

NOTICE
All statements, program listings, technical information and recommendations with
respect to the product described in this manual, the accuracy or completeness thereof
is neither guaranteed nor warranted by Intertec Data Systems Corporation.

Intertec Data Systems Corporation reserves the right to make improvements in the
product described in this manual at any time without notice.

CONFIDENTIAL
AND

PROPRIETARY INFORMATION
Information presented in this manual is furnished for customer reference only and is
subject to change.

This document is the property of Intertec Data Systems Corporation, Columbia, South
Carolina, and contains confidential and trade secret information. This information may
not be transferred from the custody or control of Intertec except as authorized by
Intertec and then only by way of loan for limited purposes. It must not be reproduced in
whole or in part and must be returned to Intertec upon request and in all events upon
completion of the purpose of the loan.

Neither this document nor the information it contains may be used or disclosed to
persons not having a need for such use or disclosure consistent with the purpose of
the loan without the prior express written consent of Intertec.

COPYRIGHT 1982

USERS MANUAL FOR

INTERTEC'S

SUPE~BRI\INTM II
VIDEO COMPUTER SYSTEM

IMPORTANT NOTICE

This version of the SuperBrain Users Manual is intended for use with the SuperBrain II
Jr, SuperBrain II QD, or SuperBrain II SD Video Computer Systems.

Document No. 6831010
June, 1982

This equipment complies with the requirements in Part 15 of FCC Rules for a Class A
computing device. Operation of this equipment in a residential area may cause unac
ceptable interference to radio and TV reception requiring the operator to take
whatever steps are necessary to correct the interference.

SUPERBRAIN II
USERS MANUAL REVISION RECORD

REV DATE APPROVAL SHEETS/SECTIONS EFFECTED

6831010 II

Section
1

Section
2

Section
3

Section
, 4

6831010

TABLE OF CONTENTS

Proprietary Notice
Title Page, I
Manual Revision Record Sheet, II
Introduction, 1-1

System Specifications, 1-3
I nternal Construction, 1-6
Theory of Operation, ,1-11

Installation and Operating Instructions, 2-1
Unpacking, 2-1
Set Up , 2-1
System Diskette, ,2-1
Reviewing the System Diskette, 2-2
Duplicating the Operating Diskette, 2-3
Optional Software, 2-5

SUPERBRAIN II Software Summary
CP/M Summary, 3-1
Intertec Utility Summary, 3-2

CONFIGUR,COM, , ' , , , . ,3-2
Vertical Scan Frequency, , . , . , , , , , , , , , , , , , , , 3-3
Disk Write Verification, 3-3
Time Display EnablelDisable ,3-3
Key Click EnablelDisable , 3-3
Main and Aux Port Operation, . , , , , , , , , , 3-3
Operating Mode, 3-3
Baud Rate , . , , , , , , , , , . , , , , , 3-3
N\Jmber of Sync Characters, . , , , , , , ,3-4
Number of Stop Bits, ,3-4
Character Length, . , , , , , , 3-4
Parity, 3-4
Handshaking, 3-4
Sync, Character Value, 3-4
Keypad Reprogramming, 3-4

FORMA T.COM , 3-5
HEXDUMP,COM , 3-5
64KTEST.COM, ,3-6
TX,COM , 3-6
RX,COM, ,3-8
TIME, . , , , , , , , , , , , , , , , ,3-8
DATE, 3-8
Secondary Character Set Option, 3-9

CSEDIT,COM, 3-9
CSDUMP.COM, ,3-11

Miscellaneous Operational Information
Using the INP: and OUT: Features of PIP, ,4-1
Synchronous Communication, 4-2

8251A USART Data Sheets, ,4-5-4-20
Master Reset Feature, 4-21
Cursor Control Keys, ,4-21
Accessing Time/Date Data, 4-21

III

IV

Appendix
A

Appendix
B

Appendix
C

Appendix
o

Appendix
E

Appendix
F

Appendix
G

Appendix
H

Appendix
J

Interfacing Information .. 4-22
RS232C Serial Interface .. 4-22
Bus Adaptor Interface ... 4-22

Pin Connections for External Bus 4-22
Table of I/O Ports ... 4-24

Autoload Feature ... 4-25
Key Click ... 4-27
Key Repeat .. 4-27
Type-Ahead ... 4-27
Controlling the Video Display 4-27

Escape Sequences ... 4-28
Control Codes ... 4-29
Video Attributes .. 4-30
Cursor Positioning for Display Control 4-31
Memory Map/Screen Initialization 4-31
I nterpreting the ASCII Code Chart 4-34
Control Code Chart .. 4-34
WORDSTAR Considerations 4-35

Introduction to CP/M Features & Facilities Appendix A

Operation of the CP/M Context Editor Appendix B

CP/M 2.0 Users Guide for CP/M 1.4 Owners Appendix C

Operation of the CP/M Debugger Appendix D

Operation of the CP/M Assembler Appendix E

The CP/M 2.0 Interface Guide Appendix F

The CP/M 2.0 System Alteration Guide Appendix G

Addendums ... Appendix H

Hardware Addendums Appendix H-1

Software Addendums Appendix H-2

Customer Information .. Appendix J

Servicing Procedures Appendix J-1

General Information for SuperB rain II Users Appendix J-2

6831010

CONGRATULATIONS ON YOUR PURCHASE OF INTERTEC'S SUPERBRAIN II

VIDEO COMPUTER SYSTEM

Your new SuperBrain II Video Computer was manufactured at Intertec's new 120,000 square foot
plant in Columbia, South Carolina, under stringent quality control procedures to insure trouble
free operation for many years. If you should encounter difficulties with the use or operation of
your terminal, contact the dealer from whom the unit was purchased for instructions regarding
the proper servicing techniques. If service cannot be made available through your dealer,
contact I ntertec's Customer Services Department at (803) 798-9100.

As with all Intertec products, we would appreciate any comments you may have regarding your
evaluation and application of this equipment. For your convenience, we have enclosed a
customer comment card at the end of this manual. Please address your comments to:

Product Services Manager
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

The SuperBrain II is distributed worldwide through a network of dealer/OEM vendors and through
Intertec's own marketing facilities. Contact us at (803) 798-9100 (TWX - 810-666-2115)
regarding your requirement for this and other Intertec products.

Intertec's new one hundred and twenty thousand square foot corporate and manufacturing facility in Columbia, South Carolina

6831010 V

THE SUPERBRAIN II VIDEO COMPUTER SYSTEM

VI 6831010

WILL THE MICROCOMPUTER YOU BUY TODAY

STILL BE THE BEST MICROCOMPUTER BUY TOMORROW?

Probably the best test in determining how to spend your microcomputer dollar wisely is to
consider the overall versatility of your terminal purchase over the next three to five years. In the
fast-paced, ever-changing world of data communications, new features to increase operator and
machine efficiency are introduced into the marketplace daily. We at Intertec are acutely aware of
this rapid infusion of new ideas into the small systems business. As a result, we have designed
the SuperBrain II in such a manner as to virtually eliminate the possibility of obsolescence.

Many competitive alternatives to the SuperB rain II available today provide only limited capability
for high level programming and system expansion. Indeed, most low-cost microcomputer
systems presently available quickly become outdated because of the inability to expand the
system. Intertec, however, realizes that increased demands for more efficient utilization of
programming makes system expansion capability mandatory. That means a lot. Because the
more you use your SuperBrain II, the more you'll discover its adaptability to virtually any small
system requirement. Extensive use of "software-oriented" design concepts instead of
conventional "hardware" designs assure you of compatibility with almost any application for
which you intend to use the SuperBrain II.

Once you read our operator's manual and try out some of the features described herein, we are
confident that you too will agree with our "top performance- bottom dollar" approach to
manufacturing. The SuperBrain II offers you many more extremely flexible features at a lower
cost than any other microcomputer we know of on the market today. The use of newly developed
technologies, efficient manufacturing processes and consumer-oriented marketing programs
enables us to be the firstand only major manufacturer to offer such an incredible breakthrough in
the microcomputer marketplace.

Browse through our operator's manual and sit down in front of a SuperB rain II for a few hours.
Then, let us know what you think about our new system. There is a customer comment card
enclosed in this manual for your convenience.

Thank you for selecting the SuperB rain II as your choice for a microcomputer system. We hope
you will be selecting it many more times in the future.

6831010 VII

VIII

*** IMPORTANT***

Do not attempt to write or save programs on your system diskette. It has been 'write
protected' by placing a small adhesive aluminum strip over the notch on the right hand
side of the diskette. Such attempts will result in a 'WRITE' or 'BAD SECTOR' error.

Before using your SuperBrain II, please copy the System Diskette onto a new blank
diskette. If you do not have such a diskette, contact your local dealer. He should be·
able to supply you with one. If you have any questions concerning this procedure,
please contact your dealer before proceeding. Failure to do so may result in perma
nent damage to your System Diskette.

BEFORE APPLYING POWER TO THE MACHINE INSURE THAT NO DISKETIES ARE
INSERTED INTO THE MACHINE. NEVER TURN THE MACHINE ON OR OFF WITH
DISKETIES INSERTED IN IT. FAILURE TO OBSERVE THIS PRECAUTION WILL MOST
DEFINITELY RESULT IN DAMAGE TO THE DISKETIES.

6831010

INTRODUCTION

INTRODUCTION

SuperB rain II
Users Manual

Introduction

The Superbrain II Video Computer System represents the latest technological advances in the
microprocessor industry. The universal adaptability of the SuperBrain CP/M* Disk Operating
System satisfies the general purpose requirement for a low cost, high performance
microcomputer system.

From the standpoint of human engineering, the SuperBrain II has been designed to minimize
operator fatigue through the use of a typewriter-oriented keyboard and a remarkably clear
display. The SuperBrain II displays a total of 1,920 characters arranged in 24 lines with 80
characters per line. The video display characters can be varied between a primary and
secondary character set. Blinking, half-intensity, underlining, and reverse video are user
selectable display options. The video display is crisp and sharp due to Intertec's own specially
designed video driver circuitry. And, the high quality, non-glare etched CRT face plate featured on
every SuperBrain II assures ease of viewing and uniformity of brightness throughout the entire
screen.

The SuperBrain II's unique internal design assures users of exceptional performance for just a
fraction of what they would expect to pay for such "big system" capabilities. The SuperBrain II
utilizes a single board "microprocessor" design which combines all processor, RAM, ROM, disk
controller, and communications electronics on the same printed circuit board. This type of design
engineering enables the SuperBrain II to deliver superior, competitive performance.

Standard features of every SuperBrain II include: two mini-floppy disk drives with up to 1.5
megabytes formatted disk storage, 64K of dynamic RAM memory, recognized CP/M* Disk
Operating System featuring its own text editor, an assembler for assembly language
programming, a program debugger and a disk formatter. Also standard are dual universal RS232
communication ports for serial data transmission between a host computer network via modem
or an auxiliary serial printer. A number of transmission rates up to 9600 baud are available and
selectable under program control.

Other standard features of the SuperBrain II include: special operator convenience keys, dual
"restart" keys to insure simplified user operation, a full numeric keypad complement (whose
values can be user reassigned by software), and a high quality typewriter compatible keyboard.
Additionally, a real time clock is incorporated for time/date display and is user accessible.

For reliability, the SuperBrain II has been designed around five (5) basic modules packaged in an
aesthetically pleasing desk-top unit. These major components are: the Keyboard/CPU module,
the power supply module, the CRT assembly, the transition board, and the disk drives themselves.
Failure of any component within the terminal may be corrected by simply replacing only the
defective module. Individual modules are fastened to the chassis in such a manner to facilitate
easy removal and reinstallation.

Terminal down-time can be greatly minimized by simply "swapping-out" one of the modules and
having component level repair performed at one of Intertec's Service Centers. Spare modules
may be purchased from an Intertec marketing office to support those customers who maintain
their own "in-house" repair facilities.

The SuperBrain II cover assembly is exclusively manufactured "in-house" by Intertec. A high
impact structural-foam material is covered with a special "felt-like" paint to enhance the overall
appearance. Since the cover assembly is injected-molded, there is virtually no possibility of
cracks and disfigurations in the cover itself. By manufacturing and finishing the cover assembly
in-house, Intertec is able to specify only high quality material on the external and internal cover
components of your SuperBrain II to insure unparalleled durability over the years to come.
'CPM is a registered trademark of Digital Research

6831010 1-1

SuperB rain II
Users Manual
Introduction

A wide variety of programming tools and options are either planned or available for the
SuperBrain II. Software development tools available from Intertec include Basic '(standard) and
Fortran (qptional) programming languages. A wide variety of applications packages (general
ledger, accounts receivable, payroll, inventory, word processing, etc.) are available to operate
under SuperB rain II CP/M Disk Operating System from leading software vendors in the industry.
Disk storage capability is expandable by interfacing the SuperBrain II to a rigid disk which
increases on-line storage to 10 megabytes or more.

The high performance ratio of the SuperBrain II has rarely been equalled in this industry. By
employing innovative design techniques, the SuperB rain II is not only able to offer a competitive
price advantage but boasts many features found only in systems costing three to five times as
much. The SuperBrain II twin Z80A microprocessors insure extremely fast program execution
E;lven when faced with the most difficult programming tasks. Additionally, each unit must pass a
grueling 48 hour burn-in before it is shipped to the customer. By combining advanced
microprocessor technology with in-house manufacturing capability and stringent quality control
requirements, your SuperBrain II should provide unparalleled reliability in any application into
which it is placed.

1-2 6831010

FEATURE

CPU

Microprocessors

Word Size

Execution Time

Machine Instructions

Interrupt Mode

FLOPPY DISK

Storage Capacity
(Formatted)

Data Transfer Rate

Average Access Time

Media

Disk Rotation

INTERNAL MEMORY

Dynamic RAM

Static RAM

FIRMWARE

DAYIDATE CLOCK

CRT

Display Size

Display Format

6831010

SYSTEM SPECIFICATIONS

DESCRIPTION

SuperBrain II
Users Manual

Introduction

Twin l80A's with 4MHl Clock Frequency. One l80A (the
host processor) performs all processor and screen related
functions. The second l80A is "down-loaded" by the host
to execute disk I/O.

8 bits

1.0 microsecond register to register

158

All interrupts are vectored

SuperBrain II Jr - 328 KB
SuperB rain II QD - 680 KB
SuperBrain II SD - 1.5 MB

250K bits/second

250 milliseconds. 6 milliseconds track-to-track.

51/.!-inch mirii-disk

300 RPM

64K bytes dynamic RAM

2048 bytes of static RAM is provided in addition to the main
processor RAM. 1 K x 8 of this RAM storage is used as a
disk buffer. The remaining RAM is used for attribute
storage.

2K x 8 bytes standard. Allows "bootstrapping" of system at
power-on.

Provides continuous time display. Maintains time and date
information during power-off and compensates for
variances in month/year lengths.

12 inch, specially focused, P4 phosphor, non-glare screen.

24 lines x 80 characters per line

1-3

SuperB rain II
Users Manual
Introduction

FEATURE

Character Font

Display Presentation

Bandwidth

Cursor

COMMUNICATIONS

Screen Data Transfer

Auxiliary Interface

Main Interface

Transparent Mode

Parity

Transmission Mode

Addressable Cursor

SYSTEM UTILITIES

Disk Operating System

DOS Software

BASIC

OPTIONAL SOFTWARE

Languages

1-4

SYSTEM SPECIFICATIONS (continued)

DESCRIPTION

5 x 7 character matrix (with descenders) on a 7 x 10
character field. All displayed characters are derived from
character sets stored on interchangeable EPROMS.

Light characters on a dark background. Blinking, half
intensity, underlining, reverse video attributes standard;
optional on-line secondary Character/Graphic set.

20 MHZ

Reversed image (block cursor)

Memory-mapped at 38 kilobaud.

Simplified RS-232 asynchronous. Parallel interface
available. Baud rates are software selectable from 50 to
9600 baud.

Universal RS-232 asynchronous. Synchronous interface
switch selectable. Baud rates are software selectable from
50 to 9600 baud.

Enables display of all incoming and outgoing control codes.

Choice of even, odd, none

Half or Full Duplex. One, one and one-half, or two stop bits.

Direct positioning by either discrete or absolute
addressing.

CP/M 2.2

An 8080 disk assembler, debugger, text editor and file
handling utilities.

Sequential and random disk access. Full string
manipulation, interpreter.

FORTRAN; ANSI standard with relocatable, random and
sequential disk access. Additionally, any user furnished
CP/M compatible software package that can reside in 52K
of memory.

6831010

SuperB rain II
Users Manual

Introduction

SYSTEM SPECIFICATIONS (continued)

FEATURE

Application Packages

KEYBOARD

Alphanumeric Character Set

Special Features

Numeric Pad

Cursor Control

INTERNAL CONSTRUCTION

Cabinetry

Component Layout

ENVIRONMENT

Weight

Physical Dimensions

Environment

Power Requirements

6831010

DESCRIPTION

Extensive software development tools are a\(ailable
including software for the following applications: Payroll,
Accounts Receivable, Accounts Payable, Inventory
Control, General Ledger and Word Processing. Contact an
Intertec Sales Office for complete details.

Generates all 128 upper and lower case ASCII characters.

N-key Rollover, type ahead, and key repeat

0-9, decimal point, comma, minus and four cursor control
keys. Reprogrammable to other values for individual
applications.

Up, down, forward, backward

Structural foam

Five board modular design. All processor related functions,
RAM, controllers and keyboard are on a single printed
circuit board. All video, chaining, and power related circuits
on separate boards.

Approximately 45 pounds

14-5/8" (H) x 21-3/8" (W) x 23-1/8" (D)

Operating 0° to 50° Storage: 0° to 85° C; 10 to 95%
relative humidity - non condensing.

115 VAC, 60 HZ, 1 AMP (optional 230 VAC/50HZ model
available)

1-5

SuperBrain II
Users Manual
Introduction

INTERNAL CONSTRUCTION

Perhaps the most remarkable feature of the SuperBrain II is its modular construction using only
five major subassemblies which are clearly defined in their respective functions so as to facilitate
ease of construction and repair. These five subassemblies are shown and described below.

1-6 6831010

)

KEYBOARD/CPU MODULE

SuperB rain II
Users Manual

Introduction

The control section of the SuperB rain II Video Computer is based upon the widely acclaimed
Z80A microprocessor. The result is far fewer components and the ability to perform a number of
functions not possible with any other approach. The Keyboard/CPU module contains the
SuperBrain II twin Z80A microprocessors. One Z80A (the host processor) performs all processor
and screen related functions while the second Z80A can be "downloaded" to execute disk 1/0
handling routines. The result is extremely fast execution time for programs.

In addition to containing the SuperBrain II's microprocessor circuitry, the Keyboard/CPU module
contains 64K of dynamic RAM. Also found on this module is: the character and keyboard encoder
circuitry, the "bootstrap" EPROM, the disk controller and all communications electronics. Power
is supplied to this module via a single 7 pin ribbon cable connected to the SuperBrain II's main
power supply module. Connection of this module to the disk drive modules is via a separate
ribbon cable. Separate connectors also exist for the CRT display signals and serial 1/0 ports.

CRT DISPLAY MODULE

The CRT Display Module consists of a 12 inch, high resolution, cathode ray tube mounted in a
rigid aluminum chassis. The faceplate of the CRT is etched in order to reduce glare on the surface
of the screen and provide uniform brightness throughout the entire screen area. The CRT display
presentation is arranged in 24 lines of 80 characters per line for a total display capacity of 1,920
characters.

The CRT video driver circuitry is mounted in the base of the CRT chassis to facilitate ease of
removal and subsequent repair. In this manner, either the CRT itself or the video circuitry can be
easily exchanged without disrupting any of the other major modules within the terminal.

6831010 1-7

SuperB rain II
Users Manual
Introduction

This module is easily removed for service or replacement. A single edge connector is provided for
connection to SuperBrain II's Keyboard/CPU Module.

1-8 6831010

MAIN POWER SUPPLY MODULE

SuperB rain II
Users Manual

Introduction

The SuperBrain II's power supply is of a "solid-state, switching" design and employs a voltage
regulator to provide many years of trouble-free service. This design reduces heat dissipation and
allows for efficient cooling of the entire terminal with a specially designed whisper fan to reduce
environment noise. The entire power supply can be easily removed by unscrewing the screws
holding it to the disk drive back plate. This module supplies the five voltages required to power the
Keyboard/CPU module, the Video Module, and disk drive.

TRANSITION BOARD

This board contains the RS-232 serial I/O connectors and video brightness control. It connects to
the video module and the keyboard/CPU module.

6831010 1-9

SuperB rain II
Users Manual
Introduction

DISK DRIVE MODULES

The SuperBrain II has a specially designed double-density disk drive subassembly. Each
SuperB rain II contains two of these type drives which are mounted conveniently just to the right of
the CRT display module on a rugged aluminum mounting bracket so that they are flush mounted
with the front "bezel" of the unit. Power to these drives is derived from the Power Supply Module
located just behind the drive assemblies themselves. Data to and from these drives is routed via a
single 34 pin ribbon cable connecting the drives to the Keyboard/CPU module.

Front View of SuperBrain II Drive Assembly

Side View of SuperBrain II Drive Assembly

1-10 6831010

THEORY OF OPERATION

SuperBrain II
Users Manual

Introduction

The SuperB rain II contains two Z80 microprocessors. uP1 is the main processor which executes
all user programs from the 64K RAM main memory, while transparently managing the CRT
Display processes. All user I/O is also connected to uP1. This I/O includes the Serial Ports,
Interface Controller, Keyboard Encoder, Time/Date Clock, and the External Bus. uP2 performs all
floppy disk control functions from instructions contained in the 2K Bootloader EPROM. Part of this
same EPROM contains the Cold Bootloader for uP1, and is executed when a System Reset is
performed. The Floppy Disk Control section also contains a 1 K x 8 RAM buffer used for temporary
storage of disk read/write data. This buffer can be accessed by either uP1 or uP2, therefore, a
protocol exists to prevent microprocessor contention for this buffer.

The 64 kilobyte main memory consists of thirty-two 16K x 1 bit dynamic RAMS. These are divided
in four banks (0-3) with each bank containing 16 kilobytes of storage. The RAS-CAS timing
sequence necessary for memory access is created by the memory timing generator.

The CRT-VIDEO CONTROLLER circuitry is divided into three main areas: The CRT controller
which generates all the timing signals for data display; the character generator circuitry which
produces the character font; and the attribute generation circuitry which provides the special
video capabilities of blinking, underlining, half-intensity, and reverse video in addition to normal
video display.

The capability exists to install an alternate character set EPROM as an option. This would allow
the CRT controller to access either character set during normal operation.

The CRT controller generates all the timing necessary to display 24 rows of characters with 80
characters per row. Thus the screen can display a total of 1,920 characters. These characters
are stored in the CRT refresh buffer which is the upper 2,048 bytes (2K) of main memory.

Because the CRT buffer is not a separate buffer and the processor must also use the same bus to
access memory, this bus must be timeshared between the two. This is accomplished by the CRT
controller performing a direct memory access (DMA) cycle which is done at the last scan line of
each character row. Each character row is divided into ten scan lines, therefore, during the last
scan line time, the controller takes control of the processor bus by generating a bus request. After
acquiring the bus, it reads 80 characters from the CRT buffer and loads them into the 80 x 8 shift
register. This data is then recirculated in the buffer for the next nine scan lines to produce one
row of video characters. Therefore, there are twenty-four DMA cycles performed per vertical
frame.

There are also twenty-five interrupts generated - one for each row scan and one extra during
vertical blanking. During the first twenty-four, the processor sets or resets the video blanking
depending on whether that row is displayed or not. During the vertical blanking interrupt, the
address registers in the CRT controller are initialized to the correct top-of-page address and the
cursor register is also updated.

The Interface Controller is basically three 8 bit I/O ports (8255). Through this device, the
processor can obtain status bits from other devices and react to the status by setting/resetting
individual bits in the 8255.

The Keyboard Encoder scans the keyboard for a key depreSSion, determines its position, and
generates the correct ASCII code for the key. The processor is flagged by the 'Data Ready' signal
via the Interface Controller. The character is then input by the processor.

The Time/Date clock is accessed directly by uP1 through an I/O address. The clock has a battery
power supply and will maintain the correct time and date when the external power is removed.

6831010 1-11

SuperBrain II
Users Manual
Introduction

The clock is also available as a real time clock for the user's access.

There are also two RS232C serial interface ports. The main port is capable of synchronous or
asynchronous operation. The aux port is a simplified port used for asynchronous operation only.
The baud rates .are variable from 50 baud to 9600 baud. The mode of operation of the main port
and the baud rate of both ports are set up by the operating system and can be changed by using
the "CONFIGUR" program.

As previously mentioned, uP1 has the capability of communicating with the RAM and ROM in the
FLOPPY DISK CONTROLLER. Because the amount of main memory used is the maximum that
the processor addressing can support, different 16K banks of main memory must be switched off
line when communicating with the disk RAM or EPROM. In these cases Bank 0 (0000H-3FFFH) is
switched out when communicating with the EPROM, and Bank 2 (8000H-BFFFH) when
communicating with the RAM.

The FLOPPY DISK CONTROLLER performs all disk related 1/0 functions upon command from the
main processor. These commands are:

* Restore to track 0
* Read sector
* Write sector
* Write sector with verify
* Format

The parameters associated with drive, side, track, and sector numbers are loaded, a status word
is set at a specified location in the disk RAM. When uP2 receives this status, it sets the 'disk busy'
status bit and performs the indicated function. Upon completion, it resets the 'busy' bit thus
allowing the main processor (uP1) to retrieve data and status from the RAM.

1-12 6831010

C)
OJ
(.oJ
o
o

......
I

(.oJ

,.OIOAT

1"110.'

R ... III aDORESS

CiT

'ii'i"

4111HZ

PftOCESSOR CONTROl.

CRT - VIDEO CONTROLLER r------------------------------,
I ~ t v[RTICU S'fNC
I I i HORIZONTAL SYNC

L __
.. DATA

I
I
I
I
I
I
I _________ J

"0 - A, '" - A., ADORnS aus
AD - AI5

} En" BUS r-______ -=O.~T.~_7~--_1~------4-----------~----------+-~------_1--~O~U~.~B~U'~~r_------t-------t-----------------t~-07
~
~
~
~
~ .T' OTO

ilK DA'A

1MMI

------------------,
I I
: I
I I
I I
I I
I 4 MHZ 111HZ I
I I
I I

I 10.12 MHZ :

I I
: I
I I
L ____ ~~~_~~~~~ ____ J

MlIIOflT INti' IN",'IT

t
I

11l1li2

CDNTJlOL IUS

ATTllUT[SELtCT

DATA REAOY
KEYICARo

.. MKZ -,

.IIIT[DATA

R[AD Q.1t

L ____ :~~~: _______________ 3~~~~~~~~~~~~ ________________ -~

SUPERBRAIN II KEYBOARD I CPU II MODULE BLOCK DIAGRAM

DISK ilEAC OA'A

INSTALLATION & OPERATING
INSTRUCTIONS

SuperB rain II
Users Manual

Installation and Operating Instructions

INSTALLATION AND OPERATING INSTRUCTIONS

UNPACKING INSTRUCTIONS

Be sure to use extreme care when unpacking your SuperBrain II Video Computer System. The
unit should be unpacked with the arrows on the outside of the shipping container facing up.

The MASTER SYSTEM DISKETIE is located inside the front cover of this manual. Be careful not
to discard or misplace this diskette as it will be vital for the later operation of the equipment. If you
ordered additional, optional software with your computer, it will be shipped under separate cover.

Now that you have located your system diskette you can proceed to remove the terminal. If you
should experience any difficulties, rotate the carton on its side. With the terminal in this position,
you ~hould now be able to pull outward on the terminal and separate it from the box. Once the
terminal is out of the ca(ton, place it on a table and remove the protective plastic bag which
should be surrounding the terminal. DO NOT DISCARD THE SHIPPING CARTON SINCE IT
COULD POSSIBLY BE USED FOR RESHIPPING AT A LATER DATE.

SET UP

The first step in this procedure is to veritY that your SuperBrain II is wired for a line voltage that is
available in your area. This can be ascertained by checking the serial tag located at the right rear
of the terminal. This tag should indicate that your unit is set up for either 110 or for a 220 VAC
operation. DO NOT ATIEMPT TO CONNECT THE SUPERBRAIN II VIDEO COMPUTER SYSTEM
TO YOU R LOCAL POWER OUTLET UNLESS TH E VOLTAGE AT YOU R OUTLET IS IDENTICAL TO
THE ONE SPECIFIED ON THE BACK OF YOUR TERMINAL. If the voltages differ, contact your
dealer at once and do not proceed to connect the SuperBrain II to the power outlet.

Before connecting the SuperBrain II to the wall outlet, be sure that the power switch located at
the left r.ear corner is turned OFF. You may now proceed to connect your computer system to the
wall outlet. After completing this connection, turn the power switch to the ON position. At this
time, you should hear a faint "whirring" sound coming from the fan in the computer. After
approximately 60 seconds the message INSERT DISKETIE INTO DRIVE A will appear on the
screen. If this message does not appear on the screen after approximately 60 seconds,
simultaneously depress the two RED keys located on either side of the alphanumeric keyboard.
These are the master system reset keys and should reinitialize the computer system, thereby
displaying the 'INSERT' message on the screen. If, after several attempts at resetting the
equipment you are unable to get this message to appear on the screen, turn the unit off for
approximately 3 to 5 minutes and then reapply power to the unit. If you are still unable to get the
appropriate message to appear on the screen, contact your Intertec representative.

SYSTEM DISKETTE

Now that you have power applied to the machine and the INSERT DISKETIE message has been
displayed in the upper left hand corner, you are ready to proceed with loading the computer's
operating system. This is accomplished by locating the small 51,4 " diskette that was packed with
this manual. Once you have located this diskette, you will notice that a small adhesive strip has
been placed over the notch on the right hand side of the diskette. This aluminum strip is used to
"WRITE PROTECT" the diskette. Therefore, you may only read programs from this diskette. If you
wish to write or save programs on the system diskette, it will be necessary to remove the small
adhesive aluminum strip from the diskette. This is NOT RECOMMENDED as it will subject your
diskette to accidental errors that may be caused by you while you are getting familiar with the
operating system.

You are now ready to proceed with inserting the system diskette into the machine. When facing

6831010 2-1

SuperB rain II
Users Manual
Installation and Operating Instructions

the front of the machine, you will notice that there are two small openings on the right hand side
of the machine. The leftmost opening is designated as drive A. The rightmost opening is
designated as drive B. This distinction is important since the disk operating system can only be
loaded from drive A.

Open the disk drive door on drive A (the leftmost drive). The drive can be opened by applying a
very slight pressure outward on the small flat door located in the center of the opening. Once the
drive door has been opened, insert the Operating System Diskette. The front of the diskette
should contain a small white sticker located in the upper left hand corner of the diskette. This
diskette should contain a message indicating that it is the SuperBrain II DOS Diskette with CPIM
Version 2.2. Be careful to insure that (1) the small aluminum write protect strip is oriented towards
the top edge of the diskette and that (2) the label located in the upper left hand corner of the
operating system diskette is facing AWAY from the screen towards the right hand side of the
terminal. Once you have oriented the diskette in this fashion, insert it info the terminal.

It is EXTREMELY important that the diskette be properly oriented before inserting it into the
machine since improper orientation will not allow the operating system to properly load. Once the
diskette has been placed in the machine, be sure that it has been inserted all the way by applying
a gentle pressure on the rear edge of the diskette. Once you are certain that the diskette is fully
inserted, close the disk drive door. This can be accomplished by applying a slight pressure on the
door, pulling it back into the direction from which it was originally opened. Once you have closed
the door, you will notice a small "swishing" sound. This sound is normal and indicates that the
computer is now attempting to load the operating system. Some drives are quieter than others
and therefore this noise may not be audible.

After closing the door the following message should appear in the upper left-corner of the screen:

SUPERBRAIN II DOS VER X.X, FOR CPIM 2.2
A>

If this message does not appear on the screen, try depressing the two RED keys located on either
side of the keyboard. This should reset the terminal and thereby attempt to reload the operating
system. If after several seconds, the message does not appear on the screen, try depressing the
RED keys several more times. If repeated depressions of the RED keys do not bring up the
indicated message, then open the door on the disk drive A and remove the system diskette and
check to see if it was properly inserted. If you are unsure as to the proper orientation of the
diskette, please contact the representative from whom you originally purchased your equipment.

After you have checked the orientation of the diskette, try reinserting it into drive A (do NOT insert
the system diskette into drive B as it will not load from drive B). Once the diskette has been
reinserted, close the door on drive A and depress the RED keys. If after several repeated
depressions of the RED keys, the message SUPERBRAIN II DOS VER X.X, for CPIM 2.2, does not
appear on the terminal then contact your dealer.

REVIEWING THE SYSTEM DISKETTE .
After you have successfully loaded the System Diskette and Disk Operating System (DOS), the
SuperBrain II is ready to accept your disk operating system commands. At this time we will
review several of the commands in the operating system. However, it is recommended that you
refer to the appropriate section in this manual for a detailed description of all such commands.
(Introduction to CPIM Features and Facilities). The most used system command is the DIR
command. This command directs the operating system to display the directory of all programs
contained on the system diskette. You may enter this command by simply typing the letters DIR
on the keyboard.

2-2 6831010

SuperBrain II
Users Manual

Installation and Operating Instructions

After you have typed these letters, it is necessary to depress the RETURN key. Depressing this
key instructs the computer to process the line of data that you have just typed. After you depress
the RETURN key the computer should respond by displaying all of the programs on the system
diskette. These programs will appear in a form somewhat similar to the following:

A:ED.COM
A:DDT.COM
A:ASM.COM
A:LOAD.COM
A:DUMP.COM

To obtain a better understanding of just what this information means, let's take a look at the first
line:

A:ED.COM

The first letter on this line is the letter A. This tells you that the information following this letter is
located on drive A. The colon serves as a separator between the drive designator ("A") and the
file NAME and file TYPE. The file NAME is, in this case, "ED" and the file TYPE is "COM." This
line tells the operator that a program called ED (the disk operating system text editor) is located
on the "A" drive and is a COM type of file. A more detailed treatment of this information can be
found in the CPIM sections of this manual.

DUPLICATING THE OPERATING DISKETTE

Now that you have successfully loaded the Disk Operating System on Drive A, ·it is important to
duplicate this diskette. This is necessary in order to preserve the original copy of the diskette and
guard against any possible damage to the original media. To generate a copy of the operating
system you will first need a new blank diskette. We recommend an Intertec diskette for this
purpose. If you do not have any blank diskettes of similar quality, please contact the
representative from whom you purchased your equipment. The representative should be able to
supply you with an ample quantity of these diskettes.

Insert the blank diskette into drive B. Follow the procedures outlined in the previous paragraphs
regarding the insertion of the operating system diskette. The only difference is that you will be
inserting the new blank diskette into drive B. Be sure and leave the system diskette installed in
drive A.

Once you have installed the new blank diskette in drive B, you are ready to "FORMAT" the new
diskette. It is necessary to format all previously unused diskettes before attempting to transfer
data to them. This is necessary because all information is stored on diskettes in what is known as
a SOFT SECTORED FORMAT which necessitates the writing of certain information on the disks
before user programs or data can be stored on them.

To format the diskette in drive B, enter the command FORMAT and depress the RETURN key. The
operating system will respond by asking you to select one of the following:

* J - For formatting SuperB rain II Jr diskettes
*' a - For formatting SuperBrain II aD diskettes
* S - For formatting SuperB rain II SD diskettes

CAUTION: SuperBrain II Jr and aD diskettes cannot be formatted on SD machines and vice
versa.

6831010 2-3

SuperB rain II
Users Manual
I nstallation and Operating Instructions

Once the appropriate option is selected, the operating system will prompt the user to insert a
blank diskette into drive B in case that has not already been done. Next, the user should depress
the F key to begin formatting.

When a diskette is being formatted, the read/write heads position to track 0 and sequentially
writes each track. The sc'reen displays the current track numbers. The track value displayed will
range from:

* 0-34 for the SuperBrain II Jr
* 0-69 for the SuperBrain II QD
* 0-159 for the SuperB rain II SD

After the disk has been completely formatted, the operating system will respond by asking you
whether to "REBOOT" the operating system or whether you wish to format another disk. If you
wish to format another disk, remove the newly formatted disk from drive B and insert a new blank
diskette into drive B. You may now proceed to format this new diskette by once again entering the
letter F. If you do not wish to format any more diskettes, simply enter a RETURN.

The Operating System should now reload and once again be ready to accept new commands.

Since the intent of this procedure was to copy the original disk operating system we are now
ready to begin that procedure. This can be accomplished by entering the following command on
the keyboard:

A)PIP B:=*.*[V] (cr)

After you have entered the above command at the keyboard, depress the RETURN key.

The system will now begin to copy and verify all of the programs on drive A over to drive B. As
each program is copied, its name will be displayed on the screen. This procedure takes
approximately 5 to 10 minutes. When the procedure completes, the control of the operating
system will be returned to the user.

Now that you have completed copying the programs from the A drive to the B drive it is necessary
to copy the disk operating system itself (which is located on tracks 0, 1) onto drive B. This may be
accomplished by entering the following command at the keyboard:

A)SYSGEN (cr)

The SYSGEN command is used to read the operating system from a diskette and place it on the
desired diskette. Once you have entered this command at the keyboard and typed RETURN, the
disk operating system will ask you to select which drive you want to take the source from. The
correct answer to this question is the letter "A". After entering A depress the RETURN.

The next question the program will ask is where do you want the source to be placed (the
destination drive). The correct answer to this is the letter "B" indicating drive B. Once you have
entered this, the operating system will be copied from drive A onto drive B.

After this process has been completed the operating system will ask whether you wish to make
another copy or to reload the operating system. The correct response is to simply enter a
RETURN which will reload the operating system.

Once the operating system has been reloaded, you may remove the master disk operating

2-4 6831010

SuperBrain II
Users Manual

Installation and Operating Instructions

system in drive A. Once this disk has been removed, store it in a safe place, as you may need it
later to generate additional copies of the disk operating system and its programs.

At this point you should have removed the master.,disk from drive A. Now remove the copy from
drive B and reinstall it in drive A and close the door on drive A. After you have completed this,
depress the RED reset keys located on either side of the keyboard. This will reset the machine
and reload the newly installed operating system from the new system diskette.

IMPORTANT: If random, garbled information is displayed on the screen at this time, this indicates
that an error was made in the use of the SYSGEN program. If this is the case, remove,the new
diskette from drive A and reinstall the original master system diskette and repeat the previously
outlined procedure for generating a new'disk operating system. If you still encounter difficulties,
please refer to the CPIM sections of this manual for more detailed information concerning the
SYSGEN procedure.

Now that you have successfully completed the generation of a new system diskette, please refer
to the CPIM sections of this manual for a complete description of all of the operating system utility
programs (DDT.COM, PIP.COM, SUBMIT.COM, etc.).

OPTIONAL SOFTWARE

MICROSOFT FORTRAN 80 - comparable to Fortran compilers on large mainframes and
minicomputers. All of ANSI standard Fortran X3.9-1966 is included except the COMPLEX
datatype. Therefore, users may take advantage of the many application programs already written
in Fortran. Fortran 80 is unique in that it provides a microprocessor Fortran and assembly
language development package that generates relocatable object modules. This means that only
the subroutines and system routines required to run Fortran 80 programs are loaded before
execution. Subroutines can be placed in a system library so that users develop a common set of
subroutines that are used in their programs. Also, if only one module of a program is changed, it is
necessary to recompile only that module. Additionally, numerous optional software packages are
available for use with your SuperBrain II Video Computer System. If you would like additional
information on these packages, please contact your local Intertec representative.

6831010 2-5

SUPERBRAIN II
SOFTWARE SUMMARY

SuperBrain II
Users Manual

SuperB rain II Software Summary

SUPERBRAIN II SOFTWARE SUMMARY

The software distributed with the SuperBrain II is basically of two types. First, CPIM and
miscellaneous software from Digital Research provide an operating system, and various utility
programs. Second, there are utility programs prepared by Intertec for special features or
functions of the SuperBraiA II and an interpreted BASIC from MicroSoft. A summary of both
categories follows:

CP/M SUMMARY

PROGRAM
NAME FUNCTION

ENTRY
EXAMPLE

PIP.COM Copies files between devices, logical and physical. PIP B: = A:*. * (cr)
PIP CON:=A:FILE.TYP(cr)

SYSGEN.COM Generates a new operating system on diskette. SYSGEN (cr)

ED.COM Text Editor, allows changes to text files. ED PROGRAM.ASM (cr)

ASM.COM Assembles an BOBO-type assembly language that ASM PROG(cr)
produces a source listing and a 'HEX' file.

LOAD.COM Creates a binary object file from a 'HEX' file that LOAD PROG(cr)
can be executed.

DDT.COM Allows user to debug and step through a 'COM' or DDT PROG.COM(cr)
'HEX' file's execution. DDT PROG.HEX(cr)

SUBMIT.COM Performs successive execution of a list of
'COM' files.

XSUB.COM Forces data entry into a process under control of
SUBMIT.

DUMP.COM Produces a hexadecimal listing of a disk file's
contents.

STAT.COM Display file status, device status, or system
characteristics.

DIR* Displays a disk directory.

ERA* Erases a disk file.

SUBMIT MORNING (cr)

XSUB(cr)

DUMP PROG.COM(cr)

STAT B:*.*(cr)
STAT B:DSK: (cr)

DIR(cr)
DIR B:(cr)

ERA B:PROG.BAK (cr)

REN* Renames a disk file. REN PROG.ASM = PROG(cr)

SAVE* Saves memory contents on the disk. SAVE 10 A.COM (cr)

TYPE* Displays an ASCII listing of a disk file's contents. TYPE PROG.PRN (cr)

'These are CP/M command level functions.

6B31010 3-1

SuperBrain II
Users Manual
SuperBrain II Software Summary

These programs or commands run under the CP/M 2.2 disk operating system (DOS). This DOS is
customized for each SuperBrain II computer model available, which results in having three
operating systems applicable to the SuperB rain II product line. These are:

* SBIICPM.COM - SuperBrain II Jr computer. The corresponding BIOS is
SBIIBIOS.ASM.

* ODIICPM.COM - SuperBrain II OD computer. The corresponding BIOS is
ODIIBIOS.ASM.

* SDIICPM.COM - SuperBrain II SD computer. The corresponding BIOS is
SDIIBIOS.ASM.

The difference between these models of the SuperBrain II computer is the amount of on-board
floppy disk storage each contains. The correct operating system is distributed with each
computer.

Refer to later sections of this manual for detailed documentation of CP/M usage and capabilities.

INTERTEC UTILITY SUMMARY

Program Name

CONFIGUR.COM

FORMAT.COM

HEXDUMP.COM

64KTEST.COM

RX/TX.COM

CSEDIT.COM

CSDUMP.COM

TIME.COM

DATE.COM

MBASIC.COM

Function

Establishes certain user selectable operating characteristics of the
SuperBrain II.

Prepares previously unused diskettes for use in the SuperB rain II disk
drives by placing sector information on them.

Generates an "Intel" hexadecimal format data stream from any binary
object file in the SuperBrain II computer and outputs it to a port.

Performs extensive memory testing for diagnostic purposes.

A program pair that enables file transfers between two SuperBrain II
computers.

A program that allows the user to generate or modify an alternate character
set.

A program that allows the user to generate printed output of the alternate
character set built with CSEDIT for documentation purposes.

A program that allows the time maintained by the real time clock to be set
and/or displayed.

A program that allows the date to be entered or displayed.

An interpreted type BASIC.

In general, the Intertec utility programs are self-documenting and designed for ease of use. To
support this design further, documentation of these programs follows. The interpreted BASIC
from MicroSoft is documented in a separate manual available from Intertec.

CONFIGUR.COM

This program enables the user to select various operating parameters for the SuperBrain II. This
feature allows flexibility in your computer's use. The parameters affect the MAIN and AUXILIARY
ports, the AC line frequency, keypad aSSignments, audio and visual feedback, and disk

3-2 6831010

SuperBrain II
Users Manual

SuperBrain II Software Summary

verification. By allowing the user to change these parameters, a variety of peripheral devices can
be used with your SuperBrain II.

The CONFIGUR program is menu-driven; the user selects the parameter to change, and then
follows the instructions listed. To initiate the CONFIGUR command, type CONFIGUR(cr> at the
keyboard. CONFIGUFl will then accept your commands for parameter changes. After you are
finished, press the RETURN key (you may change several of the parameters if you wish); the
screen will clear, and you will be instructed to press both RED keys on the keyboard. This action
will force an operating system to reload containing your new parameters, and these parameters
will be reloaded each time you reset the operating system.

Note that the CONFIGUR program will change the copy of the operating system located on the
diskette in drive A. Even if your copy of CONFIGUR.COM is located on drive B, drive A will be
affected. A summary of parameter selections is included for reference.

Vertical Scan Frequency
The vertical scan frequency is selectable for 50 or 60 Hertz. This compensates for the local AC
line frequency to prevent the display from flickering.

Disk Write Verification
You may select to have the Operating System perform disk read-back verification after each
floppy disk write. This feature will 'double-check' the write operation.

Time Display Enable/Disable
If you wish for the time of day to be constantly displayed in the upper right corner of the screen
upon power-up, you may select this feature here. Note that the time is always maintained
internally, even if you choose not to display it. Also note that this setting is only for power-up, and
you may select/deselect the time during operation by typing a Control-T (14H).

Key Click Enable/Disable
You may choose to have the audible feedback feature enabled upon system power-up. Whenever
the audible feedback is enabled, the computer will inform the operator with a slight 'click' at each
key depression. Note that this setting is only for system power-up, and the key click feature can
be changed during operation by typing a Control-B (02H).

Main and Aux Port Operation
Choosing these selections will permit you to change the operating parameters of the MAIN and
AUX serial I/O ports located on the rear of your computer. The details of this selection are
covered below including which ports are applicable for a given feature.

Operating Mode (MAIN Port Only)
The MAIN port operating mode selections are synchronous and asynchronous. Be certain that
the peripheral with which you are communicating is capable of operating in the same mode; they
cannot be different. Note also that when changing to synchronous mode, you may need to
change the number of SYNC Characters and the SYNC Character value. When changing to the
asynchronous mode, you may need to change the number of stop bits. Using the synchronous
mode requires different switch settings to be modified on the Keyboard/CPU module. Refer to the
Synchronous Communication topic in this section for further information.

Baud Rate (MAl Nand AUX Ports)
A wide range of baud rates can be selected for the port including rates from 9600 baud
(approximately 960 characters/second) to 50 baud (5 characters/second). Select the baud rate
needed to communicate with your peripheral.

6831010 3-3

SuperBrain II
Users Manual
SuperBrain II Software Summary

Number of SYNC Characters (Main Port Only)

This selection will affect the number of SYNC Characters sent to the USART upon system power
up. Select either one or two.

Number of Stop Bits (MAl Nand AUX Ports)

This selection will choose the number of stop bits sent after each character when the port is
operating in asynchronous mode. Select either 1, 1.5, or 2 stop bits.

Character Length (MAl Nand AUX Ports)

You may select the length of the character to be transmitted and received. Many selections are
provided to insure compatibility with older TTY and Baudot machines. Usually, eight bits is the
standard character length. You may, however, select 5, 6, 7, or 8 bit character lengths.

Parity (MAl Nand AUX Ports)

You may choose to check parity with each transmission. This will provide a limited 'checksum' to
help insure that proper tran'l:>mission has occurred. However, if parity is enabled, the application
program will have to test the USART status register for parity error. You may also select Even or
Odd parity. If you choose to check parity, be certain that the device with which you are
communicating matches your setting.

Handshaking (MAl Nand AUX Ports)

If you wish to check Data Set Ready prior to each character transmission, you should enable this
function. This will permit a peripheral device to signal the computer whenever it cannot receive
anymore characters.

SYNC Character Value (MAIN Port Only)

The SYNC Character is the byte that is sent to the USART after it has been programmed for
synchronous communication. Generally, the ASCII value of 13H (SYN) is used, but any binary
value may be substituted. Make certain that the SYNC Character value matches that of the
peripheral device with which you are communicating. Enter the hexadecimal number desired.

KEYPAD REPROGRAMMING

The 18 key numeric keypad on the right side of the keyboard can be reprogrammed to any input
values desired. You may, for example, wish to invert the numeric keys on the pad. They will then
correspond to 'telephone style' with 1-2-3 on the top row and 7-8-9 on the bottom. You may wish
to replace the keys with control-codes which are accepted by a word processing or text editing
program. The key cap values could then be changed to descriptive messages which are easier to
learn and understand. Any value from OOH to FFH can now be assigned to the numeric keys with
CONFIGUR.

When this selection is entered, an image of the keypad appears on the screen. To change the
value of any key, depress the TAB key until the cursor is over the key you wish to change. Then
press the escape ESC key to indicate the change needed. The cursor will position itself on the last
line, and a blinking asterisk will replace the cursor on the key being changed. Enter the new
hexadecimal value for this key. Your input must be a valid hex number between O-F as invalid
numbers will not be accepted. Press the RETURN key when you are finished.

To restore the keypad to its original values press the R key instead of the ESC or TAB keys. The
screen will be updated instantly, and the cursor will be repositioned at the beginning of the
display. When all changes have been entered, pressing the RETURN key (instead of the ESC or
TAB keys) will return you to the main menu of selections.

3-4 6831010

SuperBrain II
Users Manual

SuperB rain II Software Summary

FORMAT.COM

Before diskettes can be used by an Intertec computer, they must first be formatted. This process
will erase the diskette of all data and write certain sector-header information on the diskette so
that the operating system is able to properly locate data on the diskette. FORMAT.COM is a
versatile program that will allow the user to format diskettes for the SuperBrain II.

To load the format program from diskette, type FORMAT<cr) at the keyboard. After loading, you
should select the type of diskette you wish to format. Once your selection has been entered, you
will be asked to place an unformatted diskette into drive B and type the F key to begin formatting.
When the formatting is completed, you may continue formatting by placing another diskette into
drive B and pressing the F key. You may repeat this process until all of your diskettes have been
formatted. Press the RETURN key to end the formatting session.

The diskette that you format does not have to be a blank diskette. You may format an old diskette
if you wish, but you should remember that FORMAT will destroy all data on a diskette. However, if
the data on a diskette becomes damaged (or if you suspect that the data is damaged), copy the
diskette onto another diskette and reformat the original. This way, you save some (or all) of the
original data and you don't lose any diskettes.

HEXDUMP.COM

This is a utility designed to convert a COM file to the Intel Hex format and transmit it from the Aux
or MAIN port to a desired port. Since the PIP program cannot transfer COM files, this utility is
useful in effecting file transfers without the PIP program. To initiate the HEXDUMP facility, type
the following at the keyboard: HEXDUMP<cr). The program will be loaded and then await your
instructions.

The first thing that the HEXDUMP procedure requests is the port to which you wish to dump the
file. Here enter 1 for the MAIN port (corresponding to CPIM's PUN: and RDR: device), or 2 for the
AUXILIARY port (corresponding to CPIM's LST: device). You must enter either a 1 or 2; invalid
entries will be ignored. Next you may choose whether or not you wish to have the HEX file echoed
to the console (this will display the file as transmitted). Enter 1 if you do not wish to have the file
echoed on the screen, or 2 if you wish to have the contents echoed. Again, invalid entries will be
ignored.

Now you are ready to enter the file name. You must enter the drive designator, the file name and
the file type. Separate the drive indicator f.rom the file name with a colon (':'), and separate the
type from the name with a period (.). Press the RETURN key after entering the name.

Example:
A) HEXDUMP(cr)

HEXDUMP FILE UTILITY YER. 3.1
SELECT ONE OF THE FOLLOWING: (TYPE THE NUMBER)

1 - THE MAIN PORT (PUN:)
2 - TH E AUX PORT (LST:)

2
SELECT ECHO ON THE CONSOLE:

1

1 - DO NOT ECHO ON TH E CONSOLE
2 - ECHO TO THE CONSOLE

ENTER DISC, FILE-NAME, AND FILE-TYPE TO BE TRANSFERRED.

6831010 3-5

SuperBrain II
Users Manual
SuperBrain II Software Summary

A:STAT.COM<cr)
FILE TRANSFER COMPLETED.
In the example above, the file STAT.COM was transferred from disk A through ,the auxiliary port.

HEXDUMP.COM will only transfer files which exist 011 drives A and B. If you enter an erroneous
file-name or disk drive, the program will display an error message. If HEXDUMP.COM is unable to
locate the given file, another error message will be given. When the transmission has completed,
the screen will indicate this and return to the operating system.

64KTEST.COM

This program performs an extensive test on main memory by writing and reading all possible
binary patterns to all locations in the random access memory (RAM). The process takes between
eight and ten minutes to complete.

The test procedure begins by typing 64KTEST<cr) at the keyboard. After the program is loaded
into memory, you will be asked to remove all diskettes from their drives. If you have a Hard Disk
Storage System connected to the terminal to be tested, either power down the hard disk or
disconnect it from the terminal by removing the interconnecting cable. Be sure the Key Click
feature is turned off before running the 64KTEST program. Otherwise, errors will be indicated that
do not exist.

Once you have pressed the G key to start the test, the screen should fill with random text. The
patterns on the screen should move around. This is because the memory for the screen is also
undergoing the test. After the test is completed, the screen will display RAM OK, indicating that
the test was successful. The test is an endless loop, and will repeat until the RED keys are
depressed simultaneously. Therefore, you can test the RAM as long as you desire.

If an error is detected by the test, the test will stop and the audible tone will sound continuously.
Should this occur, retry the test. If the error occurs frequently, please contact Intertec Customer
Services Department.

TX.COM

The TX utility is written in standard CPIM assembly language. TX is designed to communicate via
the computer's Main Port with the program RX running in the destination machine. Therefore, TX
is considered the "Master" program, and RX is the "Slave" program. RX receives commands
from TX such as "Open file", "Read incoming data block", "Write block to file", and so on. For
this reason, the user should only be concerned with console operations for the machine in which
TX is running. RX receives all directions from the communications link.

Unlike data transfer operations initiated with PIP, the TX/RX pair perform block verification, and
retransmission in the event of error. TX/RX may be used to send any type of CPIM file without
modification including .COM files.

TX is initiated by typing the commandl TX<cr). The TX program will then "sign-on" with an
identifying message and version number and then give the user an option to proceed or abort.
The actual console dialogue appears as:

A) TX<cr)

INTERTEC File Transfer Utility Vers 1.X
HIT CR WHEN RECEIVE MACHINE READY OR Q TO ABORT

3-6 6831010

SuperBrain II
Users Manual

SuperBrain II Software Summary

At this point, start up RX in the destination machine (See the RX.COM description that follows this
TX description).

When a carriage return is entered to TX, it will attempt to establish a linkage to the destination RX
machine over the computer's Main Port. Given that a link can be established, TX will display the
message:

LINK TO SLAVE MACHINE ESTABLISHED

or, if many attempts to link fail:

UNABLE TO ESTABLISH/MAINTAIN DATA LINK

(This probably indicates that some aspect of the connection with the destination machine is not
correct, i.e. inconsistent baud rates, improper cabling, or excessive line noise.)

The TX program then prompts the user to enter both the source file name and the destination file
name. These names must be fully qualified, non-ambiguous file references. This includes disk
specifiers.

If the specified file already exists on the receiving machine, TX will display:

FILE ALREADY EXISTS ON RECEIVING MACHINE

and the link is terminated.

As an expediency, send the file again, but with a temporary destination file name.

As a file is being transmitted under TX/RX, both TX and RX will display a record count. This serves
to indicate that the data is being transferred correctly. It is normal to see a difference of one
record between the two counts upon completion of a file transfer.

If TX detects a failure in the data link, it will output the message:
UNABLE TO ESTABLISH/MAINTAIN DATA LINK

When a file has been transmitted, TX displays the message:
FUNCTION COMPLETE
TYPE R TO REPEAT, CR TO EXIT

If another file is to be transferred, enter the letter Rand TX will request another pair of file names.
Entry of a carriage return will cause TX to command RX to shutdown and both will terminate.

There are two other messages that could be output by TX.

As each data block is sent, a checksum is calculated and transmitted. If RX detects a
discrepancy between the received checksum and that which has been calculated for the
received data, it will request that TX re-send the block in question. If the block cannot be received
correctly after several re-transmissions, the message:

HARD DATA TRANSMISSION ERROR

will be rendered. The most likely cause of this failure is hardware error.

If the diskette on which RX attempts to place the incoming data file is write protected, or if there is
not enough space to contain the incoming file, TX will display:

RECEIVE CANNOT CLOSE FILE

6831010 3-7

SuperBrain "
Users Manual
SuperBrain II Software Summary

RX.COM

RX is an assembly language program designed to receive data files transmitted by TX from the
computer's Main Port. It operates as a slave to the TX program, receiving commands from TX to
perform operations on the destination machine.

RX is initiated by typing the command RX(cr). Upon initiation, RX displays a "sign-on" message
of the form:

INTERTEC File Transfer Utility Vers 1.X

From this point on, unless an error condition occurs, no further operator action is required.

As each data block is received, RX outputs a running count of the data blocks received. At the end
of each received file, RX displays the message:

END-OF-FILE RECEIVED
When all files have been received, TX will command RX to terminate and RX will display:

LINK TERMINATED

If the data link cannot be established or maintained (indicated by a message on the TX system), it
will be necessary to reset the destination system. This is accomplished on the destination
computer by depressing both RED keys simultaneously.

TIME

The TIME program is used to set or display the time data kept by the real time clock. To set the
time, enter:

A) TIME hh:mm (AM)(PM)(cr)

To enter "military" time (0000 thru 2400), it is not necessary to enter AM or PM. Once the entry is
made, the TIME program will request that any key be depressed to set the time. This allows the
user an opportunity to synchronize the time with another timepiece. To display the time, enter:

A)TIME<cr)

DATE

The DATE program is used to set or display the date maintained by the real time clock. To set the
date, enter:

A) DATE 04/07/82 WED(cr)

or

A) DATE 04/07/82 WEDNESDAY (cr)

To display the date, enter:

A) DATE<cr)

3-8 6831010

)

SuperBrain II
Users Manual

SuperBrain II Software Summary

SECONDARY CHARACTER SET OPTION

As was stated in the theory of operation section, the SuperBrain II provides a means by which a
secondary character set option may be added. This gives the user the ability, via the software, to
select either set. Intertec will provide a limited number of these alternate character sets, or if
required, the customer may create a character set using software that is supplied by Intertec. In
the following sections, both of these methods will be explained.

INTERTEC FURNISHED SECONDARY CHARACTER SETS
The easiest and quickest way to have access to a secondary character set would be to purchase
one of the sets available from Intertec. This character set would be contained on an EPROM that
would be inserted into a vacant IC socket on the processor board. After the EPROM has been
inserted into its socket, it can be initialized via the escape sequence given in the attribute
program section. Secondary character set installation procedures will be provided with each set
purchased from Intertec.

CUSTOMER CREATED SECONDARY CHARACTER SETS
For those requirements where Intertec does not offer a suitable secondary character set, one
can be created by the user. The CP/M disk provided with the SuperBrain II contains two utility
programs that provide the means for creating and verifying secondary character sets. These two
programs are CSEDIT.COM and CSDUMP.COM.

CSEDIT.COM
The CSEDIT utility provides the means for creating a secondary character set. The program is
loaded from the disk by typing CSEDIT and then pressing RETURN. The initial screen message
will read:

SuperBrain II Character Set Editor - Ver 1.X

Enter the character sst file name:

The new character set file name should then be entered in the normal format of filename.typ and
then pressing RETURN. The next screen message will read:

Enter hex value of character to edit (0-7F, eXit, Quit, or ?)

As indicated by the parenthesis, there are four options (0-7F, eXit, Quit, or ?) available at this
point. Since the "?" is the help page and will explain the other 3 entries, type ? and press
RETURN. The following page will appear on the screen:

The input required at this point is the hex value of the ASCII character that you wish to edit. This
value must be in the range of 00 to 7F hex. You may also enter a "X" to exit the program and
update the character set file, or a "Q" to abort the program and not update the character set file.

6831010

"a" - Clear dot at current position
"." - Put dot at current position
ENT - Go to start of next line
"-" - Clear current line
"1" - Invert pattern dots
"2" - Save pattern in temp. buffer
"3" - Recall previously saved pattern
"7" - Clear character cell
ESC - End editing of character
BRK - Abort with no change to character

3-9

SuperBrain II
Users Manual
Superbrain II Software Summary

SECONDARY CHARACTER SET OPTION (continued)

All cursor keys on the keypad work as would be expected.

Hit RETURN to continue:

After reading the help page, pressing RETURN will cause the initial screen message of the
program to reappear. At this time the user should be ready to start the process to create an
alternate character set. The following examples are from the standard character set provided
with the SuperBrain II.

0:
1 :
2:
3:
4:
5:
6:
7:
8:
9:

"." - Put dot at current position
"_" - Clear current line
"1" - Invert pattern dots

Editing Number - 41 H
o 1 2 3 456

* *
*
*
* * *
*
*
*

*
*
*

* *
*
*
*

"0" - Clear dot at current position
ENT - Go to start of next line

"3" - Recall previously saved pattern
ESC - End editing of character

"2" - Save pattern in temp. buffer
"7" - Clear character cell
BRK - Abort with no change to pattern

0:
1 :
2:
3:
4:
5:
6:
7:
8:
9:

"." - Put dot at current position
"_" - Clear current line
"1" Invert pattern dots

Editing Number - 65H
o 1 2 3 4 5 6

* * *
* *
* * * * *
*

* * *

"0" - Clear dot at current position
ENT - Go to start of next line
"2" - Save pattern in temp. buffer

"3" Recall previously saved pattern "7" - Clear character cell
ESC End editing of character BRK - Abort with no change to pattern

3-10 6831010

U II

"1" -
"3" -
ESC -

SuperB rain II
Users Manual

SuperBrain II Software Summary

SECONDARY CHARACTER SET OPTION (continued)

Editing Number - OBH
o 1 234 5 6

0:
1 :
2:
3:
4:
5:
6:
7:
8:
9:

Put dot at current position
Clear current line
Invert pattern dots
Recall previously saved pattern
End editing of character

*
*

* * * * *
*
*

"0" - Clear dot at current position
ENT - Go to start of next line
"2" '- Save pattern in temp. buffer
"7" - Clear character cell
BRK - Abort with no change to pattern

After all the secondary characters have been created, by typing "X" and pressing RETURN, the
new character set will be written on the disk as a binary file and the verification process can
begin.

CSDUMP.COM
The CSDUMP utility will be used to verify that the character set that was just created is what is
needed. To run the CSDUMP program, insure the SuperBrain II is connected to a printer via the
Auxiliary port. The printer is the only output device that will display the dump. Once this is
accomplished, type CSDUMP, and press the RETURN key. The following message will appear on
the screen.

SuperBrain II Character Set Dump - Ver 1.X

Enter character set file name:

Enter the file name and press the RETURN key. The character set will be dumped out to the
printer and the resulting page set should look similar to the one shown on the Sample Page -
Character Set Dump exhibit.

The character file generated by this procedure can then be transferred to an EPROM
programming machine using the HEXDUMP.COM utility. Once the EPROM has been created, it
should then be inserted into the empty IC socket Z75, as indicated in the Socket Z75 exhibit. The
initialization of the new character set is contained in the Escape Sequence covered in the
Attribute section of this manual.

The part numbers for the blank EPROM are, Intertec part number 30122516 or Texas Instruments
part number TMS-2516JL-35 or equivalent.

Any questions concerning Intertec created secondary character sets or the procedures or
materials necessary to create secondary character sets should be referred to the Customer
Services Department at Intertec Data Systems Corporate Headquarters.

6831010 3-11

SAMPLE PAGE - CHARACTER SET DUMP EXHIBIT

0:
1 · · 2.: 01. .. '
'7 · · ','

4 : * r:; · 01,

-' · ','

E · · * 7 · · E:
a· ...

121 1
ASCII

0:
1 :):c

2:
'2: · '-' · 4:
e:. · · f · ·
7 ·):c · f · · c. ...

0 1
ASC II

o :
1 :
2 :
'2: •
'- .
4 :
5 :
c: :
7:
8:
~:

,'. ...

. '. -,'

~c ,'. , ..
',' '.'

,I.
','

~c ~: . ..
'.'

,'. ...
',' 'O.

,I. .1. ". 'O. ,,..
'I'

*
.1. 01. .,' ','

2 '7 4 '" ~ ... ,
velue - 40h

... ,'. ,'. '.' '1'

01. '0'

oJ. , ..
'O. ',-
.1. • 1. , ',' 'I'

". ,I. ' .. ',-, .. .1.
I' ','

oJ. .1. ,'. 'O. ',' 'O.

2 3 4 '" f
vclue - 42h

01. ... ~, .. - ...
.1. "" 'I' '1'

':C .0.
.'- ,I. ", '0'

," o· ~c

. '. . '. '.' .,.
01. ,I • ~c '.'

212c4~E
ASCII value - 4~h

0 · 0

1 · .'. • 1. J •

*)~ · .,' ',' 'O.

2 · ,'. · ,,..
7. · ~,
'-' · 4 · '" ~c .'.)!:

0 ',' .,'

5 · · ~c

E · . '.
0

'O.

7 · ~c · E · · c· .. 0

012c4C:;E'
ASCII value - 4Eh

3-12

File Narre : A :S'YISI'I

l:
1 : ,'. .'.)" ',' -,' "
2 : .'. ...
7. ~c .. · ..; · ,'. '" J. ." · ',' .,' ',' ',.
5: ," ,..
f · .'. · '0'

7: .'. ','
s: · · 9 · · e 1 2 '7 t1 ...

A ~CI I value

e:
1 : • 1.

',' ',' ','

'" . ." c: .• -,' .. · ". .. · ','

4:)',c

e:.. .'. ','

f · ," · ,.

7 : . '. ",' ','

c- o
0

S 0 · Z 1 2 7. .d. ..
ASCII valuE

0 · · 1 · ~, .t. .'. .'.
0

"I" .. ' .~

2: ...
.~

'2:. .'.
v. ','

4:o.' . 'O. -,' '0' ','

c:; 0 .'. ' . 'O •

E 0 .' . · 'O •

7:'. ,;, .1.
',' 'O. ','

2 :
£' :

0 1 2 7 4 '-

ASCII valuE

Z: :
1 : • 1. ," .' . .,' ,. ','

2: ,'. 'O.

7, 0 '" ',' '- · il · ." J. ,'.
0

',' ',' '"
c: • ';: -.
,:::
'-

=

,t. .,'
'i · ,~ .. . '. .' . · ',' ','

c
'- :
~ :

e 1 ':"' '7 ? ..
A2C I I value

,!c

~(

::=
,
*):~

'" E ,.

- 41h

.'. -,'

,~:

r:; t ~

- 42h

". ','

'::

r:; f -- t1~h

:::c

.'. ','

". ,,'
.'. -,'
)~:;

'" e
- 47h

6831010

6831010

SOCKET Z75 EXHIBIT

AL TERNATE CHARACTER
SET EPROM SOCKET

Z75·

ST ANDARD CHARACTER
SET EPROM

lao

3-13

MISCELLANEOUS
: OPERATIONAL INFORMATION '

SuperBrain II
Users Manual

Miscellaneous Operational Information

MISCELLANEOUS OPERATIONAL INFORMATION

USING THE "INP:" AND "OUT:" FEATURES OF PIP

Files can be transferred using the PIP program as described in the SuperB rain II manual section
entitled 'An Introduction to CPIM Features and Facilities.' The SuperBrain II is equipped with two
RS232C Serial interface ports (labeled 'MAIN' and 'AUX' on the rear panel). Whenever the
SuperBrain II transmits serial data via the 'MAIN' port, the destination is designated as a punch
(PUN:); when receiving, the data source device is considered a reader (RDR:). When transmitting
data to the 'AUX' port, the destination device is considered a list (LST:).

The 'MAIN' serial port may also be considered as an input (INP:) or output (OUT:) device. When
used in this mode, the operator has the option of communicating with the sending or receiving
device prior to file transfer by means of the SuperBrain II console. This interface is factory
programmed for the following operational mode:

Asynchronous Communication
1200 Baud Rate
8 Bit Character Length
1 Stop Bit
No Parity
DSR Disabled

Files transferred via the 'MAIN' port must be in Intel 'HEX' or ASCII format. BASIC source
programs must be saved in ASCII format before they can be transfe"rred. Binary files (Le.,
programs) must be transferred as HEX files, using the program HEXDUMP.COM.

PLEASE NOTE THE FOLLOWING:

1) Connect the SuperBrain II 'MAIN' port to the console input of the host computer. Make
certain that the ·host computer and the SuperBrain are sending and receiving data in a
compatible fashion (Le., baud rate, character length, et.al.).

2) The largest file that can be transferred by PIP is 25K. If files are larger than 25K, they
must be broken down into smaller segments of 25K or less.

3) Binary files (or .COM files) cannot be transferred via the serial ports using PIP. The DOS
Diskette supplied with your SuperBrain II includes two facilities for binary file transfer.
See TX/RX and HEXDUMP for more information.

4) The Clear-to-Send (CTS - Pin 5) line on the 'MAIN' port must be high (logical '1') before the
SuperBrain II will send data through this port. Insure that these signals are properly
connected between SuperBrain II and the host computer.

5) The 'MAIN' port is arranged so that the SuperBrain II appears as a processor rather than
a terminal. If it is to be used as a terminal, pins 2 and 3 in the RS-232-C cable must be
interchanged.

The following represents a sample file transfer session. Please note that bold characters are
those typed by the operator, and the symbol '(cr)' means the 'RETURN' key.

A. Transfer an ASCII file from SuperBrain II to host computer:

(File name is ABC.FIL)

A)PIP OUT: = ABC.FIL (cr)
ECHO (YIN) Y

6831010 4-1

SuperBrain II
Users Manual
Miscellaneous Operational Information

NOTE - The SuperBrain II will now perform as a terminal for the host computer. If you wish, you
may transmit a line of text to the host computer before the file ABC.FIL is actually transferred.
Anything typed at the console will be sent to the host computer. To initiate the file transfer, type
Control-B.

Control-B (Hold down the CTRL Key, then 'B')

The file will be transferred, and should be displayed on the screen. Upon completion, PIP will exit
and return to the operating system. When finished, it is necessary to signal end-of-file for the host
computer. This is best done by using the EOF: facility of PIP:

A) PIP OUT: = EOF:<cr)
ECHO (Y/N) Y
+
CTRL B (Hold down the CTRL key, then 'B')

NOTE - The EOF presumes that the target machine uses a hex 1 A (CTRL-Z) to indicate end of .
file.

The file transfer is now complete.

B. Transfer an ASCII file to the SuperBrain II from the host computer:

(File name is ABC.FIL)

A) PIP ABC.PRN = INP:<cr)
ECHO (Y/N) Y

The SuperB rain II is now ready to receive input from the host computer. Any further console entry
at the SuperBrain II will be sent to the host computer. If the 'host computer does not send an end
of-file character, it will be necessary for you to place one into the file. This is done with the
following command:

Control Z (Hold down the CTRL key, then 'Z')
End of File, Control Z? (The computer asks for confirmation)
Control Z (Hold down the CTRL key, then "Z')

C. Transfer a Binary (or COM) file.

PIP does not permit binary files to be transferred via the serial port. Two system utilities,
HEXDUMP and TX/RX, are provided to facilitate this. HEXDUMP will convert a binary file into a
HEX format, and transmit out the 'MAIN' port. If HEXDUMP is used, the receiving unit must use
PIP to accept the input from the sending unit. After the file transfer, the file can be converted back
into a binary file using the DDT system program or the LOAD system program.

SYNCHRONOUS COMMUNICATION

You r computer system is factory configu red to prog ram the Universal
Synchronous/Asynchronous Receiver/Transmitter (USART) to operate in the asynchronous
mode. It is possible, however, to change this and permit the synchronous communication mode.
You will be responsible for writing the software drivers that send and receive synchronous data
through to the MAIN port at the rear of your terminal. This section will

4-2 6831010

SuperBrain II
Users Manual

Miscellaneous Operational Information

instruct you to properly program the USART which is the interface between the CPU and the main
port of your computer.

Before proceeding, it would be helpful to read the specifications sheets for the 8251-type USART.
On these sheets you are given the control words to reprogram the USART to enable synchronous
communication. It is important that the timing dipswitch, located on the processor board, be
properly set. This is necessary to coordinate the clock pulses between the two terminals
communicating in the synchronous mode.

The SuperBrain II computer system stores the command byte for the 8251 USART in memory. To
use a different type of communication, several steps are necessary. The USART command word
must be changed in order to change the USART's operating mode. The operating system must
also be prevented from resetting the USART during an interrupt cycle.

SuperBrain II Serial Communications DIPSWITCH

The serial communication DIP switch is located on the Keyboard/CPU printed circuit board inside
the cabinet. It is accessed by removing the four screws from the bottom of the base that holds the
cover in place. Next, make sure that the disk drive doors are closed, then lift off the cover. This
will expose the Keyboard/CPU Module. The Dip switch is a five position switch on the top edge of
the Keyboard/CPU Module. It is the only user settable switch on this module.

NOTE: When completing the procedures above, you may encounter a warranty certification seal.
The seal will be positioned over one of the four bottom cover screws and clearly displays the
warning, WARRANTY IS VOID IF LABEL REMOVED. This seal should not be removed if you intend
to participate in any of Intertec's Satisfaction Assurance programs. Once this seal has been
removed, the unit no longer qualifies for participation within these programs. For additional
information concerning Intertec's Satisfaction Assurance programs, contact Intertec's Customer
Services Department.

For the normal mode (*asynchronous communication mode), these switches should be set as
follows:

1 - OFF, 2 - OFF, 3 - ON, 4 - ON, 5 - OFF

For the synchronous communication mode with another unit providing the transmitter and
receiver clock, the switches should be set as follows:

1 - ON, 2 - ON, 3 - OFF, 4 - OFF, 5 - OFF

Listed below is a brief description of the function of each of these switches:

1 - External Clock to transmitter section of MAIN USART - originates from PIN #15 on
MAIN RS232 connector at rear of terminal.

2- External Clock to receiver section of MAIN USART - originates from PIN #17 on
MAl N RS232 connector at rear of terminal.

3- Internal TX Clock to MAIN USART - When on, this switch enables the built-in baud
rate generator (Western Digital BR-1941).

NOTE: When this switch is in the 'ON' position, switch 1 MUST be in the 'OFF'
position.

"THE SWITCHES WERE SET FOR THE ASYNCHRONOUS COMMUNICATION MODE BEFORE SHIPPING FROM THE FACTORY.

6831010 4-3

SuperB rain II
Users Manual
Miscellaneous Operational Information

4- Internal RX Clock to MAIN USART - When this switch is in the 'ON' position, switch
2 MUST be in the 'OFF' position.

5- Internal Baud Clock to MAIN Port - This switch enables the transmission of the
internal baud rate clock (Western Digital BR-1941) to the mainRS232 port - this
signal will also appear on PIN #24 of the main port when this switch isin the 'ON'
position. If this switch is not used; it should be left in the 'OFF' position to avoid any
possible conflict with external RS232 signals.

4-4 6831010

8251 A/S2657
PROGRAMMABLE COMMUNICATION INTERFACE

• Synchronous and Asynchronous
Operation

• Synchronous 5·8 Bit Characters;
Internal or External Character Synchro·
nizatlon; Automatic Sync Insertion

• Asynchronous 5·8 Bit Characters;
Clock Rate-1, 16 or 64 Times Baud
Rate; Break Character Generation; 1,
11f2, or 2 Stop Bits; False Start Bit
Detection; Automatic Break Detect
and Handling

• Synchronous Baud Rate - DC to 64K
Baud

• Asynchronous Baud Rate - DC to
19.2K Baud

• Full Duplex, Double Buffered, Trans
mitter and Receiver

• Error Detection - Parity, Overrun and
Framing

• Fully Compatible with 8080/8085 CPU

• 28·Pln DIP Package

• All Inputs and Outputs are TTL
Compatible

• Single + 5V Supply

• Single TTL Clock
The Intell!> 8251A is the enhanced version of the Industry standard, Intel'" 8251 Universal Synchronous/Asynchronous
ReceiverlTransmltter (USARn, designed for data communications with Intel's new high performance family of
microprocessors such as the 8085. The 8251A Is used as a peripheral device and Is programmed by the CPU to operate
using virtually any' serial data transmission technique presently in use (Including IBM "bi-sync"). The USART accepts
data characters from the CPU In parallel format and then converts them Into a continuous serial data stream for
transmission. Simultaneously, it can receive serial data streams and convert them Into parallel data characters for the
CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has
received a character for the CPU. The CPU can read the complete status of the USART at any time. These Include data
transmission errors and control signals such as SYNDET, TxEMPTY. The chip is constructed using N·channel silicon
gate technology.

0, 0,

OJ Dr.

R.O V"
Gf.iO R.C

0, DTR

0, ATs
0, 0sR
OJ AES[T

hl elK
i'- T.O

cs T.EMPTV
RECEIVE

R.D BUFFER e 6 ill
IS 'PI iiO SYNDET/BD

.A.ROY hADY

R.ROV

RECEIVE ihc INTERNAL CONTROL
OATA BUS SYNDn

Figure 1. Block Diagram Figure 2. Pin Configuration

8-43

6831010 4-5

8251A/S2657

FEATURES AND ENHANCEMENTS
8251A is an advanced design of the industry stan
dard USART, the Intel® 8251. The 8251A oper
ates with an extended range of Intel micropro
cessors that includes the new 8085 CPU and main
tains compatibility with the 8251. Familiarization
time is minimal because of compatibility and
involves only knowing the additional features and
enhancements, and reviewing the AC and DC speci
fications of the 8251A.

The 8251A incorporates all the key features of
the 8251 and has the following additional features
and enhancements:

4-6

• 8251A has double-buffered data paths with
separate I/O registers for control, status,
Data In, and Data Out, which considerably
simplifies control programming and mini
mizes CPU overhead.

• In asynchronous operations, the Receiver
detects and handles "break" automatically,
relieving the CPU of this task.

• A refined Rx initialization prevents the
Receiver from starting when in "break"
state, preventing unwanted interrupts from
a disconnected USART.

• At the conclusion of a transmission, TxD
line will always return to the marking' state
unless SBRK is programmed.

8-44

• Tx Enable logic enhancement prevents ~
Tx Disable command from halting trans
mission until all data previously written has
been transmitted. The logic also prevents
the transmitter from turning off in the middle
ofa word.

• When External Sync Detect is programmed,
Internal Sync Detect is disabled, and an Ex
ternal Sync Dfi!tect status is provided via a
flip-flop which clears itself upon a status read.

• Possibility of false sync detect is .minimized
by ensuring that if double character sync is
programmed, the characters be contiguously
detected and also by clearing the Rx register
to all ones whenever Enter Hunt command is
issued in Sync mode.

• As long as the 8251A is not selected, the
RD and WR do not affect the internal opera
tion of the device.

• The 8251A Status can be read at any time
but the status update will be inhibited during
status read.

• The 8251A is free from extraneous glitches
and has enhanced AC and DC characteristics,
providing higher speed and better operating
margins.

• Synchronous Baud rate from DC to 64K.

• Fully compatible with Intel's new industry
standard, the MCS-85.

AFIHl'573B

6831010

8251A/S2657

FUNCTIONAL DESCRIPTION

General

The 8251 A is a Universal Synchronous/Asynchronous Re·
ceiverlTransmitter designed specifically for the 80/85 Micro
computer Systems. Like other I/O devices in a Microcom·
puter System, its functional configuration is programmed
by the system's software for maximum flexibility. The
8251 A can support virtually any serial data technique cur·
rently in use (including IBM "bi·sync").

In a communication environment an interface device must
convert parallel format system data into serial format for
transmission and convert incoming serial format data into
parallel system data for reception. The interface device must
alsci delete or insert bits or characters that are functionally
unique to the communication techniq[Je. In essence, the
interface should appear "transparent" to the CPU. a simple
input or output of byte·oriented system data.

Data Bus Buffer

This 3·state, bidirectional, 8·bit buffer is used to interface
the 8251 A to the system Data Bus. Data is transmitted or
received by the buffer upon execution of INput or OUTput
instructions of the CPU. Control words, Command words
and Status information are also transferred through the
Data 8us Buffer. The command status and data in, and
data out are separate 8-bit registers to provide double
buffering.

This functional block accepts inputs from the system Con·
trol bus and generates control signals for overall device
operation. It contains the Control Word Register and Com·
mand Word Register .that store the various control formats
for the device functional definition.

RESET (Reset)
A "high" on this input forces the 8251 A into an "Idle"
mode. The device will remain at "Idle" until a new set of
control words is written into the 8251A to program its
functional definition. Minimum RESET pulse width is
6 tCY (clock must be running).

ClK (Clock)

The CLK input is used to generate internal device timing
and is normally connected to the Phase 2 (TTL) output of
the 8224 Clock Generator. No external inputs or outputs
are referenced to CLK but the frequency of CLK must be
greater than 30 times the Receiver or Transmitter data
bit rates.

WR (Write)
A "low" on this input informs the 8251A that the CPU is
writing data or control words to the 8251A.

RD (Read)
A "low" on this input informs the 8251A that the CPU is
reading data or status information from the 8251A.

6831010

8-45

C/O (Control/Data)
This input, in conjunction with the WR and RD inputs.
informs the 8251A that the word on the Data Bus is either
a data character, control word or status information.
1 = CONTROL/STATUS 0 = DATA

CS (Chip Select)
A "low" on this input selects the 8251A. No reading or
writing will occur unless the device is selected. When CS is
high, the Data Bus in the float state and In) and WFi will
have no effect on the chip.

,
CS ___ J

ffi
ATs

/'
INTERNAL
DATA BUS

ToO

T.RDY

T"EMPTV

~

R.O

R.RDY

RECEIVE R.C
CONTROL

_ SYNDETI
BRKOET

Figure 3. 8251A Block Diagram Showing Data
Bus Buffer and Read/Write logic
Functions

CID RD WR CS

0 0 t 0 B25tA DATA - DATA BUS
0 , 0 0 DATA BUS - B251A DATA

a I 0 STATUS - DATA BUS
0 0 DATA BUS - CONTROL

X 0 DATA BUS - 3·STATE
X X X DATA BUS- 3·STATE

Modem Control
The 8251A has a set of control inputs and outputs that can
be used to simplify the interface to almost any Modem. The
Modem control signals are general purpose in nature and
can be used for functions other than Modem control. if
necessary.

AFN·O'5738

4-7

4-8

8251A/S2657

DSR (Data Set Ready)
The DSR input signal is a general purpose, l-bit inverting
input port. Its condition can be tested by the CPU using a
Status Read operation. The ~ input is normally used to
test Modem conditions such as Data Set Ready.

DTR (Data Terminal Ready)
The D'ni output signal is a general purpose, l-bit inverting
output port. It can be set "law" by programming the ap
propriate bit in the Command Instruction word. The DTR
output signal is normally used for Modem control such as
Data Terminal Ready or Rate Select.

RTS(Request to Send)
The RTS output signal is a general purpose, l·bit inverting
output port. It can be set "low" by programming the ap
propriate bit in the Command Instruction word. The rn
output signal is normally used for Modem control such as
Request to Send.

CTS (Clear to Send)

A "low" on this input enables the 8251 A to transmit
serial data if the Tx Enable bit in the Command byte is
set to a "one." If &ither a Tx Enable off or CTS off condi
tion occurs while the Tx is in operation, the Tx will
transmit all the data in the USART, written prior to Tx
Disable command before shutting dow", On the 8251 A/
S2657 if CTS off or Tx Enable off conortion occurs before
the last character written appears in the serial bit stream,
that character will be transmitted again upon CTS on or Tx
Enable on condition.

Transmitter Buffer
The Transmitter Buffer accepts parallel data from the Data
Bus Buffer, converts it to a serial bit stream, inserts the
appropriate characters or bits (based on the communica
tion technique) and outputs a composite serial stream of
data on the TxD output pin on the falling edge of TxC.
The transmitter will begin transmission upon being enabled
if CTS = O. The TxD line will be held in the marking
state immediately upon a master Reset or when Tx Enable/
CTS off or TxEMPTY.

Transmitter Control
The transmitter Control manages all activities associated
with the transmission of serial data. I t accepts and issues
signals both externally and internally to accomplish this
function.

TxRDY (Transmitter Re~dy)
This output signals the CPU that the transmitter is ready to
accept a data character. The TxRDY output pin can be
used as an interrupt to the system, si nee it is masked by
Tx Disabled, or, for Polled operation, the CPU can check
TxRDY using a Status Read operation. TxRDY is auto
matically reset by the leading edge of WR when a data
character is loaded from the CPU.

Note that when using the Polled operation, the TxRDY
status bit is not masked by Tx Enabled, but will only
indicate the Empty/Full Status of the Tx Data Input
Register.

8-46

TxE (Transmitter Empty)
When the 8251A has no characters to transmit, the TxEMP
TY output will go "high". It resets automatically upon re
ceiving a character from the CPU if the transmitter is
enabled, TxEMPTY can be used to indicate the end of a
transmission mode, so that the CPU "knows" when to "turn
the line around" in the half-duplexed operational made.

In SYNChronous mode, a "high" an this output indicates
that a character has nat been loaded and the SYNC charac
ter or characters are about to be or are being transmitted
automatically as "fillers". TxEMPTY does nat go law
when the SYNC characters are being shifted out.

m
;rn

/
INTERNAL
OATA BUS

RECEIVE
BUFFER

IS ·P)

r.o

TxROV

hEMPTV

r.1:

_SYNDETI
BRKDET

Figure 4. 8251A Block Diagram Showing Modem
and Transmitter Buffer and Control
Functions

TxC (Transmitter Clock)
Th~ Transmitter Clock controls the rate at which the char·
acter is to be transmitted. In the Synchronous transmission
mode, the Baud Rate (lx) is equal to the TxC frequency.
In Asynchronous transmission mode the baud rate is a
fraction of the actual TxC frequency. A portion of the
mode instruction selects this factor; it can be 1, 1/16 or
1/64 the TxC.

For Example:

If Baud Rate equals 110 Baud,
~ equals 110 Hz (lx)
TxC equals 1.76 kHz (16x)
TxC equals 7.04 kHz (64x).

The falling edge of TXC shifts the serial data out of the
8251A.

6831010

8251A/S2657

Receiver Buffer

The Receiver accepts serial data, converts this serial input
to parallel format, checks for bits or characters that are
unique to the communication technique and sends an
"assembled" character to the CPU. Serial data is input to
RxD pin, and is clocked in on the rising edge of RxC.

Receiver Control

This functional block manages all receiver·related activities
which consist of the following features:

The RxD initialization circuit prevents the 8251A from
mistaking an unused input line for an active low data
line in the "break condition". Before starting to receive
serial characters on the RxD line, a valid "1" must first
be detected after a chip master Reset. Once this has been
determined, a search for a valid low (Start bit) is en
abled. This feature is only active in the asynchronous
mode, and is only done once for each master Reset.

The False Start bit detection circuit prevents false starts
due to a transient noise spike by first detecting the fall·
ing edge and then strobing the [lominal center of the
Start bit (RxD = low).

The Parity Toggle F/F and Parity Error F/F circuits are
used for parity error detection and set the corresponding
status bit.

The Framing Error Flag F/F is set if the Stop bit is
absent at the end of the data byte (asynchronous mode).
and also siltS the corresponding status bit.

RxRDY (Receiver Ready)
This output indicates that the 8251A contains a character
that is ready to be input to the CPU. Rx RDY can be con·
nected to the interrupt structure of the CPU or, for Polled
operation, the CPU can check the condition of RxRDY
using a Status Read operation.

Rx Enable off both masks and holds RxRDY in the Reset
Condition. For Asynchronous mode, to set RxRDY, the
Receiver must be Enabled to sense a Start Bit and a com
plete character must be assembled and transferred to the
Data Output Register. For Synchronous mode, to set
RxRDY, the Receiver must be enabled and a character
must finish assembly and be transferred to the Data Output
Register.

Failure to read the received character from the Rx Data
Output Register prior to the assembly of the next Rx Data
character will set overrun condition error and the previous
character will be written over and lost. If the Rx Data is
being read by the CPU when the internal transfer is occur·
ring. overrun error will be set and the old character will be
lost.

RxC (Receiver Clock)
The Receiver Clock controls the rate at which the character
is to be received. In Synchronous Mode, the Baud Rate (1x)
is equal to the actual frequency of AXe. In Asynchronous
Mode, the Baud Rate is a fraction of the actual RxC fre·

6831010

8-47

quency. A portion of the mode instruction selects this
factor; 1, 1/16 or 1/64 the RxC.
For Example:

Baud Rate equals 300 Baud, if
RxC equals 300 Hz (1x)
RxC equals 4800 Hz (16x)
RxC equals 19.2 kHz (64x).

Baud Rate equals 2400 Baud, if
RxC equals 2400 Hz (1 x)
RxC equals 38.4 kHz (16x)
RxC equals 153.6 kHz (64x).

Data is sampled into the 8251A on the rising edge of RxC.

NOTE: In most communications systems, the 8251A will
be handling both the transmission and reception operations
of a single link. Consequently, the Receive and Transmit
Baud Rates will be the same. Both' TxC and I1XC' will reo
quire identical frequencies for this operation and can be
tied together and connected to a single frequency source
(Baud Rate Generator) to simplify the interface.

SYNDET (SYNC Detect)/BRKDET (Break Detect)
This pin is used in SYNChronous Mode for SYNDET and
may be used as either input or output, programmable
through the Control Word. It is reset to output mode low
upon RESET. When used as an output (internal Sync mode),
the SYNDET pin will go "high" to indicate that the 8251A
has located the SYNC character in the Receive mode. If the
8251 A is programmed to use double Sync characters (bi
sync). then SYNDET will go "high" in the middle of the
last bit of the second Sync character. SYNDET is auto·
matically reset upon a Status Read operation.

INTERNAl
DATA BUS

ho

R.o

_ SYNDETI
BRKOET

Figure 5. 8251A Block Diagram Showing
Receiver Buffer and Control Functions

AFN-Ol573B

4-9

inter 8251A/S2857

When used as an input (external SYNC detect mode), a
positive going signal will cause the 8251A to start assem
bling data characters on the rising edge of the next RXc.
Once in SYNC, the "high" input signal can be removed.
When External SYNC Detect is programmed, the Internal
SYNC Detect is disabled.

BREAK DETECT (Async Mode Only)
This output will go high whenever the receiver rem .. lns low
through two consecutive stop bit sequences (including the
start bits, data bits, and parity bits). Break Detect may also
be read as a Status bit. It is reset only upon a master chip
Reset or Rx Data returning to a "one" state.

NOTE: On the 8251A/S2657, if the RxData returns to a
"one'" state during the last bit of the next character after
the break, break detect will latch-up, and the device must
be cleared by a Chip Reset.

\ ADDRESS BUS

Ao

CONTROL BUS.

I/O R I~O W RESET ". ITlll
DATA BUS

'" " I

?
ellS cr 0 7-00 AD ViIi RESET eLK

8251A

Figure 6. 8251A Interface to 8080 Standard
System Bus

DETAILED OPERATION DESCRIPTION

General

.. ~

The complete functional definition of the 8251 A is pro
grammed by the system's software. A set of control words
must be sent out by the CPU to initialize the 8251A to
support the ·desired communications format. These control
words will program the: BAUD RATE, CHARACTER
LENGTH, NUMBER OF STOP BITS, SYNCHRONOUS or
ASYNCHRONOUS OPERATION, EVEN/ODD/OFF PAR
ITY, etc. In the Synchronous Mode, options are also pro
vided to select either internal or external character synchro
nization.

Onc'! programmed, the 8251A is ready to perform its com
munication functions. The TxRDY output is raised "high"
to signal the CPU that the 8251A is ready to receive a data
character from the CPU. This output (TxRDY) is reset
automatically when the CPU writes a character into the
8251A. On the other hand, the B251A receives serial data
from the MODEM or I/O device. Upon receiving an entire
character, the RxRDY output is raised "high" to signal the
CPU that the 8251A has a complete character ready for the
CPU to fetch. RxRDY is reset automatically upon the CPU
data read operation.

4-10

8-48

The 8251A cannot begin transmission until the Tx Enable
(Transmitter Enable) bit is set in the Command Instruction
and it has received a Clear To Send (CTS) input. The TxD
output will be held in the marking state upon Reset.

Programming the 8251A
Prior to starting data transmission or reception, the 8251 A
myst be loaded with a set of control words generated by
the CPU. These control signals define the complete func·
tional definition of the 8251A and must immediately fol·
Iowa Reset operation (internal or external).

The control words are split into two formats:

1. Mode Instruction
2. Command Instruction

Mode Instruction
This format defines the general operational characteristics
of the 8251A. It must follow a Reset operation (internal or
external). Once the Mode Instruction has been written into
the 8251A by the CPU, SYNC characters or Command In·
structions may be inserted.

Command Instruction
ThiS lurmat defines a status Nord that is used to control the
actual operation of the 8251 A.

80th the Mode and Command Instructions must conform
to a specified sequence for proper device operation. The
Mode Instruction must be inserted immediately following a
Reset operation, prior to using the 8251A for data com·
munication.

All control words written into the 8251A after the Mode In·
struction will load the Command Instruction. Command
Instructions can be written into the 8251A at any time in
the data block during the operation of the 8251A. To re
turn to the Mode Instruction format, the master Reset bit
iii the Command Instruction word can be set to initiate an
internal Reset operation which automatically places the
8251A back into the Mode Instruction format. Command
Instructions must follow the Mode Instructions or Sync
characters.

ctD· ,

CID·l

C/D- ,

tID· ,

tlD·O

C/O. ,

T

MODE INSTRUCTION

SYNC CHARACTER 1

SYNC CHARACTER 2

COMMAND INSTRUCTION

DATA

COMMAND INSTRUCTION

DATA

COMMAND INSTRUCTION

}
SYNC MODE

ONLY·

• ThI.and SYNC ~ is .i~ if MODE instruction
h. PfOPImIMd thl82S1A to lingft ch.rllCtW In-.mll SYNC
Mode. BottI SYNC ch.lCteft .. *ipped it MODE instructiOft
h. progrImlMd the 8251A to ASVNC modi.

Figure 7. Typical Data Block

AFN-O,57311

6831010

8251A/S2657

Mode Instruction Definition

The 8251A can be used for either Asynchronous or Syn·
chronous data communication. To understand how the
Mode I nstruction defines the functional operation of the
8251 A. the designer can best view the device as two sepa·
rate components sharing the same package. one Asynchro·
nous the other Synchronous. The format definition can be
changed only after a master chip Reset. For explanation
purposes the two formats will be isolated.

NOTE: When parity is enabled it is not considered as one of
the data bits for the purpose of programming the word
length. The actual parity bit received on the Rx Data line
cannot be read on the Data Bus. In the case of a pro·
grammed character length of less than 8 bits, the least
significant Data Bus bits will hold the data; unused bits are
"don't care" when writing data to the 8251 A, and will be
"zeros" when reading the data from the 8251A.

Asynchronous Mode (TranlM11lsslon)

Whenever a data character is sent by the CPU the 8251A
automatically adds a Start bit (low level) followed by the
data bits (least significant bit first). and the programmed
number of Stop bits to each character. Also, an even or
odd Parity bit is inserted prior to the Stop bit(s). as de·
fined by the Mode Instruction. The character is then trans·
mitted as a serial data stream on the TxD output. The serial
data is shifted out on the falling edge of TxC at a rate equal
to 1.1/16, or 1/64 that of the TxC. as defined by the Mode
Instruction. BREAK characters can be continuously sent to
the TxD if commanded to do so.

When no data characters have been loaded into the 8251A
the TxD output remains "high" (marking) unless a Break
(continuously low) has been programmed.

Asynchronous Mode (Receive)

The RxD line is normally high. A falling edge on this line
triggers the beginning of a START bit. The validity of this
ST ART bit is checked by again strobing this bit at its nom·
inal center (16X or 64X mode only). If a low is detected
again, it is a valid START bit, and the bit counter will
start counting. The bit counter thus locates the center of
the data bits, the parity bit (if it exists) and the stop bits.
If parity error occurs, the parity error flag is set. Data and
parity bits are sampled on the RxD pin with the rising edge
of RxC. If a low level is detected as the STOP bit, the
Framing Error flag will be set. The STOP bit signals the end
of a character. Note that the receiver requires only one stop
bit. regardless of the number of stop bits programmed. This
character is then loaded into the parallel I/O buffer of the
8251 A. The RxRDY pin is raised to signal the CPU that a
character is ready to be fetched. If a previous character has
not been fetched by the CPU. the present character replaces
it in the I/O buffer, and the OVERRUN Error flag is raised
(thus the previous character is lost). All of the error flags
can be reset by an Error Reset Instruction. The occurrence
of any of these errors will not affect the operation of the
8251A.

6831010

8-49

I $, I $, I £P I PEN I L, I L, I ., I ··1

~
BAUD RAn FACTOR

0 1 0 1

0 0 1 1

SYNC mq 115XI 164)(1 MODE

CHARACTER LENGTH

0 1 0 1

0 0 1 1

• • 7 • BITS BITS BITS BITS

PARITV ENABLE
,. ENABLE O· DISABLE

EVEN PARITY GENERATION/CHE
,- EVEN O· ODD

NUMBER Of SlOP BITS

0 1 0 1

0 0 1 ,
INVALID

, 1Y, 2
B,T BITS BITS

(ONl Y EFFECTS Til; R. NEVER
AEOUIRES MORE THAN ONE
$TOP BIT)

Figure 8. Mode Instruction Format,
Asynchronous Mode

GENERATEO
0001-.--0" 8'1 8251A

CK

STOn
arrs L

RECEIVER INPUT

DOES NOT APPEAR
000'----0. ON THE cATA BUS

t t t

PROGRAMMED
CHARACTER

LENGTH

$16;1
BrTS L

TRANSMISSION FORMAT

CPU BYTE 15·8 BITS/CHARI

OAT A C~A:RACTER
1.-__ -;1 f-. ----'

ASSEMBLED SERIAL OATA OUTPUT IT.O}

SToD ~ __ ~~ __ OA_T_A..,C"~A"_A_C_TE_R __ ~ __ ~~~~BITS

RECEIVE FORMAT

SERIA.L OATA INPUT IR.OI

SToD
81TS

/--_-'-_-1...--1
DATA CHARACTER

CPU BYTE 15 B BITS/CHAR'"

"NOTE IF CHARACTER LENGTH IS DEFINE.D AS 5.11 OR 7
BITS THE UNUSED BITS ARE SET TO "ZERO"

Figure 9. Asynchronous Mode

AFN-01573B

4-11

intJ 8251A/S2657

Synchronous Mode (Transmission)

The TxD output is continuously high until the CPU sends
its first character to the 8251A which usually is a SYNC
character. When the CTS line goes low, the first character
is serially transmitted out. All characters are shifted out on
the falling edge of TxC. Data is shifted out at the same
rate as the TxC.

Once transmission has started, the data stream at the TxD
output must continue at the TxC rate. If the CPU does not
provide the 8251 A with a data character before the 8251 A
Transmitter Buffers become empty, the SYNC characters
(or character if in single SYNC character mode) will be
automatically inserted in the TxD data stream. In this case,
the TxEMPTY pin is raised high to signal that the 8251 A is
empty and SYNC characters are being sent out. TxEMPTY
does not go low when the SYNC is being shifted out (see
figure below). The TxEMPTY pin is internally reset by a
data character being written into the 8251 A.

AUTOMATICALLY INSEATED BV USAAT

/ \
T.O I DATA I DATA I SYNC 1 I SYNC 21 DATA 1-- - --

/ \'
\\\\\\\ FALLS UPON CPU WRITING A

r.EMPTY . ,"-~ _____ I CHARACTER TO THE USART

-~'" NOMINAL CENTER OF LAST BIT

Synchronous Mode (Receive)
In this mode, character synchronization can be internally
or externally achieved. If the SYNC mode has been pro·
grammed, ENTER HUNT command should be included in
the first command instruction word written. Data on the
RxD pin is then sampled in on the rising edge of RX'C. The
content of the Rx buffer is compared at every bit boundary
with the first SYNC character until a match occurs. If the
8251A has been programmed for two SYNC characters, the
subsequent received character is also compared; when both
SYNC characters have been detected, the USART ends the
HUNT mode and is in character synchronization. The
SYNDET pin is then set high, and is reset automatically by
a STATUS READ. If parity is programmed, SYNDET
will not be'set until the middle of the parity bit instead of
the middle of the last data bit.

In the external SYNC mode, synchronization is achieved by
applying a high level on the SYNDET pin, thus forcing the
8251A out of the HUNT mode. The high level can be
removed after one RxC cycle. An ENTER HUNT command
has no effect in the asynchronous mode of operation.

Parity error and overrun error are both checked in the same
way as in the Asynchronous Rx mode. Parity is checked
when not in Hunt, regardless of whether the Receiver is
enabled or not.

The CPU can command the receiver to enter the HUNT
mode if synchronization is lost. This will also set all the
used character bits in the buffer to a "one", thus prevent·
ing a possible false SYNDET caused by data that happens
to be in the Rx Buffer at ENTER HUNT time. Note that

4-12

8-50

the SYNDET F/F is reset at each Status Read, regardless ot
whether internal or external SYNC has been programmed.
This does not cause the 8251A to return to the HUNT
mode. When in SYNC mode, but not in HUNT, Sync Detec·
tion is still functional, but only occurs at the "known"
word boundaries. Thus, if one Status Read indicates SYN·
DET and a second Status Read also indicates SYNDET,
then the programmed SYNDET characters have been re
ceived since the previous Status Read. (If double character
sync has been programmed, then both sync characters have
been contiguously received to gate a SYNDET indication.)
When external SYNDET mode is selected, internal Sync
Detect is disabled, and the SYNDET F IF may be set at
any bit boundary.

D, D. Ds D, D, D, D, D,

II scs I ESD I EP I PEN I L, I L, I a I a I

I L_ CHARACTER LENGTH

0 1 0 1

0 0 1 I

S • 7 8
BITS BITS BITS BITS

PARITY ENABLE
11 .. ENABLE I
(0 .. DISABLE)

EVEN PARITY GENERATION/CHECK
1 .. EVEN
0-000

EXTERNAl. SYNC DETECT
1 • SVNCET IS AN INPUT
0" SYAJDET IS AN OUTPUT

SINGLE CHARACTER SYNC
1 .. SINGLE SYNC CHARACTER
o • DOUBLE SYNC CHARACTER

NOTE: IN EXTERNAL SYNC MODE, PROGRAMMING DOUBLE CHARACTER
SYNC WILL AFFECT ONLY THE Tx.

Figure 10. Mode Instruction Format,
Synchronous Mode

CPU BYTES [5-8 SITS/CHAF\I

,-----;1 0-1 ----,

DATA CHARACTERS

'------<" ----'
ASSEMBLED SERIAL DATA OUTPUT ITlIO)

SYNC I
CHAR 1 •

SYNC
CHAR 2 DAT A CHA,~: AC_T_E_RS __ -,

RECEIVE FORMAT

SYNC
CHAR 1

SERIAL DATA INPuT {RlID)

SYNC I DATA CHA"~CTERS CHAR 2 ; ____ -'

CPU BYTES (5-8 BITS/CHAR)

DATA CH;~ACTERS

Figure 11. Data Format, Synchronous Mode

AFN..o1573B

6831010

8251 A/S2657

COMMAND INSTRUCTION DEFINITION
Once the functional definition of the 8251A has been pro·
grammed by the Mode Instruction and the Sync Characters
are loaded (if in Sync Mode) then the device is ready to be
used for data communication. The Command Instruction
controls the actual operation of the selected format. Func·
tions such as: Enable Transmit/Receive, Error Reset and
Modem Controls are provided by the Command Instruction.

Once the Mode Instruction has been written into the 8251A
and Sync characters inserted, if nec.essarY, then all further

"control writes" (C/D = 1) will load a Command Instruc
tion. A Reset Operation (internal or external) will return
the 8251 A to the Mode Instruction format.

0, 0, 0, 0. 0, 0, 0, 0,

II EH I'R I RTS I EA ISBAKI RJtE I OTR IllENI 4 TRANSMIT ENABLE I 1 • ...,abl_

a· dISable

y OATA TERMINAL

I READY

I
"high" Will force OTR
output to zero

L _I RECEIVE ENABLE I 1 • enable-I O· d.",ble

J SEND BREAK

~ CHARACTER l' 2 10reH T"O "low"
o • normal operation

.1 ERROR RESET I -I' ",ewt.,ror II.
PE. OE. FE

_I ~EaUEST TO SE~ I I . high" Will 10ft. RTS
output 10 nro

J INTERNAL RESET

1
"h,gh" ,rTurn1 S251A 10 I Mod, Ir'lllruc;t,on Form.1

I E.rER HUNT MOOE· I -I 1" .nabl ,c;h tor Sync
ChlrKU"

• (HAS NO EFFECT
IN ASVNC MODEl

Not.: Error Reset must be performed whenever RxEneble
and Enter Hunt are programmed.

Figure 12. Command Instruction Format

6831010

8-51

STATUS READ DEFINITION
In data commuflication systems it is oft~n necessary to
examine the "status" of the active device to ascertain if
errors have occurred or other conditions that require the
processor's attention. The 8251A has facilities that allow
the programmer to "read" the status of the device at any
time during the functional operation. (The status update is
inhibited during status read).

A normal "read" command is issued by the CPU with cio = 1
to accomplish this function.

Some of the bits in the Status Read Furmat have identical
meanings to external output pins so that the 8251A can be
used in a completely Polled environment or in an interrupt
driven environment. TxRDY is an exception.

Note that status update can have a maximum delay of 28
clock periods from the actual event affecting the status.

0, 0, 0, D. 0, 0, D, 0,

'I DSR I .• NOH I FE I OE I PE I T.EM'"'·I A.RD·I T.RO' I

I I I ;;;;;
SAME DEFINITIONS AS I/O PINS

PARITV ERROR
The PE fl-sJ i, Mt wtttn. parity
"ror il detKtld. II is rlMt by
the E R bit of the Commlnd
InUrut,ion. PE dOfl not inhibit
GPi,.lIon 01 the 8251 A.

OVERRUN ERROR
Ttl. DE fl.g II HI when the CPU
dot. 1'101 r.ad I Chll,.ct'f bllor.
the next on. bilcomes I.bl. - II" 'I'Mt by th' EA bit of the
Comm.nd Innructlon DE does
not .nhlblt 0"*"1101'1 olth' 8251A
however, the P"~lou"v ov,rrun
en,rICUr II'OSI

FRAMING ERROR ,Alync only)
The FE "eg u 1ft wtt.n • v.lld
Stop bit II 1'101 detected .1 Ih.
end 01 ev,ry ch.r.Cler 11 •• ,n.n
by th, E R bit of th' Comm,nd
Instrucllon. FE dOH not Inhlbtl

th' Ope"llon of Ihe 8251A.

DATA SET READY; Indle.tn I thll Itt. OSR .1 ttl UfO lfw.l.

Note I: TxRDY status bit has different meanings from the
TxRDV output pin: The former is not conditioned
by en and TxEN; the latter is conditioned bV both
ill and TxEN.

i.e. TxRDY ltatus bit = DB Buffer Empty

TxRDY pin out = DB Buffer Emptv ·ICTS=O)·
ITxEN=I)

Figure 13. Status Read Format

AFN-Q15738

4-13

inter 8251A/S2657

APPLICATIONS OF THE 8251A

ADDRESS BUS {

1
111 CONTROL BUS I

I

DATA BUS

UB~? I
I

r----' I
R.O I EIATOTTL I I ~
T.O

8251A ~ _CO~R~ J l . ~,~J
RiC :-1 J BAUD RATE I CRT r.c I GENERATOR TERMIHAL

Figure 14. Asynchronous Serlallntertace to CRT
Terminal, DC-9600 aaud

\ ADDRESS BUS

I

~I
CONTROL aus \
I

\ DATA BUS \

~~l{
R.O

T.O SYNCHRONOUS

IIil:
TERMINAL

B25'A L1 OR PERIPHERAL

r.c DEVICE

SYNDEr

Figure 15. Synchronouslntertace to Terminal or
Peripheral Device

4-14

8-52

\ ADORESS BUS

I
CONTROL BUS \

I J
\ DATA BUS

DB~
R.O -
T.O - -
OSA .- ASVNC

PHONE
LINE

j)"l'I\ >---- MODEM INTER-- FACE
1251A ffi 0-

RTS >----

t ;;;;c ~ BAUD

tiC
RATE

GENERATOR TELEPHONE
LINE

Figure 18. Asynchronou. Intertace to Telephone
Une.

ADDR~SS BUS

I
CONTROL IUS \

I I
DATA BUS \

DD~
R.D I--
T.D I-- +---

PHONE 82S1A
IIi1: 1- LINE

I-
fie l- INTER·

FACE
SYNDEr - SYNC -MODEM

Cis >-
Aft -
D!l\ - t DTA 0----

TELEPHONE
LINE

Figure 17. Synchronous Intertace to Telephone
Une.

AfN.{J1573B

6831010

8251A/S2657

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C to 70°C
Storage Temperatura•..... _65°C to +150°C
Voltage On Any Pin

With Respect to Ground•... -0.5V to +7V
Power Dissipation•................ 1 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera·
tion of the device at these or any other conditions above
those Indicated in the operational sections of this speclfi·
cation Is not Implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O"C to 70"C, Vee = s.ov ±S%, GND = 0V)

Symbol Parameter Min. Max. Unit Telt Condltlonl

VIL Input Low Voltage -o.s O.B V

VIH Input High Voltage 2.2 Vee V

VOL Output Low Voltage 0.45 V IOL = 2.2mA

VOH Output High Voltage 2.4 V IOH =-4001lA

IOFL Output Float Leakage ±10 /lA VOUT" Vce TO 0.4SV

IlL I nput Leakage ±10 p.A VIN = Vcc TO 0.45V

IcC Power Supply Current 100 mA All Outputs .. High

CAPACITANCE (TA = 2S·C, Vee = GND = OV)

Symbol Paremeter Min. Max. Unit Telt Condltlonl

CIN Input Capacitance 10 pF fc = lMHz

CliO I/O Capacitance 20 pF Unmeasured pins returned to GND

A.C. CHARACTERISTICS CTA = o·c to 70·C, Vee = s.ov ±S%, GND = OV)

Bus Parameters (Note 1)

READ CYCLE

Symbol Parameter Min. Max. Unit Telt Condltlonl

tAR Address Stable Before READ (CS, C/O) SO ns Note 2

tRA Address Hold Time for READ (CS, C/O) 50 ns Note 2

tRR READ Pulse Width 250 ns

tRO Data Delay from READ 250 ns 3, CL = 150pF

tOF READ to Data Floating 10 100 ns

8-53

6831010 4·15

intJ 8251A/S2657

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parametar Min. Max. Unit Test Condltlonl

tAW Address Stable Before WR ITE 50 ns

tWA Address Hold Time for WRITE 50 ns

tww WRITE Pulse Width 250 ns

tow Data Set Up Time for WR ITE 150 ns

two Data Hold Time for WRITE 50 ns

tRV Recovery Time Between WRITES 6 tcv Note 4

OTHER TIMINGS

Symbol Parameter Min. Max. Unit Test Conditions

tcv Clock Period 320 1350 ns Notes 5, 6

~ Clock High Pulse Width 140 tcv-90 ns

~ Clock Low Pulse Width 90 ns

tR, tF Clock Rise and Fall Time 20 ns

tOTx TxD Delay from Falling Edge of TxC 1 ps

fTx Transmitter Input Clock Frequency

lx Baud Rate DC 64 kHz
16x Baud Rate DC 310 kHz
64x Baud Rate DC 615 kHz

tTPW Transmitter Input Clock Pulse Width

lx Baud Rate 12 tcv
16x and 64x Baud Rate 1 tcv

tTi'D Transmitter Input Clock Pulse Delay

lx Baud Rate 15 tev
16x and 64x Baud Rate 3 tcv

fRx Receiver Input Clock Frequency

lx Baud Rate DC 64 kHz
16x Baud Rate DC 310 kHz
64x Baud Rate DC 615 kHz

tRPW Receiver Input Clock Pulse Width

1x Baud Rate 12 tev
16x and 64x Baud Rate 1 tev

tRPO Receiver Input Clock Pulse Delay

lx Baud Rate 15 tcv
16x and 64x Baud Rate 3 tev

tTxROV TxRDY Pin Delay from Center of last Bit 8 tev Note 7

tTxRov CLEAR TxRDY .j. from Leading Edge of WA 6 ' tcv Note 7

tRxRov RxRDY Pin Delay from Center of last Bit 24 tev Note 7

tRxRov CLEAR RxRDY .j. from Leading Edge of RD 6 tcv Note 7

tiS Internal SYNDET Delay from Rising
24 tev Note 7 Edge of RxC

tES External SYNDET Set· Up Time Before
16 tev Note 7

Falling Edge of Rl£
tTxEMPTV TxEMPTY Delay from Center of Last Bit 20 tev Note 7

twc Control Delay from Rising Edge of 8 tcv Note 7
WRITE (TxEn,DTR, RTS)

teR Control to READ Set-Up Time (DSR, CTS) 20 tev Note 7

8-54 AFN-01573B

4-16 6831010

intJ 8251A/S2657

A.C. CHARACTERISTICS (Continued)

NOTES:
1. AC timings measured VOH = 2.0. VOL = O.B. and with load circuit of Figure 1.
2. Chip Select (CS) and Command/Data (etD) are considered as Addresses.
3. Assumes thaI Address Is valid before Rol.
4. This recovery time is for Mode Initialization only. Write Data Is allowed only when TxRDY = 1. Recovery Time between Writes for

Asynchronous Mode Is BtCY and for Synchronous Mode is t6tCY.
5. The TxC and RxCfrequencles have the following limitations with respect to ClK: For Ix Baud Rata. fTx orfRx .. 1/(30 tCY); For 16x snd

64x Baud Rate. fTx or fRx .. 1/(4.5tCY)'
6. Reset Pulse Width = 6 tCY minimum; System Clock must be running during Reset.
7. Status update can have a maximum delay of 2B clock periods from the event affecting the status.

TYPICAL 4 OUTPUT DELAY VS. 4 CAPACITANCE (pF)

-20

-10 /
V

L "SPEC.

/
-10

o
/

-20
-100 -50 -50 -100

.l CAPACITA~CE IpFI

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

I~PUTIOUTPUT

"=X :c 2.0 2.D > TEST POINTS ~
"'5 0.' 0.'

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC' 1" AND 0 "SV FOR
A lOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A lOGIC '1
A~D 0 BV FOR A LOGIC 0

6831010

'2IIn

::S~ INtI'

125111. 1--+--0 OUT

8-55 AFNoOI573B

4-17

4-18

intJ 8251A/S2657

WAVEFORMS
SYSTEM CLOCK INPUT

CLOCK.

TRANSMITTER CLOCK AND DATA

TZn._11 _

Til:!lIbMOOll

--l 1-.... -1 I--
T.DATA ::::x >rr-------------,x::::

RECEIVER CLOCK AND DATA
If'_ UD COUNTEftlTARTS H(REt

".OATA DATA liT DATA alT

lIiC 11. MODEl

RiC 111 MODEl

tNTlAWLlNG
~LU ________ ~~----------------------J~---------------

WRITE DATA CYCLE (CPU - USART)

_
____ ~~~~~CA~.~E __ ~~~~~~--~OO~N~.T~CA~.~E-DATA IN co

CIII------,1

READ DATA CYCLE (CPU 4- USART)

R.RDY ___ -oJ

G-------~--11'-----'1

CIII _______ --"_+-____ +--Z... __

5------,1 '--_____ --J

8-56 ~1573B

6831010

8251A/S2657

WAVEFORMS (Continued)

WRITE CONTROL OR OUTPUT PORT CYCLE (CPU USART)
iffil,iill -------------------X'-----

INOTE'II r'--1I:-""'-=./-----
w., 'LJ

I-"DW-~""'D
DATA IN !O.B.I --------{j==t}-------

1- 'AW :--j A

Clo _______ --f "k

_______ ~I- 'AW ~jr""'~A~ ___ _
n ~L ____ ~Y

READ CONTROL OR INPUT PORT (CPU - USART)

DSR, CTs -----X
INOTE s2J ----~. r-------,-,-----------

1== "'R_'II Jl----- IRA --'1...-----
~i'------TI
jj 1- 'RD - I- toF

DATA OUT ----------~t====D----(D,B.)

-I'AR I-- - 'RAr--
~D _____ ~ ~

~ _______ ~~'_A_R_I--_____ -__ '_R_A~

NOTE .,: TWC INCLUCES THE RESPONSE TIMING OF ACONT80L BYTE.

NOTE -2: TCfI INCLUDES THE EFFECT OF eTS ON THE T.ENBL CIRCUITRY,

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

IT.EMPTV

TaEMPTY -----1-----------+-----~--1~--+-~

r. R~~I~: ___ ~
cio

TI: DATA ------~I1ro[X)rI'\!JJJJ..~rT~'f!:X}J~t--------'~~~=J-
OATACHARt DATA CHAR 2 DATA CHAR l

EXAMPLE FORMAT· 7 BIT CHARACTER WITH PARITY. 2STOfIIITS.

8-57

6831010

AFN'()15738

4-19

4-20

inter 8251A/S2657

WAVEFORMS (Continued)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)

,,,_ • ..clll..,,, ----------------------i----r----i------"1----·1I"'USI,f·

OYI~:~~~ _________ ;;-=::-------1~!'-----t----+--+--------f-----
--~--~~r-~~Co .. ~.--~r~r-t-------t----

CD --1.. ,
_ r---------~--~----_+r,~----_r_r--~--_+--------~

Il u , '-!
r--.---+JI~

-----~II~T.~n.;r"~_n.n.~~e.~,,~,"~ .. ~.t--~~~ .. J-~~~.l-~~-----~1r------
_ ••• 1 - _ i. ".I~ I

~i n ~~ H

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

s.,IIon
,J',HI/ItOU I

OVEIUlIU"
(IIIIIIOIIIIS.II

cb

It. CLoci

'lS_ i-

--',,!,EH
~,t

Ih(.. IIclOATA
CHAR I

-U b. ""'" "'" SYNC OAr.
c .. fll CH .. " 1 CHAIlI2 eH ... 1II1 eH"''' I ", ,,', ..

TTTTTT I I I I }!-l.:u ..;.~ :.1.r, T

J1J1Mf
LI.IT~TMODI

snsy'Con

NOn I IHUIII"',"" sYNt, 1SYHe: CHA"ACTUtS. ,.nl. WIT" ~AliIITY
HOT. l IXHIII"'''L S't'1iIIC S 'lfS. WITH ".IIIIf't'

OA'A
CH :I .' ...
111I

',--HOlf !....J
'ES_ ~

IL- -IL-

~ "." .r--

.. ~
Ir t--- ,

~"SU.TUS r-RelSTAruS \..

"'IEHO AdOA'A
CHAR l e .. A" I

t W "'\~
OAr ... \..

' '---
OATA

CHAR 1 S'VIlf(CH,I," I CION-Te E CHAR I C 1112 no

c" I.' ." '" ' ... ot· ••••

J1f
EXIT "'VHT MOOt /

sn $"'" Of.T ISTArus am

c" •• ~ flf Nel""

8-58 AFN-O,5738

6831010

SuperBrain II
Users Manual
Miscellaneous Operational Information

MASTER RESET FEATURE

A Master Reset of all computer hardware may be accomplished by depressing the solid colored
RED keys located on either side of the alphanumeric keyboard.

CURSOR CONTROL KEYS

There are four cursor control keys located on every SuperB rain II. These keys are located on the
right-hand side of the numeric keypad. These keys will transmit codes to any program running on
the SuperBrain II. These codes may in turn be interpreted by the program to result in cursor
movement on the screen. It is important to know that these keys will not produce cursor
movement when you are in the operating system mode. The reason for this is that CP/M does not
define any use of cursor positioning on the screen. As such, depression of these keys while in the
operating system mode will result in the control codes assigned to the individual keys being
displayed as control codes on the screen.

ACCESSING TIME/DATE DATA

Accessing the TIME/DATE data is accomplished by reading the appropriate port (31 H through
3CH as specified in the Table of I/O Ports in this section). If the real time clock is being updated
when the read is attempted, the low order four bits returned will be 1111, indicating a
hexadecimal F. The read must be retried if this occurs until a correct value is returned. The
subroutine program that follows illustrates one way to do this. It is written in MBASIC.

2000 REM SuperB rain II Time of Day Routine
2010 REM
2020 REM This subroutine returns the time-of-day which is currently set in the SuperBrain II TOD
2030 REM clock. The time is returned in the variable T$. It is a string of length 10 where the
2040 REM format is HH:"MM:SS:T.
2050 REM
2060 T$ = .. II

2070 FOR I = 6 to 0 STEP - 1
2080 V = (INP(&H31 + I) AND &HF)
2090 IF V = 15 THEN 2080
2100 T$ = T$ + M I D$ (STR$(V),2)
2110 IF I MOD 2 = 1 THEN T$ = T$ + ".11

2120 RETURN

6831010 4-21

Super8rain II
Users Manual

Miscellaneous Operational Information

INTERFACING INFORMATION

RS232C SERIAL INTERFACE

The following chart illustrates the pinouts for the MAIN and AUXILIARY serial ports and the
direction of signal flow.

SUPERBRAIN II SERIAL PORT PIN ASSIGNMENTS
MAIN PORT

PIN #

1
2
3
4
5*
6
7

15
17
20
22
24

ASSIGNMENT

GND
TRANSMITTED DATA
RECEIVED DATA
REQUEST TO SEND
CLEAR TO SEND
DATA SET READY
GND
TRANSMIT CLOCK
RECEIVE CLOCK
DATA TERMINAL READY
RING INDICATOR
CLOCK

DIRECTION

(FROM S8)
(TO S8)
(FROMS8)
(TO SB)
(TO S8)

(TO S8)
(TO S8)
(FROM SB)
(TO S8)
(FROM SB)

*Pin 5 must be at a high level at the connector in order for successful transmission.

AUXILIARY PORT

PIN #

1
2
3
7

20

BUS ADAPTOR INTERFACE

ASSIGNMENT

GND
RECEIVED DATA
TRANSMITTED DATA
GND
DATA. TERMINAL READY

DIRECTION

(TO S8)
(FROM SB)

(TO SB)

The SuperBrain " contains a Z80 bus interface to the main processor bus. These signals occupy
the lower 34 pins of a 50 pin connector and are shown on the following pages.

When using this interface, it is recommended that all signals be buffered so as not to excessively
load the main processor bus. The external bus should ONLY be utilized for 1/0 devices using
addresses 80 to FFH. Memory mapped I/O is NOT possible for user applications since the
SuperBrain " is internally configured for 64K of RAM.

PIN
NO. SIGNAL NAME

1 : OUT*
2 : A11
3 : WR*
4 : A14
5 RD*

6 D4
7 IN*
8 D7

4-22

PIN CONNECTIONS FOR EXTERNAL BUS

INPUT OR
OUTPUT

: OUTPUT
: OUTPUT
: OUTPUT
: OUTPUT
: OUTPUT
: BOTH
: OUTPUT
: BOTH

DESCRIPTION

: PERIPHERAL WRITE STROBE OUTPUT
: ADDRESS OUTPUT
: MEMORY WRITE STROBE OUTPUT
: ADDRESS OUTPUT
: MEMORY READ STROBE OUTPUT
: BIDIRECTIONAL DATA BUS
: PERIPHERAL READ STROBE OUTPUT
: BIDIRECTIONAL DATA BUS

6831010

SuperBrain II
Users Manual

Miscellaneous Operational Information

PIN CONNECTIONS FOR EXTERNAL BUS (continued)

PIN INPUT OR
NO. SIGNAL NAME OUTPUT DESCRIPTION

9 : GND : N/A : SIGNAL GROUND
10 : N/A : N/A : N/A

11 : A10 : OUTPUT : ADDRESS OUTPUT
12 : SYSRES : OUTPUT : SYSTEM RESET OUTPUT, LOW DURING POWER UP

INITIALIZE OR RESET DEPRESSED
13 : AO : OUTPUT : ADDRESS OUTPUT
14 : D6 : BOTH : BIDIRECTIONAL DATA BUS
15 : A12 : OUTPUT : ADDRESS OUTPUT
16 : A13 : OUTPUT : ADDRESS OUTPUT
17 : A15 : OUTPUT : ADDRESS OUTPUT
18 D3 BOTH : BIDIRECTIONAL DATA BUS
19 : D5 : BOTH : BIDIRECTIONAL DATA BUS
20 : DO : BOTH : BIDIRECTIONAL DATA BUS
21 : A8 : OUTPUT : ADDRESS OUTPUT
22 :A4 : OUTPUT : ADDRESS OUTPUT
23 : D2 : BOTH : BIDIRECTIONAL DATA BUS
24 : A1 : OUTPUT : ADDRESS OUTPUT
25 : A3 : OUTPUT : ADDRESS OUTPUT
26 : A5 : OUTPUT : ADDRESS OUTPUT
27 : A9 : OUTPUT : ADDRESS OUTPUT
28 : A7 : OUTPUT : ADDRESS OUTPUT
29 : A2 : OUTPUT : ADDRESS OUTPUT
30 : A6 : OUTPUT : ADDRESS OUTPUT
31 : D1 : BOTH : BIDIRECTIONAL DATA BUS
32 : +5V N/A : POSITIVE 5 VOLTS (LIMITED CURRENT)
33 : GND N/A : SIGNAL GROUND
34 : GND N/A : SIGNAL GROUND
35 : GND N/A : SIGNAL GROUND
36 : +12V N/A : POSITIVE 12 VOLTS (used for RS232 Receiver bias)
37 : AUX RX DATA INPUT : AUXILIARY PORT RECEIVE DATA
38 MAIN TX CLK INPUT MAIN PORT TRANSMIT CLOCK
39 MAIN RX CLK INPUT MAIN PORT RECEIVE CLOCK
40 MAIN RX DATA INPUT MAIN PORT RECEIVE DATA
41 MAIN CTS INPUT MAIN PORT CLEAR TO SEND
42 : AUX DSR INPUT : AUXILIARY PORT DATA SET READY
43 MAIN RTS : OUTPUT MAIN PORT REQUEST TO SEND
44 : MAIN DSR : INPUT : MAIN PORT DATA SET READY
45 : MAIN ClK : OUTPUT : MAIN PORT CLOCK
46 : AUX TX DATA : OUTPUT : AUXILIARY PORT TRANSMIT DATA
47 MAIN RI : INPUT MAIN PORT RING INDICATOR
48 : -12V : N/A MIN US 12 VOLTS (used for RS232 Receiver bias)
49 : MAIN DTR : OUTPUT MAIN PORT DATA TERMINAL READY
50 : MAIN TX DATA : OUTPUT MAIN PORT DATA TRANSMIT

'IMPLIES NEGATIVE (LOGICAL 0) TRUE INPUT OR OUTPUT

6831010 4-23

DEVICE*
NO,

KR3600

BR1941

8251A

8255

MM58174

MANUFACTURER

: STANDARD
: MICROSYSTEMS
: CORP.

: WESTERN
: DIGITAL

INTEL

INTEL

NATIONAL
: SEMICONDUCTOR

SuperBrain II
Users Manual

Miscellaneous Operational Information

TABLE OF I/O PORTS·

PORT
ADDRESS

: 50H

: 60H

: 40H
: 41 H
: 58H
: 59H

: 68H
: 69H
: 6AH
: 6BH

: 31 H
: 32H
: 33H
: 34H
: 35H
: 36H
: 37H
: 38H
: 39H
: 3AH
: 3BH
: 3CH
: 3DH
: 3EH

FUNCTION

KEYBOARD CHARACTER (RIO)

BAUD RATE GENERATOR (W/O)

: AUXILIARY PORT DATA
: AUXILIARY PORT STATUS

MAIN PORT DATA
: MAIN PORT STATUS

: 8255 PORT A (W/O)
: 8255 PORT B (RIO)
: 8255 PORT C (W/O)
: 8255 CONTROL PORT (W/O)

: DAY/DATE CLOCK TENTHS DIGIT (RIO)
DAY/DATE CLOCK UNITS OF SECONDS (RIO)
DAY/DATE CLOCK TENS OF SECONDS (RIO)
DAY/DATE CLOCK UNITS OF MINUTES (R/W)
DAYIDATE CLOCK TENS OF MINUTES (R/W)
DAY/DATE CLOCK UNITS OF HOURS (R/W)
DAYIDATE CLOCK TENS OF HOURS (R/W)
DAY/DATE CLOCK UNITS OF DAYS (R/W)
DAY/DATE CLOCK TENS OF DAYS (R/W)
DAY/DA~E CLOCK DAY OF THE WEEK (R/W)
DAYIDATE CLOCK UNITS OF MONTHS (R/W)
DAY/DATE CLOCK TENS OF MONTHS (R/W)
DAY/DATE CLOCK LEAP YEAR SETTING (W/O)
DAY/DATE CLOCK START/STOP PORT (W/O)

'FOR DETAILED DEVICE INFORMATION. CONSULT MANUFACTURER·S DATA SHEETS.

4-24 6831010

SuperBrain II
Users Manual
Miscellaneous Operational Information

AUTOLOAD FEATURE

Perhaps you wish for your computer to perform the same function upon each operating system
restart. This is possible with CP/M version 2.2. The command buffer is the area in computer
memory where the next command to be executed is piaced. In normal CP/M systemsthis buffer is
empty and, upon operating system restart, the system awaits your command. You may alter this if
desired, so that the system will execute any program on the disk upon cold or warm reboot.

In order to implement this autoload feature, you have to change the operating system that is
stored on the inner two tracks of your diskette. First, make a copy of the program on your
distribution diskette that will generate the operating system. For the SuperB rain II QD, this
program is called QDIICPM.COM, for SuperBrain II SO it is called SDIICPM.COM, and for the
SuperBrain II Jr, it is called SBIICPM.COM. Using the PIP program, enter the following:

A) PIP AUTOLOAD. COM = SBIICPM.COM (cr)

SBIICPM.COM is similar to using the SYSGEN utility, except that no SOURCE DRIVE is specified
when using it. After you have made the copy, you will have to alter its command buffer for the
autoload capability. The DDT system program will have to be used to do this. It is strongly
recommended that you become familiar with the DDT program before attempting to alter the
operating system. See the CP/M DYNAMIC DEBUGGING TOOL (DDT) USER'S GUIDE in this
manual, for assistance.

Next enter the program 'AUTOlOAD.COM' with the use of DDT. The correct command is:

A) DDT AUTOLOAD. COM (cr)

DDT will then load into the computer's memory and read in your 'AUTOLOAD' program. After you
have decided on the command you want to be executed upon restart, determine its length. This is
done by counting the number of characters in the command. If a file name and/or parameters are
included in the command, be sure to include their length(s) in the count. Include any separating
spaces. For example, if you wanted the directory display, the command is DIR, and its length is 3.
If instead you wanted to see a directory display of disk A, the command is DIR A: and its length is
6.

The CP/M command buffer begins at location 987H. Use the'S' command to alter the desired
memory locations with your new command. Place the hexadecimal value of the command length
in this location. The command itself begins at location 988H, and you may use up to eighty (80)
characters from that point for the buffer. Notice that if you go beyond that, you will overwrite the
copyright notice in the operating system. At the end of your command, place the null terminator
DOH. When inserting the command itself into the memory locations, please note that you must
enter hexadecimal numbers for the ASCII values of the letters in the command. When finished,
use the DDT command '0' to display the results of your action. Make any necessary corrections,
and then exit to the operating system with CRTl-C. Before you do anything else, you must save
the memory contents of the 'AUTOLOAD' program. Using CPIM's 'SAVE' function, enter the
following line at the keyboard:

A) SAVE 48 AUTOLOAD. COM (cr)

let's review what we have done so far. First, we made a copy of the operating system, and called
it 'AUTOlOAD.COM'. (Incidentally, any other name could have been used as long as the file type
is '.COM'). Next, we placed a CP/M command into the CP/M command buffer, starting with the
command length in hexadecimal. We ended with a null byte terminator. Then we exited to the
operating system and saved the revised program in memory on the disk. Now it is time to
generate the new operating system.

6831010 4-25

SuperBrain II
Users Manual

Miscellaneous Operational Information

Please be sure that the command in the command buffer is what you want your computer to do
upon each operating restart, because that is exactly what it will do. Type in the following
command at the keyboard:

A) AUTOLOAD (cr)

From here the operation will be similar to that of the-SYSGEN command. First you will be asked to
enter a SOURCE DRIVE. Press the RETURN key here; the program itself is carrying the operating
system. Next enter the DESTINATION DRIVE. Enter your choice, and press the RETURN key
when the correct diskette has been inserted in the destination drive. If you are using a new
diskette, make certain that it has been formatted with the FORMAT command. When the
message FUNCTION COMPLETE is displayed upon the screen, your transfer is done, and you
should press the RETURN key to reboot the operating system. If you specified Drive A as the
destination drive, this reboot will incorporate your new modification. If not, replace the diskette in
Drive A with your destination diskette, and press both RED keys simultaneously. You should now
have an operating system with an autoload feature. If not, you probably incorrectly entered the
command in the command buffer. Repeat the above procedure if this is the case.

WARNING: If you choose drive A as the destination drive and you made an error in altering the
command buffer, this diskette will contain an unusable copy of the operating system. You will
have to replace its operating system with a valid copy probably using the SYSGEN command.
Therefore, it is recommended that you select drive B as your destination drive when altering the
command buffer.

Here is a sample session describing the steps needed to alter the command buffer of your
operating system. Please carefully read the previous section before attempting to alter this
command buffer. Note that all items in bold type are to be typed in by you. Otherwise, the displays
are generated by the computer. When you encounter (cr) , press the RETURN key.

A) PIP AUTOLOAD.COM = SBIICPM.COM[V] (cr)
A) DDT AUTOLOAD.COM (cr)
DDT VER 1.4
NEXT PC
31000100

-S987(cr)
0987 00 06 (cr)
09882044(cr)
09892049(cr)
098A 20 52(cr)
098B 20 20 (cr)
098C 20 41 (cr)
098D 20 3A(cr)
098E 20 OO(cr)
098F 20 .(cr)
·CONTROL·C
A SAVE 48 AUTOLOAD. COM (cr)
A AUTOLOAD (cr)
SYSGEN VER 1.X
SOURCE DRIVE NAME (OR RETURN TO SKIP) (cr)
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B(cr)
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) (cr)
A)
(Now replace the diskette in drive B into drive A, and depress RED keys.)

4-26 6831010

SuperB rain II
Users Manual
Miscellaneous Operational Information

KEY CLICK

The key click feature is designed to provide a tone with each key depression. The purpose of the
feedback is to allow faster data entry by informing the operator whenever a key is depressed. This
feature can be easily selected during terminal operation or can be automatically selected upon
system power-up.

To enable the feedback feature, simply type a Control-B (02H). This will 'toggle' the key click
feature and turn it on if it is off, or vice versa. The CONFIGUR program will permit you to set the
click on or off on system power-up, and hence, relieve you of any further action.

KEY REPEAT

When a key remains depressed for more than 1 second, the key value will repeat at a rate of
approximately 30 per second. This will allow faster data entry for applications such as word
processing, text editing, and program displays where a 'banner' is required.

TYPE-AHEAD

The input on DOS version 1.X is saved if the operator enters data faster than the computer can
accept it. Up to 128 characters are stored when typed, and delivered only when needed. It is now
possible to enter commands to an application program as it is being loaded from the disk and not
lose any characters. Your input will appear after the program has been loaded, and the program
will execute the commands as if you had just entered them. If you type more than 128 characters
ahead of the computer system, the bell will ring. This indicates that the buffer is full, and further
typing will be ignored by the system.

NOTE: It should be noted that some programs will not work with the type-ahead feature. An
example is the DIR command, which displays the directory contents of a diskette. By definition, a
directory display is interrupted if a key is depressed during the display. If the DIR command
receives a key from the type-ahead feature, it doesn't know if the key was just entered, or if it
came from the buffer. In either case, the display is disrupted and a character is lost. Experiment
with the system to see which programs will not tolerate type-ahead.

In the event that an error is made, the type ahead buffer can be erased by depressing the
CONTROL key and the 1 key (on the alphanumeric keyboard only, not the numeric keypad)
simultaneously.

CONTROLLING THE VIDEO DISPLAY

The SuperBrain II allows the user a great degree of flexibility in controlling the video display. The
user can control where the display is on the screen and the appearance of the displayed
information.

Data positioning can be effected either by absolute cursor addressing or memory-mapping.
Display appearance is controlled by two factors. First, the SuperBrain II has an optional
character set available to the user. Alternating character sets as well as video attributes can be
effected on a character by character basis. Second, there are four video attributes. These are:

* Blinking.
* Half-intensity.
* Underlining.
* Reverse Video.

Memory-mapping means that a portion of the memory is devoted to use by the screen display.

6831010 4-27

SuperBrain II
Users Manual

Miscellaneous Operational Information

The RAM memory location F800H marks the beginning of screen area and this area extends
through location FFFFH. This memory area is not available for program or data storage.

The CRT controller performs a direct memory access (DMA) cycle to obtain the screen data,
relieving the CPU of most screen related functions. When the CRT controller receives certain
inputs, the display is affected.

There are two main types of inputs that are meaningful to the CRT controller: escape sequences
and control codes. An escape sequence is noted when the ASCII representation of ESC (27H) is
received by the CRT controller and followed by other characters.

A control code is noted when the CTRL key of the keyboard is held down while another key is
depressed. The CTRL key functions somewhat like the SHIFT key does.

ESCAPE SEQUENCES

The following is a list of escape sequences that have meaning to the CRT controller.
NOTE: .. '" " is equivalent to ASCII code 7E (Hex) or 126 (decimal).

SEQUENCE MEANING

ESC Y row column

ESC'" K

ESC'" k

ESC'" E

ESC'" D

ESC'" B

ESC"'b

ESC'" H

ESC'" h

ESC'" U

ESC'" u

ESC'" R

ESC'" r

ESC'" A

ESC'" a

4-28

Absolute cursor addressing. The cursor is positioned to the row
and column as shown in the screen layout chart in this section.

Erase to end of line. Data is erased from the current cursor
position through the end of the current line.

Erase to end of screen. Data is erased from the current cursor
position through the end of the current screen.

Display control characters. The transparent mode of operation is
enabled which means that control codes not normally shown on
the screen will be displayed.

Disable display of control characters.

Turns the blinking video attribute on.

Turns the blinking video attribute off.

Turns the half-intensity attribute on.

Turns the half-inten'sity attribute off.

Turns the underlining attribute on.

Turns the underlining attribute off.

Turns the reverse video attribute on.

Turns the reverse video attribute off.

Makes the entire screen non-reverse video.

Makes the entire screen reverse video.

6831010

SuperBrain II
Users Manual
Miscellaneous Operational Information

SEQUENCE

ESC'" N

ESC'" g

ESC "'G

ESC'" S

ESC'" s

ESCAPE SEQUENCES (continued)

MEANING

Normalizes. Turns all attribute indicators (B, H, U, R) off if they
are on, beginning with the next character.

Displays the entirety of what is on the screen as its
corresponding alternate(s) from the secondary character set.
This only works if the secondary character EPROM is installed.

This reverses the effects of the ESC'" g escape sequence
preceeding.

This sequence reverses the primary and secondary assignments
of the character sets when an alternate (secondary) character
set is installed. If set A is primary and set B is secondary, this
sequence will cause B to be primary and A to be secondary.

This reverses the effect on the ESC'" S sequence preceeding.

NOTE: Of the escape sequences discussed, the S, G, a, and A options affect the entire screen
including data on the screen entered prior to this sequence.
NOTE: The high order bit of the ASCII character is what controls switching between primary
and secondary character sets. A "0" is the high order bit selects primary set. A "1" in the
high order bit selects the secondary set.

CONTROL CODES

The following is a list of the control codes that have meaning to the CRT controller.

CODE

CTRL-A

CTRL-F

CTRL-G

CTRL-H

CTRL-K

CTRL-J

CTRL-I

CTRL-L

CTRL-R

CTRL-X

CTRL-@

CTRL-1

6831010

MEANING

Home cursor - The cursor is positioned at row 1, column 1.

Cursor forward - The cursor is moved one space to the right.

Ring bell - The audio indicator is activated.

Cursor back - The cursor is moved one space to the left.

Cursor up - The cursor is moved up one line.

Cursor down - The cursor is positioned down one line.

Tabbing - The cursor is positioned to the next tab (moduI0-8) position.

Clear screen - Erases the data on the screen and the cursor is moved to row
1, column 1, its home position.

Redisplays current CP/M command line.

Clears current CP/M command line.

Page off/on - video display scrolling is enabled or disabled. Valid during
operator input only and not subject to user program control.

Clears type ahead buffer.

4-29

SuperB rain II
Users Manual

Miscellaneous Operational Information

VIDEO ATTRIBUTES

Attributes are set by the SuperBrain II when particular escape sequences (see previous list) are
received by the Console Out routine of the CP/M BIOS (and subsequently the CRT controller). The
escape sequence consists of an ESC(ape), followed by a TILDE, followed by a hexadecimal
representation of the attribute desired. The hexadecimal format is 1 B 7E NN where NN assumes
the following value as desired.

42H - B 61 H - a
62H - b 41H - A
48H - H 4EH - N
68H - h 67H - 9
55H - U 47H - G
75H - u 53H - S
52H - R 73H - s
72H - r

The following program written in MBASIC language distributed with your SuperBrain II, shows a
technique for attribute manipulation.

100 CY = 20
110 CX = 5
120 REM Clear screen and then show some of the SuperBrain II video attributes.
130 REM
140 PRINT CHR$(12)
150 REM first line is normal
160 GOSUB 510
170 PRINT "SuperBrain II Video Attribute Demo"
180 REM
190 REM Now turn on inverse video and reprint line.
200 REM
210 CX = 7:GOSUB 510
220 PRINT CHR$(27); " R";
230 PRINT "SuperBrain II Video Attribute Demo"
240 REM
250 REM Now turn on half intensity and reprint line
260 REM
270 REM
280 CX = 9:GOSUB 510
290 PRINT CHR$(27);" H";
300 PRINT "SuperBrain II Video Attribute Demo"
310 REM
320 REM Turn inverse back off and turn underlining on
330 REM
340 CX = 11 :GOSUB 510
350 PRINT CHR$(27); " r"; CHR$(27);" U";
360 PRINT "SuperBrain II Video Attribute Demo"
380 REM
390 REM Turn half intensity off but leave underlining on
420 REM
430 CX = 13:GOSUB 510
450 PRINT CHR$(27);" h";
470 PRINT "SuperBrain II Video Attribute Demo"
471 REM
472 REM Now normalize the video attributes

4-30 6831010

SuperB rain II
Users Manual
Miscellaneous Operational Information

473 REM
474 PRINT CHR$(27):" N"
480 PRINT
490 PRINT
500 END
510 PrintCHR$(11)
520 PRINT CHR(27);"Y"; CHR$(CX + 31);CHR$ = (CY + 31);
530 RETURN

CURSOR POSITIONING FOR DISPLAY CONTROL

Cursor positioning is easily accomplished using the ESC Y row column escape sequence. The
proper row. column coordinates can be determined by referencing the SuperB rain II screen
layout in this section.

The example program that follows. written in MBASIC. shows one method of accomplishing
screen control.

MEMORY MAP/SCREEN INITIALIZATION

This BASIC program fragment will clear the screen and set the "HOME" position to be memory
address &HF800. The user can then "POKE" characters into the next 1.920 locations of screen
memory.

NOTE: Line number 1110 leaves the cursor at the top of the screen. The cursor can. at this time.
be moved where the user wishes with standard escape sequence cursor pOSitioning commands.

1090 PRINT CHR$(12);
1100 FOR I = 1 to 23:PRINT " " :Next I
1110 PRINT" ";'CHR$(1);
1120 RETURN

The next example program. also written in MBASIC. shows an example of cursor positioning.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
2000
2010
2020
2030
2040

6831010

REM Clear the Screen
PRINT CHR$(12)
REM Position the cursor at row 20 column 30
CX = 20
CY = 30
GOSUB 2000
PRINT "* -POSITION 20. 30"
REM Position the cursor at row 5 column 20
CX = 5
CY = 20
GOSUB 2000
PRINT "* -POSITION 5. 20"
REM Home cursor and then end
PRINT CHR$(1);
END
REM Cursor Positioning Subroutine
REM
REM This subroutine clears the MBASIC line output character counter
REM and then positions the cursor at the locations specified by the
REM variables CX and CY where CX is the line nvmber and CY is the

4-31

4-32

2050
2060
2070
2080
2090
2100
2110
2120

SuperBrain II
Users Manual

Miscellaneous Operational Information

REM column number. These variables must be set by the program before
REM entering the subroutine
REM
REM NOTE: Home position on the screen is row 1 column 1
REM
PRINT CHR$(11)
PRINT CHR$(27);"Y";CHR$(CX + 31);CHR$(CY + 31);
RETURN

6831010

0)
CO
U)
o
o

SUPERBRAIN SCREEN LAYOUT
~ 2 3

I ~l 4 & • 7 • • 0 I 2 3 4 Ii • 7 8 • 0 12 3 4 Ii • 7 8 • O. I 2 3 4 Ii 8 7 8

I 'S~ I 1"1-1 q"l & III (I) I-I + I . I-I ·1/1 111121s 14 II III J 1I1I I : I : I <I = I> I riO' • 'I' C 'D' E

2

3 "

4 ..

5 I

6 ..

• I

9 (

0

I •

12 +

13

14 -

15

II

17 I

181

11

20

21 4

:z:z

21'1

/

24
lines

\..

80 Characters "
SCREEN DISPLAY

ITATUI LINE

./

5 8 7 8 4
9 0 123456789012345678'901 2345678901234567890

~H I
J I L • • o • al· I T ul' W I Y z tl'

I I I !

::J 1/\ 1_' ' , • , • I c I ~

This Screen Format of the SuperBrain display area provides an easy method of
locating and addressing specific screen positions.

Using the ESC. Y. r. c command. locate both the row character (r = 1 - 24) and
the column (c = 1 - 80) characters. Example:

ROW
1 (Home)

2
20

COLUMN

5
50

COMMAND
ESC Y sp sp

ESCy! $
ESCY3Q

An application programmer may find it helpful to maintain a table of row and
column numbers with their respective addressing characters as shown on this
Screen Format. This will provide quick and easy access to specific screen
positions .

'"I~'lilllllll.I.I'

I I I I II I 2

3

4

5

~

7

8

9

10

11

12

T3

14

15

16

17

18

19

20

2

22

23

t lM 1'1 I 1 1 1 1 1 1 1 I I 174
U) t 2 3 4 I • 7 8 • I I 2 3 4 & • 7 8 • 2 I 2 3 4 & • 7 8 • 3 I 2 3 4 & • 7 • 9 4 1 2 3 4 5 6 7 8 9 5 I 2 3 4 5 6 -, 8 9 6 1 2 3 4 5 6 7 •• 1 1 2 3 4 5 6 7 • 9 8

o 0 0 0 0 0 0 0

INTERPRETING THE ASCII CODE CHART

SuperBrain II
Users Manual

Miscellaneous Operational Information

The figure below illustrates a conventionally arranged ASCII code chart divided into three
sections corresponding to control codes (column 0 to 1) upper case characters (columns 2, 3, 4,
and 5), and lower case characters (columns 4 and 5) .

~
• 00 00 01 01 10 10 1

111 • 10 b5 • 0 1 0 1 0 1
Bj ~ ~ ~ ~ column

~ ~ ~ ~ ~ ~ 0 1 2 3 4 5 6 7

0 0 0 o· 0 NUL OLE SP 0 @ P \ P
0 0 0 1 1 SOH 'ocj ! I A Q a q
0 0 1 0 2 STX DC2 .. 2 B R b r
0 0 1 1 3 ETX DC3 1# 3 C S c s
0 1 0 0 4 EOT DC4 $ 4 0 T d t
0 1 0 1 5 ENO NAK % 5 E U e u
0 1 1 0 6 ACK SYN & 6 F V f v
0 1 1 1 T BEL ETB 7 G W g w
1 0 0 0 8 BS CAN (8 H X h x
1 0 0 1 9 HT EM) 9 I Y i y
1 P 1 0 10 LF SUB . : J Z j z
1 0 1 1 11 VT ESC + ; K E: k 1
1 1 . 0 0 12 FF FS < L \ L I .
1 1 0 1 13 CR GS - = M J m I

r
1 1 1 0 14 SO RS > N 1\ n -1 1 1 1 15 ·51 US / ? 0 - 0 DEL

CONTROL CODE CHART

The following is a list of the hexadecimal equivalents of the control codes. The CONFIGUR
program accepts only hexadecimal values when reassigning the keypad, so these are listed as a
programmer convenience. Use caution when reassigning the values on the keypad, and recall
that you may enter 'R' to restore the pad to its original configuration if you desire.

Ctrl-A 01 H Ctrl-J OAH Ctrl-S 13H
Ctrl-B 02H Ctrl-K OBH Ctrl-T 14H
Ctrl-C 03H Ctrl-L OCH Ctrl-U 15H
Ctrl-D 04H Ctrl-M ODH Ctrl-V 16H
Ctrl-E 05H Ctrl-N OEH Ctrl-W 17H
Ctrl-F 06H Ctrl-O OFH Ctrl-X 18H
Ctrl-G 07H Ctrl-P 10H Ctrl-Y 19H
Ctrl-H 08H Ctrl-Q 11 H Ctrl-Z 1AH
Ctrl-I 09H Ctrl-R 12H

After all corrections have been entered, pressing the 'RETURN' key will save your new
parameters on the disk. This must be done at the main menu of selections. Then press both RED
keys when instructed to force a 'cold boot' of the Operating System and properly load your new
changed parameters.

Control codes are not displayable unless in the transparent mode. Some of these codes affect the
state of the terminal when they are received by the display electronics. For example, the code
SOH causes the cursor to go to the home position, and code DC2 turns on the printer port. Codes
which have ho defined function in the SuperBrain II software are ignored if received. The set of 64
upper case alphanumeric characters is sometimes referred to as "compressed ASCII".

4-34 6831010

SuperBrain II
Users Manual
Miscellaneous Operational Information

CONTROL CODE CHART (continued)

If the terminal is set for upper case operation only (CAPS LOCK), lower case alpha characters
from the keyboard are automatically translated and displayed as their upper equivalents (columns
4 and 5). If the DEL code is received, it is ignored. Lower case characters received from the input
RS-232C port are displayed as lower case.

The seven bit binary code for each character is divided into two parts in this chart. A four-bit
number represents the four least significant bits (B1, B2, B3, B4) and a three-bit number
represents the three most significant bits (B5, B6, B7). The chart above also is divided into 8
columns and 16 rows. This offers two ways of indicating a particular character's code. The
character code is indicated as either a seven-bit binary number or as a column/row number in
decimal notation. For example, the character M is represented by the binary number 1001101 or
the alternative 4/13 notation. Similarly, the control code VT is represented by the code 0001011 or
the alternative 0/11 notation.

For the SuperBrain II, the high order bit is used to determine switching between the primary and
secondary character sets. This eighth (or high order) bit is not shown in this chart bLIt exists and
can be manipulated from user programs.

WORDSTAR CONSIDERATIONS FOR SUPERBRAIN II

This is to set up a version of WordStar for the SuperBrain II that uses the SuperBrain II in a
memory mapped mode. The following variable names are in appendix 0 of the WordStar manual
("Terminal Patch Area"). The following items need to be set as indicated:

0264 UCRPOS JMP 0304H User cursor positioning
routine for memory map
operation.

02A4 INISUB JMP 02EOH ; Jump to the SuperB rain II
initialization routine.

02BO MEMAPV DB OFFH ; Turn memory map mode on
02B1 MEMADR DB OF800H ; Address of video screen RAM.

02EO MORPAT CALL 02E8H Initialize the. SuperBrain II
02E3 DEC A video memory map.
02E4 CALL 0239H
02E7 RET
02E8 XRA A
02E9 LXI H,OE434H
02EC MVI B,18H
02EE MOV M,A
02EF INX H
02FO DEC B
02F1 JNZ 02EEH
02F4 LXI H,OOOO
02F7 SHLD OE400H
02FA SHLD OE414H
02FD SHLD OE416H
0300 SHLD OE412H
0303 RET
0304 XCHG
0305 JMP 0300H

If the user has the reverse video character set EPROM installed in the secondary character set
EPROM position. WordStar can also highlight certain items by setting the following value:

02B3 HIBIV DB OFFH ; Highlight using the high bit

6831010 4-35

APPENDIX A

INTRODUCTION TO CP/M
FEATURES & FACILITIES

OIIJ~[j~Tfll RESEflRI:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACn..ITIF.S

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, 'electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Page

1. INTRODUCTION ••••••••••••••••••••••••••••••••••••••• 1

2.

3.

4.

5.

6.

7.

8.

FUNCTI~~ DESCRIPTION OF CP/M •••••••••••••••••••••
2.1. General Command Structure ••••••••••••••••••••
2.2. File References • •••••••••••••••••••••••••••••

SWITCHING DISKS
THE FORM OF BUILT-IN CDMMANOO ••••••••••••••••••••••
4.1. ERA afn cr •••••••••••••••••••••••••••••••••••
4.2. DIR afn cr •••••••••••••••••••••••••••••••••••
4.3. REN ufn1=ufn2 cr •••••••••••••••••••••••••••••
4.4. SAVE n ufn cr ••••••••••••••••••••••••••••••••
4.5. TYPE ufn cr ••••••••••••••••••••••••••••••••••

LINE EDITING AND ourpur ODNTROL •••••••••••••••••••••

TWNSIENT CDMMANOO • ••••••••••••••••••••••••••••••••
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

•••••••••••••••••••••••••••••••••••••• STAT cr
ASoi ufn cr
I..Cru) ufn cr
PIP cr

• ••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

ED ufn cr
SYSGEN cr

• •••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

SUBMIT ufn parm#l ••• parm#n cr • •••••••••••••
• ••••••••••••••••••••••••••••••••• DUMP ufn cr

IDVCPM cr • •••••••••••••••••••••••••••••••••••

BOOS ERROR MESSAGES • •••••••••••••••••••••••••••••••

OPERATION OF CP/M ON THE MOO • ••••••••••••••••••••••

3
3
3

6

7
7
8
8
9
9

11

12
13
16
17
18
25
27
28
30
30

33

34

1. INl'RODUCrION.

CP/M is a nonitor control program for microcomputer system developnent
which uses IBM-compatible flexible disks for backup storage. Using a computer
mainframe based up:m Intel's 8~8~ microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and program check-out facilities. An imp:>rtant feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8~8~ (or Zi10q Z-8~) Central Processing Unit, and has at least
16K bytes of main rremory with up to four IBM-compatible diskette drives. A
detailed discussion of the nodifications required for any particular hardware
environment is given in the Digital Research doct.nnent entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a sing1e-density Intel MDS 8~~, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M m:mitor provides rapid access to programs through a
camprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and randam file access. UsiI'Y;f this file system, a large nurrber of
distinct programs can be stored in both oource and machine executable form.

CP/M also supports a p:>werful context editor, Intel-campatib1e assembler,
and debugger stDsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M's Cbnsole Command Processor, the
resulting facilities equal or excel shnilar large computer facilities.

CP/M is logically divided into several di'stinct parts:

BIOS Basic I/O System (hardware dependent)

BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the'
diskette drives and to interface standard peripherals (teletype, eRr, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this p:>rtion of
CP/M. The BDOS provides disk management by controlling one or Irore disk
drives containing independent file directories. The BOOS implements disk
allocation strategies t,othich provide fully dynamic file construction while
minimizirg head novement across the disk during access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

BDOO has entry p:>ints mich include the following primitive operations which
can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and processes
commands \\hich include listing the file directory, pr inting the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands \\hich are available
in the CCP are listed in a following section.

The last se:Jrnent of CP/M is the area called the Transient Program Area
(TPA). The TPAholds programs \\hich are loaded from the disk under command of
the CCP. Durinq program editing, for example, the TPA holds the CP/M text
edi tor machine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It smuld be rnentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user's program is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS pJrtion is not overlayed: thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It smuld be reiterated that the CP/M operating system is partitioned
into distinct IlDdules, including the BIOS p:>rtion \\hich defines the hardware
envirornnent in \\hich CP/M is executing. Thus, the standard system can be
easily IlDdified to any non-standard envirornnent by changing the]:eripheral
drivers to handle the custom system.

.2

2. Fml:TIONAL DESCRIPl'ION OF CP/M.

The user interacts with CP/M pr imarily through the CCP. mich reads and
interprets canmands entered through the console. In general. the CCP
addresses one of sel1eral disks mich are online (the standard system addresses
up to four different disk drives). These disk drives are labelled A. B. C.
and D. A disk is "logged in" if the CCP is currently addressing the disk. In
order to clearly indicate mich disk is the currently logged disk. the CCP
always {ranpts the cperator with the disk name followed by the symbol ">"
indicatin;J that the CCP is ready for another canmand. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the rremory size (in kilobytes) which this CP/M system manages. and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K· memory space, but can be easily reconfigured to fit any memory size
on the host system (see the IDVCPM transient canmand). Followin;J system
signon, CP/M automatically logs in disk A. prompts the user with the symbol
"A)" (indicating that CP/M is currently addressin;J disk "A"). and waits for a
command. The canmands are implemented at two levels: built-in camnands and
tr ansient canmands.

2.1. GENERAL COMMAND STRUCTURE.

Built-in canmands are a part of the CCP program itself, mile transient
commands are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase sp:cified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Typ: the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files. The
form of a file reference is sp:cified below.

2.2. FILE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unambigoous" (ufn) or "ambigoous" (afn). An unambiguous file reference
uniquely identifies a single file, mile an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic~ that
is, the secondary nane "ASM," for example, is used to denote that the file is
an assembly language s:mrce file, ttbile the pr imary name distinguishes each
particular source file. The two names are separated by a "." as shown below:

PPPPppPP.sss

where pppppppp represents the trimary name of eight characters or less, and
sss is the secondary nane of no rore than three cnaracters. As nentioned
above, the name

pppppppp

is also allo~d am is equivalent to a secondary name consisting of three
blanks. The characters used in s~cifying an unambiguous file reference
cannot contain any of the special characters

<>.,::= ?*[]

while all alphanumerics and remaining s~cial characters are allowed.

An ambiguous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambiguous reference, except the symbol "?" may be interspersed throughout
the J;r irnary and secondary names. In various canmands throughout CP/M, the .,?.,
symbol matches any character of a file name in the "?" position. Thus, the
ambiguous reference

X?Z.C?M

is satisfied by the unambiguous file names

XYZ.CDM
and

X3Z.CAM

Note that the ambiguous reference

* * •

is equivalent to the ambiguous file reference

???????? ???
while

4

PPPPPPPP.*
and

*.sss

are abbreviations for

PppppPpP.???
and

???????? .sss

respectively. As an eKample,

DIR *.*

is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, while

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguous reference.

The fbllowing file names are valid unambiguous file references:

x XYZ GAMMA

X.Y XYZ.CDM GAMMA. I

As an a:1ded convenience, the programmer can generally specify the disk
drive nane along with the file name. In this case, the drive name is given as
a letter A through Z follo~d by a colon (:). The specified drive is then
"logged in" before the file operation occurs. Thus, the fbllowing are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA

Z :XYZ.mM B:X.A?M C:*.ASM

It smuld also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case vtlen they are processed by
the CCP.

5

3. SWITCHING DISKS.

The cperator can switch the currently logged disk by typing the disk
drive ncme (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console iq>ut. Thus, the sequence of prompts and canmands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE ASM

SAMPLE PRN

A>B: SWi tch to disk B.

B>DIR *.ASM List all "ASM" files on B.

DUMP ASM

FILES ASM

B>A: SWitch back to A.

6

4. THE R)RM CF BUILT-IN CDMMANDS.

The file arrl device reference forms described above can now be used to
fully st:ecify the structure of the built-in canrnands. In the description
below, asswne the followirg abbreviations:

ufn unambiguous file reference

afn ambiguous file reference

cr carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names arrl file references.

4.1 ERA afn cr

The ERA (erase) canmand removes files fran the currently logged-in disk
(i.e., the disk nane currently pranpted by CP/M precedirg the ">"). The files
which are erased are tmse \\hich satisfy the ambiguous file reference afn.
The followirg examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.ASM

ERA X?Y.C?M

ERA *.*

ERA B:*.PRN

The file named X.Y on the currently logged disk
is removed fran the disk directory, and the space
is returned.

All files with primary name X are removed fran
the current disk.

All files wi th secondary name ASH are removed
fran the current disk.

All files on the current disk Which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the console wi th the message

"ALL FILES (Y/N)'?"
Which requires a Y response before files are
actuall y removed) •

All files on drive B \\hich satisfy the ambiguous
reference ????????PRN are deleted, independently
of the currently logged disk.

7

4.2. OIR afn cr

The OIR (directory) canmand causes the names of all files \\hich satisfy
the anbigoous file name afn to be listed at the console device. As a s:p:!cial
case, the canrnand

OIR

lists the files on the rurrently logged disk (the canrnand "OIR" is equivalent
to the canmand "OIR *.*"). Valid OIR canmands are smwn below.

OIR X.Y

OIR X?Z.C?M

OIR ??Y

Similar to other CCP canmands, the afn can be IX'eceded by a drive name.
The followirg OIR canmands cause the selected drive to be crldressed before the
directory search takes place.

OIR B:

DIR B:X.Y

OIR B:*.A?M

If no files can be found on the selected diskette \\hich satisfy the
directory request, then the message .INor FOUND" is typed at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) canmand allows the user to change the names of files on
disk. The file satisfyirg ufn2 is changed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user's console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X. Y.

REN XYZ.OOM=XYZ.XXX The file XYZ.XXX is dlanged to XYZ.OOM.

The operator can p:ecede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is p:eceded by
a drive na:ne, then ufnl is assumed to reside on that drive as well. If both
ufnl arrl ufn2 are preceded by drive names, then the same drive must be

8

specified in both cases. The followirg REN ccmmands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM = B:A.BAK

The file Y.ASM is changed to X.ASM on
drive A.

The file ZOT.BAS is charged to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the ,file ufnl is already present, the REN canmand will respond with
the error "FILE EXISTS" and not perform the change. If ufn2 does not exist on
the specified diskette, then the message "NOI' FOUND" is printed at the
console.

4.4. SAVE n ufn cr

The SAVE canmand places n pages (256-byte blocks) onto disk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
l00H (hexadecimal), \thich is the second page of memory. Thus, if the user~s
program occupies the area fran l00H through 2FFH, the SAVE canrnand must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.OOM

SAVE 40 Q

SAVE 4 X.Y

Copies l00H through 3FFH to X.OOM.

Copies l00H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

Copies l00H through 4FFH to X.Y.

The SAVE canmand can also specify a disk drive in the afn IX>rtion of the
canmand, as srown below.

SAVE 10 B:ZOT.OOM

4.5. TYPE ufn cr

Copies HI pages (HH1IH through 0AFFH) to
the file ZOT.OOM on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE canmands are

TYPE X.Y

9

TYPE X.PIM

TYPE XXX

The TYPE canmarrl expands tabs (clt-I characters), assummi~ tab p)sitions
are set at eJery eighth COlLUm. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file X.PRN fran drive B is displayed.

10

5. LINE EDITING AND OUI'PUI' CDNTROL.

The CCP allows certain line editing functions while typing command lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current canmand line: types a "clean line" fol
lowin:] character deletion wi th rubouts.

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT command). Output
is sent to both the list device and the console device
un til the nex t ctl-pis typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con
tinuin:] •

Note that the ctl-key sequences srown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP command lines can
generally be up to 255 characters in length~ they are not acted upon rntil the
carriage return key is typed.

11

6. TRANSIENT <DMMANOO.

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP are
shown below. Additional functions can easily be defined by the user (see the
LOAD command definition).

STAT

DDl'

PIP

ED

SYSGEN

SUBMIT

DUMP

IDVCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter d~vice
assigrunent.

Load the CP/M assembler and assemble the specified
program from disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP).

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient canmands are specified in the same manner as built-in commands, and
additional canmands can be easily defined by the user. As an added
convenience, the transient canmand can be preceded by a drive name, which
causes the transient to be loaded from the specified drive into the TPA for
execution. Thus, the canmand

B:STAT

. causes CP/M to tem~rarily "log in" drive B for the oource of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT canmand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "camnand line" cr

Special forms of the "command line" allow the current device assignment to be
examined and altered as well. The various canrnand lines which can be
specified are shown below, wi th an explanation of each form shown to the
right.

STAT cr

STAT x: cr

STAT afn cr

If the user types an empty canrnand line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: RIO, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes RIO by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
without performing a warm start). The space
remaining on the diskette in drive x is given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the command "STAT B:" could be issued while
logged into drive A, resulting in the message

BYl'ES REMAINING ON B: nnnK

The command line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor
age requirements for each file under the heading

RECS BYl'S EX D: FILENAME. TYP
rrrr bbbK ee d:P?PPPPPP.sss

where rrrr is the number of 128-byte records

13

STAT x:afn cr

STAT x:=R/O cr

allocated to the file, bbb is the number of kilo
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),
d is the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summarized.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn"
is executed.

This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the rressage

BOOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT canrnand also allows control over the physical to logical device
assignment (see the IOBYTE function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of se<Jeral physical peripheral devices. The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

'rhe actual devices attached to any particular computer system are driven
by subroutines in the BIOS PJrtion of CP/M. Thus, the logical RDR: device,
for example, coold actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow rome flexibili ty in device naming and
assignment, several physical devices are defined, as shown below:

14

TTY:

CRr:

BAT:

UCl:

Pl'R:

URl:

UR2:

Pl'P:

UPl:

UP2:

LPl':

UL1:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output qoes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (hiqh speed punch)

User-defined punch #1

User-defined punch #2

Line printer

User-defined list device #1

It must be emphasized that the physical device names mayor may not
actually correst;X>nd to devices v.hich the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact correst;X>ndence and driving subroutine is defined in the BIOS t;X>rtion
of CP/M. In the standard distribution version of CP/M, these devices
correst;X>nd to their names on the MDS 800 development system.

The p:>ssible logical to physical device assignments can be displayed by
typing

STAT VAL: cr

The STAT prints the T;X)ssible values v.hich can be taken on for each logical
device:

CON. = TTY: CRr: BAT: UCl:
RDR: = TTY: Pl'R: URl: UR2:
PUN: = TTY: Pl'P: UPl: UP2:
LST: = TTY: CRr: LPl': UL1:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the riqht on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corres!X)nding physical device to the riqht. For example, the list might
appear as follows:

CON: = CRr:
RDR: = URI:
PUN: = PI'P:
LST: = T'IY:

The current logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT ldl = pdl, Id2 = pd2 , ••• , ldn = pdn cr

where ldl through ldn are logical device names, and pdl through IXin are
canpatible physical device names (i.e., ldi and odi appear on the same line in
the "VAL:" canmand shown above). The followin:] are valid STA'I' canmands which
change the current logical to physical device assignments:

STAT CDN: =CRl': cr
STAT PUN: = T'IY: ,IST:=LPl':, RDR:=TTY: cr

6.2. ASo1 ufn cr

The ASM canmand loads and executes the CP/M 8080 assembler. The ufn
specifies a oource file containing assembly language statements where the
secondary name is assLUTIed to be ASM, and thus is not specified. The following
ASM canmands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The assembler produces a file

x.PRN

where x is the pr imary name specified in the ASM conunand. The PRN file
contains a listing of the oource program (with imbedded tab characters if
present in the oource program), along with .the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

at the console using the TYPE canmand, or sent to a :r,:eripheral device using
PIP (see the PIP canrnand structure below). Note also that the PRN file
contains the original source program, augmented by miscellaneous assembly
information in the leftIrost 16 columns (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the
leftIrost 16 characters of each line (this can be done by issuing a single
edi tor "nacro" canrnand). The resulting file is identical to the original
source file and can be renamed (REN) from PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced which contains 8080 machine language in Intel "hex" format
suitable for stbsequent loading and execution (see the LOAD command). For
cornplete details of CP/M's assembly language program, see the "CP/M Assembler
Language (ASM) User's Guide."

Similar to other transient commands, the source file for assembly can be
taken from an ~ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the command

ASM B:ALPHA cr

loads the assembler fran the currently logged drive and operates up:m the
source program ALPHA.ASM on drive Bo The HEX and PRN files are also placed on
drive B in this caseo

6.3 0 LC:W) ufn cr

The LOAD command reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the command.. The LOAD command
creates a file named

x.CDM

which narks it as containing machine executable code. The file is actually
loaded into memory and executed when the user types the file name x
immediately after the prompting character n)" printed by the CCP.

In general, the CCP reads the name x following the prompting character
and looks for a built-in fLmction name. If no fLmction name is found, the CCP
searches the system disk directory for a file by the name

17

x.CDM

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent" new commands in the CCP. (Ini tialized di sks contain the
transient canrnands as CDM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOl'ill B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which be:::rin at l00H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending order; gaps in unfilled memory regions are
filled with zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "CDM" files which operate in
the TPA. Proqrams which occupy regions of memory other than the TPA can be
loaded under DOl'.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "canrnand line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads canmand lines directly from the console, prompted with the "*"
character, until an empty canrnand line is typed (i.e., a single carriage
return is issued by the operator). Each successive command line causes some
media conversion to take place according to the rules shown below. Form (2)
of the PIP canmand is equivalent to the first, except that the single command
line given with the PIP canrnand is automatically executed, and PIP terminates
immediately wi th no further pranpting of the console for input command lines.
The form of each canmand line is

destination = source#l, source#2, ••• , source#n cr

where "destination" is the file or p?ripheral device to receive the data, and

18

"source#l, ••• , source#n" represents a series of one or nore files or devices
which are copied from left to right to the destination.

When multiple files are given in the command line (i.e, n > 1), the
individual files are asslnned to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to
overr ide this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console sUp-f:X)rts this ASCII character, to improve
readability. Lower case ASCII alphabetics are internally translated to upper
case to be consistent with cP/M file and device name conventions. Finally,
the total command line length cannot exceed 2.55 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width) •

The destination and source elements can be mambiguous references to CP/M
source files, with or without a preceding disk drive name. That is, any file
can be referenced with a rreceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or TTOre of the source
files, in which case the source file is not altered until the entire
concatenation is complete. If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condi tion arises). The following command lines (wi th explanations to the
right) are valid as input to PIP:

x = Y cr

X = Y,Z cr

X.ASM=YoASM,ZoASM,FINoASM cr

NEW.ZOT = B:OLD.ZAP cr

B:A.U =B:B.V,A:C.W,D.X cr

Copy to file X from file Y,
where X and Yare mambiguous
file names: Y remains mchanged o

Concatenate files Y and Z and
copy to file X, with Y and Z
mchanqed.

Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type MM.

Move a copy of OLD.ZAP from drive
B to the currently logged disk:
name the file NEW.ZOT.

Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk: create
the file A.U on drive B.

For TIOre convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

19

PIP x: =afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files fran the currently loqged disk which satisfy
the afn to the same file names on drive x (x = A ••• Z) • The second form is
equivalent to the first, where the source for the copy is drive y (y = A •••
Z) • The third form is equivalent to the canrnand "PIP ufn=y:ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the source disk is explicitly
given by y.

Note that the source and destination disks must be different in all of
these cases. If an afn is specified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed umn successful completion of the copy, and
replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy
operations:

B:=*.CDM cr

A:=B:ZAP.* cr

ZAP.ASM=B: cr

B:ZOT.mM=A: cr

B:=GAMMA.BAS cr

B:=A:GAMMA.BAS cr

Copy all files which have the
secondary name "OOM" to drive B
fran the current drive.

Copy all files which have the
primary name "ZAP" to drive A
from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.OOM=A:ZOT.OOM

Same as B: GAMMA. BAS=GAMMA. BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and ICXJical devices which are
attached to the CP/M system. The device names are the same as given tmder the
STAT command, alorg with a number of specially named devices. The logical
devices given in the STAT canrnand are

CON: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY: (console, reader, plD1ch,
CRT: (console, or list) ,

or list)
UCl: (console)
UR2: (reader)
UP2: (plD1ch)

PTR: (reader), URI: (reader),
PTP: (plD1ch), UPl: (plD1ch),
LPT: (list), UIJ.: (list)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and 1ST: devices are to be used for
console input/output.)

The RDR, 1ST, PUN, and CON devices are all defined wi thin the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYI'E: see the "CP/M
Interface Guide" for a discussion of this flD1ction). The destination device
must be capable of receivin:t data (i.e., data cannot be sent to the plD1ch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of plD1ched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP).

S~cial PIP input source which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
l03H, with data returned in location l09H (parity
bit must be zero).

S~cial PIP output destination which can be
patched into the PIP program: PIP CALLs location
l06H with data in register C for each character
to transmit. Note that locations l09H throuqh
lFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be inters~rsed in the PIP commands. In each
case, the s~cific device is read lD1til end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated from left to riqht lD1til the last data source has been

21

read. The destination device or file is written using the data fran the
source files, and an end-of-file dlaracter (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a tenporary
file is created ($$$ secondary name) which is chanqed to the actual file name
only up:m strcessful canpletion of the copy. Files with the extension "CDM"
are always .assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the rressage "AOORl'ED"
to indicate that the operation was not canpleted. Note that if any operation
is aborted, or if an error occurs dur ing processing, PIP removes any tending
ccrnrnands which were set up while usinq the SUBMIT canrnand.

It smuld also be noted that PIP performs a s~cial function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external teripheral device, such as a paper
tape recrler. In this case, the PIP program checks to ensure that the source
file contains a p:operly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape];X)s i tion cannot be pr OJ?er 1 y read, simply continue the read (by typinq a
return followin;J the error rressage), and enter the record manually wi th the ED
prClg"ram after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered from the console if the source file is a RDR:
device. In this case, the PIP prClg"ram reads the device and m::mitors the
keyboard. If ctl-Z is t~d at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP 1ST: = X.PRN cr

PIP cr

*CON:=X.ASM,Y.ASM,Z.ASM cr

*X.HEX=CON:,Y.HEX,PTR: cr

*cr

22

Copy X. PRN to the 1ST device and
terminate the PIP prClg"ram.

Start PIP for a sequence of
commands (PIP prcrnpts with "*").

Concatenate three ASM files and
copy to the CON device.

Create a HEX file by reading the
CON (until a ctl-Z is typed), fol
lowed by data from Y.HEX, followed
by data fran PTR until a ctl-Z is
encountered.

Single carriage return stops PIP.

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device~
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac
ters.

The user can also specify one or rrore PIP parameters, enclosed in left
and right square brackets, separated by zero or !TOre blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an qJtional decimal integer value (the Sand 0 parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data. The amount of data which can be buffered is de
pendent upon the memory size of the host system (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used !TOst often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Fil ter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore ": 00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter) •

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementinq by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is
inserted following the number. The tab is expanded if T is

23

set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file When the
string s (terminated by ct1-Z) is encountered.

Sstz Start copying from the source device When the string s is
encountered (terminated by ct1-Z). The S and Q parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and quit strings are al
ways included in the copy operation.

NOTE - the strings following the s and q parameters are
translated to upper case by the CCP if form (2) of the
PIP command is used. Form (1) of the PIP invocation, how
ever, does not perform the automatic upper case translation.

(1) PIP cr
(2) PIP "command linen cr

Tn Expand tabs (ct1-1 characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation.

V verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file) •

Z Zero the parity bit on input for each ASCII character.

The fo11owirg are valid PIP commands which specify parameters in the file
transfer:

PIP X.ABM=B: [v] cr

PIP LPT:=X.ASM[ntBu] cr

Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

Copy X.ASM to the LPI': device: mnnber each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[i] ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX:
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP X.LID = Y.ASM [sSUBRl:tz qJMP L31'z] cr Copy from the file Y.ASM

PIP PRN:=X.ASM[p50]

6.5. ED ufn cr

into the file X.LIB. Start the copy when the
string "SUBRl:" has been found, and quit copy
im after the string "JMP L3" is encountered.

Send X.ASM to the LST: device, with line num
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
ntSp60 is the assumed parameter list for a PRN
file: p50 overrides the default value.

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, "ED: a Context Editor for the CP/M
Disk Systan." In general, ED allows the operator to create and operate upon
source files which are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the workin;J memory), which is instead defined by the number of characters
typed between cr's. The ED program has a number of canmands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M. Although the CP/M has a
limi ted memory work sp3ce area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the s:p=cified source file, if it does not
exist, and cpens the file for access. The programmer then "appends" data from
the source file into the work area, if the source file already exists (see the
A canmand), fo r edi tinq • The appended da ta can then be di splayed, al tered ,
and written from the work area back to the disk (see the W command).
Particular points in the program can be automatically paged and located by
context (see the N command), allowing easy access to particular portions of a
large file.

Given that the cperator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edi ted data dur ing the ED run. upon canpletion of ED, the X.ASM
file (original file) is renamed to X.BAR, and the edited work file is renamed
to X.ABM. Thus, the X.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file. The operator can always return to
the previous version of a file by renovinq the ITOst recent version, and
renamin;!' the F-t'evious version. Suppose, for example, that the current X.ASM
file was improperly edited; the sequence of CCP canmand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase ITOst recent version.

Rename the BAR file to ASM.

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q canmand) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "pinq-ponq" the source and create
backup files between two disks. The form of the ED canmand in this case is

ED ufn d:

where ufn is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive. The ED program reads and processes the source
file, and wr ites the new file to drive d, using the name ufn. Upon canpletion
of processinq, the original file becanes the backup file. Thus, if the
operator is addressinq disk A, the following canmand is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creatinq the new file X. $$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becanes drive B at the end of the edit. Note that if a file by the name
B:X.ASM exists before the editinq begins, the message

FILE EXISTS

is pr inted at the console as a precaution a::}ainst accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient canrnands, editing can take place on a drive
different from the mrrently lOJged disk by preceding the oource file name by
a drive name. Examples of valid edit requests are shown below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN cr

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. On
termination of editing, change X.ASM
on drive B to X.BAK, and change X.$$S
on drive A to X.ASM.

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for commands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on message.

SOURCE IlHVE NAME (OR REI'URN TO SKIP)

SOURCE ON x THEN TYPE RETURN

FUNCTION COMPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys
tem; usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D).
Answer wi th cr when ready.

System is copied to memory.
SYSGEN will then prompt with:

DESTINATION DRIVE NAME (OR RETURN TO REBOOI')

27

If a diskette is being ini
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to prompt

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
x: type return When ready.

FUNCTION COMPLETE New diskette is initialized
in drive x.

The "DESTINATION" pranpt will be repeated until a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon canpletion of a successful system generation, the new diskette
contains the q::>erating system, and only the built-in canmands are available.
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory: therefore, the operator must copy the appropriate CDM files
from an eKisting CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can cq;>y all files from an existing diskette by typing the PIP
command

PIP B: = A: *.*[v] cr

which ccpies all files from disk drive A to disk drive B, and verifies that
each file has been cc.pied correctly. The name of each file is displayed at
the console as the copy operation proceeds.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette: it results only in construction of a new operating
system. Further, if a diskette is being used only on drives B through D, and
will never be the oource of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6.7. SUBMIT ufn parm#! ••• parm#n cr

The ruBMIT canmand allows CP/M canmands to be batched together for
automatic processing. The ufn given in the SUBMIT command must be the
filename of a file which eKists on the currently logged disk, with an assumed
file type of "SUB." The SUB file contains CP/M prototype canmands, with
possible parameter substitution. The actual.parameters parm#l ••• parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted camrnands are processed sequentially by CP/M.

28

The prototype canmand file is created using the ED program, with
interspersed U$" parameters of the form

$1 $2 $3 ... $n

corresponding to the number of actual parameters which will be included when
the file is smrni tted for execution. When the SUBMIT transient is executed,
the actual parameters parrn#! ••• parrn#n are paired with the formal parameters
$1 ••• $n in the prototype canrnands. If the number of formal and actual
parameters does not correspond, then the subrni t function is aborted with an
error message at the console. The SUBMIT function creates a file of
substituted canmands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this canrnand file is read by the CCP as a SJurce of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots. Fur ther, the user can abort camnand processing at
any time by typin;l a rubout men the canrnand is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent canmands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs mich execute under CP/M can abort processing of
command files men error conditions occur by simply erasing any existing
$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" within the command file. Further, an
up-arrow symbol "t" may precede an alphabetic character x, which produces a
single ctl-x character within the file.

The last canrnand in a SUB file can initiate another SUB file, thus
allowing chained batch canmands.

SUpp:Jse the file ASMBL.SUB exists on disk and contains the prototype
commands

and the command

As.1 $1
DIR $1.*
ERA *.BAr<
PIP $2 :=$1.PRN
ERA $1.PRN

SUBMIT As.1BL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
smstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AS>1 X
DIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT ftmction can access a SUB file which is on an alternate drive
by precedi~ the file name by a drive name. Sutmitted files are only acted
up:m, however, when they appear on drive A. Thus, it is pJssib1e to create a
subrni tted file on drive B which is executed at a later time when it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
wi th the absolute byte address listed to the left of each line in
hexadecimal. Long. typeouts can be aborted by pushing the rubout key dur ing
pr intout. (The oource listing of the DUMP program is given in. the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. IDVCPM cr

The ~VCPM program allows the user to reconfigure the CP/M system for any
particular !Temory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the disf:X)sition of the new system
at program termination. If the first parameter is Ollitted or a "*" is given,
the ~VCPM program will reconfigure the system to its maximum size, based upon
the kilobytes of contigoous RAM in the host system (starting aat 0000H). If
the second parameter is ani tted, the system is executed, but not. permanently
recorded: if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The IDVCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation. . The
canmand forms are:

MOVCPM cr Relocate and execute CP/M for manage
ment of the current memory configura
tion (memory is examined for contigu
ous RAM, starting at 100H). Upon corn
p1etion of the relocation, the new
system is executed but not permanently
recordeq on the diskette. The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr

MOVCPM * * cr

MOVCPM n * cr

The canmand

MOVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation. The message

READY FOR "SYSGEN" OR
"SAVE 32 CPMxx.COM"

is J;rinted at the console up:m canpletion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE DRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION [RIVE NAME (OR REIURN T0 REBOOr)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will pranpt with:

DESTINATION ON B, THEN TYPE REillRN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to ~ the prompt:

DESTINATION [RIVE NAME (OR RETURN TO REBOOr)

until the operator res1JOnds with a single carriage return, which stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process wi th the old or new
diskette. Instead of performinq the SYSGEN operation, the user could have
typed

SAVE 32 CPMxx.CDM

at the canpletion of the IDVCPM function, \\hich would place the CP/M memory
image on the currently logged disk in a form which can be "p:ttched." This is
necessary when operating in a non-standard environment \\here the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr

MOVCPM 48 * cr

MOVCPM * * cr

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara
tion for permanent recording: response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.CDM"

Construct a maximum memory version of CP/M
and start execution.

It is im};Ortant to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Aqreement.

32

7. BDOS ERROR MESSAGES.

There are three error situations \\hich the Basic Disk Operating System
intercepts dur irg file processsirg. When one of these conditions is detected,
the BDOS pcints the message:

BDOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECI'OR
SELEC!'
READ ONLY

The "BAD SECI'OR" message indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error IIOre
than once a nonth, you soould dleck the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
readirg files generated by a controller };roduced by a different manufacturer.
Even toough controllers are claimed to be IBM-compatible, one often finds
small differences in recording formats. The MIS-800 controller, for example,
requires blo bytes of one's followirg the data CRC byte, \\hich is not required
in the IBM format. As a result, diskettes generated by the Intel Mm can be
read by alIIOst all other IBM-compatible systems, while disk files generated on
other manufacturer's equipment will produce the "BAD SECl'OR" message when read
by the MIS. In any case, recovery from this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, \\hich simply
ignores the bad sector in the file operation. Note, oowever, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The "SELEC!''' error occurs when there is an attempt to address a drive
beyond the A through D rarge. In this case, the value of x in the error
message gives the selected drive. The system reboots followirg any input from
the console.

The "READ ONLY" message occurs when there is an attempt to write to a
diskette \\hich has been designated as read-only in a STAT command, or has been
set to reed-only by the BDOS. In general, the operator soould reboot CP/M
either by using the \erm start procedure (ctl-C) or by performirg a cold start
whenever the diskettes are dlanged. If a changed diskette is to be read but
not written, BOOS allows the diskette to be dlanged without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is slbsequently charged to read/write if a \\arm or cold start occurs. Upon
issuirg this message, CP/M waits for input fran the console. An automatic
warm start takes place followirg any input.

33

8. OPERATION OF CP/M ON THE MOO.

This section gives ~erating procedures for using CP/M on the Intel MOO
microcomputer development system. A basic knowledge of the MOO· hardware ~nd
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The disk drives are labelled 0 through 3 on the MIS,
correspondim to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RESET switches are
depressed in sS1uence. The interrupt 2 light should go on at this {X>int. The
space bar is then depressed on the device which is to be taken as the system
console, and the light srould go ou t (if it does not, then check connections
and baud rates) • The roar switch is then turned off, and the CP/M signon
message srould appear at· the selected console dE;!vice, followed by the "A>"
system IX'anpt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT .0' switch on the front panel. The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except when
operatiIXT under DIJI', in \'which case the DIJI' program gets control instead.

Diskettes can be renoved from the drives at any time, and the system can
be shut down durim operation without affecting data integrity. Note,
however, . that the, user must not remove a diskette and replace it with another
wi thout rebooting the system (cold or warm start), unless the inserted
diskette is "recrl only."

Due to hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON x: BAD SECl'OR

where x is the drive \'which has a permanent error. This error may occur when
drive doors are q;>ened and closed- randomly, followed by disk operations,. or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the q;>eration again.

Termination of a CP/M sE:!ssion requires no sp=cial action, except that it
is necessary to renove the diskettes before turning the {X>wer off, to avoid
random transients which often make their way to the drive electronics.

It srould be noted that factory-fresh IBM-compatible diskettes should· be
used rather than diskettes which have· previously been used with any ISIS
version. In particular, the ISIS "FORMAT" operation produces non-standard
sector numbering throughout the diskette. This non-standard numbering
seriously degrades the p=rformance of CP/M, and will operate noticeably slower

34

than the distribution version. If it becomes necessary to reformat a diskette
(which smuld not be the case for standard diskettes), a program can be

written under CP/M which causes the MC6 800 controller to reformat with
sequential sector numbering (1-26) on each track.

Note: "Ma:; 800" and "ISIS" are registered trademarks of Intel Corporation.

35

I

APPENDIX B

OPERATION OF
THE CP/M CONTEXT EDITOR

01 [)~[j~Tfll RESEflRI:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGIT AL RESEARCH

~ights
uced,
J, or

Copyright (c) 1976, 1978 by Digital Research. Ar
reserved. No part of this publicetir- 'llay be rer
transmitted, transcribed, stored in _ etrieval S'

translated into any language or computer '.anguar
form or by any means, 'electronic, mech[Olical,
optical, chemical, manual or otherwise, Wil,llout
written permission of Digital Research, Post Offic
Pacific Grove, California 93950.

.il any
agnetic,
~1e prior
Box 579,

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchant .. Ji1ity or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes. .

1.

2.

Table of Contents

ED TUTORIAL . • .

1.1 Introduction to ED .
1.2 ED Operation ·
1.3 Text Transfer Functions

1.4 Memory Buffer Organization ·
1.5 Memory Buffer Operation . ·
1.6 Command Strings

1.7

1.8

Text Search and Alteration.

Source Libraries .

·

·
·

1.9 Repetitive Command Execution.

· · ·

· · ·
· · ·

·

·
·

·

·
·

1

1

1

1

5

5

7

8

· 11

· 12

ED ERROR CONDITIONS • • ·13

3. CONTROL CHARACTERS AND COMMANDS 14

ii

ED USER'S MANUAL

1. ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{
<filename> }

ED <filename>. <filetype>

In general, ED reads segments of the source file given by
<filename> or <filename> • <filetype> into central memory,
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem
porary (and eventually final) file:

Source

File

After
Edit (E)

Backup

File

x.BAK

Figure 1. Overall ED Operation

Append

(A)

Source
Libraries

(R)

Memory Buffer

Insert
(I)

Write

(W)

Type
(T)

Temporary

File

After
Edit

(E)

New

Source

File

x.y

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. The U command can be issued to
cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.
Characters are echoed as typed without translation, however.
The -U command causes ED to revert to "no translation" mode.
ED starts with an assumed -U in effect.

2

Figure 2. Hemory Buffer Organization

Source File Memory Buffer

1 Fi'rst Line ~ 1 .' First Line"

2 ,,'Appended," 2 1--' Buffered _"
-, - "

3 "Line~ " " " ~ ~ "Text "\..:...

s.:......t·" '--:'---C-, " -, \ MP _ " " ~ ,,~
I Unprocessed I "NT~ t I Free
I I L ex I
I Source I Append I Memory

. I I • Ll.nes I Space I
L_ - - - - - _. L- _______ --'

Next
Write

1

2

3

TP ..

Temporary File

, ~irst Line"

, Processed' ,"

" T~xt ,\" " -'- , --, ," ,
, , -,-, ,,-,
Free File

Space

1... _______ ,

Figure 3. Logical Organization of Memory Buffer

first
line

current
line CL

last
line

Memory Buffer

---------<cr><lf>

--------<cr><lf>

-----~~------<cr><lf>

--------<cr><lf>

3

* nA<cr> - append the next n unprocessed source

nW<cr>

E<cr>

H<cr>

O<cr>

Q<cr>

lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

end the edit. Copy all buffered text
to temporary file, and copy all un
processed source lines to the temporary
file. Rename files as described
previously.

move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory·
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position I of the source file. The
effects of the previous editing commands
are thus nullified.

quit edit with no file alterations,
return to CP/M.--

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then I is assumed. Thus, the commands A and W append
one line and write I line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-return key

4

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e
return «cr» and line-feed «If» characters, and cp
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CPo

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <If> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

5

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

's:J

Various commands can then be issued eh manipulate the CP
or display source text in the vicin~. f the CPo The
commands shown below with a prec, li._ J n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound ~ In (#) is replaced
by 65535. If an integer n is optional, but not supplied,
then n=l is assumed. Finally, if a plus sign is optional,
but none is specified, then + is assuHled.

±B<cr> - move CP to beginning of memor buffer
if +, and to bottom if -.

±nC<cr> - move CP by ±n characters
of buffer if +), countinl
as two distinct characV:'

.rd front
_ <cr><lf>

±nD<cr> - delete n characters ahead of CP if plus
and behinc CP if minus.

±nK<cr> - kill (ie remove) ±n lines of source text
using CP as the current reference. If
CP is not at the begi~ning of the current
line when K is issuea, then the charac
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n=O then move CP to the beginning of
the current lj "e (if it is not already
there) if nlO 1en first move the CP to
the beginnins the current line, and
th~n move it) the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

6

±nT<cr> - If n=O then type the contents of the
current line up to CPo If n=l then
type the contents of the current line
from CP to the end of the line. If
n>l then type the current line along
with n-l lines which follow, if +
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CPo The break key can be
depressed to abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout

Control-U

Control-C

Control-E

remove the last character

delete the entire line

re-initialize the CP/M System

return carriage for long lines
without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String

L B2T<cr>

2. 5COT<cr>

Effect

move to beginning
of buffer and type
2 lines:
"NOW IS THE

TIME FOR II

move CP 5 charac
ters and type the
beginning of the
line
"NOW I"

7

Resulting Memory Buffer

.L~ NOW IS THE<cr><lf>
l3:J TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW I~~ S THE<cr><lf>
l5:J

3.

4.

5.

6.

7.

2L-T<cr>

-L#K<cr>

I<cr>
TIME TO<cr>
INSERT<cr>
tz

-2L#T<cr>

<cr>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 65535
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
"INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>

TIME FOR<cr><lf>

~ALL

L:E..J
GOOD MEN<cr><lf>

NOW IS THE<cr><lf> ~
~

NOW IS THE<cr><lf>

TIME TO<cr><lf>

INSERT<cr><lf>~
~

NOW IS THE<cr><lf> ~
~ TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>

TIME TO<cr><lf> ~~
~ INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where cl through ck represent ~he characters to match followed
by either a <cr> or control -z. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character ck. If the n matches are
not successful, the CP is not moved from its initial position.
Search strings can include-ri (control-I), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

8

The following commands illustrate the use of the F
command:

Command String

1. B#T<cr>

2. FS T<cr>

3. FItzOTT

Effect

move to beginning
and type entire
buffer

find the end of
the string "S T"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

.6 NOW IS THE<cr><lf>
e!:l TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW IS T ~ HE<cr><l-f>
-~

NOW IS THE<cr><lf>

TI ~ME FOR<cr><lf> cp
ALL OD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

c <cr>
n

where cl through c n are characters to insert. If the inser
tion string is terminated by a tz, the characters cl through
c n are inserted directly following the CP, and the CP is
moved directly after character c n • The action is the same
if the command is followed by a <cr> except that a <cr><lf>
is automatically inserted into the text following character
c n • Consider the following command sequences as examples
of the F and I commands:

Command String Effect

BITHIS IS tz<cr> Insert "THIS IS "
at the beginning
of the text

9

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

FTIMEtz-4DIPLACEtz<cr>

find "TIME" and delete
it; then insert "PLACE"

3FOtz-3DSDICHANGESt<cr>

-8CISOURCE<cr>

find third occurrence
of "0" (ie the second
"0" in GOOD), delete
previous 3 characters;
then insert "CHANGES"

move back 8 characters
and insert the line
"SOURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE ~ FOR<cr><lf>

ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>

PLACE FOR<cr><lf>

ALL CHANGES~<cr><lf>
~

THIS IS NOW THE<cr><lf>

PLACE FOR<cr><lf>

ALL SOURCE<cr><lf>

~CHANGES<cr><lf>
L::£J .

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

n S c1 c 2···ck +z d1d 2 ···dm C<~~>}
and has exactly the same effect as applying the command string

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

n N c l c 2 ••• ck C ctrz }

which searches the entire source file for the nth occurrence
of the string clc2 ..• ck (recall that of fails if the string
cannot be found in the current buffer). The operation of the

10

~~ command is precisely the same as F except in the case that
the string cannot be found wi thin the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is iss'~d). Input lines are t~9n read until
the buffer is at le~st half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

wi th the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string clc2 ••• ck' If found, insert the string d}d2 ••• ,dm,
and move CP to follow dm• Then delete all characters foIlowing
CP up to (but not including) the string el,e2, •.. eq , leaving
CP directly after dm. If el,e2, •.• e q cannot be foUnd, then
no deletion is made. If the current line is

~ NOW IS THE TUm<cr><lf>
B:J

Then the corranand

JW tzWHATtztl<cr>

Results in

NOW WHAT ~ <cr><lf>
~

(Recall that tl ret-- Jents the pair <cr><lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries

ED also allow~ ~e inclusion of source libraries during
the editing process with the R command. The form of this
command is

11

where flf 2 •. f n is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO. LIB
until the end-of-file, and automatically inserts the charac
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com
mands together for repeated evaluation. The M command takes
the form:

where clc2 ... ck represent a string of ED commands, not inclu
ding another M command. ED executes the command string n
times if n>l. If n=O or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMAtz-SDIDELTAtzOTT<cr>

or equivalently

MSGAMMAtzDELTAtzOTT<cr>

12

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check (CRe) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where d is the currently selected drive (A,B, •••). The oper
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

3. CONTROL CHARACTERS AND COMr-fANDS

The following table summarizes the control characters
and commands available in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

14

Function

system reboot

physical <cr><lf> (not
actually entered in
command)

logical tab (cols 1,8,
15, ...)

logical <cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e.g. I stop typing)

Co nun and

nA

±B

±nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

o

±nP

Q

R

nS

±nT

± U

nW

nZ

±n<cr>

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autos can

return to original file

move and print pages

quit with no file changes

read library file

substitute strings

type lines

translate lower to upper case if U,
no translation if -U
write lines

sleep

move and type (±nLT)

15

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:4~0T

is interpreted as "type from the current line number through the line whose absolute
number is 400." CombiniJ1g the two line reference forms, the command

345::400T

for example, is interpreted as "move to absolute line 345, then type through absolute
line 4(110." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, "~V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal) and "total"
is the size of the memory buffer. '

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

~X

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), 0 (originaI), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c is the command where the error occurred.

APPENDIX C

CP/M 2.0 USER'S GUIDE
FOR CP/M 1.4 OWNERS

01 (]~[j~Tfll RESEflRl:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE

FOR CP/M 1.4 OWNERS

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No par't of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwisE!, without the prior written permission of
Digital Research, Post Office Box 579, Pacifjc Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificalJy disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digita] Research.

1.

2.

3.

4.

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

COQyright (c) 1979
Digital Research, 30~ 57~
Pacific Grove, California

An Overview of CP/M 2.0 Facilities.

User Interface

Console Commana ~rocessor (CCP) Intertace

STAT Enhancements
5. PIP Bnhancements

• 1

• 3

• 4
,-

• • :>

6.

7.

8D Enhancements • 10

The XSU8 Function • 11

8. 3DOS Interface Conventions • • . 12

9. CP/M 2.0 Memory Organization ••• • 27

10. 3105 Differences •..•.•• • 28

1. AL'iI OVERVIEvv OF CP/t1 2.0 FACILI'I'IES.

CP/M 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamenta~ file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated by user numbers, with facilities for file copy operations
from one user area to another. Bowerful relative-record random access
functions are present in CP/M 2.0 whIch provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.8 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided which aids in assembly or disassembly of sector sizes
which are multiples of the fundamental 128 byte data unit, and the
system. alteration manual includes general~purpose subroutines which
use the this deblocking information to taKe advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing up to 512 logical file
extents, where each logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), thUS maintaining compatibility with 9revious
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M'S unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward" compatible from earlier
ver s ions to the full ,e igh t mega oytes, wh ile random access
compatibility stops at 512K byte files. Due to CP/M 2.0's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STAT and PIP both account for
file attributes qnd user areas, while the CCP provides a "login"

(All Information Contained Herein is Proprietary to Digital ResearCh.)

1

function to change from one user area
formats directory displays in a more
for both CRT and hard-copy devices in
functions.

to anotner. ~he CCP also
convenient manner and accounts

its enhanced line editing

The sections below point out the inaividual differences between
CP/M 1.4 and CP/M 2.0~ with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
presented in the Digital Research manual ~CP/M 2.0 Alteration Guide.~

(All Information Contained Herein is proprietary to Digital Research.)

2

!. USER INTERFACE.

Console line processing takes CRT-type devices into account with
:hree new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
.imultaneous1v depressed):

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-t-t
ctl-R
ctl-lJ
ctl-X

removes and echoes last character
reboot when at beginning of line
physical end of line
oackspace'one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new line
remove current line after new line
backspace to beginning of current line*

[n ?articular, note that ctl-H produces the proper backspace overwrite
Eunction (ctl-H can be changed internally to another Character, such
!s delete, through a simple single byte change). Further, the line
!ditor keeps track ot the current prompt column position so that the
)perator can properly align data input following a ctl-U, ctl-R, or
::tl-X command.

(All Information Contained Herein is proprietary to Digital Research.)

3

3. CONSOLE COMMAl~D PROCESSOR (CCP) IN'fERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. 'I'he altered DIR format is
self-explanatory, while the USER command takes the form:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on. the active disks.

The
subsequent

active
USER

is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, gerhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA w.*
command affects only the current user number. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

S'I'A'r VAL:

produces a summary of the available status commands, resulting in the
output:

'I'emp Rio Disk: d:=R/O
Set Indicator: a:filename.typ $R/O $R/w $SYS $DIR
Disk status DSK: d:D5K:
User Status USR:
Iobyte Assign:
(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.tY9 ~S

wnere "d:" is an optional
unambiguous or ambiguous
format:

Size
48
55

65536

Recs
48
55

128

3ytes
6k

12k
2k

dr ive
file

name, and "f ilename. typ" is an
name, produces the output ,display

Ext Acc
1 RiO A:ED.COM
1 Rio (A:PIP.COM)
2 R/w A:X.DA'I'

where tne $5 parameter causes the "Size" field to be displayed
(without the $5, the Size field is skipped, but the remaining fields
are displayed). 'rhe Size field lists the virtual file size in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. The "Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only wnen written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-tile record position and the Recs
field counts the logical records of each extent (each of these
extents, however, :nay contain unallocated "holes" even though they are
added into the record count). 'rhe "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to l28K oytes (8
logical extents) directly addressed by a single directory entry,
de?ending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

'rne "Acc"
changed using

field gives the Rio or Rlw access mode, which is
the commands shown below. Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP. COM file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands. The
four command forms

STAT d:filename.typ ~R/O
S'fA'f d: filename. typ $R/W
STAT d:filename.typ $SYS
S'fA'£ d: filename. ty? $DIR

set or reset various permanent file indicators. The RIO indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The RIO status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. The "filename.ty!:?:' may be ambiguous or unambiguous, but in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denote~ by old:" is
optional.

When a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

ddos Err on d: File R/O

The BOOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continu~). The command form

S'fA"r d: DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, ••• , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in KilObytes. The directory size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

l28K in the example above). The number of records oer block shows the
basic allocation" size (in the example, 128 recordS/block times 128
bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors ~er track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skio lower-numbered disk areas allocated to other
logical disks. The command form

S~AT DSK:

produces a drive characteristics table for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers whiCh have files on the
currently addressed disk. The display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), with three user numbers
whiCh have active files on the current disk. The operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS.

PIP provides three new functions which account for the features
of CPIM 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commanas are:

Gn Get File from User number n
(n in the range 0 - 15)

W write over RiO files without
console interrogation

R Read system files

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:=A:*.*[G2]

copies all of the files from the A drive directory for user number 2
inio the A drive directory of the currently logg~d user number. Note
that to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. 'rhe sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 0
DDT PIP. COM
(note PIP size

G0
USER 3
SAVE s PIP.COH

login user {)
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under ODT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent RIO status. If attempt is made to overwrite a RiO
file, the prompt

(All Information Contained Herein is proprietary to Digital Research.)

8

nRSTINATION FILE IS RIO, DELETE (yiN)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED **
is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of RiO file overwrite, the command line can include the W
parameter, as shown below

PIP A:=B:*.COM[W]

which copies all non-system files to. the A drive from the B drive, and
overwrites any RIO files in the process. If the operation involves
several concatenated files, the w parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = B:ED.COM[R]

for example, reads the ED. COM file from the B drive, even if it has
been marked as a RiO and system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CPIM is only maintained if the file does not exceed one
megabyte, no file attri~tes are set, and the file is created by user
0. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the "v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED user's guide, where the "v" command is
described.

ED also takes file attributes into' account.
attempts to edit a read/only file, the message

** FILE IS READ/ONL~ **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edi t session, and uses S'fA'r to change the file attribute to R/w. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STA'r program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

1"

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, 3elf-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BDOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$I.HEX
R
G0
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'r whi'ch is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is proprietary to Digital Research.)

11

8. BOOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register 9air DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

o System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Funco Output
5 List Output
6* Direct Console I/O
7 Get I/O Byte
a Set I/O Byte
~ Print String

10* Read Console Buffer
11 Get Console Status
12* Return Version Number
13 Reset Disk System
14 Select Disk
15* Open File
16 Close File
17* Search for First
18* Search for Next

19* Delete File
20 Read Sequential
21 write Sequential
22* Make File
23* Rename File
24* Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr(Alloc)
28* write Protect Disk
29* Get Addr(R/O Vector)
30* Set File Attributes
31* Get Addr(Disk Farms)
32* Set/Get User Code
33* Read Random
34* Write Random
35* Comoute File Size
36* Set Random Record

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/O
operations. Programs whicn currently perform direct I/O through the
BIOS should be changed to use direct I/O under BOOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to ~he extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift
head" function which returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. osing function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file operations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational purposes, the Fca format is shown with the following
fields:

(All Information Contained Herein is proprietary to Digital Research.)

13

Idrlfllf21/ /lfBltllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ... f8 contain the file name in ASCII
upper case, with high 'bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t21 = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

Tne Operi File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made nc

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: SearCh for First.

Search First scans the directory for a match with the file given
by the FCa addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A ~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File.

The Make File operation is identical to previous versions ot
CP/M, except that byte s2 is zeroed upon entry to the BOOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Protect Current Disk.

The
protection
t~e disk,
message

disk write protect function provides tem90rary write
for the currently selected disk. Any attem9t to write to

before the next cold or warm start o~eration ~roduces the

Bdos Err on d: R/O

Function 29: Get R/O vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. 'rhe R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

latch, and chanqes the matched directory entry to contain the selected
naicators. Indicators fl' through f4' are not 9resently used, but
lay be useful for applications programs, since they are not involved
n the matching 9rocess during file open and close operations.
ndicators f5' tnrough f8' and t3' are reserved for future system
,xpansion.

Function 31: Get Disk Parameter Block Address.

'rhe address of the BIOS resident disk J?arameter block is
eturned in HL as a result of this function call. This address can be
,sed for either of two purJ?oses. First, the disk parameter values can
Ie extracted for display and space ,computation J?urposes, or transient
Irograms can dynamically change the values of cur rent disk J?arameters
'hen the disk environment changes, if required. Normally, application
Irograms will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
ctive user number by calling function 32. If register E = FF
exadecimal, then tne value of the current user number is returned in
egister A, where the value is in the range 0 to 31. If register E is
ot FF, then the current user number is changed to the value of E
modulo 32).

Function 33: Read Random.

'l'he Read Random function is similar to the sequential file read
peration of previous releases, except that the read ogeration takes
lace at a particular record number, selected by the 24-bit value
onstructed from the three byte field following the FCB (byte
ositions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
f 24 bits is stored with least significant byte first (r0), middle
yte next (rl), and high byte last (r2). CP/M release 2.0 does not
eference byte r2, except in computing the size of a file (function
5). Byte r2 must be zero, however, since a non-zero value indicates
verflow past the end of file.

Thus, in version 2.0, the r~,rl byte pair is treated as a
ouble-byte, or "word" value, which contains the recorfi to read. This
alue ranges from 0 to 65535, providing access to any particular
ecord of the 8 megabyte file. In order to orocess a file using
andom access, the base extent (extent 0) must first be opened.
Ithough the base extent mayor may not contain any allocated data,
his ensures that the file is properly recorded in the directory, and
s visible in DIR requests. The selected record number is then stored
nto the random record field (r0,rl), and the BOOS is called to read
he record. U90n return from the call, register A either contains an

All Information Contained Herein is ProJ?rietary to uigital Research.)

17

error code, as listed below, or the value 00 indicating the o?eration
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. 'rhus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disK

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating ooeration complete.

Function 34: write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

~itch as it does in sequential mode under either CP/M 1.4 or CP/M
• Ii! •

The error codes returned
~ndom read operation with
1dicates that a new extent
Ie rflow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

Function 35: Compute Fi~e Size.

When computing the size of a file, the DE register pair
ldresses an FCB in random mode format (bytes r0, rl, and r2 are
:esent). The FCB contains an unambiguous file name which is used in
1e directory scan. Upon return, the random record bytes contain the
,irtual~ file size which is, in effect, the record address of' the
~cord following the end of the file. if, following a call to
Inction 35, the high record byte r2 is 01, then the file contains the
lximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
>nstitute a 16-bit value (r0 is the least significant byte, as
~fore) which is the file size.

Data can be aPgended to the end of an existing file by simply
tIling function 35 to set the random record position to the end of
lle, tnen performing a sequence of random writes starting at the
:eset record address.

'rne virtual size of a file corresponds to the physical size when
1e file is written sequentially. If, instead, the file was created

random mode and "holes" exist in the allocation, then the file may
1 fact contain fewer records than the size indicates. If, for
:ample, only the last record of an eight megabyte file is written in
lndom mode (i.e., record number 65535), then the virtual size is
i536 records, although only one block of data fs actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the
'oduce the random record position from a file
'itten sequentially to a particular point.
ieful in two ways.

BOOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
quential file to extract the positions of various ~key" fields. As
lch key is encountered, function 36 is called to compute the random
!cord position for the data corresponding to this key. If the data
lit size is 128 bytes, the resulting record position is placed into a
lble with the key for later retrieval. After scanning the entire
.le and tabularizing the keys and their record numbers, you can move
lstantly to a particular keyed record by performing a random read
ling the corresponding random record number which was saved earlier.
Ie scheme is easily generalized when variable record lengths are

,11 Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a ~articular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RA~DOM.COM, the CCP level
command:

RAN DOM X. DA'r

starts the test program. 'rhe program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and C
are simple command characters corresponding to random write, r~ndorr
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed b)
a carriage return. RANDOM then writes the character string into thE
X.DAT file at record n. If the R command is issued, RANDOM read~
record number n and displays the string value at the console. If thE
Q command is issued, the X.DAT file is closed, and the program return~
to the console command processor. In the interest of brevity (ok, sc
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where thE
input file is opened or created, followed by a continuous loop at thE
label ~ready" where the individual commands are interpreted. ThE
default file control block at 005CH and the default buffer at 00801
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.:

20

which contain the principal input line processor,
'fhis particular program shows the elements of
processing, and can be used as the basis for
development .

called
random
further

"readc."
access

program

0100

0000 =
0005 =

01001 =
01002 =
00109 =
fH.l0a =
000c =
0eJ0f =
0t110 =
10016 =
JIt'.l21 =
0022 =

005c =
007d =
007£ =
0080 =

000d =
000a =

01010 31bc0

0Hl3 0e0c
0105 cd050
0108 fe20
010a d2160

010d 111b0
01110 cdda0
0113 c300fO

. *~*** ,
· * ,
i* sample random access program for cp/m 2.0
· * '. ,

*
*
*

.*** ,

i
reboot
bdos

coninp
conou t
",?S tr ing
rstring
version
openf
closef
makef
reacir
writer

fcb
ranrec
ranovf
buff

cr
If
· ,

org

eau
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
eau

equ
equ
equ
equ

equ
equ

100h

0f000h
0el05h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

ibase of tt)a

isystem reboot
ibdos entry point

iconsole input function
iconsole output function
iprint string until 1$'
iread console buffer
ireturn version number
ifile open function
iclose function
imake file function
iread random
iwrite random

idefault file control block
irandom record position
ihigh order (overflow) byte
ibuffer address

icarriage return
;line feed

.*~**********************************~************** ,

.* * ,
;* load SP, set-up file for random access *
.* * ,
.*~*** ,

;
versok:

lxi sP,stack

version 2.0?
mvi c,version
call bdos
cpi 20h ;version 2.10 or better?
jnc versok
bad version, message and go back
lxi d,badver
call print
jmo reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f
0118 115c0
011b cd050
011e 3c
011f c2370

0122 0e16
0124 11Sc'"
0127 cd050
012a 3c
0120 c237e

(C)12e 113a0
0131 cdda0
0134 c30iiJ0

0137 cde5fJ
013a 227d0
013d 217f1O
0140 3600
~142 fe51
10144 c2560

0147 0e10
0149 115cl1
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 feS7
10158 c2890

015b 114d0
015e cdda0

mvi c,openf :open default fcb
lxi d ,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

;

· cannot open file, so create it ,
mvi c,makef
1xi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

;
cannot create file, directory full
lxi d,nospace
call orint
jmp reboot ; back to ccp

· , .*** ,
.* ,
· * ,

*
loop back to "ready" after each command *

.* * ,

.*******w*** ,
· ,
ready:
; file is ready for processing
;

call readcom ;read next command
snld ranrec ;store input record#
lxi h,ranovf
mvi m,0 ;clear high byte if set
cpi 'Q' ; qui t?
jnz notq

· ,
quit processing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error :error message, retry
jmp reboot ;back to ccp

;
.*** ,
.* * ,
:* end of quit command, process write *
.* * ,
.*** ,
notq:
· not the quit command, random write? ,

cpi 1 ~v 1

jnz notw

· this is a random write, fill buffer until cr ,
lxi d ,da tmsg
call print ;data prompt

(All Information Contained Herein is proprietary to Digital Research.)

22

0161 0e7f
0163 21800

0166 c5
0167 e5
0168 cdc20
016b el
016c cl
016d felljd
016f ca780

0172 77
0173 23
0174 I1d
0175 c2660

0178 3600

017a 0e22
0.17c 115c0
017f cd050
0182 b7
10183 c2b90
0ld6 c3370

0189 fe52
018b c2b90

018e 0e21
0190 115c0
0193 cd0510
019'6 b7
10197 c2b90

019a cdcf0
019d 0e80
019f 21800

01a2 7e
101a3 23
01a4 e67f
0la6 ca370
01a9 c5
131aa e5

mvi c,127 ~ul? to 127 characters
lxi h,buff ~destination

r loop: ~read next character to buff
puSh b ~ save counter
l?ush h ~next destination
call getchr ~character to a
pop h ~restore counter
PO? b ~restore next to fill
cpi cr ~end of line?
jz er loo?
not end; store character
mov m,a
inx h ~next to fill
dcr c ~counter goes down
jnz rloop ~end of buffer?

erloop:
end of read loop, store tJ0
mvi m,0

write the record to selected record number
mvi c,writer
lxi d,fcb
call bdos
ora a ;error code zero?
jnz error ~ message if not
jmp ready ~for another record

~

.*** ,

. * ,
~* end of write command, ~rocess read
. *
I

*
*
*

.*** I

notw:
not a write command, read record?
c?i 'R'
jnz error ~skip if not

read random record
mvi c, readr
lxi d, fcb
call bdos
ora a ~return code 100?
jnz error

read was successful, write to console
call crlf ~new line
mvi c,128 ~max 128 characters
lxi h,buff ~next to get

wloop:
mov a,m ~next character
inx h ;next to get
ani 7fh ~mask parity
jz ready ~for another command if 1310
push b ~ save counter
push h ~ save next to get

(All Information Contained Herein is proprietary to Digital Research.)

23

01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 IOd
01b3 c2a20
01b6 c3370

01b9 11590
01bc cdda0
01b£ c3370

01c2 0e01
01c4 cd050
01c7 c9

01c8 0e02
01ca Sf
01cb cd050
01ce c9

01cf 3e0d
101dl cdc80
01d4 3e0a
101d6 cdc80
101d9 c9

01da d5
01db cdcf0
01de dl
010f 0e09
01el cd050
0le4 c9

cpi igraphic?
cnc putchr iskip output if not
pop h
pop b
dcr c i coun t=coun t-l
jnz wloop
jmp ready

i
.******~** ,
· * ,
i* end of read command, all errors end-ue here

*
*

· * * ,
.**************~************************************ ,

error:
lxi
call
jmp

d,errmsg
?rint
ready

i
.**************************~************************ ,
.* * ,
i* utility subroutines for console i/o *
.* * ,
.*******~*****************************~*~*********** ,
getchr:

iread next console character to a
mvi c,coninp
call bdos
ret

putchr:
iwrite character from a to console
mvi c,conout
mov e,a icharacter to send
call bdos isend character
ret

i
cr If:

isend carriage return line feed
mvi a,cr i car r iage return
call putchr
mvi a,lf iline feed
call putchr
ret

· ,
pr int:

iprint the buffer addressed by de until $
?ush d
call crlf
pop d inew line
mvi c,pstring
call bdos iprint the string
ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

0le5 l16b0
0le8 cddaiO
0leb 0e0a
i:Hed ll7alil
01£0 cd050

101f3 21000
0lf6 l17c0

;read
lxi
call

the next command line to the conbuf
d,prompt

mvi
lxi
call
command
lxi

?rint ;command?
c,rstring
d ,conbuf
bdos ;read command line
line is present, scan it
h,0 ;start with 0000
d,conlin;command line

0lf9 la readc:
lxi
ldax d ;next command character

0lfa 13
01£b b7
01fc c8

01fd d630
01£f fe0a
0201 d2l3iil

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 11 9
o 20a 85
0200 6:t
020c d2£90
(')20£ 24
02111 c3f90

0213 c630
0215 feb1
0217 d8

0218 e65f
10 21a c9

endrd:

inx
ora

d ;to next command position
a ;cannot be end of command

rz
not zero, numeric?
sui '0'
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;~2

mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

c,l
b,h
h
h
b
1
l,a
readc
h
readc

;bc = value * 2
; *4
;*8
;*2 + *8 = *10
;+digit

;for another char
;overflow
;for another char

end of read, restore value in a
adi '0' ;command
coi 'a' ;translate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

;
.*******************~***********~**~**~************* ,
. * ,
;* string data area for console messages
. * ,

*
*
*

.*** ,

021b
oadver:

536f79 db 'sorry, you need cp/m version 2$'
nospace:

023a 4e6f29 db 'no directory spaceS'
da tmsg:

o 24d 547970 db 'type data: $,
e r rmsg:

0259 457272 db 'error, try again.$'
pr ompt:

026b 4e6570 db 'next command? $'

All Information Contained Herein is Proprietary to Digital Research.)

25

027a 21
027b
027c
0021 =

029c

02bc

·*** ,
.* * ,
~* fixed and variable data area *
. * * ,
.*** ,
conbuf: db conI en ~length of console buffer
consiz: ds 1 ~resulting size after read
conlin: ds 32 ~length 32 buffer
conlen equ $-consiz
~

ds 32 ~16 level stack
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.

26

9. CP/M 2.0 MEMORY ORGANIZATION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for ?opular memory sizes are
shown in the table below.

Module
CCP
BOOS
BIOS
Top of Ram

20k
3400H
3C00H
4A00H
4FFFH

24k
4400H
4C00H
5A00H
5FFFH

32k
6400H
6C00H
7A00H
7FFFH

48k
A400H
AC00H
BA00H
BFFFH

64k
E400H
EC00H
FA00H
FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MOS-800 with standard IBM 8~ floppy disk drives. The disk
layout is shown below:

Sector
1
2
3
4
5
6
7
ti
y

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Track 00 Module
(Bootstrap Loader)
3400H CCP + 000H
3480H CCP + 080H
35~0H CCP + 100H
3580H CCP + 180H
3600H CCP + 200H
3680H CCP + 280H
370~H CCP + 3008
3780H CCP + 3808
3800H CCP + 400H
3880H CCP + 480H
3900H CCP + 500H
3980H CCP + 580H
3A00H CCP + 600H
3A80H CCP + 680H
3B00H CCP + 7008
3B80H CCP + 780H
3C00H BOOS + 000H
3C80H BOOS + 080H
3D00H BOOS + 100H
3D80H BOOS + 180H
3E00H BOOS + 200H
3E80H BDOS + 280H
3F00H BOOS + 300H
3F80H BDOS + 380H
4000H BOOS + 400H

Track 01 Module
4080H 800S + 480H
4l00H BOOS + 500H
4l80H BOOS + 580H
42008 BOOS + 600H
4280H BOOS + 6808
4300H BOOS + 700H
43808 BOOS + 780H
44008 BOOS + 800H
4480H 800S + 880H
4500H BOOS + 900H
4580H BOOS + 980H
4600H BOOS + A00H
46808 BDOS + A80H
4700H BDOS + B00H
4780H BOOS + B80H
4800H BOOS + C00H
4880H BDOS + C80H
4900H BOOS + D00H
4980H BOOS + D80H
4A00H BIOS + 000H
4A80H BIOS + 080H
4800H BIOS + 100H
4880H BIOS + 180H
4C00H BIOS + 200H
4C80H BIOS + 280H
4D00H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the 8IOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

'rhe CP/M 2.0 Basic I/O System differs only slightly in concept
from its piedecesssors. Two new jum9 vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1 :
2:
3 :
4 :
5 :
6 :
7 :
8 :
9: bpb

rpb
maxb

. ,
boot:
i
listst:

i
selds k:

i
selsec:

org
maclio
jmp

jmp

4000h
diskdef
boot

listst ilist status
sectran isector translate
4

j ml?
disks
large capacity drive
equ
equ
equ
diskdef
diskdef
diskdef
disKdef

ret

xra
ret

16*1024 ibytes l?er block
bpb/128 ;records per block
65535/rpb ;max block number
0,1,58,3,bpb,maxb+l,128,0,2
1,1,58"bpb,maxb+l,128,0,2
2,10
3,1

inop

a ; nop

;drive number in c
lxi h,0 ;00010 in hI produces select error
mov a,c ;a is disk number 0 ••• ndisks-l
cpi ndisks ;less than ndisks?
rnc ;return with HL = 0000 if not
prol?er disk number, return dpb element address
mov
dad
dad
dad
dad
lxi
dad
ret

l,c
h ;*2
h ;*4
h ;*8
h ; *16
d,dpbase
d ;HL=.dpb

;sector number in c
lxi h,sector
mov
ret

m,c

10:
11 :
12 :
13 :
14:
15 :
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
2a:
29:
310:
31 :
32:
33:
34:
35:
36:
37:
38:
39:
410:
41 :
42:
43:
44:
45:
46:
47:

sectran:
;translate sector BC. using table at DE

iHL = .tran xchg
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: . dad b again if double precision tran ,
49: mov I,m ;only low byte necessary here
50: fill both H and L if double precision tran
51 : ret ;HL = ??ss
52: . ,
53: sector: ds 1
54: endef
55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jum?
vector elements). 'rhe last two elements provide access to the
"LISTST" (List Status) entry point for D~SPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different tnan the ~revious 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not o?erate under version 2.0, but an
update version will be available from Digital Research in the near
fu tur e.

'rhe "SECTRAN" (Sector Number 'rranslate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
sUbroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk system, and is described
below.

A macro library is shown in the listing,. called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

!vtACL 18 DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , •..
·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information Contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable ~ortion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion
DISKDEF macros, with the
END statement. The ENDEF
necessary uninitialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(End of Diskdef) macro generates the
areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, " to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[(1] is an ootional 1.4 compatibility flag

'rhe va lue "dn" is the drive numbe r be ing de f inea wi th th is DISKDEF
macro invocation. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. i~hen present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
s k f par am e t e r i s 0 mit ted (0 r e qua 1 to 0). The" b 1 s" par am e t e r
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 3192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and tr~e BIOS-resident ram space is reduced. 'rhe "dks"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity ,is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of cnanging disks without a restart is quite low. The "ofs" value
determines the number of tracks to' skip when this particular drive i~
addressed, which can be used to reserve additional operating systerr

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table s9ace, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKOEF
DISKOEF
OISKOEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors oer
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tr ack s.

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

OPBASE
DPEra :
OPEl:
DPE2 :
DPE3 :

EQU
DW
DW
DW
DW

$
XLTra,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,OPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary tb Digital Research.)

31

followed by three 16-bi t "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, OPEl, DPE2, or OPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. Program lines 22 through 36 give
a sample CP/M 2.0 SELOSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BOOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Thus, the BOOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the BOOS. The BOOS
suosequently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SECTRAN simply returns the same
value which it receives. ;rhe table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
OB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (B = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresl?onding to the first element 'of a disk parameter
heade r (XLT0 in the case shown above). The S ECTRAN sub r ou tine then
fetches the translated sector number by adding tne inl?ut sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains l6-bit elements
whose value must be returned in HL.

Following the ENOEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
BIOS and the end 6f memory. The size of the uniniti~lized RAM area is
determined by EQO statements generated by the ENDEF macro. For a
standard four-drive system, the 8NDEF macro might oroduce

4C72 =

4DBIii =
013C =

BEGDA'r EQU $
(da ta areas)
ENDDA'r EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAM begins at location 4C728, ends
at 4D80H-l, and occupies 013C8 bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BOOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing olocking and deblocking to take place at the
BIOS leve 1.

See the "CP/M 2.0 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

APPENDIX D

OPERATION OF
THE CP/M DEBUGGER

01 [)~[j~Tf1l RE~Ef1Rr:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M DYNAMIC DEBUGGING TOOL (DDT>

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950. .

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Page

I.
II.

INrROnucrION •••••••••••••••••••••••••••••• < •••••••

nor mMMAN'Il3 •••••••••••••••••••••••••••••••••••••
The A
The D
The F

(Assemble) Command •••••••••••••••••••••
(Display) Command ••••••••••••••••••••••
(Fill) Command •••••••••••••••••••••••••

1.
2.
3.
4.
5.
6.

The G (Go) Command •••••••••••••••••••••••••••

7.

The I
The L
The M

8. The R
9. The S
10. The T
11. The U

(Input) Command ••••••••••••••••••••••••
• ••••••••••••••••••••••••
• ••••••••••••••••••••••••

(List) Command
(Move) Command
(Read) Command
(Set)
(Trace)

•••••••••••••••••••••••••
Command ••••••••••••••••••••••••••

Command ••••••••••••••••••••••••
(Untrace) Command ••••••••••••••••••••••

12. The X (Examine) Command ••••••••••••••••••••••
III. IMPLEMENTATION NOTES •••••••••••••••••••••••••••••
N • ~ EXAMPLE •••••••••••••••••••••••••••••••••••••••

1
3
3
4
4
4
5
6
6
6
7
7
8
8
9
10

CP/M Dynamic Debugging Tool (DDT)

User's Guide

I. Introduction.

The DDT ~ogram allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger is initiated by
typing one of the following commands at the CP/M Console Command level

DDT
DDT filename.HEX
DDT filename.COM

\'.here "filename" is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into l~in memory in the place of the Console
Canmand Processor (refer to the CP/M Interface Guide for standard memory
orqanization), and thus resides directly below the Basic Disk Operating System
portion of CP/M. The BOOS starting address, which is located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or COM file. The action is identical to the sequence of
commands

DDT
Ifilename.HEX or Ifilename.COM
R

where the I and R cammands set up and read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DDi' prints a sign-on message in the format

nnK DDr-s VER m.m

where nn is the rremory size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

0 Diqital Research standard version
M ML6 version
I IMSAI standard version
a Qnron systems
S Diqital Systems standard version

and m.m is the revision number.

1

Following the sign on message, DDT prompts the operator with the character
"_" and waits for input canmands from the console. The operator can type any
of several single character canmands, terminated by a carriage return to
execute the canmand. Each line of input can be line-edited using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last character typed
remove the entire line, ready for re-typing
system reboot

Any command can be up to 32 characters in length (an automatic carriage return
is inserted as the 33rd character), where the first character determines the
command type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCII .
F fill memory with constant data
G begin execution with optional breakpoints
I set up a standard input file control block
L list memory using assembler mnemonics
M move a memory segment from source to destination
R read program for subsequent testing
S substitute memory values
T trace program execution
U untraced program monitoring
X examine and optionally alter the CPU state

The command character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by coounas or single blank characters.
All DDT numeric output is in hexadecimal form. In all cases, the commands are
not executed until the carriage return is typed at the end of the command.

At any {X)int in the debug run, the operator can stop execution of Dor
using either a ctl-C or G0 (jmp to location 0000H), and save the current
memory image using a SAVE command of the form

SAVE n filename.COM

where n is the nUnDer of pages (256 byte blocks) to be saved on disk. The
nurrber of blocks can be determined by taking the high order byte of the top
load crldress and converting this nurriber to decimal. For example, if the
highest crldress in the Transient Program Area is 1234H then the nurrber of
pages is 12H, or 18 in decimal. Thus the operator could type a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, and can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typing

2

DIJI' X.COM

which reloads freviously saved program from loaction HJ0H through p:lge 18
(12FFH) • The rna.chine state' is not a p:1.rt of the COM file, and thus the
program must be restarted from the beginning in order to properly test it.

I I • DIJI' CX>MMAN])s.

The individual comrna.nds are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the command.
If control is p:lssed to a frogram under test, and the program has not reached
a breakfX)int, control can be returned to DDT by executing a RST 7 from the
front p:lnel (note that the rubout key should be used instead if the program is
executing a T or U comrna.nd). In the explanation of each command, the command
letter is srown in rome cases with nurrbers separated by canmas, mere the
nurrbers are represented by lower case l'etters. These nurrbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer nurrbers will be automatically truncated on the right).

Many of the canmands operate ufX)n a "CPU state" which corresponds to the
program under test. 'I'he CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the frogram counter (P) and stack }:Ointer (S), mich default to 100H. The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and. R
commands) •

1. The A (Assemble) Command. DOl' allows inline assembly language to be
inserted into the current rremory image using the A command which takes the
form

As

where s is the hexadecimal starting crldress for the inline assembly. DIJI'
prompts the console wi th the crldress of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolute hexadecimal form. Each sucessive
load crldress is fr inted before reading the console. The A command terminates
when the first empty line is input from the console.

Upon canpletion of assembly language input, the operator can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler }:Ortion of DDT can be overlayed by
the transient program being tested, in mich case the DIJI' program responds
wi th an error condition men the A and L commands are used (refer to Section
IV).

3

2. 'l.'he D (Display) Command. The D corranand allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Os
Os,f

In the first case, memory is displayed from the current display crldress
(initially 100H), and continues for 16 display lines. Each display line takes
the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display crldress in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c's), \tvhere non-graphic
characters are p: inted as a J;eriod (.) symbol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supp:>rts only uJ;Per case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

The second form of the D canmand shown above is similar to the first,
except that the di splay crldress is first set to address s. The third form
causes the display to continue from crldress s through crldress f. In all
cases, the display address is set to the first address not displayed in this
command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command. The F command takes the form

Fs,f,c

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. The effect is as follows: Dm stores the constant
c at crldress s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated. Thus, the
fill command can be used to set a memory block to a specific constant value.

4. The G (Go) Command. Program execution is started using the G comand,
wi th up to two optional breakp:>int addresses. The G corranand takes one ot the
forms

G
Gs
Gs,b

4

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the p:-ogram counter in the current machine state, with no breakpoints set
(the only 'Way to ra;Jain control in DDl' is through a RST 7 execution). The
current p:-ogram counter can be viewed by typing an X or XP command. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are srecified, one at b and the other at c. Encountering either
breakJ;X>int causes execution to stop, and both breakJ;X>ints are subsequently
cleared. The last two forms take the program counter fran the current machine
state, and set one and two breakJ;X>ints, resrectively.

Execution continues fran the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDl'. Thus, if the program under test does not reach
a breakJ;X>int, control cannot return to DDl' without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and tyres

*d

where d is the stop address. The machine state can be examined at this point
using the X (Examine) canmand. The operator must srecify breakJ;X>ints which
differ fran the p:-ogram counter address at the beginning of the G canmand.
Thus, if the current program counter is 1234H, then the canmands

G,1234
and

G41ll1ll,400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

5. The I (Input) Command. The I canmand allows the operator to insert a
file name into the default file control block at SCH (the file control block
created by CP/M for transient IX'ograms is placed at this location~ see the
CP/M Interface Guide). The default FCB can be used by the IX'ogram under test
as if it had been passed by the CP/M Console Processor. Note that this file
name is also used by DDl' for reading additional HEX and COM files. The form
of the I canmand is

Ifilename
or

5

Ifilename.filetype

If the second form is used, arrl the filetype is either HEX or COM, then
subsequent R commarrls can be used to read the pure binary or hex format
machine code (see the R canmand for further details).

6. The L (List) Command. The L canmand is used to list assembly language
mnerronics in a particular program region. The forms are

L
Ls
Ls,f

The first canmand lists twelve lines of disassembled machine code from the
current list crldress. The second form sets the list address to s, and then
lists twelve lines of code. The "last form lists disassembled code from s
thr"ough address f. In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakp:>int, the list address is set to the current
value of the p:ogram counter (see the G and T commands). Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Command. The M command allows block movement of program
or data areas from one location to another in memory. The form is

Ms,f,d

where s is the start crldress of the nove, f is the final address of the nove,
and d is the destination address. Data is first noved from s to d, and both
addresses are incremented. If s exceeds f then the nove operation stops,
otherwise the rove operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
comrnarrl to read COM and HEX files from the diskette into the transient program
area in p:eparation for the debug run. The forms are

R
Rb

where b is an optional bias address \>.hich is added to each program or data
address as it is loaded. The load cperation must not overwrite any of the
system parameters from 000H through 0FFH (i.e., the first page of memory). If
b is anitted, then b=0000 is assumed. The R command requires a p:evious I
command, s~cifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, \>.hile an assumed load
address of 100H is taken for COM files. Note that any nUITber of R commands
can be issued following the I canmand to re-read the program under test,

6

assuming the tested program does not destroy the default area at SCH.
Further, any file s];ecified with the filetyr:e "COM" is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command

DDr filename.filetype

which initiates the D[[' program is equivalent to the commands

DDr
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error indicator
U?U (file cannot be q::lened, or a checksum error occurred in a HEX file), or
with a load message taking the form

NEXT PC
nnnn PWP

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record if
a HEX file is s];ecified).

9. The S (Set) Command.
examined and optionally altered.

Ss

The S command allows memory locations to be
The form of the command is

where s is the hexadecimal starting address for examination and alteration of
memory. DDr responds with a numeric prompt, giving the memory location, along
with the data currently held in the rrernory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the prompted address. In either case, DDT continues to
prompt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected.

10. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next p:ogram step is
executed. The p:ogram terminates immediately, with the termination address

7

displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of Hand L, and the list address (used in the L
command) is set to hhhh. The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a p:-ogram
breakr:oint is occurs. A breakr:oint can be forced in the trace rrode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace rode. The format of the display is the same as described in
the X canmand.

Note that program tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access I/O devices, such as the diskette drive, run in
real-time, avoiding I/O timing problems. Programs running in trace rode
execute approximately 500 times slower than real time since DIJI' gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that canmands Ybich use the breakpoint facility
(G, T, and U) accomplish the break using a RST 7 instruction, Ybich means that
the tested program cannot use this interrupt location. Further, the trace

. mode always runs the tested program with interrupts enabled, Ybich may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DDr dur ing trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate program steps are not displayed. The untrace rrode
allows from 1 to 65535 (0FFFFH) steps to be executed in monitored rrode, and is
used p:- incipally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command apply to the U
command.

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag
Z Zero Flag

(0/1)
(0/1)

8

M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)
A Accumulator (0-FF)
B BC register p:1ir (0-FFFF)
D DE register pair (0-FFFF)
H HL register p3.ir (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFF'F)

In the first case, the CPU register state is displayed in the format

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd p--dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The "inst" field contains the
disassembled instruction which occurs at the location addressed by the CPU
state's program counter.

The second form allows display ~nd optional alteration of register values,
where r is one of the registers given above (C, Z, M, E, I, A; B, D, H, S, or
P). In each case, the flag or register value is first displayed at the
console. The DIJl' program then accepts input fran the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register value is altered.
Note that BC, IE, am HL are displayed as register p3.irs. Thus, the operator
types the entire register p3.ir when B, C, or the BC p3.ir is altered.

III. IMPLEMENTATION NarES.

The organization of DIJl' allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs. The DIJl' program consists of two p3.rts: the Dor nucleus and the
assembler/disassembler nodule. The DIJl' nucleus is loaded over the Console
Command Processor, am, al though loaded wi th the Dor nucleus, the
assembler/disassembler is overlayable unless used to assemble or disassemble.

In particular, the BDOS address at location 6H (address field of the JMP
instruction at location 5H) is modified by DIJl' to address the base location of
the DIJl' nucleus which, in turn, contains a JMP instruction to the BDOS. Thus,
programs which use this address field to size memory see the logical end of
memory at the base of the DIJl' nucleus rather than the base of the BDOS.

The assembler/disassembler nodule resides directly below the DIJl' nucleus
in the transient IX'ogram area. If the A, L, T, or X commands are used during
the debugging process then the DIJl' program again alters the address field pt
6H to include this rrodule, thus further reducinq the logical end of memory.
If a IX'ogram loads beyond the beginning of the assembler/disassembler nodule,
the A and L canmands are lost (their use produces a "?" in response), and the

9

trace am display (T and X) commands list the "instil field of the display in
hexadecimal, rather than as a decoded instruction.

IV. AN EXAMPLE.

The followim example soows an edit, assent>le, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken fran the vector, and stored into "IARGE"
at the termination of the Irogram

ED SCAN.ASM;

• I f¥ ~ f. tul.oj bQloLt tlt.D

-~ t-l ORG t·t 1·00H '=._L~~~ OF TRAMS lENT AREA~
MVI 'B:LE1i ;LENGIH OF VECTOR TO SCAN,;
!!..Y1 cIa iLARGER_RU VALUE ~O FAR;

LOOP __ P_O_O_L LXI H, VEeI ;BASE OF VECTOR;
L"OO"P :\!!.Q!L W ; GET VALUE"

) £JUS C ;bABGER VAllIE IN C?,J
~.J~,,;..::l!k NFOUND i .JUMP IF LA.RGER VALUE HOT FOUtH

l. ~"iiP NELl LARGEST VALUE, STORE I T TO C,2 . J

M OV £:1!."
HFOUND: TNX H' iTO HEI<T ELEMENT

i MORE TO seA N? f1 C flak SOU.(~
'P{~yo.VIA. • (,lw:!U(I~~
C~tl (o.c/e.fs t1ptc{ 1

j .

.!..~
i J
YECI:
LEN
LARGE:

~*B0PJ

LOOP:

NFOUND:

m B
JNZ LOOP ; FOR A I~ 0 THE RJ J

END
t!..QL
..§.ll
ill

TEST
~
~
II
.Ilil!. ,2

ORC
M \11
MVI
LXI
MOY
SUB
",INC
NEIt!
MOil
INl<
DCR
JNZ

~ 1N'cJ~Y"o.'fYlm.e(
OF SCAN .. STORE Cil

iGET LARGEST VALL1EJ

iREBOOTJ

DATA

I'J II yePl~ (.'Gl(fi"1e
(t4u(~.

2 .. 0 .. 4.3.5,6 .. 1 .. 5"
f.-VECT iLENGTH,2
~ iLARGEST YALUE ali EXIT J

le0H ;START OF TRANSIENT AREA
B,LEH ;LENGTH OF YECTOR TO_SCAN
c,e ;LARCEST VALUE SO FAR
H,VECT IBASE OF VECTOR
A,M ;GET VALUE
C iLARGER VALUE IN C?
NFOUND ;JUMP IF LARGER YALUE NOT FOUND

LARGEST VALUE, STORE IT TO C
C.' A
H
B
LOOP

JTO HEXT ELEMENT
;I'!ORE TO SCAN?
jFOR ANOTHER

HI

END OF SCAN. STORE C
MOY A.C iGET LARGEST VALUE
STA LARGE
JMP €I ;REBOOT

TEST DATA
VEeT: DB 2 .. 0,4,3,5,6.1.5
LEN
LARGE:

EGU $-VECT ;LENGTH
DS 1 iLARGEST VALUE Oi~ EXIT
END .
..- ~ kJ. ri trlLt

ASM SCAN
--~

CP/M ASSEMBLER - YER I.e

0122
e02H USE FACTOR
END OF ASSEMBLY

TYPE SCAN.PRN - ~

JeAJJ .. ~
9 Ie €I tJo.d\\~t Cctlt..

r Sou(re ~eBV"G'M

810e e6BS;
9182 eE8e

~ ORG le0H ;START OF TRANSIENT AREA

8184 211981
8187 7E
e18S 91
0189 D20DBl

LOOP:

MYI B, LEN ;LENGTH OF VECTOR TO SCAN
MVI c,e ;LARGEST VALUE SO FAR
LX I H, VEeT. .' B(4SE OF VECTOR
MOV A,M lGET VALUE
SUB C ;LARGER VALUE IN C?
JHC NFOUND ;JUMP IF LARGER VALUE NOT FOUND
NEI~ LARGEST VALUE .• STORE IT TO C
MO V C.' A 81BC 4F

818D 23
818E 95
0UF C20791

NFOUtH: HI>: H ; TO NE>n ELEMENT
jMORE TO SCAN?
;FOR ANOTHER

8112 79
8113 322191
8116 C3~~0~ I_

Cc&/dak IU'\lV1J ;
itut1caltd '--""');

9119 9200048305VECT:
8008 = <L"'\ LEN
9121 VQlueq.J LARGE:
€I 122 Equ.cAt:

A}

nCR B
JHZ LOOP

END OF SCAN, STORE C
MOV R.· C .' GET LARGEST
STA LARGE
JMP fa .' REBOOT

DATA
2,0,4 .. 3.5,6,1,5
$-VECT ;LEHGTH

VALUE

TEST
DB
EQU
DS
END

1 ;LARGEST VALUE ON EXIT

It

DIIT SCAN. HE>:

161<. DrfT VER
HEXT PC
~~2\ eee0

~

1.0

,-ktdl~
t -to e)(e CAL.-k o.t -~

C0Z0MBE010
-xp
-J

A=00 8=01300 D=0000 H=0B@0 8=0100 P=@@00

~ ~~\A.t~ I(e~l"o~ toJOie de~~ YUV\,

OllT 7F ?CeO

p=0e0B 100
-;

- ~.1 \..ock. at-
~lt(tn.je ft- -\0 toO

Via LSb-6 ~(.tl~
C0Z0M0E010 A=80 8=0eee D=0000 H=e0e8 8=13100
-L100 --.;
0100
13102
ele4
81137
13108
13109
010(:
1310D
1" 1 €IE
~leF
13112
-L
-~

M'v'I
M ',JI

LXI
MOV
SUB
JNC
MOV
I H~:
ItCR
JHZ
MOil

8,08
c,ee
H .. e119
A .• M
C
13 10 II
C,A
H
8
0107
A .• C

0i13 STA 012i
0116 ,HiP 01300
0119 STA>< B

\)l'5(;.~~~ltJ Mo.cl.l~t
Code 0.1 l(X)U
~e~ 5o.uce lJ~h~
ar~lSO~)

01lA HOP
€I 1 1 B I H R B A I rtte. w.Dye.
€I 1 1 C I N~: B V'Aacin me. Code
: ! ~ ~ ~ ~ ~ : .' €I 1 {~ +Wtt l'{q9VU m
[; 1 2 €I If C R 8 e.w1s al lClto..-Mn \ Ib

.r 17 C cf.AtJ.~i d .
P=0 Hie MVI 8,08)

~ I \tcstvudto" V\

-to Mack a:\ p~.:\UO

0121 LXI II, ':'200 '
0124 LXI H~~200 _ (JJlfuQ~UP+OtJOJOJ . .
-~.l e\\..Iex 'I'vtl~ ac;,se~~~ V't\od~ ~ e.~e -tltt.:Jt-.tf -b COO') I~ (). ~i 1, WUt(1
_ _ r ~ ~lll CClUSe. fk ?f(J9Y"(.lM UVtdu -t<st -to -a.inVVl. -\0 our lr \ \{,\1
ttlle R6T ,', 1.1

ri l~ eVe¥ ex:tW1ta,

e 11 7~ (tjl~\(C/'.l"~'l1.jC '(du(~ ~-bvS o.."5~1Je YYl~e)
- L 11 3-; u~t Cod, at t\'3k 40 dAtd 4k\ ~'511 LtXlS ?Y~C(~ \Y1~
€I 113 STA 0121 c--"I'A 'Place ~ J'Mf
0116 RST 137..--'

0117 HOP
0118 NOP
0119 STAY. B
ellA NOP
811B IHR B
Bile IHX B

.
-It., ~ at VC!llsJe(S

C0Z0M0E010 A=0e B=000e D=Be09 H=0ee0 8=0100 P=0100 MYI B.9S

-L.1 &ttt.l~ fv~(o.~ -itt- ov\(. skf. i~lnAl efu. -sw..-le.. I ~e\v(~ J i\ ~ec(.c.~d
C0Z0M0E010 A=00 8=0099 D=ge00 H=009B 8=01013 P=0100 MY1 B,08*0102

-l.~ lrtU Odt -ip ~~\1 (Mt OfU In g) aLCbvwxtti. ~{~1'D\~t -.J
C0ZBM0EeIe A=B9 8=e890 D=0B09 H=0009 8=0100 P=0102 MYI C,0B*0104

-L; Tv«e tlJo.~\I\ ((~H~~ C ~~ d,lAftdJ
ceZ0M0E0le A=0e 8=0800 D=8e00 H=e000 8=0100 P=0104 LXI H,0119*0107

- 1l.1 Tract ~vt't "5kfs
ceZ0M0E010 A=0e 8=080£1 D=8000 H=e119 S=8100 P=0107 MOV A.o M
ceZ0M0E010 A=82 B=8800 D=0800 H=0119 8=0100 P=0108 SUB C
C0Z0M0E011 A=82 B=0880 D=8B00 H=0119 8=0100 P=0109 JHC 010D*810D
- D 11 9' ~v-h .

eel: IIqw. d.. o.Lrlo~ break'PolVtt- ti\ jOD~----' -~ 'Ol~Ql~ Mtb\Ofj VI

9119 02 0e 134 83 05 06 01 ~~~~~, ,
0128 £IS 11 08 22 21 88 02 7E EB 77 13 23 EB eB '78 B1
0130 C2 27 £I 1 C3 03 29 00 09 130 00 0e 00 013 0B 00 00
8140 00 £Ie £Ie 00 90 88 0,0 80 00 08 00 00 013 00 00 90

D.~ ~ di~~~{d: : : : 0150 80 00 80 00 €Ie £Ie 00 90 09 €Ie PJe 00 £10 90 99 £19
8160 00 09 90 0B 98 Be 80 B0 99 99 £19 e0 09 98 90 09 . ~'tfK \\, , lW: . 1AIt. ll: f . ,
0179 09 09 09 90 08 £10 130 80 08 1013 00 00 00 98 09 00 'llA.11.tt V~l'h,,~ of ' , , e188 00 89 0e 00 e9 98 80 90 98 09 09 e0 80 98 09 B0
e19B 00 89 89 0B @8 88 B0 B9 013 08 09 89 09 08 09 8e :v\D~:,-,(o.p~~l: : : : : : :
BlAB 08 00 €Ie 98 99 88 80 B0 9B 98 B8 90 B9 08 08 00 elAbrciUc('$... , , , , .
818£1 80 0,0 0e 08 0e Be 00 B0 08 €Ie 99 80 80 e8 08 130
01eB 130 BB 90 913 99 Be 00 90 913 08 130 80 £19 90 08 99
-x -; Cu«M CPIA *-tt- ~
C0zeMBE0Il A=02 8=0890 D=IHI09 H=0119 8=0180 P=010D I Ii)!: H

- T 5'j -rfate ~ <:tps -ty~ CLl(re.tJ CPu. S~
C0Z0MBE011 A=92 8=08£10 D=0900 H=0119 8=91£10 p=a10D IHX H
ceZ9M8E011 A=82 8=88013 D=B090 H=911A 8=9199 P=010E DCR B A~-tu:
ceZ0M8E0Il A=02 8=B780 D=B000 H=911A 8=9100 P=010F JHZ 01~.i«t C020MBE0Il A=02 B=078e D=BBe9 H=011A S=0100 P=0107 MOV A.M
ceZ0M8E0Il A=B0 9=0789 II=BB00 H=011A 8=0100 p=01e9 SUB C*9109·
-us .

\l~~ ~\t~ed.lGdt, ~k.s -i "\tact UI\~~ou1
C0Z11'10E1Il A=00 B=0700 D=0000 H=011A S=0100 P=0109 JHC 010D*010S

-1£; CRu. ~k o.t fkd.of US ~
C0Z01'10E1Il A=04 9=0699 D=800£1 H=011B 8=9100 P=0108 slIe c

-fl.; f'un Yr0.1ro.~ -tfCW\ cuntk.i t'c IM-hl Cb~\>te.hb·() Lll.t ~_+~~)
*' €I 11 6 \oteo.t~o~J (At ll6l-t J COJ.6:,ltl ~ ~-k~ 1('5T 1 IV! Ynac{"'(rie. ('(,(ie
-x
-J rt'Ll ~k at ew! of P~Yatfl

C0Z1M8EIIl A=0e 8=01300 D=0000 H=0121 8=0100 P=0116 RST 07

- !S.E. l>'£l.~l~ tlvri.. 0W1.vt~l ~(~~~ CDLAhte(
P=€11l6 lIH!;

-X -J
",s.0'" C021 M0E 1 11 A=00 8=0000 D=0000 H=0121 8"'12111313 P::~I i00f I1Vl B,- +8 fJJ ,-

-T 1C1J? 1m to (kxa&ct~\) ~s {If,r ~ e,lo.tttllr{ ~~ Ltt ~&l.~ tI A (L
(:€tZl MBE 111 A=00 8:=0000 II=0 - _0 H=0121 S- _100 P:::fttl'0 tWI B,08
C0Z1MBEIIl A=00 8=0800 II ~000 H=01~ P=0102 MVI C.00
C0Z1M0E1Il A=0e 8=080 H- 121 8=0100 P:::0184 LXI H.0119
ceZ1M8EIIl
ceZ1M0EIIl
C0Z0M8E011
C0Z0M0E011
ceZ0M8E011
C0Z0MBE011
C0Z0M8E011
C0Z(1M8E0Il
C021MBE111
C021MBE111
C021M0E111
C0Z0MBE111
C0Z0M0El11

A=02
A=00
A=00
A=€I0
A=00
A=00
A=00

D=0000
D=EH300

8=0780 II =00 00
B=0780 D=0000
8=13780 II=0000
8=07130 II=000e
8=137130 D=0000
8=07130 II=0 13 €I0
8=1%130 D =0 13 €I0
B:=0630 D=0000

-A109
-J 'I~ Ct" L,ot pcAc1 Il , \~

13 i 0C~

J C 1 B II J ~ w.ac~llte Codt
-IT> t lta ~ --t{.e,
::roc +0 ;J<...

'Stop DIif -so~* 0. Ve6l()~ of
~ p~ P(~rlb'\ (o.VI bt sa.vd

8=0100 P::0107 i1 I] \I
:3=0100 P:=0 HI8 ::;U8 c
8=0100 P=0109 ,..IN:
8=13100 P::0l0D 1 N ,

H=011A 8=13180 P:::010E 8
H=011A 8=0100 P:::010F ,..INZ 0107
H=011A 8=0100 P::0107 MOV AIM
H=011A :3=0100 P::0108 SUB r
H=011A 8=13100 P::0109 JHC 0l0I1
H=011A :3=0100 P:=010D INX H
H=0118 8=13100 P:::010E D CF: B
H=011B ::;::0100 P::010F .. 1HZ 01137
H=0118 8=0100 P=0107 t1011

'V{~Va.M.~({t[kue w~tt! +tt<
VIt'We -tfoWL A L~ e. 5\vlC~ A)e.
5~\A.~ +ki.s c.ak LUlS not txew..+d)
it appeAr€. -1b.cJ -tlte .:r~c. '5Wf.4.,1t\
b~ ~ee", IJ... J"c. I ~~

S A \I E 1 seA f~ , C (I "\? 'R-"3YllrM. Vlstde S OV\ i IttSt ~tl 'So S?U!- 1. 1'Cl~.

A> II D T S CA N. COM; 1<t<b-kvf ror (.,vrtt, 'itt ~ved 'ffle~{g I~ 10 Cal'\-hrz~ +~~
itSl<', IIDT VEl< i, {1

HOiT PC
02013 13100
- L1 13 0 J Ll~t 5o~e cMe
0100 M'n B,- 08
131132 t1 \J I C" 0 (1

£i 1134 un H" 13 11 9 'P(eVlC)lA.S PoJ~
.

f{e5!d- X,LQ~ • l' LVI
(1107 MOIi ~'M~ 01138 SliB L:
13109 .. IC €I 1 0

14-

BUle; MOY C,A
B10D IHX H
8l0E DCR 8
BleF JHZ elB7
B112 1'101,' A,C
-XF'.;

p=BleEl,

-TIB \~f +0 See k,~
-~ p~~ VevSIl~

D=EU30€1 H=00e~

D=Et0ge H=0Bee

O~O±!S ~is~d{~ A -10 C
=Blee !'t',ll 8,Ba

P=€I192 '" ',Il c.' Be
CeZ0MElE010 A=8e 8=B0BB
C0zeMBE010 A=80 8=88B0
C0ZBHBE010 A=98 8=0age
C0ZBM8E0le A=0e 8=8890
C0ZBM0E010 A 8~ 8=Ba80
ceZBMBE0Il A=92 8 age
ceZ0MBE011 A=82 8=B ge
C0ZBMBE011 A=B2 8=8 8
C0Z0M8E0Il A=B2 8=8a 2
ceZBMBE0Il A=B2 8=0792
cezeMBE011 A=92 8=97B2
ceZBMBE0Il A=99 8=8782
C12BMIE0le A=FE 8=B792
CIZBMIE010 A=FE 8=0792
CIZBI'11E010 A=FE 8=9792
C120M9E1I1 A=FE 8=9692
-x

D =9 e ee H=9I;H:t8 P=B104 L X I H,8119
D=fHHHI H=0119 P=13107 "'0',' A .• 1'1
D=Beee H=eI 8=8100 p=alBS SUB ~ ...,
D=B0 S=81Be P=BIB9 JC B19D
D 0e 8=91€!e P=810C 110',1 C.' A
D =8 e 09 H=9119 8=0100 P=01BD Iii:': H
D=B000 H=011A s=elB0 P=B18E DCR B
D=B80B H=011A 8=Bla8 P=910F • ..1 HZ 0197
D=8eee H=el1A 8=0100 F'=~107 !'lOY A .. 1'1
D=!HHHt H=€!11A ~:;=01~0 P=~lB8 SUB C
D =0 0 08 H=€!11A S=01ee P=81B9 JC e18D
D=B0ee H=011A S=0100 P=810D IN>: H
D=B0013 H=011B 8=010e P=810E DCR 8
D=Be0e H=el1B 8=0100 P=B1BF JNZ 0107*0107

-,; ~tb~ after lb~
CIZ9MBEIIl A=FE 8~06e2 D=0ee9 H=8118 S=01ae P=BIB7 ~OY A,,",
- G .. 1 e B t? '\2UV\ -f~M CttYv(/A.t 'Pc. aYltl ~e$po;~ at 10000H

"'01e8
-K i

CIZEtMBEIIl
-T
-J

CIZBI'1BEIIl
-T
-~

A=94

A=04

8=0682 D=Beee H=011B ~:=~H eo p=8lBa

tOL~lt stq to((i ttw G9d~
B=0602 D=B000 H=011B S=B108 p=BIBa

SUB i'
'"'

SUB C*EtlB9

COZBMBE011 A=B2 8=8602 D=eee8 H=011B S=0180 P=B189 JC 018D*01BC
-x
-tl

C8ZBMBE0Il A=02 8=8682 D=ee00 H=011B 8=0100 P=018C MOY C.A

-GJ t<~ -\0 ()~pleh~
H:t116
-~J

C0Z11'10El11 A=03 8=0003 D=BB00 H=0121 8=0100 P=0116 RST 07

-llU.. \ook. cd ~e \klllAt' ~(\LAeb€ 1/

o 1 21 €I 3" WVcK\.! 1J1!u.t- .I

I~

0122 00;

0123 22;

0124 21J

0125 00.1

ill 2 G 92 J .5' "-!Ad <£ -\I.e s eom""""'\
e127 7E..!~

-L100
-~

£1100 MVI B.08
0102 MVI e,00
0104 LXI H,9119
0107 MOV A .. M
0108 SUB c:
0109 JC 010D
010C MOV C, A
e10D INX H
a10E DCR B
010F JNZ 0107
8112 MOV Ale f2e\J~ ik cttie. -L
-J
0113 STA 0121
8116 .. RST 07
€I 11 7 HOP
0118 HOP
0119 STAX B
BllA HOP
ell B INR B
011C INX B
€I 11 D DCR B
ailE MVI B, 01
0120 DCR B
-;";P
-J

Qeset ~t l'e P=0116 ~J
-T ~\~lt ~ I aVlA o.clclt dak VUtllA.iS -J

C0Z11'10EIIl A=03 B=0093 D=8000 H=0121
-T
-J

C0Z11'10EIIl A=03 B=0893 D=8000 H=0121
-T r Cowd-~ 10. at' -i ~ f,\ sd'
C0Z1l'lBElI 1 A=03 B=0800 D=0000 H=0121

8=0100 P=0100

8=0100 P=0102

8=9109 P=0104
_. T
-~ r ~ adJ..tc!SS tf dt.da ~t

C9Z1110EIIl A=03 B=0800 D=000B H=0119 8=0100 P=0107

,(..

MV1 8 .. 08*0102

MVI e,IHh0104

LXI H .. B119"'0187

MOil A .. M*0108

-T
-J

CeZ1M0EIIl
-T -J

CeZ0MBEell
-T -;
CeZEtMBE0Il
-T
-~

ceZ0M0Eel1
-T -;
C0Z0MBEell
-T -;
ceZ0M0E0Il
-T -;
ceZ0M8E0Il
-'T
-~

C020MBE0Il
-T
-J

C1Z0M1E010
-T
-~

,.fl';~ tlak kWl' ~VO~ ltt 1> A
A=82 8=0890 D =9 €I 0e H=0119 8=0100 P=0108 SUB

A=02 9=0800 D=0000 H=€t119 8=0100 P=0109 JC

A=82 8=0890 D=0009 H=0119 8=01013 P=010C MOV

rfw ~ ~ VW)/td 40 c. "'fd!j
A=02 B=0802 D =0 0 0B H=€t119 8=0100 P=€I10D I HX

A=02 8=0802 D=000e H=011A S=011HI P=010E DCR

A=02 B=0792 D=B000 H=011A 8=0100 P=010F Jt!Z

A=02 B=07B2 D=eee0 H=01 iA :;=~He0 P=0107t1QV

r St£o~ ~ l~ IoYolA."Lct.Jr, A
A=B0 8=0792 D=B009 H=011A 8=0100 P=0108 SUB

r sc&fy~d d.«r\vo6s atJa. valid, WklCk W",S l044lc(//1
A=FE B=0702 D=000B H=011A 8=0100 P=01B9 JC

C1I10109

010D*018C

C,R*010D

H"'01BE

e",019F

9107*0107

010D*010D

C1Z0M1E0I0 A=FE B=0702 D=0009 H=011A 8=0100 P=010D INX H*01BE
-L10e
-,}

9100
0102
0104
131137
£11138
01139
010C
BleD
B10E
aleF
81 12
-AlEtS
-oJ

0HtB

e 109,1

MYI 8,08
MVI
LXI
MOV
SUB
JC
MOV
IHX
DCR
JHZ
MO.V

C,00
H, B119

~' 1'1.--.,. -1W& ~ou.ld ~t~l k~ 0. eM P so ~ rf8l'S~r A
o 1 0 D W?I.lId \Mt lot dJ'ttroutd.
CIA oJ

H
B
0107
AI C

CI'IP C
J

-.f&; ~p tt>T ~ 5AV~

'7

:AVE 1 SCAIL COM.>

A)DDT SCAN. COM.1

16K DDT YER 1. 0
NEXT PC
0200 0100

-~~

p=e100~

- L 11 6 -;
0116 RST e7
1)1 17 HOP
0118 HOP
0119 STA~: B
011A HOP

lock. a.t ccdt +0 ~e 'If i+ WCts ?-JCJ~~~ LCJacied
Clo~~ -h1~OlA.t alc~~ un~ YuJoatci-)

- ("l.\.Io~·n

- G· 11 6 ~U~ ~VV~ \OCM +0 (I~Vk+L6~
~

*,0116

-~~ ~oolQt ~f~ (()(l:uiek! bpa)
Ci~

-lii Look Qt Gfu. ~cdL
C1Z1MOEIIl A=06 8=0006 D=8000 H=0121 8=0100 P=0116 RST 07

-.§..!1J.; ~oo" at q La'(J!. 0 ... it afPca{s +0 k Cmrrea:
0121 136.1

(1122 00J

012322.;

ED SCAN. ASM
;

;lARGER VALUE IN C?

;LARGER VALUE IN C?

NFOUND ;JUMP IF LARGER VALUE NOT FOUND

NFOUND iJUMP IF LARGER VALUE NOT FOUND

0122
002H USE FACTOR
EN:O OF ASSEMBLY

161<. II[IT "iER 1.e
HE;x:r PC
13121 0000
-L116;

o 1 1 6 .. 111 P 0 0 e €I cltedL -to ~Vt tvl~ "lS ~t"lll tAt 1/ b~
0119 STA>: B
811A NOP
811B INR B
_. (y~)

- G 10 €I. i 16,., Go -tr{)M ~~~~~\~ Wl~ Io'f(ct~po,~\- ttt ewi
*0116 1ov!o.~t>f)L~ y~~td
-El..U J Loo~ at "LAt'!::" Couea \fatui c,~pt.d-d
0121 ~2 7E EB 77 13 23
B130 C2 27 01 C3 03 29 e0 €Ie €I8 e0 0e
0140 ee ee 00 00 e0 130 0€1 00 ee 00 3e

- (YtA.loll.tt) ~w!s l OrA~ ~reou.+

-.£!~ 'S~p t>DT 1 deb~ 5(SSWJl\ Co~p\dt

EB
00
e.0

eB 78
e0 e8
e0 e0

81 II ! 111. I. . X .
€I0 130 } .) . ..
00 00

APPENDIX E

OPERATION OF
THE CP/M ASSEMBLER

UIIJ~(j~Tfll RE~EflRl:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations 'or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section

1.
2.
3.

4.

5.

6.
7.

INl'IDIlJCTIOO
~ FOIttAT •••••••••••••••••••••••••••••••••••••
FO~ 'IE CPERAAD ••••••••••••••••••••••••••••••••
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Iatlels
Numeric Constants ••••••••••••••••••••••••••••
Reserved words •••••••••••••••••••••••••••••••
String Constants •••••••••••••••••••••••••••••
Arithmetic and Logical Operators •••••••••••••
Precedence of Operators ••••••••••••••••••••••

ASSEMBLER DIRECTIVES •••••••••••••••••••••••••••••••
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

The OR:; Directive
The END Directive
The EQU Directive
The SRI' Directive
The IF and ENDIF
The DB Directive
The ~ Directive

• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••
• •••••••••••••••••••••••••••

Directives ••••••••••••••••••
• ••••••••••••••••••••••••••••

OPERATlOO OODES ••••••••••••••••••••••••••••••••••••
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, Calls, and Returns ••••••••••••••••••••
Immediate Operand Instructions •••••••••••••••
Increment and Decrement Instructions •••••••••
Data Movement Instructions •••••••••••••••••••
Arithmetic Logic Unit Operations •••••••••••••
Control Instructions •••••••••••••••••••••••••

ERIDR ltEs.sA.<:;E:S ••••••••••••••••••.•••••••••••••••••••
A SAMPLE SESSION •••••••••••••••••••••••••••••••••••

Page

1
2
4
4
4
5
6
6
7
8
8
9
9

10
10
11
12
12
13
14
14
14
15
16
16
17

CP/M Assembler User's Guide

1. INI'ROOOC1'IOO.

The CP/M asse!1'bler reads asserrbly language source files fran the diskette,
and traduces 8080 madline language in Intel hex format. The CP/M asserrbler is
initiated by typing

MM filename
or

MM filename.parms

In both cases, the asse!1'bler ass\..llles there is a file on the diskette with the
name

filename.ASM

which contains an 8080 assembly language source file. 'Ihe first and second
forms srown alx>ve differ only in that the second form allows tErameters to be
passed to the asse!1'bler to control source file access and hex and IX int file
destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSEMBLER VER n. n

where n.n is the current version nurrber. In the case of the first command,
the assembler reads the source file with assumed file typ? "ASM" and creates
two output files

filename. HEX
and

filename .PRN

the "HEX" file contains the machine code correst=Onding to the original program
in Intel hex format, aoo the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second canmand form can be used to redirect input and output files
fran their defaults. In this case, the "parms" ty0rtion of the corrrrrand is a
three letter group which specifies the origin of the source file, the
destination of the hex file, anj the destination of the print file. The form
is

filename .plp2p3

where pl, p2, and p3 are single letters

pl: A,B, ••• , Y designates the disk name which contains

1

the source file
p2: A,B, ••• , Y designates the disk name which will re-

ceive the hex file
Z skips the generation of the hex file

p3: A,B, ••• , Y designates the disk name which will re-
ceive the print file

X places the listing at the console
Z skips generation of the print file

Thus, the canrnand

ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A.
This fornl of the canmand is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command
is equivalent to

ASM X

The canrna.nd

ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console. The
cornrna.nd

ASM X.BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this canrna.nd is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which rna.ke it somewhat easier to use. These
extensions are described below.

2. PR03RAM FORMAT.

An assembly language program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand : comment

where any or all of the fields may be present in a particular instance. Each

2

~ernbly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "! II which is a treated as an end-of-line by the asserrbler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibili ty wi th the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first dlaracter is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in. an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were uwer case. Note that the ": II
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

x
x:
XIY2

xy
yxl:
Xlx2

long$name
longer$named$data:
x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

'Ilhe operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. Again, the complete details of properly formed
expressions are given below.

The canment field contains arbitrary characters following the ";" symbol
until the next real or logical end-of-line. Irhese characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a ,'*" in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor

3

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel's language, since
arbi trary expressions are allowed in this case. Hence, programs -which use
this side effect to introduce comments, must be edited to place a ";" before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FDRMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
nUITber of significant digits in the result must not exceed the intended use.
'I'hat is, if an expression is to be used in a byte nove immediate instruction,
then the most significant 8 bits of the expression must be zero. 'T'he
restrictions on the expression significance is given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement -which it precedes. If the label occurs on a statement -which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SET, then the label is given
the value -which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

Wnen a label appears in the operand field, its value is substituted by the
assembler. This value can then be combined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a l6-bit value in one of several bases. The base,
called the radix of the constant, is denoted by "" trailinq radix indicator.
The radix indicators are

8 binary constant (base 2)
o octal constant (base 8)

4

Q octal constant (base 8)
o decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nurrbers since the letter 0 is
easily confused with the digit 0. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus ccmp::>sed as a sequence of digits, followed by an
optional radix indicator, \\here the digits are in the appropriate range for
the radix. That is binary constants must be composed of 0 and 1 digits, octal
constants can contain digits in the range 0 - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (100), B (110), C (12D), 0 (130), E (140), and F
(150) • Note that the leading digit of a hexadecimal constant must be a
decimal digi t in order to avoid confusing a hexadecimal constant wi th an
identifier· (a leading 0 will always suffice). A constant comtJQsed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwi se it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readabili ty. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234
1234H
33770

12340
0FFEH
0fe3h

3.3. Reserved Words.

1100B
33770
1234d

1111$0000$1111$0000B
33$77$22Q
0ffffh

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the sr:;ecific operand becomes a part of the binary bit P3ttern

5

oF- -tne instruction (e.g, M)V A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, M)V produces 40H).

When the syrrbol "$" occurs in the operand field (not irrbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained wi thing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters wi thin apostrophe symbols ('). All
strings must be fully contained within the, current physical line (thus
allowing "!" symbols wi thin strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes "), which becomes
a single apostrophe vmen read by the assembler. In rrost cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in vmich case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a l6-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a maracter is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'AB'
, ,
c

a
., , ., n .,

'Walla Walla Wash. '
'She said "Hello" to me. '
'I said "Hello" to her.'

3.5. Arithmetic and Logical Operators.

The cperands described above can be combined in normal algebraic notation
using any canbination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+b
a - b

+b
-b

a * b
a / b
a M)D b
Nor b

unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0's become l's, l's
become 0's), where b is considered a l6-bit value

6

a AND b
a OR b
a XORb
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results from shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 10h+37Q Ll /3 (L2+4) SHR 3
('a' and 5fh) + '0' ('B'+B) OR (PSW+M)
(1+(2+c» shr (A-(B+l»

Note that all canputations are ~rforrned at assembly time as 16-bi t tmsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., alII's). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI -I" produces an error message (-1
becomes 0ffffh mich cannot be represented as an 8 bit value), while "ADI (-1)
AND 0FFH" is accepted by the assembler since the "AND" operation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses mich are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
b~low. Operators listed first have highest precedence (they are applied first
in an mparenthesized expression), mile operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
- +
Nor
AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a * b + C
a + b * c
a IDD b * c SHL d

7

(a * b) + c
a + (b * c)
((a MOD b) * c) SHL d

a OR b AND Nor c + d SHL e a OR (b AND (Nor (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (Nor c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((Nor c) + (d SHL e))

Note that an lI1parenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DIREC!'IVES.

Assembler directives are used to set labels to specific values during the
assrrbl y, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line. The
acceptable pseudo operations are

oro
END
mU
Sill'
IF
ENDIF
DB
OW
03

set the program or data orlgln
end program, optional start address
numeric "equate"
numeric "set"
begin conditional assembly
end of conditional assembly
define data bytes
define data words
define data storage area

The individual pseudo operations are detailed below

4.1. The ORG directive.

The ORG statement takes the form

label ORG expression

where "label" is an optional program label, and expression is a l6-bi t
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that trost programs written for
the CP/M system begin with an ORG statement of the form

oro 100H

8

which causes machine code generation to begin at the base of the CP/M
transient };rogram area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive.

The END statement is optional in an assembly language program, but if it
is FCesent it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label
label

END
END expression

where the label is again <:ptional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
IIHl1313. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the asserrbly).
Thus, most CP/M assembly language programs end with the statement

END l1313H

resulting in the default starting address of l130H (beginning of the transient
program area) •

4.3. The EQU directive.

The EOU (equate) statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be };resent, and must not label any other statement. The
asserrbler elJaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a IIDre human-oriented manner. Further, this name is used
throughout the program to "p:lrameterize" certain functions. Suppose for
example, that data received from a Teletype appears on a p:lrticular input
port, and data is sent to the Teletype through the next output p::>rt in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

T'IYBASE
T'IYIN
T'IYOUT

EQU l0H i BASE roRr NUMBER FOR TrY
EQU Tl'YBASE iTrY mTA IN
EQU TI'YBASE+ 1 iTI'Y mTA our

At a later J;X:lint in the };rogram, the statements which access the 'l'eletype
could appear as

9

IN TrYIN :READ TrY mTA TO REG-A
•••
our TrYour :WRITE mTA TO TrY FROM Rm-A

making the program rrore readable than if the absolute i/o rorts had been
used. Further, if the hardware environment is redefined to start the Teletype
communications rorts at 7FH instead of l0H, the first statement need only be
changed to

TrYBASE EQU 7FH : BASE fORI' NUMBER FOR TrY

and the program can be reassembled without changing any other statements.

4.4. The SET Directive.

'rhe SET statement is similar to the EQU, taking the form

label SEll' expression

except that the label can occur on other SET statements wi thin the program.
'rhe expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the roint where the label occurs on the next SET statement. '!he use of the
SET is similar to the EQU statement, but is used rrost often in controlling
conditional assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of assent>ly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#!
statement#2

•••
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#! through statement#n are assembled: if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" proqram which includes a rurrber of
l?ossible run-time environments, with only a few s~cific rx>rtions of the
program selected for any p3rticular assembly. The following program segments
for example, might be part of a J;roqram which communicates with either a
Teletype or a CRI' console (but not both)· by selecting a p3.rticular value for
TTY before the assembly begins

10

TRm: mU 0FFFFH
FALSE EQU NOr TRJE

'PlY EQU TIDE

T'IYBASE EQU l0H
CRI'BASE mU 20H

IF TIY
CONIN EOU TIYBASE
CONOUr EQU 'ITYBASE+l

ENDIF

IF Nor TIY
CONIN mU CRI'BASE
CONCX1I' EQU CRrBASE+ 1

ENDIF
•••
IN CONIN
•••
0(Jl' CONCX1I'

iDEFlNE VALUE OF TRUE
iDEFlNE VALUE OF FALSE

iTRDE IF TTY, FALSE IF CRT

iBASE OF TTY I/O roRl'S
i BASE OF CRT I/O roRTS
i ASSEMBLE RElATIVE 'ID TI'YBASE
iCONSOLE INP(Jl'
i CONSOLE CX.JI'P(Jl'

i ASSEMBLE REIATIVE 'ID CRTBASE
iCONSOLE INP(Jl' (
iCONSOLE CX1I'P(Jl'

i READ CONSOLE mTA

iw"RITE CONSOLE mTA

In this case, the ~ogram would asserrble for an envirorunent where a Teletype
is connected, based at IX>rt 10H. The statement defining TTY could be changed
to

EQU FALSE

and, in this case, the rrogram would asserrble for a CRT based at p:>rt 20H.

4.6. The DB Directive.

The DB directive allows the rrograrnmer to define initialize storage areas
in single ~ecision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

\'there e#l through e#n are either expressions which evaluate to 8-bit values
(the high order eight bi ts must be zero), or are ASCI I strings of length no
greater than 64 characters. There is no practical restriction on the nurrber
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program crldress generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last dlaracter. Strings of length greater than two dlaracters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the commas). Note that ASCII characters are always placed in memory
with the p3.rity bit reset (0). Further, recall that there is no translation
from lower to uH;>er case wi thin strings. The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

11

valid DB statements are

data: DB
DB

signon: DB
DB

4.7. The OW Directive.

0,1,2,3,4,5
data and 0ffh,5,377Q,1+2+3+4
'please type your name',cr,lf,0
'AS' SHR 8, 'C', 'DE' AND 7FH

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

Where e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two dlaracters disallowed. In all cases, the data storage is
consistent wi th the 8080 processor: the least significant byte of the
expression is stored forst in rremory, followed by the rrost significant byte.
Examples are

daub: ow 0ffefh,doub+4,signon-$,255+255
DW 'a', 5, 'ab', 'CD', 6 shl 8 or lIb

4.8. 'rhe DS Directive.

The DS statement is used to reserve an area of unini tialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the DS. 'I'hus, the DS statement given above has
exactly the same effect as the statement

label: EOU $ iLABEL VALUE IS CURRENT roDE LCCATION
ORG $+expression iMOVE PAST RESERVED AREA

5. OPERATION (DDES.

Assembly language operation codes form the principal part of assembly
language programs, aoo form the operation field of the instruction. In
general, AfM accepts all the standard mnemonics for the Intel 8080
microcomputer, ¥.hich are qiven in detail in the Intel manual "8080 Assembly
Language Prograrnrnim Manual." Labels are optional on each input line and, if
included, take the value of the inst~uction address immediately before the
instruction is issued. The individual operators are listed brei fly in the

12

following sections for canpleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a l6-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to p3rticular values
within the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a st:ecific example, with a short explanation and
special restrictions.

5.1. Jumps, Calls, and Returns.

The Jump, Call, and Return instructions allow several di fferent forms
which test the condi tion flags set in the 8080 microcomputer CPU. The forms
are

JMP e16
JNZ e16
JZ e16
JNC e16
JC e16
JFO e16
JPE e16
JP e16
JM e16

CALL e16
CNZ e16
CZ e16
CNC e16
CC e16
cm e16
CPE e16
CP e16
CM e16

RST e3

JMP Ll
JMP L2
JMP l00H
JNC Ll+4
JC L3
JFO $+8
JPE L4
JP GAMMA
JM al

CALL Sl
CNZ S2
CZ l00H
CNC 81+4
CC S3
CEO $+8
CPE 84
CP G.l\MMA
CM bl$c2

RST 0

Jump unconditionally to label
Jump on non zero condition to label
Jump on zero condition to label
Jump no carry to label
Jump on carry to label
Jump on parity odd to label
Jump on even parity to label
Jump on positive result to label
Jump on minus to label

Call subroutine Lnconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set
Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed "restart", equivalent to
CALL 8*e3, except one byte call

13

REI'.
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

/

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single ~ecision memory cells, with constant values, along with
instructions \\hich ~rform immediate arithmetic or logical operations on the
accumulator (register A) •

MVI e3,e8

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
OR! e8
CPI e8

LXI e3,e16

MVI B,255

ADII
ACI 0FFH
SUI L + 3
SBI L ·AND 11B
ANI $ ·AND 7FH
XRI 1111$0000B
OR! L AND 1+1
CPI 'a'

LXI B,HJ0H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
Add immediate o?erand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical "and" A with immediate data
"Exclusive or" A with irrnnediate data
Logical "or" A with irrnnediate data
Compare A with immediate data (same
as SUI except register A not changed)

Load extended irrnnediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

OCXB

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
produces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

Instructions mich lTOve data from rremory to the CPU and from CPU to
memory are given below

rt{)V e3,e3

1mx e3

STAX e3

1HLD e16

SHLD e16

1m e16
STA e16
ffiP e3

PUSH e3

IN e8
our e8
XTHL
PCH1
SPH1
XCHG

M)V A,B

1[N{ B

STAX D

LHLD IJ.

SHLD 15+x

1m Gamma
STA X3-5
ffiP PSW

PUSH B

IN 0
our 255

Move data to leftmost element from right
lTOst element (e3 produces one of A,B,C
D,E,H,1, or M). M)V M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load H1 direct from location e16 (double
precision load to Hand 1)
Store H1 direct to location e16 (double
precision store from Hand 1to memory)
Load register A from address e16
Store register A into memory at e16
Load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load reqister A with data from port e8
Send data from register A to port e8
Exchange data from top of stack with H1
Fill program counter with data from HL
Fill stack pointer with data from H1
Exchange DE pair with H1 pair

5.5. Arithmetic Logic unit Operations.

Instructions mich a'ct upon the single precision accumulator to perform
arithmetic and logic operations are

ADD ·e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or 1)

ADC e3 ADC L Add register to A with carry, e3 as above
SUB e3 SUB H Subtract req e3 from A without carry,

e3 is defined as above
SBB e3 SBB 2 Subtract register e3 from A with carry,

e3 defined as above
ANA e3 ANA 1+1 Logical "and" reg with A, e3 as above
XRA e3 XRA A "Exclusive or" with A, e3 as above
ORA e3 ORA B Logical "or" with A, e3 defined as above
CMP e3 CMP H Compare reqister with A, e3 as above
rnA Decimal adjust register A based upon last

arithmetic logic unit operation
CMA Complement the bits in reqister A
S'lC Set the carry flag to 1

15

crvc
RLC

RRC

RAL

RAR

mn e3 mD B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)

5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NCP

6. ERROR MESSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wnen errors occur within the assembly language program, they are listed as
single dlaracter flags in the leftmost lX>sition of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present. The error codes are

D

E

L

N

o

P

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too complicated (i.e., too
many p:=nding operators) to computed, simplify it

Phase error: label does not have the same value on
two subsequent passes through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOORCE FI LE Nl\ME ERROR

SOURCE FI LE READ ERROR

OUI'pur PI LE WRI'rE ERROR

CANNer CLOSE FI LE

7. A SAMPLE SESSION.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with U?" fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
~int of error

Output files cannot be written properly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write protected

The following session shows interaction wi.th the assembler' and debugger in
the development of a simple assembly language program.

17

A SMSO RT.2

CP/M ASSEMBLER - VER 1.13

f) 15C \A4¥:t -f~ atldttSlS)
Et e 3 H USE FA C TOR % ti +~~le used.. 00 TO 'fF (~d.ecl~
END OF AS'SE MBl Y

DIR SORT. *,1

SORT AS M S"w<L fi.(.
SORT BAK Io~J~",,-la.*0:1~i-
SORT PRN 1>YU,.,t- flkl ec,~:to.L~ -lr;.I., ~~)
S 0 R THE >< WI4.C1.I~ c:od.t.. -hie.
A >TVPE SORT. PR~

S()W'(L l~
r-------~---------,

'Maclu~ cJ.e.. lo~ i SORT PROGRAI1 IN· CP/I'I ASSEMBLY
...-J ; START AT THE BEGI IHU NCi OF THE

0100 Ie" ORG l£telH
~~~~Ct.de. 

LANGUAGE 
TRANSIEHT 

£110£1 2146131"':> SORT: LXI H. Sill ;ADIIRESS sIn TCH TOGGLE 

PROGRA~ 

e103 36131 Mill t1. 1 ;$ET TO 1 FOR FIRST ITERATION 
13105 214791 LIn H. I ;ADDRESS INDEX 
e108 36013 Mill M. £I i I = B 

COMPARE I WITti . ARRAV SIZE 
010A 7E C 011 P: MOV A, M ; A REGISTER = I 
0108 FE99 CPI N-l iCY S.E T IF I < ( H -.1 ) 
B10D D21901 JI~C CONT ;COHTINUE IF I ( = (H-2) 

END OF O~E PASS THROUGH DATA 
131113 2146131 LKI H. Sill ; CHECK FOR ZERO SWITCHES 
0113 7EB7(:20001 MOV A,I'I! ORA Al .JNZ SORT ;END OF SORT IF SW=0 

0118 FF RST 7 iGO TO THE DEBUGGER INSTEAD OF I 

~I.U'ttt-kdCOIHI HUE THI S PASS 
J ~ ADDRESSING 1, SO LOAD AY( J) IIno REGISTERS 

e 11 9 5 F 1 6 B e 2 1 4 B C OIH : M 0 V LA! M Y I D I (1)! L X I H .• A..,! DAD D! DAD D 
91214E792346 MOV e,M! MOV A.C! lUX H! "10'.1 B .. M 

L 0 hi 0 R DE R B,( TEl H A A IH C J H I G H OR DE R BY TEl H B 

MOY HAND L TO ADDRESS AY(l+1) 
0125 23 WX H 

COMPARE VALUE WITH REGS COHTAINIH~ AY(I) 
0126 96577B239E SUB Ii! MOV D,A! MOY A.8! IHX H! SSB Ii iSUBTRAI 

BORROW S~T IF AV(!+1) > AY(!) 
012B DA3FBl JC INCI ;SKIP IF IN PROPER ORDER 

CHECK FOR EQUAL VALUES 
0l2E B2CA3F0! ORA D! JZ HICI iSKIP IF AY(I) = AY(J+t) 



H32 56702B5E MOV rl, M ! 11011 11, B! DC><: H! MOV E, 11 
H36 712B722873 MOV 11, C ! DCl< H! MOV 1'1. D! DC ~: H! 110"1 M, E 

j. 

IHCREMENT SIIIITCH COUNT 
n3B 21469134 LXI H,SlJ! IHR 11 

IHCREI'IENT I 
H3F 21479134C3INCI: un H I I ! I NR I'I! JMP CO 11 P 

DATA DEFIHITION SECTION 
H46 90 SW: DB 9 ;RESERVE SPACE FOR SWITCH COUNT 
3147 I: DB 1 ;SPACE FOR INDEX 
~148 9S0064901EAV: D!II 5, IEte, 30,50,213, '7, l!HI~L 3~a" lea, -32767 
ae0 A = N 
a 1 5 C It..- ~t ~ Vt:llv.e. 
>n'PE SORT, HEX., 

EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE 
EIH 

l0010000214601360121470136007EFE09D2190140 
100110002146017E87C20001FF5F16002148011988 
10012800194E79234623965778239EDA3F0lB2CAAl 
100130993F9156702B5E712B722B732146013421C7 
37014009470134C30A91B06E 
10014800059064901'E00329014000700Ese32C01BB 
~4015800640001B0BE 

~000e0000e 

> DDT S 0 R T. HEX,? s-b.v+ dt{,t4., \'UV\.. 

SK DDT VER 1. 0 \ 

~~~ e:~9 defa.~ a~ess l'M addv~ (}to BJP sb.~) 
<P~

=099£1 1 e 9~ cWJ.~e fc.. -to toO

JFF FF,} l.lvm.aU! -f~ 6t;)S3c) s~ aW'A;l~ r Y'U.bDI.Ct

~ZeI'lBE0I0 A=00 B=00139 D=Be0e H=0e0e S=0100 P=0100 LXI H" 0 1 4 6 :t, €I 1 0 \1

r 1 0,2 -hoa l 0" <;+~f'S'

aZ0t1BE010 A=Bl 8=00e0 D=B00e H=0146 S=9100 P=0100 LXI H,0146
aZ0MBE010 A=01 8=00130 D=IHHle H=0146 S=0190 P=0103 11 \I I 11, ° 1
azeMBE010 A=el B=00e0 D=IH30e H=0146 S=0100 p::aIB5 LXI H,0147
llZeMBE0I9 A=01 B =a ee 0 D=0a00 H=0147 8=,01013 p::010a M'JI 11, 00
aZ0MBE019 A=Bl B=0e130 D=13e00 H=014? 8=0100 P::010A NOli A, 11
1)Z011BE010 A=IHt B=€leee D=13e0e H=0147 8=0100 P::011~B C P 1 09
1Z0MIE0I0 A=00 B:=0ee0 D =13 13 00 H=014;1 8=0100 P=01(1D JNC 0119
lZel11EEtI0 A=00 B=0e130 D=01300 H=0147 8=0100 P::0110 L X I H,,0146
lzeMlE0I0 A=00 B=e0ee D=0e00 H=0146 3=0100 P=\Z111] 1101/ A,M
1Z0111E0I0 A=Bl B=a0ee D=0e00 H=0146 S=0100 P"0114 ORA A
aZ91'1BE91e A=91 9=00130 D=0 a 00 H=0146 S=0100 P::0115 JNl 0100
aZEtl1BE9I0 A=01 B=eeee D=0000 H=0146 S=9100 P=0100 LXI H,0146
aZ011BE010 A=el B=0eee D=B000 H=0146 s=ell?"0 P::0103 11 V 1 M, 111 1
"Z0MBE010 A=el B=130ee D=80ee H=0146 S=0100 P::0105 LX I H,0147
1lZ0MBE0I0 A=01 B=001H3 D =a 13 130 H::.0147 S=0100 P::010S MVI 11. (10

BZBMBE010 A=B1 B:=e0IHI D=IHJe0 H = 0.1 47 S=0100 P::01!1A 11011 A,11:t<~10B

~ 1(iD

~d.rr.-J
1~8H

19

-XP;

P=0198 10 ~ 'fe~+ 1YO't"IM- (t1~~ bti.c~-b

_ T 10 +roce ~-hO", -tlN" (OH $-krS
J2

C0Z0H0E919 A=00 8=9900 [1=9990 H=9147
C9Z0M0E919 A=00 B=0900 D=009B H=e146
C0Z0M0E010 A=00 B=00B0 D=fJ000 H=e146
C9Z0M0EEH 0 A=ee B=00B9 D=B00B H=0147
C0ZElM9E010 A=B0 B=0ee0 D =00 013 H=0147
C0ZElM0E010 A=09 B=0990 D=fJ000 H=0147
CIZ0MIE010 A=00 B=9090 D=B €I 00 H=0147
C 1 Z €I 111 E 9 10 A=00 B=0090 II=B00€t H=0·147
ClzeMIE010 A=80 B=0000 D =00 0e H=e147
CIZ0MIE0I0 A=B0 B=8909 D=9000 H=e147
C1Z0MIE0I0 A=00 B=0900 D=0009 H=0148
.g 0 Z 0 M 1 E 0 I 0 A=00 B=0000 D=0000 H=0148

eZ0MIE0I0 A=ee B=0e0e D =0 13 013 H=0148
C0Z0MIE0I0 A=80 B=0095 D=0990 H=0148
C0ZBM1E0Ie A=05 B=e90S D=01300 H=014B
cezeM1E010 A=05 B=aees D=B008 H=0149
-L 1e~

Ble0 LXI H,0146
91133 MYI M, 01
0105 LXI H,0147
0108 MYl
OleA MOV
910B CPI
910[1 JC

M.l30
A,M
09
0119

t lSt SOIMe cod..!

.fvtMA lDO~
011 B LXI H,0146
01 t 3 MOV A,M
01 14 ORA A
01 15 JNZ 0100

-L~

01tB RST 07
0119 MOV E,A
0llA I1YI D,00
BllC LXI H,9l48

be.~·Ir'\~I~ cf-P(dj{am.

S=0190
S=0.100
S=0100
S=0100
$=0100
S=9109
S=9190
S=910e
8=13100
S=0100
S=0100
8=0100
s=ei€u3
$=0100
S=0100
8=8180

P=0109 L.XI
P::0103 t1 V I
P:=0105 LX I
P=0108 MVI
P=010A t10V
P::010B CPI
P=010D JC
P=9119 t10V
P':011A M'v'I
P=011C LXI
P= 011 F DAD
P=0120 DAD
P=.0121 t·10il
P::0122 t10v
P=0123 I NX
P=0124 MOV

ALCioYlt\q.-h (..
b"'~F~lA.t

H, 0 1 4 6 . ~f'-
N, ell ,11-
H, 014 7 w(~
11, 0 0 ~\"I-
A,M)
139 JI'"
0119
E,f!
D,00
H .• 0148
D
D
C. i1
A,e:
H
8,M*812:5

~

- a~\#t h~+ Lu~~ y-c...1,1lI-t . -h
r ~?C. (orl.~H) ow.< mIL liA V"e~\ +1VY\e 0 IlaH

- G, 1 1 8; '5-k~ ~YOjV'lA.1.M. -r (l)~

'" 012 7 ~pf~d w~~ Q.v.. eK~lf4.l \lA4t.vrup+ 7 -f~ fV"~+ ytt~e.{ ('PY"~t'li1M. was
-T4~ \oo~ Gtt 100f'~ fYOJfAIM I.",~e mok "+ tOCf'VIj \~·h~l~~)
C0Z0M9E0I0 A=38 B=0064 D=8006 H=0156 S=0100 P=0127 MOV D,A
C0Z0MBEeI0 A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MUV A,B
ceZBMBE010 A=00 B=0064 D=38a6 H=0156 £=0100 P~0129 INX H
C0Z0M0E0I0 A=00 B=0064D=3806 H=0157 8=0100 P=012A SBB M*012B
-D148

&14£1 05 00 87 e0 14 00 1E
0150 32 8e 64 00 64 80 2C
0160 00 00 00 0e 00 B0 00

~ Ma. l<; swkd) bt4 YVOjfAW cS.oe.s ~t s-ky .
00
01 EB (1"301 B0 00 ee 00 ee 2D.D,
00 ee G0 00 00 00 00 0000

-&',1 re-h.c.('~ +0 C.P/M

DDt SORT, HEX.; relo~d tke meWlOVj IfhA1

16K DDT YER 1.0
NEXT PC
else 0eee
-xp

p = e 13 0 e 1 e e~ set -pc. -\0 \'e.J"v\I1:~ of' t~(ru"t't
- L 1 e D; tl.::,t b~ OfCOdt

010D JNC 13119/
13110 LXI H,0146
- a.~+ It* w~.H,. ru.IoOtA-t

- Ale D; a.s~wJa\~ vtevJ q'(()t!e.

e10D JC 11~

0110;

- L1 B 0; h~~ cs\w~ S'e~of 'fVl'j~CllM'

0100 LXI H,e146
13103 MVI M,al
a10S LXI H,a147
Blee l1VI M,Ele
- O.toM t\st VI~~ (V.bclIl.t

- Ale 3;. dAO.4e· \l$W'I+~'1 ~\A.,,'hjl~ ~ ~ ¢rt

01 fiJ5~

_" (; re:b,y&.\. -\0 ev/~ \.Ul+t, c.fl-c. (G~ VJ(N~ £AS wett)

SAVE 1 SORT, COM; 'StAVe 1. f(}~l (7.<;b ~~slfttI\M- 1.00~-\v1..FFH.) OY', dis/£, ,,~ Co.~
, w(' ~o.Ve. -+0 v-eltlo.d. l~('

A> DD T S OR T, CO"'; Y'e-:,-\n.v1- 1)'01 w~
$d.vC!cI. 't\'\~VVI""j \1'\'\ ~e

16K DDT VER 1.0
NEXT PC "
0200 a 1 00 "QoM" .fde. dwo.js stz,.,rts WI-\-\... o.M«SIS looH
- G.2 rt.l~ -th~ \''r''jYGlIM ..(: t1ttY\ l' C -=1 00 H

It: 13 11 e 1'~fQ..V\"""'f:d. ~~p (fZ.-:' r 1) e."'e.o ().~+U'tci
"'D148

0148 9S ee 97 ee 14 ee IE
015(; 32 130 64 eo 64 ee 2C 13 1 E8 en e 1 813 e0 ee
13160 Et0 IHI 00 ee 60 ee €Ie 00 00 013 £10 £10 130 00
131713 ae 00 ee \!I 0 00 ee ee 00 1313 00 iH1 ~) 0 0ti 1313

-G~ r~rlA- 40 ~f(M.

ee iH3 2. D. D. ,
00 013

60 00 .. . ,

. ,

. .

II

iSET TO 1 FOR FIRST ITERATION

iADDRESS INDEX

iZERO SW

H J I iADDRESS INDEX

iCONTIHUE IF I (= (H-2)

CP/M ASSEMBLER - VER 1.0

B 1 S C \r4t ~~ io as~(,
Bet3H USE FACTOR
OlD OF ASSEMBL Y

[I D T SO R T. HEX,; M l"";)'~ cU.o.~t.S

16K DDT VER 1. e
~~Dn PC
015(: IHiet0
- G 1(1121,;

Ii< 12111 8
- D 148)

0148 05 B0 07 0e
elsa 32 0e 64 013
0160 130 013 130 €Ie

14 Be
~ do..-f,:... 5Dw-tal
1 E 00

64 eo 2C 13 1 EB 03 91
00 013 00 013 00 f10 00

- 0.'00\-1 w\~n~Io'\A.t

- G ~ re-\u..-v..1v ef'/M- - 'fV'7o.W. d~s 0 t:. .

89 0121 138
00 li0 o ~)

130 Be
0fJ i:t 0

2. D. D. J •••••••••

APPENDIX F

THE CP/M 2.0
INTERFACE GUIDE

01 [)~[j~Tfll RE~EflR[H
Post Office Box 579. Pacific Grove. California 93950. (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitteo,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical,. chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

1.

2.

Introduction ••

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Operating System Call Conventions

3. A Sample File-to-File Copy Program •

4. A Sample File Dump Utility

5. A Sample Random Access Program •

6. System Function Summary

1

3

• 29

• • 34

• • 37

• • 46

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic. Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide") .
The BIOS and BDOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct pr·ogram which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

FDOS (BDOS+BIOS)

CCP

TPA

system parameters

rhe exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide." All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Th"us, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

I

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H.
The pr incipal entry point to the FOOS is at location BOOT+f2l005H
(normally f2lf2lf2l5H) where a jump to FBASE is found. The address field at
BOOT+f2lf2lf2l6H (normally f2l0f2l6H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient
follows. The
I ines following
forms:

programs are loaded into the TPA and executed as
operator communicates with the CCP by typing command

each prompt. Each command line takes one of the

command
command f ilel
command filel file2

where "command" is either a built-in function such as OIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

comma nd. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by one or two file specifications,
or two file control block (FCB) names in the

These optional FCB's are in the form necessary
the FOOS, and are described in the next

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FOOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-l is free.

The transient program may use the CP/M I/O facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number" and an "information address" to CP/M through the
FOOS entry point at BOOT+00f2l5H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FDOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators arE
given in belOW.

(All Information Contained Herein is Proprietary to Oigital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Appl ications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
write a Console Character
Read a Sequential Tape Character
write a Sequential Tape Character
write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

rhe FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
)y passing a function number and information address through the
?rimary entry point at location BOOT+0005H. In general, the function
lumber is passed in register C with the information address in the
30uble byte pair DE. Single byte values are returned in register A,
~ith double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
:he register passing conventions of CP/M agree with those of Intel1s
?L/M systems programming language. The list of CP/M function numbers
LS given below.

[All Informa tion Contained Herein is Propr ietary to Dig i tal Research.)

3

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 write Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console I/O 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr (Alloc)
9 Pr int Str ing 28 Write Protect Disk

10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with Boo'r = 0000H):

BDOS EQU 0005H ; STANDARD CP/M ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION

ORG 0100H ; BASE OF TPA
NEXTC: MVI C,CONIN ;READ NEXT CHARACTER

CALL BDOS ;RETURN CHARACTER IN <A>
CPI . * , ;END OF PROCESSING?
JNZ NEXTC iLOOP IF NOT
RET i RE'rURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of thE
drive. Each drive is logically distinct with a disk directory anc
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in eacr
category. The file types listed below name a few generic categorie~

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Pr inter Listing
Hex Machine Code
Basic Source File
Intermediate ,Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from " through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at loca,tion BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are availabl~ for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

--
Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select dr ive B, . . .
16=> auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tIl, t2', and t3' denote the
bit of these positions,
tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,~
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
)rought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
lpdated as file operations take place and later recorded permanently
)n disk at the termination of the file operation (see the CLOSE
:: omma nd) •

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "filel" and "file2" in the prototype
:::ommand line described above, with unspecified fields set' to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ••• dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOO'!'+005CH is initialized to drive code 2, file name "X" and file type
"ZOT" • The second drive code take s the def aul t value 0, wh ich is
placed at BOOT+006CH, wi th the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through IOcr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOOT+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14

1 4 It .. .~ B " II. It .. X", Z It II 0 II II T .. I~ .. h Y h ... II .. Z.. It AU'. P ..

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)

7

* * * FUNCTION 0: System Reset
*

*
*

* Entry Parameters: *
* Register C: 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

* *
* FUNc'rION I: CONSOLE INPUT
*

*
*

*
*
*

Entry Parameters:
Register C: 0lH

*
*
*

* Returned Value: *
* Register A: ASCII Character *

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* * * FUNCTION 2: CONSOLE OUTPUT
*

*
*

*
*
*
*

En t ry Par am e t e r s:
Register C:
Register E:

*
02H *
ASCII Character *

*

The ASCII character from register E is sent to the console
device. Similar to function I, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

*
*
*

~**************************************

FUNc'rION 3: READER INPUT

Entry Parameters:
Register C: 03H

*
*
*

Returned Value: *
r Register A: ASCII Character *
~**************************************

'rhe Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
\Iteration Guide"). Control does not return until the character has
)een read.

* * * FUNCT ION 4:
*

PUNCH OUTPUT *
*

* Entry Parameters: *
* Register C: 04H *
* Register E: ASCII Character *
* *

The Punch Output function sends the character from register E to
the logical punch device.

* *
* FUNCTION 5: LIST OUTPUT
*

*
*

* Entry Parameters: *
* Register C: 05H *
* Register' E: ASCII Character *
* *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

* * * FUNCTION 6: DIRECT CONSOLE I/O *
* *

* Entry Parameters: *
* Register C: ~6H *
* Register E: ~FFH (input) or *
* char (output) *
* * * Returned Value: *
* Register A: char or status *

(no value) *

Direct console I/O is supported under CP/M for thos~ specializec
applications where unadorned console input and output 1S required.
Use of this function should, in general, be avoided since it bypassef
all of CP/M's normal control character functions (e.g., control-S anc
control-P). Programs which perform direct I/O through the BIOS undel
previous releases of CP/M, however, should be changed to use direci
I/O under BDOS so that they can be fully supported under futurE
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCI]
character. If the input value is FF, then function 6 returns A = ~~
if no character is ready, otherwise A contains the next console inpu1
character.

If the input value in E is not FF, then function 6 assumes thai
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

l~

~**************************************
~

~ FUNCTION 7: GET I/O BYTE
*

*
*
*

* Entry Parameters: *
* Regis,ter C: 07H *
* * * Returned Value: *
* Register A: I/O Byte Value *

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* *
*
*

FUNc'rION 8: SET I/O BYTE *
*

* Entry Parameters: *
* Register C: 08H *
* Register E: I/O Byte Value *
* *

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

* *
*
*

FUNCTION 9: PRINT STRING *
*

* Entry Parameters: *
* Register C: 09H *
* Registers DE: String Address *
* *

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

* * * FUNCTION 10: READ CONSOLE BUFFER *
* *

*
*
*

Entry Parameters:
Register C: 0AH
Registers DE: Buffer Address

*
*
*

* *
* Returned Value: *
* Console Characters in Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

Imxlnclcllc21c31c41c51c61c71 I??I

where "mx" is the maximum number of characters which the buffer will
hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by "?? II in the above figure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes operator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

~**************************************

*
FUNc'rION 11: GET CONSOLE STATUS *

*
~**************************************

Entry Parameters:
Register C: 0BH

*
*
*

Returned Value: *
Register A: Console Status *

~**************************************

The Console Status function checks to see if a character has
)een typed at the console. If a character is ready, the value 0FFH is
~eturned in register A. Otherwise a 00H value is returned.

~**************************************

*
FUNCTION 12: RETURN VERSION NUMBER *

*
~**************************************
r Entry Parameters: *
~ Register C: 0CH *
~ *

Returned Value: *
r Registers HL: Version Number *
~**************************************

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
iesignating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
irite application programs which provide both sequential and random
iccess functions, wi th 'random access disabled when operating under
~arly releases of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

13

* * * FUNCTION 13: RESET DISK SYSTEM *
* * ***************************************
*
*
*

Entry Parameters:
Register C: 0DH

*
*
*

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an application program which requires a disk
change without a system reboot.

* * FUNCTION 14: SELECT DISK

*
*

* *

*
*
*
*

Entry Parameters:
Register C:
Register E:

0EH
Selected Disk

*
*
*
*

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCBls which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

* * FUNCTION 15: OPEN FILE
*

*
*
*

*
*
*

Entry Parameters:
Register C:
Registers DE:

0FH
FCB Address

*
*
*

* * * Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes hex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory codeu with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
act~ated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

* * FUNCTION 16: CLOSE FILE
*

*
*
*

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

10H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: llH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register l~ft 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the d,efault disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

* * FUNCTION 18: SEARCH FOR NEXT
*

*
*
*

* Entry Parameters: *
: Register C: 12H :

* Returned Value: *
* Register A: Directory Code *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

* *
* FUNCTION 19: DELETE FILE *

* * ***************************************
* Entry Parameters: *
* Register C: l3H *
* Registers DE: FCB Address *
* *
* Returned Value:
* Register A:

* Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

* *
*
*

FUNc'rION 20: READ SEQUENTIAL *
*

* Entry Parameters: *
* Register C: l4H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

if the referenced file or
value in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incremented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Prop~ietary to Digital Research.)

18

t**************************************
*

FUNCTION 21: WRITE SEQUENTIAL *
*

~**************************************
t Entry Parameters: *
t Register C: ISH *
t Registers DE: FCB Address *

*
t Returned Value: *
t Register A: Directory Code *
t**************************************

Given that the FCb addressed by DE has been activated through an
'pen or make function (numbers 15 and 22), the Write Sequential
:unction writes the 128 byte data record at the current DMA address to
:he file named by the FCB. the record is placed at position ncrn of
:he file, and the hcr" field is automatically incremented to the next
~ecord pos i tion. I f the "c r" field over flows then the next logical
~xtent is automatically opened and the "cr" field is reset to zero in
)reparation for the next write operation. write operations can take
)lace into an existing file, in which case newly written records
)verlay those which already exist in the file. Register A = 00H upon
~eturn from a successful write operation, while a non-zero value
Lndicates an unsuccessful write due to a full disk.

t************************************~*
t *

FUNCTION 22: MAKE FILE *
*

t**************************************
Entry Parameters:

Register C: 16H
Registers DE: FCB Address

*
*
*
*

r Returned Value: *
r Register A: Directory Code *
r**************************************

The Make File operation is similar to the open file operation
~xcept that the FCB must name a file which does not exist in the
~urrently referenced disk directory (i.e., the one named explicitly by
i non-zero ndr" code, or the default disk if "dr" is zero). The FDOS
~reates the file and initializes both the directory and main memory
lalue to an empty file. The programmer must ensure that no duplicate
Eile names occur, and a preceding delete operation is sufficient if
:here is any possibility of duplication. Upon return, register A = 0,
L, 2, or 3 if the operation was successful and 0FFH (255 decimal) if
10 more directory space is available. The make function has the
;ide-effect of activating the FCB and thus a subsequent open is not
lecessary.

(All Information Contained Herein is proprietary to Digital Research.)

19

* * FUNCTION 23: RENAME FILE
*

*
*
*

*
*
*
*

Entry Par arne ters:
Register C:
Registers DE:

l7H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The dr ive code "dr" at pos i tion 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
directory scan.

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

*
*
*

Entry Parameters:
Register C: l8H

*
*
*

* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by CP/M is a l6-bit value in HL,
where the least significant bit of L corresponds .to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A 110" bit indicates that the drive is not on-line, while
a hI" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

*
*
*

FUNCTION 25: RETURN CURRENT DISK
*
*
*

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *
****************************~**********

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P.

* * * FUNCTION 26: SET DMA ADDRESS
*

*
*

* Entry Parameters: *
* Register C: lAH *
* Registers DE: DMA Address *
* *

'IDMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-molA access (Le.,
the data is transfer~d through programmed I/O operations), the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
coid start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0080H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

* *
*
*

FUNCTION 27: GET ADDR(ALLOC) *
*

* Entry Parameters: *
* Register C: IBH *
* * * Returned Value: *
* Registers HL: ALLOC Address *

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide."

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters:
Register C: ICH

*
*
*

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

* *
* FUNCTION 29: GET READ/ONLY VECTOR *
* *

* Entry Parameters: *
* Register C: IDH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
****************************~**********

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 2B, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: IEH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
repet. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators fS' through fB' and t3' are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

*
*
*

FUNCTION 31: GET ADDR(DISK PARMS)
*
*
*

* Entry Parameters: *
* Register C: IFH *
* *
* Returned Value: *
* Registers HL: DPB Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* *
* FUNc'rION 32: SET/GET USER CODE *

* *

* En t ry Par am e t e r s : *
* Register C: 20H *
* Reg i s t erE: 0 F F H (g e t) 0 r *
* User Code (set) *
*
*
*
*

Returned Value:
Register A:

*
*

Current Code or *
(no value) *

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register E is not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

:**************************************
*

FUNCTION 33: READ RANDOM *
*

:**************************************
Entry Parameters:

Register C:
Registers DE:

2lH
FCB Address

*
*
*
*

Returned Value: *
Reqister A: Return Code *

:**************************************

The Read Random function is similar to the sequential file read
Iperation of previous releases, except that the read operation takes
Ilace a t a par ticular record number, selected by the 24-bi t value
:onstructed from the three byte field following the FCB (byte
lositions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
If 24 bits is stored with least significant byte first (r0), middle
Iyte next (rl), and high byte last (r2). CP/M does not reference byte
'2, except in computing the size of a file (function 35). Byte r2
lust be zero, however, since a ~on-zero value indicates overflow past
:he end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
'alue, which contains the record to read. This value ranges from 0 to
;5535, providing access to any particular record of the 8 megabyte
:ile. In order to process a file using random access, the base extent
extent 0) must first be opened. Although the base extent mayor may
lot contain any allocated data, this ensures that the file is properly
ecorded in the directory, and is visible in DIR requests. The
:elected record number is then stored into the random record field
r0,rl), and the BDOS is called to read the record. Upon return from
.he call, register A either contains an error code, as listed below,
Ir the value 00 indicating the operation was successful. In the
atter case, the current DMA address contains the randomly accessed
ecord. Note that contrary to the sequential read operation, the
'ecord number is not advanced. Thus, subsequent random read
Iperations continue to read the same record.

Upon each random read operation, the logical extent and current
ecord values are automatically set. Thus, the file can be
equentially read or written, starting from the current randomly
.ccessed position. Note, however, that in this case, the last
andomly read record will be re-read as you switch from random mode to
equential read, and the last record will be re-written as you switch
.0 a sequential write operation. You can, of course~ simply advance
he random record position following each random read or write to
,btain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
isted below.

All Information Contained Herein is Proprietary to Digital Research.)

25

91 reading unwritten data
92 (not returned in random mode)
93 cannot close current extent
94 seek to unwritten extent
95 (not returned in read mode)
96 seek past physical end of disk

Error code 91 and 94 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 96 occurs whenever byte r2
is non-zero under the current 2.9 release. Normally, non-zero return
codes can be treated as miss ing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

* * * FUNCTION 34: WRITE RANDOM *
* *

Entry Parameters:
Register C: 22H

*
*
*
*

Registers DE: FCB Address

*
*
*
* * Returned Value: *

* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned
random read operation with
indicates that a new extent
overflow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

(All Information Contained Herein is Proprietary to Digital Research.)

27

* * * FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* * Returned Value:
* Random Record Field Set

*
*
*

When computing the size of a filer the DE register pair
addresses an FCB in random mode format (bytes r0, rlr and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
~virtual" file size which iS r in effect, the record address of the
record following the end of the file. if, following a call to
function 35 r the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
l6-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address. .

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. rfr for
example r only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records r although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

r**************************************
*

FUNCTION 36: SET RANDOM RECORD *
*

r**************************************
Entry Parameters:

Register C:
Registers DE:

24H
FCB Address

*
*
*
*

Returned Value: *
Random Record Field Set *

r**************************************

The Set Random Record function causes the
)roduce the random record position from a file
Ir i tten sequentially to a particular point.
Iseful in two ways.

BDOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
;equential file to extract the positions of various Ukey" fields. As
~ach key is encountered, function 36 is called to compute the random
:ecord position for the data corresponding to this key. If the data
Init size is 128 bytes, the resulting record position is placed into a
:able with the key for later retrieval. After scanning the entire
:ile and tabularizing the keys and their record numbers, you can move
Lnstantly to a particular keyed record by performing a random read
Ising the corresponding random record number which was saved earlier.
~he scheme is easily generalized when variable record lengths are
Lnvolved since the program need only store the buffer-relative byte
)osition along with the key and record number in order to find the
~xact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
;equential read or write over to random read or write. A file is
;equentially accessed to a particular point in the file, function 36
LS called which sets the record number, and subsequent random read and
Irite operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COpy PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEX" file. The LOAD program is the used to produce a COPY. COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 996CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 99SCH is
properly set-up by the CCP upon entry to the COpy program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 997CH. The program
continues by opening the source file, deleting any exising destinatior
file, and then creating the destination file. If all this is
successful, the program loops at the label COpy until each record has
been read from the source file and placed into the destination file.
upon completion of the data transfer, the destination file is closec
and the program returns to the CCP command level by jumping to BOOT.

0909 =
0095 =
00Sc =
00Sc =
096c =
0989 =
0109 =

0009 =
000f =
9010 =
0013 =
0014 =
0015 =
0016 =
0109
0100 3llb02

9103 0e10

· ,
sample file-to-file copy program

~ at the ccp level, the command

copy a:x.y b:u.v

~ copies the file named x.y from drive
~ a to a file named u.v on drive b.
~
boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa
· I

printf
openf
closef
deletef
readf
writef
makef
· I

· , · ,

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

org
lxi

0009h
009Sh
905ch
fcbl
006ch
9080h
0l00h

9
15
16
19
20
21
22

system reboot
bdos entry point
first file name
source fcb

~ second file name
defaul t buffer
beginning of tpa

print buffer func#
~ open file func#

close file func#
~ delete file func#
~ sequential read
~ sequential write
; make file func#

tpa ~ beginning of tpa
sp,stack~ local stack

move second file name to dfcb
mvi c,16 ~ half an fcb

(All Information Contained Herein is Proprietary to Digital Research.J

30

0105 116c00
0H.l8 21da01
010b la mfcb:
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
0114 32fa01

0117115c00
011a cd6901
011d 118701
0120 3c
0121 cc6101

0124 Ilda01
0127 cd7301

012a Ilda01
012d cd8201
0130 119601
0133 3c
0134 cc6101

0137 115c00 copy:
013a cd7801
013d b7
013e c25Hll

0141 I1da01
0144 cd7d0l
0147 l1a901
014a b7
014b c46101
014e c3 3 701

0151 Ilda01
0154 cd6e01
0157 21bb01
015a 3c
015b cc6101

;
eof ile:

lxi
lxi
Idax
inx
mov
inx
dcr
jnz

d,fcb2
h,dfcb
d
d
m,a
h
c
mfcb

source of move
destination fcb
source fcb
ready next
dest fcb
ready next
count 16 ••• 0
loop 16 t im e s

name has been moved, zero cr
xra a ; a = 00h
sta dfcbcr; current rec = 0

source and destination fcb's ready

lxi
call
lxi
inr
cz

d,sfcb source file
open ; error if 255
d,nofile; ready message
a 255 becomes 0
finis done if no file

source file open, prep destination
lxi d,dfcb destination
call delete remove if present

lxi
call
lxi
inr
cz

d,dfcb
make
d,nodir
a
finis

destination
create the file
ready message
255 becomes 0
done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

not end
lxi
call
lxi
ora
cnz
jmp

d, s fcb
read
a
eofile

source
read next record
end of file?
skip write if so

of file, write the record
d,dfcb destination
write write record
d,space ready message
a 00 if write ok
finis end if so
copy loop until eof

; end
lxi
call
lxi
inr
cz

of file, close destination
d,dfcb destination
close ; 255 if error
h,wrprot; ready message
a 255 becomes 00
finis shouldn't happen

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

015e llcc01

0161 0e09
0163 cd0500
0166 c30000

i
finis:

0169 0e0f open:
016b c30500 . ,
016e 0e10 close:
0170 c30500

;

lxi

; write
mvi
call
jmp

d,normali ready message

message given by de, reboot
c,printf
bdos ; wr i te message
boot i reboot system

system interface subroutines
(all return directly from bdos)

mvi
jmp

mvi
j mp

c,openf
bdos

c,closef
bdos

01730e13 delete: mvi c,deletef
bdos 0175 c30500 jmp

i
o 1 7 8 0 e 1 4 read :
017a c30500 . ,
017d 0e15 write:
017f c3 0 500

;
0182 0e16 make:
0184 c30500

0187
0196
0la9
0lbb
0lcc

6e6f20fnof ile:
6e6f209nodir:
6f7574fspace:
7772695wrprot:
63 6f7 0 0normal:

mvi
jmp

mvi
jmp

mvi
jmp

console
db
db
db
db
db

c, readf
bdos

c,writef
bdos

c, make f
bdos

messages
'no source file$'
'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$ I

data areas
01da
01fa =

0lfb

02lb

dfcb: ds 33
dfcbcr equ dfcb+32

ds 32
stack:

end

destination fcb
current record

1 6 I eve 1 s tack

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCp1s stack upon entry,
resets the stack to a local area, and restores the CCp1s stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

0100
0005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

005c =
0080 =

000d =
1000a =

005c =
005d =
0065 =
0068 =
006b =
007c =
10107d =

0100 210000
0103 39

0104 221502

0107 315702

010a cdc101
010d feff
010f c21b01

0112 llf301
0115 cd9c01
0118 c35101

; DUMP program reads input file and displays hex data

bdos
cons
typef
prlntf
brkf
openf
readf . ,
fcb
buff

cr
If

fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln . ,

;

org
equ
equ
equ
equ
equ
equ
equ

equ
equ

100h
0005h
1
2
9
11
15
20

5ch
80h

;dos entry point
; read console
;type function
;buffer print entry
;break key function (true if char
;file open
;read function

;file control block address
;input disk buffer address

non graphic characters
equ 0dh ;carriage return
equ 0ah ;line feed

file
equ
equ
equ
equ
equ
equ
equ

control block definitions
fcb+0 ; disk name
fcb+l ;file name
fcb+9 ;disk file type (3 characters)
fcb+12 ;file's current reel number
fcb+15 ;file's record count (0 to 128)
fcb+32 ;current (next) record number (0
fcb+33 ; fcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hI from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

file
lxi
call
jmp

not there, give error message and return
d,opnmsg
err
finis ito return

(All Information Contained Herein is Proprietary to Digital Research.)

34

(inlb 3e80
011d 321302

0120 210000

0123 e5
0124 cda201
13127 el
0128 da5101
012b 47

012c 7d
f(J12d e6f(Jf
012f c24401

13132 cd7201

0135 cd5901

0138 f(Jf
0139 da5101

013c 7c
013d cd8f01
01413 7d
13141 cd8f01

0144 23
0145 3e20
0147 cd6501
o 14a 78
014b cd8f01
014e c32301

0151 cd7201
0154 2a1502
13157 f9

0158 c9

0159 e5d5c5
015c 0e0b
015e cd0500
0161 cldlel

openok:

;

;
gloop:

.
I

nonum:

. ,
finis:

;
break:

;open operation ok, set buffer index to end
mvi a,8eJh
sta ibp
hI contains
lxi h,0

;set buffer pointer to 80h
next address to print

h
gnb
h
finis
b,a

;start with 0000

;save line position

;recall line position
icarry set by gnb if end file

push
call
pop
jc
mov
print
check
mov
ani
jnz
print

hex values
for line fold

a,l
0fh icheck low 4 bits

call

nonum
line number

crlf

check for break key
call break
accum Isb = 1 if character ready
rrc ;into carry
jc finis ;don't print any more

mov
call
mov
call

inx
mvi
call
mov
call
jmp

a,h
phex
a,l
phex

h
a,' ,
pchar
a,b
phex
gloop

ito next line number

end of dump, return to ccp
(note that a jmp to 00f(JeJh reboots)
call crlf
Ihld oldsp
sphl
stack pointer contains ccp's stack location
ret ito the ccp

subr ou tines

;check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c,brkf
call bdos
pop b! pop o! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

~164 c9

0165 e5d5c5
0168 0e02
016a Sf
016b cd0500
016e cldlel
0171 c9

0172 3e0d
0174 cd6501
01773e0a
0179 cd6501
017c c9

017d e60f
017f fe0a
0181 d28901

0184 c630
0186 c38b01

· ,
pchar:

1
cr If:

· ,
pnib:

· ,

0189 c637 p10:
018b cd6501 prn:
018e c9

018f f 5
0190 0 f
0191 0f
0192 0 f
0193 0 f
0194 cd7d01
0197 f 1
0198 cd7d01
019b c9

019c 0e09
01ge cd0500
01al c9

01a2 3a1302
01a5 fe80
01a7 c2b301

· ,
phex:

err:

1
gnb:

ret

1print a character
push hI push dl push b; saved
mvi c,typef

e,a
bdos

mov
call
pop bl
ret

pop dl pop h1 restored

mvi
call
mvi
call
ret

a,cr
pchar
a,lf
pchar

in reg a 1print
ani
cpi
jnc
less
adi
jmp

nibble
0fh
10
p10

110w 4 bits

than or
10 1

prn

equal to 9

greater or equal to 10
adi I a I - 10
call pchar
ret

1print hex char in reg a
push psw
rrc
rrc
rrc
rrc
call
pop
call
ret

pnib
psw
pnib

1print nibble

1pr int error message
d,e addresses message
mvi c,printf
call bdos
ret

1ge t
Ida
cpi
jnz
read

next byte
ibp
80h
g0

another buffer

ending with "$"
1print buffer function

(All Information Contained Herein is Proprietary to Digital Research.)

36

0laa cdce01
0lad b7
0lae cab301

o lbl 37
0lb2 c9

o Ib3 5f
0lb4 1600
0lb6 3c
"'lb7 321302

0lba 218000
o lbd 19

01be 7e

o lbf b7
0lc0 c9

.
I

;
g0:

;
;

;

.
I

;

call
ora
jz
end
stc
ret

diskr
a ;zero value if read ok
g0 ;for another byte

of data, return with carry set for eof

;read the byte at buff+reg a
mov e,a ;ls byte of buffer index
mvi d,0 ;double precision index to de
inr a ;index=index+l
sta ibp ; back to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora a ;reset carry bit
ret

setup: ; set up file
open the file for input

0lcl af xra a ;zero to accum
01c2 327c00 sta fcbcr ;clear current record

01c5 115c00
01c8 0e0f
01ca cd0500

o lcd c9

o Ice e5d5c5
o Idl 115c00
01d4 0e14
01d6 cd0500
o Id9 cldlel
01dc c9

;
diskr:

;

lxi d,fcb
mvi c,openf
call bdos
255 in accum if
ret

open error

;read disk file record
push h! push d! push b
lxi d,fcb
mvi c" r.eadf
call bdos
pop b! pop d! pop h
ret

fixed message area
01dd 46494c0signon: db 'file dump version 2.0$1
01f3 0d0a4e0opnmsg: db cr,lf,' no input file present on disk$'

0213
0215

0217

0257

.
I

ibp:
oldsp:

.
I

stktop:

var iable area
ds 2
ds 2

stack area
ds 64

end

;input buffer pointer
;entry sp value from ccp

;reserve 32 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDa.'! ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDa.'!.COM, the CCP level
command:

RANDa.'! X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDa.'! program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDa.'! then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc. II

This particular program shows the elements of random access
processing, and can be used as the basis for further program
devel opmen t.

(All Information Contained Herein is Proprietary to Digital Research.)

38

01ftH3

00"'0 =
0005 =

0001 =
0002 =
0009 =
000a =
000c =
000f =
0010 =
0016 =
0021 =
0022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 3lbc0

0103 0e0c
0105 cd050
0108 fe20
0l0a d2l60

0l0d lllb0
0110 cdda0
0113 c3000

0116 0e0f
0118 115c0
0l1b cd050
0l1e 3c
011f c2370

~***
.* * ,
~* sample random access program for cp/m 2.0 *
.* * ,
.*** ,

~

reboot
bdos

coninp
conout
pstring
rstring
version
openf
closef
makef
readr
writer
~
fcb
ranrec
ranovf
buff

cr
If

org

equ
equ

egu
egu
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ

l00h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

~base of tpa

~ sys tern reboot
~bdos entry point

~console input function
~console output function
~print string until '$'
~read console buffer
~return version number
~file open function
~close function
~make file function
~ read random
~write random

~default file control block
~random record position
~high order (overflow) byte
~ buffer address

~ car r iage return
~ line feed

~

.*** ,

.* ,
~* load SP, set-up file for random access
· * ,

*
*
* .*** ,

lxi sp,stack

~ version 2.01
mvi c,version
call bdos
cpi 20h ~version 2.0 or better?
jnc versok
bad version, message and go back
lxi d,badver
call print
jmp reboot

~
versok:
· correct version for random access ,

mvi c,openf ~open default fcb
lxi d,fcb
call bdos
inr a ~err 255 becomes zero
jnz ready

· , cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

~122 "e16
~ 124 115c0
~127 cd~5~
~12a 3c
~12b c237~

012e 113a0
0131 cdda~
0134 c3~~~

0137 cde50
013a 227d~
~13d 217f0
0140 3600
0142 fe51
0144 c2560

0147 0e10
0149 115c0
014c cd050
014f 3c
~150 cab90
0153 c3~00

0156 feS7
~158 c289~

~15b 114d0
015e cdda0
0161 0e7f
~163 21800

0166 cS
0167 eS
0168 cdc20
~ 16b e1

mvi c,makef
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

; cannot create file, directory full
lxi d,nospace
call print
jmp reboot ;back to ccp

· ,
.*** ,
.* * ,
.* ,
· * ,

loop back to "ready" after each command *
*

.*** ,

ready:
file is ready for processing

· ,
call readcom ;read next command
shld ranrec ;store input record#
lxi h, ranovf
mvi m,0 ;clear high byte if set
cpi • Q' ;quit?
jnz notq

;

· quit processing, close file ,
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ; er ror message, retry
jmp reboot ;back to ccp

· ,
.*** ,
.* * ,
;* end of quit command, process write *
.* * ,
.*** ,
notq:

r loop:

not the quit command, random write?
cpi 'w'
jnz notw

this is
lxi
call
mvi
lxi

a random write, fill buffer until cr
d,datmsg
print ;data prompt
c,127 ;up to 127 characters
h,buff ;destination

; read
push
push
call
pop

next character to buff
b ;save counter
h ;next destination
getchr ;character to a
h ;restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

016c cl
016d fe0d
016f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

017a 0e22
017c 115c0
017f cd050
0182 b7
0183 c2b90
0186 c3370

0189 fe52
018b c2b90

018e 0e2l
0190 115c0
0193 cd050
0196 b7
0197 c2b90

019a cdcf0
019d 0e80
019f 21800

01a2 7e
01a3 23
01a4 e67f
01a6 ca370
01a9 c5
01aa e5
01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
01b6 c3370

pop b ;restore next to fill
cpi cr ;end of line?
jz erloop

; not end, store character
mov m,a
inx h ;next to fill
dcr c ;counter goes down
jnz rloop ;end of buffer?

erloop:
· end of read loop, store 00 ,

mvi m,0

· write the record to selected record number ,
mvi c,writer
lxi d,fcb
call bdos
ora a ;error code zero?
jnz error ;message if not
jmp ready ;for another record

· ,
;***
• *" ,
;* end of write command, process read
.* ,

*
*
*

.*** ,
notw:
· not a wr i te command, read record? ,

cpi 'R'
jnz error ;skip if not

· ,
; read random record

mvi c, readr
lxi d,fcb
call bdos
ora a ;return code 00?
jnz error

; read was successful, write to console
call crlf ;new line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another com@and if 00
push b ;save counter
push h ;save next to get
cpi I I ;graphic?
cnc putchr ;skip output if not
pop h
pop b
dcr c ;count=count-l
jnz wloop
jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

0lb9 11590
0lbc cdda0
0lbf c3370

0lc2 0e0l
0lc4 cd050
01c7 c9

0lc8 0e02
0lca Sf
0lcb cd050
01ce c9

0lcf 3e0d
01dl cdc80
0ld4 3e0a
01d6 cdc80
01d9 c9

01da dS
01db cdcf0
01de dl
01df 0e09
01el cd050
01e4 c9

01eS 116b0
01e8 cdda0
01eb 0e0a
01ed 117a0
01f0 cd050

. ,
~***
.* * ,
~* end of read command, all errors end-up here
. * , *

*
~***

error:
lxi
call
jmp

d ,errmsg
print
ready

;
~***
.* * ,
~* utility subroutines for console i/o *
.* * ,
.*** ,
getchr:

putchr:

~
cr If:

print:

~

read com:

~read next console character to a
mvi c,coninp
call bdos
ret

~write character from a to console
mvi
mov
call
ret

c, conout
e,a ~character to send
bdos ~send character

~send carriage return line feed
mvi
call
mvi
call
ret

~print
push
call
pop
mvi
call
ret

~ read
lxi
call
mvi
lxi
call

a,cr ~carriage return
putchr
a,lf ~line feed
putchr

the buffer addressed by de until $
d
cr If
d ~new line
c,pstr ing
bdos ~pr int the str ing

the next command line to the conbuf
d,prompt
print ~command?

c, rstr ing
d,conbuf
bdos ~read command line

command line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

01f3 21000
01f6 117c0

h,0 istart with 0000
d,conlinicommand line

o If 9 1 are ad c :
01fa 13

lxi
lxi
Idax
inx
ora

d inext command character
d ito next command position

01fb b7
01fc c8

01fd d630
01ff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
o 20a 85
QJ 20b 6f
020c d2f90
o 20f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
"21a c9

i

endrd:

a icannot be end of command
rz
not zero, numeric?
sui '0'
cpi 10 icarry if numeric
jnc endrd
add-in next digit
dad h i*2
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

c,l
b,h
h
h
b
1
l,a
readc
h
readc

ibc = value * 2
i*4
i*8
i*2 + *8 = *10
i+digit

ifor another char
ioverflow
ifor another char

end of read, restore value in a
adi '0' icommand
cpi 'a' itranslate case?
rc
lower case f mask lower case bits
ani 101$1111b
ret

;
.*** I

.* * I

i* string data area for console messages *
. * * I

.*** I

badver:
021b 536f79 db 'sorry, you need cp/m version 2$'

nospace:
023a 4e6f29 db 'no directory spaceS'

datmsg:
o 24d 547970 db 'type data: $,

e r rmsg :
0259 457272 db 'error, try again.$'

prompt:
026b 4e6570 db 'next command? $,

(All Information Contained Herein is Proprietary to Digital Research.)

43

" 27a 21
"27b
" 27c
""21 =

" 29c

"2bc

;***
.* * ,
;* fixed and variable data area *
.* * ,
.*** ,
conbuf: db conlen ; length of console buffer
consiz: ds 1 ; resul ting size after read
conlin: ds 32 ; length 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack
stack :

end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES. OAT LASTNAME 1" 2"

would cause GETKEY to read the data base file NAMES.OAT and extract
the 'iLASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
parlance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.OAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.OAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search, II similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in log2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. with a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Pr int Str ing
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random
Wr i te Random
Compute File Size
Set Random Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = . Buffer
DE = • Buffer
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
none
DE = .FCB
none
see def
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FeB

* Note that A = L, and B = H upon return

none
A = char
none
A = char
none
none
see def
A = IOBYTE
none
none
see def
A = 00/FF
HL= Version*
see def
see def
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vect*
A = Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A = Err Code
A = Err Code
r0, rl, r2
rf2J, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

...

APPENDIX G

THE CP/M 2.0
SYSTEM ALTERATION GUIDE

)st Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950~

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificalJy disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such reVision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

1.

2.

Introduction

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove" California

.
First Level System Regeneration • •

3. Second Level System Generation
4. Sample Getsys and Putsys Programs •

5. Diskette Organization

6. The BIOS Entry Points
7. A Sample BIOS

8. A Sample Cold Start Loader

9. Reserved Locations in Page Zero •

10. Disk Parameter Tables

11. The DISKDEF Macro Library
12. Sector Blocking and Deblocking

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

· . ·
· ·

1

2

6

10

12

14

21

22

23

25

30

34

36
39
50
56
59
61
66

1. IwrRODuc'rION

The standard CP/M system assumes operation on an Intel MDS-800
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can produce a diskette
which operates with any IBM-374l format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may. wiSh to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
tnree distinct modules:

BIOS - basic I/O system which is envirol1inent dependent
BOOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
hardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
'rhe purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to patcn the new BIOS into
CP/M, the user must write tne reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/H system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRS'r LEVEL SYS'rEM REGENERA'rION

'rhe procedure to follow to patch the Cp/r1 system is given below in
several steps. Address references in each step are shown with a
following "HOI which denotes the hexadecimal radix, and are given for a
21!.lK CP/M. system. For larger CP/M systems, add a "bias" to each
address whicn is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K 2f2lK = 12K = 3000H
40K: b = 40K - 21211< = 20K = 5000H
48K: b = 48K 20K = 28K = 7000H
56K: b = 56K - 2f2lK = 36K = 9f2lf2l0H
62K: b = 62K - 20K = 42K = A800H
64K: b = 64K - 20K = 44K = Bf2l00H

Note: The standard distribution version of CP/M is set for~
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write
first two tracks of a diskette into
must begin at location 3380H.
location 11211218 (case of the TPA),
Appendix d .

a GETSYS program which reads the
memory. The data from the diskette

Code GETSYS so that it starts at
as shown in the first part of

. (2) 'rest tne GE'I'SYS program by reaalng a blanK diskette into
memory, and check to see that the data has been read properly, and
that the diskette bas not been altered in .any way by the GETSYS
program •

(3) Run the GETSYS program using an initialized Cp/r1 diskette to
see if GETSYS loads CP/M starting at 338f2lH (the operating system
actually starts 128 bytes later at 3400H).

(4) Review Section 4 and write the
memory starting at 33808 back onto
disket teo The PUTSYS program should be
the second part of Appendix D.

PUTSYS program which writes
the first two tracks of the

located at 200H, as shown in

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks1 clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of. the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOScompletely to ensure that it properly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/M system after it is
patched.

(8) Referring to Figure 1 in Section 5, note that the 8IOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). 'rhis replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, brancn to the cold start code at location 4A00H.
The cold start routine will initialize page zero, then jumo to the CCP
at location 3400H which will call the BOOS, which will call the CBIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/H will type "A>", the system prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace ahd
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has orom?ted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COI1

(recall that all commands must be followed by a carriage return) ~

CP/M should respond with another l?rompt (after several disk accesses):

A>

If it does not, debug your disK write functions and retry.

(12) Then test the directory command by typing

DIR

CP/M should respond with

A: X COM

(13) Test the erase command by typing

ERA X. cm'!

{All Information Contained Herein is Proprietary to Digital Research;)

3

•

CPfM should respond with the A promote When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS,
place it on track 0, sector 1 using PUTS~S (again using the
diskette, not the distribution diskette). See Sections 5 and 8
more information on the bootstrap operation.

and
test

for

(15) Retest the new test diskette with the bootstrap loader
installed by executing steps (11), (12), and (13). Upon completion of
these tests, type a contro1-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you probably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/H
from your test diskette. Remove the test diskette, place the
distribution diskette (or a legal copy) into the drive, and use PUTS~S
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

CP/M should respond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT.CO~-1.

~OTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is sufficient)· when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(10) Load and test the debugger by typing

DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for ooerating
procedures. ~ou should take the time to become familiar with- DD'r, it
will be your oest triend in later steps.

(19) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBros
programs using ED, ASH, ~nd DD'f. Code and test a COpy program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement~ it specifies your legal responsibilities when
copying the CP/M system). Place the copyr ight notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Research.)

4

on each copy which is made with your COpy program.

(20) Modify your CBIOS to include the extra functions for
puncnes, readers, signon messages, and so-forth, and add the
facilities for a aaditional disk drives, if desired. You can make
these changes with the GETSYS and PUTSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERA'rION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/ivJ. with the "110VCPM" program (system relocator) and
91ace this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
these programs, see the "Guide to CP/M Features and Facilities"
:nanual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT. HEX, which contain the
machine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
'rhe response will oe:

CONs'rROC'I'ING xxK Ci? /t1 VERS 2.0
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227Ft:!. (i.e., The BOOT is at 0900H, the CCP is at 980t:!, the BOOS
starts at 1180H, and the BIOS is at IF80H.) Note that the memory
image has the standard MDS-800 BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

'rhe memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DD'r is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT PC
2300 0100

Load DDT, then read the CPI
image

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

:Jortions of the memory image between ~00H and 227FH. Note, however,
that to find any particular address within the memory image, you must
~pply the negative bias to the CP/M address to find the actual
~ddress. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at ~00H to 97FH), track 00, sector 02 is
loaded into 980H (this is the base of the CCP) , and so-forth through
the entire CP/M system load. In a 20K system, for example, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming two's complement arithmetic, n = 0580H, which can be checked
by

3400H + 0580H = 10980H = 0980H (ignoring high-order
overflow) •

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = 0580H - b.

'l'he value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D580H 000l1H = 0580H
24K 10008 0580H 1000H = C580H
32K 3000H 0580H - 3000H = A580H
40K 5000H 05816H - 5000H = 8580H
48K 7000H 0580H - 7G00H = 6580H
56K 9000H 0580H - 9000H = 4580B
62K A800H 0580H - A80\'JH = 2080H
64K 8000H 0580H - 3000H = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under DDT in a 20K system. First type

Hx,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The inout

H3400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use tne L command to disassemble portions the gIOS located at
(4A00H+b)-n which, when you use the H command, oroduces an actual
address of IF80H. The disassembly command would thus be

(All Information Contained Herein is proprietary to Digital Research.)

7

I

LIF80

It is now necessary to oatch in your CBOO'r and caIOS routines. 'rhe
BOOT resides at location 09100H in the memory image. If the actual
load address is "nll, then to calculate the bias (m) use the command:

H901O,n Subtract load address from
target address.

The second number typed in response to the command is the desired bias
(m). For example, if your BOOT executes at 01080H, tne command:

8900,80

will reply

0980 10880 Sum and difference in hex.

'rherefore, the bias "m" would be 0880H. '1'0 read-in the BOOT, give the
command:

ICBoo'r. HEX

Then:

Rm

You may now examine your CBOO~ with:

L900

Input file CBOOT.HEX

Read CBOOT \.,i th a bias of
m (=90iJH-n)

We are now ready to replace the CSIOS. Examine
where the original version of the caIOS resides.

the area
Then type

at IF80H

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
caros in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file. 'rhis is accomplished by
typing

ROS80 Read the file with bias 0580H

Upon completion of the read, re-examine the area where the CBIQS has
been loaded (use an "LIF80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from Do'r using a control-C or "Gel" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(All Information Contained Herein is groprietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DES'I'IN.l\'rION DRIVE NAME

DESTINATION ON B, THEN

FUNCTION COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RE'£URN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B.
TYPE RETURN
Place a scratch diskette in
drive B, then type return.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

~lace the scratch diskette in your drive A, and then perform a
~oldstart to bring up the new CP/M system you have configured.

'rest the new CP /[>1 system, and place the Digi tal Research copyr ight
lot ice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GE'rSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PUTSYS pr og rams r e rerenced in Section 2. 'rhe READSEC and 'V~RI'rESEC
subroutines must be inserted by the user to read and write the
specific sectors.

GETSYS PROGRAH -
REGISTER

READ TRACKS 0 AND 1 TO r-1EMORY AT 3380H

A
B
C
DE
HL
S1' . ,

S'l'AR'l' : LXI SP,3380H
LXI H, 3380H
MVI B, 0

RD'rRK :
MVI C,l

RDSEC:
CALL READSEC
LXI D,128
;)AD D
I f~R C
i-lOV A,C
CPI 27

USE
(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SEC'l'OR COUN'r (1,2, ••• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

i SErr S'rACK POINTER TO SCRATCH
iSET BASE LOAD ADDRESS
iSTART WITH TRACK 0
iREAD NEX'r TRACK (INI'rIALLY «))

iREAD STAR'rING WITH SEC'l'OR 1
iREAD NEX'r SECTOR
iUSER-SUPPLIED SUBROUTINE
iMOVE LOAD ADDRESS 'ro NEXT 1/2
iHL = HL + 128
is ECrOR = SEC1'OR + 1
iCHECK FOR END OF TRACK

AREA

PAGE

JC ROSEC i CARRY GENERA'l'ED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE oro NEXT
INR B
MOV A,B iTEST FOR LAST TRACK
CPI 2
JC RD'rRK iCARRY GENERA'rED IF

ARRIVE HERE A'r END OF LOAD, HAL'r FOR NOW
HL'r

USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

'rRACK

'rRACK

PUSH
PUSH

B
H

i SAVE BAND C REG IS'I'ERS
i SAVE HL REGIS'rERS

perform disk read at this point, branch to

label S'rARrr if an error occur s .
POP
POP
RET

H
B

END START

iRECOVER HL
iRECOVER BAND C REGISTERS
iBACK TO MAIN PROGRAM

< 2

(All Information Contained Herein is Proprietary to Digital Research.)

10

l~ote that this program is assembled and listed in
reference purposes, with an assumed origin of l00H.
operation codes which are listed on the left may be
program has to be entered through your machine's front

Appendix C for
rrhe hexadec imal
useful if the
panel switcnes.

'rhe PUTSYS program can be constructed from GE'rSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write) ,and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRITESEC
subroutine which performs the opposite function: data from address HL
is written to the track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKET'rE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M is given here for reference purposes. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set up to bring track 0, sector I
into memory at a specific location (often location 0000H). The
program in this sector, called BOO'r, has the responsibili ty of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
althougn it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Tr ack# Sector#

00 ..
.. . ,
.. ..
..
.,
..
..
..

01 ..
..
..
..
.. ..

.,

..

..

..
oj

..
II

..
01

01

02
03
104
05
06
07
08
109
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
02
"3
04
05
j(J6
07
08
09
10
11
12
13
14
15
16
17
18
19

Page#

..
101 ..
02

03

04
.j

05 ..
06 ..
07 ..
08 ..
09

II

110
II

11
II

12
II

13

14

15

16 ..
17 ..
18 ..
19

.j

210 ..
21 ..

Memory Address

(boot address)

3400H+b
3480H+b
3500H+b
35tHJH+b
3600H+b
3680H+b
3700H+O
378fllH+b
3800H+b
3880H+b
39100H+b
3980H+b
3A00H+b
3A80H+b
3800H+b
3B80H+b

3C00H+b
3C80H+b
3D00H+b
3D80H+b
3E00H+b
3E80H+b
3F01OH+b
3F80H+b
4130IOH+b
4080H+b
4100H+b
4180H+b
4200H+b
4280H+b
4300H+b
4380H+b
4400H+b
4480H+b
45100H+b
4580H+b
4600H+b
4680H+b .
4700H+b
4780H+b
4800H+b
4880H+b
49100H+b
4980H+b

CP/M Module name

Cold Start Loader

CCP ..
...
..
..
..
.,
..
..
..
..

CCP

BOOS ..

II

..

..

..
II

..

..
II

.,

..

..

..

BOOS

01 .,
.. . ,
..
01

02-76

20
21
23
24
25
26

01-26

22
II

23 ..
24 ..

4A100H+b
4A80H+b
4B100H+b
4B80H+b
4C01OH+b
4C80H+b

BIOS ..
..
..
II

BIOS

(directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. 'rHE BIOS ENTRY' POINTS

The entry points into the BIOS from the cold start loader and BOOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A00H+b, as shown below (see Appendices Band C, as well).
The jump vector is a sequence of 17 jump instructions which send
program control to the individual BIOS subroutines. The BIOS
subroutines may be empty for certain functions (i.e. ,they may contain
d single RET operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

'rhe jump vector at 4A00H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b
4A03d+o
4A.06H+b
4A09H+b
4A0CH+b
4A0FH+b
4A12H+b
4A15H+b
4A.18H+b
4AlSd+!J
4AIEd+o
4A21H+o
4A24H+b
4A27a+b
4A.2A1Hb
4A2DH+b
4A3k1H+b

JMP BOO'l'
Ji'-lP WBoori'
Jll1.P COt.JST
JMP CONIN
Ji'1P CONOUT
JHP LIST
J:-1P PUNCH
Jt1P READER
JMP HOME
Jr·1P SELDSK
J:·1P SETTRK
J MP S E:'1'SEC
JHP SE'rm<1A
JJI.1P READ
JHP ~qRI'rE

JMP LISTS'I'
J MP S EC'r RAN

ARRIVE HERE FROM COLD START LOAD
}\RRIVE HERE FOR WARl\l S'rART
CHECK FOR CONSOLE CHAR READY
READ CONSOLE CHARACTER IN
~mI'1'E CONSOLE CHARAC'rER OU'1'
~'1RI'rE LISTING CHARAC'rER OUT
WRI'i'E CHARACTER TO PUNCH DEVICE
READ READER DEVICE
MOVE TO TRACK 00 ON SELECTED DISK
SELECT DISK DRIVE
SE'1' 'l'RACK NUMBER
SET SECTOR NUMBER
S E'r DC1A ADDRESS
READ SELECTED SECTOR
WRITE SELECTED SECTOR
RETURN LIST STATUS
SECTOR TRANSLATE SUBROUTINE

Each jumo address corresponds to a particular subroutine which
performs the specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/O
performed by calls on CONST, CONIN, CONOU'l', LIST, PUNCH, READER, and
LISTS/r, and diskette I/O performed by calls on HOME, SELOSK, SET'rRK,
SETSEC, SETDMA, READ, WRITE, and SECTRAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and
An end-of-file
control-z (lAH).
devices, and are

lower case, with high order (parity bit) set to zero.
condition for an input device is given by an ASCII

Per ipheral devices are seen by CP/M as "logical"
assigned to physical devices within the BIOS.

In order to operate, the BOOS needs only the CONST, CONIN, and
CONou'r subroutines (LIST, PUl~CH, and READER may be used by PIP, but
not the aDOS). Further, the LISTST entry is used currently only by
DESPOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The ~rincipal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or Teletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical readei or Teletype.

Note that a single peripheral can be assigned as
the LIS'r, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not ~hang~ if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAH (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can optionally
implement the "IOBY'rE" function wnich allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 0003H) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below:

most significant least significant

IOBYTE AT 00038 I LIST I PUNCH I READER I CONSOLE I

bits 6.7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
o - console is assigned to tne console printer device (TTY:)
1- console is assigned to the CRT device (CRT:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UCl:)

READER
Id
1
2
3

PUNCH
o
1
2
3

field (bits 2,3)
- READER is the 'reletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (URI:)
user defined reader # 2 (UR2:)

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)
- PUNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)

user defined punch # 2 (UP2:)

LIST field (bits 6,7)
o - LIST is the Teletype device (TTY:)
I .- LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - U3er defined list device (UL1:)

Note again that the implementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0~03H), except for PIP which allows access to the
physical dev ices, and S'rA'!, wh ich allows
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Fac il i ties Gu ide") • In any case, the IOBY'rE
implementation should be omitted until your basic caIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
parameters have been set up, a call is made to the READ
or WRITE function to perform the ~ctual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for· subsequent operations. Similarly,
there may be a single call ·to set the DMA address,
followed by several calls which read or .write from the
selected DMA address before the DMA address is changed.
The track and sector sUbroutines are always called
before the READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Boo'r

WBoo'r

CONST

CONIN

L'Jote that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BDOS. If the
error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET'rRK with a parameter of 00.

The exact responsibilites of eacn entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version) . If the
IOBtTE function is implemented, it must be set at this
point. 'Ehe var ious system parameters which are set by
the WBOOT entry point must be initialized, and control
is transferred to the CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
program branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location o ,1,2 set to JMP WBOO'f for warm starts
(0000H: JMP 4M:l3H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to JHP BDOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(see Section 9 for comolete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIs'r

PUNCH

READER

HOME

SELDSK

set the parity oit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oetore returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam91e).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device. The character is in ASCII with
zero parity.

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOHE call into a call
on SE'I'TRK wi th a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1
for drive' B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=0000H as an error indicator. Although SELDSK must
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is Proprietary to Digital Research.)

18

SE'l'TRK

SE'l'SEC

SE'rOMA

READ

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subseauent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track nurnoers for standard
floppy disk drives, and 0-65535 for non-standard disk
subsystems •.

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the OMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all subsequent read operations read their data
into 80H through 0PFH, and all subsequent write
operations get their data from 80H through 0FFH, until
the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. Note that the
controller need not actually support direct memory
access. If, for example, all data is received and
sent through I/O ports, the CBIOS which you construct
will use the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selected, the track has
been set, the sector has been set, and the DMA address
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see if the error is recoverable. When an error is
reported the BOOS will print the message "BOOS ERR ON
x: BAD SECTOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

write the data from the currently selected OMA address
to the currently selected drive, track, and sector.
'rhe da ta shoul d be rna rked as "non deleted da ta" to

:All Information Contained Herein is Proprietary to Digital Research.)

19

~ .' .'.

LIs'rS'I'

SEC'I'RAN

maintain compatibility with other CP/H systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
above.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a "skew factor"
of 6, where six physical sectors are skipped between
each logical reaa operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL. For stanaard systems, the tables and
indexing ~ode is orovided in the caIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7. A SAMPLE BIOS

'rhe program shown in Appendix C can serve as a basis for your
first BIOS. The simolest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONS'r, CONIN, CONOUT, READ, WRITE, and ~vAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLO S'rAR'r LOADER

°rhe program shown in Appendix D can serve as a basis for your cold
start loader. The disk read function must be supplied by the user,
and the program must be loaded somehow starting at location 0000.
Note tnat space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 0, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case, it will be necessary to originate the program
at a higher address, and key-in a jump instruction at system start-up
which brancnes to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
be enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCA'rIONS IN PAGE ZERO

Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data which are used during CP/M
processing. The code and data areas are given below for reference
purposes.

Locations
from to
010 0 I1H - 0 11 I{) 2H

(() 0 I{) 3H - I{) I{) 0 3H

o f(J (() 4H - 0 I{) 0 4H

0005H - 0007H

0008H - 0027H

0030H - 01{)37H

0038H - 01{)3AH

003BH - 003FH

0040H - 004FH

({)050H - 005BH

005CH 007CH

007DH - 01{)7FH

Contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (J[vlP 00012lH) or manual
restart from the front Danel.

Contains the Intel standard IOBYTE,
optionally included in tne user's
described in Section 6.

which is
CBIOS, as

Current default drive number (0=A •••• ,15=~).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as described in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the HL register pair. This value
is the lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DD'r ~Jrogram will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations 1 through 5 not used)

(interrupt location 6. not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

(not currently used - reserved)

16 byte area reserved for scratch by CEIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
~rocessor.

file control
program by

block produced
the Console

Optional default random record oosition

for a
Command

(All Information Contained Herein is Proprietary to Digital Research.)

23

o 080H - iiHH'FH default 128 byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

"-

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient· program if the
BDOS tacilities are not required by the transient.

If, for example, a particular program performs only simple I/O and
must begin execution at location 0, it can be first loaded into the
·I'.l?A, using normal CP/M facili ties, wi th a small memory move program
which gets control wnen loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to mo~e the
entire memory image down to location 0, and pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proprietary to Digital Research.)

24

l~. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (IG-byte)
parameter header which both contains information about the disk
and provides a scratchpad area for certain BOOS operations.
format of the disk parameter header for each drive is shown below

disk
drive

The

Disk Parameter Header

XLT I ~0~~ I 0~0~ I ~0~0 IDIRBUFI DPB ALV

1Gb 1Gb 1Gb 1Gb 1Gb 1Gb 1Gb 1Gb

where each element is a word (IG-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

DIRBUF

Dffi

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0~~~H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same). Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the BOOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BOOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address ,the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
D~.

Address ofa scratchpad area used by the BOOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of lG bytes corresponds to drive ~, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXL'r 001 0000 I 0000 I 0000 IDIRBUFIDBP 001csv 001ALV 001

01 IXLT 011 0000 I 0000 I 0000 IDIRBUFIDBP 01lcsv 01lALV 011

(and so-forth through)

n-lIXLTn-ll 0000 I 0000 I 0000 IDIRBUFIDBPn-lICSVn-lIALVn-ll

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS ;CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H,B ;HIGH(DISK}
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK}
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPH's, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IAL01ALli CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the '18b" or "16b"
indicator below the field.

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM

DSM

DRM

CKS

OFF

is the extent mask, determined by the data block
allocation size and the number of disk blocks.

determines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALI determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+l) is the total number of bytes held by the drive and, of course,
nust be within the capacity of the physical disk, not counting the
reserved operating system tracks.

The DRM entry is the one less than the total number of directory
~ntries, which can take on a l6-bit value. The values of AL0 and ALl,
lowever, are determined by DRM. The two values AL0 and ALI can
together be considered a string of l6-bits, as shown below.

(All Information Contained Herein is Proprietary to Digital Research.)

27

AL0 ALI

-----------~---------------~---------------------
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table .

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # . bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

Finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same OPB if their drive characteristics are identical.
Further, . the OPB can be dynamically changed when a new drive is
addressed by sim~ly changing the pointer in the OPH since the BOOS
copies the DPB values to a local area whenever the SELDSK function is
inVOked.

Returning back to the DPH for a particular drive, note that the
two address values CSV .;tnd ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the OPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (ORM+l)/4, then you must reserve (ORM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All. Information Contained Herein is proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
laximum number of data blocks allowed for this particular disk, and is
:omputed as (DSM/8)+l.

The CBros shown in Appendix C demonstrates an instance
;ables for standard 8" single density drives. It may be
!xamine this program, and compare the tabular values
lefinitions given above.

of these
useful to
with the

~ll Information Contained Herein is proprietary to Digital Research.)

29

:."1'",:,,
, .. -,'". ~/ .

11. THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, whict
greatly simplifies the table construction process. You must havE
access to the MAC macro assembler, of course, to use the DISKDEI
facility, while the macro libr~ry .is included with all CP/M 2.~
distribution disks.

A BIOS disk definition consists of the following sequence oj
macro statements:

MACLIB DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , ••• ·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the samE
disk as your BIOS) into MAC's internal tables. The DISKS macro cal:
follows, which specifies the number of drives to be configured wit]
your system, where n is an integer in the range 1 to 16. A series OJ

DISKDEF macro calls then follow which define the characteristics 0:

each logical disk, 12) through n-l (corresponding to logical drives 1
through P). NJte that the DISKS and DISKDEF macros generate tht
in-line fixed data tables described in the previous section, and thu:
must be placed in a non-executable portion of your BIOS, typicall~
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following th,
DISKDEF macros, with the ENDEF macro call immediately preceding th,
END statement. The ENDEF (End of Diskdef) macro generates th'
necessary un initialized RAM areas which are located in memory abovi
your BIOS.

where

The form of the DISKDEF macro call is

dn
fsc
Isc
skf
bls
dir
cks
ofs
[12J]

DISK D E F d n, f s c ,Is c , [s k f] , b 1 s, d k s , d i r , c k s ,of s, [12J]

is the logical disk number, I2J to n-l
is the first physical sector number (12J or 1)
is the last sector number
is the optional sector skew factor
is the data allocation block size
is the number of directory entries
is the number of "checked" directory entries
is the track offset to logical track I2JI2J

is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDE

(All Information Contained Herein is Proprietary to Digital Research.

312J

macro invocation. The nfsc" parameter accounts for differing sector
number ing systems, and is usually 0 or 1. The Ul sc " is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls li parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks u

specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of "dir" is the total number of
directory entries which may exceed .255, if desired. The licks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research.)

31

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
10,1,26,6,11024,243,64,64,2
1,0
2,10
3,0

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 11024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro generates n Disk Parameter Headers (DPHls),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for exam?le, the DISKS macro generates a table
of the form:

DPBASE
DPEIO :
DPEI :
DPE2 :
DPE3 :

EQU
DW
DW
DW
DW

$
XLT0,10000H,0000H,IOIOIOIOH,DIRBUF,DPB0,CSV0,ALVIO
XLTIO,101000H,101O100H,1000IOH,DIRBUF,DPBIO,CSVl,ALVl
xL'r0 ,00 01OH, 10 10 100H, 10 10 IOIOH ,DIRBUF ,DPBfO, CSV2 ,ALV2
XLT0,10000H,01000H,1001OIOH,DIRBUF,DPBIO,CSV3,ALV3

where the DPH laoels are included for reference purposes to show the
beginning table addresses for each drive 10 through 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 10), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
010101OH, and sim?ly returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPHls. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,110,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

4DB0 =
0l3C =

BEGDAT EQU $
(data areas)
ENDDA'I' EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 0l3CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ••• ,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved 'rracks

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

with
full

(All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically.

Upon each call to WRITE, the BDOS provides the following
information in register C:

o
1
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by "hst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number). You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algor i thIns.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) 128-byte sectors. This is
primarily due, of course, to the information provided by the BOOS
which eliminates the necessity for pre-read operations to take place.

(All Information Contained Herein is Proprietary to Digital Research.)

35

0000 =
ffff =
0000 =

0000 =
0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
'1031 =
0019 =
0018 =

f800 =
ff0f =
0078 =
0079 =
007b =
007f =

0078 =
0079 =
007a =
1tJ0ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

j~~6 ~~~130

APPENDIX A: THE MDS COLD START LOADER

MDS-800 Cold Start Loader for CP/M 2.0

Version 2.0 August, 1979
i
false equ
true equ
testing equ

bias

bias

cpmb
bdos
bdose
boot
rboot

i
bdosl
ntrks
bdoss
bdos0
bdosl
i
mon80
rmon80
base
rtype
rbyte
reset
i
dstat
ilow
ihigh
bsw
recal
readf
stack

rstart:

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
equ
equ
eau

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

lxi
clear
in
in
check

coldstart:
in
ani
Jnz

o
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
1600h+bias
boot+3

ibase of dos load
ientry to dos for calls
iend of dos load
icold start entry point
iwarm start entry point

3000h iloaded here by hardware

bdose-cpmb
2 i tracks to read
bdosl/128
25
bdoss-bdos0

i# sectors in bdos
i# on track 0
i# on track 1

0f800h
0ff0fh
078h
base+l
base+3
base+7

base
base+l
base+2
0ffh
3h
4h
100h

iintel monitor base
irestart location for mon80
i Ibase l used by controller
iresult type
i result byte
ireset controller

idisk status port
ilow iopb address
ihigh iopb address
;boot switch
irecalibrate selected drive
;disk read function
iuse end of boot for stack

sp,stackiin case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
02b d t t"switch on? coT s ar

36

300e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a
301b db78

j~l~ ~~~g30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 If
3032 e61e

3034 c20030

3037 110700
303a 19
303b 05
303c c21530

303f c30016

;

. ,
start:

wai to:

;

clear the controller
out reset ;logic cleared

mvi
lxi

read
mov
out
mov
out
in
ani
JZ

check
in
ani
cpi

if
cnc
endif
if
jnc
endif

b,ntrks ;number of tracks to read
h,iopb0

first/next
a,l
ilow
a,h
ihigh
dstat

~ait0

track into cpmb

disk status
rtype
lIb
2

testing
rmon80 ;go to monitor if 11 or 10

not testing
rstart ;retry the load

in rbyte ;i/o complete, check status
if not ready, then go to mon80
ral
cc rmon80 ;not ready bit set
rar ;restore
ani 11110b ;overrun/addr err/seek/crc

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 ;go to monitor

not testing
rstart ;retry the load

d,iopbl ;length of iopb
d ;addressing next iopb
b ;count down tracks
start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042 80 iopb0: db 80h : iocw , no update
3043 04 db readf :read function
3044 19 db bdos0 i# sectors to read trk 0
3045 00 db 11 : track 0
3046 02 db 2 :start with sector 2, trk 0
3047 0000 dw cpmb :start at base of bdos
0007 = iopbl equ $-iopb0 . ,
3049 80 iopbl: db 80h
304a 04 db readf
304b 18 db bdosl :sectors to read on track 1
304c 01 db 1 :track 1
304d 01 db 1 :sector 1
304e 8011c clw cpmb+bdos0*128 :base of second rd
3050 end

38

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

0014 = vers

mds-800 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.0 august, 1979

equ UJ :version 2.0

copyright (c) 1979
digital research
box 579, pacific grove

: california, 93950

4a00
3400 =
3c06 =
1600 =
002c =
0002 =
0004 =
0080 =
000a =

4a00 c3b34a

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

4a03 c3c34a wboote:
4a06 c3614b
4a09 c3644b
4a0c c36a4b

org
equ
equ
equ
equ
equ
equ
equ
equ

perform
boot
wboot

4a00h :base of bios in 20k system
3400h :base of cpm ccp
3c06h :base of bdos in 20k system
$-cpmb :length (in bytes) of cpm system
cpml/128:number of sectors to load
2 :number of disk tracks used by cp
0004h :address of last logged disk
0080h :default buffer address
10 ;max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

{boot
const

and wboot are the same for mds)
console status

conin
conout
list
punch
reader
home

reg-a = 00 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper tape reader in (result to reg~a)
move to track 00

{the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0, ••• 76) for sub r/w
setsec set sector address· (I, ••. ,26)
setdma set subsequent dma address {initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines
jmp boot
jmp wboot
jmp const
jmp conin
jmp conout

39

4a0f c36d4b jmp list
4a12 c3724b jmp punch
4a15 c3754b jmp reader
4a18 c3784b jmp home
4alb c37d4b jmp seldsk
4ale c3a74b jmp settrk
4a21 c3ac4b jmp setsec
4a24 c3bb4b jmp setdma
4a27 c3c14b jmp read
4a2a c3ca4b jmp write
4a2d c3704b jmp listst ;list status
4a30 c3b14b jmp sectran

maclib diskdef ;load the disk definition library
disks 4 ;four disks

4a33+= dpbase equ $;base of disk parameter blocks
4a33+824a00 dpe0: dw xltf21,0f2100h ;translate table
4a37+0f21f21f2100 dw f21000h,0f210f21h ;scratch area
4a3b+6e4c73 dw di rbuf, dpbf21 ;dir buff,parm block
4a3f+0d4dee dw csvf21,alvf21 ;check, alloc vectors
4a43+824a00 dpel: dw xltl,000l21h ;translate table
4a47+12l12l012l00 dw f2112100h,f2112112l0h ;scratch area
'4a4b+6e4c73 dw di rbuf, dpbl ;dir buff,parm block
4a4f+3c4dld dw csvl,alvl ;check, alloc vectors
4a53+824a00 dpe2: dw xlt2,0000h ;translate table
4a57+00000f21 dw f21f2lf2lf2lh,00fi'Hlh ;scratch area
4a5b+6e4c73 dw dirbuf, dpb2 idir buff,parm block
4a5f+6b4d4c dw csv2,alv2 ;check, alloc vectors
4a63+824a0f21 dpe3: dw xlt3,0012l0h itranslate table
4a67+12l12lf210f210 dw f21012lf21h,12l000h iscratch area
4a6b+6e4c73 dw dirbuf,dpb3 idir buff,parm block
4a6f+9a4d7b dw csv3,alv3 icheck, alloc vectors

diskdef f21,1,26,6,1024,243,64,64,offset
4a73+= dpb0 equ $ idisk parm block
4a73+1a00 dw 26 isec per track
4a75+03 db 3 ;block shift
4a76+1217 db 7 ;block mask
4a77+12lf21 db 121 ;extnt mask
4a78+f212l0 dw 242 ;disk size-l
4a7a+3f0f21 dw 63 ;directory max
4a7c+c0 db 192 ;allocl2l
4a7d+0f21 db 121 ;allocl
4a7e+10012l ow 16 icheck size
4a80+0200 dw 2 ioffset
4a82+= xltl2l equ $;translate table
4a82+01 db 1
4a83+1217 db 7
4a84+l2ld db 13
4a85+13 db 19
4a86+19 db 25
4a87+1215 db 5
4a88+0b db 11
4a89+11 db 17
4a8a+17 db 23
4a8b+f213 db 3

4121

4a8c+09
4a8d+0f
4a8e+15
4a8f+02
4a90+08
4a91+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4a96+12
4a97+l8
4a98+04
4a99+0a
4a9a+10
4a9b+16

4a73+=
1001f+=
010110+=
4a82+=

4a73+=
lOf2llf+=
10101'1+=
4a82+=

4a73+=
0IOlf+=
1010110+=
4a82+=

100fd =
010fc =
00f3 =
1007e =

f800 =
ff0f =
f803 =
f8106 =
f8109 =
f810c =
f80f =
f8l2 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

i
revrt
intc
icon
inte

mon80
rmon80
ci
ri
co
po
10
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
equ
equ
equ
equ
diskdef
egu
egu
equ
equ
diskdef
equ
equ
equ
equ

9
15
21
2
8
14
210
26
6
12
18
24
4
110
16
22
1,0
dpb0
alslO
css0
xltlO
2,0
dpb0
als0
css0
xlt0
3,0
dpb0
als0
csslO
xltlO

ieguivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

ieguivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

ieguivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

endef occurs at end of assembly

end of controller - independent code, the remaini
are tailored to the particular oper.ating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk dr ive
0fdh iinterrupt revert port
0fch iinterrupt mask port
0f3h iinterrupt control port
0ll1$1110bienable rst o (warm boot) ,rst 7

mds
equ
equ
equ
equ
equ
equ
equ
equ

monitor equates
0f800h imds monitor
0fflOfh irestart mon80 (boot error)
0f803h iconsole character to reg-a
0f806h ireader in to reg-a
0f8109h iconsole char from c to console 0
0f80ch iPunch char from c to punch devic
0f80fh ilist from c to list device
0f812h iconsole status 00/ff to register

41

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

4ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a~a
3230
6b20.43f
322e30
0d0a00

310001
219c4a
cdd34b
af
320400
c30f4b

4ac3 318000

4ac6 0e0a
4ac8 c5

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 ilelUJ
4ad6 cda74b
4ad9 iJe02
4adb cdac4b

4ade cl
4adf iJ62c

~
base
dstat
rtype
rbyte
· ,
ilow
ihigh

readf
writf
recal
iordy
cr
If
· ,
signon:

~
boot:

· ,

di sk por ts and commands
equ 78h ;base of disk command

;disk status (input)
;result type (input)
~result byte (input)

io ports
equ base
equ base+l
equ base+3

equ
equ

equ
equ
equ
equ
equ
equ

~ signon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+l
base+2

4h
6h
3h
4h
0dh
0ah

~iopb low address (output)
;iopb high address (output)

;read function
;write function
;recalibra~e drive
;i/o finished mask
; carr iage return
~line feed

message: xxk cp/m vers y.y
cr,lf,lf
120 1 ;sample memory size
I k cp/m vers I

vers/10+ 10 1 ,1.1 ,vers mod 10+ 10 1
cr,lf,0

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loadei on track 0, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start.

wboot0:

· ,
~

lxi

mvi
push
;enter
lxi
call
1'(lvi
call
mvi
call
mvi
call

sp,buff ~using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on error retries
b,cpmb iset dma address to start of disk
setdma
c,0
seldsk
c,0
settrk
c,2
setsec

;boot from drive 0

;start with track 0
;start reading sector 2

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42

4ael c5
4ae2 cdc14b
4ae5 c2494b
4ae8 2a6c4c
4aeb 118000
4aee 19
4aef 44
4af0 4d
4afl cdbb4b
4af4 3a6b4c
4af7 fela
4af9 da054b

4afc 3a6a4c
4aff 3c
4b00 4f
4b0l cda74b
4b04 af

rdsec:

4b05 3c rdl:
4b06 4f
4b07 cdac4b
4b0a cl
4b0b 05
4blilc c2e14a

4b0f f3
4b10 3e12
4b12 d3fd
4b14 af
4b15 d3fc
4b17 3e7e
4b19 d3fc
4blb af
4blc 03f3

4ble 018000
4b2l cdbb4b

4b24 3ec3
4b26 320000
4b29 2l034a
4b2c 220100
4b2f 320500
4b32 2l063c
4b35 220600
4b38 32381iHJ
4b3b 2HHH8
4b3e 223900

gocpm:

~read next sector
push b ~save sector count
call read
jnz booterr
lhld iod
lxi d,128

iretry if errors occur
iincrement dma address
isector size

dad d iincremented dma address in hI
b,h mov

mov
call
Ida
cpi
jc
must
Ida
inr
mov
call
xra
inr
mov
call
pop
dcr

c,l iready for call to set dma
setdma
ios isector number just read
26 ~read last sector?
rdl

be sector 26, zero and go to next track
iot ~get track to register a
a
c,a
settrk
a
a
c,a
setsec
b
b

jnz rdsec

iready for call

~clear sector number
~to next sector
~ready for call

~recall sector count
~ done?

done with the load, reset default buffer
i (enter here from cold start boot)
enable rst0 and rst7
di
mvi
out
xra
out
mvi
out
xra
out

a,12h
revrt
a
intc
a,inte
intc
a
icon

iinitialize command

icleared
irst0 and rst7 bits on

iinterrupt control

set default buffer address to 80h
lxi b,buff
call setdma

reset monitor entry points
mvi a, j mp
sta 0
lxi h,wboote.
shld 1 ijmp wboot at location 00
sta 5
lxi h,bdos
shld 6 ijmp bdos at location 5

address

sta
lxi
shld
leave

7*8
h,mon80
7*8+1

ijrnp to mon80 (may have been chan

iobyte set

43

previously selected disk was b, send parameter to
Ida cdisk ;last logged disk number 4b4l 3a0400

4b44 4f
4b45 fb
4b46 c30034

mov c,a ;send to ccp to log it in

4b49 cl
4b4a 0d
4b4b ca524b

4b4e cS
4b4f c3c94a

4b52 2lSb4b
4b55 cdd34b
4b58 c30fff

;
booterr:

booter0:

bootmsg:

ei
jmp cpmb

error condition occurred, print message

pop b ;recall counts
dcr c
jz booter0
try again
push b
jmp wboot0

otherwise too many retries
lxi h,bootmsg
call prmsg
jmp rmon80 ;mds hardware monitor

4bSb 3f626f4 db '?boot ' ,0

4b6l c312f8

4b64 cd03f8
4b67 e67f
4b69 c9

;
const:

conin:

;

;console status to reg-a
(exactly the same as mds call)
jmp csts

;console character to reg-a
call ci
ani 7fh ;remove parity bit
ret

conout: ;console character from c to console out
4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b7l c9

list:

. ,
listst:

;list device out
(exactly the same as mds call)
jmp 10

;return list status
xra a
ret ;always not ready

punch: ;punch device out
(exactly the same as mds call)

4b72 c30cf8 jmp po . ,
reader: ;reader character in to reg-a
; (exactly the same as mds call)

4b75 c306f8 jmp ri
;
home: ;move to home position

44

and retry

4b78 0e00
4b7a c3a74b

4b7d 210000
4b80 79
4b81 fe04
4b83 d0

4b84 e602
4b86 32664c
4b89 79
4b8a e61iH
4b8c b7
4b8d ca924b
4b90 3e30

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 b0
4b9a 77

tB98 ~~00
4bge 29
4b9f 29
4ba0 29
4bal 29
4ba2 11334a
4ba5 19
4ba6 c9

4ba7 216a4c
4baa 71
4bab c9

4bac 216b4c
4baf 71
4bb0 c9

4bbl 0600
4bb3 eb
4bb4 09
4bb5 7e
4bb6 326b4c
~gg~ g~

~

treat as track 00 seek
mvi
jmp

c,0
settrk

seldsk: ~select disk given by register c
lxi h,0000h ~return 0000 if error
mov a,c
cpi ndisks ~too large?
rnc ;leave hI = 0000

ani
sta
mov
ani
ora
jz
mvi

10b ~00 00 for drive 0,1 and 10 10 fo

setdr ive:
mov
lxi
mov
ani
ora
mov

. ,
settrk:

;
setsec:

sectran:

~

ffi~¥
dad
dad
dad
dad
lxi
dad
ret

;set
lxi
mov
ret

~set
lxi
mov
ret

mvi
xchg
dad
mov
sta
mo~ re

dbank ito select drive bank
a,c ;00, 01, 10, 11
Ib ;mds has 0,1 at 78, 2,3 at 88
a ~result 00?
setdr ive
a,00110000b ;selects drive 1 in bank

b,a
h,iof
a,m

~save the function
;io function

11001111b ~mask out disk number
b ~mask in new disk number
m,a ~save it in iopb

~:~ ;hl=disk number
h ~*2
h ;*4
h ~*8
h ~*16
d,dpbase
d ~hl=disk header table address

track address given by c
h,iot
m,c

sector number given by c
h,ios
m,c

~translate sector bc using table at de
b,0 ;double precision sector number

~translate table address to hI
b ;translate(sector) address
a,m ~translated sector number to a
ios
l,a ; return sector number in 1

setdma: ~set dma address given by regs b,c

45

i

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl
4bc3
4bc6
4bc9

4bca
4bcc
4bcf
4bd2

0e04
cde04b
cdf04b
c9

0e06
cde04b
cdf04b
c9

4bd3 7e
4bd4 b7
4bdS c8

4bd6 eS
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bfS cd4c4c

4bf8 3a664c

;
read:

. ,
wr i te:

mov
mov
shld
ret

;read
mvi
call
call
ret

;disk
mvi
call
call
ret

l,c
h,b
iod

next disk
c, readf
setfunc
waitio

record (assuming disk/trk/sec/dma
;set to read function

;perform read function
;may have error set in reg-a

write function
c,writf
setfunc ;set to write function
waitio

;may have error set

utility subroutines
prmsg: ;print message at h,l to 0

. ,
setfunc:

;
waitio:

rewai t:
\,

mov
ora
rz

a,m
a

more to print
push h
mov
call
pop
inx
jmp

c,a
conout
h
h
prmsg

; zero?

set function for next i/o (command in reg-c)
lxi h,iof ;io function address
mov a,m ;get it to accumulator for maskir
ani 11111000b ;remove previous command
ora c ;set to new command
mov m,a ;replaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b ;mask the disk select bit
lxi h,ios ;address the sector selec
ora m ;select proper disk bank
mov m,a ;set disk select bit on/c
ret

mvi c,retry ;max retries before perm error

start the i/o function and wait for completion
call intype ;in rtype
call inbyte ;clears the controller

Ida dbank ;set bank flags

46

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3l04c

i
iodrl:

4c0b d389
4c0d 78
4c0e d38a

· ,
4c10 cd594c wa i to:
4c13 e604
4c15 ca104c

4c18 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c2l c2384c

i
4c24 cd4c4c
4c27 17
4c28 da324c
4c2b If
4c2c e6fe
4c2e c2384c

· ,

4c3l c9
· ,
wready:

4c32 cd4c4c
4c35 c3384c

werror:

.. ,
i

ora a izero if drive 0,1 and nz
mvi a,iopb and 0ffh i low address for iopb
mvi b, iopb shr 8 ihigh address for iopb
jnz iodrl idrive bank I?
out ilow ilow address to controlle
mov a,b
out ihigh i high
jmp wait0

i dr ive bank 1
out ilow+10h
mov a,b
out ihigh+10h

call
ani
jz

instat
iordy
wait0

check io. completion ok

address
ito wait for complete

i88 for drive bank 10

iwait for completion
i ready?

call intype imust be io complete {0.)
00 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi l0b iready status change?
j z wready

must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error
inbyte

wready

bits

llllll10b
werror

isome other condition, re

iunit not ready

iany other errors?

read or write is ok, accumulator contains zero
ret

inot ready, treat as error for now
call inbyte iclear result byte
jmp trycount

ireturn hardware malfunction (crc, track, seek, e
the mds controller has returned a bit in each pos
of· the accumulator, corresponding to the coriditio
o - deleted data (accepted as ok above)
1 - crc error
2 - seek error
3 -address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

47

4c38 0d
4c39 c2f24b

4c3c 3e01
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

4c59 3a664c
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88
4c65 c9

4c66 00

4c67 80
4c68 04
4c69 01
4c6a 02
4c6b 01
4c6c 8000

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

. , it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

trycount:
register c contains retry count, decrement 'til z
dcr c
jnz rewait ;for another try

; cannot recover from error
mvi a,l ;error code
ret

; in type, inbyte, insta t readdr ive bank 00 or 10
intype: Ida dbank

ora a
jnz intypl ;skip to bank 10
in r type
ret

intypl: in
ret

rtype+10h ;78 for 0,1 88 for 2,3

;
inbyte: Ida

ora
jnz
in
ret

inbytl: in
ret

;
instat: lda

ora
jnz
in
ret

instal: in
ret

. data ,
dbank: db

iopb: ;io
db

iof: db
ion: db
iot: db
ios: db
iod: dw

dbank
a
inbytl
rbyte

rbyte+10h

dbank
a
instal
dstat

dstat+10h

areas (must be in
0 ;disk

parameter block

ram)
bank 00 if drive

10 if drive

80h ;normal i/o operation
readf ;io function, initial
1 ;number of sectors to
offset ;track number
1 ;sector number
buff ;io address

define ram areas for bdos operation

48

0,1
2,3

read
read

4c6e+=
4c6e+
4cee+
4d0d+
4dld+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
013c+=
4daa

begdat
dirbuf:
al v0:
csv0:
alvl:
csvl:
alv2:
csv2:
alv3:
csv3:
enddat
da tsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128 ~directory access buffer
31
16
31
If}
31
16
31
16
$
$-begdat

49

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

msize

;
bias
ccp
bdos
bios
cdisk
iobyte

APPENDIX C: A SKELETAL CBlaS

skeletal cbios for first level of cp/m 2.0 altera

equ 20 ;cp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as "b" throughout the text)

egu
equ
egu
egu
egu
egu

(msize-20)*1024
3400h+bias ;base of ccp
ccp+S06h ;base of bdos
ccp+1600h ;base of bios
0004h ;current disk number 0=a, ••• ,15=p
0003h ;intel i/o byte

4a00
002c =

org
nsects equ

bios ;origin of this program
($-ccp)/12S ;warm start sector count

4a00 c39c4a
4a03 c3a64a wboote:
4a06 c3ll4b
4a09 c3244b
4a0c c3374b
4arof c3494b
4a12 c34d4b
4a15 c34f4b
4alS c3544b
4alb c35a4b
4ale c37d4b
4a2l c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

;
4a33 734aro0 dpbase:
4a37 0001000
4a3b f04cSd
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04cSd
4a4f fc4dSf

4a53 734a00
4a57 000000
4a5b f04cSd
4a5f 0c4eae

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
;cold start
;warm start
;console status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to home positi
;select disk
;set track number
;set sector number
;set dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible S" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,al100
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk0l,al10l
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

50

4a63
4a67
4a6b
4a6f

734a00
000000
f04c8d
lc4ecd

;

a~11 ~g~~~g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

4a8d la00
4a8f 03
4a90 07
4a91 00
4a92 f200
4a94 3f00
4a96 c0
4a97 00
4a98 1000
4a9a 0200

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00"
4ab5 1602

4ab7 210034

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4acl cl

dpblk:

;
boot:

;
wboot:

10adl:

disk
dw
dw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf, dpblk
chk03,alHi3

for disk 03

sector translate vector
gg
db
db
db
db
db

;disk
dw
db
db
db
dw
dw
db
db
dw
ow

15~5:rl:17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

i~~gfg?~ ~~~~1~~
;sectors 9,10,11,12
;sectors 13,14,15,16
;sectors 17,18,19,20
;sectors 21,22,23,24
;sectors 25,26

parameter
26
3
7

block, common to all disks
;sectors per track
;block shift factor
;block mask

o
242
63
192
(21

16
2

;null mask
;disk size-l
;directory max
;al10c (2)

;alloc 1
;check size
;track offset

end of fixed tables

individual subroutines to perform each function
;simplest case is to just perform parameter initi
xra a ;zero in the accum
sta iobyte ;clear the iobyte
sta cdisk ;select disk zero
jmp gocpm ;initialize and go to cp/

;simplest case is to read the disk until all sect
lxi sp,80h ;use space below buffer f
mvi c,0 ;select disk 0
call seldsk
call horne ;go to track 00

mvi b,nsects ;b counts # of sectors to
mvi c,0 ;c has the current track
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
~ontains the cold start loader, which is skipped
lxi h,ccp ;base of cp/m (initial 10
;load
push
push
push
mov
call
pop

one
b
d

more sector

h
c,d
setsec
b

51

;save sector count, current
;save next sector to read

track

;save dma address
;get sector address
;set sector address
;recal1 dma address

to register c
from register
to b,c

4ac2 c5
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 118000
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 c5
4ae4 d5
4ae5 e5
4ae6 cd7d4b
4ae9 el
4aea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 320000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 018000
4b06 cdad4b

4b09 fb
4b0a 3a0400
4b0d 4f
4b0e c30034

gocpm:

push
call

drive
call
cpi
jnz

b ;replace on stack for later recal
setdma ;set dma address from b,c

set to
read
00h
wboot

0, track set, sector set, dma addres

;any errors?
;retry the entire boot if an erro

no error, move to next sector
;recall dma address
;dma=dma+128

pop h
lxi d,128
dad d ;new dma address is in h,l

;recall sector address pop d
pop b ;recall number of sectors remaini

;sectors=sectors-l dcr b
j z gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr
mov
cpi
jc

d
a,d
27
loadl

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track
mvi d,l ;begin with first sector of next
inr c ;track=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk ;track address set from register
h
d
b
loadl ;for another sector

end of load operation, set parameters and go to c

mvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
Ida
mov
jmp

a,0c3h ;c3 is a jmp instruction
o ;for jmp to wboot
h,wboote ;wboot entry point
1 ;set address field for jmp at 0

5
h,bdos
6

b,80h
setdma

cdisk
c,a
ccp

52

; for jmp to bdos
;bdos entry point
;address field of jump at 5 to bd

;default dma address is 80h

;enable the interrupt system
;get current disk number
;send to the ccp
;go to cp/m for further processin

4bll
4b21 3e00
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b51 e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b61 fero4

: simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

:
const: :console status, return 0ffh if character ready,

ds 10h:space for status subroutine
mvi a, 00h
ret

conin: :console character into register a
ds 10h :space for input routine
ani 7fh :strip parity bit
ret

:
conout: :console character output from register c

:
list:

:

mov a,c :get to accumulator
ds 10h :space for output routine
ret

:list character from register c
mov a,c :character to register a
ret inull subroutine

listst: :return list status (0 if not ready, 1 if ready)
xra a :0 is always ok to return
ret

i
punch: :punch character from register c

mov a,c icharacter to register a
ret inull subroutine

j

reader: iread character into register a from reader devic

. ,
home:

i

mvi a,lah jenter end of file for now (repla
ani 7fh iremember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

imove to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 iselect track 0
call settrk
ret iwe will move to 00 on first read

seldsk: iselect disk given by register c
lxi Jh ,0000h ierror return code
mov a,c
sta diskno
cpi 4 iinust be between 0 and 3

53

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 261010
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac c9

4bad 69
4bae 610
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

rnc ino carry if 4,5, •••
disk number is in the proper range
ds 10 ispace for disk select
compute proper disk parameter header address
Ida diskno
mov l,a il=disk number 0,1,2,3
mvi h,ro ; high order zero
dad h i*2
dad h ;*4
dad h i*8
dad h i*16 (size of each header)
lxi d,dpbase
dad d i hl=.dpbase(diskno*16)
ret

i
settrk: iset track given by register c

mov a,c
sta track
ds 10h ispace for track select
ret

setsec: iset sector given by register c
mov a,c
sta sector
ds lroh ispace for sector select
ret

i
sectran:

itranslate
itranslate
xchg

the sector given by bc using the
table given by de

ihl=.trans
ihl=.trans(sector)

setdma:

read:

. ,
write:

;

dad b
, mov I,m ;1 = trans(sector)

mvi h, 10 ihl= trans(sector)
ret

iset
mov
mov
shld
ds
ret

iwith value in hI

dma address given by registers band c
l,c ;low order address
h,b ;high order address
dmaad ;save the address
lroh ;space for setting the dma addres

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)
ds lroh iset up read command
jmp waitio ito perform the actual i/o

;perform a write operation
ds lroh ;set up write commanu

waitio: ;enter here from read and write to perform the ac
operation. return a roroh in register a if the ope
properly, and 01h if an error occurs during the r

54

4be6
4ce6 3eln
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4eeJc
4elc

4e2c =
013c =
4e2c

i

i

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in 'd
the track number in I track I (0-76
the sector number in I sector I (1-
the dma address in 'dmaad ' (10-655
;space reserved for i/o drivers
;error condition
ireplaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdatil and 'Ienddat").

track: ds
sector: ds
dmaad: ds
diskno: ds

2
2
2
1

itwo bytes for expansion
;two bytes for expansion
;direct memory address
;disk number 0-15

begdat
dirbf:
al100 :
al101:
al102:
a 1103:
chk00:
chk0l:
chk02:
chk03 :
i

scratch
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds

enddat equ
datsiz equ

end

ram
$
128
31
31
31
31
16
16
16
16

area for bdos use
;beginning of data
;scratch directory
;allocation vector
;allocation vector
;allocation vector
;allocation vector
;check vector 0
;check vector 1
;check vector 2
;check vector 3

$;end of data area
$-begdat;size of data area

55

area
area
o
1
2
3

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

0l!iH!J

0014 =

0000 =
3400 =
3c00 =
4a00 =

msize

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org 0100h

equ 20 size of cp/m in Kbytes

; ~bias" is the amount to add to addresses for > 20k
; (referred to as "b" throughout the text)

bias
ccp
bdos
bios

gstart:

equ
equ
equ
equ

(msize-20) *1024
3400h+bias
ccp+0800h
ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
c
d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1 ••• 26)
(scratch register pair)
load address
set to stack address

0100 318033 lxi sp,ccp-0080h
h,ccp-0080h
b,0

start of getsys
convenient plac
set initial loa
start with trac
read next track

0103 218033 lxi
0106 0600 mvi

rd$trk:
0108 0e01 mvi

010a cd0003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 da0a01

rd$sec:
call
lxi
dad
inr
mov
cpi
jc

c,l

read$sec
d,128
d
c
a,c
27
rdsec

; each track star

get the next se
offset by one s

(hl=hl+128)
next sector
fetch sector nu

and see if la
<, do one more

arrive here at end of track, move to next track

0118 04
0119 78
011a fe02
011c da0801

011f fb
0120 76

inr
mov
cpi
jc

b
a,b
2
rd$trk

track = track+l
check for last
track = 2 ?
<, do another

arrive here at end of load, halt for lack of anything b

ei
hIt

56

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
~213 felb
0215 da0a02

0218 04
0219 78
021a fe02
021c da0802

o 21f fb
0220 76

0300

0300 c5
0301 e5

0302

0342 el
0343 cl

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1 . , start this program at the next page boundary

org

put$sys:
lxi
lxi
mvi

wr$trk:

wr$sec:
mvi

call
lxi
dad
inr
mov
cpi
jc

($+0100h) and 0ff00h

sp,ccp-0080h
h,ccp-0080h
b,0

c,l

write$sec
d,128
d
c
apc
27
wr$sec

~ convenient plac
~ start of dump
~ start with trac

~ start with sect

: write one
~ length of
~ <hl>=<hl>
~ <c> = <c>

see if

secto
each
+ 128
+ 1

. , past end of t
~ no, do another

~ arrive here at end of track, move to next track

inr
mov
cpi
jc

b
a,b
2
wr$trk

~ track = track+l
~ see if . , last track

no, do another

done with putsys, halt for lack of anything bette

ei
hIt

user supplied subroutines for sector read and write

: move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
read the next sector
track in ,
sector in <c>

: dmaaddr in <hI>

push
push

b
h

user defined read operation goes here
ds 64

pop
pop

h
b

57

0344 c9 ret

~4~~ org ($+~l~~h) and ~ff~~h ~ another page bo

write$sec:

. same parameters as read$sec ,

~4l'Jl'J c5 push b
l'J4l'Jl e5 push h

user defined write operation goes here
l'J4~2 ds 64

l'J442 el pop h
l'J443 cl pop b
l'J444 c9 ret

end of getsys!putsys program

l'J445 end

58

00010

101014 =

10000 =
34100 =
4a00 =
103010 =
4a00 =
1900 =
01032 =

10101010 01102100
10003 1632
100~5 21101034

APPENDIX E: A SKELETAL COLD START LOADER

i this is a sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "loadp" (3400h + "bias"). in a 20k
memory system, the value of "bias" is 00100h, with large
values for increased memory sizes (see section 2). afte

i loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at

i "bios" + "bias." the cold start loader is not used un
i til the system is powered U9 again, as long as the bios
i is not overwritten. the origin is assumed at 10000h, an

must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

msize

bias
ccp
bios
biosl
boot
size
sects

cold:

lsect:

org 0 base of ram in cp/m

equ 20 min mem size in kbytes

egu (msize-20)*1024 offset from 20k system
equ 34lOfOh+bias base of the ccp
egu ccp+160lOh base of the bios
equ 103100h length of the bios
egu bios
egu bios+biosl-ccp size of cp/m system
equ size/128 # of sectors to load

begin the load operation

lxi b,2 b=0, c=sector 2
mvi d,sects d=# sectors to load
lxi h,ccp base transfer address

i load the next sector

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hl>

branch to location "co1d" if a read error occurs

59

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 /i'lc
0074 79
101075 felb
0077 da080~

007a 0e0l
007c 04
007d c310800
01080

· ,
· , · ,
· ,

*
*
*

user supplied read operation goes here •••

jmp
ds

past$patch
60h

; remove this when patche

past$patch:
; go to next

dcr
jz

sector if load is incomplete
d ; sects=sects-l
boot ; head for the bios

· , more sectors to load

; we aren1t using a stack, so use <sp> as scratch registe
; to hold the load address increment

lxi
dad

inr
mov
cpi
jc

sp,128
sp

c
a,c
27
lsect

128 bytes per sector
; <hI> = <hI> + 128

sector = sector + 1

; last sector of track?
no, go read another

end of track, increment to next track

mvi
inr
jmp
end

c,l
b
lsect

60

sector = 1
track = track + 1

; for another group
of boot loader

1 :
2: ;
3 :
4:
5:
6:
7 :
8:
9:

10:
11 :
12 :
13: i
14: i
15:
16: ;
17:
18:
19:
20:
21:
22 :
23:
24:
25:
26: ;
27: ;
28: i
29: ;
30: ;
31: ;
32: ;
33:
34:
35: ;
36:
37: ;
38:
39: ;
40:
41:
42: ;
43:
44:
45:
46: ;
47:
48:
49:
5":
51: ;
52:
53: ;

APPENDIX F: CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

Copy~ight (c) 1979
Digital R~:::earch
Box 579
Pacific Grove, CA
939510

CP/M logicel disk drives are defined using the
macros given below, where the sequence of calls
is:

disks a
diskdef ?arameter-list-0
diskdef ?arameter-1ist-l

diskdef pararneter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M system, and parameter-list-i defines the
characteristics of the ith drive (i=0.1, ••.• n-l)

each parameter-list-i takes the form

where
dn
fsc
Isc
skf
bls
dks
dir
cks
ofs
[0]

dn,f~c,lsc, [skf] ,bls,dks.dir.cks,ofs. [0]

is the disk number 0.1 ••••• n-l
is tile first sector number (usually 12) or 1)
is t~e last sector number on a track
is o~tional "skew factor" for sector translate
is tne data block size (1024,204B, ••• ,16384)
is tOt: disk size in b1s increments (word)
is tnE number of directory elements (word)
is tn0 number of dir elements to checksum
is the number of tracks to skip (word)
is an opt~onal 0 which forces i6K/directory en

for convenience, the form
dn,dm

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

drive CP/M system is defined by
4
O,1,26,6,1024,243,64,64,2 o .
3
dsk+1
%dsk,0

the value of "begdat" at the end of assembly defines t

61

54:
55:
56:
57:
58:
59:
60:
61:
62:
63: ::

dSkhdr

beginning of the un initialize ram area above the bios,
while the valpe of "enddat" defines the next location
following the end of the data area. the size of this
area is given by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small bl0
size.

macro
define

dn

64: dpe&dn: dw
a single disk

xlt&dn,00i210h
0000h,0000h
dirbuf ,dpb&dn
csv&:in,alv&dn

header list
:translate table
:scratch area 65:

66:
67:
68:
69: :

disks 70 :
71: ::
72: ndisks
73:
74:
"/5:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
(;6:
87:
88:
89:
910:
91:
92:
93:
94:
95:

dpbase
· . , ,
dsknxt

dsknxt

· ,
dpbhdr
dpb&dn

ddb
· . , ,

:
ddw
; ;

96: gcd
97: ::
98: ;;
99: i;

Hli21: gcdm
1101: gcdn
1102: gcdr
1103:
1104: gcdx
105: gcdr
1106:
1107:
108:

dw
dw
dw
endm

macro nd
define nd disks

:dir buff,parm block
:check, alloc vectors

set nd ::for later reference
eqlJ $
generate the

:base of disk parameter blocks
r~d elements

se t i1
rept nd
dskhdr %dsknxl
set dsknxc+l
endm
endm

macro dn
equ $:disk parm block
endm

macro data, comment
define a db statement
db data comment
endm

macro da ta, comment
define a dw statement
dw data comment
endm

macro rn,n
greatest cornman divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m ;;variable for rn
set n ; ;variable for n
set 10 ; ;variable for r
rept 65535
set gcdm/gcdn
set gcdrn - gcdx*gcdn
if gcdr = 10
exi tm
endif

62

Hl9:
110:
Ill:
112:

gcdm
gcdn

;
diskdef

113:
114:
115: ;;
116:
117:
118:
119 :
120:
121:
122 :
123:
124 :
125:
126:
127:
128 :
129 :
1310:
131 :
132:
133:
134:
135:
136:
137:

· . , ,
dpb&dn
a1s&dn
css&dn
x1t&dn

secmax
sectors
als&dn

a1s&dn

css&dn
· . , ,
b1kva1
blkshf
blkmsk

138: ;;
139: blkshf
140: b1kmsk
141: b1kva1
142 :
143:
144:
145:
146:
147:
148:
149:

; ;
blkval
extmsk

150: ;;
151: extmsk
152: blkval
153 :
154:
155:
156:
157:
158:
159:
160:
161 :
162 :
163 :

· . , ,

extmsk

; ;

extmsk

; ;
dirrem

set
set
endm
endm

gcdn
gcdr

macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,k16
generate the set statements for later tables
if nul lsc
current disk dn
equ dpb&fsc
equ als&fsc
equ css&fsc
equ xlt&fsc

s3me as orevious fsc
;80uiva1ent oarameters
;same allocation vector size
;same checksum vector size
;same translate table

else
set
set
set
if

lsc-(fsc) ;;sectors 0 ••• secmax
secmax+1;;number of sectors
(dks)/8 ;;size of allocation vector
((dks) mod 0) ne 0

set
endif

a1s&dn+1

set (cks)/4 ;;number of checksum elements
generate the block shift value
set b1s/128 ;;number of sectors/block
set 0 ;;counts right 0's in b1kval
set 0 ;;£i11s with l's from right
reQt 16 ;;~nce for each bit Qosition
if b1kva1=1
exitm
endif
otherwise, high order 1 not found yet
set blkshf+1
set (b1kmsk shl 1) or 1
set blkva1/2
endm
generate the extent mask byte
set b1s/1024 ;;number of kilobytes/block
set 0 ;;fil1 from right with l's
rept 16
if blkva1=1
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkva1/2
endm
may be double byte 'l11ocation
if (dks) > 256
set (extmsk shr 1)
endif
may be optional [0] in last position
if not nul k16
set k16
endif
now generate directory reservation bit vector
set dir ;;# remaining to process

63

164:
165:
166:
167:
168:
169:

dirbks
dirblk

170: ;;
171:
172 :
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
18B:
189:

; ;
dirblk

dirrem

di r rem

196: ;;
191:
192: xlt&dn
193:
194:
195: xlt&dn
196:
197: ;;
198: nxtsec
199: nxtbas
200:
201:
202:
203: ;;

, ,
neltst

204: ;;
205: nelts
206: xlt&dn
207:
208:
209:
210:
211:
212 :
213: nxtsec
214:
215: nxtsec
216:
217: nelts
218:

set
set
rept
if
exi tm
endif

bls/32
o

;;number of entries per block
;;fil1 with lis on each loop

16
dirrem=0

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr i) or 8000h
if dirrem > dirbks
set dirrem-dirbks
else
set eJ

endif
endm
dpbhdr dn ;;ge~erate equ $
ddw %sectors,<;sec per track>
ddb %blkshf,<;blcck shift>
ddb %blkmsk,<;block mask>
ddb %extmsk,<;e~tnt mask>
ddw %(dks)-l,<;uisk size-I>
ddw %(dir}-l,<;oirectory max>
cdb %dirblk shr 8,<;al1oc0>
ddb %dirblk anQ 0ffh,<;al1ocl>
ddw %(cks)/4,<;check size>
ddw %ofs,<ioffset>
generate the translate table, if requested
if nul skf
equ 0
else
if
equ
else

skf = I}

o

;no xlate taole

ino xlate table

generate the translate taole
se t 11 i ; dext sector to fill
set 11 i ifficves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set neltst ii~ounter
equ $;translate table
rept sectors ;ionce for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+(skf)
nxtsec >= sectors
nxtsec-sectors

nelts-l
nelts = 0

64

219 :
220 :
221 :
222 :
223:
224:
225:
226:
227:
228:
229 :
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241 :
242:
243:
244:
245:
246:
247:
248: ~~
249:

nxtbas
nxtsec
nelts

~
defds
lab:

~
Ids

. ,
endet .. , ,
begdat
di rouf:
dsknxt

dsknxt

enddat
datsiz

set
set
set
endif
endm
endif
endif
endm

macro
ds
endm

macro
aefds
endm

macro

nxtbas+l
nxtbas
neltst

~~end of nul fac test
~iend of nul bls test

lab,space
space

Ib,dn,va1
lb&dn,%val&dn

generate the necessary ram data areas
equ $
ds 128 idirectory access buffer
set 0
rept ndisks iionce for eacn disk
Ids alv,%dsknxt,als
Ids csv,%dsknxt,css
set dsknxt+l

$
$-begdat

endm
equ
equ
db I?J

endm
at this point forces hex record

65

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: i***
2: i*
3: : *
4: ; *

Sector Deblocking Algorithms for CP/M 2.0
*
*
*

5: i***
6 :
7 :
8: smask
9: ;;

10: ; ;
@y
@x

11 :
12 :
13: i i
14 :
15:
16 :
17:
18: ;;
19:
20:

@y
@x

21 :

· ,

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk
set 0
count right shifts of @y until = 1
rept 8
if @y = 1
exi tm
endif
@y is
set
set
endm
endm

not 1, shift right one position
@y shr 1
@x + 1

22:
23:
24:
25:

.*** ,
· * ,

· * ,
CP/M to host disk constants

*
*
*

26: i *
27:
28:
29:
30:

.*** ,

31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

blksiz equ
hstsiz
hstspt
hstblk
cpmspt
secmsk

secshf
· ,

egu
equ
equ
equ
equ
smask
equ

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-l
hstblk
@x

iCP/M allocation size
ihost disk sector size
ihost disk sectors/trk
;CP/M sects/host buff
iCP/M sectors/track
isector mask
icompute sector mask
i 1og 2 (hstblk)

.*** ,
· * ,
· * ,
· * ,

*
BDOS constants on entry to write *

*
.*** ,
wrall
wrdir
wrual
· ,

equ
equ
equ

o
1
2

iwrite to allocated
iwrite to directory
;write to unallocated

.*** ,

· * ,
· * ,

The BDOS entry points given below show the
code which is relevant to deblocking only.

*
*
*
*

48: i *
49: i *
50:
51:
52:
53:

.*** ,

66

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101 :
102:
103:

; DISKDEF macro, or hand coded tables go here
dpbase egu $;disk param block base
· ,
boot:
wboot:

· ,
selds k:

settrk:

setsec:

· ,
setdma:

;
sectran:

;enter here on system boot to initialize
xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnt ;clear unalloc count
ret

;select disk
mov
sta
mov
mvi
rept
dad
endm
1xi
dad
ret

a,c
sekdsk
l,a
h,0
4
h

d,dpbase
d

;selected disk number
;seek disk number
;disk number to HL

;mu1tiply by 16

;base of parm block
;h1=.dpb(curdsk)

;set track given by registers Be
mov h,b
mov l,c
shld sektrk ;track to seek
ret

i set
mov
sta
ret

;set
mov
mov
shld
ret

sector given by register c
a,c
seksec ;sector to seek

dma address given by Be
h,b
l,c
dmaadr

;translate sector number Be
mov h,b
mov l,c
ret

67

104:
105:
106:
107 :
108 :
109:
110:
Ill:
112:
113:
114:
115:
116:
117:
118:
119 :
120 :
121:
122:
123:
124:
125:
126:
127:
128 :
129 :
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:

.*** I

· * I

· * I

· * I

The READ entry point takes the place of
the previous BIOS defintion for READ.

*
*
* .* * I

.*** I

read:
~ read the selected CP/M sector
mvi a,l
sta readop ~read operation
sta rsflag ~must read data
mvi a,wrual
sta wrtype ~treat as unalloc
jmp rwoper ~to perform the read

· I .

• *** I

.* I

· * I

.*
I

.*
I

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*
*

.*** I

write:

· I

~
chkuna:

;

~write the selected
xra a
sta readop
mov a,c
sta wrtype
cpi wrual
jnz chkuna

CP/M sector
~0 to accumulator
~not a read operation
;write type in c

~write unallocated?
~check for unalloc

write to unallocated, set parameters
mvi a,blksiz/128 ~next unalloc recs
sta unacnt
Ida sekdsk ~disk to seek
sta unadsk ~unadsk = sekdsk
Ihld sek trk
shld unatrk ~unatrk = sectrk
Ida seksec
sta unasec ~unasec = seksec

~check for write to unallocated sector
Ida unacnt ~any unalloc remain?
ora a
jz alloc ;skio if not

more unallocated records remain
dcr a ;unacnt = unacnt-l
sta unacnt
Ida sekdsk ~same disk?
lxi h,unadsk
cmp m ~sekdsk = unadsk?
jnz alloc ~skip if not

disks are the same

68

;
noovf:

· ,
a11oc:

· ,

1xi
call
jnz

h,unatrk
sektrkcmp
a110c

tracks are the same
Ida seksec
1xi h,unasec
cr:~o

jnz
m
a110c

match, move to next
inr m
mov a,m
cpi cpmspt
jc noovf

;sektrk = unatrk?
;skip if not

;same sector?

;seksec = unasec?
,skip if not

sector for future ref
;unasec = unasec+1
;end of track?
;count CP/M sectors
;skip if no overflow

overflow to next track
mvi
1h1d
inx
sh1d

;match
xra
sta
jmp

;not an
xra
sta
inr
sta

m,0
unatrk
h
unatrk

found,
a
rsf1ag
rwoper

mark

unallocated
a
unacnt
a
rsf1ag

;unasec = 0

;unatrk = unatrk+l

as unnecessary read
;0 to accumulator
; rsf1ag = 0
;to perform the write

record, requires pre-read
;0 to accum
;unacnt =0
;1 to accum
;rsf1ag = 1

159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174: ;
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188 :
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:

.*** ,
· * ,
· * ,
· * ,

Common code for READ and WRITE follows
*
*
*

.*** ,
rwoper:

;enter here to perform
xra
sta
Ida
rept
ora
rar
endm
sta

a
erf1ag
seksec
secshf
a

sekhst

active host sector?
1xi h,hstact
mov
mvi

a,m
m,l

69

the read/write
;zero to accum
;no errors (yet)
;compute host sector

;carry = 0
;shift right

;host sector to seek

;host active flag

;a1ways becomes 1

-':-'.',.

214:
215:
216: ~
217: ~
218:
219 :
22l;n
221:

ora
jz

host
Ida
lxi
cmp
jnz

same
lxi
call
jnz

same
Ida
lxi
cmp
jz

a
filhst

:was it already?
:fill host if not

buffer active, same as seek buffer?
sekdsk
11, hstds k
m
nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;same disk?
;sekdsk = hstdsk?

;sektrk = hsttrk?

disk, same track, same buffer?
sekhst
h,hstsec
m
match

;sekhst = hstsec?

;skip if match
~
nomatch:

2 22: ~
223: ~
224:
225:
226:
227:
228: J,
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:.
254:
255:
256:
257:
258:
259:
260:
261:
262:
263: ~
264:
265:
266:
267:
268:

~
f,ilhst.:

~
match:

iproper disk, but not correct sector
lda hstwrt ihost written?
ora
cnz

imay
Ida
sta
lhld
shld
Ida
sta
Ida
ora
cnz

. xra
sta

~copy

Ida
ani
mov
mvi
rept
dad
endrn

a
writehst

have to fill
sekdsk
hstdsk
sek:trk
hsttrk
sekhst
hS.tsec
rsflag
a
readhst
a
hstwrt

data to or
seksec
secrnsk
l,a
h,0
7
h

iclear host buff

the host buffer

ineed to read?

:yes, if 1
i0 to accum
ino pending write

from buffer
:mask buffer number
:least signif bits
:ready to shift
:double count
:shift left 7

, hI has
lxi
dad
xchg
lhld
.mvi

relative host buffer address
d,hstbuf
d

dmaadr
c,128

70

:hl = host address
~now in DE
:get/put CP/M data
~length of move

~

rwmove:

. ,

Ida readop ;which way?
ora a
jnz rwmove ~skip if read

write operation, mark and switch direction
mvi
sta
xchg

a,l
hstwrt ~hstwrt = 1

~source/dest swap

~c initially 128, DE is source, HL is dest
1dax d ;source character
inx d
mov m,a
inx h
dcr c
jnz

data
Ida
cpi
Ida
rnz

rwmove

has be'en moved
wrtype
wrdir
erf1ag

;to dest

;loop 128 times

to/from host buffer
~write type
;to directory?
~in case of errors
;no further processing

clear host buffer for directory write
;errors? ora

rnz
xra
sta
call
Ida
ret

a

a
hstwrt
writehst
erf1ag

;skip if so
;0 to accum
;buffer written

269:,
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287: ~
288:
289:
290:
291:
292: ~
293: ~
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319 :
320:

.*** ,

.* * ,

.* ,

.* ,
utility subroutine for 16-bit compare *

*
.*** ,
sektrkcmp:

~HL = .unatrk or .hsttrk, compare with sektrk
xchg
1xi
1dax
cmp
rnz
low
inx
inx
1dax
cmp
ret

h,sektrk
d
m

bytes equal,
d
h
d
m

test

;low byte compare
; same?
;return if not

high Is

;sets flags

71

321:
322:
323 :
324:
325:
326:
327 :
328 :
329 :
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341 :
342:
343:
344:
345:
346:
347 :
348:
349:
350:
351:
352 :
353 :
354:
355:
356:
357:
358:
359:
360:
361 :
362 :
363:
364:
365:
366:
367:
368:
369:
370:

.*** ,
· * ,
· * ,
· * ,
· * ,

WRITEHST performs the physical write to
the host disk, READHST reads the physical
disk.

*
'*
*
*

.* * ,

.*** ,
writehst:

readhst:

· ,

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. write "hstsiz h bytes
;from hstbuf and return error flag in erflag.
;return erflag non-zero if error
ret

;hstdsk = host disk #, hsttrk = host track #,
;hstsec = host sect #. read "hstsiz" bytes
;into hstbuf and return error flag in erflag.
ret

.*** ,

.* * ,
· * unitialized RAM data areas * ,
· * * ,
.*************************************A~************** ,
;
sekdsk: ds 1 ; seek disk number
sektrk: ds 2 ;seek track number
seksec: ds 1 ; seek sector number
;
hstdsk: ds 1 ;host disk number
hsttrk: ds 2 ;host track number
hstsec: ds 1 ;host sector number

sekhst: ds 1 ;seek shr secshf
hstact: ds 1 ;host active flag
hstwr t: ds 1 ;host written flag

unacnt: ds 1 ;unalloc rec cnt
unads k: ds 1 ;last unalloc disk
unatrk: ds 2 ;last unalloc track
unasec: ds 1 ;last unalloc sector

erflag: ds 1 ;error reporting
r sfl ag: ds 1 ;read sector flag
r eadop: ds 1 ; 1 if read operation
w=type: ds 1 ;write operation type
dmaadr: ds 2 ;last dma address
hstbuf: ds hstsiz ;host buffer

72

371:
372:
373:
374:
375:
376:

.*** ,
· * ,
· * ,
· * ,

*
The ENDEF macro invocation goes here *

*
.*** ,

end

73

•
APPENDIX H

ADDENDUMS

APPENDIX H-1

HARDWARE ADDENDUMS

APPENDIX H-2

•

SOFTWARE ADDENDUMS

· APPENDIX J

CUSTOMER INFORMATION

APPENDIX J-1

•

SERVICING PROCEDURES

SERVICING PROCEDURES

SuperBrain II
Users Manual

Servicing Procedures

Your SuperBrain II Video Terminal is warranted to the original purchaser for 90 days from date of
shipment. This warranty covers the adjustment or replacement, F.O.B. Intertec's plant in
Columbia, South Carolina, of any part or parts which in Intertec's judgment shall disclose to have
been originally defective. A complete statement of your warranty rights is contained on the inside
back cover of this manual.

To qualify for receipt of future technical documentation updates, please complete the Warranty
Registration Form (contained in this section) and return it to Intertec Data Systems within 10 days
of receipt of this equipment. Be sure to include the serial number of the specific terminal you are
registering. The serial number of your terminal can be found on the right hand side of the rear 1/0
panel (looking from the rear). A Customer Comment Card is also enclosed for your convenience if
you desire to make comments regarding the overall operation andlor adaptability of the
SuperB rain II to your particular application.

IF SERVICE IS EVER REQUIRED:

If you should ever encounter difficulties with the use or operation of this terminal, contact the
supplier from whom the unit was purchased for instructions regarding the proper servicing
techniques. Service procedures differ from dealer to dealer, but most Intertec authorized service
dealers can provide local, on-site servicing of this equipment on a per-call or maintenance
contract basis. Plus, a wide variety of service programs are available directly from the factory,
including extended warranty, a module exchange program, and on-site maintenance from a wide
variety of locations within the U.S.

Contact our Customer Services Department at the factory for rates and availability if you desire to
participate in one of these programs. If you are not covered under one of the programs
described above and service cannot be made available through your local supplier, contact
Intertec's Customer Services Department at (803) 798-9100. Be prepared to give the following
information when you call:

1. The serial number of the defective equipment. If you are returning individual modules to the
factory for repair, it will be necessary to have the serial number of the individual modules
also. The serial number of the entire terminal may be found on the right hand side of the rear
1/0 panel (looking from the rear). Module serial numbers are listed on white stickers placed in
conspicuous locations on each major module or subassembly of the terminal. NOTE:
Individual modules cannot be returned to the factory for repair unless you originally
purchased your unit from the factory. If your unit was purchased through a Dealer or OEM
vendor, and you desire factory repair, then the entire terminal must be returned.

2. The name and location of the Dealer andlor Agent from whom the unit was purchased.

3. A complete description of the alleged failure (including the nature and cause of the failure if
readily available).

The Customer Services Department will issue you a Return Material Authorization Number (RMA
Number) which will be valid for a period of 30 days. This RMA Number will be your official
authorization to return equipment to IDSC for repair only. The Customer Services Department will
also give you an estimate, if requested, of the time it should take to process and repair your
equipment. Turnaround time on repairs varies depending on workloads and availability of parts,
but normally your equipment will be repaired and returned to you within 10 working days of its
receipt. If your repair is urgent, you may authorize a special $50 Emergency Repair fee and have
your equipment repaired and returned within no more than 48 hours of its receipt at our Service
Center. Ask the Customer Services Department for more information about this program.

6831010

SuperBrainl1
Users Manual
Servicing Procedures

SERVICING PROCEDURES (contiliued)

IMPORTANT: Any equipment returned to Intertec without an RMA Number will result in the
equipment being refused and possible cancellation of your SuperBrain II warranty. Also if your
RMA Number expires, you must request a new number. Equlpmentarriving at Intertec bearing
an expired RMA Number will also be refused.

After securing an RMA Number from the Customer Services Department, return the specified
modules and/or complete terminals to Intertec, freight prepaid, at the address below. NOTE: The
RMA Number must be plainly marked and visible on your shipping label to prevent the
equipment from being refused at Intertec's Receiving Department.

ATTN: SUPERBRAIN SERVICE CENTER
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

To aid our technicians in troubleshooting and correcting your reported malfunction, please
complete an Intertec Equipment Malfunction Report (contained in this section) and enclose it with
the equipment you intend to return to the factory.

Be sure a declared value equal to the price of the unit is shown on the Bill of Lading, Express
Receipt or Air Freight Bill, whichever is applicable. Risk of loss or damage to eqUipment during
the time it is in transit either to or from Intertec's facilities is your sole responsibility. A declared
value must be placed on your Bill of Lading to insure substantiation of your freight claim if
shipping damage or loss is incurred.

All equipment returned to an Intertec Service Center must be freight prepaid. Equipment not
prepaid on arrival at Intertec's Receiving Department cannot be accepted. Upon repair of
equipment under warranty, it will be returned to you freight prepaid, via UPS or equivalent ground
transportation. All repaired equipment not covered by warranty will be returned, F.O.B. the
factory in Columbia, South Carolina, via UPS or equivalent ground transportation unless you
specify otherwise.

INSTRUCTIONS FOR HANDLING LOST OR DAMAGED EQUIPMENT

The goods, described on your Packing Slip were delivered to the Transportation Company at
Intertec's premises in complete and good condition. If any of the goods called for on this Packing
Slip are short or damaged, you must file a claim WITH THE TRANSPORTATION COMPANY FOR
THE AMOUNT OF THE DAMAGE AND/OR LOSS.

IF LOSS OR DAMAGE IS EVIDENT AT TIME OF DELIVERY:

If any of the goods called for on your Packing Slip are short or damaged at the time of delivery,
ACCEPT THEM, but insist that the Freight Agent make a damaged or short notation on your
Freight Bill or Express Receipt and sign it.

IF DAMAGE·OR LOSS IS CONCEALED AND DISCOVERED AT A LATER DATE:

If any concealed loss or damage is discovered, notify your local Freight Agent or Express Agent
AT ONCE and request him to make an inspection. This is absolutely necessary. Unless you do
this, the Transportation Company will not consider your claim for loss or damage valid. If the
agent refuses to make an inspection, you should draw up an affidavit to the effect that you notified
him on a certain date and that he failed to make the necessary inspection.

2 6831010

SERVICING PROCEDURES (continued)

SuperBrain II
Users Manual

Servicing Procedures

After you have ascertained the extent of the loss or damage, ORDER THE REPLACEMENT PARTS
OR COMPLETE NEW UNITS FROM THE FACTORY. We will ship them to you and bill you for the
cost. This new invoice will then be a part of your claim for reimbursement from the Transportation
Company. This, together with other papers, will properly support your claim.

IMPORTANT: The claims adjustment procedure for UPS shipments varies somewhat from the
procedure listed above for regular motor and air freight shipments. If your equipment was
shipped via UPS and sustained either damage or loss, the UPS representative in your area must
initiate the claim by inspecting the goods and assigning a freight claim number to the damaged
equipment. The representative will attach a "Call Tag" to the outside of the equipment box which
will be your authorization to return the merchandise to our factory for claim adjustment. Upon
receipt of this damaged equipment, we will perform the necessary repairs, process the
appropriate paperwork with UPS and return the equipment to you. Please allow time for
processing of any type claim. Normal time for proper processing of aU PS claim is 15-30 working
days.

Remember, it is extremely important that you do not give the Transportation Company a clear
receipt if damage or shortages are evident upon delivery. It is equally important that you call for
an inspection if the loss or damage is discovered later. DO NOT, UNDER ANY CIRCUMSTANCES,
ORDER THE TRANSPORTATION COMPANY TO RETURN SHIPMENT TO OUR FACTORY OR
REFUSE SHIPMENT UNLESS WE HAVE AUTHORIZED SUCH RETURN.

ADDITIONAL TECHNICAL DOCUMENTATION

Detailed technical documentation (i.e., schematics) describing the operation of the SuperBrain II
Video Terminal and the electrical interconnection of its various modules is available at nominal
cost directly from Intertec Data Systems Corporation. However, due to the confidentiality of this
technical information, it will be necessary to sign and return the Documentation Non-Disclosure
Agreement (appearing on the next page) denoting your concurrence with its t'erms and
conditions.

The handling and processing costs of SuperBrain II technical documentation is $50. Due to the
large amount of requests being processed and the relatively small handling costs involved, we
must request that you enclose payment ($50) upon return of your Non-Disclosure Agreement.
Normally the documents will be mailed to you within 15 to 30 days after receipt of your payment
and a signed copy of the Agreement. (IMPORTANT: The technical documentation will be mailed
to the address listed at the top of the Non-Disclosure Agreement.) For prompt processing of your
documentation request, please forward your signed agreement and payment to:

Customer Services Department
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

NOTE: Formal technical documentation for the SuperBrain II will be sent to you normally within
10-15 days of receipt of your payment and Signed Non-Disclosure Agreement.

IMPORTANT: Payment must accompany your Non-Disclosure Agreement. Agreements sent to us
without payment will be discarded without notice.

6831010 3

::i: IIII~:: INTE~TEC SUPERB RAIN II DOCUMENTATION NON-DISCLOSURE AGREEMENT J c: DATA 108-3508

® ~~~~~~dqUarters: 2300 Broad River Road, Columbia, South Carolina 29210 • 8031798-9100 • TWX: 810-666-2115

THIS AGREEMENT MADE BETWEEN INTERTEC
DATA SYSTEMS CORPORATION AND THE ORGANI
ZATION AND/OR PERSONS LISTED AT THE RIGHT
AND BECOMES EFFECTIVE ON THE DATE SPECI
FIED BELOW.

(PLEASE PRINT CLEARLY. DOCUMENTS WILL BE
MAILED TO THE ADDRESS AT RIGHT)

YOURCOMPANYNAME ________________________ __

ADDRESS

CITY & STATE ______________________________ __

TELEPHONE ______________________________ __

YOUR NAME _____________________________ __

For and in consideration of receiving confidential documentation on the SuperBrain IITM line of terminals
manufactured by INTERTEC DATA SYSTEMS CORPORATION (hereinafter called INTERTEC) at the date
hereof, the undersigned hereby agrees with I NTERTEC as follows:

(1) The undersigned acknowleges that formulae,
programs, manufacturing processes, devices,
techniques, plans, methods, drawings, blueprints,
reproductions, data tables, calculations and com
ponents were designed and developed by INTERTEC
at great expense and over lengthy periods of time,
and the same are secret and confidential, are unique
and constitute the exclusive property and trade
secrets of INTERTEC, and that any use of such prop
erty and trade secrets by the undersigned other than
for the sole benefit of INTERTEC would be wrongful,
tortiuous and would cause irreparable injury to
INTERTEC.

(2) The undersigned shall not at any time, without
the express written consent of the Board of Di
rectors of I NTERTEC, publish, disclose, use or di
vulge to any person, firm or corporation, directly or
indirectly, or use for his own benefit or the benefit of
any person, firm, or use other than to effect repair of
INTERTEC manufacturing equipment, and property
above described, trade secrets or confidential infor
mation of INTERTEC, its subsidiaries and its af
filiates learned or obtained by its subsidiaries and its
affiliates learned or obtained by him from INTERTEC,
including, but not limited to the information and
things set forth in paragraph 1 hereinabove.

(3) This agreement shall be binding upon the
undersigned, his personal representatives, succes
sors and assigns, and shall run to the benefit of
I NTERTEC, its successors and assigns.

(4) Upon termination of the association of the
undersigned with INTERTEC or its subsidiaries, the
undersigned shall promptly deliver to INTERTEC all
drawings, blueprints, reproductions, manuals, let
ters, notes, notebooks, reports, data, tables, calcula~
tions or copies thereof, components,. programs, and
any and all other secret and confidential property of
INTERTEC, its subsidiaries and affiliates, including,
but not limited to, all of the property set forth in
paragraph 1 hereinabove which are in the posses
sion or under the control of the undersigned.

(5) The undersigned hereby acknowledges and
agrees that in the event of any violation hereof,
INTERTEC shall be authorized and entitled to obtain
from any court of competent jurisdiction preliminary
and permanent injunctive relief as well as equitable
accounting of all profits or benefits arising out of
such violation which rights or remedies shall be
cumulative and in addition to any rights or remedies
to which INTERTEC may be entitled and that the
undersigned shall further be directly liable for any
and all reasonable attorney's fees incurred by
INTERTEC to enforce this Agreement against the
undersigned in a court of law.

(6) The foregoing understanding shall apply to
any subsequent meeting and/or communications
between INTERTEC and the above mentioned or
ganization relating to the same subject manner,
unless modified in writing as to any such subsequent
meetings and/or communications,

We would appreciate your signing and returning to us, prior to the release of INTERTEC product
documentation, the original copy of this agreement denoting your concurrence with the foregoing provi
sions.

AGREED TO: __________________________ __

(YOUR NAME OR COMPANY - PLEASE PRINT)

YOUR SIGNATURE: __________________________ _
In addition to the terms listed above, I further certify that I am duly
authorized to sign this document on behalf of the organization and/or
persons requesting that this imformation be supplied by INTERTEC.

YOURNAME: ______________________________ __

YOUR TITLE: ______________________________ __

TODAY'S DATE: ____________________________ _

INTERTEC DATA SYSTEMS CORPORATION
SIGNATURE: ______________________ __

FOR OFFICE USE ONLY

DATE RCV'D _______ PROCESSED BY: ______ _

OTHER RELEASES DATE INVOICE NO.

: : ill I : INTHfEC BE SURE TO INCLUDE YOUR SERIAL NUMBER HERE.

J C .~~dq~"'" 2300 Brood .,,' R""d. CoI"m",. So"h C''''',''921O • B:::~O~ ~:, B1".'&211,

SUPERBRAIN II LIMITED WARRANTY REGISTRATION FORM

IMPORTANT: This form should be completed within ten days of receipt of your SuperBrain II
Video Computer System and returned to Intertec at the following address:

Intertec Data Systems Corporation
2300 Broad River Road
Columbia, South Carolina 29210

Attn: Warranty Registration Department

All warranty liability is limited to that expressed in most recent edition of the SuperBrain II
Video Computer User's Manual as published by Intertec Data Systems Corporation.

Date Received: Purchased from: _________ _

Company: ____________ _

Name: Address

Title: ______________ _ City: _____________ _

Address Telephone: --'-___ ~ ______ _

City: _____________ _ Sales Agent:

Country: Order Placed On:

Telephone: Price Paid: ___________ _

Where did you first hear about the SuperBrain? From a 0 Magazine 0 Dealer 0 Friend

Why did you decide to purchase the SuperBrain? 0 Features 0 Price OAppearance

Was the Dealer and/or Sales Agent knowlegeable about the SuperBrain? DYES ONO

Please explain.

Questions on the reverse side must be completed to validate your warranty

Were you introduced to any other Intertec products? DYES DNO (if yes, please

indicate other products which were mentioned.) ___ ~ ____________ _

Are you aware of other Intertec products? DYES D NO (If yes, which ones?)

What other microcumputer related products will you be purchasing in the next 12 months?

D Video Terminals D Printers (matrix) D Printers (character) D Disk Systems D Other

What is your application for the SuperBrain? D Business D Scientific D Educational D Other

What are your comments in general concerning the overall operation of the SuperBrain-?

D Outstanding 0 Excellent D Good D Average D Unsatisfactory

Would you like to be placed on our mailing lists? DYES D NO

May we use your name as a favorable reference for other customers in your area desiring to
purchase a SuperBrain? DYES D NO

Thank you for purchasing the SuperBrain II Video Computer System. If we may be of further
assistance to you, please contact our Customer Service Department at the address on the
reverse side of this form.

THIS EQUIPMENT PURCHASED FROM:

Dealer Name: Address _____________ _

City & State' ____________ _ Telephone Area ---->. ___ ~ _____ _

Dear Customer:

We are trying to manufacture the most reliable product possible. You would do us a great courtesy by com
pleting this form should you experience any failures. Enclose this form with the equipment you intend to
return to the dealer or factory for service. (Additional copies of this form available upon request.)

1. Type Unit ___________________ Serial No. _______ _

Module (if applicable) _____________________ _

2. Component failed (if available, include Name and Number) ____________ _

3. Description of failure (include cause of failure if readily available) __________ _

4. Approximate hours/days of operation to failure

5. Failure occurred during:

D Initial Inspection D Customer Installation D Field Use

6. Personal Comment:

Your Name ____________ Address ___________ _

City & State· _________ Zip, ________ Phone(___ .1...-___ _

Date _________ Signed __________________ _

Return this form and equipment to your local dealer or to the factory at the address below.

ATTN: SUPERBRAIN SERVICE CENTER
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

APPENDIX J-2

GENERAL INFORMATION
FOR SUPERBRAIN II USERS

Our past and present customers are directly responsible for the evolution of the SuperBrain
as you see it presented in this manual. Before Intertec began research and development on the
SuperBrain, an extensive user survey was conducted to ascertain optimum video computer
price/performance ratios to enable us to capture a major portion of the video computer market. In
order that we continue with our commitment to excellence in engineering, production and
marketing, we would appreciate your comments below regarding your overall opinion of the
SuperBrain. All comments are given careful consideration in future product design and become
the property of Intertec Data Corporation.

(1) What are your comments concerning the overall appearance of the SuperB rain? (You may
want to comment on color, size and construction.)

(2) What are your comments (in general) concerning the overall operation of the unit?

(3) What features about the unit do you like best?

(4) What features about the unit do you like least?

Please see additional questions on the reverse side

(5) Briefly describe your application for the SuperBrain.

(6) What other microcomputer systems do you feel are comparable to the SuperBrain in both
price and performance?

(7) What changes and/or modifications to the SuperBrain could be made to render it more
suited to your application?

(8) Your candid comments regarding the operation of and application for the SuperBrain are
greatly appreciated. Address your comments and/or suggestions to:

PRODUCT SERVICES MANAGER
Intertec Data Systems
2300 Broad River Road
Columbia, South Carolina 29210

(9) If you desire to be contacted by our service, marketing or technical staff regarding these
comments, please give us your complete name, address and phone number below. (This in
formation is optional.)

Company Name __ __

Address __ _

City, State & Zip __________ ------------------
Contact: __ _

Phone: AREA ~ __ ~ ____________ EXT ____ _

I would like to be contacted by your: o Marketing 0 Technical 0 Service Department

~II : MRlEC DOCUMENT REVIEW FORM

~ C @~~_" .. m' 2300 '~d AI", Rood, CoI,mbl. So"h eo,"", 29210 • 80317""'100 • TWX, '''>.''''''''

I n order to insure that you are provided with a document that will satisfy all of your information re
quirements as well as one that is error free and easy to use, we would like to ask you to supply us
with any comments, suggestions, or errors you have found. The space below is provided for this
input. Return the completed form to:

AnN: TECHNICAL SERVICES MANAGER
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

STATEMENT OF LIMITED WARRANTY

For ninety (90) days from the date of shipment from our manufacturing plant at 2300 Broad River Road, Columbia, South Carolina, Intertec warrants, to
, the original purchaser only, that its products, excluding software products, will be free of defective parts or components and agrees to replace or repair any
defective component which, in Intertec's judgement, shall disclose to have been originally defective. Intertec neither offers n9r implies any warranty
whatsoever on any software products. Furthermore, Intertec's obligations under this limited warranty are subject to the following conditions:

LIMITED WARRANTY REPAIRS

Unless authorized by written statement from Intertec, all repairs must be done by Intertec at our plant in Columbia, South Carolina. Return of any and all
parts and/or equipment must be freight prepaid and accompanied by an Intertec Return Material Authorization number which must be clearly visible on the
customer's shipping label. Return of parts or equipment contrary to this policy shall result in the material being refused, and the customer being invoiced
for any replacement parts, if any Were previously issued, at Intertec's standard prices.

When making repairs or replacing parts in accordance with this limited warranty, Intertec reserves the right to alter and/or modify specifications of this
eqUipment.

Upon completion of the repairs, Intertec will return the eqUipment, freight prepaid, directly to the customer from whom it was sent via UPS or equivalent
ground transportation.

Authorization to return eqUipment for repair can be obtained by writing Intertec at the address stated herein or by calling our Customer Service
Department at 803/798-9100.

In the event Intertec shall authorize repair of its eqUipment, in writing, by an authorized repair agent, then Customer shall bear all shipping, packing,
inspection and insurance costs necessary to effectuate repairs under this warranty.

EXCLUSIONS

The Limited Warranty provided by Intertec Data Systems Corporation does hot include:
(a) Any damage or defect caused by injuries received in shipment or any damage caused by unauthorized repairs or adjustments. The risk of loss or

damage to the equipment shall pass to the Customer upon delivery by Intertec to the carrier at Interlec's premises.
(b) Repair, damage or increase in service time caused by failure to continually provide a suitable Installation environment including, but not limited to, the

failure to provide, or the failure of, adequate electrical power, air-conditioning, or humidity control.
(c) Repair, damage or increase in service time caused by accident or disaster, which Shall include, but not be. limited to, fire, flood, water, wind, lightning,

transportation neglect, misuse and alterations, which shall include, but not be limited to, any deviation from the original physical, mechanical or electrical
design of the product.

(d) Any statements made about the equipment by salesman, dealers or agents unless such statements are in a written document signed by an officer of
Intertec Data Systems Corporation. Such statements do not constitute warranties, shall not be relied on by the buyer, and are not part of the contract for
sale.

(e) Any damage arising out of any application for its products other than for normal commercial and industrial use, unless such application is, upon
request, specifically approved in writing by Intertec. Intertec products are sophisticated data processing units and are not sold or distributed for personal,
family or household purposes.

This Class A equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions
manual, may cause interference to radio communications. As temporarily permitted by regulation it has not been tested for compliance with the limits for
Class A computing devices pursuant to Subpart I of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

(I) Software, including either source code, object code, or any computer program used in connection with our equipment, whether purchased directly
from Intertec or from an independent source.

WAIVER OF ALL EXPRESS OR IMPLIED WARRANTIES

Our limited warranty to repair or replace defective parts or components for ninety (90) days after date of shipment from our Columbia plant is being
offered in lieu of all express or implied warranties. -

INTERTEC MAKES NO EXPRESS WARRANTY OTHER THAN THE LIMITED WARRANTY SET FORTH ABOVE, CONCERNING THIS PRODUCT OR ITS
COMPONENTS, NOR DO WE IMPLIEDLY WARRANT ITS MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

All statements, technical information and recommendations contained in this document and related documents are based on tests we believe to be
reliable, but the accuracy or completeness thereof is not guaranteed.

THE FOREGOING LIMITED WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, EXCEPT AS TO CONSUMER GOODS IN
WHICH CASE THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY ONLY FOR THE PERIOD OF
THE LIMITED WARRANTY.

PURCHASERS OF CONSUMER PRODUCTS SHOULD NOTE THAT SOME STATES DO NOT ALLOW FOR THE EXCLUSION OF CONSEQUENTIAL
DAMAGES OR THE LIMITATION OR THE DURATION OF IMPLI~D WARRANTIES SO THE ABOVE EXCLUSION AND LIMITATION MAY NOT BE
APP~ICABLE. . .:

TI;iIS LIMITED WARRANTY GIVES THE PURCHASER SPECIFIC LEGAL RIGHTS, AND THE PURCHASER MAY ALSO HAVE OTHER RIGHTS WHICH
MAY VARY FROM STATE TO STATE.

LIMITATION OF REMEDIES

INTERTEC SHALL NOT BE LIABLE FOR ANY INJURY, LOSS OR DAMAGE, DIRECT OR CONSEQUENTIAL, TO PERSONS OR PROPERTY CAUSED
EITHER DIRECTLY OR INDIRECTLY BY THE USE OR INABILITY TO USE ITS PRODUCT AND/OR DOCUMENTS. SUCH LIMITATION IN LIABiliTY SHALL
REMAIN IN FULL FORCE AND EFFECT EVEN WHEN INTERTEC MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURIES, LOSSES OR
DAMAGES.

Before purchasing or using, the Customer shall determine the suitability of Intertec's products and documents for his intended use and assumes all risk
and liability whatsoever in connection therewith.

THE LIMITED WARRANTY TO REPLACE OR REPAIR PARTS OR COMPONENTS FOR (90) DAYS IS THE EXCLUSIVE REMEDY PROVIDED TO THE
CUSTOM ER AN D THE LlABI LlTY OF I NTERTEC WITH RESPECT TO ANY OTH ER CONTRACT, SALE OR ANYTH I NG DON E I N CON NECTION THEREWITH,
WHETHER IN CONTRACT, IN TORT, UNDER ANY WARRANTY, OR OTHERWISE, SHALL NOT EXCEED THE PRICE OF THE PART OR COMPONENT ON
WHICH SUCH LIABILITY IS BASED.

Rights under this warranty are not assignable without the express prior consent, in writing, of Intertec Data Systems Corporation and, regarding the
terms of such consent in writing, such assignee shall have no greater rights than his assignor.

In the event the Customer has any problem or complaints arising out of any breach of our limited warranty, including a failure to make repairs in
accordance with this warranty, or unsuccessful repair attempts by an authorized repair facility, the Customer is encouraged to inform Intertec, in writing, of
his or her problem or complaint. Any such writing should be addressed to Intertec Data Systems Corporation at 2300 Broad River Road, Columbia, South
Carolina 29210, and should be marked with the phrase "Warranty Claim."

,

CORPORATE HEADQUARTERS. 2300 BROAD RIVER ROAD. COLUMBIA, SOUTH CAROLINA 29210 • 803/798-9100

