

USA003087

 32.0/17.0

Space Flight Operations Contract
HAL/S PROGRAMMER’S GUIDE
PASS 32.0/BFS 17.0
November 2005
Contract NAS9-20000

DRD - 1.4.3.8-b

USA003087
32.0/17.0

HAL/S PROGRAMMER’S GUIDE

Contract NAS9-20000
DRD - 1.4.3.8-b

Approved by

 Original Approval Obtained
 Barbara Whitfield, Manager
 HAL/S Compiler and Application Tools

 Original Approval Obtained
 Monica Leone, Director
 Application Tools Build and Data Reconfiguration

 HAL/S Programmer’s Guide USA003087
32.0/17.0

November 2005

The HAL/S Programmer’s Guide has been revised and issued on the following dates1:

Issue Revision Date Change Authority Sections Changed
29.0/14.0 03/10/1999 DR109052 4.3 pp.4-7,4-8

DR109063 App. B p. B-4
 Cleanup pp. 4-6, 4-8

p 8-8
pp. 11-5, 11-10, 11-12
pp. 16-1, 16-2, 16-3
pp. 19-14, 19-17, 19-21, 19-22,
19-24, 19-26

30.0/15.0 07/21/2000 CR12711 28.1 p. 28-3
CR13212 28.2 p. 28-6
Cleanup Preface

p. 1-6
pp. 2-1, 2-4 thru 2-7
p. 4-9
p. 5-2
p. 6-3 thru 6-7
pp. 7-2, 7-3, 7-5, 7-6, 7-8, 7-9, 7-
10, 7-12, 7-14, 7-18, 7-21, 7-22,
7-23
pp. 8-2 thru 8-9
pp. 9-5, 9-6, 9-8,9-10, 9-12
pp. 10-3, 10-7, 10-10, 10-11
pp. 11-3, 11-4, 11-7, 11-10
pp. 12-6, 12-8 thru 12-11, 12-14,
12-16, 12-17, 12-19
pp. 13-2, 13-3, 13-5, 13-6, 13-9,
13-12, 13-13, 13-14,
pp. 15-4, 15-5, 15-7
pp. 16-1, 16-3
pp. 17-3 thru 17-9
pp. 18-2, 18-3
pp. 19-5, 19-8, 19-9, 19-12 thru
19-24, 19-28, 19-30,19-32
pp. 20-1, 20-4, 20-6, 20-9, 20-10,
20-12 thru 20-16
pp. 21-1 thru 21-4, 21-6, 21-11,
21-13, 21-14, 21-15

1. A table containing the Revision History of this document prior to the USA contract can be found in
 Appendix G.

Revision Log

 HAL/S Programmer’s Guide USA003087
32.0/17.0

November 2005

Issue Revision Date Change Authority Sections Changed
Cleanup cont’d pp. 22-2, 22-3, 22-4, 22-6, 22-7

pp. 23-3
pp. 24-4, 24-6, 24-10, 24-12, 24-
13, 24-14, 24-16, 24-18
pp. 25-3, 25-4, 25-5, 25-7,25-8,
25-10, 25-11
pp. 26-2, 26-4, 26-6 thru 26-10,
26-14, 26-16, 26-17, 26-18
pp. 27-2, 27-4, 27-5, 27-7, 27-8
pp. 28-4, 28-6, 28-11, 28-15, 28-
16, 28-17, 28-19, 28-20, 28-
21, 28-23, 28-26 thru 28-29
pp. 29-1, 29-2, 29-3, 29-5, 29-6,
29-9
pp. 31-2, 31-3
pp. B-1, B-2
pp. C-1, C-2
INDEX-1 thru INDEX-4

31.0/16.0 09/07/01 CR13220 24.3
24.8

p. 24-4
p.24-18

CR13336 4.3 pp. 4-7,4-8
Cleanup p.6-3

32.0/17.0 11/05 CR14215B 21.3 pp. 21-7, 21-8
App. A p. A-1

CR14216A Preface
PCR0780 28.9 p. 28-31

 HAL/S Programmer’s Guide USA003087
32.0/17.0

November 2005

The current status of all pages in this document is as shown below:

Page No. Change No.
All 32.0/17.0

List of Effective Pages

 HAL/S Programmer’s Guide USA003087
32.0/17.0

November 2005

The HAL/S Programming Language was developed by the staff of Intermetrics, Inc.
based on many years of experience in producing software in the aerospace field, and is
currently maintained by the HAL/S project of United Space Alliance. Although HAL/S
was designed to fulfill the flight software requirements of the NASA Space Shuttle pro-
gram, its features are sufficiently broadly based to meet production software require-
ments in many other aerospace and real time applications. HAL accomplishes three
significant objectives:

• problem orientation, through the use of constructs designed with specific
applications in mind;

• enhanced readability, through the use of a natural mathematical format;
• increased reliability, through the incorporation of code and data protection

features.
The design of HAL/S exhibits a number of influences, the greatest being the syntax of
PL/1 and ALGOL, and the two-dimensional format of MAC/360, a language developed at
the Charles Stark Draper Laboratory. With respect to the latter, fundamental contribu-
tions to the concept and implementation of MAC were made by Dr. J. Halcombe Laning
of the Draper Laboratory.

The HAL/S Programmer's Guide presents an informal description of HAL/S aimed prima-
rily at those unfamiliar with the language. The original version of the Guide was pre-
pared by the staff of Intermetrics, Inc. under direction of Dr. Philip Newbold, that
document's principal author.
The primary responsibility is with USA, Department, 01635A7.

Questions concerning the technical content of this document should be directed to
Danny Strauss (281-282-2647) MC USH-635L.

Preface

HAL/S Programmer’s Guide USA003087
32.0/17.0

Table of Contents
The Programmer’s Guide consists of two parts. Sections 1 - 13 make up the first part,
while Sections 15 - 31 constitute the second part.

Sections 1-13 of the Programmer’s Guide are oriented toward those who have no
knowledge of the HAL/S language. They describe the simpler versions of many of the
salient features across the entire spectrum of the language. This part assumes a
gradually accumulating knowledge of HAL/S from section to section. Therefore, it should
initially be read through in its entirety from first section to last.
Sections 15-31 describe other more advanced language constructs important in
satisfying general purpose programming needs. The topics presented in different
sections are largely unrelated to one another. They may therefore be studied as
required in any desired order. A detailed knowledge of the material in the first 13
sections is, however, assumed.

Paragraphs of text enclosed in horizontal bars refer to the existence of more complex
HAL/S constructs described elsewhere in the Guide or in the Language Specification
Document.
1.0 STRUCTURE OF HAL/S ... 1-1

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES 1-1
1.2 THE BLOCK STRUCTURE OF HAL/S .. 1-2
1.3 STATEMENT GROUPING IN HAL/S .. 1-7

2.0 HAL/S SYMBOLOGY .. 2-1
2.1 THE CHARACTER SET .. 2-1
2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS 2-1
2.3 FORMAT OF SOURCE TEXT ... 2-5
2.4 STATEMENT DELIMITING ... 2-6
2.5 COMMENTS IN HAL/S .. 2-6

3.0 A HAL/S COMPILATION - THE PROGRAM BLOCK ... 3-1
3.1 OPENING AND CLOSING THE PROGRAM BLOCK 3-1
3.2 POSITION OF DATA DECLARATIONS .. 3-2
3.3 FLOW OF EXECUTION IN THE PROGRAM .. 3-2

4.0 DATA DECLARATION .. 4-1
4.1 HAL/S DATA TYPES ... 4-1
4.2 SIMPLE DECLARATION STATEMENTS .. 4-2
4.3 INITIALIZATION OF DATA .. 4-7

5.0 REPLACE STATEMENTS ... 5-1
5.1 THE REPLACE STATEMENT ... 5-1
5.2 USING REPLACE STATEMENTS .. 5-2

6.0 DATA REFERENCING AND SUBSCRIPTING ... 6-1
6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES ... 6-1
6.2 SUBSCRIPTS OF ARRAYED DATA TYPES .. 6-4
i November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
7.0 EXPRESSIONS .. 7-1
7.1 ARITHMETIC OPERATIONS .. 7-1
7.2 CHARACTER OPERATIONS .. 7-14
7.3 BOOLEAN OPERATIONS .. 7-15
7.4 COMBINING OPERATIONS & PRECEDENCE .. 7-17
7.5 SOME EXPLICIT CONVERSIONS ... 7-19
7.6 BUILT-IN FUNCTIONS .. 7-22

8.0 ASSIGNMENTS .. 8-1
8.1 GENERAL FORM OF ASSIGNMENT ... 8-1
8.2 ARITHMETIC ASSIGNMENTS ... 8-1
8.3 CHARACTER ASSIGNMENTS ... 8-5
8.4 BOOLEAN ASSIGNMENTS .. 8-8
8.5 MULTIPLE ASSIGNMENTS .. 8-9

9.0 CONDITIONAL STATEMENTS AND BRANCHES ... 9-1
9.1 THE CONDITIONAL STATEMENT ... 9-1
9.2 RELATIONAL EXPRESSIONS ... 9-6
9.3 LABELS AND BRANCHES ... 9-11

10.0 STATEMENT GROUPS .. 10-1
10.1 DELIMITING STATEMENT GROUPS ... 10-1
10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS 10-3
10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS 10-10
10.4 BRANCHING IN STATEMENT GROUPS ... 10-11

11.0 PROCEDURES AND FUNCTIONS .. 11-1
11.1 INTRODUCTION ... 11-1
11.2 BLOCK DEFINITIONS ... 11-2
11.3 DECLARATION OF PARAMETERS AND LOCAL DATA 11-3
11.4 FUNCTION INVOCATIONS .. 11-5
11.5 PROCEDURE INVOCATIONS .. 11-8
11.6 RETURNS FROM PROCEDURES AND FUNCTIONS 11-11

12.0 INPUT/OUTPUT STATEMENTS .. 12-1
12.1 HAL/S INPUT/OUTPUT CONCEPTS .. 12-1
12.2 THE WRITE STATEMENT .. 12-4
12.3 THE READ STATEMENT .. 12-7
12.4 INPUT/OUTPUT FORMATTING ... 12-9

12.4.1 I/O WITH FORMATS .. 12-15
12.5 DEVICE ATTRIBUTES .. 12-20

13.0 REAL TIME PROGRAMMING - I .. 13-1
13.1 HAL/S REAL TIME CONCEPTS ... 13-1
13.2 TASK BLOCK DEFINITIONS .. 13-4
13.3 FLOW OF EXECUTION IN PROGRAM AND TASK BLOCKS 13-6
13.4 THE SCHEDULE STATEMENT .. 13-7
13.5 OTHER REAL TIME FEATURES OF HAL/S .. 13-9
13.6 A SIMPLE REAL TIME PROGRAM .. 13-12
ii November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
14 (DELETED) ... 14-1
15.0 COMPOOLS AND COMSUBS ... 15-1

15.1 RELATIONS BETWEEN PROGRAMS, COMPOOLs AND COMSUBs 15-1
15.2 THE COMPOOL BLOCK ... 15-4
15.3 EXTERNAL PROCEDURE AND FUNCTION BLOCKS 15-5
15.4 BLOCK TEMPLATES .. 15-5

16.0 ADDITIONAL DATA INITIALIZATION FORMS .. 16-1
16.1 IMPLIED INITIAL LIST REPETITION .. 16-1
16.2 USE OF REPETITION FACTORS .. 16-2
16.3 PARTIAL INITIALIZATION .. 16-3
16.4 STATIC AND AUTOMATIC INITIALIZATION .. 16-4

17.0 BIT STRINGS ... 17-1
17.1 BIT STRING LITERALS .. 17-1
17.2 DECLARATION OF BIT STRING DATA ITEMS ... 17-2
17.3 BIT STRING SUBSCRIPTING .. 17-2
17.4 BIT STRING OPERATIONS .. 17-4
17.5 BIT STRING ASSIGNMENT .. 17-7
17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS 17-7
17.7 BIT STRING ARGUMENTS AND PARAMETERS 17-10
17.8 BIT STRING FUNCTIONS .. 17-11
17.9 BIT STRINGS IN INPUT/OUTPUT .. 17-12

18.0 MULTI-DIMENSIONAL ARRAYS ... 18-1
18.1 DECLARATION ... 18-1
18.2 ORDER OF INITIALIZATION .. 18-1
18.3 SUBSCRIPTING .. 18-2

19.0 STRUCTURES ... 19-1
19.1 HAL/S STRUCTURE CONCEPTS .. 19-1
19.2 STRUCTURE TEMPLATES .. 19-3
19.3 STRUCTURE DECLARATIONS ... 19-5
19.4 NESTED STRUCTURES .. 19-10
19.5 QUALIFICATION AND STRUCTURE REFERENCING 19-11
19.6 SUBSCRIPTING IN STRUCTURES ... 19-16
19.7 TREE EQUIVALENCE OF STRUCTURES ... 19-20
19.8 STRUCTURE ASSIGNMENTS ... 19-24
19.9 STRUCTURES IN CONDITIONAL CONSTRUCTS 19-27
19.10 STRUCTURE ARGUMENTS AND PARAMETERS 19-28
19.11 STRUCTURE FUNCTIONS .. 19-30
19.12 STRUCTURES IN INPUT/OUTPUT .. 19-32

20.0 HAL/S ARRAY PROCESSING FEATURE ... 20-1
20.1 THE ARRAYNESS OF OPERANDS ... 20-1
20.2 ARRAYED EXPRESSIONS .. 20-2
20.3 ARRAYED ASSIGNMENTS .. 20-6
20.4 ARRAYED SUBSCRIPTING ... 20-9
iii November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
20.5 ARRAYED COMPARISONS ... 20-10
20.6 ARRAYED ARGUMENTS IN PROCEDURES AND FUNCTIONS 20-11
20.7 ARRAYS IN INPUT/OUTPUT .. 20-16

21.0 EXPLICIT CONVERSIONS .. 21-1
21.1 VECTOR AND MATRIX CONVERSIONS ... 21-1
21.2 INTEGER AND SCALAR CONVERSIONS ... 21-2
21.3 BIT CONVERSION .. 21-7
21.4 CHARACTER CONVERSION ... 21-9
21.5 SUBBIT PSEUDO-CONVERSION .. 21-11

22.0 ADDITIONAL INPUT/OUTPUT FEATURES ... 22-1
22.1 THE READALL STATEMENT ... 22-1
22.2 RANDOM ACCESS INPUT/OUTPUT ... 22-3

23.0 REAL TIME PROGRAMMING - II ... 23-1
23.1 PROGRAM PROCESSES ... 23-1
23.2 PROGRAM TEMPLATES .. 23-4
23.3 CREATING AND CONTROLLING PROGRAM PROCESSES 23-5
23.4 CYCLIC PROCESSES .. 23-7
23.5 SCHEDULE STATEMENT FOR CYCLIC PROCESSES 23-8
23.6 TERMINATING AND CANCELING CYCLIC PROCESSES 23-12

24.0 REAL TIME PROGRAMMING - III .. 24-1
24.1 HAL/S EVENTS ... 24-1
24.2 DECLARATION OF EVENT DATA ITEMS ... 24-2
24.3 EVENT EXPRESSIONS .. 24-3
24.4 CHANGING VALUES OF EVENTS ... 24-5
24.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT 24-9
24.6 EVENT EXPRESSIONS IN WAIT STATEMENT 24-15
24.7 EVENTS IN BOOLEAN CONTEXT ... 24-17
24.8 PROCESS EVENTS .. 24-18

25.0 ERROR RECOVERY AND SIMULATION .. 25-1
25.1 HAL/S RUN-TIME ERROR CONCEPTS ... 25-1
25.2 ERROR ENVIRONMENT MODIFICATION ... 25-3
25.3 ERROR SIMULATION ... 25-11

26.0 DATA STORAGE AND ACCESS ... 26-1
26.1 PACKING DENSITY OF STORED DATA ... 26-1
26.2 ORDERING OF STORED DATA ... 26-5
26.3 TEMPORARY AND REMOTE STORAGE .. 26-8
26.4 ACCESS TO SHARED DATA ... 26-11

27.0 HAL/S AND REENTRANCY ... 27-1
27.1 DETERMINING REENTRANCY REQUIREMENTS 27-1
27.2 EXCLUSIVE PROCEDURES AND FUNCTIONS 27-1
27.3 REENTRANT PROCEDURES AND FUNCTIONS 27-5

28.0 THE HAL/S NAME FACILITY ... 28-1
iv November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
28.1 HAL/S NAME CONCEPTS .. 28-1
28.2 DECLARATION OF NAME DATA ITEMS ... 28-2
28.3 INDIRECT ACCESS THROUGH NAME DATA ITEMS 28-6
28.4 THE NAME PSEUDO-FUNCTION .. 28-11
28.5 NULL POINTER VAUES ... 28-19
28.6 INITIALIZATION OF NAME DATA ITEMS .. 28-19
28.7 NAME ASSIGNMENTS ... 28-21
28.8 NAME COMPARISONS .. 28-25
28.9 ARGUMENT PASSAGE OF POINTER VALUES 28-28
28.10 POINTER VALUES IN INPUT/OUTPUT ... 28-32

29.0 REPLACE MACROS AND INLINE FUNCTIONS ... 29-1
29.1 THE PARAMETRIC REPLACE STATEMENT .. 29-1
29.2 USE OF REPLACE MACROS ... 29-2
29.3 IDENTIFIER GENERATION .. 29-6
29.4 PRINTING OF REPLACE MACROS ... 29-6
29.5 INLINE FUNCTIONS ... 29-7

30.0 MANAGERIAL CONTROL OF ACCESS TO DATA AND CODE 30-1
30.1 ACCESS CONTROL IN HAL/S ... 30-1
30.2 ACCESSING PROTECTED COMPOOL DATA .. 30-1
30.3 PROTECTION OF AN ENTIRE COMPOOL ... 30-2
30.4 ACCESSING PROTECTED PROGRAMS AND COMSUBS 30-2

31.0 INTERFACES WITH NON-HAL/S CODE ... 31-1
31.1 %MACROS .. 31-1
31.2 REFERENCING NON-HAL/S PROCEDURES AND FUNCTIONS 31-3

 Appendix A STANDARD CONVERSION FORMATS.. A-1
 Appendix B BUILT-IN FUNCTIONS... B-1

 Appendix C ORDERING OF DATA ELEMENTS... C-1

 Appendix D COMPILE-TIME COMPUTATIONS ... D-1
 Appendix E HAL/S KEYWORDS ... E-1

 Appendix F STANDARD INPUT/OUTPUT FORMATS.. F-1

 Appendix G Change History ... G-1
v November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
vi November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

List of Figures
 Figure 1-1... 1-2
 Figure 1-2... 1-3
 Figure 1-3... 1-4
 Figure 1-4... 1-5
 Figure 1-5... 1-6
 Figure 1-6... 1-7
 Figure 1-7... 1-8
 Figure 1-8... 1-8
 Figure 3-1... 3-3
 Figure 5-1... 5-3
 Figure 5-2... 5-4
 Figure 7-1... 7-6
 Figure 9-1... 9-2
 Figure 9-2... 9-4
 Figure 9-3... 9-5
 Figure 9-4... 9-6
 Figure 9-5... 9-14
 Figure 10-1... 10-5
 Figure 10-2... 10-8
 Figure 12-1... 12-2
 Figure 12-2... 12-3
 Figure 12-3... 12-6
 Figure 12-4... 12-8
 Figure 12-5... 12-11
 Figure 12-6... 12-13
 Figure 12-7... 12-14
 Figure 13-1... 13-4
 Figure 13-2... 13-13
 Figure 13-3... 13-14
 Figure 15-1... 15-1
 Figure 15-2... 15-3
 Figure 15-3... 15-8
 Figure 19-1... 19-1
 Figure 19-2... 19-2
 Figure 19-3... 19-2
 Figure 19-4... 19-5
 Figure 19-5... 19-6
 Figure 19-6... 19-9
 Figure 19-7... 19-10
 Figure 19-8... 19-11
 Figure 19-9... 19-12
 Figure 19-10... 19-13
vii November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Figure 19-11... 19-17
 Figure 19-12... 19-18
 Figure 19-13... 19-19
 Figure 19-14... 19-20
 Figure 19-15... 19-20
 Figure 19-16... 19-22
 Figure 19-17... 19-22
 Figure 19-18... 19-25
 Figure 19-19... 19-25
 Figure 19-20... 19-26
 Figure 19-21... 19-27
 Figure 19-22... 19-33
 Figure 19-23... 19-34
 Figure 20-1... 20-3
 Figure 20-2... 20-4
 Figure 20-3... 20-5
 Figure 20-4... 20-7
 Figure 20-5... 20-7
 Figure 20-6... 20-16
 Figure 21-1... 21-14
 Figure 21-2... 21-14
 Figure 21-3... 21-15
 Figure 22-1... 22-2
 Figure 23-1... 23-2
 Figure 23-2... 23-3
 Figure 23-3... 23-6
 Figure 23-4... 23-6
 Figure 23-5... 23-9
 Figure 23-6... 23-10
 Figure 23-7... 23-11
 Figure 24-1... 24-8
 Figure 24-2... 24-8
 Figure 24-3... 24-9
 Figure 24-4... 24-11
 Figure 24-5... 24-13
 Figure 24-6... 24-14
 Figure 24-7... 24-15
 Figure 24-8... 24-17
 Figure 24-9... 24-19
 Figure 25-1... 25-2
 Figure 25-2... 25-3
 Figure 25-3... 25-7
 Figure 25-4... 25-8
 Figure 25-5... 25-9
 Figure 25-6... 25-9
viii November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Figure 26-1... 26-3
 Figure 26-2... 26-4
 Figure 26-3... 26-5
 Figure 26-4... 26-7
 Figure 26-5... 26-8
 Figure 26-6... 26-12
 Figure 26-7... 26-12
 Figure 26-8... 26-15
 Figure 26-9... 26-18
 Figure 27-1... 27-4
 Figure 27-2... 27-7
 Figure 28-1... 28-7
 Figure 28-2... 28-8
 Figure 28-3... 28-8
 Figure 28-4... 28-10
 Figure 28-5... 28-13
 Figure 31-1... 31-4
 Figure 31-2... 31-7
ix November 2005

USA003087 HAL/S Programmer’s Guide
32.0/17.0
This page intentionally left blank.
November 2005
x

HAL/S Programmer’s Guide USA003087
32.0/17.0

xi November 2005

INTRODUCTION TO HAL/S
HAL/S is a higher order programming language developed by Intermetrics, Inc. for the
flight software of the NASA Space Shuttle program. The language is expressly designed
to allow programmers, analysts, and engineers to create software which is reliable,
efficient, highly readable, and easily maintained.

HAL/S is intended to satisfy virtually all the flight software requirements of the Space
Shuttle. To achieve this, the language incorporates a very wide range of features,
including applications oriented data types and computations, real time control, and
constructs for implementing systems programming algorithms.

• DATA TYPES AND COMPUTATIONS
HAL/S provides facilities for manipulating a number of different data types. Its
integer, scalar, vector, and matrix types, together with the appropriate operators
and built-in functions provide an extremely powerful tool for the implementation of
guidance and control algorithms. Bit and character string processing constructs
are available. The formation and use of multi-dimensional arrays, and of tree-like
organizations of heterogeneous data are also featured.

• REAL TIME CONTROL
HAL/S is a real time control language. Real time processes can be scheduled
and executed in a variety of different modes. Mechanisms for interfacing with
external interrupts and other environmental conditions are provided.

• ERROR RECOVERY
HAL/S contains an elaborate run time error recovery facility which allows the pro-
grammer freedom (within the constraints of safety) to define his own error pro-
cessing procedures, or to leave control with the operating system.

• SYSTEMS PROGRAMMING FEATURES
HAL/S contains a number of features especially designed to facilitate its applica-
tion to systems programming, thus substantially eliminating the necessity of using
an assembler language. Most important among these is a facility for creating and
manipulating pointers to various kinds of data and code blocks.

Specific features of the HAL/S language have been incorporated to enhance software
reliability. By various means, separate blocks of code can be isolated from one another
while maintaining ease of access to commonly used data.

• BLOCK ORIENTATION
HAL/S is a block oriented language: nested blocks of code may be established
which define local variables that are invisible outside the block.

• CENTRAL DATA POOLS
Separately compiled blocks of code can be executed together, and communicate
through one or more centrally managed and highly visible data pools.

• CONTROLLED ACCESS IN REAL TIME
In a real time environment, HAL/S couples the above precautions with locking
mechanisms preventing uncontrolled access to sensitive data or areas of code.

HAL/S Programmer’s Guide USA003087
32.0/17.0

xii November 2005

HOW TO USE THE PROGRAMMER'S GUIDE
The HAL/S Programmer's Guide is primarily designed to describe the features of HAL/S
and their use to programmers previously unfamiliar with the language. Once the contents
of the Guide have been mastered, the HAL/S Language Specification document will
serve as an additional reference source for the finer details of each language construct.
For executing HAL/S programs, a user will require information contained in the HAL/S
User's Manual applicable to his particular machine.

The Programmer's Guide is divided into two parts which should be read in order of their
appearance,

• Section 1 through 13 describe many of the major features of the language in
sufficient detail to enable a new user to begin writing useful HAL/S programs. It
should initially be read through in its entirety, from first section to last, and then
later referred back to as required.

• Sections 15 through 31 cover additional language forms omitted from the first
segment by reason of their complexity or relative unimportance. The first portions
of this guide make frequent reference to the existence of the forms described in
this segment to facilitate cross referencing. Since Section 15 through 31 are a
collection of largely unrelated topics, it is generally not necessary to read the
sections sequentially.

It is stressed again that the HAL/S Language Specification Document is the final arbiter
concerning the rules governing the form and use of all HAL/S constructs. Appropriate
references to the Specification are made in the Guide where omissions have been made
in order to retain clarity.

HAL/S Programmer’s Guide USA003087
32.0/17.0
1.0 STRUCTURE OF HAL/S
This section gives an overview on an abstract level of the overall properties of HAL/S
compilations, and tries to relate these properties to the need for good programming
practice. Later sections of the Guide interpret these properties in terms of actual HAL/S
Language constructs.

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES
A common method of problem solving is the so-called “top down” approach. The
algorithm for solving the problem is first outlined broadly, and then, step by step,
delineated in successively deeper levels of greater detail. The success of the algorithm
in arriving at the solution lies as much in its ability to break down the problem into its
simplest component parts, as in its ability to resolve the problem as a whole.

If a problem is to be solved by programming it in a higher order language, then the “top
down” approach is of special interest because it lends insight into how the program can
be organized. Specifically, the organization takes the form of an outer program block
enclosing numerous nested “subroutines”2. On the outermost level, the program is only
concerned with the broad outlines of the solution, and relegates the first level of detail to
the outer set of subroutines. These in turn relegate the next level of detail to an inner set
of subroutines, and so one until each level of the problem has been relegated to the
appropriate set of subroutines.

This particular programming technique is partly what is meant by “structured
programming”. This term also implies an ability to form nested groups of executable
statements inside a program or subroutine. On each level of nesting, a statement group
has the ability to behave as if it were a single executable statement.

The overall effect of structured programming techniques is to introduce an orderliness
into the writing of programs that not only makes them easier to read but also far less
prone to error. Most modern higher order languages possess constructs out of which
structured programs can be created: the constructs of the HAL/S language have been
defined deliberately with structured programming in mind.

2. Here the term “subroutine” is loosely used in its generally recognized sense, conveying the idea of a subordinate
block of code executed by calling it, and returning to the caller on completion. HAL/S uses different terminology, to
be introduced later.
1-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
1.2 THE BLOCK STRUCTURE OF HAL/S
The structure of a HAL/S compilation, as indicated below, generally consists of a
program block with so-called procedure and function blocks nested within it.

Figure 1-1
Function and procedure blocks constitute the HAL/S interpretation of the “subroutines” of
Section 1.1. The more deeply such a block is nested, the greater the depth of detail of
the problem solution it is supposed to handle. The blocks at each level contain
executable code implementing the appropriate part of the problem solution.
Both kinds of blocks are similar in that they contain code which is executed by a call or
“invocation”, and which returns execution to the caller on completion. However,
procedure and function blocks differ in the way they are invoked. A procedure is invoked
by a CALL statement, while a function (like its mathematical counterpart) is invoked by its
appearance in an expression, and returns a result3.

Generally, the code in any block may invoke a procedure or function block defined at the
same level, or in a surrounding outer level. The rules defining the region where a block
may be invoked are discussed later in this Section.

3. A procedure is therefore like a FORTRAN SUBROUTINE, and a function is like a FORTRAN FUNCTION. Note,
however, that FORTRAN SUBROUTINES and FUNCTIONS are always exterior to the program calling them, while
this is not true for HAL/S.

blocks at
level 3

blocks at
level 2

blocks at
level 1

program
1-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The forms of procedure and function blocks and the constructs for invoking them are
described in Section 11 of the Guide. The form of the outer program block is described
in Section 3.

SCOPING OF DATA
In HAL/S, all data must be defined in so-called “data declarations”. An important
consequence of the structural properties of HAL/S is its ability to place data declarations
so as to bound the regions in a program which may reference the declared data. This
feature is called “scoping”.
Data declared at the program level may generally be used throughout the entire
compilation:

Figure 1-2

inner blocks

program

region where program data
declarations are known; i.e.
the “scope" of program data

declarations.
1-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
In addition, any procedure or function block nested within a program block may declare
local data - data known only in that particular block and in blocks nested within it - as
indicated below:

Figure 1-3
SCOPING OF BLOCK NAMES
The program block, and every procedure or function within it are named: block names
have scoping rules identical with the data scoping rules already described. The name of
any procedure or function block is deemed to have been “declared” in the surrounding
block in which the procedure or function is nested. This bounds the region where its
name is known, and therefore determines where it may be invoked. Thus, the name of
any procedure or function nested at the program level is known anywhere in the
program.

region where data
declared local to X
are known

region where data
declared local to Y
are known

Y

X

1-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 However, since in HAL/S recursion is not allowed, such a procedure or function may be
invoked from anywhere in the program except inside itself, as indicated:

Figure 1-4

Similarly, inner procedures and functions may be invoked from anywhere in the block
enclosing them except within themselves.

region where block
A may be invokedA
1-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
In the following example, inner block B and C can only be invoked from inside regions X
and Y respectively:

Figure 1-5
It should be noted that all forms of recursion in HAL/S are illegal. The form of recursion
not prevented by the rules given above is that in which procedures P and Q are not
contained in each other, but P calls Q and Q calls P.

It is also possible for a program (or any block
within it) to invoke entities outside the
compilation unit; i.e., other compilation units.
Procedures and functions may be compiled
independently for this purpose.

See: Guide/15.

region where block B
may be invoked

Y

X

B

C

region where block
C may be invoked
1-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
1.3 STATEMENT GROUPING IN HAL/S
In HAL/S, the actual step by step solution of a problem is performed by executable
statements contained in the blocks comprising the program. Sequences of executable
statements may be grouped together and treated as a single compound statement.
Such statement groups are said to be “well-bracketed” - they begin with a special
statement (a “DO” statement), and end with another special statement (an “END”
statement). Execution of the sequence of statements in the group can be controlled in
various ways depending on the form of the opening “DO” statement:

• The sequence may be executed once only;
• the sequence may be executed repetitively until specified conditions are met;
• the sequence may be executed repetitively while specified conditions are met;
• one statement in the sequence may be selected as the only one to be executed.

Sequences of compound statements may also be grouped together in the same way
and, in turn, be treated as a more complex compound statement, and so on to an
arbitrary degree of nesting.
Use of this grouping property in conjunction with other HAL/S constructs can
substantially eliminate the need for a “GO TO” statement (in the FORTRAN sense, for
example), which from the structured programming viewpoint is recognized to be
“dangerous” because it destroys the readability of a program, and makes it more error-
prone.

STATEMENT GROUPS AND GO TO STATEMENTS
The design of HAL/S minimizes the dangers of “GO TO” statements by limiting the
regions which can be branched to by them, in a way analogous to the limits imposed on
data by the scoping rules described in Section THE BLOCK STRUCTURE OF HAL/S.
Consider a program containing nested groups of executable statements as show below:

Figure 1-6

outermost group X

program

innermost group Y
1-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The region of legal destinations of “GO TO” statements contained in group X are as
indicated below:

Figure 1-7
The region of legal destinations of “GO TO” statements contained in group Y are as
indicated below:

Figure 1-8
It is evident from the examples that while groups can be branched out of, or branched
within, they may not be branched into.

outermost
group X

program

region of legal
destinations
of GO TOs
in X

innermost
group Y

program

region of legal
destinations

of GO TOs
in Y
1-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INTERACTION WITH BLOCK STRUCTURE
Since procedure and function blocks may appear anywhere in a program, including
inside statement groups, the problem arises of branches by means of “GO TO”
statements in and out of such blocks.

In HAL/S, the destinations of “GO TO” statements are labels attached to executable
statements. Because the scope rules for statement labels are the same as for declared
data, it follows that it is impossible to branch into a procedure or function block.
Additionally, a rule is made that branches may not be made out of a block (even though
by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and return-to-caller as the only ways of
entering and leaving procedures and functions, which is in accordance with structured
programming principles.
1-9 November 2005

USA003087 HAL/S Programmer’s Guide
32.0/17.0
This page intentionally left blank.
November 2005 1-10

HAL/S Programmer’s Guide USA003087
32.0/17.0
2.0 HAL/S SYMBOLOGY
HAL/S source text has its own particular characteristics; a specific character set, special
combinations of characters set aside as reserved words, and certain rules dictating the
form of statements. This section is an introduction to these characteristics of the HAL/S
Language.

2.1 THE CHARACTER SET
The HAL/S language uses the following character set:

This character set is a subset of the standard character sets ASCII and EBCDIC.
Although the user really needs only the above character set when writing a HAL/S
program, there are additional special characters which can be used in comments and in
character string literals (described later in this section).

The output listings produced by a HAL/S compiler may use these extra special
characters for annotation.

2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS
The HAL/S language uses four kinds of primitive elements as basic constructs:

• RESERVED WORDS are a fixed part of the language and consist of combinations
of upper case alphabetic characters;

• IDENTIFIERS are user-defined names used for data or labels, and consist of
combinations of the alphanumeric characters;

• LITERALS express actual values, and can consist of any of the symbols in the
character set;

• SPECIAL CHARACTERS serve as delimiters, separators or operators, and consist
of the non-alphanumeric characters of the HAL/S set.

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz

 ⎫
 0123456789 ⎬ numeric characters
 ⎭

⎫ alphabetic
⎬ characters
⎭

⎫
⎪
⎪
⎬ alphanummeric
⎪ characters
⎪
⎭

 +-*./|¬&=<>#@$,;:‘ “)(_%¢ "special" characters

 (blank)

[] { } ! ?

⎫
⎬
⎭

2-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RESERVED WORDS
Reserved words are words having a standard meaning in the HAL/S language. As their
name suggests, the user cannot use reserved words as identifier names. There are two
major categories of reserved words:

• KEYWORDS are used to express parts of HAL/S statements, for example: GO TO,
DECLARE, CALL, and so on. A complete list can be found in Appendix E.

• BUILT-IN FUNCTION NAMES are used to identify a library of common
mathematical and other routines, for example: SINE, SQRT, TRANSPOSE, and so
on. A complete list can be found in Appendix B.

IDENTIFIERS
An identifier name is a user-assigned name identifying an item of data, a statement or
block label, or other entity. The following rules must be observed in the creation of any
identifier name4.

Examples:
 ELEPHANT_AND_CASTLE
 A1 ⎫
 P ⎬ legal
 ⎭
 1B ⎫
 X_X_ ⎬ illegal
 ⎭

1. The total number of characters in the name must not exceed 32;
2. The first character must be alphabetic;
3. The remaining characters may be either alphabetic or numeric;
4. Any character except the first or last may be an underscore (_)

4. Some implementations of HAL/S may place extra restrictions upon the names of identifiers. See appropriate User’s
Manual.
2-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
LITERALS
The three basic kinds of literals described here are arithmetic, character string, and
Boolean. The utility of arithmetic literals is obvious. In simple programming problems,
character string literals find most use in the generation of output. Boolean literals are
used to state logical truth or falsehood.

• ARITHMETIC LITERALS express numerical values in decimal notation. The
generic form of an arithmetic literal is:

Examples:
 0.123E16
 45.9
 - 4

It is important to note that HAL/S makes no distinction of type between a integral-valued
literal and a fractional valued literal. Either integer (with possible rounding of value) or
scalar (i.e., floating-point) type is assumed according to the context in which the literal is
used.

 mantissa
 |
 64748
 ±ddd.ddd

 exponent
 |

 6418

 E±ddd

1. ddd represents an arbitrary number of decimal digits.
2. The exponent is optional.
3. The + signs are optional.
4. The decimal point is optional. If absent, it is considered to be to the

right of the least significant digit of the mantissa. If the decimal point
is present, it may appear anywhere in the mantissa.

5. The minimum number of digits in the mantissa, and in the exponent,
if present, is one. The maximum number is implementation
dependent†.

† See appropriate User’s Manual.

The use of multiple exponents, and of
binary, hexadecimal or octal
exponents, is also allowed.

See: Spec./2.3.3.
2-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• CHARACTER STRING LITERALS consist of strings of characters chosen from the
entire HAL/S character set. The generic form is:

Examples:

 ‘ ’
 ‘ONE two THREE’
 ‘DOG’ ‘S’

• BOOLEAN LITERALS express logical truth or falsehood, and are generally used to
set up the values of Boolean data items. Their forms are:

 ‘ccccccc’
1. The quote marks delimit the beginning and end of the literal.
2. cccc represents an arbitrary number of characters in any combination.
3. Quote marks within the literal must be represented by a pair of quote marks

to avoid confusion with the delimiting quotes.
4. The minimum number of characters is zero (a ‘null’ string), the maximum is

255†.
† See appropriate User's Manual.

If a literal consists of a single character,
or character sequence repeated many
times, a condensed form of literal using
a repetition factor may be used.
See: Spec./2.3.3.

TRUE ⎫
ON ⎬ expressing truth, or binary “1”
 ⎭

FALSE⎫
OFF ⎬ expressing falsehood or binary “0”
 ⎭

Literal strings of binary values also exist.
See: Guide/17.1
2-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
2.3 FORMAT OF SOURCE TEXT
HAL/S is a “stream-oriented” language, that is, statements may begin anywhere on a line
(or card), and may overflow without special indication onto succeeding lines or cards.
Several statements may be written on one line (or card) as required.

HAL/S is among the very few languages which permit subscripts and exponents to be
represented as they are mathematically, using lines below and above the main line
respectively as needed. This multi-line format is an optional alternative to the HAL/S
single-line format.

Even when multi-line format is not used, the first character position of each line (or card)
is reserved for a symbol denoting the kind of line format, subscript, main, or exponent.

SINGLE-LINE FORMAT
In single-line format, the first character position of each line is left blank, denoting a main
line. An M can alternatively be used but is generally not preferred by users.

• EXPONENTS are denoted by the operator * *

Example:
xt+2 is coded as:

 X * *(T+2)
• SUBSCRIPTS are denoted by parenthesizing the subscript and preceding it with

the symbol $.
Example:

ai+1 is coded as:
 A$(I+1)

MULTI-LINE FORMAT
In multi-line format, the first character of a main line is either left blank or M is inserted as
before. The first character of an exponent line is E, and that of a subscript line is S.

• EXPONENTS are written on an exponent line (E-line) immediately above the main
line.

Example:
xt+2 is coded as:

 |
 | E T+2
 | M X
 |
2-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• SUBSCRIPTS are written on a subscript line (S-line) immediately below the main
line.

Example:
ai+1 is coded as:

 |
 | M A
 | S I + 1
 |

When using multi-line format the type indicator (- for vector, * for matrix, etc.) must
overlap the identifier on the M line. Except for this, care must be taken to ensure that
nothing on the E- and S-lines overlaps anything on the M-line.

2.4 STATEMENT DELIMITING
As Section 2.3 indicated, HAL/S statements may be written in free form without regard
for line (or card) boundaries. Because of this there is the need to explicitly indicate the
end of each statement with a special symbol. HAL/S uses a semicolon for this purpose.
The following statements arbitrarily selected from the language show the placement of
the semicolon.
Examples:
 |
 | DECLARE I INTEGER;
 | I = I + 1;
 | CALL P (I,J);
 |

2.5 COMMENTS IN HAL/S
The use of comments is a sine qua non of good programming practice. HAL/S
possesses two mechanisms for the inclusion of comments in a compilation.

• IMBEDDED COMMENTS may be placed anywhere on main, exponent or
subscript lines of HAL/S text.

• COMMENT LINES may appear between main, exponent and subscript lines of
HAL/S text.

Exponents of exponents and subscripts of
subscripts use extra subscript and
exponent lines. Special rules apply if
exponents are subscripted, or if subscripts
possess exponents.

See: Spec./2.4.
2-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
IMBEDDED COMMENTS
An imbedded comment takes the form:

Such comments may appear between HAL/S statements or imbedded in a statement.
They may not appear in the middle of a literal, reserved word, or identifier. Nor may they
overlap any source text or other comments on other lines of a group written in multi-line
format. As far as the sense of the source text is concerned, an imbedded comment is
treated as if it were a string of blank characters.
Examples:
 |
 |M X = X + 1; /* ADD ONE TO X */
 |
 |
 |M X = Y;
 |S 1 /* BAD * /
 |
 |
 illegal-comment overlap rule

COMMENT LINES
Comment lines are input lines specially reserved solely for comments by placing the
character C in the first character position of the line. The rest of the line may contain any
desired text.
Examples:
 |
 |M X = X + l;
 |C ADD ONE TO X
 |C THEN CARRY ON
 |
 |

When the SRN option is specified, columns 73-80 are interpreted as a statement
number. Vertical spacing and page skipping are controlled by the EJECT option.

/*...any text (except */)...*/
2-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
2-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
3.0 A HAL/S COMPILATION - THE PROGRAM BLOCK
The structuring of HAL/S programs was dealt with on the conceptual level in Section 1.
Section 3 begins to interpret this information in terms of actual HAL/S language
constructs.
For the purposes of Part I, an entire HAL/S unit of compilation is known as the “program
block”. The term “block” has a special connotation in this Guide. It is taken to mean a
coherent body of data declarations and executable statements enclosed in statements
delimiting its opening and closing, and identified with a name.

3.1 OPENING AND CLOSING THE PROGRAM BLOCK
The first statement of a HAL/S program is a statement defining the name of the program
and opening the program block. The last statement of a HAL/S program is a statement
closing the program block. Between the two are all the statements comprising the body
of the program.
PROGRAM OPENING
The statement opening a program block takes the form:

The program block is closed with the statement:

Example:

 |
 | label: PROGRAM;
 |

1. label is any legal identifier name, and constitutes the name of the program.

|
|
| CLOSE label;

1. The identifier label is optional.
2. If label is supplied, it must be the program name, i.e. the label on the

opening statement of the program block.

|
| TEST: PROGRAM;
| ⎫
| ⎬⎯⎯⎯• body of program goes in here
| ⎭
| CLOSE TEST;
3-1 Nobember 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
3.2 POSITION OF DATA DECLARATIONS
Normal HAL/S programs require the use of data. The names used to identify this data
must be declared before use by the means of data declaration statements. Data
declarations (and, additionally, certain other kinds of statements) must be placed after
the program opening statement and before the first executable statement.
Example:

3.3 FLOW OF EXECUTION IN THE PROGRAM
The program begins execution at the first executable statement after the data
declarations, and thereafter follows a path determined by the kinds of executable
statements encountered. Unless statement groups, branches, or conditional statements
intervene, execution is sequential. Finally, the path either reaches a statement
terminating execution of the program, or reaches the closing statement of the program
block, which has the same effect.

As described in Section 1, procedure and function definition blocks may be interspersed
between the statements in a program block. The only way of executing such blocks is by
explicit invocation: if they are encountered in the path of execution they are passed over
as if nonexistent.

|

| TEST: PROGRAM;

| ⎫
| ⎬–––• data declaration statements
| ⎭
|

| ⎫
| ⎬–––• executable statements
| ⎭
| CLOSE TEST;
3-2 Nobember 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

Figure 3-1

CLOSE;

executable
statements

TEST: PROGRAM;

block invoked and
returned from

procedure
definition block

data
declaration
statements

path
of
execution
3-3 Nobember 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
3-4 Nobember 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
4.0 DATA DECLARATION
Programming largely consists of the manipulation of numerical data. The diversity of the
data types in a language determines its utility for any required task. HAL/S contains an
exceptionally diverse set of data types.
Identifiers of the kind described in Section 2 are used to name items of data. Identifier
names used to represent data items must1 be defined in data declarations appearing in
the appropriate program, procedure or function block. The effect of placing data in
different blocks is described in Section 1. The position of data declarations within a
program block is described in Section 2.
This Section now proceeds to describe the detailed construction of data declarations.

4.1 HAL/S DATA TYPES
In the HAL/S language, arithmetic data of the following types can be declared:

• INTEGER for the representation of integer-valued quantities;
• SCALAR for the representation of “floating-point” quantities;
• VECTOR for the representation of algebraic row or column vectors (without

distinction), and each element of which is a scalar quantity;
• MATRIX for the representation of algebraic matrices, and each element of which is a

scalar quantity.
These arithmetic data types may be specified in either single or double precision. In the
case of integer, the precision determines the maximum absolute value the identifier
might take on. In all other cases, it determines the number of significant digits in the
mantissa of the value.

In addition, HAL/S also possesses the following data types:
• CHARACTER for the representation of strings of text;
• BOOLEAN for the representation of binary-valued (logical) quantities.

It is possible to declare arrays (or tables) of any of the six above types.

1. The HAL/S language prohibits the use of implicitly declared data items considering it to be an undesirable
programming practice.

HAL/S possesses other data types. The Boolean data
type is a degenerate form of the HAL/S “bit string” data
type.
See: Guide/17.
HAL/S also possesses hierarchical organizations of
data items of any type, known as “structures”.

See: Guide/19.
4-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
4.2 SIMPLE DECLARATION STATEMENTS
Data declaration statements define identifiers used to name data. The simplest forms of
declaration statement for each data type listed above are examined on the following
pages.
INTEGER

For the integer data type, single precision usually implies halfword and double precision
fullword, depending on the implementation2.
Examples:
 |
 | DECLARE I1 INTEGER;
 | DECLARE BIG_I INTEGER DOUBLE;
 |

SCALAR

Double precision usually implies increased range of exponent and increased number of
digits in the mantissa, but it is implementation dependent2.

|
|
|
|

DECLARE name INTEGER;
DECLARE name INTEGER SINGLE;
DECLARE name INTEGER DOUBLE;

1. In each of the forms name is any legal HAL/S identifier.
2. Presence of the keyword SINGLE specifies single precision.
3. Presence of the keyword DOUBLE specifies double precision.
4. Absence of either keyword implies default of single precision.

2. See appropriate User’s Manual.

|
|
|
|
|

DECLARE name SCALAR;
DECLARE name SCALAR SINGLE;
DECLARE name SCALAR DOUBLE;

1. In each of the forms name is any legal HAL/S identifier.
2. Presence of the keyword SINGLE specifies single precision.
3. Presence of the keyword DOUBLE specifies double precision.
4. Absence of either keyword implies default of single precision.
5. The keyword SCALAR may be omitted.
4-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | DECLARE S1;
 | DECLARE S2 SCALAR;
 | DECLARE S3 SCALAR DOUBLE;
 |

MATRIX

Examples:
|
| DECLARE M1 MATRIX(2,4);
| DECLARE M2 MATRIX(4,5) DOUBLE;
| DECLARE M3 MATRIX;
| ↑

 a 3 X 3 matrix

VECTOR

|
|
|
|

DECLARE name MATRIX(m,n);
DECLARE name MATRIX(m,n)SINGLE;
DECLARE name MATRIX(m,n)DOUBLE;

1. In each of the forms name is any legal identifier.
2. Keywords SINGLE and DOUBLE have the same significance as

for scalar and vector types.
3. m and n denote respectively the number of rows and columns in

the matrix. They must lie in the range 1 < m, n ≤ 64† .

† This value may vary between implementations. See appropriate User's Manual

4. If the size specification (m, n) is absent, a 3x3 matrix is assumed.

 |
 | DECLARE name VECTOR(n);
 | DECLARE name VECTOR(n) SINGLE;
 | DECLARE name VECTOR(n) DOUBLE;
 |

1. In each form name is any legal identifier.
2. Keywords SINGLE and DOUBLE have the same significance as for

scalar type.
3. n specifies the length of the vector and must lie in the range

1 < n < 64†.

† This value may vary between implementations. See appropriate User’s Manual.

4. If the length specification (n) is omitted a length of 3 is assumed.
4-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
|
| DECLARE V1 VECTOR(10);
| DECLARE V2 VECTOR(10) DOUBLE;
| DECLARE V3 VECTOR;
| ↑
 a 3-vector

CHARACTER

Example:
 |
 | DECLARE C1 CHARACTER(80);
 |

BOOLEAN

Example:
 |
 | DECLARE B1 BOOLEAN;
 |

 |
 | DECLARE name CHARACTER(n);
 |

1. name is any legal identifier.
2. n specifies the maximum length of the text string that the data type may

carry (i.e., the maximum number of characters). It must lie in the range of
1 ≤ n ≤ 255†.

† This value may vary between implementations. See appropriate User’s Manual.

3. The actual length of the string of text carried may vary during execution
between zero (a “null” string) and the maximum n.

 |
 | DECLARE name BOOLEAN;
 |

1. name is any legal identifier.
4-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ARRAYS
The properties of a data item, (its type, precision, and size), as expressed in its
declaration are called the “attributes’’ of the data item. In any of the above declarations,
the attributes are specified following the name of the data item.

To declare an array of any data type an ARRAY specification is inserted between the
name of the data item and its attributes:

Examples:
 |
 | DECLARE AS1 ARRAY(500) SCALAR;
 | DECLARE AM1 ARRAY(20) MATRIX(4, 4);
 |

 |
 | DECLARE name array(n) attributes;
 |

1. attributes stands for any legal form of attributes for any data type
described.
It is possible that none appear, in which case SCALAR, SINGLE is
implied.

2. n denotes the number of elements in the array (i.e., entries in the
table) and must lie in the range 1 < n < 32768†.

† This value may vary between implementations. See appropriate User’s Manual.

HAL/S also supports multidimensional arrays of
any data type.
See: Guide/18.1.
4-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
COMPOUND AND FACTORED DECLARATIONS
If a program contains declarations of many data items it is tedious to repeat the keyword
DECLARE in every declaration. Many separate declarations may be condensed into one
compound declaration as shown below.
Example:

| DECLARE S; ⎫
| DECLARE I INTEGER DOUBLE; ⎪
| DECLARE M3 MATRIX; ⎪
| DECLARE M6 MATRIX(6,6); ⎬ separate declarations
| DECLARE B BOOLEAN; ⎪
| DECLARE C ARRAY(5) CHARACTER(20); ⎪
| DECLARE V ARRAY(3) VECTOR; ⎭
|
| DECLARE S ⎫
| I INTEGER DOUBLE, ⎪
| M3 MATRIX, ⎬ equivalent compound
| M6 MATRIX(6,6), ⎪ declaration
| C ARRAY(5) CHARACTER(20), ⎪
| V ARRAY(3) VECTOR; ⎭
|

Note the commas separating the declaration of each data item.

If the identifiers in a compound declaration have some attributes in common, a third,
even more compact form called a factored declaration is possible. This form is as shown
below.
Example:
 |
 | DECLARE V1 VECTOR(3), ⎫
 | V2 VECTOR(3)DOUBLE,⎬ compound declarations
 | V3 VECTOR(3)DOUBLE;⎭
 |
can be rewritten in the factored form:

|
| DECLARE VECTOR(3),V1, equivalent
| V2 DOUBLE, factored
| V3 DOUBLE; declaration
|

Note the comma separating the factored attributes and the first declared data item.

⎫
⎬
⎭

4-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
4.3 INITIALIZATION OF DATA
A HAL/S data item of any type may be initialized by incorporating the appropriate
specification into its declaration. The form of such a specification differs depending on
whether the data item is “uni-valued” or “multi-valued’’.

• UNI-VALUED data items are those having only one element: unarrayed scalars,
Booleans, and characters.

• MULTI-VALUED data items are those having more than one element: unarrayed
vectors and matrices, and arrayed data items of any type.

In either case, the specification is placed after the type, precision, and size attributes of a
declaration. This positioning will become apparent in the examples to follow.
UNI-VALUED DATA ITEMS
The two variations of the construct for initializing uni-valued data items are:

Examples:
 |
 | DECLARE A SCALAR INITIAL(3),
 | B SCALAR CONSTANT(4.5E-3),
 | C CHARACTER(80) INITIAL(‘YES’),
 | D BOOLEAN INITIAL (TRUE);
 |
Note: initial working length of C becomes 3.

 INITIAL(value)
 CONSTANT(value)

1. The two forms have the same effect in that the data item is initialized to
the literal indicated by value.

2. The form using the keyword CONSTANT is required only if the user
wishes never to change the initial value during execution† .

† In many respects, a data item initialized in this way is akin to a literal.

3. The type of the literal value must be compatible with the type of the data
item as determined from the following table:

data type literal value

CHARACTER

BOOLEAN

INTEGER
SCALAR

character string††

Boolean

arithmetic

†† If the length of the literal value in the CONSTANT clause is greater than the declared length of the
variable, the literal will be truncated to match the declared variable length. A warning message
(DI18) will be generated.

⎫
⎬
⎭

4-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
MULTI-VALUED DATA ITEMS
There are two corresponding variations of the INITIAL/CONSTANT specification for
multi-valued data items:

Note that if all the elements of a multi-valued data item are to be initialized to the same
value then the form used for uni-valued data items may be used.
Examples:
 |
 | DECLARE V VECTOR INITIAL(1,2,3.5),
 | S ARRAY(2) CONSTANT (1,0),
 | T ARRAY(2) VECTOR(2) INITIAL(4.7,-5.3,0,0);
 | DECLARE V VECTOR INITIAL(0),
 | S ARRAY(100) INTEGER INITIAL(256);
 ↑

all elements of these data items are identically initialized.

 INITIAL(value1, value2,....)
 CONSTANT(value1, value2,....)

1. The meaning of the keyword CONSTANT is the same as for uni-
valued data items.

2. The type of each literal value must be compatible with the type of the
data item as determined from the following table:

data type literal value

CHARACTER

BOOLEAN

INTEGER⎫
SCALAR ⎬
VECTOR ⎪
MATRIX ⎭

character string

Boolean

arithmetic
4-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ORDER OF INITIALIZATION
To complete the specification of initialization, the order initialization of the elements of
multi-valued data items needs to be defined.

The following ordering rules, though applied here to the initialization of multi-valued data
items, holds true whenever the ordering of elements is called into question.

• VECTOR data items are initialized in order of increasing index.
• MATRIX data items are initialized row by row in order of increasing index.
• ARRAY data items are initialized array element by array element in order of

increasing index. Where the array element are themselves multi-valued, each
array element in turn is initialized completely according to the previous rules before
going on to the next.

Example:3

 DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(1,2,3,4,5,6,7,8);

if M1 is the first array element, and M2 is the second, then:

3. In this and many following examples in the Guide, the symbol ≡ means “has the value”, or “having the value”.

M1 ≡ ⎡1 2⎤, M2 ≡ ⎡5 6⎤
⎣3 4⎦ ⎣7 8⎦

Literal values appearing in initial lists may be
expressions computable at compile time rather than
literals.

See: Guide/Appendix D.
Additional more compact initialization forms are
available if only partial initialization is required, or if
subsets of the initial values are identical.
See: Guide/16.
4-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
4-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
5.0 REPLACE STATEMENTS
Often in writing a HAL/S program, it may be necessary to use the same language
construct, identically repeated, many times. To avoid the tedium involved in rewriting it
each time it is required, a so-called “replace name” can be defined to represent
symbolically the text of the construct. The replace name can then be written in place of
the construct each time, and the HAL/S compiler will perform the necessary
substitutions.
The use of such replace names is especially useful in cases where the constructs they
represent may be required to be modified from compilation to compilation.

The definition of the replace name and the text it substitutes is accomplished by a
REPLACE statement.

5.1 THE REPLACE STATEMENT
The REPLACE statement is placed together with the data declarations of the program, or
other block in which it is to be used. It takes the form:

Examples:
 |
 | REPLACE OUTPUT BY “WRITE (6)”;
 | REPLACE INCREMENT BY “X=X+1;”;
 |

 |
 | REPLACE name BY “XXXXXXX”;
 |

1. name is the replace name chosen to symbolically represent the text, It may
be any legal identifier name.

2. XXXXXXX represents the HAL/S source text which is to be substituted.
The text is delimited by double quote marks, and must be written in single
line format.

3. XXXXXXX may be any legal source text of arbitrary length. Imbedded
double quote marks must be represented as a pair of double quote marks
to avoid confusion with the delimiters,

4. The text must not begin or end in the middle of a reserved word, identifier,
literal, or imbedded comments.
5-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
5.2 USING REPLACE STATEMENTS
The following examples show the way in which the symbol substitution defined by the
REPLACE statement is used.
Examples:
 |
 | REPLACE DV BY “VECTOR DOUBLE INITIAL(0)”;
 | DECLARE VEC1 DV,
 | VEC2 DV,
 | VEC3 DV;
 |

- by expansion of DV it is evident that VEC1, VEC2, VEC3 are all double precision
vectors initialized to zero.

 | REPLACE N BY “4”;
 | DECLARE V1 VECTOR(N),
 | M1 MATRIX(N,N),
 | M2 MATRIX(2,N);

- this shows the utility of the REPLACE statement in making it easy to change the
sizes of several vectors and matrices simultaneously.

 | REPLACE X BY “VECTOR(2)”;
 | REPLACE Y BY “ARRAY(5) X”;

- this is an example of nested substitutions. The expansion of Y is ARRAY(5)
VECTOR(2).

 | REPLACE X BY “REPLACE Y BY””Z”””;
 | X;
 | DECLARE Y SCALAR;

- although this is a legal use of REPLACE statements, it does not lend itself to
clarity. The sequence of statements culminates in Z being declared as a scalar
data item.

A REPLACE statement takes effect only after it appears. It does not modify the entire
block, only that section that follows its appearance.
Example:
 |
 | DECLARE V1 VECTOR(N);
 | REPLACE N BY “4”;
 | DECLARE V2 VECTOR(N);
 .
 .
 .

- the replace statement will be effective only starting with the second declaration
statement. N is unknown in the first declaration and compilation would detect the
error.
5-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Care must be taken in using REPLACE statements because the ways in which they are
affected by the block structure of the HAL/S program in which they appear are not
always obvious.
Example:

Figure 5-1

REPLACE X BY “Y”;

DECLARE X SCALAR;

Procedure block

the user must remember
that the X of the local
declaration inside the
procedure block is still
subject to the REPLACE
statement at the program
level.

Program
5-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The only case in which a REPLACE statement in an outer block becomes ineffective in
an inner block is when the inner block has a REPLACE statement in it with the same
name.

Figure 5-2

REPLACE X BY “Y";

REPLACE X BY “Z";

Program

Procedure block

Procedure block

region where X
is replaced by Y

region where X
is replaced by Z

Replace statements may also possess parameters,
turningthem into a sophisticated macro expansion
facility.
See Guide/29.
5-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
6.0 DATA REFERENCING AND SUBSCRIPTING
Any appearance of the name of a previously-declared data item in an executable
statement constitutes a reference to its value (and possibly causes a change in its
value)10. Sometimes it is necessary to be able to reference elements of vectors,
matrices, and arrays, and also to reference parts of character strings. HAL/S has a wide
range of subscript forms designed for this purpose.
Two kinds of subscripting are relevant to the data types described in Section 4.

• COMPONENT SUBSCRIPTING allows the user to select elements or subsets of
elements from vectors and matrices, and to select substrings from character data
items.

• ARRAY SUBSCRIPTING allows the user to select elements or subsets of elements
from arrays of any data type.

Depending on the nature of a particular data item, either or both kinds of subscripting
may be affixed to it.

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES
Unarrayed data types, i.e., those whose declarations contain no array specification, may
at most possess only component subscripting. Unarrayed data items of integer, scalar,
and Boolean types may not possess any subscripting. Allowable subscripts for the
remaining types, - character, vector, and matrix - are now each described in turn.
CHARACTER
In a character data item, character positions are indexed left to right starting from 1. In
the subscript forms given below, STRING represents an unarrayed data item of
character type with current working length L.11

• To select the αth character from STRING:

• To select α characters from STRING, starting from the βth:

10.This Section, for convenience, includes appearance causing change in value under the term “reference'', even
though this is not the most usual meaning of the term.

11.In the case where reference of a subscripted character data type causes a change in its value (e.g. on the left hand
side of an assignment), somewhat different interpretations of the subscript form holds true. An account of these is
given in Section 8.3.

STRINGα

1. α is an integer expression in the range 1 ≤ α ≤ L.

STRINGα AT β

1. α and β are integer expressions

2. β is in the range 1 ≤β ≤ L.

3. α is in the range 0 ≤ α ≤ L − β + 1.
6-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• To select a substring starting with the αth character of STRING, and ending with the
βth:

Examples:

VECTOR
Elements of a vector are indexed starting from 1. In the following subscript forms, VEC
represents an unarrayed vector data item of length L.

• To select the αth element from VEC:

• To select an α-vector partition starting from the βth element of VEC:

• To select a partition starting from the αth element of VEC and ending with the βth.

STRINGα TO β
1. α and β are integer expressions in the range 1 ≤ (α,β) ≤ L.
2. β > α.

if C ≡ ‘ABCDEF’ then:
C5 ≡ ‘E’ For further information refer to the Language

Specification, Sec. 5.3.2 where the use of # is
explained.

C2 AT 2 ≡ ‘BC’
C4 TO 6 ≡ ‘DEF’

VECα
1. α is an integer expression in the range 1 ≤ α ≤ L.
2. The resulting data type is scalar.

VEC α AT β
1. α is an integer literal value in the range 2 < α < L.
2. β is an integer expression in the range 1 ≤ β ≤ L - α + 1.

VECα TO β
1. α and β are integer literal values in the range 1 ≤ (α,β) ≤ L.
2. β > α.
6-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

then:
V1 4.5 (scalar)

MATRIX
Rows and columns of a matrix are indexed starting from 1. Any matrix subscript must
consist of a row subscript followed by a column subscript. In the following subscript
forms, MAT represents an unarrayed M x N matrix data item.

• To select the element of MAT common to the αth row and β th column:

• To select the αth row of MAT:

• To select the βth column of MAT:

⎡ 4.5 ⎤
if V ≡ ⎢ 9.3 ⎢

⎢ 7.1 ⎢
⎣ 2.7 ⎦

V3 TO 4 ⎡7.1⎤
⎣2.7⎦ (2-vector)

V2 AT 1 ⎡4.5⎤
⎣9.3⎦ (2-vector)

MATα,β
1. α, β are integer expressions.
2. α is in the range 1 ≤ α ≤ M, and β is in the range of 1 ≤ β ≤ N.
3. The resultant data type is SCALAR.

MATα,*
1. α is an integer expression in the range 1 < α < M.
2. The resultant data is N-VECTOR.
3. If the asterisk is replaced by a TO- or AT- subscript under the rules given

for vector data types, a vector partition from the αth row may be selected.

MAT*, β
1. β is an integer expression in the range 1 < β < N.
2. The resultant data is M-VECTOR.
3. If the asterisk is replaced by a TO- or AT- subscript under the rules given

for vector data types, a vector partition from the βth column may be
selected.

≡

≡

≡

6-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• To select a α x γ matrix partition starting from the βth row and σth column of MAT:

Examples:

 M2,3 ≡ 2.3 (scalar)

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES
Arrayed data types, i.e., those whose declarations contain an array specification, may
possess array subscripting. If the data types are vector, matrix, or character, then they
may, in addition, possess component subscripting.
ARRAY SUBSCRIPTING ONLY
Arrays are indexed starting from 1. In the array subscript forms given below, TABLE
represents an array of length L of any data type.

MATα AT β,γ AT α
1. α, γ are integer literal values in ranges 2< α < M, 2< γ < N, respectively.
2. β, γ are integer expression in ranges 1≤ β ≤ M - α + 1,

1 < σ < N - γ + 1 respectively.
3. Either or both the AT-subscripts may be replaced by TO-subscripts

under rules already given by vector and matrix types.
4. Either of the AT- subscripts may in addition be replaced by an asterisk if

all M rows or all N columns are to be included in the partition.

 ⎡ 1.1 1.2 1.3 ⎤
 if M ≡ ⎢ 2.1 2.2 2.3 ⎥ then:
 ⎣ 3.1 3.2 3.3 ⎦

 ⎡1.1⎤
 ⎢2.1⎥
 M∗,1 ≡ ⎣3.1⎦ (3-vector)

 ⎡2.2⎤
 M2, 2 TO 3 ≡ ⎣2.3⎦ (2-vector)

 ⎡1.1 1.2⎤
 M∗,2 AT 1 ≡ ⎢2.1 2.2⎥ (3x2 matrix)

 ⎣3.1 3.2⎦

⎡1.1 1.2⎤
 M1 TO 2,1 TO 2 ≡ ⎣2.1 2.2⎦ (2x2 matrix)
6-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• To select the αth array element from TABLE:

• To select a sub-array of length α starting from the βth array element of TABLE:

• To select a sub-array starting from the αth array element of TABLE and ending with
the βth.

Examples:
 if T is a 4-array of Booleans with
 T ≡ (TRUE FALSE TRUE TRUE) then:
 T2: ≡ FALSE (unarrayed)
 T3 TO 4: ≡ (TRUE,FALSE) (still arrayed)

 if T is a 4-array of integers with
 T ≡ (1 2 3 4) then:
 T2 ≡ 2 (unarrayed)
 T3 TO 4 ≡ (3,4) (still arrayed) optional colon omitted

 if C is a 3-array of characters, with
 C ≡ (‘YES’ ‘NO’ ‘MAYBE’) then:
 C1: ≡ ‘YES’ (selects first array element)
 C2 TO 3: ≡ (‘NO’,‘MAYBE’) (still arrayed)

TABLEα:
1. α is an integer expression in the range 1 ≤ α ≤ L.

2. The colon is optional only if the data type of TABLE is integer or
scalar.

TABLEα AT β:
1. α is an integer literal value in the range 1 ≤ α ≤ L.
2. β is an integer expression in the range 1 ≤ β ≤ L - α + 1.
3. The colon is optional if the data type of TABLE is integer or scalar.

TABLE α TO β:

1. α, β are integer literal values in the range 1 ≤ (α,β) ≤ L .
2. β > α
3. The colon is optional if the data type of TABLE is integer or

scalar.

⎫
⎬
⎭
6-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ARRAY AND COMPONENT SUBSCRIPTING
If TABLE represents an array of vector, matrix, or character data type, then the following
rule shows how array and component subscripting are juxtaposed.

The purpose of the colon now becomes clear: it is required to distinguish and separate
array and component subscripting.
Examples:
 if C is a 3-array of characters, with C ≡ (‘YES’,‘NO’,‘MAYBE’) then:
 C3:3 ≡ ‘Y’ (selects 3rd character from third array element)
 if M is a 2-array of 2x2 matrices with

 M2:2, 2 = 8 (element in 2nd row, 2nd column of second array element)

COMPONENT SUBSCRIPTING ONLY
When an arrayed data item of vector, matrix or character type is required to be given only
component subscripting, array subscripting cannot be totally omitted. Rather, it must be
replaced by an asterisk. Let TABLE represent such a data item; the subscripting form is
then required to be:

TABLEarray: component

1. array represents array subscripting of any of the forms previously
described.

2. component represents any form of component subscripting legal
for the data type of TABLE, as described in Section 6.1.

⎡1 2⎤ ⎡5 6⎤
M ≡ ⎣3 4⎦, ⎣7 8⎦ then:

Apparently, the colon should be optional on Boolean
data types also. It is not because the Boolean data
type is a degenerate case of a bit string data type which
may possess component subscripting.

See: Guide/17.3.

TABLE*:component

1. component represents any form of component
subscripting legal for the data type of TABLE, as
described in Section 6.1.
6-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 if C is a 3-array of characters, with
 C ≡ (‘YES’,‘NO’,‘MAYBE’) then:
 C*:1 ≡ (‘Y’,‘N’,‘M’) (makes 3-array from first character of each item)
 if M is a 2-array of 2x2 matrices with

M*:1,1= (1,5) (2-array of scalars)

M ≡ ⎛ ⎡1 2⎤ ⎡5 6⎤ ⎞ then:
⎝ ⎣3 4⎦, ⎣7 8⎦ ⎠

M*:*,2 ≡ ⎛ ⎡2⎤ ⎡6⎤ ⎞ (2-array of 2-vectors)

⎝ ⎣4⎦, ⎣8⎦ ⎠

HAL/S allows more general forms of subscript
expressions than just those stated above. See
Spec./5.3. In particular, a symbolic form of reference
to the last array or other element of a data type is
allowed.
See Spec./5.3.2.
More complex subscripting forms apply to multi-
dimensional arrays, See Guide/18.3; and to the
organization of data called “structures”.
See Guide/19.6.
Subscript forms stated to be literals may in fact be
expressions computable at compile time.
See Guide/Appendix D.
6-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 This page intentionally left blank.
6-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
7.0 EXPRESSIONS
Section 6 dealt with the referencing of declared data items. At this point it is appropriate
to describe how the values of these data items can be manipulated. In HAL/S the
construct which specifies operations on data items is called an "expression"1. In many
cases it is very close in form to the generally accepted notion of a mathematical
expression.
Generally, expressions consist of sequences of operations, possibly parenthesized in
places to override the precedence rules of HAL/S. Each operation is comprised of one
or two operands and an operator. The very simplest form of expression is one in which
there are no operations and just one operand. An operand may be a data item, possibly
subscripted, or a built-in function, or an explicit conversion function. This section begins
by describing the legal HAL/S operations, and then continues to show how they are
combined into expressions.

Previous sections of the Guide have divided data items and literals into three broad
classes: arithmetic, character, and Boolean. It is convenient to divide the operations to
be described into the same three classes. The type of an expression is the type of the
value resulting from its execution, and may, in general, be different from the types of
some of its operands.

7.1 ARITHMETIC OPERATIONS
Arithmetic operations are the most numerous of all operations in the HAL/S language.
They comprise operations on vector, matrix, integer, and scalar data types. HAL/S
recognizes the following operations:

1. The storing of the result of a HAL/S expression into a data item is performed by an ASSIGNMENT statement, of
which the expression forms a part.

Symbol Purpose
* * exponentiation, inversion, transposition

(blank) multiplication
* vector cross product
. vector dot product
/ division
+ addition
- subtraction, negation
7-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NEGATION
Negation is a unary operation applicable to any arithmetic data type:

Examples:
 if I is an integer and I ≡ 5
 then -I ≡ -5

Symbolic form: - R

1. The legal data types for R are given by the following table:

R-type
MATRIX
VECTOR
SCALAR
INTEGER

2. Negation of vector and matrix types implies element-by-element negation.

⎡-1.5 ⎤
if V is a 3-vector and V ≡ ⎢ 4.2 ⎪

⎣-5.1 ⎦

⎡ 1.5 ⎤
⎢-4.2 ⎪

then - V ≡ ⎣ 5.1 ⎦
7-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ADDITION AND SUBTRACTION
Addition and subtraction can only take place between compatible arithmetic data types:

Examples:
 If I is integer with I ≡ 5
 S is scalar with S ≡ -4.2

 then
I + 1 ≡ 6 (integer result)
I + 0.5 ≡ 5.5 (scalar result)
S + 1 ≡ -3.2 (scalar result)
I - S ≡ 9.2 (scalar result)

then the operation V1 + V2 is illegal because the lengths of V1, V2 do not match;

Symbolic form: L + R

1. The legal combinations of data types are indicated by the following table:
L-type R-type

MATRIX
VECTOR
SCALAR ⎫
INTEGER⎬
 ⎭

MATRIX
VECTOR
⎧SCALAR
⎨INTEGER
⎩

2. Operations on matrix and vector operands imply element-by-element
addition and subtraction.

3. The operands in a matrix addition or subtraction must have the same row
and column dimensions.

4. The operands in a vector addition or subtraction must have the same
lengths.

5. In a mixed integer-scalar operation, the result is scalar. The integer operand
is first converted to single precision scalar.

if V1 is a 3-vector with V1 ≡

 V2 is a 4-vector with V2 ≡

1.0–
2.5–
3.2

0.5
0
2.2–
1.5
7-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
but

Using S, V1 above,

 S + V1 is illegal because the types are incompatible;
but S + V13 ≡ -1.0 is legal and has a scalar result because subscripting has
changed the R operand to scalar type.

then M1 - M2 is illegal because the row dimensions of the operands do not match;

but

DIVISION
In division, the dividend may be any data type, but the divisor must either be integer or
scalar.

 ⎡ -1.5 ⎤
V1 - V21 TO 3 ≡ ⎢ -2.5 ⎢ is legal because of the R operand has

⎣ 5.4 ⎦ produced a 3-vector.

⎡ 1.0 0 ⎤
If M1 is a 3 x 2 matrix with M1 ≡ ⎢-0.5 -1.0 ⎢

⎣ 0 0 ⎦

⎡ 0.5 -0.5 ⎤
 M2 is a 2 x 2 matrix with M2 ≡ ⎣ 1.0 1.0 ⎦

⎡ 0.5 0.5 ⎤
 M12 AT 1,* - M2 ≡ ⎣ -1.5 -2.0 ⎦ is legal because the number of rows in the

L operand have been reduced to 2 by
subscripting.

Symbolic form: L/R

1. The legal combinations of data types are given by the following table:
L-type R-type

MATRIX ⎫
VECTOR ⎬
SCALAR ⎪
INTEGER⎭

⎧
⎨SCALAR
⎩INTEGER

2. If the dividend is of matrix or vector type, element-by-element division
by the R operand is implied.

3. If either or both operands are of integer type, they are first converted to
scalar type.
7-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 1/2 ≡ 0.5 (both integer operands converted to scalar)

 if V is a 3-vector with V ≡

 then V/2 ≡

 S is a scalar with S ≡ 0.5
then S/M is illegal since the R operand may not be of matrix type,

DOT PRODUCT
The HAL/S dot product operation corresponds to the mathematical dot or inner product
of two vectors. In mathematical notation:

s = <u , v> or s = uTv
where u, v are column vectors and T denotes the transpose.

Note that HAL/S does not require the user to distinguish between row and column
vectors because the position of the operand in the operation is sufficient in itself to allow
it to be interpreted as one or the other.

⎡ 1.0 -0.5 ⎤
if M is a 2 x 2 matrix with M ≡ ⎣ 0.2 0.6 ⎦

⎡ 2.0 -1.0 ⎤
but M/S ≡ ⎣ 0.4 1.2 ⎦

Symbolic form: L.R

1. The operands of the dot product must be as shown:

L-type R-type

VECTOR VECTOR

2. The lengths of each operand must be the same.

3. The result is of scalar type.

2.0
4.0
6.0

1.0
2.0
3.0
7-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

 if V is a 3-vector with V ≡

 then V.V = 1.5

CROSS PRODUCT
The HAL/S cross product operation corresponds to the mathematical vector cross
product in 3-dimensional Euclidean space:

Figure 7-1

Example:

Symbolic form: L * R

1. The operands must be of type vector:

L-type R-type
VECTOR VECTOR

2. Both operands must be of length 3.

3. The result is a 3-vector.

if V1 is a 3-vector with V1 ≡

if V2 is a 3-vector with V2 ≡

then V1 * V2 ≡

0.5
1.0
0.5–

u
v

θ

w
if w is perpendicular to u, v as shown,

and | w | = | u | | v | sin then w = u x vθ

0.5
0
0

0
0.5
0

0
0
0.25
7-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
MULTIPLICATION
The HAL/S language has no explicit symbol for multiplication: the adjacency of two
operands signifies this operation. Multiplication can take place with arithmetic operands
of any type:

• If operand types are either integer or scalar, multiplication in the regular arithmetic
sense is implied;.……………………………………………………….………CASE

• if one operand is integer or scalar, and the other vector or matrix, then element-by-
element multiplication is implied;……………………………………………. CASE

• if both operands are vectors then the outer product is implied, the result being a
matrix;.……………………………………………………………………........CASE

• if both operands are matrices, the matrix product is implied;.……………...CASE
• if one operand is a matrix, and the other a vector, then a vector-matrix product is

implied, the result being a vector..……………………………………….…...CASE

The symbolic form for multiplication is as shown:

The additional rules applicable to each of the cases described above are now listed in
turn.

CASE

Example:
If I is integer with I ≡ 10
then 1.5E-2 I ≡ 0.15 (scalar result)

Symbolic form: L R

1. At least one blank character must separate the L and R operands.

2. The operand types are:

L-type R-type

INTEGER
SCALAR

⎧
⎨INTEGER
⎩SCALAR

3. If both operands are integer, the result is integer, otherwise it is
scalar.

4. If one operand is integer, then it is first converted to single precision
scalar.

1

2

3

4

5

1

⎫
⎬
⎭

7-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CASE

Examples:

 if S is scalar with S ≡ 1.5

CASE

2. The operand types are:

L-type R-type

INTEGER
SCALAR

⎧
⎨VECTOR
⎩MATRIX

 VECTOR
 MATRIX

⎧
⎨INTEGER
⎩SCALAR

3. Element-by-element multiplication of the vector or matrix is implied.

4. If one operand is of integer type, it is first converted to single
precision scalar.

⎡ 0 0.3 ⎤
 M is a 2 x 2 matrix with M ≡ ⎣-0.1 0.4 ⎦

⎡ 0 0.45 ⎤
then S M ≡ ⎣-0.15 0.6 ⎦

⎡ 0 0.45 ⎤
and M S ≡ ⎣-0.15 0.6 ⎦

2. The operand types are:

L-type R-type
VECTOR VECTOR

3. If the L-operand is of length m, and the R operand is of length n, the
result is an m x n matrix.

2

⎫
⎬
⎭

⎫
⎬
⎭

3

7-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

CASE

Examples:

 ⎡ 1.0 ⎤
If V1 is a 3-vector with V1 ≡ ⎢-1.0 ⎢

⎣ 1.0 ⎦

⎡0.5⎤
V2 is a 2-vector with V2 ≡ ⎣0.6⎦

⎡ 0.5 0.6 ⎤
then V1 V2 ≡ ⎢-0.5 -0.6 ⎢ (3 x 2 matrix)

⎣ 0.5 0.6 ⎦

⎡0.5 -0.5 0.5⎤
and V2 V1 ≡ ⎣0.6 -0.6 0.6⎦ (2 x 3 matrix)

2. The operand types are:

L-type R-type

MATRIX MATRIX

3. The number of columns in the L operand must equal the number of
rows in the R operand.

4. If the L operand is an m x n matrix and the R operand is an
n x p matrix, the result is an m x p matrix.

 ⎡ 1.0 1.0 2.0 ⎤
If M1 is a 2 x 3 matrix with M1 ≡ ⎣ 0.5 -0.5 1.0 ⎦

⎡ 0 0.5 ⎤
 M2 is a 3 x 2 matrix with M2 ≡ ⎢ 0 1.0 ⎥

⎣ 0 1.0 ⎦

⎡ 0 3.5 ⎤
then M1 M2 ≡ ⎣ 0 0.75 ⎦ (2 x 2 matrix)

4

7-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that by using partitioning subscripts that M1*,2 TO 3 M2 is illegal because of
dimension mismatch;

but M2 M1*,2 TO 3 ≡ is still legal

CASE

Note that the position of the vector operand again determines its interpretation as either
a row or column vector.

Examples:

 and M V is illegal because of dimension mismatch;

 ⎡-0.5 ⎤
 however, M V1 TO 2 ≡ ⎢-1.0 ⎜ is legal
 ⎣-0.2 ⎦

⎡ 0.25 -0.25 0.5 ⎤
and M2 M1 ≡ ⎢ 0.5 -0.5 1.0 ⎥ (3 x 3 matrix)

⎣ 0.5 -0.5 1.0 ⎦

2. The operand types are:
L-type R-type

VECTOR
MATRIX

MATRIX
VECTOR

3. If the L operand is an m x n matrix, the R operand must be an n-vector,
and the result is an m-vector.

4. If the L operand is an m x n matrix, the R operand must be an m-vector,
and the result is an n-vector.

⎡0.5 1.0⎤
If M is a 3 x 2 matrix with M ≡ ⎢0 1.0⎥

⎣0.2 0.4⎦

⎡ 1.0 ⎤
 V is a 3-vector with V ≡ ⎢ -1.0 ⎢

⎣ 1.0 ⎦

⎡0.7⎤
then V M ≡ ⎣0.4⎦ (2-vector)

0.25– 0.5
0.5– 1.0
0.5– 1.0

5

7-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
EXPONENTIATION, INVERSION AND TRANSPOSE
In HAL/S, a single operator serves for exponentiation, matrix inversion, and matrix
transpose, the operand types serving to distinguish between them.

• If both operands are integer or scalar, then exponentiation is implied;......CASE
• if the left operand is a square matrix, and the right is an integer-valued literal, a

repeated matrix product or repeated product of inverse is implied;.……......CASE
• if the left operand is a matrix, and the right operand is the character ‘T’, then the

transpose is implied..……………………………………………………….......CASE
These operations take the general symbolic form:

The rules for each of the cases listed above are now described in turn.
CASE

Examples:
If I is an integer with I ≡ 5

Symbolic form: L * * R

1. This is the one-line format version. In multi-line format the operator
symbol is omitted and R is placed on an exponent line. See Section
2.3.

2. The operand types are:
L-type R-type

 ⎫
INTEGER⎬
SCALAR ⎭

⎧
⎨INTEGER
⎩SCALAR

3. If the L operand is integer and the R operand is a non-negative integral-
valued literal, then the result is integer, otherwise it is scalar.

4. Consistent with Rule 3, if the result is scalar, then any integer operands
are first converted to single-precision scalar.

then I * * 2 ≡ 25 (integer result)

and I * *-1 ≡ 0.2 (scalar result)

also 2* *0.5 ≡ (scalar result)

1

2

3

1

2

7-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CASE

Examples:

CASE

2. The operand types are:

L-type R-type

MATRIX INTEGER

3. The L operand is a square matrix.

4. The R operand is an integral-valued literal. The following table shows
the effect of different ranges of values of the R operand:

value result
< - 2

-1
0
1

> 2

repeated product of inverse
inverse

unit matrix
no-operation

repeated product

⎡ 0.5 1.0 ⎤
If M is a 2 x 2 matrix with M ≡ ⎣-0.5 0 ⎦

⎡-0.25 0.5 ⎤
then M2 ≡ ⎣-0.25 -0.5 ⎦

 ⎡ 0 -2.0 ⎤
 M-1 ≡ ⎣1.0 1.0 ⎦

⎡1.0 0 ⎤
and M0 ≡ ⎣ 0 1.0 ⎦

2. The operand types are:

L-type R-type

MATRIX T

3. If the L operand is an m x n matrix, then the result is an n x m
matrix.

4. If R is symbolically T, then transpose is indicated even if T is a
declared data item.

2

3

7-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

then VT is illegal because the L operand is not matrix type.
The transpose of a vector is not needed in the HAL/S language.

NOTE ON PRECISION CONVERSION
It is possible that the precisions of the two operands may differ in any of the operations
described. In these cases, precision conversion usually takes place before the operation
is executed. The rules under which it takes place are as follows:

The single to double precision conversion only takes place for a SCALAR operation if
there is a double precision SCALAR variable in the expression. Double precision
SCALAR CONSTANTs do not affect the precision of the operation. For Example:
 DECLARE DOUBLE_VAR SCALAR DOUBLE;
 DECLARE SINGLE_VAR SCALAR INITIAL(X);
 DECLARE DOUBLE_CONSTANT SCALAR DOUBLE CONSTANT(Y);
 DOUBLE_VAR = SINGLE_VAR + DOUBLE_CONSTANT;

The DOUBLE_CONSTANT is converted to single precision, and the operation is
performed in single precision.

⎡1.0 0 3.0⎤
If M is a 2 x 3 matrix with M ≡ ⎣2.0 0 4.0⎦

⎡1.0 2.0 ⎤
then MT ≡ ⎢ 0 0 ⎥

⎣3.0 4.0 ⎦

⎡1.0⎤
If V is a 3-vector with V ≡ ⎢2.0⎥

⎣3.0⎦

1. No precision conversion is applicable in unary operations:
transposition is considered a unary operation.

2. Where one operand only is integer, the precision of the result is the
same as the precision of the other operand. Where the operation
implies an integer-to-scalar conversion, the result of the conversion is
generated with the precision of the other operand.

3. If Rule 2 does not apply, and the precisions of the operands differ, the
single precision operand is first converted to double precision. The
precision of the result of the operation is the same as the precision of
the operands after the possible precision conversion.
7-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
7.2 CHARACTER OPERATIONS
There is only one character operation in HAL/S: the catenation of character strings.

CATENATION
The utility of catenating character strings is obvious in the generation of output listings.
The rules related to the catenation operation are as follows:

Examples:
If C is a character item with C ≡ ‘ UNITS’
I is integer with I ≡ 10
then ‘TEN’ || C ≡ ‘TEN UNITS’

I || C ≡ ‘10 UNITS’
and

I || I ≡ ‘1010’

Symbol Purpose

 || ⎫
CAT⎬
 ⎭

catenation

Symbolic form: L || R
 CAT

1. The L and R operands are not just restricted to character type: some
degree of implicit type conversion is allowed. The following types are
legal.

L-type R-type

INTGER
SCALAR
CHARACTER

⎧INTGER
⎨SCALAR
⎩CHARACTER

2. The rules for converting integer and scalar types to character type are
to be found in Appendix A.

⎫
⎬
⎭

7-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
7.3 BOOLEAN OPERATIONS
Boolean operations are logical (binary) transformations on Boolean operands. HAL/S
recognizes the following operations:

COMPLEMENT
The complement operation complements the logical value of a Boolean operand. It
takes the following form:

Example:
If B is Boolean with B ≡ TRUE
then ¬ B ≡ FALSE

CONJUNCTION
The conjunction operation causes the logical values of two Boolean operands to be
OR’ed together.

Symbol Purpose

& ⎫
AND⎬
 ⎭
| ⎫
OR⎬
 ⎭
¬ ⎫
NOT⎬
 ⎭

logical intersection

logical conjunction

logical complement

Symbolic form: ¬ R

 NOT

1. The R operand is of Boolean type.
7-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If B is Boolean with B ≡ FALSE
then

B | B ≡ FALSE
B | TRUE ≡ TRUE

INTERSECTION
The intersection operation causes the logical values of two Boolean operands to be
AND’ed together.

 ⎧ | ⎫
Symbolic form:L ⎨OR⎬ R

 ⎩ ⎭
1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean is as follows:

T=TRUE
F=FALSE

L

T F
R T T T

F T F

 ⎧ & ⎫
Symbolic form:L ⎨AND⎬ R

 ⎩ ⎭
1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean is as follows:
T=TRUE
F=FALSE

L

T F
R T T F

F F F
7-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If B is Boolean with B ≡ FALSE
then

B & TRUE ≡ FALSE
B & B ≡ FALSE

7.4 COMBINING OPERATIONS & PRECEDENCE
It is obviously desirable to be able to combine operations so as to create expressions of
any required complexity. In combining operations, the following information is
necessary:

• The order in which operations are executed (the order of “precedence”);
• the way in which the precedence order can be overridden.

ARITHMETIC AND CHARACTER PRECEDENCE
The precedence of HAL/S operations on arithmetic and character data types are shown
in the following table:

Two rules clarify and modify this information:
• Sequences of operations of the same precedence are evaluated left to right,

except for * * and /, which are evaluated right to left.
• Sequences of multiplications are sometimes reordered to minimize the number of

elemental products required. Dot and cross products are involved in this process.

SYMBOL PRECEDENCE PURPOSE
FIRST

* * 1 exponentiation, etc.
(blank) 2 multiplication

* 3 cross product
. 4 dot product
/ 5 division
+ 6 addition
- 6 subtraction, negation

||, CAT 7 catenation
LAST
7-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
In the following expression, the numbered pointers show the order of execution of
operations:
‘RESULT OF STEP ‘ ||N|| ‘IS ‘ || S1+S22 - V1.V2/2/2

BOOLEAN PRECEDENCE
The precedence rules for Boolean operations are stated separately because there are no
implicit conversions causing interaction with arithmetic and character operations.

Sequences of operations of the same precedence are evaluated left to right.

Examples:
In the following expression, the numbered pointers show the order of execution of
operations:
 ¬ B1 | B2 & ¬ B3

OVERRIDING PRECEDENCE ORDER
In HAL/S, the order of precedence can be overridden at will by the use of parentheses,
nested to any arbitrary depth.

Examples:
In the following Boolean expression,
 B1 | B2 & B3 | B4 & B5

parentheses may change the precedence order as shown:
 (B1 | B2) & ((B3 | B4) & B5)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

SYMBOL PRECEDENCE PURPOSE
FIRST

 ¬, NOT 1 complement
 &, AND 2 intersection
 |, OR 3 conjunction

LAST

↑ ↑ ↑ ↑

 ↑ ↑ ↑ ↑

 ↑ ↑ ↑ ↑

1 2 9 4 3 8 5 7 6

1 4 3 2

2 1 4 3

1 4 2 3
7-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
In the following arithmetic expression,
 S1 + S22 + S3/S2

parentheses may change the precedence order as shown:
 ((S1 + S2)2 + S3)/S2

7.5 SOME EXPLICIT CONVERSIONS
As evidenced in Section 7, there are few implicit type conversions in the HAL/S
language. However, there is a comprehensive range of explicit conversions, some of
which are now described.

PRECISION CONVERSION
Any arithmetic expression may have its precision explicitly changed as follows:

Example:
If A and B are single precision, then the result of

 (A + B)@ DOUBLE

is double precision, the type remaining unchanged.

 ↑ ↑ ↑ ↑

 ↑ ↑ ↑ ↑

HAL/S allows the operands in an expression to be arrayed,
causing parallel evaluation on an element-by-element basis
See: Guide/20.1.

(expression)@ DOUBLE
(expression)@ SINGLE

1. In the first form, if expression is a single precision arithmetic
precision, it is converted to double precision. If it is already double
precision, the conversion has no effect.

2. In the second form, if expression is a double precision arithmetic
expression it is converted to single precision. If it is already single
precision, the conversion has no effect.

3. If expression is of scalar type, conversion to single precision
implies rounding. If it is of integer type, it entails loss of
most-significant digits. See Appendix A.

2 1 4 3

1 2 3 4
7-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
VECTOR CONVERSION
A vector can be synthesized from a list of scalar or integer expressions using the
construct shown in the following table:

Examples:
 VECTOR(1,2,3)

if S is a scalar with S ≡ 0.5 then

 VECTOR4 (S,S2,S+1,0)

Note that even if the arguments are double precision the result is in single precision. To
specify double precision in a vector conversion, the following modified form is used:

 VECTORn(exp
1,exp2,.....)

1. The subscript number n specifies the length of the vector to be created, and
lies in the range 1 < n < 64†.

† This value may be implementation dependent. See appropriate User’s Manual.

2. If n is omitted the resulting vector is assumed to be of length 3.
3. Each exp is a scalar or integer expression .
4. The number of expressions in the list must match the implicit or explicit result

length.
5. The result of the above conversion is in single precision.

⎡1⎤
creates a 3-vector with value ≡ ⎢2⎥

⎣3⎦

⎡ 0.5 ⎤
creates a 4-vector with value ⎢ 0.25 ⎥

⎢ 1.5 ⎥
⎣ 0 ⎦

 VECTOR@ DOUBLE,n(exp
1, exp2,.....)

1. The meanings of exp and n are as before.
2. If n is not specified, the preceding comma is also omitted.
7-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

 VECTOR@ DOUBLE(1,2,3)

VECTOR@ DOUBLE,4(1,2,3,4)

MATRIX CONVERSION
There exists a method of synthesizing a matrix from a list of integer or scalar expressions
analogous to the vector conversion described:

Examples:
 MATRIX(1,2,3,4,5,6,7,8,9)

MATRIX2,3(1.5,0,0,0,0.5,0)

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required if the result is to be in

⎡1⎤
creates a double precision 3-vector with value ≡ ⎢2⎥

⎣3⎦

⎡1⎤
creates a double precision 4-vector with value ≡ ⎢2⎥

⎢3⎥
⎣4⎦

 MATRIXm,n(exp1, exp2,......)

1. The subscript numbers m, n specify the row and column dimensions of the
matrix to be created, and must lie in the range 1 < (m, n) < 64†.

† This value may be implementation dependent. See appropriate User’s Manual.

2. The subscript may be omitted, in which case the resulting matrix is
assumed to be 3 by 3.

3. Each exp is a scalar or integer expression.
4. The number of expressions must match the total number of elements in

the resulting matrix.
5. The result of the above conversion is in single precision.
6. The matrix is assembled row by row from the list.

⎡1 2 3⎤
creates a 3 x 3 matrix with value ⎢4 5 6⎥

⎣7 8 9⎦

⎡1.5 0 0⎤
creates a 2 x 3 matrix with value ⎣0 0.5 0⎦
7-21 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
double precision:

Examples:
 MATRIX@ DOUBLE(l,2,3,4,5,6,7,8,9)

MATRIX@ DOUBLE,2,3(1.5,0,0,0,0.5,0)

7.6 BUILT-IN FUNCTIONS
HAL/S possesses a comprehensive range of library or “built-in” functions that can be
used as operands in expressions. Built-in functions have zero, one, or two arguments,
and are written in a form akin to standard mathematical notation.

Built-in functions are divided into five different classes, roughly according to purpose:
• arithmetic
• algebraic
• vector-matrix
• character
• miscellaneous

A full description of all built-in functions is given in Appendix B. A brief explanation of
some of the more important functions in each class is given below.

 MATRIX @ DOUBLE,m,n(exp1, exp2,.....)

1. The meanings of m, n and exp are as before.
2. If the dimension subscript is omitted, the preceding comma is also

omitted.

 ⎡1 2 3⎤
creates a double precision 3 x 3 matrix with value ⎢4 5 6⎥

⎣7 8 9⎦

⎡1.5 0 0⎤
creates a double precision 2 x 3 matrix with value ⎣0 0.5 0⎦

The explicit conversions described are those most
commonly required for numerical analysis. However,
HAL/S contains many other explicit conversion function
forms corresponding to conversions between most data
types.
See: Guide 21.
7-22 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ARITHMETIC FUNCTIONS
Arithmetic functions perform simple arithmetic operations on scalar or integer arguments.
Some arithmetic functions are:

ALGEBRAIC FUNCTIONS
Algebraic functions perform trigonometric and other transformations on scalar
arguments. Some common algebraic functions are:

VECTOR-MATRIX FUNCTIONS
Vector-matrix functions perform operations on vectors or matrices. Common vector-
matrix functions are:

Function Comments
 ABS(α) returns | α | (the absolute value of α). α may be integer or

scalar.
 DIV(α,β) returns the result of integer division of α by β. α and β may be

scalar or integer: scalar values are rounded to integer before
use.

 ROUND(α) rounds a scalar α to an integer.
 ODD(α) returns a Boolean result, which is TRUE if α is odd, and

FALSE if α even.
 SIGN(α) returns +1 if α > 0 and -1 if α < 0.

Function Comments
 COS(α) returns cos α
 EXP(α) returns eα

 LOG(α) returns loge α
 SIN(α) returns sin α
 SQRT(α) returns
 TAN(α) returns tan α

Function Comments
 ABVAL(α) returns length of vector α
 INVERSE(α) returns inverse of square matrix α
 UNIT(α) returns unit vector in same direction as vector α

α

7-23 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CHARACTER FUNCTIONS
Character functions perform operations on character data. Some common character
functions are:

MISCELLANEOUS FUNCTIONS
Some of the more important miscellaneous functions are:

Examples of use:
 |
 | SINE = SIN(X/2) + SIN(Y/2);
 | X = ABVAL(V1*V2);
 | IF ODD(X) THEN RETURN;
 |

 Function Comments
 LENGTH(α) returns current length of character string α
 TRIM(α) strips leading and trailing blanks from string α

 Function Comments
 DATE returns date at time of execution
 MAX(α) returns the maximum value in the integer or scalar array α
 MIN(α) returns the minimum value in the integer or scalar array α

 RANDOMG returns random number from Gaussian distribution with
mean zero, variance 1.
7-24 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
8.0 ASSIGNMENTS
Section 7 described, in detail, the creation of HAL/S expressions used in numerous
places in the language. The assignment statement is one such instance in which the
value of an expression is assigned to a data item.
For convenience, an assignment is classified according to the type of the receiving data
item; that is, the data item being assigned into. Because HAL/S allows implicit type
conversion, this type is not necessarily the same as the expression whose value is used
in the operation.

• Arithmetic assignments are assignments to matrix, vector, integer or scalar data
items.

• Character assignments are assignments to character data items.
• Boolean assignments are assignments to Boolean data items.

8.1 GENERAL FORM OF ASSIGNMENT
The assignment statement is an instance of a HAL/S executable statement. It has a
general form applicable to all types of assignment:

Additional assignment rules are applicable which differ according to assignment type.

8.2 ARITHMETIC ASSIGNMENTS
Arithmetic assignments are those in which the receiving data type is matrix, vector,
integer or scalar.
MATRIX
The receiving data item is a matrix.

Symbolic form L = R;
1. L is the receiving data item. It may be subscripted or

unsubscripted.
2. Usually, R is an expression whose resultant value is to be used

in the assignment. It may, of course, consist merely of a single
operand.
8-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

 M2 is a 2x2 matrix,
 M3 is a 2x3 matrix;
then

 |

 | M3 = -M1;
 |

 |

 | M2= M1; is illegal (column mismatch)
|

but

|
| M2 = M1*,2 AT 2;

|

|
 | M3 = 0;
 |

1. The operand types are:
L-type R-type

MATRIX
⎧MATRIX
⎨INTEGER(rule 3)
⎩

2. The number of rows and columns of the R-expression must be
the same as those of the receiving data item.

3. The only condition under which the R-type is integer is if it is the
literal value zero. The assignment then creates a null matrix.

⎡1.0 1.0 2.0⎤
If M1 is a 2x3 matrix with M1 ≡ ⎣0.5 -0.5 1.0⎦

⎡-1.0 -1.0 -2.0⎤
results in M3 ≡ ⎣-0.5 0.5 -1.0⎦

⎡ 1.0 2.0⎤
results in M2 ≡ ⎣-0.5 1.0⎦

⎡0 0 0⎤
results in M3 ≡ ⎣0 0 0⎦
8-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
but
|

 | M3 = 1; is illegal
 |

VECTOR
The receiving data item is a vector.

Examples:

 M2 is a 3x3 matrix,
 V2 is a 3-vector;
then

 |
 | V2 = -V1;
 |

 |

 | M2 ½ V1; is illegal (type mismatch),
 |

but
 |
 | M21,* = V1; is legal since subscripting reduces the L-type to 3-vector.
 |

1. The operand types are:
L-type R-type

VECTOR
⎧VECTOR
⎨INTEGER(rule 3)
⎩

2. The length of the R-expression must be the same as that of the receiving
data item.

3. The only condition under which the R-type is integer is if it is the literal
value zero. The assignment then creates a null vector.

⎡1.0⎤
If V1 is a 3-vector with V1 ≡ ⎢2.0⎥

⎣ 0 ⎦

⎡-1.0⎤
results in V2 ≡ ⎢-2.0⎥

⎣ 0 ⎦
8-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 (? indicates values unchanged by assignment).
Note

 |

 | V2 = 0; creates a null vector.
 |

INTEGER/SCALAR
Integer and scalar assignments can be treated together because their rules are nearly
identical.

Examples:
If I is an integer,

S is a scalar, and
M a 2x2 matrix, then

 |

 | I = 5; results in I ≡ 5
 |

 | I = 7.7; results in I ≡ 8
 |

 | S = 7.7; results in S ≡ 7.7
 |

⎡1 2 0⎤
and results in M2 ≡ ⎢? ? ?⎥

⎣? ? ?⎦

1. The operand types are:
L-type R-type

 INTEGER
 SCALAR

⎧INTEGER
⎨SCALAR
⎩

2. The length of the R-expression must be the same as that of the receiving
data item.

3. The only condition under which the R-type is integer is if it is the literal
value zero. The assignment then creates a null vector.

⎫
⎬
⎭

8-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Given the last values above for S, I
 |
 | M2, 2 = I - S;

|

(? indicates values unchanged by assignment)

 |

 | M2,∗ = I; is illegal (type mismatch)
|

NOTE ON PRECISION CONVERSION
In an arithmetic assignment, the precisions of the receiving data item and of the R-
expression may differ. In these cases, precision conversion of the latter takes place
before assignment, under the following rules:

8.3 CHARACTER ASSIGNMENTS
The receiving data item is character type.

⎡? ? ⎤
results in M ≡ ⎣? 0.3⎦

1. The R-expression is converted to the precision of the receiving
data item as necessary before assignment.

2. If type conversion from integer to single precision scalar is implied,
its result is generated with the same precision as the receiving data
item.

1. The operand types are:
L-type R-type

CHARACTER
⎧CHARACTER

⎨INTEGER

⎩SCALAR

2. R-expressions of integer or scalar type are converted before assignment
to character type. Conversion rules are to be found in Appendix A.
8-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If C is a character string with C ≡ ‘ABCDE’ and C2 is a character,
then

 |

 | C2 = C3; results in C2 ≡ ‘C’
 |

 | C2 = 1573; results in C2 ≡ ‘1573’
 |

These apparently straightforward rules can become more complex in some situations.

Generally, when the receiving data is unsubscripted, its working length becomes the
same as the length of the R-expression. However, if this would cause the declared
maximum length of the receiving data item to be exceeded, then truncation of the excess
from the right takes place.
Examples:

If C1 is character of maximum length 10
C2 is character of maximum length 1,

then
|

| C1 = ‘ABCDE’;
|

results in C1 ≡ ‘ABCDE’ of working length 5
but

 |
| C2 = ‘ABCDE’;

|
results in C2 ≡ ‘A’ of working length 1

If the receiving data item is subscripted, then this causes an additional complication. The
rules applicable in such a case are as follows:
8-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Let C1 be character of declared maximum length 10 with value C1 ≡ ‘ABCD’
Then by Rules 2 and 3:

 |
 | C12 TO 3 = ‘QQ’;

 |

results in C1 ≡ ‘AQQD’
 |
 | C12 TO 3 = ‘1234’;

 |

results in C1 ≡ ‘A12D’
 |
 | C12 TO 3 = ‘X’;

 |

results in C1 ≡ ‘AX D’

 Let,
 STRINGα

denote a receiving data item of character type:
N is declared maximum length
n is working length before assignment

1. The range of the subscript expression α is presumed to be in the range 1
- N; otherwise an error results.

2. The length of the R-expression is adjusted to the length implied by α,
either by truncation of the excess from the right, or by padding on the
right with blanks.

3. If the range of α lies inside the range 1 - n, then simple substitution of the
character positions implied takes place.

4. If the range of α lies partly beyond the range 1 - n, then the working
length of STRING is increased appropriately.

5. If the range of α lies totally beyond the range 1 - n, the working length of
STRING is increased appropriately, and the gap between the nth
character and the first position implied by α (if any) is filled with blanks.
8-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
By Rules 2 and 4:
 |
 | C14 TO 5 = ‘QQ’;

 |

results in C1 ≡ ‘ABCQQ’ (working length increased by 1)
 |
 | C14 TO 5 = ‘X’;

 |

results in C1 ≡ ‘ABCX ’ (working length increased by 1)

By Rules 2 and 5:
 |
 | C15 TO 6 = ‘QQ’;

 |

results in C1≡ ‘ABCDQQ’ (working length increased by 2)
 |
 | C17 TO 9 = ‘FGH’;

 |

results in C1 ≡ ‘ABCD FGH’ (working length increased by 5)
 |
 | C16 = ’FGH’;

 |

results in C1 ≡ ‘ABCD F’ (working length increased by 2)

8.4 BOOLEAN ASSIGNMENTS
The receiving data item is of a Boolean type.

Example:
If B is Boolean, then

 |
 | B = FALSE;

|

results in B ≡ FALSE

1. The operand types are:
 L-type R-type
 BOOLEAN BOOLEAN

2. The logical value of the R-expression is transferred to the
receiving data item.
8-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
8.5 MULTIPLE ASSIGNMENTS
Several data items may be assigned to the same R-expression in the same statement.
The general form of such a multiple assignment is as follows:

Examples:
If M1 is a 2x2 matrix,
 V1 is a 3-vector

 |
 | M1, V1 = 0;
 |

If C is a character,
 I is an integer,

 |
 | C, I = 127.2;
 |

results in C ≡ ‘1.2720000E+02’, I ≡ 127
With the above data items,

 |
 | M1, C = 5;
 |

is illegal because of data type mismatch between M1 and the R-expression.
The following example illustrates the importance of Rule 3:
If further I ≡ 2, then

 |
 | V1I,I = I + l;

|
has an ambiguous result, depending on the order of assignment.

Symbolic form:
L

1
,L

2
, ...L

n
 = R;

1. The value of the R-expression is assigned to all L1 ... Ln in turn.
2. Any L-type must be compatible with the R-type according to the

rules stated in Sections 8.2 through 8.4.
3. No particular order of assignment is guaranteed.

⎡0⎤
results in M1 ≡ ⎡0 0⎤, V1 ≡ ⎢0⎥

⎣0 0⎦ ⎣0⎦
8-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
If I is assigned before V1I ,

(? indicates values unchanged by assignments)

⎡?⎤ ⎡?⎤
then V1 ≡ ⎢?⎮, otherwise V1 ≡ ⎢3⎮

⎣3⎦ ⎣?⎦

In HAL/S, the receiving data item or items may
be arrayed. This can produce varying effects
depending on whether or not the R-expression
also is arrayed (i.e. has arrayed operands).

See: Guide/20.3.
8-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
9.0 CONDITIONAL STATEMENTS AND BRANCHES
Section 9 is primarily concerned with the HAL/S conditional statement, by which other
executable statements may be conditionally executed (or by which their execution may
be conditionally avoided). Together with statement groups, which will be described in
Section 10, they form a crucially important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using GO TO statements to
cause branches in execution. Their total elimination, however, is not desirable. This
Section therefore also describes the HAL/S GO TO statement, and statement labels,
which are their destinations. Statement labels are, in addition, needed for other
constructs to be described in Section 10.

9.1 THE CONDITIONAL STATEMENT
In HAL/S, the simple version of the conditional statement is an “IF clause” containing an
expression evaluable as either TRUE or FALSE, followed by a “true part” which is
executed only if the IF clause is TRUE. The simple version may be augmented by a
“false part” which is executed only if the IF clause is FALSE.
SIMPLE IF STATEMENT
The form of the simple version is:

Examples:
 |
 | IF B|C THEN X = 0;
 | Y = 1;

 |
 | IF exp THEN statement;
 |

1. exp is an expression which is evaluable as either TRUE or FALSE. It
may be either a BOOLEAN expression or a relational expression
(these are described in Section 9.2).

2. statement constitutes the true part of the conditional statement. It may
be any executable statement, either simple or compound.

3. statement may possess a label but cannot be branched to from
outside the IF statement.
If exp is FALSE, execution proceeds to the next statement. If TRUE,
statement is executed first.
9-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
X is set to 0 if either B or C or both is true: the flow diagram for these events is:

Figure 9-1
 |
 | IF B|C THEN DO;
 | X = X - l;
 | Y = Y + l;
 | END;

The true part is a compound statement containing two assignments.
 | IF B THEN
 | IF C THEN
 | D = 0;
 |

This shows that one can nest IF statements.

evaluate
B|C

Yes

No

is
result
TRUE

?

Set
X = 0
9-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
AUGMENTED IF STATEMENT
When augmented with a false part, the IF statement takes the form:

Examples:
 |
 | IF B|C THEN X = 0;
 | ELSE X = 1;
 |

X is set to 0 if B or C or both is true, otherwise X is set to 1. The flow diagram for these
events is:

 |
 | IF exp THEN statement;
 | ELSE else statement:
 |

1. The form of the IF clause and true part are the same as in the
simple conditional statement.

2. else statement constitutes the false part of the conditional
statement. It may be any executable statement either simple or
compound.

3. else statement may possess a label but cannot be branched to from
outside the IF statement.

4. If exp is FALSE, execution proceeds to the next statement via else
statement. If TRUE, it proceeds to the next statement via
statement.

5. An ELSE clause may only be used if it is immediately preceded by
an IF THEN statement (This eliminates the “DANGLING ELSE”
problem found in some other higher level languages).
9-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 9-2
 |
 |IF B|C THEN DO;
 | X = 1;
 | Y = 2;
 | END;
 | ELSE DO;
 | X = 2;
 | Y = 1;
 | END;

Here, both true and false parts are compound statements each containing two
assignments each.
|
| IF B THEN X = 0;
| ELSE IF C THEN X = l;
| Y = 2;
|

This is legal: the false part of a conditional statement may itself be another
conditional statement: the flow diagram for these events is:

evaluate
B|C

YesNo

Set
X = 0

Set
X = 1

is
result
TRUE

?

9-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 9-3
 |
 | IF B THEN
 | IF C THEN
 | X = 0;
 | ELSE
 | X = l;
 | ELSE X = 2;

Illegal because the last ELSE clause is not immediately preceded by an “IF exp
THEN statement” statement. If the intent is to make the last ELSE effective on the
first “IF exp THEN” clause, one can use the DO-END grouping in the following
manner:

 |
 | IF B THEN
 | DO;
 | IF C THEN
 | X = 0;
 | ELSE
 | X = 1;
 | END
 | ELSE X = 2;

YesNo

Set
X = 0

Set
X = 1

Yes

No

Set
Y = 2

?
TRUE
C
is

?
TRUE
B
is
9-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This is legal because the DO-END group collects any number of statements within its
scope and makes them look like a single statement. The flow diagram for these events
is:

Figure 9-4

9.2 RELATIONAL EXPRESSIONS
As was stated in Section 9.1, there are two valid forms of expression in an IF clause,
BOOLEAN, and relational. BOOLEAN expressions were described in Section 7,
relational expressions only appear in a limited number of HAL/S constructs, among them
conditional statements, and are now described.

The simplest form of a relational expression is merely a comparison between two like
quantities. The result is either TRUE or FALSE. More complex forms of relational
expressions result from combining comparisons with the BOOLEAN operators &, |, and
¬.

YesNo

is
B

TRUE
?

is
C

TRUE
?

Yes

No

Set
X = 2

Set
X = 0

Set
X = 1
9-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
COMPARATIVE OPERATIONS
HAL/S recognizes the following comparative operators:

The operands of comparative operations may, in general, be expressions of any of the
types described in Section 7 Depending on the type of operand, the operators may be
restricted to Class II only, or may be either Class I or Class II.

• CLASS II ONLY

SYMBOL PURPOSE CLASS
> greater than
< less than
<= less than or equals

NOT >
¬ >

⎫
⎬not greater than
⎭

I

>= greater than or equals
NOT <
¬ <

⎫
⎬not less than
⎭

= equals

NOT =
¬ =

⎫
⎬not equal
⎭

II

Symbolic form: L
 =
 NOT = R
 ¬ =

1. Legal combinations of data types are indicated by the following
table:

L-type R-type
VECTOR
MATRIX
BOOLEAN

VECTOR
MATRIX
BOOLEAN

2. Comparison of vector and matrix operands implies element-by-
element comparison.

3. The operands in a vector comparison must be the same length.
4. The operands in a matrix comparison must have the same row and

column dimensions.
9-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 If V, V1 are 3-vectors with

then V = V1 is FALSE,
 V - V1 = 2V is TRUE.

then V1 = V2 is illegal because of length mismatch,

 but V11 TO 2 = V2 is TRUE.

• CLASS I AND CLASS II

⎡-1 ⎤ ⎡ 1 ⎤
V ≡ ⎢-1 ⎥ , V1 ≡ ⎢ 1 ⎥

⎣ 2 ⎦ ⎣-2 ⎦

⎡1⎤
If further V2 is a 2-vector with V2 ≡ ⎣1⎦

⎧ > ⎫
⎪ < ⎪

 ⎪ >= ⎪
⎪ <= ⎪
⎪NOT> ⎪

Symbolic form: L ⎨ ¬ > ⎬ R
⎪NOT< ⎪
⎪ ¬ < ⎪
⎪ = ⎪
⎪NOT = ⎪
⎩ ¬= ⎭

1. Legal combinations of data types are indicated by the following table:
 L-type R-type

 INTEGER⎫
 SCALAR⎬
 CHARACTER ⎭

⎧INTEGER
⎨SCALAR
⎩CHARACTER

2. In a mixed scalar-integer operation, the integer operand is converted to scalar
before the comparison takes place.

3. For character string comparisons, the standard dictionary collating sequence† is
used. For strings of equal length, a string is greater than another string if at the
first miscompare (going left to right) the character string in the first string is
greater than the character in the second string. If the lengths are unequal, the
shorter one is padded with blanks on the right, then the comparison used for
strings of equal length is used.

† The collating sequence is implementation dependent. See appropriate User’s manual.
9-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 If I is an integer with I ≡ 5

then I = 5 is TRUE
 I < 4 is FALSE
 I >= 5 is TRUE

 If C is a character data item with C ≡ ‘ABC’
then C = ‘ABC’ is TRUE
 C = ’BCD’ is FALSE
 C > ‘AB’ is TRUE
 C < ‘ABCD’ is TRUE
 C > ‘ABB’ is TRUE

NOTE ON PRECISION CONVERSION
Precision conversion may be required where both operands of the comparison are
arithmetic.

Where the types of the operands are the same, but the precisions differ, the single
precision operand is converted to double precision before the comparison is made.
In a mixed integer/scalar comparison the result of the integer-to-scalar conversion is
generated with the same precision as the scalar operand.
COMBINING COMPARATIVE OPERATIONS
Comparative operations may be combined as if they were BOOLEAN operands, using
the rules for Boolean operations described in Section 7. It is important to note however,
that comparative operations are not BOOLEAN operands in the sense that they can be
mixed with actual BOOLEAN data items.

• Boolean expressions may contain no comparative operations.
• Relational expressions may contain no Boolean operands.

Examples:
If V1, V2 are 3-vectors with

 and C is character with C ≡ ‘ABC’
then
 V1 = V2|C1 = ‘A’ is TRUE
 V1 = V2 & C1 = ‘A’ is FALSE

If B is Boolean then
 B|V1 = V2 is illegal
 but
 B = ON|V1 = V2 is legal

 ⎡ 1 ⎤ ⎡ 3 ⎤
V1 ≡ ⎪ 2 ⎟ V2 ≡ ⎪ 2 ⎟

 ⎣ 3 ⎦ ⎣ 1 ⎦
9-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
PRECEDENCE
The following table shows the precedence of operations involved in a relational
expression:

Example:
In the following expression, the numbered pointers show the order of execution of
operations:
IF S1 + S2 = 0 | ¬ (S3 > 0) & ¬ (S4< 0 | S5 > 0) THEN

Section 9.2 ends with some more examples designed to clarify the foregoing.
Examples:

 |IF V = 1 & V = 2 THEN V = 0;
 |S 1 2 3

|IF V > 0 | V < 0 THEN V = 0;
|S 3 2

Symbol Precedence Purpose
FIRST

 1
⎧operations involving
⎨operands of
⎩comparisons

> ⎫
< ⎪
<= ⎪

NOT>,¬> ⎪
>= > ⎬ 2 comparative operations
NOT<,¬< ⎪

= ⎪
NOT=,¬ ⎭
¬, NOT
&, AND
|, OR

 3*
4
5

⎫
⎬ logical operations on
⎭ comparisons

* Any operand of this operator must always be parenthesized.

 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Let V be a 3-vector with V ≡

1 2 10 4 3 9 8 5 7 6

1
2
3

9-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The first statement will cause V3 to be set to zero since both comparisons are TRUE.
Then

In the second statement, neither comparison in the relational expression is true.
Hence, the “true part” is not executed and finally

as before.

9.3 LABELS AND BRANCHES
In HAL/S, there are two entities involved in the branching operation: a GO TO statement,
which, when executed causes the branch; and a “statement label” which is the
destination of such a branch. HAL/S also uses statement labels for other purposes,
which will become clear in Section 10.
LABELS
Labels are names chosen by the programmer and attached to statements. More than
one label may be attached to a statement. The way of attaching a single label to a
statement is as follows:

⎡ 1 ⎤
V ≡ ⎢ 2 ⎜

⎣ 0 ⎦

⎡ 1 ⎤
V ≡ ⎢ 2 ⎜

⎣ 0 ⎦

Relational expressions may be arrayed,
additional rules being required to deter-
mine if the result is TRUE or FALSE.
See: Guide/20.5.

 |
 | label: statement;
 |

1. statement is any executable statement or statement group (see
Section 10).

2. label is a user-defined identifier name (see Section 2.2).
9-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | ONE: X = X +1;
 | TWO: Y = 0;
 |
 | IF X = 0 THEN ONE: Y = 0;
 | IF X = 0 THEN X = 1;
 | ELSE TWO: X = 3:
 |
 | THREE: IF X = 0 THEN Y = 1;

|

If more than one label is required, then they follow each other in sequence.
 |
 | ONE: TWO: THREE: X = X +1;
 |

GO TO STATEMENT
The GO TO statement specifies the label to which execution branches: it takes the form:

Examples:
 |
 | GO TO ONE;
 |

The GO TO statement itself may be labeled:
 |
 | TWO: GO TO THREE;
 |

It is important to note that HAL/S places relatively severe restrictions on the placement of
GO TO statements and where they may cause execution to branch to. Section 1.3
described this on the abstract level, and Section 10 further discusses it in connection
with statement groups.

 |
 | GO TO label;
 |

1. label is a label attached to some statement to which execution is to
branch.
9-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ELIMINATING GO TO STATEMENTS
The Guide has stressed throughout that, according to structured programming principles,
GO TO statements are inherently undesirable because they tend to disguise the
program’s flow of execution.

It will be found that HAL/S contains a sufficient number of other constructs to allow GO
TO statements to be substantially eliminated from a program. Following is an example
showing the elimination of GO TO statements.
Example:
 |
 | IF X > 1.5 THEN GO TO ALPHA;
 | IF X < 1.5 THEN GO TO BETA;
 | Y = Y + l;
 | GO TO GAMMA;
 | ALPHA: X = X - 0.05;
 | GO TO GAMMA;
 | BETA: X = X + 0.05;
 | GAMMA:
 | .
 | .
 | .
 | .
 |

This example is programmed in HAL/S in the simplest way (possibly having been
translated from FORTRAN or an assembly language). The profusion of GO TO
statements disguises the simple flow of execution, which is interpreted by the
following flow diagram:
9-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 9-5
The same algorithm is more clearly programmed as follows:

 | IF X > 1.5 THEN
 | X = X - 0.05;
 | ELSE
 | IF X < 1.5 THEN
 | X = X + 0.05;
 | ELSE
 | Y = Y + 1;
 .
 .
 .

Set Y
to

Y + 1

><

=

compare
X with

1.5

increment
X by
0.05

decrement
X by
0.05
9-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
10.0 STATEMENT GROUPS
Section 1.3 of the Guide introduced, on an abstract level, the idea of “statement groups’’,
which could be treated as if they were simple executable statements, and could be
nested one inside the other. The power of such a facility can be seen, for example, when
it is used in conjunction with the conditional statement: (this is demonstrated later in
Section 10.1).

There is, in fact, a second, equally important reason for grouping statements in HAL/S:
the execution of such groups can be controlled in a variety of ways. If no explicit
specification is made, the sequence of statements is executed once only. By explicit
specification:

• the sequence may be repetitively executed until some condition is satisfied;
• a single executable statement (or nest statement group) of the group, selectable at

execution time, may be executed.
Section 10 explains in detail how statements are grouped, and how execution control of
the groups is specified.

10.1 DELIMITING STATEMENT GROUPS
In HAL/S, groups of statements are said to be “well-bracketed”: they are delimited
explicitly by opening and closing statements which are themselves considered
executable.
THE DO STATEMENT
Every statement group is opened with a “DO” statement which is also used to specify
control of execution within the group. It takes the generic form:

The particular instances of DO statements will be explained in Section 10.2.

 |
 | DO control;
 |

1. control is a construct to be described. It specifies the manner in which
the sequence of statements is to be executed.

2. control is optional. If it is absent, the sequence of statements within the
group is executed in order once only.

3. The DO statement is executable in that it may be labeled according to the
Rules of Section 9.
10-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
THE END STATEMENT
Every statement group is closed with an END statement:

The label specification in an END statement is never functionally necessary in HAL/S.
However, it should be regarded as good programming practice because it facilitates
cross-checking by the compiler.
Examples:

Two instances of statement groups are shown below. Even though details of execu-
tion control have not yet been explained, the form of the construct should be clear.

 | DO WHILE I> 0; } opening Do statement
 | I = I -1;⎫
 | A = 0; ⎬ group of statements
 |S I ⎭
 | END } closing END statement

 | FIX: DO FOR I = 1,25,16,2;
 | A = -A ; } one statement in group
 |S I I
 | END FIX; } label specification in the END
 matches label of DO
The following examples show the importance of being able to group statements together
for use in conjunction with a conditional statement.
 |
 | IF S = 0 THEN I = 2;
 | C = ‘RESET VALUE OF I TO ’ || I;
 | .
 | .
 | .
 |

 |
 | END label;
 |

1. The END statement is executable in that it may be labeled according to
the Rules of Section 9.

2. label is optional: if present, the opening DO statement of the group must
be labeled with label.
10-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
It is required to conditionally execute both assignments: one solution is -
 |
 |
 | IF S ¬ = 0 THEN GO TO NOSET;
 | I = 2;
 | C = ‘RESET VALUE OF I TO ’ || I;
 | NOSET:
 | .
 | .
 | .
 |

This solution is error prone and not in accordance with structured programming
concepts: a better solution is -

 |
 |
 | IF S = 0 THEN DO;
 | I = 2;
 | C = ‘RESET VALUE OF I TO ’ || I;
 | END;
 |
 |

The whole of the group enclosed by DO...END is subject to conditional execution.

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS
The sequence of statements in a group can be executed repetitively until some condition
is satisfied. In this section, two basic forms of DO statement causing repetitive execution
are described:

• The DO WHILE statement, in which execution is repeated while a relational or
Boolean expression remains true in value;

• The DO FOR statement, in which the sequence is executed once for each of a set
of assigned values of a “control variable”.
10-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
THE DO WHILE STATEMENT
The form of the DO WHILE statement is:

Examples:
 |
 | I = 9;
 | DO WHILE I > 0;
 | I = I - 2;
 | END;
 |

 |
 | DO WHILE condition;
 |

1. condition is any relational or BOOLEAN expression. It is evaluated prior to
each cycle of execution of the statement sequence in the group.

2. The next cycle of execution of the group proceeds if the value of condition
is TRUE.

3. If the value of condition is FALSE, the stopping condition is satisfied.
Execution proceeds to the statement following the END statement of the
group.
10-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Here the group is executed 5 times, after which the value of I is -1. In flow diagram form,
the sequence of events is:

Figure 10-1
It is possible for a group never to be executed:
 |
 | DO WHILE FALSE;
 | I = I - 2;
 | END;
 |

Yes is
I > 0

?

Set
I = 9

Set
I = I - 2

No
10-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
It is also possible for a group to be executed forever:
 |
 | I = I - 0;
 | DO WHILE TRUE
 | I = I - 2;
 | END;
 | .
 | .
 | .
 |

Normally in this case, the programmer would insert statements in the group removing
this possibility:
 |
 | I = 9;
 | DO WHILE TRUE
 | I = I - 2;
 | IF I < 0 THEN GO TO ALL_DONE;
 | END;
 | .
 | .
 | .
 |

If the keyword UNTIL is substituted for the keyword WHILE, then the group is always
executed at least once. After the first cycle, the relational or Boolean expression is
evaluated at the beginning of each cycle as in the DO WHILE, except that the logic of the
test is inverted: cycles of execution continue until the result of the expression becomes
TRUE.
Example:
 |
 | I = 0;
 | DO UNTIL I <= 0;
 | I = I - 1;
 | END;
 | .
 | .
 | .
 |

The group is executed once, and the final value of I is -1.
10-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
THE DO FOR STATEMENT
The most widely used form of the DO FOR statement is:

Examples:
 |
 | DO FOR I = 1 TO 10;
 | X = I;
 |S I
 | END;
 |

 |
 | DO FOR var = initial TO final BY increment;
 |

1. var is an unarrayed INTEGER or SCALAR data item (it may be
subscripted if required). It is called the “control variable” of the DO FOR
statement.

2. initial, final and increment are integer or scalar expressions:
initial is the initial value assigned to var.
increment is the amount by which var is incremented on each cycle of
execution of the sequence of statements in the group.
final is the value against which var is tested at the start of every cycle to
determine if the stopping condition is satisfied.
All three expressions are evaluated once prior to the first cycle of
execution.

3. The stopping condition is met when the value of var lies outside the range
bounded by initial and final.

4. increment may be either positive or negative. The phrase
 BY increment

is optional. If omitted, the implied increment is +1.
10-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Here the group is executed 10 times. I is initially 1, and increments each time until
10 is reached. At the end of execution of the group, the value of I is 11. In flow
diagram form, the sequence of events is:

Figure 10-2

 Example:
 |
 | I = 7;
 | DO FOR I = I + 5 TO I - 3 BY -2;
 | X = X + I;
 | END;
 |

This example demonstrates some of the subtleties of the DO FOR statement. The initial
and final values are precomputed as 12 and 4 respectively. Then I is reused as the
control variable: the group is executed 5 times, and after the last cycle of execution, I
retains the value 2.

Yes

No

is
I > 10

?

Set
I = 1

increment
I by
1

Set
XI = I
10-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The DO FOR statement has a second form which is used if the values of the control
variable do not form a regular progression:

Examples:
 |
 | DO FOR I = 17,5,12,4;
 | X = I;
 |S I
 | END;
 |

Here, I takes the successive values 17, 5, 12, and 4. After the end of the last cycle,
the value of I remains at 4.

 |
 | I = 7;
 | DO FOR I = I + 5, I + 3, I + 1, I - 1, I - 3;
 | X = X + I;
 | END;
 |

Care must be taken if the control variable
is integer and the range expressions are
scalar: rounding occurs during
assignment of values in such cases.
See: Spec. /7.6.5.
This DO FOR statement may possess a
WHILE or UNTIL clause which furnishes
a supplementary stopping condition.

See: Spec./7.6.5.

 |
 | DO FOR var = expl,exp2,...expn;
 |

1. var is the control variable as before.
2. Each exp is an integer or scalar expression. Values of the exp’s are

assigned to var in turn prior to the execution of each cycle, on a left-
to-right basis.

3. Each exp is evaluated immediately prior to the cycle of execution in
which it will be used.
10-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Superficially, this example looks like a different way of expressing the second
example for the first form of DO FOR statement:

 |
 | I = 7;
 | DO FOR I = I + 5, TO I - 3 BY -2;
 | X = X + I;
 | END;
 |

However, the successive values of I in the new form (by Rule 3) are:
12, 15, 16, 15, 12

as opposed to
12, 10, 8, 6, 4

in the old form.

10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS
One statement of a group may be selected for execution by means of the DO CASE
statement. The form of the DO CASE statement is:

The flexibility of a DO CASE statement lies in that the selected statement may be a
compound statement (i.e. it may be itself a statement group).

Rounding also occurs if the control variable is
integer and any of the control expressions are
scalar.
See: Spec./7.6.4.
As before, the DO FOR statement may possess
a WHILE or UNTIL clause which furnishes a
supplementary stopping condition.
See: Spec./7.6.4.

 |
 | DO CASE exp;
 |

1. exp is an integer or scalar expression.
2. If its value is k (after rounding if necessary), then the kth statement of

the group is selected for execution.
3. A run time error results if k < 0 or k is greater than the number of

statements in the group.
10-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 I = 3;
 DO CASE I;
 X = 4; case 1
 X = 3; case 2
 DO
 X = 7;⎫
 Y = 3;⎬ case 3
 ⎭
 END;
 X = 1; case 4
 X = 0; case 5
 END;

Execution results in the third statement being scheduled for execution, and the following
values being set:

X ≡ 7, Y ≡ 3

10.4 BRANCHING IN STATEMENT GROUPS
Execution may branch out of any statement group via a GO TO statement. In those
cases where the group is being repetitively executed, execution obviously ceases before
the stopping criterion is satisfied. Because GO TO statements are viewed unfavorably
from the standpoint of structured programming, HAL/S possesses two statements
expressly for executing controlled branches in statement groups.

• The EXIT statement is, in effect, a controlled branch out of a statement group.
• The REPEAT statement applies only to statement groups executed repetitively, and

is a controlled branch back to the beginning of the group.

An ELSE clause may be added to the DO CASE
statement which is executed if the value of the
case variable is outside the legal range for the
statement group.
See: Spec./7.6.2.
10-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
THE EXIT STATEMENT
The simplest form of the EXIT statement is:

Examples:
 |
 | DO
 | X =1;
 | Y =2;
 | IF Z = 3 THEN EXIT;
 | Z = 4; ⎢
 | END; ⎢
 | X = X + 1;

←⎯⎯⎯
|

Arrow shows branch in execution if Z ≡ 3
 |
 | DO WHILE X > 0;
 | X = X -1;
 | IF X > 2 THEN DO;
 | IF Y = 3 THEN EXIT;
 | Y = Y + 1; ⎟
 | END; ⎟
 | END; ←⎯⎯⎯⎯⎯⎯

 |

Arrow shows branch in execution if Y ≡ 3: execution branches to the end, but not out
of DO WHILE group.

 |
 | EXIT;
 |

1. Its execution causes an immediate branch out of the innermost
statement group in which it is enclosed.

2. Execution is directed to the first statement following the END of the
group branched out of.
10-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
There exists a second form of the EXIT statement to allow branches out of other than the
innermost statement group:

Example:
 |

| ONE: DO WHILE X > 0;
| X = X -1;
| DO FOR I = 1 TO 10;
| A = A + X ;
|S I I
| IF X = 1 THEN EXIT ONE;
| IF X = 0 THEN EXIT;
| END;
| END;
| X =0;

The first EXIT statement causes a branch out of the outer group rather than the
inner, by virtue of its label.

THE REPEAT STATEMENT
The simplest form of the REPEAT statement is:

 |
 | EXIT label;
 |

1. Its execution causes a branch out of the enclosing statement group
whose DO statement possesses the label label.

2. Execution is directed to the first statement after the END of the group
branched out of.

 |
 | REPEAT;
 |

1. It must be enclosed in a DO FOR or DO WHILE group.
2. Its execution causes an immediate branch to the beginning of the

innermost enclosing DO FOR or DO WHILE group.
3. The next cycle of execution of the group then starts (unless of course

the stopping condition is satisfied).
10-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | DO WHILE X > 0; ←⎯⎯⎯
 | X = X -1; \
 | IF X = 4 THEN DO; \
 | Y = Y + X; \
 | IF Y = 1 THEN REPEAT;
 | END;
 | END;
 |

If Y ≡ 1 then a branch back to the beginning of the DO WHILE is made. Note that
although the DO WHILE is not the innermost group, it is the innermost repetitive
group.

 |
 | X = 4;
 | DO WHILE X > 1; ←⎯
 | X = X - 1; \
 | IF X = 1 THEN REPEAT;
 | Y = X;
 |S X
 | END;

When X is decremented to 1 the REPEAT branch is executed: a new cycle of
execution does not begin, however, because the initial test shows that the stopping
condition is satisfied.
As with the EXIT statement, there exists a second form of the REPEAT statement
allowing branches back to the beginning of other than the innermost DO WHILE or
DO FOR group:

 |
 | REPEAT label;
 |

1. Its execution causes an immediate branch to the beginning of the
enclosing DO FOR or DO WHILE group whose DO statement
possesses the label label.

2. The next cycle of execution of the group then starts (unless the
stopping condition is satisfied).
10-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
|
| ONE: DO FOR I = 1 TO 10;
| J = I;
| DO WHILE J > 0;
| J = J - 1;
| X = X + J;
|S J J
| IF X = 25 THEN REPEAT;
|S J
| IF X = 0 THEN REPEAT ONE;
|S J
| END;
| END;
| Z = 0;

The second REPEAT statement restarts the outer DO FOR group rather than the inner
DO WHILE by virtue of its label.
10-15 November 2005

USA003087 HAL/S Programmer’s Guide
32.0/17.0
 This page intentionally left blank
November 2005 10-16

HAL/S Programmer’s Guide USA003087
32.0/17.0
11.0 PROCEDURES AND FUNCTIONS
Section 1.2 of the Guide introduced the block structure of HAL/S programs on the
abstract level. To summarize, any program can contain nested procedure and function
blocks, which are two levels of “subroutines” characterized by the sequence:

invocation → execution → return to caller
The invocation of procedures and functions is governed by well-defined name scoping
rules.

This section explains how, in practice, procedure and function blocks are defined in
HAL/S, and describes how they are invoked and returned from.

11.1 INTRODUCTION
A procedure is a subroutine block invoked by a CALL statement. It may have two kinds
of parameters:

• INPUT PARAMETERS - by which values may be passed into a procedure only.
• ASSIGN PARAMETERS - by which values may be passed into and out of a

procedure.

A function is a subroutine block invoked by the appearance of its name in an expression.
It returns a value and therefore has a defined HAL/S data type. It may possess input
parameters only.

RELATIVE POSITION OF BLOCK DEFINITIONS
Section 1.2 described the scoping rules which determine the regions of a program where
any given procedure or function block may be invoked.
An important consequence of these rules is that a procedure invocation may either follow
or precede its block definition. However, for other reasons, the invocation of a function
block should normally always follow its block definition.

A number of rules restrict the kind of
function which may be invoked preced-
ing its block definition.
See: Spec./4.6 & 6.4.
11-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
11.2 BLOCK DEFINITIONS
Procedure and function block definitions have forms very similar to the form of a program
block, which was described in Section 3. The first statement is one defining the name
and type of block, and listing its parameters. The last statement is a statement closing
the block.

PROCEDURE OPENING
The statement opening a procedure block takes the form:

FUNCTION OPENING
The statement opening a function block takes the form:

BLOCK CLOSING
Both procedure and function blocks are closed with the statement:

 |
 | label: PROCEDURE (i1,i2,...) ASSIGN(α1,α2,...);
 |

1. label is any legal identifier name, and constitutes the name of the
procedure.

2. il,i2,... are legal identifier names defining input parameters. If the entire
parenthesized list is omitted, then the procedure has no input parameters.

3. α1,α2, ... are legal identifier names defining assign parameters. If the
entire parenthesized list and the keyword ASSIGN are omitted, then the
procedure has no assign parameters.

 |
 | label: FUNCTION (i1 i2,...) attributes;
 |

1. label is any legal identifier name, and constitutes the name of the function.
2. i1 i2,... are legal identifier names defining input parameters. If the entire

parenthesized list is omitted, then the procedure has no input parameters.
3. attributes defines the type of attributes and, where applicable, precision

and size. The form of specification is the same as used in data declara-
tions (see Section 4.2). If no attributes are supplied, the function is
assumed to be single precision scalar.
Note that function specification may include ARRAYs.

 |
 | CLOSE label;
 |
1. The identifier label is optional.
2. If supplied, it must be the name of the procedure or function block.
11-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

11.3 DECLARATION OF PARAMETERS AND LOCAL DATA
Procedures and functions commonly require the use of locally-defined data. As with
program-level data, all data names must be declared before use by means of declaration
statements. In addition, all input and assign parameters must appear in local declaration
statements.

Data and parameter declarations must be placed after the procedure or function opening
statement, and before the first executable statement. It is good practice, and mandatory
in some implementations12, to place parameter declarations before local data
declarations. The forms of local data and parameter declarations are identical, and are
as described in Section 4.

|
| ONE: PROCEDURE;
| ⎫
| ⎬⎯⎯⎯⎯ procedure body
| ⎭
| CLOSE ONE;
|
| TWO: PROCEDURE ASSIGN (ARG1):
| ↑
| single assign parameter -
| may be used to return
| CLOSE TWO; values from procedure
|
| THREE: FUNCTION MATRIX(4,4) DOUBLE;
|
|
|
| CLOSE THREE;
|
| FOUR: FUNCTION (ARG1,ARG2) BOOLEAN:
| ↑
| two input parameters -
| for passing values into
| CLOSE: function only
|

12.See the User’s Manual for any given implementation.
11-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
General positioning -

Particular instance -
 |
 | ONE: PROCEDURE(ARG1) ASSIGN(ARG2);

 | ⎫
 | DECLARE ARG1 MATRIX(4,4); ⎬ parameters
 | DECLARE ARG2 ARRAY(100) SCALAR DOUBLE;⎭
 | DECLARE TEMP MATRIX(4,4); } local data
 | .
 | .
 | .
 | .
 | CLOSE ONE;
 |

|
| ONE: PROCEDURE(ARG1) ASSIGN(ARG2);
| ⎫
| ⎬ parameter declarations
| ⎭
|
| ⎫
| ⎬ local data declarations
| ⎭
|
| ⎫
| ⎬ executable statements
| ⎭
| CLOSE ONE;
|

11-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CHARACTER PARAMETER DECLARATIONS
Parameters of character type may be declared to possess an indefinite maximum length.
By this means problems of truncation of character data during argument passage can be
avoided.

The basic form of declaration is:

Example:
 | ONE: PROCEDURE(A);
 | DECLARE A CHARACTER(*);
 | .
 | .
 | .
 |

11.4 FUNCTION INVOCATIONS
A function is invoked by the appearance of its name as an operand in an expression. If
the function is defined with input parameters, a list of arguments to be passed must
follow the appearance of the name. The precise form of invocation is:

The transmission of the argument list during function invocation may be viewed as the
assignment of the value of each expression in turn to its corresponding input parameter
(although in any given implementation this may not actually be the mechanism of
transmittal). A set of rules governing type and precision conversion, and dimension
matching similar to the assignment rules of Section 8 are applicable. These are
classified below according to parameter type.

 DECLARE name CHARACTER(*);
1. The asterisk denotes an indefinite maximum length.

label (il, i2, ...)

1. label is the defined name of the function.
2. i1, i2 ,... is a list of arguments, which must correspond in number

with the parameters of the function invoked. Each argument is a
HAL/S expression.

3. If the function has no parameters, then the entire parenthesized
argument list must be absent.
11-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
MATRIX PARAMETER

VECTOR PARAMETER

INTEGER/SCALAR PARAMETER

CHARACTER PARAMETER

Generally, the working length of the parameter becomes equal to the length of the
expression (after conversion, where applicable). However, if this would cause the
declared maximum length of the parameter to be exceeded, truncation of the excess
from the right takes place.

1. The corresponding argument must be of matrix type.
2. The number of rows and columns of the argument must be the same

as those of the parameter.
3. Precision conversion is allowed.

1. The corresponding argument must be of vector type.
2. The length of the vector argument must be the same as that of the

parameter.
3. Precision conversion is allowed.

1. The following table gives the legal argument types:
parameter argument

INTEGER⎫
SCALAR ⎬
 ⎭

⎧INTEGER
⎨SCALAR
⎩

2. Conversion of the argument takes place where necessary. Scalar-
to-integer conversion implies rounding of the value of the
expression.

3. Precision conversion takes place when necessary and is applied at
the same times as type conversion.

1. The allowable argument types are given by the following table:
parameter argument

CHARACTER ⎧CHARACTER
⎨INTEGER
⎩SCALAR

2. Rules for the conversion of integer or scalar values to character type
are given in Appendix A.
11-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
BOOLEAN PARAMETER

The following examples show a selection of both legal and illegal function invocations.
Examples:
Suppose the following functions are defined:

Let also the following data be declared:
 |
 | DECLARE M1 MATRIX(4,4),
 | M2 MATRIX(4,4) DOUBLE,
 | M3 MATRIX(3,3),
 | S SCALAR,
 | I INTEGER;
 |

Invocations of the above procedure are illustrated in the following constructs:
|
| S=S + ONE;
|
| S=S + M ;
|S 1,ONE
| ↑ ⎯ Note: subscripts may be integer

 | expressions of any kind.
| M2 = TWO(M2,S) + M2;
| ↑ ⎯ M2 is converted to single precision
| during transmission.
| M2 = TWO(M2, I) ;
| ↑ ⎯ I is converted to scalar type
| during transmission.
|

1. The corresponding argument must be of Boolean type.

|
| ONE: FUNCTION INTEGER;
|
|
|
| CLOSE;

| TWO: FUNCTION(A,B) MATRIX(4,4) DOUBLE;
| DECLARE A MATIRX(4,4);
| DECLARE B SCALAR;
|
|
|
| CLOSE;
11-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The following are illegal invocations:
 |
 | M2=TWO(M3,1.5)
 | ↑⎯ row and column dimensions of M3 do
 | not match those of parameter A.
 |
 | M2=TWO(M1,’ARGUMENT’|| I);
 | 14243
 \
 transmission of character type argument
 to scalar parameter B incurs an illegal
 type conversion.

11.5 PROCEDURE INVOCATIONS
A procedure is invoked by the use of a CALL statement, which may, in the case of a
procedure with parameters, also specify the arguments to be passed. The precise form
of invocation is:

The transmission of the input argument list during procedure invocation is identical in
nature to function argument list transmission. The related rules are given in Section
11.4.

Arguments may possess arrayness. The
effects of this depend on whether or not
the corresponding parameter is declared
to be an array.
See: Guide/ 20.5.

 |
 | CALL label (i1,i2,...) ASSIGN(a1,a2,...);
 |

1. label is the defined name of the procedure.
2. i1,i2, ... is a list of input arguments which must correspond in number

with the input parameters of the procedure invoked. Each input argument
is a HAL/S expression.

3. If the procedure has no input parameters, then the entire parenthesized
argument list must be absent.

4. a1,a2, ... is a list of assign arguments which must correspond in number
with the assign parameters of the procedure invoked. Each argument
must be a HAL/S data item.†

† Or an assign parameter, if the invocation is nested within a procedure block.

5. If the procedure has no assign parameters, then the entire parenthesized
list of assign arguments, and the ASSIGN keyword, must be absent.
11-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The transmission of the assign argument list follows stricter rules since values are
passed both into and out of a procedure by this mechanism

ASSIGN ARGUMENTS

The following examples show a selection of both legal and illegal procedure invocations.
Examples:
Suppose the following procedures are defined:

Let also the following data be declared:
 |
 | DECLARE M1 MATRIX(3,3),
 | M2 MATRIX(3,3) DOUBLE,
 | M3 MATRIX(4,4),
 | S SCALAR,
 | I INTEGER,
 | ID INTEGER DOUBLE;

1. An assign argument must be a declared HAL/S data item. †

† Or an assign parameter, if the invocation is nested inside a procedure block.

2. An assign argument must match the corresponding assign parameter in
type and precision.

3. A matrix or vector argument must match the corresponding parameter in
dimension.

4. Only matrix and vector arguments may be subscripted. Such subscripting
must reduce the argument to scalar type by specifying one element only.

| ONE: PROCEDURE;
|
|
|
| CLOSE;

| TWO: PROCEDURE(A, B) ASSIGN(C);
| DECLARE A MATRIX(3,3);
| DECLARE B INTEGER;
| DECLARE C INTEGER;
|
|
|
| CLOSE;
|

11-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Invocations of the above procedure are illustrated in the following constructs:
 |
 | CALL ONE;
 | CALL ONE(I);
 | ↑⎯ illegal: ONE possesses no parameters.
 |E T
 | CALL TWO(M2 ,S+1)ASSIGN(I);
 | _ values may be passed in
 | and out of TWO through I.
 |
 | type conversion required here.
 |
 | precision conversion required here.
 |
 | CALL TWO(M3,ID) ASSIGN(S);
 | _ type conversion illegal for
 | assign arguments.
 |
 | precision conversion required
 |
 | dimension mismatch: parameter is a 3 x 3 matrix.
 |
 | CALL TWO(M1,I) ASSIGN(I);
 |

 appearance in both places is legal.

The last example introduces an interesting side effect which occurs when the same data
item appears both as an input argument and as an assign argument. In the example,
changing the value of assign parameter C during execution of the procedure may,
depending on the implementation and the data type of I, result in a simultaneous change
of input parameter B. The effect does not occur if type or precision conversion is
required for transmission of the input argument. The side effect arises as a result of the
actual mechanism used in argument transmission in particular implementations.

Both input and assign arguments may
possess arrayness, in which case the
corresponding parameters must have an
array declaration.
See: Guide/ 20.5.
11-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
11.6 RETURNS FROM PROCEDURES AND FUNCTIONS
When execution reaches the CLOSE statement of a procedure block, an automatic
return to caller takes place. However, if execution reaches the CLOSE statement of a
function block, a run time error results since the function has no value to return to the
caller. Hence a function block needs an explicit RETURN statement to cause the return
to take place. In addition, if returns are required from parts of the code in a procedure
block other than at the CLOSE, an explicit RETURN statement is required.

PROCEDURE RETURN
The RETURN statement of a procedure takes the form:

Example:
 |
 | CHOICE: PROCEDURE(FLAG) ASSIGN(DIR);
 | DECLARE FLAG BOOLEAN;
 | DECLARE DIR VECTOR(3);
 | IF FLAG THEN RETURN;
 | DIR = UNIT(DIR);
 | CLOSE;
 |

If FLAG ≡ TRUE then procedure merely returns execution at RETURN.
If FLAG ≡ FALSE then 3-vector DIR is normalized, and procedure returns execution at
CLOSE.

FUNCTION RETURN
The RETURN statement of a function takes the form:

The return of an expression by a function is similar in nature to the transmission of an
input argument of a function to the corresponding parameter, the function itself playing
the role of parameter. During return, type and precision conversions are possible, but
dimension matching must be ensured. The relevant rules are the same as those
described for argument transmission in Section 11.4.

Note that since a function block may not be defined with an array specification, no
function may return an array result.

 |
 | RETURN;
 |

 |
 | RETURN exp;
 |
1. The resultant value of the expression exp is returned when the

function returns to its caller.
11-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | FUNC1: FUNCTION(A) SCALAR;
 | DECLARE A MATRIX(3,3) DOUBLE;
 | DECLARE I INTEGER;
 | .
 | .
 | .
 | .
 | .
 | .
 | RETURN I+5; ←conversion to scalar required.
 | .
 | .
 | .
 | .
 | .
 | RETURN A ; ←conversion to single precision required.
 |S 1,1
 | .
 | .
 | .
 | .
 | .
 | RETURN ‘I = ‘ || I; ←illegal type conversion required.
 | .
 | .
 | .
 | .
 | .
 | CLOSE;
 |
11-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
12.0 INPUT/OUTPUT STATEMENTS
Higher order languages possess I/O statements to provide programs with a means of
communicating with their environment. In HAL/S, simple forms of I/O statement provide
for the sequential input or output of data, including the generation of printed listings.
This section first introduces the HAL/S concept of sequential I/O and then goes on to
describe the construction of I/O statements.

12.1 HAL/S INPUT/OUTPUT CONCEPTS
The form of sequential I/O statements in HAL/S is based on a specific conceptualization
of the input-output process. In this conceptualization, I/O takes place through a number
of “channels”, each identified by an integer code. Each channel is connected to an “I/O
device”, of which there are two kinds, “unpaged”, and “paged”.
UNPAGED DEVICES
An “unpaged I/O device” can be used for both input and output. It can be visualized as
consisting of a “device mechanism” which performs I/O on a continuous strip, across
which data is written. The data is organized in “columns” across the strip, and in “lines”
down it:
12-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 12-1

columns
of data

first
column

first
line

lines of
data

device
mechanism
12-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The device mechanism moves from column to column along each line, and from line to
line as it performs I/O. Normally, the performance of I/O is accompanied by movement
from left to right across each line, and downwards from one line to the next. However,
special positioning commands can modify this behavior.
On output, the strip continually lengthens as new lines are written on the device. On
input, the strip is of fixed length, and a run time error occurs if the device mechanism is
requested to read off the lower end.
Data output to an unpaged device is physically written so that it may, on some future
occasion, be read in again via an unpaged device.
PAGED DEVICES
A “paged I/O device” can only be used for output. It can be visualized in much the same
way as an unpaged device, except that the lines of data are organized into “pages’’:

Figure 12-2

columns
of data

first
column

first
line

lines of data

device mechanism

first
line

first
line

first page

second page

third page
12-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The paged device is designed to generate printed listings. The form in which data is
physically written on the device is different from that on an unpaged device. Such data
cannot normally be read back again via an unpaged device.
DATA STORAGE
Data is conceived as being “stored” on a device, even though in physical reality the
device may be a line printer, the data becoming inaccessible to the computer.

In HAL/S, data is written on the I/O device in “fields” which can be separated by blank
columns, or by a separator character. The I/O process is stream-oriented: within the
confines of a single I/O statement, the column and line alignment of data fields need be
of no consequence. Data fields may even be broken over line or page boundaries.

12.2 THE WRITE STATEMENT
The WRITE statement is an executable statement for the output of data to a paged or
unpaged I/O device. The form of the WRITE statement is as follows:

In execution, the sequence of events is as follows:
• If the WRITE statement is the first to be executed for the specified device, the

device mechanism positions itself at column 1 of line 1 (on page 1 if the device is
paged). Otherwise, the device mechanism moves down one line from its current
position, and repositions itself at column 1.

• Data fields are written from left to right along the line, each field being separated
from the next by 5 blanks14.

• When the end of a line is reached, the device mechanism moves to column 1 of the
next line and continues writing data fields. Unless the data field is of character
type, the device does not attempt to break it over a line boundary if there is not
room for it at the end of a line. Instead, it begins writing it on the next line.

 |
 | WRITE(n) exp1,exp2,...expn;
 |
1. n is the channel code number, and lies in the range 0 < n < 9† .

† This value may be implementation dependent. See appropriate User’s Manual.

2. Each exp is a HAL/S expression whose value or values are to be written
on the device. The list of expressions may be arbitrarily long.
Alternatively, none need be supplied.

3. Each expression in turn from left to right is evaluated, and its value (or
values) written on the specified device.

14. This value may be implementation dependent. Some implementations may allow the user to vary the value by a
run-time option. See appropriate User’s Manual.
12-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• After finishing execution, the device mechanism is left positioned one column to the
right of the end of the last data field written. Alternatively, if the data field abuts the
end on a line, it is positioned at column 1 of the next line.

• If no expressions are supplied in the WRITE statement, the device merely performs
its initial positioning.

DATA FORMATS
The format of a data field depends on the type of expression whose resultant value is
being written on the device, and on whether or not the device is paged. The formats are,
in general, implementation dependent. Typical formats are shown in Appendix F.

Uni-valued expressions each give rise to a single data field. Multi-valued expressions
each give rise to a series of data fields, which are written on the device sequentially in
the following way:

• an l-vector expression yields l scalar data fields, one for each element. The data
fields are laid out along a line, separated from each other by the standard number
of blanks, and overflowing onto succeeding lines as required.

• an m x n matrix expression yields mn scalar data fields, one for each element. The
matrix is laid out row by row. Each row is written as if it were an n-vector. The first
element of the second and subsequent rows begin a new line, vertically aligned
under the first element of the first row.

• arrays are written array element by array element, completing the requirements for
one element before going on to the next. The last data field of one array element
is separated from the first data field of the next element by the standard number of
blanks, or starting a new line if required.

Examples:

I be a 3-array of integers
with I ≡ (4 6-2)

C be a character with C ≡ ‘VALUE’
B be a Boolean with B ≡ TRUE

then
 |
 | WRITE(6) C,M,I;
 | WRITE(6) B;
 |

would result in output of the following form:

⎡ 0.5 1.5 0.0 ⎤
Let: M be a 3x3 matrix with M ≡ ⎜ 2.5 1.0 1.0 ⎥

⎣ 0.5 0.1 10.0 ⎦
12-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
paged output:[132 columns/line]

Figure 12-3

INITIAL POSITION OF DEVICE
MECHANISM

5.0000000E-01 1.5000000E+00 0.0
2.5000000E+00 l.0000000E+00 l.0000000E+00
5.0000000E-01 9.9999964E-02 l.0000000E+01

INITIAL POSITION OF DEVICE
MECHANISM

NOTES:

single precision scalar data fields are a fixed 14 columns wide.

single precision integer data fields are a fixed 11 columns wide.

FINAL POSITION OF DEVICE
MECHANISM

FINAL POSITION OF DEVICE
MECHANISM

unpaged output: [80 columns/line]

5.0000000E-0l 1.5000000E+00 0.0
2.5000000E+00 1.0000000E+00 1.0000000E+00
5.0000000E-01 9.9999964E-02 1.0000000E+01

6 -2

I

C

VALUE

1

B

x

1

x

1

x

'VALUE’

‘1’

I

4

B

x

C M

M

4 -26
12-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
12.3 THE READ STATEMENT
The READ statement will compile successfully, but will generate incorrect results for BFS
and produce an error in the linkage editor for PASS. The error is not generated for BFS
because it uses a different linkage editor. The user will see the following message in the
map file for PASS:

IEW0264 - TABLE OVERFLOW - INPUT LOAD MODULE CONTAINS TOO MANY
EXTERNAL SYMBOLS IN ESD
This is accepted as a known error due to the fact that neither the BFS or PASS flight
software use either the READ or READALL statements (DR102959, 10/22/90).
The READ statement is an executable statement for the input of data from an unpaged
I/O device. The form of the READ statement is as follows:

In execution, the sequence of events is as follows:
• If the READ statement is the first to be executed for the specified device, the device

mechanism positions itself at column 1 of line 1. Otherwise, the device
mechanism moves down one line from its current position and repositions itself at
column 1.

• Data fields are read from left to right along the line. The device expects each data
field to be separated from the next by a comma and/or at least one blank.

• When the end of a line is reached, the device mechanism moves to column 1 of the
next line and continues reading. Data fields may be broken over the line
boundary.

• After finishing execution, the device mechanism is left positioned one column to the
right of the end of the last data field read in. Alternatively, if the data field abuts the
end of a line, it is positioned at column 1 of the next line.

• If no list of data items is supplied in the READ statement, the device merely
performs its initial positioning.

• If the device reads two consecutive separating commas, then the value of the data
item which would have been changed by reading a data field between the
commas, is instead left untouched. For further clarification, refer to Sec. 10.1.1 of
Language Specification.

 |
 | READ(n) var1,var2,...varn;
 |
1. n is the channel code number, and lies in the range of 0 ≤ n ≤ 9† .

† This value may be implementation dependent. See appropriate User’s Manual.

2. Each var is any type of data item, either subscripted or unsubscripted.
The list of items may be arbitrarily long. Alternatively, none need be
supplied.

3. The specified device reads values into each data item in turn from left to
right.
12-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
DATA FORMATS
The formats of data fields expected by a device on input depend on the type of data item
being read into. The formats are, in general, implementation dependent. Typical formats
are shown in Appendix F.

Uni-valued data items cause single data fields to be read. Multi-valued data items cause
a series of data fields to be read sequentially.

• A vector data item causes one data field per vector element to be read.
• A matrix data items causes one data field per matrix element to be read. Values

are read into the matrix row by row.
• Arrayed data items are read into array element by array element, completing the

read requirements for each element before going on to the next.
Examples:

 Let M be a 3x3 matrix with initial values given

 Let I be a 3-array of integers,
 C be a character data item of maximum length 10,
 B be a Boolean.

Then
 |
 | READ(5) M,I,C;
 | READ(5) B;
 |

using the following data:

Figure 12-4

⎡0.5 1.5 0.0 ⎤
by M ≡ ⎪2.5 1.0 1.0 ⎪

⎣0.5 0.1 10.0 ⎦

INITIAL POSITION OF
DEVICE MECHANISM

1

10

11

14
x

x

‘GOODBYE’
FINAL POSITION OF
DEVICE MECHANISM'1’

0.1,
 0
 0
 -4

 0
 0.1
 0
 -5

 0
 0.1
 -7

 "
12-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
would result in:

I ≡ (-4 -5 -7)
C ≡ ‘GOODBYE’
B ≡ TRUE

12.4 INPUT/OUTPUT FORMATTING
The formatting of I/O embraces two separate concepts:

• the position of data fields;
• the shape of data fields.

Data field positioning is effected by direct movement of the device mechanism.
Commands in the form of pseudo-functions can be inserted into READ and WRITE
statements to cause repositioning of the mechanism.
In terms of input, formatting implies that a device can be made to recognize different
shapes of data fields in a variety of positions. In terms of output, formatting implies that a
device can generate different shapes of data fields in a variety of positions.
The shape of data fields can be controlled using formatted I/O statements. The
equivalent of arbitrary data field shaping can be achieved using HAL/S character string
handling facilities.

DEVICE MECHANISM POSITIONING
HAL/S possesses five pseudo-functions which can reposition a device mechanism
during execution of a READ or WRITE statement. The pseudo-functions are placed in
the READ or WRITE statement as if they were normal data items or expressions.
Three basic rules underlie the operation of the pseudo-functions in positioning device
mechanisms:

• Horizontal and vertical positioning are separately and independently controlled.
• The operations of the pseudo-functions are independent of whether a device is

being used for input or output.

⎡0.1 0.0 0.0 ⎤ ¬this value not changed by READ statement.
M ≡ ⎜0.0 0.1 0.0 ⎜

⎣0.0 0.0 0.1 ⎦

There exists a second type of input
statement called the READALL state-
ment, which can be used to input arbi-
trary strings of characters. This can form
the basis for arbitrary data field shape
recognition on input.
See: Guide/ 22.1.
12-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• An explicit repositioning command taking effect at a particular point in execution
overrides the default movement in the same direction (horizontal or vertical) which
would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the device positioning pseudo-functions
are described below.
HORIZONTAL POSITIONING
The two pseudo-functions TAB and COLUMN serve to position a device mechanism
horizontally on a line. Their form is as follows:

If a TAB or COLUMN pseudo-function appears at the beginning of a READ or WRITE
statement, it overrides the default positioning at column 1.

It does not of itself inhibit movement onto the next line.
If a TAB or COLUMN appears between two expressions in a WRITE statement, it
overrides the standard data field separation.

Successive TABs are cumulative in action.
Example:

If C1, C2, C3 are character data items
with C1 ≡ ‘FIRST’

C2 ≡ ‘SECOND’
C3 ≡ ‘THIRD’

and if channel 6 is a paged device
then

 |
 | WRITE(6)TAB(-50),C1,COLUMN(5),C2,C3,TAB(2);
 |

produces output of the following form:

TAB(α)
COLUMN(β)

1. α and β are integer expressions.
2. TAB(α) moves the device mechanism left or right by the number of

columns specified by α. Negative values of α denote movement to the
left; positive values, movement to the right.

3. COLUMN(β) moves the device mechanism left or right to the column
indicated by β.

4. Values of α or β must not be such as to try to move the device mechanism
left past column 1, or right past the rightmost column†.

† The number of columns on any device (i.e. the logical record length) is assumed constant but
implementation dependent. See appropriate User’s Manual.
12-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 12-5
VERTICAL POSITIONING
The three pseudo-functions SKIP, PAGE, and LINE serve to position a device
mechanism vertically. PAGE can be used only in I/O via a paged device; the behavior of
LINE is different depending on whether a device is paged or unpaged.

SECOND THIRD FIRST

x

15
16

DEFAULT 5
BLANKS

MOVE TO
COLUMN 5

INITIAL
POSITION OF
DEVICE

MECHANISM

TAB LEFT 50
COLUMNS,
MOVE DOWN
1 LINE BY
DEFAULT

x

5 16 30 80

TAB RIGHT 2
COLUMNS

FINAL POSITION OF
DEVICE MECHANISM
12-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The form of the three pseudo-functions is as follows:

If a SKIP, LINE, or PAGE pseudo-function appears at the beginning of a READ or WRITE
statement, it overrides the default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions do not of themselves inhibit the default
horizontal movement to column 1. Neither does their appearance between two
expressions in a WRITE statement affect the standard data field separation.

Successive SKIPs and PAGEs are cumulative in effect.
Examples:
If C1, C2, C3 are character data items

with C1 ≡ ‘FIRST’
C2 ≡ ‘SECOND’
C3 ≡ ‘THIRD’

and if channel 6 is a paged device
then
 |
 | WRITE(6) SKIP(0),C1, LINE(1),C2,C3;
 |

produces output of the following form:

SKIP(α)
PAGE(β)
LINE(γ)

1. α, β and γ are integer expressions.
2. SKIP(α) moves the device mechanism downward by the number of lines

specified by α. The value of α may be zero, in which case SKIP can suppress
a default line advancement. However, α may not be negative (indicating
upward movement). SKIPs over page boundaries are allowed.

3. PAGE(β) moves the device mechanism downward by the number of pages
specified by β. As in SKIP, β may not be negative in value. The relative line
number remains unchanged.

4. For unpaged devices, LINE(γ) positions the device mechanism at line γ. The
value of γ must not be such as to cause upward movement of the device
mechanism.

5. For paged devices, LINE(γ) has a different behavior. Let the device mechanism
be on line l prior to execution of LINE (γ). If γ < l then the device mechanism
moves to line l on the next page. If γ > l then the device mechanism moves to
line γ on the current page. The value of γ must lie in the range 1 ≤ γ ≤ L, where
L is the number or lines per page†.

† The number of lines per page is implementation dependent. See appropriate User’s Manual.
12-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 12-6
Note: If channel 6 were unpaged, the WRITE statement would be illegal since it would

be calling for an upwards movement from line 40 to line 1.
Further,
 |
 | WRITE(6) C1,PAGE(1),C2;
 |

produces the output of the form:

 SECOND THIRD x

40

INITIAL
POSITION OF
DEVICE
MECHANISM

FIRST
x

ADVANCE
TO
LINE 1
OF NEXT
PAGE

FINAL
POSITION
OF
DEVICE
MECHANISM

START IN
COLUMN 1
SKIP (0) INHIBITS
DEFAULT LINE
ADVANCE

DEFAULT
5 BLANKS

1 11

11

60

DEFAULT 5 BLANKS

1

12-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 12-7

x

40FIRST

x

SECOND

FINAL POSITION OF DEVICE
MECHANISM

DEFAULT 5
BLANKS

DEFAULT
MOVEMENT
TO COLUMN
1 LINE 41

MOVE TO
LINE 41
OF NEXT
PAGE

PAGE 5

PAGE 6

1 11

11

41

41

INITIAL
POSITION OF
DEVICE

MECHANISM
12-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
12.4.1 I/O WITH FORMATS
The shape of data fields can be described using FORMAT items. These consist of a
character describing the field type followed by a description of allowable field contents.
FORMAT items are associated with READ and WRITE statements via the keyword IN,
as in:
 WRITE(6) A IN ‘I4’;

which specifies that the variable A be output as an integer four characters in length.

IN is followed by a FORMAT character expression that may be a single FORMAT item,
as shown above, or a list of FORMAT items separated by commas or slashes (/). Slash
is equivalent to SKIP(1), COLUMN(1).

Several elements can be output according to a single format item, as in:
 WRITE(6) (VAR1, VAR2, VAR3) IN ‘I4’;

A list of elements can also be associated with a list of format items, as in:
 READ(5) (V1, V2, CM1) IN ‘F8.2, F10.3/A6’;

which is equivalent to:
READ(5) V1 IN ‘F8.2’, V2 IN ‘F10.3’,SKIP(1),COLUMN(1),CM1 IN
‘A6’;

HAL/S FORMAT items and their meanings are as follows.
 Item Meaning
 I INTEGER
 F SCALAR
 E SCALAR (with exponents)
 U INTEGER, SCALAR, or CHARACTER
 A CHARACTER
 X blanks on output, skips on input
 P INTEGER and SCALAR
 Quote string CHARACTER on output, skips on input
Each of these is described in more detail later.

When a data item is processed, the FORMAT character expression is processed until an
I, F, E, U, A or P item is found. Slashes, I/O control, X items, and quote strings are
processed as they occur. The next data item is processed similarly except that scanning
of the FORMAT character expression resumes where it last stopped. Array items are
treated element by element.
A repeat factor can be used to abbreviate FORMAT expressions.
For Example:
 ‘5I4’

is equivalent to:
 ‘I.4, I.4, I.4, I.4, I.4’
12-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Parentheses may be placed around several FORMAT items and the repeat factor made
to apply to all.
For Example:
 ‘2(I4/)’

is equivalent to:
 ‘I4/I4/’

If the end of a FORMAT character expression is reached before an associated list of data
items has been exhausted, one of two actions is taken.

1. If the format character expression contains no parentheses, scanning resumes
from the beginning.

2. Otherwise, scanning resumes from the open parenthesis corresponding to the last
closed parenthesis. A repetition factor, if present, is taken into account.

For Example:
 WRITE(6) ARRAY_X IN ‘10F8.2/’;

 (1 to 100)

produces 10 rows of 10 figures each.

For WRITE statements, a sign is printed only for negative quantities. The number is
right-justified in the output field. If the output field is too small, an error message is issued
and asterisks printed.
For Example:

DECLARE A INTEGER INITIAL(3)
 WRITE(6) (A,A+8,A-4,A+99) IN ‘I2’

produces:
b311-1**

with an overflow error.

IN
1. n is an unsigned positive integer giving the field length.
2. Implicit INTEGER/SCALAR conversion is allowed.
3. Variables of type CHARACTER or BIT cannot be used with I

format.

Fn Fn.d
 En En.d
1. n is an unsigned positive integer giving the field length.
2. d is an unsigned positive integer giving the number of decimal places.
3. Only INTEGER or SCALAR variables or expressions can be read or

written with F and E FORMATS.
12-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
For READ statements, there is no difference between the E and F FORMAT items. The
input may be signed. If it contains a decimal, this overrides the d specification.
Otherwise, d gives the number of decimal digits.

An exponent of the form E+K may be supplied; either E or + may be omitted. Blanks are
allowed preceding the sign, the first digit, E, +, and the first digit of the exponent.

For WRITE statements with F FORMAT, the string printed is:
 -aaaa.bbb
 123123
 m n

n is the second number in the FORMAT. m is determined by the magnitude of the
quantity to be printed. The minus sign is printed only if the quantity is negative.

If there is room enough, a zero is added to the left of the decimal if there are no other
digits there. Any additional positions are filled with blanks from the left.
For WRITE statements with E FORMAT, the quantity printed is:
 -a.bbbE±cc
 123
 n

The minus is printed only if the quantity is negative. One significant digit is printed to the
left of the decimal point. This is zero if the quantity is zero. n is taken from the FORMAT
item.

For both F and E FORMAT items, an insufficient field length results in an error message
and the printing of asterisks.
Examples:
 READ(5) A IN ‘F6.3’

interprets:
b12.34 as 12.34
b b1234 as 1.234
b.1234 as .1234

 READ(5) A IN ‘E9.1’

interprets:
b b 246E+14 as 24.6E+14

 WRITE(6) A IN ‘F6.2’

writes:
98.672 as b98.67

 WRITE(6) A IN ‘E9.1’

writes:
24.6E+14 as b b 2.5E+15
12-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
For READ statements, if n exceeds the declared maximum length of the variable, the
leftmost characters of the field are retained. Otherwise, the current length of the
CHARACTER variable is set to n.

For WRITE statements, if n exceeds the current length of the variable, the string is
padded with blanks on the left. Otherwise, the leftmost characters are written to fill the
field.
Examples:
 DECLARE A CHARACTER(5)
 READ(5) A IN ‘A4’

reads the input ABCDEF as ABCD and set the current length of A to 4.
 READ(5) A IN ‘A6’

reads the input ABCDEF as ABCDE since the maximum length of A is 5.
 WRITE(6) A IN ‘A8’

writes the value ABCD as b b b b ABCD.
 WRITE(6) A IN ‘A3’

would write the value ABC.

Examples:
DECLARE ARRAY(10,2) INTEGER, HEIGHT_AND_WEIGHT;

 WRITE(6) (‘HEIGHT’, ‘WEIGHT’, HEIGHT_AND_WEIGHT IN ‘2U7/’;

would produce a table such as:

An
1. n is an unsigned positive integer giving the field length.
2. A format items are used for CHARACTER data only.

Un
1. n is interpreted as follows.

Data Type Interpretation of Un
CHARACTER An
INTEGER In
SCALAR En.d where d=n-7

2. U (undefined) is used for any of the three data types given above.

HEIGHT WEIGHT
61 120
70 152
. .
. .
. .

56 108
12-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 WRITE(6) ANS IN ‘ “ANSWER=”,I2’;

produces output of the form
 ANSWER = 21

FORMAT I/O WITH BIT VARIABLES
There is no FORMAT Item specifically for BIT variables. Instead, the BIT and
CHARACTER conversion functions (see 21.3 and 21.4) may be used with CHARACTER
variables.
For Example:
 DECLARE BITS BIT(8) INITIAL HEX ‘1F’;
 WRITE(6) CHARACTER (BITS) IN ‘A8’;
 @BIT

produces:
 00011111

For READ statements, BIT values must be read into CHARACTER variables and the BIT
conversion function applied.

Xn
1. n is an unsigned positive integer giving the

number of blanks on output, skips on input.
2. Xn is equivalent to TAB(n).

 “ccccc” or ‘ccccc’
1. c is a character.

 P ‘picture’
1. Picture establishes a format that mixes character and numeric data.
2. Numeric data fields (INTEGER and SCALAR) are indicated by forms such

as:
P$$$
P$$$.

P ANS = $$$.$$$
P$$$.$$$*$

where ‘.’ places the decimal and * places an exponent.
3. The P format item runs from the P to the first ’,’ or ’/’ encountered or the

end of the FORMAT character string. All characters are printed except for
$ and *.

4. For READ statements, consecutive ‘$’, ‘.’, and ‘*’ characters define a field
of the same length. Decimals in the input field take precedence over
decimals in the FORMAT.
12-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
12.5 DEVICE ATTRIBUTES
In HAL/S, devices have been characterized as either paged or unpaged. In the absence
of any specific direction on the part of a user, the following rules determine whether a
device being used is paged or unpaged.

• If only WRITE statements appear in a compilation for a given channel, then the
device on that channel will be paged.

• If only READ statements appear, or if both READ and WRITE statements appear
for a given channel, then the device on that channel will be unpaged.

The user may specifically direct certain channels to be paged or unpaged, overriding
these rules15.

15. See the User’s Manual for a given implementation.

HAL/S contains a FILE statement by which
random-access I/O may be effected.
See: Guide/22.2.
12-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
13.0 REAL TIME PROGRAMMING - I
So far the Guide has made no reference to the dynamic properties of HAL/S programs.
Clearly, any program will take a finite time to execute but none of the constructs hitherto
described depend on any sense of time for their operation.
However, the HAL/S language does contain constructs which depend on a sense of time
for their operation. This is what is meant by the statement that HAL/S is a “real time
programming language”. In other words, HAL/S programs can be written which, when
executed, cause operations to be carried out at desired points or during desired intervals
in “real time”.

In some implementations of HAL/S, “real time” may be just what the phrase implies, real
clock time. In others, the “real time” may be simulated in some way by the operating
environment of a HAL/S program: in this case, it can be referred to as “pseudo-real time”.

This section of the Guide explains the basic HAL/S concepts of real time programming,
and describes some of the more elementary real time programming language forms.

13.1 HAL/S REAL TIME CONCEPTS
The true HAL/S concept of a program at run time is an entity executing over some
interval in “real time”, directed and controlled by a Real Time Executive (RTE). At the
outset, the RTE begins execution of the program. When program execution is
completed, control is returned to the RTE. In HAL/S terminology, the dynamic
counterpart of the static program block, which is executing under RTE control, is called a
“real time process’’.

MULTI-PROCESSING IN HAL/S
Multi-processing is the simultaneous handling of more than one “real time process”.
With most present-day machines, “simultaneous” really means interleaved, because
most machines can at one time only support the execution of a single machine
instruction sequence. However, this distinction has no significance at the higher level of
the HAL/S language.

The RTE of HAL/S can simultaneously handle an arbitrary1 number of processes created
by the user. A number is attached by the user to each process, called its “priority”. The
RTE maintains processes in a “process queue” ordered by priority, and always
endeavors to execute the processes in order of priority, highest first.
The HAL/S program itself, beginning execution under the RTE, constitutes the first or
“primal process”. All other processes are brought into existence by the execution of
SCHEDULE statements coded into the program. Just as the primal process has a static
counterpart, which is the program block coded by the user, so must the other processes
have their static counterparts. These are so-called task blocks, which are coded inside

1. See the User’s Manual for the maximum number supported in any given implementation.
13-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
the program block in a very similar way to procedure blocks. Each time a task block is
invoked by execution of a SCHEDULE statement, a new process is created and queued
by the RTE.

STATES OF A PROCESS
It is now possible to represent the behavior of the RTE by a more formal description of
the possible states2 in which a process can exist. This in turn will introduce other HAL/S
constructs for controlling the activities of the RTE.

A process can be in either of the following two major states at a given time:
• ACTIVE STATE: a process is in an active state when it exists in the RTE’s process

queue. The state actually comprises three substates or minor states in any one of
which an active process may be at a given time.

• INACTIVE STATE: a process is defined for completeness as being in the inactive
state if it does not exist in the process queue.

The minor states of an active process are as follows:
• EXECUTING: an active process is “executing” when it has actually been put into

execution by the RTE, operating on the priority principle already described. The
number of processes which can be in this state simultaneously implementation
dependent.3

• READY: an active process is “ready” if it is available for execution, but higher
priority processes in execution are currently barring it. The occurrence of a
process first entering the ready state will be called its “initiation’’.

• WAITING: an active process is “waiting” if it is neither ready nor executing. Some
condition set up by the user prevents it being available for execution by the RTE.

When a process is created by invoking a task block by a SCHEDULE statement, it
makes a transition from the inactive state to an active state. It is entered into the process
queue in either the ready or the waiting state, depending on the form of the SCHEDULE

A number of programs, independently compiled, can be
brought together at run time. One of them is chosen by the
user to start execution as the primal process. Processes
can be generated from the others by invoking them with
the same form of SCHEDULE statement. Any of the
programs are allowed to contain task blocks from which
more processes in turn can be created.

See: Guide/23.1-23.3.

2. The states to be defined do not correspond one-to-one with the RTE states described in the Language Specification
document. The latter are defined for the convenience of the formal description of language constructs. The former
are defined with user convenience in mind.

3. In most implementations it is likely to be 1, but see the User's Manual for a given implementation.
13-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
statement. If it entered in the ready state, then depending on its priority, it may
immediately be elevated to the executing state.

A process is caused to make a transition from an active state to the inactive state (or
removed from the process queue) by a TERMINATE statement. The process is said to
have been “terminated”.

The priority of an active process may be changed by an UPDATE PRIORITY statement.

A process may be forced into the waiting state by execution of a WAIT statement.
The statements outlined above are among the real time programming language forms to
be described later in this section.

PROCESS SWAPPING & BREAKPOINTS
A process swap is a pair of state transitions in which one process leaves the executing
state, and a second enters it from the ready state. The process swap may occur
because the first process has been forced into the inactive state or the waiting state, or
because the second process has a higher priority than the first.
The HAL/S language itself makes no assumptions on where process swapping can
occur. However, most implementations, depending on the object machine
characteristics, limit process swapping to given places in the HAL/S code sequences
under execution by the RTE. These places are called “breakpoints”. The determination
of breakpoints is a function of the HAL/S compiler for a given implementation, and no
language construct exists to modify their existence4.

The effect of breakpoints is to superimpose a kind of time granularity on the operation of
the RTE.
PRIORITY SCALES
The number specifying the priority P of a process is an integer in the range:

 0 < P < 2555

The primal process is assigned a priority of 505 by the RTE on beginning execution.

PROCESS DEPENDENCY
Suppose that there are two processes, A and B, and that A creates process B during the
course of its execution. At the time of creation, B may be specified to be either
“dependent” on or “independent” of A . If B is dependent, it means that it depends for its
existence on the existence of A. If B is independent, then A may cease to exist without
affecting B’s existence.
However, an overriding rule is that all other processes are always dependent on the
primal process for their existence.

4. As an example, in the HAL/S-360 implementation, breakpoints may occur at the beginning, end, or middle of an
executable statement.

5. These values are, however, implementation dependent. See appropriate User’s Manual.
13-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The consequences of dependency will be seen when the flow of execution through
program and task blocks is described in Section 13.3, and again when the TERMINATE
statement is introduced in Section 13.5.

13.2 TASK BLOCK DEFINITIONS
A task block is a static block of code interior to a program, from whence processes can
be created by means of the SCHEDULE statement. Task blocks may only be defined at
the program level, and not nested inside procedure or function blocks defined in a
program. This is illustrated as follows:

Figure 13-1
Task block definitions are similar to program block definitions as described in Section 3,
and have similar opening and closing statements.

RELATIVE POSITION OF TASK DEFINITIONS
Statements invoking a task block should normally follow its block definition.

This rule is not absolute - it can be circumvented
by the use of a task declaration statement.
See: Spec./4.6.

Region where Task
Blocks are legal
and may be nested.

Program

Task Block

Procedure Block

Nested Function
Block
13-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
TASK OPENING
The statement opening a task block takes the form:

TASK CLOSING
The statement closing a task block takes the form:

Example:

LOCAL DATA DECLARATIONS
Local data can be declared in a task block in exactly the same way as it is declared in a
procedure or function block. The declarations appear after the task opening statement,
and before the first executable statement of the block. The forms of the declarations
have been described in Section 4.

 |
 | label: TASK;
 |

label is any legal identifier name, and constitutes the name
of the task block.

 |
 | CLOSE label;
 |

The identifier label is optional.
If supplied, it must be the name of the task block.

|

| DISPLAY: TASK;

| ⎫

| ⎬ task body
| ⎭

| CLOSE DISPLAY;

|

13-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
general positioning -

particular instance -

13.3 FLOW OF EXECUTION IN PROGRAM AND TASK BLOCKS
The flow of execution through program and task blocks is subject to a new interpretation,
based on the concepts of real time programming introduced in this section. Programs
and tasks are treated together since their representations at run time are in both cases
real time processes.

|
| DISPLAY: TASK;
| ⎫
| ⎬ local data declarations
| ⎭
|
| ⎫
| ⎬ executable statements
| ⎭
| CLOSE DISPLAY;
|

|
| DISPLAY: TASK;
| DECLARE S CHARACTER(10), ⎫
| I INTEGER; ⎬⎯⎯ local data
| ⎭
| .
| .
| .
| CLOSE DISPLAY;
|

13-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Execution of a process begins with the first executable statement in the corresponding
static program or task block. It continues, and if not terminated by some other process,
ends in one of the following ways:

• by execution of a TERMINATE statement terminating itself;
• by reaching the CLOSE statement of the block;
• by execution of a RETURN statement in the block.

If execution ends by self-termination, the process goes into the inactive state and is
removed from the process queue. All dependents of the process are treated likewise.

If execution ends on a CLOSE or RETURN statement, the process goes into the inactive
state directly only if it has no dependents. Otherwise, it goes into a waiting state until the
dependents have in their turn terminated.

FORM OF RETURN STATEMENT
The form of RETURN statement for programs and tasks is the same as for procedures:

13.4 THE SCHEDULE STATEMENT
The SCHEDULE statement is an executable statement causing a new process to be
placed in the process queue, or “initiated’’. The SCHEDULE statement specifies a task
block from which the process is to be created, and the priority which it is to be given. A
condition for the initiation of the process can be supplied.
Only one process derived from a given task block may be active at any given time.

The form of the SCHEDULE statement varies, depending on whether it specifies
immediate, or delayed initiation (transition to the ready state).
IMMEDIATE INITIATION
The following variant of the SCHEDULE statement is the simplest. It causes the creation
of a process which is placed in the process queue in the ready state. The process is thus
available for execution immediately.

 |
 | RETURN;
 |
13-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | SCHEDULE DISPLAY PRIORITY(100) DEPENDENT;
 | SCHEDULE RECOVER PRIORITY(255);
 |

DELAYED INITIATION
The following form of the SCHEDULE statement causes a process to be placed in the
process queue in the waiting state. The process is transferred to the ready state on a
specified time criterion being met. There are two variants, each with a different time
criterion.

• INITIATION after some duration.

 |
 | SCHEDULE label PRIORITY (α) DEPENDENT;
 |
1. A process is created from the task block label and placed in the process

queue in the ready state. The process created is also known by the name
label.

2. α is an integer expression specifying the priority of the newly-created
process. It must lie in the legal range for a given implementation.

3. The keyword DEPENDENT is optional. Its presence denotes the
dependency of the process created on the process executing the
SCHEDULE statement. In its absence, the processes are independent.

 |
 |SCHEDULE label IN interval PRIORITY(α) DEPENDENT;
 |
1. A process called label is created from the corresponding task block and

placed in the process queue in the waiting state.
2. PRIORITY(α) and DEPENDENT have the same meanings as described

in the previous form of SCHEDULE statement.
3. The phrase IN interval indicates that the process is to be put in the

ready state after a specified interval in the waiting state. interval is a
scalar expression whose value specifies the duration in seconds.

4. If the value is negative or zero, the process is put in the ready state
immediately.
13-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• INITIATION at a given time.

Examples:
 |
 | SCHEDULE AT 1.25E4 PRIORITY(I+5);
 | SCHEDULE IN S+15.5 PRIORITY(20);
 |

13.5 OTHER REAL TIME FEATURES OF HAL/S
Three other real time programming statements which have already been mentioned are
now described. These are the TERMINATE, WAIT, and UPDATE PRIORITY statements.
Certain other useful constructs are also introduced.

 |
 | SCHEDULE label AT time PRIORITY(α) DEPENDENT;
 |
1. A process called label is created from the corresponding task block, and

placed in the process queue in the waiting state.
2. PRIORITY (α) and DEPENDENT have the same meanings as

described in the previous form of SCHEDULE statement.
3. The phrase AT time indicates that the process is to be put in the ready

state at a specified real time. time is a scalar expression whose value
specifies the time in seconds.†

† The real time origin is not specified by the language. The origin is normally coincident with the
initiation of the primal process. Some implementations allow its value to be preset at run time. See
appropriate User's Manual.

4. If the indicated time is in the past, the process is placed in the ready
state immediately.

SCHEDULE statements can also specify the
cyclic execution of a process until a stopping
criterion is met. An explicit specification of the
interval between cycles can also be given.
See: Guide/ 23.4 & 23.5.
13-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
TERMINATE STATEMENT
A process is forced to the inactive state (removed from the process queue) by means of
the TERMINATE statement. Its form is shown below:

In order to make independent processes truly independent, HAL/S places an added
restriction on the operation of the TERMINATE statement. A process is only allowed to
use it to terminate itself or its dependents.

Note that when a process is terminated by execution of a TERMINATE statement, all its
dependents are automatically terminated at the same time.

Examples:
 |
 | TERMINATE; - self termination
 | TERMINATE BETA; - termination of dependent
 |

If a number of processes are to be terminated simultaneously, the TERMINATE
statement can specify a list of process names:
 |
 | TERMINATE ALPHA,BETA,GAMMA;
 |

WAIT STATEMENT
The WAIT statement is used to force the process executing it into a waiting state until
some condition is met, whereupon it returns to the ready state. Three forms, each with a
different condition, are described below.

• WAIT for a duration.

 |
 | TERMINATE label;
 |
1. The appearance of label is optional. If present, the statement terminates

an active process called label.
2. If label is absent, then the process executing the TERMINATE statement

is terminating itself.

 |
 | WAIT interval;
 |
1. The statement indicates that the process is to be placed in the waiting

state for a specified duration.
2. interval is a scalar expression specifying the duration in seconds.

A negative or zero value results in the process not leaving the ready state.
13-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• WAIT until some time.

• WAIT for dependents.

Examples:
 |
 | WAIT UNTIL DELTA_T+15E2;
 | WAIT S/2;
 | WAIT FOR DEPENDENT;
 |

UPDATE PRIORITY STATEMENT
The UPDATE PRIORITY statement is used to change the priority of an active process.
Its form is:

Examples:
 |
 | UPDATE PRIORITY TO 16;
 | UPDATE PRIORITY TO I+20;
 |

 |
 | WAIT UNTIL time;
 |
1. The statement indicates that the process is to be placed in the waiting

state until some given time.
2. time is a scalar expression specifying the time of return to the ready state,

in seconds†.

† See the discussion on the SCHEDULE statement in Section 13.4 for a footnote remarking on the real time
origin.

3. Specification of a time in the past results in the process not leaving the
ready state.

 |
 | WAIT FOR DEPENDENT;
 |
1. The statement indicates that the process is to be placed in the waiting until

all its dependent processes have terminated.
2. If there are no dependents, the statement has no effect.

 |
 | UPDATE PRIORITY label TO α;
 |
1. The process whose priority is to be changed is specified by label.
2. The name label is optional. If omitted, the process executing the

statement is indicated.
3. α is an integer expression whose value indicates the new priority value to

be assigned.
13-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Since the RTE operates on a basis of priority, apparently a user could control the
execution of a desired set of processes by manipulating their relative priorities. Although
this is entirely possible, it is not recommended since the behavior of such a priority-
driven scheme would depend on how many processes an RTE could bring into the
executing state simultaneously, which is an implement-dependent figure.

REAL TIME BUILT-IN FUNCTIONS
Two built-in or library functions are of utility in constructing real time programs:

MAJOR STATE INDICATION
There exists a way of finding out whether the current state of any process is either active
or inactive (i.e. whether or not it exists).
The name of the process can be used as if it were a Boolean variable. The following
tables shows the correspondence between state and truth value.

Example:
to write a message if a process ALPHA exists -
 |
 | IF ALPHA THEN WRITE(6) ‘ALPHA IS ACTIVE’;
 |

13.6 A SIMPLE REAL TIME PROGRAM
The utility and importance of the constructs defined in this section can only be properly
understood by presenting an actual example of a real time program.
The following example is given in the form of a problem and its solution.
PROBLEM
The problem is to write a program which, when run on a computer facility with remote
interactive terminals, will aid users in electronic circuit design (to take an arbitrary
example). A user begins each design session by logging onto the facility at a terminal,
and invoking execution of the circuit design program.

The program is to be set up so that, at the outset, the user may specify the desired
duration of his session. The program is then to interrupt the user’s calculations every 10
minutes and remind him how much time he has used. At the expiration of the specified
session duration, the program is to allow the user 10 minutes more and then terminate
the session.

Function Comments
RUNTIME returns the current value of real time as a scalar, in seconds.
PRIO returns the priority of the process invoking the function as an

integer.

State Value
ACTIVE TRUE

INACTIVE FALSE
13-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SOLUTION
Only the overall features of the program from the real time programming standpoint are
illustrated here. The actual circuit design algorithms are of no consequence.

Execution of the circuit design program implies the existence of three real time
processes.

• a SUPERVISOR process controlling the two others, which determines the session
duration, and makes arrangements to terminate the session at its expiration. Most
of the time this process will be in the waiting state.

• a TIMER process which informs the user how much time he has used every 10
minutes. This process is also mostly in the waiting state, temporarily being in
execution every 10 minutes.

• a CALCULATOR process which actually interacts with the user in his design
session. This process is executing most or all of the time.

The following diagram summarizes the activities of the three processes.

Figure 13-2
Clearly, in order for TIMER to interrupt CALCULATOR reliably every 10 minutes, it must
have a higher priority than CALCULATOR. Likewise, SUPERVISOR should be of higher
priority than CALCULATOR. The relative priorities of SUPERVISOR and TIMER do not
matter since TIMER is mostly in the waiting state anyway. The table below shows
suitable priorities for each of the three processes.

process priority
SUPERVISOR 50

TIMER 50
CALCULATOR 25

2. schedule TIMER and
CALCULATOR processes

3. wait till end of session
4. signal 10 minutes more

6. signal end of session and
terminate

1. determine session length

5. wait 10 minutes

START

 SUPERVISOR

CALCULATOR

interactive
execution of
design algorithms

1. wait 10
minutes

2.
signal
time
used

TIMER
13-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The HAL/S program corresponding to these processes is as shown below:

Figure 13-3

The constructs described above enable real time processes
to be manipulated according to time criteria. Other con-
structs enable their manipulation according to “event” crite-
ria. HAL/S “events” are Boolean-like data types whose
values are accessible to the RTE. Their values can be set
by the user, thus indirectly controlling the real time process
states.
See: Guide/24.
The problem of controlling the sharing of data by two or
more processes is also important.
See: Guide/26.4.

DECLARE S SCALAR;
SUPERVISOR: PROGRAM;

CLOSE TIMER;

.

.

.

.
TIMER: TASK;

DO WHILE TRUE;
WAIT 600;
WRITE(6) `YOU HAVE USED '| |RUNTIME/60| | ` MINS.';

END;

SUPERVISOR will be the
primal process, initiated
by the RTE at time 0.0
with priority 50.

TIMER task block

infinite loop: wait 600
seconds and signal time
used

.

.

.

.
CALCULATOR: TASK; CALCULATOR task block

design algorithms

CLOSE CALCULATOR;

first executable
statement of program

.

.

.

.
WRITE(6) 'TYPE SESSION DURATION IN MINS.';
READ(5) S;
SCHEDULE TIMER PRIORITY(50);
SCHEDULE CALCULATOR PRIORITY(25);
WAIT S 60;
WRITE(6) 'TIME UP-10 MINS. MORE ALLOWED';
WAIT 600;
WRITE(6) 'END OF SESSION';
TERMINATE;

CLOSE SUPERVISOR;

determine session
duration

Schedule TIMER &
CALCULATOR processes

wait for
session duration

allow 10 minutes
more
signal end of
session and
terminate
13-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
14 (DELETED)
14-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
14-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
15.0 COMPOOLS AND COMSUBS
The HAL/S program was represented in Part I of this Guide as a totally self-contained
unit. In particular, the program was said to contain declarations of all its own data, and
definitions of all the procedure and function blocks it needed to invoke.
However, a HAL/S program may also reference data declared externally, and invoke
procedure or function blocks declared externally1. This ability is of considerable
importance in the creation of large programs by teams of programmers because it
facilitates the separate and parallel development of the programs’ constituent algorithms.
Further advantages will become apparent during the renewed discussion of real time
multi-processing in Section 23.

In HAL/S, data external to a program is defined in a block called a COMPOOL.
Externally defined procedures and functions are collectively called COMSUBs.

15.1 RELATIONS BETWEEN PROGRAMS, COMPOOLs AND COMSUBs
The compools and comsubs referenced by a program are themselves separately
compoolable entities. For example, when a program invokes an external procedure,
which shares with it the use of data in a single compool, then a total of three separate
compilation units is involved2. This situation is shown below:

Figure 15-1
Section 3 of the Guide described one kind of compilation unit - the program block - but
there are four kinds of compilation units in the HAL/S language:

• PROGRAM, the only independently executable compilation unit;
• EXTERNAL PROCEDURE, callable from a program or any other comsub;

1. External procedures and functions in HAL/S are similar to the FUNCTIONS and SUBROUTINES of
 FORTRAN. External data roughly corresponds to the COMMON data of FORTRAN.

2.The object modules resulting from their compilation have to be “link-edited" to produce a single executable
 load module.

PROGRAM

invocation
and return EXTERNAL

PROCEDURE

COMPOOL

data
references
15-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• EXTERNAL FUNCTION, also callable from a program or any other comsub;
• COMPOOL, defining data shared by programs and comsubs, but containing no

executable code.

The HAL/S language insists upon a full declaration of all data, and invariably checks the
compatibility of function and procedure definitions with their invocations. These
precautionary measures are specifically extended to compool data and comsubs through
the use of so-called “block templates”.
Every program or comsub which references compools or other comsubs must be
provided with block templates of the compilation units referenced.

• COMPOOL TEMPLATE - contains data declarations identical with those of the
compool itself, so that the referencing compilation unit possesses a complete
description of the data.

• EXTERNAL FUNCTION TEMPLATE - contains an input parameter list identical
with that of the external function itself, so that the compatibility of its invocations by
the referencing compilation unit can be verified.

• EXTERNAL PROCEDURE TEMPLATE - contains input and assign parameter lists
identical with those of the external procedure itself, so that the compatibility of its
invocations by the referencing compilation unit can be verified.

The required block templates are included in the compilation units which reference the
corresponding compools and comsubs. For example, in the case already described of a
program invoking an external procedure and sharing data in a single compool, the
situation is as shown:
15-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 15-2
To summarize, when the term “compilation unit” was introduced in Section 3 of the
Guide, its meaning was the same as “program block” because the existence of compools
and comsubs had not been considered. Now it is apparent that a compilation unit does
not necessarily contain executable code (it may be a compool), and neither is it
necessarily just a single block of executable code (one or more templates may be
included in it).

In HAL/S, block templates are designed to eliminate incompatibility between separately
complied modules as a source of software unreliability. It may be objected however that
no language construct can force the properties of a compool or comsub to be reflected
correctly in the corresponding block template3. The use of correct templates is generally
insured by use of a software management scheme. Part of such a scheme would be the
automatic generation of block templates during compilation of the corresponding
compools and comsubs.

3.Neither can it ensure that the object modules “link-edited” together are the correct versions.

COMPOOL
TEMPLATE

EXTERNAL
PROCEDURE

TEMPLATE

PROGRAM

program
compilation unit

data
references

COMPOOL
TEMPLATE

EXTERNAL
PROCEDURE

COMPOOL

external
procedure

compilation unit

invocation
and

return
15-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
15.2 THE COMPOOL BLOCK
The compool block has been introduced as an external block of data accessible to
programs and comsubs with which the appropriate block template is included. It consists
of opening and closing statements delimiting a sequence of data declarations.
COMPOOL OPENING
The statement opening a compool block takes the form:

COMPOOL CLOSING
The compool block is closed with the statement:

Example:

 |
 | label: COMPOOL;
 |
1. label is any legal identifier name, and constitutes the name of the

block.

 |
 | CLOSE label;
 |
1. The identifier label is optional.
2. If label is supplied, it must be the label supplied on the opening

statement of the block.

|

| COMMON: COMPOOL;

| ⎫

| ⎬ data declarations
| ⎭

| CLOSE COMMON;

|

15-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
COMPOOL DATA DECLARATIONS
Declaration of data in a compool differs in no respect from data declarations in a program
as described in Section 4. In particular, there is no objection to the initialization of data in
a compool.
Example:
 |
 | POOL: COMPOOL;
 | DECLARE VZERO VECTOR INITIAL(0);
 | DECLARE INTEGER DOUBLE, I, J, K;
 | DECLARE CC CHARACTER(10);
 | CLOSE POOL;
 |

Note that REPLACE statements, which are placed together with declarations, can also
appear in a compool, and thus affect any program or comsub with which the
corresponding compool template is included. Simple REPLACE statements were
described in Section 5.

15.3 EXTERNAL PROCEDURE AND FUNCTION BLOCKS
Comsubs have been introduced as external function and procedure blocks callable from
programs or other comsubs.

The forms of external function and procedure blocks are identical with ordinary function
and procedure blocks, whose definitions were described in Section 11. Likewise, they
are invoked in a manner identical with that described in Section 11.

15.4 BLOCK TEMPLATES
Block templates indicate the properties of compools and comsubs to the program or
comsub referencing them. Their form is similar to the corresponding compool or
comsub.
COMPOOL TEMPLATES
A compool template is identical with its corresponding compool block except that the
opening statement is modified by the keyword EXTERNAL:

 |
 | label: EXTERNAL COMPOOL;
 |
1. label is the name of the corresponding compool block.
15-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
compool block:
 |
 | POOL: COMPOOL;
 | DECLARE VZERO VECTOR INITIAL(0);
 | DECLARE INTEGER DOUBLE, I, J, K;
 | DECLARE CC CHARACTER(10);
 | CLOSE POOL;
 |

corresponding template:
 |
 | POOL: EXTERNAL COMPOOL;
 | DECLARE VZERO VECTOR INITIAL(0);
 | DECLARE INTEGER DOUBLE, I, J, K;
 | DECLARE CC CHARACTER(10);
 | CLOSE POOL;
 |
EXTERNAL PROCEDURE TEMPLATES
An external procedure template differs from its corresponding procedure block in the
following respects:

• the body of the block is empty except for declarations describing the attributes of
input and assign parameters;

• the opening statement is modified as shown below by the keyword EXTERNAL.

Example:
external procedure:

 |
 | FIXIT: PROCEDURE(INCR) ASSIGN(RESULT);
 | DECLARE RESULT VECTOR(3),
 | INCR VECTOR(3);
 | DECLARE DELTA CONSTANT(1.5E-4);
 | RESULT = RESULT + DELTA INCR;
 | CLOSE FIXIT;
 |

 |
 | label: EXTERNAL PROCEDURE(i1,i2,...)ASSIGN(a1,a2,...);
 |
1. label is the name of the corresponding procedure block.
2. i1,i2,...and a1, a2,... are lists of input and assign parameters

respectively, identical with those in the corresponding procedure
block.
15-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
corresponding procedure template:
 |
 | FIXIT: EXTERNAL PROCEDURE(INCR) ASSIGN(RESULT);
 | DECLARE RESULT VECTOR(3),
 | INCR VECTOR(3);
 | ←---
 | CLOSE FIXIT; |
 | |
 | no local data or executable code
Sometimes REPLACE statements (see Section 5), and structure template definitions
(see Section 19) are required to fully define declarations of parameters. It is therefore
legal for these to appear in procedure templates.
EXTERNAL FUNCTION TEMPLATES
An external function template differs from its corresponding function block in the
following respects:

• the body of the block is empty except for declarations describing the attributes of
input parameters;

• the opening statement is modified as shown below by the keyword EXTERNAL.

Example:
• external function:

 |
 | SWITCH:FUNCTION(ARG) BOOLEAN;
 | DECLARE ARG SCALAR DOUBLE;
 | IF ARG<0 THEN RETURN FALSE;
 | RETURN TRUE;
 | CLOSE SWITCH;
 |

• corresponding function template:
 |
 | SWITCH:EXTERNAL FUNCTION(ARG) BOOLEAN;
 | DECLARE ARG SCALAR DOUBLE;
 | CLOSE SWITCH;
 |

Function templates, like procedure templates, may also contain REPLACE statements
and structure template definitions.

 |
 | label: EXTERNAL FUNCTION(i1,i2,...) attributes;
 |
1. label is the name of the corresponding function block.
2. i1, i2,... is a list of input parameters identical with those in the

corresponding function block.
3. attributes defines type, precision, and size attributes, of the

corresponding block.
15-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
EXAMPLE OF USE
The example given below is a restatement of the example used twice in Section 15.1 in
terms of actual HAL/S statements. It shows a program calling an external procedure,
and sharing compool data with it.

Figure 15-3

SUB: PROCEDURE (K);
 DECLARE K INTEGER;
 DO CASE K;
 V = V S;
 V = 0;
 DO;
 S = S / 2;
 V = V S;
 END;
 END;
CLOSE SUB;

data references

external
procedure
compilation
unit

program
compilation unit

external
procedure
template

DATA: EXTERNAL COMPOOL;
 DECLARE I INTEGER,
 S SCALAR,
 V VECTOR (3);
CLOSE DATA;

DATA: EXTERNAL COMPOOL;
 DECLARE I INTEGER,
 S SCALAR,
 V VECTOR (3);
CLOSE DATA;

compool
templates

SUB: EXTERNAL PROCEDURE (K);
 DECLARE K INTEGER;
CLOSE SUB;

data references

DATA: COMPOOL;
 DECLARE I INTEGER,
 S SCALAR,
 V VECTOR (3);
CLOSE DATA;

MAIN: PROGRAM;
 READ (5) S, V;
 .
 .
 .
 CALL SUB(I);
 .
 .
CLOSE MAIN;

Invocation
and return

compool
compilation
unit
15-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
16.0 ADDITIONAL DATA INITIALIZATION FORMS
This Section supplements the discussion in Section 4.3 on initialization by introducing
the following topics:

• the implied repeated use of initial lists;
• other ways of reducing the length of an initial list;
• partial initialization of a data item;
• control of the actual occurrence of initialization.

16.1 IMPLIED INITIAL LIST REPETITION
Section 4.3 stated that for single-valued data items, only one literal value can be supplied
in an INITIAL/CONSTANT specification. It stated that for multi-valued data items, two
alternatives are possible:

• The number of literal values specified in the INITIAL/CONSTANT specification
matches the total number of elements implied by the data declaration;

• only one literal value is supplied, in which case that same initial value is given to all
elements implied by the data declaration.

When a data item is an arrayed vector or matrix, a third alternative exists. The initial list
can consist of a sufficient number of literal values to satisfy the requirements of one array
element. In this case, every array element of the data item is initialized to that same set
of values. In effect, the initial list is being used repeatedly during the initialization
process.
Example:

Consider the declaration:
 |
 | DECLARE V ARRAY(4) VECTOR(3).....
 |

the data item V can be initialized by 12 literal values:
 INITIAL(1,2,3,4,5,6,7,8,9,10,11,12)

Alternatively, it can be initialized by 1 item:
 INITIAL(4)

⎧ ⎡1 ⎤ ⎡4⎤ ⎡7⎤ ⎡10⎤ ⎫
WHEREUPON V ≡ ⎪ ⎢2 ⎥ ⎢5⎥ ⎢8⎥ ⎢11⎥ ⎪

⎩ ⎣3 ⎦ ⎣6⎦ ⎣9⎦ ⎣12⎦ ⎭

⎧ ⎡4 ⎤ ⎡4⎤ ⎡4⎤ ⎡4⎤ ⎫
WHEREUPON V ≡ ⎪ ⎢4 ⎥ ⎢4⎥ ⎢4⎥ ⎢4⎥ ⎪

⎩ ⎣4 ⎦ ⎣4⎦ ⎣4⎦ ⎣4⎦ ⎭
16-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Thirdly, it can be initialized by 3 items, matching the number of components in each
vector:

 INITIAL(1,2,3)

16.2 USE OF REPETITION FACTORS
If a number of consecutive values in an INITIAL/CONSTANT specification are identical,
they may be replaced by one value and a repetition factor:

Example:
 |
 | DECLARE V VECTOR(6) INITIAL(1,2,2,2,2,3);
 |

may be replaced by
 |
 | DECLARE V VECTOR(6) INITIAL(1,4#2,3);
 |

If a sequence of values is repeated over and over, they may be treated in a similar way.
The sequence is written once, enclosed in parentheses, and prefaced with a repetition
factor.
Example:

|
| DECLARE S ARRAY(10) INTEGER
| INITIAL(1,2,3,4,5,6,3,4,5,6);
|

may be replaced by:
|
| DECLARE S ARRAY(10) INTEGER
| INITIAL(1,2,2#(3,4,5,6));
|

The factored form may be nested if necessary, and can be especially convenient in the
initialization of multi-dimensional arrays, or arrays of matrices and vectors.

⎧ ⎡1 ⎤ ⎡1⎤ ⎡1⎤ ⎡1⎤ ⎫
WHEREUPON V ≡ ⎪ ⎢2 ⎥ ⎢2⎥ ⎢2⎥ ⎢2⎥ ⎪

⎩ ⎣3 ⎦ ⎣3⎦ ⎣3⎦ ⎣3⎦ ⎭

... ir, ir+1, ir+2, ...ir+n,...
... ir, n#ir+1,

1. In both forms, i represents a literal value in an INITIAL/CONSTANT
specification.

2. In the first form ir+1,ir+n are identical values.
3. The second form shows the replacement of ir+1, ir+n by

n#ir+1, where n is a positive nonzero integer.
16-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
|
| DECLARE V ARRAY(3,2,2)
| INITIAL(1,2,3,2,3,1,2,3,2,3,1,2);
|

may be replaced by:
|
| DECLARE V ARRAY(3,2,2)
| INITIAL(2#(1,2,3,2,3),1,2);
|

which may in turn be replaced by:
|
| DECLARE V ARRAY(3,2,2)
| INITIAL(2#(1,2#(2,3)),1,2);
|

16.3 PARTIAL INITIALIZATION
There are two forms of partial initialization of a data item. The first is similar to the
repetition factor form of initialization already described.

Example:
|
| DECLARE I ARRAY(50)INTEGER
| INITIAL(1,2,3,45#,0,0);
|

leaves elements of I indexed 4 through 48 uninitialized.
The second kind of partial initialization construct signals that the remainder of the data
item is to be uninitialized.

.. ir, n#, ir+n+1,

1. i represents a literal value in an INITIAL/CONSTANT specification.
2. The form n# states that n elements are to remain uninitialized.

n is a positive nonzero integer.

INITIAL(i1,i2,.....in,*)
CONSTANT(i1,i2,.....in,*)

1. In either form, the asterisk terminating the list signals that the
remainder of the data item is to be uninitialized.

2. The number of literal values actually in the list (or implied by the use
of repetition factors) must be less than the total number of elements
in the data item.
16-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 |
 | DECLARE V ARRAY(2) VECTOR(3)
 | INITIAL(1, 2, 3, 4,*);
 |

where ? stands for an uninitialized value.

16.4 STATIC AND AUTOMATIC INITIALIZATION
Although initialization has been discussed at length, the circumstances under which it
actually is effective have not been considered. In particular, it has not been stated
whether initialization is effective only on the first entry of execution into a block, or on
every such entry.

• STATIC initialization is initialization effective only on first entry into a block. It is
called static because generally it results in the generation of initialized data areas
by a compiler, rather than executable code.

• AUTOMATIC initialization is initialization on every entry into a block. It generally
results in executable code being generated by a compiler.

The keywords STATIC or AUTOMATIC attached to the declaration of an initialized data
item serve to distinguish between the two forms.
LEGAL USE OF SPECIFICATION
No STATIC/AUTOMATIC specification may be used in the declaration of initialized data
items in a compool (see Section 15.2). A COMPOOL block is not executable, so the
question of entry does not arise. Initialization is viewed as taking place before execution
of a program begins.

No data item initialized by the CONSTANT specification may possess a
STATIC/AUTOMATIC specification. Such data items are viewed as being similar to
literal, so that the question of entry again does not arise.

STATIC/AUTOMATIC specifications can appear, then, in data declarations in any kind of
block except for COMPOOL blocks. The utility in the case of PROCEDURE, FUNCTION
or TASK blocks is obvious. The utility in the case of PROGRAM blocks will become clear
when the discussion of real time processing is reviewed in Section 23.

⎛ ⎡1⎤ ⎡4⎤ ⎞
results in V ≡ ⎜ ⎢2⎥ ⎢?⎥ ⎥

⎝ ⎣3⎦ ⎣?⎦ ⎠

Expressions computable at compile time
may appear in a list of initial values.

See: Guide/Appendix D.
16-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
FORM OF STATIC SPECIFICATION
In the absence of any explicit indication, static initialization is assumed. Alternatively, the
keyword STATIC may be used, placed either before or after the INITIAL specification.
Examples:
 |
 | DECLARE I INTEGER STATIC INITIAL(5),
 | J INTEGER INITIAL(0) STATIC,
 | K INTEGER INITIAL(1);

FORM OF AUTOMATIC SPECIFICATION
The keyword AUTOMATIC is used, placed either before or after the INITIAL
specification.
Examples:
 |
 | DECLARE I INTEGER AUTOMATIC INITIAL(5),
 | J INTEGER INITIAL(0) AUTOMATIC;
 |
16-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 This page intentionally left blank.
16-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
17.0 BIT STRINGS
The form and use of Boolean data was discussed at various points in the first thirteen
chapters of the Guide. Their stated purpose was the manipulation of binary valued
(logical) quantities. The ability to handle strings of binary values is often useful. In
HAL/S, this ability is characteristic of the “bit string” data type, which is essentially a
generalization of the Boolean data type already described.

17.1 BIT STRING LITERALS
Boolean literals were described in Section 2. There are corresponding literal forms for bit
string quantities:

Examples:
 BIN‘10110’
 HEX‘FAC2’
 OCT‘777’

Note that BIN ‘0’ ≡ FALSE ≡ OFF and BIN ‘1’ ≡ TRUE ≡ ON

 BIN‘bbbbbb’
 OCT‘oooooo’
 HEX‘hhhh’
 DEC‘dddd’

1. In the above forms,

b ~ binary digit
h ~ hexadecimal digit
d ~ decimal digit
o ~ octal digit

2. The number of binary digits represented must not exceed
32†.

† This number may vary between implementations. See appropriate User’s Manual.

A second form involving a repetition
factor exists, reducing the effort of
writing strings of identical digits.

See: Spec./2.3.3.
17-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
17.2 DECLARATION OF BIT STRING DATA ITEMS
The basic declaration statement for bit string data items is shown below:

Examples:
 |
 | DECLARE B1 BIT(16);
 |

Note that the following two forms are equivalent:
 |
 | DECLARE B2 BIT(1);
 | DECLARE B2 BOOLEAN;
 |

Declarations of bit string data items can be integrated into compound declarations as
described for other data types in Section 4.2.
INITIALIZATION
Initialization of bit string data items follows the rules given in Section 4.2, using bit string
literals in the list of initial values.
Examples:
 |
 | DECLARE B16 BIT(16) INITIAL(HEX‘FFFF’);
 | DECLARE B1 BIT(1) CONSTANT(TRUE);
 | DECLARE B ARRAY(2) BIT(3) INITIAL(OCT‘7’,OCT‘5’);
 |

Literals are padded or truncated as required to fit the data item initialized:
 |
 | DECLARE B8 BIT(8) INITIAL(OCT‘770’);
 | DECLARE B11 BIT(11) INITIAL(HEX‘FF’);
 |

results in
 B8 ≡ 111110002, B11 ≡ 000111111112

17.3 BIT STRING SUBSCRIPTING
Subscripting forms for bit string data items are similar to those for character data items,
as described in Section 6.

 |
 | DECLARE name BIT(n);
 |

1. name is any legal identifier.
2. n specifies the length of the bit string (i.e. the number of

binary digits in it). It must be in the range 1 ≤ n ≤ 32.†

† This number may vary between implementations. See appropriate User’s Manual.
17-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
UNARRAYED BIT STRINGS
In bit strings, bit positions are indexed left to right starting from 1. In the subscript forms
given below, STRING represents an unarrayed bit string data item of length L.

• To select the αth bit from STRING:

• To select α bits from STRING, starting from the βth:

• To select a substring starting with the αth bit of STRING, and ending with the βth:

Examples:
If β is an 8-bit string with B ≡ 111011112 then:

B4 ≡ 02

B3 AT 3 ≡ 1012

B4 TO 5 ≡ 012

If a data item is declared to be Boolean, it is really defined as a 1-bit string. It may
therefore possess component subscripting consistent with the above rules, even though
in this case it performs no useful purpose.
ARRAYED BIT STRINGS
The subscripting forms for arrayed bit string data items are as described in Section 6.2.
The colon following an array subscript is mandatory.
Examples:

Let B be a 4-array of 3-bit strings
with B ≡ (1102

, 0102
, 0002

, 1012)
then some forms of array subscripting only are:

B2: ≡ 0102 (unarrayed)
B3 TO 4 ≡ (0002

, 1012) (still arrayed)
Some forms of simultaneous array and component subscripting are:

B4:1 ≡ 12 (unarrayed)
B2 AT 1: 1 TO 2 ≡ (112

, 012) (still arrayed)

STRING α
α is an integer expression in the range 1 ≤ α ≤ L.

STRING α AT β
1. α is an integer literal value in the range 1 ≤ α ≤ L.
2. β is an integer expression in the range 1 ≤ β ≤ L - α + 1.

STRING α TO β
1. α and β are integer literal values in the range 1 ≤ (a,β) ≤ L.
2. β > α
17-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Some forms of component subscripting only are:
B*:3 ≡ (02, 02, 02,12)

Note the mandatory asterisk.

17.4 BIT STRING OPERATIONS
Section 7.3 of the Guide outlined the logical operations which could be performed on
Boolean data. Operations on bit strings are an extension of these. HAL/S recognizes
the following operations:

COMPLEMENT
The complement operation complements the logical value of every bit in the bit string.

Example:
If B is an 8-bit string with B ≡ 110001012

then ¬ B ≡ 001110102

Literal subscripts may alternatively be
expressions computable at compile time.

See: Guide/Appendix D.

 Symbol Purpose

 &
 AND intersection

 |
 OR

conjunction

 ¬
 NOT complement

 ||
 CAT complement

Symbolic form: ¬ RNOT
1. The operand R is a bit string.

⎫
⎬
⎭

⎫
⎬
⎭
⎫
⎬
⎭

⎫
⎬
⎭

17-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CONJUNCTION
The conjunction operation causes the logical values of corresponding bit positions in the
operands to be OR’ed together.

Example:
If B is a 3-bit string with B ≡ 1002

and BB is a 5-bit string with BB ≡ 101102

then B|BB ≡ 101102

Note that a 5-bit result is obtained.
INTERSECTION
The intersection operation causes the logical values of corresponding bit positions in the
operands to be AND’ed together.

 Symbolic form: L
R

1. The L and R operands are bit strings.
2. If the operands are of unequal length, the shorter is padded on

the left with binary zeroes before ORing.
3. The truth table for each bit position is as follows:

L
12 02

R 12 12 12
02 12 02

 &
Symbolic form: L AND R

1. The L and R operands are bit strings.
2. If the operands are of unequal length, the shorter is padded on

the left with binary zeroes before ANDing.
3. The truth table for each bit position is as follows:

L
12 02

R 12 12 02
02 02 02

|

OR
17-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
If B is a 3-bit string with B ≡ 1002

and BB is a 5-bit string with BB ≡ 101102

then B&BB ≡ 001002

Note that a 5-bit result is obtained.
CATENATION

The two operands are catenated to form one longer bit string.

Example:
If B is a 12-bit string with B ≡ 7E016

and BB is a 24-bit string with BB ≡ 42F50B16

then B||BB ≡ E042F50B16,

the left-most 4 bits of B being truncated.
PRECEDENCE
The following table summarizes the precedence rules for bit string operations, and is an
extension of the table for Boolean operations given in Section 7.4.

Sequences of operations of the same precedence are evaluated left to right.

 ||Symbolic form: L CAT R

1. The L and R operands are bit strings.
2. The L operand is catenated to the left of the R operand.
3. If the sum of the lengths exceeds 32† the L operand is left truncated

as required.
† This number may vary between implementations. See appropriate User’s Manual.

Symbol Precedence Purpose
FIRST

¬, NOT 1 complement

||, CAT 2 catenation

&, AND 3 intersection

|, OR 4 conjunction

LAST
17-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
In the following expression, the numbered pointers show the order of execution of
operations:

17.5 BIT STRING ASSIGNMENT
Bit string assignment is an extension of Boolean assignment as described in Section 8.4.

Examples:
If B is an 8-bit string,
and BB is a 6-bit string with BB ≡ 1011012

,

then
 |
 | B = BIN‘1111010110’;
 |

results in B ≡ 110101102
,

and
 |
 | B = BB;
 |

results in B ≡ 001011012

17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS
Execution of the HAL/S IF statement described in Section 9.3, and of the DO WHILE
statement described in Section 10.2, are controlled by the logical value of an expression
which was stated to be either Boolean or relational in type. Bit string expressions may
not be used directly in place of Boolean expressions. This section will explain the
method in which bit strings can be used.
DIRECT USE OF BIT STRINGS
The only way one can make use of a bit string for a Boolean expression is to subscript
the bit string down to one bit, thereby making it a Boolean expression.

¬ B1 || B2 & B3 | ¬ B4

1. The operand types are both bit string:
L-type R-type

BIT STRING BIT STRING

2. The logical value of each bit position of the R-operand is transferred to the
receiving data item.

3. If the operand differs in length from the receiving data item, the former is
truncated or padded with binary zeroes on the left as appropriate.

↑ ↑ ↑ ↑ ↑
1 2 3 5 4
17-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Let B be a 4-bit string with B ≡ 11012

Let BB be a 2-bit string with BB ≡ 102

 |
 | IF B THEN X = 0;
 |S 2
 | ELSE X = 1;

The expression B2 ≡ 12: since this is logically true X will be set to zero
 |
 | IF BB THEN X = 1;
 | ELSE X = 2;

is illegal since BB has not been subscripted down to one bit.
BIT STRINGS IN RELATIONAL EXPRESSIONS
Section 9.2 showed how data items of each type, including Boolean, could be combined
into relational expressions which evaluated to either TRUE or FALSE. Using the same
nomenclature as that section, bit strings can be used in Class II comparative operations
only:

The rules for bit string comparisons are given below:

Examples:
If B is a 4-bit string with B ≡ 11012,
and BB is a 3-bit string with BB = 1012,
then

 B = BIN‘01101’ is TRUE
and

 B = BB is FALSE
The above comparative operations can be combined as described in Section 9.2, using

Symbol Purpose Class
= equals

NOT = II
¬ = not equals

⎧= ⎫
Symbolic form L: ⎨NOT =⎬ R

⎩¬ = ⎭
1. The only legal type combination for the L and R operands is:

L-type R-type
BIT STRING BIT STRING

2. If the operands are of unequal length, the shorter is padded
on the left with binary zeroes before comparison.
17-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
the given precedence rules. Note that the important rule that Boolean and relational
expressions cannot be mixed extends to bit string expressions as well.
Following are some examples clarifying the use of bit string relations.
Examples:

Let B be a 3-bit string with B ≡1102,
and I be an integer with I ≡5

 |
 | IF (B=BIN‘00110’) & (I>4) THEN I = 0;
 |

In the above IF statement, both comparative operations evaluate to TRUE so that
the condition is itself TRUE and the assignment

 I = 0;

is executed.
 |
 | IF (B ¬=BIN‘01’) & BIN‘11’ THEN I = 0;
 |

is illegal because a relational expression is being mixed with a bit string literal to form
the condition of the IF statement.
Note that

 |
 | IF B¬=BIN‘01’ & BIN‘11’ THEN I = 0;
 |

is illegal because the syntax is ambiguous. Parentheses must be used to specify its
only legal interpretation:

 |
 | IF B ¬=(BIN‘01’ & BIN‘11’) THEN I = 0;
 |
17-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
17.7 BIT STRING ARGUMENTS AND PARAMETERS
Section 11 described procedure and function blocks and how they were invoked.
Procedures and functions may be defined with bit string parameters, and be passed bit
string arguments.
FORM OF BIT STRING PARAMETERS
Any input parameter of a function, or any input or assign parameter of a procedure may
be declared to be of bit string type, using the forms of declaration described in Section
17.2.
Example:

ARGUMENT PASSAGE
An argument of a function or procedure invocation corresponding to a bit string
parameter must conform to the following rules:

• INPUT PARAMETER. The transmission of the argument can be viewed as its
assignment to the input parameter. The following rules apply:

These rules apply to both procedures and functions.
• ASSIGN PARAMETER. The following rules apply for the matching of arguments to

bit string assign parameters.

These rules are only relevant to procedures.

| FLAGS: PROCEDURE(B1) ASSIGN(B2);

| DECLARE B1 BIT(16),

| B2 BIT(8);

| ⎫

| ⎬ procedure body
| ⎭

| CLOSE FLAGS;

|

1. The corresponding argument must be of bit string type.
2. If the input parameter is not of the same length as the argument,

the latter is truncated or padded with binary zeroes on the left as
necessary.

1. The assign argument must be a declared HAL/S bit string data
item.

2. The length of the argument must be the same as that of the
parameter.
The argument may not possess subscripting.
17-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Let the following data be declared:
 |
 | DECLARE B1 BIT(16),
 | B2 BIT(3);
 |

and let the following procedure be defined:

Both legal and illegal invocations of this procedure are shown below:
 |
 | CALL SWITCHES(B1|BIN‘1001’) ASSIGN B2;
 | 1442443
 ⎥
 this 16-bit quantity
 truncated to 8bits on passage
 | CALL SWITCHES (B2) ASSIGN(B1);
 | ↑ ↑ ⎯ illegal length mismatch
 this 3-bit quantity padded
 to 8 bits on passage
 |
 | CALL SWITCHES(BIN‘1’) ASSIGN(FALSE);
 | ↑
 illegal - not a declared bit string data item

17.8 BIT STRING FUNCTIONS
In Section 11.2 it was stated that functions of any legal HAL/S type could be created.
Accordingly, it is legal to define functions of bit string type.
BLOCK DEFINITION
The opening statement of the function block takes the form:

| SWITCHES: PROCEDURE(D2) ASSIGN(D1);
| DECLARE D1 BIT(3),
| D2 BIT(8);

| ⎫

| ⎬ procedure body
| ⎭

| CLOSE SWITCHES;

|

label: FUNCTION(il,i2,...) BIT(n);

1. label is the name of the function.
2. il, i2,... is the list of input parameters.
3. n indicates the number of bits, and lies in the range 1< n< 32†.

† This number may vary between implementations. See appropriate User’s Manual.
17-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The closing statement is as described in Section 11.2.
Example:

RETURN OF BIT STRING QUANTITIES
The RETURN statement of a bit string function follows the general function return form
described in Section 11.6. The return is similar in nature to the transmission of input
arguments of bit string type, the function itself playing the role of parameter. The relevant
rules are the same as those described for argument passage in Section 17.7.
Examples:
 |
 | F1: FUNCTION(B) BIT(3);
 | DECLARE B BIT(8);
 | .
 | .
 | .
 | .
 | RETURN B; ← truncation of 5 left-most bits occurs
 | .
 | .
 | .
 | RETURN B ; ← result padded to 3 bits
 |S 4
 | .
 | .
 | .
 | RETURN 5.7E3;← illegal - bit string quantity not returned
 | .
 | .
 | .
 | CLOSE F1;
 |

17.9 BIT STRINGS IN INPUT/OUTPUT
Bit strings may participate in input/output in the same way as other data types, as
described in Section 12. The format of bit string data fields for input and output are
described in Appendix F.

|

| FUNCTION(B) BIT(5);

| ⎫

| ⎬ function body
| ⎭

| CLOSE F1;

|

17-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
18.0 MULTI-DIMENSIONAL ARRAYS
Section 4.2 stated that it was possible to declare an array or table of any given data type.
Section 4.2 showed the form of declaration for 1-dimensional arrays. HAL/S actually
supports arrays of multiple dimensions.
First, the general form of declaration is presented. Then, some remarks on the order of
initialization precede a discussion of the subscripting of multi-dimensional arrays.

18.1 DECLARATION
To declare an array of any data type and of any legal dimension, the following form of
declaration is used:

Examples:
 |
 | DECLARE S ARRAY(5,5) INTEGER,
 | V ARRAY(4) VECTOR(6),
 | W ARRAY(2,2,1000) SCALAR;
 |

18.2 ORDER OF INITIALIZATION
Section 4.3 stated the order of initialization of elements of 1-dimensional arrays of any
data type. The order for multi-dimensional arrays is generated by the rules given in
Appendix C.

The following examples illustrate the effect of these rules in the initialization of 2- and 3-
dimensional arrays.
Example:

|
| DECLARE I ARRAY(2,3) INTEGER INITIAL(1,2,3,4,5,6);
|

 |
 | DECLARE name ARRAY(n1,n2,...) attributes;
 |
1. name is the name of the data item declared.
2. attributes are the attributes appropriate to the data type being

declared.
3. ni, i = 1, 2 ... are the sizes corresponding to each array dimen-

sion. The upper limit on i is 3†. The number of elements in any
dimension must lie in the range 1 < ni < 32768††.

† The limiting number of dimensions may vary between implementations: See appropriate User’s
manual.

†† This value may vary between implementations. See the appropriate User’s Manual. In some
implementations, there may also be restrictions upon the contexts in which very large arrays may
be used.

⎛1 2 3⎞
results in I ≡ ⎝4 5 6⎠
18-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

 |
 | DECLARE J ARRAY(2,3,4) INTEGER
 | INITIAL(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
 | 19,20,21,22,23,24);
 |
 |

18.3 SUBSCRIPTING
Section 6.2 gave the forms of array subscripting for 1-dimensional arrays. To
summarize, the following kinds of subscript could be used:

• simple indexing, to select one array element;
• AT-partitioning, to select a sub-array of a given size starting from a given index

value;
• TO-partitioning, to select a sub-array starting from one given index value and

ending on a second.
In multi-dimensional arrays, such subscripting can be applied to each dimension of the
array.
ARRAY SUBSCRIPTING ONLY
Let TABLE be an n-dimensional array. The general subscripting form is then:

Examples:
If I is a 2 x 3 array of integers

 then

⎛1 2 3 4 13 14 15 16 ⎞
results in J ≡ ⎜5 6 7 8 17 18 19 20 ⎟

⎝9 10 11 12 21 22 23 24 ⎠

TABLEarray
1,array

2,...array
n:

1. array stands for any array subscript of the form given in Section 6.2.
2. The colon is optional for integer and scalar data types only.
3. Any array may be replaced by an asterisk to denote specification of

every element in that dimension.

⎛1 2 3⎞
with I ≡ ⎝4 5 6⎠

I 1,2 ≡ 2

I 2,1 TO 2 ≡ (4 5)

I *, 3 ≡ (3 6)
18-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

ARRAY AND COMPONENT SUBSCRIPTING
If TABLE represents an n-dimensional array of vector, matrix, character or bit string type,
then the general form when component and array subscripting is present is:

Examples:
If C is a 2 x 3 array of characters

then
C1,2: ≡ 'BETA' note mandatory colon
C1, 2: 1 TO 3 ≡ ‘BET’
C*, 3:4 ≡ (‘M’ ‘A’)

COMPONENT SUBSCRIPTING ONLY
When only component subscripting is required, array subscripting cannot be totally
omitted, but must rather be replaced with asterisks. If, as before, TABLE represents an
n-dimensional array of vector, matrix, character or bit string type, then the general form
is:

Example:
If C is a 2 x 3 array of characters

then

I *,*: with I ≡ ⎛1 2 3⎞
⎝4 5 6⎠ note redundant colon

TABLEarray
1,array

2,...array
n:component

1. array stands for any array subscript of the form given in Section 6.2.
2. component represents any form of component subscripting legal for the

data type of TABLE, as described in Section 6.1 and 17.3.
3. Any array may be replaced by an asterisk to denote specification of

every element in that dimension.

⎛`ALPHA’ `BETA’ `GAMMA’ ⎞
 with C ≡ ⎝`DELTA’ `EPSILON’ `ZETA’ ⎠

TABLE*,...*: component
1. n asterisks correspond to n dimensions of absent array subscripting.
2. component represents any form of component subscripting legal for

the data type of TABLE.

⎛`ALPHA’ `BETA’ `GAMMA’ ⎞
with C ≡ ⎝`DELTA’ `EPSILON’ `ZETA’ ⎠

⎛`A’ `B’ `G’ ⎞
with C*,*:1 ≡ ⎝`D’ `E’ `Z’ ⎠
18-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Literal subscripts may alternatively be
expressions computable at compile time.

See: Guide/Appendix D.
For a complete description of all
subscript forms see Spec./5.3.
18-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.0 STRUCTURES
Section 4.1 of the Guide introduced some of the types of data definable in the HAL/S
language. It further made reference to the fact that “hierarchical organizations of data
items’’ exist in the language. It is the purpose of this Section to describe the form and
use of these so-called “structures” data.

The HAL/S array feature is a useful construct for forming aggregates of data items, if
they are homogeneous in attributes. Frequently, however, it is of great convenience to
be able to form aggregates of data items with heterogeneous attributes. In addition,
requirements may exist to reference not only the aggregate as an entity, but also subsets
of it, or subsets of subsets of it. The HAL/S STRUCTURE data type fulfills both of these
requirements.

19.1 HAL/S STRUCTURE CONCEPTS
HAL/S data structures have two characteristic properties:

• Data items or arrays of almost any type can be combined to form a structure.
• The data items can be organized into a tree-like hierarchy (similar in concept to a

genealogical tree, for example).
The following diagram illustrates in concept the form of a typical structure tree.

Figure 19-1

∗

START STOP

"root"

"fork"

"leaf"level 0

“branch”

level 1

level 2

level 3

level 4
19-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The tree consists of nodes connected by “branches”. Every “leaf” node of the tree
corresponds to one of the actual data items making up the aggregate. The whole tree
can be referenced by using the name of the “root” node. Subsets of the tree can be
referenced by using the name of the appropriate “fork” node. The dotted line is a “tree
walk” which forms the basis for converting this tree representation into a linear list
representation which the HAL/S language itself has to use.

The conversion consists of recording the name of each node (root, fork or leaf) and its
level when the tree walk passes it in the direction shown by the arrow at *.
Example:

Figure 19-2
The reverse conversion consists of the following steps. First draw the “root” node
appearing at the top of the list. Then, treat each of the remaining nodes in order as
follows.

• Draw the node to the right of previous node with the same level number (if any),
and under nodes with smaller level numbers.

• Connect it by a “branch” to the last-connected node with a level number one
smaller.

Example:

Figure 19-3

0 a

1b
1 c

2 d
2 e

level 0

linear representation

level 1

level 2

tree representation

a

b c

d
e

0 a

 1 b

 1 c

 2 d

 2 e

Level 1

level 2

Level 0a aa a

b bb bcc c

dd e

a

19-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
In the HAL/S language, the specification of a structure tree organization is separated
from the declaration of the structure or structures possessing that organization.

• STRUCTURE TEMPLATES are used to specify structure tree organizations in a
linear list representation. A structure template specifies all nodes in a tree from
level 1 downwards.

• STRUCTURE DECLARATIONS are used to declare structures possessing pre-
defined templates. For reasons which will become apparent when the referencing
of structures is considered, the declared name of the structure is assigned as the
“root” node name of the tree organization.

In the remainder of the section, structures will be referred to as data items, since even
though they are aggregates of data items, they can be manipulated as entities in
themselves.

19.2 STRUCTURE TEMPLATES
The structure template is the HAL/S construct which defines the structure tree
organization in the form of a linear list. It defines by name and level all “fork” and “leaf”
nodes in a tree from level 1 downwards.
In the HAL/S implementation of structure trees, the following nomenclature is used.

• TEMPLATE NAMES are names identifying structure templates. They appear as
part of the template specification, and also in structure declarations.

• MINOR STRUCTURE NODES are the “fork” nodes of a structure template.
• STRUCTURE TERMINALS are the “leaf” nodes of a structure template. Every

structure terminal is one of the data items comprising the structure aggregate.
GENERAL FORM OF A TEMPLATE
The form of a structure template consists of its name followed by a specification of all its
minor structure and structure terminal nodes.

• OVERALL FORM
The overall form is as follows:

 |
 | STRUCTURE name:
 | nodel, node2,....
 |... noden;
 |
1. name is the structure template name, and is any legal HAL/S identifier

name.
2. nodel, node2,...noden is a list of nodes forming the tree organization.
19-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• MINOR STRUCTURE NODES
 The form of a minor structure node of a template is as follows:

• STRUCTURE TERMINAL NODES
 The form of a structure terminal node of a template is as follows:

Note that in the case of a scalar structure terminal no attributes need appear24.
However, there is no confusion as to whether the node is a structure terminal or a minor
structure since the level number sequence is sufficient to distinguish the two cases.
Structure terminals of structure type are a special case which is discussed later.
RESTRICTIONS
The attributes attached to the specification of a structure terminal node are written in the
same form and order as in a declaration statement (as described in Section 4 and
expanded in Sections 16, 17.2, and 18.1). The following restrictions are however made.

• No INITIAL/CONSTANT specification can be applied to a structure terminal.
• No STATIC/AUTOMATIC specification can be applied to a structure terminal.

n name
1. n is the level number of the node.
2. name is the name of the minor structure node, and may be any legal

identifier name.

n name attributes
1. n is the level number of the node.
2. name is the name of the structure terminal node, and may be any legal

identifier name.
3. attributes consists of array, type, size and other attributes applicable to

data items.
4. The following data types are legal as structure terminals:

INTEGER BOOLEAN
SCALAR BIT STRING
VECTOR CHARACTER
MATRIX STRUCTURE

24.See the comment on the declaration of scalar data items in Section 4.
19-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 |
 | STRUCTURE Q:
 | 1 QT CHARACTER(80),
 | 1 QN1,
 | 2 QI INTEGER,
 | 2 QV VECTOR(3) DOUBLE,
 | 2 QS ARRAY(100) SCALAR,
 | 1 QN2,
 | 2 QV VECTOR(3) DOUBLE,
 | 2 QS ARRAY(100) SCALAR,
 | 2 QM MATRIX(3,3),
 | 2 QB BOOLEAN;
 |

The above structure template corresponds to the following tree organization:

Figure 19-4
LOCATION OF STRUCTURE TEMPLATES
Structure templates are essentially parts of data declarations and therefore must appear
before the first executable statement of the program or other block in which they are
coded.

19.3 STRUCTURE DECLARATIONS
Structure declarations are used to declare structure data with a tree organization defined
by a pre-existing structure template. Structure declarations are in the same general form
as declarations of other kinds of data items, as described in Section 4.
BASIC FORM OF DECLARATION
The basic form of structure declaration is shown below:

DECLARE name α STRUCTURE;

1. name is the name of the structure data item, and may be any legal identifier
name.

2. α is the name given to a pre-existing structure template which specifies the
tree organization of the structure being declared.

QV

QB

Q

QT QN1 QN2

QI QV QS QS QM

level 1

level 2
19-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that the structure template referenced by a structure declaration must have been
defined previously in the same block, or have been declared in a block enclosing the
block containing the STRUCTURE declaration.
Examples:

form of declaration -
 |
 | STRUCTURE Q:
 | 1 QA SCALAR,
 | 1 QB CHARACTER(80),
 | 1 QC BOOLEAN;
 | .
 | .
 | .
 | DECLARE ZZ1 Q-STRUCTURE;
 | DECLARE ZZ2 Q-STRUCTURE;
 |

legal and illegal placing of templates -

Figure 19-5

Structure declarations can be integrated into compound declarations of the
kind described in Section 4.2.

template T1
outer

program
block

inner
procedure

block

DECLARE A T1-STRUCTURE;
DECLARE B T2-STRUCTURE;

DECLARE C T3-STRUCTURE;

template T2

legal

illegal - T3 not
pre-defined

template T3
19-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 |
 | DECLARE A SCALAR,
 | B Q-STRUCTURE,
 | C CHARACTER(80);
 |

MULTIPLE COPY STRUCTURES
Structures can be declared to have multiple copies of the data specified by the tree
organization. Although the form of specification is different from HAL/S arrays, they can
in some contexts be viewed as arrays of structures.

The data declaration for a multiple-copy structure takes the following modified form:

INITIALIZATION OF STRUCTURES
Structures are initialized by supplying an INITIAL/CONSTANT specification with the
structure declaration, rather than with the template. The specification is added to the
declaration as described in Section 4.3.
Example:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS SCALAR;
 | .
 | .
 | .
 | DECLARE Z Q-STRUCTURE INITIAL(5,4.3);
 |

The order of initialization for structures is as follows.
• SINGLE-COPY STRUCTURES. The number of literal values in the initial list (or

implied by the use of repetition factors) must equal the total number of elements
summed over all the structure terminal nodes. Each structure terminal is
initialized in the order it appears in the structure template, according to the rules
given in Section 4.3 and further expanded in Sections 16 and 18.2.

• MULTIPLE-COPY STRUCTURES. The number of literal values in the initial list
may either match the total number of elements summed over all copies, or match
the number in one copy, in which case all copies are identically initialized. Each
copy is initialized in turn in order of increasing index, according to rules for single-
copy structures.

DECLARE name α-STRUCTURE(n);
1. name is the name of the structure.
2. α is the name of the predefined structure template.
3. n is the number of copies of the data required. It must lie in the

range
1 < n < 32768†.

† This value may vary between implementations. See appropriate User’s Manual.
19-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
These ordering rules are a restatement of those given in Appendix C.
Example:
 |
 |STRUCTURE Q:
 | 1 QV VECTOR(3),
 | 1 QM,
 | 2 QI INTEGER,
 | 2 QC CHARACTER(80);
 | .
 | .
 | .
 | DECLARE Z1 Q-STRUCTURE INITIAL(1.5,2.5,3.5,-2,‘ALPHA’);
 | DECLARE Z2 Q-STRUCTURE(2) INITIAL(4.5,5.5,6.5,-4,‘BETA’);
 | DECLARE Z3 Q-STRUCTURE(2) INITIAL(3#1.5,1,‘GAMMA’,
 | 3#2.5,2,‘DELTA’);
 |
The above declarations result in initialization as follows:
19-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 19-6

The supplementary initialization forms described in Section 16 are fully applicable to
structure data types.

Z1

QC

≡

 'ALPHA’

both copies
identically
initialized

Z2

Z3

QI

≡

 -2

QI≡ -4

QM

QM

QM
QM

QI

≡

 -4

QI ≡ 2QI ≡ 1

copy 1 copy 2

copy 1 copy 2

QC≡ 'BETA’QC 'BETA’

QC ≡ 'GAMMA’ QC ≡ 'DELTA’

⎡ 1.5 ⎤
QV≡ ⎪ 2.5 ⎪

⎣ 3.5 ⎦

⎡ 4.5 ⎤

QV
≡ ⎪ 5.5 ⎢

⎣ 6.5 ⎦

⎡ 4.5 ⎤
QV ≡ ⎪ 5.5 ⎢

⎣ 6.5 ⎦
QM

⎡ 2.5 ⎤
QV≡ ⎪ ⎢

⎣ 2.5 ⎦

⎡ 1.5 ⎤
QV ≡ ⎪ ⎢

⎣ 1.5 ⎦

≡

1.5 2.5
19-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.4 NESTED STRUCTURES
Section 19.2 stated that structure terminal nodes could themselves be of structure type.
The effect of this is to nest a second template into the first, thus expanding the tree
organization of the former.
Example:
 |
 | STRUCTURE A:
 | 1 AI INTEGER,
 | 1 A1,
 | 2 AC CHARACTER(80),
 | 2 AB BOOLEAN;
 | STRUCTURE B:
 | 1 BS SCALAR,
 | 1 B1,
 | 2 BV VECTOR(3),
 | 2 BA A-STRUCTURE;
 |

In a tree representation, this expressible is as:

Figure 19-7

The structure template B is in many aspects like a template C given by:
 |
 | STRUCTURE C:
 | 1 BS SCALAR,
 | 1 B1,
 | 2 BV VECTOR(3),
 | 2 BA,
 | 3 AI INTEGER,
 | 3 A1,
 | 4 AC CHARACTER(80),
 | 4 AB BOOLEAN;
 |

which has superficially the same tree organization.

A

B
BS

BV

AI

AC

BA

A1

AB

level 1

level 2

level 3

level 4

B1
19-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RESTRICTION
A structure terminal of structure type may not possess multiple copies.
Example:

The following template is illegal:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS T-STRUCTURE(20);

19.5 QUALIFICATION AND STRUCTURE REFERENCING
The basic types of data item introduced in Section 4 are referenced merely by stating
their names in the desired context. A structure in its entirety can be referred to in the
same way. Referring to part of a structure is more complex, however, because in general
more than one structure may possess the tree organization expressed by a particular
template.
THE QUALIFIED REFERENCE CONCEPT
Any node of a structure other than the “root’’ node is referred to by a composite or
“qualified” name which is generated conceptually in the following way. Consider the tree
organization:

Figure 19-8
A tree walk is started at the “root” node, and continued down to the node to be
referenced. The names of all the nodes traversed, including the “root” and final nodes,
are listed. The resulting composite or “qualified” name is an unambiguous reference to
the desired “leaf” node (given certain restrictions on duplicate naming which are to be
described).

to be referenced

“root node”
19-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
REFERENCING STRUCTURE TERMINALS
The qualified name of a structure terminal is generated by catenating the names of all
nodes between the “root” node and the desired “leaf” node of the tree organization.

Examples:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QS SCALAR,
 | 2 QC CHARACTER(80);
 | .
 | .
 | .
 | DECLARE ZQ Q-STRUCTURE;
 |

To reference QI and QC in ZQ, the following tree walks are required:

Figure 19-9
They generate the following names respectively:
 ZQ.QI …
 ZQ.Q1.QC …

name1•name
2
•.....name

n

1. name1 is the name of the structure as declared.
2. namen is the name of the structure terminal to be referenced.
3. name2,.....namen-1 are the names of intervening minor structure nodes,

if any.

1 2

ZQ

QI
Q1

QS QC

1

2

19-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
REFERENCING MINOR STRUCTURE NODES
If it is required to perform an operation on a sub-tree of a structure (i.e. all parts of the
tree beneath a certain “fork” node), the occasion arises to refer to a minor structure node
name. The qualified name is generated by catenating the names of nodes between the
“root’’ node and the desired “fork” node.

Example:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QS SCALAR,
 | 2 QC CHARACTER(80);
 | .
 | .
 | .
 | DECLARE ZQ Q-STRUCTURE;
 |

To reference Q1 in ZQ, the following tree walk is required:

Figure 19-10
It generates the following name:

name1•name
2

•...name
n

1. name1 is the name of the structure as declared.
2. namen is the name of the minor structure node to be referenced.
3. name2

,...namen-1 are the names of intervening minor structure nodes, if
any.

ZQ.Q1 …

3

ZQ

QI
Q1

QS QC

3

19-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NAMING UNIQUENESS
The node names used in a structure tree specification need only be unique in so far as
all tree walks used to generate qualified names must be distinguishable. This means
that some node names may actually duplicate others without error.
Examples:
 |
 |
 | STRUCTURE Q:
 | 1 Q1,
 | 2 QS SCALAR,
 | ↑
 | |--------- legal duplicate names
 | 1 Q2, ↓
 | 2 QS SCALAR,
 | .
 | .
 | .
 | DECLARE ZR Q-STRUCTURE;
 |

The above duplicate names are legal because qualified references to each are
distinguishable:

 ZR.Q1.QS
 ZR.Q2.QS

 |
 |
 | STRUCTURE R:
 | 1 R1, ←------------

 | 2 RS SCALAR, ---- illegal duplicate names
 | 1 R1 CHARACTER(80);
 | .
 | .
 | .
 | DECLARE ZR R-STRUCTURE;

|

The above duplicate names are illegal. ZR.R1 might be referring to a minor structure
node or a structure terminal of character type.

The following situations are also permitted:
• The name of minor structure or terminal node may duplicate the name of any minor

structure or terminal node in a different structure template.
• The name of a minor structure or terminal node may duplicate the name of any

ordinary data item.
19-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
UNQUALIFIED REFERENCES
Qualified referencing of parts of structures can become laborious if the node names
assigned are long, or there are many levels in the structure. By accepting certain
restrictions, unqualified, or direct naming of minor structure or terminal nodes is
permissible.
To be able to refer to a structure in an unqualified manner the following must apply:

It follows that only one unqualified structure may be declared for any template.
Examples:

|
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| .
| .
| .
| DECLARE ZQ Q-STRUCTURE;
| DECLARE Q Q-STRUCTURE;
|

QC in ZQ must be referred to as:
 ZQ.Q1.QC

QC in Q may be referred to simply as:
 QC

More restrictive rules apply to the construction of a structure template used to declare an
unqualified structure.

• The name of each node in the template must be unique to the block in which the
template is defined.

• The template must be defined in the same block as the unqualified structure is itself
declared.

• The template may contain no structure terminals of structure type (i.e. nested
structures).

Unqualified reference may be made only to a
structure whose name is the same as the
template defining its tree organization.
19-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.6 SUBSCRIPTING IN STRUCTURES
A structure terminal may possess “terminal” subscripts as a result of its type (vector,
matrix, character, bit string) or its array property. In addition, any reference to the whole
or part of a structure with multiple copies can introduce a level of “structure”
subscripting.

The discussion on subscripting is divided into two parts:
• subscripting on references to the entire structure or to minor structure nodes;
• subscripting on references to terminal data items.

SUBSCRIPTING DATA ITEMS OF STRUCTURE TYPE
A reference to an entire structure or to one of its minor structure nodes may possess
subscripting only if the structure is declared to possess multiple copies.

In the subscripting forms below, TREE represents any data item of structure type (i.e.,
either a “root” or “fork” node of the structure tree), the reference being unqualified or
qualified. It is assumed that the entire structure is declared to possess L copies.

• To select the αth copy from TREE:

• To select a subset of α copies starting from the βth copy of TREE:

• To select a subset of copies starting from the αth copy and ending with the βth copy
of TREE:

TREE α;
1. α is an integer expression in the range 1 ≤ α ≤ L.
2. The semicolon is optional.

TREEα AT β;
1. α is an integer literal value in the range 1 ≤ α ≤ L.
2. β is an integer expression in the range 1 ≤ β ≤ L - α + 1.
3. The semicolon is optional.

TREEα TO β;
1. α and β are integer literal values in the range 1 ≤ (α,β) ≤ L.
2. β > α
3. The semicolon is optional.
19-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given:

 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QS SCALAR,
 | 2 QC CHARACTER(80);
 | .
 | .
 | .
 | DECLARE ZQ Q-STRUCTURE(3);
 |

with the following values:

Figure 19-11

then ZQ 2; selects copy 2 with values:

ZQ

Q1 Q1 Q1

QI ≡ 3

QS ≡3.5 QC ≡ ‘C’

QI ≡ 2

QS ≡ 2.5 QC≡ ‘B’

QI ≡ 1

QS ≡ 1.5 QC ≡ ‘A’

copy 1 copy 2 copy 3

copy 2

Q1

QI ≡ 2

QS ≡ 2.5 QC ≡ ‘B’

ZQ
19-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ZQ.Q11 TO 2; selects copies 1 and 2 of the sub-tree under Q1

Figure 19-12
SUBSCRIPTING OF TERMINALS OF MULTIPLE-COPY STRUCTURES
If a structure terminal is part of a single copy structure, then it can possess subscripting
only by virtue of its type or array property. Such subscripting is the same as for ordinary
data items, and has been described in Sections 6, 17.3, and 18.3.

If, on the other hand, a structure terminal is part of a multiple copy structure then it may
possess subscripting by virtue of its type or array property, and by virtue of the multiple
copy property. Three cases of subscripting thus arise:

• STRUCTURE SUBSCRIPTING ONLY. The form of subscripting is the same as for
structure data items, as described above. The only difference is that the
terminating semicolon is optional only if the structure terminal is of integer or
scalar type, and unarrayed.

• STRUCTURE AND TERMINAL SUBSCRIPTING. The structure subscripting takes
the same form as before. Terminal subscripting (consequent on type or
arrayness) follows the mandatory semicolon, and takes the forms described in
Sections 6, 17.3 and 18.3.

• TERMINAL SUBSCRIPTING ONLY. The subscript forms are the same as in the
previous case except that the structure subscript is replaced by an asterisk.

ZQ.Q13 selects

copy 1

Q1

QS ≡ 1.5 QC ≡ ‘A’

copy 2

Q1

QS ≡2.5 QC ≡ ‘B’

copy 3

Q1

Q
S

≡ 3.5 QC ≡ ‘C’

Note the omission of the semicolon.
19-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given the single-copy structure
 |
 | STRUCTURE Q:
 | 1 QV VECTOR(3),
 | 1 Q1,
 | 2 QB ARRAY(2) BIT(4),
 | 2 QM MATRIX(3,3);
 | .
 | .
 | .
 | DECLARE ZQ Q-STRUCTURE;
 |

with the following values:

Figure 19-13

then
 ZQ.QV1 ≡ 1
 ZQ.Q1.QB∗:3 ≡ (02 12)

Note: The asterisk for the structure subscript is absent because there is only one copy.
Further, given the multiple-copy structure
 |
 | DECLARE YQ Q-STRUCTURE(3);
 |
with the following values:

⎡5 6⎤
and ZQ.Q1.QM2 TO 3, 2 TO 3 ≡ ⎣8 9⎦

⎡1⎤
QV ≡ ⎪2 ⎥

⎣3⎦

Q1

QB ≡ (1100 2 10112)

ZQ

⎡ 1 2 3 ⎤
QM ≡ ⎪ 4 5 6 ⎢

⎣ 7 8 9 ⎦
19-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 19-14

then

Figure 19-15

19.7 TREE EQUIVALENCE OF STRUCTURES
Most operations involving more than one operand of structure type require their
operands to possess tree organizations which are in most respects identical. Two
structures which are compatible in this sense are said to be “tree-equivalent”. Two basic
requirements have to be satisfied to establish tree-equivalence:

• the actual shape of the trees must be equivalent;
• the attributes of corresponding structure terminal nodes must be the same.

Literal subscripts may alternatively
be expressions computable at
compile time.
See: Guide/Appendix D.

QB ≡ (10012 01102)

Q1

QB ≡ (11012 10112)

Q1
Q1

QB ≡ (10012 11112)

YQ

copy 1

⎡9 8 7⎤
QM ≡ ⎜6 5 4⎮

⎣3 2 1⎦

⎡4⎤
QV ≡ ⎜5⎮

⎣6⎦

⎡7⎤
QV ⎜8⎮

⎣9⎦

⎡1⎤
QV ≡ ⎜2⎮

⎣3⎦
⎡1 7 9⎤

QM ≡ ⎜4 2 8⎮
⎣6 5 3⎦

copy 2 copy 3

⎡1 2 3⎤
QM ≡ ⎜4 5 6 ⎥

⎣7 8 9⎦

≡

YQ.QV* ; 3 ≡ (3 6 9)

YQ.Q1.QM 2;3,3 ≡ 1

YQ.Q1.QB
2;*:1 TO 2

≡ (112 102)

copy 2

copy 3copy 1

array property unmodified

result is scalar type
19-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
EQUIVALENCE OF TREE SHAPE
The equivalence of tree shape can be achieved in a number of different ways:

• USE OF SAME TEMPLATE - If two structures are declared using the same
template, they cannot avoid meeting both requirements for tree-equivalence.

Example:
|
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| DECLARE ZQ1 Q-STRUCTURE,
| ZQ2 Q-STRUCTURE(20);
|

ZQ1 and ZQ2 are tree-equivalent, (notwithstanding the mismatch in number of
copies).

• USE OF TEMPLATE OF SAME SHAPE - If two structures are declared using
distinct templates which do, however, have the same shape, then the first
requirement of tree-equivalence is met.

Example:
|
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| DECLARE ZQ Q-STRUCTURE;
| .
| .
| .
| STRUCTURE R:
| 1 RI INTEGER,
| 1 R1,
| 2 RS SCALAR,
| 2 RC CHARACTER(80);
| DECLARE ZR R-STRUCTURE;
19-21 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The tree shapes of ZR and ZQ are the same:

Figure 19-16
• MATCHING OF SUB-TREES - If the tree shape of a sub-tree of one structure

matches the same of another structure, or sub-tree thereof, then the first
requirement of tree-equivalence is met.

Example:
 |

| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| DECLARE ZQ Q-STRUCTURE;
| .
| .
| .
| STRUCTURE R
| 1 RS SCALAR,
| 1 RC CHARACTER(80);
| DECLARE ZR R-STRUCTURE;

• The tree shapes of ZQ and ZR clearly are not the same. However, the tree shapes
of ZQ.Q1 and ZR are the same:

Figure 19-17
MATCHING OF TERMINAL NODE ATTRIBUTES
Once matching of tree shape has been established, to obtain tree-equivalence,
corresponding structure terminal nodes of each tree must be verified as having identical
attributes. Generally, terminal nodes must match exactly in their type and array property
(if any). Additionally, for each type the following matching requirements must be met:

ZR

RI

RS

R1

RC

ZQ

QI

QS

Q1

QC

≡

ZR

RS RC

QI

QS QC

≡

19-22 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QM MATRIX(3,3),
 | 2 QC CHARACTER(80);
 | DECLARE ZQ Q-STRUCTURE;
 | .
 | .
 | .
 | STRUCTURE R:
 | 1 RI INTEGER DOUBLE,
 | 1 R1,
 | 2 RM MATRIX(3,3),
 | 2 RC CHARACTER(80);
 | DECLARE ZR R-STRUCTURE;
 |

• ZQ fails to be tree-equivalent to ZR solely due to one precision mismatch: ZQ.QI is
single precision, while ZR.RI is double precision.

• However, ZQ.Q1 is completely tree-equivalent to ZR.R1 since the offending
terminal node is not present.

Note that the matching requirement for terminal nodes of structure type preclude tree-
equivalence in cases typified by the following example:
Example:

|
| STRUCTURE Q:
| 1 QS SCALAR,
| 1 QC CHARACTER(80);
| STRUCTURE R:
| 1 RI INTEGER,
| 1 RQ Q-STRUCTURE;
| DECLARE ZR R-STRUCTURE;
| STRUCTURE S:
| 1 SI INTEGER,
|1 S1,
| 2 SS SCALAR,
| 2 SC CHARACTER(80);
| DECLARE ZS-S-STRUCTURE;
|

TYPE MATCHING REQUIREMENTS
 BIT STRING Number of bits (BOOLEAN is equivalent to BIT(1))
 CHARACTER Maximum declared length
 INTEGER Precision
 SCALAR Precision
 VECTOR Precision, length
 MATRIX Precision, row and column dimensions
 STRUCTURE Specified structure template
19-23 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ZS is not tree-equivalent to ZR although their tree organizations are superficially
alike (see Section 19.4). ZS would be tree-equivalent to ZR only if the template S
had been specified as:

 |
 | STRUCTURE S:
 | 1 SI INTEGER,
 | 1 SQ Q-STRUCTURE;

19.8 STRUCTURE ASSIGNMENTS

Values of one structure data item25 may be transferred to another in a body using a
structure assignment. Structure assignments have the same general form as other
assignments: this form has been described in Section 8.1.
BASIC FORM
As applied to structures, the rules become:

Examples:
Given:
|
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| DECLARE ZQ1 Q-STRUCTURE;
| DECLARE ZQ2 Q-STRUCTURE(2);
|

where ZQ2 has the values:

Where structure templates are declared
with additional attributes such as RIGID,
DENSE, LOCK, etc., matching extends to
these also.
See Spec./4.3 and 4.5.

25.Unless specifically stated in Sections 19.8 through 19.12, a structure data item may either be a declared structure,
or a minor structure node.

Symbolic form: L = R;
1. L is the receiving structure data item. It may possess structure

subscripting.
2. R is either a second structure data item, subscripted or not, or

alternatively a structure function (see Section 19.11).
3. L, R must be tree-equivalent in the sense described in Section 19.7.
19-24 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 19-18
then
 |
 | ZQ1 = ZQ2 ;
 |S 2
 |

results in ZQ1 having the values:

Figure 19-19

and if then the following is executed
 |
 | ZQ1.Q1= ZQ2.Q1 ;
 |S 1
 |

ZQ2

Q1 Q1

QI≡2

QS ≡2.5 QC≡ ‘B’

QI≡1

QS ≡4.5 QC≡ ‘A’

copy 1 copy 2

ZQ1

Q1

QI≡2

QS ≡ 2.5 QC≡ ‘B’
19-25 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
the values of ZQ1 are modified to:

Figure 19-20
MULTIPLE ASSIGNMENTS
Several structure data items may be assigned values at one assignment by the following
construction first presented in Section 8.5:

Examples:
Given:

 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS SCALAR;
 | DECLARE Q-STRUCTURE ZQ1, ZQ2, ZQ3;
 |

then
 |
 | ZQ1, ZQ2 = ZQ3;
 |

assigns the values of ZQ3 to ZQ1 and ZQ2.

Symbolic form: L1,L2,L3,....Ln = R;

1. L1, ...Ln are receiving structure data items.
2. Any L must be tree-equivalent to the R structure operand.
3. No particular order of assignment is assumed.

ZQ1

Q1

QI ≡ 2

QS ≡ 4.5 QC ≡ ‘A’
19-26 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.9 STRUCTURES IN CONDITIONAL CONSTRUCTS
Relational expressions appear in the IF statement described in Section 9.1 and the DO
WHILE statement described in Section 10.2. Such expressions may contain
comparative operations with structure operands.

Using the same nomenclature as in Section 9.2, structures can be used in Class II
comparative operations only:

The rules for structure comparisons are:

Example:
Given:

 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS SCALAR;
 | DECLARE ZQ1 Q-STRUCTURE,
 | ZQ2 Q-STRUCTURE;
 |

with values of ZQ1 and ZQ2 given by

Figure 19-21
then ZQ1 = ZQ2 is TRUE.

Symbol Purpose Class
= equals II

NOT = not equals
¬ =

=
Symbolic form: L NOT = R

 ¬ =
1. The L and R operands are either structure data items or structure functions

(see Section 19.11).
2. The operands must be tree-equivalent.
3. Two structures are equal if, and only if, all corresponding terminals have

equal values.

QI≡ 1

ZQ2ZQ1

QS ≡ 0.5 QI≡ 1 QS ≡ 0.5
19-27 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.10 STRUCTURE ARGUMENTS AND PARAMETERS
HAL/S procedures and functions may be defined with structure parameters, and be
passed structure arguments.
FORM OF STRUCTURE PARAMETERS
Any parameter of a function, or any input or assign parameter of a procedure, may be
declared to be a structure using the forms of declaration described in Section 19.3.
Example:

Observe the position of the structure template.
ARGUMENT PASSAGE
Any argument of a function or procedure invocation corresponding to a structure
parameter must conform to the following rules:

• INPUT PARAMETER. The transmission of the argument can be viewed as its
assignment to the input parameter. The following rules apply:

These rules apply to both procedures and functions.
• ASSIGN PARAMETER. The following rules apply for matching of arguments to

structure assign parameters.

These rules are only relevant to procedures.

| ANALYZE: PROCEDURE(S1) ASSIGN(S2);
| STRUCTURE S:
| 1 SI INTEGER,
| 1 SN,
| 2 SS SCALAR,
| 2 SC CHARACTER(80);
| DECLARE S1 S-STRUCTURE,
| S2 S-STRUCTURE;
| ⎫
| ⎬executable code
| ⎭
| CLOSE ANALYZE;

1. The corresponding argument must be a structure data item or a
structure function.

2. The argument and parameter must be tree-equivalent.

1. The assign argument must be a structure data item.
2. The argument and parameter must be tree-equivalent.
3. The argument may only be subscripted if it is a declared structure as

opposed to a minor structure, and only then if the subscript reduces the
number of copies to one.
19-28 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Let the following be declared:

and let the following procedure be defined:

Both legal and illegal invocations of this procedure are shown below.
 | CALL TREE(ZR) ASSIGN(ZQ);
 | CALL TREE(ZR) ASSIGN(YQ);
 |S 4
 | CALL TREE(ZQ.Q1) ASSIGN(ZQ);
 | CALL TREE(ZR) ASSIGN(ZR);
 {
 |
 illegal - no tree-equivalence

|
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1,
| 2 QS SCALAR,
| 2 QC CHARACTER(80);
| STRUCTURE R:
| 1 RS SCALAR,
| 1 RC CHARACTER(80);
| DECLARE ZQ Q-STRUCTURE,
| ZR R-STRUCTURE,
| YQ Q-STRUCTURE(10);

| TREE: PROCEDURE(D1) ASSIGN(D2);
| DECLARE D1 R-STRUCTURE,
| D2 Q-STRUCTURE;
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE TREE;
|

19-29 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
19.11 STRUCTURE FUNCTIONS
In HAL/S, user functions may return a structure result type. Such functions can be used
instead of structure data items in many of the structure operations described above.
Structure functions follow similar patterns for their block definitions and invocations as
given in Section 11 for other data types.
BLOCK DEFINITION
As usual, the block is opened with a characteristic opening statement, of the form:

Example:

label: FUNCTION(i1,i2,...)α-STRUCTURE;
1. label is the name of the function.
2. i1, i2, ... is the list of input parameters. The entire parenthesized list

may of course be omitted.
3. α is the name of the template describing the tree organization of the

function. The template must be defined in a block visible (according to
usual HAL/S scoping rules) to the opening statement. Note in particular
that the template cannot be defined in a group of declaration statements
inside the function.

| STRUCTURE Q;

| 1 Q1 INTEGER,

| 1 Q1,

| QS SCALAR,

| QS CHARACTER(80);

| .

| .

| .

| TREE: FUNCTION(I,J) Q-STRUCTURE;

| ⎫
| ⎬ function body
| ⎭
| CLOSE TREE;

|

19-30 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RETURN OF STRUCTURE QUANTITIES
The RETURN statement of a structure function follows the general form described in
Section 11.6. The return is similar to the transmission of structure input arguments, the
function itself playing the role of parameter. The relevant rules are the same as those
described for the passage of input arguments, as given in Section 19.10.
Examples:

|
| STRUCTURE S:
| 1 SS SCALAR,
| 1 SC CHARACTER(80);
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 Q1 S-STRUCTURE;
| .
| .
| .
| TREE: FUNCTION(D1) S-STRUCTURE;
| DECLARE D1 Q-STRUCTURE;
| .
| .
| .
| RETURN D1.Q1;
| .
| .
| .
| RETURN D1;
| {
| ⎥
| illegal - lack of tree-equivalence
| .
| .
| .
| CLOSE TREE;

INVOCATION OF STRUCTURE FUNCTIONS
A structure function is invoked in the same way as a function of any other data type, as
described in Section 11.4. It should be noted, however, that the function may only be
referenced as a whole. No reference, qualified or unqualified may be made to minor
structure or terminal nodes of its tree.
19-31 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

19.12 STRUCTURES IN INPUT/OUTPUT
Structures may participate in input/output in the same way as other data types, as
described in Section 12.

• In single-copy structures, values of the terminal nodes are transmitted in the order
they are given in the structure template.

• In multiple-copy structures, values for one copy are completely transmitted before
proceeding to the next, each copy being treated as for a single-copy structure.

These ordering rules are a restatement of the rules given in Appendix C.

The formats of the data fields are typically as given in Appendix F for each data type.
OUTPUT
Values of any structure data item (either declared structure or minor structure node), or
of any structure function may be output.

|

| STRUCTURE Q:

| 1 QI INTEGER,

| 1 Q1,

| 2 QS SCALAR,

| 2 QC CHARACTER(80);

| DECLARE ZQ Q-STRUCTURE;

| TREE: FUNCTION Q-STRUCTURE;

| ⎫
| ⎬ function body
| ⎭
| CLOSE TREE;

| .

| .

| .

| ZQ = TREE; legal invocation
| ZQ.Q1 = TREE.Q1; illegal invocation
|
19-32 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INPUT
Values of any structure data item may be input.
Example:

Given:
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QS SCALAR,
 | 2 QC CHARACTER(80);
 | DECLARE ZQ Q-STRUCTURE;
 |

and the input data stream:

Figure 19-22

then:
 READ(5) ZQ;

results in ZQ being given the following values:

5

4.2 X

X

INITIAL
POSITION
OF
DEVICE
MECHANISM

1

FINAL
POSITION
OF
DEVICE
MECHANISM

10

7.5 ‘APLHA’ 6

‘BETA'
19-33 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 19-23

ZQ

Q1 Q1

QI≡6

QS ≡4.2 QC≡ ‘BETA’

QI≡5

QS ≡7.5 QC≡ ‘ALPHA’

copy 1 copy 2
19-34 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
20.0 HAL/S ARRAY PROCESSING FEATURE
The concept of a HAL/S array of any data type has already arisen. Section 4 introduced
one-dimensional arrays, and Section 18, multi-dimensional arrays. However, other than
describing the subscript forms relevant to arrayed data items, no attempt has yet been
made to catalog the ways they can be used.

There are occasions where a programming requirement exists to perform some
transformation on all elements of an array. One realization of the algorithm for
implementing the transformation consists of using the HAL/S DO FOR statement to
index through the array, carrying out the transformation element by element. A much
more compact and elegant HAL/S realization26 consists of using “arrayed” expressions
and assignments in which the operands are generally arrays, and which look
representational as if the operations were being carried out in parallel on all array
elements, rather than serially element by element.

Of course, with the current generation of machines, in most implementations the
parallelism is only an illusion created at the source language level. Because of this, it is
not necessarily more efficient to use arrayed expressions and assignments rather than
DO FOR statements.

This section states the rules governing the construction of arrayed expressions, and
describes how they are used in various language constructs. Understanding of Sections
18 and 19 is a prerequisite for this section.

20.1 THE ARRAYNESS OF OPERANDS
An operand is said to be arrayed if either or both of the following statements are true:

• it is a declared array item;
• it is a node (root, fork or leaf) of a structure with multiple copies
• (see Section 19).

QUANTITATIVE ARRAYNESS
The “arrayness” of an operand is a quantitative description of its array property:

• the number of dimensions;
• the size of each dimension in order.

In the remainder of this section, the arrayness of any operand will be expressed in the
following general form:

{N: n1, ...nN}
where N is the number of dimensions,

ni is the size of the ith dimension for 1 ≤ i ≤ N.
Arrayness arising from either of the sources stated above are indistinguishable as far as
the constructs to be described are concerned.

26. In FORTRAN, a sequential realization, using the DO statement is the best possible realization.
20-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The following examples illustrate how the arrayness of various kinds of operands are
derived.
Examples:
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS ARRAY(3) SCALAR;
 | DECLARE ZQ Q-STRUCTURE(4);
 | .
 | .
 | .
 | DECLARE I ARRAY(4) INTEGER;
 | DECLARE S ARRAY(4,3) SCALAR;
 |

The arrayness of S is {2:4,3}, i.e. 2 dimensions of size 4 and 3 respectively.
The arrayness of I is {1:4}

The arrayness of ZQ and ZQ.QI are both {1:4}.
The arrayness of ZQ.QS is {2:4,3} -

Note that the part of the arrayness due to multiple structure copies is placed before
that due to the ARRAY specification.

The arrayness of S 1,* is {1:3}

The arrayness of ZQ.QS 1 TO 2; 2 AT 2 is {2:2,2}
 123 123
 2 copies 2 array elements
 selected selected
ZQ.QS1;1 has no arrayness - one element in one copy has been selected by the
subscript.
MATCHING OF ARRAYNESSES
Two operands have matching arrayness if, and only if, the quantitative arraynesses are
identical in all respects.
Example:
 DECLARE A1 ARRAY(2,3,4),
 A2 ARRAY(2,3,2);

The arrayness of A1 and A2 are {3:2,3,4} and {3:2,3,2} respectively. They differ
because the sizes of the rightmost dimension differ. The arrayness of A1*, *, 1 TO 2 is
{3:2,3,2} which does match that of A2.

20.2 ARRAYED EXPRESSIONS
In HAL/S, an arrayed expression is one whose result is an array. It may be one-
dimensional or multi-dimensional, and of any type - arithmetic, character, or bit string.

Arrayed expressions are constructed precisely according to the rules given in Section 7,
and expanded for bit strings in Section 17.4. The sole difference is that one or more of
the operands possess arrayness.
20-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The following rules govern the usage of arrays in expressions:

Evaluation of the expression can be viewed as a set of elemental evaluations, each
proceeding in parallel with the others. Each elemental evaluation selects a unique
combination of array index values out of the total possible given the arrayness common
to all arrayed operands, and uses it throughout the entire evaluation. Unarrayed
operands take part in all of the elemental evaluations.

Pictorially, the evaluation of an unarrayed expression may be represented typically thus:

Figure 20-1

1. Any operand may either possess arrayness or not.
2. All operands with arrayness must match in their arrayness in the

sense described in Section 20.1.

START OF
EVALUATION

selection of 1
element from array
by subscripting

operand 1
operand 3

operation 1
operation 2

operation 3

operand 2

operand 4
20-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
By comparison, the parallel evaluation of a typical arrayed expression can be
represented pictorially (for two dimensions) thus:

Figure 20-2

Examples:
Given:

 |
 | DECLARE INTEGER,
 | I1 ARRAY(2,3),
 | I2 ARRAY(4);
 |

then I1 + I1 - 2 is an operand expression equivalent in effect to

I1i,j+ I1i,j -2 for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3

Further I1 + I2 - 1 is an illegal arrayed expression since the arraynesses of I1 and
I2 are {2:2,3} and {1:4} respectively.
However, I11,* + I22 TO 4 -1 is legal since subscripting has caused the arraynesses
of both operands to be {1:3}. Its result is (7 3 8).

⎛5 3 4⎞
with I1 ≡ ⎝6 2 1⎠ and I2 ≡ (7 3 1 5)

⎛ 8 4 6⎞
and its resulting value is ⎝10 2 0⎠

selection of array
partition with arrayness
{2:3,2} by subscripting

operation 1
operation 2

START OF
ELEMENTAL

EVALUATIONS

operand 1

operand 2

operand 3

arrayness
{2:3,2}

arrayness
{2:3,2}

operation 3

operand 4
20-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
If, in addition:
 |
 | STRUCTURE Q:
 | Q1 INTEGER ARRAY(3),
 | QS SCALAR;
 | DECLARE ZQ Q - STRUCTURE(2);
 |

with

Figure 20-3
then ZQ.Q1 - I1 + 2 is legal since both arrayed operands have arrayness{2:2,3} and the
result is a 2 by 3 array with values:

BEHAVIOR OF BUILT-IN FUNCTIONS
Library or “built-in” functions may appear in arrayed expressions, with arguments with or
without arrayness. Most of the built-in functions described in Appendix B, unless stated
there to the contrary, are subject to the following rules in such contexts.

• A function with no arguments or with unarrayed arguments may either be evaluated
once only, or once during every elemental evaluation of the expression in which the
function is invoked, depending on the implementation. For most built-in functions,
the difference is immaterial since repeated invocations with the same argument
usually cause the same result to be returned. Some exceptions are27:

 RANDOM CLOCKTIME
 RANDOMG RUNTIME

• A function with one argument is treated as if it were a prefix operation upon its
argument. When the argument is arrayed, the function is evaluated once during
every elemental evaluation of the expression containing it.

⎛-2 3 0⎞
⎝-1 6 6⎠

27. See Appendix B for a complete list of functions anomalous in this respect.

QI ≡ (1 4 2) QI ≡ (3 6 5)

QS Q
S

ZQ

copy 1 copy 2
20-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
Given:
|
| DECLARE X ARRAY(4) SCALAR;
|

then
 X + SIN(X)

is equivalent to
 Xi + SIN(Xi) for 1 < i < 4,
the expression, including the sine function being evaluated 4 times.

• A function with two arguments is treated as if it were an infix operation upon its
arguments. When one or both arguments are arrayed, the function is evaluated
once during every elemental evaluation of the expression containing it.

Examples:
Given:

 |
 | DECLARE INTEGER,
 | I1 ARRAY(3,4),
 | I2 ARRAY(3,4),
 | I3 ARRAY(4);
 |

then
 I1 + DIV(I2,5)

is equivalent to
 I1i,j + DIV(I2i,j

,
 5) for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4

Note that
 DIV(I1,I2) - I3

is not a legal expression because the arrayness of I3 is {1:4} which does not match
those of I1 and I2, which are {2:3,4}.

20.3 ARRAYED ASSIGNMENTS
HAL/S permits the receiving data item of an assignment to be arrayed. The expression to
be assigned to such a data item may be arrayed or unarrayed. The rules applicable to
each of these cases are as follows:

• UNARRAYED EXPRESSION. The assignment can be viewed as a set of
elemental assignments proceeding in parallel, each one selecting a different
element of the receiving data item into which to place the single result of the
expression. Pictorially, this may be represented typically (in two dimensions) thus:
20-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 20-4
• ARRAYED EXPRESSION. The assignment can be viewed as a set of elemental

assignments proceeding in parallel, each one selecting a different element of the
receiving data item into which to place the result of the corresponding elemental
expression evaluation. Pictorially, this may be represented typically (in two
dimensions) thus:

Figure 20-5
The following rules therefore govern a simple arrayed assignment:

1. The expression to be assigned may be arrayed if and only if the
receiving data item is arrayed.

2. If the expression is arrayed, its arrayness must match that of the
receiving data item.

 arrayness
{2:3,2}

expression

assignment

receiving data item

receiving data item

 arrayness
{2:3,2}

assignment

 arrayness
{2:3,2}

expression
20-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given:

 |
 | DECLARE INTEGER,
 | I1 ARRAY(2,3),
 | I2,
 | I3 ARRAY(2,3),
 | I4 ARRAY(4);
 |

then
 |
 | I2 = I1;
 |

is an arrayed assignment in which all elements of I1 are assigned the
value of I2.

 |
 | I1 = I3;
 |

assigns each element of I3 to the corresponding element of I1.
 |
 | I1 = I4;
 |

is illegal because the arrayness of the receiving data item is {2:2,3} while that of the
right hand side is {1:4}.

 |
 | I2 = I1;
 |

is illegal because the right hand side has arrayness while the receiving data item has
none.

Further given:
 |
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 Q1,
 | 2 QS ARRAY(4) SCALAR,
 | 2 QC CHARACTER(80);
 | DECLARE ZQ1 Q-STRUCTURE(2);
 | DECLARE ZQ2 Q-STRUCTURE(2);
 | DECLARE S ARRAY(2,4) SCALAR;
 |

the following assignments are legal:
 |
 | ZQ1 = ZQ2;
 | ZQ1.Q1 = ZQ2.Q1;
 | ZQ1.Q1.QS = ZQ2.QS;
 | ZQ1.Q1.QS = S;
20-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
MULTIPLE ASSIGNMENTS
In assignments which have multiple receiving data items, the following extra rule is
required:

Examples:
Given:

 |
 | DECLARE INTEGER,
 | I1 ARRAY(2,3),
 | I2,
 | I3 ARRAY(4),
 | I4 ARRAY(2,3);
 |

then
 |

| I1, I4 = I2;
|

is legal since the arrayness of I1 and I4 match.
However, both of the following are illegal:

 | I1, I2 = I2;
| I1, I3 = I4;
|

20.4 ARRAYED SUBSCRIPTING
Variables and expressions may appear in subscripts only if all arrayness has been
subscripted away.
Examples:
 DECLARE INTEGER,
 I1,
 I2,
 A1 ARRAY(10),
 A2 ARRAY(5);
 I1 = A1I2; legal
 I1 = A1(A21 + 2); legal (all arrayness subscripted
 away from expression)
 A2 = A1(3 TO 8) + A1(5 AT 2); legal
 A2 = A1A2; illegal

3. If one receiving data item possesses arrayness, then all must possess
matching arrayness.
20-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
20.5 ARRAYED COMPARISONS
Relational expressions have been described in Sections 9.2, 17.6, and 18.9. The
comparisons which comprise relational expressions may possess arrayed operands. If
one or both operands in a comparison are arrayed, then only the Class II comparative
operators may be used, irrespective of the types of the operands:

The additional rule applicable to arrayed comparisons is:

The comparison is viewed as a set of elemental comparisons. The outcome of all
elemental comparisons is combined to form a single TRUE or FALSE logical result. The
following table shows the conditions necessary for arriving at TRUE or FALSE results.

Examples:
If I1, I2 are 2 by 3 arrays of integers

then I1 = I2 is FALSE.
However, I1*,1 TO 2 = I2 *,1 TO 2 is TRUE.
I1 = I2*, 1 is illegal since the arraynesses of the operands no longer match.
If further I3 is a 2 by 3 array of integers with

then
I3 ≡ I11,1 is TRUE.

In each elemental comparison, an element of I3 is compared against I11,1 which is
unarrayed, and in this case, equality is obtained.

Symbol Purpose Class
= equals

II
NOT = not equals

¬ =

1. If both operands possess arrayness, their arraynesses must match.

Operation Result Conditions for Result
= True Equality in all elemental comparisons is obtained.

False Equality in one or more elemental comparisons is
lacking.

Not =
¬=

True Equality in one or more elemental comparisons is
lacking.

False Equality in all elemental comparisons is obtained.

⎛1 2 3⎞ ⎛1 2 6⎞
with I1 ≡ ⎝4 5 6⎠ and I2 ≡ ⎝4 5 3⎠

⎛1 1 1⎞
I3 ≡ ⎝1 1 1⎠
20-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
20.6 ARRAYED ARGUMENTS IN PROCEDURES AND FUNCTIONS
The arguments of procedures and functions may possess arrayness when the
corresponding formal parameters meet certain conditions. Parameters of procedures
and functions may be declared as arrays of indefinite form, thus allowing the passage of
arguments whose arrayness varies from invocation to invocation.
INDEFINITELY ARRAYED PARAMETERS
The parameters of functions and the input or assign parameters of procedures may be
declared to be indefinite arrays. The form of array specification is:

Examples:

The asterisk implies that although the arrayness of the corresponding argument is
always 1-dimensional, its size can vary from invocation to invocation.

The number of multiple copies in a structure parameter may also be made indefinite
using the following form:

ARRAY(*)
1. The array specification is placed as shown in Section 4.2.

| TWICE: PROCEDURE(A) ASSIGN(B);
| DECLARE A ARRAY(*) VECTOR(3);

| DECLARE B ARRAY(*) BIT(16);
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE TWICE;
|

α-STRUCTURE(*)
1. α is the name of the template describing the tree organization of the

structure.
2. Section 19.3 describes the location of the construct in a structure

declaration.
20-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

Note that the ability to define an indefinite array does not extend to an arrayed structure
terminal.
Example:

ARRAYED PROCEDURE ARGUMENTS
Both input and assign arguments of a procedure invocation may possess arrayness. The
parameters corresponding to such arguments must be arrayed. The rules for passage of
such arguments are as follows.

• INPUT ARGUMENTS. The transmission of the argument may be viewed as its
assignment to the corresponding input parameter. However, the rules for
arrayness matching are more severe than for arrayed assignments.

|FUN: FUNCTION(C) SCALAR;
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 QS SCALAR;
| DECLARE C Q-STRUCTURE(*);
| ⎫
| ⎬ function body
| ⎭
|CLOSE FUN;
|

| BAD: FUNCTION(C) SCALAR;
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 QS ARRAY(*) SCALAR; ← illegal
| DECLARE C Q-STRUCTURE;
| ⎫
| ⎬ function body
| ⎭
| CLOSE BAD;
|

1. The arrayness of the argument must match that of the corresponding
parameter.

2. If the parameter is an indefinite array, arrayness matching is ensured if the
corresponding argument is a 1-dimensional array.
20-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

• ASSIGN ARGUMENTS. If an assign argument possesses arrayness, it is either
because it is an arrayed data item (see Section 11.5) or because it is part or whole
of a structure with multiple copies (see Section 19.3). In these cases the rules for
arrayness matching are as follows:

Examples:
Given the following procedure:

and the following data declarations:
 |DECLARE P1 ARRAY(2,3) SCALAR,
 | P2 ARRAY(2,5) SCALAR,
 | P3 ARRAY(4) BIT(16),
 | P4 SCALAR,
 | P5 ARRAY(2,5) BIT(16),
 | P6 BIT(16);

then some legal and illegal invocations of the procedure are as follows:
| CALL ONE(P1) ASSIGN(P3);
| CALL ONE(P2) ASSIGN(P3);
|S *,1 to 3
| CALL ONE(P2 + P1 - P4) ASSIGN(P6);
|S *,3 to 5 {
| CALL ONE(P4) ASSIGN(P5); ⎢
|S { 1,1 TO 4 illegal - not
 | 14243 arrayed
 illegal ⎢
 - not legal arrayness but

arrayed illegal subscript

1. The arrayness of the argument must match that of the corresponding
parameter.

2. If the parameter is an indefinite array, arrayness matching is ensured if the
corresponding argument is a 1-dimensional array.

3. If the argument is part of a structure which has multiple copies, structure
subscripting must be used to limit the number of copies in the argument to
one.

4. If array subscripting is present it must be such as to select one array
element only.

5. If component subscripting is present, where necessary array subscripting
must be used to limit the number of array elements in the argument to one.

| ONE: PROCEDURE(A) ASSIGN(B);
| DECLARE A ARRAY(2,3) SCALAR,
| B ARRAY(4) BIT(16);
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE ONE;
|

20-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
If a second procedure is given:

Then some invocations to it are:
| CALL TWO(P1) ASSIGN(P3);
|S 1,*
| CALL TWO(P2) ASSIGN(P3);
|S 1,*
| CALL TWO(P1) ASSIGN(P6);

 { {
 | |
 | Illegal - not arrayed
 Illegal -
 wrong number of array dimensions

ARRAYED FUNCTION ARGUMENTS
If a function has one or more arrayed arguments, one of two situations can arise,
depending on the form of the corresponding parameters.

• ARRAYED PARAMETER. If the parameter corresponding to an argument with
arrayness is itself arrayed, then the whole of the argument is transmitted in a
single invocation of the function. The same rules apply to this situation as to the
input arguments of procedures.

• UNARRAYED PARAMETER. If the parameter corresponding to an argument with
arrayness is itself unarrayed, then the arrayness of the argument must match other
arraynesses in the expression in which the function is invoked. In this situation, the
function is repeatedly invoked, once during every elemental evaluation of the
expression containing it. During each invocation, the appropriate elemental
argument transmittal takes place.

Examples:
Given the function:

| TWO: PROCEDURE(A) ASSIGN(B);
| DECLARE A ARRAY(*) SCALAR,
| B ARRAY(*) BIT(16);
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE TWO;
|

| ONE: FUNCTION(A,B) SCALAR;
| DECLARE A SCALAR;
| DECLARE B ARRAY(2,5) SCALAR;
| ⎫
| ⎬ function body
| ⎭
| CLOSE ONE;
20-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
and the declarations
 |
 | DECLARE P1 ARRAY(2,5),
 | P2 ARRAY(2,5),
 | P3 ARRAY(3),
 | P4;
 |

then some legal and illegal invocations of the function are as follows:
 P4 + ONE(P4,P2/2)…
 123

 |
 arrayness matches that of parameter - function invoked once
 P2 + ONE(P2,P1)…
 { {
 | |
 | arrayness matches that of parameter - all
 | of P1 transmitted every elemental elevation
 |
 parameter unarrayed - one element of P2 transmitted every elemental

elevation.

The second invocation is equivalent to:
 P2i,j + ONE(P2i,j, P1)... for 1 ≤ i ≤ 2,1 ≤ j ≤ 5

The function can in fact generate the only arrayness of the expression:
 P4 + ONE(P2,P1)...

is equivalent to
 P4 + ONE(P2i,j,P1)... for 1 ≤ i ≤ 2,1 ≤ j ≤ 5

P3 + ONE(P2,P1)... is illegal because the arrayness of P3 does not match that of
P2.
P2 + ONE(P2,P3)... is illegal because the arrayness of P3 does not match that of
the corresponding parameter.
This example would become legal if the declaration for the parameter B were:

 |
 | DECLARE B ARRAY(*) SCALAR;
 |

Restrictions are placed upon the array processing of arguments
of functions if the function definition follows any of its
invocations.

See: Spec./4.6.
20-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
20.7 ARRAYS IN INPUT/OUTPUT
The values of an arrayed expression can be output by using the WRITE statement. The
values of an arrayed data item can be input by using the READ statement.
Section 12.2 described the data formats for one-dimensional arrays on output: Section
12.2 described the data formats for one-dimensional arrays on input.

The order of input and output is generated by application of the rules given in Appendix
C.
Example:

IF I is a 2 x 3 array of integers with

then execution of
 |
 | WRITE(6) I;
 |

results in the following output being generated:

Figure 20-6

⎛1 2 3⎞
I ≡ ⎝4 5 6⎠

1 X

X

INITIAL POSITION OF DEVICE
MECHANISM1

FINAL
POSITION OF
DEVICE
MECHANISM

15

2 3 4 5 6
20-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
21.0 EXPLICIT CONVERSIONS
Section 7.5 in Part I of the Guide introduced some of the commoner explicit conversions
of HAL/S. Explicit precision conversion, and the VECTOR and MATRIX conversion
functions were described. The language contains many more kinds of explicit
conversions, however, which provide a controlled and highly visible interface between
the various data types.

This section deals with conversion functions, classifying them according to the data type
of their results.

21.1 VECTOR AND MATRIX CONVERSIONS
The forms of VECTOR and MATRIX conversion functions have been given in Section
7.5. It remains in this section to present the general forms of argument list they may
possess.

The argument list of a VECTOR or MATRIX conversion may take the following general
form:

The ordering of the values of the expression list in the resulting vector or matrix is
specified by the following.

• The values of each expression in turn are converted to a linear list by applying the
rules of Appendix C.

• The lists are catenated from left to right forming a single linear list of values.
• For a VECTOR conversion, the resulting vector is formed directly from the linear

list. For a MATRIX conversion, the resulting matrix is formed by a row-by-row
assembly from the linear list.

(exp1, exp2......)

1. Each exp is an expression of any of the following types:
 MATRIX INTEGER

 VECTOR SCALAR

2. Any expression may possess arrayness in the sense described in Section
20.2.

3. The total number of values summed over all expressions must match the
length of the vector result, or the product of the row and column dimensions
of the result, as appropriate.
21-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

EXPRESSION REPETITION
Any expression in the argument list of a MATRIX or VECTOR conversion can be
repeated by prefacing it with a repetition factor with the following form:

Example:

 then

21.2 INTEGER AND SCALAR CONVERSIONS
The INTEGER and SCALAR conversion functions convert to integer and scalar type
respectively. The behavior of these functions varies, depending on whether they
possess a single expression as argument, or a list of expressions.

⎡3⎤
⎢1 ⎢

If V is a 4-vector with V ≡ ⎢2 ⎢
⎣0⎦

⎡4 5⎤
and M is a 2 x 2 matrix with M ≡ ⎣2 4⎦
then

⎡4 5 2 3⎤
MATRIX2,4(M,V) ≡ ⎣3 1 2 0⎦

...n# expi ,...
1. n is a positive non-zero integer literal specifying the number of times

the value or values of the expression are to be repeated.

⎡1⎤
If V is a 3-vector with V ≡ ⎢2⎥

⎣3⎦

⎡1 2 3⎤
MATRIX2,3(2#V) ≡ ⎣1 2 3⎦
21-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SIMPLE FORM
The simple form of the INTEGER and SCALAR conversion functions is:

Examples:
If C is a character with C ≡ ‘123.5’ and B is a 3-array of bitstrings of length 8

 then
 SCALAR(C) ≡ 123.5
 and

INTEGER(exp)
SCALAR(exp)

1. exp is an expression of any of the following types:
 BIT STRING (and BOOLEAN) INTEGER

 CHARACTER SCALAR

2. exp may possess arrayness, in which case the arrayness must match that
of the expression of which the conversion forms a part. The result is to
cause an elemental conversion for every elemental evaluation of the outer
expression (See Section 20.2).

3. Conversions to integer or scalar type proceed according to the rules given
in Appendix A.

⎡ F16 ⎤
with B ≡ ⎢1016 ⎢

⎣1C16 ⎦

⎡15⎤
INTEGER(B) ≡ ⎢16⎥

⎣28⎦

⎡-10⎤
If I is a 3-array with I ≡ ⎢-10⎥

⎣-20⎦

⎡5⎤
then I + INTEGER(B) ≡ ⎢6⎥

⎣8⎦
21-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
LIST FORM
The list form of the INTEGER and SCALAR conversion functions creates an array result,
in addition to type converting the list of expressions constituting its arguments. Its form is
as follows:

Note that the list form can only have one expression in the list without reverting to the
simple form if either of the following statements are true:

• the type of the expression is matrix or vector;
• explicit subscripting of the function is present.

The ordering of values of the expression list in the resulting array is specified by the
following:

• The values of each expression in turn are converted to a linear list by applying the
rules of Appendix C.

• The lists are catenated from left to right forming a single linear list of values.
• The linear list is regenerated to an array of the given dimensions by applying the

rules of Appendix C.
Examples:

INTEGERn1,n2,...(exp1,exp2,...)
SCALARn1,n2,...(exp1,exp2,...)

1. The subscripts ni for i = 1, 2,... are positive integers specifying the
number and size of dimensions of the resulting array. The total number
of values summed over all the expressions in the list must be
consistent with the number of array elements implied. The upper limit
on i is 3†.

† This number may vary between implementations. See the appropriate User’s Manual.

2. The subscripts may be omitted entirely, in which case a linear
1-dimensional array is created, whose length is equal to the total
number of values summed over all the expressions.

3. Each exp is an expression of any of the following types:
 INTEGER MATRIX

 SCALAR BIT STRING(and BOOLEAN)

 VECTOR CHARACTER

and may optionally possess arrayness.
4. Conversions to integer or scalar type proceed according to the rules

given in Appendix A.

⎡4⎤
If V is a 4-vector with V ≡ ⎢1⎥

⎢3⎥
⎣2⎦

⎡1 0⎤
and M is a 2 x 2 matrix with M ≡ ⎣5 4⎦
21-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

 If I is a 4-array of integers

Note that even though the function appears in an arrayed expression, in this and all
other cases involving the list form, the implementation is generally to precompute
the entire array result, and then evaluate the expression containing the conversion
on an element-by-element basis.

⎡4 1 3 2⎤
then INTEGER2,4(V,M) ≡ ⎣1 0 5 4⎦

⎡4⎤
⎢1 ⎜
⎢3 ⎜

and INTEGER(V,M) ≡ ⎜2 ⎜
⎢1 ⎜
⎢0 ⎜
⎢5 ⎜
⎣4⎦

⎡4⎤
INTEGER(V) ≡ ⎢1 ⎜ and is of list form

⎢3 ⎜
⎣2⎦

⎡2⎤
with I ≡ ⎢4 ⎜

⎢1 ⎜
⎣1⎦

⎡6⎤
then I + INTEGER(V) = ⎢5⎥

⎢4⎥
⎣3⎦
21-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
EXPRESSION REPETITION
As with the VECTOR and MATRIX conversions, the expressions in the list of an
INTEGER or SCALAR conversion may be repeated using the form:

Example:
If S is a scalar with S≡1.5

SIMULTANEOUS PRECISION SPECIFICATION
In the absence of any explicit indication, the result of an INTEGER or SCALAR
conversion is always single precision. The precision can be explicitly stated in same way
as in a VECTOR or MATRIX conversion.
If no subscripting is present, the forms are:

If subscripting is present, the corresponding forms are:

Examples:

....n# expi,....
1. n is a positive non-zero integer literal specifying the number of

times the values or values of the expression are to be repeated.

⎡1⎤
⎢1⎥

then INTEGER(5#S) ≡ ⎢1 ⎜ and is of list form.
⎢1⎥
⎣1⎦

INTEGER@SINGLE
(....

SCALAR@SINGLE
(....

INTEGER@DOUBLE
(....

SCALAR@DOUBLE
(....

1. The first two forms force a single precision result; the second
two, double precision.

2. Precision conversion is carried out for each expression in turn
before assembly of the result.

INTEGER@SINGLE, n1,n2 ...(....

SCALAR@SINGLE, n1 ,n
2
 ...(....

INTEGER@DOUBLE, n1

,n

2 ...(....

SCALAR@DOUBLE, n1 ,n2

...(....

INTEGER@DOUBLE(X) simple form
INTEGER@DOUBLE, 2,2(5.0,‘15’,BIN‘1011’,-7.5) list form
21-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
21.3 BIT CONVERSION
Conversions to bit string type are carried out by the BIT conversion function. There are
two forms: the simple form converts other data types to bit string type using the standard
conversion rules; the radix form can only convert character data type to bit string type,
and uses different conversion rules.

Both forms are similar to the simple form of INTEGER and SCALAR functions, in that
they have one expression only.
SIMPLE FORM
The simple form of BIT conversion is as follows:

 BITsubscript (exp)
1. exp is an expression of any of the following types:

INTEGER BIT STRING(and BOOLEAN)
SCALAR CHARACTER

2. exp may possess arrayness in which case the arrayness must match that of
the expression of which the conversion forms a part. The result is to cause an
elemental conversion for every elemental evaluation of the outer expression
(see Section 20.2).

3. Conversion to bit string type proceeds according to the rules given in
Appendix A.

4. subscript represents component subscripting on the result of the conversion.
It possesses the same forms as component subscripting on bit string data
items as described in Section 17.3. The result is always a 32-bit string†.

† This value may vary between implementations. See the appropriate User’s Manual.

5. If subscript is absent, the result of the function is the entire bit string generated
by the conversion.
The length of the result depends on the length of the argument†.

type Length of the result

INTEGER

32
16

SCALAR

32
32

CHARACTER 32

BIT STRING

DOUBLE
SINGLE⎩

⎨
⎧

DOUBLE
SINGLE⎩

⎨
⎧

Number of
bits in
argument⎩

⎪
⎨
⎪
⎧

21-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If I is a halfword integer with I≡5
then BIT(I) ≡000516
If C is a character data item with C = ‘10110011101’
then BIT(C) ≡ 000000000000000000000101100111012

BIT17 TO 32(C) ≡ 00000101100111012
and BIT28 TO 32(C) = 111012
21-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RADIX FORM
The radix form of BIT conversion is used when a character value is to be converted by an
explicit rule to a bit string. A radix specifying the conversion rule is supplied in place of a
subscript. The possible forms are as follows:

Examples:
BIT@HEX(‘FA0’) ≡ 00000FA016

BIT@DEC(‘1024’) ≡ 0000040016

BIT@OCT(‘177777’) ≡ 0000FFFF16

BIT@HEX(‘F0F1F2F3F4’) ≡ F1F2F3F416

21.4 CHARACTER CONVERSION
Conversions to character type are carried out by the CHARACTER conversion function.
As with the BIT conversion, there are two forms: the simple form converts other data
types to character form using the standard conversion rules; the radix form can only
convert bit string data to character type, and uses different conversion rules.

BIT@BIN(exp)

BIT@OCT(exp)

BIT@DEC(exp)

BIT@HEX(exp)

1. exp is an expression of character type whose value must consist entirely of
a string of digits legal for the specified radix.

2. The radices have the following meanings:
radix digit string
@BIN
@OCT
@DEC
@HEX

binary
octal
decimal

hexadecimal

3. exp may possess arrayness with the same implications as in the simple
form of BIT conversion.

4. The conversion generates the binary representation of the input digit string.
The binary representation is truncated or padded with binary zeroes on the
left to create a 32-bit string† .

† This value may vary between implementations. See the appropriate User’s Manual.
21-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SIMPLE FORM
The simple form of CHARACTER conversion is as follows:

Examples:
If I is a halfword integer with I = 173

then CHARACTER(I) ≡ ‘173’
CHARACTER1 TO 2(I) ≡ ‘17’

CHARACTER1 TO 3(I) ≡ ‘173’
If B is a bit string of length 4 with

B ≡ 01012
then

CHARACTER(B) ≡ ‘0101’
(note that number of characters is the same as the number of bits.)

CHARACTERsubscript(exp)

1.exp is an expression of any of the following types:
INTEGER BIT STRING (and BOOLEAN)

SCALAR CHARACTER

2. exp may possess arrayness, with the same implications as in the BIT
conversion function (See Section 21.3).

3. Conversion to character type proceeds according to the rules given in
Appendix A. The length of the result of conversion depends on the type of
the input data.

4. subscript represents component subscripting on the result of the
conversion. It possesses the same forms as component subscripting on
character data items as described in Section 6.1.

5. If subscript is absent, then the result of the function is the entire string of
characters generated by the conversion.
21-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RADIX FORM
The radix form of CHARACTER conversion is used when a bit string value is to be
converted by an explicit rule to a character string. Analogous to the radix form of BIT
function, a radix specifying the conversion rule is supplied in place of a subscript. The
possible forms are as follows:

Examples:
 CHARACTER@BIN(BIN ‘001010’) ≡ ‘001010’

 CHARACTER@OCT(BIN ‘001010’) ≡ ‘12’

 CHARACTER@DEC(BIN ‘001010’) ≡ ‘10’

 CHARACTER@HEX(BIN ‘001010’) ≡ ‘OA’

21.5 SUBBIT PSEUDO-CONVERSION
The SUBBIT pseudo-conversion function provides a way of transferring a value from one
data type another without conversion. Effectively it is used as a method of circumventing
HAL/S type compatibility rules in a limited and controlled way. The value transferal takes
place using the bit string type as an intermediary:

old type → bit string → new type
This transferal requires the use of the SUBBIT conversion both in reference and in
assignment context.

• In reference context, SUBBIT causes a data type to be referenced as if it were a bit
string.

• In assignment context, SUBBIT causes a data item to be assigned into as if it were
a bit string.

CHARACTER@BIN(exp)
CHARACTER@OCT(exp)

CHARACTER@DEC(exp)

CHARACTER@HEX(exp)

1. exp is an expression of bit string type, and possibly possessing
arrayness, with the same implications as in the BIT conversion function.

2. The value of the bit string is converted to a string of digits as specified
by the radix.

3. The radices have the following meanings:
radix digit string
@BIN
@OCT
@DEC
@HEX

binary
octal
decimal

hexadecimal
4. The length of the resulting string varies depending on the value of exp.
21-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
There are, of course, other contexts where it is convenient to use pseudo-conversion
other than those described above.

The form of the SUBBIT pseudo-conversion in either context is as follows:
SUBBITsubscript(argument)

1. In assignment context, argument is a data item, either subscripted or not. In refer-
ence context, argument is an expression. The following types are legal:
INTEGER BIT STRING (and BOOLEAN)
SCALAR CHARACTER

2. argument may possess arrayness. In reference context it causes a data type to
appear to be a bit string expression with arrayness; in assignment to appear as a bit
string data with arrayness.

3. The subscript is optional. If it is absent, only the N leftmost bits in the bit pattern of the
argument are visible. For different types of argument, the values of N are:†

† The values may vary between implementations. See appropriate User’s Manual.

type N

INTEGER
⎧DOUBLE
⎨SINGLE
⎩

32
16

SCALAR
⎧DOUBLE
⎨SINGLE
⎩

32
32

CHARACTER
BIT STRING ⎧Number of

⎨bits in
⎩argument

4. If subscript is present, it specifies what range of bits in the bit pattern of the argument
are to be made visible. It must conform to the rules for subscripting of bit string data
items as described in Section 17.3 in all respects save that the index values are
confined to the range 1-N given below, rather than 32:††

†† The maximum length of bit strings is an implementation. See appropriate User’s Manual for variations.

type N

INTEGER
⎧DOUBLE
⎨SINGLE
⎩

32
16

SCALAR

⎧DOUBLE
⎨SINGLE
⎩

64
32

CHARACTER
⎧Current
⎨working length
⎩of argument

BIT STRING
⎧Number of
⎨bits in
⎩argument
21-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If I is a double precision (fullword) integer
then

 |
 | SUBBIT(I) = SUBBIT(‘1234’);
 |

causes the following to occur:

The SUBBIT in reference context causes the creation of a 32-bit string with value
F1F2F3F416

29. When this value is assigned into I its bit pattern becomes
F1F2F3F416.

Hence, I ≡ 4059231220 in decimal notation, if unsigned.

Given that I now has this value
|

| SUBBIT (I) = SUBBIT (333);

|S 25 TO 32 4 TO 11

has the following effect:
The bit pattern of 333 is 014D16 (it is assumed to be a halfword integer). The SUB-
BIT in reference context selects from this the 8-bit string 0A16. This overlays bits 25-
32 of the bit pattern of I:

 ↑
 }
 F1F2F3F416

↑

}
 0A16

The final bit pattern is thus F1F2F30A16.

Hence, I = 4059230986 in decimal notation.

DETAILED BEHAVIOR OF SUBBIT
SUBBIT has the effect of opening a “window” on the bit pattern of its argument, the width
and position being determined by the subscript, if the conversion possesses one, or
implicitly otherwise. Various side effects may occur depending on the width and position
of the window relative to the bit pattern of the argument. These effects may differ
depending on whether the SUBBIT pseudo-conversion is in reference or assignment
context.

29.Using EBCDIC character codes.
21-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The examples given above have avoided these side effects, which may include padding,
truncation, or error conditions. These phenomena are summarized below for each
context in turn.
• REFERENCE CONTEXT

The following diagrams summarize the behavior of SUBBIT in reference context. In
general, padding and truncation do not occur but an error condition may arise.

Figure 21-1

Examples:
If I is a single precision (halfword) integer

with I ≡ 32767
then it has the bit pattern 7FFF16

Thus,
 SUBBIT(I) ≡ 7FFF16 (length 16 result)
 SUBBIT1 TO 8(I) ≡ 7F16 (length 8 result)
 SUBBIT1 TO 32(I) is illegal

ASSIGNMENT CONTEXT
In contrast to SUBBIT in reference context there are two steps to its operation in
assignment context. The first is the fitting of the value to be assigned to the window; the
second is the assignment through the window into the bit pattern of the argument. The
first step may involve padding or truncation, the second may cause an error condition to
arise. The following diagrams illustrate this.
STEP 1

Figure 21-2

window

bit pattern

resultant value
error condition
(violates rule 4 above)

{

window

value to be assigned

adjusted value

long window -
padding on left
with binary zeroes

0 0

short window -
truncation on left
21-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
STEP 2

Figure 21-3

Examples:
If I is a single precision (halfword) integer

with I ≡ 32767
then it has the bit pattern 7FFF16
|
| SUBBIT (I) = HEX‘FF’;
|
causes the following to occur:
The window of the SUBBIT is 16 bits wide opening all of I. The bit string to be
assigned into I is expanded to 16 bits:

00FF16

The value of I thus becomes FF16 or I ≡ 255 in decimal notation.

|
| SUBBIT (I) = HEX‘FFFFFFFF’;

|
causes the following to occur:
The bitstring to be assigned into I must now be truncated to FFFF16 to match the
width of the window. The value of I thus becomes FFFF16 or I ≡ -1.
If I initially has its original value
|
| SUBBIT (I) = HEX‘7E’;
|S 13 TO 16

|
then the following occurs:
The SUBBIT window is 4 bits wide. The bit string is thus truncated from 7E16 to E16.
This value is assigned through the window into I which thus becomes 7FFE16,

window

original bit pattern

adjusted value

final bit pattern
error condition
(violates rule 4 above)
21-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
or I ≡ 32766.
SUBBIT WITH CHARACTER ARGUMENT
Instances of SUBBIT pseudo-conversions with arguments of character type are even
more complex than the foregoing, since a SUBBIT with no subscript has a different
behavior than one with a subscript. Again the rules are summarized separately for
reference and assignment contexts.

• REFERENCE CONTEXT
If an unsubscripted SUBBIT pseudo-conversion has a character argument whose
working length is less than the implied constant window width, then the bit pattern is
left padded with zeroes to fill the gap. If a subscripted SUBBIT pseudo-conversion
has a character argument, and the specified window lies partly or wholly outside the
range of the current value of the argument, then an error condition arises.

Examples:
 If C is a character string of maximum length 4
 and C≡ ‘AB’
 then
 SUBBIT (C) ≡ 0000C1C216

30

 SUBBIT 1 TO 16(C) ≡ C1C2
16

 SUBBIT
1 TO 24 (C) is illegal because the working length of C is too short.

• ASSIGNMENT CONTEXT

If an unsubscripted SUBBIT pseudo-conversion has a character argument whose
working length is less than the implied constant window width, then the window is
shortened to the working length, causing truncation of the value being assigned into
the argument. If a subscripted SUBBIT pseudo-conversion has a character
argument, and the specified window lies partly or wholly outside the range of the
current value of the argument, then an error condition arises.

Examples:
If C is a character string of length 4 with
C ≡ ‘AB’ initially,
then

 |
 | SUBBIT (C)= HEX‘F1F2F3F4’;
 |

causes shortening of the window to 16 bits.
The bit string to be assigned into C is therefore truncated to F3F4

16
 and hence

finally C ‘34’30

30.Using EBCDIC character codes.
21-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 |
 | SUBBIT (C) = HEX‘F1F2F3F4’;
 |S 1 TO 8
 |

causes the first 8 bits of C to be replaced by F4.
Hence finally, C ≡ ‘AB’.

 |
 | SUBBIT (C) = HEX ‘F1F2F3F4’; is illegal
 |S 1 TO 24
 |

RESTRICTIONS ON USE OF SUBBIT
The only assignment context in which SUBBIT may appear is an assignment statement.
Other such contexts where SUBBIT is illegal include READ statements, and ASSIGN
argument lists.

In reference context, SUBBIT may be used anywhere that a bit string expression is legal.
21-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 This page intentionally left blank.
21-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
22.0 ADDITIONAL INPUT/OUTPUT FEATURES
This section is supplementary to Section 12 of Part I of the Guide, which introduced
sequential I/O and the HAL/S READ and WRITE statements. Two topics are covered
here.

• Discussion of sequential I/O is concluded by a description of a second mode of
input implemented by the READALL statement.

• Random-access I/O using FILE statements is described.

22.1 THE READALL STATEMENT
Section 12.3 described how data could be read from an I/O device into specified data
items. It was stated that the input stream is considered to be divided sequentially into
data fields each containing a value to be input. Input of each value is accompanied by a
conversion appropriate to the data item receiving the value.

It is often important to be able to read the input data stream as a continuous sequence of
characters, without division into fields, and without type conversion, thus leaving it to the
programmer to decode the information any desired way. This ability is provided by the
HAL/S READALL statement.
The READALL statement is an executable statement causing input of data from an
unpaged31 I/O device. Its form is as follows:

In execution the sequence of events is as follows:
• If the READALL statement is the first to be executed for the specified device, the

device mechanism positions itself at column 1 of line 1. Otherwise, it moves down
one line from its current position and repositions itself at column 1.

• The device begins reading into the first element of data specified by the list,
stopping when the character string reaches its defined maximum length, or when
the end of the line is reached, whichever happens sooner.

 |
 | READALL(n)var1,var2,.....varn;
 |
1. n is the channel code number, and lies in the range 0 < n < 9†.

† This value may vary between implementations. See appropriate User’s Manual.

2. Each var is a data item of character type, or a structure whose terminal
nodes are exclusively of structure type, and optionally subscripted.

3. The list of data items may be arbitrarily long. Alternatively, no list need be
supplied.

4. The specified device reads values into each data item in turn from left to
right.

31.See Section 12.1 for definition.
22-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• The device then begins reading into the second element specified by the list,
resuming from the next column of the line, or if the end of it was previously
reached, from column 1 of the next line. The stopping condition is as before.

• The device continues reading as described above until all the data items in the list
have been filled.

• This behavior is unaffected by the contents of the input stream.
• If no list of data items is supplied in the READALL statement, the device merely

performs its initial positioning.
DATA FORMATS
No conversions occur during input, the input stream appearing unaltered in the data
items constituting the READALL list.
The order of reaching into arrayed character items, and into structures, is in conformity
with the rules given in Appendix C.
Examples:

Let C1 be a character string of maximum length 70
and C2 be a character string of length 20
Then

 |
 | READALL(5) C1, C2;
 |

using the following data:

Figure 22-1

11

12

70

A B X 1 5 C D E...................M N OPQR ST U V W X Y Z
%@,#AZX?!PQ987654321:<=

1

INITIAL
POSITION
OF
DEVICE
MECHANISM

80

10

(last
column)

X

22-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
would result in
C1 ≡ ‘ABX15CDE......MNOP’ (maximum length reached)
C2 ≡ ‘QRSTUVWXYZ’ (end of line reached)

If C1 ≡ had a maximum length of 80
then the same data would have resulted in

 C1 ≡ ‘ABXl5CDE...........MNOPQRSTUVWXYZ’
C2 ≡ ‘%@,#AZX?!PQ987654321’

DEVICE MECHANISM POSITIONING
Section 12.4 described how the pseudo-functions SKIP, LINE, COLUMN, and TAB could
be used to position a device mechanism of an unpaged device explicitly during input.
The pseudo-functions can be used in the READALL statement in exactly the same way
with identical effect.
DEVICE ATTRIBUTES
In determining whether by default a device is characterized as paged or unpaged
according to the rules of Section 12.5, a READALL statement is equivalent to a READ
statement.

22.2 RANDOM ACCESS INPUT/OUTPUT
Random access input/output consists of writing records on a device, or reading them
from a device, in arbitrary or random order, rather than sequentially.
HAL/S implements random-access I/O by means of the FILE statement, which has the
form of an assignment, and handles either input or output, depending on the form in
which it is written.
This section introduces the HAL/S concept of random-access I/O and describes the form
and use of the FILE statement.
HAL/S RANDOM-ACCESS CONCEPTS
Random access I/O is thought of as taking place via a number of “channels” each
connected to a random-access device, and identified by an integer code (The channels
and devices are taken to be conceptually and physically separate from the
corresponding sequential I/O channels and devices).
Each device “saves” and “retrieves” data divided into records, which depending on the
implementation may be of fixed or varying length. Each record possesses a unique
“record address” assigned to it when the record is saved on the device. The record is
retrieved by accessing the device with the same record address.

The format of data saved on the device is implementation dependent, but is generally
taken to be in a binary core image form.
22-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Execution of a HAL/S FILE statement causes the specified device to save or retrieve one
record32 of data whose record address is also specified.

• The saving of a record is caused by executing a “write-mode” FILE statement.
• The retrieving of a record is caused by executing a “read-mode” FILE statement.

WRITE-MODE FILE STATEMENT
The write-mode FILE statement is used to save a record with a given record address on
a specified random-access device. Its form is as follows:

The action of the write-mode FILE statement is to save the value or values of the
expression on the right of the assignment as one record with the specified address, on
the specified device.
Examples:
 |
 | STRUCTURE Q:
 | 1 QA CHARACTER(80),
 | 1 QB SCALAR,
 | 1 QV VECTOR(9);
 | DECLARE ZQ Q-STRUCTURE(20);
 | DECLARE P ARRAY(1000) SCALAR;
 | .
 | .
 | .
 | .
 | .
 | .
 | FILE(1,I) = ZQ ;
 |S 10 TO 20
 | FILE(2, I+2) = P;
 | FILE(1, 160) = SIN(ZQ.QB);
 |S 5
 |

32.A conceptual HAL/S record may or may not be equivalent to a “logical record” of a particular operating system
 on a particular machine.

 |
 | FILE(n, address) = exp;
 |
1. n is the channel code number of the specified device, and is an integer in

the range 0 ≤ n ≤ 9†.

† This value may vary between implementations. See appropriate User’s Manual.

2. address is an unarrayed integer expression whose resultant value is the
record address, and must be a legal address for any given implementation.

3. exp is an expression of any of the following types:
INTEGER BIT STRING(or BOOLEAN)
SCALAR CHARACTER
VECTOR STRUCTURE
MATRIX
and possibly possessing arrayness in the sense of Section20.2.
22-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
READ-MODE FILE STATEMENT
The read-mode FILE statement is used to retrieve a record with a given record address
from a specified random-access device. Its form is as follows:

The action of the read-mode FILE statement is to retrieve the value or values in the
record with the specified address and assign them into the data item on the left of the
assignment.
Various restrictions are placed on the kind of data item appearing in a read-mode FILE
statement.

• Input parameters are excluded.
• Bit string and character types may not possess component subscripting.
• Partitioning component subscripting on vector and matrix data items is illegal,

unless subscripting reduces to a single item.
• Partitioning array subscripting on arrayed data items is illegal.
• Partitioning structure subscripting on structure terminals or minor structures is

illegal.

var =FILE(n, address);

1. n is the channel code number of the specified device, and is an integer in the
range 0 ≤ n ≤ 9†.

† This value may vary between implementations. See appropriate User’s Manual.

2. address is an unarrayed integer expression whose resultant value
constitutes a record address of an existing record on the device.

3. var is a subscripted or unsubscripted data item of any of the following types:
INTEGER BIT STRING(or BOOLEAN)

SCALAR CHARACTER

VECTOR STRUCTURE

MATRIX

If it is of structure type, it may possess multiple copies, else it may be
arrayed.
22-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | STRUCTURE Q:
 | 1 QA CHARACTER(80),
 | 1 QB SCALAR,
 | 1 QV VECTOR(9);
 | DECLARE ZQ Q-STRUCTURE(20);
 | DECLARE P ARRAY(1000) SCALAR;
 | .
 | .
 | .
 | ZQ = FILE(1,I);
 | ZQ = FILE(2, J+1);
 |S 1 TO 10
 | P = FILE(1, I+5); ← illegal array subscripting
 |S 1 TO 500
 | ZQ.QA = FILE(1, 140); ← illegal component subscripting
 |S 1;1
 | ZQ.QV = FILE(1, 150);
 |S 10 TO 2
 | ZQ.QV = FILE(1, 160);← illegal component subscripting
 |S 10;1 TO 2
 | ZQ.QB = FILE(1, I-1); ← illegal structure subscripting
 |S 10 TO 15
 |

COMPATIBILITY OF FILE OPERATIONS
It has been stated that when a write-mode FILE statement causes a device to save a
record, the data saved is in general a binary image of the value specified in the
statement. Because of this there is inherently no protection against retrieving the data by
a read-mode FILE statement and assigning it to a completely different type of data item.
It is the user’s responsibility to ensure that the intelligibility of data is maintained.
The behavior of a FILE statement when the size of the binary image of the data item or
expression is different from the length of the record accessed, is implementation
dependent.

Other restrictions due to the
DENSE attribute of a data item
are enforced.
See: Spec./10.2
22-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
| DECLARE A ARRAY(1000) SCALAR,
| A1 ARRAY(1000) SCALAR,
| B ARRAY(1000) INTEGER DOUBLE,
| C ARRAY(1000) BIT(32),
| D ARRAY(10) CHARACTER(4);
|.
|.
|.
| FILE(1,1) = A; ←⎯⎯⎯
| --- compatibility assured since A and A1 are alike.
| A1 = FILE(1, 1); ←⎯
|.
|.
|.
|.
|.
| FILE(1,2) = B; ←⎯⎯

⏐ | --- C will contain the bit pattern of B in an
| C = FILE(1,2); ←⎯⎯⏐ implementation where double precision
| integers occupy 32-bits.
| FILE(1,3) = A;
| D = FILE(1,3); ←⎯⎯ D will contain implementation dependent garbage:
| error condition might occur if the binary range of
 record 3 is too long to be contained in D.
22-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

This page intentionally left blank.
22-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
23.0 REAL TIME PROGRAMMING - II
Section 13 introduced some of the simpler aspects of HAL/S real time programming
concepts. Real time processes, and their creation and execution by means of the
SCHEDULE statement were described.
This section explains how real time processes can be created by invoking program
blocks instead of task blocks, and the resulting implications when referencing one
program from another.
This section also describes how real time processes can be scheduled to execute
cyclically, and how cycling of execution can be arrested by means other than executing a
TERMINATE statement.

23.1 PROGRAM PROCESSES
Section 13.1 explained that at run time, the dynamic counterpart of a HAL/S program is a
real time process executing under control of a Real Time Executive (RTE). It stated that
this “primal process” could create other processes whose static counterparts are task
blocks embedded in the program block. However, it is also possible to create processes
whose static counterparts, rather than being task blocks, are other program blocks. In
order to avoid confusion, in the remainder of this Section the program block
corresponding to the primal process will be called the “primal program”.

The program blocks which are invoked by SCHEDULE statements causing the creation
of new processes, are the same in every respect as the primal program block: they are
separately compiled blocks of code. The scheduling of program processes therefore
requires the bringing together of a number of compilation units at run time.33

This situation is analogous to the invocation of external procedures and functions as
described in Section 15, and is shown pictorially below:

33.The object modules resulting from their compilation have to be “link-edited" to produce a single executable load
module. The way in which the primal program is distinguished from the others in such a load module is extra-lingual
and implementation dependent.
23-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 23-1

A program may invoke any other program in the same assemblage of compilation units,
or invoke any task block within itself, in order to create a new process. The programs will
probably need to share data in one or more compools, and may also share the use of
comsubs (not shown)34.
Any program which creates a program process, or otherwise controls its execution,
perforce contains references to the program block which is the process’ static
counterpart. The first program must, under these circumstances, be provided with a
block template of the program block referenced. The program template is included in the
compilation unit of the first program, in the same way as if it were a compool or comsub
template.

34.Interfaces with compools and comsubs have been described in Section 15.

COMPOOL

(shared
data)

PROGRAM

INVOCATION OF
TASK BLOCK

PRIMAL PROGRAM

TASK BLOCK

TASK BLOCK

PROGRAM

TASK BLOCK

INVOCATION OF
PROGRAM BLOCK

INVOCATION OF
TASK BLOCKS

INVOCATION OF
PROGRAM BLOCK

DATA
REFERENCES
23-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Expanding the example given above, the location of program templates is as follows:

Figure 23-2

COMPOOL
TEMPLATE

PRIMAL
PROGRAM

TASK
BLOCK

TASK
BLOCK

DATA
REFERENCES

COMPOOL
COMPILATION

UNIT

PROGRAM
TEMPLATE

COMPOOL
TEMPLATE

PROGRAM

TASK
BLOCK

β

COMPOOL
TEMPLATE

PROGRAM

COMPOOL

PROGRAM
TEMPLATE

α
PROGRAM

COMPILATION
UNITS

α β
23-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
External procedure and function blocks, as well as program blocks, may contain
SCHEDULE statements for creating processes. However, because external procedure
and function blocks may not contain task block definitions, only program processes may
be created thereby.
To ensure correctness of version, program templates would be subject to the same
implementation dependent software management scheme as for compool and comsub
templates (see Section 15.1).

23.2 PROGRAM TEMPLATES
If a program template is included with a compilation unit, then that compilation unit may
invoke the corresponding program to create a new real time process.

A program template differs in the following respects from its corresponding program:
• the body of the block is empty;
• the opening statement is modified as shown by the keyword EXTERNAL.

Example:
program block:

 | .
 | ONE: PROGRAM;
 | DECLARE I INTEGER;
 | .
 | .
 | .
 | .
 | I = I + 1;
 | .
 | .
 | .
 | .
 | CLOSE ONE;
 | .

corresponding program template;
 | .
 | ONE: EXTERNAL PROGRAM;
 | CLOSE ONE;
 | .

 |
 | label: EXTERNAL PROGRAM;
 |

1. label is the name of the corresponding program.
23-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
23.3 CREATING AND CONTROLLING PROGRAM PROCESSES
Process created by invocation of a program differ very little from processes created by
invocation of a task block.

• A program process is created by a SCHEDULE statement precisely as described
in Section 13.4.

• A program process is forced into the inactive state and removed from the process
queue by means of the TERMINATE statement as described in Section 13.5.

• A program process may be forced into the waiting state by execution of a WAIT
statement, as described in Section 13.5.

• The priority of a program process may be updated by the UPDATE PRIORITY
statement, as described in Section 13.5.

• The major state of a program process may be ascertained by using the name of
the process as a Boolean variable, also as described in Section 13.5.

Only the notion of process dependency as used in the constructs mentioned, need be
updated to allow for the existence of program processes.
PROGRAM PROCESSES AND PROCESS DEPENDENCY
Section 13.1 introduced the concepts of the dependency of one process upon another.
The basic notion of dependency still stands:

When a process A creates process B, the latter may be specified as “dependent” on the
former, or “independent” of it. If B is dependent on A, then it depends for its existence on
the existence of A. If B is independent of A, then A may cease to exist without affecting
the existence of B.
If B is a program process, this is always unequivocally true. However, if B is a task
process, as stated in Section 13.1, there exists an overriding rule. Reinterpreted, this
rule states that a task process C, however created, is always dependent on the program
process whose static counterpart contains the task block whose invocation caused C to
be created.
23-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

Figure 23-3
A is the primal process; execution of SCHEDULE statements at b , c , d , and e cause the
creation of other processes designated INDEPENDENT by default as follows:

Figure 23-4

PROGRAM
COMPILATION
UNIT

D:
PROGRAM;

A: PROGRAM
.
.

B: TASK;
.
.
.

CLOSE B;

C: TASK;
.
.
SCHEDULE B...
SCHEDULE D...
.
.

CLOSE C;

E: TASK;

D: EXTERNAL PROGRAM;

 CLOSE D;

b

.

.

.

.

.
SCHEDULE C...

.

.

c

d

.

.

.
CLOSE E;

.

.
SCHEDULE E...

.

.
CLOSE D;

e

PRIMAL PROGRAMCLOSE A;

A
C

B

D

E

c

b

d e

primal
process
23-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
By the rules given above, only D is a truly independent process (apart from the pri-
mal process, to which the concept does not apply).
Although B is independent of C, both B and C are in actuality dependent on A. E is
in actuality dependent on D.

23.4 CYCLIC PROCESSES
Hitherto, a real time process has been characterized as being in the active state for
some duration, wherein it is either ready, executing, or waiting. As described in Section
13.3, such a process finally returns to the inactive state when one of two conditions are
met:

• the process is terminated by a TERMINATE statement.
• execution reaches a RETURN or CLOSE of the related static program or task

block.

In either circumstance, the process makes only one pass through the HAL/S code
contained in the related program or task block. Subsequent passes through the same
code would thus require the scheduling of a new process for each pass. Because of the
uniqueness requirement stated in Section 13.4, each new process could only be created
when the previous one returned to the inactive state.
To avoid the burden of continual intervention otherwise required to maintain cyclic
execution of a program or task block, HAL/S supports cyclic real time processes. Cyclic
real time processes are created by an extension of the SCHEDULE statement described
in Section 13.4. Without further intervention, the process will, during execution, make an
arbitrary number of passes through the code in the related program or task block until
some predetermined condition is met.
STATES OF A CYCLIC PROCESS
The possible states of a cyclic process are the same as those of a non-cyclic process, as
described in Section 13.1

When a cyclic process is created invoking a program or task block from a SCHEDULE
statement, the process makes a transition from the inactive state to the active state. It is
entered on the process queue in the ready or waiting state, according to the same
criterion as for a non-cyclic process.
When the cyclic process is first elevated to the executing state by the RTE, it begins the
first pass through the code of the related program or task block. Unless otherwise
prevented, execution will eventually reach a RETURN or CLOSE statement in the block,
whereupon the process will go into a waiting state until predetermined conditions for the
beginning of the next cycle are met. At the expiration of this waiting period, the process
is returned to the ready state. The relative priority of the cyclic process then determines
when the next cycle of execution begins.
23-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
A cyclic process can return to the inactive state in one of two ways:
• by being terminated through execution of a TERMINATE statement;
• by being “canceled” at the end of the current cycle of execution, either because

some prespecified condition is met, or through the execution of a CANCEL
statement.

The implications of “cancellation” as opposed to termination will be examined in Section
23.6.

23.5 SCHEDULE STATEMENT FOR CYCLIC PROCESSES
The form of a SCHEDULE statement for creating cyclic processes is an extension of that
for creating non-cyclic processes. The cyclic SCHEDULE statement conveys two
additional items of information:

• a condition for starting each new cycle of execution;
• a cancellation condition.

There are several versions, depending on the way in which the above conditions are
specified.
IMMEDIATE RECYCLING
The simplest conversion of cyclic SCHEDULE statement is one in which a new cycle of
execution of the process is specified to start immediately after the end of the previous
cycle. This form is shown below:

Cancellation actually takes place at the end of the first cycle which finishes later than the
specified time.

 |
 | SCHEDULE label initiation, REPEAT UNTIL time;
 |
1. A process called label is created from the corresponding program or task

block.
2. initiation specifies a priority, and optionally an initiation condition and

dependency of the new process, as described in Section 13.4.
3. The keyword REPEAT signifies that the process is to be cyclic. By default

one cycle is to follow another with no interval in the waiting state.
4. UNTIL time specifies a cancellation condition. time is a scalar expression

which when evaluated at the time of scheduling gives the time in seconds†

at which the process is to be canceled.

† After the real time origin.

5. If the UNTIL phrase is absent, execution cycles indefinitely until inhibited
by other means.
23-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 |
 | SCHEDULE A AT 1600 PRIORITY(50);
 |

a non-cyclic schedule statement creating a process A to be initiated 1600 seconds
after the real time origin.

 |
 | SCHEDULE B AT 1600 PRIORITY(50), REPEAT UNTIL 3200;
 |

a cyclic schedule statement creating a cyclic process B to be initiated 1600 seconds
after the real time origin, and to cease cycling at the end of the first cycle completed
after 3200 seconds.
The state transitions of these processes are illustrated diagrammatically below:

Figure 23-5

Note that the following case causes a run time error:
 |
 | SCHEDULE C AT 1600 PRIORITY(50), REPEAT UNTIL 1000;
 |
because the initiation time is later than the time at which cycling is to cease.

1600

transitions
during
execution

executing

ready

waiting

inactive

terminated

cycle ncycle 1

scheduled
initiated

scheduled
initiated

executing

ready

waiting

inactive

1600 3200

A

B

terminated
23-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CONSTANT INTERCYCLE DELAY
The second version of cyclic SCHEDULE statement specifies a constant delay between
cycles of execution. This form is shown below:

Cancellation takes place in the same way as before, with the provision that if the
cancellation condition is met in the interval between cycles, cancellation takes place
immediately.
Example:
 |
 | SCHEDULE A AT 1600 PRIORITY(50), REPEAT AFTER 100 UNTIL 3200;
 |

A cyclic process A is scheduled, specifying a delay of 100 seconds between cycles
of execution. The state transitions of this process may be illustrated
diagrammatically as follows:

Figure 23-6

 |
 | SCHEDULE label initiation, REPEAT AFTER delay UNTIL time;
 |
1. A process called label is created from the corresponding program or task

block.
2. The meaning of initiation and time are the same as for the previous version

of cyclic SCHEDULE statement.
3. AFTER delay specifies a constant delay between the end of one cycle of

execution and the start of the next. delay is a scalar expression whose
value at the time of scheduling specifies the delay in seconds.

1600 3200100100

cycle 1 cycle n

- executing

ready

waiting

 inactiveinitiated

scheduled terminated

transitions
during
execution

A

23-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RECYCLING AT SPECIFIED INTERVALS
The third and last version of cyclic SCHEDULE statement specifies that each new cycle
is to start a fixed interval of time after the start of the previous cycle. This form is shown
below:

Cancellation takes place in exactly the same manner as with the previous version of the
SCHEDULE statement.
Example:
 |
 | SCHEDULE A AT 1600 PRIORITY(50), REPEAT EVERY 200 UNTIL 3200;
 |

A cyclic process A is schedule, specifying that cycles are to succeed each other at
intervals of 200 seconds. State transitions may be illustrated diagrammatically as
follows:

Figure 23-7
Note that if a cycle takes longer than 200 seconds to execute, the next cycle cannot
start on time and a run time error occurs.

|
| SCHEDULE label initiation, REPEAT EVERY interval UNTIL time;
|

1. A process called label is created from the corresponding program or task
block.

2. The meaning of initiation and time are the same as for the previous two
versions of cyclic SCHEDULE statement.

3. EVERY interval specifies that each cycle is to start a given interval after the
start of the previous cycle. interval is a scalar expression whose value at the
time of scheduling specifies the interval in seconds.

1600 3200

cycle 1 cycle n

executing

ready

waiting

inactive
initiated

scheduled terminated

transitions
during
execution

200 200

A

23-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
23.6 TERMINATING AND CANCELING CYCLIC PROCESSES
When a cyclic statement is terminated by execution of the TERMINATE statement
described in Section 13.5, both the process and its dependents are terminated, possibly
in mid-cycle.

Cancellation is a more graceful way of termination. It cannot occur when a process is in
mid-cycle. Further, when a process is canceled, its dependents are not terminated
immediately: the following happens instead:

• non-cyclic dependents are allowed to execute until their normal termination;
• cyclic dependents are allowed to finish their own current cycle of execution.

The process being canceled is put in a waiting state until all its dependents have become
inactive; it then becomes inactive itself.

Cancellation conditions in SCHEDULE statements cannot be dynamically modified. To
cancel a cyclic process arbitrarily, the CANCEL statement must therefore be used.
CANCEL STATEMENT
A CANCEL statement specifies the cancellation of a process. Its form is as shown
below:

The effect of a CANCEL statement is as follows:
• If the process has not yet been initiated, it is terminated and removed from the

process queue.
• If the process is in a cycle of execution, it is canceled at the end of the cycle.
• If the process is waiting between cycles, it is canceled immediately.

CANCEL statements can actually be applied to non-cyclic processes, but unless the
process has not yet initiated they have no effect. If the process has not been initiated,
the process is removed from the process queue, just as if it were cyclic.

An UNTIL phrase can also be
used in a non-cyclic SCHEDULE
statement.

See: Spec./8.3.

 |
 | CANCEL label;
 |

1. The appearance of label is optional. If present, the statement causes
cancellation of the active process called label.

2. If label is absent, the process executing the CANCEL statement is itself
canceled.
23-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | CANCEL; self cancellation
 | CANCEL BETA;
 |

If a number of processes are to be canceled simultaneously, the CANCEL statement
can specify a list of process names:

 |
 | CANCEL ALPHA, BETA, GAMMA;
 |
23-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 This page intentionally left blank.
23-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
24.0 REAL TIME PROGRAMMING - III
This section concludes the description of HAL/S constructs for real time programming,
which was begun in Section 13 and continued in Section 23. The remaining topic of
discussion is a HAL/S construct called the “event”, and its use in real time programming.
The original idea behind the HAL/S “event” was that it should serve as an interface
between HAL/S software and hardware interrupts; that is, the medium through which the
arrival of interrupts would be signaled to the HAL/S program. Hence, the HAL/S “event”
was conceived as a Boolean-valued data item, normally FALSE in value, but either
becomes transiently TRUE, or latching TRUE, on the arrival of the interrupt38. The
assumption was that the values of “events” at any given time could control the execution
of real time processes by the RTE.

An extension of this idea was the definition of the ability to simulate the arrival of
interrupts by changing the values of “events” within the HAL/S software itself.

However, the underlying operating systems of most machines do not allow for interfaces
with interrupts of the above nature. Hence, the simulation property of “events” has
become their major role: the ability to signal a software condition in one real time process
synchronously to other processes by use of HAL/S “events” has become a real time
programming tool of considerable importance.
24.1 HAL/S EVENTS
A HAL/S event is a Boolean-valued data item whose value is visible at any instant to the
RTE. Except for this latter qualification, whose importance will be appreciated later, an
event differs little from the Boolean data item first introduced in Section 4 of Part I.

A HAL/S event may optionally possess a “latching” property:
• An event with the latching property may be set in value to either TRUE or FALSE.
• An event without the latching property is normally FALSE in value, but may

transiently become TRUE (for an “infinitesimal” time) when so specified.
The values of events can be changed only by special HAL/S statements, not by simple
assignments.

Event expressions consisting of logical operations on event data items can be
synthesized: the instantaneous values of such event expressions can be used to modify
the activity of the RTE in controlling real time processes. Event expressions can be used
in the following circumstances:

• in a SCHEDULE statement, to specify a condition for initiating a process;
• in a cyclic SCHEDULE statement, to specify a cancellation condition;

38.Clearly, there would need to be some extra-lingual, implementation dependent way of relating particular “events" to
particular hardware interrupts.
24-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• in a WAIT statement, to specify a condition for ending the period a process is to
remain in the waiting state.

In addition, in most contexts events can be used in Boolean or bit string expressions as if
they were Boolean data items.

24.2 DECLARATION OF EVENT DATA ITEMS
The declaration of event data items is similar to the declaration of Boolean data items as
described in Section 4.2 of the Guide. The basic forms are as follows:

Examples:
|
| DECLARE EV1 EVENT;
| DECLARE EV2 EVENT LATCHED;
|

COMPOUND DECLARATIONS
Declaration of events may be mixed with declarations of other data types in compound
declarations:
 |
 | DECLARE A SCALAR,
 | I INTEGER DOUBLE,
 | E EVENT LATCHED;
 |

The keyword LATCHED is an attribute which may be factored.
Example:
 |
 | DECLARE El EVENT LATCHED,
 | E2 EVENT LATCHED,
 | E3 EVENT LATCHED;
 |

may be rewritten more compactly as
 |
 | DECLARE EVENT LATCHED, E1,E2,E3;
 |

 |
 | DECLARE name EVENT;
 | DECLARE name EVENT LATCHED;
 |
1. In each form, name is any legal HAL/S identifier.
2. The keyword LATCHED signifies that the event is to possess the

“latching” property. Its absence signifies that it is not to possess it.
24-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INITIALIZATION

All declared event data items are implicitly initialized to a FALSE value39. Only an event
data item with the latching property may possess explicit initialization. It is initialized as if
it were a Boolean data item, as described in Section 4.3.
Examples:

|
| DECLARE EV1 EVENT LATCHED INITIAL(TRUE);
| DECLARE EV2 EVENT LATCHED CONSTANT(OFF);
|

(Note: a constant event is of little use even though legal in HAL/S).
|
| DECLARE EV3 EVENT INITIAL(TRUE);
|

- illegal since EV3 is not LATCHED.

ARRAYS OF EVENTS
An event data item may be arrayed, its array property being specified in the same way as
described in Sections 4.2 and 18.1. Event arrays with the latching property may be
initialized as described in Sections 4.3 and 18.2.
Examples:
 |
 | DECLARE El ARRAY(5) EVENT;
 | DECLARE E2 ARRAY(2,2) EVENT LATCHED INITIAL(4#TRUE);
 |

EVENTS IN STRUCTURES
A terminal node in a structure may not be an event (See Section 19).

24.3 EVENT EXPRESSIONS
It was stated that event data items could appear in Boolean or bit string expressions as if
they were Boolean data items. It is possible that the operands of a Boolean expression
could solely be event data items. It is stressed that even in this circumstance the
expression is in general still taken to be a Boolean expression. The term “event
expression” is reserved for a special purpose.

An event expression is an expression composed in general of a series of logical
operations upon event operands in the context of a SCHEDULE or WAIT statement. The
simplest case of an event expression is a lone event operand.

An event expression has the curious property that its evaluation is under control of the
RTE and may take place more than once at times other than that of execution of the
SCHEDULE or WAIT statement it appears in.

39. This is the only HAL/S data type which is implicitly initialized.
24-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
OPERATIONS AND OPERANDS
The operations legal in an event expressions are the Boolean operations described in
Section 7.3.

The behavior of the operations is exactly as if the operands were of Boolean data type
rather than event.

The operands in an event expression are solely event data items. Operands which are
event arrays must possess array subscripting which selects one, and only one array
element. Such array subscripting is the same as used for the selection of array elements
from Boolean arrays, and has been described in Section 6.2 and 18.3, with the exception
that the ending colon is optional rather than mandatory.
Examples:

Given the following declarations
 |
 | DECLARE EV1 EVENT,
 | EV2 EVENT LATCHED,
 | EV3 ARRAY(2,4) EVENT,
 | EV4 EVENT;
 |

in the contexts of SCHEDULE or WAIT statements, the following are legal event
expressions:

 (EV1&EV2)& EV4
 (EV2|EV32,2:) ←colon optional

The following is illegal:
 EV1|EV3*,1
 123
 ↑__________ subscripting does not select one element of EV3

 EV1||EV2 illegal operator
 EV1&TRUE ⎫
 EV1|BIT1(125) ⎬ illegal operands
 ⎭

Note however, that the above are legal bit string expressions in the appropriate
contexts.

Symbol Purpose
 & ⎫
 AND⎬
 ⎭
 | ⎫
 OR⎬
 ⎭
 ¬ ⎫
 NOT⎬
 ⎭

logical intersection

logical conjunction

logical complement
24-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
EXECUTION OF EVENT EXPRESSIONS
It was stated earlier that event expressions are evaluated under direct control of the
RTE, and not necessarily only at the time of execution of the SCHEDULE or WAIT
statement in which they appear. The reason for this can now be explained.

Event expressions are placed in SCHEDULE and WAIT statements to provide dynamic
conditions for controlling the execution of processes. On a basic level the conditions
control the transition of processes from state to state, and thus the activity of the RTE in
swapping processes.
Hence, it is appropriate to evaluate an event expression, not only at the time of execution
of the SCHEDULE or WAIT statement it appears in, but subsequently whenever the
value of any of its event operands is modified. This is why the values of events are
visible to the RTE. Not only each event operand, but the entire event expression has to
be accessible to the RTE so that it can perform re-evaluations when required.

If an event expression contains subscripting which has to be evaluated at run time, then
the subscript calculation takes place only once, when the event expression itself is first
evaluated upon the execution of the SCHEDULE or WAIT statement it appears in.
Example:
 |
 | DECLARE EV ARRAY(5) EVENT;
 | DECLARE I INTEGER INITIAL(1);
 | .
 | .
 | .
 | .
 | .
 | .
 | WAIT FOR EV ;
 |S I
 | I=I+1;
 |

The RTE first evaluates EVI when the WAIT statement is executed, and thus is interested
in the value of EV1 since I ≡ 1. Whenever the expression is re-evaluated, it is the value
of EV1 which is examined, even though the value of I may since have changed.

24.4 CHANGING VALUES OF EVENTS
HAL/S uses a special terminology for the operation of changing event values.

• An event with the latching property is said to be “set” when its value is forced
TRUE, and “reset” when its value is forced FALSE.

• An event without the latching property is said to be “signaled” when its value is
transiently forced TRUE.

These operations are carried out by the HAL/S SET, RESET, and SIGNAL statements
respectively. Changes in value of an event data item as a result of one of these
statements is visible to the RTE for the reason outlined in Section 24.3.
24-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SET AND RESET
The SET and RESET statements only apply to latched events, and force their values to
TRUE, and FALSE respectively. The forms of the two statements are shown below:

Examples:
Given:

 |
 | DECLARE EV1 EVENT LATCHED,
 | EV2 EVENT,
 | EV3 ARRAY(3) EVENT LATCHED;
 |

the following are legal:
 |
 | SET EV1;
 | RESET EV3 ;
 |S 3
 |

whereas the following are illegal
 |
 | SET EV2; event not latched
 | SET EV3; more than one element specified
 |

Note that the SET statement does not cause an event which is already TRUE to change
in value. Neither does the RESET statement cause an event which is already FALSE to
change in value. Hence, the RTE does not necessarily always sense an event change
when such a statement is executed.

 |
 | SET var;
 | RESET var;
 |
1. In either form, var is a latched event data item. If it is arrayed, it must

possess array subscripting causing the selection of one and one only
array element (See Sections 6.2 and 18.3).

2. SET causes the value of var to be forced TRUE; RESET causes it to be
forced FALSE.
24-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SIGNAL
The primary purpose of the SIGNAL statement is to cause the value of an event without
the latching property to become transiently TRUE. However, it also has an effect on
latched events, which will be described. The form of the SIGNAL statement is as follows:

Examples:
Given:

 |
 | DECLARE EV1 EVENT LATCHED,
 | EV2 EVENT,
 | EV3 ARRAY(3) EVENT;
 |

the following are legal:
 |
 | SIGNAL EV1;
 | SIGNAL EV2;
 | SIGNAL EV3 ;
 |S 3
 |

whereas the following is illegal:
 |
 | SIGNAL EV3 ;
 |S 2 TO 3
 |

because more than one array element is selected.
The SIGNAL statement always causes a change in value of an event, so that the RTE
always senses an event change when it is executed. However, the RTE only senses the
leading edge of the transient, not the trailing edge.
Example:

If EV1 and EV2 are declared thus:
 |
 | DECLARE EV1 EVENT,
 | EV2 EVENT LATCHED INITIAL(TRUE);
 |

 |
 | SIGNAL var;
 |
1. var is any event data item. If it is arrayed, it must possess array

subscripting causing the selection of one and one only array element
(See Sections 6.2 and 18.3).

2. If var does not have the latching property, SIGNAL causes its value to
become transiently TRUE.

3. If var has the latching property, SIGNAL causes its value to be transiently
complemented.
24-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
then when
|
| SIGNAL EV1;
|
is executed, EV1 changes in value thus:

Figure 24-1

When
|
| SIGNAL EV2;
|
is executed, EV2 changes in value thus:

Figure 24-2

TRUE

FALSE
RTE sees FALSE TRUE change only

TRUE

FALSE
RTE sees TRUE FALSE change only
24-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SUMMARY
The following table summarizes the effects of SET, RESET, and SIGNAL statements.

Figure 24-3
24.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT
Event expressions may appear in a SCHEDULE statement for two reasons:

• to specify a condition for initiating a process;
• to specify a condition for ceasing to cycle a process.

INITIATION ON AN EVENT CONDITION
Section 13.3 described two time conditions under which the initialization of a process
created by the SCHEDULE statement could be delayed. A third means of delaying
initiation is to delay it pending the value of some event expression becoming TRUE. The
basic form of SCHEDULE statement for this is shown below.

F → T

Statement Event

T = TRUE, F = FALSE

Actual Value Change sensed by
RTE

execution

T → F

none

none

SET

RESET

SIGNAL

latched

latched

latched

unlatched

T T

T T

F F

F F

T T

T T

F F

F F

T T

T T

F F

F F

T T

F F

⎧
⎪
⎨
⎪
⎩

⎧
⎪
⎨
⎪
⎩

⎧
⎨
⎩

F → T

F → T

T → F

⎧
⎪
⎨
⎪
⎩

24-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
Let EV1 and EV2 be latched events with EV1 ≡ EV2 ≡ FALSE.
After execution of

 |
 | SCHEDULE ALPHA ON EV1 & EV2 PRIORITY(50);
 |

let first EV1 then EV2 become TRUE. Then the state transitions of process are as
shown below -

 |
 | SCHEDULE label ON exp PRIORITY(α) DEPENDENT;
 |
1. A process label is created from the corresponding program or task

block and placed on the process queue.
2. PRIORITY(α) and DEPENDENT have the same meanings as

described in Section 13.3 for other forms of SCHEDULE statement.
3. exp is any event expression. If its value is TRUE, when the

SCHEDULE statement is executed, the process is placed in the ready
state.

4. If its value is FALSE, the process is placed in a waiting state until its
value becomes TRUE, whereupon it is transferred to the ready state.
24-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 24-4
CANCELLATION OF AN EVENT CONDITION
Section 23.5 described three versions of cyclic SCHEDULE statement, in each of which
the cancellation could be specified at a certain time. There are two ways of causing
cancellation on an event condition:

• Cycling may be allowed to proceed while an event expression remains TRUE.
• Cycling may be allowed to proceed until an event expression becomes TRUE.
• CYCLING while TRUE

The following form of cyclic SCHEDULE statement causes cycling of execution to
proceed while an event expression remains TRUE.

FALSE

TRUE

FALSE

TRUE
EV1

EV2

ALPHA

scheduled

executing

ready

waiting

inactive

EV1 & EV2
becomes TRUE

denotes an evaluation of EV1 & EV2 by the RTE.*

* * *
24-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Cancellation of the process actually occurs at the end of the first cycle in which the event
expression becomes FALSE40. If the event expression becomes FALSE in the interval
between cycles, cancellation takes place immediately.
Example:

Given that EV1 and EV2 are latched events with EV1 ≡ EV2 ≡ TRUE
suppose that a cyclic process ALPHA is created by the following statement:

 |
 | SCHEDULE ALPHA IN 100, PRIORITY(50), REPEAT AFTER 50 WHILE
 | EV1|EV2;
 |

Let first EV1 and then EV2 become FALSE some time after initiation of ALPHA. The
state transitions of ALPHA can then be illustrated diagrammatically as follows:

 |
 |SCHEDULE label initiation , REPEAT cycle WHILE exp;
 |
1. A process called label is created from the corresponding program or task

block.
2. initiation specifies a priority, and optionally an initiation condition, and the

dependency of the new process, as described in Section 13.4.
3. cycle optionally specifies a criterion for recycling execution as described

in Section 23.5.
4. WHILE exp specifies that cycling is to continue while the value of exp

remains TRUE. exp is any event expression.
5. If the value of exp becomes FALSE before the process is initiated, it is

merely removed again from the process queue, and becomes inactive.

40.Even if it subsequently becomes TRUE again during the same cycle.
24-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 24-5
• CYCLING until TRUE

A modification of the above form allows cycling of execution to proceed until an event
expression becomes TRUE. This is not merely a simple inversion of logic since the value
of the event expression is not allowed to take effect until after the first cycle of execution
of the process has started. In contrast to the above form, the following modification
always allows at least one cycle of execution to be completed.

 |
 | SCHEDULE label initiation , REPEAT cycle UNTIL exp;
 |
1. A process called label initiation is created from the corresponding program or task

block.
2. The meanings of initiation and cycle are as for the previous form of SCHEDULE

statement.
3. UNTIL exp specifies that cycling is to continue until the value of exp becomes

TRUE, with the provision that at least one cycle shall be executed. exp is any
event expression.

execution

EV1

EV2

ALPHA

EV1 | EV2 becomes
FALSE

cycle ncycle 1

scheduled
initiated

transitions
during

50 50100

indicates evaluations of EV1 | EV2 by the RTE. If EV1 | EV2 had become FALSE
before initiation of ALPHA, the process would have become inactive without ever

executing.

TRUE

FALSE

TRUE

FALSE

executing

ready

waiting

inactive

terminated
24-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Cancellation of the process occurs at the end of the first cycle in which the event
expression becomes TRUE41. If it becomes TRUE in the interval between cycles,
cancellation takes place immediately.
Example:

Given that EV1 and EV2 are latched events with EV1 ≡ EV2 ≡ FALSE
suppose that a cyclic process BETA is created by the following statement:

 |
 | SCHEDULE BETA IN 100 PRIORITY(50), REPEAT AFTER 50 UNTIL EV1 & EV2;
 |

Let first EV1, and then EV2 become TRUE, some time after initiation of BETA. The
state transitions of BETA can then be illustrated diagrammatically as follows:

Figure 24-6

41. Even if it subsequently becomes FALSE again during the same cycle.

indicates evaluations of EV1&EV2 by the RTE. If EV1 and EV2 had both become TRUE
before initiation of BETA, the following state transitions would have occurred:

TRUE

FALSE

EV1

EV2

executing

TRUE

FALSE

waiting

ready

inactive
cycle

ncycle 1

50 50100

BETA

transitions
during

execution

terminated

EV1 & EV2 becomes TRUE

initiated

scheduled
24-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 24-7

24.6 EVENT EXPRESSIONS IN WAIT STATEMENT
Section 13.5 explained how the WAIT statement could be used to force a process into a
waiting state until some timing condition is satisfied. The WAIT statement can
alternatively specify an event condition. This causes a process to remain in a waiting
state until some event expression becomes TRUE, whereupon the process returns to the
ready state.

The WHILE event expression is also
allowed to appear in non-cyclic
SCHEDULE statements.

See: Spec. /8.3.

again indicates evaluations of EV1&EV2 by the RTE. Even though EV1 &
EV2 becomes TRUE before initiation, the RTE postpones cancellation until
the end of the first cycle.

TRUE

FALSE

EV1

EV2

executing

TRUE

FALSE

waiting

ready

inactivecycle 1

100

BETA

transitions
during
execution

terminated

EV1 & EV2 becomes TRUE

initiated

scheduled
24-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The form of this version of the WAIT statement is as follows:

Example:

Given that EV1 and EV2 are latched events with EV1 ≡ EV2 ≡ FALSE
Suppose that
|
| WAIT FOR EV1 & EV2;
|

is executed, and that some time later first EV1 and then EV2 become TRUE. Then
the state transitions of the process executing the above statement are as shown
below:

 |
 | WAIT FOR exp;
 |
1. exp is any event expression.
2. The process executing the WAIT statement is placed in the waiting

state until the value of exp becomes TRUE.
3. If exp is already TRUE when the WAIT statement is executed, the

statement has no effect.
24-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 24-8

24.7 EVENTS IN BOOLEAN CONTEXT
This section presents some examples showing how events are used in Boolean or bit
string context, reinforcing the remarks made in Section 24.3.
Examples:

Given the following declarations:
 |
 | DECLARE B1 BOOLEAN,
 | B8 BIT(8),
 | EV1 EVENT,
 | EV2 ARRAY(5) EVENT LATCHED,
 | B16 ARRAY(5) BIT(16);
 |

indicates evaluations of EV1&EV2 by the RTE.

TRUE

FALSE

EV1

EV2

executing

TRUE

FALSE

waiting

ready

EV1 & EV2 becomes TRUE
WAIT executed

other
unrelated
transitions
24-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
the following are legal bit string expressions:
 |
 |BI||B8
 |EV1||B8
 |EV22|(¬EV1&B161:)
 |EV23 TO 5||B163 TO 5: (arrayed expression)
 |

In
 |
 | IF EV1|EV2 THEN B1 = FALSE;;
 |S 1
 |

EV1|EV21 is treated as a Boolean expression. It is only evaluated whenever the IF
statement is executed, and is not under control of the RTE.
However, in

 |
 | WAIT FOR EV1|EV2 ;
 |S 1
 |

EV1 | EV21 is treated as an event expression as described in Section 24.6.

24.8 PROCESS EVENTS
Section 13.5 stated that the name of a process could be used as if it were a Boolean data
item in order to determine the major state of the process. The names of processes can
also be used in event expressions as if they were event data items. In this context they
are called “process events”.
The truth table shows again the correspondence between logical value and major state.

Example:
If EV1 is a latched event with EV1≡FALSE initially, and ALPHA is the name of an
active process, then

 |
 | WAIT FOR EV1 & (¬ALPHA);42
 |

causes the following state transitions in a process BETA executing the WAIT
statement.

State Value
ACTIVE TRUE

INACTIVE FALSE

42.Due to FCOS limitations this expression will generate an E102 error.
24-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 24-9

TRUE

FALSE

EV1

ALPHA

inactive

executing

EV1& (¬ ALPHA) becomes TRUEWAIT executed

other
unrelated
transitions

executing

waiting

ready

BETA

waiting

ready
24-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
24-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
25.0 ERROR RECOVERY AND SIMULATION
HAL/S compilations can be created which, although seen as legal at compile time,
violate the rules of the language during execution42. Such violations give rise to “run
time errors”. Run time errors are also produced when abnormal hardware conditions are
encountered during execution.

HAL/S has a comprehensive and flexible mechanism for detecting and recovering from
run time errors. It also has the capability of simulating run time errors, which can be
extremely useful for checkout purposes. Another feature of the language is the ability to
specify and signal user-defined run time errors.
This section explains how run time errors are handled as part of the activity of the Real
Time Executive (RTE) and describes statements by which HAL/S programmers can
extend or modify this activity.

25.1 HAL/S RUN-TIME ERROR CONCEPTS
Each HAL/S implementation possesses a defined set of run time errors which are
detectable during execution. These errors are called “system-defined” errors. The
HAL/S user may, at will, create a certain limited number of supplementary “user-defined”
errors for his own purposes. Each run time error, whether system-defined or user-
defined, possesses a unique numerical “error code” by which it may be referenced in a
HAL/S compilation. This error code consists of two parts:

• an error group number;

• an error member number43.

ERROR DETECTION AND RECOVERY
The activity of detecting and recovering from run time errors is handled by an Error
Recovery Executive (ERE) which in practice is part of the Real Time Executive (RTE).
For every error group, an implementation-dependent, standard, system recovery action
is defined44. On detecting an error belonging to a certain group, the ERE takes the
appropriate system recovery action for the group, unless otherwise directed by the user.

Depending upon the kind of error, the system recovery action may be any one of the
following:

• to execute a fix-up routine and continue;
• to terminate execution abnormally;
• to ignore the error.

42.This fact is true for any language.
43.The classification into groups, and the assignment of error codes is implementation dependent. See appropriate

User’s Manual.
44.See appropriate User’s Manual.
25-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ERROR ENVIRONMENT OF A PROCESS
The behavior of the ERE in detecting and recovering from run time errors must be
viewed from the standpoint of HAL/S as a real time programming language.

Every active real time process possesses its own so-called “error environment”, which is
essentially a description of the recovery actions in force for all possible run time errors
the process could be subject to. On initiation of the process, the system recovery action
is in force for all run time errors. During the life of a process, its error environment may
be modified by the specification of a “user recovery action” for some error or error group.
The user recovery action is enforced by the execution of specific HAL/S error control
statements which will be described later.

A process may only modify its own error environment, never that of another process.
DYNAMIC SCOPING OF ERROR ENVIRONMENTS
During its execution, a process may invoke procedures and functions, which may in turn
invoke further procedures and functions, and so on to an arbitrary depth of nesting.
Modifications made to the error environment during execution of a procedure or function
remain in force only until return from it. Thus, execution of HAL/S error control
statements has an inherent dynamic scoping property.

To clarify this concept, consider the following diagram, showing a process A invoking
procedures B during execution, which in turn invoke procedures C.

Figure 25-1
• Modifications to the error environment made in A remain in force for the remainder

of A’s execution unless countermanded by removal or further modification.

• Modifications made in B1
 remain in force until return from B1 unless countermanded

by removal or further modification in B1.

A

B2B1
B3

C12
C13 C21 C31 C32C11
25-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• Modifications made in C12 remain in force until return from C12 unless
countermanded by removal or further modification in C12.

It is stressed that this is a dynamic scoping property, that is not related to whether or not,
for example, procedure block C12 is physically nested inside procedure block B1.

Further clarification is required in cases where more than one process can invoke the
same procedure or function. If two processes A1 and A2 both execute the same
procedure B as shown below, then error control statements executed in B affect the error
environment of whichever process is executing B.

Figure 25-2
The error environment in force for each process on invocation of B is reinstated on return
from B. There is no cross-coupling effect between the two error environments.

25.2 ERROR ENVIRONMENT MODIFICATION
HAL/S possesses two statements which can alter the error environment of the process
which executes them.

• The ON ERROR statement modifies the error recovery action for a particular error
or error group.

• The OFF ERROR statement causes the removal of a previously-applied
modification for a particular error or error group.

Both statements have an identical construct for representing the error group and
member numbers involved.
ERROR GROUP AND MEMBER NUMBER SPECIFICATION
Error group and member numbers appearing in the HAL/S ON ERROR and OFF
ERROR statements are specified by appropriately subscripting the keyword “ERROR”.
Three basic forms exist. Each form is dealt with in order of decreasing generality.

A2A1

B

25-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• SPECIFICATION OF ALL ERRORS
To specify all errors, the keyword ERROR, without subscript, is used:

• SPECIFICATION OF ALL ERRORS IN A GIVEN GROUP
To specify all members in a given error group the following form is used:

• SPECIFICATION OF A GIVEN ERROR
To specify a given error member of an error group, the following form is used:

ON ERROR STATEMENT
The ON ERROR statement is used to modify the error environment with respect to the
error or errors specified. The statement can modify the error environment in the
following ways:

In addition, in the first two forms, the value of an event data item can be changed on
occurrence of the error or errors.

An ON ERROR statement may specify system-defined or user-defined errors45.

• CASES and : SYSTEM AND IGNORE ACTIONS
The basic form of the ON ERROR statement is as shown below:

 ERROR
1. Lack of subscript implies all members of all error groups.

 ERRORm:
1. m is an unsigned integer literal.
2. All members in group m are specified.
3. The colon is optional.

 ERRORm:n
1. m, n are unsigned integer literals.
2. Error member n in group m is specified.

• by causing the error or errors to be ignored; …CASE
• by causing the standard system recovery action to be taken;

…
..CASE

• by causing execution to branch to specified HAL/S code on
occurrence of the error.

 ….CASE

45.For reasons of software security, some implementations may prohibit the modification of the error environment with
respect to certain errors. See appropriate User's Manual.

1

2

3

1 2
25-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
 |
 | ON ERROR SYSTEM; ←⎯⎯ revert to standard system recovery
 | action for all errors.
 |
 | ON ERROR IGNORE; ←⎯⎯ ignore error member 4 in group 1.
 |S 1:4
 | ON ERROR SYSTEM; ←⎯⎯ revert to standard system recovery
 |S 3 action for all errors in group 3.
 |

If the value of an event is to be changed in addition to the actions specified above, one of
the following clauses is added after the keyword SYSTEM or IGNORE.

On the occurrence of an error covered by the error specification, the value of the
specified event data item is modified before the SYSTEM or IGNORE is taken by the
ERE.

Examples:
 |
 | ON ERROR IGNORE AND SET EV1;
 | ON ERROR SYSTEM AND SIGNAL EV2 ;
 |S 1:1 5
 | ON ERROR SYSTEM AND SIGNAL EV3 ;
 |S 5 I
 | ↑
I is evaluated on execution of the ON ERROR statement, not on occurrence of an error in
group 5

 |
 | ON specification SYSTEM;
 | ON specification IGNORE;
 |
1. specification is an error specification of the form previously described.
2. The keyword SYSTEM states that standard system recovery action is to

take place.
3. The keyword IGNORE implies that errors specified in the specification are

to be ignored.

...AND SET var…

...AND RESET var…

...AND SIGNAL var…
1. SET, RESET, and SIGNAL have the same actions as described in Section

24.4 of the Guide.
2. If var contains run time subscript evaluations, they are carried out at the

time of execution of the ON ERROR statement rather than on the
occurrence of the specified error or errors.
25-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• CASE : USER-SUPPLIED ACTION
The user can supply the action to be performed on an error occurrence by means of the
following form of ON ERROR statement.

It is important to understand the flow of execution implied by the above form, both when
the ON ERROR is executed, and on the occurrence of an indicated error. The following
example shows this in detail.
Example:

The path of execution is shown by the following symbolic flow diagram:

 |
 | ON specification statement;
 |
1. specification is an error specification in the form previously described.
2. statement is an executable HAL/S statement with which execution is

resumed after occurrence of the specified error condition.
3. statement may possess a statement label but cannot be branched to

from outside the ON ERROR statement.
4. This kind of ON ERROR statement may not form by itself the “true part”

of an IF statement (See Section 9.1).

| ON ERROR DO;
| S 5:1
| ⎫user-supplied error
| ⎬recovery action is this
| ⎭entire DO...END group.
| END
| I = I + 1;
| .
| .
| .
| .
| .
| .

 ←error 5:1 occurs.

3

*

25-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 25-3
The above example assumes that there is no branch in the DO...END group to cause
execution to be diverted.

*
ERE

ERE redirects
flow of execution

enter
DO...END

exit
DO...END

Set
I = I + 1

modify ERE’s
action for error

5:1

occurrence of
error 5: 1

execute body
of DO...END

normal continuance
of execution
25-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
OFF ERROR STATEMENT
The OFF ERROR statement is used to remove the effects of an ON ERROR statement
with the same error specification, previously executed by the same process in the same
block of HAL/S code. Its form is as follows:

Example:
 |
 | ON ERROR IGNORE;
 |S 5;6
 | .
 | .
 | .
 | OFF ERROR ; ←⎯⎯ this nullifies action of previous ON ERROR
 |S 5:6 statement
 |
 |

PRECEDENCE OF ON AND OFF ERROR STATEMENTS
Some additional information needs to be supplied in order to understand in detail how
successive execution of several ON and OFF ERROR statements modifies the error
environment of a process.

In general, an executing process A is executing code in some block several nesting
levels of invocation deep, as illustrated below:

Figure 25-4

 |
 | OFF specification;
 |
1. specification is an error specification in the form already described.
2. The statement nullifies the effect of an ON ERROR statement

previously executed in the same code block by the same process, and
with the same specification.

3. The statement has no effect if such an ON ERROR statement does not
exist.

A

 A invokes B invokes CB

C

25-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The ERE keeps continuously updated lists of all error environment modifications in force
at any instant of time46. When execution of the process A described above is in the body
of block C, the ERE possesses three linked lists of ON ERROR modifications, each
corresponding to a block not yet returned from:

Figure 25-5

When block C is returned from, LIST C is deleted, leaving LIST A and LIST B in force.
When block B is returned from, LIST B is deleted leaving only LIST A in force.
Each list is divided into three sublists as illustrated below for LIST C:

Figure 25-6

46.This description of the ERE's behavior is representational only: an actual implementation of the ERE may employ
different algorithms producing the same result.

ERE's lists of error
environment
modifications

C

A

B

LIST A

LIST B

LIST C

sublist C1

sublist C2

sublist C3

modification
applicable to
all errors

modifications for
given error code

modifications for
given error group

LIST C
25-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• Sublist C3 contains modifications generated by ON ERROR statements of the form:

ON ERRORm:n

• Sublist C2 contains modifications generated by ON ERROR statements of the form:

ON ERRORm.....

• Sublist C1 can contain at most one entry, the modification generated by an ON
ERROR statement of the form:

ON ERROR.....

If a new ON ERROR statement in block C is executed, then one of the following
happens:

• if an entry in the appropriate sublist exists for the given error specification, the entry
is replaced with the new information gained, thus erasing memory of the previous
recovery action specified;

• otherwise a new entry is added at the end of the sublist.

With this background, the behavior of the ERE in recovering from a run time error can
now be described in more detail. Suppose that a run time error occurs while execution is
in block C. On detecting the error, the ERE gains control and scans backwards through
the lists until it finds an entry applicable to the error which occurred. The ERE may find
such an entry in any of the lists A, B, or C, in which case it takes the indicated recovery
action; or it may find no such entry, in which case it takes the standard system recovery
action.
Bearing in mind how entries are made into the sublists of error environment
modifications, up to three entries may be applicable to a given run time error:

• an entry applicable only to the given error;
• an entry applicable to the whole group of which the given error is a member;
• an entry applicable to all errors.

Given the sublist scanning order described, it is clear that there is an inherent
precedence order of ON ERROR statements.

Error Specification Precedence
FIRST

ERRORm:n error code specification 1
 ERRORm: error group specification 2
 ERROR specification of all errors 3

LAST
25-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
If the following statements have been executed in a block:

 |
 | ON ERROR GO TO ALPHA;
 |S 5:1
 | ON ERROR GO TO BETA;
 |S 5:
 | ON ERROR IGNORE;
 |

Then if error 5:1 occurs, execution branches to ALPHA. If error 5:3 occurs,
execution branches to BETA. If error 6:1 occurs, the error is ignored.

The above are true no matter in what order the ON ERROR statements have been
executed.

The behavior of an OFF ERROR statement now also becomes clearer. On execution of
an OFF ERROR statement in, say, block C, the ERE loops through the whole of LIST C
and on finding an entry with the same error specification, removes it from its sublist. This
may expose to the scanning process another modification in another sublist of LIST C or
a modification in LIST A or LIST B.
Example:

If the following statements have been executed in a block:
 |
 | ON ERROR GO TO ALPHA;
 |S 5:1
 | ON ERROR GO TO BETA;
 |S 5:
 |

then if error 5:1 occurs, execution will branch to ALPHA. If now the following state-
ment is executed:

 |
 | OFF ERROR ;
 |S 5:1
 |

and afterwards error 5:1 occurs, execution branches to BETA.

25.3 ERROR SIMULATION
At the beginning of Section 25 it was stated that run time errors could be simulated. In
fact, the same HAL/S construct is used both to simulate “system-defined” errors, and to
signal “user-defined” errors. This construct is the SEND ERROR statement, whose form
is shown below:
25-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The recovery action taking place on execution of a SEND ERROR statement is as if the
corresponding run time error had really occurred.
Example:
 |
 | ON ERROR GO TO ALPHA;
 |S 5:
 | .
 | .
 | .
 | SEND ERROR ;
 |S 5:2
 |

Error 5:2 is simulated or signaled: a previous ON ERROR statement has modified
the recovery action for error group 5, so that the result is a branch to ALPHA.
In this example, it is immaterial whether error 5:2 is system-defined or user-defined.

|

| SEND ERROR ;

| S m:n

|

1. m and n are unsigned integers representing an error group number, and
an error member number respectively.

2. If the error code m:n represents a system-defined error, that error is being
simulated†.

3. If the error code m:n represents a user-defined error, that error is being
signaled.

† For reasons of software security, some implementations may prohibit certain system-defined errors
from being simulated. See appropriate User's Manual.
25-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
26.0 DATA STORAGE AND ACCESS
Given the purposes for which HAL/S is intended, the way in which declared data is
physically located in the core of the object machine will often be an important concern. In
particular, in the design of HAL/S software, the following questions must often be
addressed:

• Does the declared data occupy as small an area of core as is practical?
• Is the data physically ordered as it was declared?
• Can some non-critical data be relegated to segments of core addressable by slower

methods, to make more room for critical data?
• Can use be made of registers or temporary storage areas for some data?
• Does the data fall within a predefined set of values?

HAL/S contains constructs by whose means some degree of control over each one of
these factors can be achieved. Necessarily the degree of control is implementation
dependent.

In the context of HAL/S as a real time language, the access of data is another important
concern. During execution, an arbitrary number of real time processes will in general be
competing for access to shared data. Certain “sensitive” data may require protection to
prevent modification by one process while a second is referencing it. HAL/S contains
constructs through which the integrity of shared data may be assured.

26.1 PACKING DENSITY OF STORED DATA
The efforts that any HAL/S compiler makes to optimize the density of storage of HAL/S
data items are implementation dependent. Generally speaking however, the default
assumption is that optimization is relatively unimportant compared with speed of access.

The attribute DENSE when applied in the declaration of data items causes more
emphasis to be placed on storage density optimization at the expense of speed of
access. Potentially the attribute DENSE may be applied to data of any type, although it
is a matter of implementation as to when it causes packing density to increase.
DENSE STRUCTURES
Packing density optimization is most commonly applied to HAL/S structures. If the
packing density of a structure data item is to be optimized, the keyword DENSE must
appear in the specification of the structure template defining its tree organization. The
form of such a template is as follows:
26-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that such optimization may cause the physical ordering of structure terminals to
differ from that given in the template specification.
Example:
 |
 |STRUCTURE A DENSE:
 | 1 A1,
 | 2 A11 BIT(16),
 | 2 A12 INTEGER,
 | 2 A13 ARRAY(10) BOOLEAN
 | 1 A2 CHARACTER(80);
 | DECLARE ZA A-STRUCTURE;
 |

All the structure terminals in ZA have their storage packing density optimized.

When the keyword DENSE is used as described above, storage packing density is
optimized for the whole of a structure. If the DENSE keyword is used on a fork or leaf
node of a structure template such optimization can be restricted to part of a structure.
The way in which this works is illustrated by the following tree diagram:

 |
 | STRUCTURE name DENSE:
 | node1, node2,.......
 | noden;
1. name is the structure template name.
2. node1, node2,...noden is a list of nodes forming the tree organization, as

described in Section 19.2.
3. The keyword DENSE indicates that the storage packing density of all the

structure terminals is to be optimized†.

† See appropriate User’s Manual for packing algorithms.
26-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 26-1
Nodes connected below a “fork” node on which the keyword DENSE appears inherit the
property from it. The keyword ALIGNED can be used to prevent inheritance of the
property:

DENSE

DENSE

storage packing density
optimization in force
26-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 26-2
The following example shows how the keywords are actually specified in a structure
template.
Example:
 |
 | STRUCTURE A:
 | 1 A1 DENSE,
 | 2 A11 BIT(16),
 | 2 A12 INTEGER,
 | 2 A13 ARRAY(10) BOOLEAN ALIGNED
 | 1 A2 CHARACTER(80);
 | DECLARE ZA A-STRUCTURE;
 |
The packing density is only optimized in those terminals of ZA shown in the shaded
areas of the following structure tree:

DENSE

storage packing
density
optimization in force

ALIGNED
26-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 26-3
The ALIGNED keyword on A13 has prevented the inheritance of the DENSE property
from A1.

26.2 ORDERING OF STORED DATA
The HAL/S language does not guarantee that the physical order in which data is stored
is the same as the order of appearance of data items in a compilation, either globally or
locally. Nor does HAL/S guarantee that the physical order of structure terminals in a
structure data item is the same as the order of their definition in its structure template.
Indeed, some implementations will deliberately reorder data so that access to it can be
optimized.

In most cases such reordering is not of importance to the HAL/S programmer. However,
since there are exceptions, HAL/S has a capability for specifying the non-reordering of
data in storage.

Reordering may be inhibited in the following constructs:
• an entire compool;
• a structure template.

Detailed rules for the appearance of DENSE
and ALIGNED on fork and leaf nodes of
structure templates, and on data items of other
types are given in Spec./4.5.

ZA

A1

A11 A12 A13

A2
26-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NON-REORDERING OF COMPOOLS
To prevent the reordering of data items in a compool, the keyword RIGID is placed in the
opening statement of the compool block, as shown below.

The corresponding compool template must possess the keyword RIGID also.
Example:
 |
 | POOL: COMPOOL RIGID;
 | DECLARE A ARRAY(1000) SCALAR,
 | B BIT(16);
 | DECLARE C CHARACTER(80);
 | CLOSE POOL;
 |

The data in the compool are guaranteed to be stored in the following order:

The corresponding compool template is as shown below:
 |
 | POOL: EXTERNAL COMPOOL RIGID;
 | DECLARE A ARRAY(1000) SCALAR,
 | B BIT(16);
 | DECLARE C CHARACTER(80);
 | CLOSE POOL;
 |

Use of the keyword RIGID in the above context does not of itself prevent the reordering
of structure terminals within a structure.
Example:
 |
 | DATA: COMPOOL RIGID;
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS SCALAR,
 | 1 QB BIT(8);
 | DECLARE A ARRAY(100) SCALAR,
 | B Q-STRUCTURE,
 | C CHARACTER(80);
 | CLOSE DATA;

 |
 | label: COMPOOL RIGID;
 |
1. label is the name of the compool.
2. The keyword RIGID denotes that the physical order of storage of data

items is the same as the order of their appearance in the compool.

A
B
C

26-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The order of data items in storage is guaranteed to be:

However, the ordering of terminals of B is not guaranteed to be:

Figure 26-4
NON-REORDERING OF STRUCTURE TERMINALS
The potential reordering of structure terminals may be inhibited by use of the keyword
RIGID on the structure template, as shown below:

Example:
 |
 | STRUCTURE Q RIGID:
 | 1 QI INTEGER,
 | 1 QS SCALAR,
 | 1 QB BIT(8);
 | DECLARE ZQ Q-STRUCTURE;
 |

A
B
C

 |
 | STRUCTURE name RIGID:
 | node1, node2,…
 | … noden;
 |
1. name is the structure template name.
2. node1, node2,...noden is a list of nodes forming the tree organization, as

described in Section 19.2.
3. The keyword RIGID denotes that the physical order of structure terminals is

guaranteed to be the same as the order of appearance of the terminals in the
template.

A

B

B.QI

B.QS

B.QBC
26-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The order of storage of the structure terminals of ZQ is the same as the order of their
appearance in template Q:

Figure 26-5
Both the keywords RIGID and DENSE may appear on a structure template (in any
order). The effect of RIGID takes precedence over storage packing density optimization.

26.3 TEMPORARY AND REMOTE STORAGE
The data accessing characteristics of some object machines are such that most efficient
use of core is made by dividing data into two categories:

• data which needs to be accessed quickly and often;
• data which needs to be accessed seldom, and where speed is not critical.

Normally all declared data in a HAL/S compilation is treated alike, as falling into the first
of these categories. However, by appropriate specification, a HAL/S data item can be
relegated to the second category: such data items are termed “remote”.

Sometimes in HAL/S code, data items are used only as temporary storage in an
extremely localized sequence of statements, and have no significance as far as the
algorithm implemented is concerned. If such data items were declared normally, then
the core area they occupy would remain unused for a substantial part of the duration of
execution of the code. This waste can be avoided by declaring them as “temporary” data
items, whereupon the HAL/S compiler can be allowed to locate them in some reusable
“scratch pad” area44 .

The keyword RIGID may appear on
fork and leaf nodes of a template.

See: Spec./4.5.

44.The nature and usage of such areas is implementation specific.

ZQ

ZQ.QI

ZQ.QS

ZQ.QB
26-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Control variables in repetitive DO groups are a particular instance of data items used for
temporary storage purposes. However, in this instance a consideration is the speed with
which the value of the control variable can be accessed, since it may be required for
many subscript evaluations within the DO group. Here it is more appropriate to set aside
a register than to locate the data item in a scratch pad area. Declaration of such
variables as “temporary” can allow a HAL/S compiler to perform this kind of allocation
also.
SPECIFICATION OF REMOTE DATA
A data item is declared to be remote by use of the keyword REMOTE in its declaration.
Data items of any type except event may be designated REMOTE. The position of the
keyword in a declaration is illustrated by the following examples:
Examples:
 |
 | DECLARE I INTEGER REMOTE;
 | DECLARE V VECTOR(3) DOUBLE REMOTE;
 | DECLARE S SCALAR REMOTE INITIAL(1.5);
 | DECLARE B BOOLEAN INITIAL(TRUE) REMOTE AUTOMATIC;
 | DECLARE ARRAY(4) INTEGER REMOTE,I,K,L;
 | STRUCTURE Q:
 | 1 QI INTEGER,
 | 1 QS SCALAR,
 | 1 QB BIT(16);
 | DECLARE ZQ Q-STRUCTURE REMOTE;
 |

If remote data items appear in a RIGID compool, then the remote data items appear in
the remote storage area in the same order as they were declared; the other data items
appear in the regular storage area in the same order as they were declared.
Example:
 |
 | DATA: COMPOOL RIGID;
 | DECLARE A SCALAR,
 | B BIT(16);
 | DECLARE ARRAY(100) INTEGER REMOTE,I,J,K;
 | DECLARE C CHARACTER(80);
 | CLOSE DATA;
 |

The physical ordering of data in the above compool is as shown below:

A I
B J
C K

regular
storage
area

remote
storage
area

⎫⎬⎭ ⎫⎬⎭
26-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
DECLARING AND TEMPORARY DATA
The HAL/S language enforces localized use of temporary data items by requiring them to
be declared and used within DO...END statement groups (see Section 10). The END
statement of a group signals to the HAL/S compiler that “scratch pad” storage allocated
to temporary data defined in the group is available for other use.

Temporary data items are declared by TEMPORARY statements which are declaration
statements in which the keyword DECLARE has been replaced by the keyword
TEMPORARY. The basic form is thus:

All TEMPORARY statements must appear immediately after the DO statement and
before the first statement inside the group.
Examples:
 |
 | DO;
 | TEMPORARY S SCALAR;
 | TEMPORARY I INTEGER DOUBLE;
 | TEMPORARY B BIT(16), ⎫compound statement - compare with
 | ZQ Q-STRUCTURE ⎬compound declarations in Section 4.2
 | ⎭
 | .
 | .
 | .
 | .
 | END;
 |
The structure template Q cannot be defined in the DO...END group. Its definition must
appear at the beginning of the code block in which the DO...END group is imbedded.
The control variable in a DO FOR statement can also be designated a temporary data
item by preceding its appearance in the DO FOR statement by the keyword
TEMPORARY. In this context, the control variable is taken implicitly to be a single
precision (halfword) integer.

For more precise rules on
positioning the keyword
REMOTE, see Spec./ 4.5.

 |
 | TEMPORARY name attributes;
 |
1. name is a legal HAL/S identifier name.
2. attributes describe the type, array property, precision and

other properties of the data item as in a declaration
statement.
26-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 |
 | DO FOR TEMPORARY I = 1 TO 18 BY 2;
 | .
 | .
 | .
 | END;
 |

The declaration of temporary data items is subject to the following restrictions:
• they may not be initialized;
• they may not be declared remote;
• they may not be of event type;
• the name of a temporary data item may not duplicate the name of another

temporary data item in the same DO...END group;
• the name of a temporary data item may not duplicate the name of an ordinary data

item known by the scoping rules of Section 1.2 to the body of the DO...END group.

26.4 ACCESS TO SHARED DATA
Generally at run time, an arbitrary number of real time processes are able to share data
defined in compools. Thus, it is entirely possible that one process may be in the act of
modifying such data while another process is referencing it. It may be crucial to the
integrity of the algorithm implemented in the second process that this be guaranteed not
to take place.

To handle this situation, HAL/S has the capability to designate certain compool data
items as protected, or “locked”. Such data items can only be accessed from within areas
of code called “update blocks”. The boundaries of update blocks are visible to the Real
Time Executive (RTE) which can therefore control entry into them and exit from them on
a process-by-process basis.
LOCK GROUPS
The protection of data could be carried out on an individual basis data item by data item.
Consider two processes A and B, each requiring to use protected data item Z as shown
below:
26-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 26-6
If process A began executing update block UA first, and thus began using Z, then
process B would be prevented from beginning execution of update block UB until A had
finished executing UA.

Protection of data on an individual basis would impose an arbitrarily large burden on the
RTE depending on the number of data items to be protected, and the number of
processes requiring to share them.

In order to limit this overhead of effort, HAL/S applies protection on a group basis rather
than an individual one. Each data item to be protected is designated as belonging to one
of a limited number of “lock groups”. The above illustration can be restated for HAL/S as
follows.
Consider two processes A and B, each requiring to use protected data in lock group N:

Figure 26-7
If process A begins executing UA first, then all protected data in lock group N become
unusable by process B which therefore cannot begin executing UB until A finishes
executing UA.

UA

B

update blocks delimiting
code for using Z

A

UB

UA

B

update blocks delimiting code for using data

A

UB
26-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
For more global protection, some protected data items can be designated as belonging
to all lock groups simultaneously.

If in the above illustration, for example, process A required to use a protected data item
belonging to all groups, and execution reached UA first, then process B could not enter
UB to use protected data from any lock group until A had finished executing UA.
LOCK GROUP SPECIFICATION
A data item in a compool is designated as protected at the time of its declaration. The
following construct is inserted in its declaration:

The following examples illustrate the positioning of the construct within declarations:
Examples:
 |
 | DECLARE I INTEGER DOUBLE LOCK(3);
 | DECLARE S SCALAR INITIAL(5.5) LOCK(*);
 | DECLARE V VECTOR(3) LOCK(1) INITIAL(0);
 | DECLARE B ARRAY(1000) BOOLEAN LOCK(*);
 | STRUCTURE Q DENSE:
 | 1 QI INTEGER,
 | 1 QS SCALAR,
 | 1 QB BIT(16);
 | DECLARE ZQ Q-STRUCTURE(20) LOCK(3);
 |

....LOCK(n)....

....LOCK(*)....
1. In either form, the keyword LOCK indicates that the data item is to be

protected.
2. n is a positive integer denoting that the data item is to belong to lock group

n, where 1 ≤ n ≤ 15†.

† This value may vary between implementations. See appropriate User’s Manual.

3. * denotes that the data item is to be considered as belonging to all lock
groups simultaneously.

For more precise rules
concerning the location of
the locking attribute see
Spec./4.5.
26-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
UPDATE BLOCK DEFINITIONS
An update block is an explicitly delimited body of code wherein locked data may be
referenced or modified. Superficially, an update block looks similar to any other kind of
code block in the HAL/S language. Its delimiting statements are of the form shown
below:

An update block is unique in that it is never invoked as are other kinds of code blocks:
rather it is executed when it is encountered in the path of execution. Consistent with this,
the label on the opening statement of the block may be treated as a statement label.
Example:
 |
 | I = I + 1;
 | IF I < 0 THEN GO TO ENTER;
 | J = J + 1;
 | ENTER: UPDATE;
 |E T
 | M = M + U.U N N;
 | CLOSE ENTER;
 | .
 | .
 | .
 |

The possible paths of execution in the above code are represented by the following flow
diagram.

| label: UPDATE;

| ⎫
| ⎬ body

| ⎭
| CLOSE label;

1. On the opening statement label is any HAL/S identifier, and
represents the name of the update block.

2. The update block may be unlabeled, in which case label: is omitted.
3. If the update block is labeled, the closing statement may optionally

possess a matching label.
26-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Figure 26-8
The following rules govern the contents of any update block.

• The opening statement may be immediately followed by the declaration of local
data, as if it were a program block (see Section 3.2).

• Input/Output statements of any kind are illegal.
• SCHEDULE, WAIT, CANCEL, TERMINATE and UPDATE PRIORITY statements

are illegal.
• Procedure and function blocks, but neither task nor other update blocks may be

nested within it.
• The only procedure or function invocations which are legal are those referencing

procedure or function blocks defined within it.

J = J + 1
YES

Update
Entry

M=M+U.U NTN

Update
Exit

ENTER

NO

I = I + 1

IS
I < 0

?

26-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 | UPDATE;
 | DECLARE I INTEGER,
 | S SCALAR;
 | V = V/S;
 | .
 | .
 | WRITE(6)V; ← illegal
 | .
 | .
 | INNER: PROCEDURE;

 | CLOSE INNER;
 | .
 | .
 | .
 | CALL INNER;
 | CALL OUTER; ← illegal ~ outer not defined in update block
 | UPDATE PRIORITY ALPHA TO 50; ← illegal
 | .
 | .
 | .
 | CLOSE;

EXECUTION OF UPDATE BLOCKS
The behavior of processes on encountering update blocks has already been described in
this section, but only superficially by example. This behavior is now reexamined in more
detail.
The simplest case is that of two processes wishing to use data items from the same lock
group. Each process has to execute an update block to use the protected data items.
The following activity takes place:

• If both of the processes require data items from the same lock group to be modified
then the first process to enter its update block must complete execution of it before
the second process can enter its own update block. The RTE places the second
process in a waiting state for this period of time.

• If one or both of the processes only require to reference the data then in some
implementations of HAL/S, the behavior of the RTE will be the same as before.
Alternatively, in other implementations, to reduce the second process’ waiting time,
the RTE may allow partial overlap in execution of the update blocks, consistent
with exclusive use of data by the process modifying it45.

If the two processes wish to use data from more than one lock group, the RTE tracks the

| ⎫
| ⎬ body of procedure
| ⎭

45.This alternative entails more work by the RTE thus “stealing" time from the processes' productive work. The
behavior of any implementation is therefore the result of a trade-off to achieve an acceptable RTE performance.
26-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
use of each lock group in the above way. If one or both processes use data protected by
LOCK (*), then the situation is equivalent to one in which the process or processes wish
to use data in every lock group.

If data is shared by more than two processes, then all processes except one are put in a
waiting state by the RTE. The eventual order in which the processes complete execution
of their update blocks will depend on the contents of the process queue and the relative
priority of the processes.
Example:

In some real time application, it is required that a process ALPHA print the values
of a covariance matrix M once every 19 seconds. The values are updated once
every 1.5 seconds by a second process BETA. The implementation must
guarantee that a partially updated covariance matrix not be printed.

The covariance matrix M is declared thus:
 |
 | DECLARE M MATRIX(3,3) LOCK(1);
 |

Two task blocks corresponding to ALPHA and BETA are shown below:
|
| ALPHA: TASK;
| DECLARE M_LOCAL MATRIX(3,3);
| U1: UPDATE;
| M_LOCAL = M;
| CLOSE U1;
| WRITE(6) ‘COVARIANCE=’, M_LOCAL;
| CLOSE ALPHA;
|C
| BETA TASK;
| DECLARE VT VECTOR(3);
| U2: UPDATE ;
|E T
| V =(PHI M PHI + QA)Z;
| M = V V/(QB + Z.V);
| CLOSE U2;
| CLOSE BETA;
|

Processes ALPHA and BETA could be created by invoking these task blocks with
cyclic SCHEDULE statements (see Section 23.5) of the following form:

 |
 | SCHEDULE ALPHA PRIORITY(10), REPEAT EVERY(l9);
 | SCHEDULE BETA PRIORITY(20), REPEAT EVERY(1.5);
 |
26-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The following diagram shows the state transitions of the processes:

Figure 26-9

Note that if in this example process swaps occurred only on statement boundaries,
update blocks would not be needed since ALPHA could not ever be brought into
execution with covariance matrix M partly updated.

LOCKED ASSIGN ARGUMENTS
The rule that locked data items can only appear in update blocks has one sole exception:
it is possible for locked data items to appear as assign arguments in procedure
invocations. This provides the ability to “parameterize’’ update blocks, as will be shown
in an ensuing example.

The following rules govern the passage of locked assign arguments:
1. If the argument is a data item belonging to lock group n, then the

corresponding parameter must be declared LOCK(n) or LOCK(*).
2. If the argument is a data item belonging to all lock groups, the

corresponding parameter must be declared LOCK (*).
3. Argument and parameter must also match in the senses described in

Sections 11.5, 17.7, or 19.10 as applicable.

executing

ready

waiting

executing

ready

waiting

ALPHA

BETA

execution
of update block U1

end of
execution of
update block U1

process
waiting at entry
to U2

execution
of update block
U2 execution

of update block
U2

1.5sec 1.5sec

19sec
26-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

For the above procedure definitions and declarations, the following invocations are legal:
 |
 | CALL PICK(1.0) ASSIGN(A,B);
 | CALL PICK(2.0) ASSIGN(A,C);
 |
The following are illegal:
 |
 | locked data item as input argument
 | |
 | ↓ ↓

⎯⎯⎯⎯ unmatched lock group
 | CALL PICK(A) ASSIGN(B,C); ⁄
 | ↓

⎯−

 | CALL PICK(3.0) ASSIGN(C,B);
|

The procedure PICK may contain an update block changing the value of Q and R:
 |
 | PICK: PROCEDURE(P) ASSIGN(Q,R);
 | DECLARE P SCALAR,
 | Q SCALAR LOCK(1),
 | R SCALAR LOCK(*);
 | .
 | .
 | .
 | U: UPDATE;
 | Q = Q + P;
 | R = R - P;
 | CLOSE U;
 | .
 | .
 | .
 | CLOSE PICK;
 |

|

| DECLARE A SCALAR LOCK(1),

| B SCALAR LOCK(2),

| C SCALAR LOCK(*);

| PICK: PROCEDURE(P) ASSIGN(Q, R);

| DECLARE P SCALAR,

| Q SCALAR LOCK(1),

| R SCALAR LOCK(*);

| ⎫

| ⎬ body of procedure

| ⎭

| CLOSE PICK;
26-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
PICK may be invoked with different locked assign arguments, thus effectively
parameterizing the update block.
 |
 | CALL PICK(l) ASSIGN(A,B); updates A and B
 | CALL PICK(2) ASSIGN(A,C); updates A and C
 |

26-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
27.0 HAL/S AND REENTRANCY46
This section deals with another indirect implication of multi-processing in real time:
reentrancy. In HAL/S, reentrancy arises because more than one real time process at a
time can use a procedure or function. The HAL/S language possesses constructs by
which reentrancy can be allowed or inhibited in procedures and functions.

27.1 DETERMINING REENTRANCY REQUIREMENTS
A HAL/S user intending to code a procedure or function (either internal or external) to be
invoked in a real time context, should first determine which of the following two
categories it falls into:

• The places where it is invoked are such that it can never be in use by more than
one process at a time.

• The places where it is invoked are such that it can potentially be in use by more
than one process at a time.

If the user determines that the procedure or function falls into the first category, then the
procedure or function block is coded following the rules given in Section 11.

If, on the other hand, it falls into the second category, the user must make a choice
between the following courses of action:

• to insure that during execution, the Real Time Executive (RTE) allows only one
process at a time to use it;

• to insure that during execution, more than one process can use it at a time.

A procedure or function in whose respect the first course of action is taken, is called
“exclusive”. One in whose respect the second course of action is taken is called
“reentrant”. The opening statements of such procedures and functions must contain
specific indication of their exclusive or reentrant property.

27.2 EXCLUSIVE PROCEDURES AND FUNCTIONS
An exclusive procedure or function is one which the RTE allows only one process to use
at any given time. A procedure or function is designated exclusive by the presence of
the keyword EXCLUSIVE in the opening statement of its block definition.
DEFINING AN EXCLUSIVE PROCEDURE
The form of the opening statement of an exclusive procedure is as shown below:

46.The term “reentrancy” denotes the property of being reentrant.
27-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

The template corresponding to an exclusive external procedure must also bear the key-
word EXCLUSIVE.
Example:
The template corresponding to

would be:

 |
 |label: PROCEDURE(i1,i2,...) ASSIGN(a1,a2,...) EXCLUSIVE;
 |
1. label is a legal HAL/S identifier constituting the procedure name.
2. i1, i2,... and a1, a2,... are lists of input and assign parameters as

described in Section 11.2.
3. The keyword EXCLUSIVE designates an exclusive procedure.

| P: PROCEDURE(A) EXCLUSIVE;

| DECLARE A SCALAR;

| ⎫
| ⎬ procedure body

| ⎭
| CLOSE P;

| P: PROCEDURE(A) EXCLUSIVE;

| DECLARE A SCALAR;

| ⎫
| ⎬ procedure body

| ⎭
| CLOSE P;

| P: PROCEDURE(A) EXCLUSIVE;

| DECLARE A SCALAR;

| CLOSE P;
27-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
DEFINING AN EXCLUSIVE FUNCTION
The form of the opening statement of an exclusive function is as shown below:

Example:

The template corresponding to an exclusive external function must also bear the key-
word EXCLUSIVE.
Example:
The template corresponding to:

would be:

 |
 | label: FUNCTION(i1,i2,...) attributes EXCLUSIVE;
 |
1. label is a legal HAL/S identifier constituting the function name.
2. i 1,i 2 is a list of input parameters as described in Section 11.2.
3. attributes defines the type and, where applicable, precision of the

function, as described in Section 11.2.
4. The keyword EXCLUSIVE designates an exclusive function.

| F: FUNCTION BOOLEAN EXCLUSIVE;

| ⎫
| ⎬ function body

| ⎭
| CLOSE F;

| F: FUNCTION BOOLEAN EXCLUSIVE;

| ⎫
| ⎬ function body

| ⎭
| CLOSE F;

| F: EXTERNAL FUNCTION BOOLEAN EXCLUSIVE;

| CLOSE F;

|

27-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
BEHAVIOR OF EXCLUSIVE PROCEDURES AND FUNCTIONS
If an exclusive procedure or function is in use by a process A, and a process B tries to
invoke it, then the RTE places process B in the waiting state until process A returns from
its use.
Example:

Two processes, ALPHA and BETA, can invoke the following procedure:

Suppose that ALPHA invokes P first and during its execution, BETA tries to invoke it.
The state transitions for this situation is shown below:

Figure 27-1

| P: PROCEDURE(A) EXCLUSIVE;

| ⎫

| ⎬ procedure body

| ⎭

| CLOSE P;

transitions

ALPHA
enters P

executing

ready

waiting

executing

ready

waiting

ALPHA

BETA

other
unrelated

other
unrelated
transitions

ALPHA
leaves P

BETA tries to
enter P

BETA leaves P

RTE allows
BETA to enter P
27-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
27.3 REENTRANT PROCEDURES AND FUNCTIONS
A reentrant procedure or function is one in which deliberate steps are taken by the
programmer to ensure correct execution when the RTE allows more than one process to
use it simultaneously. A procedure or function which is intended to be reentrant must
possess the keyword REENTRANT in its opening statement.

This is a necessary but not sufficient condition to ensure reentrancy. The programmer
must observe certain additional guidelines unenforceable by a HAL/S compiler to ensure
that a procedure or function is truly reentrant in all relevant respects.
DEFINING A REENTRANT PROCEDURE
The form of the opening statement of a reentrant procedure is shown below:

Example:

If P were an external procedure, the corresponding template would be:
 |
 | P: EXTERNAL PROCEDURE REENTRANT;
 | CLOSE P;
 |
DEFINING A REENTRANT FUNCTION
The form of an opening statement of a reentrant function is shown below:

 |
 | label: PROCEDURE(i1,i2,...) ASSIGN(a1,a2,...) REENTRANT;
 |
1. label is a legal HAL/S identifier constituting the procedure name.
2. i1, i2,… and a1, a2,... are lists of input and assign parameters as

described in Section 11.2.
3. The keyword REENTRANT indicates that the procedure is to be

considered reentrant.

| P: PROCEDURE REENTRANT;

| ⎫
| ⎬ procedure body
| ⎭

| CLOSE P;

 |
 | label: FUNCTION(i1,i2,...) attributes REENTRANT;
 |
1. label is a legal HAL/S identifier constituting the function name.
2. i1, i2... is a list of input parameters as described in Section 11.2.
3. attributes defines the type and, where applicable, precision of the

function, as described in Section 11.2.
4. The keyword REENTRANT indicates that the function is to be considered

reentrant.
27-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The template corresponding to an external reentrant function must also possess the
keyword REENTRANT.
Example:

If F were an external function, the corresponding template would be:

BEHAVIOR OF REENTRANT PROCEDURES AND FUNCTIONS
If a reentrant procedure or function is in use by a process A, and a process B tries to
invoke it, the RTE allows the invocation to proceed without restriction.
Example:

Two processes, ALPHA and BETA, can invoke the following procedure:

| F: FUNCTION MATRIX(4,4) REENTRANT;

| ⎫
| ⎬ function body
| ⎭

| CLOSE F;

| F: EXTERNAL FUNCTION MATRIX(4,4) REENTRANT;

| CLOSE F;

| P: PROCEDURE REENTRANT;

| ⎫
| ⎬ procedure body
| ⎭

| CLOSE P;
27-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Suppose that ALPHA invokes P first and during its execution, BETA invokes it. The state
transitions for this situation are as follows (compare corresponding example for exclusive
procedure):

Figure 27-2
LOCAL DATA IN REENTRANT BLOCKS
The most important consideration in writing reentrant procedures and functions is that of
declaring local data. The issue that confronts the programmer is whether for each local
data item he merely wants one “copy” of it, to be shared by all processes concurrently
executing the block; or whether a separate “copy” for each process is wanted. Normal
reentrant procedures require that execution by one process be completely decoupled
from execution by another. Hence, separate copies for each process are usually
required.

Separate copies of a local data item for each process concurrently executing a reentrant
block are generated by the RTE as a result of declaring the data item in a particular way.
Specifically, the data item is declared using the keyword AUTOMATIC.

The keyword AUTOMATIC was introduced in Section 16.4 as a method for causing local
data to be initialized upon every entry into a block, rather than only the first. Used in
reentrant blocks, it causes allocation of storage on entry into the block, as well as
initialization. The keyword may be used even though the data item is not to be initialized.
In contrast, by default, or by using the keyword STATIC, storage for a data item will be
allocated at compile time, and only one shared copy will exist.

transitions

executing

ready

waiting

executing

ready

waiting

ALPHA

BETA

other
unrelated

ALPHA
leaves P

BETA enters P BETA leaves P

ALPHA
enters P

ALPHA and BETA both executing P

transitions

other
unrelated
27-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
In the reentrant procedure:

V is used to store an intermediate result in the calculations. One copy for each
process is required to insure that P contains completely reentrant code. Hence, V is
declared AUTOMATIC.
In contrast, suppose the number of times a reentrant procedure is invoked is
required to be known and printed every 10 invocations. In this unusual, and rather
artificial case, it would be appropriate to use a local data item not declared
AUTOMATIC:

In an implementation where process swaps can only occur at the end of every
executable statement, the code shown would maintain a correct count of the number
of invocations.

|

| P:PROCEDURE(A) ASSIGN(B) REENTRANT;

| DECLARE A VECTOR;

| DECLARE B SCALAR;

| DECLARE V VECTOR(3) AUTOMATIC;

| .

| .

| .

| V = VECTOR(B,0,0);

| B = V.A;

| CLOSE P;

|

|

| P2: PROCEDURE(A,B) ASSIGN(C) REENTRANT;

| DECLARE VECTOR, A, B, C;

| DECLARE COUNT INTEGER INITIAL(0);

| COUNT = COUNT + 1;

| IF REMAINDER(COUNT, 10) = 0 THEN

| WRITE(6)’NUMBER OF ENTRIES=‘||COUNT;

| .

| .

| .

| .

| .

| CLOSE P2;

|

27-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
OTHER CONSIDERATIONS IN REENTRANT BLOCKS
To preserve complete reentrancy of the code inside a reentrant procedure or function,
other guidelines must be adhered to:

• Any procedure or function invoked by the reentrant block should itself be reentrant.

• Update blocks and inline functions47 should declare no local data, either STATIC or
AUTOMATIC.

It should be noted that no update block in a reentrant procedure or function can itself be
reentrant, because of an update block’s inherent properties (see Section 26.4). However,
the processes executing the reentrant procedure or function can only pass through the
update block serially. Hence, it appears as if process swaps were inhibited pending
passage through the update block by each process, and cross-coupling of computational
results in different processes still cannot occur. Hence, complete reentrancy is still
effectively being preserved.

47.To be described in Section 29.4.
27-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
27-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
28.0 THE HAL/S NAME FACILITY
Successful and efficient systems programming in a higher order language requires an
ability to “point to” specified data items. This implies the existence of the following
constructs:

• a class of data items whose values are pointers to other data items, (or in assembly
language terms, data items whose values are addresses of other data items);

• a mechanism for referencing and modifying pointer values at run time;
• a mechanism for referencing and modifying ordinary data items indirectly through

pointers to them.

The HAL/S NAME facility satisfies all three of these requirements. This section
introduces the conceptual basis of the facility, and describes in detail the language
constructs involved in its use.

A careful reading of Section 19 is a prerequisite for the complete understanding of this
section.

28.1 HAL/S NAME CONCEPTS
In some higher order languages, there exist pointer data items which at run time can be
made to point to other data items of any kind. Thus, sometimes they may point to scalar
data items, and at others they may point to integer or character data items. Ordinary
data items indirectly referenced through pointers cannot in such a language be checked
for legality in their given context at compile time.

Software using such pointer data items is therefore inherently unreliable, unless run time
checking is instituted, which may be an unacceptable alternative in real time flight
software applications.

NAME DATA ITEMS
In HAL/S, pointer data items are called “NAME” data items. To substantially eliminate
software unreliability a specific mechanism in HAL/S assures that any given NAME data
item can point to only other data items of a single kind specified at compile time. The
mechanism consists in declaring a NAME data item with properties of type, precision,
and arrayness, just as if it were an ordinary data item. These properties, rather than
actually belonging to the NAME data item, are the properties which must be possessed
by data items to which the NAME data item can point.

This has two beneficial implications:
• Any construct causing the pointer value of a NAME data item to be modified can be

subjected to compile time checkout insuring that at run time the NAME data item
will always point to another legal data item.

• When a NAME data item is used to indirectly access an ordinary data item, type,
precision, and arrayness properties of the data pointed to are known and can be
checked at compile time for legality in their given context.
28-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
In HAL/S, NAME data items can also point to programs and tasks, enabling the use of
pointers in conjunction with SCHEDULE, WAIT, TERMINATE and CANCEL statements.

INDIRECT ACCESS THROUGH POINTERS
The appearance of an ordinary data item in an executable statement causes its value to
be referenced or modified at run time. If a NAME data item appears in an executable
statement as if it were an ordinary data item, then at run time the ordinary data item it is
currently pointing to is referenced or modified. This is what is meant by the indirect
accessing of data.
If a NAME data item points to a program or task, and it appears in the same context as
an ordinary program or task name, then the program or task pointed to is being indirectly
accessed.
ACCESSING POINTER VALUES
If the value of a NAME data item is itself to be referenced or modified, a special construct
called the “NAME pseudo-function” is required. This serves to distinguish direct
accessing of pointer values from indirect accessing through pointer values.

28.2 DECLARATION OF NAME DATA ITEMS
HAL/S allows NAME data items to be defined which can point to the following data types:
 INTEGER BIT STRING(and BOOLEAN)
 SCALAR CHARACTER
 VECTOR STRUCTURE
 MATRIX EVENT

In addition, NAME data items can be defined which can point to the following kinds of
code block:
 PROGRAM TASK

NAME DATA ITEMS POINTING TO DATA
Declarations of NAME data items for pointing to data have exactly the same form as
declarations of ordinary data items, except that the keyword NAME immediately follows
the identifier name declared.
Examples:

|
| DECLARE A NAME ARRAY(100) SCALAR;
| DECLARE MATRIX(3,3) DOUBLE, M1 NAME, M2 NAME;
| DECLARE B NAME BIT(16),
| C NAME CHARACTER(80);
| STRUCTURE Q:
| 1 QI INTEGER,
| 1 QS SCALAR,
| 1 Q1,
| 2 QB BIT(16),
| 2 QC CHARACTER(80);
| DECLARE ZQ NAME Q-STRUCTURE;
|

28-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Given the above declarations:
• A may only point to 1-dimensional single precision scalar arrays of size 100.
• M1, M2 may only point to 3x3 double precision matrices.
• B may only point to 16-bit strings.
• C may only point to character strings of maximum length 80.
• ZQ may only point to Q-STRUCTURES (or tree equivalent structures) with a single

copy.
DATA ITEMS POINTING TO CODE BLOCKS
Declarations of NAME data items for pointing to programs and tasks have the following
basic form:

Such declarations can be part of a compound or factored declaration statement.
Examples:

Given these declarations:

P1, P2 may only point to program blocks.
T1, T2 may only point to task blocks.

NAME DATA ITEMS AS STRUCTURE TERMINALS
NAME data items for pointing to both data and program or task blocks may appear as
structure terminals in a structure template. The definition of a NAME data item in a
structure terminal takes the form described in Section 19.2, except that the keyword
NAME follows the name of the structure terminal.

 |
 | DECLARE name NAME PROGRAM;
 | DECLARE name NAME TASK;
 |

1. name is any legal HAL/S identifier name.

|
| DECLARE P1 NAME PROGRAM;
| DECLARE T1 NAME TASK;
| DECLARE P2 NAME PROGRAM,
| T2 NAME TASK,
| S1 NAME SCALAR;
|

28-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

Note that NAME data items for pointing to events can appear in a structure template,
even though events themselves cannot. Note also that NAME data items in a template A
may point to structures, even those possessing A as template.
Examples:
The following are legal definitions:

In this example NZR may point to ZR. ZR.QR may also point to ZR. The implications of
this ability will be investigated later.
PROPERTIES OF DECLARED NAME DATA ITEMS
It has already been stated that the properties of type, precision and arrayness appearing
in the declaration of a NAME data item actually specify the kind of data item or code
block to which it can point. Other attributes besides these can appear in such
declarations. Most of them serve the same purpose as described, but in contrast others
apply to the NAME data item itself. Most prominent in the latter category is initialization.

The following table summarizes the purpose of each attribute which can appear in the
declaration of a NAME data item.

|
| STRUCTURE Q:
| 1 QS NAME SCALAR,
| 1 QI,
| 2 QC NAME CHARACTER(80),
| 2 QR NAME PROGRAM,
| 2 QB NAME BOOLEAN,
| 1 Q2,
| 2 QA ARRAY(4) BIT(16);
|

|
| STRUCTURE R:
| 1 QR NAME R-STRUCTURE,
| 1 QE NAME EVENT;
| DECLARE ZR R-STRUCTURE;
| DECLARE NZR NAME R-STRUCTURE;
|

28-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NOTES:
 The forms ARRAY(*) or α-STRUCTURE(*) are illegal.
The form CHARACTER(*) when used for a NAME data item, enables it to point to
a character data item of any maximum length.

 The REMOTE attribute may appear on the declarations of NAME data items as
structure terminals since they may be required to point to REMOTE data.

 The illegality of the ACCESS attribute does not prevent protected data items from
being pointed to.

ATTRIBUTE
OF NAME

DATA ITEM

Applies to Data
or Code Block

Pointed To

Applies to
NAME Data
Item Itself

Comments

ARRAY() See note
BIT()

BOOLEAN

CHARACTER() See note
EVENT

VECTOR()

MATRIX()

INTEGER

SCALAR

α STRUCTURE() See note
PROGRAM

TASK

SINGLE

DOUBLE

DENSE

ALIGNED

RIGID

⎫Affects NAME data item as if it
⎬were an ordinary data item. See
⎭Sections 26.1 & 26.2.

REMOTE See note

ACCESS Illegal, but see note

INITIAL()

CONSTANT()

⎫Cause initialization of pointer
⎬value. To be described in Section
⎭26.8.

STATIC

AUTOMATIC

⎫State the kind of initialization,
⎬as for ordinary data items.
⎭See Section 16.4.

2

1

1

3

4

1

2

3

4

28-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NAME DATA ITEMS AND TEMPORARIES
The nature and purpose of temporary data items were described in Section 26.3. The
following rule summarizes relationships between temporary data items and NAME data
items.

NAME FORMAL PARAMETERS
Formal parameters may be declared with the NAME keyword as if they were NAME data
items. The purpose of this will be described in Section 28.9.

28.3 INDIRECT ACCESS THROUGH NAME DATA ITEMS
If a NAME data item appears in an executable statement as if it were an ordinary data
item, then the data item it points to is taken to be accessed. Similarly, if a NAME data
item appears as if it were the name of a program or task block, then the block it points to
is taken to be accessed.
It might be said that the NAME data item has been substituted for the ordinary data item
or block, so as to achieve indirect, rather than direct access.
Examples:

effectively performs the operations:

The foregoing statements about appearances of NAME data items, while appearing

No NAME data item may point to a temporary data item.

| DECLARE VECTOR(3), V, NV NAME;

| DECLARE SCALAR, S, NS NAME;

| DECLARE NT NAME TASK;

| .

| .

| .

| T: TASK;

| ⎫
| ⎬ task body
| ⎭
| CLOSE T;

|

If NV → V, NS → S and NT → T†, then

† In this and following examples “→“ means “point to”.

| NS = NV.NV;

| SCHEDULE NT IN NS PRIORITY(50);

| S = V.V;
| SCHEDULE T IN S PRIORITY(50);
28-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
simple and unequivocal, contain a number of subtle implications arising from:
• interactions in structure data items;
• the effects of subscripting.

INDIRECT ACCESSING AND STRUCTURES
The subtleties of indirect accessing in conjunction with structures arise as a
consequence of these two facts:

• Any structure may possess NAME structure terminals some of which may point to
structure data items.

• Such a NAME structure terminal can actually point back to the structure containing
it.

These subtleties are best illustrated by the extended examination of an apparently very
simple example. By the rules given in Section 28.2, the following are legal structure
declarations:

Z1.B is a NAME structure terminal of A-STRUCTURE type, which may therefore legally
point to Z2. Pictorially:

Figure 28-1
Because Z1.B points to Z2, any appearance of Z2 may be substituted by Z1.B, so
achieving indirect access to Z2.
It is crucially important at this point to understand that because Z1.B points to Z2, parts of
Z2 as well as Z2 itself may be indirectly accessed. For example, to achieve indirect
access to Z2.C, the appearance of Z2 in the qualified name is substituted by Z1.B. That
is, indirect access to Z2.C is achieved by the qualified form Z1.B.C.

To illustrate this substitution process further, if Z4 points to Z2, then Z2.C is indirectly

|
| STRUCTURE A:
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE A-STRUCTURE, Z1, Z2, Z3;
| DECLARE Z4 NAME A-STRUCTURE;
|

Z1

Z2

C B

C B
28-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
accessed by the qualified form Z4.C, and if Z4 points to Z1, then Z2.C is indirectly
accessed by the qualified form Z4.B.C.

Multiple levels of indirection are handled in the same way. Suppose for example that in
addition Z2.B points to Z3. Then pictorially:

Figure 28-2
Using the same kind of substitution as before, Z3 may be indirectly accessed by the
qualified form Z1.B.B, so that in its turn, structure terminal C in Z3 may be indirectly
accessed by the qualified reference Z1.B.B.C.

Restating how the form Z1.B.B.C was arrived at, the following steps were taken:
• substitution of Z2.B.C for Z3.C (since Z2.B points to Z3);
• substitution of Z1.B.B.C for Z2.B.C (since Z1.B points to Z2).

There are other curious consequences arising from the interaction of indirect accessing
with structures. Suppose now, for example, that Z2.B points to Z1 rather than Z3. Then,
pictorially:

Figure 28-3
Now Z2.C can be indirectly accessed by the qualified form Z1.B.C, since Z1.B points to

Z1

Z2C B

C B Z3

C B

Z1

C B

Z2

CB
28-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Z2. Since Z2.B points to Z1, the following forms are also possible:
 Z2.B.B.C
 Z1.B.B.B.C
 Z2.B.B.B.B.C
 Z1.B.B.B.B.B.C
 .
 .
 .

This example illustrates the logical consequence of a closed indirection loop between
two structures.
INDIRECT ACCESS AND SUBSCRIPTING
In this discussion, for simplicity, subscripting in connection with structures or structure
terminals will at first be excluded. With this restriction, subscripting on NAME data items
is straightforward in its meaning.

With this interpretation, it is clear that such subscripts must be legal for the data type
pointed to. In particular, NAME data items pointing to programs and tasks may not be
subscripted.
Examples:
 |
 | DECLARE VECTOR(3), V, NV NAME;
 | DECLARE ARRAY(2) CHARACTER(4), C, NC NAME;
 | DECLARE BIT(4), B, NB NAME;
 |

Then if NV → V, NC → C, NB → B:

NV3 ≡ 2.5 since V3 is indirectly referenced,

NC1:3 ≡ ‘C’ since C1:3 is indirectly referenced,

NB2 TO 3 ≡ 012 since B2 TO 3 is indirectly referenced.

NV5, NB9 are illegal since the subscripting is illegal for V and B respectively. Such
subscripting is always illegal since NV can only point to 3-vectors, and B to 4-bit
strings.

The complexities arising from structure subscripting are best studied by another
apparently simple example. Suppose that the following declarations are made:

Subscripting is effective on the data item that is being indirectly
accessed.

⎡0.5 ⎤
Let V ≡ ⎢1.5 ⎜, C ≡ (‘ABCD’ ‘EFGH’), B ≡ 10102

⎣2.5 ⎦
28-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Let copies 1, 2 and 3 of Z1.B point respectively to copies 2, 3 and 1 respectively of Z2.
Pictorially:

Figure 28-4
According to the substitution process previously described, the three copies of structure
terminal C and Z2 can be indirectly accessed by specifying the three copies of Z1.B.C:

Z1.B.C1; indirectly accesses Z2.C2;
Z1.B.C2; indirectly accesses Z2.C3;

Z1.B.C3; indirectly accesses Z2.C1;
Using the terminology of Section 20.1, Z2.C is an operand with arrayness {1:3}.
Indirectly accessed as Z1.B.C, the operand still has arrayness {1:3} but the order of the
individual elements is different. In general of course the three copies of Z1.B may point
to three different structures (all with template A), resulting in operand Z1.B.C being
synthesized from three different sources.

Note that the structure subscript is effective before indirection, not after. As a further
illustration, in

Z1.B.C1; 3, 3

the structure subscript selects copy 1 of the pointers Z1.B. Note, however, that in
contrast the component subscript selects the component in row 3 and column 3 of C in
the structure to which Z1.B points.

|
| STRUCTURE A:
| 1 C MATRIX(3,3),
| 1 B NAME A-STRUCTURE;
| DECLARE A-STRUCTURE(3), Z1, Z2, Z3 NAME;
|

Z1

C B C B C B

copy 1 copy 2 copy 3

Z2

C B C B C B

copy 2 copy 3 copy 1
28-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This is not always true for structure subscripts. For example, let Z3 point to Z2. Then in
Z3.B.C1; 3, 3

the structure subscript selects copy 1 of Z2, which is pointed to by Z3.

These examples illustrate the following general rule:

28.4 THE NAME PSEUDO-FUNCTION
As briefly stated in Section 28.1, referencing or modifying pointer values requires use of
a special construct called the NAME pseudo-function. This section states its form, and
describes its properties and their implications.
BASIC FORM OF NAME PSEUDO-FUNCTION
The basic form of the NAME pseudo-function is that of a function with a single argument.
The argument of the pseudo-function is a HAL/S data item or parameter of some
description.
The arguments fall into two categories:

• NAME DATA ITEMS (including NAME formal parameters). The pointer value (or
values) of the argument are accessed.

• ORDINARY DATA ITEMS, (including assign parameters, but not input parameters
or temporary data items) and program or task block names. The pointer value (or
values) to the argument are created.

The form of the NAME pseudo function is shown below:

A structure subscript may either be effective on the data being indirectly
accessed, or upon the NAME data item accessing it, depending on
whether the data pointed to has copies, or whether the NAME data item
itself has copies†.

† Note that since a structure terminal which is itself a structure (or a NAME data item pointing
to a structure) cannot possess copies, the two forms of structure subscripting are mutually
exclusive.

NAME(item)

1. item is a NAME data item, ordinary data item, or program or task
block name.

2. The legality of subscripting on the argument depends on the context
in which the pseudo-function appears.
28-11 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The appearance of a NAME pseudo-function in reference context causes one or more
pointer values to be referenced or created:

• If the argument is an ordinary data item, one or more pointers to it are created;
• If the argument is a NAME data item, its current pointer value or values are

referenced.

The appearance of a NAME pseudo-function in assignment context causes one or more
pointer values to be modified. Consonant with this, in such a context, the argument may
be only a NAME data item.

Instances of the NAME pseudo-function in both reference and assignment contexts will
be described in Sections 28.5 through 28.9.
Examples:

Given:

 the following are legal:

 ⎫
 NAME(S) ⎬ reference only
 NAME(ZQ.QS)⎭
 NAME(NS)
 NAME(NT)
 NAME(NA)
 NAME(ZQ.QN)

the following are illegal:
 NAME(1.5)
 NAME(S/2)

|
| DECLARE S SCALAR,
| NS NAME SCALAR,
| NT NAME TASK,
| NA NAME ARRAY(1000) INTEGER;
| STRUCTURE Q:
| 1 QS SCALAR,
| 1 QN NAME Q-STRUCTURE;
| DECLARE ZQ Q-STRUCTURE;
|

28-12 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INTERACTION WITH STRUCTURES
Section 28.3 described in detail how qualified structure naming forms which involve
implicit indirect access could be constructed. Any such qualified form may appear as the
argument of a NAME pseudo-function, with effects best summarized by example.

 Take again the declarations:

Let Z1.B point to Z2, and Z2.B point to Z3, as shown pictorially below:

Figure 28-5
A pointer value to Z3.C can be created by the construct:

NAME(Z3.C)

Section 28.3 showed how Z3.C is indirectly accessed by the qualified form Z2.B.C
because Z2.B points to Z3. Hence, a pointer value to Z3.C can also be created by:

NAME(Z2.B.C)

Now Z1.B points to Z2 so that Z3.C is accessed through two levels of indirection by
Z1.B.B.C. A third way of creating a pointer value to Z3.C is therefore:

NAME(Z1.B.B.C)

If furthermore, Z4 points to Z1, then
NAME(Z4.B.B.C)

also has the same effect.
In each of the above cases, the argument of the NAME pseudo-function is Z3.C which is
an ordinary data item, even though indirect access is used. Each of the above instances
may therefore only be used in a reference context.

|
| STRUCTURE A:
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE A-STRUCTURE,Z1,Z2,Z3;
| DECLARE Z4 NAME A-STRUCTURE;
|

Z1

Z2

C B

C B

Z3

C B
28-13 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The pointer value of Z2.B can itself be set up by using
NAME(Z2.B)

in an appropriate assignment context to be described. The NAME structure terminal
Z2.B may be indirectly accessed by the qualified form Z1.B.B, since Z1.B points to Z2.
Hence, the pointer value of Z2.B can also be set up by using:

NAME(Z1.B.B)

in assignment context. With Z4 again pointing to Z1,
NAME(Z4.B.B)

has the same effect, since Z2.B is again accessed, this time through two levels of
indirection.

ARGUMENTS WITH SUBSCRIPTS
Depending on the context in which the NAME pseudo-function appears, subscripting of
its argument may or may not be legal. Following the precedent set by Section 28.3,
complications caused by structures will initially be ignored. With this restriction, two
major rules apply:

Additionally, only subscripts which perform the following specific operations are legal at
all:

• selection of one scalar value from an unarrayed matrix or vector data item;
• selection of one array element from an array of any data type;
• selection of one scalar value from one array element of an array of matrices or

vectors.

These restrictions are designed to ensure that in any implementation the resultant
pointer is to an unfragmented area of physical storage1.

1. Subscripting may only appear when the NAME pseudo-function is used
to reference a pointer value, never when it is used to assign one.

2. Subscripting is effective on the ordinary data item specified or pointed
to (possibly through several levels of indirection).

1. In particular, partitioning subscripts on matrices and arrays can cause the selection of fragmented areas of physical
storage.
28-14 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given the following declarations:

suppose that NV → V, NS → S, NM → M and NC → C.
The following are legal in contexts causing reference of pointer values:

The following are illegal:

The problem of structure subscripting on the argument of a NAME pseudo-function is
now addressed. Section 28.3 showed how qualified names which indirectly access
structure terminals could be formed. It also described how structure subscripting is
either effective on the data indirectly accessed, or on the NAME data item accessing it,
depending on which possesses multiple copies. Structure terminals accessed by such
subscripted qualified forms can appear as arguments of the NAME pseudo-function.
The two rules previously stated for subscripted arguments of the NAME pseudo-function
must be restated to allow for this. The modified rules are as follows:

|
| DECLARE V VECTOR(3),
| NV NAME VECTOR(3),
| S ARRAY(100) SCALAR,
| NS NAME ARRAY(100) SCALAR,
| M ARRAY(5) MATRIX(3,3),
| NM NAME ARRAY(5) MATRIX(3,3),
| C CHARACTER(80),
| NC NAME CHARACTER(80);

NAME(V3) creates pointer to scalar value which is 3rd element of vector V
NAME(NV3) same as above since NV → V
NAME(S5) creates pointer to 5th array element of array S
NAME(NS5) same as above since NS → S
NAME(M3:1,1) creates pointer to scalar value in row 1, column 1 of 3rd array

element of M
NAME(NM3:1,1) same as above since NM → M
NAME(M4:) creates pointer to 4th array element in M

NAME(C1)
NAME(NC1)

⎫
⎬
⎭

subscripting on character strings illegal

NAME(V1 TO 2) more than one element of V selected
NAME(M*:1,1) one scalar value selected from more than one array element
28-15 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Even when subscripts effective on the ordinary data item pointed to are legal, only
restricted forms are allowed. Ordinary data items which are structure terminals are
subject to the additional restrictions on array and component subscripts already
described. Furthermore, where the data item is the whole or part of a structure with
multiple copies, the following rules apply:

• Structure subscripting must select one copy only;
• such structure subscripting is mandatory unless the entire structure is being pointed

to.

Application of the above set of rules is illustrated by the following example.
Example:

Given the following declarations

1. When a NAME pseudo-function is used to assign pointer values, only
structure subscripting effective on the pointer copies is legal.

2. For NAME pseudo-functions in reference context, array and component
subscripting is always effective on the ordinary data item specified or
indirectly accessed. Structure subscripting is effective in the ordinary data
item specified or indirectly accessed, or upon the NAME data item
indirectly accessing it, depending on which possesses the multiple
copies.

|
| STRUCTURE A:
| 1 M ARRAY(5) MATRIX(3,3),
| 1 C CHARACTER(80),
| 1 V VECTOR(6),
| 1 B NAME A-STRUCTURE;
| DECLARE Z A-STRUCTURE;
| DECLARE A-STRUCTURE(3), Z1, Z2, Z3 NAME;
|

let Z1.B1 → Z22
Z1.B2 → Z23
Z1.B3 → Z21
Z3 → Z1
28-16 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Illustrations for NAME pseudo-functions in a reference context -
(a) Array and component subscripting:

(b) Structure subscripting effective upon the data item pointed to or directly specified:

(c) Structure subscripting effective on a pointer value:
The following examples use the fact that Z1.B1 points to Z22

NAME(Z.M1:3,3) Creates a pointer to the scalar value in row 3, column 3 of
the first array element of Z.M

NAME(Z.M*:1,1) is illegal since the subscript selects a scalar value from
more than one array element of Z.M

NAME(Z.C10 TO 15) is illegal since character strings may not possess
component subscripts

NAME(Z.V1) creates a pointer to the 1st element of vector Z.V
NAME(Z.V1 TO 3) is illegal since more than one element of Z.V is selected by

the subscript

NAME(Z12) creates a pointer to the second copy of Z1 since the
subscript acts directly on Z1

NAME(Z32) since Z3 is a single pointer, pointing to the whole of Z1, the
subscript is effective on Z1 rather than Z3; hence a pointer
to the second copy of Z1 is again created

NAME(Z1.M2;) creates a pointer to the array of matrices M in the second
copy of Z1

NAME(Z3.M2;) as before, the structure subscript is effective on Z1 rather
than Z3; hence as before a pointer to the array of matrices
M in the second copy of Z1 is created

NAME(Z1.M1 TO 2;) is illegal since the subscript selects more than one copy of
structure Z1

NAME(Z3.M1 TO 2;) is illegal for the same reason
NAME(Z1.M) is illegal since subscripting to select one copy of Z1.M

must be used
NAME(Z3.M) is illegal for the same reason

NAME(Z1.B1) references the pointer value Z1.B1, i.e. it creates the
pointer to Z22

NAME(Z1.B.M1;) the subscript is effective of Z1.B, so that a pointer to the
array of matrices in the second copy of Z2 is created

NAME(Z1.B.V1;1) the structure subscript is effective on Z1.B as before so that
a pointer to the first component of the vector in the second
copy of Z2 is created
28-17 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that there is no restriction on the selection of one pointer only by a structure
subscript effective on pointer data:

The significance of generating more than one pointer at a time is discussed later.
Illustrations for structure subscripts in NAME pseudo-functions in assignment context are
adequately covered by the examples given in part (c) above, since any other kind of
subscripting is illegal.
ARRAYED SUBSCRIPTING
Section 20.3 discussed the phenomenon of arrayed subscripting. Subscripts appearing
on the argument of a NAME pseudo-function may under no circumstances be arrayed.

POINTER ARRAYNESS
The preceding examples have made it apparent that a NAME pseudo-function could
generate or assign more than one pointer value at a time. Such NAME pseudo-functions
are said to have “pointer arrayness”.

Pointer arrayness can arise whenever a NAME structure terminal of a structure with
multiple copies is used. The following example illustrates this explicitly.
Example:

Given the above declarations, NAME(Z1.D) in reference context simultaneously
references the 2 pointer values of Z1.D. In assignment context, the two pointer
values of Z1.B could be assigned simultaneously by NAME(Z1.B).

Further, if Z1.B1 → Z22 and Z1.B2 → Z21 then

NAME(Z1.B.C) in reference context can generate simultaneously pointer values to
Z2.C2 and Z2.C1.

The previous discussion on subscripting has shown that appropriate structure
subscripting can reduce the number of pointers generated or assigned, ultimately but not
necessarily to one.
If the number of pointers simultaneously generated or assigned by a NAME pseudo-
function is N then the pointer arrayness of the NAME pseudo-function is denoted by

{N}

The behavior of pointer arrayness in operations involving the NAME pseudo-function is
similar to that of ordinary arrayness in regular expressions (as described in Section 20).

NAME(Z1.B) - “simultaneously” references three pointer values

|
| STRUCTURE A:
| 1 D NAME SCALAR,
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE A-STRUCTURE(2), Z1, Z2;
|

28-18 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The importance of the concept of pointer arrayness will thus become clear when
constructs using the NAME pseudo-function come to be described.

28.5 NULL POINTER VAUES
Generally the use of a pointer facility requires the definition of a “null” pointer value. In
HAL/S a “null” pointer value is indicated by the keyword NULL.

There are two forms of specification:

It is used in reference contexts in the same way as instances of the NAME pseudo-
function.
Example:

To generate a null pointer instead of a pointer to X, use NULL or NAME(NULL)
instead of NAME(X).

28.6 INITIALIZATION OF NAME DATA ITEMS
Although Section 28.2 dealt with the declaration of NAME data items, discussion of
initialization was deferred because the construct makes use of the NAME pseudo-
function.

The form of initialization construct is as described in Section 4.3. However, for NAME
data items, the values in the initial list are pointer values rather than literals. Pointer
values are generated by use of the NAME pseudo-function, or are null.

This is an instance in which the appearance of the NAME pseudo-function is in a
reference context. However, in this particular instance much more severe restrictions
are placed on the argument of the pseudo-function:

NULL
NAME(NULL)

1. The above forms are equivalent and interchangeable.

1. It must be a previously-declared ordinary data item.
2. Its attributes must be such that it is legal for the NAME data item to point to it.
3. No implicit indirection by qualified structure references are allowed.
28-19 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
The following are legal initializations of NAME data items:

The following are illegal initializations of NAME data items:

|
| DECLARE S SCALAR,
| V ARRAY(4) VECTOR DOUBLE;
| DECLARE NS1 NAME SCALAR INITIAL(NAME(S));
| DECLARE NV1 NAME ARRAY(4) VECTOR DOUBLE
| INITIAL(NAME(V));
| STRUCTURE A:
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE Z1 A-STRUCTURE;
| DECLARE Z2 A-STRUCTURE INITIAL(1.5, NAME(Z1));
| DECLARE NA NAME SCALAR INITIAL(NAME(Z1.C));
|

|
| DECLARE T SCALAR;
| DECLARE NT NAME SCALAR DOUBLE
| INITIAL(NAME(T));
| ↑⎯ NT cannot legally point to T
| DECLARE NT1 NAME SCALAR INITIAL(NAME(T1));
| DECLARE T1 SCALAR; ↑
| T1 is not previously defined
| DECLARE V VECTOR(4);
| DECLARE TV NAME SCALAR INITIAL(NAME(V));
| S 3 ← subscripting
| illegal
| STRUCTURE X:
| 1 Y SCALAR,
| 1 Z NAME X-STRUCTURE;
| DECLARE XX1 X-STRUCTURE;
| DECLARE XX2 X-STRUCTURE INITIAL(1.5, NAME(XX1));
| DECLARE NX NAME SCALAR INITIAL(NAME(XX2.Z.Y));
| ↑
| Contains implicit indirection since XX2.Z XX1
| through previous initialization
28-20 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
NULL INITIALIZATION
All NAME data items which are not explicitly initialized, are implicitly initialized with null
pointer values. The following examples show the explicit initialization to null pointer
values.
Examples:

28.7 NAME ASSIGNMENTS
A primary use of the NAME pseudo-function is in the NAME assignment statement,
where it is used to assign pointer values. The NAME assignment statement looks similar
in form to the regular assignment statement described in Section 8, except that:

• the left hand or receiving operand is a NAME pseudo-function in an assignment
context;

• the right hand operand is either a NAME pseudo-function in a reference context, or
the specification of a null pointer value.

BASIC FORM
The basic form of the NAME assignment statement is as follows:

Arguments of the NAME pseudo-functions in a NAME assignment follow the rules laid
down in Section 28.4.

|
| DECLARE LV NAME VECTOR INITIAL(NULL);
| STRUCTURE A:
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE Z A-STRUCTURE(20) INITIAL(20#(7.53, NULL));
| ↑
| each copy of B initialized to a null pointer value

Symbolic form: L = R;
1. The receiving operand L is a NAME pseudo-function in assignment

context.
2. The right hand operand R is either a NAME pseudo-function in reference

context, or the specification of a null pointer value as described in Section
28.5.

3. Given the first alternative in Rule 2, the NAME data item specified in L
must legally be able to point to the ordinary data item whose pointer value
is generated by R.
28-21 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given the declarations

then

MULTIPLE ASSIGNMENTS
Section 8.5 showed how regular assignment statements could possess multiple left hand
operands. NAME assignments can also possess multiple left hand operands, so
enabling one pointer value to be assigned to more than one NAME data item at a time.

|
| DECLARE S SCALAR,
| NS NAME SCALAR,
| NSD NAME SCALAR DOUBLE;
| DECLARE V VECTOR(3),
| NV NAME VECTOR(3);
| STRUCTURE A:
| 1 C SCALAR,
| 1 B NAME A-STRUCTURE;
| DECLARE Z1 A-STRUCTURE,
| Z2 A-STRUCTURE,
| NZ NAME A-STRUCTURE;
|

| NAME(NSD) = NULL; results in NSD→∅†

† ∅ indicates a null pointer value.

| NAME(NS) = NAME(S); results in NS→S
|
|

NAME(NSD) = NAME(NS); is illegal since NS∏S and NSD may not legally point
to S itself

| NAME(NV) = NAME(V); results in NV→V
| NAME(NS) = NAME(V); results in NV→V2 - note that V2 is a scalar value,
|S 2 which is why NS may legally point to it
| NAME(NZ) = NAME(Z1); results in NZ→Z1
|
|

NAME(NZ.B)= NAME(Z2); results in Z1.B∏Z2 because of implied indirection in
qualified reference NZ.B, in which NZ→Z1

|
|
|

NAME(NS)=NAME(NZ.B.C) results in NZ→Z2.C because of 2 levels of implied
indirection in qualified form NZ.B.C, in which
NZ→Z1 and Z1.B→Z2
28-22 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The general form of a multiple NAME assignment statement is shown below:

Example:
Given

The following is a legal multiple NAME assignment:

 |
 | NAME(NS), NAME(NT), NAME(Z.US) = NAME(S);
 |

POINTER ARRAYNESS IN NAME ASSIGNMENTS
Section 28.4 discussed the ability of a NAME pseudo-function to generate or assign
more than one pointer at a time, calling this property “pointer arrayness”.

Pointer arrayness in NAME assignments must conform to the following requirements:

Symbolic form: L1, L2,....Ln = R;
1. The receiving operand L1...Ln is a NAME pseudo-function in assignment

context.
2. The right hand operand R is the same as in the basic form of

assignment.
3. If R is a NAME pseudo-function, the NAME data items specified in L1...

Ln must each legally be able to point to the ordinary data item whose
pointer value is created by R.

|
| DECLARE S SCALAR,
| NS NAME SCALAR,
| NT NAME SCALAR;
| STRUCTURE U:
| 1 US NAME SCALAR,
| 1 UN NAME U-STRUCTURE;
| DECLARE Z U-STRUCTURE;
|

1. In the basic form of NAME assignment, if the R-operand has a pointer
arrayness {N}, then the L-operand must have pointer arrayness {N}. If
the R-operand has no pointer arrayness, the L-operand may have
arbitrary pointer arrayness or none.

2. In multiple NAME assignments, all L-operands are always required to
have the same pointer arrayness.
28-23 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given

then 3 copies of Z1.B exist, and 5 copies of Z2.B exist. Hence in

 |
 | NAME(Z1.B) = NAME(S);
 |

the pointer arrayness on the left is {3} while the right hand operand has none. The
result of this assignment is:

 Z1.B1;⎤
 Z1.B2;⎥→S
 Z1.B3;⎦

Further,

 |
 | NAME(Z2.B) = NAME(Z1.B);
 |

is illegal since the left and right hand pointer arraynesses are {5} and {3} respectively
which do not match. However,

is legal since the left hand arrayness has been reduced to {3}. The result of the
assignment is

 Z2.B3; ≡ Z1.B1; (i.e. they both have the same pointer value)
 Z2.B4; ≡ Z1.B2;

 Z2.B5; ≡ Z1.B3;

If pointer values of both Z1.B and Z2.B3 TO 5; are to be assigned together, then

is the appropriate assignment.

|
| STRUCTURE A:
| 1 B NAME SCALAR,
| 1 C SCALAR;
| DECLARE Z1 A-STRUCTURE(3),
| Z2 A-STRUCTURE(5);
| DECLARE S SCALAR;
|

|
| NAME(Z2.B),) = NAME(Z1.B);
|S 3 TO 5;
|

|
| NAME(Z1.B), NAME(Z2.B) = NAME(S);
|S 3 TO 5;
|

28-24 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that

are both illegal because the pointer arrayness of the left hand sides in each case do
not match.

28.8 NAME COMPARISONS
Section 9.2 of Part I showed how relational expressions could be built by combining
comparisons with the operators &, |, and ¬. Such comparisons may include
comparisons between pointer values. Pointer values are compared through use of the
NAME pseudo-function and the null pointer specification. Only the Class II operations
are legal in NAME comparisons:

The rules for NAME comparisons are given below:

Arguments of the NAME pseudo-functions in a NAME comparison follow the rules laid
down in Section 28.4.

|
| NAME(Z1.B), NAME(Z2.B) = NAME(S);
| NAME(Z1.B), NAME(Z2.B) = NAME(S);
|S 1;
|

Symbol Purpose Class
 =

 NOT =
 ¬ =

 equals
 ⎫
 ⎬ not equals
 ⎭

 ⎫
 ⎬ II
 ⎭

 =
Symbolic form: L NOT = R

 ¬ =
1. The L and R operands are either NAME pseudo-functions in reference

context or null pointer value specifications.
2. If both L and R operands are NAME pseudo-functions, the ordinary data

items pointed to must have matching attributes (i. e. there must exist a
NAME data item which can legally possess the pointer value generated
either by L or by R).

3. Equality is achieved if both L and R generate the same pointer value.
28-25 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given

Then
 |
 | NAME(NS) = NAME(S) is TRUE;
 | NAME(NS) = NAME(NULL) is FALSE;
 | NAME(NT) ¬= NAME(NULL) is FALSE;
 | NAME(NT) ¬= NAME(NS) is TRUE;
 |

POINTER ARRAYNESS IN NAME COMPARISONS
Any NAME pseudo-function in a NAME comparison may have pointer arrayness. In
such circumstances the following rules apply:

When the comparison possesses pointer arrayness in the above sense, it is viewed as a
set of elemental comparisons proceeding in parallel. The outcome of all elemental
comparisons are combined to form a single TRUE or FALSE result, in accordance with
the following table:

|
| DECLARE S SCALAR;
| DECLARE NS NAME SCALAR INITIAL(NAME(S)),
| NT NAME SCALAR INITIAL(NULL);

1. Either one or both L and R operands may possess pointer arrayness.
2. If both L and R operands possess pointer arrayness, they must possess

the same pointer arrayness.

Operation Result Conditions for Result
 = TRUE Equality in all elemental comparisons is obtained

FALSE Equality in one or more elemental comparisons is
lacking

 NOT=
 ¬ =

TRUE Equality in one or more elemental comparisons is
lacking

FALSE Equality in all elemental comparisons is obtained
28-26 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
Given

After execution of
 |
 | NAME(Z1.D) = NAME(S);
 |

then the result of the comparison
 NAME(Z1.D) = NAME(S) is TRUE

since
 Z1.D1; ⎤ Z1.D2; ⎥→ S
 Z1.D1; ⎦

After subsequent execution of
 |
 | NAME(Z1.D) = NULL;
 |S 1;
 |

then the result of the comparison
 NAME(Z1.D) = NAME(S) is FALSE
 because Z1.D1; → ∅

 Z1.D2; → S

 Z1.D1; ⎯⎯↑

The comparison
 |
 | NAME(Z1.D) = NAME(Z2.D)
 |

is illegal because the pointer arraynesses of the left and right operands are {3} and
{5} respectively, which do not match. However, the comparison
|
| NAME(Z1.D) = NAME(Z2.D3 TO 5)
|

is legal since the pointer arrayness of the right hand operand has been reduced to
{3}.

|
| STRUCTURE A:
| 1 D NAME SCALAR,
| 1 C SCALAR;
| DECLARE Z1 A-STRUCTURE(3),
| Z2 A-STRUCTURE(5);
| DECLARE S SCALAR;
|

28-27 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
PRECEDENCE OF NAME COMPARISONS
The precedence of NAME comparisons in relational expressions is the same as that of
any other kind of comparison. The relevant precedence rules have already been
tabulated in Section 9.2.

28.9 ARGUMENT PASSAGE OF POINTER VALUES
Pointer values may appear as arguments in procedure or function invocations provided
that the corresponding formal parameters are declared using the keyword NAME, as if
they were NAME data items.

• INPUT ARGUMENTS - The NAME pseudo-function in reference context, or the null
pointer value specification is used.

• ASSIGN ARGUMENTS - The NAME pseudo-function in assignment context is
used.

INPUT ARGUMENTS
The effect of using a pointer value as an input argument of a procedure or function is as
if the pointer value were being assigned to the corresponding NAME input parameter.
The attributes of the NAME input parameter must therefore allow legal acceptance of
that pointer value.
Examples:
| DECLARE S SCALAR;
| DECLARE NS NAME SCALAR;
| DECLARE NT NAME TASK;
| .
| .
| .
| F:FUNCTION(A,B) SCALAR;
| DECLARE A NAME SCALAR,
| B BOOLEAN;

|
| CLOSE F;
| .
| .
| .
| NAME(NS) = NAME(S);
| S = F(NAME(S), TRUE); { invocation results in input parameter A pointing to S
|
| S =F(NAME(NS),FALSE);has the same effect: A gets same pointer value as NS ,i.e.A→S
|
| S = F(NAME(NT), TRUE); is illegal since pointer values legal for NT are not legal for A
|
| S = F(NULL, FALSE); results in A →∅
|

Note that although ordinary input parameters are prevented from appearing in NAME
pseudo-functions, NAME input parameters are only prevented from appearing in NAME
pseudo-functions in assignment context.

| ⎫
| ⎬ function body
| ⎭
28-28 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ASSIGN ARGUMENTS
A pointer value may be passed both into and out of a procedure by the appearance of a
NAME pseudo-function in the assign argument list of the procedure’s invocation. The
class of data items which can be pointed to by the NAME data item appearing in the
NAME pseudo-function must be the same as that which can be pointed to by the
corresponding NAME assign parameter.
Examples:

| DECLARE NAME SCALAR;
| DECLARE NT NAME TASK;
| STRUCTURE A:
| 1 B NAME A-STRUCTURE,
| 1 C SCALAR;
| DECLARE Z A-STRUCTURE;
| .
| .
| .
| P: PROCEDURE ASSIGN(U,V);
| DECLARE U NAME TASK,
| V NAME A-STRUCTURE;
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE P;
| .
| .
| .
| .
| .
| CALL P ASSIGN(NAME(NT), NAME(Z.B));
| causes passage of pointer values
| between NT and U, and between Z.B and V.
|
| CALL P ASSIGN(NAME(NS), NAME(Z));
|
|

 ↑
 ⏐

↑ ⎯ illegal because Z is not a
NAME data item.

 Illegal because NS points to scalar
data items but NT points to tasks
28-29 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
POINTER ARRAYNESS IN ARGUMENTS
No NAME formal parameter can possess multiple pointer copies, because a formal
parameter cannot be declared as a NAME structure terminal of a structure with multiple
copies. Hence, an appearance of a NAME pseudo-function as the argument of a
procedure or function invocation may only give rise to the transmission of one pointer
value per invocation.

The implications of this differ depending on whether the argument is in a procedure
invocation or a function invocation.

• PROCEDURE INVOCATIONS: NAME pseudo-functions appearing as arguments
of a procedure invocation may not possess pointer arrayness.

• FUNCTION INVOCATIONS: NAME pseudo-functions appearing as arguments of a
function invocation may possess pointer arrayness. The pointer arrayness must
match the ordinary arrayness of the expression in which the invocation is
imbedded, as if it were itself an ordinary arrayness. The function is repeatedly
invoked, once for every elemental evaluation of the outer expression; and, during
each invocation, transmittal of one of the pointer values takes place. Reference to
Section 20.6 will clarify this behavior.
28-30 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

The above is equivalent to
 S1i = S1i + F(NAME(Z.Bi)); for 1 < i < 20

wherein each of 20 invocations of F cause transmission of a different pointer value.

| STRUCTURE A:
| 1 B NAME SCALAR;
| DECLARE Z A-STRUCTURE(20);
| DECLARE S1 ARRAY(20) SCALAR,
| S2 ARRAY(10) SCALAR;
| .
| .
| .
| P: PROCEDURE(U) ASSIGN(V);
| DECLARE U NAME SCALAR,
| V NAME SCALAR;
| ⎫
| ⎬ procedure body
| ⎭
| CLOSE P;
| .
| .
| .
| F: FUNCTION(W) SCALAR;
| DECLARE W NAME SCALAR;
| ⎫
| ⎬ function body
| ⎭
| CLOSE F;
| .
| .
| .
| CALL P(NAME(Z.B1;)) ASSIGN (NAME(Z.B));

|
|
|
|

. legal because pointer

. arrayness subscripted away

.

illegal because pointer arrayness exists

| S1 = S1 + F(NAME(Z.B));
|

legal because pointer arrayness {20} matches arrayness {1:20} of S1

⎫⎪⎬⎪⎭ ⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
28-31 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Note that
 |
 | S2 = S2 + F(NAME(Z.B));
 |

is illegal because the pointer arrayness of Z.B does not match the regular arrayness
{1:10} of S2.

28.10 POINTER VALUES IN INPUT/OUTPUT
No construct using the NAME pseudo-function exists to allow pointer values to be input
or output. However, because structures containing NAME structure terminals may be
input or output, rules must be laid down specifying their behavior in such circumstances.
SEQUENTIAL INPUT/OUTPUT
Sequential I/O statements were described primarily in Section 12 and 22.1. The
sequential I/O of structure data items was described in Section 19.12.

The fundamental rule for NAME structure terminals is that they do not take part in the I/O
operation: so far as input as output processing is concerned they do not exist.
Example:

So far as sequential I/O is concerned, structures Y and Z declared below are exactly
equivalent.

 |
 | STRUCTURE A:
 | 1 A1 SCALAR,
 | 1 N NAME VECTOR(3),
 | 1 A2 CHARACTER(80),
 | 1 A3 MATRIX(3,3);
 | STRUCTURE B:
 | 1 B1 SCALAR,
 | 1 B2 CHARACTER(80),
 | 1 B3 MATRIX(3,3);
 | DECLARE Z B-STRUCTURE,
 | Y A-STRUCTURE;
 |

The pointer value of Y.N would not be changed by any input operation.
28-32 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
RANDOM ACCESS INPUT/OUTPUT
Random access I/O has been described in Section 22.2. In contrast to sequential I/O,
NAME structure terminals do take part in random access I/O. The pointer value involved
is input or output along with the other parts of the structure.
Example:
 |
 | STRUCTURE Q:
 | 1 A NAME SCALAR,
 | 1 B ARRAY(1000) BIT(16);
 | DECLARE Q-STRUCTURE, Q1, Q2;
 | .
 | .
 | .
 | .
 | .
 | FILE(1,10) = Q1;
 | Q2 = FILE(1,10);
 |

The above FILE statements result in the pointer value originally in Q1.A being trans-
ferred to Q2.A, just as the values of Q1.B are transferred to Q2.B
28-33 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank
28-34 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
29.0 REPLACE MACROS AND INLINE FUNCTIONS
The simple REPLACE statement which defines symbolic text substitutions was
introduced in Section 5 of Part I. It was stated that the REPLACE statement is used to
define a “replace name” symbolically representing arbitrary HAL/S text, and that
subsequent appearances of the replace name cause the HAL/S compiler to substitute
the text represented.

The utility of this feature is greatly extended by the ability to specify parametric
replacements wherein the text to be substituted is modifiable from substitution to
substitution. This section describes how such parametric replacements are defined and
used.
The “inline function” is a HAL/S construct designed to enhance the versatility of
parametric replacements. It takes the form of a parameterless function block whose
definition is also its invocation. Inline functions and their use in conjunction with
parametric replacements are also described in this section.

29.1 THE PARAMETRIC REPLACE STATEMENT
The REPLACE statement as defined in Section 5.1 allows only simple replacements to
be specified. Replace names for specifying parametric replacements are define with a
list of parameters which also appear in the text to be substituted, and are called “replace
macros”. Every appearance of the replace macro is accompanied by a list of text string
arguments that replace the parameters in the text to be substituted.
The form of REPLACE statement for defining replace macros is shown below:

Examples:
 |
 | REPLACE A(X,Y) BY “READ(X) Y”;
 | REPLACE B(Z) BY “Z = Z + 1”;
 |

The text to be substituted may not begin or end in the middle of identifiers, reserved
words, literals or imbedded comments. Effectively this means that the text must be
complete in itself, and cannot result in the generation of any new symbols when
substitution occurs.

 |
 |REPLACE name(parm1,…parmn) BY “XXXXXXX”;
 |
1. name is the name of the replace macro, and is a legal HAL/S identifier

name.
2. parm1,…parmn is an arbitrary number of parameters, each of which is a

legal HAL/S identifier name.
3. XXXXXXX represents HAL/S source text to be substituted, Any of the

parameters specified in the replace macro definition may appear in it any
number of times. It conforms to the same rules as given in Section 5.1
for the simple REPLACE statement.
29-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This rule is equally applicable to the substitution of parameters in the replace text. The
appearance of a parameter in a literal, identifier, reserved word, or imbedded comment is
not seen by the HAL/S compiler as such, and substitution will not occur.
Example:
 |
 | REPLACE P(A) BY “READ(5) ‘VALUES:’,AB, A”;
 |

29.2 USE OF REPLACE MACROS
Every appearance of a replace macro is accompanied by a list of text string arguments
that replace the parameters in the text to be substituted. The general form of such an
appearance is given below:

Each non-empty text string argument also has the following restrictions:
• It may contain only an even number of apostrophes (’), ensuring that bit string and

character literals are completely contained within it.
• It may contain only an even number of double quote marks (”), ensuring that

substitution text of any imbedded REPLACE statement is completely contained
within it.

• It must contain a balanced number of left and right parentheses.
• Since commas (,) are used to separate text string arguments, commas can only

appear in arguments if they are part of a character literal, or are imbedded in
replace text, or nested within parentheses.

Note that, because the arguments consist of HAL/S source text, blanks are always
considered potentially significant, and are included in the parameter replacement
process.

name(arg1, arg2,.... argn)
1. name is the name of the replace macro.
2. Each arg is either a string of text which conforms to the same

rules as the substitution text itself, as described earlier, or is
empty.

3. Each argument replaces the corresponding parameter in the
replace definition during substitution.

123 123 { {
 | |
these do not ← appearance of A
constitute
appearance of
parameter A
29-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:
If the replace macro TEST is defined by:
 |
 | REPLACE TEST(A,B,C) BY “IF A THEN B ELSE C";
 |
then
 |
 | TEST(P = 0, S = 1;, S = 2;)
 |
expands into
 |
 | IF P = 0 THEN S = 1; ELSE S = 2;
 |
The instance
 |
 | TEST(P = 0, S = 1;, S = 3**() P + Q);
 |
although intended to expand into
 |
 | IF P = 0 THEN S = 1; ELSE S = 3**(P + Q);
 |
is illegal since the last argument has an unmatched parenthesis.
Note that
 |
 | TEST(P = 0,S = 1;,);
 |
expands into
 |
 | IF P = 0 THEN S = 1; ELSE;
 |
since the last argument is empty.

THE SUBSTITUTION PROCESS
The substitution process itself must be examined more closely if the full potential of the
replace macro for nesting and recursion are to be understood.

The recognition of replace macros, and the resulting text substitutions, are carried out by
a part of the HAL/S compiler which will, for convenience, be called the “macro scanner”.
On seeing the appearance of a replace name with or without arguments, the macro
scanner first substitutes the replace text. It then begins scanning through the text from
left to right, searching for appearances of parameters, or other replace names (with or
without arguments). When one is found, the related text is substituted, and scanning
resumes from the beginning of the inner text just substituted.

Therefore, parameters and replace names appearing in substituted text strings are
always themselves replaced by more text, however deep the level of nesting may get.
29-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
Given

 |
 | REPLACE C BY “(X+Y)/2”;
 | REPLACE B BY “SIN(C)”;
 | REPLACE A BY “X=B+1”;
 |

Then the appearance
 |
 | A;
 |

is expanded by the macro scanner in the following stages.
 X = B + 1; …1st substitution
 ↑ ↑⎯ embedded replace name found
 scanning starts here
 X = SIN(C) + 1; …2nd substitution
 ↑ ↑⎯ embedded replace name found

scanning resumes here
 X = SIN((X + Y)/2) + 1; …3rd substitution
 ↑ ↑⎯ no more replace names found - end of scan

scanning resumes here
It is important to remember that during the substitution of a replace macro that any
appearance of a parameter, either in the text substituted or appearing in it as a result of
an inner substitution, will be recognized and replaced by the corresponding argument
text string. This may give rise to recursive substitution in some circumstances.
Examples:

(a) Given
 |
 | REPLACE Z BY “SIN(X)”;
 | REPLACE A(Y,X) BY “WRITE(6) Y, Z”;
 |

the appearance
 |
 | A(‘VALUE=‘, 1.5);
 |
29-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
is expanded by the macro scanner in the following stages:
 |
 | WRITE(6) ‘VALUE =’,Z; …1st substitution
 | ↑ ↑444embedded replace name found
 | scanning starts here
 |WRITE(6) ‘VALUE =’,SIN(X); …2nd substitution
 | ↑ ↑444parameter found
 | scanning resumes here
 | WRITE(6) ‘VALUE =’,SIN(1.5); …3rd substitution
 | ↑ ↑44end of scan
 scanning resumes here

(b) Given
 |
 | REPLACE A(X,Y) BY “Z = X + Y”;
 |
then the appearance
 |
 | A(1.5, X);
 |
is expanded as follows:

|
| Z = 1.5 + X; …1st substitution
| ↑ ↑444 parameter found
| scanning starts here
|
| Z = 1.5 + 1.5; …2nd substitution
| ↑ ↑444end of scan
| scanning results here

(c) Given
 |
 | REPLACE A(X,Y) BY “Z = SIN(X)”;
 |

the appearance
 |
 | A(Y,X);
 |

is expanded as follows:
 |
 | Z = SIN(Y); …1st substitution
 | ↑ ↑444 parameter found
 | scanning starts here
 |
 | Z = SIN(X); …2nd substitution
 | ↑
 | scanning resumes here and finds parameter
 |
 | Z = SIN(Y); …3rd substitution
 | …expansion continues indefinitely.
29-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
29.3 IDENTIFIER GENERATION
Text strings involved in simple or parametric replacements cannot begin or end in the
middle of an identifier. However, there exist two extensions of the REPLACE facility by
whose means identifier names can be generated during the substitution process.

Identifier names can be generated both during the process of substitution of a simple
replace name, and during the replacement of a parameter. The normal replace
mechanism is used, except that the appearance of the parameter or of the replace name
is delimited by ¢ signs.
Examples:

(a) Given
 |
 | REPLACE X BY "ALPHA";
 |

X BET is expanded as the product ALPHA BET
XBET is merely a single identifier, X not being recognized as a replace name

but

¢X¢BET is expanded generating the identifier ALPHABET.

(b) Given
 |
 | REPLACE P(A) BY "Z = A + X";
 |

Z¢P(1)¢5 expands into ZZ = 1 + X5 generating two identifiers, ZZ and X5.

(c) Given
 |
 | REPLACE P(A) BY "Z = T¢A¢6 + X";
 |

P(1) expands into Z = T16 + X generating T16 and Z¢P(1)¢5 expands into
ZZ = T16 + 5X generating T16, ZZ, and X5.

29.4 PRINTING OF REPLACE MACROS
In the output compiler listing, the macro replacement text is usually not printed unless a
cent (¢) sign is placed around a REPLACE label in the statement referencing it. In that
case, the original text which was replaced will be printed in the compiler listing instead of
just the replace macro itself.
Examples:
a) Given

 | REPLACE X BY "A B C";
 |
29-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The source statement Y=X; will be printed in the listing as follows:
 |
 M| Y = X;

The source statement Y=¢X¢; will be printed as follows:
 |
 M| Y = A B C;

b) Given
 | REPLACE ZZ BY "XYZ";
 | REPLACE FOO(A,B) BY "A B";
 |

The source statement C=FOO(ZZ,5) will be printed as follows:

The source statement C=¢FOO(ZZ,5)¢; will be printed as follows:

The source statement C=FOO(¢ZZ¢,5); will be printed as follows:

The source statement C=¢FOO(¢ZZ¢,5)¢; will be printed as follows:

29.5 INLINE FUNCTIONS
An inline function is a parameterless function block whose definition also constitutes its
invocation. Hence, the block defining the function can actually appear embedded in an
expression which forms part of some executable HAL/S statement. Since its definition is
its sole invocation, nothing can reference it explicitly, and so it is given no name.
BASIC FORM
The form of an inline function block is exactly that of an ordinary function with no
parameters, as described in Section 11.2 with one exception, namely that the opening
statement does not bear a label indicating its name.

 |
M| C = FOO(ZZ,5);
 |

- Without the ¢ sign, all replace macros are
underlined.

 |
M| C = ZZ 5;
 |

- With ¢ signs around the outer-most replace macro
(FOO), only the expansion of FOO macro is printed.

E|
M| C = FOO(ZZ ,5);
 |

- With ¢ signs only around the inner level of the
nested macro (ZZ), no macro expansions are
printed. The ¢ sign is translated into a blank and
the overpunch character "_" is printed on the
E-line.

 |
M| C = XYZ 5;
 |

- With ¢ signs around all replace macros, macros are
fully expanded.
29-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

Local data may be declared within the function body, as in an ordinary function. The
following constructs are however not allowed:

• procedure, function or task block definitions;
• any kind of I/O statement;
• invocations of any procedure or function;
• nested inline functions;
• SCHEDULE, WAIT, CANCEL, TERMINATE or UPDATE PRIORITY statements.

USE OF INLINE FUNCTIONS
Except as noted below, inline functions may appear wherever an ordinary function could
be legally invoked. The exceptions are:

• exponent expressions;
• subscript expressions.

The following example illustrates how inline functions are used.
Examples:

This would give the same result as
X = X + X**2;

| FUNCTION SCALAR;

| ⎫

| ⎬ function body
| ⎭
| CLOSE;

|

| FUNCTION CHARACTER(80);

| ⎫
| ⎬function body
| ⎭
| CLOSE;

RETURN X;
X = X + FUNCTION SCALAR;

CLOSE;
**2; inline function
29-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
or as
 | F: FUNCTION SCALAR;
 | RETURN X;
 | CLOSE;
 | .
 | .
 | .
 | X = X +F**2;

The following usage is illegal:

since the function appears as an exponent.
MOTIVATION FOR USE
Inline functions are potentially useful because, when generated by the substitution of
replace macros, they increase the flexibility of parameterization. The fact that the
appearance of a replace macro looks like a function invocation, and can expand into an
inline function returning a value, is of particular interest.
Example:

Suppose that some algorithm requires finding the maximum element of a 1-
dimensional array on a number of different occasions; and that in each occasion the
array has a different size, and may be of integer or scalar type and of single or
double precision.
On each occasion, it is supposed that the resultant index is used in some
subsequent evaluation, so that a function invocation returning the result would be the
most appropriate implementation. However, the differing attributes of the arrays
preclude any regular HAL/S function being written to perform the operation.

The use of a replace macro which on each occasion expands into an inline function
returning the resultant index is a feasible alternative.
The replace macro would be defined as follows:

 |
 | REPLACE MAXIMUM(A) BY
 | “FUNCTION INTEGER;
 | DECLARE I INTEGER INITIAL(1) AUTOMATIC;
 | DO FOR TEMPORARY J = 2 TO SIZE(A);
 | IF A$J > A$I THEN I = J;
 | END;
 | RETURN I;
 | CLOSE;”;
 |

RETURN X;
X = 2** FUNCTION SCALAR;

CLOSE;
 +1; inline function
29-9 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The text comprises an inline function returning the index of the maximum element of the
array, which is represented by the parameter A.

Each appearance of replace macro MAXIMUM is accompanied by one argument, the
desired array. The algorithm implemented in the inline function works for any 1-
dimensional array of integer or scalar type, and of single or double precision.

Such an appearance might be:
 |
 | IF MAXIMUM(XTABLE) = 1 THEN
 | WRITE(6) ’FIRST ELEMENT IS MAXIMUM’;
 |
And would expand into:
 |
 | IF FUNCTION INTEGER;
 | DECLARE I INTEGER INITIAL(1) AUTOMATIC;
 | DO FOR TEMPORARY J = 2 TO SIZE(XTABLE);
 | IF XTABLE > XTABLE THEN I = J;
 |S J I
 | END;
 | RETURN I;
 | CLOSE;
 | = 1 THEN
 | WRITE(6) ‘FIRST ELEMENT IS MAXIMUM’;

The improved readability and ease of use of this implementation compared with direct
in-line HAL/S code for each occurrence of the operation will readily be appreciated.
29-10 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
30.0 MANAGERIAL CONTROL OF ACCESS TO DATA AND
CODE
In a large software project numerous compilation units each performing independent
functions may be brought together in a single module at run time for execution.
Commonly, these compilation units will require access to shared data contained in
compools. If several teams of programmers cooperate in the production of this software,
it is desirable to be able to place managerial restrictions upon who can access “sensitive”
shared data. It may also be desirable to place managerial restrictions upon who can
invoke “sensitive” programs or comsubs.

30.1 ACCESS CONTROL IN HAL/S
HAL/S contains a method for specifying which data, and which programs and comsubs
are to be protected by managerial restriction.

If at compile time, a compilation unit written by an unauthorized programmer is found by
a HAL/S compiler to contain:

• a construct causing modification of protected data in a compool; or
• a construct referring to any entity in a protected compool; or
• a construct invoking a protected program, or external procedure or function;

then an error will be signaled and the compiler will produce no executable object module.
To circumvent this error, the programmer’s authorization to use protected data or code
blocks must be signaled to the compiler, and in addition, the program itself must state
that the data or code blocks are under protection. This latter restriction insures that an
authorized programmer is aware that he is accessing protected data or code.
The mechanism by which the HAL/S compiler determines whether a given programmer
is authorized to use a particular protected data item or code block is implementation
dependent48.

30.2 ACCESSING PROTECTED COMPOOL DATA
Compool data items which are protected must be declared using the keyword ACCESS.
The following examples illustrate the position of the keyword in a declaration.
Examples:
 |
 | POOL: COMPOOL;
 | DECLARE A SCALAR DOUBLE ACCESS;
 | DECLARE B ARRAY(1000) BIT(8) INITIAL(FALSE) ACCESS;
 | DECLARE V VECTOR(3);
 | DECLARE ZX ARRAY(100) ACCESS INITIAL(0) REMOTE;
 | CLOSE POOL;
 |

48.See appropriate User’s Manual.
30-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
The keyword appears also in the declarations of the corresponding compool template.
An authorized programmer will be allowed to modify protected compool data provided it
is declared as described above.

30.3 PROTECTION OF AN ENTIRE COMPOOL
It is possible to place an entire compool under protection in addition to placing its
declared data items individually under protection. Every data item, structure template
and replace name defined within such a compool is protected against any unauthorized
use. A protected compool must contain the keyword ACCESS or part of its definition, the
keyword being placed at the end of its opening statement.
Example:
 |
 | POOL:COMPOOL ACCESS;
 | REPLACE X BY”1000”;
 | DECLARE S SCALAR,
 | V VECTOR(3),
 | M MATRIX(3,3),
 | A ARRAY(1000) SCALAR;
 | DECLARE C CHARACTER(80);
 | STRUCTURE Q:
 | 1 QS SCALAR,
 | 1 QI INTEGER;
 | DECLARE Z Q-STRUCTURE;
 | CLOSE POOL;
 |

• Data items S, V, M, A, Z and C are protected against unauthorized modification or
reference. Replace name X and structure template Q are also protected.

The template corresponding to a protected compool must also possess the keyword
ACCESS,
Any data item in a protected compool may itself also be individually protected, the
keyword ACCESS appearing in its declaration as described before. A user requiring to
modify the data item must be authorized in respect to the compool and to the individual
data item itself.

30.4 ACCESSING PROTECTED PROGRAMS AND COMSUBS
Programs, external procedures, and external functions which are protected must contain
the keyword ACCESS as part of their block definition. The keyword is placed at the end
of their opening statement.

For more precise rules for locating the
keyword in a declaration see Spec./4.5.
30-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Examples:

The corresponding block templates must also possess the keyword ACCESS in the cor-
responding place.
An authorized programmer will be allowed to invoke or otherwise reference the protected
block provided it is defined as described above.

| P1: PROGRAM ACCESS;
| ⎫
| ⎬ program body
| ⎭
| CLOSE P1;
|
| P2: PROCEDURE(A) ASSIGN(B) ACCESS;
| ⎫
| ⎬ function body
| ⎭
| CLOSE P2;
|
| P3: FUNCTION(I) CHARACTER(80) ACCESS;
| ⎫
| ⎬ function body
| ⎭
| CLOSE P3;

For a complete description of using
the ACCESS keyword on the
opening statements of programs
and comsubs;
See Spec./3.7.1-3.7.3.
30-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 This page intentionally left blank.
30-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
31.0 INTERFACES WITH NON-HAL/S CODE
The HAL/S language has been expressly designed so that nearly all flight software can
be written in it. However, it is realized that sometimes legitimate reasons exist for
implementing some segments of the software in languages other than HAL/S (notably in
assembly language, for example). Hence, HAL/S must be able to provide interfaces to
the resulting code.

Two approaches are possible in interfacing with non-HAL/S code.
• Sometimes the purpose of the non-HAL/S software segments is to provide a set of

“utility functions” which are standard for a particular implementation of the HAL/S
compiler system. In such circumstances it is desirable for the HAL/S compiler to
recognize references to these utility functions automatically, as if they were in
some sense extensions to its known list of HAL/S built-in functions. This is done
by defining the segments to be “%macros”, which may be referenced in
appropriate contexts in the HAL/S software.

• Where the use of the non-HAL/S segments is specific and localized, rather than
global, the alternative is to create the segments as externally defined procedures
or functions. The linkage between the segments and the HAL/S software may
either conform to the standard HAL/S conventions for a particular implementation,
or may take one of a number of alternative forms which have been predefined in
the implementation.

31.1 %MACROS
The “%macros” defined in any implementation of a HAL/S compiler system, effectively
constitute implementation dependent extensions to the list of HAL/S built-in functions.
Their reference may cause a HAL/S compiler either to emit in-line object code for their
execution, or to emit linkages to external routines, depending on the particular macro
and implementation.

%macros fall into two classes:
• TYPED %MACROS, which are known by an implementation to be of a particular

HAL/S data type, and which are invoked as if they were built-in functions,
returning a value of the specified type;

• TYPELESS %MACROS, which are known by an implementation not to be of any
HAL/S data type, and which are invoked by executing a specific “%macro call”
statement, as if they were procedures.

Either class of invocation uses the same construct to reference the %macro.
31-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
FORM OF %MACRO REFERENCE
The construct referencing any %macro (typed or typeless) specifies the name of the
%macro, and a list of arguments to be transmitted. Its form is as shown below:

Examples:
 %NAMECOPY(A,B)
 %SVC(5)

INVOKING TYPED %MACROS
A typed %macro may possess any one of the HAL/S data types given below:
 INTEGER CHARACTER
 SCALAR BIT STRING (including BOOLEAN)
 VECTOR STRUCTURE
 MATRIX

Such a %macro is expected to return one or more values consistent with its type, and
must therefore only appear in contexts legal for that data type.
Examples:
If S is a scalar, V is a 3-vector and %UCALC is a 3-vector %macro, then
 |
 | S = S + V.%UCALC(5);
 |

contains a legal invocation, but
 |
 | DO WHILE %UCALC(5);
 |

contains an illegal invocation because %UCALC does not return a bit string.

%name(arg1,..... argn)

1. %name is the name of the %macro. The HAL/S compiler knows it
as a %macro name because its first character is always the %
symbol.

2. arg1,..... argn is a list of arguments by which values may be passed
potentially both into and back from the %macro. The number of
arguments and their form is dependent on the functional
specification of the %macro.

3. The entire parenthesized argument list may be omitted.
31-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INVOKING TYPELESS %MACROS
Typeless %macros do not return values, except through their argument lists. They are
invoked by ”%macro call” statements, whose form is shown below:

Examples:
 |
 | %SWAP;
 | IF A = B THEN %EXIT(FALSE);
 |

31.2 REFERENCING NON-HAL/S PROCEDURES AND FUNCTIONS
Non-HAL/S code segments can be designed so that they can be invoked from HAL/S
software as if they were HAL/S procedures or functions. In designing such segments a
choice of linkages to the HAL/S software is available:

• the standard HAL/S linkage for the particular implementation;
• one of a number of alternate linkages predefined for the particular implementation.

How these non-HAL/S code segments are indicated as such in the HAL/S software
invoking them, depends on the forms of linkage chosen.
STANDARD HAL/S LINKAGE
Standard HAL/S linkage to an external procedure or function will be assumed by a HAL/S
compiler if it believes the external block to have been written in HAL/S. It will believe this
if a suitable template for the external block is included in the compilation unit invoking it.
External procedure and function blocks and block templates have been described in
Section 15.

The relationship between the block name appearing in the template and the actual name
of the object module of the non-HAL/S code segment is implementation dependent48.

 |
 | %macro-reference;
 |

1. %macro-reference is a %macro reference as described
above.

Currently-defined %macros are
given in Spec./Appendix I.

48.The relationship must be correct, otherwise the “link editing” of object modules will be unsuccessful. See
appropriate User's Manual for naming conventions.
31-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

Figure 31-1
If a particular implementation of the HAL/S compiler system includes a software
management scheme for insuring the consistency of templates and object modules, as
alluded to in Section 15.1, it may not be permissible to use this method for invoking a
non-HAL/S code segment (In such cases it would be natural to let one of the predefined
alternate linkage forms be the standard linkage itself).

P: PROGRAM;
.
.
.
.
.

X = X + F (K);

non-HAL/S segment
named after F has
standard linkage to
accept one halfword
integer argument, and
return a single precision
scalar result

template effectively describes the non-HAL/S segment's
linkage to the HAL/S program P.

.

.

.

.

F: FUNCTION(I) SCALAR;
DECLARE I INTEGER;

CLOSE F;

invocation of F

CLOSE P;
31-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ALTERNATE LINKAGES
An alternate linkage to an external procedure or function is specified through the
appearance of a declaration of the procedure or function in the compilation unit invoking
the non-HAL/S code segment.

As before, the relationship of the declared block name and the actual name of the object
module of the segment is implementation dependent.

• PROCEDURE FORM
The basic form of declaration for a procedure is:

Examples:
 |
 | DECLARE P1 PROCEDURE NONHAL(3);
 |

The declaration can be combined with any other kinds of declaration -
 |
 | DECLARE S SCALAR,
 | P1 PROCEDURE NONHAL(2),
 | C CHARACTER(80);
 |

Its attributes can be factored thus:
 |
 | DECLARE PROCEDURE NONHAL(1),P1,P2,P3;
 |

Procedure invocations compatible with declarations of the above form may contain any
number of input and assign arguments, including none. It is possible that in some link-
age forms the number of arguments could vary from invocation to invocation. Implemen-
tation dependent restrictions upon the arguments may exist49.

 |
 | DECLARE name PROCEDURE NONHAL(n);
 |
1. name is the HAL/S identifier name by which the segment is known.
2. The unsigned integer n specifies which alternate linkage is to be

assumed†.
† The linkage corresponding to each value of n in a given implementation is given in the

appropriate User's Manual.

49.See appropriate User’s Manual.
31-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
• FUNCTION FORM
The basic form of declaration for a function is:

Examples:
 |
 | DECLARE F1 FUNCTION SCALAR NONHAL(1);
 | DECLARE F2 FUNCTION MATRIX(3,3) DOUBLE NONHAL(2);
 |

As before several declarations can be combined with factoring:
 |
 | DECLARE NONHAL(3), F3 FUNCTION INTEGER, P PROCEDURE;
 |

Function invocations compatible with declarations of the above form are subject to the
following:

• they must possess at least one argument;
• arrayed arguments are passed in a single invocation rather than causing multiple

elemental invocations as described in Section 20.6.

Other implementation dependent restrictions upon the arguments may exist.50
The following example shows the invocation of non-HAL/S code segments by the
alternate linkage method:

 |
 | DECLARE name FUNCTION attributes NONHAL(n);
 |
1. name is the HAL/S identifier name by which the segment is known.
2. attributes specify the type and precision of the function, as in the

opening statement of a function definition (see Section 11.2).
3. The unsigned integer n specifies which alternate linkage is to be

assumed.†

† The linkage corresponding to each value of n in a given implementation is given in the appropriate
User's Manual.

50.See appropriate User’s Manual.
31-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:

Figure 31-2

CALL P(A) ASSIGN(B);

X = X + F(K);
.
.

CLOSE Z;

non-HAL/S segment
named after P has
linkage conforming to
NONHAL(1)
specification

Z: PROGRAM;
DECLARE P PROCEDURE NONHAL(1);
DECLARE F FUNCTION NONHAL(2);

.

.

.

.

.

.

.

.

.

invocation of F invocation of P

non-HAL/S segment
named after F has
linkage conforming to
NONHAL(2)
specification
31-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

 This page intentionally left blank.
31-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix A STANDARD CONVERSION FORMATS
In relatively limited circumstances HAL/S allows conversion between scalar, integer, bit
and character types. The following rules govern such conversions.
CONVERSIONS TO INTEGER TYPE:

• A bit type is converted to integer type by regarding it as the bit pattern of a signed
integer of the desired precision (halfword or fullword). Left padding with binary
zeros, or left truncation may occur.

• A scalar type is converted to integer type by rounding to the nearest whole number.
Overflow errors may occur if the absolute value of the scalar type is too large to be
represented as an integer of the desired precision.

• A character type is convertible to integer type only if its value represents a signed
whole number (e.g., ‘-604’) otherwise an error condition occurs. An error condition
also occurs if the whole number is too large to be represented as an integer of the
desired precision.

CONVERSIONS TO SCALAR TYPE:
• An integer type is converted directly to scalar form. Depending on the

implementation, and the precisions, some decimal places of accuracy may be lost
during conversion.

• A bit type is converted to scalar type by first converting it to double precision
integer type according to the rule previously given, and then applying the integer to
scalar conversion.

• A character type is convertible to scalar type only if its value represents a legal
scalar- or integer-valued literal (e.g., ‘-1.5E-7’). See HAL/S Language
Specification, Section 2.3.4 for details of arithmetic literals. Other values cause
error conditions to arise.

CONVERSIONS TO BIT TYPE:
• An integer is converted to a bit string of maximum length (for double precision), or

a halfword bit string (for single precision) in an unsubscripted BIT conversion
function. The value is the bit pattern of the integer.

• A scalar type is first converted to double precision integer type according to the
rule already given, and the integer to bit conversion rules are then applied.

• A character type is convertible to bit type only if its value is a string of ‘1’s and ‘0’s,
and blanks, (but not all blanks), otherwise an error condition arises. The result of
the conversion is always a maximum length bit string, irrespective of the argument
type. If the argument has more then N bits, where N is the maximum allowable
length of a bit operand, then only the N right-most are used. If the argument has
fewer than N bits, the string is padded on the left with binary zeros.
A-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CONVERSION TO CHARACTER TYPE:
• An integer type is converted to the representation:

dddd (positive)
-dddd (negative)
where dddd represents an arbitrary number of decimal digits. Leading zeros are
suppressed yielding a variable length result.

• A scalar type is converted to the representation:
bd.ddddE+dd (positive)
-d.ddddE+dd (negative)
(except scalar 0 is converted to 0.0).
The number of decimal digits d in the fractional part and exponent are implemen-
tation and precision dependent. The digit to the left of the decimal point is non-
zero. There are no imbedded blanks. Leading zeros in the exponent are not sup-
pressed. The representation includes a leading blank (b) if the scalar is positive.
In all cases, the result is fixed in length.

• A bit type is converted to a character string of ‘1’s and ‘0’s corresponding to the
binary representation of the bit string argument.
A-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix B BUILT-IN FUNCTIONS
HAL/S typically supports the following set of built-in functions. Minor variations may
arise between implementations.

ARITHMETIC FUNCTIONS
• arguments may be INTEGER or SCALAR types
• in functions with one argument, result type matches argument type

(except as specifically noted)
• in functions with two arguments, unless specifically specified, result type is

scalar if either or both arguments are scalar; otherwise the result type is
integer

• arrayed arguments cause multiple invocations of the function, one for
each array element - arrayness of arrayed arguments must match

Name, Arguments Comments
ABS(α) | α |
CEILING(α) smallest integer > α
DIV(α,β) integer division α/β (arguments rounded to

integers)
FLOOR(α) largest integer ≤ α
MIDVAL(α,β,γ) the value of the argument which is algebraically

between the other two. If two or more
arguments are equal, the multiple value is
returned. Result is always scalar.

MOD(α,β) α MOD β
ODD(α) TRUE 1 if α odd

FALSE 0 if α even result is BOOLEAN

REMAINDER(α,β) signed remainder of integer division α/β
(argument rounded to integer)

ROUND(α) nearest integer to α
SIGN(α) +1 α > 0

 -1 α < 0
SIGNUM(α) +1 α > 0

 0 α = 0
 -1 α < 0

TRUNCATE(α) largest integer ≤ | α | times
SIGNUM (integer (α))

⎫
⎬
⎭

B-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ALGEBRAIC FUNCTIONS
• arguments may be integer or scalar types - conversion to scalar occurs

with integer arguments
• result type is scalar
• arrayed arguments cause multiple invocations of the function, one for

each array element
• angular values are supplied or delivered in radians

Name, Arguments Comments
ARCCOS(α) cos-1 α, | α | ≤ 1

This returns an angular value.
 ARCCOSH(α) cosh -1 α > 1
ARCSIN(α) sin-1α, | α | < 1

This returns an angular value.
ARCSINH(α) sinh-1 α
ARCTAN2(α,β) -π< tan-1 (α/β) < π

Proper Quadrant if:
α = k sin θ
β = k cos θ k > 0

This returns an angular value.
ARCTAN(α) tan-1 α
ARCTANH(α) tanh-1 α, | α | < 1
COS(α) cos α

This takes an angular value
COSH(α) cosh α
EXP(α) eα

LOG(α) logeα, α > 0
SIN(α) sin α

This takes an angular value.
SINH(α) sinh α
SQRT(α) α > 0
TAN(α) tan α
TANH(α) tanh α

⎫
⎬
⎭

α

B-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
VECTOR-MATRIX FUNCTIONS
• arguments are vector or matrix types as indicated
• result types are as implied by mathematical operation
• arrayed arguments cause multiple invocation of the function, one for each

array element
Name,

Arguments
Comments

ABVAL(α) length of vector α.
DET(α) determinant of square matrix α.
INVERSE(α) inverse of a nonsingular square matrix α.
TRACE(α) sum of diagonal elements of square matrix α
TRANSPOSE(α) transpose of matrix α.
UNIT(α) unit vector in same direction as vector α.

MISCELLANEOUS FUNCTIONS
• arguments are as indicated; if none are indicated the function has no

arguments
• result type is as indicated

Name,
Arguments

Result
Type

Comments

CLOCKTIME scalar returns time of day
DATE integer returns date (implementation dependent format)
ERRGRP integer returns group number of last error detected, or zero
ERRNUM integer returns number of last error detected, or zero
PRIO integer returns priority of process calling function
RANDOM scalar returns random number from rectangular

distribution over range 0-1
RANDOMG scalar returns random number from Gaussian distribution

mean zero, variance one.
RUNTIME scalar returns Real Time Executive clock time (Section 8).
NEXTIME
(<label>)

scalar <label> is the name of a program or task. The value
returned is determined as follows:
a) If the specified process was scheduled with the

IN or AT phrase, and has not yet begun
execution, then the value is the time it will
begin execution.

b) Otherwise, the value is equal to the current
time (RUNTIME function).
B-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
SHL(α,β) Same as α α may be integer or scalar type.
β may be integer type or scalar type.
If α is integer type, the result is an integer whose
internal binary representation is that of α shifted left
by β bit locations. The signed nature of the integer
α is taken into account in an implementation
dependent manner which depends upon the
number system and word size of the target
computer.
Scalar types will be converted to integer types prior
to shifting. If β is a literal or constant then it is
illegal for it to be outside the range of (1,63).
Otherwise, only the 6 right-most bits of the value
are used, restricting the range to (0,63).
Arrayed arguments produce multiple invocations of
the function, one for each array element arrayness
of arrayed arguments must match.

SHR(α,β) Same as α α may be integer or scalar type.
β may be integer or scalar type.
Results are as defined for the SHL function except
that all shifting occurs to the right. The SHR is an
arithmetic shift (sign bit is propogated).
Arrayed arguments produce multiple invocations of
the function, one for each array element -
arrayness of arrayed arguments must match.
B-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CHARACTER FUNCTIONS
• first argument is character type - second argument is as indicated (any

argument indicated as character type may also be integer or scalar,
whereupon conversion to character type is implicitly assumed)

• result type is as indicated
• arrayed arguments produce multiple invocations of the function, one for

each array element - arraynesses of arrayed arguments must match
Name, Arguments Result

Type
Comments

INDEX (α,β) integer β is character type - if string β appears in string
α, index pointing to the first character of β is
returned; otherwise zero is returned

LENGTH(α) integer returns length of character string
LJUST(α,β) character β is integer type - string α is expanded to

length β by padding on the right with blanks
β > length (α).

RJUST(α,β) character β is integer type - string α is expanded to
length β by padding on the left with blanks
β > length (α)

TRIM(α) character leading and trailing blanks are stripped from α

BIT FUNCTIONS
• arguments are bit type
• result is bit type
• arrayed arguments produce multiple invocations of the function, one for each

array element - arrayness of arrayed arguments must match
Name, Arguments Result

Type
Comments

XOR(α,β) bit Result is Exclusive OR of α and β. Length of
result is length of longer argument. Shorter
argument is left padded with binary zeros to
length of longer argument.
B-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
ARRAY FUNCTIONS
• arguments are n-dimensional arrays where n is arbitrary.
• arguments are integer or scalar.
• result type matches argument type and is unarrayed
Name, Parameters Comments
MAX(α) maximum of all element of α.
MIN(α) minimum of all element of α.
PROD(α) product of all elements of α.
SUM(α) sum of all elements of α.

SIZE FUNCTION
Name, Argument Comments

SIZE(α) One of the following must hold:
• α is an unsubscripted arrayed variable with a one-

dimensional array specification-function returns length
of array.

• α is an unsubscripted major structure with a multiple
copy specification-function returns number of copies.

• α is an unsubscripted structure terminal with a one-
dimensional array specification-function returns length
of array.

Result is of integer type
B-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix C ORDERING OF DATA ELEMENTS
There are numerous kinds of operation in the HAL/S language which require operands
with multiple components, array elements, and structure copies to be unraveled into a
linear string of data elements. The reverse process of “reraveling” a linear string of data
elements into components, array elements, and structure copies also occurs. Two
instances of these processes are in I/O and in conversion functions. The former process
is also involved in relating initial lists to the data items they initialize.
The standard order in which this unraveling and reraveling takes place is called the
“natural sequence”. By applying the following rules in the order they are stated, the
natural sequence of unraveling is obtained. By applying the rules in reverse order, and
replacing “unraveled” by “reraveled”, the natural sequence for reraveling is obtained.

RULES FOR STRUCTURES:
1. If the operand is a structure with multiple copies, each copy is unraveled in turn, in

order of increasing index. If the operand is a minor structure node in a multiple-copy
structure, then the copy of the minor structure in each structure copy is unraveled in
turn in order of increasing index.

2. The method of unraveling a copy is as follows. Each structure terminal which is part
of the given structure operand is unraveled in turn. The order taken is the order of
appearance of the terminals in the structure template.

3. Each structure terminal is unraveled according to the Rules given below.
Example:
 STRUCTURE A:
 1 B,
 2 C SCALAR,
 2 D VECTOR(3),
 1 E INTEGER;
 DECLARE A A-STRUCTURE(3);

order of unraveling of B is Bi
, i = 1, 2, 3

order of unraveling of each Bi is Ci
, Di

RULES FOR OTHER OPERANDS:
1. An operand of any type (integer, scalar, vector, matrix, bit string, character, or event)

may possess arrayness as described in Section 20.1. Each dimension of arrayness,
starting from the leftmost is unraveled in turn, in order of increasing index.

2. Integer, scalar, bit string, character, and event types are considered for unraveling
purposes as having only one data element.

3. Vector types are unraveled component by component, in order of increasing index.
4. Matrix types are unraveled row by row, in order of increasing index. The components

of each row are unraveled in turn in order of increasing index.
C-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Example:
 DECLARE V ARRAY(2,2) VECTOR(3);

• order of unraveling of V is Vi,*:*, i = 1, 2
• order of unraveling of each Vi,*:* is Vi,j:*,

j = 1, 2

• order of unraveling of each Vi,j:* is Vi,j:k ,
k = 1, 2, 3
C-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix D COMPILE-TIME COMPUTATIONS
References have been made in the Guide to the fact that in certain restricted cases,
expressions which are computable at compile time may be substituted for literal values.
Among the constructs allowing such substitutions are:
• initial lists in declarations;
• specification of dimensions or lengths in declarations;
• subscripting.

Only the restricted forms of integer, scalar, bit string and character expressions to be
described can be used in such contexts. These forms are guaranteed to be computable
at compile time in any implementation.
ARITHMETIC EXPRESSIONS
1. Expressions of integer and scalar type only can be computable at compile time.
2. The operators of such expressions are limited to the following:
 +
 -
 (blank) - multiply
 /
 ** - exponentiation

3. The operands of such expressions may either be literals or unarrayed unsubscripted
data items of integer or scalar type. Such data items must previously have been
declared, and initialized using the CONSTANT form.

4. The following built-in functions are also legal:
 SIN EXP DATE
 COS LOG CLOCKTIME
 TAN SQRT

DATE and CLOCKTIME are only computed at compile time if they appear in an initial list.
BIT STRING EXPRESSIONS
1. The operators which may appear in bit string expressions computable at compile time

are limited to the following set:
 ¬
 &
 |

2. The operands of such expressions must be either literals or unarrayed unsubscripted

data items of bit string type. Such data items must previously have been declared,
and initialized using the CONSTANT form.
D-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
CHARACTER EXPRESSIONS
1. The catenation operator (||) only may appear in character expressions computable at

compile time.
2. The operands of such expressions must be either literals, arithmetic expressions

computable at compile time, or unarrayed unsubscripted data items of character
type. Such data items must previously have been declared, and initialized using the
CONSTANT form.

In some implementations, additional forms may also be computed at compile time. They
will not, however, be regarded as legal in contexts where compile time computability is
enforced by the rules of the HAL/S language.
D-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix E HAL/S KEYWORDS
The following table of keywords excludes built-in functions and %-macro names.
ACCESS
AFTER
ALIGNED
AND
ARRAY
ASSIGN
AT
AUTOMATIC

BIN
BIT
BOOLEAN
BY

CALL
CANCEL
CASE
CAT
CHAR
CHARACTER
CLOSE
COLUMN
COMPOOL
CONSTANT

DEC
DECLARE
DENSE
DEPENDENT
DO
DOUBLE

ELSE
END
EQUATE
ERROR
EVENT
EVERY
EXCLUSIVE
EXIT
EXTERNAL

FALSE
FILE
FOR
FUNCTION

GO

HEX

IF
IGNORE
IN
INITIAL
INTEGER

LATCHED
LINE
LOCK

MATRIX

NAME
NONHAL
NOT
NULL

OCT
OFF
ON
OR

PAGE
PRIORITY
PROCEDURE
PROGRAM

READ
READALL
REENTRANT
REMOTE
REPEAT
REPLACE
RESET
RETURN
RIGID

SCALAR
SCHEDULE
SEND
SET
SIGNAL
SINGLE
SKIP
STATIC
STRUCTURE
SUBBIT
SYSTEM

TAB
TASK
TEMPORARY
TERMINATE
THEN
TO
TRUE

UNTIL
UPDATE

VECTOR

WAIT
WHILE
WRITE
E-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
E-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

F-1 November 2005

 Appendix F STANDARD INPUT/OUTPUT FORMATS
Corresponding to each data type there exists a “standard external format” for the
representation of its values on sequential I/O files. In any implementation the standard
external format on output is fixed, on input the user has a certain flexibility in the format
he can use.
OUTPUT FORMATS
1. Integer Type:

• The value of an integer is represented by a string of decimal digits, preceded if it is
negative by a - sign. Leading zeros are suppressed.

• The string of digits is right justified in a field of fixed width. The width depends on
the implementation, and on the precision of the integer.

1. Scalar Type:
• If the value of a scalar is positive it is represented by

bd.dddddddEdd
where d represents a decimal digit. One non-zero digits appears before the deci-
mal point. The numbers of digits in the fractional part and exponent are fixed, and
depend on the implementation and the precision of the scalar. Leading zeros in
the exponent are not suppressed. The representation includes a leading blank
(b).

• A negative value has the same form except that a - sign precedes the first decimal
digit.

• If the value is exactly zero, it is represented as 0.0.
• The representation of a scalar is contained in a field of fixed width. The width is

dependent on the implementation and the precision of the scalar. Justification is
such that the decimal point occupies a fixed, precision dependent position in the
field.

3. Bit Type (including BOOLEAN):
• There are two different representation of values of bit variables.
• The first representation consists of a string of binary digits corresponding to the bit

variable. Leading binary zeros are not suppressed. The field width is equal to the
number of binary digits in the string plus an inserted blank following every fourth
digit (to enhance readability). This form is not compatible with the READ input (see
Section 10.1.1).

• In the alternate representation, the string of binary digits plus inserted blanks is
enclosed in the apostrophes. The field width is equal to the total of the number of
digits, blanks, and two apostrophes.

3. Character Type
• There are two different representations of values of character variables.
• The first representation merely consists of the string of characters comprising the

value. The field width is equal to the number of characters in the string. This
representation is not compatible with READ (see Section 10.1.1).

±

HAL/S Programmer’s Guide USA003087
32.0/17.0

F-2 November 2005

• In the alternate representation, the string of characters is enclosed in apostrophes,
and all internal apostrophes are converted to apostrophe pairs. The field width is
equal to the total number of characters in the string, including added apostrophes.

NOTE: The two alternate representations for bit and character types occur on paged and
unpaged output respectively.
INPUT FORMATS
1. Scalar and Integer Types:

• There are three basic representations; whole-number, floating-point, and fraction.
• The whole number representation consists of a string of decimal digits preceded by

an optional ‘-’ sign. The maximum number of digits allowed is implementation
dependent. Conversion to mantissa-exponent form takes place for scalar types.

• The floating-point representation is either
ddd.dddd

or
 ⎧E⎫

dddd.dddd ⎨B⎬ dd
 ⎩H⎭

• where d is a decimal digit. Any number of digits is allowed in the mantissa to an
implementation dependent maximum. The decimal point may appear in any
position. E, B, and H represent the exponent digits to be powers of 10, 2, and 16
respectively. A choice of one is indicated. The maximum number of digits in the
exponent is implementation dependent. For bit and integer types, the
representation is rounded to the nearest integral value. For bit types the binary
representation of the result is taken.

• The floating-point representation may be prefixed by + or - signs to indicate the
sign of the value. Without such prefix the value is positive.

2. Character Type:
• The representation of character type is a string of characters from the HAL/S

extended set enclosed in apostrophes. The number of characters may vary
between zero (a “null string”) and an implementation dependent maximum.
Within the string apostrophes must be represented by an apostrophe pair.

3. Bit Type:
• The representation of bit type is a string of ‘1’s and ‘0’s enclosed in apostrophes.

Imbedded blanks are ignored. The number of digits may vary between one and an
implementation maximum.

±

HAL/S Programmer’s Guide USA003087
32.0/17.0
 Appendix G Change History

Revision Release Date Change
Authority

Sections Changed

03 11.0 12/16/75
04 11.1 06/11/76
05 19.9 12/81
06 23.1 02/04/91 Title page, p. 12-8
07 24.0 03/30/92 Title page, p. 12-8
08 27.0/11.0 06/21/96 Total reprint.
09 27.1/11.1 07/01/96 - p. 28-20
10 28.0/12.0 08/22/97 Total Reprint to Bring to HAL Documentation

Standards and Reformat for HTML compatibility.
CR12712 26.5

32.0
App. A
App. B
App. E
App. F
Index

- Deleted
- Deleted
- pp. A-1, A-2
- pp. B-1, B-2, B-3, B-4, B-5
- p. E-1
- pp. F-1, F-2
- pp. Index-3, Index-5

DR109035 29.3
29.4

- p. 29-6
- pp. 29-6, 29-7

DR109048 4.3 - p. 4-7
Table of Contents - pp. vii, x, xv
12.4 - p. 12-12
14.0 - Deleted
Index - p. Index-5
G-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
This page intentionally left blank.
G-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0

Index
Symbols
%macros ...31-1
|| ..7-14
¢..29-6

A
ABS... 7-23, B-1
ABVAL... 7-23, B-3
ACCESS ...30-1
AFTER ..23-10
ALIGNED .. 26-3, 26-5
ARCCOS.. B-2
ARCCOSH... B-2
ARCSIN ... B-2
ARCSINH... B-2
ARCTAN .. B-2
ARCTAN2 .. B-2
ARCTANH.. B-2
arguments and parameters

arrays...20-11
ASSIGN... 11-9 to 11-10
BIT...17-10
FUNCTION..11-3
NAME...28-28
PROCEDURE .. 11-3, 11-8
STRUCTURE...19-28

arrayness ..20-1
arrays .. 4-5, 18-1

arguments and parameters ...20-11
ARRAY(*) ..20-11
arrayed assignments ...20-6
arrayed comparison...20-10
arrayed expressions ..20-2
initialization.. 4-9, 18-1
order of unraveling ...C-1
subscripts.. 6-4, 18-2

ASSIGN arguments and parameters
NAME...28-29

AT
with SCHEDULE statement...13-9
with subscripts..18-2

AUTOMATIC ... 16-4 to 16-5, 27-7 to 27-9

B
BIN... 17-1, 21-9, 21-11
Index-1 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
BIT ..17-1
arguments and parameters ...17-10
assignment ..17-7
conversion..21-7, 21-9, A-1
FUNCTION of type..17-11
in conditional constructs ...17-7
initialization..17-2
literals...17-1
operators...17-4
subscripts..17-2

BOOLEAN...4-1

C
CALL...11-8
CANCEL .. 23-12 to 23-13
CASE ..10-10
CAT (||).. 7-14, 17-6
catenation ...7-14
CEILING... B-1
CHARACTER.. 4-1, 4-4

assignment ..8-5
CHARACTER(*) ... 11-5, 28-5
conversion..21-9, 21-11, A-2
literals...2-4
operators...7-14
subscripts..6-1

CLOCKTIME.. B-3
CLOSE

FUNCTION..11-11
PROCEDURE ..11-11
TASK block..13-7

COLUMN ..12-10
comments ...2-6
comparisons

arrayed ...20-10
NAME...28-25

COMPOOL..15-1
ACCESS.. 30-1 to 30-2
RIGID...26-6

COMSUBS..15-1
ACCESS...30-2

CONSTANT .. 4-7, 16-1
conversions

BIT..21-7, 21-9, A-1
CHARACTER..21-9, 21-11, A-2
Index-2 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
INTEGER.. 21-2, A-1
MATRIX .. 7-21 to 7-22, 21-1 to 21-2
precision ..7-13, 7-19, 8-5, 9-9, 21-6
SCALAR ... 21-2, A-1
SUBBIT ..21-11
VECTOR... 7-20 to 7-21, 21-1 to 21-2

COS .. 7-23, B-2
COSH... B-2

D
DATE... 7-24, B-3
DEC ... 17-1, 21-9, 21-11
DECLARE...4-1

compound ...4-6
factored ..4-6

DENSE.. 26-1, 26-8
DEPENDENT..13-8
DET.. B-3
DIV.. 7-23, B-1
DO...10-1
DO CASE... 10-10 to 10-11
DO FOR..10-7
DO UNTIL ...10-6
DO WHILE ..10-4
DOUBLE ...4-1 to 4-2, 7-19 to 7-20, 7-22, 21-6

E
ELSE...9-3

in DO CASE statement...10-11
END ... 10-2 to 10-3
ERRGRP.. B-3
ERRNUM ... B-3
EVENT..24-1

in BOOLEAN context .. 24-17 to 24-18
in SCHEDULE statement..24-9
in WAIT statement.. 24-15 to 24-16
initialization..24-3
operators...24-4

EVERY..23-11
EXCLUSIVE..27-1
EXIT... 10-12 to 10-13
EXP... 7-23, B-2
exponents ... 2-5 to 2-6, 7-11
EXTERNAL...23-4

F
FILE ..22-4
FLOOR... B-1
Index-3 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
FOR ..10-7
formats ..12-9, F-1 to F-2
FUNCTION ...11-1

ACCESS...30-2
arguments and parameters ...11-3

arrays.. 20-11
BIT ... 17-10
NAME ... 28-28
STRUCTURE .. 19-28

BIT type ..17-11
EXCLUSIVE ... 27-3 to 27-4
inline ..29-7
REENTRANT...27-5
STRUCTURE type ..19-30

G
GO TO .. 1-7 to 1-9, 9-12 to 9-13

H
HEX.. 17-1, 21-9, 21-11

I
identifiers...2-2
IF...9-1
IGNORE..25-5
IN .. 12-15, 13-8
INDEX.. B-5
INITIAL.. 4-7, 16-1

ARRAY ...4-9
BIT...17-2
EVENT ...24-3
MATRIX ..4-9
NAME.. 28-19 to 28-21
STRUCTURE...19-7
VECTOR...4-9

inline FUNCTION..29-7
INTEGER... 4-1 to 4-2

assignment ..8-4
conversion...21-2, A-1
operators...7-1

INVERSE .. 7-23, B-3

L
labels.. 9-11 to 9-12
LATCHED ...24-2
LENGTH.. 7-24, B-5
Index-4 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
LINE... 12-11 to 12-12
literals

arithmetic ..2-3
BIT...17-1
BOOLEAN...2-4
CHARACTER...2-4

LJUST.. B-5
load module ..23-1
LOCK ..26-11

LOCK(*) .. 26-13, 26-17 to 26-18
LOG .. 7-23, B-2

M
macros

%...31-1
REPLACE ...31-1

MATRIX... 4-1, 4-3
assignment ..8-1
conversion... 7-21 to 7-22, 21-1 to 21-2
initialization..4-9
operators...7-1
subscripts..6-3

MAX .. 7-24, B-6
MIDVAL.. B-1
MIN ... 7-24, B-6
MOD... B-1

N
NAME..28-1

arguments and parameters ...28-28
assignment ..28-21
comparison..28-25
indirect access ...28-6
initialization... 28-19 to 28-21
pseudo-function ..28-11
STRUCTURE..28-3 to 28-4, 28-7 to 28-9, 28-13 to 28-14
subscripts.. 28-9 to 28-11, 28-14

name scope ..1-3
NEXTIME... B-3
NONHAL...31-3

O
OCT ... 17-1, 21-9, 21-11
ODD.. 7-23, B-1
OFF ERROR.. 25-3, 25-8, 25-11
ON ERROR.. 25-3 to 25-4
operators

arithmetic ..7-1
Index-5 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
BIT...17-4
BOOLEAN...7-15
CHARACTER...7-14
comparative ...9-7
computable at compile time... D-1 to D-2
EVENT ...24-4
order of precedence ... 7-17, 9-10, 17-6 to 17-7

P
PAGE ... 12-11 to 12-12
precedence

ON and OFF ERROR ..25-8
operators.. 7-17, 9-10, 17-6 to 17-7

precision
conversion... 7-19, 21-6

in assignments ... 8-5
in comparisons ... 9-9
in expressions .. 7-13

DOUBLE...4-1 to 4-2, 7-19 to 7-20, 7-22, 21-6
SINGLE ... 4-1 to 4-2, 7-19, 21-6

PRIO ... 13-12, B-3
PRIORITY...13-8
PROCEDURE...11-1

ACCESS...30-2
arguments and parameters ... 11-3, 11-8

arrays.. 20-11
BIT ... 17-10
NAME ... 28-28
STRUCTURE .. 19-28

CALL statement..11-8
EXCLUSIVE .. 27-1 to 27-2, 27-4
REENTRANT...27-5

PROD... B-6
PROGRAM ...3-1

ACCESS...30-2

R
RANDOM... B-3
RANDOMG ... 7-24, B-3
READ..12-7

i/o formats ... 12-9, F-2
READALL..22-1
REENTRANT..27-5
REMAINDER ... B-1
REMOTE... 26-9 to 26-10, 28-5
REPEAT... 10-13 to 10-15
Index-6 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
with SCHEDULE statement...23-8
REPLACE ... 5-1, 29-1

parametric .. 29-1 to 29-2
RESET.. 24-6, 24-9
RETURN

FUNCTION... 11-11 to 11-12, 17-12, 19-31
PROCEDURE ..11-11
TASK block..13-7

RIGID
COMPOOL..26-6
STRUCTURE.. 26-7 to 26-8

RJUST ... B-5
ROUND... 7-23, B-1
RUNTIME.. 13-12, B-3

S
SCALAR... 4-1 to 4-3

assignment ..8-4
conversion...21-2, A-1
operators...7-1

SCHEDULE .. 13-7, 23-8
EVENT expressions ..24-9

SEND ERROR... 25-11 to 25-12
SET... 24-6, 24-9
SHL.. B-4
SHR ... B-4
SIGN ... 7-23, B-1
SIGNAL... 24-7, 24-9
SIGNUM... B-1
SIN.. 7-23, B-2
SINGLE.. 4-1 to 4-2, 7-19, 21-6
SINH .. B-2
SIZE... B-6
SKIP... 12-11 to 12-12
SQRT.. 7-23, B-2
STATIC...16-4 to 16-5, 27-7, 27-9
STRUCTURE..19-1

arguments and parameters ...19-28
assignment ..19-24
FUNCTION of type..19-30
in conditional constructs ...19-27
initialization..19-7
multi-copied ...19-7
NAME..28-3 to 28-4, 28-7 to 28-9, 28-13 to 28-14
nested ... 19-10 to 19-11
qualified reference...19-11
RIGID.. 26-7 to 26-8
STRUCTURE(*)..20-11
Index-7 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
subscripts..19-16
template..19-3
tree equivalent..19-20
unqualified reference ...19-15

SUBBIT...21-11
subscripts.. 2-5 to 2-6, 6-1

array .. 6-4, 18-2
AT..18-2
BIT...17-2
CHARACTER...6-1
component .. 6-6, 18-3
MATRIX ..6-3
NAME... 28-9 to 28-11, 28-14
order of unraveling ...C-1
STRUCTURE...19-16
TO ...18-2
VECTOR...6-2

SUM... B-6
SYSTEM ...25-5

T
TAB ...12-10
TAN... 7-23, B-2
TANH ... B-2
TASK...13-4
TEMPORARY .. 26-10 to 26-11
TERMINATE ...13-10
TRACE... B-3
TRANSPOSE... B-3
TRIM ... 7-24, B-5
TRUNCATE.. B-1

U
UNIT.. 7-23, B-3
UNTIL..10-6

with SCHEDULE statement... 23-8, 24-13
UPDATE block ... 26-16, 26-18, 26-20
UPDATE PRIORITY... 13-11 to 13-12

V
VECTOR... 4-1, 4-3 to 4-4

assignment ..8-3
conversion... 7-20 to 7-21, 21-1 to 21-2
initialization..4-9
operators...7-1
Index-8 November 2005

HAL/S Programmer’s Guide USA003087
32.0/17.0
Index-9 November 2005

subscripts..6-2

W
WAIT ... 13-10 to 13-11, 24-16
WHILE...10-4

with SCHEDULE statement...24-12
WRITE ..12-4

i/o formats ... 12-9, F-1

X
XOR ... B-5

HAL/S Programmer’s Guide USA003087
32.0/17.0
This is the Last Page of this Document
November 2005 Index-10

DRD NUMBER: 1.4.3.8-b DOCUMENT NUMBER: USA003087

TITLE: HAL/S Programmer's Guide

Submit NASA distribution changes, including initiator’s name and phone number, to JSC Data Management/BV or call 281-
244-8506. Submit USA distribution changes to USA Data Management/USH-121E or via e-mail to usadm@usa-
spaceops.com. Most documents are available electronically via USA Intranet Web (usa1.unitedspacealliance.com), Space
Flight Operations Contract (SFOC), SFOC Data and Deliverables.

Indicates hardcopy

11/23/2005 7:08 AM

NASA-JSC
*BV N. Moses
MS4 D. Stamper
EV111 EV Library (D. Wall)

USA-Houston
*USH-121G SFOC Technical Library
USH-634G Abel Puente
USH-64A6X L.W. Wingo
USH-633L Anita Senviel
USH-633L Benjamin L. Peterson
USH-633L Cory L. Driskill
USH-633L Judy M. Hardin
USH-633L Mark E. Lading
USH-633L Quinn L. Larson
USH-633L James T. Tidwell
USH-633L Vicente Aguilar
USH-633L Betty A. Pages
USH-633L Jeremy C. Battan
USH-633L George H. Ashworth
USH-634L Mark Caronna
USH-634L Burk J. Royer
*USH-635L Joy C. King
USH-635L Ling J. Kuo
USH-635L Trang K. Nguyen
USH-635L Billy L. Pate
USH-635L Karen H. Pham
*USH-635L Dan A. Strauss
USH-635L Pete Koester
USH-632L Renne Siewers
*USH-635L Barbara Whitfield (2)

Boeing
HS1-40 B. Frere
blake.a.frere@boeing.com

* Denotes hard copy

	COVER
	SIGNATURE
	REVISION LOG
	LIST OF EFFECTIVE PAGES
	PREFACE
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION TO HAL/S
	1.0 STRUCTURE OF HAL/S
	1.1 STRUCTURING AND HIGHER ORDER LANGUAGES
	1.2 THE BLOCK STRUCTURE OF HAL/S
	1.3 STATEMENT GROUPING IN HAL/S

	2.0 HAL/S SYMBOLOGY
	2.1 THE CHARACTER SET
	2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS
	2.3 FORMAT OF SOURCE TEXT
	2.4 STATEMENT DELIMITING
	2.5 COMMENTS IN HAL/S

	3.0 A HAL/S COMPILATION - THE PROGRAM BLOCK
	3.1 OPENING AND CLOSING THE PROGRAM BLOCK
	3.2 POSITION OF DATA DECLARATIONS
	3.3 FLOW OF EXECUTION IN THE PROGRAM

	4.0 DATA DECLARATION
	4.1 HAL/S DATA TYPES
	4.2 SIMPLE DECLARATION STATEMENTS
	4.3 INITIALIZATION OF DATA

	5.0 REPLACE STATEMENTS
	5.1 THE REPLACE STATEMENT
	5.2 USING REPLACE STATEMENTS

	6.0 DATA REFERENCING AND SUBSCRIPTING
	6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES
	6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

	7.0 EXPRESSIONS
	7.1 ARITHMETIC OPERATIONS
	7.2 CHARACTER OPERATIONS
	7.3 BOOLEAN OPERATIONS
	7.4 COMBINING OPERATIONS & PRECEDENCE
	7.5 SOME EXPLICIT CONVERSIONS
	7.6 BUILT-IN FUNCTIONS

	8.0 ASSIGNMENTS
	8.1 GENERAL FORM OF ASSIGNMENT
	8.2 ARITHMETIC ASSIGNMENTS
	8.3 CHARACTER ASSIGNMENTS
	8.4 BOOLEAN ASSIGNMENTS
	8.5 MULTIPLE ASSIGNMENTS

	9.0 CONDITIONAL STATEMENTS AND BRANCHES
	9.1 THE CONDITIONAL STATEMENT
	9.2 RELATIONAL EXPRESSIONS
	9.3 LABELS AND BRANCHES

	10.0 STATEMENT GROUPS
	10.1 DELIMITING STATEMENT GROUPS
	10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS
	10.3 SELECTIVE EXECUTION OF STATEMENT GROUPS
	10.4 BRANCHING IN STATEMENT GROUPS

	11.0 PROCEDURES AND FUNCTIONS
	11.1 INTRODUCTION
	11.2 BLOCK DEFINITIONS
	11.3 DECLARATION OF PARAMETERS AND LOCAL DATA
	11.4 FUNCTION INVOCATIONS
	11.5 PROCEDURE INVOCATIONS
	11.6 RETURNS FROM PROCEDURES AND FUNCTIONS

	12.0 INPUT/OUTPUT STATEMENTS
	12.1 HAL/S INPUT/OUTPUT CONCEPTS
	12.2 THE WRITE STATEMENT
	12.3 THE READ STATEMENT
	12.4 INPUT/OUTPUT FORMATTING
	12.4.1 I/O WITH FORMATS

	12.5 DEVICE ATTRIBUTES

	13.0 REAL TIME PROGRAMMING - I
	13.1 HAL/S REAL TIME CONCEPTS
	13.2 TASK BLOCK DEFINITIONS
	13.3 FLOW OF EXECUTION IN PROGRAM AND TASK BLOCKS
	13.4 THE SCHEDULE STATEMENT
	13.5 OTHER REAL TIME FEATURES OF HAL/S
	13.6 A SIMPLE REAL TIME PROGRAM

	14 (DELETED)
	15.0 COMPOOLS AND COMSUBS
	15.1 RELATIONS BETWEEN PROGRAMS, COMPOOLs AND COMSUBs
	15.2 THE COMPOOL BLOCK
	15.3 EXTERNAL PROCEDURE AND FUNCTION BLOCKS
	15.4 BLOCK TEMPLATES

	16.0 ADDITIONAL DATA INITIALIZATION FORMS
	16.1 IMPLIED INITIAL LIST REPETITION
	16.2 USE OF REPETITION FACTORS
	16.3 PARTIAL INITIALIZATION
	16.4 STATIC AND AUTOMATIC INITIALIZATION

	17.0 BIT STRINGS
	17.1 BIT STRING LITERALS
	17.2 DECLARATION OF BIT STRING DATA ITEMS
	17.3 BIT STRING SUBSCRIPTING
	17.4 BIT STRING OPERATIONS
	17.5 BIT STRING ASSIGNMENT
	17.6 BIT STRINGS IN CONDITIONAL CONSTRUCTS
	17.7 BIT STRING ARGUMENTS AND PARAMETERS
	17.8 BIT STRING FUNCTIONS
	17.9 BIT STRINGS IN INPUT/OUTPUT

	18.0 MULTI-DIMENSIONAL ARRAYS
	18.1 DECLARATION
	18.2 ORDER OF INITIALIZATION
	18.3 SUBSCRIPTING

	19.0 STRUCTURES
	19.1 HAL/S STRUCTURE CONCEPTS
	19.2 STRUCTURE TEMPLATES
	19.3 STRUCTURE DECLARATIONS
	19.4 NESTED STRUCTURES
	19.5 QUALIFICATION AND STRUCTURE REFERENCING
	19.6 SUBSCRIPTING IN STRUCTURES
	19.7 TREE EQUIVALENCE OF STRUCTURES
	19.8 STRUCTURE ASSIGNMENTS
	19.9 STRUCTURES IN CONDITIONAL CONSTRUCTS
	19.10 STRUCTURE ARGUMENTS AND PARAMETERS
	19.11 STRUCTURE FUNCTIONS
	19.12 STRUCTURES IN INPUT/OUTPUT

	20.0 HAL/S ARRAY PROCESSING FEATURE
	20.1 THE ARRAYNESS OF OPERANDS
	20.2 ARRAYED EXPRESSIONS
	20.3 ARRAYED ASSIGNMENTS
	20.4 ARRAYED SUBSCRIPTING
	20.5 ARRAYED COMPARISONS
	20.6 ARRAYED ARGUMENTS IN PROCEDURES AND FUNCTIONS
	20.7 ARRAYS IN INPUT/OUTPUT

	21.0 EXPLICIT CONVERSIONS
	21.1 VECTOR AND MATRIX CONVERSIONS
	21.2 INTEGER AND SCALAR CONVERSIONS
	21.3 BIT CONVERSION
	21.4 CHARACTER CONVERSION
	21.5 SUBBIT PSEUDO-CONVERSION

	22.0 ADDITIONAL INPUT/OUTPUT FEATURES
	22.1 THE READALL STATEMENT
	22.2 RANDOM ACCESS INPUT/OUTPUT

	23.0 REAL TIME PROGRAMMING - II
	23.1 PROGRAM PROCESSES
	23.2 PROGRAM TEMPLATES
	23.3 CREATING AND CONTROLLING PROGRAM PROCESSES
	23.4 CYCLIC PROCESSES
	23.5 SCHEDULE STATEMENT FOR CYCLIC PROCESSES
	23.6 TERMINATING AND CANCELING CYCLIC PROCESSES

	24.0 REAL TIME PROGRAMMING - III
	24.1 HAL/S EVENTS
	24.2 DECLARATION OF EVENT DATA ITEMS
	24.3 EVENT EXPRESSIONS
	24.4 CHANGING VALUES OF EVENTS
	24.5 EVENT EXPRESSIONS IN SCHEDULE STATEMENT
	24.6 EVENT EXPRESSIONS IN WAIT STATEMENT
	24.7 EVENTS IN BOOLEAN CONTEXT
	24.8 PROCESS EVENTS

	25.0 ERROR RECOVERY AND SIMULATION
	25.1 HAL/S RUN-TIME ERROR CONCEPTS
	25.2 ERROR ENVIRONMENT MODIFICATION
	25.3 ERROR SIMULATION

	26.0 DATA STORAGE AND ACCESS
	26.1 PACKING DENSITY OF STORED DATA
	26.2 ORDERING OF STORED DATA
	26.3 TEMPORARY AND REMOTE STORAGE
	26.4 ACCESS TO SHARED DATA

	27.0 HAL/S AND REENTRANCY
	27.1 DETERMINING REENTRANCY REQUIREMENTS
	27.2 EXCLUSIVE PROCEDURES AND FUNCTIONS
	27.3 REENTRANT PROCEDURES AND FUNCTIONS

	28.0 THE HAL/S NAME FACILITY
	28.1 HAL/S NAME CONCEPTS
	28.2 DECLARATION OF NAME DATA ITEMS
	28.3 INDIRECT ACCESS THROUGH NAME DATA ITEMS
	28.4 THE NAME PSEUDO-FUNCTION
	28.5 NULL POINTER VAUES
	28.6 INITIALIZATION OF NAME DATA ITEMS
	28.7 NAME ASSIGNMENTS
	28.8 NAME COMPARISONS
	28.9 ARGUMENT PASSAGE OF POINTER VALUES
	28.10 POINTER VALUES IN INPUT/OUTPUT

	29.0 REPLACE MACROS AND INLINE FUNCTIONS
	29.1 THE PARAMETRIC REPLACE STATEMENT
	29.2 USE OF REPLACE MACROS
	29.3 IDENTIFIER GENERATION
	29.4 PRINTING OF REPLACE MACROS
	29.5 INLINE FUNCTIONS

	30.0 MANAGERIAL CONTROL OF ACCESS TO DATA AND CODE
	30.1 ACCESS CONTROL IN HAL/S
	30.2 ACCESSING PROTECTED COMPOOL DATA
	30.3 PROTECTION OF AN ENTIRE COMPOOL
	30.4 ACCESSING PROTECTED PROGRAMS AND COMSUBS

	31.0 INTERFACES WITH NON-HAL/S CODE
	31.1 %MACROS
	31.2 REFERENCING NON-HAL/S PROCEDURES AND FUNCTIONS

	Appendix A STANDARD CONVERSION FORMATS
	Appendix B BUILT-IN FUNCTIONS
	Appendix C ORDERING OF DATA ELEMENTS
	Appendix D COMPILE-TIME COMPUTATIONS
	Appendix E HAL/S KEYWORDS
	Appendix F STANDARD INPUT/OUTPUT FORMATS
	Appendix G Change History
	Index
	Distribution

