the results of my personal experience. The effects of changing
some of the fields from the norms may not be well defined, even if it seems like it "ought" to work given
the descriptions herein. These tables are known to vary slightly for different versions of UNIX. I have not
seen UNIX 3.0 at this time, so this may be irrelevant in that context

2. GENERAL

When NROFF starts up, it looks for a - T flag describing the terminal type. For example, if the com­
mand line is given as

nroff - TIOOs

NROFF prepares output for a DTC300S terminal. This terminal is described in the file lusr/lib/termltab300s
on most systems.

If no -T flag is given, the terminal type 37 (ASR 37 - a relic assumed for historical humor only) is
assumed.

The terminal description table is a stripped" .0" file generated from a data structure, shown in figure
one. This structure can be dealt with in two sections: the terminal capability descriptor (everything to
c ode tab), and the output descriptor.

3. TERMINAL CAPABILITIES

The section of the data structure up to but excluding code tab describes the basic functions and setup
requirements of the terminal. Distances are measured in "units," which are 11240 of an inch in NROFF. In
general, NROFF assumes that there is a "plot mode" on the terminal that allows you to move in small incre­
ments. A terminal has a resolution when in plot mode that is measured in units. This limits how well the
terminal can simulate printing Greek and special characters.

3.1. bset, breset

These fields define bits in a vanilla stty(2) word (sg flags) to set and clear respectively when NROFF
starts. They are normally represented in octal, although you could include <sgtty.h>. [Note: these fields
are presumably different in UNIX 3.0.]

3.2. Hor, Vert

These represent the horizontal and vertical resolution respectively of the terminal when it is in plot
mode. They are given in units.

·UNIX is a trademark of Bell Laboratories.

SMM:20-2

#define INCH 240
struct

1* one inch in units *1

{
int bset; 1* stty bits to set *1
int breset; 1* stty bits to reset *1
int Hor; 1* horizontal resolution in units *1
int Vert; 1* vertical resolution in units *1
int Newline; 1* the distance a newline moves *1
int Char; 1* the distance one char moves *1
intErn; 1* size of an Em *1

Writing NROFF Terminal Descriptions

int Halfline; 1* the distance a hal1line upldown moves *1
int Adj; 1* default adjustment width *1
char *twinit; 1* string to init the terminal *1
char *twrest; 1* string to reset the terminal *1
char *twnl; 1* string to send a newline (CR-LF) *1
char *hlr; 1* half line reverse string *1
char *hlf; 1* half line forward string *1
char *flr; 1* full line reverse string *1
char *bdon; 1* string to turn boldface on *1
char *bdoff; 1* string to turn boldface off *1
char *ploton; 1* string to turn plot on *1
char *plotoff; 1* string to turn plot off *1
char *up; 1* move up in plot mode *1
char *down; 1* move down in plot mode *1
char *right; 1* move right in plot mode *1
char *left; 1* move left in plot mode *1
char *codetab[256-32]; 1* the codes to send for characters *1
int zzz; 1* padding *1

};

Figure 1 - the terminal descriptor data structure

3.3. Newline

This field describes the distance that the twnl field (below) will move the paper; it is literally the size
of a newline.

3.4. Char

This is the distance that a regular character will move the print head to the right

3.5. Em
The "em" is a typesetting unit, approximately equal to the width of the letter "m". In NROFF driver

tables, this must be the distance a space or backspace character will move the carriage.

3.6. Halfline

This is the distance that the hlr or hlfstrings move the print head (reverse or forward respectively).

3.7. Adj

This is the resolution that NROFF will normally adjust your lines to horizontally. Typically this is the
same as Char. If the -e flag is given to NROFF, output resolution will be to the full device resolution.

Writing NROFF Terminal Descriptions SMM:20-3

3.8. twinit, twrest

These strings are output when NROFF starts and finishes respectively.

3.9. twnl

This string is output when NROFF wants to do a carriage return. Typically it will be "\r\n".
Remember, the terminal will normally have CRMOD turned off when this is set.

3.10. hlr, hlf

These strings are sent to move the carriage back or forward one half line respectively. The actual
amount that they moved is defined by Halfiine. The carriage should be left in the same column.

3.11. fir

The string to send to move a full line backwards. This should leave the carriage in the same column.

3.12. bdon, bdotT

These strings are sent to turn boldface mode on and off respectively. Normally this will set the ter­
minal into overstrike mode. If they are not given, some newer versions of NROFF will output the characters
four times to force overstriking.

3.13. ploton, plototT

These strings turn plot mode on and off respectively. In plot mode, the carriage moves a very small
amount, and only under specific control; i.e., characters do not automatically cause any carriage motion.

3.14. up, down, right, left

These strings are only output in plot mode. They should move the carriage up, down, left, and right
respectively; they will move the carriage a distance of Hor or Vert as appropriate.

3.1S. An Example

Consider the following table describing a DTC3OOS:

/*bset*/ 0,
/*breset*/ 0177420,
I*Hor*1 INCH/6O,
I*Vert*! INCH/48 ,
I*Newline*1 INCH/6,
/*Char*/ INCH/1O,
I*Em*! INCH/1O,
1 *Halfline* 1 INCH/12,
1* Adj*! INCH/10,
l*twinit*1 "\033\006" ,
/*twrest*/ "\033\006" ,
l*twnl*1 "\0 1 5\n",
I*hlr*! "\033H",
I*hlf*! "\033h",
!*flr*1 "\032",
!*bdon*/ "" ,
I*bdoff*! "" ,
!*ploton*! "\006",
/*plotoff*1 "\033\006" ,
!*up*1 "\032",
I*down*! "\n" ,
l*right*1 " " ,
I*left*/ "\b",

SMM:20·4 Writing NROFF Terminal Descriptions

This describes a terminal that should have the ALLDELA Y and CRMOD bits turned off, 1/60" horizontal
and 1/48" vertical resolution, six lines per inch and ten characters per inch, including space, halfline takes
1/12" (one half of a full line), should send ESC-control-F to initialize and reset the terminal (to insure that
it is in a normal state), takes <CR><LF> to give a newline, <ESC>H to move back one half line, <ESC>h
to move forward one half line, control-Z to move back one full line, has no bold mode, takes control-F to
enter plot mode and escape-control-F to exit plot mode, and uses control-Z, linefeed, space, and backspace
to move up, down, right, and left respectively when in plot mode.

4. CHARACTER DESCRIPTIONS

There is one character description for each possible character to be output. The easiest way to find
what character corresponds to what position is to edit an existing character table; one is given in the appen­
dix as an example. Character representations are represented as a string per character.

The first character of the string is interpreted as a binary number giving the number of character
spaces taken up by this character. For regular characters this will always be "\001", but Greek and special
characters can take more. If the 0200 bit is set in this character, it indicates that the character should be
underlined if we are in italic (underline) mode. Thus, alphabetic and numeric descriptions will begin
"\201" .

The remainder of the string is output to represent the character. If the first output character (Le., the
second character in the total string) has the 0200 bit set, the character will be output in plot mode so that
fancy characters can be built up from existing characters. If necessary, the "\200" character can be used
as a null character to force NROFF to set the terminal into plot mode. All characters without the 0200 bit are
output literally; characters with the 0200 bit are not output, but are used to indicate local carriage move­
ment The next two bits (0140 bits) represent direction:

0200 right
0240 left
0300 down
0340 up

The bottom five bits represent a distance in terminal resolution units. This is rather confusing, but the
examples should make this much more clear.

4.1. Some Examples

The following examples are from the DTC300S table:

"\001",
"\001=",
"\20 1 A" ,

l*space*1
1*=*1
I*A*I

These entries show that all of these characters take one character width when output. The letter A is under­
lined in italic mode, but neither space nor equal sign is.

"\OOlo\b+", l*bullet*1
"\0020", l*square*1
"\202fi", l*fi*1

The bullet character takes only one character position, but is created by outputing the letter "0" and over­
striking it with a plus sign. The square character is approximated with two brackets; it takes two full char­
acter positions when output. The "fi" ligature is produced using the letters "r' and "i" (surprise!); it is
underlined in italic mode.

"\OOl\241c\202(\241",I*alpha*1
"\00 l\200B\242\3021\202\342" , I*beta* 1

The letters alpha and beta both take a single character position. The alpha is output by entering plot mode,
moving left 1 terminal unit (1/60" if you recall), outputing the letter "c", moving right 2/60", outputing a
left parenthesis, and finally moving left 1/60"; it is critical that the net space moved be zero both horizon­
tally and vertically. The beta first has a dummy 0200 character to enter plot mode but not output anything.
It then outputs a "B", moves left 2/60", moves down 2/48", outputs a vertical bar (which is designed to
particallyoverstrike the left edge of the "B", and finally move right 2/60" and up 2/48" to set us back to

Writing NROFF Terminal Descriptions SMM:20-S

the right place.

5. INSTALLATION

To install a terminal descriptor, make it up by editing an existing terminal descriptor. Assuming your
terminal name is term, call your new descriptor tabterm.c. Then, execute the following commands:

cc -c tabterm.c
strip tabterm.c
cp tabterm.o lusr/lib/termltabterm

The directory lusrlsrc/cmdltroff/term typically has a shell file to do this.

This table describes the DTC 300S.

#define INCH 240
/*
DASI300S
nroff driving tables
width and code tables
*/

struct {
int bset;
int breset;
intHor;
int Vert;
int Newline;
intChar;
intErn;
int Halfiine;
intAdj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
int zzz;
} t= {

/*bset*/ 0,
/*breset*/ 0177420,
/*Hor*/ INCH/60,
/*Vert*/ INCH/48,
/*Newline*/ INCH/6,
/*Char*/INCH/10,
/*Ern*/ INCH/10,
/*Halfiine*/ INCH/12,
/* Adj*/ INCH/10,
/*twinit*/ "\033\006",
/*twrest*/ "\033\006",
/*twnl*/ "\Ol5\n",

SMM:20·6

APPENDIX

A Sample Table

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

l*hlr*1
l*hlf*l
l*flr*1
l*bdon*1" " ,
l*bdoff*1
l*ploton*1
l*plotoff*1
l*up*1
l*down*1
l*right*/" ",
1*left*1 "\b",

tI\033HtI ,
tI\033h tl

,

tI\032",

t'" ,
"\006",
"\033\006",
"\032",
"\n",

l*codetab*1
"\001 ", l*space*1
"\001!", I*!*I
"\001\'''',1*''*1
"\001#",1*#*1
"\001$", 1*$*1
"\001%", 1*%*1
"\001&", 1*&*1
"\001''', 1*' close*1
"\001(", 1*(*1
"\001)", 1*)*1
"\001 *",1***1
"\001+",1*+*1
"\001,", 1*,*1
"\001-", 1*- hyphen*1
"\001.", 1*.*1
"\0011", 1*1*1
"\2010",1*0*1
"\2011",1*1*1
"\2012",1*2*1
tI\2013", 1*3*1
"\2014", 1*4*1
tI\2015", 1*5*1
"\2016",1*6*1
tI\2017" , 1*7*1
"\2018",1*8*1
"\2019",1*9*1
tI\OOI:", 1*:*1
"\001;", 1*;*1
"\001<",1*<*1
"\001=",1*=*1
"\001>",/*>*1
tI\OOl 1",1*1*1
"\001@", I*@*I
"\201A",I* A *1
"\201B" ,I*B*I
"\201C",I*C*1
"\2010" ,1*0*1
"\20 IE" ,I*E*I
"\20 IF" , I*F*I
"\201G" ,I*G*I
"\20 1H",I *H*I
"\2011", 1*1*1
"\20 U", 1* J* 1
"\201K" ,I*K*I
n\201L",I*L*1

SMM:20-7

SMM:20·8

"\201M", I*M*I
"\20 IN" ,I*N*I
"\2010" ,1*0*1
"\201P",I*P*1
"\201Q",I*Q*1
"\201R" ,I*R *1
"\2015",1*5*1
"\201T",I*T*1
"\201 U" ,I*U* I
"\201V" ,I*V*I
"\201W", I*W*I
"\201X" ,I*X*I
"\201Y",I*Y*1
"\201Z" ,I*Z*I
"\001[", 1*[*1
"\001\\",1**1
"\001]", 1*]*1
"\001"''', I*A*I
"\001 ",1* dash *1
"\001"\ 1*' open*1
"\201a", l*a*1
"\201b",I*b*1
"\201e", l*e*1
"\201d",I*d*1
"\201e", l*e*1
"\201f', 1*f*1
"\201g", l*g*1
"\201h",I*h*1
"\20li", l*i*1
"\201j", l*j*1
"\201k",I*k*1
"\2011", 1*1*1
"\20 1m" , l*m*1
"\201n",I*n*1
"\2010",1*0*1
"\201p",I*p*1
"\201q",I*q*1
"\201r", 1*r*1
"\2018", 1*8*1
"\20 It'' , l*t*1
"\201u",I*u*1
"\201v",I*v*1
"\201 w" ,I*w* I
"\201x",I*x*1
"\201y", l*y*1
"\201z", l*z*1
"\001 {", I*{*I
"\0011", 1*1*1
"\001}",1*}*1
"\OOr", 1*-*1
"\000\0", I*narrow sp*1
"\001-", l*hyphen*1
"\OOlo\b+", l*bullet*1
"\002(] " , l*square*1
"\001-", 1*3/4 em*1
"\001 ", l*rule*1
"\000\0" , 1* 114 *1

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

"\000\0" , 1* 112*1
"\000\0", 1*3/4*1
"\001-", l*minus*1
"\202fi", l*fi*1
"\202fl", I*fl * 1
"\202ff', l*ff*1
"\203ffi", l*ffi*1
"\203ffl", l*ffl*1
"\000\0", l*degree*1
"\000\0" , l*dagger*1
"\000\0", 1* section *1
"\001''', I*foot mark*1
"\001''', I*acute accent*1
"\001 "', I*grave accent*1
"\001 ", l*underrule*1
"\001(', I*slash (longer)*1
"\000\0", I*half narrow space*1
"\001 ", I*unpaddable space*1
"\001\241c\202(\241",I*alpha*1
"\001\2ooB\242\3021\202\342",I*beta*1
"\001\200)\2011\241",I*gamma*1
"\001\2000\342<\302",I*delta*1
"\001 <\b-" , l*epsilon*1
"\001\200c\201\301,\241\343<\302",I*zeta*1
"\001\200n\202\3021\242\342", l*eta*1
"\0010\b-",I*theta*1
"\00 li" , l*iota*1
"\oolk", l*kappa*1
"\001\200\\\304\241 '\301\241 '\345\202", 1*lambda*1
"\001\200u\242,\202",I*mu*1
"\001\241(\2031\242",I*nu*1
"\001\200c\201\301,\241\343c\241\301 '\201\301", l*xi*1
"\0010", l*omicron*1
"\001\341-\303\"\301\"\343",I*pi*1
"\001\2000\242\3021\342\202",I*rho*1
"\001\2000\301\202,341\242",I*sigma*1
"\001\200t\301\202'\243,\201\341",I*tau*1
"\00 1 v", I*upsilon * 1
"\OOlo\b/",I*phi*1
"\00 Ix" , l*chi*1
"\001\2001-\302\202'\244'\202\342",I*psi*1
"\001\241u\203u\242",I*omega*1
"\001\2421\202\343-\303\202'\242", I*Gamma*1
"\001\2421\303-\204-\343\\\242", I*Delta *1
"\0010\b=", I*Theta*1
"\001\2421\204\\\242",I*Lambda*1
"\000\0", I*Xi*1
"\001\2420\204[]\242\343-\303", I*Pi*1
"\001\2oo>\302-\345-\303",I*Sigma*1
"\000\0", 1**1
"\OOIY",I*Upsilon*1
"\oolo\b[\b]",I*Phi*1
"\001\2000-\302\202'\244'\202\342",I*Psi*1
"\001\2000\302\241-\202-\241 \342", I*Omega*1
"\000\0", I*square root*1
"\000\0", I*terminal sigma*1
"\000\0", I*root en*1

SMM:20-9

SMM:20-10

"\OOl>\b ", /*>=*/
"\OOl<\b -It /*<=*/ -' "\00 l=\b_" , /*identicallyequal*/
"\001-", /*equation minus*/
"\OOl=\b-", /*approx =*/
"\000\0", /* approximates */
"\OOl=\b/", /*not equal*/
"\002->", /*right arrow*/
"\002<-", /*left arrow*/
"\OOll\bA

", /*up arrow*/
"\000\0", /*down arrow*/
"\001=", /*equation equal*/
"\OOlx", /*multiply*/
"\00l/", /*divide*/
"\OOl+\b_", /*plus-minus*/
"\OOlU", /*cup (union)*/
"\000\0", /*cap (intersection)*/
"\000\0", /*subset of*/
"\000\0", /*superset of*/
"\000\0", /*improper subset*/
"\000\0", /* improper superset*/
"\00200", /*infinity*/

Writing NROFF Terminal Descriptions

"\00 1\2000\201\301 '\241 \341 '\241\341 '\201\30 I" , /*partial derivati ve* /
"\001\242\\\343-\204-\303/\242", /*gradient*/
"\001\200-\202\341,\301\242" , /*not*/
"\001\200/'\202'\243\306'\241 '\202\346", /*integral sign*/
"\000\0", /*proportional to*/
"\000\0", /*empty set*/
"\000\0", /*member of*/
"\001+", /*equation plus*/
"\00 1r\bO" , /*registered*/
"\00 1c\bO" , /*copyright*/
"\0011", /*box rule */
"\OOlc\b!", /*cent sign*!
"\000\0", /*dbl dagger*!
"\000\0", /*right hand*/
"\001 *", /*left hand*!
"\001 *'\ /*math * */
"\000\0", /*bell system sign*/
"\0011", !*or (was star)*!
"\0010", /*circle*/
"\0011", /*left top (of big curly)*/
"\0011", /*left bottom*/
"\0011", /*right top*!
"\0011", /*right bot*/
"\0011", /*left center of big curly bracket*!
"\0011", /*right center of big curly bracket*!
"\0011", !*bold vertical*!
"\0011", !*left floor (left bot of big sq bract)*!
"\0011", /*right floor (rb of ")*/
"\0011", /*left ceiling (It of ")*/
"\ooll"};/*right ceiling (rt of ")*!

A Dial-Up Network ofUNIXTM Systems

D. A.Nowitz

M.E.Lesk

ABSTRACT

A network of over eighty UNIXt computer systems has been established using the
telephone system as its primary communication medium. The network was designed to
meet the growing demands for software distribution and exchange. Some advantages of
our design are:

1. Purpose

The startup cost is low. A system needs only a dial-up port, but systems with
automatic calling units have much more flexibility.

No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, however, hardwired communi­
cation lines can be used to increase speed.

The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software mainte­
nance

The widespread use of the UNIX system ritchie thompson bstj 1978 within Bell Laboratories has pro­
duced problems of software distribution and maintenance. A conventional mechanism was set up to distri­
bute the operating system and associated programs from a central site to the various users. However this
mechanism alone does not meet all software distribution needs. Remote sites generate much software and
must transmit it to other sites. Some UNIX systems are themselves central sites for redistribution of a par­
ticular specialized utility, such as the Switching Control Center System. Other sites have particular, often
long-distance needs for software exchange; switching research, for example, is carried on in New Jersey,
illinois, Ohio, and Colorado. In addition, general purpose utility programs are written at all UNIX system
sites. The UNIX system is modified and enhanced by many people in many places and it would be very
constricting to deliver new software in a one-way stream without any alternative for the user sites to
respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may exceed the
capacity of a single computer and several machines may be used by the one group of people. It then
becomes necessary for them to pass messages, data and other infonnation back an forth between comput­
ers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have constructed
networks built of hardwired connections only. dolotta mas hey 1978 bstj network unix system chesson Our
network, however, uses both dial-up and hardwired connections so that service can be provided to as many
sites as possible.

t UNIX is a trademark of Bell Laboratories.

SMM:21-2 A Dial-Up Network of UNIX Systems

2. Design Goals

Although some of our machines are connected directly, others can only communicate over low-speed
dial-up lines. Since the dial-up lines are often unavailable and file transfers may take considerable time, we
spool all work and transmit in the background. We also had to adapt to a community of systems which are
independently operated and resistant to suggestions that they should all buy particular hardware or install
particular operating system modifications. Therefore, we make minimal demands on the local sites in the
network. Our implementation requires no operating system changes; in fact, the transfer programs look
like any other user entering the system through the normal dial-up login ports, and obeying all local protec­
tion rules.

We distinguish "active" and "passive" systems on the network. Active systems have an automatic
calling unit or a hardwired line to another system, and can initiate a connection. Passive systems do not
have the hardware to initiate a connection. However, an active system can be assigned the job of calling
passive systems and executing work found there; this makes a passive system the functional equivalent of
an active system, except for an additional delay while it waits to be polled. Also, people frequently log into
active systems and request copying from one passive system to another. This requires two telephone calls,
but even so, it is faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster transmission
and multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud;
hardwired connections are asynchronous up to 9600 baud and might run even faster on special-purpose
communications hardware. fraser spider 1974 ieee fraser channel network datamation 1975 Thus, systems
typically join our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become active systems; eventually, they may install high-speed links to
particular machines with which they handle a great deal of traffic. At no point, however, must users
change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool directory,
in which work to be done (files to be moved, or commands to be executed remotely) is stored. A standard
program, uucico, performs all transfers. This program starts by identifying a particular communication
channel to a remote system with which it will hold a conversation. Uucico then selects a device and estab­
lishes the connection, logs onto the remote machine and starts the uucico program on the remote machine.
Once two of these programs are connected, they first agree on a line protocol, and then start exchanging
work. Each program in turn, beginning with the calling (active system) program, transmits everything it
needs, and then asks the other what it wants done. Eventually neither has any more work, and both exit

In this way, all services are available from all sites; passive sites, however, must wait until called. A
variety of protocols may be used; this conforms to the real, non-standard world. As long as the caller and
called programs have a protocol in common, they can communicate. Furthermore, each caller knows the
hours when each destination system should be called. If a destination is unavailable, the data intended for
it remain in the spool directory until the destination machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of which store
proprietary programs and data, illustratives the pervasive need for security and administrative controls over
file access. Each site, in configuring its programs and system files, limits and monitors transmission. In
order to access a file a user needs access permission for the machine that contains the file and access per­
mission for the file itself. This is achieved by first requiring the user to use his password to log into his
local machine and then his local machine logs into the remote machine whose files are to be accessed. In
addition, records are kept identifying all files that are moved into and out of the local system, and how the
requestor of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done. It is then
possible to verify that the request is legitimate from the standpoint of the target system, as well as the ori­
ginating system. Furthermore, because of the call-back, no site can masquerade as another even if it knows
all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other machines and
require a verification of the count at the start of each conversation. Thus, even if call back is not in use, a
successful masquerade requires the calling party to present the correct sequence number. A would-be

Dial-Up Network of UNIX Systems SMM:21-3

impersonator must not just steal the correct phone number, user name, and password, but also the sequence
count, and must call in sufficiently promptly to precede the next legitimate request from either side. Even a
successful masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uuep to set up file copying, and uux to
set up command execution where some of the required resources (system andlor files) are not on the local
machine. Each of these commands will put work and data files into the spool directory for execution by'
uucp daemons. Figure 1 shows the major blocks of the file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It performs
the following functions:

Scan the spool directory for work.

- Place a call to a remote system.

Negotiate a line protocol to be used.

Start program uucico on the remote system.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs (uucieo. uuxqt)
to determine the files they should look at, the remote machines they should call and the order in which the
files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program directory. At
the start of the call process, a lock is set on the system being called so that another call will not be
attempted at the same time.

The system name is found in a "systems" file. The information contained for each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial sequences using a
"dial-codes" file. This permits the same "phone number" to be stored at every site, despite local varia­
tions in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an available dev­
ice for the connection. The program will try all devices which satisfy [3] and [4] until a connection is
made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a lock file is

S:MM:21-4 A Dial-Up Network of UNIX Systems

created so that another copy of uucico will not try to use it. If the connection is complete, the login infor­
mation is used to log into the remote system. Then a command is sent to the remote system to start the
uucico program. The conversation between the two uucico programs begins with a handshake started by
the called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to receive
the system identification and conversation sequence number. The response from the MASTER is verified
by the SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program checks the
proto-list for a letter corresponding to an available line protocol and returns a use-protocol message. The
use-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp transmission
program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE. Initially, the calling pro­
gram is the MASTER. These roles may switch one or more times during the conversation.

There are four messages used during the work processing, each specified by the first character of the
message. They are

S send a file,
R recei ve a file,
C copy complete,
H hang up.

The MASTER will send R or S messages until all work from the spool directory is complete, at which
point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding to
yes or no for each request

The send and receive replies are based on permission to access the requested file/directory. After
each file is copied into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the UNIX cp command, used to copy from the spool
directory, is successful. Otherwise, a CN message is sent The requests and results are logged on both sys­
tems, and, if requested, mail is sent to the user reporting completion (or the user can request status informa­
tion from the log program at any time).

The hangup response is determined by the SLA VE program by a work scan of the spool directory. If
work for the remote system exists in the SLAVE's spool directory, a HN message is sent and the programs
switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols
are turned off. Each program sends a final "OOtl message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes Hmail dan" to
send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on system "usg".

Dial-Up Network of UNIX Systems SMM:21-5

The primary uses of our network to date have been in software maintenance. Relatively few of the
bytes passed between systems are intended for people to read. Instead, new programs (or new versions of
programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has implemented a
"stockroom" which allows remote users to call in and request software. He keeps a "stock list" of avail­
able programs, and new bug fixes and utilities are added regularly. In this way, users can always obtain the
latest version of anything without bothering the authors of the programs. Although the stock list is main­
tained on a particular system, the items in the stockroom may be warehoused in many places; typically
each program is' distributed from the home site of its author. Where necessary, uucp does remote-to­
remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on remote sys­
tems are caused by local misconfigurations or old versions of software, or whether they are bugs that must
be fixed at the home site. This helps identify errors rapidly. For one set of test programs maintained by us,
over 70% of the bugs reported from remote sites were due to old software, and were fixed merely by distri­
buting the current version.

Another application of the network for software maintenance is to compare files on two different
machines. A very useful utility on one machine has been Doug McIlroy's "diff" program which compares
two text files and indicates the differences, line by line, between them. hunt mcilroy file Only lines which
are not identical are printed. Similarly, the program "uudiff" compares files (or directories) on two
machines. One of these directories may be on a passive system. The "uudiff" program is set up to work
similarly to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums on each
side, and only moves files that are different for detailed comparison. For large files, this process can be
iterated; checksums can be computed for each line, and only those lines that are different actually moved.

The "uux" command has been useful for providing remote output There are some machines which
do not have hard-copy devices, but which are connected over 9600 baud communication lines to machines
with printers. The uux command allows the formatting of the printout on the local machine and printing on
the remote machine using standard UNIX command programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below shows the
real throughput of characters on communication links of different speeds. These numbers represent actual
data transferred; they do not include bytes used by the line protocol for data validation such as checksums
and messages. At the higher speeds, contention for the processors on both ends prevents the network from
driving the line full speed. The range of speeds represents the difference between light and heavy loads on
the two systems. If desired, operating system modifications can be installed that permit full use of even
very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

Characters/sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the connection and logging in ranging
from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can be
transferred in four minutes instead of the 2 days that might be required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20 files
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single system
would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of the Bell
Laboratories full-size machines which run the UNIX operating system. Geographically, the machines range
from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in operational
sites with the home site. The two networks touch at one Bell Labs computer.

SMM:21-6 A Dial-Up Network of UNIX Systems

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Conventional
maintenance (a support group which mails tapes) has many well-known disadvantages. brooks mythical
man month 1975 There are distribution errors and delays, resulting in old software running at remote sites
and old bugs continually reappearing. These difficulties are aggravated when there are 100 different small
systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it possible just
to send programs directly to the end user who wants them. This avoids the bottleneck of negotiation and
packaging in the central support group. The "stockroom" serves this function for new utilities and fixes to
old utilities. However, it is still likely that distributions will not be sent and installed as often as needed.
Users are justifiably suspicious of the "latest version" that has just arrived; all too often it features the
"latest bug." What is needed is to address both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving systems.
Acceptance testing on the receiving systems can be automated and permits the local system to ensure that
its essential work can continue despite the constant installation of changes sent from elsewhere. The work
of writing the test sequences should be recovered in lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter-system "mail"
and "diff," plus the many implied commands represented by "uux." However, we still need inter-system
"write" (real-time inter-user communication) and "who" (list of people logged in on different systems).
A slow-speed network of this sort may be very useful for speeding up counseling and education, even if not
fast enough for the distributed data base applications that attract many users to networks. Effective use of
remote execution over slow-speed lines, however, must await the general installation of multiplexable
channels so that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system changes, you
can get going quickly.

2. Support will follow use. Since the network existed and was being used, system maintainers were
easily persuaded to help keep it operating, including purchasing additional hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to learning
anything new: all the inter-system commands look very similar to standard UNIX system commands
so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus, the first
version of this network was restricted to dial-up, since it did not support the various hardware links
between systems. This has been fixed in the current system.

Acknowledgements

We thank O. L. Chesson for his design and implementation of the packet driver and protocol, and A.
S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance. $LIST$

Introduction

The Berkeley UNIxt
Time Synchronization Protocol

Riccardo Gusella, Stefano Zatti, and James M. Bloom

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

The Time Synchronization Protocol (TSP) has been designed for specific use by the program timed, a
local area network clock synchronizer for the UNIX 4.3BSD operating system. Timed is built on the
DARPA UDP protocol [4] and is based on a master slave scheme.

TSP serves a dual purpose. First, it supports messages for the synchronization of the clocks of the
various hosts in a local area network. Second, it supports messages for the election that occurs among
slave time daemons when, for any reason, the master disappears. The synchronization mechanism and the
election procedure employed by the program timed are described in other documents [1,2,3].

Brieft.y, the synchronization software, which works in a local area network, consists of a collection of
time daemons (one per machine) and is based on a master-slave structure. The present implementation
keeps processor clocks synchronized within 20 milliseconds. A master time daemon measures the time
difference between the clock of the machine on which it is running and those of all other machines. The
current implementation uses ICMP Time Stamp Requests [5] to measure the clock difference between
machines. The master computes the network time as the average of the times provided by nonfaulty
clocks.1 It then sends to each slave time daemon the correction that should be performed on the clock of its
machine. This process is repeated periodically. Since the correction is expressed as a time difference
rather than an absolute time, transmission delays do not interfere with synchronization. When a machine
comes up and joins the network, it starts a slave time daemon, which will ask the master for the correct
time and will reset the machine's clock before any user activity can begin. The time daemons therefore
maintain a single network time in spite of the drift of clocks away from each other.

Additionally, a time daemon on gateway machines may run as a submaster. A submaster time dae­
mon functions as a slave on one network that already has a master and as master on other networks. In
addition, a submaster is responsible for propagating broadcast packets from one network to the other.

To ensure that service provided is continuous and reliable, it is necessary to implement an election
algorithm that will elect a new master should the machine running the current master crash, the master ter­
minate (for example, because of a run-time error), or the network be partitioned. Under our algorithm,
slaves are able to realize when the master has stopped functioning and to elect a new master from among
themselves. It is important to note that since the failure of the master results only in a gradual divergence

t UNIX is a trademark of Bell Laboratories.
This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval Electronics
Systems Command under contract No. NOOO39-84-C-0089, and by the Italian CSELT Corporation. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of the Defense Research Projects Agency. of the US Government, or of CSEL T.

1 A clock is considered to be faulty when its value is more than a small specified interval apart from the majority of the
clocks of the machines on the same network. See [1,2] for more details.

SMM:22-2 The Berkeley UNIX Time Synchronization Protocol

of clock values, the election need not occur immediately.

All the communication occurring among time daemons uses the TSP protocol. While some mes­
sages need not be sent in a reliable way, most communication in TSP requires reliability not provided by
the underlying protocol. Reliability is achieved by the use of acknowledgements, sequence numbers, and
retransmission when message losses occur. When a message that requires acknowledgment is not ack­
nowledged after multiple attempts, the time daemon that has sent the message will assume that the addres­
see is down. This document will not describe the details of how reliability is implemented, but will only
point out when a message type requires a reliable transport mechanism.

The message format in TSP is the same for all message types; however, in some instances, one or
more fields are not used. The next section describes the message format. The following sections describe
in detail the different message types, their use and the contents of each field. NOTE: The message format
is likely to change in future versions of timed.

Message Format

All fields are based upon 8-bit bytes. Fields should be sent in network byte order if they are more
than one byte long. The structure of a TSP message is the following:

1) A one byte message type.

2) A one byte version number, specifying the protocol version which the message uses.

3) A two byte sequence number to be used for recognizing duplicate messages that occur when mes­
sages are retransmitted.

4) Eight bytes of packet specific data. This field contains two 4 byte time values, a one byte hop count,
or may be unused depending on the type of the packet

5) A zero-terminated string of up to 256 ASCII characters with the name of the machine sending the
message.

The following charts describe the message types t show their fields, and explain their usages. For the
purpose of the following discussion, a time daemon can be considered to be in one of three states: slave,
master, or candidate for election to master. Also, the term broadcast refers to the sending of a message to
all active time daemons.

Adjtime Message

Byte 1 I Byte 2 I B!te 3 1 Byte 4
Type l Version No. 1 Sequence No.

Seconds of Adjustment
Microseconds of Adjustment

Machine Name
...

Type: TSP _ADJTIME (1)

The master sends this message to a slave to communicate the difference between the clock of the
slave and the network time the master has just computed The slave will accordingly adjust the time of its
machine. This message requires an acknowledgment

The Berkeley UNIX Time Synchronization Protocol SMM:22-3

Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ ACK (2)

Both the master and the slaves use this message for acknowledgment only. It is used in several
different contexts, for example in reply to an Adjtime message.

Master Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.
(unused)
(unused)

Machine Name

· ..
Type: TSP _MASTERREQ (3)

A newly-started time daemon broadcasts this message to locate a master. No other action is implied
by this packet. It requires a Master Acknowledgment

Master Acknowledgement

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _MASTERACK (4)

The master sends this message to acknowledge the Master Request message and the Conflict
Resolution Message.

SMM:22-4 The Berkeley UNIX Time Synchronization Protocol

Set Network Time Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name

· ..

The master sends this message to slave time daemons to set their time. This packet is sent to newly
started time daemons and when the network date is changed It contains the master's time as an
approximation of the network time. It requires an acknowledgment. The next synchronization round will
eliminate the small time difference caused by the random delay in the communication channel.

Master Active Message

Byte 1 I Byte 2 I Byte 3 I Bvte4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ MASTERUP (6)

The master broadcasts this message to solicit the names of the active slaves. Slaves will reply with a
Slave Active message.

Slave Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ SLA VEUP (7)

A slave sends this message to the master in answer to a Master Active message. This message is also
sent when a new slave starts up to inform the master that it wants to be synchronized.

The Berkeley UNIX Time Synchronization Protocol SMM:22-5

Master Candidature Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ELECTION (8)

A slave eligible to become a master broadcasts this message when its election timer expires. The
message declares that the slave wishes to become the new master.

Candidature Acceptance Message

Byte 1 I Byte 2 J Bxte3 J Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ACCEPT (9)

A slave sends this message to accept the candidature of the time daemon that has broadcast an
Election message. The candidate will add the slave's name to the list of machines that it will control
should it become the master.

Candidature Rejection Message

Byte 1 I Byte 2 J Bj'te 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _REFUSE (10)

After a slave accepts the candidature of a time daemon, it will reply to any election messages from
other slaves with this message. This rejects any candidature other than the first received.

SMM:22-6 The Berkeley UNIX Time Synchronization Protocol

Multiple Master Notification Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type 1 Version No.1 Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _CONFLICT (11)

When two or more masters reply to a Master Request message, the slave uses this message to inform
one of them that more than one master exists.

Conflict Resolution Message

Byte 1 I Byte 2 J Byte 3 1 Byte 4

Type I Version No. I Sequence Noo
(unused)
(unused)

Machine Name

· ..
Type: TSP _RESOLVE (12)

A master which has been informed of the existence of other masters broadcasts this message to
determine who the other masters are.

Quit Message

Byte 1 I Byte 2 I Byte 3 1 Bj'Je 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _QUIT (13)

This message is sent by the master in three different contexts: 1) to a candidate that broadcasts an
Master Candidature message, 2) to another master when notified of its existence, 3) to another master if a
loop is detected. In all cases, the recipient time daemon will become a slave. This message requires an
acknowledgement

The Berkeley UNIX Time Synchronization Protocol SMM:22-7

Set Date Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. J Sequence No.

Seconds of Time to Set

Microseconds of Time to Set

Machine Name

· ..
Type: TSP _ SETDA TE (22)

The program date (1) sends this message to the local time daemon when a super-user wants to set the
network date. If the local time daemon is the master, it will set the date; if it is a slave, it will communicate
the desired date to the master.

Set Date Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.

Seconds of Time to Set

Microseconds of Time to Set

Machine Name

· ..
Type: TSP _ SETDATEREQ (23)

A slave that has received a Set Date message will communicate the desired date to the master using
this message.

Set Date Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.

(unused)

(unused)

Machine Name

· ..
Type: TSP _ DATEACK (16)

The master sends this message to a slave in acknowledgment of a Set Date Request Message. The
same message is sent by the local time daemon to the program date(1) to confirm that the network date has
been set by the master.

S:MM:22-8 The Berkeley UNIX Time Synchronization Protocol

Start Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ TRACEON (17)

The controlling program timedc sends this message to the local time daemon to start the recording in
a system file of all messages received.

Stop Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _TRACEOFF (18)

Timedc sends this message to the local time daemon to stop the recording of messages received.

Master Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _MSITE (19)

Timedc sends this message to the local time daemon to find out where the master is running.

The Berkeley UNIX Time Synchronization Protocol S:M:M:22-9

Remote Master Site Message

Byte 1 J Byte 2 I Byte 3 I Byte 4

Type 1 Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ MSlTEREQ (20)

A local time daemon broadcasts this message to find the location of the master. It then uses the
Acknowledgement message to communicate this location to timedc.

Test Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.
(unused)

(unused)

Machine Name

· ..
Type: TSP _TEST (21)

For testing purposes, timedc sends this message to a slave to cause its election timer to expire.
NOTE: timed is not normally compiled to support this.

Loop Detection Message

Byte 1 Byte 2 I Byte 3 I Byte 4

Type Version No. J Sequence No. I

Hop Count (unused)
(unused)

Machine Name

· ..

This packet is initiated by all masters occasionally to attempt to detect loops. All submasters forward
this packet onto the networks over which they are master. If a master receives a packet it sent out initially,
it knows that a loop exists and tries to correct the problem.

SMM:22-10 The Berkeley UNIX Time Synchronization Protocol

References

1. R. Gusella and S. Zatti, TEMPO: A Network Time Controller for Distributed Berkeley UNIX System,
USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. Zatti, Clock Synchronization in a Local Area Network, University of California,
Berkeley, Technical Report, to appear.

3.: . R.Gusella and S. Zatti, An Election Algorithm for a Distributed Clock Synchronization Program,
University of California, Berkeley, CS Technical Report #275, Dec. 1985.

4. Postel, J., User Datagram Protocol, RFC 768. Network Information Center, SRI International,
Menlo Park, California, August 1980 .

•.
5. Postel, J., Internet Control Message Protocol, RFC 792. Network Information Center, SRI Interna-

tional, Menlo Park, California, September 1981.

II lntegrated Solutions

H DOCUMENTATION COMMEN,TS~;;

AN N8I

COMPANV

Please take a minute to comment on the accuracy and completeness of this manual. Your assistance will help us
to better identify and respond to specific documentation issues. If necessary, you may attach. an a4ditionalpage
with comments. Thank you in advance for your cooperation. ;,"/,;;

I Manual Title: UNIX System Manager's Manual (SMM) Part Number: 490148 Rev.E'

Name: Title:
, >,'

Company:. _______________ _ Phone: ()--------------------
Admess: __ __

City:

1. Please rate this manual for the following:

Poor Fair

Clarity
Completeness
Organization
Technical Content! Accuracy
Readability

Please comment:

o
o
o
D
o

o
o
o
o
o

2. Does this manual contain enough examples and figures?
Yes 0 NoD

Please comment:

3. Is any information missing from this manual?
YesD NoD

Please comment:

4. Is this manual adequate for your purposes?
YesD NoD

Please comment on how this manual can be improved:

State: Zip Code: ______ _

Good Excellent

0 0
0 0
0 0
0 0
0 0

Fold Down First --_.

BUSINESS REPLY MAIL
First-Class Mail Permit No. 7628 San Jose, California 95131

Postage will be paid by addressee

• II
AnNSI

Company

Integrated Solutions
A TIN: Technical Publications Manager
1140 Ringwood Court
San Jose, CA 95131

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------'----------- - _-------------------
~old Up Second

Staple Here

