PERKIN-ELMER

' MODEL 3205 SYSTEM INSTRUCTION SET

Reference Manual

50-022 R0O

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The hardware description in this document is intended solely for use in operation, installa-
tion, maintenance, or repair of Perkin-Elmer equipment. Use of this document for all other
purposes, without prior written approval from Perkin-Elmer is prohibited.

Any approved copy of this manual must include the Perkin-Elmer copyright notice.

Warning: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instructions manual,
may cause interference to radio communications. It has been tested and found
to comply with the limits for a Class A computing device pursuant to Subpart J
of Part 15 of FCC Rules, which are designed to provide reasonable protection
against such interference when operated in a commercial environment. Opera-
tion of this equipment in a residential area is likely to cause interference in
which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1984 by The Perkin-Eimer Corporation

Printed in the United States of America

PREFACE

CHAPTERS

TABLE OF CONTENTS

1 SYSTEM DESCRIPTION

1.1

.

MNMNOMNMNNDMDNDDNON

H RFREREFREE
w
W N

[
>

0
oo ot
L Y

el el o o
TS WN

-
o

[
~

.

HHFRF
00 00 00 00 0O 00 (O (O

.

NO s wN

-]
o]
[0 o]

50-022 ROO

wN

INTRODUCTION

PROCESSOR

Program Status Word (PSW)
Register Set Select (R)
Condition Code (C, V, G, L)
Location Counter (LOC)
General Registers

Floating Point Registers

PROCESSOR INTERRUPTS

RESERVED MEMORY LOCATIONS

DATA FORMATS

Fixed Point Data
Floating Point Data

Logical Data

Decimal String Data
Alphanumeric String Data

DATA ALIGNMENT

INSTRUCTION ALIGNMENT

INSTRUCTION FORMATS

Branch Instruction Formats
Programming Examples

Register to Register (RR) Format
Short Form (SF) Format

Register and
Register and
Register and
Format
Register and
Format

Indexed Storage One (RX1l) Format
Indexed Storage Two (RX2) Format

Indexed Storage Three (RX3)

Immediate Storage One (RI1)

xiii

T
'-—l

R
{
NNNO U DD

CHAPTERS (Continued)

ii

1.8.9

1.8.10

Register and Immediate Storage Two (RI2)
Format

Register and Indexed Storage/Register and

Indexed Storage (RXRX) Format

SYSTEM CONTROL

2.1

N
N

NN
www
N

NN
Lol
w N

.

. .
.

N MNMDNMDNNMNODNDN
(6] oo,
o) NoO ke wh

NN
[,
O

6,
[
o

.11

ooty
-
w N

MO NN
’—'
>

[\\]
(=]

2.7

INTRODUCTION
CONF IGURATION

CONSOLETTE SWITCHES AND INDICATORS
Key-Operated Security Lock
Control Switches

OPERATING INSTRUCTIONS
Power Up

Entering Console Service
Initial Program Load (IPL)

SYSTEM TERMINAL COMMANDS

Select an Address and Examine (8)
Increment and Examine Next Location (+)
Decrement and Examine Prior Location (-)
Modify Current Location (=)

Examine General Register (R)

Modify General Register (=)

Examine Single Precision Floating Point
Register (F)

Modify Single Precision Floating Point
Register (=)

Examine Double Precision Floating Point
Register (D)

Modify Double Precision Floating Point
Register (=)

Examine Program Status Word (PSW) (P)
Modify Program Status Word (PSW) (=)
Execute Single Instruction ()

Enter Run Mode ()

MEMORY INITIALIZATION

SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS

LOGICAL OPERATIONS

3.1

3.2

INTRODUCTION

LOGICAL DATA FORMATS

1-27

1-29

I
O N

NNDNDN NN N N N
| |
NN O oo ;m

N NNMNNNNDN
| !

|
O O OO OO o [0y} o ¢ [+ JBES L]

N N
1 | |

DMDNNNN
1

N
!

N
]
[
=

50-022 ROO

CHAPTERS (Continued)

3.3 OPERATIONS 3-2
3.3.1 Boolean Operations 3-2
3.3.2 Translation 3-2
3.3.3 List Processing 3-3
3.4 LOGICAL INSTRUCTION FORMATS ' 3-4
3.5 LOGICAL INSTRUCTIONS 3-4
3.5.1 Load (L, LR, LI) 3-7
3.5.2 Load Immediate Short (LIS) 3-8
3.5.3 Load Complement Short (LCS) 3-9
3.5.4 Load Halfword (LH, LHI) 3-10
3.5.5 Load Address (LA) 3-11
3.5.6 Load Real Address (LRA) 3-12
3.5.7 Load Halfword Logical (LHL) 3-16
3.5.8 Load Multiple (LM) 3-17
3.5.9 Load Byte (LB, LBR) 3-18
3.5.10 Exchange Halfword Register (EXHR) 3-19
3.5.11 Exchange Byte Register (EXBR) 3-20
3.5.12 Store (ST) 3-21
3.5.13 Store Halfword (STH) 3-22
3.5.14 Store Multiple (STM) 3-23
3.5.15 Store Byte (STB, STBR) 3-24
3.5.16 Compare Logical (CL, CLR, CLI) 3-25
3.5.17 Compare Logical Halfword (CLH, CLHI) 3-27
3.5.18 Compare Logical Byte (CLB) 3-29
3.5.19 AND (N, NR, NI) 3-30
3.5.20 AND Halfword (NH, NHI) 3-31
3.5.21 OR (O, OR, OI) 3-32
3.5.22 OR Halfword (OH, OHI) 3-33
3.5.23 Exclusive-OR (X, XR, XI) 3-34
3.5.24 Exclusive-OR Halfword (XH, XHI) 3-35
3.5.25 Test Immediate (TI) 3-36
3.5.26 Test Halfword Immediate (THI) 3-37
3.5.27 Shift Left Logical (SLL, SLLS) 3-39
3.5.28 Shift Right Logical (SRL, SRLS) » 3-40
3.5.29 Shift Left Halfword Logical (SLHL, SLHLS) 3-41
3.5.30 Shift Right Halfword Logical (SRHL, SRHLS) 3-42
3.5.31 Rotate Left Logical (RLL) 3-43
3.5.32 Rotate Right Logical (RRL) 3-45
~3.5.33 Test and Set (TS) 3-47
3.5.34 Test Bit (TBT) 3-48
3.5.35 Set Bit (SBT) 3-49
3.5.36 Reset Bit (RBT) 3-50
3.5.37 Complement Bit (CBT) 3-51
3.5.38 Cyclic Redundancy Check (CRC1l2, CRC16) 3-52
3.5.39 Translate (TLATE) 3-54
3.5.40 Add To List (ATL, ABL) 3-58
3.5.41 Remove From List (RTL, RBL) 3-60

50-022 ROO iii

CHAPTERS (Continued)

iv

BRANCH ING

'—l

INTRODUCTION

OPERATIONS
Decision Making
Subroutine Linkage

NN
N

w

BRANCH INSTRUCTION FORMATS

BRANCH INSTRUCTIONS

Branch on True (BTC, BTCR, BTBS, BTFS)
Branch on False (BFC, BFCR, BFBS, BFFS)
Branch and Link (BAL, BALR)

Branch on Index Low or Equal (BXLE)
Branch on Index High (BXH)

PN NN NN

s Wh

.

EXTENDED BRANCH MNEMONICS

Branch on Carry (BC, BCR, BCS)

Branch on No Carry (BNC, BNCR, BNCS)
Branch on Equal (BE, BER, BES)

Branch on Not Equal (BNE, BNER, BNES)
Branch on Low (BL, BLR, BLS)

Branch on Not Low (BNL, BNLR, BNLS)
Branch on Minus (BM, BMR, BMS)

Branch on Not Minus (BNM, BNMR, BNMS)
Branch on Plus (BP, BPR, BPS)

Branch on Not Plus (BNP, BNPR, BNPS)
Branch on Overflow (BO, BOR, BOS)
Branch on No Overflow (BNO, BNOR, BNOS)
Branch on Zero (BZ, BZR, BZS)

Branch on Not Zero (BNZ, BNZR, BNZS)
Branch (Unconditional) (B, BR, BS)

No Operation (NOP, NOPR)

.

. . .
oo oottt onoo;m
. e I . .

.

PHEFHRFFEWOON0 VD WN

oo wh~O

N O N N N N N W N N RN N T R

FIXED POINT ARITHMETIC

5.1 INTRODUCTION

5.2 FIXED POINT DATA FORMATS

5.3 FIXED POINT NUMBER RANGE

5.4 OPERAT IONS

5.5 CONDITION CODE

5.6 FIXED POINT INSTRUCTION FORMATS
5.7 FIXED POINT INSTRUCTIONS

5.7.1 Add (A, AR, AI, AIS)

5.7.2 Add Halfword (AH, AHI)

[B | | [| |
OO wWwh N N = =

hhbhh-‘r > Dabe b

50-022 ROO

CHAPTERS (Continued)

NNNSNNNNNNNNNNNY
HFEFHEFFFEFFFOONOO AW

oot om
Noobk wN O

6 FLOATING

6.1

o
N

o000 o
WWWwwwwwww
OO UL WN

o
>

.
.

o e e e
oot o,
W N

oo
(S8,
o wm

o000
oot om

000~
B WN O

50-022 ROO

Add to Memory (AM)

Add Halfword to Memory (AHM)

Subtract (S, SR, SI, SIS)

Subtract Halfword (SH, SHI)

Compare (C, CR, CI)

Compare Halfword (CH, CHI)

Multiply (M, MR)

Multiply Halfword (MH, MHR)

Divide (D, DR)

Divide Halfword (DH, DHR)

Shift Left Arithmetic (SLA)

Shift Left Halfword Arithmetic (SLHA)
Shift Right Arithmetic (SRA)

Shift Right Halfword Arithmetic (SRHA)
Convert to Halfword Value Register (CHVR)

POINT ARITHMETIC
INTRODUCT ION
FLOATING POINT DATA FORMATS

FLOATING POINT NUMBER
Floating Point Number Range
Normalization

Equalization

True Zero

Exponent Overflow

Exponent Underflow

Guard Digits and R*Rounding
Conversion from Decimal

CONDITION CODE

FLOATING POINT INSTRUCTIONS

Load Unnormalized Floating Point (LU, LUR)
Load Floating Point (LE, LER, LEGR)

Load Positive Floating Point Register (LPER)
Load Complement Floating Point Register
(LCER)

Load Multiple Floating Point (LME)

Load General Register from Floating Point
Register (LGER)

Store Floating Point (STE)

Store Multiple Floating Point (STME)

Add Floating Point (AE, AER)

Subtract Floating Point (SE,SER)

Compare Floating Point (CE, CER)

Multiply Floating Point (ME, MER)

Divide Floating Point (DE, DER)

Fix Register (FXR)

Float Register (FLR)

5-10
5-12
5-14
5-16
5-18
5-20
5-22
5-24
5-26
5-30
5-33
5-35
5-36
5-38
5-39

[e) o
! 1
N e

oo
|
=W NOUC,sW

(]

6-17

6-19
6-20

6-21
6-22
6-23
6-24
6-26
6-28
6-29
6-31
6-33
6-35

CHAPTERS (Continued)

6.5.16 Load Unnormalized Double Precision Floating

Point (LW, LWR) 6-37
6.5.17 Load Double Precision Floating Point (LD,

LDR, LDGR) , 6-38
6.5.18 Load Positive Double Precision Register :

(LPDR) 6-39
6.5.19 Load Complement Double Precision Register

(LCDR) 6-40
6.5.20 Load Multiple Double Precision Floating

Point (LMD) 6-41
6.5.21 Load General Registers from Double Precision

Floating Point Register (LGDR) 6-42
6.5.22 Store Double Precision Floating Point (STD) 6-43
6.5.23 Store Multiple Double Precision Floating

Point (STMD) 6-44

6.5.24 Add Double Precision Floating Point (AD, ADR) 6-45
6.5.25 Subtract Double Precision Floating Point (SD,

SDR) 6-47
6.5.26 Compare Double Precision Floating Point (CD,

CDR) 6-49
6.5.27 Multiply Double Precision Floating Point (MD,

MDR) 6-50
6.5.28 Divide Double Precision Floating Point (DD,

DDR) 6-52
6.5.29 Fix Register Double Precision (FXDR) 6-54
6.5.30 Float Register Double Precision (FLDR) 6-55
6.5.31 Load Single Precision Floating Point

Register from Double (LED, LEDR) 6-56
6.5.32 Load Double Precision Floating Point Register

from Single (LDE, LDER) 6-57
6.5.33 Store Double Precision Floating Point Register

in Single Precision Memory (STDE) 6-58

7 STRING OPERATIONS

7.1 INTRODUCTION 7-1
7.2 DECIMAL DATA FORMAT DEFINITIONS 7-1
7.2.1 Packed Decimal 7-1
7.2.2 Unpacked (Zoned) Decimal 7-2
7.3 DECIMAL AND ALPHANUMERIC STRING INSTRUCTION

FORMATS 7-3
7.4 STRING INSTRUCTIONS 7-3
7.4.1 Load Packed Decimal String as Binary (LPB) 7-4
7.4.2 Store Binary as Packed Decimal String (STBP) 7-5
7.4.3 Move Translated Until (MVTU) 7-6
7.4.4 Move (MOVE, MOVEP) 7-8
7.4.5 Compare (CPAN, CPANP) 7-10
7.4.6 Pack and Move (PMV, PMVA) 7-12
7.4.7 Unpack and Move (UMV, UMVA) 7-14

vi 50-022 ROO

CHAPTERS (Continued)

8 HIGH-SPEED DATA HANDLING INSTRUCTIONS

INTRODUCT ION
DATA HANDLING INSTRUCTION FORMATS
DATA HANDLING INSTRUCTIONS

Process Byte (PB)
Process Byte Register (PBR)

9 INPUT/OUTPUT (I/0) OPERATIONS

9.1

[Va JXVe BV Vo JiVo JuVe JiVe JVs RVe}
OO WN

(Vo JVe Vo Ve JiVe JiVe JiVe Vo JVs]

50-022 ROO

INTRODUCTION AND CONFIGURATION OF
INPUT/OUTPUT (I/0) SYSTEM

DEVICE CONTROLLERS
Device Addressing
Processor/Controller Communication
Interrupt Queuing

INTERRUPT SERVICE POINTER TABLE (ISPT)
CONTROL, OF INPUT/OUTPUT (I/0) OPERATIONS
STATUS MONITORING INPUT/OUTPUT (I1/0)
INTERRUPT DRIVEN INPUT/OUTPUT (I1/0)

SELECTOR CHANNEL (SELCH) INPUT/OUTPUT (I/0)
Selector Channel (SELCH) Devices

Selector Channel (SELCH) Operation
Selector Channel (SELCH) Programming

INPUT/OUTPUT (I/0) INSTRUCTION FORMATS

INPUT/OUTPUT (I/0) INSTRUCTIONS
Output Command (OC, OCR)

Sense Status (SS, SSR)

Read Data (RD, RDR)

Read Halfword (RH, RHR)

Write Data (WD, WDR)

Write Halfword (WH, WHR)
Autoload (AL)

Simulate Channel Program (SCP)

AUTO DRIVER CHANNEL

CHANNEL, COMMAND BLOCK (CCB)
Subroutine Address

Buffers

Translation

Check Word

Vo) Vo]
| | |

O O OO
|

O
i [
= \O © Noo o > >

vii

CHAPTERS (Continued)

9.11.5 Channel Command Word (CCW) 9-21
9.11.6 Valid Channel Command Codes 9-23
9.11.7 General Auto Driver Channel Programming

Procedure 9-25

10 STATUS SWITCHING AND INTERRUPTS

10.1 INTRODUCTION 10-1
10.2 PROGRAM STATUS WORD (PSW) AND RESERVED

MEMORY LOCATIONS 10-1
10.2.1 Program Status Word (PSW) 10-3
10.2.1.1 Catastrophic System Failure (CSF) 10-3
10.2.1.2 Memory Access Level Field (LVL) 10-3
10.2.1.3 Floating Point Masked Mode (FLM) 10-3
10.2.1.4 Interruptible Instruction in Progress (IIP) 10-4
10.2.1.5 wait State (W) 10-4
10.2.1.6 Input/Output (I/0) Interrupt Mask (I) 10-5
10.2.1.7 Machine Malfunction Interrupt Enable (M) 10-5
10.2.1.8 Floating Point Underflow Interrupt Enable

(FLU) 10-6
10.2.1.9 Relocation/Protection Enable (R/P) 10-6
10.2.1.10 System Queue Service (SQS) Interrupt Enable

(Q) 10-6

10.2.1.11 Protect Mode Enable (P) 10-7
10.2.1.12 Register Set Select Field (R) 10-7
10.2.1.13 Condition Code (C, V, G, L) 10-8
10.2.2 Program Status Word (PSW) Location Counter

(LOC) 10-8
10.2.3 Reserved Memory Locations 10-9
10.3 INTERRUPT TIMING AND PRIORITY 10-10
10.3.1 Maskable and Nonmaskable Interrupts 10-10
10.3.2 Interrupt Timing 10-12
10.3.3 Interrupt Precedence 10-12
10.3.4 Interruptible Instructions 10-13
10.4 PROCESSOR MODES 10-14
10.4.1 Console Mode 10-14
10.4.2 Run Mode 10-15
10.4.3 Single Step Mode 10-16
10.5 STATUS SWITCHING 10-17
10.5.1 Illegal Instruction Interrupt 10-18
10.5.2 Data Format Fault Interrupt 10~18
10.5.2.1 Alignment Faults 10-19
10.5.2.2 Invalid Digit Faults 10-19
10.5.3 = Relocation/Protection (MAT) Fault Interrupt 10-20
i0.5.4 Machine Malfunction Interrupt 10-20
10.5.4.1 Early Power Fail (EPF) Detect and Automatic

Shutdown 10-22

viii 50-022 ROO

CHAPTERS (Continued)

10.5.4.
10.5.4.

10.5.4.

10.5.4.
10.5.4.

10.5.5

10.5.5.
10.5.5.

10.5.6
10.5.7
10.5.8
10.5.9

10.5.10

10.6

10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
10.6.7

11 MEMORY

11.4.1.1 Format of a Segment Table Descriptor (STD)

50-022 ROO

OO P WwN

2 Power Restore
2.1 If the Loader Storage Unit (LSU) Is
Disabled
2.2 If the Loader Storage Unit (LSU) Is
Enabled
3 Noncorrectable Memory Error
4 Nonconfigured Memory Address
Input/Output (I/0) Device Interrupts
1 Priority Levels
2 Immediate Interrupt - Auto Driver Channel
Operation
Simulated Interrupt (SINT)
System Queue Service (SQS) Interrupt
Supervisor Call (SVC) Interrupt
System Breakpoint Interrupt
Arithmetic Fault Interrupt

STATUS SWITCHING INSTRUCTIONS

Load Program Status Word (LPSW)

Load Program Status Word Register (LPSWR)
Exchange Program Status Register (EPSR)
Simulate Interrupt (SINT)

Supervisor Call (SVC)

System Breakpoint (BRK)

Privileged System Function (PSF)

Read Error Logger (REL)

Store Process State (STPS)

Load Process State (LDPS)

Save Interruptible State (ISSV)
Restore Interruptible State (ISRST)

(XSTB)

.9 Reset Memory Voltage Failure (RMVF)

MANAGEMENT
INTRODUCTION
TRANSLATION FROM VIRTUAL TO REAL ADDRESS
ADDRESS SPACE
Virtual Address (VA)
.1 Segment Field
2 Offset and Page Field
Selection of Virtual or Physical Addressing

SHARED AND PRIVATE SEGMENTS

Segment Table Descriptors (STDs) and Their

Use

Load Process Segment Table Descriptor (LPSTD)
Load Shared Segment Table Descriptor (LSSTD)

Store Byte, No Error Correction Code (ECC)

10-24

10-24

10-25
10-25
10-26
10-27
10-27

10-28
10-29
10-29
10-31
10-31
10-32

10-33
10-34
10-35
10-36
10-37
10-38
10-39
10-40
10-41
10-43
10-44
10-45
10-46
10-48
10-49

10-50
10-51

ix

CHAPTERS (Continued)

11.4.2 Setting the Virtual Address Space Size 11-8
11.5 SEGMENT TABLE ENTRIES (STEs) 11-9
11.5.1 Segment Table Entry (STE) Size 11-10
11.5.2 Segment Tables 11-10 .
11.5.3 Hardware Segment Table Entry (HSTE) 11-10
11.5.4 Software Segment Table Entry (SWSTE) 11-13
11.6 MEMORY ADDRESS TRANSLATOR (MAT) FAULTS 11-17
11.6.1 Conditions that Cause Memory Address

Translator (MAT) Faults 11-17
11.6.1.1 Process Segment Table (PST) or Shared

Segment Table (SST) Size Exceeded Fault 11-17
11.6.1.2 Nonpresence Fault 11-18
11.6.1.3 Access Level Fault 11-18
11.6.1.4 Access Mode Faults 11-18
11.6.1.5 Segment Limit Fault 11-19
11.6.2 Fault Precedence 11-19
11.6.3 Memory Address Translator (MAT) Fault

Handling Routine 11-19
11.6.4 Reexecution of Faulting Instructions 11-20
11.6.5 Effect of System Initialization on the

Memory Address Translator (MAT) 11-21
11.7 MEMORY MANAGEMENT INSTRUCTIONS 11-21

11.7.1 Load Process Segment Table Descriptor (LPSTD) 11-22
11.7.2 Load Shared Segment Table Descriptor (LSSTD) 11-23

APPENDIXES

A OPCODE MAP A-1
B INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC B-1
Cc INSTRUCTION SUMMARY - NUMERICAL BY OPCODE c-1
D ARITHMETIC REFERENCES D-1
E INPUT/OUTPUT (1/0) REFERENCES E-1
F CONSOLE SERVICE ROUTINE FLOWCHART F-1
F IGURES

1-1 Model 3205 Processor Block Diagram
1-2 Program Status Word
1-3 Register Set Numbering

il
e W

X 50-022 ROO

FIGURES (Continued)

1-4 Instruction Formats

1-5 Sample Program

1-6 RXRX Formats

2-1 Consolette

2-2 Model 6100 Keyboard Layout

3-1 Logical Data

3-2 Translation Table Entry

3-3 Circular List Definition

3-4 Circular List

3-5 LRA Example

3-6 Flowchart for CRC Generation

3-7 List Processing Instructions

5-1 Fixed Point Data Formats

6-1 Exponent Overf low

6-2 Exponent Underflow

7-1 Packed Decimal Format

7-2 Unpacked Decimal Format

9-1 Channel Command Block

9-2 Channel Command Word

9-3 Auto Driver Channel Flowchart

10-1 Program Status Word

10-2 Schematic Diagram of Interrupt System
Architecture

10-3 Machine Malfunction Status Word

11-1 Flowchart of MAT Process

11-2 PSTD and SSTD Registers

11-3 MAT Translation, Private Segment

11-4 MAT Translation, Shared Segment

11-5 Virtual Address

11-6 STE and SWSTE

11-7 Bit Representation of HSTE

TABLES

1-1 PSW BITS

1-2 RESERVED MEMORY LOCATIONS

1-3 OPERAND ABBREVIATIONS

2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY

4-1 DECISION TABLE

50-022 ROO

1-13

=
i
w
b U

NN
[
W

1
W

wWwwwwww
i
oL D WN e

x1i

TABLE (Continued)

10-1

=

o
I

N

=

[
i

-

Utjtl?tJCIU
Nooe wh

1 =
i
wN -

INDEX

xii

FIXED POINT FORMAT RELATIONS

VALID REDUNDANCY CHECKS
CHANNEL:. COMMAND WORD

PSW BITS
RESERVED MEMORY LOCATIONS

SEGMENT ACCESS FIELD SETTINGS

POWERS OF TWO

POWERS OF SIXTEEN

HEXADECIMAL ADDITION AND SUBTRACTION
HEXADECIMAL MULTIPLICATION AND DIVISION
MATHEMATICAL CONSTANTS

FRACTION CONVERSION

INTEGER CONVERSION

ASCII/HEXADECIMAL CONVERSION
ASCII/CARD CODE CONVERSION
STANDARD-PREFERRED ADDRESS TABLE

AR bk
W N -~ NOoOOUds WwWN

mlTJl'!J

Ind-1

50-022 ROO

PREFACE

This manual provides programming and operating information for
the Perkin-Elmer Model 3205 System. The programmer is provided
with information on the 32-bit system architecture and the unique
memory management scheme, as well as a description of each
‘instruction in the repertoire. The instruction descriptions
include valuable system-related information presented in the form
of programming notes and instruction examples.

Chapter 1 is a general description of the Model 3205 System,
processor interrupts, registers, instruction formats and reserved
memory locations. System control, including system commands,
operator and programming instructions, and memory initialization,
is discussed in Chapter 2. Chapter 3 is comprised primarily of
the logical instruction set with a brief description of logical
data formats and operations. Each instruction is outlined by its

assembler notation, opcode and format, accompanied by a
discussion of its operation, the status of its condition code and
an example. Chapter 4 details branching operation and

instructions. Chapters 5 and 6 list fixed and floating point
instructions, and Chapter 7 discusses string operations and
instructions. In Chapter 8, data handling instructions including
the process byte register are discussed. Chapter 9 deals with
the input/output (I1/0) operations including status monitoring,
instruction formats and the channel command block (CCB). Chapter
10 discusses the program status word (PSW), reserved memory
locations, interrupt timing and priority, processor modes and
status switching. The bits and function of the memory address
translator (MAT) are described in Chapter 11.

Information pertaining to the system control terminal is given
mainly to show how to access memory, modify locations and single
step the system for troubleshooting.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary .

50-022 ROO xiii

CHAPTER 1
SYSTEM DESCRIPTION

1.1 INTRODUCTION

The Model 3205 Processor is designed to meet the needs for low
cost and reliability in a 32-bit minicomputer. The architecture
has improved error recovery capabilities for those applications
where fault tolerance 1is a necessity, and allows direct
addressing of up to 4Mb of memory implemented in the MOS

Through the use of 32-bit general registers and a comprehensive
instruction set, the Model 3205 Processor provides fullword data
processing and direct memory addressing up to a limit of 4Mb.
See Figure 1-1 for a block diagram of the system. The
instruction set includes:

® Load/store halfwords, fullwords and multiple words

® Fixed point arithmetic on halfwords and fullwords

e Logical operations (AND, OR, Exclusive-OR, compare and test)
on halfwords and fullwords

® Logical and arithmetic shifts and rotation on halfwords and
fullwords

® Bit manipulation

® Floating point arithmetic on single (32-bit) and double
(64-bit) precision operands

e List operations

e Data handling operations

e Input/output (1/0)

e Byte manipulations

@ Privileged system functions
e, Storage-to-storage functions

® Decimal conversion

50-022 ROO 1-1

With this enriched repertoire and direct memory addressing,
coding and debugging time is reduced to a minimum.

Eight sets of sixteen 32-bit general registers are provided.
Register set selection is controlled by bits in the program
status word (PSW). Register to Register (RR) instructions permit
operations between any of the 16 registers in the current set,
eliminating redundant loads and stores. The multiple register
set organization reduces the overhead that would otherwise be
incurred in saving and restoring registers when responding to
interrupts.

The memory address translator (MAT) provides automatic program

segmentation, relocation and protection. The protect mode
enables detection of privileged instructions. These two features
are invaluable 1in process control, data communication and

‘time-sharing operations because they prevent a running program
from interfering with system integrity.

The Model 3205 System supports up to 4Mb of directly addressable
MOS memory. Error correction is standard and is performed across
every 16-bit halfword in memory using a 6-bit modified
hamming-code. All single bit errors are detected and corrected;
all double bit errors and most multiple bit errors are detected.
The memory error logger indicates the 1location of the latest
faulty memory chip.

The Model 3205 System microcode implements an autodriver channel
that automatically acknowledges all I/0 interrupts and performs
much of the required overhead before activating an interrupt

service routine (ISR) if enabled. The autodriver channel can
perform data transfers with character translation, longitudinal
or cyclic redundancy checking (CRC), and data buffer chaining

transparent to the user.

1-2 50-022 ROO

00¥ ?2Z0-0S

8059

INSTRUCTION REGISTER

€-1

*NOTE 1

8 SETS 16-32 BIT REGISTERS
8 SPFP REGISTERS
8 DPFP REGISTERS

L
0 MAIN
¢ MEMORY
MICRO- OP CODE c M
ADDRESS -— -— O |vBus—| A |RBUS —| ADD
SEQUENCER U T RESS
N
R1 E
R2 R DATA
CONTROL
STORE
REGISTERS
ERROR
E"X BUS—= N CORRECTION
*SEE NOTE 1 M
B
U e
S : <3
t SYSTEM UNIVERSAL
MULTIPLIER | <Y BUS —» -— INTSS&‘\HTED PIMUX TERMINAL CLOCK
L
|
{ -
N
ALU & !
SHIFTER -~ |
I 4
I I
| v
-— o || Mux 4
! r [} [} Y
§
! f
|
|

¢l

LINE MEDIA DISK
PRINTER

CARD READER TERMINAL

NOT PART OF PROCESSOR

Figure 1-1 Model 3205 Processor Block Diagram

1.2 PROCESSOR

The central processing unit (CPU), or processor, controls
activities in the system. It executes instructions in a specific
sequence and performs arithmetic and logical functions. The
processor's components include the following:

® PSW register

e General registers

e Hardware multiply and divide

_1.2.1 Program Status Word (PSW)

The 64-bit PSW defines the state of the processor at any given
t.ime (see Figure 1-2).

8061-1

9 10 11.12.13,14,15.16,17,18,19 20,21 22 23 24 27.28 29 30,31

0

C L Fl F R

S v L} wliimMm]L bl Q]| P R civi]Gg|tL

F L m| P U

32 39,40 63
LOCATION COUNTER

Figure 1-2 Program Status Word

Bits 0:31 are reserved for status information and interrupt
masks; bits 32:63 contain the location counter (LOC). Unassigned
PSW bits must not be used and must always be zero. Status
information and interrupt mask bits are defined in Table 1-1.
See Chapter 10 for details on the interrupt mask bits.

1-4 50-022 ROO

TABLE 1-1 PSW BITS

5 BIT { MNEMONIC | MEANING i
EEEEEEs-—coEmsEEoCCEAECCTEESSCEECECCC——EEEECESe——CEmmessmeccc———e |
; 0 { CSF i Must be zero; IF SET, CATASTROPHIC ;
LT s
; 1:9 | i Unused; must be zero E
o e e e e e e e e
E 10:11 | LVL i Memory access level E
| 12 1 | Reserved; must be zero i
g"'15’“”?”55&”""'?';I;;EZ;;-;SISE-;EIEQ;;EIE”;;;L;Q";;;;‘""'g
g'"12'““’?‘??5“""'1'I;EZZZGEEISE;’I;;E;;;EZ;;‘IS';Z;;Z;;;""’g
| 15 | | Reserved; must be zero g
16 twW | wait state ;
| 17 11 1 1/0 interrupt mask ;
| 18 1M | Machine malfunction interrupt mask |
g'"'3;'""'?_;LG'_"'_?_;1;;;15;";;1;£";2IEQA;EIZ';;;;ZEi;;';;;i'g
| 20 | | Reserved; must be zero i
21	R/P	Relocation/protection interrupt mask
22 1@	System queus interrupt mask	
25 (P	Protect mde	
24:27 { R	Register set select bits	

]
]
H 32:39 | | Reserved; must be zero !
]
]

1.2.1.1 Register Set Select (R)
Bits 24:27 of the PSW are used to designate the current register

set. Register sets are numbered 0O through 15. The processor has
eight sets of general registers (see Figure 1-3).

50-022 ROO 1-5

558-2

REGISTER
SET DESIGNATION

NUMBER

0] RESERVED FOR INTERRUPTS

1

2

3 MAY BE ALLOCATED BY THE OS

4 FOR GENERAL PURPOSE USE

5

6

7

8

9

10 UNIMPLEMENTED

1 SETS

12

13

14

15 GENERAL PURPOSE

Figure 1-3 Register Set Numbering

1.2.1.2 Condition Code (C, V, G, L)

Bits 28:31 of the PSW contain the condition code. As part of the
execution of certain instructions, the state of the condition
code can be changed to indicate the nature of the result. Not
all instructions affect the condition code. The state of the
condition code can be tested with conditional branch
instructions. Each bit in the condition code 1is set if the
corresponding condition occurred as a result of the last
instruction that affected the condition code. The normal
interpretation of these bits is:

Arithmetic carry, borrow or shifted carry
Arithmetic overflow

Greater than zero

Less than zero

~ OO0

1-6 50-022 ROO

e e

1.2.1.3 Location Counter (LOC)

The LOC contains the address of the instruction currently being
executed by the processor and points to that instruction until it
has successfully completed execution. Once this execution is
completed, the LOC is incremented by 2, 4, 6, 8, 10 or 12
(depending upon the instruction executed), and the next
instruction is fetched. In the case of a branch instruction, the
LOC is loaded with the address to which control is being
transferred, and the next instruction 1is fetched from that
address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the LOC contains the address of the
faulting or interrupted instruction. When a program interruption
is due to an incorrect branch address, the LOC contains the
branch address and not the location of the branch instruction.

1.2.2 General Registers

The processor has eight register sets, numbered 0 through 6 and
7 through 15 (see Figure 1-3). There are 16 registers in each
set and each register is 32 bits wide. Register set selection is
determined by the states of bits 24:27 of the current PSw.
Registers 1 through 15 of any set can be used as index registers.

(e ni £ .
When an __interrupt occurs, the processor loads pertinent
information into preselected. registers of the register set

selected by the new PSW. See Chapter 10 for details of this
operation: —

1.2.3 Floating Point Registers

There are eight single precision floating point registers, each
32 bits wide. These registers are identified by the even numbers
0 through 14.

There are eight double precision floating point registers, each
64 bits wide. These registers are also identified by the even
numbers O through 14 and are separate from the single precision
floating point registers. Floating point operations must always
specify the registers with even numbers.

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time is
called the current PSW. If either the status word or both the
LOC and status word are changed, a status switch is said to have

occurred. This status switch can be caused explicitly by
executing special instructions, or it can be forced to occur by
an interrupt or fault. At the time of a status switch, the

current PSW that is saved is called the old PSW. The PSW that
replaces the current PSW is the new PSW.

50-022 ROO 1-7

Interrupt conditions cause the entire PSW to be replaced by a new
PSW, thus breaking the wusual sequential flow of instruction
execution. When an interrupt condition occurs, the processor
saves its current PSW either in memory or in a pair of general
registers belonging to the register set selected by the new PSW.
The processor 1loads information related to the interrupt
condition in other registers of this same set. A new PSW is
loaded from a memory location reserved for the specific interrupt
condition. The immediate interrupt is an exception to the rule.
In this case, the status portion of the new PSW, bits 0:31, is
forced to a preset value, and the LOC is loaded from a memory
location reserved for that interrupting device. See Chapter 10
for details of interrupt processing.

1.4 RESERVED MEMORY LOCATIONS

Physical memory locations X'O' through X'2CF' are called reserved
memory locations. These locations contain the various new PSWs
and other information needed to handle interrupts, as shown in
Table 1-2.

TABLE 1-2 RESERVED MEMORY LOCATIONS

LOCATION MEANING

|
X'OOOOOO'-X'OOOOlF' ! Reserved; must be zero
[]
|
H

X'000020'-X'000027" Machine malfunction interrupt old PSW

X'000028'-X'00002B' Used by console service microcode

X'00002C'~X"*00002F" Machine malfunction load memory (LM)
block start address

X'000030'-X'000037" Illegal instruction interrupt new PSW

X'000038'-X'00003F"' Machine malfunction interrupt new PSW

X'000040'-X'000043" Machine malfunction status word

7t address

X'000048'-X'00004F" Arithmetic fault interrupt new PSW

X'000050'-X*00007F" Bootstrap loader and device definition

table

X'000080°'-X'000083" System queue pointer

——— men Wen o n wmEe Amem e A MMen Emer Wem When ReR e MEee Gme GRGE GeGn (ReR Wme Weee Ehn SRER eem rn emen Sme e
i N
| \

i
|
i
|
!
i
i
i
!
i
i
X'000044'-X'000047')} Machine malfunction virtual (program)
]
;
:
e
g
=
=
g
:
=

X'000084'-X'000087" Power fail save area pointer

1-8 50-022 ROO

TABLE 1-2 RESERVED MEMORY LOCATIONS (Continued)

Lonei
o)
@)
h g
-3
O
z

X'000088'—-X'00008F"
X'000090'-X'000097"
X'000098'-X'00009B"
X'00009C'-X"'0000BB’

X'0000BC"*'-X"'0O0O0O0BF"

AX'OOOODO'—X'OOOZCF'

X'0002D0"'-X"'0004CF"

X'0004D0'-X"'0008CF"

X'0000C0 ' -X'0000C7"

X'0000C8'-X'0000CF"

System queue service interrupt new PSW
Relocation/protection interrupt new PSW

Supervisor call (SVC) new PSW status

SVC new PSW 599 values ({Q halfwords)
Reserved; must be zero

Reserved; must be zero

Data format fault new PSW

Interrupt service pointer table

Expanded interrupt service pointer table

Expanded interrupt service pointer table

These reserved locations play an important role in both interrupt
and I/0 processing (see Chapters 9 and 10).

All LOC values are subject to MAT relocation if the new PSW
enables the MAT (bit 21=1). All other pointers contain absolute
addresses not subject to MAT relocation.

1.5 DATA FORMATS

The processor performs logical operations on single bits, bytes,
halfwords, fullwords and doublewords. This data can represent a
fixed point number, a floating point number, logical information,
a bit or byte array, or a decimal or alphanumeric byte string.

50-022 ROO

1.5.1 Fixed Point Data

Fixed point arithmetic operands can be either halfwords or

fullwords. In fullword multiply and divide operations,
doubleword operands are manipulated. Fixed point data is treated
as 15-bit signed integers in the halfword format. Positive

numbers are expressed in true binary form with a sign bit of 0.
Negative numbers are represented in two's complement form with a
sign bit of 1. The numerical value of zero is represented with
all bits 0. See Chapter 5 for details of fixed point data
representation.

In fixed point arithmetic and logical operations between a
fullword register and a halfword operand, the halfword operand is
expanded to a fullword by propagating the most significant bit
into the high-order bits before the operation is started. This
‘permits the use of halfword-to-fullword operations with
consistent results and provides space economy, since small values
do not require fullword locations.

Arithmetic operations on fixed point halfword quantities can
produce results not entirely consistent with those obtained in a
16-bit processor. If this problem exists, the Convert to
Halfword Value Register (CHVR) instruction can be used to adjust
the result and the conditidn code, making them consistent with
the same operations in a 1lb-bit processor.

1.5.2 PFloating Point Data

A floating point number consists of a 7-bit exponent in excess-64
notation and a signed fraction. The quantity expressed by this
number is the product of the fraction and the number 16 raised to
the power represented by the exponent. Each floating point value
requires a fullword or a doubleword, of which eight bits are used
for the sign and exponent. The remaining bits are used for the
fraction. See Chapter 6 for details of floating point data
representation.

Floating point operations take place between the contents of two
floating point registers, a floating point operand contained in
a fullword or doubleword in memory, or a general register or pair
of general registers.

1.5.3 Logical Data

Logical operations manipulate bytes, halfwords and fullwords. In
addition, it is possible to perform logical operations on single
bits located in bit arrays. See Chapter 3 for details of logical
data representation.

1-10 50-022 ROO

1.5.4 Decimal String Data

Decimal strings are strings of consecutive bytes in memory that
begin and end on byte boundaries. Information contained in a
decimal string can represent packed or unpacked decimal data.
See Chapter 7 for details of decimal data formats and operations.

1.5.5 Alphanumeric String Data

Alphanumeric strings are strings of consecutive bytes in memory

that begin and end on byte boundaries. Information contained in
an alphanumeric string can represent any character stream
including decimal string data. See Chapter 7 for details of

alphanumeric string data format and operations.

1.6 DATA ALIGNMENT

The following discussion is unique to the Model 3205 System
implementation and is presented for information only. Any
program that misuses a processor feature by taking advantage of
a peculiarity of one implementation cannot work on a different
implementation.

Locations in main memory are numbered consecutively, beginning at
address '000000°'.

Bytes of information are addressed by their specific hexadecimal

address. Two bytes form a halfword. Halfwords have an even
address, which is the address of the lower addressed byte in the
pair. Two halfwords comprise a fullword. A fullword address is

a multiple of four (four bytes) and is the address of the lower
addressed halfword in the pair. A data format fault is generated
if a fullword access is directed to an address that has bit 30 or
31 set, or 1if a halfword access is directed to an address that
has bit 31 set.

The common assembly language (CAL) assembler generates an error
flag if it sees halfword operations directed to an odd byte
address or if it sees fullword operations directed to an address
other than a fullword address.

1.7 INSTRUCTION ALIGNMENT

User level instructions are always aligned on halfword
boundaries. Any halfword address is valid regardless of the
length of the instruction word. The CALL assembler generates
boundary errors if the assembled LOC for an instruction becomes
odd. At the machine level, an attempt to make the instruction
LOC odd by branching or causing a status switch results in a data
format fault. o

50-022 ROO 1-11

1.8 INSTRUCTION FORMATS
Instruction formats provide a concise method of representing
required operations for easy interpretation by the processor.

Figure 1-4 shows the eight basic formats. Table 1-3 is a list of
abbreviations and their meanings as used in Figure 1-4.

TABLE 1-3 OPERAND ABBREVIATIONS

i ABBREVIATION | MEANING]
oo e o o o o e o e T s s mn e e AT A = o = [e — [}
frEEEEEEEEEEEEEEE EEmesEREETEEEEEEES T T T E N OSSN TSR EREEEEE TS _EEEEEeET \
! OP | Operation code i
[} 1)
1 i |
' R1 | First operand register H
i i i
! R2 i Second operand register |
1] i
1 1 1
d N i A 4-bit immediate value |
]]]
! ' !
i X2 | Second operand, single index register i
i ! i
' D2 i Second operand displacement i
] i]
[} [} !
| FX2 | Second operand, first index register !
i i]
1 1 1
H SX2 i Second operand, second index register |
]] |
! !]
H A2 i Second operand, direct address i
[}] 1
i) [}
| 12 | Second operand, immediate value i
1 |]
t))
| 1.1 i Specifies the length of the first operand |
1 1]
t 1 1
H L.2 | Specifies the length of the second operand i
! [}]
L} 1 !
i OPMOD { Specifies a particular instruction within the]
i { class specified by OP '
i] i
' i]
| ADD1 i The effective first operand address i
i [l i
! I '
i ADD2 i The effective second operand address i
Many instructions can be expressed in two or more formats. This
feature provides flexibility in data organization and instruction
sequencing.- When working with the CAL assembler, it is
unnecessary to specify the instruction format. The assembler
selects the most economical format and supplies the required bits
in the machine code. When double indexing 1s 1implied, the

assembler always chooses the RX3 format.

i-12 50-022 ROO

857-1

REGISTER-TO-REGISTER (RR)

0 7 11 15
oP R1 R2
SHORT FORMAT (SF)
0 7 1 15
opP R1 N
REGISTER AND INDEXED STORAGE (RX1)
0 7 1 15 18 31
opP R1 X2 0 D2
REGISTER AND INDEXED STORAGE 2 (RX2)
0 7 1" 15 17 31
opP R1 X2 D2
REGISTER AND INDEXED STORAGE 3 (RX3)
0 7 1 15 17 20 24 . 47
” J
opP R1 FX2 1100 SX2 A2
S F
REGISTER AND IMMEDIATE STORAGE 1 (RI1)
0 7 11 15 31
oP R1 X2 12
REGISTER AND IMMEDIATE STORAGE 2 (R12)
0 7 1 15 . 47
L
op R1 X2
f L
s J
REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)
4] 7 11 12 31/47 39/55 43/69 63/79/95
~f ~ S -
oP L1 ADD1 OPMOD L2 . ;ADDZ
;’;j A
Figure 1-4 Instruction Formats
50-022 ROO 1-13

1.8.1 Branch Instruction Formats

Branch instructions use the Register-to-Register (RR), the Short
Form (SF) and all variations of the Register and Indexed Storage

(RX) formats. In the conditional branch instructions, however,
the Rl field does not specify a register; instead, it contains a
mask value (labeled M1l in the instruction descriptions). This

mask value is tested with the condition code. The CAL assembler
provides a series of extended branch mnemonics, making it
possible to identify a conditional branch without specifying the
mask value explicitly.

1.8.2 Programming Examples

Each of the following examples refers to the sample assembly
' language program shown in Figure 1-5. Note the use of symbolic
equivalents for general registers. The machine code generated
and the result of each instruction are dependent upon the
physical and logical placement of the instructions, respectively.

1-14 50-022 ROO

560 SERIES 3200 INSTRUCTION FORMAT EXAMPLES PAGE 1 18:21:48 02709779

PROG= $3200 ASSEMBLED RY CAL 03-066R05-01 (32-81T)
1 53200 PROG SERIES 3200 INSTRUCTION FORMAT EXAMPLES
2 CROSS
NOR X3
0000 0005 5 RS EQu 5 GENERAL REGISTER S
0000 0006 6 6 EQu [GENERAL REGISTER &
0000 0007 7 R7 £EQU 7 GENERAL REGISTER 7
0000 0008 8 R8 EQU 8 GENERAL REGISTER 8
0000 0009 9 39 EQU 9 GENERAL REGISTER 9
0000 000A 10 R10 EQU 10 GENERAL REGISTER 10
0000 000B 11 R11 EQU 11 GENERAL REGISTER 11
0000001 245E 13 SF LIS RS5e14 . (RS5) = *0000000F°
0000021 0865 15 RR LR R6eRS (R6) = *0000000E"
0000041 4050 1000 17 RX1.EX1 STH RS5¢X*1000° ¢(X®1000°) = X90Q0E®
0000081 &C56 OFF2 19 IX1eEX2 STH R5eXY0FF2*(R6) (X°1000°) = X*Q0Q0OE"
00000CI 4050 8004 =0000141 21 RX2.EX1 STH RS,.L0C1 (LOC1) = X*Q0Q0E®
0000101 4300 8004 =0000181 22 8 RI1.EX1
000018 0000 0000 23 Loc1 DC Fege TWO HALFWOIDS OF STORAGE
0000181 (€890 8000 25 RT1.EX1 LHI R94X*8000° (R9) = YYFFFFB0OO"
00001CI (€895 8000 27 RI1.EX2 LHI R9¢XYBO00®(RS) (R9) = Y*FFFFB00F®
0000201 FBAOD 0000 8000 29 RI2.EX1 L1 R10eX*B8000° (R10) = Y'00008000°
0000261 F8BA 0001 7FFE 31 RI2.EX2 1 R110Y*17FFE*(R10) (R11) = Y®QO0OC1FFFE®
00002CI 4050 FFES4 =0000141 33 RX2.EX2 STH R5e¢LOC1 (LOC1) = X°DOQOE"*
0000301 4056 FFD2 =0000061 35 RX24EX3 STH RSeLOC1-18(R6) (LOC1) = X'000E?
0000341 5870 4001 0000 37 RX3LEX1 L R74Y°10000°¢ (R7) = (Y9010000°)
00003A] 5885 4501 FFEW 39 AINZLEX2 L RByY?20200*-28(RSsR6) (RB) = (Y®020000°)
0000401 4300 FFBC =0000001 40 B SF
00004061 42 END
\) A —— J \ N — \) [J J
1 ' 1)]
LOCATION OBJECT INFORMATION l LABEL I OPERANDS COMMENTS
COUNTER STATEMENT OP-CODE

NUMBER

Figure 1-5 Sample Program

50-022 ROO 1-15

1.8.3 Register to Register (RR) Format

9 7 8 1112 15

op R1 R2

In this 16-bit format, bits 0:7 contain the operation code; bits
8:11 contain the Rl field; and bits 12:15 contain the R2 field.
In most RR instructions, the register specified by Rl contains
the first operand, and the register specified by R2 contains the
second operand.

~Example:
Machine Code Label Assembler Notation
0865 ” RR LR R6,R5
11 Second operand
First operand

Load Register (LR) instruction opcode

1-16 50-022 ROO

1.8.4 Short Form (SF) Format

62 0 7 8 1112 15

op R1 N

This 1l6-bit format provides space economy when working with small
values. Bits 0:7 contain the operation code; bits 8:11 contain
the Rl field; and bits 12:15 contain the N field. In arithmetic
and logical operations, the register specified by Rl contains the
first operand. The N field contains a 4-bit immediate value used
as the second operand.

Example:
Machine Code Label Assembler Neotation
245E SF LIS R5,14

I

Second operand

First operand

Load Immediate Short (LIS) instruction
opcode

50-022 ROO 1-17

1.8.5 Register and Indexed Storage One (RX1l) Format

563

0 7 8 11 12 15 16 17 18 3

op R1 X2 ojo0 D2

This is a 32-bit format in which bits 0:7 contain the operation
code; bits 8:11 contain the R1 field; bits 12:15 contain the X2
field; bits 16 and 17 must be zero; and bits 18:31 contain the D2
field. 1In general, the register specified by Rl contains the
first operand. The second operand is located in memory at the
address obtained by adding the contents of the second operand
index register (specified by X2) and the 1l4-bit absolute address
contained in the D2 field.

Example:
Machine Code Label Assembler Notation
QQ§Q 1000 RX1.EX1 STH RS5,X'1000°

Defines second operand address

No index register specified

First operand

Store Halfword (STH) instruction opcode

The second operand address is calculated as follows:

564-2
BITS 16 19 20 23 24 27 28 K}

00O 11]0000J]000O0]j]0O0O0CDO

—_i]

|- 14-bit absolute address X'1000’

Indicates RX1 format

No indexing is specified; therefore, the second operand address
is X'1000°'.

1-18 50-022 ROO

Example:

Machine Code Label Assembler Notation

4056 OFF2 RX1.EX2 STH R5,X'OFF2' (R6)

Defines second operand address

Register 6 to be used for indexing

First operand

STH instruction opcode

The second operand address is calculated as follows:

565-1
16 19 20 23 24 27 28 31

06o0o0O0OjJ1111}1111]0010

1)
LT — 14-bit absolute address X'OFF2’
Indicates RX1 format

Second operand address

contents of D2 field + contents of index
register 6 (see Figure 1-5)

X'OFF2' + Y'0OOOOOOOE"®

Y'00001000"

50-022 ROO 1-19

1.8.6 Register and Indexed Storage Two (RX2) Format
566
) 7 8 1 12 15 16 17 31

op R1 X2 1 D2

This format provides relative addressing capability in a 32-bit
instruction word. Bits 0:7 contain the operand code; bits 8:11
contain the Rl specification; bits 12:15 contain the X2
specification; bit 16 must always be one; and bits 17:31 contain
the relative displacement, D2.

In the RX2 format, the register specified by Rl contains the

first operand. The address of the second operand, in memory, is
calculated by adding the value contained in the incremented LOC
~ (the address of the next sequential instruction) and the sum of
(1) the 32-bit representation of the 15-bit signed number
contained in the D2 field, and (2) the contents of the index
register specified by X2. Negative numbers in the D2 field are
expressed in two's complement notation. :

Example 1:

Machine Code Label Assembler Notation
4050 8004 RX2.EX1 STH RS,LOC1

Defines second operand address

No index register specified

First operand

Store Halfword (STH) instruction opcode

The second operand address is calculated as follows:

567-1
16 19 20 23 24 27 28 31

1000]|J]00O0OO0JO0O0COO]JO0T11TOO

]
15-bit positive relative displacement
Indicates RX2 format

L

Second operand address

"

32-bit expansion of contents of D2 field
+ contents of incremented LOC (see
Figure 1-5)

Y'00000004*' + Y'00000010"

¥'00000014"

hoh

1-20 50-022 ROO

Example 2:

Machine Code Label Assembler Notation

4050 FFE4 RX2.EX2 STH R5,LOC1

Defines second operand address

No index register specified

First operand

STH instruction opcode

The second operand address is calculated as follows:

%81 16 19 20 23 24 27 28 31

1111 111111110 0100
L]

L 15-bit negative relative displacement
Indicates RX2 format

Second operand address 32-bit expansion of contents of D2 field
+ contents of incremented LOC (see
Figure 1-5)

Y'FFFFFFE4' + Y'00000030°

Y'00000014"

50-022 ROO

=
[

21

Example 3:

Machine Code Label Assembler Notation
4056 FFD2 RX2 .EX3 STH R5,L0OC1-14 (R6)
[Def ines second operand address

Register 6 to be used for indexing

First operand

STH instruction opcode

The second operand address is calculated as follows:

569-1
16 19 20 23 24 27 28 31

111111111111 01]0010

L]

15-bit negative relative displacement
Indicates RX2 format

[

Second operand address 32-bit expansion of D2 field + contents
of incremented LOC + contents of index
register 6 (see Figure 1-5)

Y'FFFFFFD2' + Y'00000034' + Y'OOOOOOOE'

Y'00000014"'

o]
i

22 50-022 ROO

1.8.7 Register and Indexed Storage Three (RX3) Format

570
0 7 1" 15 16 17 18 19 20 24 47

of
Cd

y
-

oP R1 FX2 0j1]0]o SX2 A2

y
td

-

This is a 48-bit format in which double indexing 1is permitted.
Bits 0:7 contain the operation code; bits 8:11 contain the Rl
specification; bits 12:15 contain the first index specification,
FX2; bit 16 must be zero; bit 17 must be one; bits 18 and 19 must
be zero; bits 20:23 contain the second index specification, SXZ2;
and bits 24:47 contain a 24-bit address, A2. Second level
indexing is allowed even if first level 1indexing 1is not
specified.

In general, the first operand is contained 1in the register
specified by Rl. The second operand is located in memory. Its
memory address is obtained by adding the contents of the first
index register and the contents of the second index register,
then adding to this result the contents of the A2 field.

Example 1:
Machine Code Label Assembler Notation
5870 1_001 0000 RX3.EX1 I. R7,Y¥'10000'
l Def ines second operand address
Second level indexing not specified

Specifies RX3 format

First level indexing not specified

First operand

Load (L.) instruction opcode

50-022 ROO 1-23

The second operand address is calculated as follows:

571-1
BITS 16 20 24 28 31 32 36 40 44 47

0o100[looo0o0loooolooo1jooo0o0jooo0o0j0o0O0O0j0000D
I i Bl 1

24-bit absolute address Y'010000’
No Second Level Index
Indicates RX3 format

Second operand address = contents of A2 field
= Y'00010000'

‘Example 2:
Machine Code Label Assembler Notation

5
T

§%5 4601 FFE4 RX3.EX2 I. R8,Y'20000'~-28 (R5,Rb)

TT

Def ines second operand address

Register 6 to be used for second level
indexing

Specifies RX3 format

Register 5 to be used for first level
indexing

First operand

Load (I.) instruction opcode

The second operand address is calculated as follows:

572-1

BITS 16 20 24 28 31 32 36 40 44 47

o100l01100000f000 1111111111 110]0100
| Il 1]

24-bit absolute address Y'01FFE4’ ——
Register 6 for Second Level index
Indicates RX3 format

h

Second operand address contents of A2 field + contents of index
register 6 + contents of index register
(see Figure 1-5)

Y'OOO1FFE4' + Y'OOOOOOOE' + Y'OOOOOOOQE'

= Y'00020000"

1-24 50-022 ROO

1.8.8 Register and Immediate Storage One (RI1l) Format

573
0 7 8 11 12 15 16 31

op R1 X2 12

This format represents a 32-bit instruction word. Bits 0:7
contain the operand code; bits 8:11 contain the Rl specification;
bits 12:15 contain the X2 specification; and bits 16:31 contain
the 16-bit immediate value, 12.

In this format, the register specified by Rl contains the first
operand. The 32-bit effective second operand is obtained by
adding together the 32-bit representation of the signed 16-bit
value contained in the I2 field and the contents of the register
specified by X2.

Example 1:
Machine Code Label Assembler Notation
g§$0 8000 RI1.EX1 LHI R9,X'8000"

16-bit immediate wvalue

No index register specified

First operand

Load Halfword Immediate (LHI) instruction
opcode

The second operand is calculated as follows:

574-1 16 20 24 28 31

1000 000O0JlO0OOOO]J]OOOO

Sign Bit

Second operand 32-bit representation of X'8000'

Y'FFFF8000'

50-022 ROO 1-25

Example 2:

Machine Code Label Assembler Notation

€895 8000 RI1.EX2 LHI R9,X'8000°' (R5)

16-bit immediate value

Index register 5 specified

First operand

LHI instruction opcode

The second operand is calculated as follows:

575-1 16 20 24 28 31

1000|]oo0o00foo000]0000O
|

Sign Bit

Second operand 32-bit representation of X'8000' + the contents
of the index register 5 (see Figure 1-5)
Y'FFFF8000' + Y'OOOOOOOE'

Y'FFFF800E'

1-26 50-022 ROO

1.8.9 Register and Immediate Storage Two (RI2) Format

576

0 78 11 15 e 47
op R1 X2 i2 cC
r A
This is a 48-bit instruction format. Bits 0:7 contain the
operation code; bits 8:11 contain the Rl specification; bits
12:15 contain the X2 specification; and bits 16:47 contain the

32-bit immediate value,

The

first

I2.

The second operand is obtained by
specified by X2,

index

Example

Machine

F8AQ

0000

register,
contained in the

1:

Code

8000

I2 field.

Label

Ri2.EX1

contents

operand is contained in the register specified by Rl.
adding the
and the 32-bit immediate value

of the

Assembler Notation

L.I R10,X'8000"

32-bit immediate field

No index register specified

First operand

Load Immediate (LI) instruction opcode

The second operand is calculated as follows:

677-1

16

20

24

28

32

36

40

44 47

0000

00O00O0

0000

0000

1

0 0O

0000

0000

00O00O0

Second operand

[

50-022 ROO

L————-3thinunedhtevdue

contents of 12 field

Y'00008

000’

1-27

Example 2:

Machine Code Label Assembler Notation
F8BA 0001 7FFE RI2.EX2 LI R11,Y'17FFE' (R10)
{ 32-bit immediate field
Specifies index register 10

First operand

LI instruction opcode

The second operand is calculated as follows:

578-1

16 20 24 28 32 36 40 44 47

cooojoooojoooo0ojo0oo0o01jyo01T 11111111111 1110

;—32-bit immediate value

contents of 12 field + contents of index
register 10 (see Figure 1-5)

= Y'OOO17FFE*' + Y'00008000"

= Y'OOOlFFFE'

Second operand

1-28 50-022 ROO

1.8.10 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Format

The RXRX format resembles a pair of adjacent RX format
instructions, but represents only one instruction (see Figures
1-4 and 1-6). Each member of the instruction pair can have any
one of the standard RX formats. For example, the first member
might be RX1 and the second member might be RX3, resulting 1in a
10-byte instruction. The particular RX format chosen by the
assembler for one member is independent of that chosen for the
other; thus, the instruction can require 8, 10 or 12 bytes.

OP contains the operation code that defines the RXRX instruction
class. The actual operation to be performed is defined by the
OPMOD field.

The L1 field specifies the length of the first operand string.
If bit 0 of OPMOD is set, L1 is the length with a maximum value
of 15. If bit O of OPMOD is zero, the general register specified
by L1 contains the length. The L2 field specifies the length of
the second operand string. If bit 1 of OPMOD is set, this field
contains the length with a maximum value of 15. If bit 1 of
OPMOD is zero, the general register specified by L2 contains the
length.

The effective address calculated for the first member is the
address of the left-most (lowest address) byte of the first
operand string. The effective address calculated for the second
member is the address of the left-most byte of the second operand
string. An RX2 displacement calculated for either member is with
respect to the incremented LOC for that member.

Example 1:
Machine Code Label Assembler Notation
ggsg 1000 0160 OFFQ RX1.RX1 MOVE R5,X'1000',R6,X'FF0"'

Defines second operand address

No second operand index

Register 6 contains length of second
operand

OPMOD value for MOVE

Defines first operand address

No first operand index

Register 5 contains length of first
operand

RXRX format opcode

50-022 ROO 1-29

In the above example, both members of the RXRX instruction use
the RX1 format. No indexing is specified for either member so
the first operand address is X'1l000', and the second operand
address is X'OFFO'.

Example 2:
Machine Code Label Assembler Neobtation

8CA5 4601 FFE4 E160 4002 8000 RX3.RX3 MOVEP =10,Y'1FFE4’
T 1] 1T — T (RS,R6),=6,Y'28000"

Def ines second operand address

No second operand second level
indexing

Specifies RX3 format

No second operand first level
indexing

Second operand length is 6 bytes

OPMOD value for MOVEP, immediate
lengths 1 and 2

Defines first operand address

Register 6 is second level index
for first operand

Specifies RX3 format

Register 5 is first level index
for first operand

First operand length is 10 bytes

RXRX format opcode

In this example, both members of the RXRX instruction use the RX3
format. Double indexing is specified for the first member and no
indexing is specified for the second member. The first operand
address is X'1FFE4' plus the contents of index registers 6 and 5.
The second operand address is X'28000'. The length of the first
operand is 10 bytes and the second operand is 6 bytes.

1-30 50-022 ROO

00¥ 770-0S

Te-1

579 RX1 OR RX2 RX1 OR RX2
e -
Yl -
op L1 | x2 D2 OPMOD L2 | x2 D2
RX1 OR RX2 RX3
~ e ~ A
oP Lt | x2 D2 OPMOD L2 | Fx2|o100 | sx2 A2
RX3 RX1 OR RX2
- ~N
oP L1 | Fx2 o100 | Sx2 A2 opMoD | L2 | x2 D2
RX3 RX3
N \/ e N
op L1 | Fx2 |o100 | sx2 A2 OPMOD L2 | FX2 }0100 | SX2 A2
TN / T~

FIRST MEMBER

Figure 1-6 RXRX Formats

SECOND MEMBER

CHAPTER 2
SYSTEM CONTROL

2.1 INTRODUCTION

Operator control is provided by the consolette and the system
terminal, a microcode-supported device interfaced to the system
by an asynchronous line controller. The system terminal can be
used as the operating system's console device and can be a video
display unit (VDU) or a printing terminal. The asynchronous
interface must be strapped as device numbers X'l0' and X'l1l°'.

2.2 CONFIGURATION

The consolette, shown in Figure 2-1, controls power to the system
and initial program load (IPL). It also provides controls for
system initialization, processor halt/run and single step. LEDs
on the system console indicate the current state of the system.

580-2

SINGLE HALT/RUN ENABLE INIT CPU MEMORY
LOCK POWER POWER WAIT FAULT
on O O O O
STANDBY
DISABLE

Figure 2-1 Consolette

Keyboard commands through the system terminal allow the operator
to examine and modify processor registers and main memory
locations and begin program execution (see Figure 2-2).
Hexadecimal characters and a number of special characters are
recognized by the system terminal support microcode. Accepted
characters and their meanings are shown in Table 2-1. No other
characters are accepted; other characters cause a question mark
(?) to be written to the system terminal. When not in use for
operator control, the system terminal is available to a running
program for use as an input/output (I/0) device. See Appendix F
for a flowchart of the console service routine.

50-022 ROO 2-1

TABLE 2-1 SYSTEM TERMINAL SUPPORT

COMMAND SUMMARY

KEY

[E)n)n]n)n)(n]] R
[R)n]
(F)(n)[cy]
[Bln][cr]

(B)[cR]

=

BFa)

1
1
]
'
]
1
]
]
]
1
]
1
1
I
1
1
]
1
i
t
]
!
]
L}
[}
J
]
L}
1
1
[
1
]
'
1
]
]
1
|
'
]
i
]
1
]
I
%
§
[}
]
]
i
1
]
|
1
1
t
]
1
i
1
)
'
1
1
i
]
I
i
]
U
i
i
]
|
]
|
]
!
]
L}
1
1
]
1
]
'
]
1
1
1

. . e = = —— —— —— ———— —— i T e - —— - Wi= e e e e e e e e e e me e e —— e ee e e e e = e

MEANING

SYSTEM
TERMINAL DISPLAY

T R R R T E T R R R T T E N TR AEERUT U EEERE

Select memory address
and display halfword
contents.

Select general register
and display contents.

Select single precision
floating point register
and display contents.

Select double precision
floating point register
and display contents.

Select program status
word (PSW) and display
contents.

Increment memory
location counter (LOC)
to display next sequen-
tial halfword.

Decrement memory LOC
to display previous
halfword.

Replace contents of
currently selected
memory location or
register with new data.

Begin program execution
at current memory
location.

Delete command.
Single step the in-

struction at current
memory location.

- s e v —— —— e Gen - e W e S Gen e e e e e emen
—— e - . —m e R Gmms - hee Mmen e e men e Geee e Wee mem —eem men mes = -

{@nnnnnn
nnnnnnnn YYYY
£

£Rn
YYXYYYYY
K

{Fn
XYYYYYYY
£

<Dn
YYYYYYYY YYYYYYYY
£

P

YYYYYYYY YYYYYYYY
£

£=YYYY for memory

£

£=YYYYYYYY for register
£

£

Sel0o#%

<

50-022 ROO

8060

NOTES

Characters in boxes indicate
operational key strokes are required

for commands.

The character symbol of lower-case n
is used to indicate the hexadecimal

address of memory or register.

The character symbol of upper-case Y
is used to indicate hexadecimal

contents of memory or register.

Underlined characters are those
output from the system. Characters
not underlined are those typed by the

operator.

A back arrow, underline (X'5F') or
back space (X'08') character can be
used to delete the previously input

hexadecimal character.

Space characters can be entered as
desired; they are ignored by the

processor.

sevwe | | o 5 F

pg DEL

CLR

PAGE | PAGE
PRINT | ERASE | BREAK
LINE | LINE

ESC

- + ~ 1BAcK
()) - = . [seace 7

23
(2]
o>
~
@«
0~

TAB Q

CAP

CTRL| ‘oex | A

D|F G| H J K L ' " | ReTuan - |HOME| = |

SHIFT y4

] LINE
Cc v B N M <’ > /7 SHIFT \' FE'ED

.

50-022 ROO

Figure 2-2 Model 6100 Keyboard Layout

/"POWER ON‘' LED

2.3 CONSOLETTE SWITCHES AND INDICATORS

The following sections detail the functions of the consolette
switches and indicators.

2.3.1 Key-Operated Security Lock

This is a 3-position (STANDBY-ON-LOCK), key-operated switch that
controls primary power to the system. It can also disable (LOCK)
the 1initialize and console switches, thereby preventing any
accidental manual input to the system. The power indicator lamp
(POWER) is on when the security 1lock 1is in the ON or LOCK
position.

~2.3.2 Control Switches

All the control switches, with the exception of the IPL switch,
are enabled only when the key-operated security lock is in the ON
position, and primary AC power is applied.

SINGLE STEP

SINGLE When in the UP position, control is automatically
given to the system terminal support routine at
the conclusion of each user level instruction.
The PSW is displayed, including the address of the
next sequential instruction (LOC). Execution of
the next instruction is caused by pressing the
HALT/RUN switch or by typing a less than character
or dgreater than character (< or >) on the system
terminal. To resume normal run mode execution,
return the SINGLE STEP switch to the DOWN position
and begin execution by pressing the HALT/RUN
switch or by typing the less than character (<() on
the system terminal. The SINGLE STEP switch |is
disabled when the security 1lock is in the LOCK
position. Attempts to single step through
instructions that 1I/0 to the system terminal do
not produce meaningful results.

HALT/RUN

HALT/RUN This momentary contact switch causes program
execution to be halted if the system was running
or resumed if the system was halted. When halted,
control is given to the system terminal support
routine through which the memory or registers can
be examined or modified and program execution

restarted. If the processor was already in the
system terminal support routine, program execution
is started. This switch is disabled if the

security lock is in the LOCK position.

2-4 50-022 ROO

IPL

ENABLE This switch is not disabled by the security lock.
When in the ENABLE position, " an IPL from the
loader storage unit (LSU) is performed after any
of the following steps:

DISABLE ® Turn the security lock from the STANDBY to the
- ON position.

® Depress the initialize (INIT) switch.

® Return AC power to the system.

INITIALIZE

INIT This momentary contact switch causes the system to
be initialized. The initialization sequence
clears all device controllers on the I/0 bus and
resets certain functions in the processor. The
fault lamp (FAULT) comes on when the switch is
depressed and is extinguished with the completion
of the initialization sequence.

2.4 OPERATING INSTRUCTIONS

The following sections detail operating instructions for power
up, entering the console service and IPL.

2.4.1 Power Up

To prevent IPL on power up, place the IPL switch in the DISABLE
position. To power up the system, turn the key-operated security
lock clockwise from the STANDBY to the ON position. The power
lamp (POWER) lights up, and power is provided to the system. The
fault lamp (FAULT) on the consolette also 1lights, and the
microdiagnostic routine is entered. This routine exercises
internal data paths and registers. If main memory power has
fallen out of regulation since the system was last running,
locations X'000000' to X'O7FFFF' are initialized. The diagnostic
routine tests the lowest 512kb of memory before extinguishing the
FAULT lamp. This diagnostic is limited in scope, serving only to
indicate a go/no-go condition. If an error is detected in any
portion of the microdiagnostic, the microcode loops indefinitely,
and the FAULT lamp remains on. If no errors are detected, the
FAULT lamp is turned off.

50-022 ROO 2-5

2.4.2 Entering Console Service

If power was lost while the microcode was in the console service
routine, control 1is returned to the console when the power-up
sequence is complete, provided that IPL is not enabled. If the
system was executing a program when power was lost, execution
resumes when power returns, provided that IPL is not enabled. To
enter console service in this case, depress the HALT/RUN switch.

2.4.3 Initial Program Load (IPL)

To perform IPL, place the IPL switch in the ENABLE position; then
initialize the system by depressing the INIT switch momentarily.
A power-down/power-up sequence is emulated, and diagnostics are
performed. At the successful completion of the microdiagnostic
sequence, an IPL from the LSU is performed. Control is
transferred to the newly-loaded program.

2.5 SYSTEM TERMINAL COMMANDS

When the system terminal support routine is entered from power up
or initialize, a carriage return (CR) and line feed (LF) sequence
are output. The current value of the PSW status and LOC are
output, followed by another CR and LF sequence. Finally, the
less than operator prompt character (<) is output to indicate

that the system is ready to receive operator commands. If memory
power was lost, the LOC is set to X'OOFFFFFE', and the PSW is set
to X'00008000°'. In this case, the first 512kb of memory are

written during power up to establish the error correction code
(ECC) bits.

Space characters can be used as desired in any of the described
system terminal commands. Spaces are ignored by the console
routine.

2.5.1 Select an Address and Examine (@)

The commercial "at" sign (@) places the system terminal support
routine in the address mode. This character can be followed by
up to six hexadecimal digits of address. Leading zeros are not
required. If more than six digits are input, only the least
significant six are used. A CR is used to signal the end of the
address; the address input is then copied into the LOC. A CR and
LF sequence are output, followed by the new value of the LOC and
the halfword contents of that location. Note that the data fetch
is subject to memory relocation if enabled by the current PSW.
After this display, a CR and LF sequence are output, followed by
a new operator prompt.

tln

system

if an invalid character is input by the ope e
(CR, LF and an

responds by outputting a question mark
operator prompt.

2-6 50-022 ROO

2.5.2 Increment and Examine Next Location (+)

After examining a memory location, the plus character (+) can be
used to advance the LOC by two. No other operator input is
required. A CR and LF are output, followed by the new LOC value
and the halfword contents of that location. This memory access
is subject to the relocation defined by the current PSW. After
outputting another CR and LF, the operator prompt character is
output. This procedure can be repeated to examine sequential
memory locations.

2.5.3 Decrement and Examine Prior Location (-)

After examining a memory location, the minus character (-) can be
used to decrement the LOC by two. No other operation is
required. A CR and LF are output, followed by the new LOC value
and the halfword contents of that location. This memory access
is subject to the relocation defined by the current PSW. After
outputting another CR and LF, the operator prompt character is
output. This procedure can be repeated to examine sequential
memory locations.

2.5.4 Modify Current Location (=)

After examining a memory location, the equal sign (=) can be used
to put the system terminal support routine in the memory write
mode. This character can be followed by up to four hexadecimal
digits of data to be written. Leading zeros are not required.
If more than four digits are input, only the least significant
four are used. A CR is used to signal the end of the data. At
that time, the accumulated data is written into the memory
location currently addressed by the LOC. This memory write is
subject to the relocation defined by the current PSW. The
current LOC is incremented by two and a CR, LF and an operator
prompt are output. This procedure can be repeated to modify
sequential memory locations.

2.5.5 Examine General Register (R)

The character R causes the system terminal support routine to
interpret subsequent hexadecimal input as the number of a general -
register (in the set selected by the current PSW) to be
displayed. A CR is used to signal the end of hexadecimal input.
At that time, the least significant four bits of the accumulated
hexadecimal data are taken as the desired register number. The
fullword contents of that register are output followed by a CR,
LF and an operator prompt. Plus and minus commands are invalid
for general registers.

50-022 ROO 2-7

2.5.6 Modify General Register (=)

Immediately after examining a general register, the equal sign
(=) can be used to change the contents of the currently selected
register. The equal sign can be followed by up to eight
hexadecimal digits of data. Leading zeros are not required. If
more than eight digits are input, only the least significant
eight are used. A CR 1is wused to signal the end of the data
input. At that time, the accumulated data is copied into the
currently selected general register. A CR, LF and an operator
prompt are then output.

2.5.7 Examine Single Precision Floating Point Register (F)

The character F causes the system terminal support routine to
interpret subsequent hexadecimal input as the number of a single
precision floating point register to be displayed. A CR is used
to signal the end of hexadecimal input. At that time, the least
significant four bits of the accumulated hexadecimal data are
taken as the desired register number. If necessary, this number
is rounded to the next lowest even number. The fullword contents
of that register are output followed by a CR, LF and an operator

prompt. Plus and minus commands are invalid for floating point
registers.

2.5.8 Modify Single Precision Floating Point Register (=)

Immediately after examination of a single precision floating
point register, that register 1is available for modification.
Type an equal sign (=) followed by up to eight hexadecimal digits
of data. Leading zeros are not required. If more than eight
digits are input, only the least significant eight are used. A
CR is used to signal the end of the data input. At that time,
the accumulated data is copied into the currently selected single
precision floating point register. This data is not tested for
normalization; therefore, an unnormalized floating point number
can be manually placed in the register. The system outputs a CR,
LF and an operator prompt.

2.5.9 Examine Double Precision Floating Point Register (D)

The character D causes the system terminal support routine to
interpret subsequent hexadecimal input as the number of a double
precision floating point register to be displayed. A CR is used
to signal the end of hexadecimal input. At that time, the least
significant four bits of the accumulated hexadecimal data are
taken as the desired register number. If necessary, this number
is rounded to the next lowest even number. The doubleword
contents of that register are output, followed by a CR, LF and an
operator prompt. Plugs and minus commands are invalid for
floating point registers.

2-8 50-022 ROO

2.5.10 Modify Double Precision Floating Point Register (=)

Immediately after examining a double precision floating point
register, that register is available for modification. Type an
equal sign (=) followed by up to 16 hexadecimal digits. Leading
zeros are not required. If more than 16 digits are input, only
the last 16 digits are used. A CR is used to signal the end of
the data input. At that time, the accumulated data is copied
into the currently selected double precision register. The data
is not tested for normalization; therefore, an unnormalized
floating point number can be manually placed in a double
precision register. The system outputs a CR, LF and an operator
prompt .

2.5.11 Examine Program Status Word (PSW) (P)

The character P puts the system terminal support routine into the
PSW display mode. A CR is required to complete this command
input. Upon receipt of the CR, the contents of the PSW are
output followed by a CR, LF and an operator prompt. The plus and
minus commands are invalid for the PSW.

2.5.12 Modify Program Status Word (PSW) (=)

Immediately after examining the PSW, the equal sign (=) can be
used to change the contents of the PSW status field. The equal
sign can be followed by up to eight hexadecimal digits of data.
Leading zeros are not required. If more than eight digits are
input, only the least significant eight are used. A CR 1is used
to signal the end of the data input. At that time, the
accumulated data is copied into the PSW, which is then displayed.
A CR, LF and an operator prompt are then output.

2.5.13 Execute Single Instruction (>)

Entering the greater than character (>) causes the processor to
execute the instruction indicated by the LOC in single step mode.
After this execution, the console service routine displays the
PSW and LOC, followed by a CR, LF and an operator prompt.

2.5.14 Enter Run Mode ()

Entering the less than character (<) causes the processor to
begin program execution, starting with the instruction indicated
by the LOC.

2.6 MEMORY INITIALIZATION

The following example shows how to set up dedicated 1low memory

for loading either the 32-bit relocating loader or the diagnostic
loader from magnetic tape.

50-022 ROO 2-9

Example:

8070

< (2] [cR]

O07EFO0 02073E

< (=] (2) [0 (o] 0] [cR]

002000 02073E

< [e] (3] [o] [cH

000030 0000

< (=] (8] (8] (9] [0] [cR]

000032 8000

¢ [[0 0] [9] [cH

000034 0000

¢ [+
000036 0050
<(=] (3] (0] [cr]

000038 0000

¢ (=] (8] (8] [9] [0] [cR]

00003A 8000
¢ (= 2] [[0] [¢]
00003C 0000

< [+]

00003E 0050

< (=] (3] (8] [cR

000040 4000

(@B 6 E

000050 D500

Display PSW
Current PSW and LOC

Set PSW to X'002000', enabling machine
malfunction interrupts

Current PSW and LOC

Select address X'30', the machine
malfunction new PSW

Location X'30' contains X'0000'
Change to BRK instruction

Location X'32' contains X'8000'
Change contents of X'32' to X'2000'

Location X'34' contains X'0000°',
as desired

Advance the next location

Location X'36' contains X'0050'
Change contents of X'36*' to X'0030'
Location X'38' contains X'0000'
Change to BRK instruction

Location X'3A' contains X'8000'
Change contents of X'3A' to X'2000'

Location X'3C' contains X'0000',
as desired

Advance to next location
Location X'3E' contains X'0050°
Change contents of X'3E' to X'0038'

Location X'40' contains X'4000°',
which can be ignored
Select address X'50'

Location X'50' contains X'D500°', the
desired auto-load instruction

50-022 ROO

8071

£ Advance to next location

000052 OOCF Location X'52' contains X'OOCF',
the usual auto-load ending address,
which is desired

< Advance to next location
000054 4300 Location X'54' contains X'4300', part
. of a branch instruction, which is

desired

< Advance to next location

000056 0080 Location X'56' contains X'0080°',
the desired branch address

< [e] , Select address X'78°

000078 C1l86 Location X'78' contains X'C186"'

< (=1 (8] 5] [a] Change contents of X'78' to X'85Al"

the device number and command byte
for the magnetic tape unit

00007A 0000 Location X'7A' contains X'0000°
< Advance to next location
00007C O0FO0 Location X'7C' contains the device

address of the selector channel
(SELCH), which might be used by the

loader
< (8] (5] [o0] Select address X'50°
000050 D500 Location X'50' contains X'D500'
< Start program execution

After loading, the relocating loader relinquishes control of the
processor to the loaded program.

2.7 SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS

The system terminal uses a communication I/0 board or
multiperipheral controller (MPC). The MPC comprises the LSU, a
universal clock (UCLOCK), a printer port and eight serial ports.
Since the microprogram of the processor must communicate with the
system terminal, the device address 1is fixed at X'010' and
X'0ll'. The MPC supports only full-duplex operations.

The microprogram programs the system terminal interface for

highest clock rate, two stop bits per character, seven data bits
and even parity. Echoplex is not turned on.

50-022 ROO 2-11

CHAPTER 3
LOGICAL OPERATIONS

3.1 INTRODUCTION

The set of logical instructions provides a means for manipulating
binary data. Many of the instructions grouped with the logical
set can also be used in arithmetic and other operations. These
instructions include 1loads, stores, compares, shifts, list
processing, translation and cyclic redundancy checks (CRCs).

3.2 LOGICAL DATA FORMATS

Logical data can be organized as bytes, halfwords, fullwords or
bit arrays of up to 227 bits as shown in Figure 3-1.

585

0 BYTE 7

0 HALFWORD 15

0 FULLWORD 31
0 - BIT ARRAY N

)

LS
b o)

Figure 3-1 Logical Data

50-022 ROO 3-1

3.3 OPERATIONS

In logical operations between the contents of a general register
and a halfword operand, the halfword operand is expanded to a
fullword before the operation starts. The halfword is expanded
by propagating the most significant bits through bits 0:15 of the
fullword. For example, the halfword ‘A000' is expanded to
'FFFFAO000' before participating in the operation.

3.3.1 Boolean Operations

The Boolean operators AND, OR and Exclusive-OR (XOR) operate on
halfword and fullword quantities. All bits in both operands

participate individually. The Boolean functions are defined as
follows:

OAND O = O

OAND 1 =0 (logical product)
1 AND O =0

1LAND 1 =1

OOR 0 =0

OOR 1 =1 (logical sum)
1LOR 0 =1

10R 1=1

0O XOR O =0

0 XOR 1 = 1 (logical difference)
1 XOR 0 = 1

1 XOR1 =20

3.3.2 Translation

The Translate (TLATE) instruction is used to translate a
character directly or to effect an unconditional branch to a
special translate subroutine. Associated with the Translate
instruction is a translation table. The entries in the table are
halfwords, as shown in Figure 3-2.

586

0 7 8 15

1 CHARACTER ENTRY SPECIFYING TRANSLATED
CHARACTER

0 | (CHAR. HANDLING ROUTINE ADDRESS) /2 ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

N

Figure 3-2 Translation Table Entry

3-2 50-022 ROO

587

The character to be translated is a byte of logical data. This
unsigned quantity is doubled and used as an index into the
translation table. If the corresponding table entry has a one in
bit position zero, then bits 8:15 contain the character to be
substituted for the data character. If there is a zero in bit
position =zero, bits 1l:15 contain the address, divided by two, of
the translation routine. When the Translate instruction results
in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16-bit address, the software
routine must be located in the first 64kb of the program address
space. The program can reside anywhere in memory if it is
relocated by the memory address translator (MAT). The
translation table can contain up to 256 entries. However, if the
data characters are always less than eight bits, fewer entries
are required.

3.3.3 List Processing

The list processing instructions manipulate a circular 1list as
defined in Figure 3-3.

J)L

\(

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOT 0
SLOT 1
~ 7
SLOTN

Figure 3-3 Circular List Definition

The first four halfwords, called the list header, contain the

list parameters. Immediately following the header is the list
itself. The first fullword in the list is designated Slot O.
The remaining slots are designated 1, 2, 3, etc., up to a maximum
slot number, which is equal to the number in the list minus one.
An absolute maximum of 65,535 fullword slots can be specified.
(Slots are designated 0 through X'FFFE'.)

50-022 ROO 3-3

The first halfword of the header indicates the number of slots
(fullwords) in the entire list. The second halfword indicates
the current number of slots being used. When this halfword
equals zero, the list is empty. When this halfword equals the
number of slots in the list, the list is full. Once initialized,
this halfword is maintained automatically. It is incremented
when elements are added to the list and decremented when elements
are removed.

The third and fourth halfwords of the 1list header specify the
current top of the 1list and the next bottom of the list,

respectively. These pointers are also updated automatically (see
Figure 3-4).

588 yd /S
/
[SLOT n /
SLOT 0]
CURRENT TOP —* SLOT 1
OCCUPIED SLoT2
SECTION SLOT 3
SLOT 4
NEXT BOTTOM — SLOT 5 \
\ N\
N

Figure 3-4 Circular List

3.4 LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), Short
Form (SF), Register and Indexed Storage (RX), and Register and
Immediate Storage (RI) instruction formats.

3.5 LOGICAL INSTRUCTIONS

The instructions described in this section are:

L Load

LR Load Register

LI : Load Immediate

LIS Load Immediate Short
LCsS ~Load Complement Short

3-4 50-022 ROO

LH
LHI

LRA

LHL

LBR
EXHR
EXBR
ST
STH
ST™M

STB
STBR

CL
CLR
CLI

CLH
CLHI

CLB
NR
NI
NH
NHI
OR
OI
OH
OHI
XR
XI

XH
XHI

50-022 ROO

Load Halfword
Load Halfword Immediate

Load Address

Load Real Address
Load Halfword Logical
Load Multiple

Load Byte
Load Byte Register

Exchange Halfword Register
Exchange Byte Register
Store

Store Halfword

Store Multiple

Store Byte
Store Byte Register

Compare Logical
Compare Logical Register
Compare Logical Immediate

Compare Logical Halfword
Compare Logical Halfword Immediate

Compare Logical Byte

AND
AND Register
AND Immediate

AND Halfword
AND Halfword Immediate

OR
OR Register
OR Immediate

OR Halfword
OR Halfword Immediate

Exclusive-OR .
Exclusive-OR Register
Exclusive-OR Immediate

Exclusive-OR Halfword
Exclusive-OR Halfword Immediate

TI

THI

SLL
SLLS

SRL
SRLS

SLHL
SLHLS

SRHL
SRHLS

RRL

TS

TBT

SBT

CBT

CRC1l2
CRC16

TLATE

ATL
ABL

RTL
RBL

Test I
Test H

Shift
Shift

Shift
Shift

Shift
Shift

Shift
Shift

Rotate

Rotate

mmediate
alfword Immediate

Left Logical
Left Logical Short

Right Logical
Right Logical Short

Left Halfword Logical
Left Halfword Logical Short

Right Halfword Logical
Right Halfword Logical Short

Left Logical

Right Logical

Test and Set

Test B
Set Bi
Reset
Comple

Cyclic
Cyclic

Transl

Add to
Add to

Remove
Remove

it

t

Bit
ment Bit

Redundancy Check Modulo 12
Redundancy Check Modulo 16

ate

Top of List
Bottom of List

from Top of List
from Bottom of List

50-022 ROO

3.5.1 Load (L, LR, LI)

Load (L)
Load Register (LR)
Load Immediate (LI)

Assembler Notation Opcode Format
L .R1,D2(X2) 58 RX1,RX2
1, R1,A2(FX2,8X2) 58 RX3

LR R1,R2 08 RR

L1 R1,12(X2) F8 RI2
Operation:

The second operand replaces the contents of the register
specified in Rl.

Condition Code:

Value is zero
Value is not zero
Value is not zero

Programming Notes:

When the load instructions operate on fixed point data, the
condition code indicates 2zero (no flags), negative (L flag) or
positive (G flag) value.

In the RR format, if Rl equals R2, the Load instruction functions
as a test on the contents of the register.

In the RX formats, the second operand must be located on a
fullword boundary.

50-022 ROO 3-7

3.5.2 Load Immediate Short (LIS)

Assembler Notation Opcode Format
LIS R1,N 24 SF
Operation:

The 4-bit second operand is expanded to a 32-bit fullword with
high order bits forced to zero. This fullword replaces the
contents of the register specified by Rl.

Condition Code:

-
-
-
-

Value is zero
Value is not zero

o

Programming Note:

When this instruction operates on fixed point data, the condition
code indicates zero (no flags) or positive (G flag) value.

Example:
Assembler Neotation Machine Code Comments
LIS REG4, 15 244F LOAD 15 INTO REG4

Result of LIS Instruction:

(REG4) = 000000OF
Condition code = 0010 (G=2)

3-8 50-022 ROO

3.5.3 Load Complement Short (LCS)

Assembler Notation Opcode Format
I.CS R1,N 25 SF
Operation:

The 4-bit second operand is expanded to a 32-bit fullword with
high order bits forced to zero. The two's complement value of
this fullword then replaces the contents of the register
specified by Rl.

Condition Code:

Value is zero
Value is not zero

o
o

Programming Note:

When this instruction operates on fixed point data, the condition
code indicates zero (no flags) or negative (L flag) value.

Example:
Assembler Notation Machine Code Comments
LCS REGS8, 7 2587 LLOAD -7 INTO REGS

Result of LCS Instruction:

(REG8) = FFFF FFF9
Condition code = 0001 (L=1)

50-022 ROO 3-9

3.5.4 Load Halfword (LH, LHI)

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Opcode Format
LH R1,D2(X2) 48 RX1,RX2
LH R1,A2(FX2,8X2) 48 RX3

LHI R1,12(X2) c8 RI1
Operation:

The halfword second operand is expanded to a fullword by
" propagating the most significant bit through bits 0:15. This
fullword replaces the contents of the register specified by Rl.

Condition Code:

0o | Value is zero
1 ¢ Value is not zero
o | Value is not zero

Programming Notes:

When the load halfword instructions operate on fixed point data,
the condition code indicates zero (no flags), negative (L flag)
or positive (G flag) value.

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

3-10 50-022 ROO

3.5.5 Load Address (LA)

Assembler Notation Opcode Format
LA R1,D2(X2) Eb RX1,RX2
LA R1,A2(FX2,8X2) E6 RX3
Operation:

The effective address of the second operand (24
bits 8:31 of the register specified by Rl.
register specified by Rl are forced to zero.

Condition Code:

Unchanged

Programming Note:

The length of the address quantity depends

bits) replaces
Bits 0:7 of the

on the internal
structure of the particular machine; in this

processor the

calculated address replaces bits 8:31 of the register specified

by R1l, and bits 0:7 are replaced by zero.

50-022 ROO

3.5.6 Load Real Address (LRA)

Assembler Notation Qpcode Format

LRA R1,D2(X2) 63 RX1,RX2

LRA R1,A2(FX2,5X2) 63 RX3

Operation:

This instruction simulates the operation of the MAT. The
register specified by Rl contains a program address (not
relocated). The second operand address points to a

relocation/protection module parameter block, in the format
shown:

BYTE
OFFSET O 1 14 15 31
+0 | PSTD | (PST ENTRIES) -1 | A(PROCESS SEGMENT TABLE) /128 |
| mmmmm o —m e ey :
+4 { SSTD | (SST ENTRIES) -1 | A(SHARED SEGMENT TABLE) /12 |

- A = ———————— T —— ————— " — T T ———— ——— " o ——————— —— - " - —————— - —

The address contained 1in the register specified by Rl is
relocated, using the appropriate parameters. The relocated
address replaces the contents of the register specified by Rl.

Condition Code:

P C i ViIiG L

|=e=============|

V1 104} 0} 0| Segment not mapped

i1 011401} 0| Nonpresent segment

{01011} X | Write-protected segment

1 01 0} X} 1| Read- or execute-protected segment
i 0}y 04101} O | No restrictions

The condition code is determined on a priority basis with segment
table size exceeded checked first, nonpresent segment second,

segment limit exceeded third and all protect keys (as a group)
last.

Programming Notes:

Segment tables must conform to the rules given in the section on
memory management; otherwise, the results of the LRA instruction
are undefined.

3-12 50-022 ROO

If the address 1is not mapped or not present, the register
specified by Rl is unchanged.

Segment table size exceeded or segment limit exceeded results 1in
condition code 1000 (unmapped).

The second operand must be located on a fullword boundary.

Example:

This example performs an address translation in the same manner
as the MAT as implemented on this machine (4kb page size). The
steps shown are not optimal and do not reflect the actual
operation of the MAT.

To set up for this example, register Rl contains X'053147', the
program address to be translated. RELOCBLK is the address of a
relocation/protection module parameter block. This block
contains two fullwords. The first of these 1is the process

segment table descriptor (PSTD), with the value X'OOOEO6BF'. The
second is the shared segment table descriptor (SSTD), with the

value X'ooocoeco’. Memory location X'035FA8' contains the
process segment table entry (PSTE) to be used with the value
X'588A0028'. Memory location X'036028' contains the shared

segment table entry (SSTE) to be used with the value X'58126800"'.
The instruction proceeds as follows:

LRA R1,RELOCBLK TRANSLATE ADDRESS IN R1l

1. The PSTD is fetched from RELOCBLK and ANDed with X'FFFEQQOO'
to extract the segment table size field. The result,
X'000EQ0000', is shifted right 17 bit positions, yielding
X'00000007". This value 1is the number of entries in the
process segment table (PST) minus one. Therefore, the PST
has entries for segments 0 through 7.

2. The program address from register R1l, X'053147', 1is shifted
right 16 bit positions to yield the specified segment number,
X'00000005". The segment number is compared with the PST
size. If the PST size were less than the segment number,

- this would mean that no entry existed in the PST for the-
gspecified segment, and that the segment was unmapped
(condition code = 8). However, such is not the case, and the
instruction proceeds.

3. The PSTD is ANDed with X'OOOlFFFF' to extract the segment
table address field. The result, X'000006BF', is shifted
left seven bit positions to multiply it by 128. This vyields
the address of the PST, X'35F80'.

50-022 ROO 3-13

The segment number specified by the program address in Rl
(X'053147"') is used as an index into the PST. Because each
segment table entry (STE) requires eight bytes, the segment
number, X'00000005', is shifted left three bit positions, to
multiply it by eight. The zresult, X'00000028', and the
address of the PST, X'035F80', are added. The result is the
address X'035FA8', and the PSTE at that address is fetched.
This PSTE has the value X'588A0028'.

The PSTE is ANDed with the value X'40000000' to test the
presence bit in the STE. If the bit were zero, this would
mean the segment was not present (condition code = 4). Such
is not the case, however, and the instruction proceeds.

The PSTE is then ANDed with X'00800000' to test the shared
segment bit. If the bit were zero, the LRA instruction would
use the data in the PSTE as data in the SSTE also and perform
the operations in Step 9 below; but such is not the case.

The shared segment bit in the PSTE is set, which means that
an entry from the shared segment table (SST) must also be

used in translating the program address. The SSTD
(X'000Cc06C0') 1is ANDed with X'FFFE0000' to extract the
segment table size field. The result, X'000C0000', is

shifted right 14 bit positions to yield X'00000030'. This
value is the maximum SST offset, which is the offset in bytes
from the start of the SST to the beginning of the last entry.

The SSTD is ANDed with X'OOO1lFFFF' to extract the segment
table address field. The result, X'000006C0*', is shifted
left seven bit positions to yield the address of the SST,
X'036000°'.

The PSTE is now ANDed with X'0O001FFFF' to extract the segment

relocation field (SRF). This field has the value
X'00000028"'. If this value exceeded the maximum SST offset,
this would mean that no entry existed in the SST for the
specified segment, and that the segment was unmapped

(condition code = 8); but such 1is not the case, so the
ingtruction proceeds. The SRF is added with the PST address,
X'036000'. The SSTE pointed to by the PSTE is located at the
resulting address, X'036028'.

The SSTE is fetched, and its value found to be X'58126800'.
This value is ANDed with X'40000000' to test the STE presence
bit. If the bit were zero, this would mean the segment was
not present (condition code = 4); but such is not the case,
and the instruction proceeds.

The SSTE, with a value X'58126880', is ANDed with the value

X'003C0000* to extract the segment limit field (SLF). The

resulting valu X'00100000', 1is shifted right six bit
1

Pncif*ir\na wvie n STEF valune of x'eeﬁﬂﬂﬁﬁ(\"

WO LG LIlO 7 + Ag au ~ Ll VR L VL VuuJuv

50-022 ROO

10.

11.

The program address from R1, X'053147', is ANDed with
X'0000F000"' . The resulting value, X'00003000', is compared
to the SLF value, X'00004000°'. If the SLF value were the
lesser of the two values, this would - indicate that the
program address was in an unreachable part of the segment
(segment 1limit violation), and thus unmapped (condition code
= 8); but such is not the case, and the instruction proceeds.

At this point, address translation can be performed. The
SSTE, with value X'58126800', is ANDed with the value
X'0001FFFF' to extract the SRF. This field has the value
X'00006800"'. The SRF is shifted left seven bit positions,
giving the relocation value X'00340000°.

The program address from R1l, X'053147', is ANDed with the
value X'OOOOFFFF', giving the value X'00003147'. To this
value is added the relocation value, X'00340000'. The result
is the translated program address, X'343147', which replaces
the contents of register R1.

The PSTE, with value X'588A0028', and the SSTE, with value
X'58126800', are ANDed, yielding the value X'58020000'. This
value contains the combined segment access keys. If ANDing
the keys with X'08000000' yielded a zero result, the G flag
would be set in the condition code to indicate a
write-protected segment. If ANDing the keys with X'10000000'
yielded a zero result, the L flag would be set in the
condition code to indicate a read-protected segment; but
neither is the case. ANDing the keys with X'04000000' does
yield a zero result, and the L flag is set in the condition
code to indicate that the segment is execute-protected. The
LRA instruction terminates once these tests have been
performed (see Figure 3-5).

461-3
R1= 00053147 VIRTUAL ADDRESS

4 SEGMENT NUMBER
l BYTE OFFSET
SEGMENT NUMBER
RELOCBLK PST (AT X’ 35F80°)
PSTD 000E06BF (‘J g_:::g:
ssto [ooocoeco] SST (AT X°360000°) 2
8BYTES 0 3
8-BYTES 8 4
8-BYTES 10 o_ 3FAB———— 5] 588A0028 SHARED BYTE
8BYTES 18 N 'y OFFSET=28
8-BYTES 20 : '
36028———»| 58126800 28 | !
! !
N 7/

———— . -

SEGMENT (AT 'X340000')

RN

BYTE OFFSET = 3147 AT 343147

Figure 3-5 LRA Example

50-022 ROO 3-15

3.5.7 Load Halfword Logical (LHL)

Assembler Notation Opcode Formatbt
LHL R1,D2(X2) 73 RX1,RX2
LHL R1,A2(FX2,58X2) 73 RX3
Operation:

The halfword second operand replaces bits 16:31 of the register

specified by Rl. Bits 0:15 of the register specified by Rl are
replaced by zero.

Condition Code:

Value is zero
Value is not zero

Programming Note:

The second operand must be located on a halfword boundary.

3-16 50-022 ROO

3.5.8 Load Multiple (LM)

Assembler Notation Opcode Format
IM R1,D2(X2) D1 RX1,RX2
M R1,A2(FX2,8X2) D1 RX3
Operation:

Successive registers, starting with the register specified by R1,
are loaded from successive memory locations, starting with the
location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory.
The process stops when register 15 has been loaded.

Condition Code:

Unchanged

Programming Notes:
The second operand must be located on a fullword boundary.

The second operand address is formed before any registers are
loaded; therefore, X2, FX2 and SX2 can be among the registers
loaded.

In the event of a machine malfunction due to a noncorrectable
memory error or MAT fault, the effective address calculated at
the beginning of the instruction 1is available if a retry is
desired. For details, see Chapters 10 and 1l1.

50-022 ROO 3-17

3.5.9 Load Byte (LB, LBR)

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation Opcode Format
LB R1,D2(X2) D3 . RX1,RX2
I.B R1,A2(FX2,8X2) D3 RX3
I.BR R1l,R2 93 RR
Operation:

The 8-bit second operand replaces the 1least significant bits
(bits 24:31) of the register specified by Rl1. Bits 0:23 of the
register are forced to zero.

ol - —
“Condition Cade?
Unchanged /

/'

/ S / .
k_d’/,/fibgramming Note:

In the LBR instruction, the second operand is taken from the
least significant eight bits (bits 24:31) of the register
specified by R2.

3-18 50-022 ROO

3.5.10 Exchange Halfword Register (EXHR)

Assembler Notation Opcode Format
EXHR R1,R2 34 RR
Operation:

Bits 0:15 of the register specified by R2 replace bits 16:31 of
the register specified by RI1. Bits 16:31 of the register
specified by R2 replace bits 0:15 of the register specified by
R1.

Condition Code:

Unchanged

Programming Note:

If Rl equals R2, the two halfwords contained within the register

are exchanged. If Rl does not equal R2, the contents of R2 are
unchanged.

Example:

Assembler Notation Machine Code Comments

LI REGS5,Y' OABCDEF9"* F850 OABC DEF9 (REGS) = OABCDEF9

LI REG7,Y'12345678" F870 1234 5678 (REG7) = 12345678

EXHR REGS5,REG7 3457

Result of EXHR Instruction:

(REGS) 56781234
(REG7) 12345678
Condition code unchanged

50-022 ROO 3-19

3.5.11 Exchange Byte Register (EXBR)

Assembler Notation Opcode Format
EXBR R1,R2 94 RR
Operation:

The two bytes contained in bits 16:31 of the register specified
by R2 are exchanged and loaded into bits 16:31 of the register
specified by Rl1. Bits 0:15 of the register specified by Rl are
unchanged. The register specified by R2 is unchanged.

Condition Code:

Unchanged

Programming Note:

Rl and R2 can specify the same register. In this case, the two

bytes in bits 16:31 of the register specified by R2 are
exchanged.

Example:

Assembler Notation Machine Code Comments

LI REG7,X'5A6B3C4D’ F870 5A6B 3C4D (REG7) = 5A6B3C4D
LI REGC3,Y'98761234" F830 9876 1234 (REG3) = 98761234
EXBR REG7,REG3 9473

Reanlt of EXBR Instruction:

(REG7) SA6B3412
(REG3) 98761234
Condition code unchanged

3-20 ‘ 50-022 ROO

3.5.12 Store (ST)

Assembler Notation Opcode Format
ST R1,D2(X2) 50 RX1,RX2
ST R1,A2(FX2,8X2) 50 RX3
Operation:

The 32-bit contents of the register specified by Rl replace
contents of the fullword memory location specified by
effective address of the second operand.

Condition Code:

Unchanged

Programming Note:

The second operand must be located on a fullword boundary.

50-022 ROO

the
the

3.5.13 Store Halfword (STH)

Assembler Notation Qpcode Format
STH R1,D2(X2) 40 RX1,RX2
STH R1,A2(FX2,8X2) 40 RX3
Operation:

Bits 16:31 of the register specified by Rl replace the contents
of the halfword memory location specified by the effective
address of the second operand.

Condition Code:

Unchanged

Programming Note:

The second operand must be located on a halfword boundary.

3-22 50-022 ROO

3.5.14 Store Multiple (STM)

Assembler Notation Opcode Format
ST™™ R1,D2(X2) DO RX1,RX2
ST™M R1,A2(FX2,8X2) DO RX3
Operation:

The fullword contents of registers, starting with the register
specified by Rl, replace the contents of successive fullword
memory locations, starting with the location specified by the
effective address of the second operand. The process stops when
register 15 has been stored.

Condition Code:

Unchanged

Programming Note:

The second operand must be located on a fullword boundary.

50-022 ROO 3-23

3.5.15 Store Byte (STB, STBR)

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation Opcode Format
STB R1,D2(X2) D2 . RX1,RX2
STB R1,A2(FX2,5X2) D2 RX3
STBR R1,R2 92 RR
Operation:

The least significant eight bits (bits 24:31) of the register
specified by Rl are stored in the byte second operand location.

Condition Code:

Unchanged

Programming Note:

In the STBR instruction, the 8-bit quantity 1is stored in bits
24:31 of the register specified by R2. Bits 0:23 of the register
are unchanged.

Example:

The following example illustrates the use of the STBR
instruction.

Bssemh'l er ugbakinn Machine Cnde Comments

I.1 REG4,Y'13577531" F840 1357 7531 (REG4) = 13577531
I.I REG3,Y'24688642" F830 2468 8642 (REG3) = 24688642
S%BR REG4,REG3 9243

Result of STBR Instruction:
(REG4) = 13577531

(REG3) = 24688631
Condition code unchanged

3-24 50-022 ROO

3.5.16 Compare Logical (CL, CLR, CLI)

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation Opcode Format
Cl. @ R1l,D2(X2) 55 RX1,RX2
CL R1,A2(FX2,5X2) 55 RX3

CLR R1,R2 05 RR

CLI R1,12(X2) F5 RI2
Operation:

The first operand, the contents of the register specified by RI1,
is compared 1logically to the second operand. The result is
indicated by the condition code setting. Neither operand is
changed.

Condition Code:

i
]
{1 0} X} 0} O | First operand equal to second
Q&/%vi“T‘X_T”U\T”i‘1 First operand less than second
31Xt 17170 First operand less than second
i 0} X :/6\: 14 First operand greater than second
10 X }\;/; o | First operand greater than second

Programming Notes:

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

50-022 ROO 3-25

It is helpful to check the following condition code mask (M1l)
after a logical comparison:

{ MASK | TRUE/FALSE* | INFERENCE H
: R S S s T S S T S ST T E S E S S S S S S S SRS E S E ST =SS ST g
i3 | False { First operand equal to second |
i 3 | True { First operand not equal to second |
i 8 H False { First operand greater than or equal to |
] | { second]
i 8 H True { First operand less than second |

* See Chapter 4 for the true/false concept in branch
instructions.

3-26 50-022 ROO

3.5.17 Compare Logical Halfword (CLH, CLHI)

Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Opcode Formak
CLH R1,D2(X2) 45 RX1,RX2
CLH . R1,A2(FX2,8X2) 45 RX3
CLHI R1,12(X2) C5 RI1
Operation:

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1l, is
compared to this fullword. The result 1is indicated by the
condition code setting. Neither operand is changed.

Condition Code:

0 | First operand equal to second

1 | First operand less than second

o | First operand less than second
1] First operand greater than second
o | First operand greater than second

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

50-022 ROO 3-27

It is helpful to check the following condition code
after a logical comparison:

mask (M1l)

i MASK | TRUE/FALSE*

3 H False
3 ! True
8 ! False
]
]
8 : True

— —— e - ——

INFERENCE

First operand equal to second

First operand not equal to second

second
First operand less than second

|
|
First operand greater than or equal to |
[}
|

* See Chapter 4 for the true/false concept in branch

instructions.

50-022 ROO

3.5.18 Compare Logical Byte (CLB)

Assembler Notation Opcode
CLB R1,D2(X2) D4

CLB R1,A2(FX2,8X2) D4
Operation:

The byte gquantity,
specified by RI1,

operand is changed.

Condition Code:

OO

Programming Notes:

contained

Format

RX1,RX2

in bits 24:31 of the register

is compared with the 8-bit second operand. The
result is indicated by the condition code setting. Neither
ViG | L
==========g
X104 0| First operand equal to second
X101 1 First operand less than second
X} 11410} First operand greater than second
Both operands are treated as unsigned quantities.
If the second operand is zero, the C flag cannot set.
It is helpful to check the following condition code mask (Ml)

after a logical comparison:

-—

- w—— e e - wmes

50-022 ROO

MASK |

owWwwh N

TRUE /FALSE*

False
True
False
True
False

First operand
First operand
First operand
Firast operand
First operand
second

First operand

INFERENCE

not greater than second
greater than second
equal to second

not equal to second

greater than or equal to

less than second

* See Chapter 4 for the true/false concept in branch
instructions.

3.5.19 AND (N, NR, NI)

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Opcode Format
N R1,D2(X2) 54 RX1,RX2
N R1,A2(FX2,8X2) 54 RX3

NR R1l,R2 04 RR

NI R1,12(X2) F4 RI2
Operation:

The logical product of the 32-bit second operand and the contents
of the register specified by Rl replace the contents of the

register specified by R1l. The 32-bit logical product is formed
on a bit-by-bit basis.

Condition Code:

P CIViIiG L

=================

t 01 0O} O} O} Result is zero
10}y 0} 01 Result is not zero
f 0}y 0t 14 0 Result is not zero

Programming Notes:

In the RX formats, the second operand must be 1located on a
fullword boundary.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

3-30 50-022 ROO

3.5.20 AND Halfword (NH, NHI)

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Opcode Format
NH R1,D2(X2) 44 RX1,RX2
NH - R1,A2(FX2,8X2) 44 RX3

NHI R1,12(X2) C4 RI1
Operation:

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical product of this 32-bit quantity and the contents of the
register specified by Rl replace the contents of the register
specified by Rl. The 32-bit logical product is formed on a
bit-by-bit basis.

Condition Code:

Result is zero
Result is not zero
Result is not zero

(o o o]

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

50-022 ROO 3-31

3.5.21 OR (O, OR, OI)

OR (O)
OR Register (OR)
OR Immediate (OI)

Assembler Notation Opcode Format
o) R1,D2(X2) 56 RX1,RX2
o} R1,A2(FX2,8X2) 56 RX3

OR R1,R2 06 RR

o1 R1,12(X2) Fb6 RI2
Operation:

The logical sum of the 32-bit second operand and the contents of
the register specified by Rl replace the contents of the register
specified by RIL. The 32-bit 1logical sum 1is formed on a
bit-by-bit basis.

Condition Code:

-

Result is zero
Result is not zero
Result is not zero

[o o
OO

Programming Notes:

In the RX formats, the second operand must be 1located on a
fullword boundary.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

3-32 50-022 ROO

3.5.22 OR Halfword (OH, OHI)

OR Halfword (OH)
OR Halfword Immediate (OHI)

Assembler Notation Opcode Format
OH R1,D2(X2) 46 RX1,RX2
OH R1,A2(FX2,8X2) 46 RX3

OHI R1,12(X2) (o] RI1
Operation:

The halfword second operand 1s expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical sum of this 32-bit quantity and the contents of the
register specified by Rl replace the contents of the register
specified by RI1. The 32-bit logical sum is formed on a
bit-by-bit basis.

Condition Code:

Py vl el L

:=======:=======‘

HE O TN 6 A ¢ I R Result is zero

fV 0001 Result is not zero
N O R T 0 O R Y N ¢ Result is not zero

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

50-022 ROO 3-33

3.5.23 Exclusive-OR (X, XR, XI)

Exclusive-OR (X)
Exclusive-OR Register (XR)
Exclusive-OR Immediate (XI)

Assembler Notation Opcode Format
X R1,D2(X2) 57 RX1,RX2
X R1,A2(FX2,8X2) 57 RX3

XR R1,R2 07 RR

X1 R1,12(X2) F7 RI2
Operation:

The logical difference of the 32-bit second operand and the
contents of the register specified by Rl replace the contents of
the register specified by Rl. The 32-bit logical difference is
formed on a bit-by-bit basis.

Condition Code:

-
-
-
-

Result is zero
Result is not zero
Result is not 2zero

OoOoO0o
OO0

Programming Notes:

In the RX formats, the second operand must be located on a
fullword boundary.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

3-34 50-022 ROO

3.5.24 Exclusive-OR Halfword (XH, XHI)

Exclusive-OR Halfword (XH)
Exclusive-OR Halfword Immediate (XHI)

Assembler Notation Opcode Format
XH R1,D2(X2) 47 RX1l,RX2
XH = R1,A2(FX2,8X2) 47 RX3

XHI R1,12(X2) c7 RI1
Operation:

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical difference of this 32-bit quantity and the contents of
the register specified by Rl replace the contents of the register
specified by R1. The 32-bit logical difference is formed on a
bit-by-bit basis.

Condition Code:

icCiIViG | L |

| o o e e a e s e e s e s e g e]

T TEEEEEE T ——_—]

i 03 03 0 0 Result is zero
{0y 0} O}V 1 Result is not zero
fy 0y 014 0 Result is not zero

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

50-022 ROO 3-35

3.5.25 Test Immediate (TI)

Assembhler Notation QOpcode Format
TI R1,12(X2) F3 RI2
Operation:

Each bit of the second operand is logically ANDed with the
corresponding bit 1in the register specified by R1l. Neither
operand is changed.

Condition Code:

0 ! Result is zero
1 Result is not zero
0o | Result is not zero

OO0 0o

Programming Notes:

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

This instruction works the same as the AND Immediate instruction
(NI) except that the first operand is not changed.
Example:

This example tests if bit 16 of register 9 is set.

Assembler Notation Comments

TI REG9,Y'00008000' Test bit 16

BNZ LABEL, Branch if bit is set
Where:

(REG9) = 7EFBC230

Result of TI Instruction:
(REG9) unchanged

Condition code = 0010 (G=1l)
The conditional branch is taken.

3-36 50-022 ROO

3.5.26 Test Halfword Immediate (THI)

Assembler Notation Opcode Format
THI R1,12(X2) C3 RI1
Operation:

The . halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. Each bit
in this quantity is logically ANDed with the corresponding bit
contained in the register specified by Rl. Neither operand is
changed.

Condition code:

o | Result is zero
1 ¢ Result is not zero
0 | Result is not zero

Programming Notes:

When operating on fixed point data, the condition code indicates
zero (no flags), negative (L flag) or positive (G flag) result.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

This instruction works the same as the AND Halfword Immediate
instruction (NHI) except that the first operand is not changed.

50-022 ROO V 3-37

Example:

This example tests if any of bits 0:16 of register

Assembler Notation Commentsa

THI REG9,X'8000° Test bits 0:16
BNZ LABEL Branch if any set
Where:

(REG9) = 80800000

Result of THI Instruction:

(REG9) unchanged
Condition code = 0001 (L=1)
The conditional branch is taken.

9 are set.

50-022 ROO

3.5.27 shift Left Logical (SLL, SLLS)

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation Opcode Format
SIlL. R1,12(X2) ED RI1
SLLS R1,N 11 SF
Operation:

The first operand, the contents of the register specified by R1,
is shifted 1left the number of places specified by the second
operand. Bits shifted out of position 0 are shifted through the
carry (C) flag of the condition code and then lost. The last bit
shifted remains in the C flag. Zeros are shifted into position
31.

Condition Code:

-
>
-

|
|
|
!
[
{
[
|
[
|
|
[
|
I
I

Result is zero
Result is not zero
Result is not zero
Carry

MO O

Programming Notes:

In the RI1 format, the shift count is specified by the 1least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted ocut of position 0.

If the second operand specifies a shift of zero places, the
condition code 1is set in accordance with the value contained in
the register. The C flag is zero in this case.

When the register specified by Rl contains fixed point data, the

L flag set indicates a negative result and the G flag set
indicates a positive result.

50-022 ROO 3-39

3.5.28 Shift Right Logical (SRL, SRLS)

Shift Right Logical (SRL)
Shift Right Logical Short (SRLS)

Assembler Notation Qpcode Format
SRL R1,12(X2) EC RI1
SRLS R1,N 10 SF
Operation:

The first operand, the contents of the register specified by RI,
is shifted right the number of places specified by the second
operand. Bits shifted out of position 31 are shifted through the
C flag of the condition code and then lost. The last bit shifted
remains in the C flag. Zeros are shifted into position 0.

Condition Code:

F Ci vV IiG L
================:
X 104 0} 0| Result is zero
P X1 041014 1| Result is not zero
P X 104 1} 0§ Result is not zero
i1 40§ X | X | Carry
Programming Notes:
In the RI1 format, the shift count is specified by the

least significant five bits of the second operand. The maximum
shift count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 31.

When the register specified by Rl contains fixed point data, the
L. flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code is set in accordance with the value contained in
the register. The C flag is zero in this case.

3-40 50-022 ROO

3.5.29 shift Left Halfword Logical (SLHL, SLHLS)

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Opcode Format
SLHL R1,12(X2) CD RI1
SLHLS R1,N 91 SF
Operation:

Bits 16:31 of the register specified by Rl are shifted 1left the
number of places specified by the second operand. Bits shifted
out of position 16 are shifted through the carry flag and lost.
The last bit shifted remains in the C flag. Zeros are shifted
into position 31. Bits 0:15 of the first operand remain
unchanged.

Condition Code:

Result is zero
Result is not zero
Result is not zero
Carry

XOKHO

[P

Programming Notes:

The condition code setting is based on the halfword (bits 16:31)
result.

In the RI1 format, the shift count is specified by the
least significant four bits of the second operand. The maximum
shift count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 16.

When the register specified by Rl contains fixed point data, the
L. flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code is set in accordance with the value contained in
bits 16:31 of the register. The C flag is zero in this case.

50-022 ROO 3-41

3.5.30 shift Right Halfword Logical (SRHL, SRHLS)

Shift Right Halfword Logical (SRHL)
Sshift Right Halfword Logical Short (SRHLS)

Assembler Notaftion Opcode Format
SRHL, R1,12(X2) cc RI1
SRHLS R1,N 90 SF
Operation:

Bits 16:31 of the register specified by Rl are shifted right the
number of places specified by the second operand. Bits shifted

out of position 31
last bit shifted
position 16. Bits

are shifted through the C flag and lost. The
remains in the C flag. Zeros are shifted into
0:15 of the first operand remain unchanged.

Condition Code:

i ctvi G} L}

================;

! X 1V 0} 0§ 0| Result is zero

| Xy 04 0} 1% Result is not zero
VX404 14 0 Result is not zero
i1 10 X § X | Carry

Programming Notes:

The condition code setting is based on the halfword (bits
result.

16:31)

In the RI1 format, the shift count 1is specified by
least significant four bits of the second operand.
shift count is 15.

the
The maximum
In the SF format, the maximum shift count is 15.

The state of the C flag indicates
shifted out of position 31.

the state of the

last bit

When the register specified by Rl contains fixed point data, the
L. flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift
condition code is set in accordance

contained in bits 16:31 of the register.

this case. '

of zero places, the
with the halfword value
The C flag is 2zero 1in

42 50-022 ROO

3.5.31 Rotate Left Logical (RLL)

Assembler Notation Opcode Format
RILIL, R1,12(X2) EB . RI1
Operation:

The 32-bit first operand, contained in the register specified by
Rl, 1is shifted 1left, end around, the number of positions
specified by the second operand. Bits shifted out of position O
are shifted into position 31.

Condition Code:

-
-
-
-

Result is zero
Result is not zero
Result is not zero

O =0

Programming Notes:

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

When the register specified by Rl contains fixed point data, the
L. flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the
condition code 1is set in accordance with the value contained in
the register specified by Rl.

Example 1:

Assemblexr Notabtion Machine Code Comments

I.LI REGS,Y'56789ABC' F890 56789ABC (REG9)=56789ABC
RLI. REG9,X'0004" EB90 0004

Result of RLL Instruction:

(REGY9) = 6789ABCS
Condition code = 0010 (G=1)

50-022 ROO 3-43

Example 2:

Assembler Notation Machine Code
LI REG9,Y'88880000" F890 8888 0000
RII. REG9,X'03’ EBS0 0003
Result of RLL Instruction:'

(REGY9) = 44400004
Condition code = 0010 (G=1)

Comment.a
(REG9)=88880000

50-022 ROO

3.5.32 Rotate Right Logical (RRL)

Asgsembler Notation Opcode Format
RRL‘ R1,12(X2) EA . RI1
Operation:

The 32-bit first operand, which is contained in the register
specified by Rl, 1is shifted right, end around, the number of
positions specified by the second operand. Bits shifted out of
position 31 are shifted into position 0.

Condition Code:

0 | Result is zero
14 Result is not zero
0o ! Result is not zero

Programming Notes:

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

When the register specified by Rl contains fixed point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register specified by R1.

Example 1:

Assembler Notation Machine Code Comments

LI REG4,Y'12345678" F840 1234 5678 (REG4) = 12345678
RRI. REG4,X'04°® EA40 0004

Result of RRL Instruction:

(REG4) = 81234567
Condition code = 0001 (L=1)

50-022 ROO 3-45

Example 2:

Assembler Notation Machine Code Comments
LI REC4,Y'00001111"° F840 0000 1111 (REG4) = 00001111
RRI, REG4,X'01l* EA40 0001

Result of RRL Operation:

(REG4) = '800000888"'
Condition code = 0001 (L=1)

3-46 50-022 ROO

3.5.33 Test and Set (TS)

Agsembler Neotation Opcode Format
TS D2(X2) EO . RX1,RX2
TS A2(FX2,5X2) EO RX3
Operation:

The halfword operand is read from memory and, on the same cycle,
written back with the most significant bit set. The other
bits in the halfword are unchanged. On the read cycle, the
most significant bit of the operand is tested. The condition

code reflects the state of this bit at the time of the memory
read.

Condition Code:

rFCtHvVviIiG L

e — i

| 1

X1 X1 X | 0} Most significant bit is zero
P X VX P X 11 Most significant bit is set

Programming Notes:

The second operand must be located on a halfword boundary.

The TS instruction provides a mechanism for software
synchronization and can be used in a single processor environment
as follows: two or more user tasks (u-tasks) running under an

operating system share a halfword. This halfword is 1located in
a memory area referred to as task common. Each task can access

the halfword using the TS instruction. The synchronization
sequence can be as follows:

TASK 1 sets the most significant bit using the TS
instruction.
TASK 2 senses the most significant bit using the TS

instruction, sees that it is set, and performs
the necessary software synchronization.

50-022 ROO 3-47

3.5.34 Test Bit (TBT)

Assembler Notation Opcode Format
TBT R1,D2(X2) 74 RX1,RX2
TBT R1,A2(FX2,8X2) 74 RX3
Operation:

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
Rl is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and tested. The test does not change the bit.

Condition Code:

|

i

| Tested bit is zero
! Tested bit is one

Programming Note:

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example:

Assembler Notation Machine Code Comments
LIS REGS8,3 2483 (REG8) = 3

TBT REGS8,LABEL 7480 OBC4 LABEL = halfword

in memory at location
X'0OBC4'. It contains
X*'B34A°".

Result of TBT Instruction:
Memory location X'BC4' unchanged

(REG8) unchanged
Condition code = 0010 (G=1)...Bit 3 of location X'BC4' is set.

3-48 50-022 ROO

3.5.35 Set Bit (SBT)

Assembler Notation Opcode Format
SBT R1,D2(X2) 75 . RX1,RX2
SBT R1,A2(FX2,8X2) 75 RX3
Operation:

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
Rl is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and set to one.

Condition Code:

-
-
-
-

! ! ! Previous state of bit was zero
0!t 114 0} Previous state of bit was one

(=)
o

Programming Note:

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example:

Asagembler Notation Machine Code Comments

LIS REGS5, 8 2458 (REGS) = 8

SBT REG5,LABEL 7550 1520 LABEL located at
X'1520'. It contains
X*2134".

Result of SBT Instruction:
Contents of LABEL = 21B4

(REG5) unchanged
Condition code = 0000 (G=0)

50-022 ROO 3-49

3.5.36 Reset Bit (RBT)

Assembler Notation Opcode Format

RBT R1,D2(X2) 76
RBT R1,A2(FX2,SX2) 76

Operation:

The second operand address
byte boundary. The value
Rl is the bit displacement
counted from left to right

RX1,RX2
RX3

points to a bit array starting on a
contained in the register specified by
into the array. Bits in the array are

starting with bit zero. The

bit is located and forced to zero (reset).

Condition Code:

Programming Note:

For software compatibility with other processors, the

Previous state of bit was zero
Previous state of bit was one

should start on a halfword boundary.

Example:

Assembler Notation Machine Code Comment.s
LIS REG2,3 2423 (REG2) = 3
RBT REG2,LABEL 7620 1A42 LABEL located

Result of RBT Instruction:

Contents of LABEL = 2143
(REG2) unchanged
Condition code = 0010 (G=1)

at X'1a42'
contains X'3143°'.

argument

bit array

50-022 ROO

3.5.37 Complement Bit (CBT)

Assembler Notation Opcode Format
CBT R1,D2(X2) 77 RX1,RX2
CBT R1,A2(FX2,8X2) 77 RX3
Operation:

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
Rl is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and complemented.

Condition Code:

Previous state of bit was zero
Previous state of bit was one

o

Programming Note:

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example:

Assembler Notation Machine Code Lomments

LIS REG9, 3 2493 (REGY9) = 3

CBT REG9, LABEL 7790 0c4Aa LABEL located at
X'C4A°'. It contains
X'2813"'.

Result of CBT Instruction:
Contents of LABEL = 3813

(REG9) unchanged
Condition code = 0000 (G=0)

50-022 ROO 3-51

3.5.38 Cyclic Redundancy Check (CRC1l2, CRC16)

Cyclic Redundancy Check Modulo 12 (CRC1l2)
Cyclic Redundancy Check Modulo 16 (CRC16)

Assembler Notation Opcode Format
CRC12 R1,D2(X2) S5E RX1,RX2
CRC12 R1,A2(FX2,S8X2) SE RX3
CRC16 R1,D2(X2) 5F RX1,RX2
CRC16 R1,A2(FX2,5X2) SF RX3
Operation:

These instructions are used to generate either a 12-bit or a
le-bit CRC residual halfword. The register specified by Rl
contains, in bits 24:31, the data character to be included in the
CRC residual. The second operand is the accumulated (old) CRC
residual. The polynomial used for the 12-bit CRC generation is:

X2 + x" + x3 +x2 +x+1
The polynomial used for the 16-bit CRC generation is:
X% + x% + x%2 + 1

The halfword second operand is replaced by the generated CRC
residual.

Condition Code:

Unchanged

Programming Notes:
The register specified by Rl remains unchanged.
The second operand must be located on a halfword boundary.

Figure 3-6 illustrates a flowchart for CRC generation.

3-52 50-022 ROO

589-1

‘ START ’] STEP

(TEMP) «—(R1 2g.31) () OLD CRC 1
(COUNT) «—6 2
SHIFT RIGHT
(TEMP) @——onu— (TEMP) 3
BY 1
CARRY YES
NO

(TEMP) <=—— (TEMP)(® X'0F01" 4

(COUNT) @—————— (COUNT)} -1

SECOND OPERAND <*———— (TEMP)

CRC12 ALGORITHM SHOWN
FOR CRC 16 ALGORITHM, USE: R124.37 INSTEAD OF R12g.3¢ IN STEP 1

50-022 ROO

8 INSTEAD OF 6 {N STEP 2
X'A001" INSTEAD OF X'OF0t" INSTEP4

Figure 3-6 Flowchart for CRC Generation

3.5.39 Translate (TLATE)

Assembler Notation Opcode Format
TLATE R1,D2(X2) E7 RX1,RX2
TLATE R1,A2(FX2,SX2) E7 RX3
Operation:

The least significant eight bits (bits 24:31) of the register
specified by Rl contain the character to be translated. The
fullword 1location specified by the second operand address
contains the address of a translation table. The table is made
up of 256 halfwords. The character contained in the register
specified by Rl is used as an index into the table.

If bit 0 of the table entry corresponding to the index character
is one, bits 8:15 of the table entry replace the index character,
and the next sequential instruction is executed.

If bit 0 of the table entry is zero, bits 1:15 of the table entry
contain the address, divided by two, of a special character

handling routine. In this case, no translation takes place. The
address contained in bits 1:15 is shifted left by one (multiplied
by two). This address replaces the current LOC, thereby

effecting an unconditional branch to the special character
handling routine. Translation of character string data may also
be performed using the MVTU instruction (see Chapter 7).

Condition Code:

Unchanged

Programming Notes:

The second operand must be located on a fullword boundary.

e ——— e —— i — — — —— — —— - ————— — —————— — —_—— - ——
o = ———— it —— an - G o —————— -

. —————————— —————— —— — - ———————

3-54 50-022 ROO

Example:

This example illustrates the use of the TLATE instruction. The
translation table must either be initialized or assembled to
contain up to a total of 256 halfword entries. In this example,
the table contains two entries.

Label Assembler Notation Comments
LHI REGS5, X'80652° LLOAD TABLE ENTRY INTO REGS5
STH REGS5, TABLE PUT ENTRY INTO TABLE
LA REG7, TRANLAB LOAD ANOTHER TABLE ENTRY
SRL.S REG7,1 DIVIDE BY 2
STH REG7, TABLE+4 PUT ENTRY INTO TABLE
TABADR DC A(TABLE)

Alternatively, this table can be assembled with the proper
constant values. The T type constant can be used to assemble
subroutine addresses in the proper format. For example:

ALIGN 2

TABLE EQU *
DO 256
DC H'O’
ORG TABLE+4
DC T (TRANLAB)
ORG TABLE+512

Since a program is normally assembled as a relocatable program,
the address of TRANLAB is not known, but for illustrative
purposes, assume the address of TRANLAB is X'864°'.

50-022 ROO 3-55

TABLE+0 !

|
|
|
|
|
|
i
|
|
|
|
I
1
I
1
|
|
i
|
I
|
I
|
!

TABLE+2 !

TABLE+4 i 8 0 5 2

TABLE+6 | .]
TABLE+8 H
TABLE+10 i O 4 3 2 !

!
i
TABLE+12 i]
1
i

TABLE+508

TABLE+10 contains the address of TRANLAB divided by 2 (X'864'/2).

Example 1:
Using the above table, the following example translates the
character in register 2.
Label Assembler Notation Comments
LIS REG2,2 (REG2) = 0000 0002
TLATE REG2, TABADR
Result of TLATE Instruction:

(REG2) = 0000 0052
Condition code unchanged

The entry used

Data at address of (2 times contents of REG2)
+ TABLE

Data at address TABLE + 4

X'8052"

il

Since the first bit of the entry is 1, direct translation is used
and the contents of REG2 are replaced by X'0000 0052'.

3-56 50-022 ROO

Example 2:

Using the above table, the following example shows how the TLATE
instruction can be used to branch to a special character handling
routine.

Label Assembler Notation Comments
LIS REGS, 5 (REG5) = 0000 0005
TLATE REGS5, TABADR

TRANLAB LR R6,R5 THESE INSTRUCTIONS

LB R3,0(R6) OPERATE ON THE
. SPECIAL CHARACTER.

Result of TLATE Instruction:

(REG5) = 0000 0005
Condition code unchanged

Control is transferred to the subroutine at address TRANLAB
(X'864').

The entry used Data at address of (2 times contents of REGS)
+ TABLE
Data at address TABLE + A

X'0432"

o

Since the first bit of the entry is 0, the entry is multiplied by
2, a transfer occurs to TRANLAB (at address X'864'), and the
processor executes instructions from the new address.

50-022 ROO 3-57

3.5.40 Add To List (ATL, ABL)

Add to Top of List (ATL)
Add to Bottom of List (ABL)

Assembler Notation Opcode Format
ATL R1,D2(X2) 64 RX1,RX2
ATL R1,A2(FX2,5X2) 64 RX3
ABIL, R1,D2(X2) 65 RX1,RX2
ABL R1,A2(FX2,5X2) 65 RX3
Operation:

The register specified by Rl contains the fullword element to be
added to the list, which is located in memory at the address of
the second operand. The tally of the number of slots wused is
compared with the number of slots in the list. If the number of
slots used equals the number of slots in the 1list, an overflow
condition exists. The element is not added to the list and the
overflow flag in the condition code is set.

If the tally of the number of slots used is less than the number
of slots in the list, it is incremented by one, the appropriate

pointer is changed, and the element is added to the 1list. See
Figure 3-4.

Condition Code:

Element added successfully
List overflow

o

Programming Notes:

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand must be located on a fullword boundary.

The ATL instruction manipulates the current top pointer in the
list. If no overflow occurs, the current top pointer, which
points to the last element added to the top of the 1list, is
decremented by one. The element is inserted in the slot pointed
to by the new current top pointer. If the current top pointer
was zero on entering this instruction, the current top pointer is
set to the maximum slot number in the list. This condition is
referred to as list wrap.

3-58 50-022 ROO

The ABL instruction manipulates the next bottom pointer. If no
overflow occurs, the element is inserted in the slot pointed to
by the next bottom pointer, and the next bottom pointer is
incremented by one. If the incremented next bottom pointer is
greater than the maximum slot number in the list, the next bottom
pointer is set to zero. This condition is referred to as 1list
wrap.

For the nonoverflow situation, pointer halfwords in the list
header are not manipulated until after the element has been
successfully added. This facilitates error recovery in the event
of a memory fault.

See the examples in Section 3.5.41.

50-022 ROO 3-59

3.5.41 Remove From List (RTL, RBL)

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Opcode Format
RTL R1,D2(X2) 66 RX1,RX2
RTL R1,A2(FX2,S8X2) 66 RX3
RBL R1,D2(X2) 67 RX1l,RX2
RBL. R1,A2(FX2,8X2) 67 RX3
Operation:

The element removed from the list replaces the contents of the
register specified by Rl. The list is located at the address of
the second operand. If, at the start of the instruction
execution, the tally of the number of slots used is zero, then
the list is already empty and the instruction terminates with the
overflow flag set in the condition code. This condition is
referred to as list underflow; in this case, Rl is undefined. If
underflow does not occur, the appropriate pointer is changed, the
element is extracted and placed in the register specified by Rl,
and the number of slots used tally is decremented by one.

Condition Code:

o0 b0 0 I.ist now empty
{0+ 0 4t 14} 0 | List is not yet empty
i 014} 01} 0} L.ist was already empty

Programming Notes:

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand must be located on a fullword boundary.

In the case of list underflow, the contents of the register
specified by Rl are unchanged.

3-60 50-022 ROO

The RTL instruction manipulates the current top pointer. If no
underflow occurs, the current top pointer points to the element
to be extracted. The element is extracted and placed in the
register specified by Rl. The current top pointer is incremented
by one and compared to the maximum slot number. If the current
top pointer is greater than the maximum slot number, the current
top pointer is set to zero. This condition is referred to as
list wrap.

The RBL instruction manipulates the next bottom pointer. If no
underflow occurs and the next bottom pointer is zero, it is set
to the maximum slot number (list wrap); otherwise, it 1is

decremented by one, and the element now pointed to is extracted
and placed in the register specified by Rl.

For the nonunderflow situation, pointer halfwords in the 1list
header are not manipulated until after the element has been
successfully removed. The register specified by Rl 1is not
modified until the header has been updated. This facilitates
error recovery in the event of a memory fault.

Examples:

The following are examples of the use of the four list processing
instructions (ATL, ABL, RTL, RBL).

The original list is normally set up as shown in Figure 3-7.

590

LIST 0005 0000 WHERE HALFWORDS AT

0000 | 0000 LIST = MAXIMUM # OF SLOTS
SLOTO UNDEFINED = 5(IN THIS EXAMPLE)
SLOT 1 UNDEFINED LIST +2 = # OF ENTRIES USED
SLOT 2 UNDEFINED = 0
SLOT 3 UNDEFINED LIST +4 = CURRENT TOP OF LIST
SLOT 4 UNDEFINED = SLOTO

LIST +6 = NEXT BOTTOM OF LIST

= SLOT O

Figure 3-7 List Processing Instructions

50-022 ROO 3-61

Asgembler Notation
LIS REGO,0

STH REGO,LIST+2

ST REGO,LIST+4
LIS REG1,1
LIS REG2, 2
LIS REG3,3
LIS REG4.,4
LIS REG5,5
LIS REG6, 6

STH REGS5,LIST

REF1 ATL. REG1l,LIST

Results and Comments

INITIALIZE NUMBER OF ENTRIES
USED TO O

INITIALIZE POINTERS TO O

REGISTERS 1 THROUGH 6 CONTAIN
1 THROUGH 6 RESPECTIVELY

TOTAL NUMBER OF ENTRIES = 5

LIST i 0005 E 0001 5
E_BBBZ—EmBBBS—E (List Wrap)

SLOT 0 | UNDEFINED |

sor 1 | Gwoerived |

SLOT 2 | UNDEFINED |

SLOT 3 | UNDEFINED |

SLOT 4 | 0000 | 0001 !

Condition code = 0000
Current top pointer = Slot 4
Next bottom pointer =

50-022 ROO

REF2 ATL REG2,LIST

REF3 ATL, REG3,LIST

50-022 ROO

LIST E 0005 E 0002 |

005 | o000 |
sior o | ooerive |
sior 1| oomremn |
siov 2| oomriven
sior 3| 000 | 0003
sior & | 000 | o001 |

Condition code = 0000
Current top pointer = Slot 3
Next bottom pointer = Slot O

LIST i 0005 i 0003 E

002 | o000
sor o | omieD
swor 1| “wperien |
sior 2| o000 | 0003
sior 3 | o000 | o002
sior s | 000 | oao1 |

Condition code = 0000
Current top pointer = Slot 2
Next bottom pointer = Slot O

——— e mman ahan e . . Aen WSAR Vem WS wSe- = - e wn mmde WSER mewn weae wSEn S wen Smen emew —me.

Slot 2
Slot 1

| ! 1
@ |- 1o I N | =t i IiNIsiV|mIN G~
olo1oIQIo0otltoi ol o I o1 0otlo1 010l ol o
O_O_O_M_O_O_O_ o === K== =R]
o101 0| 1 O1 01 O O M M 1O 101010101 olto
i | o= i i [oo0vo I | | | | i 1
N I - T e PP | == mm e e e e mm e
| 1 [] | 1 [=l o} | i 1 1 i |]
wiNIlI Ol === et el Il INIOIOIOIlO ! O
o101 01 1 O1 01 O ® 00 FiOoO1 01010101 o!l O
o1 010l 1O 1Ot O T Qi t o1 0101010t 9
Ol o0o1 01 iol1 ol ol 0 I O1 01010101 o011 o
[i | | i 1 | O QUE | | 1 [| | |
—— e e b e W e e e eem Emen ——. ——— O 0 —— e Seme vew e eme - eEw cne —eme wen emwn —e
cCPP
o ¥
-4 0
B4 0O <~ &N ™ < +H£.Q B o ~ o o™ <«
n , -~ Q 0n
M S, M =2 B MHn m & M =B B B
9 3 3 3 3 5§50 3 3 3 3 3
[} 0 4])] n VL Z ()] [} n n 0
e &
[5)] ()]
L] -t
| =
< wn
m m
m m

REF4
REFS

50-022 ROO

Condition code = 0000
= Slot 2
= Slot 2

Current top pointer
Next bottom pointer

3-64

REF6 ABL REG6,LIST LIST E 0005 i 0005 E
o002 | ouon |

sior o | ooon | oo0

sior 1 | onon | owo |

sior 2| 000 | 0003

sor s | ooon | o002

sior & | ooo0 | o001

Condition code = 0100 (List overflow)
Current top pointer = Slot 2

Next bottom pointer Slot 2
Ree7 RTLREo7,LisT LisT | 0005 | 0004 |
5005 | o007 |
sor o | ooo0 | ouoa |
SLOT 1 | 0000 | 0005 |
sor 2 x| oao0 | 0003 |
SLOT 3 | 0000 | 0002 |
SLOT 4 | 0000 | 0001 |

(REG7) = 0000 0003

Condition code = 0010
Current top pointer = Slot 3
Next bottom pointer = Slot 2

NOTE

X indicates an entry was removed from
the list and is not accessible through
further manipulation of list
instructions.

50-022 ROO

REF8 RBL. REG8,LIST LIST E 0005 i 0003 i
ooy | oo |

sior 0| o000 | 000a |

stor 1 x| oaon | 005 |

stor 2 x| oaon | o009 |

stor 3| o000 | 0002 |

stor & | o000 | o001 |

(REG8) = 0000 0005

Condition code = 0010
Current top pointer = Slot 3
Next bottom pointer = Slot 1

NOTE

X indicates an entry was removed from
the list and is not accessible through

further manipulation of list
instructions.
REF9 RTL REGY9,LIST LIST E”aaag—gnaaaz—i
| 0004 | 0001 |
SLOT 0 | 0000 | 0004 |
stor 1 x| o000 | 0005 |
stor 2 x| 0000 | 0003
sor 3 x| o000 | 0003 |
SLOT 4 | 0000 | 0001 !

(REGY9) = 0000 0002
Condition code = 0010
Current fop pc‘in‘l-ar

P A A L N PSS L2 4

Next bottom pointer =

2 0

0 n
b
&+t
H

3-66 50-022 ROO

REF10 RBL REG10,LIST LIST E 0005 E 0001 E
| 0004 | 0000 |

SLOT 0 X | 0000 | 0004 |

SLOT 1 X | 0000 | 0005 |

SLOT 2 X | 0000 | 0003 |

SLOT 3 X | 0000 | 0002 |

SLOT 4 | 0000 ! 0001 |

(REG10) = 0000 0004
Condition code = 0010
Current top pointer = 4
Next bottom pointer = O

NOTE

X indicates an entry was removed from
the list and is not accessible through
further manipulation of list
instructions.

REF11 RTL REG1l1l,LIST LIST 3 0005 E 0000 i
o000 | oao0 |

ssor 0 x| o000 | o00a |

sor 1 x| 6000 | 0005 |

sor 2 x| o000 | 0003 |

sior 3 x| o000 | 0002 |

sior & x| 000 | o901

(REG11l) = 0000 0001

Condition code = 0000 (List is now empty)
Current top pointer = 0

Next bottom pointer = O

50-022 ROO 3-67

REF1l2 RTL REG12,LIST LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

(REG12)

E 0005 E 0000 E

| 0000 { 0000 |
X | 0000 | 0004 |
X | 0000 { 0005 i
X | 0000 | 0003 |
X | 0000 i 0002 |
X | 0000 { 0001 |

= UNDEF INED

Condition code = 0100*
Current top pointer = 0
Next bottom pointer = O

* List was already empty

X indicates

NOTE

an entry was removed from

the list and is not accessible through
further manipulation of list

instructions.

50-022 ROO

CHAPTER 4
BRANCHING

4.1 INTRODUCTION

In normal operations, the processor executes instructions in
sequential order. The branch instructions allow this sequential
mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the
results of previous operations.

4.2 OPERATIONS

The second operand of a branch instruction is the address of the
memory location to which control is transferred. The address can
be contained in a register, or it can be specified in the
instruction as the second operand address or as a displacement.

4.2.1 Decision Making

The conditional branch instructions permit the program to make

decisions based on some result. In these instructions, the R1
field contains a 4-bit mask, M1, which is tested by ANDing it
with the condition code. The result of the test determines

whether the branch is taken, or the next sequential instruction
is executed.

Table 4-1 shows previous condition codes, masks specified 1in a
branch instruction, and the results of the test on which the
branch or no branch decision was made.

TABLE 4-1 DECISION TABLE

, ! ! ! i BRANCH | BRANCH |
| CONDITION | | RESULT | (TRUE/ | TRUE | FALSE |
i CODE 1 MASK(M1) | OF TEST | FALSE) | TAKEN | TAKEN |
g==g
! 0000 t 0010 | 0000 | (False) | No | Yes |
e :
i 0001 t 1010 | 0000 | (False) { No | Yes |
T T T T T T T T T e e e e e |
i 1001 i 1000 | 1000 | (True) | Yes | No :

50-022 ROO 4-1

TABLE 4-1 DECISION TABLE (Continued)

! i | i | BRANCH | BRANCH |
{ CONDITION | | RESULT | (TRUE/ | TRUE !\ FALSE |
! CODE ! MASK(Ml) | OF TEST | FALSE) | TAKEN | TAKEN |
s T T T 1T 3 3 1 P T T 1 T 3 T T T 1 3 3 1 T 1 3 1 3 & 1 3 3 3 3 3 3 2 3 3 3 & 1 3 3 1 3 & 3 33 3 1 i ‘
| 0100 ! 0100 { 0100 ! (True) | Yes | No i
- e]
! 1010] 0010 ! 0010 ! (True) | Yes | No !
| m e e e e !
! 0010 ! 0011 i 0010 ! (True) | Yes | No i
o e e e e e e e e e !
] 0010 i 0000 i 0000 i (False) | No ! Yes |

4.2.2 Subroutine Linkage

The branch and link instructions allow branching to subroutines
in such a way that a return address is passed to the subroutine.
For these instructions, the address of the memory location
immediately following the branch instruction is saved in the
register specified by RIl.

4.3 BRANCH INSTRUCTION FORMATS

The branch instructions use the Register-to-Register (RR), Short
Form (SF), and Register and Indexed Storage (RX) formats.

4.4 BRANCH INSTRUCTIONS

The instructions described in this section are:

BTC Branch on True Condition

BTCR Branch on True Condition Register

BTBS Branch on True Condition Backward Short
BTFS Branch on True Condition Forward Short
BFC Branch on False Condition

BFCR Branch on False Condition Register

BFBS Branch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BAL, Branch and Link

BALR ' Branch and Link Register

BXLE Branch on Index Low or Equal

BXH ~Branch on Index High

4-2 50-022 ROO

4.4.1 Branch on True (BTC, BTCR, BTBS, BTFS)

Branch on True Condition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Opcode Format
BTC M1l,D2(X2) 42 RX1,RX2
BTC M1,A2(FX2,8X2) 42 RX3
BTCR M1l,R2 02 RR
BTBS M1,N 20 SF

BTFS M1,N 21 SF
Operation:

The condition code of the program status word (PSW) is tested for
the conditions specified by the mask field, Ml. If any
conditions tested are found to be true, a branch is taken to the
second operand location. If none of the conditions tested are
found to be true, the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter (LOC)
to obtain the branch address.

In the RR and RX formats, the branch address must be 1located on
a halfword boundary.

50-022 ROO 4-3

Example:

The following example illustrates the use of the BTC instruction.

Assembler Notation Machine Code
LH R1,X'100' 4810 0100
BTC 3,L0C 4230 ABCO
4-4

Comment.a

Load halfword (X'1234')
located at X'100'. Condi-
tion code is set to CVGL
= 0010. Mask is 3 (i.e.,
M1l = 0011). Perform logi-
cal AND between CVGL and
Ml (i.e., 0010 AND 001l1).
The result is 0010 (i.e.,
true); therefore, a
branch is taken to LOC.

50~022 ROO

4.4.2 Branch on False (BFC, BFCR, BFBS, BFFS)

Branch on False Condition (BFC)
Branch on False Condition Register (BFCR)

Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Opcode Format
BFC M1l,D2(X2) 43 RX1,RX2
BFC M1l,A2(FX2,8X2) 43 RX3
BFCR Ml,R2 03 RR
BFBS M1,N 22 SF

BFFS M1,N 23 SF
Operation:

The condition code of the PSW 1is tested
specified in the mask field, Ml. If all
found to be false, a branch is taken to

for

the conditions

conditions tested are

the

second operand

location. If any of the conditions tested are found to be true,

the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

In the RR format, the branch address is contained

specified by R2.

In the SF format, the N field contains the number

be added to or subtracted from the current
branch address.

In the RR and RX formats, the branch address must

a halfword boundary.

50-022 ROO

LOC

in the register

of halfwords to
to obtain the

be 1located on

Example:

The following example illustrates the use of the BFC instruction.

Assembler Notation Machine Code
LCS R1l,2 2512

BFC 9,L0C 4390 ABCO
4--6

Comments

(R1) = FFFFFFFE. Condi-
tion code is set to CVGL =
0001. Mask is 1001. Per-
form logical AND between
Ml and CVGL (i.e., 1001
AND 000l1). The result is
0001 (i.e., true); there-
fore, a branch is not
taken to LOC.

50-022 ROO

4.4.3 Branch and Link (BAL, BALR)

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Qpcode Formakt
BAL, R1,D2(X2) 41 RX1,RX2
BAL R1,A2(FX2,8X2) 41 RX3
BALR R1,R2 01 RR
Operation:

The address of the next sequential instruction is saved in the

register specified by Rl, and a branch is taken to the second
operand address.

Condition Code:

Unchanged

Programming Notes:
The second operand must be located on a halfword boundary.

The branch address is calculated before the register specified by

Rl is changed. Rl can specify the same register as X2, FX2, SX2
or R2.

Example:

The following example illustrates the use of the BAL instruction.
This instruction causes control to be transferred to a subroutine
called SUBROUT. After completion of the subroutine, the linking
register is used to branch back to the next sequential
instruction after the BAL; i.e., the instruction labeled RETURN.

50-022 ROO 4-7

MAIN

PROG

SUBROUTINE -

[BEGIN

RETURN

[SUBROUT

| RTNEND

The linking register (REG4
example) should not be
subroutine.

Assembler Notation
BAI. REG4,SUBROUT
XR R6,R6

STH R6,LAB+4

LHL RS8,LOC

AHI R8,10

BR REG4

NOTE

Result of BAL Instruction:

(REC4) = Address of instruction at SUBROUT

Condition code unchanged

Comments

TRANSFER TO SUBROUT

THE RETURN ADDRESS
OF THE SUBROUTINE
IS IN REG4

RETURN TO XR INST.

in the

used within the

50-022 ROO

4.4.4 Branch on Index Low or Equal (BXLE)

Assembler Notation Opcode Format
BXLE R1,D2(X2) Cl RX1,RX2
BXLE R1,A2(FX2,8X2) Cl RX3
Set Up:
0 31
R1 H Starting index value !
= e i
R1+1 ! Increment value |
e |
R1+2 ! Limit or final value |

Before execution of this instruction, the register specified by
Rl must contain a starting index value. The register specified
by R1l+1l must contain an increment value. The register specified
by R1l+2 must contain a comparand (limit or final value). All
values can be signed.

Operation:

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is compared logically to the limit or final value. If the new
index value is less than or equal to the limit value, a branch is
taken to the second operand location. If the new index value is
greater than the limit value, the next sequential instruction is
executed.

Condition Code:

Unchanged

Programming Notes:

The incremented index value replaces the contents of the register
specified by RI.

Any three consecutive registers of the same set can be used by
this instruction as specified by Rl. These registers can be 6,
7, 8; or 14, 15, 0; or 15, 0, 1; etc.

The second operand must be located on a halfword boundary.

50-022 ROO 4-9

The branch address is calculated before incrementing the starting
index value contained in the register specified by Rl.

Rl can specify the same register as X2, FX2 or SX2.

Example:

Transfer 10 bytes in memory starting
labeled BUFO to the memory location labeled BUF1.

Label

AGAIN

ILABEL

BUFO
BUF1

Assembler Notation

LIS REG3,0
LIS REG4,1
LIS RS5,9

LB REGO,BUFO(R3)
STB REGO,BUF1(R1l)
BXLE R3,AGAIN

DS 10
DS 10

Result of BXLE Instruction:

at the memory 1location

Comments

(REG3)=STARTING INDEX VALUE=0
(REG4) =INCREMENT VALUE
(REG5)=FINAL VALUE=9

(REGO)=1 BYTE FROM BUFO
COPY 1 BYTE TO BUF1l
IF (REG3)>(REGS5) ,DONE

Code between the instructions labeled AGAIN and LABEL is executed
ten times.

Condition code unchanged by BXLE instruction

(REG3)
(REG4)
(REGS)

0000000A
00000001
00000009

50-022 ROO

4.4.5 Branch on Index High (BXH)

Assembler Notation Opcode Format
BXH R1,D2(X2) co RX1,RX2
BXH R1,A2(FX2,8X2) Cco RX3
Set Up:
0 31
R1 | Starting index value i
e e e e |
R1+1 } Increment value l
o T e e e |
R1+2 ! Limit or final value }

Before execution of this instruction, the register specified by
Rl must contain a starting index value. The register specified
by R1l+l must contain an increment value. The register specified
by R1l+2 must contain a comparand (limit or final value). All
values can be signed.

Operation:

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is logically compared to the limit or final value. If the new
index value is greater than the limit value, a branch is taken to
the second operand location. If the new index value is less than
or equal to the limit value, the next sequential instruction is
executed.

Condition Code:

Unchanged

Programming Notes:

The incremented index value replaces the contents of the register
specified by R1l.

Any three consecutive registers of the same set can be used by
this instruction as specified by Rl. These registers can be 6,
7, 8; or 14, 15, 0; or 15, 0, 1; etc.

The second operand must be located on a halfword boundary.

50-022 ROO 4-11

The branch address is calculated before incrementing the starting
index value contained in the register specified by Rl.

Rl can specify the same register as X2, FX2 or SX2.

Example:

The following example shows how to set up a counter (1-9) using
the BXH instruction.

Label Assembler Notation Comment

LIS REG1,1 (REG1)=0000 0001 (INDEX)

LIS REG2,1 (REG2)=0000 0001 (INCREMENT)

LIS REG3,9 (REG3)=0000 0009 (COMPARAND)
BEGIN BXH REG1,LABEL COMPARE INDEX WITH COMPARAND

LH R6, COUNT

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8,RTN EXIT FROM BXH

ST R8 , MEM

Result of BXH Instruction:

Code between the instructions labeled BEGIN and LABEL is executed
nine times.

Condition code unchanged by BXH instruction

(REG1) = 0000 000A
(REG2) = 0000 0001
(REG3) = 0000 0009

4-12 50-022 ROO

4.5 EXTENDED BRANCH MNEMONICS

The common assembly language (CAL) assembler supports 47 extended
branch mnemonics that generate the branch opcode (true or false
conditional) and the condition code mask required. The
programmer must supply the second operand address (symbolic or
absolute). In the case of SF branch instructions, the second
operand branch address must be within 15 halfwords of the LOC.
The CAL assembler determines the backward or forward relationship
of the second operand address and generates the appropriate
operation code.

The instructions described in this section are:

BC Branch on Carry

BCR Branch on Carry Register

BCS Branch on Carry Short

BNC Branch on No Carry

BNCR Branch on No Carry Register
BNCS Branch on No Carry Short

BE Branch on Equal

BER Branch on Equal Register =
BES Branch on Equal Short

BNE Branch on Not Equal

BNER Branch on Not Equal Register F
BNES Branch on Not Equal Short

BL Branch on Low

BLR Branch on Low Register <
BLS Branch on Low Short

BNL Branch on Not Low

BNLR Branch on Not Low Register >
BNLS Branch on Not Low Short

BM Branch on Minus

BMR Branch on Minus Register

BMS Branch on Minus Short

BNM Branch on Not Minus

BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short

BP Branch on Plus

BPR Branch on Plus Register

BPS Branch on Plus Short

BNP Branch on Not Plus

BNPR Branch on Not Plus Register
BNPS Branch on Not Plus Short

50-022 ROO 4-13

BO
BOR
BOS

BNO
BNOR
BNOS

BZ
BZR
BZS

BNZ
BNZR
BNZS

BR

BS

NOP
NOPR

Branch on Overf low
Branch on Overflow Register
Branch on Overflow Short

Branch on No Overflow
Branch on No Overflow Register
Branch on No Overflow Short

Branch on Zero
Branch on Zero Register
Branch on Zero Short

Branch on Not Zero
Branch on Not Zero Register
Branch on Not Zero Short

Branch (Unconditional)
Branch Register (Unconditional)
Branch Short (Unconditional)

No Operation
No Operation Register

50-022 ROO

4.5.1 Branch on Carry (BC, BCR, BCS)

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Opcodet+Ml Format
BC D2(X2) 428 RX1,RX2
BC A2(FX2,8X2) 428 RX3
BCR R2 028 RR
BCS A 208 (Backward) SF

218 (Forward)

Operation:
If the carry (C) flag in the condition code is set, a branch is

taken to the second operand location. If the C flag is zero, the
next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Example:

The following example illustrates the use of the BCS instruction.

Assembler Notation Machine Code Comment.s
SHIFT SLLS R9,1 1191 Register 9 is shifted
BCS SHIFT 2081 left until the first
zero bit is shifted

out of position 0.

50-022 ROO 4-15

4.5.2 Branch on No Carry (BNC, BNCR, BNCS)

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Opcode+Ml Format
BNC D2 (X2) 438 RX1,RX2
BNC A2 (FX2,8X2) 438 RX3
BNCR R2 038 RR

BNCS A 228 (Backward) SF

238 (Forward)

Operation:

If the C flag in the condition code is zero, a branch is taken to
the second operand location. 1If the C flag 1is set, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-16 50-022 ROO

4.5.3 Branch on Equal (BE, BER, BES)

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation Opcode+Ml

BE D2(X2) 433

BE A2(FX2,8X2) 433

BER R2 033

BES A 223 (Backward)

233 (Forward)

Operation:

Format

RX1,RX2
RX3

RR

SF

If the greater than (G) and less than (L) flags are both zero in

the condition code, a branch is

taken to the second operand

location. 1If either flag is set, the next sequential instruction

is executed.

Condition Code:

Unchanged

Programming Notes:

The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register

specified by R2.

Example:

The following example illustrates the use of the BE instruction.

Assembler Notation Machine Code
CLHI R4,X'23" C540 0023

BE OPTIN 4330 0AO00
50-022 ROO

Lomments

If R4 contains X'23°,
a branch is taken to
location X'A00'. If not,
the next sequential
instruction is executed.

4.5.4 Branch on Not Equal (BNE, BNER, BNES)

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation Opcode+Ml Format
BNE D2(X2) 423 RX1,RX2
BNE A2 (FX2,58X2) 423 RX3
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation:

If the G or LL flag is set in the condition code, a branch is
taken to the second operand location. If both flags are zero,
the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-18 50-022 ROO

4.5.5

Branch on Low (BL)

Branch on Low (BL, BLR, BLS)

Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation

BL D2(X2)

BL A2 (FX2,SX2)
BLR R2

BLS A

Operation:

Opcode+Ml

428

428

028

208 (Backward)
218 (Forward)

Format

RX1,RX2
RX3

RR

SF

If the C flag in the condition code is set, a branch is taken to

the second

operand address. If

sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

the C flag is zero, the next

The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register

specified by R2.

Example:

The following example illustrates the use of the BL instruction.

Assembler Notation Machine Code
CLHI R1,X'FF' C510 OOFF

BI. RESTART 4280 0AO00
50-022 ROO

Comments
(R1) is compared to
X'OOFF'. If (Rl) is less
than X'0O0FF', a branch
is taken to memory

location X'0A00°'.

4.5.6 Branch on Not Low (BNL, BNLR, BNLS)

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Opcode+Ml Format
BNL D2(X2) 438 RX1l, RX2
BNL A2(FX2,S8X2) 438 RX3
BNLR R2 038 RR

BNLS A 228 (Backward) SF

238 (Forward)

Operation:

If the C flag in the condition code is zero, a branch is taken to
the second operand address. If the C flag is set, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-20 50-022 ROO

4.5.7 Branch on Minus (BM, BMR, BMS)

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Opcode+M1 Format
BM D2(X2) 421 RX1,RX2
BM A2 (FX2,8X2) 421 RX3
BMR R2 021 RR
BMS A 201 (Backward) SF

211 (Forward)

Operation:
If the L. flag in the condition code is set, a branch is taken to

the second operand location. If the L flag is zero, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Example:

The following example illustrates the use of the BM instruction.

Assembler Notation Machine Code Comments

SIS R3,1 2631 If (R3) is less than O

BM CONTINUE 4210 10A0 after the subtraction,
a branch is taken to
X*10A0°.

50-022 ROO 4-21

4.5.8 Branch on Not Minus (BNM, BNMR, BNMS)

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Asgsembler Notation Opcaode+M1 Format
BNM D2(X2) 431 RX1,RX2
BNM A2(FX2,8X2) 431 RX3
BNMR R2 031 RR
BNMS A 221 (Backward) SF

231 (Forward)

Operation:

If the L. flag in the condition code is zero, a branch is taken to
the second operand location. If the L. flag 1is set, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-22 50-022 ROO

4.5.9 Branch on Plus (BP, BPR, BPS)

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation Opcode+Ml1l Format
BP D2(X2) 422 RX1,RX2
BP A2 (FX2,8X2) 422 RX3
BPR R2 022 RR
BPS A 202 (Backward) SF

212 (Forward)

Operation:

If the G flag in the condition code is set, a branch is taken to

the second operand 1location. If the G flag is zero, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:

The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

50-022 ROO 4-23

4.5.10 Branch on Not Plus (BNP, BNPR, BNPS)

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Opcode+Ml Format
BNP D2(X2) 432 RX1,RX2
BNP A2 (FX2,SX2) 432 RX3
BNPR R2 032 RR
BNPS A 222 (Backward) SF

232 (Forward)

Operation:

If the ¢ flag in the condition code is zero, a branch is taken to
the second operand location. If the G flag is set, the next
sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-24 50-022 ROO

4.5.11 Branch on Overflow (BO, BOR, BOS)

Branch on Overflow (BO)
Branch on Overflow Register (BOR)
Branch on Overflow Short (BOS)

Assembler Notation Opcode+Ml Format
BO D2(X2) 424 RX1,RX2
BO A2(FX2,8X2) 424 RX3

BOR R2 024 RR

BOS A 204 (Backward) SF

214 (Forward)

Operation:
If the overflow (V) flag in the condition code is set, a branch

is taken to the second operand location. If the V flag is zero,
the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

50-022 ROO 4-25

4.5.12 Branch on No Overflow (BNO, BNOR, BNOS)

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation Opcode+Ml Format
BNO D2(X2) 434 RX1,RX2
BNO A2(FX2,8X2) 434 RX3
BNOR R2 034 RR
BNOS A 224 (Backward) SF

234 (Forward)

Operation:

If the V flag in the condition code is zero, a branch is taken to
the second operand location. If the V flag is set, the next
sequential instruction is executed.

Condition Code:

Unchangead

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-26 50-022 ROO

4.5.13 Branch on Zero (BZ, BZR, BZS)

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Opcode+M]l Format
BZ D2(X2) 433 RX1l,RX2
BZ A2(FX2,8X2) 433 RX3
BZR R2 033 RR
BZS A 223 (Backward) SF

233 (Forward)

Operation:
If the G and L. flags are both zero in the condition code, a

branch 1is taken to the second operand location. If the G or L
flag is set, the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

50-022 ROO 4-27

4.5.14 Branch on Not Zero (BNZ, BNZR, BNZS)

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZR)
Branch on Not Zero Short (BNZS)

Assgsembler Notation Opcode+Ml Format
BNZ D2(X2) 423 RX1,RX2
BNZ A2 (FX2,8X2) 423 RX3
BNZR R2 023 RR
BNZS A 203 (Backward) SF

213 (Forward)

Operation:
If the ¢ or LL flag in the condition code 1is set, a branch is

taken to the second operand address. If the G and L flags are
both zero, the next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-28 50-022 ROO

4.5.15 Branch (Unconditional) (B, BR, BS)

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Opcode+Ml Format
B D2(X2) 430 RX1,RX2
B A2(FX2,8X2) 430 RX3
BR R2 030 RR
BS A 220 (Backward) SF

230 (Forward)

Operation:

A branch is unconditionally taken to the second operand address.

Condition Code:

Unchanged

Programming Notes:
The branch destination must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

This instruction is assembled as a Branch on False Condition

instruction with no condition specified (Ml = 0); therefore, the
branch test is always false and the branch is always taken.

Example:

The following example illustrates the use of the B instruction.

Assembler Notation Machine Code Comment.a

B OPTIN 4300 OAO00 An unconditional branch
is taken to location
X'0A00°".

50-022 ROO 4-29

4.5.16 No Operation (NOP, NOPR)

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Opcode+M1 Format
NOP D2(X2) 420 RX1,RX2
NOP A2 (FX2,8X2) 420 RX3
NOPR R2 020 RR
Operation:

The next sequential instruction is executed.

Condition Code:

Unchanged

Programming Notes:
D2(X2) or A2(FX2,8X2) and R2 are ignored and usually equal zero.
This instruction is assembled as a Branch on True Condition

instruction with no condition specified (ML = 0); therefore, no
branch is taken and the next instruction is fetched and executed.

Example:

The following example illustrates the use of the NOP and NOPR
instructions.

Assembler Notation Machine Code Comments

NOP 0(0,0) 4200 4000 0000 No operation
NOP 0 4200 0000 No operation
NOPR 0200 No operation

4--30 50-022 ROO

CHAPTER 5
FIXED POINT ARITHMETIC

5.1 INTRODUCTION

Fixed point arithmetic instructions provide a complete set of
operations for calculating addresses and indices, counting, and
general-purpose fixed point arithmetic.

5.2 FIXED POINT DATA FORMATS

There are three formats for fixed point data: the halfword, the
fullword and the doubleword. In each of these formats, the most
significant bit (bit 0) is the sign bit. The remaining 15, 31 or
63 bits represent the magnitude. See Figure 5-1.

599

01 HALFWORD 15

S

0 1 FULLWORD 31
S

01 DOUBLE WORD . 63
S y 4

Figure 5-1 Fixed Point Data Formats

Positive values are represented in true binary form with a sign
bit of zero. Negative values are represented in two's complement
form with a sign bit of one. To change the sign of a number, the
two's complement of the number can be produced by subtracting the
number from zero. Other ways would be. to:

® change all zeros to ones, and all ones to zeros, or

e add one.

50-022 ROO 5-1

5.3 FIXED POINT NUMBER RANGE

Fixed point numbers represent integers. Table 5-1 shows
relations between different formats, along with decimal values.

TABLE 5-1 FIXED POINT FORMAT RELATIONS

H DOUBLEWORD { FULLWORD | HALFWORD H DECIMAL !
; T T T T T T T T T R R T T E T T T T T EE S S TS E S EESESESSEEEEEEEES :
{ 8000000000000000 ! i -9 223 372 036 854 775 808 |
! (most negative) ! ! ! |
TR st e e e St ittt |
} i 80000000 | i -2 147 483 648]
! | (most i i i
! { negative) | H H
I e e ittt bbbty H
] ! { 8000 H]
i H | (most ! -32 768 !
! H | negative) ! 1
f--—_ -]
\ FFFFFFFFFFFFFFFF | FFFFFFFF i FFFF (least | -1 |
| i i negative) i i
[]

]

o
o
o
o
o
[w}
[=}
o
o
o
o
[}
o
[}
o
o
(=]
o
o
o
(=]
o
o
o
o

=]

o
o
o

{ 0000000000000001 | 00000001 | 0001 (least | 1 !
! ! | negative) i |
= e e e |
! ! ! 7FFF (most | 32 767 H
H | | negative) Ve !
T e e e i
| \ 7FFFFFFF | i 2 147 483 647 !
i i (most i i i
] | positive) |] i
{i--—————————— e i
|\ T7FFFFFFFFFFFFFFF | H ! 9 223 372 036 854 775 807 !

5.4 OPERATIONS

Fixed point instructions include both fullword and halfword
operations. Fullword operations take place between the contents
of two general registers, between the contents of a general
register and a fullword stored in memory, or between the contents
of a general register and a fullword obtained from the
instruction stream. Fullword multiply produces a doubleword
result that is contained 1in two adjacent registers. Fullword
divide operates on doubleword data contained 1in two adjacent
registers.

5-2 50-022 ROO

Halfword operations take place between a fullword contained in
one of the general registers and a halfword contained in memory.
Before the operation 1is started, the halfword in memory is
expanded to a fullword by propagating the most significant bit
(sign bit) into the high-order bits of the fullword. The
halfword multiply and divide instructions are exceptions to this
rule.

5.5 CONDITION CODE

All fixed point arithmetic instructions, except multiply and
divide, affect the condition code to indicate the outcome of the
operation on the 32-bit result.

In fixed point add and subtract operations, the arguments are
represented in two's complement form; therefore, all bits,
including sign, participate in forming the result. Consequently,
the occurrence of a carry or borrow has no real arithmetic
significance.

For example, an add operation between a minus one (FFFF FFFF) and
a plus two (0000 0002) produces the correct result of plus one
(0000 0001) and a Carry (C). The condition code is set to 1010
(C=1 and G=1). C means that the complete result, which 1in this
case would have been 1 0000 0001, would not fit in 32 bits.

An Overflow (V) occurs when the result does not fit in 31 bits.
Note that bit zero must be reserved for the sign of the result.
For example, adding one to the largest positive fixed point value
produces a V:

7FFF FFFF
+0000 0001

8000 0000

The resulting condition code is 0101 (V=1 and L=1).

The result, 8000 0000, is logically correct, but because the sign
bit is negative when the result should be positive, the V
condition exists.

The columns of the condition code table given for each
instruction description show the state of the C, V, greater than
(G) and less than (L) flags for the possible results.

An 'X' in a condition code column means that the particular flag

is not defined and can be either 0.or 1. Hence, no inference
should be drawn by testing that particular flag.

50-022 ROO 5-3

5.6 FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use Register-to-Register (RR), Short

Form (SF), Register and Indexed Storage (RX),

Immediate (RI) instruction formats.

5.7 FIXED POINT INSTRUCTIONS

and Register

The fixed point instructions described in this section are:

A
AR
Al
AIS

AH
AHI

AM
AHM
SR
SI
SIS
SH
SHI
CR
CI

CH
CHI

MH

MHR

DR

DH
DHR

SLA

SLHA

Add
Add Regi

ster

Add Immediate
Add Immediate Short

Add Halfword
Add Halfword Immediate

Add to M

emory

Add Halfword to Memory

Subtract
Subtract
Subtract
Subtract

Subtract
Subtract

Compare
Compare
Compare

Compare
Compare

Multiply
Multiply

Multiply
Multiply

Divide

Register
Immediate
Immediate Short

Halfword
Halfword Immediate

Register
Immediate

Halfword
Halfword Immediate

Register

Halfword
Halfword Register

Divide Register

Divide H
Divide H

Shift Le

Shift Le

alfword
alfword Register

ft Arithmetic

ft Halfword Arithmetic

50-022

and

ROO

SRA
SRHA

CHVR

50-022 ROO

Shift Right Arithmetic
Shift Right Halfword Arithmetic

Convert to Halfword Value Register

5-5

5.7.1 Add (A, AR, AI, AIS)

Add (A)

Add Register (AR)

Add Immediate (AIl)

Add Immediate Short (AIS)

Assembler Notation Opcode Format
A R1,D2(X2) S5A RX1,RX2
A R1,A2(FX2,5X2) 5A RX3

AR R1,R2 oA RR

Al R1,12(X2) FA RI2

AIS R1,N 26 SF
Operation:

The second operand is added algebraically to the contents of the
register specified by RI1. The result of this 32-bit addition
replaces the contents of the register specified by RIl.

Condition Code:

fFCc vy G L

|=========s=====|

P X041 04 0| Result is zero

VX 04 0} 1 Result is less than zero

y X1 0411} 0 Result is greater than zero
P X V1 X} X Arithmetic overflow

P10 X) X) X Carry

Programming Notes:

The second operand for the AIS instruction 1is obtained by
expanding the 4-bit data field, N, to a 32-bit fullword by
forcing the high-order bits to zero.

In the RI2 format, the contents of the index register specified

by X2 are added to the 32-bit 12 field to form the fullword
second operand.

In the RX formats the second operand must be located on a
fullword boundary.

5-b 50-022 ROO

Example 1:

This example of the A instruction adds

the contents of memory
location LAB to the contents of register 4.

Assembler Notation Comments

A REG4 ,1L.AB ADD (LAB) TO (REG4)

Where:

REG4 contains X'7F341234°
Fullword in memory at LAB contains X'7124321"'

Result of A Instruction:

(REG4) = X'FE465555"
(LAB) unchanged by this instruction

Condition code = 0101 (V=1, L=1)

Example 2:

This example of the A instruction adds

the contents of memory
location LAB to the contents of register 5.

Assembler Notation Comments
A REGS,LAB ADD (LAB) TO (REGS)

Where:

REG5 contains X'8000 0001°*
Fullword in memory at LAB contains X'80000002°*
Result of A Instruction:
(REGS5) = X'00000003:

(LAB) unchanged by this instruction
Condition code = 1110 (C=1, V=1, G=1)

50-022 ROO

5.7.2 Add Halfword (AH, AHI)

Add Halfword (AH)
Add Halfword Immediate (AHI)

Assembler Notation Opcode Format
AH R1,D2(X2) 4A . RX1,RX2
AH R1,A2(FX2,5X2) 4A RX3

AHI R1,12(X2) CA RI1
Operation:

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15 of the
fullword. The fullword operand is added to the fullword contents
of the register specified by RI1. The result replaces the
contents of the register specified by Rl.

Condition Code:

fFCiviG L

|e=mo===s====a==

!X 04 04 O Result is zero

b X V0 01 Result is less than zero

fy X4+ 011} 0 Result is greater than zero
P X 1) X)X Arithmetic overflow

Pl X X X Carry

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

5-8 50-022 ROO

Example 1:

This example of the AH instruction adds the

halfword at memory
location LAB to the contents of register 4.

Assembler Notation Comments

AH REG4 ,LAB ADD (LAB) TO (REG4)

Where:

REG4 contains X'00230002°

Halfword at memory location LAB contains X'FFFF'

Result of AH Instruction:

(REG4) = X'00230001°
(LAB) unchanged by this instruction

Condition code = 1010 (C=1, G=1)

Example 2:

This example of the AH instruction adds the

halfword
location LAB to the contents of register 5.

at memory

Aaaemblez Notation Comments

AH REGS5,LAB ADD (LAB) TO (REGS)

Where:

REGS5 contains X'FFFF FFFS'
LAB contains X'FFF2'

Result of AH Instruction:
(REGS) = 'FFFF FFE7'
(LAB) unchanged by this instruction

Condition code = 1001 (C=1, L=1)

50-022 ROO

5.7.3 Add to Memory (AM)

Assembler Notation Opcode Format
AM R1,D2(X2) 51 RX1,RX2
AM R1,A2(FX2,8X2) 51 RX3
Operation:

The first operand contained in the register specified by Rl is
added algebraically to the fullword second operand. The result
replaces the fullword second operand in memory. The contents of
the register specified by Rl are not changed.

Condition Code:

-
-
-
-

|
I
I
|
|
I
1
!
i
|
|
I
|
[l
I

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

XM OO

Programming Note:

The second operand must be located on a fullword boundary.

Example 1:

This example of the AM instruction adds the contents of register
8 to memory location LOC.

Assembler Notation Comments
AM REGS8,10C ADD (REG8) TO (LOC)
Where:

REG8 contains X'00000008'
Fullword in memory at LOC contains X'034289AB'

5-10 50-022 ROO

Result of AM Instruction:

(REG8) unchanged by this instruction
(LOC) = X'034289B3"

Condition code = 0010 (G=1)

Example 2:

This example of the AM instruction adds the contents of
7 to memory location LOC.

Assembler Notation Comments
AM REG7,LOC ADD (REG7) TO (LOC)
Where:

REG7 contains X'7F341234'°
Fullword in memory at LOC contains X'7F124321'

Result of AM Instruction:
(REG7) unchanged by this instruction

(LOC) = X'FE465555"
Condition code = 0101 (V=1, L=1)

50-022 ROO

register

5-11

5.7.4 Add Halfword to Memory (AHM)

Assembler Notation Opcode Format
AHM R1,D2(X2) 61 RX1l,RX2
AHM R1,A2(FX2,8X2) 61 RX3
Operation:

The halfword second operand is added algebraically to the least
significant 16 bits (bits 16:31) of the register specified by Rl.
The 16-bit result replaces the contents of the memory location
specified by the effective address of the second operand. The
contents of the register specified by Rl are not changed.

Condition Code:

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

XX OO

Programming Notes:
The second operand must be located on a halfword boundary.

The condition code settings are based on the halfword result.

Example 1:

This example of the AHM instruction adds the contents of register
5 to the contents of memory location LAB.

Assembler Notation Lomments
AHM REGS5,LAB ADD (REG5) TO (L.AB)
Where:

REGS contains X'00230002°'
Halfword in memory at ILAB contains X'FFFF'

5-12 50-022 ROO

Result of AHM Instruction:

(REG5) unchanged by this instruction
(LAB) = 0001

Condition code = 1010 (C=1, G=1)

Example 2:

This example of the AHM instruction adds the contents of register
6 to the contents of memory location LAB.

Assembler Notation Comments
AHM REG6,LAB ADD (REG6) TO (LAB)
Where:

REGH6 contains X'FFFF FFF5'
I.AB contains X'FFF2'

Result of AHM Instruction:
(REG6) unchanged by this instruction

(LAB) = FFE7
Condition code = 1001 (C=1, L=1)

50-022 ROO 5-13

5.7.5 Subtract (S, SR, SI, SIS)

Subtract (S)

Subtract Register (SR)
Subtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation Opcode Format
S R1,D2(X2) 5B RX1,RX2
S R1,A2(FX2,5X2) 5B RX3

SR R1,R2 OB RR

S1 R1,12(X2) FB RI2

SIS R1,N 27 SF
Operation:

The fullword second operand is subtracted algebraically from the
contents of the register specified by Rl. The result replaces
the contents of the register specified by RIL.

Condition Code:

FCcCHViIG L

|======ss====s==|

P X V00 0 Result is zero

' X V001 Result is less than zero

P X 404 1) 0 Result is greater than zero
PX b1 X) X Arithmetic overflow

V10 X)X) X Borrow

Programming Notes:

The second operand for the SIS instruction is obtained by
expanding the 4-bit data field, N, to a 32-bit fullword by
forcing the high-order bits to zero.

In the RI2 format, the contents of the index register specified

by X2 are added to the 32-bit 12 field to form the fullword
second operand.

In the RX formats, the second operand must be located on a
fullword boundary.

5-14 50-022 ROO

Example 1:

This example of the S instruction subtracts the

memory location LOC from the contents of register 9.

Assembler Notation Comments
S REG9,1.0C SUBTRACT (I.OC) FROM (REG9)
Where:

REGY9 contains X'44444444"'
I.OC contains X'44444444"
Result of S Instruction:
(REG9) = 0O
(LOC) unchanged by this instruction
Condition code = 0000

Example 2:

This example of the S instruction subtracts the

memory location LOC from the contents of register 9.

Assembler Notation Comments
S REG9,L0OC SUBTRACT (LOC) FROM (REG9)
Where:

REGY9 contains X'23456789"
LOC contains X'FFFF4321"'

Result of 8 Instruction:
(REG9) = 23462368

(I.0C) unchanged by this instruction
Condition code = 1010 (C=1, G=1)

50-022 ROO

fullword at

fullword at

5.7.6 Subtract Halfword (SH, SHI)

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notaktion Opcode Format
SH R1,D2(X2) 4B RX1,RX2
SH R1,A2(FX2,8X2) 4B RX3

SHI R1,12(X2) CB RI1
Operation:

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15. This
fullword 1is subtracted from the contents of the register
specified by RI1. The result replaces the contents of the
register specified by Rl.

Condition Code:

fCiViIGe LY

j===============

P Xy 0}V 04 0 Result is zero

P X 0y 0} 1 Result is less than zero
X P01 0 Result is greater than zero
P X1y X) X Arithmetic overflow

b1 P X P X X Borrow

Programming Notes:

In the RX formats, the second operand must be 1located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

5-16 50-022 ROO

Example 1:

This example of the SH instruction subtracts the halfword at
memory location LOC from the contents of register 9.

Assembler Notation Comments
SH REG9,LOC SUBTRACT (IL.OC) FROM (REG9)
Where:

REGY9 contains X'00123456"°
I1.0C contains X'FFF4'
Result of SH Instruction:
(REG9) = 00123462
(I.0C) unchanged by this instruction
Condition code = 1010
Example 2:
This example of the SH instruction subtracts the halfword at

memory location LOC from the contents of register 9.

Assembler Notation Comments

SH REG9Y,L0C ' SUBTRACT (I1.OC) FROM (REGY9)
Where:

REG9 contains X'FFFF4567"
LOC contains X'2345’'

Result of SH Instruction:
(REGY9) = FFFF2222

(I.OC) unchanged by this instruction
Condition code = 0001

50-022 ROO 5-17

5.7.7 Compare (C, CR, CI)

Compare (C)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation Opcode Format
C R1,D2(X2) 59 RX1,RX2
C R1,A2(FX2,SX2) 59 RX3

CR R1,R2 09 RR

C1 R1,12(X2) F9 RI2
Operation:

The first operand contained in the register specified by Rl is
compared algebraically to the 32-bit second operand. The result
is indicated by the condition code setting. Neither operand is
changed. ’

Condition Code:

P C i ViIiGIiI L,

=================

i 0y X1 014 0 First operand is equal to second

b1) X 0 1 First operand is less than second
!0y x4 1} 0| First operand is greater than second

Programming Notes:

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.

5-18 50-022 ROO

Example:

This example of the
register 3 to the
LAB.

Assembler Notation

c REG3,LAB

Where:

C instruction compares

the

contents of

contents of the fullword in memory location

Comments

COMPARE (REG3) TO (LAB)

REG3 contains X'44567894"
Fullword at LAB contains X'04321243"'

Result of C Instruction:

(REG3) unchanged by this instruction
(IL.AB) unchanged by this instruction
Condition code = 0010 (G=1)

50-022 ROO

5.7.8 Compare Halfword (CH, CHI)

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Opcode Format
CH R1,D2(X2) 49 RX1,RX2
CH R1,A2(FX2,SX2) 49 RX3

CHI R1,12(X2) c9 RI1
Operation:

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1l, is
compared algebraically to the effective second operand. The
result is indicated by the condition code setting. Neither
operand is changed.

Condition Code:

First operand is equal to second
First operand is less than second
First operand is greater than second

OO
OO

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

Condition code settings are based on the fullword comparison.
The state of the V flag is undefined.

5-20 50-022 ROO

Example:

This example of the CH instruction compares the
register 8 to the halfword at memory location LAB.

Agssembler Notation Comments
CH REGS8,LAB COMPARE (REG8) TO (LAB)
Where:

REG8 contains X'F4567891"
Halfword at LAB contains X'3123°

Result of CH Instruction:

(REG8) unchanged by this instruction
(LAB) unchanged by this instruction
Condition code = 1001 (C=1, V=1)

50-022 ROO

contents of

5.7.9 Multiply (M, MR)

Multiply (M)
Multiply Register (MR)

Agasembler Notation Opcode Format
M R1,D2(X2) 5C RX1,RX2
M R1,A2(FX2,58X2) 5C RX3

MR R1,R2 1C RR
Operation:

The fullword first operand contained in the register specified by
R1+1 is multiplied by the fullword second operand. The b64-bit
result is stored in the registers specified by Rl and Rl+1l. The
sign of the result is determined by the rules of algebra.

Condition Code:

Unchanged

Programming Notes:

The R1 field of these instructions must specify an even-numbered

register. If the Rl field of these instructions is odd, the
result is undefined.

In the RX formats, the second operand must be located on a
fullword boundary.

The most significant bits of the result are placed in the

register specified by Rl; the least significant bits are placed
in the register by R1l+l.

5-22 50-022 ROO

Example 1:

This example of the M instruction multiplies the contents of
register 9 by the contents of memory location LOC and places the
result in registers 8 and 9 (64 bits).

Assembler Notation Comments
M REGS8,1LOC MULTIPLY (REGS) BY (LOC)
Where:

REG8 contains unknown data
REGY9 contains X'00002431"
Fullword at location LOC contains X'43120000°

Result of M Instruction:

REG8 and REGY9 together contain the result
(REG8, REGS) = 0000 097B, S5E72 0000

(I0C) unchanged by this instruction
Condition code unchanged by this instruction

Example 2:
This example of the MR instruction multiplies the contents of

register 9 by the contents of register 8 and places the result in
registers 8 and 9 (64 bits).

Assembler Notation Lomments
MR REGS8,REGCS MULTIPLY (REG9) BY (REGS8)
Where:

REG8 contains X'00010000"°
REGY9 contains X'12345678"°
Result of MR Instruction:
REG8 and REGY9 together contain the result

(REG8, REG9) = 0000 1234, 5678 0000
Condition code unchanged by this instruction

50-022 ROO 5-23

5.7.10 Multiply Halfword (MH, MHR)

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation Opcode Format
MH R1,D2(X2) 4C | RX1,RX2
MH R1,A2(FX2,8X2) 4C RX3
MHR R1,R2 ocC RR
Operation:

The first operand, contained 1in bits 16:31 of the register
specified by R1l, is multiplied by the 16-bit second operand,
taken from memory or from bits 16:31 of the register specified by
R2. Both operands are 16-bit signed two's complement values.
The 32-bit result replaces the contents of the register specified
by RI1. The sign of the result is determined by the rules of
algebra.

Condition Code:

Unchanged

Programming Note:

In the RX formats, the second operand must be located on a
halfword boundary.

Example 1:

This example of the MH instruction multiplies the halfword
contents of register 8 by the halfword in memory location LAB.

Assembler Notation Comments
MH REGS8,LAB MULTIPLY LEAST SIGNIFICANT HALF
OF (REG8) BY (LAB)

Where:

REG8 contains X'ABCD 0045"'
Halfword at memory location LAB contains X'8674'

5-24 50--022 ROO

Result of MH Instruction:
(REG8) = FFDF3D44

(LAB) unchanged by this instruction
Condition code unchanged by this instruction

Example 2:

This example of the MHR instruction multiplies the contents
register 11 by the halfword contents of register 4.
Assembler Notation Comments

MHR REG11,REG4 MULTIPLY LS HALF OF (REGll)
BY 1. HALF OF (REG4)

Where:

REG1l1l contains X'37210004°' .
REG4 contains X'FFFF0307'

Result of MHR Instruction:
(REG11) = 00000clc

(REG4) unchanged by this instruction
Condition code unchanged by this instruction

of

50-022 ROO 5-25

5.7.11 Divide (D, DR)

Divide (D)
Divide Register (DR)

Assembler Notation Opcode Format
D R1,D2(X2) SD RX1,RX2
D R1,A2(FX2,S8X2) 5D RX3

DR R1,R2 1D RR
Operation:

The 64-bit signed dividend contained 1in the two registers
specified by Rl and Rl+1 is divided by the signed fullword second
operand. The 32-bit signed remainder replaces the contents of
the register specified by RI. The signed 32-bit quotient
replaces the contents of the register specified by R1+1.

The sign of the quotient is determined by the rules of algebra.

The sign of the remainder is the same as the sign of the
dividend.

Condition Code:

Unchanged

Programming Notes:

The Rl field of these instructions must specify an even-numbered

register. If the Rl field of these instructions is odd, the
result is undefined.

The most significant bits of the dividend must be contained in
the register specified by Rl. The least significant bits of the
dividend must be contained in the register specified by R1+1l.

In the RX formats, the second operand must be located on a
fullword boundary.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the quotient is more positive than X'7FFFFFFF' or
more negative than X'80000000', gquotient overflow is said to
occur. If quotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

5-26 50-022 ROO

Example 1:

This example of the D instruction divides the contents of
registers 8 and 9 by the fullword contents of memory location
LocC.

Assembler Notation Comments
D REGS8,L.0OC DIVIDE (REG8,9) BY (LOC)
Where:

REG8 contains X'12345678'
REG9 contains X'98765432'
LOC contains X'34343434'

Most significant half of dividend
Least significant half of dividend
Divisor

Result of D Instruction:

(REGS8) lE1E1E1E Remainder

(REG9) 59455459 Quotient

(LOC) unchanged by this instruction
Condition code unchanged by this instruction

]
W on

Example 2:

This example of a D instruction divides the contents of registers
8 and 9 by the fullword contents of memory location LOC.

Assembler Notation Comments
D REGS8,1.0C DIVIDE (REGS8,9) BY (LOC)
Where:

REG8 contains X'FFFF1234'
REG9 contains X'00000000"'
LOC contains X'12345678'

Most significant half of dividend
Least significant half of dividend
Divisor

o

Result of D Instruction:

(REGS8) F250DSEQ Remainder

(REG9) FFF2EFFC Quotient

LOC unchanged by this instruction

Condition code unchanged by this instruction

]
o

50-022 ROO 5-27

Example 3:

This example of a D instruction divides the contents of registers
8 and 9 by the fullword contents of memory location LOC.

Assembler Notation Comments
D REGS8,1.0C DIVIDE (REG8,9) BY (LOC)
Where:

REG8 contains X'43657898"'
REG9 contains X'12123456'

Most significant half of dividend
Least significant half of dividend

oo

LOC contains X'00000000' Divisor
Result of D Instruction:
Division by zero causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.

Example 4:

This example of a D instruction divides the contents of registers
8 and 9 by the fullword contents of memory location LOC.

Assembler Notation Comments
D REGS8,LOC DIVIDE (REG8,9) BY (LOC)
Where:

REG8 contains X'80000000'
REG9 contains X'00000001‘

Most significant half of dividend
Least significant half of dividend

[

LOC contains X'00000001"' Divisor
Result of D Instruction:
Quotient overflow causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.

5-28 50-022 ROO

Example 5:

This example of the DR instruction divides the contents of
register 8 and 9 by the contents of register 2.

Assembler Notation Comments
DR REGS8,REG2 DIVIDE (REG8,9) BY (REG2)
Where:

REG8 contains X'FFFFFFFF'
REGY9 contains X'FFFFFFFD'
REG2 contains X'FFFFFFFE"

Most significant half of dividend
Least significant half of dividend
Divisor

U I |

Result of DR Instruction:

(REGS8) FFFFFFFF Remainder

(REG9) 00000001 Quotient

(REG2) unchanged by this instruction
Condition code unchanged by this instruction

50-022 ROO 5-29

5.7.12 Divide Halfword (DH, DHR)

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Opcode Format
DH R1,D2(X2) 4D RX1,RX2
DH R1,A2(FX2,5X2) 4D RX3
DHR R1,R2 0D RR
Operation:

The 32-bit signed dividend contained in the register specified by
Rl is divided by the 16-bit signed second operand. The 16-bit
signed remainder 1is copied to Rl (bits 16:31) and the halfword
value is converted to a fullword value. The 16-bit signed
quotient 1is copied to the register specified by Rl + 1 after
conversion to a fullword value.

The sign of the guotient is determined by the rules of algebra.
The sign of the remainder is the same as the sign of the
dividend.

Condition Code:

Unchanged

Programming Notes:

In the RX formats, the second operand must be located on a
halfword boundary. In the RR format, the second operand is taken
from bits 16:31 of the register specified by R2.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the quotient is more positive than X'7FFF' or
more negative than X'8000', quotient overflow is said to occur.
If gquotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

5-30 50-022 ROO

Example 1:

This example of the DH instruction divides the contents
register 7 by the halfword contents of memory location LOC.

Azssembler Notation Comments

DH REG7,LOC DIVIDE (REG7) BY (LOC)
Where:

REG7 contains X'0000 0054°
LOC contains X'0008"

Dividend
Divisor

hh

Result of DH Instruction:

(REG7) 0000 0004 Remainder

(REGS8) 0000 000A Quotient

(LOC) wunchanged by this instruction
Condition code unchanged by this instruction

/]

Example 2:

This example of the DH instruction divides the contents
register 7 by the halfword contents of memory location LOC.

Assembler Notation Comments

DH REG7,1.0C DIVIDE (REG7) BY (LOC)

Where:

REG7 contains X'1234 5678°
LOC contains X'0000"'

Dividend
Divisor

Result of DH Instruction:

of

of

Division by zero causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.

50-022 ROO 5-31

Example 3:

This example of the DH instruction divides the contents of
register 7 by the halfword contents of memory location LOC.

Assembler Notation Comments
DH REG7,L0C DIVIDE (REG7) BY (L.OC)
Where:

REG7 contains X'8000 0002' = Dividend

LOC contains X'0001'
Result of DH Instruction:

Quotient overflow causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

5-32 50-022 ROO

5.7.13 shift Left Arithmetic (SLA)

Assembler Neotation Opcode Format
SLA R1,12(X2) EE RI1
Operation:

Bits 1:31 of the first operand, contained in the register
specified by R1l, are shifted left the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged.
Bits shifted out of position 1 are shifted through the carry flag
and then 1lost. The last bit shifted remains in the carry flag.
Zeros are shifted into position 31.

Condition Code:

i CVv VI G L

: 2 2 2 2 2 3 1 T 3+ 5 ¥ 3 %% :

X0}V 0 0 Result is zero

i X410} 01} 1 Result is less than zero

i X 101} 14 0 ¢ Result is greater than zero
P10 XX Carry

Programming Notes:

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in

accordance with the value contained in the register specified by
Rl. The C flag is zero in this case.

50-022 ROO 5-33

Example:

This example of the SLA instruction shifts the bits

5 left by the number specified by the second operand.

Assembler Notation Comments
SILLA REGS,4 SHIFT (REG5) LEFT 4 PLACES
Where:

REGS contains X'80005647"°

Result of SLA Instruction:

(REG5) = 80056470
Condition code = 0001 (L=1)

in

register

50-022 ROO

5.7.14 Shift Left Halfword Arithmetic (SLHA)

Assembler Notation Opcode Format
SLHA R1,12(X2) CF RI1
Operation:

Bits 17:31 of the register specified by Rl are shifted left the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged. Bits shifted
out of position 17 are shifted through the C flag and then lost.
The last bit shifted remains in the C flag. Zeros are shifted

into position 31. Bits 0:15 of the first operand register remain
unchanged.

Condition Code:

Result is zero

Result is less than zero
Result is greater than zero
Carry

e o]
¥ OO

Programming Notes:

The condition code settings are based on the halfword (bits
16:31) result.

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in

accordance with the halfword value contained in bits 16:31 of the
register specified by Rl. The C flag is zero in this case.

50-022 ROO 5-35

5.7.15 sShift Right Arithmetic (SRA)

Assembler Notation Opcode Format
SRA R1,12(X2) EE RI1
Operation:

Bits 1:31 of the first operand, contained in the register
specified by Rl, are shifted right the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged
and is propagated right as many positions as specified by the
second operand. Bits shifted out of position 31 are shifted
through the C flag and lost. The last bit shifted remains in the
C flag.

Condition Code:

i Ci1 Vi G6G L

=====a===========

1 X}V 04} 0} 0 Result is zero

VP Xy 041 01 Result is less than zero

fF X404 14 0 | Result is greater than zero
14041 XX Carry

Programming Notes:

The state of the C flag indicates the state of the laét bit
shifted.

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in

accordance with the value contained in the register specified by
Rl1l. The C flag is zero in this case.

5-36 50-022 ROO

Example:

This example of the SRA instruction shifts the contents of
register 9 right the number of places specified by the second
operand.

Assembler Notation Comments
SRA REG9,8 SHIFT (REG9) RIGHT 8 PLACES
Where:

REG9 contains X'800004256"

Result of SRA Instruction:

(REG9) = X'FF800042"'
Condition code = 0001 (L=1)

50-022 ROO 5-37

5.7.16 Shift Right Halfword Arithmetic (SRHA)

Assembler Notation Qpcode Format
SRHA R1l,12 (X2) CE RI1
Operation:

Bits 17:31 of the register specified by Rl are shifted right the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged and is
propagated right the number of positions specified by the second
operand. Bits shifted out of position 31 are shifted through the
Cc flag and lost. The last bit shifted remains in the C flag.
Bits 0:15 of the first operand register remain unchanged.

Condition Code:

i CHVIG L

====s===========:

P Xt 0} 0} 0| Result is zero

P X101 01 Result is less than zero
X104+t 14 0 Result is greater than zero
i1 104 X} X | Carry

Programming Notes:

The condition code settings are based on the halfword (bits
16:31) result.

The state of the C flag indicates the state of the last bit
shifted.

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in

accordance with the halfword value contained in bits 16:31 of the
register specified by Rl. The C flag is zero in this case.

5-38 50-022 ROO

5.7.17 Convert to Halfword Value Register (CHVR)

Assembler Notation Opcode Format
CHVR R1,R2 12 RR
Operation:

The halfword second operand, bits 16:31 of the register specified
by R2, 1is expanded to a fullword by propagating the most
significant bit (bit 16) through bits 0:15. This fullword
replaces the contents of the register specified by Rl.

Condition Code:

P CiViIiG L

| ===============|

F X1 X} 04} 0| Result is zero

P XXy 01 Result is less than zero

F XV X {11 0 | Result is greater than zero

y X 41) X | X | Source operand cannot be represented by a
i H H | H 16-bit signed number

P11 X} X | X | Carry flag was set in previous condition
i i i i i code

i 0} X | X | X | Carry flag was zero in previous condition
——————————————— code

Programming Notes:

The V flag is set when bit 15 of the second operand is not the
same as bit 16 of the second operand. The G and L flags reflect
the algebraic value of bits 16:31 of the second operand.

Execution of this instruction following halfword operations
guarantees the same results as those obtained if the program were
run on a 16-bit machine. For example, if location A in memory
contains the halfword value of X'7FFF' (decimal 32767) then:

LH R1,A R1 contains X'0O0CO7FFF'
AlIS R1,1 R1 contains X'00008000"'

50-022 ROO 5-39

Following the add operation, the condition code is:

-
-
-
-

-
-
-
-

indicating a result greater than zero, which is correct for
fullword operations. If the same sequence were executed on a
16-bit processor:

LH R1,A Rl contains X'7FFF'
AlIS R1,1 Rl contains X'8000'

Following this, the condition code in the halfword processor is:

-
-
-
-

indicating overflow and a negative result. Going back to the
original sequence and adding the convert to halfword value
register instruction produces the following:

LH R1,A Rl contains X'00007FFF'
AlIS R1,1 R1 contains X'00008000°
CHVR R1,R1l Rl contains X'FFFF8000'

Following this sequence, the condition code is:

which is 1identical to that of the 16-bit processor and can be
tested in the same manner.

5-40 50-022 ROO

CHAPTER 6
FLOATING POINT ARITHMETIC

6.1 INTRODUCTION

Floating point arithmetic instructions provide a means for rapid
handling of scientific data expressed as floating point numbers.
Single and double precision floating point instructions, as well
as mixed mode floating point instructions, are described in this
chapter. The comprehensive set of instructions includes load and
store floating point numbers; add, subtract, multiply, divide and
compare two floating point numbers; convert fixed point to
floating point and vice versa; and mixed mode operations that
translate single precision to double precision and vice versa.

Floating point is a means of representing a quantity in any
number ing system. For example, the decimal number 123 (base 10),
can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 10°3
0.0123 x 104

In this example, the decimal point moved; this 1is called a
floating point. In actual floating point representation, the
significant digits are always fractional and are collectively
referred to as fractions. The power to which the base number is
raised is called the exponent. For example, in the number .45678
x 102, 45678 is the fraction and 2 is the exponent. Both the
fraction and the exponent can be signed. If there is a floating
point representation such as:

(sign of fraction) x (exponent) x (fraction)

the following representation applies.

50-022 ROO 6-1

NUMBER FLOATING POINT

+ 32.94 = +.3294 x 102 f + | 42 | 3294 E
-23760000.0 = -.2376 x 10°% g‘Z’I‘Ig”I’"QQ;;'E
+0.000059 = +.59 x 107 E‘:_?_:;_?m___;;_g
-0.0000000092073 = -.92073 x 1078 E':'?'ié"?'5£6§§';

Large or small numbers can be easily expressed in floating point,
making it ideally suitable for scientific computation. Note the
compactness of floating point notation in the above examples.

Floating point representation in the processor is similar to the
above representation. The differences are:

e Hexadecimal, instead of decimal, numbering system is used.

® Physical size of the number 1is 1limited; therefore, the
magnitude and precision are limited.

6.2 FLOATING POINT DATA FORMATS

Floating point numbers occur in one of two formats: single and
double precision. The single precision format requires a
fullword (32 bits). When such a value is contained in memory, it
must exist on a fullword address boundary. The sign (8),
exponent (X) and fraction (consisting of the digits Fl, F2, F3,
F4, F5 and F6) fields are designated as follows:

602

0 7 8 11 12 156 16 19 20 23 24 27 28 31

S X F1 F2 F3 F4 F5 F6

The double precision format requires a doubleword (64 bits).
When two general registers hold a double precision value, an
even/odd pair of general registers must be used. The
even-numbered register contains the most significant 32 bits, and
the next sequential odd register contains the least significant
32 bits. The sign (S), exponent (X) and fraction (consisting of
digits Fl through Fl4) fields are designated as follows.

6-2 50-022 ROO

603

0 7 8 1 12 15 16 19 20 23 24 27 28 31
S X F1 F2 F3 F4 F5 F6
32 35 36 39 40 43 4 47 48 51 52 55 b6 59 60 63
F7 F8 F9 F10 F11 F12 F13 F14
NOTE

Floating point uses sign/magnitude

notation rather than the two's complement

notation used for integers.
6.3 FLOATING POINT NUMBER
In the processor, a floating point number is represented in the
following form:

i Sign | Exponent | Fraction !

Sign is the most significant bit of a floating
point number. The sign bit 1is zero for
positive numbers and one for negative numbers.
The floating point value of zero always has a
positive sign.

Exponent is the 7-bit field, bits 1:7, that is
designated as the exponent field. The
exponent is expressed in excess-64 notation.
The number in this field contains the true

EXPONENT IN

EXCESS-64
NOTATION

value of the exponent plus X'40' (decimal 64).
This helps to represent very small magnitudes

between 0 and 1. Examples of the exponent
values follow.

TRUE | TRUE | |
EXPONENT IN | EXPONENT IN | MULTIPLY !
HEXADECIMAL | DECIMAL i FRACTION BY |

;_================;;;;;;;===;g==========================n

-40 ! -64 ! 16764 !

-1 { -1 ! 1671 |
0 i 0 | 169 !
1 | 1 | 16’ !
3F ! 63 i 1683 i

50-022 ROO

The exponent field for true zero is always 00.

Fraction is the fraction field that contains six
hexadecimal digits for single precision
floating point numbers and 14 hexadecimal
digits for double precision floating point
numbers. As 1in any other fraction, the
floating point fraction 1is expressed with
greatest precision when the most significant
hexadecimal digit (not necessarily the most
significant bit) 1is nonzero. The floating
point number with such a fraction is called a
normalized loating point number. In the
Perkin-Elmer Series 3200 Processors,
normalized numbers are always used to obtain
the maximum possible precision. See Appendix
D for hexadecimal fraction conversion.

The following examples illustrate the sign, exponent and fraction
concept of a floating point number.

NUMBER 1IN i i
HEXADEC IMAL i SIGN EXPONENT/ |
INTEGER-FRACTION | FRACTION SHOWN |
[} |

1 [

0
z
b
d
&
0
a
g

NOTATION FOR CLARITY FLOATING POINT NUMBER
|es=s======================s==s====SSSS=ss==sSS=SS=s=sss=======
i +1.3A25678 ! 0 41 13A25678 H 4113A256 i
i\ ~6.89F2C i 1 41 689F2C] C1l689F2C i
! +1A.C39D21 ! 0 42 1AC39021 | 421AC39D !
! -3C1DF.82A3 i 1 45 3C1DF82A3 | C53C1DF8 |
i +ABCDEF12.9AC { 0 48 ABCDEF129A | 4 8ABCDEF]
i +0.0032A8CF2 i 0 3E 32A9CF2 i 3E32A9CF g
! -0.000002C7BS i 1 3B 2C7B5 i BB2C7B50 '

6.3.1 Floating Point Number Range

The range of magnitude (M) of a normalized floating point number
is as follows:

Single precision: 165 (M ¢ (1 - 1679 * 1693
Double precision: 165 (M (1 - 167%) x 1§63
Approximately for both: 5.4 * 10779 (M 7.2 * 107°

The following diagram shows the floating point range in relation
to the fixed point range along with the decimal values.

6-4 50-022 ROO

609-2

LEAST NEGATIVE LEAST POSITIVE
8010 0000 0010 0000

MOST NEGATIVE (5.4 * 1079) TRUE (5.4 x 1079 MOST POSITIVE
FFFF FFFF ZERO 7FFF FFFF
(-7.2*107°) €880 0000 0000 0000 4110 0000 (7.2 *107°)

/ ((1) o) \

L | ‘ 1

| 1

FLOATING POINT
TRUE
MOST NEGATIVE ZERO MOST POSITIVE
8000 0000 0000 0000 7FFF FFFF
((2147 483 648) ((3) (2 147 483 64.11))
— X X { FIXED POINT INTEGER
LEAST NEGATIVE_ N~ LEAST POSITIVE
FFFF FFFF 0000 0001

(-1) (+1)

6.3.2 Normalization

Normalization 1is a process of making the most significant digit
(F1) of the fraction of a floating point number nonzero. in the
normalization process, the floating point fraction 1is shifted
left hexadecimally (i.e., four bits at a time), and its exponent
is decremented by one for each hexadecimal shift until the most
significant digit (not necessarily the most significant bit) of
the fraction is nonzero.

eo7 FRACTION

S EXPONENT F1 F2 F3 F4 F5 F6

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F1>0

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except for the load instructions, all floating point operations
assume and require normalized operands for consistent results.
The load instructions normalize an unnormalized operand.

50-022 ROO 6-5

Examples:

OPERAND AFTER NORMALIZAT ION
42012345 41123450
21000ABC LEABC000
C900FE12 C7FE1200

4. 6C000000 00000000 (true zero)

5. 82000Aa67 00000000 (exponent underflow)

In Example 4, the fraction of the operand is zero. During the

normalization process, such a fraction 1s detected, and the
floating point number is set to true zero.
In Example 5, the exponent of the operand is very small. Dur ing

the normalization process, the exponent is decremented from 00 to

7F. Such a transition results in exponent underflow, and the
floating point number is set to true zero.

Normalized results are always produced 1in floating point
operations, provided that the operands are normalized. Results

of operations between unnormalized numbers are undefined.

6.3.3 Equalization

Equalization is a process of equalizing exponents of two floating

point numbers. The fraction of the floating point number with
the smaller exponent is shifted right hexadecimally (i.e., four
bits at a time), and its exponent is incremented by one for each

hexadecimal shift until the two exponents are eqgual.
608
INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL
® L

S EXPONENT F1 F2 F3 Fa F5 F6

N~

FRACTION

During floating point addition and subtraction,
point operands are equalized.

the two floating

50-022 ROO

Examples:

OPERAND AFTER EQUALIZATION
1. 43123456 43123456
3F789ABC 43000078
2. CJ7FEl1234 C900FE1l2
4956789A 4956789A

In this example, normalized floating point numbers are shown
because addition and subtraction require normalization. If the
exponents differ by more than six for single precision or more
than 14 for double precision, the representable significance of
the lower exponent floating point number is lost in the process
of equalization. Digits shifted out are shifted through the
guard digits and can still have an effect on the result, sum or
difference.

6.3.4 True Zero

A floating point number is true zero when the exponent and the
fraction fields are all zeros; therefore, all data bits must be
zero. A zero value always has a positive sign. In general, zero
values participate as normal operands in all floating point
operations.

A. true zero can be used as an operand. It can also result from
an arithmetic operation that caused an exponent underflow, in
which case the entire number may be forced to true zero. If an

arithmetic operation produces a result in which the fraction
digits are all zeros (sometimes referred to as 1loss of
significance), the entire number is forced to true zero.

Examples:

NUMBER OPERATION RESULT REASON

1. 030000AB Normalization 0000 0000 Exponent
underf low

2. 41ABCDEF Subtraction 0000 0000 Loss of
significance

50-022 ROO 6-7

6.3.5 Exponent Overflow

In floating point operations, exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the
result register is unchanged. The condition code 1is set to
reflect the overflow situation and the resulting sign. An
arithmetic fault interrupt is also taken. Exponent overflow
interrupts cannot be disabled. Figure 6-1 illustrates exponent
overflow using a line representation of numbers.

609

MOST NEGATIVE TRUE MOST POSITIVE
NUMBER ZERO NUMBER
[2] [} o ®
FFFFFFFF Voo TFFFFFFF
| i
-
EXPONENT = 7F UNDERFLOW EXPONENT = 7F
= 6310 RANGE
OVERFLOW OVERFLOW

Figure 6-1 Exponent Overflow

6.3.6 Exponent Underflow

The normalization process, during a floating point operation, may
produce an exponent underflow. This underflow occurs when a
result exponent is 1less than -64. Figure ©6-2 illustrates
exponent underflow using a line representation of numbers.

610
LEAST NEGATIVE TRUE LEAST POSITIVE
NUMBER ZERO NUMBER
> f——e [] e
80100000 0010000
EXPONENT = 00 EXPONENT = 00
= 6449 = B4
UNDERFLOW UNDERFLOW
Figure 6-2 Exponent Underflow
6-8

50-022 ROO

If underflow occurs, an arithmetic fault interrupt is taken if
enabled by the current program status word (PSW). Both operands
remain unchanged. If underflow is disabled by the current PSW,
the result is forced to zero (the closest possible answer), the
vV flag 1in the condition code is set, and the next sequential
instruction is executed.

6.3.7 Guard Digits and R* Rounding

When an intermediate floating point result has been formed, it
consists of a sign, an exponent and a fraction field. The
fraction field is extended by a number of guard digits containing
the least significant fraction digits of the intermediate result.
Before the result is copied to a destination, it 1is rounded to
compensate for the loss of the guard digits in the final result.

Quotients are simple-rounded rather than R* rounded. R* (or
nonbiased) differs from simple-rounded only when the truncated

fraction is precisely one-half. Nonbiased rounding 1is
statistically important for the accuracy of additions and
subtractions: it 1is not important for division since the

truncated fraction is hardly ever exactly one-half.

The following are rules for the R* Rounding scheme:

e If the most significant guard digit is hexadecimal 7 or less,
no rounding is performed (see Example 1).

e If the most significant guard digit is hexadecimal 8, and all
other guard digits are 0, the least significant bit of the
final result is forced to 1 (see Example 2).

e If the most significant guard digit 1is hexadecimal 8, and
another guard digit 1is nonzero, or if the most significant
guard digit is hexadecimal 9 or greater, 1 is added to the
fraction field of the final result (see Example 3). If this
addition produces a carry out of the fraction field (i.e.,
fraction field was all ones), the result exponent is
incremented by 1, the most significant fraction digit (Fl) 1is
set to hexadecimal 1, and all other fraction digits are set to
0 (see Example 4). Note that exponent overflow could occur as
the result of rounding.

50-022 ROO 6-9

Examples:

6.3.

To ¢
inte

F INAL
INTERMEDIATE RESULT SINGLE PRECISION
GUARD

DATA DIGITS RESULT
1. 42ABCD12 32680000 42ABCD12
2. Cl183756 80000000 C1183757
3. 3E265739 80100000 3E26573A
4. A41FFFFFF F0000000 42100000

8 Conversion from Decimal

onvert a decimal number into the excess-64 notation used
rnally by the processor, the following steps must be taken.
Separate the decimal integer from the decimal fraction.

182.37540 = (182 + .375)¢0

Convert each part to hexadecimal by referring to the integer
conversion table and the fraction conversion table in
Appendix D.

182490 = Bb4yg .37510 = .b61s

Combine the hexadecimal integer and fraction.
B6.614 = (B6.6 X 16°),4

Shift the radix point.
(B6.6 X 16%)46= (.B66 X 162)4

Add 64 (X'40’) to the exponent.

4015 + 216 = 4216

50-022 ROO

6. Convert the exponent field and fractions to binary allowing
1 bit for the sign, 7 bits for exponent field, and 24 or 56
bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 O0OO0OOC

6.4 CONDITION CODE

Most floating point operations affect the condition code. For
each instruction description, the possible condition code
settings are shown.

6.5 FLOATING POINT INSTRUCTIONS

All floating point instructions are illegal when PSW bit 13 (FLM)
is set. Floating point instructions cannot be executed when the
processor is in the floating point masked (FLM) mode.

Floating point instructions use the Register-to-Register (RR) and
the Register and Indexed Storage (RX) instruction formats. in
all of the RR formats, except for the fix and float instructions,
the R1 and R2 fields each specify one of the floating point
registers. There are eight single precision floating point
registers and eight double precision floating point registers
numbered 0, 2, 4, 6, 8, 10, 12 and 14. Floating point
instructions must specify even—-numbered floating point registers,
or the results of the instructions are undefined. Except for the
FXR, FXDR, LGER and LGDR instructions, the Rl field always
specifies a floating point register.

Floating point arithmetic operations, excluding loads and stores,
require normalized operands to ensure correct results. If the
operands are not normalized, the results of these operations are
undefined. Floating point results are normalized. The floating
point load instructions normalize the floating point data
presented as the second operand.

The single precision floating point instructions described in
this section are:

Lo Load Unnormalized Floating Point

LUR Load Unnormalized Floating Point Register
LE Load Floating Point

LER Load Floating Point Register

LEGR Load Floating Point from General Register
LPER Load Positive Floating Point Register
LCER Load Complement Floating Point Register
I.ME Load Floating Point Multiple

50-022 ROO 6-11

LGER

STE

STME

AE
AER

SE
SER

CE
CER

ME
MER

DE
DER

FXR

FLR

Load General Register from Floating Point
Register

Store Floating Point
Store Floating Point Multiple

Add Floating Point
Add Floating Point Register

Subtract Floating Point
Subtract Floating Point Register

Compare Floating Point
Compare Floating Point Register

Multiply Floating Point
Multiply Floating Point Register

Divide Floating Point
Divide Floating Point Register

Fix Register

Float Register

The double precision floating point instructions described in

this section are:

LW
LWR

LD
LDR
LDGR

LPDR

LCDR

LGDR

STD

STMD

ADR

Load Unnormalized Double Precision
Load Unnormalized Double Precision Register

Load Double Precision Floating Point

Load Register Double Floating Point

Load Double Precision Floating Point from
General Register

Load Positive Register Double Precision
Floating Point

Load Complement Register Double Point Multiple
Load Double Precision Floating Point Multiple

Load General Register from Double Precision
Floating Point Register

Store Double Precision Floating Point
Store Multiple Double Precision Floating Point

Add Double Precision Floating Point
Add Register Double Precision Floating Point

50-022 ROO

SD
SDR

CD
CDR

DD
DDR

FXDR

FLDR

Subtract Double Precision Floating Point
Subtract Register Double Precision Floating
Point

Compare Double Precision Floating Point
Compare Register Double Precision Floating
Point

Multiply Double Precision Floating Point
Multiply Register Double Precision Floating
Point

Divide Double Floating Point

Divide Register Double Precision Floating
Point

Fix Register Double Precision Floating Point

Float Register Double Precision Floating Point

The mixed mode floating point instructions described 1in this

section are:

LED

LDER

STDE

50-022 ROO

Load Single Precision Floating Point from
Double Precision Point

Load Register Double Precision Floating Point
from Single Precision Floating Point

Load Double Precision Floating Point from
Single Precision Floating Point

Load Register Single Precision Floating Point
from Double Precision Floating Point

Store Double Precision Floating Point in
Single Precision Floating Point

6.5.1 Load Unnormalized Floating Point (LU, LUR)

Load Unnormalized Floating Point (LU)
Load Unnormalized Floating Point Register (LUR)

Assembler Notation Opcode Format
LU R1,D2(X2) 4E RX1,RX2
LU R1,A2(FX2,8X2) 4E RX3

LUR R1l,R2 1E RR
Operation:

The fullword second operand is placed in the single precision
floating point register specified by R1l. No normalization is
performed.

Condition Code:

b Cclvicec !t L

= — T TmTEmEEEEEETmEEES =

!0y 0} 01} 0| Result is zero

! 0} 0} 0} 1 Result is less than zero
o040} 1} 0} Result is greater than zero

Programming Notes:

In the RX formats, the second operand must be located on a
fullword boundary. This instruction 1is intended for data
manipulation only. Floating point operations using data in a

register 1loaded in this manner may not produce predictable
results.

6-14 50-022 ROO

6.5.2 Load Floating Point (LE, LER, LEGR)

Load Floating Point (LE)
Load Floating Point Register (LER)
Load Floating Point from General Register (LEbR)

Assembler Notation Opcode Format

1LE R1,D2(X2) 68 RX1,RX2

1E R1,A2 (FX2,5X2) 68 RX3

LER R1,R2 28 RR

LEGR R1,R2 AS RR

Operation:

The floating point second operand is normalized, if necessary,

and placed 1in the single precision floating point register
specified by R1.

Condition Code:

I
|
1
!
|
|
|
|
|
|
|
|
|
|
i

1 0Oy 0}y 0 0 | Floating point result is zero

i 0Oy 0} 0O} 1 Floating point result is less than zero
{0y 04 1) 0 Floating point result is greater than

] [] i [} [} Zero

1 1 1 1]

{04 14104 0 | Exponent underf low

Programming Notes:

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0006O'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by Rl is unchanged. If an exponent underflow occurs,

and bit 19 of the current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be Jlocated on a
fullword boundary.

50-022 ROO 6-15

Example:

This example of the LE instruction normalizes data taken from the
fullword at memory location LOC and places it in floating point
register 8.

Agsembler Notation Comments
LE REGS8,LOC LOAD FROM LOC AND NORMALIZE
Where:

Floating point REG8 contains unknown data.
LOC contains X'4200 1000°

Result of LE Instruction:

(REG8) = X'4010 0000°

(LOC) unchanged by this instruction
Condition code = 0010

50-022 ROO

6.5.3 Load Positive Floating Point Register (LPER)

Assembler Notation Oopcode Format
I.PER R1l,R2 13 RR
Operation:

The floating point second operand data from the single precision
floating point register specified by R2 is forced positive
normalized, if necessary, and placed in the single precision
floating point register specified by Rl.

Condition Code:

i Ct Vi G VL

=================

i 0y 04 04 0| Floating point result is zero

it 0y 04 14§ 0| Floating point result is greater than
] } |] [} Zero

[' i i i

{10114 01 0 | Exponent underflow

Programming Notes:

If the argument fraction is zero, the entire result is forced to
zero, X'0000 000O0°'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by Rl is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Example:

Assemblexr Notation Comments

ILLPER REGC6,REGS I.OAD REG6 WITH
POSITIVE OF (REGS8)

Where:

Floating point REG6 contains unknown data
Floating point REG8 contains X'Cl11921FB'

50-022 ROO 6-17

Result of LPER Instruction:

(REG6) = X'411921FB"'

(REG8) unchanged by this instruction
Condition code = 0010

50-022 ROO

6.5.4 Load Complement Floating Point Register (LCER)

Assembler Notation Qpcode Format
L.CER R1,R2 17 RR
Operation:

The sign of the floating point second operand data from the
single precision floating point register specified by R2 is
complemented. The resulting floating point number is normalized,
if necessary, and placed in the single precision floating point
register specified by Rl.

Condition Code:

i 0O} 0} 0} 0} Floating point result is zero

i 0y 040} 1 Floating point result is less than zero
{004}V 1) 0| Floating point result is greater than

]]]] i Zero

i | 1 1 1

i 0+ 1 410141 0| Exponent underflow

Programming Notes:

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by Rl is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

50-022 ROO 6-19

6.5.5 Load Multiple Floating Point (LME)

Assembler Notation Opcode Format
IME R1,D2(X2) 72 RX2,RX2
IME R1,A2(FX2,8X2) 72 RX3
Operation:

Successive single precision floating point registers, starting
with the register specified by Rl, are loaded from successive
fullword memory locations starting with the address of the second
operand. The process stops when floating point register 14 has
been loaded.

Condition Code:

Unchanged

Programming Notes:

Values loaded into the floating point registers are assumed to be
normalized, and no test or adjustment is performed.

The second operand must be located on a fullword boundary.

Loading a register with a "dirty zero" using this instruction
will result in a load of true zero.

6-20 50-022 ROO

6.5.6 Load General Register from Floating Point Register (LGER)

Assembler Notation Opcode Format
LGER R1l,R2 15 RR
Operation:

The floating point second operand, contained in the single
precision floating point register specified by R2, is placed in

the general register specified by RI1. The second operand is
unchanged.

Condition Code:

iy Cy VI G L

:================

i 0y 01V O} O Result is zero

it 0Oy 0041 Result is less than zero

{y 0Oy 04 114 0} Result is greater than zero

50-022 ROO 6-21

6.5.7 Store Floating Point (STE)

Assembler Notation Opcode Format
STE R1,D2(X2) 60 RX1,RX2
STE R1,A2(FX2,8X2) 60 RX3
Operation:

The floating point first operand, contained in the single
precision floating point register specified by Rl, is placed in
the fullword memory location specified by the second operand
address. The first operand is unchanged.

Condition Code:

Unchanged

Programming Note:

The second operand must be located on a fullword boundary.

6-22 50-022 ROO

6.5.8 Store Multiple Floating Point (STME)

Agssembler Notation Opcode Format
STME R1,D2(X2) 71 RX1,RX2
STME R1,A2(FX2,5X2) 71 RX3
Operation:

The contents of successive single precision floating point
registers, starting with the even-numbered register specified by
Rl, are stored in successive fullword memory locations, starting
with the address of the second operand. The operation stops when
the contents of floating point register 14 have been stored.
Condition Code:

Unchanged

Programming Note:

The second operand must be located on a fullword boundary.

50-022 ROO 6-23

6.5.9 Add Floating Point (AE, AER)

Add Floating Point (AE)
Add Floating Point Register (AER)

Assembler Notation Opcode Format
AE R1,D2(X2) 6A RX1,RX2
AE R1,A2(FX2,8X2) 6A RX3

AER R1,R2 2A RR
Operation:

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no egqualizing shifts are required, the guard digits remain
zero. The fractions are then algebraically added. The guard
digits participate in this addition.

If the addition of fractions produces a carry out of Fl, the
exponent of the result is incremented by one, and the fraction of
the result is shifted right one hexadecimal digit. The carry bit
is shifted back into the most significant hexadecimal digit of
the fraction, producing a normalized result. This result is then
R*-rounded and replaces the contents of the single precision
floating point register specified by R1l.

If the addition of fractions does not produce a carry, the result
is normalized, if necessary, and R*-rounded. This result

replaces the contents of the single precision floating point
register specified by Rl.

Condition Code:

i ci viG L |

| ======smsz=ss=== |

iy 0)0} 0Ot O Floating point result is zero

0}y 0O} 0} 1 Floating point result is less than zero
i 004V 10 Floating point result is greater than

i i | | | zero

{01401 Exponent overflow, result is less than
i H i | H zero

y 0) 1431} 0 Exponent overflow, result is greater than
| i | | : zero

i 0Oy 141 04 0 Exponent underflow

6-24 50-022 ROO

Programming Notes:

If an exponent overflow is detected, an arithmetic fault
interrupt is taken and the contents of the register specified by
Rl remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by Rl is unchanged. If exponent underflow

occurs and bit 19 of the current PSW is zero, no arithmetic fault

occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be 1located on a
fullword boundary.

Example:

This example of the AE instruction adds the contents of LOC to
the contents of LOC floating point register 8 and places the
result in floating point register 8.

Assembler Notation Comments
AE REGS8,LOC ADD (LOC) TO (REGS8)
Where:

Floating point REG8 contains X'7EFF FFFF'.
LOC contains X'7EFF FFFF'

Result of AE Instruction:

(Floating point REG8) = 7F1F FFFF

(LOC) unchanged by this instruction
Condition code = 0010

50-022 ROO 6-25

6.5.10 Subtract Floating Point (SE, SER)

Subtract Floating Point (SE)
Subtract Floating Point Register (SER)

Assembler Notation Opcode Format

SE R1,D2(X2) 6B . RX1,RX2

SE R1,A2(FX2,5X2) 6B RX3

SER R1,R2 2B RR

Operation:

The two operand exponents are compared. I[If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is

incremented by one for each hexadecimal shift until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
zero. The second operand fraction is then subtracted
algebraically from the first operand fraction. The guard digits
participate in this subtraction.

If the subtraction of fractions produces a carry out of F1l, the
exponent of the result is incremented by one, and the fraction of
the result is shifted right one hexadecimal digit. The carry bit
is shifted back into the most significant hexadecimal digit of
the fraction, producing a normalized result. This result is then
R*-rounded and replaces the contents of the single precision
floating point register specified by Rl.

If the subtraction of fractions does not produce a carry, the
result is normalized, if necessary, then R*-rounded. This result

replaces the contents of the single precision floating point
register specified by Rl.

Condition Code:

-
-
-
-

(N O R T © R S O I 0 B Floating point result is zero

t 0}y 04O V1 Floating point result is less than zero
0}y 0} 1} 0 Floating point result is greater than

])]] i Zero

i]]] 1

i 0y 1 ¢+ 04 14 Exponent overflow, result is less than
]] -1 1 i zero

]]]] '

i Oy 1 v 1 0 Exponent overflow, result is greater than
i i i | | zZero

{0}y 14 01 0 Exponent underflow

6-26 50-022 ROO

Programming Notes:

If an exponent overflow is detected, an arithmetic fault
interrupt is taken and the contents of Rl remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 1is set, an arithmetic fault interrupt is taken, and
the register specified by Rl is unchanged. If exponent underf low

occurs and bit 19 of the current PSW is zero, no arithmetic fault

occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Example:

This example of the SE instruction subtracts the contents of LOC
from the contents of floating point register 8 and places the
result in floating point register 8.

Assembler Notation Comments
SE REGS8,LOC SUBTRACT (I.OC) FROM (REGS8)
Where:

Floating point REG8 contains X'7EFF FFFF'
LOC contains X'7A10 0000°

Result of SE Instruction:

(Floating point REG8) = 7EFF FFEF

(LOC) unchanged by this instruction
Condition code = 0010

50-022 ROO 6-27

6.5.11 Compare Floating Point (CE, CER)

Compare Floating Point (CE)
Compare Floating Point Register (CER)

Assemblexr Notation QOpcode Format

CE R1,D2(X2) 69 RX1,RX2

CE R1,D2(FX2,SX2) 69 RX3

CER R1,R2 29 RR

Operation:

The first and second operands are compared. Comparison is

algebraic, and the sign, fraction and exponent of each number
must be considered. The result is indicated by the condition
code setting. Neither operand is changed.

Condition Code:

i €y VI G L

;================

y Oy Xy 0} 0} First operand is equal to second

i1 X101 First operand is less than second
10 X114 0 First operand is greater than second

Programming Notes:
The state of the V flag is undefined.

In the RX formats, the second operand must be 1located on a
fullword boundary.

6-28 50-022 ROO

6.5.12 Multiply Floating Point (ME, MER)

Multiply Floating Point (ME)
Multiply Floating Point Register (MER)

Assembler Nofation Opcaode Format
ME R1,D2(X2) 6C RX1,RX2
ME R1,A2(FX2,58X2) 6C RX3
MER R1,R2 2C RR

Operation:

The exponents of each operand, as derived from the excess-64
notation used 1in floating point representation, are added to
produce the exponent of the result. This exponent 1is converted
back to excess—-64 notation, and the fractions are then
multiplied.

If the product is zero, the entire floating point value is forced
to zero, X'0000 0000'. If the product is not zero, the result is
normalized. The sign of the result is determined by the rules of
algebra. The R*-rounded result replaces the contents of the
single precision floating point register specified by RIl.

Condition Code:

P CiViIiG L

|===============|

{ 0}y 04} 04} 0 | Floating point result is zero

i1 0t 04} 0} 1 Floating point result is less than zero
!0+ 0}V 1} 0 Floating point result is greater than

i i i i ' zero

i 0 1 4 0§ 1} Exponent overflow, result is less than
i i i i i zero

i 0V 11 0 Exponent overflow, result is greater than
i i | i i zero

i 0 1 4 0 0} Exponent underf low

Programming Notes:

Multiplication of two 6-hexadecimal digit fractions effectively
produces a result of six hexadecimal digits and six guard digits.
The guard digits participate 1in the R*-rounding of the final
result.

The addition of exponents can produce exponent overflow. In this

case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

50-022 ROO 6-29

The addition of exponents or the normalization process can
produce exponent underflow. If PSW bit 19 is set, an arithmetic
fault interrupt is taken and the register specified by Rl is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by Rl.

In the RX formats, the second operand must be located on a
fullword boundary.

Example:

This example of the ME instruction multiplies the contents of
floating point register 8 by the contents of memory location LOC
and places the result in floating point register 8.

Assembler Notafion Comments
ME REGS8,LOC MULTIPLY (REG8) BYS (LOC)
Where:

Floating point REG8 contains X'S5FFF FFFF'
LOC contains X'6OFF FFFF'

Result of ME Instruction:

(Floating point REG8) = 7FFF FFFE

(LOC) unchanged by this instruction
Condition code = 0010

6-30 50-022 ROO

6.5.13 Divide Floating Point (DE, DER)

Divide Floating Point (DE)
Divide Floating Point Register (DER)

Assembler Notation QOpcode Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1,A2 (FXZ2,8X2) 6D RX3

DER R1,R2 2D RR
Operation:

The exponents of each operand, as derived from the excess-64
notation used in floating point representation, are subtracted to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first operand fraction is then divided by the second oper and
fraction. Division continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign of the quotient is determined
by the rules of algebra. The simple-rounded quotient replaces

the contents of the single precision floating point register
specified by R1.

Condition Code:

i CIViIiG L

================:

i 01 0} 0} 0 Floating point result is zero

i 0Oy 0} 0} 1} Floating point result is less than zero
iy 0104V 1) 0 Floating point result is greater than

i i i i i zero

i 04 14014 1 Exponent overflow, result is less than
] 1) 1 i

1 | ! 1 1 zZzero

vy O 14114 0 Exponent overflow, result is greater than
])]]] zZero

1 !)] i

i 0y 1401 0 Exponent underflow

i1 414 014+ 0 Divisor equal to zero

Programming Notes:
Before starting the divide operation, the divisor is checked. If

it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

50-022 ROO 6-31

Subtraction of exponents can produce exponent overflow. In this
case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

The subtraction of exponents or the division process can produce
exponent underflow; normalization of the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by Rl is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW 1is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by Rl.

The 6-hexadecimal digit first operand fraction is divided by the
6-hexadecimal digit second operand, effectively producing the
6-hexadecimal digit quotient along with a number of guard digits.
The guard digits participate in the rounding of the final result.

In the RX formats, the second operand must be located on a
fullword boundary.

Example:

This example of the DE instruction divides the contents of

floating point register 4 by the contents of memory location LOC
and places the result in floating point register 4.

Assembler Notation Comments

DE REG4,10C DIVIDE (REG4) BY (LOC)

Where:
Floating point REG4 contains X'44FF FFFF' = Dividend
LLOC contains X'0611 1111' = Divisor

Result of DE Instruction:

(Floating point REG4) = 7FFO0 0000
(LOC) unchanged by this instruction
Condition code = 0010

o
H

32 50-022 ROO

6.5.14 Fix Register (FXR)

Assembler Notation Opcode Format
FXR R1,R2 2E RR
Operation:

Rl and R2 specify a general-purpose register and a floating point
register, respectively. The normalized floating point number
contained 1in the floating point register is converted to a two's
complement notation integer value by shifting and truncating.
The result is stored in the general register specified by RIl.

Condition Code:

0 | Result is zero or underflow

11 Result is less than zero

0 i Result is greater than zero

1l 4 Overflow, result is less than zero

o | Overflow, result is greater than zero

R e

Programming Notes:

The range of floating point magnitudes (M) that produces a
nonzero integral result is:

+X'4110 0000'< M £ +X'4880 0000'

Floating point magnitudes greater than +X'487F FFFF' or -X'4880
0000' cause overflow. The result is forced to X'7FFF FFFF' if
positive or to X'8000 0000' if negative. The V flag 1is set in
the condition code along with either the G or L flag, depending
on the sign of the result.

Floating point magnitudes less than +X'4110 00060 cause
underflow, and the result is forced to zero.

In the event of overflow or underflow, no arithmetic fault
interrupt is taken, even if enabled in the current PSW.

50-022 ROO 6-33

Example:

This example of the FXR instruction converts the contents

floating point register 8 to a fixed point number and places
in register 3.

Assembler Notation Comments
FXR REG3,REGS8 CONVERT (REG8) TO FIXED POINT
W<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>