PERKIN ELMER

MODEL 3250 PROCESSOR
MICROPROGRAMMING

Reference Manual

50-004 ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes na responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied onty in a manner permitted by that Jicense. Any copy of the described software
must include the Perkin-Eimer gapyright notice. Title to and ownership of the described
software and apy copies thereof shall remain in The Perkin-Eimer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software an equipment that is nat supplied by Perkin-Elmer.

The Perkin-Eimer Gorporation, Computer Systems Division 2 Crescent Place, Ogeanport, New Jersey 07757

© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

PREFACE

CHAPTERS

- TABLE OF CONTENTS

1 MICROPROGRAM LCESCRIPTION

1.1

[N N QS W R N N Y Sy S G STy
® o & o o o & o ¢ o o o o
NDNNONNMNMNDNNODNNNDNDNNDND
9 o & 8 & 6 & o = » ¢ o

=S L L OO EWN -

N = O

2 DATA AND

2.1

NNONNNDNDNDNDN
® ¢ o o o o o
NNNDMDNDNDN
e ¢ o o o o

AN E WM

18]
.
w

INTRODUCTION

BLOCK DIAGRAM ANALYSIS
System Organization

Control Store Memory

Flag Register (FLR)

Frogram Status Word (ESW)
Main Memory

General Registers
Scratchpad Registers
Microregisters

Arithmetic Lcgic Unit (ALU)
Input/Outpnt

Interrupt Control

Machine Control Register (MCR)

INSTRUCTION FORMATS
CATA FORMATS

INSTRUCTION FORMATS

Address Link

Register Link
Register-to-Fegister Transfer
Register-to-Register Ccntrol
Register-to-Fegister Immediate
Register Write

MAIN MEMORY CONTROL

3 SOURCE ANL DESTINATION KEGISTERS

50-004 ROO

vii

py
1
Y

| 2 R R B |

[N NS N W QI QY (R QT G G G Y
LIS T N R |
IO NE W=

\N]
1
-

NDNNDDNDDDND
!
O n & &

N
'
=)}

w
|
pry

CHAPTERS (Continued)

u INSTRUCTICN REPERTOIRE 4-1
be1 INTRODUCTION 4-1
4.2 LOGICAL INSTRUCTIONS 4~2
4.2¢1 Load 4=3
44262 Store to HCS b4-4y
4.2.3 AND 4~5
4.2.4 CR b-6
L.2.5 Exclusive OR b-7
4,3 BRANCH/EXECUTE AND LINK INSTRUCTIONS 4-8
4.3.1 BRranch and Link 4-9
4.3.2 Execute and link 4+11
4.4 SHIFT/ROTATE INSTRUCTIONS 4-13
4ol Shift Left Lcgical 4-14
boele?Z Shift Left Halfword Logical 4-16
G4.443 Shift Right Logical 4-17
4.4.4 Shift Right Halfword Locgical 4-19
4.4.5 Shift Left Arithmetic 4-20
L.4.6 Shift Left Halfword Arithmetic 4-22
4aol4.7 Shift Right Arithmetic 4-23
4.,u,.8 Shift Right Halfword Arithmetic b-25
4.4.9 Rotate Left logical U4-26
4.4410 Rotate Right Lcgical 4-27
4.¢c FIXED-POINT ARITHMETIC INSTRUCTICKS 4-28
4.5.1 Add 4-29
4eBa2 Add and Increment 4-30
4.5.3 Subtract 4~32
4.5.4 Subtract and Decrement 4-33
4.5.5 Multiply 4-34
b.5.6 Pivide 4-35
4.6 FLOATING-POINT INSTRUCTIONS y-37
LeBao Nermalization 4-37
4.6.2 Equalization 4-38
L.6.3 Guard Digits and R*~Rounding 4-38
Le6.l Fffect of Current PSW 4-38
L.6.5 Floating-Point Processor (FPP) Autonomous

Operation u-40
4.6.5.1 Read Conditicn Code 4-43
4.6.5.2 Load Register Single Precision y-44
Beb6e5e3 Read Register Single Precision 4-u6
4L.,6.5.4 Compare Register Single Frecision b-47
4.6e5.5 BAdd Register Single Precision 4-48
L.6.5.6 Subtract Register Single Precision 4-50
U,6.5+7 Multiply Register Single Precision 4-52
U.645.8 ULivide Register Single Precision 4-54
4.6.549 Load Word 4-56
4.6.5.10 Load Eegister Lcuble Frecision 4-57
4.6.5.11 Read Register L[ouble Precision 4-59

ii 50-004 ROO

CHAPTERS (Continued)

4e6.5.12 Compare Register Double Precision ‘ 4-60
4.6¢5¢13 Add BRegister Dcuble Precision L-61
U.645.1U4 Subtract Register Double Precision 4-63
be6e5415 Multirly Register Double Precision 4-65
4e6.5416 Divide Register Double Precision 4-67
4.7 BYTE HANDLING INSTRUCTIONS b-69
4.7.1 Load Byte 4-69
4,742 Store Ryte 4-70
4e7.3 Exchange Byte L-71
4.8 CONTROL INSTRUCTIONS 4-71
4.8.1 Sense Machine Control Register u-72
4.8.2 Clear Machine Ccntrol Register u-74
4.8.3 Load the Wait Flip-Flog 4-75
4.8.4 Power LCown u-76
4.8.5 Branc and Disakle Ccnsole u-77
5 INFUT/OUTEUT SYSTEM 5-1
5.1 INTRODUCTION 5~1
5.2 MULTIPLEXOR BUS 5-1
fe2e1 Cata Lines 5-2
Ee2.2 Control Lines 5-2
£e2.3 Test Lines 5-3
5.2.4 Initialize Line 5-3
5.3 INPUT/OUTPUT INSTRUCTICNS 5-4
£e3e1 Acknowledge Interrupt 5-6
5e3.2 Address and Sencse Status 5-7
5.3.3 Sense Status 5-8
5.3.4 Rddress and Cutput Command 5-9
5.3.5 Output Command 5-11
E.3.6 Address and Read Data 5-12
£.3.7 Read Data 5-13
£.3.8 Address and Write Data 5-14
5¢3.9 Write Data 5-16
5.3.10 Address and Read Halfword 5-17
e3.11 Read Halfword 5-19
5.3.12 BRddress and Write Halfword 5-20
£.3.13 Write Halfword 5-21
5.3.14 Test Halfword lLine and Transfer 5-22
6 INTERRUPT SYSTEM
6.1 GENERAL INFORMATION 6-1
6.2 INTERNAL INTERKUPTS 6-1
6.2.1 Illegal Instruction Interrupt (208) 6-2
6e2.2 BAccess/Data/Boundary/Floating-Point
Interrupt (2C7) 6-2

50-004 ROO - iii

CHAPTERS (Continued)

iv

Primary Power Fail Interrupt (206)
Machine Malfunction Interrupt (205)
1 Early Power Fail (EPF)
2 Memory Voltage Failure
3 Module Start Time Failure
4 Shared Memory Fower Fail

EXTERNAL INTEREBUPTS

1 Console Attention Interrupts (204)
2 I/0 Interrupts (203, 2G2, 201, 200)

INSTRUCTION EXECUTION

7.1 INTRCDUCTION

7.2 INSTRUCTION REATL

7.3 INSTRUCTION CECODE
7.4 CFERANLC FETCH
EMULATOR

8.1 INTRODUCTION

8.2 SYSTEM INITIALIZATION
8.2.1 General Information
8e242 Cold Start

BeZe43 Warm Start

8.2.4 Loader Storage Unit
8.2.5 Ccnsole Service Routine

INTERRUPT SUEPCRT
1 Routine FAULT
2 Routine TWAIT
3 Rocutine WAIT
4 Routine MATINT
E Routine FORFAULG6
6 Routine FORFAUILT

8.U I/70 INTERRUPIS

8.5 AUTO DRIVER CHANNEL
8.5.1 Routine FASTMOTLE
8.5.1+1 Routine BYTEIC
8eBe1.2 Routine HWIO

8.5.2 Routine NFAST
8.5.2.1 Routine NFWERIT
8eSe2+.2 Routine NFREAD
8.5.2.3 Routine TRANSL

LI O |

(e 3o e W0, e R0
)
~Noaoan oo

t

(o, 3o, W)
[}
w a3

w
1
-

Lot L]

o M 0o ™ ™
3
W W =

Q O 0w ®®
[}
DO INE =

[o o]
!
e}

oo 0o 00 00 ™ o o
| 1

-)) ed wd =S O

Y eNoNe)

50-004 ROO

CHAFTERS (Continued)

BeZeZsl4 PRoutine EREDCHK
8.5.2.5 PRoutine COMMONS3
8.%.3 Exit Routines Used by FASTMODE and NFAST
8e5¢3.1 Routine EXAUTO
8.£.3.2 Routine EXSUEO
8¢5.3.3 Routine EXSUE1
8¢.5+3.4 Routine EXSUE2
Be£+3.5 Routine EXSUER
FIGURES
1-1 Model 3250 Processcr Hardware Block Ciagranm
2-1 Instructicn Formats
4-1 Floating-Point Processor (FPP) Block Diagram
6-1 Contents of RMDR Fcllowing a Fault

8-1 FAULT Routine
8-2 Machine Malfunction Status Word (MMSW)
g-3 Channel Command Blcck

TABLES

1-1 REGISTER SET SELECTICN

1-2 INTERRUPT TRAPS

1-3 EXTERNAL INTERRUPT ENABLE

2=-1 INSTRUCTICN WORD FIELDS

2=<2 MC FIELD

3-1 REGISTER ADDRESSES

6-1 RMDE FAULT CCDES

62 FLAGS RETURNED BY SMCR AFTER MACHINE MALFUNCTION

7-1 STATE OF RMDR AFTER INSTRUCTION READ

7-2 B BUS GATING AFTER INSTRUCTIGCN READ

8-1 DEFINED CATA ON ENTRY TO USER TRANSLATION
ROUTINE

INDEX

50-004 ROO

8-12
8-12
8-13
8-13
8-13
8-13
8-13
8-13

© o ®
[
[YoRE S §) |

Ind-1

PREFACE

This manual describes the mictoprogram for the Perkin-Elmer Model

3250 processcCre. Tt prcvides a block diagram analysis of the
processor, data and instruction formats, information on source
and destination registers, the microinstruction repertoire,

infcrmation cn the input/cutrut (I/C) system and the interrupt
system, and microprogramming restrictions.

This manual is intended to be wused 1in conjunction with the
following manuals:

PUBLICATION
MANUAL NUMBER
Model 3250 Processor Maintenance Manual 47-029
Model 3250 Processor User's Manual 50-001
32-Bit Systems User Documentation Summary 50~003

For further information <¢n the <contents of all Perkin-Elmer
32-bit manuals, see the 32-Bit Systems User Documentation
Summary.

50-004 ROO vii

CHAPTER 1
MICROPRCGRAM DESCRIPTION

11 INTROLUCTION

Microprogramming is a means for implementing the control logic of
a digital comruter and has been effectively used +to maintain
upward program compatibility 4in a family of processors whose
internal hardware varies frcm one member to the next.

The rrocessor is designed tc execute microinstructions stored in
a control store lead-Only-Memory (ROM). Each microinstruction
causes one or more hardware functicns to be performed, such as
transferring the contents of one register to another, arithmetic
or logical operations between registers, controlling input/output
operations, cr initiating main .memory accesses.

A series of microinstructions is called a microprogranm. The
comrlete microprecgram, defined as an emulator, causes the
microprocessor to react to a user program in main memory and to
external events. A similar processor reaction is described in
the Model 3250 Processcr User's Manual. Every user level
instruction, interrupt handling feature, and system CRT function
is simulated by some portion of the microprograme.

1.2 BLOCK DIAGRAM ANALYSIS

Refer to the block diagram in Figure 1-1.

121 System Organization

The processor 1is organized between three 32-bit buses. The A and
B buses are used to present the first and second operand data,
respectively, to the Arithmetic Logic Unit (ALU). ALU output to
the apprropriate destinaticn is then transferred by the S bus.
The source and destination of data on the A, B, and S buses, as
well as the function perfecrmed by +the ALU, is controlled by
microinstructions contained in the control store memory.

weIbEI]g YOOTH 2IeMpIey IDSS2001d 052 [2POH

L-1 2Inb14d

N 2 —1 ¥ Ty (3] - |
| i - — - HOSSID0Hd | AHOWIN ——————o~
Y sné v]
- 'y ﬁ
i - i
£ ¢ (001508 V1VG AHONIW 19001 ¢ 3
, T _
- - / aje 1 LYIND TV
SA 1GA \ 1|1 NOILYINDIVY
m sls any
/ als S9V1 vy -
- _
’ ONINIL ; FETRLE _
mzw._._awo._._ﬂmw JOBINGD XOW 12 v1v0 NO¥ _ z
- = al
WOH4/01 v N =
08 X — | VS &
: ~ ¥315103 431193
; _ ads 1S
i v
LNOS
i »wwwmﬂzm.%u L f | _ (LW} HOLYISNYHL
i) isami [SS3WAAY AHOWIW
h 38048 38045 — AV
04 LNQD TOBINOD }
38V LI Q3xiy - v -
r T 3g¥a0d 'u. —
| £ 573 i 3 B’ —
3 i I Va0l — = oJ
) <
| s/l H
- = =
834308 NOILINGISNI E 3 ~ L v
frl WOy - i} N »
} o L. <]
_ xms — mxn_,um noi s 039371A18d 2 !
e ovis 104 LNOD oW gl
HILSIDIY LdNdy 3N T] i, nﬂu
HoW - - - @ _
L ‘ 1 z 1 o
— 5300V 11842 b4
foat'] ALYINITIVI _
H $83600Y |
” {
311370SNOD o ERGAS S |
Y31S103H)
- 343 — P i
FETY _
840 V42 |
g SNB 00 GNW N4D - SNA TDHINOD _
1 - i = —

50-004 ROO

12.2 Contrcl Store Memory

The ceontrol store memory is a ° high speed, solid-state,
nondestructive readout memory crganized into 16 pages of 256
words each. Each word is 32 bits 1long and represents one
microinstruction. The first eight pages (2,048 words) in the
control stcre memory contain the entire microprogram. Additional
pages of writable control store memory can be added to the basic
processor, allowing the user to supplement the staniard
instruction repertoire with special algorithms or application
oriented functions without requiring hardware involvemente.

Each microinstruction read from the control store memory is
rlaced in the 32-bit RCM Instruction Register (RIR). Most
microinstructions are executed in one machine cycle of 260
nancseconds. At the conclusion of each microinstruction, +the
next one to be performed is read out and placed in the RIR.
Microinstruction word bit definitions are explained later.

Locations in the control stcre memcry are addressed by the 12-bit
outrut from the ROM Address Gate (RAG). Inputs to the RAGC may
be: the RCM Location Ccunter (RLC) which selects the next
microinstruction to be performed; certain bits of the ROM
Instruction Register (RIR) for branches and transfers: the B bus
for data addressing and branches; the user level operation code
for entering an emulation rcutine; or the interrupt control logic
for entering interrupt service routines.

Microinstructions are ncrrally executed from segquential control
store memory locationse. After a microinstruction is read into
the RIR, the RLC 1is 1loaded with the address of +the next
sequential instruction., When it 1is necessary to Jjump to a
different program seguence, the first microinstruction in that
sequence is addressed thrcugh the RAG from ROM Instruction
Register (RIR) bits or B bus ©bits. The new address is also
loaded into the RLC so that sequential instructions can again be
executed.

During user instruction deccding, the user's operation code times
two 1is presented to the RAG to address the first instruction of
the sequence epulating that user's instruction. The new address
is also loaded into the RIC.

In response to an interrurt, the interrupt hardware presents an
address to the RAG. If the address is that of a branch and 1link
type ianstructiocn, the hardware has time to save the current RLC
value rlus one in the designated 1link register before the RLC is
updated from the RAG. In this way, the microcode could return to
the interrupted sequence after servicing the interrupt, if
desired.

The execute instructions are the only instructions in which the
RIC is not updated. After executing the selected out-of-1line
instruction, the next microinstruction in the in-line microcode
sequence 1s performed.

50-G0o4 ROO 1-3

12.3 Flag Register (FLR)

The Flag Register (FLR) is a U-bit register containing the
following flags: Carry (C), Overflow (V), Greater than Zero (G),
and Lese than Zero (L). These flags ~are modified from the
condition code bus at the cecnclusion of arithmetic, logical, and
I/0 operations reflecting oreration results.

1.2.4 ©Program Status Word (FSW)

The Program Status Word (PSW) is a 32-bit register used to
indicate the system status relative to the user program being
emulated. Rits 0:27 of the FSW define enabled interrupts and the
operational status or mode cf the user-level processor. Some of
the DPSW bits have hardware =significance, while others are of
significance only to the emulator. Bits 28:31 of the PSW make up
the condition code (CC) field, which reflects the results of the
last executed user-level instruction. The condition code may be
updated from the condition code bus, or when the PSW is the
specified destination register. Bits 0:9, 12, and 15 of the PSW
are not implementede.

The Location Counter (LOC) is a 32-bit extension to the PSH,
holding the address in main memory of the next user instruction
to be performed. During an instruction memory read, LOC is wused
to address main memory. Fcr all other main memory accesses, the
32-tit Memory Address Register (MAR) is used. Cnly the 24 least
significant bits (bits 8:31) of LOC and MAR are implemented. At
the machine level, LOC consicsts of registers CLOC, the current
locaticn counter, and ILCC, the instruction location counter.
CLOC is copied to ILOC when instruction read 1is started; CLOC
then increments by two for every instruction halfword read.

1425 Main Memory

Main memory consists of a number of 256 kb Metal Oxide
Semiconductor (MOS) memcry modules, providing storage for user
instructions and data. TLata read from or written into memory is
buffered in the 32-bit Mermcry Lata Registers (MDRs). There are
separate MLCRs for reading from and writing to main memory.

The microprogram initiates a main memory cycle by issuing a
memcry read or memory write <command. After issuing a memory
command, the microprogram 1s free to do other instructions. The
memory cycle is accomplished asynchronous of other processor
activity. However, if the microprogram attempts to use the
contents of PRMDR after a memory read, or attempts to load MAR,
the processor stoprs until the desired function can be perforned.
Thig also occurs if the microprogram attempts to issue another
memcry command before the current memory cycle is complete.

1-4 50-004 ROO

After an instruction read has been issued and the read-out
becomes available, bits 0:7 are placed in the OP register:; bits
8:11 are placed in the YDI register; and bits 12:15 are placed in
the YSI register. These three registers comprise the user's
instruction register (UIR).

The OF register, containing the user's operation code, is used to
address the privileged/illegal ROM and the control store memory
itself. The user's operaticn code times two is the control store
memory address of the first microinstruction of +the appropriate
emulation sequence. The privileged/illegal ROM is a separate ROM

containing 256 U4-bit wcrds. This ROM is interrogated before
entering the microsequence that emulates a user-level
instruction. If the op-code 1is 1illegal, or is that of a

privileged instruction and FSW bit 23 is set, or if the op-code
is that of a floating-roint instruction and PSW bit 13 is set,
the illegal instruction interrupt is generated.

12.6 General Registers

The eight sets of user-level general registers each «contain 16
32-tit registers. The register sets (stacks) are duplicated for
the A bus and B bus. (See Figure 1-1.) Only one set of general
registers is active at a time, depending upon PSW bits 25, 26,
and 27. (See Table 1-1.)

The microprogram usually accesses the user‘'s general registers
without <caring which of the 16 registers in the active set is
used. However, when the microprogram accesses a general register
for emulating a user instruction, it must be the general register
specified in that user instruction. After the instruction read,
the register addresses specified by the user are in the YDI and
YSI registers; therefore, the microprogram can access the
appropriate general register by specifying the YDI or YSI
register. The hardware then selects the general register whose
numker is in the YDI or YSI register. The user's general
registers are also directly addressable by the microprogram when
it is necessary to access stecific registers.

TABLE 1-1 REGISTER SET SELECTION

ACTIVE
PSW EITS REGISTER SET
28 126 |27
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 g
1 1 0 6
1 1 1 ¥

50-004 ROQO -~ 1-5

127 Scratchprad Registers

A single set of 16 32-~tit registers 1is avallable to the
microprogram as module 7« These registers may Dbe directly
addressed, or are specified by the contents of the YDI or YSI
register., The ALU responds with module 7 activitys

12.8 Microregisters

The eight 32-bit microregisters (MRO:7) are availlable +to the
mictoprogram as general purpose registers.

129 Erithmetic logic Unit (ALU)

The 32-bit A bus provideg the firet orerand for arithmetic and
logical operations. The 32-bit B bus provides the second
operand. The A and B buses are input to the Arithmetic Logic
Unit (ALU), which performs addition, subtraction, multiplication,
division, shifting, and Bc¢olean connect functions. The output of
the ALU is the 32-bit S bus.

1.2¢10 Input/Output

Input/Cutput (I/0) operations are accomplished by gating data
from the A bus 4dand/or B bus onto the 16«bit I/0 bus, and by
gating data from the I/0 Lbus onto the S bus.

The T/C bus consists of 33 lines: 16 bidirectional data 1lines,
10 control lines, 6 test lines, and an initialize line. See the
charter ¢cn the I/0 systam.

14211 Intzrrupt Control

The interrupt control logic provides rapid response to internal
and external events, Nine ©priority 4interrupt 1lines are
available, each with a unigque trap location in the control store
NEMCTY. Recegnition of an interrupt causes the microinstruction
at thae trap location to be rerformed. Certain interrupts can be
disabled or enabled by PSW tits. Interrupts can also be disabled
or e¢rnabled a¢ a group by the microprogram. (See Table 1-2.)

1-6 50-004 ROO

TABLE 1-Zz INTERRUPT TRAPS

INTERRUPT TRAE ATLRS GROUP
' (HEX) MASK ENABLE
Floating Point Fault 207 PSW13,19(FPP)
' PSW21
Data Fetch Fault(MAT, 207 (MAT) NO
ECC, or Alignment) PSW18
(MAIO Abort) (ECC)
Primary Power Fail 206 NONE YES
Machine Malfunction 205 PSW18 YES
Console Attention 204 NONE YES
External Interrupt Level O 203
External Interrupt Level 1 202 See
External Interrurt Level 2 201 Table YES
External Interrupt Level 3 200 3
Illegal Instruction 208 NONE N/A

PSW bits 17 and 20 define the external interrupt enable status of
the processor as shown below:

PSW RIIS
17 20
0 n All levels disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

where the current level is a function of the currently active
register set. (See Table 1-3.)

50-004 ROO 1-7

TABLE 1-3 EXTERNAL INTERRUPT ENABLE

PSW BITS EXTERNAL INTERRUPT ENABLED
17|20 |25 |26 |27 | LEVEL 0| LEVEL 1| LEVEL 2| LEVEL 3
0 o| x| x| x| nc NO NC NO
0 11 0o of o] wc NO NO NO
0 11 0] of 1| vEs NO NO NO
0 11 of 1| ol vEs YES NC NO
0 11 0| 1] 1| vrS YES YES NO
0 11 1] ol o] YEs YES YES YES
0 11 1] of 1] YEs YES YES YES
0 11 1| 1] o] vEs YES YES YES
0 11 1] 1] 1| vES YES YES YES
1 o x| x| x| YES YES YES YES
1 11 0] o o YEs NO NO NO
1 11 o] o 1] vEs YES NG NO
1 110 1] o YES = |7YES YES NO
1 11 0] 1] 1| YES YES YES YES
1 11 1] o o YES YES YES YES
1 11 1| o] 1| YES YES YES YES
1 11 1 1] o] YES YES YES YES
1 11 1) 1] 1] vES YES YES YES

1¢2.12 Machine Control Register (MCR)

The 12-bit Machine Control FRegister (MCR) can be interrogated or

cleared by the microprcgrame. AR definition of the MCR bits is
detailed in the =section on contrcl functions. (See Section
LoBals)

1-8 50-004 ROO

: CHAPTER 2
DATA ANLC INSTRUCTIQON FORMATS

2.1 DATA FORMATS

All internal data paths excert thcse to the Input/Output (I/0)
control are 32 Dbits wide. The basic machine operand is,
consequently, a 32-bit fullword. Positive fixed-point data is
expressed in true binary fcrm with a sign bit of zero. Negative
fixed-point data is expressed in two's complement notation with
a sign bit of one. Floating-point data i1s expressed as a signed
magnitude fractio. with a signed exponent. The quantity
expressed 1is the product of the fraction and 16 raised to the
power of the exponent. Each floating-point number requires a
32-tit fullword; 8 bits are used for the fraction sign and
exponent, and 24 bits are used for the fraction.

Binary information is represented in hexadecimal notation (base
16) for simplicity.

2.2 INSTRUCTICN FCRMATS

The microinstructions for the processor can be one of six formats
designated Address Link, Register Link, Register-to-Register
Transfer, Register-to-Register Control, Register-to-Register
Immediate, and Register Write. These instruction formats are
shown in Figure 2-1.

The basic instruction format provides the microrrocessor with a
three-address capability, but various options of the repertoire
can modify the range from twc to four.

Bits 0, 1, and 2 of the microinstruction select the processor
module that performs the specified function. The address link
and register link microinstructions are the only ones that select
module 0, the control module. The cther microinstruction formats
can be directed to any other module. The processor's Microcode
Assembler reccgnizes symbclic operaticn codes directed to modules
0 (the control module), 1 (the ALU module), 2 (the I/0 module),
6 (floating-point processor module), and 7 ({scratchpad
registers).

The meaning of each micrcinstruction word field is summarized in
Table 2-1 and the following raragrarchs.

50-004 ROO 2-1

ADDRESS LINK

0 2 3 4 56 10 11 13 14 25 26 27 31

o o ol1x|T 5 F ADDRESS | & e

REGISTER LINK

0 2 3 4 56 10 11 13 14 19 20 24 25 26 27 31

0 0 O JO[X|T| coeeblebbdrdrcs F ;%%%%%%% %%%E MC

REGISTER-TO-REGISTER TRANSFER

0 2 34 56 10 11 15 16 19 20 24 25 26 31

Module |0]|O(TI S A F C [PAGE ADDRESS

REGISTER-TO-REGISTER CONTEOL

0 2 3 4 56 10 11 15 16 19 20 24 25 26 27 31

Module {0111 S A F K] E MC

REGISTER-TO-REGISTER IMMEDIATE

0 2 3 4 5686 10 11 15 16 19 20 31

Module {110]|1I S A DATA

REGISTER WRITE

0 2 3 4 56 10 11 15 16 19 20 24 25 26 27 31

0 O 1)1|1]I] NULL A F B K|E MC
Figure 2-1 Instruction Formats

22 50-004 ROO

TABLE 2-1 INSTRUCTION WORD FIELDS

FIELD MEANING
—
A Selects register to be used as first cperand
B Selects register to be used as second operand
C If set, transfer is conditional.
E Fnable setting c¢f condition code
F Specifies function of addressed module
I B bus data addresses actual data in control store.
K F field extensicn
MC Memory control field
S Selects register to receive the result
T If set, item F must be true for transfer.
X Execute

The F field in all formats srecifies the function that the
selected module is to perform. The X bit in the address link and
register link formats distinguishes Execute and Link instructions
from Branch and Link instructions. The T bit specifies whether
the true or false state of the condition F is to be tested.

The S field selects the S bus register to be loaded. The A field
selects the first cperand (A bus) register. The B field =selects
the second orerand (B bus) register.

Setting the I bit causes the operand developed on the B bus to be
taken as a control store memory address. The fullword contents
of the addressed location rerlace the original B bus data. This
function adds 160 nanoseconds to the execution time of the
instructione.

Setting the C bit on Register-to-Register Transfer instructions
causes the transfer toc <cccur only if no predefined signal is
returned from the addressed module. For the ALU module and the
scratchpad module, the signal is Carry, meaning that no transfer
occurs if a carry is generated. For the I/0 module, the signal
is Halfword (no transfer occurs if the addressed device is a
halfword device). For all other modules, the signal is
undefined.

50-004 ROO - 2-3

The K bit is used as an extension of the F field, allowing more
than 16 functions to be perfermed by the addressed module.

The E bit allows the Ccndition Code (CC) field of PSW to be
updated with data on the CC bus from the addressed module. Once
an instruction with the E bit set has been performed, the
condition code remains conhnected to the CC bus antil an
instruction having an E bit field with the E bit reset is
fetched.

The MC field contrcls main memory accesses, and MAR and LOC
activities. MC can alsoc enable the privileged/illegal ROM and
the instruction decoding hardware. In this case, unless a branch
is taken or an interrupt c¢ceurs, a user instruction emulation
seduence is entered.

The wost significant bit of the 12-bit immediate field on
Register~to-Register Immediate instructions is propagated through
the most significant 20 bits on the B Dbus. For example, the
immediate operand '400' produces the value '0000 0O400' on the B
bus. The immediate operand '800*' produces the value ‘'FFFFF800"
on the B bus.

The 6-bit address field on Register-to-Register Transfer
instructions ¢an specify any address within +the 1local 6U4-word
pages For example, an instruction at address *'131' can transfer
to any other instruction from address *100° to '"13F°'. The
incremented RLC always determines the lower and upper limits of
the transfer destination. Thus, an instruction at address '13F'
can transfer to any instruction from address *'140°' to '14F', but
cannot transfer to an instruction at address '13E'.

2¢2¢1 Address Link

When executing the Address Link instruction, the incremented
contents of PLC are placed in the selected S bus register. If
the condition specified Eky F and T is met, the next
microinstruction executed is the one at the location specified by
the 12-bit address field. If the condition is not met, the next
microinstruction in sequence is executed. In addition, if the
condition is met, any memory control or decode options specified
are suppressed.

2.2.2 Register Link
The Register Link instructions are identical to the Address Link

instructions, except +that the address to transfer to is taken
from the register specified Ly R.

2-4 50~004 ROO

2«.2+3 Register-to-Register Transfer

These instructions perforr function F using a first operand
specified by the contents c¢f the register specified by A, and an
effective seccnd operand specified by B. The result replaces the
register specified by S. If the C bit is reset or if a special
signal (MODSIG) is not returned from the addressed module, the
next microinstruction executed is from the current page of the
control store memory address specified by the PAGE ALCDRESS field.
If the C bit is set and the special signal is returned from the
addressed module, +the next microinstruction in seguence 1is
executed. The PAGE ADLRESS field can specify only the least
significant 6 bits of a control store memory address. The
remaining address bits are taken from the high order 6 bits of
RLC. This means that a transfer can occur only to a 1location
within the éU4-word page defined by RLC bits 4:9. An exception is
when the microinstruction is at the end of page boundary (e.g.,
address '23F'). In this instance, the transfer occurs to the
specified address on the next sequential page (e.g., one of the
addresses '240°' through *'27F*').

The effective second operand, BE, is the contents of the register
specified by B if I=0: ‘

Bg = (B)

or the contents of the fullword control store memory location
whose address is in the register specified by B if I=1:

By =1(B)]

2.2.4 Register-to-Register Control

These instructions perform function F using a first operand
specified by the contents ¢f the register specified by A, and an
effective second operand specified by B. The result replaces the
contents of the register specified by S.

The effective second operand, Bg, is the contents of the register
specified by B if I=0:

BE =(R)

or the contents of the fullwcrd control store memory location
whose address is in the register specified by B if I=1:

By =[(B)]

At the conclusion of the instruction, or as soon as logically
practical, any specified memory control options are performed.

50-004 ROO 2=5

2.2.5 Register to Register Immediate

The function specified by F is perfcrmed using the contents of
the register specified by A as the first operand and an effective
second operand specified by the data field. The result replaces
the contents cf the register specified by S.

The effective second operand, By, is the 12-bit value of the data
field with the most significant 20 bits equal to bit 20 if I=0:

Bg =DATA

or the contents of the fullword control store memory location
whose address is specified ty DATA if I=1:

Bg =[CATA}

2.2.6 Register Write

The Register Write instruction =stores the contents of the
register specified by A into the Writable Control Store (HCS)
locaticn whose address is in the register specified by B. After
the write, any specified memory control functions are performed.

If the processor is net equipred with WCS, only the specified
Oortions are rerformed.

2.3 MAIN MEMCRY CONTEROL

The processor's main memory is the source of user instructions
and data. Control over the main memory is provided in the MC
field of the Address Link, Register Link, Register-to-Register

Control and Register Write microinstructions.

Table 2-2 and the following paragraphs describe the NC field
orticns.

2-6 50-004 ROO

TAELE 2-2 MC FIELD

BITS

N
~
N
o]
N)
e
w
o

w
-

MNEMONIC

MEANING

PO TSI SN G G G G G Yu Y e g e W Y e N e Ne e NeNo NoNoRoRoNeo NoNoNo e Ne

O Yo N o e NoNeo N e N e o Jt QU QU SUFGE DEWEE Yo lo e Nolle No o N o)
DA B D000 A D200 00 A A A a0 00aA2 200000
DD OO0 DA OO0 00 a0 ma a0 20000022000

DO A0 DO a0 AaAa0 a0 a00mD ala0 aAa0aAa0 A0 200 a0

DR2IB
IR
DR4IB
RAS
RFRULT
PR2
DR2

I1DR1
DR1
PR4
REL
I4DRU
DR4

D
aLocC
IRD

Iq4
PW2
DW2
LSSTD
LPSTD
T1DHW1
DW1
PwWL
I4DWY
TEL
DWu

No action

Lata Read, 2 bytes, from IB
Instruction Read

Tata Read, 4 bytes, from IB

Read and Set

Feset Fault, Reset RX format flip-flops
Frivileged Read, 2 bytes

Cata Read, 2 bytes

No action

No action

Increment MAR by 1, Data Read, 1 byte
Lata Read, 1 byte

Frivileged Read, 4 bytes

Read Error Logger

Increment MAR by 4, Data Read, U bytes
Lata Read, 4 bytes

Lecode next user instruction

Update I10C from CLOC

Instruction Read and Decode

Nc action

No action

Increment MAR by U

Frivileged Write, 2 bytes

Tata Write, 2 bytes

Load Shared Segment Table Descriptor
Icad Process Segment Table Descriptor
Increment MAR by 1, Data Write, 1 byte
Lata Write, 1 byte

Frivileged Write, 4 bytes

Increment MAR by 4, Data Write, 4 bytes
Test Error Logger (Write Error Byte)
Cata Write, 4 bytes

50-004 ROO

DR1

CR2

DR21IB

DR4

DR4IB

DW1

DW2

DWy

The rreviously fetched wuser instruction is decoded.
Faults occurring as a result of any memory operations,
which were part cf the instruction fetch, are enabled at
deccde tire. FTecode may occur only once in each
instruction emulaticn. No MC operations may precede the
D operation, with the exception of IR. The D function
must be specified tc allow interrupts to occur.

One byte of data is read from the main memory 1location
addressed by the <current contents of MAR. This data
replaces EMDR bits 24:31. The top three bytes of RMDR
are forced to zero.

Two bytes of data are read from the main memory location
addressed by the current contents of MAR. This address
must lie on a halfword boundary, or an abort sequence
occurs. The data fetched from memory replaces the
contents of RMLCR, bits 16:31. RMDR bits 0:15 are forced
to agree with bit 16.

Two bytes of data are read from the instruction buffer
at the address pcinted tc by CLOC. This data replaces
the contents of RMCR, bits 16:31. Bits 0:15 of RMDR are
forced to agree with bit 16, If +the DR2IB operation
invalidates the IB Ly reading past the end of valid data
in the IB, a buffer refill from memory is initiated.
The CR2IB operation waits until the refill is complete.
DR2IBR advances CILCC by 2.

Four bytes of data are read from the main memory
location addressed by the current contents of MAR. This
address must 1lie on a fullword boundary, or an abort
sequence occurs. The data fetched from memory replaces
the contents of RMLR.

Four bytes of data are read from the instruction buffer
at the address pcinted to by CLOC. This data replaces
the <contents of RHMDR. If the DR4IB operation
invalidates the IR by reading past the end of valid data
in the 1IB, a buffer refill from memory is initiated.
The LCRUIB operation waits until the refill is complete.
DRUIE advances CLOC by 4.

The least significant byte of data in WMDR replaces the
byte in main memcry addressed by the current contents of
MAR.

The least significant 2 tytes of data in WMDR are
written +to memory at the location addressed by the
current contents of MAR. This address must 1lie on a
halfword bcundary, or an abort sequence occurs.

Four bytes of data in WYHMLR replace the contents of the
fullword in main memory addressed by the current
contents of MAR. This address must lie on a fullword
boundary, or an ahcrt sequence oOCcuUrse.

50-004 ROO

I1DR1

I1DW1

Iu

I4DRY

I4DWL

IR

IRD

LPSTL

LSSTD

The contents of MAR are incremented by one, and the byte
in main memory addressed by the new MAR <contents
replaces the <current contents of RMDR. The top three
bytes of RMDR are forced to zero.

The contents of MAR are incremented by one, and the
rightmost byte of data in WMDR replaces the byte in main
memory addressed by the new contents of MAR.

The contents of MAEK are incremented by 4.

The contents of MAR are incremented by 4, and the
fullword (four bytes) in main memory addressed by the
new MAR contents replaces the contents of RMDR. This
address must lie on a fullword boundary, or an abort
seguence OCCUrLS.,

The contents of MAR are incremented by 4, and the
contents of WMLR replace the four bytes in main memory
addressed by the new MAR contentse. This address must
lie on a fullword tcundary, c¢r an abort sequence occurse.

The user instructicn pointed to by the current contents
of CLOC 4is read, and the contents of CLOC replace the
contents of ILOC. This MC option is usually followed by
a D (Decode) option. CLOC is incremented by 2 for each
instruction halfword read.

The user instructicn pointed to by the current contents
of CLOC is read. The contents of CLOC are copied to
I1L0C, and the just-read instruction is decoded. CLCC is
incremented by two for each instruction halfword read.
Thig operation performs as the IR and D operations.

Memory address translation is disabled. The fullword
process segment table descriptor addressed by the
current contents c¢f MAR is 1loaded to ©prepare for
enabling memory address translation. The STE register
stacks in the MAT are invalidated. The instruction
buffer is invalidated. The address of the PSTD must 1lie
on a fullword boundary, or an abhort sequence occurse.

Memory address translation is disabled. The shared
segment table descriptor addressed by the current
contents of MAR is loaded to prepare for enabling memory
address translation. The STE register stacks in the MAT
are not invalidated; therefore, LSSTD must be followed
by LPSTD befcre attempting MAT +translation. The
instruction buffer is invalidated. The address of the
SSTLC must lie on a fullword boundary, or an abort
sequence OCCUrS.

50-004 ROO - 2-9

PR2

PRY

PW2

PWY

RAS

REL

RFAULT

TEL

Memory address translation is disabled, and the halfword
in main memory addressed by the current contents of MAR
replaces the contents of RMDR, bits 16:31. Bits 0:15 of
RMDR are forced to agree with bit 16 This address must

.)Jie on a halfword boundary, or an abort sequehce OCCUrS.

Memory address translation is disabled, and the fullword
in main memory addressed by the current contents of MAR
replaces the contents of RMDR. The address in MAR must
lie on a fullword roundary, or an abort seguence occurs.

Memory address translation i& disabled and the contents
of WMDR bits 16:31, replace the contents of the halfword
in main memory addressed by the current ¢ontents of MAR.
This address must lie c¢n a halfword boundary, or an
abort sequence occurs.

Memory address translation is disabled, and the 4 data
bytes in WMDR replace the <contents of the fullword
loccation in main memory addressed by the current
contents of MAR. This address must lie on a fullword
boundary, or an abcrt sequence ocCcurse.

The halfword in main memory addressed by the current
contents of MAR replaces the contents of RMDR, bits
16:31. Bits 0:15 are forced to agree with bit 16. BRit
16 o©of the data 1is set as the data is written back to
main memory. This address must lie on a halfword
boundary, ©or an abecrt seguence 0OCCUrS.

The error logger, at the address corresponding to the
contents of MAR, 1s interrogated. Error logger data
raeplaces the contents of RMDR.

Any fault which may be latched in the processor is reset
by this instruction. The RX format flip-flops are also
reset. The instruction buffer ig invalidated. RFAULT
occurs at the end c¢f the microinstruction c¢ycle, after
the destination register has been loaded.

The contents of WMLR bits 24:31 replace the byte in main

memory addressed by the current contents of MAR. The
Error Corection Code (ECC) bits corresponding to the
fullword in which the byte lies are not modified. A

subsequent byte, halfword, or fullword fetch thus causes
the data in the location and its ECC bits to disagree,
and causes an MAIO abort if the machine malfunction
interrupt 3is enatled by FSW18. This can be checked by
an REL MC option in a subseqguent instruction. TEL
causes the correspcnding data/instruction cache block to
be invalidated, «resulting in a main memory access for
any subsequent read from that cache block.

50-004 ROO

2L0C The current contents of CLCC are copied to ILOC. This
is wuseful for interrupt processing. CLOC may be the
srecified destination register in an instruction which
alsoc specifies @I0C: first 2L0C occurs, then CLOC is
lcaded from the S tus. ’

All main wemory control is conditional when used within Address
Link and Register ULink microinstructions. The control is only
effected if the instructicn does not result in a branch.

Interrupts may occur whenever the L option is specified, if armed
and enabled.

Interrupts caused by faults while fetching data from memory or
writing data to memcry (called MAIO interrupts) are always armed,
and may occur on any micrcinstruction if enabled. Halfword and
fullword alignment fault interrupts cannot be disabled.

All increment func*‘ons are performed before the microinstruction
terminatese. Memory read and write functions start as soon as
logically practical. Hcwever, the microprogram may use MAR or
WMDR as a destination and then begin a memory read or write in
the same microinstruction. I1DR1, I1DW1, Iu4, IUDR4, or I4DW4 may
not be specified by a microinstruction which also specifies MAR
acs a destination register.

Following a memory read, instruction read (IR), an MAIO fault, or
instruction buffer data fetch (DR2IB or DRU4IB), no MC function
may be specified refore unloading RMDR. Any MC function may be
specified simultaneously with the unloading of RMDR.

50-004 ROO 2-11

CHAPTER 3
SOURCE ANL LCESTINATION REGISTERS

The processor has 182 registers that are addressable by the
microprogram. Most of these are available to the A, B, and S
buses. Table 3-1 and the following ©paragraphs explain the
exceptions and special caces. :

TABLE 3-1 REGISTER ADDRESSES

HEX |S BUS A BUS B BUS CATEGORY

ADLRESS
= |

00 0 0 0

01 1 1 1

02 2 2 2

03 3 3 3

ou 4 4 4

0t 5 5 5

06 6 6 6 USER'S

07 7 7 7 GENERAL

08 8 8 8 REGISTERS

09 9 9 9 IN SET

0A 10 10 10 SELECTEL BY

0B 11 11 11 PSW 25:27

ocC 12 12 12

0T 13 13 13

OF 14 14 14

OF 15 15 15

10 MRO MRO MRO

1 MR1 MR 1 MR 1

12 MR2 MR2 MR 2

13 MR3 MR 3 MR 3 MICRO-

14 MRY MR MR U REGISTERS

15 MRS MR5 MRS

16 MR6 MR6 MR 6

17 MR7 MR7 MR7

18 s YS s

19 YT YD YD

1A cLoc YX ILCC | SPECIAL

1B WMDR YDP1 RMLCR | PURPOSE

1C MAR cLoc MAR

1T PSW PSW YSI

1E YLI 110C YDI

1F NULL NULL NULL

50-004 ROO 3-1

Although the user's general registers, in the register set
specified by PSW bits 25, 26 and 27, can be addressed directly by
the microprogram, it is often more convenient to access the
general register specified 1in the user's instruction without
regard to its physical numter. The symbolic addresses YD, YDP1,
YS, and YX allow this tc haprene. Specifying YD causes +the
general register whose numher arpears in the YDI field of UIR
(UIR bits 8:11) to be selected. Specifying YDP1 causes the odd
member of the even/odd pair of general registers, one of whose
numkter appears in +the YLI field of ©UIR, to be selected.
Designating YS causes the general register whose number appears
in the YSI field of UIR (UIR bits 12:15) to be selected.
Specifying YX 1is the same as specifying YS, except when the YSI
field of UIR is zero, at which time all zeros are placed on the
A bus. This automatic feature is used to develop the index value
for the user-level RI1, RI2, RX, and RXRX format instructions.

When module 7 is specified, the scratchpad registers are selected
in rlace of the user®'s general registers. User general registers
and scratchpad registers cannot be selected by the same
microinstruction.

On microinstructions that address the floating-point ©processor
module, the corresponding floating-point register is selected
instead of a general register. YDP1 may not be used as a source
register if the floating-roint processor is used.

Selecting VYLI or YSI as a source causes the corresponding field
of IR (ie.e«, YD or YS) to be placed on bits 28:31 of the B bus.
The high-order 28 bits of the B bus are zero.

Specifying NULL as a =source on the A or B bus causes the
corresponding bus to be set to zeroc. Specifying NULL as the S
bus destination causes the data to be lost.

Designating RMDR or CLCC as a source, after a memory read
operation, causes the processor to wait until the memory data
becomes available. Follovwing an Instruction Read and Decode
function, RMLCR participates in the formation of the effective
address, if the user's instruction 1is one of the RX formats.
Specifically, until MAR is lcaded, any reference to RMDR as a
source causes the second 1level index register (SX2) to be

accessed if the instructicn format is RX3. Otherwise, RMDR 1is
accessed. Refer to the <chapter on instruction execution for
detailse.

Specifying CLCC, WMDR, or MAR as a destination, when a memory
access 1s in pregress, causes the processor to wait until the
memcry access is completed.

Specifying FS5W as a destination immediately prior +to a BALT,
BALEF, EXLT, or EXLF instruction causes the true/false decision to
be based on the setting of PSW28:31, and not on the flags
resulting frc» the ALU operation. All other conditional BAL or
EXL test the resulting AIU flags (e.g., BALNZ).

3=-2 50~004 ROO

Following an Instruction Read and Decode sequence, the effective
secend cperand address fcr an RX1, RX2, or RX3 user-level
instruction is calculated by the following microinstruction:

A MAR,YX,RMDR

The RX flip-flops in the machine are conditioned according to the
format of the last user instruction decoded, so that the correct
address is formed. Any aprropriate MC function may be specified
in this "calculate address" microinstruction, except RFAULT. For
example, WMDR may be loaded prior to a microinstruction which
calculates an BRX effective second operand address and specifies
a memory write.

The MC functions IR, IRD, DE2IB, and CRUIB must not be specified
in a microinstruction which also specifies CLOC as a source or
destination. The "7 "calculate address" instruction must not
specify any of +tnese MC functions, or an incorrect address may
result. If MAR or WMLR is specified as the destination register
in a microinstruction which alsc specifies one of these MC
functions, unnecessary clcck stops result 4in an increase in
execution time of the instruction.

PSW must not be the srecified destination register in a
microinstruction which also srecifies IR, IRL, DR2IB, or DRU4IB,
unless it is known that FSW bits 10 and 11 (LVL), and 21 (R/P)
are not being changed from their prior states.

Sprecifying any KC function, in a microinstruction following one
which specifies a memory reference, causes the processor to wait
until the first MC function is complete before allowing the
second MC functicn to proceed.

If MAR, WMDR, cr CLCC is specified as the destination register in
a microinstruction which also specifies a memory read or memory
write MC function, the MC function does not proceed until the
destination register has Lkeen loaded and is ready for use. MAR
and CLCC cause the greatest delay, and WMDR the least. Each of
the following examples perfcrms the same function, yet the second
requires 60 nanoseconds less time tc execute.,

SLCWER I WMLR,YD CATA TO STORE

A MAR,YX,RMDR,LWu CALCULATE ADDRESS AND STORE
FASTER A MAR,YX,RMDR CALCULATE ADDRESS

1 WMLCR,YD,DW4 STCRE DATA

To load MAR with a known address so that a memory operation can
be rerformed wusing the =srecified address, it is necessary to
reset the RX flip-flops which are adjusted according to the
forrat of the last user instruction decoded. This can be done by
loading MAR to itself, or by specifying the RFAULT MC option.

50-C04 ROO 3-3

The condition code field of FSW can be manipulated by any
addressed module unless PSW is the explicit destination or a
condition code <change was inhibited by the E bit in a prior
microinstruction.

The bits of FSW that have hardware implications are:

FSW 10,11 Program memory access privilege level

ESW 13 Flcating-pcint disable

PSW 17,20 External interrupt priority selection

PSW 18 Machine malfunction interrupt enable

PSH 19 Flcating-point underflow interrupt enable
(used by Flcating-Point Precessor)

FSH 21 Memory address translator enable

PSW 23 Prctect mode enable

BPSW 25,26,27 Register set selection

FSW 28,29,30,31 Condition code

3-4 50-004 ROO

CHAPTER 4
INSTEUCTION REEERTOIRE

4.1 INTROLUCTION

The instruction repertoire has been grouped by function in this

chapter.

Each instruction operation 1is presented in the

following format:

1« An instruction wecrd chart for each instruction,
including mnemcnic, operation code and operand
designatir s, in the <correct assembler format. The
format type, an instruction diagram with operation code,
and the location of all fields is also provided.

2. A descrirtion of instruction operation.

3. A diagram showing instruction operation.

4. A chart showing the possible resultant flags.

. The execution time in nanhoseconds. On all
microinstructions, add 180 nanoseconds if I=1.

6. A programming note may be rrovided to add pertinent or
clarifying information.

The symbols and abbreviations used in the instruction

descriptions are defined as follows:

o~

)
]
L]
——

Parentheses or bracketse. Read as "the contents of «e."

Arrow. Read as "is replaced by..." or "reprlaceS..."

The B field. First cperand register specification.

The E fielde Seccond operand register specificatione.

The S field. Destination register srecification.

A bit grouping within a word. Read as "Bits 0 through 7
inclusive".

The effective second operand. If the instruction format
is RR Control <c¢r RR Transfer, the effective second
operand is the contents of the register specified by B if
the Indirect (I) kit is zerc:

Bg = (B) if I=0

50-004 ROO ' 4-1

4.2

If the I bit is set, the effective second operand is the
contents of the +#fullword <control store location whose
address is contained in the register specified by B:

Be=[(B)] if I=1

If the instruction format is RR Imediate, then the
effective second orerand is the 12-bit data field if the
I bit is zero:

Bg=DATA if I=0

If the I bit is set, the effective second operand is the
contents of the fullword <corntrol stcre location whose
address is the data field:

Bg=(DATA) if I=1

LOGICAL INSTRUCTIONS

The instructions described in this section are:

b4.2.1 L load
LX load ard Transfer
LT load Immediate
Ue2e2 ; STR Stcre to WCS
Ue243 N ANT
NX BANL and Transfer
NT ANT Immediate
4.2.4 6] CR
0D 4 CR and Transfer
CI CR Immediate
4.,2.5 X ¥Fxclusive CR
XX Exclusive OR and Transfer
XI Exclusive OR Imnmediate

50-004 ROO

4.2.1 Load

L S,B,I,E,NC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
oc1f{0 1]l s [11111]000 1 B ol E MC
LX S,B,ALCRS,I,C [RR TRANSFER]

0 3 £ 6 11 16 20 25 26 31
o0 1loofrl s 1111110001 B c PAGE ADDRESS
LI S,DATA,I [RR IMMEDIATE]

0 3 56 11 16 20 31
001|101l s |11111]0001 DATA

The second operand is loaded into the register specified by S.
L,LI: (S)=w—Bg

LX : (S)«=«—Bg
then (RLC10:15)«—TFACE ALCLCRESS

EResulting Flags

CIV]G]L

0jo0jojo Result is zero

0j(0j]o0 |1 Result is less than zero
010110 Result is greater than zero

Programming Note

The Locad instruction assembles as an Add instruction with a NULL
A field.

Execution Times

L,LI,L¥X: 260

50-004 ROO 4-3

4.2.2 Store to WCS

STR A,B,E,MC [REGISTER WRITE]
0 3 £ 6 11 16 20 25 26 27 31
o0 111 1]Il1T 1111 A 0000 B 0| E MC

The contents of
contrcl =store
specified ty B.

STR: (A)—e{ (B)]

Execution Tinme

STE: 420

the register specified by A are stored in +the
memory lccation whese address is in the register

50-004 ROO

4.2.3 AND
N S,A,B,I,E,NC {RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
00 11 0 111 S A 0101 R E MC
NX S,A,B,ADRS,I,C [RR TRANSFER]
0 3 5 6 11 16 20 25 26 31
0 ¢ 1] 0 0fI S A 010 1 B PAGE ADDRESS
NI S,A,DATR2,I [RR IMMEDIATE]
0 3 £ 6 11 16 20 31
0OC 11 1 0}I S A 010 1 DATA
The logical rroduct of the first and second cperand replaces the

contents of
N,NTI: (S)=—(3)

NX : (5)=—(R)

the
formed on a bit-

by-bit basis.

AND Bg

AND Bg

Then (RLC10:15)«—PAGE ADDRESS

Resulting Flags

o O Ooln
O O O
- O O

L
0
1
0

Execution Times

N,NI,NX: 250

50-004 ROO

Result is zero

Result is nct zero
Result is nct zero

register specified by S.

The 32-bit result is

4L.2.4 GR

0} S,A,B,I,E,NMC [RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
00 110 1]I S A 0111 Of{ E MC
00X S,A,B,ALCRS,I,C [RR TRANSFER]
0 3 E 6 11 16 20 25 26 31
00110011 S A 0111 C PAGE ADRESS
0I S,A,DATA,TI [RR IMMEDIATE]
0 3 E 6 11 16 20 31
0 G 1} 1011 S A c 111 DATA
The logical sum of the first and second operands replaces the

contents

cf
fcrmed on a btit-by-bit basis.

the register srecified by S.

0,0I: (S)=—(A) OR Bg

0X ¢ (S)=—(R) CR Rg

then (RLC10:15)«—FAGE ALCDRESS

Resulting Flags

[eNeoNolle]
o O Ol
- O Ol

O = O

Execution Times

0,01I,0X:

260

Result is zero
Result is nct zero
Result is nct zero

The 32-bit result is

50-004 ROO

4.2.5 Exclusive OR

X Z,2,B,I,E,NC ' [RR CONTROL]

0 3 5 6 1 16 20 25 26 27 31
00 1]0 111 s A 6110 B 0l E Mc

XX S,A,B,ALCRS,I,C [RR TRANSFER]

0 3 5 6 11 16 20 25 26 31
00 17 00TI S A 01 10| B C PAGE ADDRESS
XI S,A,DATA,I [(RR IMMEDIATE]

0 3 E 6 1M 16 20 31
0C 11 1 04I S A 0110 DATA

The logical difference between the first and second ovperands
replaces the contents of the register specified by S. The 32-bit
result is formed on a bit-by-bit basis.

X,XI: (S)=—(A) XOR Bg

Xx (S)e—(R) XOR Bg

then (RLC10:15)<*—PAGE ADLCRESS

Resulting Flags

ClVIGIL

ojojoyo Result is zero
010j0¢}1 Result is nct zero
0101110 Result is nct zero

Execution Times

X, XI,XX: 260

50-004 ROO - u-7

4,3 BRANCH/EXECUTE AND LINK INSTRUCTIONS

These instructions are prcgrammed decisions providing entry to
and return from subprograms, as well as testing the results of
arithmetic, logical, and cther machine operations.

Most processcr operations result in setting the microflag
register. The state of this flag register is testable with the
Branch/zxecute and Link on ccndition instructions.

The Execute and Link instructions allow conditional execution of
a single, ncnsequential microinstruction. No branch is actually
taken, and control returns to the instruction following the
Execute and Link.

The address ©plus one of the Branch/Execute and Link instruction
is always saved in the =sgecified 1ink register, even if the
condition for doing the Branch or Execute is not met.

In the Register Link format, NULL must be specified as the S bus
register. This code 1is filled in automatically by the
microassembler.

The instructicns described in this section are:

4.3.1 RAL Branch and Link
EALA Pranch and Link and Arm Interrupts
BALD Branch and Link and Disarm Interrupts
EALZ Pranch and Link on Zero
BALNZ Branch arnd Link cn Not Zero
BALL Branch and Link on Less
BEALNL Branch and Link on Not Less
BALG Branch and Link c¢cn Greater
BALNG PRranch and Link on Not Greater
BALV Branch and Link cn Overflow
BALNV Branch and Link cn No Cverflow
EALC Branch and Link on Carry
BALNC Branch and Link cn No Carry
BALT Rranch and Link on True CC Match
EALF Branch and Link on False CC Match

4.,3.2 EYL Fxecute and Link
EXLA Execute and Link and Arm Interrupts
EXLD Execute and Link and Disarm Interrupts
EXLZ Execute and Link on Zero

EXLNZ Execute and Link on Not Zero

EXLL Execute and Link on Less

EXLNL Execute and Link on Not Less

EXLG Execute and Link on Greater

EXLNG Fxecute and Link on Not Greater
EXLV Execute and Link on Overflow
EXLNV Execute and Link on No Overflow
EXLC Execute and Link on Carry

EXLNC Execute and Link on No Carry

EXLT Execute and Link on True CC Match
EXLF Execute and Link on False CC Match

L-g 50-004 ROO

4.3.,1 Branch and Llink

F ALCDRESS (LINK),E,MC [ADDRESS LINK]
0] 3 5 6 11 . 14 26 27 31
0 C O 11 0]|T] LINK F ADDRESS E MC
F (B) (LINK),E,NMC [REGISTER LINK]
0 3 5 6 11 14 20 25 26 27 31
0 COC}J0O0}T LINK F B E MC
K F
where F = BALZ 0|10 0 O
EALL 010 0 1
BALG ci0o 1 0
RALF 010 1 1
EALC 0|1 0¢C
BALV 0{1 0 1
BAL 01110
EALA o111 1 1
EALNZ | 110 0 O
BALNL | 140 0 1
EALNG | 110 1 ©
RALT 110 1 1
BALNC | 1]1 O C
BALNV | 1|1 O 1
BALD 111 1 1

The address of the next seguential microinstruction replaces the
contents of the register srecified by LINK; then a transfer is
conditionally taken to the address srecified. In the address
link format, the address field of the instruction contains the
branch address. In the register 1link format, the branch address
is contained in the register specified by B. This format is used
to return from subroutines.

50-004 ROO L-9

Tested Condition True

(LINK)#—(RLC4:15)+1
(RLCU4:15)~—ALCCRESS [Address Link]

(RLCL:15)=—(E) [Register Link]

Tested Condition Falise

(LINK)w—(RLCL:15)+1

(RLCU:15)~—=(RLCU:15)+1

Programming Notes

For the BALT and BALF instructions, a logical AND is performed
between each bit in the condition code field of PSW and the M1
field of the user's instruction (YDI, or IR 8:11) If any
resultant bit is a one, the BALT instruction branches and the
BALF instruction does not. If all resultant bits are zero, the
BALF instruction branches and the BALT instruction does not.

If any memory contrcl function is specified in the MC field, the
function is performed only 1if the Dbranch is not taken.
Similarly, if Decode is =specified, the Decode function occurs
only if no branch is taken.

The BALA and BRALD instructions are used respectively to arm and
disarm the interrupt =system. If an interrupt is to be allowed
while executing the BALA instruction, Cecode (D or IRD) must be
specified in the MC field.

Execution Time

260

4-10¢ 50-004 ROO

4e3.2 Execute and Link

F ADDRESS (LINK),E,MC [ADDRESS LINK]
0 3 £ 6 11 10 26 27 31
0 C 0] 1 11T| LINK F ADDRESS E MC
F (B) (LINK),E,NMC [REGISTER LINK]
0 3 £ 6 11 14 20 25 26 27 31
00 0] 0 1|T| LINK F B MC
T F
where F = EXLZ 0t 0Co
EXLL 0} 001
EXLG 01010
EXLF 01| 011
EXLC 01} 100
FXLV 0} 101
EXL 01 110
EXLA o1l 111
EXLNZ| 1] 000
EXLNL}| 1] 001
EXLNG}| 11 010
EYLT 11011
EXLNC}{ 1] 10¢Q
EXLNV] 1] 1C1
EXLT 171 111

The address of the next sedquential microinstruction replaces the
contents of the register specified by LINK; then if the condition
is met, the instruction at the specified address is executed.
Any dinstruction may be executed including other execute
instructions. When the executed instruction is completed, the
processor ccntinues with +the microinstruction following the
Execute and Link.

50-004 ROO 4-11

Tested Ccndition True

(LINK)==—~(RLCL:1E)+1

Do instructicn at ADDRESS [Address Link]
Do instructicn at (B) (Register Link]
(RLCU:15)~—(RLCL:15)+1

Tested Condition False

(LINK)=—(RLCU4:15)+1
(RLCU:15)=—(RLCU:15)+1

Programming Notes

For the EXLT and EXLF instructions, a logical AND is parformed
between each bit in the ccndition code field of the PSW and the
M1 field of the user's instructionm (YDI, or IR 8:11). If any
resultant bit is a one, the EXLT instruction executes the
indicated instruction, and EXLF does not. If all resultant bits
are zero, the EXLF instruction executes the indicated
jnstruction, and EXLT does= nct.

If the EXL instructions execute an instruction which attempts to
cause a branch or transfer, no branch or transfer occurs.

If any memory control function is specified in the MC field of
this instruction, the function is performed only if the indicated
instruction is not executed,

If an interrupt is to be allowed while executing the EXLA
instruction, Lecode (L or IRL) must be specified in the MC field.

Fxecution Time

260 + executed instruction

4=1z 50-004 ROO

4.4 SHIFT/RCTATE INSTRUCIICNS

The Shift and Rotate instructicns provide for arithmetic and
logical wuse of informaticn contained in the processor registers.
Bits shifted ocut of the high or lcw end of a register are passed
thrcugh the Carry flag (C). After a shift instruction, the last
bit which was shifted out is contained in the Carry flag.

A shift of zerc positions causes the G and L flags to be set, on
the basis of the halfword cr fullword result, with no alteration
to the data contained in the register. The Carry and Overflow
flags are zerc, in this case.

The instructions described in this section are:

4,4,.,1 SLL Shift lLeft logical
SLLX Shift left lLogical and Transfer
SLLI Shift left Logical Immediate
U,u4,2 SLHL Shift Left Halfword Logical
bL.4,.3 SKL Shift Right Lcgical
SRLX Shift Right Logical and Transfer
SRLI Shift Right Lcgical Tmmediate
L.l SRHL Shift Right Halfword Logical
4.4.5 SLA Shift Left Arithmetic
SLAX Shift Left Arithmetic and Transfer
SLAT Shift Left Arithmetic Immediate
L.4.6 SLHA Shift Left Halfword Arithmetic
4.4,7 SEKA Shift Right Arithmetic
SRAX Shift Right Arithmetic and Transfer
SRAI Shift Right Arithmetic Immediate
4eld,.8 SKHA Shift Right Halfword Arithmetic
4.4.9 RLL Rotate Left Ilcgical
RLLX Rotate Left Logical and Transfer
RLLI Rotate Left Locgical Immediate
4,u,10 RRL Rntate Right Logical
KRLX Rotate Right logical and Transfer
RRLI Rotate Right Logical Immediate

50-004 ROO 4-13

4.,4,1 Shift Left logical

SLL S,A,B,I,E,NC [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
0¢ 11011 S A 1001 B 0| E MC
SLLX S,A,B,ADRS,I.,C {RR TRANSFER]
0 3 56 11 16 20 25 26 31
6 Cc1]100|I S A 1001 B c PAGE ALDRESS
SLLI S,A,DRTA,I (RR IMNMEDIATE]
0 3 £ 6 11 16 20 31
0011101 S A 1001 DATA

The contents of the register specified by A are shifted left the
number of bit positions srecified by the least significant five
bits of the second operand. The result replaces the contents of
the register srecified by S.

High order bits shifted out of position 0 are shifted through the
carry flag, then loste. Zeros chift into the low order bit
pcsition.

L
SLL,SLLI: S-= (h)
Bp(27:31)
L
SLLX: S - (R)
B (27:31)
then RLC10:15—<——FAGE ALCDRESS if C=0 or Carry =0
RLCU: 15-«—(RLCU:15)+1 if C = 1 and Carry = 1
4-14 50-004 ROO

Resulting Flags

C

O O O|<a
- O O&

-—

O a Ot

Execution Times

SLL,SLLI:

Result is zero

Result is less than zero

Result is greater than zero
Last bit shifted out was a zero
Last bit shifted out was a one

(n = number of shifts)

430+60n

SLLX (no transfer): EAN+€0N

SLLX (transfer):

50-004 ROO

430+60n

4-15

4.4.,2 Shift Left Halfword lLcgical

SLHL S,A,B,I,E,MC [RR CONTROL]
0 3 E 6 11 16 20 25 26 27 31
00 1|0 1|I S A 1001 B 11 E MC

The least significant 16 bits of the register specified by A are
shifted 1left the number of bit positions specified by the least
significant 4 hits of the second operand. The result replaces
the least =significant 16 Dbits cf the register specified by S.
The most significant 16 bits of +the register specified by A
replace the most significant 16 bits of the register specified by
S, Bits shifted out of pcsition 16 are shifted through the carry
flag and then lost. Zeros shift into the low order bit position.

SLHL SO0t 15-——(AQ:15)
L

S16:31 - (AR16:31)
Be(28:31)

Resulting Flags

CiV|GI|L
ojoio Halfword result is zero
ofof}1 Halfword result is less than zero
01110 Halfword result is greater than zero
0 Last bit shifted out of bit 16 was a zero
1 Last bit shifted cut of bit 15 was a one
Execution Times (n = number cf shifts)

SLHLI: 430+6Cn

=
1

-

™~

50-004 ROO

4.4.3 Shift Right Logical

SRL S¢A,B,I,E,HC [(RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
0CcC 140 1|1 S A 17000 0| E MC
SRLX S+,A,B,ALCRS,I,C (RR TRANSFER]
0 3 5 € 11 16 20 25 26 31
001]00]|1 S A 1000 C| PAGE ADDRESS
SRLI S,A,DATA,I (RR IMMEDIATE]
0 3 5 6 11 16 20 31
0011101 S A 1000 DATA

The contents of the register specified by A are shifted right the
number of bit positions srecified by the least significant 5 bits

of the second operand.

into position 0.

R
SRL,SRII: S -
B (27:31)
4
SRLX: S --
B.(27:31)

loste.

Lcw crder bits shifted out of position 31
are shifted through the carry flag and then

Zeros shift

then RLC10:15-«—PAGE ALCLCRESS if C=0 or Carry=0

RLCYy:15-e— (RLCY:1E)+1 if C=1 and Carry=1

50-004 ROO

Resulting Flags

{clvielL
010]0,
0{0]1
011]0;

| o

11

Execution Times

SRL,SRILI:

Resgult iz nero

Result is 1ess than zero

Result i& greater than zero
Last bit shifted out was a gero
Last bit shifted out was a one

{n = numbet ©f shifts)

U30+€0N

ZRLX (no transfer): 560+€0n

SRLX {(tranczfer):

L30+€E0M

50=004 ROO

L.4.4 Shift Right Halfword Logical

SRHIL S,A,B,I,E,NC {RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31

00110 11

4]
o]

1000 B 11 E MC

The least significant 16 bits of the register specified by A are
shifted right the number of bit positions specified by the least
significant 4 bits of the second operand. The result reblaces
the 1least significant 16 bits of the register specified by S.
The most significant 16 bits of the register specified by A
replace the most significant 16 bits of the register specified by
S. Bits shifted cut of pcsition 31 are shifted through the carry
flag, and then los’ 7ercs shift into position 16.

SRHI: SO0: 15— (RA0:15)
R

516:314——-——(A1€:31)

B (28:31)

Resulting Flags

C|VI|G]L
0j0i}o0 Halfword result is zero
010|1 Halfword result is less than zero
Dl1}0 Halfword result is greater than zero
0 Last bit shifted out was a zero
1 Last bit shifted cut was a one
Execution Times (n = numter of shifts)

SRHL: 4304+60n

50-004 ROO 4-19

4.4,5 Shift Left Arithmetic

SLA S,A,B,I,E,NC (RR CONTROL]

0 3 56 11 16 20 25 26 27 31
006110 1I S A 1101 B 0| E MC
SLAX S,A,B,ADRS,I,C {RR TRANSFER]

0 3 £ 6 11 16 20 25 26 31
00C1]100]|I S A 110 1 B C PAGE ALDRESS
SLAI S,A,DATA,I [RR IMMEDIATE])

0 3 E 6 11 16 20 31
0C 11101 S A 17101 DATA

The contents of the register specified by A are shifted left +the
number of bit rositions srecified by the least significant 5 bits
of +the second operand. Cnly bits 1:31 participate in the shift:;
bit 0 remains unchanged. High order bits shifted out of position
1 are shifted through the carry flag, and then lost. Zeros shift
intc the low order bit position.

SLA,SLAI: S w—(hO0)

L
S1:31-= (A1:31)
B (27:31)
SLAX: SQw—(AQ)
L
S1:31 (A1:31)

Bp(27:31)
then RLC10:15«—FAGE ALLRESS if C=0 or Carry=0

RLC4:154—(RLCU:15)+1 if C=1 and Carry=1

4-20 50-004 ROQO

Resulting Flags

C|VI|GIL
0010
01041
01110

0

1

Execution Times

SLA,SLAI:

Result is zero

Result is less than zero

kesult is greater than zero
Last bit shifted cut was a 2zero
Last bit shifted out was a one

(n = number of shifts)

430+60n

SLAY (no transfer): E60+€0n

SLAX (transfer):

50-004 ROO

430+€0n

4.4.6 Shift left Halfword Arithmetic

SLHA S,A,B,I,E,NC [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
0¢c 1|0 1)I S A 110 1 B 11 E MC

The least significant 15 bits of the register specified by A are
shifted left +the number of bit positions specified by the least
significant 4 bits of the second cperand. The result replaces
the least significant 15 bits of the register specified by S.
The most significant 17 bits of +the register specified by A
replace the most significant 17 bits of the register specified by
S. Pits shifted out of pcsition 17 are shifted through the carry
flag, and then lost. Zercs shift into position 31.

SLHA: S0:16-—(R0:15)
L

S17: 31 (A17:31)
Bp(28:31)

Resulting Flags

CiVIGIL

0]0]0 Halfword result is zero

01011 Halfword result is less than zero

01110 Halfword result is greater than 2zero
0 Last bit shifted out of position 17 was a zero
1 Llast bit shifted out of position 17 was a one

Execution Time (n = number of shifts)

SLHA: 430+46Cn

4=-22 50-004 ROO

belbe7 Shift Right Arithmetic

SRA S,A,B,I,E,MC [RR CONTROL]
0 3 £ € 11 16 .20 25 26 27 31
o0 1|0 1|1 S A 1100 B o] E MC
SRAX S,A,R,ADRS,I,C [RR TRANSFER]
0 3 56 11 16 20 25 26 31
00 1]0o0]1 S A 1100| B C PAGE ADDRESS
SRAT S,A,DATA,I [(RR IMMEDIATE]
0 3 56 11 16 20 31
oo 1]1ol1 S A 1100 DATA

The contents of the register specified by A are shifted right the
number of bit positions specified by the least significant 5 bits
of the second operand. The result replaces the contents of the
register specified by =S. Only bits 1:31 participate in the
shift; bit 0 remains unchanged and 1is propagated right into
position 1 on each shift. Icw order bits shift through the carry
flag and are then lost.

SRA,SRAI: SO-«—(A0Q)

R
S1:31-- (A1:31)
Bp(27:31)
SRAX: SO=—(R0)
R
S1:31- (A1:31)

B (27:31)
then RLC10:15«4—FAGE ALCLCRESS if C=0 or Carry=0

RLCU4:15-4—(RLCUH:15)+1 if C=1 and Carry=1

50=004 ROO - 4-23

Resulting Flags

CIVIG]L

0j0fo Result is zero

001 Result is less than zero

0{1t0 Result is greater than zero
0 ' Last bit shifted out was a zero
1 Last bit shifted out was a one

Execution Times (n= number cf shifts)

SRA,SRAI: 430+6Cn
SEAX (no transfer): 560+6Cn
SRAX (transfer): 430+6Cn
y=-24

50-004 ROO

4b.4.,8 Shift Right Halfword Arithmetic

SRHA S,A,B,I,E,NC ' [RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
0011011 S A 1100 B 11 E MC

The least significant 15 kits of the register specified by AR are
shifted right the number of bit positions specified by the least
significant 4 bits of the second cperand. The result replaces
the 1least =significant 15 bits of the register specified by S.
The most significant 17 bits of the register specified by A
replace the most significant 17 bits of the register specified by
S. Bit 16 is propagated right into bit position 15 on each
shift. Bits shifted out of position 31 are shifted through the
carry flag and ther lost.

SRHA S0:16=—(R0:16)
R

S17:31 (R17:31)
By(28:31)

Resulting Flags

CiViG|L
0{010 Halfword result is zero
0ofof1 Halfword result is less than zero
011})0 Halfword result is greater than zero
0 Last bit shifted out was a zero
1 Last bit shifted out was a one
Execution Time (n = number of shifts)

SRHA: 430+6Cn

50-004 ROO - 4-25

4.,4.9 Rotate Left logical

RLL S,A,B,I,E,NC [RR CCNTROL]
0 3 56 11 16 20 25 26 27 31
00 1{0]I S A 1011 B 01 E MC
RLLX S,A,B,ADRS,I,C {RR CONTROL]
0 3 5 6 11 16 20 25 26 31
0 C1100|I S A 1011 B c PAGE ADDRESS
RLLI S,A,DATA,I (RR IMMEDIATE])
0 3 £ 6 11 16 20 31
00 11101 S A 1011 DATA

The contents of the register specified by A are shifted left, end
around, the number of bit positicns specified by the 1least
significant £ bits of the second operand. Bits shifted out of
position 0 are shifted into position 31.

L
RLL,RLLI: S0:3 1= (AQ:321)
Be(27:31)
RLLX: L
SO0:31= (A0:31)

B (27:31)

then RLC10:15-«—FAGE ADLCRESS, because Carry=0 always

Resulting Flags

ClV|G|L

o|0foOfo0 Result is zero

01010} 1 Result is nct zerc

oj0of1]0 Result is nct zerc
EFxecution Times (n = numbar of shifts)

RLL,RLLI,RLLX: 430+60n

4-2¢€ 50-004 ROO

4.4.,10 Rotate Kight lLogical

RRL S,A,B,I,E,NC [RR CCNTROL]
0 3 5 6 11 16 20 25 26 27 31
00 1]0 1|I S A 1010 B 0| E MC
RRLX S,A,B,ADRS,I,C [RR TRANSFER]
0 3 5 6 11 16 20 25 26 31
00 1(00/}1I S A 1010 B o PAGE ADDRESS
RRLI S,A,DATRA,I (RR IMMEDIATE]
0 3 5 6 11 16 20 31

0011 10]1

wn
o

17010 DATA

The contents ¢f the register specified by A are shifted right,
end around, the number of bit positions specified by the least
significant 5 bits of the second operand. Bits shifted out of
position 31 are shifted intc positicn 0.

R
RRL,RRLI: S0:31-e————(A0:31)
B (27:31)
RRLX: R
S0:31- (R0:31)

Bp(27:31)

then RLC10: 15-e——PAGE ADDRESS, because Carry=0 always

Resulting Flags

c{vic|L

0101010 Fesult is zero

010(0]1 Result is nct zero

0101140 Result is not zero
Execution Times (n = number of shifts)

RRL,RRLI,RRLX: U430+60n

50-604 ROO

F
|

27

4.5 FIXED-POINT ARITHMETIC INSTRUCTIIONS

The Fixed-Point Arithmetic Instructions provide for addition,
subtraction, multiplication and division of fixed-point data
contained in the processor registers. The instructions described
in this secticn are:

be.5.1 A Add

AX Add and Transfer

AT Add Imrediate
4.5.2 AINC Add and Increment

ARINCX Add and Increment and Transfer
4L.5.3 S Subtract

SX Subtract and Transfer

SI Subtract Immediate
L.5.4 SDEC Subtract and Decrement

SDECX Subtract and Decrement and Transfer
4.5.5 M Multiply

MX Multiply and Transfer

MI Multiply Immediate
4.5.6 L Civide

CX Pivide and Transfer

DI Divide Immediate

b-28 50-004 ROQ

4.5.1 Add

A S,A,B,I,E,NMC [RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
00 1{0 1{1) A 0 0 01 0} E MC
AX S,A,B,ALCRS,I,C [RR TRANSFER]
0 3 5 6 11 16 20 25 26 31
00 110 011 S A 0 0 0 1 C PAGE ADDRESS
AT S,A,DATA,I [RR IMMEDIATE]
0 3 5 6 11 16 20 31
0 0 1 1 011 S A 0 00 1 DATA
The second orerand is algebraically added to the first operand.
The sum replaces the contents of the register specified by S.
A,AI: Sa—(A) + B
AX: S—-<+—(R) + B
then RLC10:15w—PAGE ADDRESS if C=0 or Carry=0
RLC4:15+—(RLCU:15)+1 if C=1 and Carry=1
Resulting Flags
CiVI{G|L
010 Sum is zerc
011 Sum is less than zero
110 Sum is greater than zero
1 Overflow
1 Carry
Execution Times
A,ATI: 260
AX (no transfer): 405
AX (transfer): 260,
50-C04 ROO 4-29

4,5.2 Add and Increment

AINC S,A,B,I,E,MC

[RR CCNTROL]

0 3 £ 6 11 16 20 25 26 27 31
0c 1|0 1T S A 0011 3 0] E MC
RINCX S,A,B,ADRS,I [RR TRANSFER)
0 3 5 6 11 16 20 25 26 21
00 1]0 0|1 S A 0 ¢ 11 B C PAGE ADDRESS

The second operand is algebraically added with the first operand
and a forced carry-in of cne. The sum replaces the contents of

the register specified by S.

AINC: Sa——(A)+Bp+1

AINCX: S-=—(R)+Bp+1

then RLC10:15-+—FAGE ALLRESS if C=0 or Carry=0

RLCU ¢ 15— (RLC4:15)+1 if C=1 and Carry=1

Resulting Flags

CI|VIG|L
0}0 Sum is zero
ol 1 Sum is less than zero
110 Sum is greater than zero
1 Overflow
1 Carry

50-004 ROO

Programming Note

Multiple precision additicn operations require a carry forward
from the least significant to the most significant operands. The
following examrle shows a dcuble word add operation.

*

* MRO AND MR1 CONTAIN THE 64-BIT FIRST OPERAND

* MR2 AND ME3 CONTAIN THE 64-BIT SECOND OPERANL

* THE 64-BIT RESULT IS RETURNED IN MRO and MR1

*

START AX MR1,MR1,MR3,5UM2,C SUM LOW OPERANDS FIRST

* TRANSFER IF NO CARRY, ELSE
*

FALL THROUGH, SUMMING

AINCX MRO,MRO,MEZ,SUM3 HIGH OPERANDS THEN ADD ONE,
SKIP TO SUM3.

*

SUM2 A MRO. ‘RO, MRZ SUM HIGH OPERANDS

SUM3 EQU * (MRO,MR1)=64~BIT RESULT

Execution Times

AINC: 260
AINCX (nc transfer): 405
AINCX (transfer): 260

=
1

50-004 ROO 31

4.5.3 Subtract

S S,A,B,I,E,NMC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
00110141 S A 0000 B 0| E MC

SX S,A,B,ADEKS,I,C (RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
0C 1]00|I S A 0000 B C PAGE ADDRESS
SI S,A,DATA,I [RR IHUEDIATE]
0 3 £ e 11 16 20 31
06 1}]110]|I S A 0 000 DATA

The second operand is algebraically subtracted from the first
operande. The difference replaces the contents of the register
specified by S.

S'SI= S“‘(A)-BE

SX: Swe—(R)-Bg
then RLC10:15«—PAGE ADDRESS if C=0 or Carry=0

RLCU:1S=—(RLCUH:1E)+1 if C=1 and Carry=1

Resulting Flags

ClV]G|L
0]0 Difference is zeroc
01 Difference is less than zero
110 Difference is greater than zero
1 Cverflow
1 Borrow

Execution Times

S,ST: 260
SX (no transfer): 405
S¥ (transfer): 260

4-32 50-004 ROO

4U.5.4 Subtract and Decrement

SDEC S,A,B,I,E,NMC

[RR CONTROLI

0 3 5 ¢ 11 16 20 25 26 27 31
006110 11 S A 0010 B 0} E MC
SDECX S,A,B,ADRS,I,C [RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
00 1(00}|I) A 2010 B C | PAGE ADDRESS

The second operand and a forced carry-in of

fror the first orerand.
register specified h»y S.

SDEC: Sea——C(A)-Bg-1

SDECX: S-a—(A)-Bg-1

one
The result replaces the contents of the

are subtracted

then RLC10:15-—FAGE ADLRESS if C=0 or Carry=0

RLC4:15-~(RLCU:1E)+1 if C=1 and Carry=1

Resulting Flags

Programming Note

See Add and Increment

Execution Times

SLEC: 260
SDECX (no transfer): 405
SDECX (transfer): 260

50-COu4 ROO

CIVIGIL
010
011 Lifference
110
1 Overflow
1 Carry

Lifference is zero

is less than zero

Difference is greater than zero

4-33

4.5.5 Multirely

M S,A,B,I,E,NC (RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
0C 110 11 S A 1110 B 0] E Mc

MX S,A,B,ADRS,I,C ' [RR TRANSFER]

0 3 £ 6 11 16 20 25 26 31
06 1]0 04T S A 1110 B C PAGE ADDRESS
MI S,A,DATA,I [RR IHH¥EDIATE)
0 3 £ 6 11 16 20 31
00 1]10}I S A 11160 DATA

The 32-bit second operand is multiplied by the contents of the
first operand register. The 32 most significant product bits
replace the contents of the register specified by S. The 32
least significant product rits rerlace the contents of the first
operand register, the register specified by A. The S field must
specify an even numbered register. The A field must specify the
next sequential register, an odd number. The sign of the product
is determined by the rules c¢f algebra.

M’MI: (SIA)Q-‘(A) * BE
MX: (S,A)=w-(A) * Bg

then RLC10:15<«—PAGE ADDRESS

Resulting Flags

Execution Times

M,MI,ML: 2680/3260/3900 minimum/average/maximum

L-34 50-004 ROO

4.5.6 Divide

D S,A,B,I,E,NC [RR CONTROL]

0 3 e 11 16 20 25 26 27 31
00 11011 S A 1111 B 0| E MC

DX S,A,B,ADRS,I,C [RR TRANSFER])

0 3 £ 6 11 16 20 28 26 31
0 011001 S A 171 11 B c PAGE ADDRESS
DI S,A,DATA,I [RR IMMEDIATE]
0 3 56 11 16 20 31
00 1} 10|I S A 17111 DATA

The 64-bit dividend contained in the registers specified by S and
A, an even/odd pair, is divided by the 32-bit second operand.
The S field must specify an even numbered register and the A
field must specify the next sequential odd register. The
resulting 31-bit quotient with sign replaces the contents of the
register specified by A and the 31-bit remainder with sign
replaces the contents of the register specified by S. The sign
of the quotient is determined by the rules of algebra; the sign
of the remainder equals the sign of the dividend.

D,DI: A«—(S,RA)/Bg
Se—Remainder

DX: Aw—(5,R)/Bg
S-—-Remainder

then RLC10:15«—PACGE ALLCRESS

50-C04 ROO 4-35

Resulting Flags

ClVI|G]|L
0j0j0]0 Ncrmal
0111010 Fivide fault

Programming Ncte

A quotient more positive than *'7FFF FEFF' or more neégative than
*80C0 0000' causes the division to be aborted with the V flag set
and an unpredictable remainder in S. The register specified by
A is unchanged. Attempted division by zero results in a divide
fault.

Execution Times

L,CI,CX: 4700

4-36 50-004 ROO

4.6 FLOATING-POINT INSTRUCTIONS

These instructions prcvide - for the manipulation of
single-precisicon and double-precision floating-point data. A
floating-point quantity ccnsists of a signed exponent and a
signed magnitude fracticn, The 7-bit exponent is expressed in
excess 64 notation and can range in actual value from +63 through
zero to -64, The value of the exponent field is that power of 16
by which the fraction field is multiplied. The 24- or 56-bit
fraction 1is expressed as a hexadecimal number having a radix
pcint to the left of the high order fraction digit. Bit 0 of the
fullword or double word is the <=ign bit of the fraction.

0 1 8 12 1€ 20 24 28 31

S|EXPONENT F1 F2 E3 Fu F5 Fé6

N T/

Fraction Sign Fraction

0 1 8 12 16 20 24 28 32 36 40 44 48 52 56 60 63

S|EXPONENT|F1|F2 | F3 | Fu4| FE| F6 | F7 | F8 { FO | F10|F11|F12[F13|{F14

Fraction Sign A

Fraction

4L.6.1 Ncrmalization

A ncrmalized floating-point number for this processor is one in
which the most significant digit of the mantissa is nonzero. In
the preceding illustrations, digit F1 is nonzero if the number is
normalized. If the floating-point number is not normalized, the
normalization rrocess consists of shifting the fraction field and
any guard digits to the left hexadecimally (four bits at a tinme),
until the mcst scignificant digit of the field is nonzero. The
exponent is decremented by cne for each shift required. Exponent
underflow occurs if the expcnent is already zero when it must Dbe
decremented. A1l floating-point arithmetic operations require
ncrmalized orerands for ccnsistent results. The result of a
floating-point arithmetic operaticn is always normalized by the
floating point processor.

50-004 ROO - 4-37

4,62 FEgualization

Equalization of two operands consists of shifting the fraction
field of the operand with the smaller exponent to the right
hexadecimally (four bits at a time), while incrementing the
exponent of the operand by one. This process is repeated until
the exponents of both operands are equal. The effect is to align
the radix points of the two operands before performing an
addition or subtractiocn. Data shifted from the lower-order digit
cf the orerand is not 1lcst, but is shifted into guard digits
which participate in the =subsequent floating point processor
operation.

4.6.3 Guard Digits and R*-Rounding

When a floating-point result has been formed, it consists of a
sign, an exronent, and a fraction field, as well as a uumber of
guard digits containing the lower-order fraction digits resulting
from the floating-point oreration. Before the result is copied
to the destination, it is rcunded to provide improved accuracy.

R*-rounding is performed by the floating roint processor as
follows. The contents of the guard digits are tested. If the
most significat guard digit 1is seven or less, no rounding is
performeds If the most significant guard digit is eight, and all
other guard digits are zero, then the least significant bit of
the final result is forced to one. If the most significant guard
digit is eight and another guard digit is nonzero, or if the most
significant guard digit is greater than eight, one is added to
the fraction field of the result to form the final result. If
this addition causes a carry out of the fraction field, the
expcnent is incremented by cne, and fraction digit F1 is set *to
one, while all other fracticn digits are set to zero.

4.4 Effect of Current ESK

In the event of exponent overflow in the final result of a
floating-point operation, the destination register is not
modified; in effect, it did not participate 1in the operation.
The flags returned by the floating point processor in this case
include the V flag, ani either the C, G, or L flag. The PSW has
no effect in the case of exronent overflowe.

Should exponent underflcw occur in the final result of a
floating-pcint operation, PSW bit 19 is tested. If bit 19 1is
zero, then zero is coried tc the destination register. If bit 19
is set, the destination register is not modified; in effect, it
did not rarticipate in the obperation. The flcating point
processor returns the V flag and no other flags in the event of
expcnent underflowv.

The flocating roint processor is a standard plug-in module to the

PLOCEeSSOL. A unique set c¢f 35 microinstructions is provided to
access the flcating point prccessor (module number 6).

4-38 50-00U ROO

Figure 4-1 shows a block diagram of the floating point processor,
which is situated between the 32-bit $ bus and the 32-bit B bus.
The A bus dces not connect to the floating point processor. The
flcating point processor contains its own set of eight 32-bit
single-precision registers and eight 64-bit double-precision
registers.

445-)

& s BUS D)

A
6 CC BUS g
4
LOCAL S BUS

{ (STACK A) + (STACK B)
ERO ERO
ER2 ER2
ER4 ER4

[.

. . .

. .
ERE ERE
DRO DRO
DR2 DR 2
DR4 DOUBLE PRECISION DR 4

. ALU

3 .

L] .
DRE 7Y DRE

LLOCAL ABUS LOCAL B BUS

§ B BUS S

Figure 4-1 Floating-Foint Processor (FPP) Block Diagram

In microinstructions directed to the floating point processor,
references tc the user's general registers, either directly or
via the YL or YS fields of the user's instruction, cause the
corresponding single-rrecisicn floating-point register or half
(32 bits) of a double-precision floating-point register to be

accessed. The microinstruction distinguishes whether a
single-precision or a dcuble-precision operation is to be
performed. Single-precisicn operations can only use the

single~precision registers and docuble-precision operations can
only use the dcuble-precisicn registers.

E0-CO04 ROO 4-39

The twc halves of a double-fprecision register are read using an
even/odd addressing scheme. For example, reading double register
2 cselects the most significant 32 bits of double register 2, and
reading double register 3 selects the least significant 32 bits
of double register 2. When writing to the double-precision
registers, the least significant register address bit is ignored.
The floating roint processor handles the data steering, taking
the first 32-bit operand tc be the most significant half and the
second 32-bit operand to ke the least significant half of the
64-bit argument.

4.6.5 Floating-Point Processor (FFEF) Autonomous Operation

The Floating-Foint Processor operates in a fully autonomous mode
having its c¢wn internal A, B, and S buses. Given a load, add,
subtract, multiply, or divide operation, the floating-point
mcdule rperforms the function asynchronous of other processor
activity. The microprogram is free to perform other functions
while the floating-point module is finishing its task. If the
microprogram attempts to test the result of a floating-point
operation or begin another floating-point operation before the
last one is completed, the ©processor stops wuntil the prior
function is ccmpleted befcre starting the next functione.

This feature has an impact on determining execution times. The
average execution time shcwn for divide single ©precision, for
example, is 3395 nancseconds. In practice, assuming the
floating-point module is nct busy, the microinstruction that
initiates the divide takes only 260 nanoseconds. The processor
immediately tegins the next sequential microinstruction. The
floating-point module 1is working independently and is busy for
the next 3135 nanocseconds (3395-260). If this microinstruction
does not reference the floating-point module, the instruction is
performed, and the next microinstruction is begun. This
continues until a microinstruction is feteched that does access
the floating-point module. At that time, the processor must wait
out any of the divide execution time remaining, 3135 nanoseconds,
minus the execution time ¢f all intervening microinstructions.
If there was any time left at all, an additional 60 nanoseconds
must be added in for resyrchkrcnization.

If the E-bit is set in the microinstruction which starts the FPP,
the processor stops until the operation 1is c¢cmplete, and the
correct flags have been gJgenerated. If the IRD MC function is
sprecified in this microinstruction, then if division by zZero is
attempted, or if exponent overflow or underflow occurs in the
final result, a floating-roint interrupt occurs. The exponent
underflow interrupt does not occur if PSW bit 19 is zero. When
the interrupt does occur, the information necessary to service
the fault is available in the flags, condition code, ILOC, and
RMLF, Refer to¢ section 8.3, Interrurt Support.

4-40 50-004 ROO

Implementation Note:

The Floating-Point Processor is ncrmally strarpred to respond as
processor mcdule 6., Consequently, the Floating-Point Processor
microinstructions assemble with a module number of 6.

In order to allow microcode to be assembled for an FPP strapped
as module numter 4, the ccmmon microcode assembler (MICROCAL) has
a pair of special pseudo-oreraticns that cause the module number
of an FPP directed microinstruction to be switched from module 6
to module 4 and vice versa.

The assembler is normally in the FPP module 6 mode.
Consequently, an AER micrcinstruction normally assembles with a
module number of 6. The appearance in the source program of a
CFUU pseudo-cperation places the assembler in the FPP module 4
mode until a CFU6 pseudo-oreration is encountered. While in the
FFP module 4 mode (DFU4), all microinstructions directed to the
FPP (AER, for exar e) assenble with a module number of 4.

A rseudo-operation is an instruction only to the assembler and,
as such, causes nho object ccde to be generated.

The instructions described in this section are:

L.6.5.1 RCC Read Condition Code
RCCX Read Condition Code and Transfer

4.6.5.2 LE Load Fegister Single Precision
LEX Load Register Single Precision and Transfer
LET Locad Ekegister Single Precision Immediate

4.6.5.3 RRE Read EKegister Single Precision
RREX Read Register Single Precision and Transfer

he6.5.4 CER Compare Register Single Precision
CEEY Compare Register Single Precision and
Transfer

4.6.5.5 AER Bdd Register Single Precision
AFRX Add Register Single Precision and Transfer

U.6.5.6 SER Subtract Register Single Precision
SEEX Subtract Register Single Precision and
Transfer

4.6.5.7 MER Multirly Register Single Precision
MERX HMultiply Register Single Precision and
Transfer

4.6e.5.8 TER Divide Eegister Single Precision
CERX Divide Register Single Precision and Transfer

50-004 ROO 4-41

U-u2

L.6.5.9

4.6.5.10

b.6.5.11

be6.5.12

4.6.5.12

b.6.5.10

behe5.16

Iw
LWX
IWI

LD
LDX
LDT

RED
RRDX

CDR
CDRX
ADR
ADRX
SCR
SDRX

MDR
MDRX

CLR
CDRX

Load Word
Lcad Word and Transfer
Load Word Immediate

Load Register Dcuble Precision
lLoad Register LCouble Precision and Transfer
Load Register LCcuble Precision Immediate

Read Register Dcuble Precision
Read Register Lcuble Precision and Transfer

Compare Register Louble Precision
Compare Register Double Precision and
Transfer

Add Register Couble Precision
Rdd Register LCouble Precision and Transfer

Suptract Register Louble Precision
Subtract Register Double Precision and
Transfer

Multirly Register Double Precision
Multirly Register Double FPFrecision and
Transfer

Pivide Register Double Precision
Divide Fegister Double Precision and Transfer

50-004 ROO

b.€e5e1 Read Condition Ccde

RCC S,B,I,E,NC | [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
110(011] s |11111]0000 B ol E MC
RCCX S,B,ADRS,I,C {RR TRANSFER]
0 3 56 11 16 20 285 26 31
110[00f{I] S 11111]0¢c¢CoO0 R |c PAGE ADDRESS

The flags that resulted from the last single-precision or
double-precision flecating~pcint operation are collected.

RCC: CCBUS-e——Floating-Pcint Flags
RCCX: CCRUS~e—Floating-Pcint Flags
then RILC10:15-«—PAGE ADDRESS

Resulting Flags

Letermined by previous flocating-point operation

Programming Ncte

The S and B fields are not used and should be NULL selected.

Fxecution Times

RCC: 260
RCCX (no transfer): 405
RCCX (transfer): 260

50-004 ROO - 4-43

4.6¢65.2 Load Register Single Precision

LE A,B,I,K,E,NC | [RR CONTROL]
0 3 £6 11 16 20 25 26 27 31
110[lo0If1t1111] A Joo10| B |K[|E ife
LEX A,B,ADRS,I,C [RR TRANSFER]
0 3 £6 11 16 20 25 26 31
110fcofr{11111 A Joo10f B |C| PAGE ADDRESS
LET A,DATA,I [RR IMMEDIATE]
0 3 £ 6 11 16 20 31
11010{I|11 111 A foo10 DATA

This instruction 1loads the single-precision floating-~point
register specified by A in the follcwing manner:

If a Load Word instruction did not precede this Load Register
instruction, then the =seccnd operand presented by the Load
Register instruction 1is the most significant 32 bits of a
double-precision numbers The least significant 32 bits of this
number are forced to zero. If a Load Word instruction did
precede this instruction, then the load Word presented the most
significant 32 bits, and the data presented by this Load Register
instruction is the least significant 32 bits of the
double-precision argument.

This 64-hit effective seccnd operand is normalized, if necessary,

and then R*-rcunded to single-prrecision accuracy. If exponent
overflow or underflow «c¢ccurs in the final result, the current
state of the PSW must Le interrcgated. If no overflow or

underflow occurs, the rounded result replaces the contents of the
single-precision floating-pcint register specified by A.

For the RR Ccntrol format, the K kit causes any normalization or
rounding to be avoided. The second operand is copied directly
intc the floating-point register specified by A with no
modification.

LE,LETI: Aw—B

LEX: A-—Bx
then RLC10:15«—-FAGE ALLRESS

Lb-4y 50-004 ROO

Resulting Flags (if E bit is not set)

ClVI|GIL

olo|0O]|1 Fraction was ncrmalized and less than zero
0j0j1]0 Fraction was normalized and greater than zero
C{1{X(X Fraction was not ncrmalized

Final Flags (after RCC, or if the E bit is set)

CivViG|L

olo0]ofo0 Result is zero

c{of{ofo Result is less than zero

ojoj1)0 Result is greater than zero

o[1]0]0 Exponent underflow

ol 11011 Exponent overflow, result is less than zero

0| 1111}0 Exponent overflow, result is greater than zero

Programming Notes

The register specified by A must be a single-precision
floating-pcint register. If the E bit 1is not set, the
floating-pcint oreration is rerformed independent of any other
processor activity. In this case, the V flag resulting from the
instruction may bhe tested to determine whether or not +the
fraction vwas normalized. If the V flag is zero, the fraction was
already normalized, and all other flags are correct, provided
that there is no possibility of expcnent overflow in the final
result dve to R*-rounding.

If the V flag is set ¢r if there is a possibility of exponent
overflcw, then the flags corresponding te the final result must
be collected by a read condition code microinstruction if they
are to be known.

If the E bit is set in this instruction, the microprogram is not
allcwed to rroceed until the floating-point operation 1is
comkrleted. Valid flags ccrresponding to the final result are
produced and gated to the condition code when the operation is
completed.

Because the single-precision flocating=-point registers are
actually implemented as double-precision registers, an
unnormalized load (LE with the K it set) must be performed
following power restore, to initialize the least significant 32
bits of each single-precisicn register. Failure to initialize
these registers causes undefined data to participate in all
orerations using any initialized single-precision register, with
unrredictable results.

Execution Times

LE, LEI: 46C+130n

LEX (transfer taken): 46C+130n where n = normalize cycles

LEX¥ (no transfer): " 605+130n

50-C04 ROO u-45

4.6.5.3 Read Register Single Precision

RRE s,B,I,E,MC [RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
1100 1|1 S {f1T111110001 B 0| E MC
RREX s,B,ALRS,I,C {RR TRANSFER]
0 3 £ € 11 16 20 25 26 31
1710{ 06 0]I S 1111110001 B C | PAGE ADDRESS

The contents o©f the single-precicsicn floating-point register
specified by B are copied tc the register specified by S.

RRE: S—a—(B)
RREX: S—~+—(R)
then RLC10:15«—PAGE ADLRESS

Resulting Flags

Not meaningful

Programming Nctes

Floating~point register selection is not affected by the least
significant B address Lit. If an odd numbered register is
specified, the next lower even numbered register is selected
instead.

The S field may specify any register other than a floating-point
register.

Execution Times

RRE: 410
REKEX (transfer taken): 410
RREX (no transfer): 5€EE

b-ue 50~-004 ROO

L.6a5.4

CER A,B,I,E,NC

0 3 56 11

Compare Register Single Precision

[RR CONTRCL]

16 20 25 26 27

31

110f{0 11|11 111 A

00 11 B 0| E MC

CERX A,B,ALRS,I,C

0 3 5 6 11

[RR TRANSFER]

16 20 25 26

31

171010 0(If1 1111 A

0011 B c

PAGE ADDRESS

The first operand 1is

ccmgpared tc

the second

operand.

The

is algebraic,
The

comparison
and fracticn.

CEP: (A) :w-Bg

CERX: (A) :=—Bg

then RLC10:15«—PAGE

Resulting Flags (after RCC, or

orerand
operand
orerand

First
First
First

O - OO
O O Ol
- O Ofa
O - O

Execution Times

CER: 430
CFRX (transfer taken): 430
CERX (no transfer): 875

50-004 ROO

taking into account the sign,
‘esult is indicated by the resulting flags.

expohent,

ACLCRESS

if the F bit is set)

equal to second operand
less than second operand
greater than second operand

h.6.5.5 Add Register Single Precision

AER A,B,I,E,NC {RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
1100 1jIf1t 1111 A D100 B 0| E MC

AERX A,B,ACRS,I,C | [RR TRANSFER]

0 3 £ 6 1 16 20 25 26 31
1710/ 0011111 A 0100 B C PAGE ADDRESS
The two cperands are added in the fcllowing manner. The £first
operand is ccmpared to the second cperand. The comparison is in
magnitude only, ignoring the signs of the two operands. The

fracticn field of the smraller c¢f the two 1is shifted right
hexadecimally (four bits at a time) the number of times indicated
by the difference of the exrcnents of the two operands. This is
called equalization. Note that hexadecimal digits shifted out of
the 1low order end of the 24-bit fraction field are shifted
through guard digits, which preserve the accuracy of the number
to the limits of the precision of the input operand. The effect
of this wequalization prccess 1is to unnormalize the smaller
operand so that the radix points of the +two arguments are
aligned. If the exponent difference exceeds seven, the smaller
operand loses significance and a value of zerc is substituted.

The equalized fraction with its guard digits and the fraction of
the other operand with trailing zeros are then added, taking into
account the signs and order of +the two operands. The result
fraction has an exponent egual to that of the larger operand. If
the addition of fractions produces a carry, the result fraction
with guards is shifted right one hexadecimal position and the
result expocnent is incremented by one, If no carry was produced,
the result fraction with guards is normalized if necessary. The
result exponent is decremented by one for each normalization
cycle required.

When the result fraction has been normalized, the contents of the
guard digits participate in an R*-rounding of the result to
single-precision accuracy. If exponent overflow or underflow
occurs in the final result, the current state of the PSW must be
interrogated. If no exponent overflow or underflow occurs, the
rounded result replaces the contents of the single-precision
floating-point register srecified by A.

AER: Ae—(A)+Bg
AFEX: A-<—(A)+Bg

then RLC10:15--«—PAGE ALLRESS

b-48 50-004 ROO

Resulting Flags (after RCC, or if the E bit is set)

CIVIG|L

0100]0 Result is zero

01010} 1 Result is less than zero

0]1011]0 Result is greater than zero

011]10]0 Exponent underflow

011]10{1 Fxronent overflow, result is less than zero
0]1]110 Exponent overflow, result is greater than zero

Programming Nctes

The register specified by A must be a single-precision
floating~point register.

If the =seccnd operand is 1larger than the first operand, this
instruction requi. s an additional 100 nsec to execute.
Therefore, if data is known, this ©penalty can be avoided by
ensuring that the second cperand is the smaller of two unequal
operandse.

If the E bit is not set, the floating-point operation is
performed autonomously, independent of any other processor
activity. In this <case, the flags corresponding to the final
result must be collected by an RCC microinstruction if they are
to ke knowne

If +the E bit is set in this instruction, the microprogram is not
allcwed to rproceed until the floating-point operation is
complete, and valid flags corresponding to the final result have
been produced and gated tc the condition code.

Execution Times

BER: 700 + 10C (e+n) e=equalize cycles
worst case total of e+n=6
n=ncrmalize cycles

RERX (transfer taken): Same as AER
AERX (no transfer): Same as AER, plus 145

If the B operand is greater than the A operand, add 100
If R*-rounding required, add 100

50-004 ROO

=
|

49

4.6.5.6 Subtract Register Single Frecision

SER A,B,I,E,NC , ' [RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
171010 1fI{1 1111 A 0101 B 0| E MC
SERX A,B,ALRS,I,C {RR TRANSFER]
0 3 E 6 11 16 20 25 26 31
17100 0fIl1T 1111 A 0101 B o PAGE ADDRESS
The two operands are subtracted in the following manner. The

first orperand is compared tc the second operand. The comparison
ig in magnitude only, igncring the signs of the +two operands.
The fraction field of <the smaller of the two is shifted right
hexadecimally (four bits at a time) the number of times indicated
by the difference of the exponents of the two operands. This |is
called equalization. Note that hexadecimal digits shifted out of
the 1low order end of the 24-bit fraction field are shifted
through guard digits, which preserve the accuracy of the number
to the limits of the precision of the input operand. The effect
of this wequalization prccess 1is to unnormalize the smaller
operand so that the radix points of +the two arguments are
aligned. If the exponent difference exceeds seven, the smaller
operand loses significance and a value of zero is substituted.

The equalized fraction with its guard digits and the fraction of
the other operand with trajiling zercs are then subtracted, taking
intc account the signs and crder of the two operands. The result
fracticn has an exponent egval to that of the larger operand. If
the additicn cf fractions produces a carry, the result fraction
with guards 4is shifted 1right one hexadecimal position and the
result exponent is incremented by one. If no carry was produced,
the result fraction with guards is normalized if necessary. The
result exponent 1is decremented by one for each normalization
cycle regquired.

When the result fraction has been normalized, the contents of the
guard digits participate in an R*=-rounding of the result to

single-precision accuracye. If exponent overflow or underflow
occurs in the final result, the current state of the PSW must be
interrogated. If no exronent overflow or underflow occurs, the

rounded recult replaces the <contents of the single-precision
floating-point register srvecified by A.

4-£0 50-004 ROO

SER: Awe—(RA)-BRg
SERX: A«w—(A)-Bg

then RLC10:15<«—FAGE ADDRESS

Resulting Flags (after RCC, c¢cr if the E bit is set)

ClVIG]|L

ofjojo|o Result is zero

0101011 Result is less than zero

0|01 0 Result is greater than zero

011(010 Exponent underflow

0110141 Expvonent overflow, result is less than zero
ol111]0 Exponent overflow, result is greater than zero

Programming Nctes

The register specified by A nmust be a single-precision
floating~-point register.

IJf the second o¢perand is larger than the first operand, this
instruction requires an additional 100 nsec to execute.
Therefore, 1if data is known, this penalty can be avoided by
ensuring that the second cperand is the smaller of +two unegual
operands.

If the E bit 1is not set, the floating-point operation is
vrerformed autonomously, independent of any other processor
activity. In this case, the flags corresponding to the final
result must be collected ty an ECC microinstruction if they are
to be known.

If the E bit is set in this instruction, the microprogram is not
allcwed +to rroceed wuntil +the floating-point operation is
complete, and valid flags corresponding to the final result have
been produced and gated tc the condition code.

Execution Times

SER: 700+100 (e+n) e equalize cycles

H

}worst case total of e+n=6

n ncrmalize cycles

SERX (transfer taken): Sare as SER
SERX (no transfer): Same as SER, plus 145

If the B operand is greater than the A operand, add 100
If R*-rounding is required, add 100

50-004 ROO 4-51

Us6e5e7 Multiply Register Single Precision

MER A,B,I,E,NC 4 [RR CONTROL]
0 3 E 6 11 16 20 25 26 27 31
171010 1I|1 1111 A 0110 B 0} E MC
MERX A,B,ALCRS,I,C [RR TRANSFER]
0 3 £ € 11 16 20 25 26 31
110 00(I11T1 111 A 0110 B C{ PAGE ADDRESS

The exponents of the first and second operands are added and the
result set aside as the result exponent. The result sign is
determined by the rules of algebra. The fractions of the +two
orerands are then multiplied. If the product is zero, the entire
result (sign and exponent included) is set to zero. If the
product is nonzero, the fraction and guard digits resulting from
the multiplication are ncrmalized cr adjusted as necessary. The
sign, exponent, and result fraction are then combined.

The contents cf the guard digits participate in an R*-rounding of
the result tc single-precisiocn accuracy. If exponent overflow or
underflow occurs in the final result, the current state of +the
PSWH must bLe interrogated. If no exponent overflow or underflow
occurs, the rcunded result replaces the <contents of the
single-precision floating-pcint register specified by A.

MER: A-«—(A)*Bg

MERX: A-«-(A)*Bg

then KLC10:15<—PAGE ADDRESS

Resulting Flags (after RCC, cr if the E bit is cet)

Result is zero

Pesult igs less than zero

kesult is greater than zero

Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than =zero

[eNoReRoNoNolle]
BN G N = Ne Ne 1 85
- OO =0 Ol
G a2 OO = Oft

4-52 50-004 RQO

Programming Notes

The register specified by A must be a singlé-precision
floating-pcint register,

The MER algorithm <scans the second operand, searching for bit
comtinations which allow a reduction in the number of
multiplicaticn steps. If one operand is Kknown to have strings of
four or more contiguous cne bits or contiguous zero bits, then
for fastest multiplication, that operand should be wused as the
seccnd cperand: iece, (T)*(2.) requires less time than (2.)
* (m).

If the E bit 4is not =set, the floating-point ©operation is
performed autonomously, independent of other processor activity.
In this case, the flags ccrresponding to the final result must be
collected by an RCC microinstruction if they are to be known.

If the E bit is set .n this instruction, the microprogram is not
allcwed to proceed until the floating-point operation is
comrplete, and valid flags ccrrespcnding to the final result have
been produced and gated to the condition code.

Execution Times

MER: 1425/1793/2160 BEST/AVG/HWORST
MERX (transfer taken): Same as MER
MERX (no transfer): Same as MER, plus 14%

If R*-rounding is required, add 100

50-004 ROO L-53

bU.6.5.8 Divide Register Single Precision

CER A,B,I,E,NC [RR CONTROL]

0 3 £ 6 11 16 20 28 26 27 31
1100 17111111 A 0111 B 0| E MC
DERX A,B,ALRS,I,C {RR TRANSFER]

0 3 5 6 11 16 20 25 26 31
1710100171111 A 0111 B C}| PAGE ADDRESS

The exponent of the second operand 1is subtracted from the
expcnent o¢of the first orerand and the result is set aside as the
expcnent of the final result. The result sign is determined by
the rules of algebra. The first operand (dividend) is divided by
the second operand (divisor). If the «dquotient is zero, the
entire final result (sign and exponent included) is set to zero.
If the quotient 4i= nonzero, the quotient and guard digits
resulting from the divisicn are nocrmalized or adjusted as
necessarye. The sign, exronent, and result fraction are then
comtined.

The contents of the guard digits rarticipate in an R*-rounding of
the result tc single-precision accuracy. If exponent overflow or
underflow occurs in the final result, the current state of +the
PSH must be interrogatede. If nc exponent overflow or underflow
occurs, the rounded result replaces the contents of the
single-precision floating-pcint register specified by A.

DER: A--—(RA)/Bg

PERX: A-—(R)/Bg

then FPLC10:15w—FAGE ALLCRESS

Resulting Flags (after RCC, cr if the E bit is cset)

Result is zero

Result is less than zero

Eesult is greater than zero

Exponent underflow

Exponent overflow, result is less than zero
Exponant overflow, result is greater than zero
Civisor is zero

ENelNeoNeoNoNoNeolle)
P ™ e Ne Ne] P
[« 3 Ve Na e Nol)]
(o« Yo o Yol

b-54 50-004 ROO

Programming Notes

The register specified by A must be a single-precision
floating-point register.

In the event of attempted division by =zero, the result
destination register is unchanged. The operaticn is aborted, and
the flags returned are set tc 1100 .

If the E bit is not set, the floating-point operation 1is
rerformed avtoncmously, inderendent of any other processor
activity. 1In this case, the flags corresponding to the final
result must be collected ty an RCC microinstruction if they are
to be known.

If the E bit is set in this instruction, the microprogram is not
allcwed to proceed until the . flcating-point operation is
complete, and valid flags ccrresponding to the final result have
been produced and ted toc the condition code.

Execution Times

DER: 3395
DERY (transfer taken): 3395
CERX (no transfer): 3840

If R*-rounding is required, add 100

50-004 ROO L-55

4.6.5.9 Load Word

LW A,R,I,E,NC [RR CONTROL]

0 3 56 11 16 20 25 26 27 31
171010 1711111 A 170060 B o0t E McC
LWX A,B,ADRS,I,C (RR TRANSFER]

e 3 € 6 11 16 20 28 26 31
1710100111111 R 1000 B C PAGE ADDRESS
LWI A,DATA,I (RR IMMEDIATE]

0 3 5 € 11 16 20 31
1101170171111 A 1000 DATA

This microinstruction is required when the second operand for a
dcukle-precision function 1is not resident in one of the DFU's
internal registers; that is, the second operand is contained in
microregisters, in main memcry, or in control store.

This instruction presents the most significant 32 bits of the
desired argument to the FFP. This fullword 1ise retained in a
holding register within the FPP. A subsequent floating-point
microinstruction presents the least significant 32 bits of the
seccnd operand to the FEF via the B bus and the operation is
perfcrmed.

LW,LWI: FPPw—Bg

LWX: FPFPw-B;

then (RLC10:15)«—PARGE ALLRESS

Resulting Flags

Unchanged

Programming Ncte

The A field is not used, and should be null selected.

Execution Times

LW,ILWX,LWI: 260

4-%¢ 50-004 ROO

4.6.5.10 Load Register Dcuble Precision

LD A,B,T,E,NC,K {RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
171010 11I11 1111 A 1010 B K| E MC
LrX A,B,ALRS,I,C [RR TRANSFER]
e 3 £ 6 11 16 20 25 26 31
1T10/00fIl1T1T 111 A 17010 B C PAGE ADDRESS
LDI A,DATA[,I] [RR IMMEDIATE]
0 3 £ 6 11 16 20 31
1101 1T01T11T 1111 A 17010 DATA
Thie instruction loads the double-precision floating-point

register specified by A in the following manner: if B specifies
one of the dcuble-precisicn floating-point registers, then that
register contains the seccnd operand.

Otherwise, if a Load Word instruction did not precede this Load
Register instruction, the second operand presented by the Load
Register instruction 1is the most significant 32 bits of a
double-precision number. The least significant 32 bits of this
number are forced to zero. If a Load Word instruction did
precede this instruction, then the load Word presented the most
significant 32 bits, and the data presented by this Load Register
instruction is the least significant 32 bits of the
doutle-precision argument.

This 64-bit effective seccnd operand is normalized, if necessary.
If exronent underflow occurs in the final result, the current
state of the PSW must be interrocgated. If no underflow occurs,
the result replaces the contents of the double-precision
floating~point register srecified by RA.

For the RR Ccntrol format, the K bit causes any normalization to
be avoided. The second <cperand is copied directly into the
floating-point register srecified by A with no modification.
1LD,1I0TI: Ae—-o>~B_

LLCX: AR

then RLC10:15-—PACE ALLCRESS

50-C04 ROO 4

57

Resulting Flags (if E bit is not set)

CI|VIG]IL

0101011 Fraction was normalized and less than zero
ojot1yo Fraction wae normalized and greater than zero
011X }X Fraction was not ncrmalized

Final Flags (after RCC, or if the E bit is set)

CiVIG|L

o{o0jo0}o Result is zero

0101010 Result is less than zero

0j0|110 Result is greater than zero

0|11]0]0 Exponent underflow

0111011 Exponent overflow, result is less than zero
0114110 Exponent overflow, result is greater than zero

Progranming Notes

The register specified by A nmust bhe a double-precision
floating-point register. If the E bit 1is not set, the
floating-point cperation is rperformed autonomously, independent
of any other processor activity. In this <case, the V flag

resulting frcm the instructicn may be tested to determine whether
the fracticn was normalized cr note If the V flag is zero, the
fraction was already normalized, and all other flags are correct,
provided that there is no pcssibility of exponent overflow in the
final result due to BR*-rcunding.

If +the V flag is set, then the flags corresponding to the final
result must be collected by a read condition code
micrecinstruction it they are to be known.

If the E kit is set in this instruction, the microprocgram is not
allcwed to rroceed until the floating-point operation is
comglete, Valid flags c¢crresponding to the final result are
produced and gated to the ccndition code when the operation is
complete.

Execution Times

LD,LCI: 5560+1:0n
LDX (transfer taken): 560+41:0n where n = normalize cycles
LLX (no transfer): 705+4+130n

4-58 50-004 ROO

Le6e45¢11 PBRead Register Dcutle Precision

RED S,B,I,E,MC [RR CONTROL)
C 3 5 ¢ 11 16 20 25 26 27 31
110 0 1)1 S 1111111001 B 0} E MC
RRDX 5,B,ALCRS,I,C [RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
110001 S 111111100 1 B C| PAGE ADDRESS

The contents of the double-precision floating-point register half
specified by B are opied into the register specified by S. The
flags generated by this instruction equal the result flags of the
last floating-roint operaticn.

RRD: (S)a—-(B)
RRDX: (S)—(R)
then (RLC10:15)«—PAGE ALDRESS

Resuvlting Flags

Not meaningful

Programming Nctes

If R specifies an even-numbered register half, the most
significant half of the floating-point register 1is fetched.
Otherwise, the least significant half is fetched.

Execution Times

RRD: 41¢
RRDX: (transfer taken): 41c
RRDX: (nc trancsfer): E5E

50-004 ROO 4-59

4,6.5:12 Comrare Register [cuble Frecision

CCR A,B,I,E,MC {RR CONTROL]I
0 3 5 6 11 16 20 25 26 27 31
11010 1111111 A 1011 B 0| E MC
CLRX A,B,CLRS,I,C [RR TRANSFER]
0 3 E 6 " 16 20 25 26 31
110100111111 A 10 11 B C PAGE ADDRESS
The first operand 1is ccmrpared tc the second operand. The

comrarison is algebraic, taking into account the sign, exponent,
and fraction. The result is indicated by the resulting flags.

CLR: (A) 1-e—Ry
CDRX: (A):e—Bg

then RLC10:15<«——PACE ALDRESS

Resulting Flags (after RCC, cr if the E bit is set)

ClVIG|L

0[0{0]0 First orerand egual to second operand
1(0101|1 First operand less than second operand
0[011}]0 First orerand greater than second operand

Execution Times

CDR: 4Ees
CCRY (transfer taken): 455
CDRX (no transfer): €00

4-6C 50-004 ROO

b.645413 Add Kegister Pouble Precision

ADR A,B,I,E,MC _ [RR CONTROL]
0 3 £ 6 11 16 20 2% 26 27 31
171010 1}JI{1 1111 A 17100 B 0| E MC
ALRX A,B,ALRS,I,C [RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
11010 0II1T 1111 A 117100 B C PAGE ADDRESS
Tﬁe two operands are added in the fcllowing manner. The first

operand 1is compared to the second operand. The comparison is in
magnitude only, i¢g 'ring the signs of the two operands. The
fraction field of the =smaller operand is shifted right
hexadecimally (four bits at a time) the number of times indicated
by the difference of the exronents cf the two operands. This is
called egualization. Note that hexadecimal digits shifted out of
the 1low order end of the 56-bit fraction field are shifted
thrcugh guard digits which preserve the accuracy of the number to
the limits of the precisicn cf the input orerand. The effect of
this equalization process is to unnormalize the smaller operand
so that the radix points ¢cf the two arguments are aligned. If
the exponent difference exceeds 14, the smaller operand loses
significance and a value cf zero is substituted.

The equalized fraction with its guard digits and the fraction of
the other operand with trailing zeros are then added, taking into
acccunt the signs and order of the two operands. The result
fracticn has an exponent equal to that of the larger operand. If
the addition of fractions produces a carry, the result fraction
with guards is <shifted 1right one hexadecimal position and the
result exponent is incremented by one. If no carry was produced,
the result fraction with ¢uards is normalized, if necessary. The
result exponent is decremented by one for each normalization
cycle required.

When the result fraction has been ncrmalized, the contents of the
guard digits participate in an R*-rounding of the result to
double-precision accuracy. If expcnent overflow or underflow
occurs in the final result, the current state of the PSW must be
interrogated. If no exponent overflow or underflow occurs, the
rounded result replaces the contents of the double-precision
floating-point register specified by R.

50-004 ROO 4-61

ADR: = A-e—(A)+Bg
ADRX: A«e—(A)+Rg

then RLC10:15-«——FAGE ALLRESS

Resulting Flags (after RCC, cr if the E bit is set)

Result is zero

Pesult is less than zero

Result is greater than zero

Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than zero

[eNeNoNoNoNolle!
_ - OO0 O
D2 OO0 a0 OO0
DO O Ol

Programming Notes

The register specified by A must be a double-precision
floating-point register.

If the second c¢perand is 1larger than the first operand, this
instruction requires an additional 100 nsec to execute.
Therefore, if data is known, this penalty can be avoided by
ensuring that the second cperand is the smaller of two unequal
operandse.

If the E bit 1is not set, the floating-point operation is
performed autonomously, independent of any other processor
activity. In +this case, the flags corresponding to the final
result must be collected ty an RCC microinstruction if they are
to be known.

If the E bit is set in this instruction, then the microprogram is
not allowed to proceed until the floating-point operation is
comrlete, and valid flags ccrresponding to the final result have
been produced and gated tc the condition code.,

Execution Times

ADR: 750+100 (e+n) e=equalize cycles
worst case total of e+n=13
n=normalize cycles

ALCRX (transfer taken): Same as ADR
ACRX (no transfer): Same as ALR, plus 145

If the B operand is greater than the A operand, add 100
If R*-rounding is required, add 100

4-£2 50-004 ROO

b.645.18 Sultract Register Louble Frecision

SCR A,B,I,E,NC (RR CONTROL]
0 3 £ 6 11 16 20 25 26 27 31
171010 1II1T1111 A 1101 B 0| E MC
SDRX A,B,ACRS,I,C {RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
1T1T0}001I11T1 111 A 1101 B c PAGE ADDRESS
The two operands are subtracted in the following manner. The

first operand is compared to the second operand. The comparison
is in magnitude on.., igncring the signs of the two operands.
The fraction field of +the smaller operand is shifted right
hexadecimally (& bits at a time) the number of times indicated by
the difference of the exponents of the two operands. This is
called equalization. Note that hexadecimal digits shifted out of
the 1low order end of the 56-bit fraction field are shifted
throcugh guard digits which preserve the accuracy of the number to
the limits of the precisicn of the inrut operand. The effect of
this equalization process is to unncrmalize the smaller operand
so that the radix points cf the two arguments are aligned. If
the exponent difference exceeds 14, the smaller operand loses
significance and a value cf zeroc is substituted.

The equalized fraction with its guard digits and the fraction of
the other operand with trailing zercs are then subtracted, taking
intc account the signs and crder of the two operands. The result
fraction has an exponent equal to that of the larger operand. If
the addition of fractions produces a carry, the result fraction
with guards is shifted right one hexadecimal ©position and the
result exponent is incremented by one. If no carry was produced,
the result fracticn with ¢uards is normalized, if necessary. The
result exponent 1is decremented Ly one for each normalization
cycle required.

When the result fraction has been ncrmalized, the contents of the
guard digits participate in an R*-rounding of the result to
double-precision accuracy. If exponent overflow or underflow
occurs in the final result, the current state of the PSW must be
interrogated. If no exponent overflow or underflow occurs, the
rounded result rerlaces the contents of the double-precision
floating-point register srecified by A.

=
1

50-004 ROO 63

SDR: A~e—(RA)-RBg
SCRX: A~—(A)-Bg

then RLC10:15«+— FAGE ALLCRESS

Resulting Flags (after RCC, or if the E bit is set)

Result is zero

Result is less than zero

Result is ¢greater than zero

Exponent underflcw

Exronent overflow, result is less than zero
Exponent overflow, result is greater than zero

[eNoNoNoNole! e
- O 00O
= OO0 - 0O 0|0
OO D a0

Programming Notes

The register specified by A must be a double-precision
floeting-point register.

If +the second o¢perand is larger than the first operand, this
instruction requires an additional 100 nsec to execute.
Therefore, 1if data is known, this ©penalty can be avoided by
ensuring that the second cperand is the smaller of two unegual
operands.

If +the E bit 1is not set, the floating-point operation is
performed autonomously, independent of any other processor
activitye. In this case, the flags corresponding to the final
result must be collected ty an ECC microinstruction if they are
tc ke known.

If the E bit is set in this instruction, then the microprogram is
not allowed to proceed wuntil the floating-point coperation is
comrlete, and valid flags corresponding to the final result have
been produced and gated toc the condition code.

Execution Times

SCR: 7E0+100 (e+n) e equalize cycles
worst case total of e+n=13

normalize cycles

n

SCRX (transfer taken): Samre as SDR
SCEX (no transfer): Same as SDR, plus 1458

If the B operand is greater than the A operand, add 100
If R*~rounding is required, add 100

4-64 50-004 ROO

bL,6.5.15 Multiply kegister LCouble Precision

MDR A,B,I,E,NMC . [RR CONTROL])

0 3 E € 11 16 20 25 26 27 31
110]0 1f{If1 1111 A 17110 B 0| E MC
MLCRX A,B,ALRS,I,C {RR TRANSFER]

0 3 56 11 16 20 25 26 31
1T10100|If1T 1111 A 1110 B C PAGE ADDRESS

The exponents of the first and second coperands are added and then
set aside as the exponent of the final result. The result sign
is determined by 1e rules cf algebra. The fractions of the two
operands are then multiplied. Tf the product is zero, the entire

result (sign and exponent included) is set to zero. If the
product is nonzero, the fraction and guard digits resulting from
the multiplication are ncrmalized or adjusted as necessary. The

sign, exponent, and result fraction are then combined.

The contents of the guard digits participate in an R*-rounding of
the result to double-precision accuracye. If exponent overflow or
underflow occurs in the final result, the current state of the
PSW must be interrogated. If no exponent overflow or underflow
OoCCurs, the rounded result rerlaces the contents of the
double-precision floating-pcint register specified by A.

MCR: Aw-(A)*Bg

MDRX: RA-—(A)*Bg

then RLC10:15«—PACGE ADDRESS

Resulting Flags (after RCC, or if the E bit is set)

Result is zero

Result is less than zero

Result is greater than zero

Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than zero

[cNeNoRoNeNalle]
SO0 0O
SO O 2000
(o eNo o]l

50-004 ROO - 4-65

Programming Notes

The register specified by A must be a double-precison
floating-pcint register.

The MLR algorithm scans the second operand, searching for bit
combinations which allow a reduction in the number of
multirlication steps. If one operand is known to have strings of
four or more <contiguous cne bits or contiguous zero bits, then
for fastest multiplication, that operand should be used as the
seccnd orerand; i.e., (7)*(2,) 1is faster than (2.)*(7).

If the E bit is not =set, the floating-point operation is
performed autonowmously, independent of any other processor
activity. In +this <case, the flags corresponding to the final
result must be collected by an RCC microinstruction, if they are
tc be known.

If +the E bit is set in this ianstruction, the microprogram is not
allcwed to rproceed until the floating-point operation is
complete, and valid flags corresponding to the final result have
been produced and gated tc the cecndition code.

Execution Times

MLCR: 2410/3020/3630 BEST/AVG/WORST
MDRX (transfer taken): Sare as MDR
MDRX (no transfer): Same as MDR, plus 145

If R*-rounding is required, add 1GC

4-66 50-004 ROO

4.6.5.15 ULivide Register Dcuble Precision

DLR A,8,I,E,NC : [RR CONTROL]

0 3 £ 6 - M 16 20 25 26 27 31
17100 111111 A 1111 B 01| E MC
DDRX A,B,ADRS,I.C [RR TRANSFER]

0 3 56 11 16 20 25 26 31
1T10{00(|Ij17 1111 A 171 11 B C PAGE ADDRESS

The exponents of the first and second operands are subtracted and
then set aside as the result exponent. The result sign is
determined by the . les cf algebra. The first operand (dividend)
is divided ¢ty the second cperand (diviscr). TIf the guotient is
zero, the entire final result (sign and exponent included) is set
tc zero. Tf the quotient is nonzerc, then the gquotient and guard
digits resulting from the division are normalized or adjusted as
necessary. The sign, exrponent, and result fraction are then
combined.

The contents of the guard digits participate in an R*-rounding of
the result to double-rrecision accuracy. If exponent overflow or
underflow occurs in the final result, the current state of the
PSW must Dbe interrogated. If no exponent overflow or underflow
oCCcurs, the rounded result rerlaces the contents of the
doubtle-precision floating-pcint register specified by A.

DCR: A-(RA)/Eg

DDRX: A-—(A) /B

then RLC10:15«—PAGE ADLCRESS

Resulting Flags (after RCC)

Result is zero

Result is less than zero

Result is greater than zero

Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than zero
Civisor is zero

EYeNoNoNoRoNalla!l
- OO0 o<
O a0 O 200N
OO0 2O

50-C04 ROO - b-67

Programming Notes

The register specified by A must be a double-precision
floating-point register.

In the event of attempted division by zero, the result
destination register is unchanged. The operation is aborted, and
the flags returned are set tc 1100;.

If the E bit 1is not =set, the floating-point operation is
performed autonomously, indevrendent of any other processor
activity. In this case, the flags <corresponding to the final
result must te collected by an RCC microinstruction, if they are
to be known,

If the E bit is set in this instruction, then the microprogram is
not allowed to proceed until +the floating-point operation is
complete, and valid flags ccrrespcnding to the final result have
been produced and gated tc the condition code.

Execution Times

DDR: €580
CCRY (transfer taken): €580
DDRX (no transfer): €72%

If F*-rounding is regquired, add 100

4-68 50-004 RGO

4.7 BYTE HANCLING INSTRUCTIONS

These instructions wuse the 1I/0 module to perform byte
manipulations on the least significant 16 bits of A, B, and S bus
datae The instructions described in this section are:

4,71 LR Load Eyte
LBR Load Ryte Register
40702 STB Store Byte

STRR Store Byte Register

G4.7.3 EXB Exchange BEyte

4.7.1 Load Byte

LB S,A,B,I,E,M. [(RR CONTROL)

0 3 £ 6 11 16 20 25 26 27 31
01010 1|1 S A 0101 B 11 E MC
LER S,B,I,E,NMC [RR CONTROL]

0 3 56 11 16 20 25 26 27 31
010]0 1)1 S 1111110101 B 11 E Mc

Bits 24:31 of the second <cperand replace bits 24:31 of the
register specified by S. The most significant 24 bits of S are
set to zero.

LB,LBR : S0:23ww—0

S2U:31-=w—Bgy (24:31)

Resulting Flags

Execution Times

LB,LBR: 260

50-004 ROO 4-69

4.7.2 Store Byte

STB S,A,B,I,E,MC 4 (RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
c10]0 1T S A 1100 B 11 E MC
STBR S,A,B,I,E,NC [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
010]0 1|I S A 01cC0 B 11| E MC

Bits 24:31 cf A are «coried tc bits 24:31 of the register
specified by S. Bits 16:23 cf S are set equal to bits 16:23 of B.
Bits 00:15 of S are set tc zero.

STB,STBR: S0:15-—0

€16 :23e———Er (16:23)

S24:31—(A24:31)

Resulting Flags

EFxecution Times

STE,STER: 26C

u4-70 50-004 ROO

4.7.3 Exchange Byte

EXB S,8,I,E,¥C [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
01010 1|1 S 17111111010 B 1] E MC

The two low crder bytes of the second cperand are exchanged and
loaded into the register specified by S.

FXB: S0:15 -—0
S16:23=—B: (24:31)

S24:31+—Br (16:23)

Resulting Flags

Execution Times

EXB: 260

4,8 CCNTIRCL INSTRUCTIONS

These instructions allow testing and clearing the Machine Control
Register, control over the console interrupt and the Consolette
WAIT lamp and FAULT lamg, and the initialize relay. The
instructions ccvered in this section are:

be.B8.1 SMCR Sense Machine Control Register
SMCRX Sense Machine Controcl Register and Transfer
4.8.2 CMCR Clear Yachine Control Register
4,8,3 LWFF Load the Wait Flirp-Flop
4.8.4 ECH Fower Lown
4.8e5 BLC Branch and Disable Console

50-004 ROO

=
1

71

4.8.1 Sense Machine Control Register

SMCR S,B,I,E,MC ’ [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
010]01}1I S 1111110111 B 0 E’ MC

SMCRX S,B,ALRS,I,C [RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
010(00}I S 17111110111 B C| PAGE ALCDRESS

The contents of the Machine Control Register replace the contents
of the register specified by S. Bits 12:15 of the MCk becone
available on the CC bus and are copied into the microflag
register.

SMCR: Se—(MCR)
SMCRX: Sa—(MCR)
then (RLC10:15)e—PAGE ADLCRESS

Resulting Flags

CIV|GIL
1 Module timecut
11 Memory voltage failure
] 1 ‘ Hardware CRC assist installed
1 Early power failure

4-72 50-004 ROO

Programming Notes

The B field is not used and should be null selected.

The meanings of the MCR bits are summarized below.

MNEMONIC BIT MEANING

FEP o4 - Set if FPF module is installed

- 05 - Undefined

INIT 013 - Set while initialize switch on the
ccnsolette is depressed

SNGL 07 - Set while single-step switch on the
ccnsolette is on

- 08 - Undefined

- 09 - Undefined

CATN 10 - Set when EXE/HLT switch on the

ccnsolette was depressed, or Instruc-
ticn Read/Decode cycle completed in
single-step mode

MTO 11 - Set if optional module timeout
feature is installed

STF 12 - Set following a module timeout, i.e.,
nc respcnse after 35 microseconds

NVM 13 - Set when NVMO is active from memory,
indicating voltage failure

CRC 14 - Set if hardware CRC assist option is
installed

EEFF 18 - Set by early povwer failure detect

Execution Times

SUCE,SMCRX: 240

50-004 ROO

&=
!

4.8,2 Clear Machine Control Register

CHMCE s,B,I,E,NC [RR CONTROL]
0 3 56 11 16 20 25 26 27 31
01010 11| S 17111110111 B 1| E McC

The bits in the MCR that correspond to ones in the second operand
are set to zeros. The S field is not used and should be null
selected.

CMCR: MCRe—(MCR) AND Bg

Resulting Flags

C{V|G|L
0jofaG]o

Programming Notes

The MCR bits that are straps cannot be modified.

The first CMCR microinstruction issued following the release of
system clear causes the ccnsolette FAULT lamp to be turned off.

Execution Times

CMCE: 260

f
1

T4 50-004 ROO

4.8.3 Load the Wait Flip-Flop

LWFF s,B,I,E,NC [RR CONTROL]
0 3 & 6 11 16 20 25 26 27 31
0101}0 1|1 S 17111110110 8 1] E MC

Bit 16 of the second operand is coried into the wait <£flip-flobp.
A one sets the flip-flor and turns on the console WAIT lamp. A
zerc resets the flip-flop and turns off the console WAIT lamp.

LWFF: WAIT-RB (16)

Resulting Flags

C|V|G|L
0j0fo0}|0

Execution Time

LWFE: 260

i~
|

50-C04 ROO 75

4.8.4 Power Lown

PCW S,B,I,E,NC [RR CONTRCL]

0 3 £ 6 11 16 20 25 26 27 31
0100 1|1 S 11111 11 11 B 0l E MC
This microinstruction may be 1issued by the emulator in

anticipation of automatic shutdown of the processor, f£cllowing
the housekeering required by the PPF interrupt. POW performs no
operation, and is provided for documentation purposes only. The
S, B and MC fields are nct interpreted. The resulting condition
code and execution time are meaningless. POW must be followed by
a BALLD *(NULL) microinstruction.

When the system <clear relay is reenabled, microcode execution
resumes at control store memcry address *'001°'.

¥
|

76 50-004 ROO

3.8.5 Branch and Disable Ccnsole

BLCC ACRS(IINK) E,NMC {ADDRESS LINK]
0 3 5 6 11 14 26 27 31
0 0 0] 1011 LINK 110 ALLRESS E MC
RDC (B)(LINK) E,MC [REGISTER LINK]
0 3 £ 6 11 14 20 25 26 27 31
0 ¢C 0| 00]1] LINK 110 3 E MC
Interrupts from the console (CATN or SNGL) are ignored for the
interval of this i: “truction so that interrupts of lower priority
carn be detectede. No branch is actually taken, so MC field
functicns can occur.
BOC LINKw—(RLCU:15)+1
Execution Time
BLC: 260
50-004 ROO u-77

CHAPTER 5
INFUT/0UTPUT SYSTEMN

5.1 INTRODUCTION

This chapter discusses the Input/Cutput (I/0) system. There are
several methods of communication between the ©processor and
pericheral devices or other system elements. These methods vary
in speed, sophistication, and the amount of attention required by
the processor.

5.2 MULTIPLEXOR BUS

The multiplexor bus is a kyte or halfword oriented I/0 system
which communicates with up +to 1,023 peripheral devices. The
multiplexor bus ccnsists ¢f 33 1lines - 16 bidirectional data
lines, 10 control lines, 6 test lines and 1 initialize line. The
lines in the multiplexor kus are:

Cata Lines D0O0:1E (Processor —_. Device) 16 lines
SK (— 1 line
DR (> 1 line
CMD (> 1 line
CA (- 1 line
Control Lines ALRS (- 1 line
ACKO (- 1 line
ACK1 (- 1 line
ACK?2 (»-) 1 line
ACK3 (>) 1 line
CLO7 (») 1 line
ATNO (-) 1 1line
ATNA1 (-) 1 line
ATN?2 (-) 1 line
Test Lines ATN3 (=) 1 line
SYN (-) 1 line
HW (-) 1 line
Initialize SCLR () 1 line

50-004 ROO 5-1

S¢2+.1 Data Lines

The 16 bidirectional data lines are used to transfer one 8-bit
byte, one 10-bit device address, or one 16-bit halfword between
the rrocessor and the device. In actuality, 16 bits are always
transferred, and the device or the processor accepts as much of
the data as is required fcr the particular operation.

522 Control Lines

ADRS Address. The processor presents a 10-bit device address
on data 1lines D(6:15. The device c¢nntroller that

recognizes 1its address becomes the ‘'on-line' device and
resrends with a Synchronize (SYN). Cnce a device has
been addressad, it remains so, until a different device
is addressed or a system initialize occurs. If the
device is halfword oriented, the Halfword test line (HW)
is also active, and may be tested by the THWHWX
microinstruction.

DA Data Available. The processor presents data to be
transferred to the addressed device on data 1lines
D00:15. The addressed device controller accepts the low
order byte or the entire halfword and responds with a
SYNe If SYN does not occur before a fixed time-out, the
V flag is set in the micrcflags and onn the CC bus. All
other flags are zer¢ in this case.

DR Data Request. The addressed device controller presents
data on data lines L0B:15 or DCO0:15, followed by a SYN.
If SYN does not c¢cccur before a fixed time-out, the V
flag is set in the microflags and on the CC bus. All
other flags are zero in this case.

SR Status Reguest. The addressed device controller
presents status information on data lines DO08:15,
followed by a SYN. If SYN does not occur before a fixed
time-out, the V flag is set in the microflags and on the
CC bus. All other flags are zero in this case.

CMD OQutrput Command. The processor presents a command byte
on data lines D08:15 fcr the addressed device. The
addressed device ccntroller accepts the command byte and
resgecnds with a SYN. TIf SYN does net occur Dbefore a
fixed time-out, the V flag is set in the microflags and
on the CC bus. All other flags are zero in this case.

5-2 50-004 KOO

ACKO
ACK1
ACK?2
ACK2

CLO7

5.2.3

ATNO
ATNA1
ATNZ
ATNZ

HW

SYN

5.2.4

SCLE

£0-004 ROO 5-3

Acknowledge. The microprogram generates an Acknowledge
signal on the apprcpriate line in response to an active
Attention (ATN) +test 1line. The device controller
nearest the processcr on the particular acknowledge line
that is activating the corresponding ATN 1line presents
its address on data lines [06:15, followed by SYN. That
device controller then removes ATN. If SYN does not
occur before a fixed time-out, the V flag is set in the
microflags and cn the CC bus. All other flags are zero
in this case.

This control line is activated by the initialize key,
the PWR STANDBY switch, or when the power fail detector
determines that the processor's cprimary power is
failing. The 1line remains active as long as the PPF
interrupt line is active.

Test Lines

Attention. When sc enabled, any device on one of the

attention lines trying to interrupt the processor
activates +the ATNx 1line and holds it active until
Acknowledge is received from the processor.

Halfword. Any halfwcrd-criented device activates the

halfword test line when it becomes addressed and holds
the line active for as long as the device is addressed.
The HW 1line being active suppresses the byte steering
done in the I/0 module in LA or DR operations.

Synchronize. This signal is generated by the device
controller to inform the processor that it is responding
to the active control line.

Initialize line

System Clear. This is a metallic contact to ground that
occurs during power fail cr initialize.

5.3 TINPUT/OUTPUT INSTRUCTIICNS

Communication over the multiplexor btus is on a request/response
basis where each operaticn started by the processor must receive
an SYN response tc terminate the operation. If no SYN response
is received within approximately 3% microseconds, A False Sync
(FSYN) is automatically generated to terminate the operation.

Input/output microinstructicns generate one, two, or three
multiplexor bus operaticns. Each operation lasts until SYN is
received from the device, meaning that the execution time on 1I/0
instructions is solely device dependent.

NCTE

A1l I/0 instruction execution times are
given using the follcwing assumptions:

1. Average circuit delays, not
maximum or minimum

2 SYN delay of 100 nanoseconds

3. No Dbus buffer delay in the
system

The instructions described in this section are:

5.3.1 AK Acknowledge Interrupt
AKX Acknowledge Interrupt and Transfer

£.3.2 SSA Address and Sense Status
SSAX Address and Sense Status and Transfer
SSRA MAddress and Sense Status Register

5.3.3 SS Sense Status
SSX Sense Status and Transfer
SSR Sense Status Register

5.3.4 OCA Address and Output Command
CCAX Address and Cutput Command and Transfer
GCAI RAddress and Output Command Immediate
OCRA Address and Qutput Command Register

5-4 50-004 ROO

5.3.10

563411

5.3.12

£e3.13

5.3.1”

50-004 ROO

QcC

0CX
CCI
CCR

RDA
RLAX
RELRA

ED
RLCX
KLCR

WDA

WCAX
WECAT
WDRA

WD
WDX

WLI
WDR

RHA
RHAX

RH
RHX
WHA
WHAX
WH
WHX

THWX

OQutput Ccmmand

Output Ccmmand and Transfer
Cutput Ccmmand Immediate
Output Ccmmand Register

Rddress and Read Data
Address and Read Data Transfer
cs and Read Data Register

Read Data
Read Lata and Transfer
Read Data Register

Rddress and Write Data

Address and Write Data and Transfer
Address and Write Data Immediate
Address and Write Data Register

Jrite TCata

Write Tata and Transfer
Write Cata Immediate
Write Tata Register

Address and Read Halfword
Address and RFead Halfword and Transfer

Read Halfword
Read Halfword and Transfer

Address and Write Halfword
Rddress and Write Halfword and Transfer

Write Halfword
Write Halfword and Transfer

Test Halfword lLine and Transfer

53«1 Acknowledge Interrupt

AK S,B,I,E,NC 4 [RR CCNTROL]

0 3 £ € 1M1 16 20 252627 31
0101011 S 111 11 60110 B 0| E Mc

AKX S,E,ADRS,I,C [RR TRANSFER]

0 3 £ 6 1 16 20 2526 31
010j00]1 S 1T11 11 0110 B C| PAGE ADDRESS

Bits 30 and 31 of the effective second operand select the desired
ACK control line. The device number of the interrupting device
replaces the contents <¢f the register =specified by S. The
interrupt condition in the ccntroller is cleared.

AK: S0:21=—0

S22:31«—DEVICE NUMBER

AKX: S50:21=—0
S22:31-—DEVICE NUMBER

then RIC10:15-«——PACE ALDRESS

Resulting Flags

ClviGiL
cjofoy]o0 Normal execution
0]11j0]|0 Instruction time-cut (no device response)

Prcgramming Note

Each ACK control line passes through the interrupt circuits on
all of 1its assigned «ccntrollers in a daisy chain fashion.
Execution time is 4increased by 100 nanoseconds for each
controller between the prccessor and the interrupting controller.

Execution Time

RK,RKX: 720 rvlus SYN respcnse time

5-6 50-004 ROO

5¢3+2 Address and Sense Status

SSA s,A,B,I,E, MC {(RR CONTROL]

0 3 5 6 11 16 . 20 25 26 27 31
01¢cl1 0111 S A 1010 B 0| E MC

SSRX S,A,BR,ADRS,I,C {RR TRANSFER]

0 3 £ g 11 16 20 25 26 31
0101001]T1 S A 10 10 B C PAGE ADLCRESS
SSRA S,A,R,I,E,NC (RR CONTROL]

0 3 £ 6 11 16 20 28 26 27 31
010({01]1 S A 1010 B 1| E MC

The register specified by A contains the device address. The
device 1is addressed and its 8-bit status byte replaces the
contents of the register specified by S. The right-most four

bits of the status byte are available on the CC bus and are
copied into the microflag register.

SSA,SSRA: CC Bus=—DEVICE STATUS (4:7)

S0:15~=—0

SSAX: Same as SSA
then RLC10:15«e—PAGE ADDRESS

Resulting Flags

C{VIG|L
1 Device Busy (BSY)
1 Examine Status (EX) or Time-out
1 End of Medium (EOM)
1 Device Unavailable (DU)

Execution Times

SSA,SSAX,SSRA: 1590 plus SYN respcnse time

50-004 ROO 5-7

5<3.3 Sense Status

SS S,B,I,E,NC [RR CONTROL]
0 3 5 6 11 16 20 25 26 27 31
o10]l01]1 s 11111 0010 B ol E MC
SSX S,E,ADRS,I,C [RR TRANSFER]
0 3 £ 6 11 16 20 25 26 31
o10loo0fr s {11111 0010 B | c PAGE ADDRESS
SSR s,B,I,E,NC [RR CONTROLI
0 3 5 6 11 16 20 25 26 27 31
o10]0 1|1 s 111110010 B | 1] E MC

The Sense Status instructions are identical to the Address and
Sense Status instructions except that the address cycle is
avoided. Once addressed, a device controller remains addressed
until a different device controller is addressed or a systenm
clear occurs.

Execution Times

SS,SSX,SSR: 720 plus SYN response time

5-8 50-004 ROO

tn

«e3.4 Address and Output Command

OCA s,A,B,I,E,NC ' [RR CONTROLI

0 3 5 6 11 16 20 25 26 27 31
010 01} 1 3 A 10 11 B 0] E MC

OCAX S,A,B,ADRS,I,C {[RR TRANSFER]

0 3 5 6 11 16 20 25 26 31
010} 0011 S A 10 1 1 B C PAGE ADDRESS
OCAI S,A,CATA,I [RR TRANSFER]

0 3 £ 6 11 16 20 31
010] 107}1I S A 10 11 DATA

CCRA S,A,B,I,E,NC [RR CONTROL]

0 3 5 6 11 16 20 25 26 27 31
01 0] 0 1 I S A 17011 B 11 E MC

The register specified by A contains the device address. The

device is addressed and the 8-bit second operand command byte is
sent to the device.

OCA,OCAI,OCRA: DEVICE-=—B (24:31)

OCAX: Same as OCA
then (RLC10:15)~—PAGE ALDRESS

50=-004 ROO ' 5-9

Resulting Flags

C{VI|G|L
0j0j0]0 Normal execution
0111010 Instruction time-out

Programming Note

The S field is not used and should be null selected.

Execution Times

OCA,CCAX,0CAI,OCRA: 1720 plus SYN response time

wn
t

-

o

50-004 ROO

5.3¢5 Output Command

0C S,B,1,E,MC [RR CONTROL]

0 3 c 6 11 16 20 25 26 27 31
o010]01] 1!s 1717111 001 1 3 ol & Mo

0CxX s,B8,ADRS,I,C [RR TRANSFER]

0 3 5 6 11 16 20 25 26 31
o10{00| 1I|s 11111 0011 B c| PAGE ADDRESS
cCI S,B,CATA, T [RR TRANSFER]

o 3 £ 6 11 16 20 31
o10]10]1ls 11111 0011 DATA

OCR S,B,I,E,NC [RR CONTROL)

0 3 5 8 M 16 20 25 26 27 31

171111 00 11 B 11 E MC

197]

010101} 1

The Output Command instructions are identical to the Address and
Output Command instructions =excert that the address cycle is
avoided.

Execution Times

0C,CCX,0CI,CCR: 8U0 plus SYN respcnse time

50-004 ROO 5-11

5.3.6 Address and Read TCata

RDA S,A,B,1,E,MC [RR CONTROL]

0 3 S 6 11 16 20 25 26 27 31
010]0 111 S A 17000 B 0} E MC

RDAX S,A,E,ADRS,I,C {RR TRANSFER]

0 3 E 6 11 16 20 25 2¢€ 31
1010011 S A 1000 B C PAGE ADLCRESS
RLCEKA S,A,8,I,E,MC [RR CONTROL]

0 3 £ 6 11 16 20 28 26 27 31
01001 I 5 A 1000 B 11 E MC

The register specified by A contains the device address. The

device 1is addressed and a single 8-bit data byte is transferred
from the device tc the register srecified by S.

RCA,RDRA: 50: 15 -—0
516:23-+—B:(16:23)

S24:31-—DEVICE CATA

RDAX: Same as RDA
then RLIC10:15«—PACE ALDRESS

Resulting Flags

ClVIG|L
0jojo0|o0 Normal execution
01110140 Instruction time-out

Execution Times

RCA ,RDAX,RLCRA: 1590 plus $YN respcnse tinme

w
|
-
8]

50-004 ROO

53«7 Read Tata

RD S,B,I,E,HNC [RR CONTROL)

0 3 £ 6 11 16 20 25 26 27 31
01010111 S 11711110000 B 0| E MC

RDX S,B,ADRS,I,C [RR TRANSFER]

0 3 56 11 16 20 25 26 31
010|001 S 17111100000 B C PAGE ADDRESS
RDR S,B,I,E,NMC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
0101011 S 1T111110000 B 11 E MC

The Read Data instructions are identical to the Address and Read
PData instructicons except that the address cycle is avoided.

Execution Times

RD,RDX,RCR: 720 plus SYN response time

50-C04 ROO - 5-13

5.3.8 Addrecss and Write LCata

WDA S,A,B,I,E, MC ’ [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
010101} 1I S A 1700 1 B Cl|E MC

WDAX S,A,B,ADRS,I,C [RR TRANSFER]

0 3 E 6 11 16 20 25 26 31
010]0o00]1I S A 10 0 1 B C PAGE ADDRESS
WDAI S,A,CATA,I {RR TRANSFER]

0 3 E 6 11 16 20 31
0101101]1 S A 10 0 1 DATA

WLRA S,A,t,1I,E,MC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
010101 1 S A 10 0 1 B 11E MC

The register specified by A contains the device addresse. The

device is addressed and a single 8-bit byte is transferred to the
device.

WDA,WDAT,WCRA: DEVICE-=—B;(24:31)

WDAY: Same as WDA
then RLIC10:15-+—PAGE ALLRESS

5-14 50-004 ROO

Resulting Flags

C{VIG}{L
cjo0j0jo Normal execution
0111040 Instruction time-cut

Programming Nocte

The S field is not used and should he null selected.

Execution Times

WCA,WDAX,WLCAI,WDRA: 172C rlus SYN response time

5¢~C04 ROO

15

5.3.9 MWrite TCata

Wp S,E,I,E,MC [RR CONTROL]

o] 3 £ 6 11 16 20 25 26 27 31
010|011} 1 S 1 1 ¢C 0 0 1 0| E MC

WDX s,B,ALCRS,I,C [RR TRANSFER]

0 3 5 6 11 16 20 25 26 31
0O1Ccj00]1I S 11 0 0 0 1 C PAGE ALDRESS
WLI S,B,CATR,I [RR TRANSFER]

0 3 E € 11 16 20 31
010}l 10]1I S 11 00 0 1 DATA

WDR S,E,I,E,NC {RR CONTROL]

0 3 5 6 11 16 20 25 26 27 31
01 04f 01 I S 11 0 0 0 1 11 E MC

The Write Cata instructions are identical the Address and

Write Data instructions except that the address cycle is avoided.

Execution Times

WC,WLCX,WCI,WLR:

wm

-1€

840 plus

SYN respcnse time

50-004 ROO

5¢3¢10 Address and Eead Halfword

RHR S,A,B,I,E,NC {RR CCNTROL]

0 3 E 6 11 16 - 20 25 26 27 31
010101 I S A 110090 B Ol E MC

RHAX S,A,B,ADRS,I,C [RR TRANSFER]

¢ 3 5 ¢ 11 16 20 25 26 31
010} 00| I S A 1100 8 C PAGE ADDRESS
The register specii:.ed by A contains the device address. The
device is addressed and a 1€-bit halfword is transferred from the
device to the register specified by ©S. The Read Halfword
instructions can be used with both byte and halfword oriented
controllers. If the ccntroller is byte oriented, the Halfword
test line (HW) is inactive. The I/0 module inputs two 8-bit
bytes, one after the | cther. If the controller is halfword

oriented, the HW test line is active, and the I/0 module inputs
one 16-bit halfword in parallel.

RHA: S0:15e—-0
S16:23=—First data tyte
Byte oriented controller
S24:31=—Second data byte

S16:31w—Halfword cf data Halfword oriented controller

RHAX: Same as RHA
then RLC10:15-«—PACE ADDRESS

Resulting Flags

C{VIG|L
ojojolo Normal execution
0]11j01}]0 Instruction time-out

50-0Cu4 ROO - 5-17

Programming Note

The B field is not used and should be null selected.

EFxecution Times

RHA,RHAX: 2440 plus SYN response time
(Byte oriented device)
1590 plus SYN responcse time

(Halfwcrd oriented device)

50-004 ROO

5.3.11 Read Halfword

RH S.B,I,E,MC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
010101} 1 5 171711110100 B 0] E MC

RHX S,E,ADRS,I,C [RR TRANSFER]

0 3 56 11 16 20 25 26 31
c10}j00]I S 17111110100 B c PAGE ADDRESS

The Read Halfword i.structicns are identical to the Address and
Read Halfword instructicns except that the address cycle is
avoided.

Execution Times

RH,RHX: 1570 plus SYN response time
(Byte oriented device)
720 plus SYN response time

(Halfword criented device)

50-004 ROQO 5-19

5¢3«12 Address and Write Halfword

WHA S,A,B,I,E,MC [RR CONTROL]

0 3 £ 6 11 16 20 25 26 27 31
0101011 S A 17101 B 0| E MC

WHAX S,A,BR,RDRS,I,C . [RR TRANSFER]

0 3 £ 6 11 1€ 20 25 26 31
01 0}j001]1 S A 110 1 B C PAGE ADDRESS
The register specified by h contains the device address. The

device is addressed and a 16-bit halfword is transferred from the
processor tc the device. The HWrite Halfword instructions can be
used with either byte or halfword oriented controllers. If the
controller 1is byte oriented, the Halfword test line (HW) is
inactive. The I/0 module outputs two 3-bit bytes, one after the
other. If the controller is halfwcrd oriented, the HW test line
is active, and the I/C module outputs one 16-bit halfword.

WHA: DEVICE~—B . (1€6:23)
Byte oriented controller
DEVICE-—Rp (204:31)
DEVICE<-—B(16:31) Halfwerd oriented controller

WHAX: Same as WHA
then RLC10:15--—PACE ALDRESS

Resulting Flags

CiIVIGIL
0j0|0{0 Ncrmal execution
11100 Instruction time-ocut

Frogramming Ncte

The £ field is not used and should be null selected.

Execution Tires

WHA, WHAX: 2220 plus SYN response time (Byte oriented device)
1720 plus SYN response time (Halfword oriented device)

m

-2C 50-004 ROO

5.3.13 Write Halfword

WH S,B,I,E,MC [RR CCNTROL]I

0 3 5 6 11 16 20 25 26 27 31
0o10]01}1I 11111 0101 0| E MC

WHX S,B,ALCRS,I,C [RR TRANSFERI

0 3 £ 6 11 16 20 25 26 31
01010011 11111 0101 C PAGE ADDRESS

The Write Halfword instructicons are identical to the Address and
Write Halfword

avoided.

Execution Times

WH, WHX:

instructions

excert

that

the address cycle is

1640 plus SYN restense time (Byte oriented device)

840 plus SYN respcnse time (Halfword oriented device)

50-004 ROO

S.3.14 Test Halfword Line and Transfer

THWX S,B,ADRS,I,C [RR TRANSFER]
0 3 56 11 16 20 25 26 31
010]00] 1 S 171717114 1110 B C PAGE ADDRESS

This microinstruction is rrcvided to allow the microprogram to
test the state of the Halfword test line (HW). The HW test line
is active for as long as any halfword oriented <controller is
addressed.

THWX RLC10:15«—PAGE ALDKESS if C=0 or HW=0

RLCU:15-—(RLCU:1E)+1 if C=1 and HW=1

Fesulting Flags

Frocramming Note

The S and B fields are unused and should be null selected.

Execution Times

THWX (no transfer): uos
(transfer): 260

(8]
1
N
N)

50-004 ROO

CHAPTER 6
INTERRUPT SYSTEM

6.1 GENERAL INFORMATION

The hardware priority interrupt structure provides rapid response
to internal and external events which require special progranm
attention. When an interrupt occurs, the microprogram is steerad
to one of nire unique ccntrol store addresses, according to the
type of interrupt. In order of decreasing priority, these
addresses are '208°, *207*', *206°', °205', '204°, '*203°*, '20z°',
*'201', and *Z00'. :

Certain interrupts can be individually enabled or disabled by
bits in the PSW. All interrupts, except those resulting from
illegal instructions or from a memcry read or write operation,
can be collectively armed ty the BALA or EXLA microinstructions,
or collectively disarmed by the BALD or EXLD nmicroinstructions.
Illegal instruction and nmemory read/write interrupts cannot be
disarmed by the microprogram. All interrupts are collectively
armed at the completion of a microinstruction which specifies the
deccde option (IRD or D), so that interrupt service can occur
befecre starting the next user instruction. Interrupts are then
disarmed as the emulation of the decoded wuser instruction
proceeds, until specifically armed Lty the microprogram.

When an interrupt occurs, the microinstruction at the
corresponding interrupt trap location is executed. The RLC is
not changed so that the microprogram could return to the
interrupted ©rrogram sequence if desired. The standard emulator
uses this carability for faults occurring while in the console
service routine.

The various rossible interrurts, with rertinent enabling PSW bits
and trarp locations, are shown in Table 1-2. The following
descriptions are oriented tcwards the emulator.

6.2 INTERNAL INTERRUPTS

Although the hardware rrcvides only four unique internal
interrupt trap locations, at the time of a hardware interrupt,
sufficient information is prcvided that action appropriate to the
emulated machine may be taken Ly the microprograme. Other
internal interrupts are created by the emulator, and do not have
dedicated trar locations.

50-C04 ROO - 6-1

6.2¢1 Illegal Instruction Interrupt (208)

An illegal instruction interrupt is generated by the hardware in
the following instances:

1« when an instruction not in the wuser-level instruction
repertoire is attempted

2. When execution of a privileged instruction is attempted
and PSW bit 23 is set

3. when execution of a floating-point 4instruction is
attempted and PSW kit 13 is set

As a result of an instructich read, the main memory gates its
read-out intoc the User's Instruction Register (UIR). When the
deccde (IRLC or D) optinn is also srecified, at the conclusion of
the present microinstructicn, the processor waits until the next
user instruction is available in the UIR, at which time the
privileged/illegal ROM is interrogated.

The privileged/illegal FROM is addressed by the operation code
field of UIR (UIR bits 0:7). There is a U4-bit data entry in the
privileged/illegal ROM fcr each of the 256 possible user
op~-ccdes,

If the user instruction is not a legal instruction for +the
current user, the hardware causes an 1illegal instruction
interrupt to occur and the microinstruction at control store
location '208' 1is executed. The user~level illegal instruction
PSW swap 1s then emulated.

In some instances, additicnal teste are performed on the user
insgtruction ty the emulator. If the instruction proves to be
illegal, the user-level illegal instruction PSW swap 1s executed,
as though the wuser instruction were found illegal by the
hardware.

6e2+2 Access/Data/Poundary/Floating-Point Interrupt (207)

When using the optional Flcating-Point Processor (FPP), if a
flcating-point arithmetic fault condition occurs, a floating-
point interrupt is gqueued. This interrupt remains queued until
an FPF oreration is perfcrmed which does not result in a fault
condition being indicated. If the interrupt is gqueued when a
microinstruction directed +to +the FPP is executed, and if that
microinstruction specifies the IRLC and E functions, the interrupt
is taken and the microinstruction at location '207' is executed.

6-2 50-004 ROO

Note that if the fault <ccndition is indicated by the RCC
instruction, a subsequent

RCC NULL,NULL,IRLC,E

results in an interrupt tc location *207° each time it is
performed, until the FEFP flags are changed by some nonfaulting
FEF operation. If the Memory Rddress Translator (MAT) is enabled
by bit 21 cf the PSW, viclation of any of the relocation and
protecticn conditions in the MAT controller causes the
microinstruction at centrcl store location '207' to be executed.

When PSW bit 18 is set, if fetching data from memory results in
a ncncorrectable data error, the microinstruction at control
store locaticn '207' is executed.

Thic is also the case if a memory access 1is attempted for a
nonconfigured memory locatiocn (STM, controller absent on a read,
or controller ab nt on a write). If the Shared Memory
Controller (optional) 1is in a power—-down or off-line state, the
interrupt occurs fcr any access to that Shared Memory Bank.

If a fullword memory read or write cperation 1is directed to a
location not aligned to a fullword boundary, or if a halfword
memcry read or write operaticn is directed to a location not
aligned to a halfword bcurdary, the microinstruction at control
store location '207' is executed. This is also the case 1if a
DR2IB, ©DRu4IBR, IR, or IRL operaticn 1is attempted, and CLOC
contains an address not aligned to a halfword boundary. This
interrupt cannot be inhibited.

If any of the above faults cccur while fetching any halfword of
an instructicn, the interrupt is deferred until an attempt is
made by the microprogram to decode the offending instruction;
otherwise, the interrupt occurs immediately, and the memory
operation is aborted. For an instruction fetch, if a subsequent
buffer refill or cache and buffer refill occurs, and no error
occurs as a result of refetching the instruction, the interrupt
condition is reset. Ur to 2 microinstructions may be fetched,
although not executed, before the interrupt is reported.

A unique code identifying the type of fault, and the program
address in MAR &t the time the fault occurred are available to
the microprogram by wunlcading RMDR following the interrupt.
(Refer to Figure 6-1,)

0 8 31

FAULT COLE EROGRAM ALLRESS

Figure 6-1 Contents of RMLR Following a Fault

50-Ccu4 ROO - 6-3

The fault codes and their meanings are shown in Table 6-1. The
microinstructicn at the trar location must disarm interrupts.
Once the fault information has been retrieved from RMDR (if it is
to be known), the fault ccndition may be reset only by the RFAULT
MC field orticn.

Following the fault interrupt, fault information is available in
RMCR until a microinstruction specifying an MC function is
executed. Once the fault information has been unloaded fron
RKDR, the fault condition must be reset by specifying the RFAULT
MC function, on the same or a subsequent microinstruction.
Attempts to access the instruction buffer or memory are
unsuccessful until the fault 1is reset. Once RFAULT has been
issued, the contents of RMDR are wundefined wuntil data is
explicitly fetched from memcry cr the instruction buffer.

If bit O of the fault infcrmation in RMDR is set, the interrupt
it due to a floating-point fault. 1In this case, a floating=-point
fault was gueued when a microinstruction which specified both IRD
and E terminated. ILOC contains the address of the user
instruction fcllowing the faulted one. The data in CLOC may be
considered as undefined. RFKLR bits 01:02 contain a binary number
equal to the length of the faulted instruction in halfwords. For
RR, RX1, RX2, and RX3 floating-point user instructions, this
numkter may be extracted from RMDR and doubled. The result, 2, 4,
or 6, may be =subtracted from ILOC to yield the address of the
first halfword of the faulted user instruction.

If the program address returned in RMDR is equal to (CLOC-2), the
enmulator assumes the fault cccurred during the fetch of a user
instruction, unless a flcating-pcint fault interrupt is being
serviced.

TABLE 6-1 RMLCR FAULT CODES

CCDE MEANING EMULATED
INTERRUPT
8X Floating-Foint Fault ARITH
00 No faults -
10 Not used MAT
11 EFxecute protect violation MAT
12 Write protect violation MAT
13 Read prctect violation MAT
14 Access level violation MAT
15 Segment limit violation MAT
16 Nenpresent segment MAT
17 Shared seg table size exceeded MAT
18 Private seg table size exceeded MAT
19 Noncorrectable memory data error MMF
1A Nonconfigured memory MMF
18 Not used MMF
1C Not used MMF
1D Not uced MMF
1E Fullword alignment fault ALIGN
1F Halfword alignment fault ALIGN

6-4 50-004 ROO

6.2.3 Primary Power Fail Interrurt (206)

A Primary Power Fail (PPF) Interrupt is generated when the power
supply reports a loss of primary pcwer. The microinstruction at
contrcl stcre location '206' is executed. This interrupt cannot
be inhibited. The emulator fetches the PSW save pointer in main
memcry location X'84', forces the two least-significant Dbits to
zerc, and proceeds to save the contents of the current PSW, ILOC,
all of the user's general registers, the scratchpad registers,
and the FPF floating-point registers (if eguipped), at sequential
main memcry lccations starting at +the indicated address. The
system clear relay 1is released by the hardware one millisecond
after the FPF interrupt, holding the system in an initialized
state until the relay is reenergized by the power supply.

The microinstruction at trap location '206°' must disarm
interrupts.

When power is resto. :d, if MCR bit 6 is set, the INIT switch on
the consolette ic depressed, and the emulator enters the console
service routine.

6.2.U4 Machine Malfunction Interrupt (205)

The machine malfunction interrupt, enabled by PSW bit 18, occurs
whenever farly Power Fail (EPF) is detected, when voltage at the
memcries goes out of regulation, when the optional module timeout
detect (MCR bit 11) recognizes a module start time failure, or if
a shared memory bank (optional) goes into a power-down or off
line =state. Any of these ccnditions causes the microinstruction
at control store location *205" to be executed. The
microinstruction at the trap 1location must disarm interrupts.
The reascn fcr the interrupt is determined by wusing the SHCR
instruction; resulting flags are shown in Table 6-2. the
appropriate MCR bit is then reset for subsequent detection of
similar interrupts.

TABLE 6-2 FLAGS RETURNEL BY SMCR AFTER MACHINE MALFUNCTION

FLAG
clV]G}| L INLCICATION
1 X Module time-out/Shared Memory Power failure
11 X Memory vcltage failure (NVM)
X 1 Early power failure

50-C04 ROO 6-5

6.2.4.1 Early Power Fail (EPF)

The EFF bit sets if the EFF detector shows that the primary line
voltage is low, when the initialize key is depressed, or when the
key-operated power switch or chassis-mounted circuit breaker is
set tc the STANDBY or OFF pcsition. When any of the above events
occurs, a one millisecond timer is started and the EPF bit in MCR
is set (MCR bit 15). The user program may perform any necessary
system shutdown procedures during this one millisecond interval.
PSW bit 18 may again be set to look for memory voltage failure or
module time-cut, or to prepare for the interrupt on pewer up.
The EPF interrurt does nct reoccur. At the end of the EPF one
millisecond timeout, the EPF interrupt is gdenerated. (Refer to
Section 6.2.3.)

6.2.0.2 Memocry Vcltage Failure

If voltage at any memory chassis goces out of regulation, that
chassis asserts the NVMO signal, setting MCR bit 13. This bit
cannot be reset while NVMC remains active: however, an interrupt
is generated only as MCR kit 13 changes state fron zero to one,
This interrupt causes an FPF interrupt to occur within one
millisecond. ©Eecause this delay can have a minimum value of zero
milliseconds, the emrulator igneores the Memory Voltage Failure
(NVM) interrupt by loading CLOC from ILOC, and branching to
routine TWAIT. Refer to Chapter 8.

6.2.443 Module Start Time Failure

When the SMCR following a machine malfunction interrupt indicates
module time cut (C flag set), the MCR date must be ANDed with
X*uc* to determine whether a power failure has been detected for
a shared memcry bank (optional eguigment). If the result is not
zerc, then shared memory power fail has occurred. Refer to
Section 6.2.4.4,

The cptional module timeout detect circuit is present if MCR bit
11 is set. Fach microinstructicn specifies a CPU module and
issues a STARTC signal; it then waite for acknowledgement before
proceeding tc the next micrcinstruction. When MCR bit 11 is set,
the module timeout detect <circuit ensures that each STARTO is
acknowledged within a certain time period. If +this period
elarses and no acknowledgement is returned, MCR bit 12 is set,
causing a machine malfuncticn interrupt. This interrupt prevents
the processor from waiting indefinitely for response from a
module which may be damaged or has been removed fron the systen.

6-5 50-004 ROO

6.2.4.4 Shared Merory Power Fail

When the Shared Memory cption is equipped, an interrupt is
generated if the Early Fower Failure detector in the Shared

Memory Power Supply detects a low voltage. This interrupt 1is
also generated when the Shared Memory Bank is ©vlaced in a
power-4down or off-line mode. Fach processor attached to the

Shared Memory Systemr is interrupted.

If the C flag is set by an SMCR instruction following a machine
malfunction interrupt, the MCR data must be ANDed with X'u40° to
determine whether a power failure has been detected for a Shared
Memcry Banke. If the result is zero, a Module Start Time Failure
has occurred (refer toc Section 6.2.4.3); otherwise, a Shared
Memory Power Failure has occurred.

Following Shared Memory Pcwer Fail Letect, the MOS Shared Memory
System is available for a period of one millisecond. Before that
the memory system enters a power-down or off-line mode. Once
this mode has been entered, any attempt to access the Shared
Memcry Bank resu..s in a noncorrectable memcry data error, or a
nonconfigured memory address fault.

There is no mechanism to indicate to the processor that Shared
Memcry Power has been restcred. This can only be determined by
scftware means.

6.3 EXTERNAL INTERPUPTS

Five unique external interrurt trap locations are provided in the
hardware. One of these lccations is dedicated to each of the
four I/0 attention lines; the fifth is dedicated to the console
attention line.

6.3.1 Ccnsole Attention Interrupts (204)

The conscle attention interrupt is queued whenaver the momentary
EXF/HLT switch on +the <ccnsolette 1is depressed, or when an
instruction read/decode cycle is completed in the microcode and
the single-step switch on the consolette is in the SNGL position.

The console attention interrupt is tested only during the decode
rhase of a microinstructicn. The implication is that a <console
interrupt can be serviced only at the end of a user's
instruction. When the <ccnsole interrupt is taken, the
micrcinstruction at contrcl store location '204' is executed.
The microinstruction at the trap location must disarm interrupts.

The Branch and Disable Ccnsole interrupt microinstruction
momentarily disables the ccnsole attention signal so that lower
pricrity I/C interrupts c¢an be examined. The interrupt 1is

disabled for this one microinstruction only.

The console interrupt nmust be cleared by resetting MCR bit 10
before exiting the console service routine.

50-004 ROO - 6=7

6.3.2 I/C Interrupts (203, 202, 201, 200)

If individually enabled bty -the user, a peripheral device
contrcller may Trequest rrccessor service when the device itsel.
is ready to transfer data. The processor has four oprioritrv
interrupt lines for handling device interrupt requests. Wheneve
an external interrupt c¢ccurs, it remains .pending until the
processor reccgnizes and services the interrupt, or until the
interrupt is programmed reset at the device interface.

The four I/0 attention lines are processed in the priority shown
below: ‘

Priority Pttention Iine Trap Location
First n 203 .
Second 1 202
Third 2 201
Fourth 3 200

PSW bits 17, 20, 25, 26, and 27 affect the enable status of +thn-=
four I/C attention 1lines as shown in Table 1-3. The emula=: -
handles I/0 interrupts in one of two ways, depending upon data in
main memory.

When the interrupt is serviced by the emulator, the address o.
the interrupting device is doubled and used as an index into thc
Interrupt Service Pointer Table at absolute address X'DO°'.

the halfword entry at the resulting address has a zero as .ts
least significant bit, an irmediate interrupt is emulated. 3
the entry has a one as its least significant bit, the auto driver
channel is activated. ‘

6-3 50-004 R

: CHAPTER 7
INSTRUCTICN EXECUTTION

7.1 INTROLUCTION

User instructions are maintained in the main memory. The user
instruction to be exacuted next is at the main memory address
specified by the Current Location Counter (CLOC). The
microprogram begins to emulate that user instruction by doing an
instruction read. On the same microinstruction or on a
subsequent microinstruction, the decode option 1is specified.
Because the microprogram need not specify instruction read and
decocde 1in the <csame micrcinstruction, the instruction fetch is
discussed in two rhases.

7.2 INSTRUCTION READ

In response to an instructicn read, the halfword whose address is
in CLOC is fetched and placed in the User®s Instruction Register
(UIR). Simultaneously, CLOC is <copied +to the Instruction
Lccation Counter (I10C), which always points to the first
halfword of the user instruction.

At the same time that the user's operation code is loaded into
UIR, a decision is made whether or not additional halfwords must
be fetched from memory tc make up the complete instruction wvword.,.
As soon as the first halfword of UIR is filled, the format ROM is
interrogated to determine the instruction format. The format ROM
is a separate Read-Only-Memcry containing 256 U4-bit words, one
word for each possible user-level operation code. The nature of
the data in the format KOM is shown below.

1101010 RX formnat

ojojoj1 RI1 format

0111010 RI2 feormat

0lo0}j110 ER or Short fcrmat
6]0}106]0 RXRX format

50-004 ROQO 7-1

The hardware automatically fetches the appropriate number of
halfwords so that after the instruction read is performed, the
UIR contains the most significant 16 bits of the instruction and
the Memory Data Register (RMLCR) contains the information shown in
Table 7-1. For each halfword fetched, CLOC is incremented by
two, so that when the entire instruction has been fetched, CLOC
contains the address of the next sequential user instructione.

TABLE 7-1 STATE OF RMDR AFTER INSTRUCTION READ

INSTRUCTION | CONTENTS OF RMDR
FORMAT

0 31
RR or SF UNCEFINED

0 15 16 31
RI I2 FIELD OF INSTRUCTION [I2 FIELD OF INSTRUCTION

0 31
RI2 I2 FIELD OF INSTRUCTION

012 16 17 18 31
RX1 0]o|D2 FIELD CF INSTRUCTION|0 |0 | D2 FIELD OF INSTRUCTION

0 1 16 17 31
RX 2 1| D2 FIELD CF INSTRUCTION]| 1 D2 FIELD OF INSTRUCTION

o 34 78 31
RX3 0100 SX2 A2 FIELD OF INSTRUCTION

The processor knows, from the outgut cf the format ROM and from
bits 16 and 17 of the seccnd RX halfword, if a third halfword for
RX3 and RI2 formats is reguired.

Lecading the UIR has nc¢ immediate effect on the YDI and YSI
registers. These registers ar=z not modified until decode time so
that the microprogram can cc¢ntinue using YD and YS for selecting
the wuser's registers. (See TFigure 1-1.) However, when the
micrcprogram attempts to unload RMLCR to the B bus, the data shown
in Table 7-2 is received instead of the actual RMDR data.

- 50-004 ROO

TABLE 7-2 B BUS GATING AFTER INSTRUCTION READ

INSTRUCTION STATE OF B BUS WHEN UNLOADING RMDR
L FCRMAT
c 31
RR cr SF ' UNDEFINED
0 15 16 31
RI1 ECUALS BIT 16 I2 FIELD OF INSTRUCTxoﬂ
0 31
RIZ I2 FIELD OF INSTRUCTION
¢ 16 17 18 31
RX1 ZERO 0| D2 FIELD OF INSTRUCTION
0 16 17 ' 31
RX2 EQUALS BIT 17 D2 FIELD OF INSTRUCTION
0 31
RX3 CONTENTS OF REGISTER SELECTED BY SX2

For the RI1 format, bits 0:15 of RMILR are set equal to the sign
bit of the halfword in bhits 16:31. For the RX1 format, bits 0:16
of RMDR are zero. Fcr the RX2 format, bits 0:16 of RMDR are set
equal to bit 17. For the RX2 format, until a microinstruction is
performed that loads the Memory Address Register (MAR), any
reference to RMDR as a scurce causes the contents of the general
register whose address is in the SX2 field of the instruction to
appear on the B bus instead of RMDK.

The KXRX instruction resembles a pair cf adjacent RX format
instructions with the op-code in the CP field of the first member
of the pair. The XOP field of the second member of the RXERX
instruction has no hardware significance. For the RXRX format,
B bus gating reflects the RX1, RX2, or RX3 format of the first
memter of the RXRX instruction. The second member must be
fetched from the Instruction Buffer (IB) by the microprogram.
The L[R2IB and TLRUIB MC options are available to allow fetching
this data. CLOC is incremented by 2 for every halfword fetched
from the instruction buffer. No particular fullword alignment is
required for LR4IB.

50-004 ROO 7-3

REGISTER TC REGISTER (RR)

C 7 8 11 12 18

cp R1 R2

SHORT FORMAT (SF)

0 7 8 11 12 15
cp R1 N

REGISTER AND IMMELCIATE STORAGE 1 (&I17)

0 7 8 11 12 15 16 31
CF ® 1 X2 12

REGISTER AND IMMECIATE STCRAGE 2 (RI2)

0 7 8 11 12 15 16 . 47
CP R1 X2 I2 ;:

REGISTER AND INDEXED STORAGE 1 (RX1) o

0 7 8 11 12 15 16 17 18 31
cPp R1 X2 o o L2

REGISTER AND INDEXEL STCRAGE 2 (RX2)

0 7 8 11 12 15 16 17 31
CP R1 X2 1 D2

REGISTFR AND INDEXED STCRAGE 3 (RX3)

0 7 8 11 12 15 16 17 18 19 20 23 24 . 47
CE R1 FX2 of 1] o] o} sx2 A2 ::

RXRX

0 7 8 11 12 31/47
cP R1 FIRST RX1,RX2 or KX3 INDEX & ADDRESS

32/48 39/%5 44/60 63/79/95

XCP Xk

SECOND RX1,RX2,

or RX3 INDEX & ADDRESS

50-

004 ROO

7.3 INSTRUCTICN DECCDE

WHhen decode is specified, the ©processor first tests for any
pending interrupts. If an interrupt is pending, the instruction
deccde is abcrted anéd the interrupt is serviced. If no interrupt
is rending, the YLCI and YSI registers are updated. Twice the
user's oreration code is rresented to the ROM address gate as the
starting address of the appropriate emulation sequence and the
privileged/illegal ROM is interrogated. This is a separate
read-only-memocry containing 256 4-bit words, one for each
possible user level operaticn codes The privileged/illegal ROM
has four outputs that are decoded from the user op-code. They
are defined as per the follcwing.

1. PRIV1 - masked with PSW23 to decode all privileged
instructions

2. JTLEGR - defines flcating point instructions

3. ILEGE and ILEGC - defines WCS and communications assist
instructions and all illegal instructions.

If the output of the privilegeds/illegal ROM indicates that the
operation code presently in UIR is illegal, or if the specified
optional unit is not present, the instruction fetch is aborted
and the illegal instructicn interrupt is taken. If the output of
the privileged/illegal ROM indicates that the operation code
presently in UIR is that c¢f a privileged instruction and PSW bit
23 is set, the illegal instruction interrupt is taken. If the
outrut of the privileged/illegal RCH indicates that the
floating-point wunit is required and PSW bit 13 is set, the
jllegal instructicn interrurt is taken.

If no interrupt occurs, the RCM Location Counter (RLC) 1is set
equal to twice the user's operation code and the emulation
segquence begins.

7.4 CFERAND FLTCH

Following instruction read, if the user instruction 1is register
to register or short format, the second operand is available in
a general register or in the instruction word itself.

If the user-level instruction is one of the register and
immediate stcrage formats, the immediate operand is available in
RMDR. All that remains tc bte done is to add in the contents of
the specified index register. The first microinstruction of a
‘register and immediate stcrage format instruction could be:

A WMDR,YX,RMDR

After the instruction, the WMLR wused for writing to memory
contains the sum of the IZ field of the instruction and the
contents of the indexing general register specified by the X2
field of the instruction. Note that the RMDR used for reading
from memory is not modified.

50-004 ROO 7-5

If the user-level instructicn format is one of the register and
indexed storage types, a memory read or write operation may be
performed after calculating the effective second operand address.
For example, the emulation sequence could begin as follows:

A MAR,YX,RMDR,DR?2 Calculate address and read halfword
or

AR MAR,YX,RMLR,DW4 Calculate address

L. WMDR,YL,DWUu4 Ccpy general register to WMDR

depending upon whether a memory read or write is to be performed,
and whether the second orerand is tc be a halfword (2 bytes), or
a fullword (4 bytes).

If the instruction format is RX1, +the sum of RMDR and the
contents of cf the indexing general register specified by the X2
field of the instruction rerlaces the contents of MAR. Referring
to Figure 1-1, the output of MAR is passed, wunaltered, through
the 24-bhit adder to the Memory Address Translator (MAT)
controller. The MAT presents +this address, or a translated
address, to the memory bus and the memory read is started. As
soon as the data becomez available in RMDR, the instruction fetch
is cver.

If the instruction format is RX2, the sum of RMDR and the
contents c¢f the indexing general register specified by the X2
field of the instruction rerlaces the <contents of MAR. The
outrut of MAR is added to the contents of CLCC (equal to ICOC+4).
This sum 1is presented via the MAT to the memory bus and the
memcry read is started.

If the instruction format is RX3, the sum of the contents of the
indexing general register specified by the SX2 field of the
instruction and the contents of the indexing general register
specified by the FX2 £field of +the instruction replaces the
contents of MAR. TIf the format is RX3, until MAR is loaded, any
reference tc PBRMDR as a source causes the second level index
register (S¥XZ) to be accessed instead. The output of MAR 1is
added to the contents of RMDR and this sum is presented via the
MAT to the memory bus. The memory read is then begune.

Only when the Add and Transfer micreinstruction is the first of
an RX emulation seguence, the condition for transfer is whether
or not the user instructicn format is RX2 rather than +the state
of the ALU carry. The microrrogram can know the RX format of a
user instruction if the first microinstruction of the emulation
sequence is a conditional REF transfer instruction.

7-6 50-004 ROO

CHAPTER 8
EMULATOR

8.1 INTROLUCTION

The following sections describe major aspects of +the processor
emulator micrcrrogram. The microrrcgram listing, provided in the
Model 3250 Frocessor Maintenance Manual, Publication Number
47-029, is well annotated and recommended as a self-explanatory
reference for details of the simpler microcode sequences.

8.2 SYSTEM INITIALIZATICN

8.241 General Information

On rower-up or following 4initialization, mlcrocode execution
begins at ccntrol store address '001'. The FAULT lamp on the
ccnsolette is 1ite A basic check of the machine's major internal
buses and registers is verfcrmed; any detected failure causes the
microcode to loop in the failing mode as long as the failure is
demcnstrated.

The contents of the Machine Control Register (MCR) are then
tested. The Non-Valid Memory (NVM) bit in MCR is set 1f memory
voltage was not maintained within limits since the last time the
bit was programmed to zerc. If the NVM bit is set, the contents
of memory are assumed tc¢ have been lost, and a cold start
sequence is performed. Ctherwise, a warm start sequence 1is
performed. The FAULT lamp is turned off at the successful
termination of either sequence.

Before testing for an enakled 1SU, the INIT bit of +the MCR is
tested. If +this bit 1is set, the initialize switch on the
consolette is depressed, and routine CONSER is entered.

8.2.2 Co0ld Start

If the NVM bit is set in MCR following system initialization, the
first 256 kbytes of memcry are written, with weach fullword
containing its address. This <causes the ECC syndrome bits to
agree with the data for these fullwords, and prevents spurious
ECC failure indications from cccurring within this area of memory
due tc a pricr power failure.

50-Co4 ROO 8-1

The single-precision and double-precision floating-point
registers are loaded with =zerc, the scratchpad registers are
loaded with the address <c¢f the illegal instruction interrupt
emulation routine ILEGAI, and each wuser general register is
loaded with ites set number and register address.

Next, the first 256 kbytes cf memory are tested to see 1if they
can retain data. A nondestructive test is used:; original data is
restcred on sguccessful ccmpletion of the test. Any detected
failure causes the microccde to loop in the failing mode as long
as the failure 1is demcnstrated. If the system is initialized
during this test, the contents of a fullword of memory under test
may be lost.

When the memory test has teen successfully completed, the Loader
Storage Unit (LSU, device *'05') is addressed. If false SYNC
occurs, the LSU is not present or nct enabled. 1In this case, PSW
is loaded with *008000' (wait bit ocnly), CLOC 1is 1loaded with
'FFFEFE' , and the conscle service routine CONSER is entered.
The NVM bit is reset in rcutine CONSER. (See Section 8.2.5.)
Otherwise, if the LSU is ernabled, routine BCOT is entered. (See
Section 8.2.U.) Software must reset the NVM bit following
successful lcad from the LSU, with the BMVEF instruction.

8.2.3 Warm Start

If the NVM bit is not set in MCR following system initialization,
it is assumed that memory data was not lost as a result of powver
failure.

The first 256 kbytes <¢f memory are tested to see if they can
retain data. A nondestructive test is used; original data 1is
restcred on successful ccmpletion of the test. Any detected
failure causes the microccds to lcor in the failing mode as 1long
as the failure is demonstrated. If the system is initialized
during this test, the contents of the fullword of memory wunder
test may be lcst.

The loader Stcrage Unit (LSU, device '05') is then addressed. If
no false SYNC occurs, the LSU is present and enabled, and routine
BCCT is entered. (See Secticn B.2.4.)

If +the LSU is not present or not enabled, the fullword pointer
contained in memory at rhysical address *'84° is fetched and
aligned to fullword boundary. The ESW, LOC, eight sets of user's
general registers, the mc¢dule 7 scratchpad registers, and the
single-precision and double-precision floating-point registers
(if the machine 1is so equipped) are 1loaded from contiguous
fullwerds in memory beginning at the address indicated by the
pointer. The console status fullword at memory location '28' is
then fetched., If bit 0 of the status is zero, a power-up machine
malfunction interrupt is emulated by routine TMMF, according to
the state of PSW bit 18. C(Ctherwise, the console service routine
CONSER is entered. (See Section 8.Z.5.)

8-2 50-0C4 ROO

8.2.4 TILcader Storage Unit

If MCR bit 6 is set, routine CONSER is entered. MCR bit 6 is set
while the INIT button is derressed c¢n the consolette. If MCR bit
6 is not set, then, if the ISU is present and enabled, Routine
BCCT proceeds to read the first eight bytes of data from the LSU.
The nature of this data is as follcws:

First two bytes
Second two bytes
Third two bytes

Least significant 16 bits of a new PSW
Least significant 16 bits of a new LOC
Least significant 16 bits of an absolute
start address

lLLeast significant 16 bits of an absolute
end address

Fourth two bytes

The most significant 16 bits of PSW and LOC are set to zero. As
a ccnseguence, the 1locaticn ccunt value can only address a
locaticn within the first 64 kb of main memory. The start and

end addresses id. itify an area in the first 64kb of main memory
to be loaded with the ninth and successive bytes of data from the
LSU.

If the start address is iritially greater than the end address,
rocutine CONSER is entered; otherwise, data bytes are read from
the LSU and stored at successive byte locations in main memory.
The <start address is incremented by one for each byte read.
Reading continues until the start address becomes greater than
the end address, at which time routine TMMF is entered. If bit
18 of the PSW is set, a pcwer-up machine malfunction interrupt is
emulated. Otherwise, the state of the wait bit is tested.

B.2.5 Console Service Routine

The system console terminal is a full duplex asynchronous device.
The microprogram, on entry tc the rcutine CONSER, Dprograms this
device for no echoplex, maximum baud rate with seven data bits
and two stor bits per <character, and even parity. Local
connection is assumed; modem connection is not presently
supported.

Entry to CONSER causes the NVM bit of MCR to be reset, and the
current PSW and LOC to te displayed on the terminal screen,

followed by an operator prompt. CONSER allows the user to
examine and modify ES%, LOC, general and floating-point
registers, and memory. Program execution may begin from the
conscle, breakpoint instructicns may be inserted, and

instructions may be executed in single-step mode if the SNGL/RUN
switch on the system control panel is in the SNGL position.

50-C04 ROO 8-3

8.3 INTERRUPT SUPPORT
8.3+1 Routine FAULT

This routine, detailed in Figure 8-1, is entered whenever an MAIO
abort interrurt or machine malfunction interrupt occurs. In the
case of an MAIO abort interrupt (vector through *'207°'), MR1 is
loaded with the fault code and program address contained in RMDR
following the fault, and the fault is reset. 1If RMDR bit 0 is
set, a floating-point fault interrupt occurred, and «routine
FPPFRUL 1is entered to service for fault. For further details of
the floating-roint fault interrupt, refer +to Section 6.2.2,
otherwise, the steps described in the following paragraphs are
performed.

The MCR bits are tested, and RFAULT is issued. If the EPF bit is
set, an early rower fail machine malfunction interrupt is
emulated. If +the STF bit is set and MCR bit 9 is zero, a start
time failure machine malfunction interrupt is emulated. If the
STF bit i=s set, and MCR bit 9 is set, a Shared Memory Power Fail
machine malfunction interrurt is emulated. If the NVM bit is
set, a nonvalid memory machine malfunction interrupt is ignored,
ac it causes a subseguent EFF interrupt. All bits in the MCR are
forced reset except NVM.

If none of the abcve mentioned MCR tits are set, MRO was loaded
with an address indicating where, in the emulation sequence, the
fault occurred. If the fault occurred in the CONSER routine, it
is ignored, and CONSER is reentered., ITf the fault occurred as a
result of a machine malfunction interrupt PSW swap, the machine
is stopped (Hard Stop) by lcading becth CLOC and ILOC with X*'0u40°',
and entering routine CCNSER; doutle faults are not recoverable
without manual interventicn.

If the address returned with the fault code is equal to (CLOC-2),
it is assumed that the fault occurred during the fetch of a wuser
instruction. Otherwise, it is assumed that the fault occurred
while reading data from cr writing data tc memory. A special
case eXxists if the fault occurred while emulating an auto driver
channel cperation.

If the fault code returned is in the range from '00° to '17°*,
routine MATINT 1is entered, and a MAT interrupt is emulated. If
the fault code is in the range from '1F' to "1F', a data format
fault interrupt 1is emulated by rcutine FORFAULS6. Otherwise, a
machine malfunction interruprt is emulated as follovws. PSW and
ILCC are stcred in the dcublewcrd at memory location *20'. If
the fault occurred as a result of emulating a Load Multiple
instruction, the <calculated second operand address is stored in
the fullword at memory lccation *2C°‘. The machine malfunction
status word (refer to Figure 8-2) at location *40*' is adjusted
according to tre particular type of malfunction to be emulated:;
location ‘'44°' receives the program address unloaded from RMDR at
the time of the fault. PSW tit 18 is forced set, and the new PSW
and LOC are fetched from the doubleword at memory location '38°'.
Routine TWAIT is then entered.

-4 50-004 RO1 11/80

When a machine malfunction interrurt occurs due to a memory
access, RLC may continaue tc advance one or two microinstructions
befcre +the fault 1is Trevpcrted. These instructions are not
executed; however, vwhen the BALL FAULT (MRO) instruction is
executed at the trap locaticn, MRO may be loaded with a value one
or two greater than the expected value.

1280-1

GET MCR BITS
FROM 8-BOARD
TO FLAGS

\
\{MACH {INE MALFUNCTION

GET A-BOARD
FAULT CODE
FAULT AND ADDRESS, [
ISSUE RFAULT

ENTERS HERE

FPPFAUL

A MCRBIT
<|oseT>
RESET ALL N
MCR BITS QUEUE
EXCEPT MVF SHIFT-BY-0 _
. (NVM) (EPF)
NOTES: RESET FAULT
1. MEMORY VOLTAGE FAILURE (NVM) IS IGNORED
BY THE MICROPROGRAM . EARLY POWER FAIL
(EPF) IS GENERATED BY NVM.
QUEUE QUEUE
2. ALL MACHINE FAULT INTERRUPTS ARE DECODED SHIFT-BY 31 |— .
BY ROUTINE FAULT. MRO CONTAINS THE ADDRESS (STF} SHIFT-BY-30
OF THE INTERRUPTED MICROINSTRUCTION, PLUS 1. {SMPF
3. AMACHINE FAULT WHILE PERFORMING A MACHINE
MALFUNCTION INTERRUPT PSW SWAP CAUSES A
HARDSTOP.
QUEUE 28
4, THE CONTENTS OF MR7 ARE STORED AT X*02C’ SHIFT BY 2 RETOLOC
WHENEVER A PSW SWAP OCCURS AT MMFINT2.
DURING THE LM INSTRUCTION , THIS DATA 1S (NVM)

THE RX ADDRESS CALCULATED FOR THE SECOND MMFINT

OPERAND.

FAULT WAS IN
_] CHANNEL CODE
QUEUE -
SHIFTBY4 [

HARDSTOP

CLOC =—040
ILOC +—'040

FAULT IN
CONSER ?

CONSER

INSTRUCTION

“FAULT WAS DURING
< | FETCH
-

QUEUE
SHIFTBY-3

l

Figure 8-1 FAUIT Routine

5¢0-004 RO1 11/80 8-5

1281

FAULT CODE
<19

FAU

LT CODE
9’

MMFINT

(

Ld
MATINT ’

MEMORY ADDRESS
~“] TRANSLATOR FAULT

FULLWORD
_A{ALIGNMENT
-7 |FauLT
FAULT CODE FORFAULG
=€
?
HALFWORD
_AALIGNMENT
-7 [eauLT
ADD 3 TO
QUEUED SHIFT
COUNT EORFAUL7
STORE FAULT
ADDRESS AT
X'044
MMEINT2
FETCH NEW
LOC FROM
x'03¢C
, SHIFT POWER RESTORE
8000 0000 INTERRUPT
RIGHT BY -~ | ENTERS HERE
QUEUED SHIFT |
COUNT.
STORE AT
X040 FETCH NEW
PSW FROM
X'038
EMULATED POWER
_-| RESTORE INTERRUPT
-“ | DISABLED
PSW
BIT 18SET TWAIT
?
STORE (MR7)
IN X'02C
STORE PSW
AT X020 PSW +—
STORE ILOC X'2000
AT X'024
TWAIT
Figure 8-1 FAULT Routine (Continued)

50-004 RCO

o 1 2 3 4 5 6 7 30 31

slul2i1lejol2ln 21 1

SHARED MEMORY FOWER FAIL J

START TIME FAILURE

NONCCNFIGUREL MEMORY (AUTO DRIVER CHANNEL)

NONCONFIGURED MEMORY (INSTRUCTION FETCH)

NONCONFIGUREL MEMORY (DATA FETCH/STOKE)

NCNCORI 'CTABLE FRROR (AUTO DRIVER CHANNEL)

NCNCCRRFCTABLE ERRCR (INSTRUCTION FETCH)

NONCORRECTABLE ERROR (DATA FETCH)

PCWER RESTCRE

POWER FAIL

Figure 8-2 Machine Malfunction Status Werd (MMSW)

8+3.2 Rcutine TWAIT

This routine tests the WAIT bit of the current PSW (PSW bit 16).
If the bit is set, routine WAIT is entered. Otherwise, the wait

lamp is turned off, and the user instruction indicated by CLOC is
fetched and executed.

8.3.3 Routine WAIT

The WAIT lamp is 1it by the first instruction of routine WAIT.
The remainder of this routine consists of a single instruction
which branches to itself, with all enabled interrupts armed. Any

interrupt causes the micrcinstruction at the interrupt trap
address to be executed.

50-004 RO1 11/80 8-7

8e3.4 Routine MATINT

This routine is entered from routine FAULT, as a result of an
MAIC abort interrupt <caused by the MAT contreoller. Routine
COMSWAP fetches the MAT interrupt new PSW at memory 1location
'90*', and saves the 64~-tit PSW at the time of the fault in
registers 14 and 15 of the new register set. MATINT then places
the <code returned at the time of the fault in register 13 of the
new set, and the returned program address in register 12. If the
fault occurred while emulating the Load Multiple instruction, the
calculated second operand address is placed in register 11.

8.3.5 Routine FCORFAULG6

This rcocutine is entered from routine FAULT, as a result of an
MATC abeort sequence caused by an alignment error. The proper
fault code is generated in the least significant four bits of MRO
as rcutine FORFAULT is called.

8.3.6 Routine FORFAULT

This routine is entered from routines FORFAULO through FORFAUL7,
whenever a data format fault interrupt occurs or is forced by the
emulator. Routine COMSRWAP fetches the data format fault
interrupt new PSW from memory location °'C8', and saves the 64-bit
PSW at the time of the fault in registers 14 and 15 of +the new
register =et. FORFRULT then places the code indicating the type
of fault in register 13. If a halfword or fullword alignment
fault occurred, the program address causing the fault is placed
in register 12.

8.4 I/0 INTERRUPTS

The occurrence of one of the four I/0 interrupts causes +the
microinstruction at the resrective trap location to be executed.
Register 'LEVEL® is set equal to the number of the interrupt line
and the interrupt is ackncwledged. The returned device number is
placed in register *'DEV' and routine IOINTX is entered.

The current FSW is set aside in register '"TEMP'. The halfword
service pointer table entry is fetched from the memory location
whose address is 'L0' plus twice the interrupting device number.
A new PSW is 1l1lcaded which has c¢nly bites 18 and 20 set, and
selects the register s=2t c¢crrespcnding to the number o2f the
interrupt line.

8-8 \ 50-004 ROO 12/81

General register O of the newly selected set is set egqual to the
0old PSW; general register 1 is set egqual to ILOC, and general
register 2 is set equal tc the device number. The device is
addressed and a sense status is performed. The device status
byte is copied to general register 3 and the condition code. The
service pointer table entry in RMDR 1is tested. If the 1least
significant bit ig zero, an immediate interrupt is performed; the
wait lamp is turned off, and the user instruction whose address
is in RMIR bits 16:31 is fetched and executed. Otherwise, if the
least significant bit of the service rointer table entry is set,
RMDE contains the address of a Channel Command Block (CCB)
resident within the first 64 kb, and routine CHANEL is entered.

8.5 AUTO DRIVEkK CHANNEL

Routine CHANEL can perform a variety of functions, depending upon
bits in the Channel Command Word (CCW) which 1is the first

halfword in the CC: (See Figure 8-3.)
C 7 8 9 10 11 12 13 14 15
0 STATUS MASK E sic B R/W!|! T |F CHANNEL
COMMAND
WORD
F
2 BUFFER O BYTE COUNT
y BUFFER O END ALDRESS
8 CHECK WCREL
10 BUFFER 1 BYTE COUNT
12 BUFFER 1 END ALDRESS
16 TRANSLATICN TABLE ALLRESS
20 SUBRCUTINE ADDRESS

Figure 8-3 Channel Command Block

50-004 ROO 12/81 8-9

The Channel Command Word is fetched and placed in a register
labeled CCW. The EXECUTE bit of CCW is tested. If the bit is
zero, routine EXSUBO is entered. If the EXECUTE bit is set, the
status mask is ANLCed with the actual device status in register 3.
If the result is nonzero, the status <check fails, and routine
EXSUB1 ie entered.

If the status check does not fail, the FAST bit in CCW is tested.
If the bit is zero, routine NFAST is entered for normal mode CCB
activities. If the bit is scet, rcutine FASTMODE is entered.

8.5.17 Rcutine FASTMOLE

The buffer 0 btyte count is fetched into register *COUNT'. If the
count is greater than zeroc, it is assumed that software has not
yet set it up, and routine EYAUTO is entered. If the count is
not greater than zero, the tuffer 0 end address is fetched 1in
RMDR. The halfword test 1line is then examined. If inactive,
routine BYTEIO is entered; otherwise, a halfword device
controller is currently addressed, and routine HWIO is entered.

8.5.1.1 Routine BYTEIO

The buffer 0 end address is added tc¢c the contents of register
"CCUNT* in MAR, and the Fead/Write bit of CCK is tested. If the
bit is set, a data byte is fetched from memory and output to the
addressed device; 1if the kit is zero, a data byte is input from
the addressed device and written to memory. Routine COMMON then
increments the contents or register *COUNT' by one, and updates
the buffer 0 byte count in the CCB. If the new count is not
greater than zero, routine EXAUTO is entered; otherwise routine
EXSUB2Z is entered.

8.5¢1.2 Rcutine HWIO

The buffer 0 end address is added to the contents of register
‘COUNT®* in MAR and the Read/Write bit of the CCW is tested. If
the bit is set, a data halfword is fetched from memory and output
to the addressed device; if the bit is zero, a data halfword is
input from the addressed device and written to memory. The
contents of register 'COUNT' are incremented by. two and the
buffer O byte count in the CCB is updated by routine COMMON. If
the new count 1is not greater than zero, routine EXAUTO is
entered; otherwise, routine EXSUB2 is entered.

[e¢]
!
-
(@]

50~-004 ROO 12/81

8.5.2 Routine NFAST

The buffer switch bit of the CCW is captured and ORed with binary
'*D010*. The result is the kyte offset from the address contained
in register 4 cf the desired buffer byte count field in the CCW.
The count iz fetched. Two is added to the byte count address
contained in register °'TEMP', giving the memory address of the
corresponding buffer end address field of the CCW. The buffer
byte count is loaded into register ‘'CCUNT'. If +the count 1is
greater than zero, it is assumed that software has not yet set it
up, and routine EXAUTO is entered. If the count is not greater
than zero, the buffer end address and the byte count are added.
The result, placed in both MAR and MR1, is the memory address of
the data byte to rarticipate in I/0 operations. The Read/Write
bit of the CCW is then tested. If the bit is set, the data byte
is fetched from memory, and routine NFWRIT is entered. If the
bit is zero, rcutine NFREAD is entered.

8.5.2«.1 Routine N, 'RIT

The data byte from memory is copied into register 3, and the
translation bit of the CCW is tested. If the bit is set, routine
TRANSL is called to translate the data byte. If the bit is zero,
or c¢cn return from routine TEANSL, the data byte in RMDR is output
+0 the addressed device. Rcutine REDCHK is then called to update
the checkword in the CCP using the translated (I/0) byte. Upon
return from REDCHK, MAR is lcaded with the address of the buffer
byte count, and routine CCMMCN3 is entered.

8.5+42.2 Rcutine NFKEAD

A data byte is input from the addressed device and copied to
WMDR. The translation bit of the CCW is tested. If the bit is
set, routine TRANSL is called to translate the data byte. 1If the
bit is zero, cr on return from routine TRANSL, the byte address
in MR1 is copied to YMAR, and the data byte is stored in memory.
Routine REDCHK is then called to update the check word in the CCB
using the untranslated (I/0) byte. Upon return from REDCHK, MAR
is 1locaded with the address cof the kuffer byte count, and routine
COMMCN3 is entered.

8.5.23 Routine TRANSL

The data byte in register 3 is doubled to form an index, and 1is
added to the translation table address defined in the CC3. The
correspronding halfword table entry is fetched. TIf the halfword
is negative, the correspcnding translated byte is in RMDR 24:31,
and TRANSL returns to the <caller. If the halfword 1is not
negative, the ccntents of RMDR are doubled and copied to CLOC;
the WAIT indicator, is reset, and the user instruction indicated
by CLOC 4is executed. TLata available to the user's translation
routine is shcwn in Table 8-1.

50-c04 ROO 1z/81 - 8-11

8.5.2 Routine NFAST

The buffer switch bit of the CCW is captured and ORed with binary
'0010'. The result is the Ltyte offset from the address contained
in register 4 of the desired buffer byte count field in the CCW.
The count is fetched. Two is added to the byte count address
contained in register 'TEMP', giving the memory address of the
corresponding buffer end address field of the CCW. The buffer
byte count is loaded into register °*CCUNT'. If +the count is
greater than zero, it is assumed that software has not yet set it
up, and routine EXAUTO is entered. If the count is not greater
than zero, the buffer end address and the byte count are added.
The result, placed in both MAR and MR1, is the memory address of
the data byte to participate in I/0 operations. The Read/Write
bit of the CCW is then tested. If the bit is set, the data byte
is fetched from memory, and routine NFWRIT is entered. If +the
bit is zerc, rcutine NFREAD is entered.

8.5+.2.1 Routine N. 'RIT

The data byte from memory is copied into register 3, and the
translation kit of the CCW is tested.. If the bit is set, routine
TRANSL is called to translate the data byte. If the bit is zero,
or cn return from routine TREANSL, the data byte in RMDR is output
to the addressed device. Rcutine REDCHK is then called to update
the checkword in the CCE uvsing the translated (I/0) byte. Upon
return from REDCHK, MAR is lcaded with the address of the buffer
byte count, and routine CCMMCN3 is entered.

8.5¢2¢2 Rcutine NFKEAD

A data hyte is input from the addressed device and copied to
WMDR. The translation kit of the CCW is tested. If the bit is
set, routine TRANSL is called to translate the data byte. If the
bit is zero, cr on return from routine TRANSL, the byte address
in MR1 1is copied to MAR, and the data byte is stored in memory.
Routine REDCHK is then called to update the check word in the CCB
using the untranslated (I/0) byte. Upon return from REDCHX, MAR
is 1lcaded with the address cf the ruffer byte count, and routine
COMMCN3 is entered.

8¢5+2.3 Routine TRANSL

The data byte in register 3 is doubled to form an index, and 1is
added +to the translation table address defined in the CCB. The
corresronding halfword table entry is fetched. If the halfword
is negative, the correspcnding translated byte is in RMDR 24:31,
and TRANSL returns to the <caller. If the halfword is not
negative, the <ccntents of RMDR are doubled and copied to CLOC;
the WAIT indicator is reset, and the user instruction indicated
by CLOC 1is &executed. CLata available to the user's translation
routine is shcwn in Table 8-1.

50-CO4 ROO 12/81 8=11

8.5.3 Fxit Rcutines Used by FASTMOLE and NFAST

Several short routines are used ag common exits for routine
FASTMCEE and for routine NFAST. These exit routines are
descrited in the following raragraphse.

8.£.3.17 Routine EXAUTO

This routine is entered when an autc driver channel operation has
been ccmpleted, and an interrupt at the wuser level 1is - not
desired. The entry PSW and LOC are restcored from registers 0 and
1. After FSW is restored, interrugts are collectively armed, and
routine TWAIT is entered. (See Section 843.2.)

8+.5¢3¢2 PRoutine EXSURO

This routine is entered when the Execute bit in the CCW is seen
to be zero at el ry toc rcutine CHANEL, MRO contains zero when
routine EXSUB is entered. (See Section 8.5.3.5.)

8.5.2.3 Routine EXSUBR1

Thise rcutine is entered when the result of ANDing the status of
the interrurting device with the status mask in the CCW is not
zero. MRO contains a small negative value as routine EXSUB is
entered. (See Section 8.5.3.5.)

8.5.3.4 Routine EXSUE2

This routine is entered when a result greater than zero |is
yielded by incrementing a buffer bhyte count. MRO contains a
small rositive value as rcutine EXSUB is entered.

8.5.3.5 PRoutine EXSUR

This routine is entered from routine EXSUBO, EXSUB1, or EXSUB2.
The subroutine address is fetched from the CCB. This halfword is
forced even and copied to CLOC. The contents of MRO are loaded
to NULL, resulting in a ccndition ccde setting of 0, 1, or 2 (no
flags, L flag, or G flag). The wait lamp is turned off, and the
user instruction indicated by CLOC is fetched and executed.

50-C04 ROO 1Z/81 - 8-13

INDEX

A Contents of RMDR following a
fault 6-3
Control lines 5-2
Access/data/boundary/floating Control store memory 1-3

point interrupt (207) 6-2
Acknowledge interrupt 5-6
Add 4-29 D
Add and increment 4-30

Compare register, Floating-point instructions

|
|
|
|
|
|
Add register, ' Data and instruction formats 2-1
double precision 4-61 ' Data
single precision 4-u8 | formats 2-1
Address and output command 5- | lines 5-2
Address and read, Decode 7-5
data 5-12 ' Defined data on entry to user
halfword 5-17 I translation routine 8-12
Address and sense status 5-7 | Divide 4-35
Rddress and write, Divide register,
data 5=-14 I double precision 4-67
halfword 5-20 single precision 4-54
Rddress link 2-4 ‘
ALU 1-6 |
AND 4-5 i E
:itghziii:rlggiin:iit ;:g I Early power fail (EPF) 6-6
! Effect of the current PSW 4-38
' Effective second operand 3-3
B | 7-6
’ Equalization 4-38
B bus gating after instruction | Exchange byte 4=71
read 7-3 Exclusive OR 4-7
Block diagram, | Execute and link 4-11
analysis 1-1 | Exit routines used by FASTMODE
FPP 4-39 | and NSFAST 8-13
Branch and disable console 4-77 | 8-14
y-178 External interrupt enable 1-8
Branch and 1link u-9 | External interrupts 6-7
Branch/execute and link |
instruction 4-8 |
Byte handling instructions 4-69 |
| F
C
‘ Fault routine 8-4
Channel command block 8-9 | Fixed-point arithmetic
Clear machine control register U4-74 | Figztgggztzgi :—is
CLoC 1-4 -
6-3 | Flags returned by SMCR after
7-1 | machine malfunction 6-5
Cold start 8-1 ' Floating-point fault interrupt 6-2
Communications assist unit 8-12 ' 2';
double precision 4-60 | Floating-point processor (FPP)
single precision 4-47 | block diagram 4-39
Console, ' Format ROM 7-1
attention interrupts (204) 6-6 7-2
service routine 8-3 | FPP autonomous operation 4-40
|

50-004 ROO _ Ind-1

G

General registers
Guard digits and R*-rounding

H

Hard stop
Hardware block diagram

IJK

Jllegal instruction interrupt
(208)
ILOC

Initialize line
Input/output
instructions
system
I/0 interrupts
I1/0 interrupts (203, 202, 201,
200)

Instruction,
decode
execution
formats
formats (microcode)
formats (user-level)
read
repertoire
word fields
Internal interrupts
control
support, emulated
system
traps
Introduction

Load
Load byte
Load register,
double precision
single precision
Load the wait flip-flop
Load word
Loader storage unit
Logical instructions

M

Machine control register (MCR)

Machine malfunction interrupt
(205)

Machine malfunction status
word (MMSWH)

Ind-2

@I N=2UNNNOa O,
T 3 01 131 13 3 i
B apgpRhRWa2EEN

ro
1]
© =

. '
L T

s\o\oo_\osug‘:\l\lww\l\l
T PR
ANDAENawa3aasaham

Main memory

Main memory control

MC field

Memory address translator (MAT)

Memory data register
Memory voltage failure

Microprogram description
Microregisters
Model 3240 Emulator
Module start time failure
Multiplexor bus
Muitiply
Multiply register,
double precision
single precision

Normalization
NULL
NVM interrupt

Operand fetch
OR
OQutput command

PQ

Power down

Primary power fail interrupt
(206)

Privileged/illegal ROM

Program status word

PSW
R
Read
condition code
data
halfword

register double precision

register single precision
Register

addresses

link

set selection

to register control

to register immediate

to register transfer

write

50-004

L T I N |
o

FEORNO 220 2NANNNND =
[}
W= fWwWadoa s

&

f#
U o
N

O\(.IUR
[, S]

ROO

NORE OO W=
[}
O =aUINN2EN00

YD register

Sense machine control register

YDI register

WNWaNaNwads
[}
[SESHSNE N SNT N SN ST NSNS

Sense status
Shift left,

YS register

Teseteing the X flipflevs 33| swat mane
K option - arithmetic 4-23
3-3 | halfword arithmetic ' 4-25
6-3 | halfword logical 4-19
8-u ' logical 4-17
RMDR fault codes 6-4 ' Shift/rotate instructions 4-13
ROM, Single-step interrupt 6-7
address gate (RAG) 1-3 | Source and destination
instruction register (RIR) 1-3 | registers 3-1
location counter (RLC) 1-3 | State of RMDR after
Rotate left logical : 4-26 instruction read 7-2
Rotate right logical 4=-27 : Store byte 4-70
Routine, Store to WCS 4-u
BYTEIO 8-10 | Subtract 4-32
COMMON3 8-12 I Subtract and decrement 4-33
EXAUTO 2-12 | Subtract register,
- double precision 4-63
EXSUB 3-13 : single precision 4-50
- Systen,
EXSUBO 8-13 | initialization 8-1
8-14 | organization 1-1
EXSUB1 8-13
8-14 |
EXSUB2 8-13 |
8- 14 ' T
FASTMODE 8-10
FAULT 8-4 ' Test halfword line and
FORFAULT 8-8 | transfer 5-22
FORFAUL6 8-8 | Test lines 5-3
HWIO 8-10 |
MATINT 8-8
NFAST 8-11 : uv
NFREAD 8-11
NFWRIT e-11 | User instruction register (UIR)
REDCHK 8-12 |
TRANSL 8-11
TWAIT 8-7 I WX
WAIT 8-17
| Warm start 8-2
| Write data 5-16
S | Write halfword 5-21
Scratchpad registers - I
- | YZ
|
|
i
|
|
|
arithmetic 4-20 I YSI register -
halfword arithmetic 4-22 | -
halfword logical U4-16 | -
logical 4=-14 ' YX register -
I

50-004 ROO ' ‘Ind-3

CUT ALONG LINE

e e meman e e ——— ot . e e e i o e ot e v ovs | s s wrooww o i s et St o, i, i et et v . s Sttt e, et .ttt s, e g e

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

(] Error Page No. —_ __ Drawing No.

[] Addition PageNo._______ Drawing No.

(] Other Page No.__________ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE

STAPLE I
|
|
|
|
|
|
{
I
|
I
|

FOLD Foro |

| " " | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
:]
.]
BUSINESS REPLY MAIL E——
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.]
[- -
POSTAGE WILL BE PAID BY ADDRESSEE .]
]
PERKIN-ELMERR e t——
.]
Computer Systems Division .]
2 Crescent Place]
Oceanport, NJ 07757 ——
-]
]

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

STAPLE

3250

MICROCODE

' PERKIN-ELMER

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINIKG) PAGE 1 23:17:12 07/235/82

PROG= M3250B

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2000
0001
0002
0203
0004
0005
0005
0007
0008
0303
090A
9008
000C
030D
000E
000F
0000

ASSEMBLED BY

MICROCAL II (32-BIT)

£ W N =

SCRAT
CROSS
TARGT
SQCHK

3240

* MODEL 3250 PROCESSOR EMULATOR 05-086R03

* MICROPROGRAM

WRITTEN BY KARL STEES KLEIN DECEMBER, 1978

* COPYRIGHT PERKIN-ELMER CORP., 1982

PAGEO.1 PARTS

PARTS

PAGE2.3 DPARTS
. PARTS
PAGE4.5 PARTS
PARTS

PAGES.7 PARTS
PARTS

*x NOTE

* IN ALL CASES
LISTING PAGE

*

19-195R03F47,19-195R03F48,19-195R03F49,19-195R03F50
19-195R03F51,19-195R03F52,19-195R03F53,19-195R03F54
19-195R02F55,19-195R02F56, 19-195R02F57, 19-195R02F58
19-195R03F59,19-195R03F60,19-195R03F61,19-195R02F62
19-195R03F63,19-195R03F64,19~-195R03F65,19-195R03F66
19-195R03F67,19~195R03F68,19-195R03F69,19-135R03F70
19~195R01F71,19-195R01F72,19-195R01F73,19-195R01F74
19-195R01F75,19-195R01F76,19-195R01F77,19-195R01F78
PRIV/ILEG ROM IS 19-195R00F79.

WHERE A BRANCH OR TRANSFER COULD OCCUR TO A
OTHER THAN.THE CURRENT ONE, THE DESTINATION

* PAGE NUYBER IS SHOWN IN PARENTHESES IN THE COMMENT FIELD.

* USER LEVEL INSTRUCTION EMULATION ENTRY-POINTS
* FOLLOW. 1IN BRESPONSE TO AN INSTRUCTION READ COMMAND
* THE HARDWARE READS THE NEXT USER INSTRUCTION FROX
* THE MAIN MEMORY LOCATION SPECIFIED BY (ILOC). T¥WO,
* FOUR, SIX, OR ¥ORE BYTES ARE READ, DEPENDING TPON
* INSTRUCTION TYPE. TWICE THE USER'S QPERATION CODE
* IS THE STARTING ADDRESS IN ROX OF THE RPPROPRIATE
* ZMULATION SEQUENCE. THE OP-CCDE IS SHOWN IN THE
* COMMENT FIELD AXND THE USER'S MNEMONIC IS THE LABEL.
RO EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 2

RY EQU 4

RS EQU 5

R6 EQU 5

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

FREEWORD EQU 0 TRACER

RO3
®03
RO2
P03
RO3
RO3
RO1
RO1

32500000
32500020
32500030
32500040

32500050
32500060
32590070

32500090
32500100
32500110
32500120
32500130
32550140
32500150
32500150
32500170

325020190
32500200
325900210

32500230
32500240
32500250
32500240
32500270
32500280
32500290
32500300
32500310

32500330
32500340
32500350
32500360
325003790
32500390
32500390
32500400
325950410
32500420
32500430
32500440
32500u50
32590450
32500470
325204890
32500490

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13

RGY
0000
0001

0002
003

goou
0005

0006
00cC7

0008
0009

000A
0008

000C
000D

000E
000F

0010
0011

0012
0013

0014
0015

0016
0017

0018
0019

00112

001B
001C

001D
001E
001F

SESMENT O

17¢C
17FD

281C
235F

178C
2B3F

13EC
235F

2339
0do04

2BF9
E3FF

2839
0000

2339
0001

2B3F
4¥00

221F
003E

2839
FFFF

2B39
0000

13F9
0000

13F9

3673
CBF9

2B5F
2BBF
1378

3240
5D40

1Fe0
1C05

0102
1812

01D2
1C37

5C32
0000

0C32
FFFF

7C32
4000

6C32
0000

1C32
0000

1C31
0000

1C32
0000

0C32
FFFF

3900
8000

3B40

605B
29B2

1C80
1C11
9200

OPC

3DES 0Q0 TO 1F

52
53
54
55
56
57
58

(TRAINIKNG) PAGE
TRAPOO BALD ILEGAL(NULL)
*
START BALD SELFTEST(NULL)
*
BALR A MRO,CLOC,NULL
LX CLOC,YS,BALR1
*
BTCR BALT BRR(NULL),IED
BALR1 L YD,MRO,IRD
*
BFCR BALF BRR(NULL),IRD
BRR LX CLOC,YS,EXIT3
*
NR h YD,YD,YS,IRD,E
BIT13 DC '00040000"
¥*
CLR S NULL,YD,YS,IRD,E
BI03.050 DC 'E3FFFFFF’
OR 0 YD,YD,YS,IRD,E
BIT17 DC ‘00004000
*
XR X Yn,Yp,YS,IRD,E
BIT15 bC ‘00010000
¥
LR L YD,¥S,IRD,E
CONST4E DC '4E000000"
*
CR LX ¥RO,YS,C2
BI10.14 DC *003E0000"
»
AR A Yp,¥D,¥S,IRD,E
BIO0.15 DC *FFFF0000"
*
SR S YD,¥d,YS,IRD,E
BI16.31 DC '0000FFFF"*
*
MHR BAL MHR1(NULL)
BIT16 DC *00008000"
*
DHR BAL DHR1(NULL)
*
LCER1 X1 MR3,¥R3,BIT00,I
LE YD,¥R3,IRD,E
LPSWR1 L CLOC,YD
L PSw,YSs,aLoC
BAL QTEST(NULL)

2

23:17:13 07/29/82

HARDWAR® TRAP FOR BAD DECODE (P.18)
ON RELEASE OF SCLRO, EXECUTION STARTS32500520

AT LOCATION *001'. (P.49).

* 01
INCREMENTED LOC TO “RO
NEW LOC FROM ¥S

* 02
BRANCH IF MASK TRUE
YD GETS OLD INCREMENTED LOC.

* 03
BRANCH IF MASK FALSE
LOAD LOC (P.3)

* 04
CONSTANT

* 05
CONSTANT

* 06
CONSTANT

* 07
CONSTANT

* 08
CONSTRANT :

* 09
GET SECOND OPERAND (P.3)
CONSTART

* OA
CONSTANT

* 0B
CONSTANT

* 0C
(P.bu)
CONSTANT

* 0D
(P.uy)

REVERSE SIGN BIT
LOARD COHPLEMENT.

NEW LOC FROM R2+17
NEW PSW FROM R2

CHECK SYSTEM QUEUE SERVICE (P.225

*

P02

RO2
R0O2
RO2

RO2

325750510

32500530
32500540
32500550
32520840
32500579
325920580
32500590
325900500
325900510
32500f20
32500%30
325006490
32500650
3259060
325920670
32500480
32500690
32590700
32500710
325007290
325507390
32500740
325920750
32500760
32590770
32500780
32590790
32500800
32500810
32500820
32500830
32500840
325050850
32500860
32500870
32500880
32500890
32500900
32500910
32500920
32500930
32500940

32590960
32500970
32500980

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 3 23:17:13 07/29/82
ROM SEGMENT 0 - OPCODES 00 TO 1F

101 * * 10 * 32501000
0020 2B39 8EB2 102 SRLS SRL YD,YD,YSI,IRD,E 32501010
0021 CE0O0 0000 103 CONSTCE DC *CE000000" CONSTANT 32501020
104 * * 11 * 32501030
0022 2B39 9EB2 105 SLLS SLL YD,YD,¥SI,IRD,E 32501040
0023 FFFF 7FFF 106 BIT160 DC *FFFF7FFF"* CONSTANT 32501050
107 * * 12 * 32501060
0024 321D 5008 108 CHVR NI MRO,PSW,8 SAVE PREVIOUS CARRY 32501070
0025 13F9 2E00 109 BAL CHVR1(NULL) (P.43) 32501080
110 * * 13 * 32501090
0026 CA7F 1C00 111 LPER RRE ¥R3,YS GET SPFP DATA RO2 32501100
0027 3673 5073 112 NI ¥R3,MR3,BI01.31,I FORCE POSITIVE R02 32521110
0028 CBF9 29B2 113 LE YD,MR3,IRD,E LOAD SPFP, SET CC, EXIT. RO2 32501120
114 * . RO2 32501130
0029 221F 1DB1 115 C1RX LY ¥RO,RMDR,C2 MEMORY COMPARAND; GO COMPARE 32501140
116 * * 15 * 32501150
002X CA9F 1C02 117 LGER RRE MR4,YS,IR GET SPFP REGISTER 32501140
002B 2B3F 1A30 118 L ¥YD,MR4,D,E COPY TO GENERAL REZG, EXIT, CC SET 32501170
119 * * 16 * 3259112¢C
002C 2A1F 1F00 120 LGDR L ¥RO,YDI SAVE R1 SPEC 32591190
002D 13F9 93¢0 121 BAL LGDR1(NULL) (P.56) 32501200
122 *) * 17 * 32591210
002E C27F 1C1B 123 LCER RREX MR3,YS,LCER1 READ SPFP DATA (P.2) RO2 32501220
002F 2BF9 0830 124 C3 S NULL,YD,¥RO,D,E COKPARE, SET CC, EXIT. RO2 325921230
125 * * 18 * 32501240
0030 23DF 3E9D 126 LPSWR AINCY YDI,NULL,YSI,LPSWR1 (P.2) RO2 32501250
127 = ‘ . 32501240
0000 2231 128 CA18I EQU * 32501270
0031 2379 6802 129 C2 X NULL,YD,MRO,IR COXPARE SIGNS: 32501280
0032 1784 O0BCO 130 BALNL C3(NULL) BRANCH: SIGNS ALIKE. 32501290
0033 3219 C001 131 SRAI NRO,YD,1 PROPAGATE 1ST OP SIGN 32501300
0034 2BF0 3830 132 AINC NULL,¥RO,MRO,D,E SET CONDITION CODE 32501310
133 * 32501320
0035 2834 1D8O 134 B A MAR,YX,RHMDR CALCULATE ADDRESS 325913130
0036 2B5F 1EQO 135 L CLOC, ¥AR LOAD NEW 1OC 32501340
0037 2BFF 1F92 136 EXIT3 L NULL,NULL,IRD EXIT. 32501350
. 137 = *x 1C * 32501340
0038 2233 RC12 138 MR M ¥D,¥YDP1,YS,IRD ¥ULTIPLY, EXIT. 32551370
0039 0009 FFFE 139 BI16.30 DC *0000FFFE" CONSTANT 325013890
1Mo * * 1D * 32501390
0034 2A5F 1C80 141 DR L MR2,Y¥YD SAVE DIVIDEXND 32591400
003B 2378 1F80 142 A ¥R3,YDP1,KULL . 32591410
003¢C 243F 1C00 143 L MR4,YS REMEMBER DIVISOR 325014290
003D 2B38 FCOO 144 D YD,YDP1,YS DIVIDE 32501430
003E 13F4 96D2 145 BALV DFAULT(NULL),IRD ERROR IF V FLAG. (P.23) 32521440
003F 0000 0000 147 DC FREEWORD . RO2 32501460

¥ODEL

3250 PROCESSOR

ROM SEGMENT 1

ooud

0oun
000L1

0042
Q043

004y
0045

00ous
0047

oousg
0043

. 0O4A
0ouB

oouc
004D

OQUE
0ouFr

00590
0051

0052
0053

0054
0055

0056
0057

o058
0059

005A
00S5B

005C
005D

Q05E
005F

13%C
235C

2B3F
FFOO

2B3F
2BFF

2B39
0000

2339
4000

cB¥9
0000

CBF9
FFFF

CBFS
QQFF

CBFS
0001

CBF9
0080

CBF3
8000

CR1F
13F9

12D8
CBFS

1052

L)
E 0883

1152
OER9

1052
1E87

1152
1EA9

1EB2
0000

0EB2
1CB0

1882
2800

0=82
0000

2C32
2000

3C32
8000

4c32
Q000

5C32
FFFF

6C32
0000

7C32
0000

1C00
BE4Q

4440
2880

- OPCODES 20:3F

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

AIS
BI1820
J

SIS
BITO1
*

LER
BIT18
%

CER
BIOO.16
*

AER
BI08.15
*

SER
BI15.31
*

MER
BRITO8

*

DER
BITOO

*

FXR

%*

FLR

EFULATOR 05-C86R0O3A13 (TRAINING)

ORG

BALT
SX

BALT
SX

BALF
AX

BALF
AX

LE
DC

CER
bC

AER
bC

SER
DC

MER
DC

DER
DC

RRE
BAL

BAL
LE

PAGE 4

'ouo0’

BBS(NULL),IRD
CLOC,ILOC,YSI,BBST

RFS{NULL),IRD
CLOC,CLOC,¥SI,EXITS

BBS(NULL), IRD
CLOC,ILOC,YSI,BFS1

BFS(NULL), IRD
CLoC,CLOC,YSI,EXITS

¥D,YSI,IRD,E
*FF000000"

YD,NULL,YSI,IR

NULL,Y2,D,E

¥YD,¥D,¥SI,IRD,E
*00002800"

YD,¥D,YSI.IRD,E
'40000000"

YD,YS,IRD,E
*00002000"

¥D,¥YS,IRD,E
*FFFF800Q0°

YD,YS,IRD,E
*00FF0000"

YD,YSs,IRD,E
*0001FFFF"®

YD,YS,IRD,E
*00800000"

YD,¥S,IRD,E
*80000000"

MRO,¥S
FXR1(NULL)

FLR1(HR6)
YD,¥%¥R%,D,E

23:17:14 07/29/82
' *
BRANCH IF ¥ASK TRUE
DECREMENT BY TWICE YSI

*
BRANCH IF MASK TRUE
GO EXIT WITH NEW LOC.

*
BRANCH IF MASK FALSE
INCREMENT BY TWICE YSI

*
BRANCH IF MASK FALSE
GO EXIT WITH NEW LOC.

*
CONSTANT

*
SUBTRACT TO TWO'S COMP
SET G, L

*
CONSTANT

*
CONSTANT

*
LOAD SPFP REGISTER, SET CC
CONSTANT

w
COMPARE, SET CC, EXIT.
CONSTANT

*
ADD, SET FLAGS
CONSTANT

*
SUBTRACT, SET FLAGS
CONSTANT

*
MULTIPLY, SET FLAGS
CONSTANT

J*
DIVIDE, SET FLAGS
CONSTANT

*
ARGUMENT TO 4RO
(P.55)

*
(P.10)

EXECUTED INSTRUCTION

20

21

22

23

24

25

26

27

28

29

22

28

2F

RO2

RO2

RO2
RO2

RO2
RO2

RO2
RO2

RO2
R0O2

RO2
RO2

32591420
32501490
32501500
32501510
32501520
32501539
32501540
32501550
32501540
32501570
32501580
32501590
32501400
32521510
32501£20
32501530
32501540
32501€50
325016R0
32501470
32501580
32501430
32501700
32501710
32501720
32501730
32501740
32501750
32501750
32501770
32501780
32501790
32501800
32501810
32501820
32501830
32501840
32501850
32501860
32501870
32501880
32501890
32501900
32501910
32501920
32501930
32501940
32591950
32501960

—ar’

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

ROM SEGYENT 1

0060
0061
0062
0063

co6d
0065

0066
0067

0068
0069

006A
00638
006C
006D

Q06E
006F

0070
0071

0072
0073

0074
0075

0076
0077

0078
0079

G074
007B

007C
007D

007E
007F

33F5
13EQ
327F
13F8

13F¢
FF7F

12D9
3694

3338
2BFF

0000
0000
0000
00090

1209
3594

CBF9
0000
CBF9
TEFF
CBFS3
0000

CBF9
0090

CBr9
ARAR

C3F9
5555

CA1F
13F9

12D8
CBF9

5040
8340
101E
8C00

80C0O
FFFF

9580
5073

8010
1F92

0000
0000
0000
0000

9580
605B

AC32
F800

BC32
FFFF

CC32
TEFFF

DC32
0000

EC32
ARAR

FC32
5555

9C00
8BCO

4440
A8RBO

- OPCODES 20:3F

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
2256
227
228
228
230
231
232
233
234
235
236
237
238
239
2u0
241
242
243

STFAIL2

*

PBR
BITO8O

*

LPDR

*

EXHR
EXITS

*

*

LCDR

*

LDR
BI16.20
*

CDR
BI01.31
*

ADR
BI17.31

*

SDR

*

MDR
TENS

*

DDR
FIVES
¥*

FXDR

*

FLDR®

NI
BALZ
LI
BAL

BAL
DC

BAL
NI

LD
DC

CDR
DC

ADR
DC

SDR
DC

¥DR
DC

DDR
DC

RRD
BAL

BAL
LD

NULL,MR5,°040°
STFAIL(NULL)
MR3,30
MMFINT(XULL)

PBR1(NULL)
‘FFIFFFFF’

LPDR1(¥R6)
¥Ru4,MR4,BI01.31,1

¥D,Y¥S,16
NULL,NULL,IRD

FREEWORD
FREEWORD
FREEWORD
FREEWORD

LCDR1(HR6)
MR4,¥R4,BITOO,I

YD,Y¥S,IRD,E
*0000F800"

YD,YS,IRD,E
7FFFFFFT

YD,¥S,IRD,E
'*00007FFF"

YD,¥S,IRD,E
FREEWORD

YD,YS,IRD,E
*ARARARAR’

¥D,¥S,IRD,E
‘55555555

¥RO,YS
FXDR1(NULL)

FLDR1(HMR6)
YD,¥R1,D,E

5

23:17:15 07/29/82

IS FAULT STFAIL OR SHPF ?
BRANCH: STFAIL. CODE 00000001
SET CODE 00000002,
SERVICE SMPF (P.20)

* 32
(P.S3)
CONSTANT

* 33
LOAD POSITIVE DOUBLE (P.56)
EXECUTED INSTRUCTION

ZXCHANGE HALFWORDS
EXIT.

L)

* 37
LOAD COMPLEMENT DOUBLE (P.56)
EXECUTED INSTRUCTION

* 38
LOAD, SET FLAGS
CONSTANT

* 39
CO¥PARE, SET CC, EXIT.
CONSTANT

* 3R
ADD, SET FLAGS
CONSTANT

* 3B
SUBTRACT, SET FLAGS

* 3C
MULTIPLY, SET FLAGS
CONSTANT

* 3D
DIVIDE, SET FLAGS
CONSTANT

* 3%
ARGUXENT TO MRO
(P.55)

* 3F
(P.10)

EXECUTED INSTRUCTION

RO3
(P.19)

RO3

RO3

RO2
RO2
R02
RO2

RO2
RO2

02
02

[EEv)

RQ2
02

RO2
RO2

RO2

32501980
32591990
32592000
32502010
32502020
32502030
32502040
32502050
32502060
32502070
32592080
32502090
32552100
325062110
32502120
32592130
32502140
32502150
325021460
32522170
32502180
32502190
32502200
32502210
32502220
32502230
32502240
32502270
325022490
325902270
32502220
32502290
32502300
32502210
32502320
32502230
325902340
325023580
32502340
32502370
325023R0
32502390
325902400
325024190
325902420

MODEL 3250 PROCESSOR FMULATOR 05-086R03A13 (TRAINING) PAGE 6

ROY

0080

0030
0081

0082
0083

004auL
0085

0086
0087

0088
0089

0084
0088

008C
008D

008E
008F

0090
0091

00582
0093

0094
0095

0096
0097

0098
0099

009A
009B

009C
009D

0GSE
009F

SESMENT 2 - OPCCTDES 40:SF

2393
8000

2B3R
233C

17EC
235F

138C
227B

2B9A
2339

233A
2BF9

2BSA
2B39

2B9A
2339

2B3RA
283F

2B9A
13F8

2B9A
2B39

2B%A
2839

2B9A
13F9

2B9A
13F9

237F
2BFF

2B7F
2BFF

1D9C
0001

1080
1F 85

0D52
1E1D

ons2
1FAS5

1087
5DB2

imns7
0DB2

1D87
7DB2

1087
6DB2

1087
1DB2

1087
OAU4O

1D87
1DB2

1D87
0DB2

1D87
38C0

1D87
3B0O

1C97
1F92

1C9F
1F92

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

STH
BIO031
*

BAL
BTC
BAL2

*

BFC
D1
NH
CLH
OH
XH
LH
CH
AH
SH
KH
DH
STH1

EXIT6
*

ST1

BALT
LX

BALF
AX

oo

BAL

T D

BAL

BAL

[nllal

'080"

MAR,YX,RMDR,STH1
' 80000001

¥AR,YX,RHDR
YD,CLOC,NULL,BAL2

B(NULL), IRD
CLOC,MAR,EXIT6

B(RULL) ,IRD
MR3,YDP1,NULL,D2

YAR,YX,R¥DR,DR2
YD,YD,RMDR,IRD,E

MAR,YX,R¥DR,DR2
NULL,YD,RMDR,IRD,E

MAR,YX,RMDR,DR2
YD,YD,R¥DR,IRD,E

MAR,YX,RMDR,DR2
YD,YD,RMDR,IRD,E

MAR,YX,RMDR,DR2
YD,R¥DR,IRD,E

MAR,YX,R¥DR,DR2
C1RX(NULL)

MAR,YX,R¥DR,DR2
YD,YD,RMDR,IRD,E

MAR,YX,RMDR,DR2
YD,YD,RMDR,IRD,E

MAR,YX,RMDR,DR2
MH1(NULL)

MAR,YX,RMDR,DR2
DH1(NULL)

WMDR,YD,DW2
NULL,NULL,IRD

WMDR,YD,DW4
NULL,NULL,IRD

23:17:16 07/29/82

CALCULATE ADDRESS
CONSTANT

CALCULATE EFFECTIVE ADDRESS

INCRENENTED LOC TC YD

BRANCH IF MASK TRYE (P.3)

LOAD NEW LOC

BRANCH IF MASK FALSE (P.

LS HALF, DIVIDEND (P.7)

(P.3)

FETCH MULTIPLIER
(P.u4y)

FETCH DIVISOR
(P.4y)

STORE
EXIT.

STORE FULLWORD
EXIT.

*

*

"

*

3)

*

40

41

u2

43

44

45

u6

w7

48

49

[y}

4p

4c

4D

R02

RO2

32502440
32502450
32502u%0
32572470
3250%2u13¢0
325024490
32522500
32502810
32502520
32502530
32502%40
325025590
325025F0
32502570
325922580
32502590
3250200
32502510
3250220
325022%3¢
32502540
3250250
325026%0
325902670
325902680
32502650
32502700
32502710
32502720
32502730
32502740
32502750
32502760
32502770
32502780
32502720
32502800
32502810
32502820
32502830
32502840
32502850
32502860
32502870
32502880
32502890
32502900
32502910
32502920

HODEL 3250 PROCESSOR EMULATOR 05-086RO03A13 (TRAINING)

ROM SEGMENT 2 - OPCODES Uu40:5F

00AQ
00A&1

00A2
0DA3
00RAL

00AS
O0R6
00R7

Q0AS8
00RA9

00AA
Q0RB

00AC
00AD

00RE
00AF

00BO
00B1

00B2
00B3

00BU4
00B5

00B6
00B7

00B8
00B9

00BA
00BB

00BC
00BD

COBE
00BF

2394
13F8

2B9A
2B79
2BFF

283B
13F4
229F

2B9A
2B39

2B9A
2B8F9

2B9A
2839

28934
2333

2B93
2B3F

23%A
1378

2834
2B39

2BSA
2333

2B9A
2B3B

2B9A
225¢

2B9a
1379

2B9A
13F9

1D9E
96C0

1D8F
1DBF
1F92

FD80
29D2
1DA1

1D8F
5DB2

iD8F
ODB2

1D8F
7DB2

1D8F
6DB2

1D8F
1182

1D8F
OARL4O

1D8F
1DB2

1D8F
0DB2

1D8F
ZD92

1D8F
1C87

1087
5000

1087
51C0

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
318
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

*

ST
DFAULTY
*

AN
EXIT?7

*

D2
DFAULTX
*

N

*

CL

*

()

*

* 0O #* o Ee]

o

CRC12

CRC16

BAL

= wo [l -]

=

PAGE 7

MAR,YX,RMDR,ST1
DFAULT(NULL)

¥AR,YX,RMDR,DRY4
WMDR,YD,RUDR,DWG ,E
NULL,NULL,IRD

¥D,YDP1,RHMDR
DFAULTX(NULL),IRD
¥R4,RMDR,DFAULTY

¥AR,YX,RMDR,DR4
YD,¥YD,R¥DR,IRD,E

MAR,YX,RMDR,DRUY
NULL,YD,RMDR,IRD,E

MAR,YX,RMDR,DR4
YD,YD,R¥DR,IRD,E

¥AR,YX,R¥DR,DR%
¥YD,YD,R¥DR,IRD,E

MAR,YX,RMDR,DRU
YD,RMDR,IRD,E

MAR,YX,RMDR,DRY
C1RX(NULL)

KAR,YX,RMDR,DRU
YD,YD,R¥DR,IRD,E

MAR,YX,R¥DR,DRU
YD,YD,R¥DR,IRD,E

MAR,YX,RMDR,DRY4
YD,YDP1,RMDR,IRD

MAR,YX,RMDR,DR4
MR2,YD,D1

MAR,YX,R¥DR,DR2
CRC121(NULL)

MAR,YX,BRMDR,DR2
CRC161(¥ULL)

23:17:16

07/29/82

CALCULATE ADDRESS (P.6)

(P.23)

FETCH DATA

ADD, SET CC, STORE BACK

EXIT.

DIVIDE
EXIT UNLESS FAULT
DIVISOR TO TEST IN

(P.3)

FETCH DIVISOR

FRULT

¥S HALF DIVIDEND (P.6)

CALCULATE ADDRESS
(P.47)

CALCULATE ADDRESS
(Pols7)

50

* 59 *

RO2
R02
RO2
RO2

ROUTINE

*Sqi

*55#

56

57

58

* Bg *

SA

SB

32502940
32502950
32502960
32502970
32502980
32502590
32503000
32503010
32503020
32503030
32503040
32503050
32503060
32503070
32503080
32503090
32553100
32503110
32593120
32553130
32503140
32503150
32503140
32503170
32503180
32553190
32503200
32503210
32593220
32503230
32503249
32503250
32503250
32593279
32503280
32503290
32503300
32593310
32593320
32593330
32593340
32593350
32593350
32593370
32593380
32503390
32573400

P

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 8 23:17:17 07/29/82

ROM SEGMENT 3 - OPCODES 50:7F

00cCo 343 ORG *oco’ 32503420
344 * £D * 32503430
00C0 239A 1DBRF 345 STE AX MAR,YX,RMDR,STE1 CALCULATE ADDRESS (P.9) R02 32593u40
00C1 3000 1000 346 BIT19 DC *00001000" CONSTANT R02 32503450
347 o~ * 51 * 32593440
00C2 2B9A 1D87 348 AHY A MAR,YX,RMDR,DR2 FETCH WEMORY DATA R02 32593470
00C3 1379 3500 349 BAL AHM1(NULL) (P.43) RO02 32503480
350 * * 62 * 32503490
00Cy 2B9R 1D87 351 PB A ¥AR,YX,RMDR,DR2 FETCH RESIDURL R02 32503500
00C5 13F9 7F00 352 BAL PB1(NULL) (P.53) 32503510
383 «* * £3 * 32503720
00C6 2B9A 1D8F 354 LRA a MAR,YX,RMDR,DPU FETCH PSTD R02 32593530
oocy 13F9 3F80 355 BAL LRAT(NULL) (P.45) 325953540
356 * * AL % 325038R0
oocs 12D9 1300 357 ATL BAL LIST(HR5) CO¥NON OVERHEAD (P.u40) 32590350
0ocCo 1379 1440 358 BAL ATL1(NULL) (P.140) 32503570
359 =* * g5 * 32503580
00CA 12D9 1300 360 ABL BAL LIST(HR6) COMMON OVERHERD (P.u0) 325803590
00CB 13F9 1840 361 BAL ABL1(NULL) (P.u1) 32503A00
362 * * 66 * 32503610
00cC 12D% 1300 363 RTL BAL LIST(HRG) COMMON OVERHEAD (P.uo0) 32503620
00CD 13F9 4C00 364 BAL RTL1(NULL) (P.u1) 32503630
365 * * 87 * 32593AR40
00CE 1229 1300 366 RBL BAL LIST(MR6) COMMON OVERHEAD (P.u40) 32503650
00CF 13F9 1FCO 367 BAL RBL1(NULL) (P.41) 32503640
368 * * 68 * 32503670
coDOo 2B9A 1D8F 369 LE A MAR,YX,R¥EDR,DRY 32503680
00D1 CBF9 2DB2 370 LE YD,RMDR,IRD,E . R02 32503690
371 * * 69 * 32503700
0oD2 2B9A 1DS8F 372 CE A MAR,YX,RMDR,DRUY FETCH COMPARAND 32503710
00D3 CBF9 3DB2 373 CER YD,RMDR,IRD,E COMPARE, EXIT WITH CC SET. 32503720
374 * * 6A * 325063730
00Dy 2B9A 1D8F 375 AE A MAR,YX,RMDR,DR4 FETCH ADDEND 32503740
00D5 CBF9 u4DB2 376 AER YD,RMDR,IRD,E ADD, SET FLAGS R02 32503750
377 * * 6B * 32503760
00D6 2B9A 1D8F 378 SE A MAR,YX,RKDR,DR4 FETCH SUBTRAHEND 32503770
00D7 CBF9 5DB2 37¢ SER YD,RMDR,IRD,E SUBTRACT, SET FLAGS R0O2 32503780
380 * * 6C * 32593790
00D8 2B9A 1D8F 381 ME R MAR.,YX,RMDR,DR& FETCH NULTIPLIER 32503800
00DS CBF9 6DB2 382 MER YD,RMDR,IRD,E MULTIPLY, SET FLAGS R02 32503810
383 * 6D * 32503820
00DA 2897 1D8F 384 DE A MAR,YX,RMDR,DRY4 FETCH DIVISOR 32503830
CODB CBF9 7DB2 385 DER YD,RMDR,IRD,E DIVIDE, SET FLAGS R02 32503840
386 * * 6E * 32503850
00oDC 12D8 8E00 387 STBP BARL IIPCHECK(MRS) CHECK IF INTERRUPT RESUME (P.21)R02 32503860
00DD 13F9 EECO 388 BAL STBP1(NULL) (P.71) 32503870
389 * * 6F * 32503880
00DE 12D8 8EO0O 350 LPB BAL ITPCHECK(H¥R6) CHECK IF INTERRUPT RESUME (P.21)R02 32503890

O0DF 13F9 DD8O 391 BAL LPB1(NULL) (P.68) 32503900

MODEL 3250 PROCESSOR EMULATOR 05-086RO3R13 (TRAINING) PAGE

ROM SEGMENT 3 - OPCODES 50:7F

00EC
O0E1

00E2
00E3

OO0EY
00ES

00E6
00E7

OOES
00ES

00EA
00EB

O00EC
00ED

00EE
00EF

0Q0FO0
00F1

00F2
0OF3

00Fu4
00F5

00F6
00F7

O0F8
00F9

O00F2
O00FB

00FC
00FD

J0FE
0QFF

13F9
6000

2B9A
13F8

2B9A
13F8

2BSA
13F8

12D3
2BFF

12D9
2B72

12D9
2B73

12D9
2B72

2B9A
13F9

12D8
CBFS9

12D8
CBF9

12D8
ZR’FQ

[Oa34

12D8
CBF9

12D8
CBwFS9

1379
3000

13F9
CB7F

8500
0000

1080
7800

1D8F
57C0

1087
5740

0D80
1F92

0D8o
7DSB

0D80
6D9B

0D80
5D9B

1D8F
8480

42Co
B8DB2

42C0
CDB2

42cCo0
DDB2

42Co
EDB2

42C0
*DB2

8640
0000

8900
1C9F

393
394
395
396
397
398
399
400
501
402
403
404
405
406
407
408
409
410
411
412
413
41y
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
L4t

STD
STHE
LNE
LHL
TBT
EXITO9
*
SBT
RBT
CBT
LD
CD
AD
SD
HD
DD

STHD

LMD
STE1

BAL
DC

BAL

BAL

BAL

BAL

BAL

BAL

BAL

BRL

BAL
CDR

BAL
ADR

BAL
SDR

BAL
MDR

BAL
DDR

BAL
DC

BAL
RRE

STD1(NULL)
FREEWORD

MAR,YX,RMDR
STME1(NULL)

HAR,YX,RMDR,DR4
LME1(NULL)

MAR,YX,RMDR,DR2
LHL1(NULL)

COMBIT(HRS6)
NULL,NULL,IRD

COMBIT(MR6)
W¥DR,MR2,R¥DR,DW1

COMBIT(H¥R6)
WMDR,MR3,R¥DR,DW1

COMBIT(¥R6)
WMDR,N¥R2,RMDR,D¥W1

MAR,YX,REDR,DR4
LD1(NULL)

CDADSDMD(M¥R6)
YD,RMDR,IRD,E

CDADSDMD(MR6)
YD,RMDR,IRD,E

CDRDSDHMD(MR6)
YD,RMDR,IRD,E

CDADSDHD(MR6)
YD,RMDR,IRD,E

CDADSDMD(MR6)
YD,RH¥DR,IRD,E

STMD1(NULL)
FREEWORD

L¥D1(NULL)
WHDR,YD,DW4

9

S

23:17:18 07/29/82

(P.54)

CALCULATE ADDRESS
GO TO ROUTINE (P.17)

FETCH FIRST DATA
GO TO ROUTINE (P.12)
(P.12)

(P.39)
EXIT.

(P.39)
EXECUTED INSTRUCTION

(P.39)
EXECUTED INSTRUCTION

(P.39)
EXECUTED INSTRUCTION

FETCH FIRST DATA
(P.54)

FETCH COMPARAND (P.10)
EXECUTED INSTRUCTION

FETCH ADDEND (P.10)
EXECUTED INSTRUCTION

FETCH SUBTRAHEND (P.10)
EXECUTED INSTRUCTION

FETCH MULTIPLIER (P.10)
EXECUTED INSTRUCTION

FETCH DIVISOR (P.10)
EXECUTED INSTRUCTION

(P.54)

(P.54)
STORE SPFP DATR

70

71

72

73

74

75

76

77

78

79

TA

7C

7D

7F

RO2
RO2

RO2

RO2

32503920
325903930
32503940
32503950
32503960
32503970
32503980
32503990
32504000
32504010
32504020
32504030
32504040
32504050
32504060
32504070
32504080
32504090
32504100
32594110
32504120
32508130
32504140
32504150
32504160
32504170
32504180
22594190
32504200
32504210
32504220
32504230
32504240
32504250
32504260
32504270
32504280
32504290
32504300
32504310
32504320
32504330
22504380
32504350
325043F0
32504370
32504380
32504390
32504400

et

-

¥ODEL 3250 PROCESSOR EMULATOR 05-085R03A13 (TRAINING)

RO¥ SEZMENT 4 - CPCODES 80:9F

0100
0100
6101

0102
0103

0104
0105

0106
0107

0108
0109
0104

010B
010C
010D

010E
010F

0110

0000
0111
0112
0113
0114
0115
01186

0117

0118
0119

011A
0118
011C
011D
011E

011F

2BFF
FFED

4B83F
2839

2B9A
13F9

0000
0000

2BSA
CBF9
CBF9

2B9R
CBFF
0BF8

2B9A
C3r9

235F

0111
2A3F
17E4
DTEF
223F
D7FF
0BF8

CBF9

12D8
13F9

2B9F
321F
2BFO
17E0
17FC

G000

1F92
FFFF

SC42
7810

1D80
9780

0000
0000

1D8F
8D8E
2D32

1D8F
8D8E
0B0OO

1D8F
8D97

“ID1A

1C02
4540
8021
0896
8011
0BOO

AFB2

8EQ0
4180

1D0B
1088
6D80
8240
C000

0000

443
bay
445
Lus
447
448
uyg
450
451

453
4sy
455
456
457
458
459
u60
L61
062
463
46
465
466
467
468

470
471
472
473
B74
475
476

478
479
480
481

483
484
485
486
g7

EXIT10
BIT140
*

EXBR1

*

STDE

LED

*

CDADSDND

LDE

BRK

FLR1
FLDR1

FLR2
FLR3

LDE1
*

RXRX

BRK1

ORG
DC

EXB
0

BAL

DC
DC

LX
EQU

BALNL
LWI

LWI
EXL

LD
BAL
BAL
LI

BALNZ
BALD

DC

PAGE 10

100"
NULL,NULL, IRD
*FFFDFFFF’

YD,YS,IR
¥D,YD,¥RO,D

MAR,YX,RMDR
STDE1(NULL)

FREEWORD
FREEYORD

MARK,YX,RMDR,DRY
YD,R¥DR,IUDRU
YD,RMDR,IRD,E

MAK,YX,RMDR,DRU
NULL,RMDR,I4DRY
(MR64 (NULL)

MAR,YX,RMDR,DR4
YD,RY¥DR,LDE1

CLOC,ILOC,BRK1

*

MR1,YS,IR
FLR2(NULL)
NULL,CONSTCE,I
¥R1,NULL,MR1,FLR3
NULL,CONST4E,I
(MR6)(NULL)

YD,NULL,IRD,E

IIPCHECK(MR6)
RXRX1(NULL)

MAR,ILOC,DR1
MRO,"88"
RULL,¥RO,R¥DR
ILEGAL(NULL)
CONSER(NULL)

FREEWORD

23:17:19 07/29/82

EXIT.
CONSTANT

SWAP LOW BYTES
RESTORE R1 B0O:15, EXIT.
* 82
CALCULATE ADDRESS
(P.56)

.

CALCULATE ADDRESS
LOAD HIGH HALF
LOW HALF, ROUNDED.

FETCH HIGH HALF
LOAD ¥S 32 BITS, FETCH LS 32
PERFORM FUNCTION, GET FLAGS

* 87
GET FLORTING DATA
LOAD LOW HALF

* 88
BACK UP LOC

GET DATR TO FLOAT
BRANCH: POSITIVE
LOAD *CE000000"
COMPLEMENT DATA
LOAD "4E000COO*
LOAD VALUE, EXIT.

RO2

RO2
RO2

RO2
RO2
RO2
RO2
RO2
RO2

RO2

*

RO2

FOLLOWED BY TRAILING ZEROS; EXIT.

* 8C
CHECK IF IK PROGRESS (P.21)
(P.58)

FETCH OPCODE AS DATA
JUST A GLITCH 2

BRANCH: YES (UNLIKELY)(P.18)
BREAKPOINT (P.30)

*

RO2
RO2

RO2

32504420
325044L30
325%4040
32504450
325044%0
32504470
32504480
32524490
32504500

32504520
32504530
32504540
32504550
325045A0
32504570
32504580
325245490
325904600
32504710
3250uK20
32504630
32504540
32504650
32504KA0
32504670

32504690
32504700
32504710
32504720
32504730
32504740
32504750

32504770
32504780
32504790
32504800

32504820
32504830
32504840
32504850
32504860

32504880

HODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 11

ROM SEGMENT 4 - OPCODES 80:9F

0120
0121

0122
0123

0124
0125

0126
0127

0128
0129

0122
012B

0000
012C
012D
012E
012F

0130
0131

0132
0133

0134
0135

0136
0137
0138
0139

0132
013B

013C
013D

013E
013F

2B33
00Q0

2B39
0000

2219
0000

4B3F
13F8

3619
13F8

2B3D
23BF

012C
F17F
162D
12DC
0000

4BF9
0000

4B19
0000

4BF9
221F

4319
323F
43F9
2BFF

4319
3FFE

221F
0002

3210
2810

8EF2
0F01

9EF2
A001

6C3E
0000

5C52
9200

5015
4080

1F91
1C27

112D
FC80
4850
0000

DC32
0000

CFB2
0000

9C72
1DB7

8FF2
100R
B860
3892

AFF2
0000

1C37
0000

5F00
5C92

491
492
493
49y
495
4396
497
498
499
500
501

503
504
505
506
507

,508

509

*x

SRHLS
COFO1
*

SLHLS
CA001
%*

STBR

*

LBR
EPSR1
%

EXBR

*

EPSR

SRHL
DC

SLHL
DC

XX
DC

LBR
BAL

NI
BAL

A
LY

YD,YD,YSI,IRD,E
*00000F01"

Yp,¥p,¥SsI,IRD,E
*0000A001"

¥RO,YD,YS,STER?
FREEWORD

YD,YS,IRD
QTEST(NULL)

MRO,YD,BI00.15,1I
EXBR1(NULL)

YD,PSW,NULL,2L0OC
PS¥,YS,EPSR1

* FOLLOWING CODE USED BY ROUTINE
STBP.ZIP EQU

STBP.Z1

WHR
RHR
WDR
0C1
RDR
OCR1

*

SSR
BIOZ2.14
*

QOCR
BIT14

*

STBR1

LI
BALD
BARLA
DC

WHA
DC
RHA
DC

WDRA
LX

RDRA
LI
OCRA
SRL

SSRA
DC

LX
DC

NI
X

*

¥7R11,STBP.Z1
STEPSTOR(MRE)
STBP.Z1(MR6),D
FREEWORD

NULL,YD,YS,IRD,E
FREEWORD

Ys,¥D,NULL,IRD,E
FREEWORD

NULL,YD,¥YS,IRD,E
¥RO,RM¥DR,OCR1

¥Ys,YD,NULL,IRD,E
¥R1,10
NULL,YD,¥RO,E
NULL,NULL,MR1,IRD

YS,Yd,NULL,IRD,E
* 3FFE0000"

MRO,YS,0CR1
‘00020000

¥RO,MRO,'FOO"
YS,%R0,YD,IRD

23:17:19 07/29/82
* 90
CONSTANT
* 91
CONSTANT
* 92
GET LOGICAL DIFFERENCE
* 93

TEST QUEUE SERVICE BIT (P.22)

* 94
SRVE KS 16 BITS
(P.10)
* 95
PSW TO R1
LOAD NEW PSW FROM ¥S
STBP1
FAST EXIT® FOR ZERO
INTERRUPT RETURN
STORE DATA BYTE (P.73)
LOOP; ALLOW INTERRUPT.
* 98
* 99
* QA
¥RO = COMMAND BYTE
* 9B
SHIFT COUNT FOR DELAY
SEND OUTPUT COMMAND
DELAY ABOUT 1. USEC
* 9D
CONSTANT
* QF

MRO HAS COMEAND BYTE
CONSTANT

DROP LS BYTE FROY DIFFERENCFE
STORE YD B24:31 IN YS 24:31,

RO2

EXIT.

32504300
32504910
32504920
32504930
32504340
32504950
32504960
32504970
32504980
32504980
32505000

32505020
32505030
32505040
32505050
32505060
32505070
32505080

32505100
32505110
32505120
325051320
32505140
325051590
32505140
32505170
32505180
32505190
32505200
325905210
325905220
32505230
32505240
32505250
3259052A0
32505270
32505280
325052490
32505300
32595310
32505320
32505330
32505340
32505350
32505360
32505370
32505380
32505390

MODEL 3250 PROCESSOR EMULATOR 05-086RO3A13 (TRAINING) PAGE 12

ROX SE3YENT 5 - QPCODER

0140

0000 0149
0149 249D
0141 2A7F
0142 2A3F
0143 2B5F
014y 23BF
N145 29DF
0146 29FF
0147 03F8
01us 2A1F
0149 C29%~F
0142 2A7F
014B CBF9
014C 2A1F
014D 2277
014E CA7F
014F CBF9
0150 CBF9
0151 2BDF
0152 CA7F
0153 2BDF
0154 CBF9
0155 CBF9
0156 CBF9
0157 2BDF
0158 2A7F
0159 28BDF
0154 CBF9
015B 3239
015C 2BF1
015D 361F
015E 2B30
015F 323F
0160 23FF
0161 2BFF
0162 CBF9
0163 23D1
0164 2BFF

1F8aC
1015
128C
12390
1361
1200
1989
0800

1C00
8380
AFB2

3E80
3C80
1800
8A00
29B2

8980
3E80
1€C80
1800
A9B2

50FF
9DB2

1017
5DB2

1FF2
1FA2
1F8F
2DD5
1F61
1F92

AO:BF

542
543
544
545
545
547
548
549
550
551
552
553
554
555
556
557
558

559 .

560
561
562
563
564
565
566

568
569
570
571
572

574

576
577
578

580
581

583
584

586
587
588
589
590
591

* COMMON

*

CONSHWAP

LEDR1

LDGR1

CLB1

LHL1

L¥E1

LY¥E2
LHE3

EXIT12

ORG

R14/R15 INTERRUPT PSW

EQU

WHr e

RRDX

RINC
RRD

LW
LE

Lu
AINC

LI
LX

LE
AX
L

*140°

*

MR4,PSV,NULL,PRU
MR3,ILOC, I
MR5,RMDR,PRU
CLOC,RHMDR
PS¥,M¥R5,aL0C
R14,MRU

R15,¥R3
(MR6)(NULL)

MRO,YDT
¥R4,YS,LEDR1

¥R3,YS
YD,MR3,IRD,E

MRO,YDI
MR3,YS,LDGR1

MR3,YS
YD,M¥R3
YD,NULL,IRD,E

YDI,NULL,YST
¥R3,YD
YDI,¥RO

YD, MR4
YD,MR3,IRD,E

YD,HR3
YDI,NULL,¥ST
HR3,YD
YDI,HRO
YD,MR3,IRD,E

MR1,YD,OFF*
NULL,¥R1,RHDR,IRD,E

¥R0,BI16.31,1
YD,HRO,RMDR,IRD,E

MR1,'FF2°
NULL,NULL,LME3
NULL,NULL,DRS
YD,RHDR,K,I4
YpI,#r1,ynDI,LXE2,C
NULL,NULL,IRD

23:17:290 07/29/82

FETCH/SWAP ROUTINE

COMMON PSW SWAP ROUTINE

MR4 = QLD PSW; FETCH NEV¥.
¥R3 = A(FAULTED INSTRUCTION)
FETCH NEW LoOC

NEW LOC -

SELECT N©W PSW, UPDATE ILOC.
OLD PSW TO R14

CLD LOC TO R15

RETURN TO CALLER

* Ay

REMEMBER R1 SELECT
FETCH HIGH HALF DPFP DATA

* AR
GET GENERAL REGISTER
COPY TO SPFP.

* A6
REMEMBER R1 SELECT
LOAD HIGH HALF DPFP DATA

* A7

GET SPFP VALUE
LOAD
FOLLOWED BY TRAILING ZEROS.

SELECT R2+1

READ LS HALF, DPFP DATA
RESELECT R1

HIGH HALF

FOLLOWED BY LOW HALF, ROUNDED.

MS HALF DPFP DATA
DELECT R2+1

RESELECT R1
LS HALF DPFP DATA. EXIT.

ISOLATE FIRST OPERAND BYTE
SUBTRACT TO COMPARE

¥RO = 'Q00QFFFF"'
LOAD LOW HALF, SET CC, EXIT.

YR1 = 'FFFFFFF2*

FIRST FETCH ONGOING NOW -
FETCH FIRST WORD

LOAD REGISTER, INCREMENT MAR.
LOOP THROUGH R15, THEN

EXIT.

RO2

E02
R0O2

RO2

P02
RO2
RO2

RO2
RO2
RO2
RO2
RO2

RO2
RO2
RO2
RO2
RO2

RO2
RO2

RO2
RO2

32505410
32505420
325905430
32505440
325905450
32505440
32505470
32505480
32505490
32505500
32505510
32505520
325055130
32505540
32595550
32595540
32505570
32805580
32595590
3250500
32505610
3259255620
32505630
32505640
32505650

32505670
32505680
32505690
32505700
325905710

32505730
32505740
32505750
32595760
32505770

32505790
32505800

32505820
32505830

32505850
32505860
32505870
32505880
32505890
32505900

HODEL 3250 PROCESSCR EMULATCR 0S5-086R03A13

ROM SEGMENT 5 - OPCODES AQ:BF

0165 323F 1FF2 593
0166 03F0 OBOF 594
0167 CBF9 2DD5S 5985
0168 23D1 1F26 596

598

599

600

601

602
0169 2AFF 1E00 604
0162 2A3F 1F05 605
0168 2R31 1880 606
016C 3391 109C 607
016D 2A3C 1F86 608
016E 367F 1017 609
016F 339F 1088 610
0170 2A73 5D8C 611
0171 13F8 9500 : 5§12

614

615

616

617

618
0000 0172 £20
0172 339F 1090 £21
0173 12D8 5000 622
0174 31B2 500F 623
0175 299F 1891 624
0176 33FC 048B 625
0177 1370 3000 626
0178 33F0 OuA1 627
0179 1770 3000 628
0173 297% 1B8O 629
0178 13FC 9010 630
017C 632
017C 633
017C 0000 0000 634
017D 0000 0000 €34
017E 0000 0000 634
017F 0000 0000 634

635

LME2
LEE21

* % N o %

Y
¥
%*
¥*
*

¥ATINT

(TRRINING) PAGE 13

LI
BALC
LE
AX

¥R1,°*FF2*
(MR6)(NULL) ,DR4
YD,RMDR,K,I4
YDI,¥R1,¥YDI,L¥EQ1

23:17:21 07/29/82

¥R1 = °*FFFFFFF2*
RETURN IF DONE
LOAD REGISTER
LOOP THROUGH R1S

kkkkkhhhkkkkrhhrhkhbhkhkhhhkhhkkhhbkbdhbhkhbhhhhrddddkihi ki hik

SUPERVISOR CALL (SVC) INTERRUPT

Pl ul

[l
=

N
BAL

MR7,MAR
¥R1,YDI,RFAULT
MR1,M4R1,MR1
MAR,HMR1,'SC"
¥R1,CLOC,NULL,PR2
¥R3,BI16.31,1
MAR,"*98"
¥R3,MR3,RMDR,PRY
COMSWAP2(KULL)

ke hkkkhkhkkhhdkhkdhhbrrhhhdhhhkhhkhohhhhhkddkkhkkhhkhhhbdhkhdhidhhd

SAVE RDDRESS IN MR7

COLLECT R1 FIELD, RESET RX FLOPS

2X R1 FIELD PLUS X'9C'

IS HALFWORD ADRS

OF SVC NEW LOC; SAVE OLOC.

¥R3 = 'OQO0OFFFE*

AR A(SVC NEW PSW)

MR3 NEW LoC RO2
TAKE PSW SWAP, EXIT. (P.22)

]

hkhkhkkhkhkhkhkhkhhhdkrhdhkdkhrhdbhkhhkhhhkkhdhkhbhdkhkhkhhbhkhkhdkhkkhddkhiddhdkik

MEMORY ADDRESS TRANSLATOR INTERRUPT

EQU *

LI MAR,'90°

BAL CONMSWAP(MRS)
NI R13,MR2,'0F"
L R12,4R1,210C
SI NULL,MRO,LH1
BALC TWAIT(NULL)
SI NULL,MRO,LMTABE
BALNC TWAIT(NULL)

L R11,¥R7

BALA TWAIT(NULL),D
IFP '180'-*

DO '*180°'~~*

DC FREEYORD

DC FREEWORD

DC FREEWORD

DC FREEWORD

ENDC

Ak hkkhkhkdkdkhkhkkhrkdkhkdhkddhdbhhrhhkdrddhbkkrhohkdhddrhbbdrhkdhdhdhdkdhkrdik

(RX FLOPS RESET IN 'FAUL™® (P.19))
A(MAT INTPT NEW PSW)

GO SWAP PSW'S (P.12)

R13 = FAULT CODE, FORM 000000XX
R12 = PGM ADRS GENERATING FAULT
DID IT HAPPEN ON *LX*' INSTRUCTION
BRANCH: NO (P.22)

FINAL CHECK -

BRANCH: NOT LM FAULT (P.22)

R11 = A(L¥ BLOCK START)

GO TEST WAIT BIT. (P.22)

RO2
RO2
RO2
RO2
RO2
R02
RO2

32505920
32505930
32505940
32505950

32505970
32505980
32505990
32506000
32506010

32506030
32506040
32506050
32506060
32506070
32506080
32506090
32506100
32506110

32506130
32506140
32506150
32506140
32506170

32506190
32506200
32506210
32506220
32506230
32506240
32506250
32506260
32506270
32506280
32596290

32506310
325906320
32506330
32506330
325906330
32506330
32506340

aw

MODEL 3250 PROCESSOR EKULATCR 05-086R03A13 (TRAINING)

RO¥ SESMERT

0180
0180
0181

0182
0183

0184
0185

0186
0187

0188
0189

018A
018R

018C
018D

018E
018F

0190
0191

0192
0193

0154
0195

0186
0197

0198
0199

0194
019B

019C
018D

019E
019F

1379
0000

13F9
0000

2B3A
1378

2R1A
2BF9

2A1A
2B39

ZA1A
2BF9

2A1A
2B39

2312
2839

2B3A
0000

2A1A
13F8

2213
2839

2A1R
2B39

2R1RA
2839

2R1A
2B39

2R1A
2B39

2R1A
2839

6 - OPCODES

3270
0000

3040
0800

1D8F
9140

1082
5830

1082
5839
ibez
0830

1D82
7830

1D82
6830

1032
0000

1080
0Cu40

1D82
1830

1082
0830

1D82
8870

1082
9870

1082
c870

1D82
D870

Z2:DF
637

639
640
641
642
643
644
645
646
547
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

BXH
BXLE
BIT20
*

LPS#H

THI

CRG
BAL
DC

BAL

BAL

= o

=

DC

BAL

SRHL

SLHL

SRHA

SLHA

PAGE 14 23:17:22 07/29/82

180"

* CO
BXH1(NULL) (P.t3)
FREEYORD

* C1
BXLE1(NULL) (Pa43)
*00000800" CONSTANT

* C2
¥AR,YX,RMDR,DRU CALCULATE ADDRTSS
LPSW1{NULL) (P.22)

* C3
MRO,YX,RM¥DR, IR
NULL,YD,¥RO,D,E

* Cu
MRO,YX,RMDR,IR
Yp,YD,MRO,D,E

* C5
MRO,YX,RM¥DR, IR
NULL,YD,¥RO,D,E

* C§
MRO,YX,R¥DR, IR
YD,Yb,¥RO,D,E

* C7
MRO,YX,RMDR,IR
Yb,¥D,HRO,D,E

* C8
YD,YX,RMDR,IRD,E YD HAS RESULT. EXIT, CC SET.
FREEWORD

* C9
MRO,YX,RMDR
CARI(NULL) (P.3)

* CA
MRO,YX,RMDR,IR
Yb,yD,MRO,D,E

* CB
NRC,YX,RMDR,IR
YD,YD,¥RO,D,E

* CC
HROIYX:RHDR;IR
Yb,YD,¥RO,D,E

* CD
MRO,YX,.RMDR, IR
Yp,¥Dp,MR0,D,E

* CE
MRO,YX,RMDR, IR
YD,YD,¥RO,D,E

* CF
MRO,YX,RHMDR,IR

YD,YD,¥RO,D,E

RO2

3259630

32506380
32506390
32506400
325054810
32506420
32506430
32506440
32506450
32506uK0
32506470
32506480
32506490
32506500
32506510
32506520
32596530
32506540
32506550
32506540
32506570
32506580
32506590
32506600
32506610
32506620
32506630
32506A40
32506A50
32506660
32506670
32596680
32506690
32506700
32506710
32506720
32506730
32506740
32506750
32506760
32506770
32506780
32506790
32506800
32506810
32506820
32506830
32506840
32506850

e

¥ODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 15

RO¥ SESMENT 6 - OPCODES CO:DF

0140
01A1

01A2
01A3

01A4
01A5

C1R6
0147

01A8
01A9

O1TAR
01AB

01AC
01AD

01AE
01AF

01BO
01B1

01B2
01B3

0124
01B5

01B6
01B7
01B8
01BS

01BA
01BB

01BC
01BD

01BE
J1BF

13F9
0000

13F9
0000

237F
0000

2B9A
2B3F

2B9A
13F8

2B9A
13F9

0000
0000

4B79
23FF

2B9A
4BFS

2397
0000

2B9A
4BF9

4879
2B9A
2BFF
0300

4B79
13F8

28932
13F8

2ATF
13F8

2840
0000

22C0
0000

1CB7
0000

1D8B
1092

1D8B
56C0

1D80
0840

0000
0000

CFB7
1F92

1D87
DDB2

1DAE
0000

1D8B
9DF2

8FEQ
1D9B
1F92
0000

AFEO
6DCO

1D8B
4D40

1F00
F680

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707
708

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

726
727
728
729
730

732
733
734
735

STH

L¥

STB

LB

CLB

AL

RE1

*

WH

*

RH

*

WD

*

RD
STB1
EXIT15

SS

ocC

PSF

BAL
DC

BAL

LX
DC

BAL

BAL

DC
bC

RHA
L

WHA

AX

#DRA
RDRA
A

L

DC

SSRA
BAL

BAL

ST¥1(NULL)
FREEWORD

LM1(NULL)
FREEWORD

WHMDR,YD,STB1
FREEWORD

MAR,YX,RMDR,DR1
YD,RMDR,IRD

MAR,YX,RMDR,DR1
CLB1(NULL)

MAR,YX,RMDR
AL1(NULL)

FREEWORD
FREEWORD

WMDR,YD,NULL,D¥2,E
NULL,NULL,IRD

MAR,YX,RX¥DR,DR2
NULL,YD,RMDR,IRD,E

MAR,YX,R¥DR,RH1
FREEWORD

MAR,YX,R¥DR,DR1
NULL,YD,R¥DR,IRD,E

WHDR,YD,NULL,E
MAR,YX,RMDR,DW1
NULL,NULL,IRD
FREEWORD

WHDR,YD,NULL,E
STB1{(NULL)

MAR,YX,RMDR,DR1
0C1(NULL)

MR7,YDI
PSF1(NULL)

23:17:23

STORE (P.42)

LOAD (P.n2)

DATA TO WMDR

FETCH BYTE

LOAD DATA TOC YD, EXIT.

FETCH BYTE
(P.12)

CALCULATE ADDRESS
(P.38)

READ HALFWORD, STORE
EXIT.

FETCH HALFWORD

CALCULATE ADDRESS

FETCH BYTE

07/29/82

ADDRESS, WRITE DATA, EXIT,

READ DATA, SET CC
STORE BYTE
EXIT.

SENSE STATUS
GO STORE STATUS BYTE

FETCH COMMAND BYTE
GO SEXD IT. (P.11)

SAVE FUNCTION SPEC
AND GO DECODE. (P.36)

*

Do *
RO2
RO2
D1 *
RO2
RO2

D3 *

Dy *

RO2
RO2

RO2
r02

D9 *
RO2
RO2
DA *

NEW CC.
DB *

32506870
32506880
32506890
32506900
32506910
32506920
32506930
32506940
32506950
32506960
32506970
32506980
32506990
32507000
32507010
32507020
32507030
32507040

32507060
32507070

32507090
32507100
32507110
32507120
32507130
32507140
32507150
325071A0
32597170
32507180
32507190
32507200
32507210
32507220
32507230

32507250
32507260
32507270
32507280
32507290
32507300
32507310
325907320
32507330
32507340

-

¥ODEL 3250 PROCESSOR

ROM SEGMENT

238A
2BFF

2B9A
13F8

2A3A
13¢8

2B92A
1379

0000
0000

2B9A
22DF
2B9A
233F

28932
13F9

13FD
07FC

32DF
22D6

2712
2B39

2A1A
2B39

2R1RA
2B39%

2A1R
2B39

2R1A
2B39

2R1A
2B39

7_

1iD8y
1DB2

1D80
5R40

1D91
A1CO0

1D87
4900

0000
0000

Y
= o
- ®
- O

1080
1£25

1D8F
36C0

7990
0B0O

1800
711

1D82
A830

1D82
B830

1D82
8830

1D82
9830

iD82
Cc830

1D82
D830

EMULATCR 05-086R0O3A13 (TRAINING)

OPCODES EJ:FF

737
738
739
740
741
742
743
T4y
745
746
747
748
749

751
752
753
754
755
7586
757
758
759
760
7861
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

TS
SvC
SINT

SCP

BDCS

*

LA

*

TLATE

*

CCs
GO.BY.56
*

ECS

*

RRL

*

RLL

*

SRL

*

SLL

*

SRA

*

SLA

QRG

BALA
BALD

LI

[6):¢

RRL

RLL

SRL

SLL

SRR

SLA

PAGE 16

*1c0"

MAR,YX,RKEDR,RAS
NULL,RM¥DE,IRD,E

MAR,YX,RMDR
SVC1(NULL)

DEV,YX,RMDR,aLOC
SINT1(NULL)

MAR,YX,RMDR,DR2
SCP1(NULL)

FREEWORD
FREEWORD

MAR,YX,RMDR

MR6,NULL,MAR,GO.BY.6

¥AR,YX,R¥DR
YD,MAR,EXIT17

MAR,YX,RMDR,DRY
TLATE1(NULL)

CCS1(NULL),D
(¥R6)(NULL)

MRE6,'800°

¥R6,MR6,YDI,G0.BY.6

MRO,YX,RMDR,IR
¥D,YD,¥RO,D,E

¥RO,YX,RMDR, IR
¥p,¥YD,MR9,D,E

MRO,YX,RMDR, IR
Yb,YD,¥%RO,D,E

¥RO,YX,R¥DR, IR
Yb,YD,¥RO,D,E

¥RO,YX,RMDR, IR
ID,YD,¥RO,D,E

MRO,YX,RHDR,IR
YD,YD,¥RO,D,E

23:17:24 07/29/82

.

2:0
CALCULATE ADRS, 3IEAD-AND-SET
NEGATIVE IF ALREADY SET.

F“
CALCULATE EFFECTIVE ADDRESS
(P.13)

Ez
DEV = I2+(¥2); ILOC = CLOC.
(P.25)

EB

CALCULATE ADDRESS OF CCW
(P.46)

.

CALCULATE ADDRESS

CALCULATE ADDRESS
PUT IN YD.

* BT *
FETCH TABLE ADDRESS
(P.44)

* g %
(P.52)
BRANCH, DISARM INTERRUPTS.

SELECT FIRST WCS HODULE 2

i!.:s*

* TR *

iggt

*800°

COMPUTE ECS VECTOR ADDRESS

tEAﬁ

* BB *

EC

ED

CANNOT DO IR HERE (P.17)

32597340
325907370
32507380
32507390
32507400
32507410
32507420
32507430
32507440
32507450
32507460
32507470
32507480

32507500
32597510
32507520
32507530
32507540
32507550
325075560
32507570
32507580
32507590
32507600
32507610
32507620
32507630
32507640
32507650
32507660
32507670
32597680
32597690
32507700
32507710
32507720
32507730
32507740
32507750
32507760
32507770
32507780
32507790
32507800
32507810
32507820
32507830
32507840

‘MODEL 3250 PROCESSOR EMULATOR 05~086R03A13 (TRAINING)

ROM SEGMENT 7 -~ OPCODES EO:FF

01E0
01E1
G1E2
01E3
01E4
01E5

01E6
01E7

01E8
01E9

01EA
01EB

01EC
01ED

01EE
01EF

01FQ
01F1

01F2
01F3

01FL
01FS

01F6
01F7

01F8
01F9
01FA
01FB
01EC

01FD
O01FE
G1FF

2A1F
3390
323F
CB7¢
23D1
2BFF

2A1R
2BF9

2R1A7
2B39

27147
2BF9

231A
2B39

271R
2B39

2B3A
0000

2A1A
13F8

23127
2B39

2212
2B39

323F
CBTF
2BFF
23D1
03F8

235F
17°C
137C

1E05
0004
000E
1C9D
1F63
1F92

1D82
5830

1D82
5830

1D82
0830

1D82
7830

1D82
6830

1DB2
0000

1D80
0Cu40

1082
1830

1082
0830

000E
1CoF
1F95
1779
0BOO

1D3F
8240
3010

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

821
822
823
824
825

827
828
829

STHE1

STHE2
EXIT17
*

TI

*

NI

*

CLI

e

oI

*

XI

*

LI

*

CcI

*

AT

*

SI
STHE?

STHE31

RETOLOC
TRAPFF

ST

RRE
AX

24 o

O >

DC

BAL

A
A

A
S

ST
RRE
L
AX
BAL

LX
BALD

RETOLOC1 BALR

PAGE 17

MRO,MAR,RFAULT
MAR,MRO, 4
¥R1,NULL, 14
WMDR,YD,I4DWu4
YDI,HR1,YDI,STHE2,C
NULL,NULL,IRD

MRO,YX,RMDR,IR
NULL,YD,¥RO,D,E

KRO,YX,RHDR, IR
Yp,¥YD,¥RO,D,E

¥RO,YX,RMDR,IR
NULL,YD,MRO,D,E

¥RO,YX,R¥DR,IR
YD,YD,MRO,D,E

¥RO,YX,RMDR, IR
YDp,YD,¥RO,D,E

YD,YX,R¥DR,IRD,E
FREE¥ORD

¥RO,YX,RHDR
C1RI(NULL)

MRO,YX,RM¥DR,IR
YD,YD,¥RO0,D,E

MRO,YX,RMDR, IR
¥YD,¥YD,MRO,D,E

¥R1,NULL, 14
WHMDR,YD,DW4
NULL,NULL,I4

23:17:24 07/29/82

GET ADDRESS, RESET RX FLOPS
PRE-DECREMENT MAR

¥R1 = 'FFFFFFF2°

FETCH, STORE

LOOP THROUGH REGISTER E
EXIT.

Fu

* 5 %

?5

x P77 o

Fe

YD HAS RESULT; EXIT, CC SET.

Fg

(P.3)

MR1='FFFFFFF2°
STORE REGISTER
INCREMENT MAR

YDI,H¥R1,¥YDI,STHE®1,C LOOP THROUGH REGISTER E.

(¥R6)(NULL)

clLoc,ILOC,RETOLOC
ILEGAL(NULL)
TWAIT(NULL),D

RETURY TO CALLER

‘BACK UP' LoOC
HARDWARE TRAF FOR BAD DECODE (P.18)
GO TEST WAIT BIT (P.22)

32507860
32507870
32507880
32507890
32507900
325067910
32507920
32507930
32507940
32507850
32507960
32527970
32507980
32507990
32508000
32508010
325908020
32508030
32508040
32508050
32508060
32508070
32598910
32508090
32508100
32590811¢C
32598120
32508130
32508140
32508150
32508160
32508170
32508180

32508200
32508210
32508220
32508230
32508240

325082R0
32508270
32508280

MODEL 3250 PROCESSOR EMULATCR 05-086R03A13 (TRAINIKNG) PAGE 18 23:17:25 07/29/82

ROM SEGMENT 8 - INTERRUPT HANDLERS

0200 831 ORG '200" 32508300
833 * FOR THE INTERRUPT VECTOGRS BELOW, RAG IS LOADED WITH THE 325908320
834 * VECTOR ADDRESS. HOWEVER, RLC POINTS TO THE KICRO-INSTRUCTION 32508330
835 * BEING EXECUTED AT THE TIME OF THE INTERRUPT. THEREFORE, MRO 32508340
836 * IS LOADED WITH THE ADDRESS OF THE INSTRUCTION FOLLOWING THE 32508350
837 * INTERRUPTED ONE, IN CONTROL STORE, WHEN THE RAL(XXX)(MRO) 32508360
838 * IS TXECUTED. 32508370
839 * ILOC IS ASSUXED TO BE THE VALID LOC FOR NEXT IRD. 32508380
02c0 161C A140 8u1 BALD TIOINT3(MRO) I/0 INTERRUPT LEVEL 3 (P.25) 32508400
0201 161C A0OCO 842 BALD TIOINT2(XRO) I/0 INTERRUPT LEVEL 2 (P.25) 32508410
0202 161C AQ4O 843 BALD IOINT1(MRO) I/0 INTERRUPT LEVEL 1 (P.25) 32508420
0203 161C A000 suy BRALD TIOINTO(KRO) I/0 INTERRUPT LEVEL 0 (P.25) 32508430
0204 161C C000 845 BALD CONSER(MRO) CONSOLE ATTENTION (P.30) 325084L0
0205 161C 8u4L0 846 BALD FAULT.0(MRO) MACHINE MALFUNCTION (P.19) RO2 32508450
0206 161D 5800 847 BALD PPFINT(MRO) PRIMARY POWER FAIL (P.48) 32508460
0207 161C 83C0 8usg BALD FAULT(MRO) ACCESS/DATA/BOUND/FPP (P.19) R02 32508470
0208 161C g2u¢ 8453 BALD ILEGAL({MRO) ILLEGARL INSTRUCTION, 32508480
851 * ti**i*****iii‘******i**iittii***i*******t***i****titi 32508:.00
852 * 32508510
853 «* ILLEGAL INSTRUCTION INTERRUPT 32508520
854 > 32508530
355 e de de ke e d g Je o A v e de s Sk W e e s e o e de o e e e ek ok & ok ke o Tk e e ok e g ok e ok e ok 325085“0
0209 2BFF 1¥85 857 ILEGAL L NULL,NULL,RFAULT RESET RX FLOPS 32508560
020R 339F 1030 858 LI MAR,"30° ADRS OF ILLEGAL INSTR. NEW PSW 32508570
020B 1208 5000 859 BAL COMSWAP(MR6) EXCHANGE PSW*'S (P.12) 32508580

020C 13FC 9050 860 BALA TWAIT1(NULL),D GO TEST WAIT BIT. (P.22) 32508590

MODEL 3250 PROCESSOR EMULATOR 05-086RO3R13 (TRAINING) PAGE 19 23:17:26 07/29/82

ROM SEGMENT 8 - INTERRUPT HANDLERS

020D

020E

0000
020F
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
021a
021B
021C
021D
021E
021F
0220
0221

0222
0223
0000
0z24
0225
0226

227F

227F

020F
2A3F
13E4
325F
4ABF
4BFF
1384
13F0
13F4
3651
2432
3252
327F
33F0
13F0
33F0
1770
2273
33F0
13F0

33F0
1370
0224
329C
2BF1
17E0

2FBO

1FBO

1D85
3ACO
1FFB
7¥85
7340
8380
1800
TE40
5049
5880
8208
1002
0298
8900
02F6
83800
1924
J02FE
BF80

0390
C000

0002
6R00
8300

862
863
864
865
866

868
869
870
871
872
873
874
875
876
877

879
880

882
883

885
886

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

hhkkhkhkhhkddhhhhhhkhhkhbhhrhdhkkhkdhkhkkhdbhrdkhdbhdhhbhddbhkdhkhhddihk

MACHINE MALFUNCTION INTERRUPT

* * % ¥ %

dkkkkdkkhkdkkhdekhkhhhkhhdohbkhbhdbhhdkrhkhhhkhhrkxkhhhkhkhrhkhrhkdkdrdkdki

* *80000000° POWER FAILURE

* *40000000" POWER RESTORE

* '20000000°" MEMORY DATA ERROR, DATA FETCH

* *10000000°" MEMORY DATA ERROR, INSTRUCTION FETCH

* *08000000° MEMORY DATA ERROR, AUTO-DRIVER CHANNEL

* *0u4000000° NON-CONFIG*D MEMORY, DATA FETCH

* *02000000°" NON-CONFIG*'D MEMORY, INSTRUCTION FETCH

* ‘01000000° NON-CONFIG'D MEMORY, AUTO-DRIVER CHANNEL

* 00000002 SHARED MEMORY POWER FAIL RO3
* '00000001" MODULE START TIME FAILURE

* MODULE START TIME FAILURE INTERRUPT
STFAIL SDECX ¥R3,NULL,NULL,MMFINT CODE = *00000001° (P.20)

* EARLY POWER FAILURE INTERRUPT
EPFINT LX MR3,NULL,MF¥FINT CODE = '80000000*' (P.20)

* HERE ON ANY DATA/INSTRUCTION FETCH/DECODE/STORE ERRQR.
* OR MACHINE MALFUNCTION INTERRUPT

FAULT EQU * SORTS OUT INTERRUPTS
L ¥R1,RMDR,RFAULT GET FAULT CODE AND ADDRESS
BALL FPPFAUL(NULL) BRANCH: FPP INTERRUPT (P.23) RO2
FRULT.O0 LI MR2,*FFB"* WILL NOT RESET MVF RO2
SMCR M¥R5,KULL,RFAULT TEST MCR FAULTS
CMCR- NULL,M¥R2 RESET ALL BUT MVF (SMCR FLAGS) RO2
BALL EPFINT(NULL) BRANCH: EPF BIT SET
BALC STFAIL2(NULL) BRANCH: STFAIL OR SMPF (P.5) RO3
BALY RETOLOC(KNULL) BRANCH: IGNORE NVM0 INTERRUPT (P.17)

NI ¥R2,4R1,BI00.07,I MR2 = FAULT CODE RETURNED

X ¥R1,MR2,MR1 ¥R1 = PROGRAM ADDRESS AT FAULT
RLLI MR2,H4R2,8 FAULT CODE, FORM 000000XX
LI ¥R3,2 BASE COUNT FOR SRIF”S
SI NULL,MRO,CHANEL FAULT IN CHANEL CODE
BALC FAULT.2(NULL) BRANCH: NOT INTERESTIVG.
SI NULL,MRO,CHAKEND REALLY CHANEL ?
BALNC FAULT.1(NULL) BRANCH: NO.
AX MR3,¥MR3,MR3,FAULT.2 CHANEL - SET SHIFTS = &
FAULT.1 SI NULL,MRO,MHFEND FAULTED FAULT SWAP ?
BALC HARDSTOP(NULL) BRANCH: YES. STOP ¥ACHINE (LOC='40")
* DOUBLE FAULT IS NOT TOLRRATFD.(P.29)
SI NULL,MR0O,CONSEND FAULT IN CONSER CODE ?
BALC CONSER(NULL) RETURN IF YES. (P.30)
FAULT.2 EQU *
ST MR4,CLOC,2 CLOC ADVANCES ON FAULT BY 2 RO2
X NULL,MR1,HRu FAULT ON INSTRUCTIONK FETCH ? RO2

BALNZ FAULT.3(KNULL) BRANCH: NO. (P.29) RO2

32508610
32508620
32508630
32508640
32508650

32508670
32508680
32508690
32508700
325087190
32508720
32508730
32508740
32508750
32508760

32508780
32508790

32598810
32508820

32508840
32508850

32508870
32508880
32508890
32508900
32508910
32508920
32508920
325908940
32508950
32508960
32508970
32508980
325928990
32599000

© 32509010

32509020
32509030
32509040
32509050
32599060
325929070
32509080
32509020
32509100
32509110
32509120
32599130

¥ODEL

ROY SEGMENT 8 -

0227
0228
0229
022A
022B
022C
022D
0000
G22F
022F

3000
0230
0231
0232
G233
0234
0235
0236
0237

3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING)

327F
33F2
13F0
13F0
33F2
17F0
3273
0228
339F
2B7F

0230
339F
365F
2872
339F
2B7D
37FD
1380
13F8

1003
0019
5CB0
8380
C01E
9Dyu0
1003

10u4
189C

1040
1058
899C
1020
1F80
5051
901C
BD4O

INTERRUFT HEANDLERS

315
916
817
318
919
920
921
922
923

826
927
928
929
930
931
932
933
93u

938
939
940
qu1
9u2
943
quy
945
946
947
sus
943
950
951
952
953
954
955

FAULT.3

FAULT.4

MMFINT

* % % % % % * % O 4 A * * ¥ ® ¥ A *

LI
SI
BALC
BALZ

BALNC
AI
EQU

EQU
1I
LI
SRL
LI

NI
BALZ
BAL

PAGE 20 23:17:26 07/28/82

MR3,3 ASSUME FRULT ON INSTRUCTION FETCH.
NULL,¥R2,"19" NAS IT A MEMORY-ACCESS FAULT ?
MATINT(NULL) BRANCH: YES, PURE & SI¥PLE. (P.13)
FAULT.4(NULL) BRANCH: PARITY/ECC; SHIFT 2,32, OR 4
NULL,MR2,'1E" ALIGNMENT FAULT ?
FORFAUL6(NULL) BRANCH: ALIGNMENT FAULT (P.24)
¥R3,4R3,3 NON-CONFIG®D MEMORY. SHIFT 5,6, OR 7
*
HAR,'u4" ADDRESS DEDICATED LOCATION
WMDR,¥R1,PW4 STORE (MAR) AT TIME OF FAULT
* MALFUNCTION INTSRRUPT SWAP
MAR,"40° A(MACHINE MALFUNCTION STATUS WORD)
MR2,BITCO,I MR2 = *80000000°
WMDR,MR2,MR3,PWU *40-43' = MALFUNCTION STATUS WORD
¥AR,"20°" A(NMF OLD PSW SAVE AREA)
WMDR,PSW,NULL OLD PSW TO GO AT *20-23°
NULL,PSW,BIT18,I MALFUNCTION SWAP ENABLED °?
TWAIT(NULL),PWu BRANCH: NO (P.22)
HNMFINT2(NULL) G0 DO SWAP (P.29)

FRULT C 0ODE SUKHARY
FLOATING POINT FAULT (RRITH) RO2
NO FAULTS
(NOT USED) (MAT)
EXECUTE PROTECT VIOLATION (HAT)
WRITE PROTECT VIOLATION (MAT)
READ PROTECT VIOLATION (MAT)
ACCESS LEVEL VIOLATION (MAT)
SEGHKENT LIKIT VIOLATION (MAT)
SEGHMENT NOT PRESENRT (MAT)
SHARED SEG TAB SIZE EXCEEDED (HAT)
PRIVATE SEG TAB SIZE EXCEEDED (MRT)
ECC/PARITY ERROR (MMF)
NON-CONFIGURED MEMORY (MNF)
(XOT USED) (H¥F)
(XOT USED) (MXF)
(NOT USED) (MNF)
FULLWORD ALIGNMENT FAULT (ALIGN)

HALFWORD ALIGNMENT FAULT

(ALIGN)

32509140
32509150
32509160
325929170
32509180
32509190
32508200
32509210
32509220
32509230

325179250
32509260
325909270
32509280
32509290
32509300
325909310
32509320
32509330

325909350

32509370
32509380
32509390
32599400
32509410
32509420
32509430
32509440
32509450
32509460
32509470
32509480
32509490
32509500
32509510
32509520
32509530
32509540

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 21

ROM SEGMENT 8 - INTERRUPT HANDLERS

0238
0239

0000
023A

023B

0000
023C
023D
023E
023F

37FD
0380

023A
EADF

E35F

023C
ES7F
37BD
13FC
07FC

513D
0BOO

1585

153F

1BOO
713D
8FDO
0B0O

957
958
959
960

962
963

965
966
967
968

970
971
972

974
975
976
977
978

983

* % o %

INSTRUCTION IS EXECUTING.

IIPCHECK NI NULL,PSW,BIT14,TI
BALZ (MR6)(NULL)

IIPRESUX EQU *
L MR6,47R11,RFAULT

*

LY CLOC,¥7R10,WIKDOW

23:17:27 07/29/82

THIS ROUTINE DETERMINES WHETHER TO RESUME AN INTERRUPTED
STRING INSTRUCTION, OR TO BEGIN A NEW ONE. FOR THIS
PROCESSOR, PSW BIT 14 IS SET DURING THE TIME AN INTERRUPTIBLE

INSTRUCTION IN PROGRESS *?
BRANCH: NO. START IT.

RESUME INTERRUPTED INSTRUCTICN
GET RETURN ADDRESS FRON R11,
RESET RX FLOPS.

RESTORE INCREMENTED LOC

* THIS ROUTINE ESTABLISHES THE CONTROL STORE ADDRESS AT WHICH
* AN INTERRUPTED STRING INSTRUCTION IS TO BE RESUMED. FOR THIS
* PROCESSOR, NO ADVANCE WARNING IS GIVEN OF A PENDIRG INTERRUPT.

SET.RTN EQU *
L M7R11,HR6
OI PSW,PSW,BIT14,I
BALA WINDOW(NULL),D
WINDOW BALD (MR6)(NULL)

ENDC

SET INTERRUPT RETURN ADDRESS

LINK ADDRESS BECOMES RETURN ADDRESS
SET IIP BIT

SERVICE ANY INTERRUPT

RETURN TO CALLER.

32509560
32509570
32509580
32509590

32509610
32509620

32509640
32509650
32509660
32509670

32509690
32509700
32509710

32509730
32509740
32509750
32509760
32509770

32509820

aw

MODEL 3250 PROCESSOR EMULATOR 05-086RG3A13 (TRAINING) PAGE

RO
0240
0240 4BFF
0241 361D
0242 17F0
0243 4BFF
0244 13FC
0245 2R7F
0246 2B5F
0247 28BF
0248 339F
0249 33FD
024k 13E0
024B 36DF
024C 2B9F
024D 2AFF
024E 339F
024F 2BF6
0250 13E0
0251 2A3C
0252 339F
0253 2A7F
0000 0254
0254 2R1D
0255 2BBF
0256 2B5F
0257 29BF
0258 29DF
0259 21FF
0254 0000

SEGMENT

6FD1
5019
90D2
6840
3110

1D8%
[R0R-31

1D8s
1991

1080
5200
904C
1017
1080
1E0C
108C
5D80
aouc

1F80
1088
1D8C

1F80
1D80
1980
1B80

1811
1881

2000

985

987
388
989
990
991

993
994
995
396
997

93
1000
1001

1003
1004
1005
1006
1007

1009
1010
1011
1012
1013
1014
1015
1016
1017

1019
1020
1021

1023
1024
1025
1026
1027
1028
1029
1030
1031

1033

9 - INTERRUPT HANDLERS

GRG

'240°

23:17:27 07/29/82

* dddkkkkkdk ok hkkk kA ko hrde kA kdkk bbbk bk kkkhdkdhdhkhkhkehkh kit

*
%*
*
*

TWAIT
TWAITA

WAIT

QTEST

SYSQINT

INTERRUPTIBLE WAIT LOOP

LWFF
NI
BALNZ
LWFF
BALA

o e

NULL,NULL,2LOC
MRO,PSW,BIT16,1I
WAIT(NULL),IRD
NULL,MRO
*(NULD),D

BR3,RADR,I4DRY
CLOC,RMDR,RFAULT
PSW,MR3,2L0C

Fhwhkdhkhb ke h kA hk ko hkwk ko kdk ko kdkkkde Rk kkkkdkdh kg

RESET WAIT, UEDATE ILOC
TEST WAIT BIT

BRANCH IF SET, ELSE EXIT.
SET WAIT INDICATOR

WAIT FOR INTERRUPT.

¥R3 = YEW PpSW¥
LOAD NEW PSW, RESET RX FLOPS
LOAD NEW PSW, UPDATE ILOC

dr 3 de d % Hr ok e de de dede e e vk ok dk e d dr de ke e S ok e o e b e sk de ke s e de de e e e dr Ak e o de e e ok K e e v e

TEST SYSTEM QUEUE FOR SERVICE INTERRUPT

LI
NI
BALZ
LI

L

L

LI

N
BALZ

A
LI
L

MAR,'80"
NULL,PSW,*200"
TWAIT1(NULL),PR4
¥R6,BI16.31,1
MAR,RMDR
MR7,¥AR,PRY
MAR,“8C"
NULL,¥R6,RMDR
TWAIT1(NULL) ,PR4

¥R1,CLOC,NULL
MAR,'88°
MR3,RMDR,PR4

de g e de e de S dr de e dr ok de kK e dedr e e A ok ke d de e F e e Ao o d e e g de sk e e ok ok d ok dr e ke ok o ok ok A ok K

MAR = A(SYSTEM QUEUE POINTER)
QUEUE SERVICE ENABLED ?
BRANCH: NO.

¥R6 = ‘*O00OFFFF*

MAR = A(QUEUE)

SAVE IN MR7

A(QUEUE SERVICE NEW PSW LOC)
LOOK AT °*NUMBER USED®

BRANCH: QUEUE EHPTY.

¥R1 = CURRENT 10C
MAR = A(QUEUE SERVICE NEW PSW)
¥R3 = NEW LOC

* THIS CODE SHARED BY SVC, EPSR, LPSW, LPSWR, LDPS
CONSWAP2 EQU

[l -l ol

bC

*
MRCG,PSW,NULL
PSW, RMDR
CLOC,M¥R3
R13,¥R7

R14,8R0,2L0C
R15,¥R1,TWAIT1

FREEWORD

MRO = OLD PSW

LOAD NEW PSW

LOAD NEW LOC

R13 = A(SYSTEM QUEUE), OR
SYC PARAY BLK ADDRESS

R14 OLD PS¥

R1S OLD LOC

RO2
RO2

®03

RO2
RO2
RO2
RO2
RO2
RO2

RO2

RO2

RO2

325098490

32509860
32559870
325909870
32509890
325909900

325099290
32599230
325029940
32509950
32509960

32809980
32509940
32510000

32510020
32510030
32510040
32510050
32510050

32510080
32510090
32510100
32510110
32510120
32510130
32510140
32510150
32510160

32510180
32510190
32510200

32510220
32510230
32510240
325102%0
32510260
32510270
32510280
32510290
32510300

32510320

MODFL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 23 23:17:28 07/29/82

ROM SEGMENT 9 - INTERRUPT HANDLERS

025B
025¢C
025D
02SE

025F

025F
0260
0261
0262
0263

0264
0265

0266
0267
0268
0259
026A

026B
026C
026D
026E
026F

0270

2B3F
2BDF
2B3F
23F4

1218
1218
1210
1200
1218

37FD
17EQ

2RAFC
339F
12D8
3130
219F

3251
3252
2B5E
2R5E
2B5F

1900
3F00
1980
2FEO

3380
5980
9980
9300
9980

50C1
9992

1r85
1048
5000
5007
1B81

BOO4Y
5006
0900
1F80
1911

OFA1

1035
1036
1037
1038
1039

1046

1048
1049
1050
1051
1652

1054
1085

1057
1058
1059
1060
1061

1063
1064
1065
1066
1067
1068
1069
107¢C

k khkkkhkhkhkkhhkkkhkkdhhkhkhkhdhrhhhddhkhkhhhkdhhhrhhkkhdbbhhhhdhbbhktkkiih
*
* ARITHMETIC FAULT INTERRUPT
*
* kkhkhkkhkkhkhhkkhkkhhkkhhhhhkhrhhkhdhhbhdrbkhtdhdhhrhdbddhdhkhkhhbhkkhhkkhd
DFAULT L YD, MR2 RESTORE 64-BIT DIVIDEND
AINC YDI,NULL,YDI
L YD, MR3

SDECX NULL,MR4,NULL,AFAULt,C BRANCH: QUOTIENT OVERFLOW

ORG ' 25F° ALIGNS LINKS

AFAULO BAL AFAULT(MRO)
AFAUL1 BAL AFAULT(MRO) FIX POINT QUOTIENT O'FLOW

RFAUL2 BALC AFAULT(MRO) BRANCH: FLOAT POINT DIV-BY-0

AFAUL3 BALZ UFAULT(MRO) BRANCH: FLOAT POINT EXPONENT U'FLO¥
AFAULY BAL AFAULT(K¥RO) BRANCH: FLOAT POINT EXPONENT O'FLOW

FIX POINT DIV-BY-0.

UFAULT NI NULL,PSW,BIT19,I AFAULT ENABLED ?
BALNZ AFAULT(NULL),IRD BRANCH: YES. ELS®E, EXIT.

AFAULT A MR7,CLOC,NULL,RFAULT ¥R7 = INCR'D LOC, RESET RX FLOPS
LI MAR,"48" ¥AR = A(ARITH FAULT NEW PSW)
BRL COMSWAP(MR6) DO PSW SWAP (P.12)
NI E13,MRO, 07" R13 = FAULT CODE
LX R12,MR7,TWAIT R12 = NEXT LOC (P.22)

FPPFAUL RLLI ¥R2,MR1,4 POSITION FORMAT INFORMATION RO2
NI MR2,¥R2,6 LENGTH 2, 4, OR 6 BYTES R02
S CLOC,ILOC,¥R2 POINT TO START OF FPP INSTRUCTION
A MR2,ILOC,NULL SAVE ILOC; ILOC GETS CLOC ?02
L CLOC,MR2,aL0C CLOC GETS °*NEXT LOC® °02

ILOC HAS FAULT LOC R02

NOTE - @LOC HAPPENS EARLY HERE. FO02
RCCX NULL,NULL,AFAUL2 COLLECT FLAGS, GO SORT FAULT. RO2

32510340
32510350
32510360
32510370
32510380

32510400
32510410
32510420
32510430

32510450

32510470
32510480
32510490
32510500
32510510

32510530
32510540

32510560
32510570

32510880

32510590
32510600

32510820
32510430
32510640
32510650
32510660
32510670
32510680
32510690

MODEL 3250 PROCESSCR EMULATOR 05-086R03A13 (TRAINING) PAGE 24 23:17:29 07/29/82

POM SEGMENT 9 - INTERRUPT HANDLERS

1072 * **t*l’l'kiik***"Q\'***i*i**ii*****iii***ﬁ*********i******i***** 32510710

1073 =* 32510720

1074 * DATA FORMAT FAULT INTERRUPT 32510730

1075 * 32510740

1076 * ***ii******t******ii**itw***i*i*******iii*i****************t 32510750

3271 1078 ORG ‘271 32510770
0271 1218 9CCC 1080 FORFAUL2 BAL IIPFAUL(MRO) INV SIGN DIGIT, PACKED DATA ®01 32510790
0272 1218 9C0 1081 FORFAUL3 BAL IIPFAUL(¥RO) INV SIGN DIGIT, PACKED DATA R01 32510800
0273 373D 5101 1082 IIPFAUL NI PSW,PSW,BIT140,1I ZERQ IIP BIT R01 32510810
0274 13F8 9DCO 1083 BAL FORFAULT(NULL) . ?P01 32510820
0275 1200 9E00 1084 FORFAUL6 BALZ ALGFAULT(MRO) BRANCH: FULLWORD ALIGNMENT FAULT 32510830
0276 1218 9500 1085 FORFAUL7 BAL ALGFAULT(MRO) HALFVORD ALIGNMENT FAULT. 32510840
0277 2R3F 1E0S 1087 FORFAULT L HE1,4AR, RFAULT DROGRA¥ ADDRESS IN MAR AT FAULT 32510840
’ 1088 * RESET RX FLOPS. 32510870

0278 333F 10C8 1089 ALGFAULT LI MAR,*'C8"*] A(FORMAT FAULT NEW PSW) 32510880
0279 12D8 5000 1090 BAL COMSWAP(MRE) SWAP PSW'S (P.12) 325108490

0274 3130 5007 1091 NI R13,%R0,°007" R13 = FAULT CODE 32510900
0278 339D 0006 1092 SI NULL,R13,6 HARDWARE FAULT ? 32510910
027C 13F0 9040 1093 BALC TWAIT1(NULL) BRANCH: NO (P.22) ELSE, 32510920
027D 219F 1881 1094 LX R12,%R1,TWAIT1 R12 = ADDRESS CAUSING FAULT (P.22) 32510930
027E 0000 0000 1096 oC FREEWORD . R02 32510950

027F 0000 0000 1097 DC FREEWORD . R02 32510960

MODEL 3250 PROCESSOR EMULATOR 05-086RO3A13 (TRAINING) PAGE 25 23:17:29 07/29/82

" ROM SEGMENTS A, B - I/0 INTERRUPT PROCESSOR

0280

0280

0281
0282

0283
0284

c285
0286

0287
0288
0289
028A

0288
028C

028D
028E

028F
0290

0910
0011
0012
0012
0013
0014
0015

225F

325F
423F

325F
423F

325F
423F

3231
225F
3259
3252

3271
2A1D

2893
3782

281F
283E

1F86

1011
690B

1022
690B

1033
590B

S3FF
OF4B
5004
5030

1000
1F85

1886

704D

1800
1F80

1098

1101
1102
1103
1104
1105
1106
1107
1108
1109

1111
1112
1113
1114
1115

1117

1119
1120

1122
1123

1125
1126

1128
1129
1130
1131
1132

1134
1135
1136
1137

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

ORG

280

* REGISTER ASSIGNMENTS FOR CHANNEL I/O
*

TEMP
DEV
LEVEL
[ole)
DAT
COUNT
RETURN

*
*
*
*
E

IOINTO
IOINT1

IOINT2

IOINT3
AUTOIO

*
*
*
*
*
SINT1

IOINTX

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU

"10°
11
t42°
v12¢
*43
L PR
45¢

222 R R RS SR AR RSS2SRt Rix il 2o 2R R R

I/0 INTERRUPT

LX

LI
AKX

LI
AKX

LI
AKX

Yo ddredk gk dddkk kdkd kk ok kd gk dk ko ded gk i dr gk dkodr de ok dk sk % d ok ko ko de ok d ok e %k o o o e 3k W U ok

LEVEL,NULL,AUTOIO SELECT REGISTER SET O

LEVEL,'11" SELECT REGISTER SET 1
DEV,LEVEL, IOINTX ACKNOWLEDGE INTERRUPT
LEVEL,"22" SELECT REGISTER SET 2
DEV,LEVEL,IOINTX ACKNOWLEDGE INTERRUPT
LEVEL,'33" SELECT REGISTER SET 3
DEV,LEVEL,IOINTX ACKNOWLEDGE INTERRUPT

% d vk de de de e v ok v dede ok dk de ok kA dr o ket ke ok ek e e e s ok ok e dk de Sk v ok o e e gk ok % ok ok ok ke g e o e ke o ke

SIMULATED (I/0) INTERRUPT

NI
SX

SLLI

NI

AI
A

A

oI

hkdkdkdkhkdkhkhkhkhkhkhkhhhkhhhkhhhkhhkkhkhkkdkdkrhdkxdkdkdkdhdkkddhkdddkddhdhdkhkkdihk

DEV,DEV, '3FF* FORCE DEVICE VALID
LEVEL,NULL,YDI,IOINTX,C BRANCH: LEVEL O REQUESTED.
LEVEL,YD,4 SELECT SPECIFIED LEVEL
LEVEL,LEVEL,'030" FORCE VALID LEVEL

DAT,DEV,'DO" 2X DEVICE NUMBER + 'DO'
TE¥P,PSW,NULL,RFAULT SAVE ENTRY PS¥,
RESET RX FLOPS.
INDEXES SERVICE POINTER TABL®
FETCH APPROPRIATE ENTRY
PSW,LEVEL,BI1820,I SET PSW BITS 18 & 20 AND
SELECT REGISTER SET
RO,TENP REG 0 = PSW
R1,ILOC,NULL REG 1 = ADJUSTED LOC
ASSU¥ES ILOC VALID NEXT INSTRUCTION

MAR,DAT,DEV,PR2

32510980

32511000
32511010
32511020
32511030
32511040
32511050
32511060
32511070
32511080

32511100
32511110
32511120
32511130
32511140

32511150

32511180
32511190

32511210
32511220

32511240
325112590

32511270
32511280
32511290
32511300
32511210

32511330
32511340
32511350
325113FA0

32511380
32511390
32511400
32811410
32511420
32511430
32511440
32511450
32511460
32511470

-

¥ODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

RCY SESYENTS A, B - I/O0 INTERRUPT PROCESSOR

0231
0252
0283
0204
0295

0296
06297

0000
0000
0000
0000
0000
0000
0000

0298
0299
029A
029B
029C

029D
029E
029F
02A0
02A1
0222

285F
4871
2RT7F
33F3
1770

3753
4BFF

02890
0029
52190
0008
3004
0392
200

3793
289F
2ASF
3212
13E0

LATF
2BE3
17E0
3384
33F2
13E0C

3384

2A8F

13E8

18R0
AFEO
1D80
5001
A600

5033
6FD2

5039
1E07
1D80
5080
ADCO

E940
5980
AD8O
1002
5001
AFC7

1148
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1162
1163
1164
1165
1166

1168

11790
1171
1172
1173
1174
1175
1176

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1192

1194
1195
1196
11587
1198
1199
1200

23:17:30 07/29/82

REG 2 = DEVICE NUMBER

REG 3 = DEVICE STATUS, SET CC
TABLE ENTRY TO DAT

TEST LSRR OF SERVICE POINTER

IF SET, SERVICE POINTER IS
ADDR®SS PLUS ONE OF CCB

IF RESET, SERVICE POINTER IS
ADDRESS IN FIRST 64K OF R
USER'S SERVICE SUBROTTINE
ENTRY IS LOCATION COUNT:

RESET WAIT INDICATOR, EYEUCUTE®.

Je % Jc g dr vk de de de T Kok e ke W ke d d de de d Ak gk e e g K ke ko e e v ek ok e o e o % % ok o e ok e v ok Kk ok o

26
L 32,DEV
SSRA R3,DEV,NULL,E
L DAT,RMDR
NI NULL,DAT,1
3ALNZ CHANEL(NULL)
*
>
*
w*
*
NI CLOC,DAT,BI16.30,1
EXIT26 LWFF NULL,NULL,IRD
*
*
* AUTO-DRIVER CHANNEL
*
*

kR kAN R A ek ko khkh ke kd bk kd kA F Rk kdk bk dkddhokskddkd ko ddddehkd

* CCW BIT DESIGNATIONS

EEIT EQU t8o°

SBIT EQU ‘20"

CBIT EQU ‘10"

BBIT EQU ‘osg*

RWBIT EQU ‘o4

TBIT EQU 02"

FBIT EQU ‘o1

CHANEL NI MAR,DAT,BI16.30,
L R4 ,MAR,DR2
L CCW,RMDR

NI ¥RO,CCW,EBIT
BALZ EXSUBO(NULL)

EXB DAT,CCW

N NULL,R3,DAT
BALNZ EXSUB1(NULL)

Al ¥AR,RY4,2

NI NULL,CC¥,FBIT
BALZ NFAST(NULL),DR2

* FAST
FASTMODE AI MAR,R4, 4
L COUNT, RMDR

BALG EXAUTO(NULL),DR4

THWY NULL,.NULL,BYTEIO,C

*

I

M O0DE

* FALL THROUGH IF LINE IS ACTIVE

EXECUTE TEMP = MRO
SDLC CHECKTYPE

CHECK TYPE DEV = MR1
BUFFER SWITCH CCW = ¥R2
READ/WRITE DAT = ¥R3
TRANSLATE COUNT = R4
FAST MKODE RETURN = YRS

MAR = EVEN ADRS(CCYW)
COPY TO R4, FETCH CCVW

TEST THE EXECUTE BIT
NO EXECUTE, CC=0 (P.27)

ISOLATE STATUS MASK

TEST DEVICE STATUS AGAINST MASK

BAD STATUS (P.27)

ADDRESS BUFO BYTE COUNT
TEST IF FAST MODE

NOT FAST NODE (P.28)

ELSE, FETCH BUFO BYTE COUNT.

¥

POINT TO BUFC END ADRS
TEST BYITE COUNT:
EXIT, COUNT POSITIVE (P.27)

TEST HW LIKE (P.27)

32511429
32511490
32511800
32511%10
32511520
32511530
32511540
32511550
32511560
32511570
32511580
32511530

32511410
32511-520
3251130
32511640
32511550

32511570

325116930
32511700
32511710
32511720
32511730
32511740
32511750

32511770
32511780
32511790
32511800
32511810
32511820
32511830
32511840
32511850
32511860
32511870
32511880
32511890

32511910

32511930
32511940
32511950
32511960
32511970
32511980
32511990

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

ROM SEGMENTS A, B - I/0 INTERRUPT PROCESSOR

02A7
02A8
0239
02AR

02AB
02AC

02AD
02RE
02AF
02BO

02B1

02B2
02BE3
02BY

02BS

02B6

0000

02B7
02RB8
02B9
02BA
02BB

G62BC
02BD
02EE

2B9u
33F2
13E0
L3FF

LBT7F
2294

2B94
33F2
13E0
43FF

4B87F

3384
2374
17E8

221F

2A1F

0287

367F
3384
23%%
2353
4BFF

2385F
23BF
13FC

1D80
5004
AAC7
5DAC

4F97
3FB2

1D80
5004
AC4B
1DB2

0FDB

1002
3F97
AFO0O

3FB7

1039
1014
1827
5D80
6FD2

1080
1011
9050

1201
1202
1203
1208
1205
1206
1207
1208

1210
1211
1212
1213
1214
1215
1216
1217
1218
1218

1221
1222

1224
1225

1227
1228

1230
1231
1232
1233
1234

1236
1237
1238
1239

*

HWIO A MAR,COUNT, RMDR
NI NULL,CCW,RWBIT
BALZ HWRD(NULL),DR2

HWRT WHX NULL,RMDR,HWRT1

*

HWRD RH WYDR,NULL,DW2

27

23:17:31 07/29/82

BUFFER END ADRS + COUNT
TEST R/W BIT

BRANCH: R/W = 0 = RERD
WRITE HALFWORD

READ HALFWORD, STORE

HWRT1 AINCX COUNT,COUNT,NULL,CONMON

BYTEIO A MAR,COUNT,RMDR
NI NULL,CCW,RWBIT
BALZ FRD(NULL),DR1

FWT WDX NULL,RMDR,COMMON
* .

FRD RDR WHDR,NULL,DW1

*

COH¥MON AI MAR,R4,2

ARINC WMDR,COUNT,NULL,DW2

BALNG EXAUTO(NULL)

BUFFER END ADRS + COUNT
TEST R/W BIT
BRANCH:READ BYTE

OUTPUT DATA BYTE

INPUT DATR BYTE, STORE IT.
ADDRESS BYTE COUNT

ADJUST COUNT, STORE
EXIT IF NOT >0

* EYIT TO SUBROUTINE AT BUFFER END (POSITIVE BYTE COUNT)
EXSUB2 AINCX ¥RO,NULL,NULL,EXSUB QUEUE G FLAG

XIT TO SUBROUTIKE ON STATUS ERROR

* EX
EXSUB1 SDEC MRO,NULL,NULL

* UNCONDITIONAL EXIT TO SUBROUTINE

EXSUBO EQU *

EXSUB LI MR3,BI16.30,1I
AT HAR,RY4,20
L NULL,¥RC,DR2,E
N CLOC,MR3,RMDR

EXIT27 iWFF NULL,NULL,IRD

QUEUE L FLAG

(EXECUTE BIT = 0)
¥RCO CONTAINS ZERC

¥R3 = ‘QQ00FFFE"
MAR = A(SUBROUTINE ADDRESS)
FETCH SUBR ADDRESS, ADJUST CC

FEZTCH USER INSTRUCTION.

* NORMAL EXIT FROM AUTO DRIVER CHANNEL

EXAUTO L CLCC,R1
L PS¥,R0,3L0C
BALA TWAIT1(NULL),D

GET UNINCREMENTED LOC
RESTORE ENTRY PSW
GO TEST WAIT BIT. (P.22)

32512000
325120190
32512020
32512030
32512040
32512050
32512060
32512070

32512090
32512100
32512110
32512120
32512130
32512140
32512150
32512160
32512170
32512180

32512200
32512210

32512230
32512240

32512250
32512270

32512230
32512300
32512210
32512220
32512330

32512350
32512350
32512370
32512320

-

-~

MODEL 3250 PRNCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 28 23:17:31 07/29/82

RO¥ SEGMENTS A,

02BF
02ce

02C1
02C2
02C3
02C4
02C5
02Cs

02C7
02C¢
02C9
02CAa
02CB
02cCcC
02CD
02CE
C2CF

02D0
02D1
02D2
02p3
02D4

02D5
02D6
0000
02D7
02D8

02D9
02DA
02DB
02DC

02DD
02DE
02DF
02EQ
02E1
02E2

3212
3210

2384
2R04
3390
2A9F
13E8
2334

3384
32F2
17E0
2B73
03F8

UBFF
1789
0206
32DF
32F7

4BF6
4BFF
4BFF
487F

2B9F
2B74
17E8
3372
239F
13F8

5008
7002

1807
1800
1002
1D8F
AF0O0
1080

1880
5004
B8C

5002
8A80
1DCo
5DCO
3400
181E

1008
5030
8546
6D96
0ABO

7F86
5280

1006
8005

BBCO
SD80
18CO
4F 96

1800
3F96
AFCO
5008
1217
AD4o

B - I/0 INTERRUPT PROCESSOR

1241

12u3
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

1289
1290

1297

1292
1293
1294

*

NFAST

*

NOTE:

* % % % % ¥ *

NFWRIT

* % % *

REDCHK

k3

CRCCK

CRC

NI
oI

-
1

ALG

R el

BUFFER BYTE
ADDRESS OF BUFFER BYTE COUNT IN “TEMP®
BUFFER END ADRS + BYTE COUNT IN "MR1"

N

ORMAL ¥ 0DE *

TE¥P,CCHW,BRIT TEST BUFFER2 SWITCH BIT
TEXP,TE¥P,2 -FOR¥ BYTE COUNT DISPLACEMENT
MRR,R4,TENP,DR2 FETCH BUFFER BYTT COUNT
TEMP,RU,TEMP TEMP = ADRS OF RUFFER BYTE COUNT
MAR,TEMP,2
COUNT,R¥DR,DRU FETCH BUFFER END ADDRESS
EXAUTO(NULL) EXIT IF COUNT PQOSITIVE (P.27)

¥R1,COUNT,R¥DR BUFFER END ADRS + COUNT

COUNT IN REGISTER “COUNT"

IN NON-FAST MODE, ONLY BYTE TRANSFERS ARE ALLOWED

NI

3ALZ

NI

BALNZ

#WDR
LBR
BAL
LX

AL
NI

BALNZ

X
BAL

SHCR
BALNG

EQU

HWASSIST LI

*

COMMON2
COMMON3

BUFSW

SRLI

OCRA
WH
WDR
RH

L

AIRNC
BALNG

X1
L
BAL

MAR,¥R1 MAR = BYTE ADDRESS
NULL,CCW,RWBIT TEST R/W BIT

NFREAD(NULL) ,DR1 BRANCH: R/W = 0 = REARD (P.29)
NULL,CCW,TBIT TRANSLATION SPECEFIED ?
WTRANSL(RETURN) BRANCH: ¥UST TRANSLATE (P.29)
NULL,RMDR OUTPUT RAPPROPRIATE BYTE
MR3,RMDR COPY BYTE YSED IN I/0
REDCHK(RETURN) FORM CHECKSU¥

MAR,TEMP,COMMON3 GO UPDATE BYTE COUNT.

ONLY THE BYTE ACTUALLY TRANSFERRED IS INCLUDED IN THE
LRC OR CRC.

SPECIAL CHARARCTERS ARE NOT INCLUDED.

¥AR,RL,8 MAR = A(CHECKWORD)
MR7,CCW,CBIT+SBIT CHECX TYPE BITS
CRCCK(NULL),PR2 BRANCH: CRC REQUIRED
WMDR,MR3,RMDR,PW2 DO LONGITUDINAL CHECK
(RETURN) (NULL) RETURN TO CALLER

NULL,NULL,PR2 IS CRC ASSIST UNIT EQUIPPED ?
CRC16B{(NULL) BRANCH: NO (P.47) - USES 'RETURN'
6 CRC HARDWARE ASSIST DEVICE ADDRESS
¥R6,CRC ASSIST UNIT ADDRESS
MR7,¥R7,5 POSITION CHECKTYPE BITS

0 = CRC12; 1 = CRC SDLC.
NULL,MR6,MR7 CONMAND CHECKTYPE
NULL,RMDR OLD RESIDURL
NULL,¥R3 UNTRANSLATED DATRA BYTE
WEDR,NULL,PW2 NEW RESIDUAL
MAR,TEXP MAR = A(BYTE COUNT)

WMDR,COUNT,NULL,PW2 INCREMENT & STORE COUNT
EXAUTO(NULL) EXIT IF NOT POSITIVE (P.27)
WMDR,CCHW,BBIT CONMPLEMENT BUFFZR BIT
¥AR,R4,DW2 AND UPDATE CCW

EXSUB2(NULL) EXIT TO SUBROUTINE (P.27)

32512400

32512420
32512430
32512440
32512450
32512460
32512470
32512489
32512490
32512500
32512510
32512520
32512530
32512540
32512550
32512850
32512570
32512580
32512590
32512600
32512610
32512620
32512530
32512640
32512650
32512640
32512670
32512630
32512690
32512700
32512710
32512720
32512730
32512740
32512750
32512760
32512770
32512780
32512790
32512800
32512810
32512820
32512830
32512840
32512850
32512860

32512880
32512890
32512900
32512810
32512920
325129390

-~

HODELV3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

ROM SEGMENTS A, B - I/0 INTERRUPT PROCESSOR

02E3
02E4
02ES
02E6
02E7
02ES8
02E9

0000
0000
02ER
0000
02EB
02EC
02ED
02EE
02EF
02F0
02F1
02F2
02F3
02FL
0000

02F5
02F6
02F7
02F8

02F9
02FR
02FB
02FC
02FD
0000

02FE

02FF

LATF
2B7F
33F2
16A0
2BSF
12B8
239F

02EA
02ER
BATF
02EB
3384
2AD3
2B96
2B7F
2ADF
03E4
2B56
287F
33BD
4BFF
02F6

378F
2B7F
339F
2B7F

2ATF
339F
2B5F
2BBF
13FC
J2FE

335F
2BFF

0FCO
1980
5002
BACO
1898
B40O
181E

5DCO

1010
198C
1D86
1080
1080
0A80
1080
1980
SFFO
6FD2

1051
1D1D
1038
1B8F

1DSE

102C
1D9C
1991
9010

1040
1F91

1296
1297
1298
1299
1300
1301
1302

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1333
1334
1335

NFREAD

TRANSL
WTRANSL

RTRANSL

EXIT29
CHANEND

MNFINT2

HMFEND

RDR

BALNZ
L

BAL
LX

EQU
EQU
LBR
EQU

LI

L

L
BALA
EQU.

HARDSTOP LI

*

L

¥R3,NULL
WMDR,¥R3
NULL,CCW,TBIT
RTRANSL(RETURN)
MAR,¥R1,D¥W1
REDCHK(RETURYN)
MAR,TEMP,COMMON3

*
*

MR3,R¥DR
*

MAR,R4,16
¥R6,MR3,MR3,PRY
MAR,¥R6,R¥DR,PR2
WHDR,RMDR
4R6,RNDR
(RETURN) (NULL)
CLOC,HR6,RMDR
R3,MR3
PSW,PSH,'FFO"
NULL,NULL,IRD
*+1

PSW,BIT18,I
WMDR,ILOC,IUDWY
MAR,"38°
WMDR,MR7,DRY4

MR3,RMDR,ILDRY
MAR,*2C*
CLOC,RHMDR,PHU
PS¥,H¥R3,9L0C
TWAIT(NULL),D

*

CLOC,'040"
NULL,NULL,2LOC

29

23:17:32 07/29/82

INPUT THE BYTE
PREPARE TO STORE IT -
TRANSLATION REQUIRED ?
DO TRANSLATION.

WRITE TO MEMORY.

INCLUDE DATA IN CHECKSUM (P.28)
GO UPDATE BYTE COUNT.

CHANNEL TO TRANSLATE I/O BYTES
TRANSLATION WHILE WRITING

BYTE TO TRANSLATE

TRANSLATION WHILE READING
A(TRANSLATION TABLE ADRS)
DOUBLE DATA BYTE FOR INDEX
FETCH HALFWORD TABLE ENTRY.
COPY IN CASE NEGATIVE & READING
TEST IF NEGATIVE

BRANCH: WE HAVE A CHARACTER
ENTRY IS (ROUTINE ADRS)/2;
UNTRANSLATED BYTE

SET CC = 0

RESET WAIT INDICATOR, EXIT, CC = O.
USED TO SORT FAULT R02
ENABLE M¥FINT, ONLY ROZ
'24-27' = UNINCREMENTED LOC R02

A(MMFINT NEW PSW)

PREPARE FOR FAULTED *L¥*
FETCH MMFINT NEW PSY

MR3 = NEW PSW

A(MMFINT °*LM' FAULT ADDRESS)
STORE IT:

NEW PSW; UPDATE ILOC.

(P.22)

USED TO TEST DOUBLE FAULT

POINT TO MALFUNCTION STATUS
AND STOP MACHIN® :
BY ENTERING ‘CONSER". . R0O2

32512950
32512960
32512970
32512980
32512990
32513000
32513010

32513030
32513040
32513050
32513060
32513070
32513080
32513090
32513100
32513110
32513120
32513130
32513140
32513150
32513160
32513170

32513200
32513210
32513220
32513230
32513240
32513250
32513260
32513270
32513280
32513290
32513300

32513320

32513330
32513340

73

MODEL 3250 PROCESSOR E¥ULATCR 05-086R0O3X13 (TRAINING) PAGE 30 23:17:33 07729782

ROM SEGMENTS C, D, E CONSOLE SUPPORT RCUTINE

Cc300 o 1337 ORG '300" 32513350
0000 0010 : 1339 INDEV ~ EQU 10" FDX RECEIVER 32513380
000G 0011) 1340 OUTDEV QU 11 FDX TRANSMITTER 32513390
0000 02321 1341 INCHMD EQJ 21 DTR, READ 32513400
0000 0223 1342 OQUTCMD EQU ‘23" DTR, WRITE MCDE 32513410
0000 00E® 1343 FMTCHMD EQU ‘EE" ASYNC FORMAT COMMAND - 7 DATA RITS, 32513420

1344 * 2 STOP BITS, EVEN PARITY, FAST CLK. 32513430
0000 03532 1345 PROMPTC EQU cr< PROMPT CHARACTER . 32513440

13465 * 32513450

1347 * (MR2-MR3) = ACCUNULATOR MRO = I/0 CHARACTER 325134K0

1348 * MR4 = DIGIT COUNTER FOR *PRNTREG® 32513470

1349 * © 32513480
0000 0300 1350 CONSER EQU * CONSOLE SERVICE ROUTINE 32513490
0300 335E S5FFE 1351 NI CLOC,ILQOC, " 'FFE" NEXT INSTRUCTION TO EXECUTE 32513500
0301 LAFF 7F85 1352 SNCR MR7,NULL,RFAULT PPF ? RESET RX FLOPS. 32513510
0302 1385 5800 1353 BALL PWRDWN(NULL) BRANCH: YES. (P.u8) 32513520
0303 4BFF 7BCO 1354 CHCR NULL,MR7 RESET ALL BITS 32513530
0304 2A1F 2F80 1355 SDEC MRO,NULL,NULL 32513540
0305 4BrFv 6840 1356 L¥FF NULL,MRO SET WAIT INDICATOR 32513580
0306 323F 1010 1357 LI MR1,INDEV 32513560
0307 53F1 BOFE 1358 0CAI NULL,M¥R1,FKTCMD SET BAUD RATE AND FORMAT 32513570
0308 337F 8008 1359 SRLI WMDR,NULL,S8 DELAY 32513580
0309 53F1 B021 1360 OCAI NULL,MR1,INCXD COMMAND READ MODE 32513590
030R 33FF 8008 1361 SRLI NULL,NULL,S8 DELAY 32513600
030B 325F 1011 1362 LI MR2,0UTDEV 32513610
030C 53F2 8023 1363 OCAI NULL,H¥R2,0UTCHD COMMAND WRITE MODE 3251320
030D 33FF 8008 1364 SRLI NULL,NULL,S8 DELAY 32513630
030E 4BF1 8FCO 1365 RDRA NULL,N¥R1,NULL DUMMY READ TO SET BSY 32513540
030F UA1F 7F80 1366 CLOOP SMCR MRO,RULL SENSE MCR 32513650
0310 33F0 5021 1367 NI NULL,¥%RO,"021" EXE/HALT, OR PPF ? 32513660
0311 17EC0 F440 1368 BALNZ IDLE(NULL) BRANCH: YES. (P.35) 32513670
0312 4BFF 2FCO 1369 SSR NULL,NULL DEVICE STATUS 32513680
0313 17F0 C3Co 1370 BALNC CLOOP(NULL) WAIT FOR BSY. 32513690

1371 * FULL-DUPLEX DEVICE IS ASSUMED. 32513700
0314 339F 1028 1372 LI MAR,*28°* A(CONSOLE STATUS) 32513710
0315 2B7F 2F9C | 1373 SDEC WMDR,NULL,NULL,PW4 SET NEGATIVE FLAG 32513720
0316 1298 E140 1375 ENTRY BAL CRLF(XR4) DO CARRIAGE RETN, LINE FEED (P.33) 32513740
0317 2A7D 1F91 1377 SHOWPSW A MR3,PSW,NULL,2L0C WILL PRINT PSW; UPDATE ILOC. 32513760
0318 12B8 DD80 ‘ 1378 BAL PRNTREG6 (HRS5) PRINT PSW VALUE (P.33) 32513770
03138 327E SFFE 1380 SHOWLOC NI ¥R3,ILOC,'FFE" GET CURRENT LOC, FORCED EVEN 32513790
0313 12B8 DD8O 1381 BAL PRNTREG6(MR5) PRINT LOC VALUE (P.33) 32513800
031B 1298 E140 1382 PROMPT BAL CRLF (MR4) DO CARRIAGE RETN, LINE FEED (P.33) 32513810
031C 321F 103C 1383 LI MRO,PRONPTC PRONPT CHARACTER 32513820
031D 12D8 E240 1384 BAL OUTCHR(MR6) OUTPUT CHARACTER (P.33) 32513830
031E 12D8 CACO 1385 BAL INCHR(¥R6) GET FIRST CHRRACTER (P.31) 32513840
031F 329F 1351 1386 DECODE LI MR4,DECTABE-1 END OF TABLE 32513850
0320 2E3F 1R00 1387 DECODE1 L MR1,¥R4,T GET TABLE ENTRY 32513860
0321 3281 B0OS 1388 RLLI X¥R5,HMR1,8 POSITION - 32513870
0322 4RBF SACO 1389 LBR MRS5,¥R5 EXTRACT CHARACTER 32513880

MODEL 3250 PROCESSOR EMULATOR 05-086R0O3R13 (TRAINING) PRGE 31

RONM SEGMENTS C,

0323
0324
0325
0326
0327

0328
0329
0323

032B
032C
032D
032E
032F

0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
033A
033B
033C
033D
033E
033F
0340
0341
0342
0343
o344
0345
0346
0347
0348
0349
034A

2BF5
03E0
2R94
33F4
17FC

1298
53FF
13F8

323F
4A1F
13E5
33F0
17E0

3252
13F8

0800
0880
2F80
0348
c800

E140
103F
C6C0

1010
7F80
5800
5020
F240

AFCO
CACO
QFCO
2FCO
CcCcco
1011
AFCO
Cheo
1840
2FCO
CE40
SO7F
0020
CACO
0060
D040
0020
0Q5F
D140
3008
0BOO
8004
500F
A004
7880
8004
CACO

D, E <«.. CONSOLE SUPPCRT ROUTINE

1390
1391
1392
1393
1394

1396
1397
1398

1400
1401
1402
1403
1408
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

QUESTN

S
BRLZ
SDEC
SI

BALNC

BAL
WDI
BAL

NULL,MR5,MRO
(MR1)(NULL)
¥R4,H¥R4,NULL
NULL,MR4,DECTAB
DECODE1(NULL)

CRLF(MR4)
NULL,C*?°*
PROMPT(NULL)

23:17:34 07/29/82

WHAT WAS INPUT ?

IF SO, GO TO IT.
DECREMENT COUNT

DONE ?

BRANCH: NOT YET. (P.30)

DO CARRIAGE RETN, LINE FEED (P.33)
QUESTION INPUT
GET NEXT REQUEST (P.30)

* READ CHARACTER FROM CONSOLE DEVICE

INCHR

* % 4 %

IF.DELE

IS.DELE

LI
SHCR
BALL
NI
BALNZ

¥R1,INDEV
¥RO,NULL
PPFINT(NULL)
NULL,MRO,*020°
IS.PRMPT(NULL)

NULL,MR1,NULL
INCHR(NULL)
MRO,NULL
NULL,NULL
*-1(NULL)
¥R1,0UTDEV
NULL,MR1,NULL
*-1(NULL)
NULL,MRO
NULL,NULL
*-1(NULL)
MRC,MRO,"7F"
NULL,HRO,*20"
INCHR(NULL)
NULL,¥RO,"€0"
IF.DELE(NULL)
¥RO,¥RO,'20"
NULL,MRO,'SF*
IS.DELE(KNULL)
NULL,MRO,"08"
(¥R6) (NULL)
MR3,MR3,4
¥R1,MR2,'0OF"
KR1,MR1,4
MR3,4R3,HR1
¥R2,MR2,4
INCHR(NULL)

GET MCR REGISTER

BRANCH: POWER GONE. (P.u8)
EXE/HLT ?

IF BAD-STATUS HANG (P.35)

FROM INPUT DEVICE, DEPRESSING THE
RGN SWITCH CAUSES THE PROCESSOR
TO ENTER THE RUN MODE AT THE
ADDRESS SPECIFIED BY CLOC.
DEYICE STATUS

WAIT FOR NOT BSY.

INPUT CHARACTER

WAIT FOR BSY AGAIN.

WAIT FOR NOT BSY
ECHO RECEIVED CHARACTER TO OUTPUT

WRAIT FOR NOT BSY

¥ASK TO 7-BITS

SPACE 7

BRANCH: YES.

LOWER-CASE ?

BRANCH: NO.

YES. DECREMENT BY 20.
BACK-ARROW, UNDERLINE, DELETE °?
BRANCH: YES.

BACKSPACE ?

BRANCH: NO. RETURN TO CALLEP.
DELETE LAST ACCUMULATED DIGIT
KEEP LS DIGIT, “S ACCUX.
POSITION TO BITS 0:3

AND HMAKE ¥S DIGIT OF LS ACCUMULATCR

SHIFT ¥S ACCUMULATOR
AND TRY AGAIN.

32513890
32513900
32513910
32513920
32513930

32513950
32513960
32513970

32513990
32514000
32514010
32514020
32514030
32514040
32514050
32514060
32514070
32514080
32514090
32514100
32514110
32514120
32514130
32514180
32514150
325141F0
32514170
32514180
32514190
325142100
32514210
32514220
32514230
32514240
32514250
325142560
32514270
32514280
32514230
32514300
32514310
32514320
32514330
32514340
32514350

MODEL 3250 PROCESSOR EKULATOR 05-086R03A13 (TRAINING)

ROY

034B 3230
034C 4031
034D 2332
034E 2033
034F 3F34
0350 5235
0351 4635
0352 4437
0353 5038
0354 5F39
0355 0841
0356 2042
0357 3Du43
0358 oouu
0359 0045
035A 0046
0000 2388

035B 1298
035C 321F
035D 12D8
Q35E 12D8
035F 33F0
0360 17E0
0361 3253
0362 12D8
0363 33F0
0364 03EQ
0000 0365

0365 329F
0366 2E3F
0367 32F1
0368 GAFF
0369 2BF7
036A 17E0
0368 32F4
036C 3252
036D 3273
036E 3293
036F 2A52
0370 2R73
0371 2273
0000 0372

0372 3294
0373 33F4
0374 13F0
0375 13F8

SESMENTS C,

03C9
0395
0399
0398
0228
03A4
03ARA
03B1
033E
032B
032B
032B
0328
0328
0328
0328

E140
103C
5240
CACO
003D
C7C0

E000
CACO
600D
0A80

1352
1A00
BO10
5BCO
6800
DC80
0348
3004
BOOU
500F
7800
5SRO0
7BA2

0001
03uB

D980

PAGE 32 23:17:35 07/29/82
D, E ees. CONSOLE SUPPORT ROUTIKE
1438 * TABLES USED FOR CONVERSION
1439 > HEXASCII, ASCIIHEX, INTERPRETER BRANCHES.
1440 *
1441 DECTAB ble IS.PRMPT+'3C300000* < + 0 + FROUTINE (P.3%)
1442 ple IS.AT+'40310000°" 2 + 1 + ROUTINE (P.33)
1443 DC IS.PLUS+*2B320000* + + 2 + TROUTINE (P.33)
1444 hle IS.MINUS+*'2D330000' - + 3 + ROUTINE (P.33)
1445 jalel QUESTN+*3F340000" ? + 4 + ROUTINE (P.31)
1446 DC IS.R+'52350000° R + 5 + RCUTINE (P.34)
1447 DC IS.F+*46360000" F + 6 + ROUTINE (P.34)
1448 DC IS.D+'44370000" D + 7 + ROUTINE (P.34)
1449 ple IS.P+'50380000" P + 8 + ROUTINE (P.34)
1450 2C INCHR+'5F350000" DEL+ 9 + PROUTINE (P.31)
1451 Bl INCHR+'08410000" 8S + A + ROUTINE (P.31)
1452 hles INCHR+'20420000" SP + B + ROUTINE (P.31)
1453 bC QUESTN+*3D430000" = + C + ROUTINE (P.31)
1454 DC QUESTN+°00440000" sesesesD + ROUTINE (P.31)
1455 e QUESTN+'00450000°" eseeesE + ROUTINE (P.31)
1456 bDC QUESTN+"00460000° eeesesF + PROUTINE (P.31)
1457 DECTABZ EQU * END 0OF TABLE
1459 TRYMOD BAL CRLF(MR4) DO CARRIAGE RETN, LINE FEED (P.33)
1460 LI MRO,PROMPTC PROMPT CHARACTER
1461 BAL OUTCHR(MR6) OUTPUT CHARACTER (P.33)
1462 BAL INCHR(MRS) READ 1ST CHARACTER (P.31)
1463 SI NULL,¥RO,C*=" EQUAL SIGN ?
1464 BALNZ DECODE(NULL) BRANCH: NO. (P.30)
1466 * ACCUNULATE HEXADECIMAL IKPUT
1467 * USES CHAINED (MR2-¥R3) AS 6u4-BIT ACCUMULATOR
1468 ACCUM MI MR2,HR3,0 CLEAR ACCUMULATOR
1469 ACCU¥1 BAL INCHR(MR6) (P.31)
1470 XI NULL,MRO,*0D* CARRIAGE RETURN ENTERED ?
1471 BALZ (MR5)(NULL) RETURN TO CALLER IF YES.
1472 ASCHEX EQU * CORVERSION FROM ASCII TO HEXADECIMA
1473 LI ¥R4,DECTABE-1 END OF TABLE
1474 DECODE2 L ¥R1,HR4, I GET TABLE ENTRY
1475 RLLI MR7,MR1,16 POSITION -
1476 LBR MR7,4R7 EXTRACT CHARACTER
1477 X NULL,MR7,%RO WHAT WAS INPUT ?
- 1478 BALNZ ASCHEX1(NULL) BRANCH: NO.
1479 ST MR7,4R4,DECTAB CONYERT TO DIGIT
1480 SLLI MR2,MR2,4 HIGH HALF
1481 RLLI MR3,MR3,4 LOW HALF
1482 NI MR4,HMR3,°0OF" EXTRACT OLD HIGH DIGIT, LOW HALF
1483 0 ¥R2,MR2,MRU AND MOVE TO LOW DIGIT, HIGH HALF
1484 X ¥R3,HR3,HRE RENOYE FROM LOVW HALF
1485 [¢):4 HR3,MR3,H¥R7,ACCUK1 APPEND NEW DIGIT., TRY AGAIN.
1486 ASCHEX1 EQU * NO MATCH
1487 SI MRU,MRY, 1 DECREMENT COUNTER
1488 ST NULL,MR4,DECTAB FAILED TO MATCH ?
1489 BALC QUESTN(XNULL) BRANCH: YES. (P.31)
1490 BAL DECODE2(NULL) TRY AGAIN.

32514370
32514380
325143q0
32514400
32514410
32514420
32514430
32514440
325144%0
325144F0
32514470
32514480
32514490
32514500
32514510
32514520
32514530
325145u0
3251450
325145A0

32514580
32514590
32514600
32%14%10
32514620
32514630

32514550
32514660
325146706
32514680
32514490
32514700
32514710
32514720
32514730
32514740
32514750
32514760
32514770
32514780
32514790
32514800
32514810
32514820
32514830
32514860
32514850
32514860
32514870
32514880
32514890

MODEL 3250 PRDCESSOR EMULATOR 05-~086R03A13 (TRAINING) PAGE 33

ROM SEGMENTS C,

0376
0377
0378
0379
037A
037B
037C
037D
037E
037F
0380
0381
0382

0383
0384

0385
0386
0387
0388

0389
0382
038B
038C
038D
038E
03¢&F
0350
0391
0392
0393
0394

0395
0396
0397

0398

0399
039A

329F
23FF
1298
329F
3254
2A13
3210
3210
2E1F
3210
12D8
2A94
17F0

53FF
03F8

321F
12D8
321F
22DF

323r
43F1
13F4
17E0
13F0
4BFF
4BFF
13F0
4BFF
4BFF
13F90
03r8

12B8
3353
13F8

335C

33sC
1298

1005
1FBA
E140
1007
9002
8900
500F
134B
1800
B010
E240
2F80
DE8O

1020
0r80

1007
E240
100D
1809

1011
AFCO
FL440
Fuu0
E240
1840
2FCO
£3C0
1FC0
2FCO
E480
0300

Dauo
5FFE

2580

0004

1022
2140

Dy E eeee

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

1510
1511
1512
1513
1514

1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

1530
1531
1532
1533

1535
1536

1538
1539
1540

CONSOLE SUPPORT ROUTINE

* PRINT REGISTER CONTENTS

PRNTREGS LI
LX
PRNTLF8 BAL
PRNTREGS LI
PRNTREG SLLI
SEL
NI
HEXASC Al
L
RLLI
BAL
PREG.O SDEC
BALNC
*
WDI
BAL

* PERFORM CARRIAGE RETURN/LINE FEED

CRLF LI
BAL
LI
LX

MR4,5
NULL,NULL,PRNTREG
CRLF(MRU4)
¥R4,7
MR2,HR4,2
¥RO,MR3,¥R2
MRO,MRO,"'OF"
MRO,MRO,DECTAB
¥RO,MRO,I
MRO,MRO,16
OUTCHR(MR6)
MRY4,HRU4,NULL
PRNTREG(NULL)

NULL,C* *
(MRS) (NULL)

MRO,"OR°*
OUTCHR(H¥RE)
MRO,*0OD"
MR6,MR4,QUTCHR

* QUTPUT CHARACTER TO CONSOLE

OUTCHR LI
SSRA
BALV
BAINZ
BALC
WDR
SSR
BALC
WDR
SSR
BALC
BAL

MR1,0UTDEV
NULL,¥R1,NULL
IDLE(NULL)
IDLE(NULL)
OUTCHR(NULL)
NULL, NRO
NULL,NULL
*~1(NULL)
NULL,NULL
NULL,NULL
*-1(NULL)
(MR6(NULL)

* MODIFY LOCATION COUNTER

IS.AT BAL
NI
BAL

RECCUM(MRS)
CLOC,¥R3,'FFE"
IS.PLO(NULL)

* PROCEED TO PREVIOUS CELL

IS.MINUS SI

CLOC,CLOC, 4

* PROCEED TO NEXT CELL

IS.PLUS AI
IS.PLO BAL

cLcc,CcLoc, 2
CRLF(MRUY)

23:17:36 07/29/82

SET DIGIT COUNT

DO CARRIAGE RETN, LINE FEED (P.33)
SET DIGIT COUNT

SET UP SHIFT COUNTER

SHIFT DIGIT TO MRO(27:31)
EXTRACT DIGIT

FORM INDEX

FETCH ENTRY

POSITION CHARACTER TO BITS 24:31
QUTPUT CHARACTER (P.33)
DECREMENT COUNT

LOOP °*TIL DONE:

TRANSFER IF NOT DONE.

OUTPUT AR SPACE

RETURN TC CALLER.

LINE FEED
OUTPUT CHARACTER (P.33)
CARRIAGE RETURNW

ADDRESS, GET STATUS

IDLE IF BAD STATUS (P.35)
IDLE IF BAD STATUS (P.35)
WAIT FOR NOT BSY

OUTPUT CHARACTER

¥AIT FOR NOT BSY
QUTPUT NULL

WAIT FOR NOT BSY
RETURN TO CALLER

50 GET DATA (P.32)
JEW LOC, FORCED EVEN
GO DISPLAY.

DECREMENT BY u

INCREMENT BY 2
DO CARRIAGE RETN, LINE FEED (P.33)

32514910
32514920
32514930
32514940
32514950
32514960
32514870
32514980
32514990
32515000
32515010
32515020
32515030
32515040
32515050
32515040
32515070

32515090
32515100
32515110
32515120
32515130

32515150
32515160

32515170

32515180
32515190
32515200
32515210
32515220
32515230
32515240
3251520
32515240
32515270

32515290
32515300
32515310
32515320

32515340
325153%0

32515370
32515380
32515390

-

MODEL 3250 PROCESSOR EXULATOR 05-086R03A13 (TRAINING) PRGE

ROM

039B
039C
039D
039E
039F
0340
0321
03A2
03A3

03R4
0325
03A6
0347
03A8
03A9

G3A

03AB
03AC
03AD
03AE
O3AF
063B0

03B1
03B2
03B3
Q3B4
03B5S
03B6
03B7
03B8
03B9
03BR
03BB
03BC
03BD

03BE
03BF
03C0
03C1
03C2
03C3
03Cu
03C5
03C6
¢3C7
03Cs8

SEGHENTS C,

2A7C
1288
2B9C
329F
2A7F
12B8
1288
2B7F
13F8

1288
23DF
237F
1288
1288
233F

ann

iZ2B8
33D3
CA7F
1288
1288
CBF9
13F8

1288
33D3
CATF
12B8
2BDF
CATF
1288
2A1F
2BDO
12B8
CBF9
CBF9
13F8

12p8
33F0
17E0
1298
2R7D
1288
2A7E
1288
1288
2BBF
13F8

1F85
DD8o
1¥87
1003
1091
DE8O
D6CO
1997
8640

2840
1980
1C80
DEQQ
D6CO
19A8

F580
500E
1C80
DEQO
D6CO
25C0o
EB8C

F580
500E
9C80
DEQOQ
3F00
9C80
DE40
1F00
2F80
D6CO
8900
A9CO
EE80

CaCo
600D
CAO0
E140
1F80
DD8O
1F80
DD80
D&6CO
1980
C580

D, ¥ .+... CONSOLE SUPPORT ROUTINE
1541 A
1542 BAL PRNTREG6(MRS)
1543 A MAR,CLOC,NULL,DR2
1544 LI ¥R4,3
1545 L MR3,RMDR,aLOC
1546 BAL PRNTREG(MR5)
1547 BAL TRYMOD(MRS5)
1548 L WMDR,NMR3,DW2
1549 BAL IS.PLUS(NULL)
1551 * DISPLAY GENERAL REGISTER
1552 IS.R BAL ACCUM(MNRS)
1553 L YDI,NR3
1554 L MR3,YD
1555 BAL PRNTLF8(MRS5)
1556 IS.RO0 BAL TRYMOD(MRS)
1557 X ¥D,M¥R3,IS.R0O0
1559 * DISPLAY SPFP REGISTER
1560 IS.F BAL TSTDFU(MR5)
1561 NI YDI,NR3,'0E*
1562 RRE MR3,YD
1563 BAL PRNTLF8(¥R5)
1564 IS.Fo0 BAL TRYMOD(H¥R5)
1565 LE YD,MR3,K
1566 BAL IS.FOO(NULL)
1568 * DISPLAY DPFP REGISTER
1569 IS.D BAL TSTDFU(MR5S)
1570 NI YDI,¥R3,'0E"’
1571 RRD MR3,¥D
1572 BAL PRNTLF8(MXR5)
1573 AINC YDI,NULL,YDI
1574 RRD MR3,YD
1575 BAL PRNTREG8(MR5)
1576 L MRO,YDI
1577 SDEC YDI,MRO,NULL
1578 IS.DO0O BAL TRYMOD(KRS)
1579 iy YD,MR2
1580 LD YD,HR3,X
1581 BAL IS.DOO(NULL)
1583 * MODIFY PSW
1584 IS.P BAL INCHR(MR6)
1585 XI NULL,MRO,X*0D*
1586 BALNZ QUESTN(NULL)
1587 BAL CRLF(HR4)
1588 A MR3,PSW,NULL
1589 BAL PRHTREG6E(MRS)
1590 A MR3,ILOC,NULL
1591 BAL PRNTREGS(MR5)
1592 BAL TRYMCD(MRS)
1593 L PSW,MR3
1594 BAL ENTRY(NULL)

¥R3,CLOC,NULL,RFAULT GET LOC,

23:17:37 07/23/82

INVALIDATE INST BUFFEPR
DISPLAY UPDATED CLOC (P.33)

READ CONTENTS OF OPEN CELL

SET DIGIT COUNT = 4

COPY TO ACCUMULATOR; UPDATE ILOC.
DISPLAY ¥EMORY HALFWORD (P.33)
SEE IF USER WANTS CHANGE (P.32)
STORE NEW DATA;

OPEN + CXLL AND DISPLAY. (P.33)

GET REGISTER NUMBER (P.32)
SELECT REGISTER

COPY CONTENTS TO PRINT REGISTER
AND GO PRINT ON NEW LINE (P.33)
SEE IF USER WANTS CHANGE (P.32)
LOAD NEW DATA, GET NEXT REQUEST,

SEE IF FPP EQUIPPED (P.35)
FORCE USER SELECTION EVEN

READ REGISTER SPEC'D, INTO YD
AND GO PRINT ON NEW LINE (P.33)
SEE IF USER WANTS CHANGE (P.32)
LOAD IMAGE DATA

AND TRY AGAIN

SEE IF FPP EQUIPPED (P.35)

FORCE USER SELECTION EVEN

READ SELECTED REGISTER, INTOQ XR3
AND GO PRINT OK NEW LINE (P.33)

GET LOW HALF.
SHOW HIGH HALF (P.33)

POINT BACK TO HIGH HALF

SEE IF USER WANTS CHARNGE (P.32)
LOAD HIGH HALF,

LOAD DOUBLE, IMAGE

AND TRY AGAIN.

GET NEXT INPUT CHARACTER (P.31)
CARRIAGE RETURN ?
BRANCH: NO. (P.31)
DO CARRIAGE RETN, LINE FEED (P.33)
DISPLAY PSW (P.33)

WILL PRINT LOC

(P.33)

SEE IF USER WANTS CHANGE (P.32)
UPDATE PSW,

GO DISPLAY IT. (P.30)

32515400
32515410
32515420
32515430
32515440
32515450
3251540
32515470
32515480

32515500
32515510
32515520
32515530
32515540
32515550
325155A0

32515580
32515590
32515600
32515610
32515620
32515620
32515640
32515650

32515670
32515680
32515690
32515700
32515710
32515720
32515730
32515740
32515750
32515760
32515770
32515780
32515790
32515800

32515820
32515830
32515840
32515850
32515860
32515870
32515880
32515890
32515900
32515910
32515920
32515930

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

RO¥ SEGHENTS C,

0000
03C9
03Ca
03CB
03CC
03CD
03CE
03CF
0000
03D0

03D1
03D2
03D3
03D4
03D5

03D6
03D7
03Db8
03D9

93Cs
339F
2B7F
1298
37BD
321F
4BFF
43FF

03D0
17F8

LAFF
13E5
33F7
13E0
13F8

4RAF
37F0
13E0
13F8

1028
1F9C
E140
5023
1120
7840
6FCO

F412

7F80
5800
5020
Fuau40
cooo0

7F80
5183
CAO00
D840

D, E

sees

CONSOLE SUPPORT ROUTINE

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607

1609
1610
1611
1612
1613

1615
1616
1617
14518

* ENTER RUN MODE
IS.PRMPT EQU

CONSEND

%*

IDLE

TSTDFU

LI

L
BAL
NI
LI
CMCR
LWFF
EQU
BDC

SHCR
BALL

BALZ
BAL
SKCR

BRLZ
BAL

*

MAR,"28°
WMDR,NULL,PW&
CRLF (NR4)
PSW,PSW,BIT160,I
¥RO,"120°
NULL,M¥RO
NULL,NULL

*

*(NULL),IRD

MR7,NULL
PPFINT{NULL)
NULL,MR7,°020"
IDLE(NULL)
CONSER(NULL)

¥RO,NULL
NULL,MRO,BIT20,I
QUESTN(NULL)
ACCUM(NULL)

35

23:17:38 07/29/82

PROXPT CHARACTER; TO RUN HODE.
A(CONSOLE STATUS)

RESET FLAG

DO CARRIAGE RETN, LINE FEED (P.33)
RESET PSW 16

RESET EXE/HLT INTERRUPT
RESET WAIT INDICATOR, EXIT.
USED TO SORT FAULTS

EXECUTE INSTRUCTION,
DISALLOW CATN FOR ONE CYCLE.

PRIMARY POWER FAIL (P.u8)

CATN ?

NO, LOOP

GO TO CONSOLE SERVICE ROUTINE (P.30)

COPY MCR TO MRO

FPP EQUIPPED ?

BRANCH: NO. (P.31)
RETURNS VIA (MRS) (P.32).

32515950
32515960
32515970
32515980
32515990
32516000
32516010
32516020
32516030
32516040
32516050
32516060

32516080
32516090
32516100
32516110
32516120

22516140
32516150
32516160
32516170

#ODEL 3250 PROCESSOR EMMLATCR 05-086R03A13 (TRAINING)

PRIVILEGED SYSTEX FUNCTION (PSF)

03DA
03DE
03DC
03DD
03DE

03DF
03E0
03E1
03E2
03E3
03E4
03E5
03E6

0000
03E7
03ES8

0000
03E9
03ERA
03EB
03EC
03ED

0000
03EE
03EF

0000
03F0
03F1

G000
03F2
03F3
03F4
03F5
03F6
Q3F7
03F8
03F9
03Fa

2BSA
3207
3387
03F0
17¥C

13F8
13F8
13F8
13F8
13F9
13F9
13F9
1379

03E7
321F
4BFF

03E9
2B9F
2BDF
2B3F
3219
2BFF

J03EE
2BFF
2BFF

03F0
2BFF
2BFF

03F2
2B7F
2B7F
2R9D
2R3D
3231
2BBD
12D9
2BBF
37CE

1D80
13DF
0009
0BOO
8240

FALO
FB8O
FCOO
FC80
0100
0640
0700
07CO0

1004
7852

1C05
3E8D
1D82
3010
1830

1F93
1F92

1F98
1F92

171F
179D
1F95
6700
50F0
6895
29C0
1215
513D

1620
1621
1622
1623
1624

1626
1627
1628
1629
1630

1632
1633
1634
1635
1636
1637
1638
1639

1641
1642
1643
1644

1646
1647
1648
1649
1650
1651
1652
1653

1655
1656
1657

1659
1660
1661

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

PSF1

PSFTAB

* NOTE -
R¥VF

REL

LPSTD
EXIT36

LSSTD

PAGE

23:17:38 07/23/82

hddkhhddkkdk bk khk Xk Ak kAN Tk kb Pk drkhkkwdknrkhhhdk k& k

PRIVILEGED SYSTEM FUNCTION (PSF)

A

ST
BALC
BALD

BAL
BAL
BAL
BAL
BAL
BAL
BAL
BAL

FOLLOWING WORD IS PART OF

EQU
LI
CMCR

EQU
L
AINC

T

SLLI

BAL

NI

¥AR,YX,RMDR
¥R6,¥R7,PSFTAB
NULL,¥R7,9
(¥R6)(NULL)
ILEGAL(NULL)

REL(NULL)
LPSTD(RULL)
LSSTD(NULL)
STPS(NULL)
LDPS{NULL)
ISSV{(NULL}
ISRST(NULL)
TEL(NULL)

*

MRO,u
NULL,MRO,IRD

¥

MAR,YS,RFAULT
YDI,NULL,YSI,REL
YD,RMDR,IR
MRO,YD, 16
NULL,NRO,D,E

*

NULL,NULL,LPSTD
NULL,NULL,IRD

*

NULL,NULL,LSSTD
NULL,NULL,IRD

*

WMDR,R14,DW4
WMDR,R15,I4DW4
MR4,PSW,NULL,I4
¥R1,PS¥,R14
MR1,MR1,'FO*
PSH,PSW,MR1,I4
STH2(MR6)

PSW, MRu, It
YDI,R14,BIT14,I

AR R A S S SRR SRS RS R RS R R RS EEE R R R R E R R R R R Y

CALCULATE 2ND OPTRAND ADDRESS

FHERE TO GET VECTOR

LEGAL FUNCTION ? RO2
BRANCH: YES. RO2
ILLEGAL FUNCTION. 02

RZAD ERROR LOGGER

LOAD PROCESS SEGMENT DESCRIPTOR
LOAD SHARED SEGMENT DESCRIPTOR
STORE PROCESS STATE

LOAD PROCESS STATE (P.37)
SAVE INTERRUPTIBLT STATE (P.37)
LOAD INTERRUPTIBLE STATE (P.37)
TEST ERROR LOGGER (P.37)

BRANCH TABLE.

CODE 8 - RESET MEMORY VOLTAGE FAILU
MASK

RESET KCR BIT 13, EXIT.

CODE O - READ ERROR LOGGER
ERROR LOGGER ADDRESS FROM R2 RO2
POINT R2+1, PEAD LOGGER RC2

NEED TO ADJUST CC BASED ON B16:31
SET CC, EXIT.

325161490
32516200
32516210
32516220
32516230

32516250
325162590
32516270
32516280
32516290

32515310
32516320
32516320
32515340
325153R0
325163K0
325156370
325156380

325156400
32516410
32516420
32515430

32515450
32516450
32515470
32516480
32516450
32515500

IF ERROR LOGGER STATUS BEING RETURNED32516510

AN ERROR CAUSES L FLAG TO SET.

CODE 1 - LOAD PROCESS SEG TABLE DES
LOAD PSTD FROM ¥EMORY
EXIT.

CODE 2 - LOAD SHARED SEG TABLE DESC
LOAD SSTD FROM MEMORY
EXIT.

CODE 3 - STORE PROCESS STATE

STORE PROCESS*' OLD PSW 2+0

OLD LOC a+4

SAVE EXECUTIVE PSW

GET PROCESS REGISTER SET

ONLY THESE BITS CHANGE

SELECT KEW SET.

STORE GENERAL REG SET 2+12 (P.42)
RESELECT ENTRY SET

INTERRUPTIBLE STATE EXISTS ? YDI=0.

32516520

32516540
32516550
32516550

32516580
32516590
32516600

32516620
32516630
32516640
32516650
32516660
32516670
32516580
32516690
32516700
32516710

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 37

PRIVILEGED SYSTEM FUNCTION (PSF)

03FB
03FC
O3FD
O3FE
Q3FF
0400
0401
o402
0403

0000
o404
0405
o406
0407
o408
o409
OuoR
0u0B
ouo0C
040D
O40E
Q40F
0410
o411
ou12
0000
0413
o414
0415
ou16
o417
0418

0000
0413
0u41A
041B

0000
ou1C
041D
O41E

0000
041F
0420

16C1
37EE
13E0
4ABF
37F5
17€E1
1208
12D9
2BFF

040u
2AFF
2A7F
231D
3210
233D
12D8
3703
16C1
37F3
17E1
4ABF
37F5
13E1
1208
12D9
0413
2B9F
28TF
285F
33F3
1320
13re

2419
33DF
1229
23°7F

031¢

8240
5009
FF92
7F80
5183
0052
7EQ0
87CO
1F92

1EOF
1D95
6995
50F0
6815
23C0
513D
8380
5009
ouco
7F80
5183
04CO
5340
8A80

1885
1F8E
1D95
5400
91D9
91C0

1000
8240
1F92

1000
8380
1F92

1018
1F92

1673
1674
1675
1676
1677
1678
1679
1680
1681

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

1707
1708
1709
1710

1712
1713
1714
1715

1717
1718
1719

EXIT37

LDPS

ISSvV

ISRST

BALNZ
NI
BALZ
SHMCR
NI
BALNZ
BAL
BAL

EQU

BAL

EQU
LI
BAL

EQU

STM71(MR6)
NULL,R14,BIT13,I
*+1(NULL) ,IRD
MRS5,NULL
NULL,¥R5,BIT20,I
*+1(NULL),IRD
STHEA(MRE)

STHD2 (MR6)
NULL,NULL,IRD

*

MR7,MAR,DRU
¥R3,RMDR,IU
MRO,PSW,HR3,TI4
MRO,MRO,"FO*
PSW,PSW,MRO,IU4
LH2(MR6)
YDI,¥R3,BIT14,1
LH71(¥R6)
NULL,MR3,BIT13,1
LDPS1(NULL)
¥R5,NULL
NULL,¥R5,BIT20,I
LDPS1(NULL)
LYED(HRS)

L¥Da (HR6)

*

MAR,¥R7,RFAULT
NULL,NULL,I4DRY
CLOC,RMDR,I4
NULL,¥R3,'400"
LPSW2(NULL),LPSTD
LPSW2(NULL)

*

YpI,O
STH71(M¥R6)
NULL,NULL,IRD

*

YpI1,o
L¥71(MR6)
NULL,NULL,IRD

*

WYDR,RO,TEL
NULL,NULL,IRD

23:17:39 07/29/82

BRANCH: YES.(P.54)

FLOATING POINT LEGAL ?
BRANCH: YES.

TEST KACHINE CONTROL REGISTER
DFU EQUIPPED ?

BRANCH: YES. ELSE, EXIT.
STORE SPFP REGISTERS (P.17)
STORE DPFP REGISTERS (P.54)
EXIT.

CODE 4 - LOAD PROCESS STATE

COPY BASE ADDRESS, FETCH PSW 2+0
COPY PROCESS PSW

SELECT PROCESS REGISTER SET -
ONLY THESE BITS CHANGE

SELECT REGISTER SET.

LOAD GENERAL REG SET 2+12 (P.42)
INTERRUPTIBLE STATE EXISTS ? ¥YDI=0.
BRANCH: YES.(P.54)

FLOATING POINT LEGAL ?

BRANCH: NO.

TEST MACHINE CONTROL REGISTER
DFU EQUIPPED ?

BRANCH: NOT EQUIPPED.

LOAD SPFP REGISTERS (P.13)

LOAD DPFP REGISTERS (P.54)

POINT TO PSW 240, RO2
READ LOC a+4 (WE HAVE PSW) R02
LOAD PROCESS LOC, POINT TC PSTD 2+8
TASK ENABLES MAT ? RO3

BRANCH: NO. LOAD PSW. (P.22)R03
PSTD LOADED; GO LOAD PS¥. (P.22)R03

CODE 5 - SAVE INTERRUPTIBLE STATE
START WITH REGISTER 0,

STORE SCRATCHPADS (P.54)

THEN EXIT.

CODE 6 - RESTORE INTERRUPTIBLE STAT
START WITH REGISTER 0

LOAD SCRATCHPADS (P.54)

THEN EXIT.

CODE 7 - TEST ERROR LOGGER
STORE WITH NO ECC
EXIT.

32516720
32516730
32516740
32516750
32516760
32516770
32516780
32516790
32516800

32516820
32516830
32516840
32516850
32516860
32516870
325168R0
325168990
32516900
32516910
32516920
32516930
32516940
32516950
32516950
32516970
32516980
32516990
32517000
32517010
32517020
32517030
32817040

32517060
32517070
32517080
32517090

32517110
32517120
32517120
32517140

325171540
32517170
32517180

4

MODEL 3250 PROCESSOR EMULATOF 05-086R03A13 (TRAINING) PRGE 38

MISCELLANEOUS

0421

ou22
ou23
0424y
0425
0426
0427
0428
0429
Ou2a
0u42B
ou2c
ou2b
Qu2E
042F
0430
0431
0432
0433
0434y
Cu35

2A7F

339F
33F3
13F1
2R1F
33DF
339F
48F0
4BFE
13ED
13F1
4A9F
23FF
2B7F
23F3
238FF
48FF
13ED
i3F1
4B7F
13F9

1E05

1078
0080
1803
1D8A
1007
107F
BDCQ
2FE0
OAD2
QR4Q
0FCO
DR69
1A1A
2E71
1F82
2FEC
0CD2
GCH40
0%DA
08COo

1721
1722
1723
1724
1725
172¢
1727
1728
1723
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

AL1

AL2

AL3

ALG

MR3,HAR,2FAULT

¥AR,*78°"
NULL,MR3,'80"
SETCCO(NULL) ,DR1
MRO,RMDR,I1DR1
IDI,7

MAR,'7F"
NULL,¥RO,RHMDR
NULL,NULL,E
*+1(NULL), IRD
AL2(NULL)

¥Ru4,NULL
NULL,NULL,¥R4,AL2,C
WMDR,MR4,I1D¥1
NULL,MR3,MAR,ALL,C
NULL,NULL,IRD,E
NULL,NULL,E
*+1(NULL), IRD
AL4{NULL)
WMDR,NULL,I1DR1
AL3(NULL)

23:17:40 07/28/82

SAVE END ADDRESS,
RESET RX FLOPS.

IS CALCULATED END ADDRESS VALID
IF CARRY, INVALID, ELSE (P.u0)
DEVICE ADDRESS INTO KRO.

STATUS MASK

MAR = START - 1

ADDRESS DEVICE, SEND COMMAND.
SENSE STATUS, ADJUST CC

EXIT ON BAD STATUS

WAIT FOR BSY = 0

READ 1ST BYTE

BRANCH: A LEADING ZERO; IGNORE,
STORE 1ST NCN-ZERQ BYTE

TEST LIMITS:

ALL DONE.

TEST DEVICE STATUS

EXIT IF BAD, ELSE

WAIT FOR ¥OT BYUSY.

INPUT & STORE SU3SEQUENT BYTF
AND LOOP.

32517200
32517210
32517220
32517230
32517240
32517250
32517260
32517270
32517290
32517290
32517300
32517310
32517320
325173320
32517340
32517350
32517340
32517370
32517380
32517399
32517400
32517410

HObEL 3250 PROCESSOR EMULATCR 05-086R03A13 (TRAINING)

MISCELLANEOUS
0436 3219 8003
o437 2B9A 1D80
o438 2BS0 1EOB
o439 3259 5007
o43A 3252 143F
043B 2E5F 1900
o43C 2A72 5DRO
043D 0BF8 0BOO
043E 2BFF 1F92
0000 043F
Ou2F 0000 00890
ouso 0000 0040
o4n1 00006 £020
ouy2 0000 0010
ousu3 0000 0008
ouuy 0000 0004
o445 0000 0002
ouus 0000 0001
o447 2BFF 1FA2
o4us8 338D 7004
o449 2BFF 1F90
ou4R 321F 1001
ou4uB 28F0 8832

1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

1770
1771
1772
1773
1774

1776
1777

23:17:41 07/29/82
* COMMON SUBROUTINE FOR TBT, SBT, RBT & CBT *
* MRO = MATRIX START ADDRESS
* R1 CONTAINS DISPLACEMENT TO DESIRED BIT
CONMBIT SRLI M¥RO,YD,3 ON BYTE BOUNDARY,
A ¥AR,YX,RMNDR CALCULATE BASE ADDRESS
A ¥AR,HRO,NAR,DR1 ADDRESS ARRAY & FETCH BYTE
NI ¥R2,YD,'7* MASK LS 3 BITS TO TEST
* A BIT IN THE BYTE
Al MR2,¥%R2,BTABLE FORM VECTOR ADDRESS
L ¥R2,MR2,1 FETCH BIT MASK
N MR3,¥R2,RMDR,E TEST THE BIT, SET CC
2XL (MR6)(NULL) PERFORM OPERATION ON BIT OR EXIT
EXIT39 L NULL,NULL,IRD EXIT.

* BIT TABLE USED BY TBT, SBT, RBT, & CBT
*

BTABLE
BIT24
BIT25
BIT26
BIT27
BIT28
BIT29
BIT30
BIT31

* COMMON
*

SETCC4

SETCC8

EQU
ple
DC
DC

*

*00000080"
*00000040"
*00000020°
*00000010°
*00000008"
*0co00004"
*00000002°
00000001

CONDITION CODE ADJUST ROUTINES

L
0I
L

LI
SRL

NULL,NULL,IR,E
PSW,PSW, U
NULL,NULL,D

¥R0,1
NULL,MRO,MRO,IRD,E

RESET CC BITS RO2
SET V FLAG
cC =4 202

SET FOR CARRY 0UT
SET CC = 1000, EXIT.

32517430
32517440
32517450
32517460
32517470
32517480
32517450
32517500
32517510
32517520
32517530
32517540
32517550

32517570
32517580
32517590
32517600
32517610
32517620
32517630
32517640
32517650
32517660
32517670

32517690
32517700
32517710
32517720
32517730

32517750
32517760

N

w

MODEL 3250 PROCESSOK EMULATOR 05-086R03A13 (TRAINING) PAGE 40

LIST INSTRUCTIONS

0000 0u4u4C

o4uc 2334 1D87
ou4d 353F 1017
QuUuE 2A15 5DBF
ou4r 2AFF 1EO0S
0u50 03F8 0BOO
0000 2451

0451 3397 1004
04yc2 2A35 5D80
0453 2BF0 0880
ousy 17E9 11C7
ous5 2B7F 1C80
Q456 2A55 5D80
0457 2252 2FD9
0uss 3250 0001
0458 3232 1002
0ush 3395 9002
0usB 23397 1E1F
ousC 3397 1004
o4sD 237F 1917
0u4SE 3397 1002
0usSF 2B71 3797
ous60 28FF 1FB2

1780
1781
1782
1783
1784
1785
1786
1787

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805

23:17:41 07/29/82

* ROUTINE IS COMMON PREPROCESSOR FOR ATL, ABL, RTL, RBL.

ATL1

ATL.010

ATL.020

SETCCO

EQU
A
LI
N

L
BAL

*

¥AR,YX,RMDR,DR2
¥R5,BI16.31,1I
¥RO,¥R5,R¥DR,DRY
MR7,¥AR,RFAULT
(¥R6)(NULL)

*

MAR,¥R7,0
MR1,MR5,RMDR
NULL,MRO,MR1
SETCCu4(NULL),DR2
WMDR,YD
MR2,HR5,RMDR

CALCULATE LIST ADDRESS R02
MRS = '000Q0FFFT* RO2
¥RO = ¥AX SLOTS R02
¥R7 = A(LIST); RESET RX FLOPS. RO2

BRANCH TO 2§D LEVEL HANDLER

POINT TO CURPRENT TOP

¥R1 = SLOTS USED RO2
MAX SLOTS LESS SLOTS USED

BRANCH: NXO ROOM AT THE INN. (P.39)
DATA TO BE STORED RO2
MR2 = CURRENT TOP POINTER

#R2,MR2,NULL,ATL.010,C BRANCH: NO LIST WRAP.

HR2,MRO ;1
¥R5,MR2,2
¥AR,M¥RS,2
MAR,MR7,MAR,DWL
HAR,MR7,u4
WMDR,MR2,DW2
MAR,MR7,2
WMDR,MR1,NULL,DW2
NULL,NULL,IRD,E

LIST YRAP - SET CURR TOP TO YAY

COMPUTE SLOT ADDRESS .
ADD ELEMENT TQ LIST ®Q02
STORE NEW CURRENT TOP

STORE NEW SLOTS YSED
SET CC = 0, EXIT.

32517790
32517800
32517810
32517820
325178230
32517840
32517850
32517840

32517830
32517890
32517900
32517910
32517920
32517330
32517940
32517950
32517960
32517970
32517980
325179460
32518000
32518010
32518020
32518030
32518040

HODEL 3250 PROCESSOR EMULATOR 05-086RO3A13 (TRAINING) PAGE

LIST INSTRUCTIONS

0000
0461
0462
o463
ou64
0465
0466
ous7
ous68
0469
O46RA
Ou6B
046C
ou6Dd
QU6E
Ou6F

0000
0470
0471
o472
0473
0474
0475
0476
0477
o478
ou79
047k
047B
o47C
047D
O47E

0000
047F
0480
0481
0uB2
0483
ougy
ougs
ouss
o487
o488
2489
0u4sh

ous1
3397
2435
2BFO
17E9
2B7F
2A75
32B3
3395
2B97
2173
23F0
2A7F
3397
2B7F
13F9

o470
3397
2A35
13E1
2A55
3282
3395
2B97
2452
23F0
2A5F
3397
2B7F
3397
2371
2B3F

Q47F
3397
2435
13E1
2A75
2273
3270
3283
3395
2B97
3397
2B7F
13F9S

1006
5080
0880
11C7
1C80
5D80
1002
9002
1E1F
3F80
29ED
1F 80
1006
1997
1780

1004
5D80
11C7
5D80
1002
9002
1EOF
3F80
2972
1F80
1004
1917
1002
2FB7
1D92

1006
5D80
11C7
5Dgo
2FC5
0C01
1002
3002
1EQOF
1006
1597
1700

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853

ABL1

ABL.O10

RTL1

RTL.010

RTL.020

RBL1

RBL.010

EQU
AI

N
BALZ
N
SDECX
SI
AT
SLLI
A

AL

L
BAL

*

MAR,MR7,6
¥R1,MR5,RHDR
NULL,HRO,¥R1
SETCC4(NULL),DR2
WMDR,YD
MR3,MR5,RMDR
MR5,MR3,2
MAR,MR5,2
MAR,MR7,MAR,DW4
MR3,MR3,NULL

41

23:17:41 07/29/82

ADDRESS NEXT BOTTOM POINTER

MR1 = SLOTS USED RQ2
¥AX SLOTS LESS SLOTS USED

BRANCH: NO ROOM AT THE INN. (P.39)
DATA TO BE STORED RO2
¥R3 = NEXT BOTTOM POINTER

COMPUTE SLOT ADDRESS

ADD ELEMENT TO LIST RO2
INCREMENT NEXT BOTTON

NULL,¥RO,M¥R3,ABL.010,C BRANCH: NO LIST WRAP.

MR3,NULL
¥AR,¥R7,6
WMDR,MR3,DW2
ATL.020(NULL)

*

MAR,MR7,4
MR1,MR5,RHDR
SETCC4(NULL) ,DR2
¥R2,4R5,RMDR
¥R5,HMR2,2
MAR,MR5,2
MAR,MR7,MAR,DRU
MR2,M¥R2,NULL

LIST WRAP - SET NEXT BOTT TO O.

STORE NEW NEXT BOTT
GO UPDATE SLOTS USED (P.40)

READ CURRENT TOP

MR1 = SLOTS USED PQ2
BRANCH: NO SLOTS USED (P,39) 202
MR2 = CURRENT TOP POINTER
CALCULATE SLOT ADDRESS

READ LIST ELEMENT
INCREMENT CURR TOP

NULL,MRO,¥R2,RTL.010,C BRANCH: NO LIST WRAP.

MR2,NULL
MAR,MR7,4
WMDR,MR2,DH2
MAR,MR7,2

LIST WRAP - SET CURR TOP TO O.

STORE NEW CURRENT TOP

WMDR,MR1,NULL,DW2,E STORE NEW SLOTS USED, UPDATE CC

YD,RMDR,IRD

*

MAR,MR7,6
¥R1,MR5,RMDR
SETCC4(NULL),DR2
MR3,MR5,RMDR

COPY DATA TO YD, EXIT.

READ NEXT BOTTOX

MR1 = SLOTS USED 02
BRANCH: NO SLOTS USED (P.39) 02
¥R3 = NEXT BOTTOY POINTEER

MR3,MR3,NULL,RRL.010,C BRANCH: NO LIST WRAP

MR3,MR0,1
MR5,MR3,2
MAR,MR5,2
MAR,MR7,MAR,DRY
MAR,MR7,6
WMDR,MR3,DW2
RTL.020(NULL)

LIST WRAP - SET NEXT BOTT TO MRY,
COMPUTE SLOT ADDRESS

READ LIST ELEMENT

STORE NEW NEXT ROTTOM
GO UPDATE SLOTS USED

32518060
32518070
32518080
32518090
32518100
32518110
32518120
32518130
32518140
32518150
32518160
32518170
32518180
32518190
32518200
32518210

32518230
32518240
32518250
32518260
32518270
32518280
32518290
32518300
32518310
32518320
32518330
32518340
32518350
32518360
32518370
32518280

32518400
32518410
32518420
32518430
32518440
32518450
32518460
32518470
32518480
32518490
32518500
32518510
32518520

¥ODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING)

L3AD/STORE MULTIPLE

oush
cu8C
cugd

JuiE
JL8F

2490
0491
J4S2
0493
Juou
C455
ougs
ous7
cugs
ousa
J49R
Z48B
CualC
343D
ZL9E
GuU9F
G420
0000

ouAl
J4A2
OLA3
Julu
OLAS
Quas

2000
oun7

OuRg
O4A9
QLAR
O4AB
O4RC
0uAD
04AE
OLAF
2430
C4B1
04B2
GuB3
J4BY
O0u4BS
J4B6
0uB7

2B3A
2AFF
321F
2210

2BTF

281F
283F
285F
287F
289F
288F
28DF
28FF
291F
293F
295F
297F
299F
29BF
29DF
29FF
03F8
J4A1

2B7F
2892
321F
2410
02D8
2BFF

QU4A7
2B7F

2B7F
287F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
2B7F
03F8

1D80
1EOF
1490
1F28

1F8F

1D8E
1D8E
1D8%
1DBE
1D8E
1D8E
1D8E
1D8E
1DBE
1D8E
1D8E
1D8E

anaE

[ESRe

1D8E
1DBE
1D95
0B0OO

1C80
1D9F
14A8
1F00
0800
1F92

101F

109D
111D
119D
121D
129D
131D
139D
141D
149D
151D
159D
161D
169D
171D
179D
0BOO

SENEFRAL REGISTERS

1855
1856
1857
1858

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

1881
1882
1883
1884
1885
1886

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

Lu

L¥a
*

LMTAB

LMTABE

STH1

LM2
EXIT42

STMa

L4

STMTAB

BAL

EQU

[l

LB aE el oR ol ol o N ol ol ok ol 2 2l 2l 2l o

PAGE

NAR,YX,RMDR
MR7,HMAR,DR4
MRO,LMTAB

MRO,HRO,YDI,LM2

NULL,NULL,DRU

RO, DR, T4DRY
R1,RMDR, I4DRA
R2,R¥DR,I4DRY
R3,RMDR, I4DRA4
R4, RMDR,I4DRY
R5,RYDR,I4DRY
R6,R¥DR, TUDRY
R7,RMDR, I4DRY
R8,RMDR,I4DRY
R9,RMDR, I4DRY
R10,RMDR,I4DPL
R11,RMDR, I4DRY
R12,RMDR,ILDT4
R13,RHDR,T4DRY
R14,RMDR, I4DRA
R15,%MDR, 14
(¥R6) (NULL)

Y*

WMDR,YD

MAR,YX,RMDR,DW4

YRO,STHTAB
MRO,MRO,YDI
(MRO) (MR6)
NULL,NULL,IRD

%*

WMDR,RO,DW4

WMDR,R1,I4DHY
WHDR,R2,I4DW4
WMDR,R3,I4DWY
WMDR,R4,TUDHY
WEDR,R5,T4DW4
WMDR,R6,I4DWYL
WMDR,R7,I4DWL
WHDR,R8,IL4DWY
WMDR,R9, I4DWL
WEDR,R10,IU4DWU
W¥DR,R11,I4DWY
WHDR,R12,I4DW4
WMDR,R13,I4DW4
WMDR,R14,I4DW4
WMDR,R15,I4DWL
(MR6)(NULL)

42

23:17:142 07/29/82

CALCULATE ADDRESS

SAVE FOR FAULT RECOVERY
BASE ADDRESS OF TABLE
CALCULATE ENTRY.

HERE FOR 16 LOADS.

USED FOR FAULT DECODE

FIRST DATA TO STORE
CALCULATE ADDRESS,

TABLE BASE ADDRESS

COMPUTE ENTRY

STORE. RO2
EXIT.

HERE FOR 16 STORES.
STORE FIRST DATA

32518540
32518550
32518560
32518570

32518590
32518600
32518510
32518620
32518530
32518640
32518FA%0
32518640
32518K70
32518A80
32518690
32518700
32518710
32518729
32518730
32518740
32518750
32518760
32518770
32518780

32518800
32518810
32518820
32518830
32518840
32518850

32518870
32518880
32518890
32518900
32518910
32518920
32518930
32518940
32518950
32518960
32518970
32518980
32518990
32519000
32519010
32519020
32519030
32519040
32519050

NODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE

MISCELLANEOUS

o4B8
0uB9
O4BA
O4BB
04BC
0u4BD
Q4BE
QuBF
o4co

0u4C1
04C2
ou4C3
04cu
04C5
ouce
ouc?y
oucs
o4cCs
04CA

0u4CB
o4cCcC
o4ch
Q4CE
04CF
o4DO
04D1
ou4p2
0uD3

oupy
04D5S
ouD6
o4D7
ou4Ds8
04D9
O4DA

3658
3678
2472
2R33
37F1
13E1
3210
2B3F
2BBD

2A1F
2BDF
2A3F
2BDO
2A5F
2BDO
2211
23F0
2394
235F

2R1F
2BDF
2A3F
2BDO
2ASF
2BDO
2211
23F0
2B3F

325F
2A19
2A3F
2431
2431
2B71
2BFF

5075
5019
0980
5C02
500F
2FCO
7004
1940
7810

3F00
1800
1Cc80
3F80
1C80
2F80
1C80
2953
1080
1E13

3F00
1800
1C80
3F80
1C80
2F80
1C80
2949
1812

1010
9900
1D8o
9900
1820
8917
1F92

1908
1309
1910
1911
1912
1913
1914
1915
1916

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927

1929
1930
1931
1932
1933
1934
1935
1936
1937

1939
1940
1941
1942
1943
1944
1945

CHVR1

CHVR2

BXLE1

BXH1

BXLE3

AHY1

EXIT43

AINC

AINC
SDEC
A
SDECX
A

X

RINC

RINC
SDEC

SDECX
L

LI
SLL

SLL

SRL
L

¥R2,YS,BI17.31,I
¥R3,YS,BIT16,I
MR3,MR2,MR3
¥R1,HR3,YS,IR
NULL,M¥R1,BIT15,I
CHVR2(NULL)
XRO,MRO, 4

YD ,¥R3,E
PSW,PS¥,MRO,D

MRO,NULL,YDI
YDI,¥RO
¥R1,YD
YDI,¥RO,NULL
MR2,YD
YDI,MRO,NULL
¥RO,MR1,YD

43

23:17:43 07/29/82

CAPTURE SIGNIFICANCE

AND HALFWORD SIGN BIT.

EXTEND SIGN IN HR3

RECREATE HALFWORD OVERFLOW BIT

BY CHECKING B15 OF DATA AND RESULT

OVERFLOW
LOAD YD, ADJUST G & L FLAGS
OR IN C & V STATES, EXIT.

¥RO POINTS TO R1+1

POINT TO R1+1

MR1 = INCREMENT

POINT TO R1+2

HR2 = COMPARAND

POINT TO R1

¥MRO = 0LD R1 + INCREMENT

NULL,MRO,MR2,BXLE3,C BRANCH: MRO > COMPARAND

MAR,YX,RMDR
CLOC,¥AR,BXLE3

MRO,NULL,YDI
YDI,MRO
MR1,YD
YDI,¥RO,NULL
¥R2,YD
YDI,¥RO,NULL
MRO,MR1,YD

CALCULATE BRANCH ADDRESS
LOAD NEW LOC

¥RO POINTS TO R1+1

POINT TO R1+1

MR1 = INCREMENT

POINT TO R1+2

¥R2 = COMPARAND

POINT TO R1

¥RO = OLD R1 + INCREMENT

NULL,¥RO,¥R2,BXLE2,C BRANCH: MRO > CO¥PARAND

YD,HRO,IRD

¥R2,16
MRO,YD,¥R2
¥R1,RM¥DR
MR1,MR1,KR2
¥R1,MR1,¥RO,E
WMDR,MR1,¥R2,DW2
NULL,NULL,IRD

YD = NEW VALUE; EXIT.

SHIFT COUNT P02
YD LEFT 16 FOR FLAGS RO2
. RO2
DATA LEFT 16 02
ADD, SET FLAGS RO2
SU¥ RIGHT 16, STORE. RO2
EXIT.

32519070
32519080
32519090
32519100
32519110
32519120
32519130
32519140
32519150

32519170
325191890
32519190
32519200
32519210
32519220
32519230
32519240
32519250
32519260

32519280
32519290
32519300
32519310
32519320
32519330
32519340
32519350
32519360

32519380
32519390
32519400
32519410
32519420
32519430
32519440

MODEL 3250 PROCESSOR EMULATIOR 05-086R03A13 (TRAINING) PAGE 44

¥ISCELLANEQUS

QuDB
oupc

04DD
Q4TE
QuUDF
04EOD
Q4E1
QuE2

O4E3
Oury
QLES
QuEs6
O4E?7
O4E8
QUE9
OLEA
Ou4EB

O4EC
O4ED
OL4EE
OLEF
04F0
O4F1
04F2
04F3
Oury
04F5
04Fr6
Our7
04F8
04F9
Ou4FA
O4FB
04FC
OUFD

32Db9
2AD6

2834
3239
2ADF
1785
2331
2356

229F
3558
3618
2K92
13E0
2A5F
2A7F
17E5
2A5F
2A53
13F4
3693

© 3613

2BFU
17E0
2B3F
2BDF
2B3F

5GFF
1805

1D87
5F00
1080
38814
7092
1B1A

1DA7
5075
5019
0800
5075
5019
0802
EAQ0
1390

1DBO
5075
5019
0800
97Co
1F80
1C80
3D40
2F80
FROO
9800
5053
5019
1800
9800
1902
3F00
1990

1947
1948
1949
1950
1951
1952
1953
1954
1955

1957
1958
1859
1960
1961
1962
1963
1964
1965

1967
1968
1969
1870
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

TLATEA1

*

TLATE2

MHA
MHR1

DH1
DHR1

DH2

LX

NI

NI
BALZ
BALNL
SDEC
BALV
NI
BALNZ

AIKRC

¥R6,YD,*FF"
¥R6,H¥R6,¥R6,RFAULT

MAR,MR6,RMDR,DR2
¥R1,YD,*FOO"
MR6,RMDR
TLATE2(NULL),I1DR1
YD,¥R1,RMDR,IRD
CLOC,M¥R6,MR6,EXTITU3

HRu,RMDR,MH2
MR2,YS,BI17.31,1
¥R0,YS,BIT16,I
MR4,¥R2,HRO
MR3,YD,BI17.31,1I
¥RO,YD,BIT16,I
MR3,MR3,MRO,IR
MR2,¥R3, MR4

YD, MR3,D

MR4, RMDR,DH2
¥R2,YS,BI17.31,I
KRO,YS,BIT16,I
MR4, MR2, MRO
AFAULOCNULL)
MR2,NULL

MR3, YD

*+2(NULL)
¥R2,NULL,NULL
¥R2,¥R3,HR4
AFAUL1(NULL)
¥R4,MR3,BI00.16,T
MRO,MR3,BIT16,I
NULL,HR4 ,MRO
AFAUL1(NULL)
YD,MR2,IR
YDI,NULL,YDI
YD,MR3,D

23:17:44 07/29/82

BYTE TO TRANSLATE

2X THE BYTE PLUS ADRS
(RESET RX FLOPS)

OF TRANSLATION TABL®
FETCH HALFWORD ENTRY

EXIT IF NOT NEGATIVE
OR INTC R1, EXIT.
EXECUTE RT ROUTINE. B02

GET MULTIPLIER
EXTRACT SIGNIFICANCE
GET HALFWORD STISN BIT
AXD EXTEND

EXTRACT SIGNIFICANCE
GET HALFWORD SIGY BIT
AND EXTEXND

MULTIPLY

LS 32 BIT PRODUCT TO R1; EXIT.

GET DIVISQR

EXTRACT SIGNIFICANCE

GET HALFWORD SIGY BIT
EXTEND IN MR4

3RANCH: DIV-BY-ZERO. (P.23)

MR3=DIVIDEND

MR2 = SIGN OF DIVIDEND

DO DIVIDE

BRANCH: QUOTIENT OVERFLOW. (P.23)
CAPTURE SIGN/EXTENDED SIGX
CAPTURE HALFWORD SIGN BIT

ALL BITS ALIKE ?

BRANCH: QUOTIENT OVERFLOW. (P.23)
REMAINDER TO R1

COMPUTE R1+1

QUOTIENT TO R1+1; EXIT.

32519460
32519470
32519480
32519490
32519500
32519510
32519520
32519530
325195490

32519560
32519570
32519580
325195490
32519500
32519610
32519620
32519630
32519640

32519AF0
32519670
32519680
3251990
32519700
32519710
32519720
32519730
32519740
32519750
32519760
32519770
32519780
32519790
32519800
32519810
32519820
32519830

-

23:17:45 07/29/82

LOAD REAL ADDRESS

= PRESENTED SEGMENT NUMBER

FOR SEGHENT NU¥BER ALIGN RO2
MRO = PSTD:; FETCH SHARED TABLE DES
= PROCESS SEGMENT TAB SIZE - 1 RO2
¥R1 = SSTD; RESET RX FLOPS. RO2

NULL,M¥R6,¥R2,LRA2,C TEST IF IN TABLE:

TABLE SIZE EXCEEDED; UNMAPPED(P.39)
CREATE OFFSET

MASK = *Q001FFFF*

GET CODED SEG TAB ADRS

AND DECODE

ADD OFFSET, FETCH HSTE

MR4 = PROCESS HSTE

PRESENCE BIT SET ?

BRANCH: NOT PRESENT. (P.39)

SHARED ?

BRANCH: CAN EVALUATE AS PRIVATE.
GET SST SIZE RO3
SRF BECOMES SST OFFSET R03

NULL,¥R7,¥R5,LRA1.5,C BRANCH: PST SIZE EXCEEDED. RO3

GET ENCODED SST ADDRESS
RND DECODE.
FETCH SHARED HSTE

SET ALL BUT ACCESS MODE BITS RO1
ZERO S BIT RO1
"AND"™ ACCESS KEYS WITH SST HSTE RO2
¥ASK SEG LIMIT FIELD FROM STE

EXTRACT SEGMENT FIELD R0O1
. 01

NULL,MRO,¥R2,LRA.PR2,C BRANCH: ADDRESS NOT > LINMIT.

MODEL 3250 PROCESSOR EMULATOR 05-086R03A13 (TRAINING) PAGE 45
MISCELLANEOUS
0000 O4FE 1986 LRA1 EQU *
O4FE 36F9 5055 1987 NI MR7,YD,BI08.15,I
O4FF 2A57 1B80 1988 A MR2,¥R7,HR7
0500 2A1F 1D8E 1989 L ¥RO,RMDR,I4DRY
0501 36D0 513B 1990 NI MR6,MR0,BI02.14,1I
0502 2R3F 1D8S 1991 L MR1,RMDR,RFAULT
0503 23F6 0945 1992 sX
0504 13F9 1280 1993 LRA1.5 BAL SETCC8(¥NULL)
0505 3257 800D 1994 LRA2 SRLI M¥R2,MR7,13
0506 367F 1057 1995 LI ¥R3,BI15.31,I
0507 2AD0 5980 1996 N ¥R6,MR0,MR3
0508 32D6 9007 1997 SLLI MR6,4R6,7
0509 2B96 190F 1998 A MAR,MR6,MR2,DRU
050A 2R9F 1D8O 1999 L R4 ,RMDR
050B 37F4 504F 2000 LRA3 NI NULL,MR4,BITO1,I
050C 13E1 11C0 2001 BALZ SETCC4(NULL)
050D 37F4 5059 2002 NI NULL,NR4,BITO08,I
050E 13E1 4600 2003 BALZ LRA.PRI(NULL)
2004 *
050F 3231 800E 2005 LRA.SHAR SRLI MR5,¥R1,14
0510 2AF4 5980 2006 N MR7,MRu4,¥R3
0511 23F7 2ACH 2007 SDECX
0512 2AD1 5880 2008 N ¥R6,MR1,MR3
0513 32D6 39007 2009 SLLI MR6,MR6,7
0514 2B96 1BS8F 2010 R MAR,¥R6,¥R7,DRY
0515 3694 700B 2011 01 MR4,MR4,BI03.050,1
0516 3694 5065 2012 NI ¥R4,MR4,BITOBO,I
0517 2294 5SDp8B 2013 X MR4,H¥R4,RMDR,LRA3
2014 *
0518 3614 5013 2015 LRA.PRI NI MRO,¥R4,BI10.14,I
0519 3659 5071 201€ NI MR2,YD,BI16.20,1
0514 3210 8006 2017 SRLI MRO,MRO,6
051B 23F0 095D 2018 SX
051C 13F9 1280 2019 BAL SETCC8(NULL) .
051D 2314 5930 2020 LRALPR2 N MRO,.MR4,MR3,E
051E 3210 9007 2021 SLLI MRO,MRO,7
0S1F 3739 5017 2022 NI ID,YD,BI16.31,I
0520 2339 183A 2023 AX YD,YD,¥R0O,LRA.PR3
0521 0800 0000 2025 BITO4 DC *0800000G0"
0522 33BD 7001 2026 ADDCC1 0oI PS®,PSW,1
0523 2B8FF 1F92 2027 L NULL,NULL,IRD

BRANCH: LIMIT VIOLATION (P.39)
GET SEG RELOC FIELD RO3
SCALED = MULTIPLY BY 2**7

32519850
32519860
32519870
32519880
32519830
32519300
32513910
32519920
32519930
32518940
32519950
32519960
3251997¢C
32519980
32519990
32520000
32520010
32520020
32520030
32520040
32520050
32520060
32520070
32520080
32520090
32520100
32520110
32520120
32520130
32520140
32520150
32520160
32520170
32520189
32520190
32520200

GET LEAST SIGNIFICANT HALF OF ADDRESS32520210

TRANSLATE. E-BIT LATENCY ON. RO3
CONSTANT RO3
TURN ON L FL2G R03
EXIT, CC SET. RO3

32520220

32520240
32520250
32520260

L4

MODEL 3250 PROCESSOR EMULATOR 05-086R03AK13 (TRAINING)

¥ISCELLANEOQUS
0524
0524 2A5F 1EQS
0525 2A7F 1D8O
0526 3283 5008
6527 3285 7002
0528 2395 1907
0529 2R9F 1D80
052A 1389 11C0
0528 2AFU 3F8Q0
052C 2B7F 1BB7
052D 17ES 4C80
052E 33F3 5001
052F 1781 4C80
0530 3373 6008
0531 2B9F 1917
0532 3395 1002
0533 2B92 1EOF
0534 2894 1D8QO
0535 33r3 5004
0536 13E1 4EOB
0537 2B83F 1D92
0538 2B7F 1C9B
0539 2BFF 1F92
053 3294 6FFF
053B 37F4 5521
053C 2BFF 1F80
053D 37F4 553F
0S3E 1751 4892
053F 1400 0000

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057

2059
2080
2061
2062
2063
2064

2069

SCP1

SCP3

*

SCP4
EXIT46
*

*

LRA.PR3

BI0305

ORG

BALNG

BALNZ
XI

AT
.

NI
BALZ

[l 2]

ENDC

PAGE

524"
MR2,MAR,RFRULT
¥R3,RM¥DR
MR5,MR3,BBIT
MREZ,MRE,2
MAR,MR5,MR2,DR2
COUNT,RMDR
SETCC4(NYLL)
¥R7,COUNT,NULL
WMDR,MR7,DW2,E

SCP3(NULL)
NULL,MR3,FBIT
SCP3(NULL)
WMDR, MR3,B3IT
¥AR,MR2,DVW2
MAR,¥R5,2
MRR,¥R2,MAR, DRU
MAR,COUNT, RMDR
NULL,ME3,RWBIT
SCP4(NULL),DR1
YD,RMDR,IRD

WMDR,YD,DW1
NULL,NULL,IRD

MR4,¥R4, -1
NULL,MR4,BITO4,I
NULL,NULL
NULL,¥R4,BI0305,
ADDCC1(NULL),IRD
*14000000°"

46

I

23:17:46 0
¥R2 = A(CCW); R
MR3 = CCW
YRS = 0 OR 8 (B
¥RS = "02' CR *

FETCH BUFFER BY
IF COUNT IS POS
SET V FLAG & EX
INCREMENT COUNT
STORE IT, SET C
IF POSITIVE, CC
IF ZERO cc
IF NEGATIVE cCC
BRANCH: NOT YET
FAST MODE ?

BRAKCH: YES.

COMPLENENT BUFF
RESTORE CCW

ADD CQUNT
TEST R/k BIT
BRANCH: R/W
. R/W

W
(=]

STORE BYTE
EXIT.
NOTE:
MODE.

BUFFER 1
HOWEVER,

CHANGE ACCESS PRIVS TO PROT KEYS RO3

SET G FLAG IF W
TURN OFF E-BIT
TEST READ, XEQ
BRANCH: READ OR
CONSTANT

7/729/82

RO3
ESET RX FLCPS RO2

JFFER BI™)
oyt

TE COUNT
ITIVE

IT (P.39)

C-

[« NN

o

Py

AT BUFFER LIMIT.

ER BIT

WRITE
READ .

o’

MAY BE USEL, FAST
BUFFERS NOT SWITCHED.

RITE-PROTECTED RO3
LATENCY RO3
PROTECT RO3

XEQ PROTECTED.
RO3

32520280
32520290
325203900
32520210
32520320
32520330
32520340
32520350
325207F¢C
32520370
32520380
32520390
32520400
32520810
325204820
32520430
32520410
32520450
325204%0
32520480
22520490
32520%00
32520510
32520520
32520530
32520540
32520550
32520560

32520580
32520590
32520600
32520610
32520620
32520630

32520680

MODEL 3250 PROCESSOR EMULATOR

MISCELLANEOUS
0540 32D9 S503F
0541 363F 1121
0542 2AD6 6D80
0543 36D6 5017
0544 32FF 1001
0545 1289 5480
0546 2BFF 1F92
0547 3279 SOFF
0548 1239 5280
0549 2BFF 1F92
054A 363F 1123
054B 2AD3 6D80
054C 36D6 5017
054D 32FF 1001
054E 22D6 8BDO
054F 2AD6 6880
0550 22D6 8BD2
0551 2AD6 6880
0552 22D6 8BD4
0553 2AD6 6880
0554 22D6 8BD6
0555 2AD6 6880
0556 22D6 8BD8
0557 2AD6 5880
055¢ 22Dé6 8BDA
0559 2AD6 6880
055A 2206 8BDC
055B 2AD6 5880
055C 22D6 B8BDE
055D 2RD6 6880
055E 237F 1B17
055F 03F8 0A80

05-086R03A13 (TRAINING) PAGE 47

CRC121

EXIT47

CRC161

* SUBROUTINE SHARED BY AUTO DRIVER
*

CRC16B

CRC12B

NI
LI
X
NI
LI
BAL
L

NI
BAL
L

LI
X

NI
LI

SRLX
X
SRLX
X
SRLX
X
SRLX
X
SRLX
X
SRLX
X
SRLX
X
SRLX
X

L
BAL

KR6,YD,"3F"*
MR1,COF01,I
MR6,MR6,RHMDR
MR6,HR6,BI16.31,I
¥R7,1
CRC12B(RETURN)
NULL,NULL,IRD

DAT,YD,"FF*
CRC16B(RETURN)
NULL,NULL,IRD

¥R1,CA001,I
M