

LITERATURE
For additional information on Intel products in the U.S. or Canada, call Intel's Literature Center at
(800) 548-4725 or write to:

INTEL LITERATURE SALES
P.O. Box 7641
Mt. Prospect, IL 60056-7641

To order literature outside of the U.S. and Canada contact your local sales office.

Additional information about Intel products is available on Intel's web site: hllp:llwww.intel.com.

CURRENT DATABOOKS

Product line databooks contain datasheets, application notes, article reprints, and other design information.
All databooks can be ordered individually, and most are available in a pre-packaged set in the U.S. and Can­
ada. Databooks can be ordered in the U.S. and Canada by calling TAB/McGraw-Hili at 1-800-822-8158;
outside of the U.S. and Canada contact your local sales office.

Intel Order
Title Number ISBN

SET OF NINE DATABOOKS (Available in U.S. and Canada) 231003 NlA

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING:

EMBEDDED MICROCONTROLLERS 270646 1-55512-248-5

EMBEDDED MICROPROCESSORS 272396 1-55512-249-3

FLASH MEMORY (2 volume set) 210830 1-55512-250-7

19601lil PROCESSORS AND RELATED PRODUCTS 272084 1-55512-252-3

NETWORKING 297360 1-55512-256-6

OEM BOARDS, SYSTEMS AND SOFTWARE 280407 1-55512-253-1

PACKAGING 240800 1-55512-254-X

PENTIUM® AND PENTIUM PRO PROCESSORS AND RELATED 241732 1-55512-251-5
PRODUCTS

PERIPHERAL COMPONENTS 296467 1-55512-255-8

ADDITIONAL LITERATURE: (Not included in databook set)

AUTOMOTIVE PRODUCTS 231792 1-55512-257-4

COMPONENTS QUALITY/RELIABILITY 210997 1-55512-258-2

EMBEDDED APPLICATIONS (1995/96) 270648 1-55512-179-9

MILITARY 210461 N/A

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6

A complete set of this information is available on CD-ROM through Intel's Data on Demand program, order
number 240897. For information about Intel's Data on Demand ask for item number 240952.

January 1996
Order Number: 000900-001

I

Intel Application Support Services

World Wide Web [URL: http://www.intel.comll
Intel's Web site now contains technical and product information that is available 24 hours a day! Also visit Intel's site
for financials, history, current news and events, job opportunities, educational news and much, much more!

FaxBack*
Technical and product information are available 24 hours a day! Order documents containing:

• Product Announcements • Design/Application Recommendations

• Product Literature • Stepping/Change Notifications

• Intel Device Characteristics • Quality and Reliability Information

Information on the following subjects are available:

• Microcontroller and Flash • Development Tools

• OEM Branded Systems • Quality and Reliability/Change Notification

• Multibus and iRMX SoftwarelBBS listing • MicroprocessorlPCI/Peripheral

• Multimedia • Intel Architecture Labs

To use FaxBack (for Intel components and systems), dial (SOO) 628-2283 or 916-356-3105 (U.S.lCanadalAPAC/Japan)
or +44{O} 1793-496646 (Europe) and follow the automated voice-prompt. Document orders will be faxed to the fax
number you specify. For information on how the Intel Application Support team can help you, order our Customer Ser­
vice Agreement, document #1201. Catalogs are updated as needed, so call for the latest information!

Bulletin Board System (BBS)
To use the Intel Application BBS (components and systems), dial (503) 264-7999 or (916) 356-3600 (U.S.lCana­
dalAPAC/Japan) or +44{O} 1793-432955 (Europe). The BBS will support 1200-19200 baud rate modem. Typical
modem configuration: 14.4K baud rate, No Parity, 8 Data Bits, 1 Stop Bit.

CompuServe Just type 'Go Intel'
Intel maintains several forums where people come together to meet their peers, gather information, share discoveries
and debate issues. For more information about service fees and access, call CompuServe at 1-800-848-8199 or
614-529-1340 (outside the U.S.). The INTELC forum is set up to support designers using various Intel components.

General Information Help Desk
Dial 1-800-628-8686 or 916-356-7599 (U.S. and Canada) between 5 a.m. and 5 p.m. PST for help with Intel products.
For customers not in the U.S. or Canada, please contact your local distributor.

Intel Literature Centers
U.S.

u.s. (from overseas)

England

Intel Distributors

+ 1-800-548-4725

+ 1-708-296-9333

+44{O} 1793431 155

France

Germany

Japan (fax only)

+44{O} 1793421777

+44{O} 1793421333

+81{O} 120478832

Check the back of an Intel data book or request one of the following distributor listing FaxBack documents: #4083 (U.S.
Eastern Time Zone), #4084 (U.S. Central Time Zone), #4085 (Mountain Time Zone), #4086 (U.S. AlaskalPacific Time
Zone), #4209 (Europe) or #4403 (Canada).

'Other brands and names are the property of their respective owners.

January 1996
Order Number: 000901-001

I

Pentium® Pro Family
Developer's Manual

Volume 2:
Programmer's Reference Manual

NOTE: The Pentium® Pro Family Developer's Manual consists of three
books: Specifications, Order Number 242690; Programmer's Reference

Manual, Order Number 242691; and the Operating System Writer's Guide,
Order Number 242692.

Please refer to all three volumes when evaluating your design needs.

1996

I

in1et

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products. Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Pentium- Pro processor may contain design defects or errors known as errata. Current characterized errata are available on request.

*Third-party brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O.80x7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT 10 INTEL CORPORATION 1996

I

TABLE OF CONTENTS
PAGE

TABLE OF FIGURES xvi

TABLE OF TABLES xviii

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE PENTIUM®PRO FAMILY DEVELOPER'S MANUAL,

1.2.

1.3.
1.3.1.
1.3.2.
1.3.3.
1.3.4.
1.3.5.
1.3.6.
1.4.

VOLUME 2 .. 1-1
OVERVIEW OF THE PENTIUM® PRO FAMILY DEVELOPER'S MANUAL,
VOLUME 3 .. 1-2
NOTATIONAL CONVENTIONS. .. 1-4

Bit and Byte Order ... 1-4
Reserved Bits and Software Compatibility 1-4
Instruction Operands ... 1-5
Hexadecimal and Binary Numbers 1-6
Segmented Addressing ... 1-6
Exceptions ... 1-6

RELATED LITERATURE ... 1-7

CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR
2.1. NEW ARCHITECTURAL FEATURES 2-2
2.1.1. New and Extended Instructions 2-2
2.1.2. New Memory Management Features 2-3
2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES 2-3
2.2.1. Model-Specific Registers .. 2-3
2.2.2. Memory Type Range Registers 2-4
2.2.3. Machine-Check Exception and Architecture 2-4
2.2.4. Performance Monitoring Counters 2-5
2.3. INTRODUCTION TO THE PENTIUM® PRO PROCESSOR'S ADVANCED

MICROARCHITECTURE. .. 2-5
2.4.

2.4.1.
2.4.2.
2.4.3.
2.4.4.
2.4.5.

DETAILED DESCRIPTION OF THE PENTIUM® PRO PROCESSOR
MICROARCHITECTURE ... 2-7

Memory Subsystem .. 2-8
The Fetch/Decode Unit ... 2-9
Instruction Pool (Reorder Buffer) 2-10
Dispatch/Execute Unit. .. 2-10
Retirement Unit .. 2-11

CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1. MODES OF OPERATION .. 3-1
3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT 3-2
3.3. MEMORY ORGANIZATION ... 3-2
3.4. MODES OF OPERATION .. 3-4
3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES 3-4
3.6. REGISTERS. .. 3-5
3.6.1. General-Purpose Data Registers 3-5

v

TABLE OF CONTENTS in1et

3.6.2.
3.6.3.
3.6.3.1.
3.6.3.2.
3.6.4.
3.7.
3.8.

PAGE

Segment Registers .. 3-7
EFLAGS Register ... 3-9

Status Flags .. 3-11
DF Flag .. 3-12

System Flags and IOPL Field 3-12
INSTRUCTION POINTER ... 3-13
OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES 3-13

CHAPTER 4
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
4.1. PROCEDURE CALL TyPES .. 4-1
4.2. PROCEDURE STACK ... 4-1
4.2.1. Stack Alignment. .. 4-2
4.2.2. Address-Size Attribute for Stack4-3
4.2.3. Procedure Linking Information .. 4-3
4.2.3.1. Stack-Frame Base Pointer .. 4-3
4.2.3.2. Return Instruction Pointer ... 4-4
4.3. CALLING PROCEDURES USING CALL AND RET 4-4
4.3.1. Near CALL and RET Operation 4-4
4.3.2. Far CALL and RET Operation ... 4-5
4.3.3. Parameter Passing .. 4-5
4.3.3.1. Passing Parameters Through the General-Purpose Registers 4-5
4.3.3.2. Passing Parameters on the Stack 4-6
4.3.3.3. Passing Parameters in an Argument List 4-6
4.3.4. Saving Procedure State Information 4-6
4.3.5. Calls to Other Privilege Levels 4-6
4.3.6. CALL and RET Operation Between Privilege Levels 4-8
4.4. INTERRUPTS AND EXCEPTIONS 4-10
4.4.1. Call and Return Operation for Interrupt or Exception Handling Procedures 4-11
4.4.2. Calls to an Interrupt or Exception Handler Tasks 4-13
4.4.3. Interrupt and Exception Handling in Real-Address Mode4-14
4.4.4. INTn, INTO, INT3, and BOUND Instructions4-14
4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES 4-15
4.5.1. ENTER Instruction4-15
4.5.2. LEAVE Instruction .. 4-21

CHAPTER 5
DATA TYPES AND ADDRESSING MODES
5.1. FUNDAMENTAL DATA TYPES .. 5-1
5.1.1. Alignment of Words, Doublewords, and Quadwords 5-1
5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES 5-2
5.2.1. Integers ... 5-2
5.2.2. Unsigned Integers ... 5-4
5.2.3. BCD Integers ... 5-4
5.2.4. Pointers ... 5-4
5.2.5. Bit Fields .. 5-4
5.2.6. Strings .. 5-4
5.2.7. Floating-Point Data Types ... 5-4
5.3. OPERAND ADDRESSING. .. 5-5
5.3.1. Immediate Operands ... 5-5
5.3.2. Register Operands .. 5-5
5.3.3. Memory Operands ... 5-6

vi

I

TABLE OF CONTENTS

PAGE

Specifying a Segment Selector. 5-6
Specifying an Offset . 5-7
Assembler Addressing Modes 5-9

5.3.3.1.
5.3.3.2.
5.3.3.3.
5.3.4. 1/0 Port Addressing. .. 5-9

CHAPTER 6
INSTRUCTION SET SUMMARY
6.1. NEW INSTRUCTIONS IN THE PENTIUM® PRO PROCESSOR 6-1
6.2. INSTRUCTION SET LIST .. 6-1
6.2.1. Integer Instructions ... 6-2
6.2.1.1. Data Transfer Instructions .. 6-2
6.2.1.2. Binary Arithmetic ... 6-3
6.2.1.3. Decimal Arithmetic ... 6-3
6.2.1.4. Logic Instructions .. 6-4
6.2.1.5. Bit and Byte Instructions ... 6-4
6.2.1.6. Control Transfer Instructions 6-5
6.2.1.7. String Instructions .. 6-6
6.2.1.8. Flag Control Instructions. 6-7
6.2.1.9. Segment Register Instructions 6-7
6.2.1.10. Miscellaneous Instructions 6-8
6.2.2. Floating-Point Instructions .. 6-8
6.2.2.1. Data Transfer .. 6-8
6.2.2.2. Basic Arithmetic .. 6-9
6.2.2.3. Comparison ... 6-9
6.2.2.4. Transcendental ... 6-10
6.2.2.5. Load Constants ... 6-10
6.2.2.6. FPU Control ... 6-11
6.2.3. System Instructions .. 6-11
6.3. DATA MOVEMENT INSTRUCTIONS 6-12
6.3.1. General-Purpose Data Movement Instructions 6-13
6.3.1.1. Move Instruction .. 6-13
6.3.1.2. Conditional Move Instructions 6-13
6.3.1.3. Exchange Instructions .. 6-15
6.3.2. Stack Manipulation Instructions 6-16
6.3.2.1. Type Conversion Instructions 6-18
6.3.2.2. Simple Conversion .. 6-18
6.3.2.3. Move and Convert ... 6-19
6.4. BINARY ARITHMETIC INSTRUCTIONS 6-19
6.4.1. Addition and Subtraction Instructions . 6-19
6.4.2. Increment and Decrement Instructions 6-19
6.4.3. Comparison and Sign Change Instruction. 6-20
6.4.4. Multiplication and Divide Instructions 6-20
6.5. DECIMAL ARITHMETIC INSTRUCTIONS 6-20
6.5.1. Packed BCD Adjustment Instructions 6-21
6.5.2. Unpacked BCD Adjustment Instructions 6-21
6.6. LOGICAL INSTRUCTIONS .. 6-22
6.7. SHIFT AND ROTATE INSTRUCTIONS 6-22
6.7.1. Shift Instructions . 6-22
6.7.2. Double-shift Instructions .. 6-24
6.7.3. Rotate Instructions ... 6-25
6.8. BIT AND BYTE INSTRUCTIONS 6-27
6.8.1. Bit Test and Modify Instructions 6-27

I
vii

TABLE OF CONTENTS intet
6.8.2.
6.8.3.
6.8.4.
6.9.
6.9.1.
6.9.1.1.
6.9.1.2.
6.9.1.3.
6.9.2.
6.9.2.1.
6.9.2.2.
6.9.2.3.
6.9.3.
6.10.
6.10.1.
6.11.
6.12.
6.13.
6.13.1.
6.13.2.
6.13,3.
6.13.4.
6.14.
6.14.1.
6.14.2.
6.14.3.
6.14.4.
6.15.
6.15.1.
6.15.2.
6.15.3.
6.15.4.

PAGE

Bit Scan Instructions .. 6-27
Byte-Set-On-Condition Instructions 6-27
Test Instruction 6-28

CONTROL TRANSFER INSTRUCTIONS. .. 6-28
Unconditional Transfer Instructions 6-28

Jump Instruction ... 6-28
Call and Return Instructions 6-29
Return-From-Interrupt Instruction 6-29

Conditional Transfer Instructions 6-29
Conditional Jump Instructions 6-30
Loop Instructions .. 6-31
Jump If Zero Instructions .. 6-32

Software Interrupts ... 6-32
STRING OPERATIONS ... 6-33

Repeating String Operations .. 6-34
I/O INSTRUCTIONS .. 6-34
ENTER AND LEAVE INSTRUCTIONS 6-35
EFLAGS INSTRUCTIONS ... 6-35

Carry and Direction Flag Instructions 6-35
Interrupt Flag Instructions .. 6-35
EFLAGS Transfer Instructions 6-36
Interrupt Flag Instructions .. 6-36

SEGMENT REGISTER INSTRUCTIONS 6-37
Segment-Register Load and Store Instructions 6-37
Far Control Transfer Instructions 6-37
Software Interrupt Instructions 6-37
Load Far Pointer Instructions 6-37

MISCELLANEOUS INSTRUCTIONS 6-38
Address Computation Instruction 6-38
Table Lookup Instructions .. 6-38
Processor Identification Instruction 6-38
No-Operation and Undefined Instructions 6-39

CHAPTER 7
FLOATING-POINT UNIT
7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH COPROCESSORS 7-1
7.2. REAL NUMBERS AND FLOATING-POINT FORMATS 7-1
7.2.1. Real Number System .. 7-1
7.2.2. Floating-Point Format .. 7-2
7.2.2.1. Normalized Numbers .. 7-3
7.2.2.2. Biased Exponent. ; 7-4
7.2.3. Real Number and Non-Number Encodings 7-4
7.2.3.1. Signed Zeros .. 7-4
7.2.3.2. Normalized and Denormalized Finite Numbers 7-5
7.2.3.3. Signed Infinities .. 7-6
7.2.3.4. NaNs ... 7-7
7.2.4. Indefinite .. 7-7
7.3. FPU ARCHITECTURE ... 7-7
7.3.1. The FPU Data Registers .. 7-9
7.3.1.1. Parameter Passing With the FPU Register Stack 7-11
7.3.2. FPU Status Register .. 7-12
7.3.2.1. Top of Stack (TOP) Pointer 7-12

viii

I

7.3.2.2.
7.3.2.3.
7.3.2.4.
7.3.3.
7.3.4.
7.3.4.1.
7.3.4.2.
7.3.4.3.
7.3.5.
7.3.6.
7.3.7.
7.3.8.
7.3.9.
7.4.
7.4.1.
7.4.2.
7.4.3.
7.4.4.
7.5.
7.5.1.
7.5.2.
7.5.3.
7.5.4.
7.5.5.
7.5.6.
7.5.6.1.
7.5.7.
7.5.8.
7.5.9.
7.5.10.
7.5.11.
7.5.12.
7.5.13.
7.6.
7.7.
7.7.1.
7.7.2.
7.7.3.
7.8.
7.8.1.
7.8.1.1.
7.8.1.2.
7.8.2.
7.8.3.
7.8.4.
7.8.5.
7.8.6.
7.8.7.
7.9.

I

TABLE OF CONTENTS

PAGE

Condition Code Flags .. 7-12
Exception Flags .. 7-14
Stack Fault Flag .. 7-14

Branching and Conditional Moves on FPU Condition Codes 7-14
FPU Control Word ... 7-16

Exception-Flag Masks .. 7-16
Precision Control Field ... 7-16
Rounding Control Field ... 7-17

Infinity Control Flag .. 7-19
FPU Tag Word .. 7-19
The Floating-Point Instruction and Data Pointers 7-20
Last Instruction Opcode ... 7-21
Saving the FPU's State ... 7-21

FLOATING-POINT DATA TYPES AND FORMATS 7-23
Real Numbers .. 7-24
Binary Integers .. 7-26
Decimal Integers .. 7-28
Unsupported Extended-Real Encodings 7-29

FPU INSTRUCTION SET .. 7-29
Escape (ESC) Instructions ... 7-30
FPU Instruction Operands ... 7-30
Data Transfer Instructions ... 7-31
Load Constant Instructions .. 7-32
Basic Arithmetic Instructions 7-33
Comparison and Classification Instructions 7-34

Branching on the FPU Condition Codes 7-36
Trigonometric Instructions ... 7-36
Pi .. 7-37
Logarithmic, Exponential, and Scale 7-38
Transcendental Instruction Accuracy 7-38
FPU Control Instructions .. 7-39
Waiting Vs. Non-Waiting Instructions 7-40
Unsupported FPU Instructions 7-40

OPERATING ON NANS ... 7-40
FLOATING-POINT EXCEPTION HANDLING 7-41

Arithmetic vs. Non-Arithmetic Instructions 7-42
Automatic Exception Handling 7-42
Software Exception Handling 7-42

FLOATING-POINT EXCEPTION CONDITIONS 7-45
Invalid Operation Exception .. 7-45

Stack Overflow or Underflow Exception (#IS) 7-45
Invalid Arithmetic Operand Exception (#IA) 7-46

Division-By-Zero Exception (#Z) 7-46
Denormal Operand Exception (#D) 7-48
Numeric Overflow Exception (#0) 7-48
Numeric Underflow Exception (#U) 7-50
Inexact-Result (Precision) Exception (#P) 7-51
Exception Priority .. 7-52

FLOATING-POINT EXCEPTION SYNCHRONIZATION 7-52

ix

TABLE OF CONTENTS

PAGE

CHAPTER 8
INPUT/OUTPUT
8.1. 1/0 PORT ADDRESSiNG ... 8-1
8.2. 1/0 PORT HARDWARE .. 8-1
8.3. 1/0 ADDRESS SPACE. .. 8-2
8.3.1. Memory-Mapped 1/0 ... 8-2
8.4. 1/0 INSTRUCTIONS. .. 8-3
8.5. PROTECTED-MODE 1/0 .. 8-4
8.5.1. 1/0 Privilege Level ... 8-4
8.5.2. 1/0 Permission Bit Map ... 8-5
8.5.3. Caching and Paging ... 8-6
8.6. ORDERING 1/0 .. 8-6

CHAPTER 9
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
9.1. PROCESSOR IDENTIFICATION 9-1
9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE PROCESSORS 9-2

CHAPTER 10
INTEL ARCHITECTURE COMPATIBILITY
10.1. RESERVED BITS .. 10-1
10.2. ENABLING NEW FUNCTIONS AND MODES 10-2
10.3. DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE. 10-2
10.4. NEW INSTRUCTIONS .. 10-2
10.4.1. New Pentium@ Pro Processor Instructions 10-2
10.4.2. New Pentium@processorlnstructions 10-3
10.4.3. New Intel486™ Processor Instructions 10-3
10.4.4. New Intel386™ Processor Instructions 10-4
10.5. OBSOLETE INSTRUCTIONS .. 10-4
10.6. UNDEFINED OPCODES .. 10-4
10.7. NEW FLAGS IN THE EFLAGS REGISTER 10-4
10.7.1. New Pentium® Processor Flags 10-5
10.7.2. New Intel486™ Processor Flags 10-5
10.7.3. Using EFLAGS Flags to Distinguish Between 32-Bit Intel Architecture

10.8.
10.8.1.
10.8.2.
10.9.
10.9.1.
10.9.2.
10.9.2.1.
10.9.2.2.
10.9.3.
10.9.4.
10.9.5.
10.9.5.1.
10.9.5.2.
10.9.6.
10.9.6.1.
10.9.6.2.
10.9.6.3.

x

Processors .. 10-5
STACK OPERATIONS .. 10-5

PUSH SP ... 10-5
EFLAGS Pushed On The Stack 10-6

FPU .. 10-6
Control Register CRO Flags ... 10-6
FPU Status Word ... 10-7

Condition Code Flags (CO through C3) 10-7
Stack Fault Flag ... 10-8

FPU Control Word .. 10-8
FPU Tag Word ... 10-8
Data Types ' 10-9

NaNs .. 10-9
Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats 10-9

Floating-Point Exceptions ... 10-10
Denormal Operand Exception (#D) 10-10
Numeric Overflow Exception (#0) 10-10
Numeric Underflow Exception (#U) 10-11

I

10.9.6.4.
10.9.6.5.
10.9.6.6.
10.9.6.7.
10.9.6.8.
10.9.6.9.
10.9.6.10.
10.9.6.11.
10.9.6.12.
10.9.6.13.
10.9.6.14.
10.9.7.
10.9.7.j.
10.9.7.2.
10.9.7.3.
10.9.7.4.
10.9.7.5.
10.9.7.6.
10.9.7.7.
10.9.7.8.
10.9.7.9.
10.9.7.10.
10.9.7.11.
10.9.7.12.
10.9.7.13.
10.9.7.14.
10.9.7.15.
10.9.7.16.
10.9.7.17.
10.9.8.
10.9.9.
10.9.10.
10.9.11.
10.9.12.

TABLE OF CONTENTS

PAGE

Exception Precedence .. 10-11
CS and EIP For FPU Exceptions 10-11
FPU Error Signals. .. 10-11
Assertion of the FERR# Pin 10-12
Invalid Operation Exception On Denormals .. 10-12
Alignment Check Exceptions (#AC) .. 10-12
Segment Not Present Exception During FLDENV 10-12
Device Not Available Exception (#NM) 10-13
Coprocessor Segment Overrun Exception. .. 10-13
General Protection Exception (#G P). .. 10-13
Floating-Point Error Exception (#MF) .. 10-13

Changes to Floating-Point Instructions .. 10-13
New Floating-Point Instructions in the Intel Pentium®Pro Processor 10-13
FDIV, FPREM, and FSQRT Instructions 10-14
FSCALE Instruction .. 10-14
FPREM1 Instruction .. 10-14
FPREM Instruction ... 10-14
FUCOM, FUCOMP, and FUCOMPP Instructions 10-14
FPTAN Instruction .. 10-14
Stack Overflow .. 10-15
FSIN, FCOS, and FSINCOS Instructions 10-15
FPATAN Instruction .. 10-15
F2XM1 Instruction .. 10-15
FLD Instruction. .. 10-15
FXTRACT Instruction .. 10-16
Load Constant Instructions. .. 10-16
FSETPM Instruction. .. 10-16
FXAM Instruction .. 10-16
FSAVE and FSTENV Instructions. .. 10-17

Transcendental Instructions. .. 10-17
Obsolete Instructions. .. 10-17
WAIT/FWAIT Prefix Differences 10-17
Operands Split Across Segments and/or Pages 10-17
FPU Instruction Synchronization. .. 10-18

CHAPTER 11
INSTRUCTION SET REFERENCE
11.1. INSTRUCTION FORMAT .. 11-1
11.1.1. Instruction Prefixes .. 11-1
11.1.2. Opcode .. 11-2
11.1.3. ModR/M and SIB Bytes ... 11-2
11.1.4. Displacement and Immediate Bytes .. 11-3
11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES 11-7
11.2.1. Instruction Format .. 11-7
11.2.1.1. Opcode Column .. 11-7
11.2.1.2. Instruction Column .. 11-8
11.2.1.3. Description Column ... 11-10
11.2.1.4. Description .. 11-10
11.2.2. Operation. .. 11-10
11.2.3. Flags Affected .. 11-12
11.2.4. FPU Flags Affected ... 11-13
11.2.5. Protected Mode Exceptions 11-13

I
xi

TABLE OF CONTENTS

11.2.6.
11.2.7.
11.2.8.
11.3.

xii

PAGE

Real-Address Mode Exceptions 11-14
Virtual-8086 Mode Exceptions 11-14
Floating-Point Exceptions ... 11-15

INSTRUCTION REFERENCE 11-15
AAA-ASCIl Adjust After Addition 11-16
AAD-ASCII Adjust AX Before Division 11-17
AAM-ASCII Adjust AX After Multiply 11-18
AAS-ASCII Adjust AL After Subtraction 11-19
ADC-Add with Carry 11-20
ADD-Add .. 11-22
AND-Logical AND ... 11-24
ARPL-Adjust RPL Field of Segment Selector 11-26
BOUND-Check Array Index Against Bounds 11-28
BSF-Bit Scan Forward 11-30
BSR-Bit Scan Reverse 11-32
BSWAP-Byte Swap .. 11-34
BT -Bit Test. .. 11-35
BTC-Bit Test and Complement 11-37
BTR-Bit Test and Reset 11-39
BTS-BitTest and Set 11-41
CALL-Call Procedure 11-43 .
CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword 11-53
CDO-Convert Double to Ouad 11-54
CLC-Clear Carry Flag 11-55
CLD-Clear Direction Flag 11-56
CLI-Clear Interrupt Flag 11-57
CL TS-Clear Task-Switched Flag in CRO 11-59
CMC-Complement Carry Flag 11-60
CMOVcc-Conditional Move 11-61
CMP-Compare Two Operands 11-64
CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands 11-66
CMPXCHG-Compare and Exchange 11-69
CMPXCHG8B-Compare and Exchange 8 Bytes 11-71
CPUID-CPU Identification 11-73
CWD/CDO-Convert Word to DoublewordiConvert Doubleword
to Ouadword .. 11-80
CWDE-Convert Word to Doubleword 11-81
DAA-Decimal Adjust AL after Addition 11-82
DAS-Decimal Adjust AL after Subtraction 11-83
DEC-Decrement by 1 11-84
DIV-Unsigned Divide 11-86
ENTER-Make Stack Frame for Procedure Parameters 11-89
F2XM1-Compute 2x-1 11-92
FABS-Absolute Value 11-94
FADD/FADDP/FIADD-Add 11-96
FBLD-Load Binary Coded Decimal 11-99
FBSTP-Store BCD Integer and Pop 11-101
FCHS-Change Sign 11-104

I

inteJ~

I

TABLE OF CONTENTS

PAGE

FCLEXlFNCLEX-Clear Exceptions .. 11-106
FCMOVcc-Floating-Point Conditional Move 11-107
FCOM/FCOM P/FCOM PP-Compare Real .. 11-109
FCOMI/FCOMIPI FUCOMI/FUCOMIP-Compare Real and
Set EFLAGS ... 11-112
FCOS-Cosine .. 11-115
FDECSTP-Decrement Stack-Top Pointer. 11-117
FDIV/FDIVP/FIDIV-Divide 11-118
FDIVR/FDIVRP/FIDIVR-Reverse Divide 11-121
FFREE-Free Floating-Point Register. .. 11-125
FICOM/FICOMP-Compare Integer 11-126
FILD-Load Integer 11-128
FINCSTP-Increment Stack-Top Pointer 11-130
FINIT/FNINIT -Initialize Floating-Point Unit. 11-131
FIST/FISTP-Store Integer 11-132
FLD-Load Real ... 11-135
FLD1/FLDL2T/FLDL2E1FLDPI/FLDLG2/FLDLN2IFLDZ-
Load Constant .. 11-137
FLDCW-Load Control Word. .. 11-139
FLDENV-Load FPU Environment .. 11-141
FMUUFMULP/FIMUL-Multiply 11-143
FNOP-No Operation .. 11-146
FPATAN-Partial Arctangent. 11-147
FPREM-Partial Remainder 11-149
FPREM1-Partial Remainder 11-152
FPTAN-Partial Tangent 11-155
FRNDINT-Roundto Integer 11-157
FRSTOR-Restore FPU State. .. 11-158
FSAVE/FNSAVE-Store FPU State .. 11-160
FSCALE-Scale. .. 11-163
FSIN-Sine ... 11-165
FSI NCOS-Sine and Cosine. .. 11-167
FSQRT -Square Root. .. 11-169
FST/FSTP-Store Real. .. 11-171
FSTCW/FNSTCW-Store Control Word 11-174
FSTENV IFNSTENV-Store FPU Environment. 11-176
FSTSW/FNSTSW-Store Status Word 11-178
FSUB/FSUBP/FISUB-Subtract 11-180
FSUBRlFSUBRP/FISUBR-Reverse Subtract 11-183
FTST-TEST .. 11-186
FUCOM/FUCOMP/FUCOMPP-Unordered Compare Real 11-188
FWAIT-Wait .. 11-191
FXAM-Examine .. 11-192
FXCH-Exchange Register Contents .. 11-194
FXTRACT -Extract Exponent and Significand 11-196
FYL2X-Compute y ¥ log2x. .. 11-198
FYL2XP1-Compute y * log2(x +1) 11-200
HL T -Halt 11-202

xiii

TABLE OF CONTENTS

PAGE

I DIV-Signed Divide 11-203
IMUL-Signed Multiply 11-206
IN-Input from Port .. 11-209
INC-Increment by 1 11-211
INS/INSB/INSW/INSD-Input from Port to String 11-213
INTn/INTO/INT3-Call to Interrupt Procedure 11-216
INVD-Invalidate Internal Caches 11-227
INVLPG-Invalidate TLB Entry 11-229
IRET/IRETD-Interrupt Return 11-230
Jcc-Jump if Condition Is Met 11-237
JMP-Jump .. 11-241
LAHF-Load Status Flags into AH Register 11-248
LAR-Load Access Rights Byte 11-249
LDS/LES/LFS/LGS/LSS-Load Far Pointer 11-252
LEA-Load Effective Address 11-255
LEAVE-High Level Procedure Exit 11-257
LES-Load Full Pointer 11-259
LFS-Load Full Pointer 11-260
LGDT/LIDT -Load Global/interrupt Descriptor Table Register 11-261
LGS-Load Full Pointer 11-263
LLDT -Load Local Descriptor Table Register 11-264
LlDT -Load Interrupt Descriptor Table Register 11-266
LMSW-Load Machine Status Word 11-267
LOCK-Assert LOCK# Signal Prefix 11-269
LODS/LODSB/LODSW/LODSD-Load String Operand 11-271
LOOP/LOOPcc-Loop According to ECX Counter 11-273
LSL-Load Segment Limit. 11-275
LSS-Load Full Pointer 11-278
L TR-Load Task Register 11-279
MOV-Move ... 11-281
MOV-Move to/from Control Registers 11-285
MOV-Move to/from Debug Registers 11-287
MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String .. 11-289
MOVSX-Move with Sign-Extension 11-291
MOVZX-Move with Zero-Extend 11-292
MUL-Unsigned Multiplication of AL, AX, or EAX 11-294
NEG-Two's Complement Negation 11-296
NOP-No Operation 11-298
NOT -One's Complement Negation 11-299
OR-Logical Inclusive OR 11-301
OUT-Output to Port 11-303
OUTS/OUTSB/OUTSW/OUTSD-Output String to Port 11-305
POP-Pop a Value from the Stack 11-308
POPAIPOPAD-Pop All General-Purpose Registers 11-312
POPF/POPFD-Pop Stack into EFLAGS Register 11-314
PUSH-Push Word or Doubleword Onto the Stack 11-317
PUSHAIPUSHAD-Push All General-Purpose Registers 11-320

xiv

I

APPENDIX A

TABLE OF CONTENTS

PAGE

PUSHF/PUSHFD-Push EFLAGS Register onto the Stack 11-322
RCURCRIROUROR--Rotate 11-324
RDMSR-Read from Model Specific Register. 11-328
RDPMC-Read Performance-Monitoring Counters 11-330
RDTSC-Read Time-Stamp Counter .. 11-332
REP/REPE/REPZlREPNE /REPNZ-Repeat String Operation Prefix 11-333
RET-Return from Procedure. .. 11-336
ROUROR-Rotate. .. 11-342
RSM-Resume from System Management Mode. 11-343
SAHF-Store AH into Flags 11-344
SAUSAR/SHUSHR-Shift Instructions 11-345
SBB-I nteger Subtraction with Borrow .. 11-349
SCAS/SCASB/SCASW/SCASD-Scan String Data 11-351
SETcc-Set Byte on Condition .. 11-353
SGDT/SIDT-Store Global/Interrupt Descriptor Table Register 11-356
SHUSHR-Shift Instructions 11-358
SHLD-Double Precision Shift Left. .. 11-359
SHRD-Double Precision Shift Right. .. 11-361
SIDT -Store Interrupt Descriptor Table Register 11-363
SLDT -Store Local Descriptor Table Register. 11-364
SMSW-Store Machine Status Word .. 11-366
STC-Set Carry Flag. .. 11-368
STD-Set Direction Flag. .. 11-369
STI-Set Interrupt Flag .. 11-370
STOS/STOSB/STOSW/STOSD-Store String Data 11-372
STR-Store Task Register 11-374
SUB-Integer Subtraction. .. 11-375
TEST-Logical Compare. .. 11-377
UD2-Undefined Instruction 11-379
VERR, VERW-Verify a Segment for Reading or Writing. 11-380
WAIT/FWAIT-Wait 11-382
WBINVD-Write-Back and Invalidate Cache 11-383
WRMSR-Write to Model Specific Register. 11-385
XADD-Exchange and Add. .. 11-387
XCHG-Exchange Register/Memory with Register. 11-389
X LAT/XLATB-Table Look-up Translation 11-391
XOR-Logical Exclusive OR .. 11-393

EFLAGS CROSS-REFERENCE

APPENDIX B
EFLAGS CONDITION CODES

APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

I
xv

TABLE OF FIGURES

Figure 1-1.
Figure 2-1.

Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.

xvi

PAGE

Bit and Byte Order .. 1-4
The Processing Units in the Pentium@pro Processor Microarchitecture
and Their Interface with the Memory Subsystem 2-6
Functional Block Diagram of the Pentium@pro Processor Microarchitecture .. 2-8
Pentium@ Pro Processor Basic Execution Environment 3-2
Three Memory Management Models 3-3
Application Programming Registers 3-6
Alternate General-Purpose Register Names 3-7
Use of Segment Selectors for Flat Memory Model 3-8
Use of Segment Selectors in Segmented Memory Model 3-9
EFLAGS Register .. 3-10
Procedure Stack Structure4-2
Protection Rings .. 4-7
Stack Switch on a Call to a Different Privilege Level 4-9
Stack Usage on Calls to Interrupt and Exception Handling Routines4-12
Nested Procedures ... 4-17
Stack Frame after Entering the MAIN Procedure4-18
Stack Frame after Entering Procedure A 4-19
Stack Frame after Entering Procedure B4-20
Stack Frame after Entering Procedure C4-21
Fundamental Data Types ... 5-1
Bytes, Words, Doublewords and Quadwords in Memory 5-2
Numeric, Pointer, and Bit Field Data Types 5-3
Memory Operand Address .. 5-6
Offset (or Effective Address) Computation 5-8
Operation of the PUSH Instruction 6-16
Operation of the PUSHA Instruction 6-17
Operation of the POP Instruction 6-17
Operation of the POPA Instruction 6-18
Sign Extension .. 6-18
SHUSAL Instruction Operation 6-23
SHR Instruction Operation 6-23
SAR Instruction Operation 6-24
SHLD and SHRD Instruction Operations 6-25
ROL, ROR, RCL, and RCR Instruction Operations 6-26
Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions .. 6-36
Binary Real Number System 7-2
Binary Floating-Point Format 7-3
Real Numbers and NaNs ... 7-5
Relationship Between the Integer Unit and the FPU 7-8
FPU Execution Environment. 7-9
FPU Data Register Stack .. 7-10
Example FPU Dot Product Computation 7-11
FPU Status Word .. 7-12
Moving the FPU Condition Codes to the EFLAGS Register. 7-15
FPU Control Word ... 7-16
FPU Tag Word .. 7-19
Contents of FPU Opcode Registers 7-21
Protected-Mode FPU State Image in Memory, 32-Bit Format 7-22

I

Figure 7-14.
Figure 7-15.
Figure 7-16.
Figure 7-17.
Figure 8-1.
Figure 8-2.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.

I

TABLE OF FIGURES

PAGE

Real Mode FPU State Image in Memory, 32-Bit Format. 7-22
Protected-Mode FPU State Image in Memory, 16-Bit Format 7-23
Real Mode FPU State Image in Memory, 16-Bit Format. 7-23
Floating-Point Unit Data Type Formats 7-24
Memory-Mapped I/O. .. 8-3
1/0 Permission Bit Map. 8-5
Instruction Format ... 11-1
Bit Offset for BIT[EAX,21] 11-12
Memory Bit Indexing .. 11-12
Version and Feature Information in Registers EAX and EDX 11-74

xvii

TABLE OF TABLES

Table 2-1.
Table 3-1.
Table 4-1.
Table 5-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 7-5.
Table 7-6.
Table 7-7.
Table 7-8.
Table 7-9.
Table 7-10.
Table 7-11.
Table 7-12.
Table 7-13.
Table 7-14.
Table 7-15.
Table 7-16.
Table 7-17.
Table 7-18.
Table 7-19.
Table 7-20.
Table 7-21.
Table 7-22.
Table 8-1.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.
Table 11-10.
TableA-1.
Table B-1.
Table C-1.

xviii

PAGE

Overview of the Pentium® Pro Processor Features 2-1
Effective Operand- and Address-Size Attributes 3-14
Exceptions and Interrupts .. 4-11
Default Segment Selection Rules 5-7
Move Instruction Operations 6-13
Conditional Move Instructions 6-14
Bit Test and Modify Instructions 6-27
Conditional Jump Instructions 6-31
Information Provided by the CPUID Instruction 6-38
Real Number Notation ... 7-3
Denormalization Process ... 7-6
FPU Condition Code Interpretation 7-13
Precision Control Field (PC) 7-17
Rounding Control Field (RC) 7-17
Rounding of Positive Numbers 7-18
Rounding of Negative Numbers 7-19
Length, Precision, and Range of FPU Data Types 7-25
Real Number and NaN Encodings 7-26
Binary Integer Encodings .. 7-27
Packed Decimal Integer Encodings 7-28
Unsupported Extended-Real Encodings 7-30
Data Transfer Instructions 7-31
Floating-Point Conditional Move Instructions 7-32
Setting of FPU Condition Code Flags for Real Number Comparisons 7-35
Setting of EFLAGS Status Flags for Real Number Comparisons 7-35
TEST Instruction Constants for Conditional Branching 7-36
Rules for Generating QNaNs 7-41
Arithmetic and Non-Arithmetic Instructions 7-43
Invalid Arithmetic Operations and the Masked Responses to Them 7-47
Divide-By-Zero Conditions and the Masked Responses to Them 7-48
Masked Responses to Numeric Overflow 7-49
I/O I nstruction Serialization .. 8-7
16-Bit Addressing Forms with the Mod RIM Byte 11-4
32-Bit Addressing Forms with the Mod RIM Byte 11-5
32-Bit Addressing Forms with the SIB Byte 11-6
Register Encodings Associates With the Hb, HW, and +rd Nomenclature .. 11-8
Exception Mnemonics, Names, and Vector Numbers 11-14
Floating-Point Exception Mnemonics and Names 11-15
Information Returned by CPUID Instruction 11-73
Processor Type Field .. 11-75
Feature Flags Returned in EDX Register 11-75
Encoding of Cache and TLB Descriptors 11-77
EFLAGS Cross-Reference A-1
EFLAGS Condition Codes B-1
Floating-Point Exceptions Summary C-1

I

in1et

1
About This Manual

I

CHAPTER 1
ABOUT THIS MANUAL

The Pentium® Pro Family Developer's Manual, Volume 2: Programmer's Reference Manual
(Order Number 242691) is part of a three-volume set that describes the architecture, program­
ming environment, and hardware features of the Pentium® Pro processor. The other two manuals
in this set are as follows:

•

•

Pentium® Pro Family Developer's Manual, Volume 1: Specifications (Order Number
242690)

Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer's Guide
(Order Number 242692)

The Pentium® Pro Family Developer's Manual, Volume 2 and the Pentium® Pro Family Devel­
oper's Manual, Volume 3 describe the architecture and programming environment of the
processor. The Pentium® Pro Family Developer's Manual, Volume 2 describes the basic
programming environment and the instructions set of the processor. It is aimed at application
programmers who are writing programs to run under existing operating systems or executives.
The Pentium® Pro Family Developer's Manual, Volume 3 describes the operating system support
environment of the processor, including memory management, protection, task management,
interrupt and exception handling, and system management mode. It also describes the opcode
structure and requirements for compiler writers. Both manuals provide Intel Architecture
processor compatibility information.

1.1. OVERVIEW OF THE PENTIUM®pRO FAMILY DEVELOPER'S
MANUAL, VOLUME 2

The contents of this manual are as follows:

Chapter 1 - About the Manual. Gives an overview of this manual and the Pentium® Pro
Family Developer's Manual, Volume 3. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard­
ware designers.

Chapter 2 - Introduction to the Intel Pentium®pro Processor. Introduces the Intel Pentium
Pro processor family, gives an overview of the new features found in these processors, and
describes the Pentium Pro processor's microarchitecture.

Chapter 3 - Program Execution Environment. Introduces the models of memory organiza­
tion and describes the register set used by applications.

Chapter 4 - Basic Calls, Interrupts, and Exceptions. Describes the procedure stack and the
mechanisms provided for making procedure calls and for servicing interrupts and exceptions.

I
1-1

ABOUT THIS MANUAL

Chapter 5 - Data Types and Addressing Modes. Describes the data types and addressing
modes recognized by the processor.

Chapter 6 - Instruction Set Summary. Gives an overview of all the Pentium Pro processor
instructions except those executed by the processor's floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 - Floating-Point Unit. Describes the Pentium Pro processor's floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor's floating-point exception conditions.

Chapter 8 - Input/Output. Describes the processor's liD architecture, including liD port
addressing, the liD instructions, and the liD protection mechanism.

Chapter 9 - Processor Identification and Feature Determination. Describes how to deter­
mine the CPU type and the features that are available in the processor.

Chapter 10 - Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Inte1386™, Inte1486™, Pentium, and Pentium Pro processors.

Chapter 11 - Instruction Set Reference. Describes each of the Pentium Pro processor
instructions in detail, including an algorithmic description of operations, the effect on flags, the
effect of operand- and address-size attributes, and the exceptions that may be generated. The
instructions are arranged in alphabetical order.

Appendix A - EFLAGS Cross-Reference. Summaries how the Pentium Pro processor
instructions affect the flags in the EFLAGS register.

Appendix B -EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C - Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by floating-point instructions.

1.2. OVERVIEW OF THE PENTIUM® PRO FAMILY DEVELOPER'S
MANUAL, VOLUME 3

The contents of the Pentium® Pro Family Developer's Manual, Volume 3 are as follows:

Chapter 1 - About the Manual. Gives an overview of this manual and the Pentium® Pro
Family Developer's Manual, Volume 2. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard­
ware designers.

Chapter 2 - System Architecture Overview. Describes the modes of operation of the
Pentium Pro processor and those processor features used to build operating systems and execu­
tives, including the system-oriented registers and data structures and the system-oriented
instructions. The steps necessary for switching between real-address and protected modes are
also identified.

1-2

I

ABOUT THIS MANUAL

Chapter 3 - Protected-Mode Memory Management. Describes the data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a "flat" (unsegmented) memory model or a segmented memory model.

Chapter 4 - Protection. Describes the Pentium Pro processor's support for page and segment
protection. This chapter also explains the implementation of privilege rules, stack switching,
pointer validation, user and supervisor modes.

Chapter 5 - Interrupt and Exception Handling. Describes the basic interrupt mechanisms
of the Pentium Pro processor, shows how interrupts and exceptions relate to protection, and
describes how the processor handles each exception type.

Chapter 6 - Task Management. Describes how the Pentium Pro processor supports multi­
tasking with context-switching operations and inter-task protection.

Chapter 7 - Multiple Processor Management. Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program­
mable interrupt controller (APIC).

Chapter 8 - Processor Management and Initialization. Defines the state of the processor
and floating-point unit after reset initialization. This chapter also explains how to set up the
processor for real-address mode operation and protected mode operation, and how to switch
between modes.

Chapter 9 - System Management Mode (SMM). Describes the Pentium Pro processor's
implementation of system management mode (SMM), which can be used to implement power
management functions.

Chapter 10 - Debugging and Performance Monitoring. Describes the debugging registers
and other debug features of the Pentium Pro processor. This chapter also describes the time­
stamp counter and the performance monitoring counters.

Chapter 11 - Memory Cache Control. Describes the general concept of caching and the
specific mechanisms used by the Pentium Pro processor's internal caches. This chapter also
describes the memory type range registers (MTRRs) and how they can be used to map memory
types of physical memory.

Chapter 12 - 8086 Emulation. Describes the real-address and virtual-8086 modes of the
Pentium Pro processor.

Chapter 13 - Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 14 - Code Optimization. Discusses general optimization techniques for program­
ming an Intel Architecture processor.

Chapter 15 - Intel Architecture Compatibility. Describes the differences between 8086, the
Intel 286, Inte1386, Inte1486, Pentium, and Pentium Pro processors. This chapter covers the
system architecture of the Intel Architecture processors.

Chapter 16 - Machine Check Architecture. Describes the processor's machine check
architecture.

I
1-3

ABOUT THIS MANUAL

Appendix A - Opcode Map. Gives an opcode map for the Pentium Pro processor instruction
set.

Appendix B - Performance-Monitoring Connters. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events.

Appendix C - Model Specific Registers (MSRs). Lists the MSRs available in the Pentium
Pro processor and their functions.

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. The Pentium
Pro processor is a "little endian" machine; this means the bytes of a word are numbered starting
from the least significant byte. Figure 1-1 illustrates these conventions.

1.3.2.

Highest 31
Address

Data Structure
24 23 16 15 8 7

Byte 3 Byte 2 Byte 1 Byte 0

o ~ Bit offset
28

24
20
16
12
8
4

0
Lowest
Address

+
Byte Offset

Figure 1-1. Bit and Byte Order

Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be

1-4

I

ABOUT THIS MANUAL

regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

•

•
•
•

Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to a register.

Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved Pentium Pro
processor register bits. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incompat­
ibility with future processors.

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
Pentium Pro processor is used. In this subset, an instruction has the following format:
label: mnemonic argumentl, argument2, argument3

where:

•
•

•

A label is an identifier which is followed by a colon.

A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

The operands argument], argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

I
1-5

ABOUT THIS MANUAL

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following set:
0, 1, 2, 3,4,5, 6, 7, 8,9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of Is and Os, sometimes followed by the
character B (for example, 101OB). The "B" designation is only used in situations where confu­
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
address memory. The memory that can be addressed with a byte address is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break­
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(O)

1-6

I

ABOUT THIS MANUAL

See Chapter 5, Interrupt and Exception Handling, in the Pentium® Pro Family Developer's
Manual, Volume 3 for a list of exception mnemonics and their descriptions.

1.4. RELATED LITERATURE

The following books contain additional material related to Intel processors:

•
•

•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•

I

Intel Pentium® Pro Processor Specification Update, Order Number 242689.

AP-485, Intel Processor Identification with the CPUID Instruction, Order Number
241618.

Pentium® Processor Data Book, Order Number 241428.

82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium®
Processor, Order Number 241429.

Intel486™ Microprocessor Data Book, Order Number 240440.

Intel486TM Processor Hardware Reference Manual, Order Number 240552.

Intel486™ DX Processor Programmer's Reference Manual, Order Number 240486.

Intel486TM SX CPUlInteI487TM SX Math CoProcessor Data Book, Order Number 240950.

Intel486TM DX2 Microprocessor Data Book, Order Number 241245.

Intel486TM Microprocessor Product Brief Book, Order Number 240459.

Intel386TM Processor Hardware Reference Manual, Order Number 231732.

Intel386TM DX Processor Programmer's Reference Manual, Order Number 230985.

Intel386TM SX Processor Programmer's Reference Manual, Order Number 240331.

Intel386TM Processor System Software Writer's Guide, Order Number 231499.

Intel386TM High-Perf01mance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630.

376 Embedded Processor Programmer's Reference Manual, Order Number 240314.

80387 DX User's Manual Programmer's Reference, Order Number 231917.

376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

Intel386TM SX Microprocessor, Order Number 240187.

Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843.

AP-485, Intel Processor Identification with the CPUID Instruction, Order Number
241618.

AP-500, Optimizations for Intel's 32-Bit Processors, Order number 241799.

1-7

Introduction to the
Intel Pentium® Pro
Processor

I

2

CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM@ PRO

PROCESSOR

The Intel Pentium Pro processor is the first of a new family of Intel Architecture processors.
While fully software compatible with earlier Intel Architecture processors, it offers several
important new architectural and model-specific features. It also provides significant advances in
processing speed. The Pentium Pro processor running at a 150 MHz clock rate executes industry
standard benchmark programs more than twice as fast as the Intel Pentium processor running at
100 MHz. Table 2-1 provides an overview of the Pentium Pro processor's features.

Table 2-1. Overview of the Pentium® Pro Processor Features

Feature Description

Number of Transistors 5.5 Million in CPU core.

Clock Rate First processors, 150 MHz and 166 MHz; up to 200 MHz in the future.

Compatibility with Earlier Intel Fully compatible.
Architecture Processors

Microarchitecture Three-way superscalar; five parallel execution units (two integer, two
FPU, and one memory interface); dynamic execution.

Caches Level 1 (L 1) cache: 8-KByte, four-way set-associative, primary
instruction cache; 8-KByte, dual-ported, two-way set-associative,
primary data cache; both located on the CPU die.
Level 2 (L2) cache: 256-KByte (static RAM) secondary cache; located
on a separate die and closely coupled to the CPU die by means of a
dedicated full clock-speed bus.

Process Technology Four-layer metal BiCMOS; 0.6 microns; 2.9 Volts.

Package Design and Die Size Package: Dual cavity PGA ceramic package; 387 pins.
CPU die size: 306 millimeter square
L2 Cache SRAM die size: 202 millimeter square

Power consumption 23 watts typical at 150 MHz clock rate.

The new features found in the Pentium Pro processor can be divided into three categories: new
architectural features, new model-specific features, and advances in the microarchitecture.
These features are described in the following sections.

I
2-1

. INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

2.1. NEW ARCHITECTURAL FEATURES

The new features that the Pentium Pro processor adds to the Intel Architecture include several
new and extended instructions and new memory management capabilities. Several model­
specific features have also been added to the Pentium Pro processor. The following sections
describe these new features.

2.1.1. New and Extended Instructions

The following instructions are new in the Pentium Pro processor:

•

•

•

•

•

CMOVcc (conditional move) instructions-Checks the state of the status flags in the
EFLAGS registers and performs a move operation if the specified condition (state of the
flags) is true. These instructions can be used to move a value from a memory location or
general-purpose register to another register. They are provided to improve branch
prediction performance. (See Chapter 11, "CMOVcc-Conditional Move").

FCMOVcc (floating-point conditional move) instructions-Check the state of the status
flags in the EFLAGS registers and perform a floating-point move operation if the specified
condition is true. These instructions move the contents of a specified floating-point register
[ST(i)] to the top of the register stack [ST(O)]. (see Chapter 11, "FCMOVcc-Floating­
Point Conditional Move").

FCOMI (floating-point compare and set EFLAGS) instructions-Compare the values in
two floating-point registers and set the status flags in the EFLAGS register according to the
results. (See Chapter 11, "FCOMIIFCOMIPI FUCOMIIFUCOMIP-Compare Real and
Set EFLAGS").

RDPMC (read performance monitoring counters) instruction-Reads the contents of the
specified performance monitoring counter. This instruction is associated with a new flag in
control register CR4, bit 8. This flag, called the PCE (performance counter enable) flag,
permits programs or procedures running at protection levels 1, 2, or 3 to execute the
RDPMC instruction, which can normally only be executed only at privilege level O. (See
Chapter 11, "RDPMC-Read Performance-Monitoring Counters").

UD2 (undefined) instruction-Generates an invalid opcode exception. This instruction is a
no-op instruction provided for testing invalid-opcode exception handlers. (See Chapter 11,
"UD2-Undefined Instruction").

In addition to these new instructions, the functions of the CPUID, RDMSR, and WRMSR
instructions have been extended. The CPUID (CPU identification) instruction now indicates the
existence of additional model-specific features and displays cache information (see Chapter 11,
"CPUID-CPU Identification").

The RDMSR (read model-specific register) and WRMSR (write model-specific register)
instructions now recognize a much larger number of model-specific registers. (See Chapter 11,
"RDMSR-Read from Model Specific Register" and Chapter 11, "WRMSR-Write to Model
Specific Register" for more information about these instructions.

2-2

I

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

2.1.2. New Memory Management Features

The Pentium Pro processor provides three new memory management features: physical memory
addressing extension, the global bit in page table entries, and general support for larger page
sizes. These features are only available when operating in protected mode.

The new PAE (physical address extension) flag in control register CR4, bit 5, enables four addi­
tional address lines on the processor, allowing 36-bit physical addresses. This option can only
be used when paging is enabled, using an advance page-table mechanism provided to support
the larger physical address range.

The new PGE (page global enable) flag in control register CR4, bit 7, provides a mechanism for
preventing frequently used pages from being flushed from the translation lookaside buffer
(TLB). When this flag is set, frequently used pages (such as pages containing kernel procedures
or common data tables) can be marked global by setting the global flag in a page-table-directory
or page-table entry. On a task switch or a write to control register CR3 (which normally causes
the TLBs to be flushed), the entries in the TLB marked global will normally not be flushed.
Marking pages global in this manner provides software with a mechanism for controlling unnec­
essary reloading of the TLB due to TLB misses on frequently used pages.

One of the new features available in the Pentium Pro processor is support for large page sizes.
This support is enabled with the PSE (page size extension) flag in control register CR4, bit 4.
When this flag is set, the processor supports 4-KByte and 4-MByte page sizes when normal
paging is used and 4-KByte and 2-MByte page sizes when the physical address extension is
used.

See Chapter 3, Protected-Mode Memory Management, in the Pentium® Pro Family Developer's
Manual, Volume 3 for more information about the physical memory addressing extension,
global pages, and large page sizes.

2.2. NEW AND EXTENDED MODEL-SPECIFIC FEATURES

The Pentium Pro processor provides several model-specific features that are either new to Intel
Architecture processors or extensions of existing features. Model-specific features appear in
some Intel Architecture processors, but are not part of the Intel Architecture; that is, they are not
guaranteed to be implemented in the same manner in future Intel Architecture processors. The
new and extended model-specific features found in the Pentium Pro processor include more
model specific registers, new memory type range registers (MTRRs), extensions to the machine
check architecture, and new performance monitoring counters.

2.2.1. Model-Specific Registers

The concept of model-specific registers (MSRs) to control hardware functions in the processor
or to monitor processor activity was introduced in the Pentium processor. The number of MSRs
is greatly increased in the Pentium Pro processor. The new registers control the debug exten­
sions, the performance counters, the machine-check exception capability, the machine check
architecture, and the MTRRs. The MSRs can be read and written to using the RDMSR and
WRMSR instructions, respectively.

I
2-3

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

See Chapter 8, Processor Management and Initialization, and Appendix C, Model-Specific
Registers (MSRs), in the Pentium® Pro Family Developer's Manual, Volume 3 for more infor­
mation on the MSRs.

2.2.2. Memory Type Range Registers

Memory type range registers (MTRRs) are a new feature introduced in the Pentium Pro
processor that allow the processor to optimize memory operations for different types of memory,
such as RAM, ROM, frame buffer memory, and memory-mapped I/O.

MTRRs are MSRs that configure an internal map of how physical address ranges are mapped to
various types of memory. The processor uses this internal memory map to determine the cache­
ability of various physical memory locations and the optimal method of accessing memory loca­
tions. For example, if a memory location is specified in an MTRR as write-through memory, the
processor handles accesses to this location as follows. It reads data from that location in lines
and caches the read data or maps all writes to that location to the bus and updates the cache to
maintain cache coherency. In mapping the physical address space with MTRRs, the processor
recognizes five types of memory: uncacheable (UC), write-combining (WC), write-through
(WT), write-protected (WP), and writeback (WB).

Earlier Intel Architecture processors (such as the Intel486 and the Pentium processor) used the
#KEN (cache enable) pin and external logic to maintain an external memory map and signal
cacheable accesses to the processor. The MTRR mechanism simplifies hardware designs by
eliminating the #KEN pin and the external logic required to drive it.

See Chapter 8, Processor Management and Initialization, and Appendix C, Model-Specific
Registers (MSRs), in the Pentium® Pro Family Developer's Manual, Volume3 for more infor­
mation on the MTRRs.

2.2.3. Machine-Check Exception and Architecture

The Pentium processor introduced a new exception called the machine-check exception (inter­
rupt 18). This exception is used to signal hardware-related errors, such as a parity error on a read
cycle. The Pentium Pro processor extends the types of errors that can be detected and that
generate a machine-check exception. It also provides a new machine-check architecture that
records information about a machine-check error and provides the basis for an extended error
logging capability.

The machine-check architecture provides several banks of reporting registers for recording
machine-check errors. Each bank of registers is associated with a specific hardware unit in the
processor. The primary focus of the machine checks is on bus and interconnect operations;
however, checks are also made of translation lookaside buffer (TLB) and cache integrity.

The machine-check architecture can correct some errors automatically and allow for reliable
restart of instruction execution. It also collects sufficient information for software to use in
logging other machine errors not corrected by hardware.

2-4

I

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

See Chapter 5, Interrupt and Exception Handling, and Chapter 16, Machine Check Architecture,
in the Pentium® Pro Family Developer's Manual, Volume 3 for more information on the
machine-check exception and the machine-check architecture.

2.2.4. Performance Monitoring Counters

The Pentium Pro processor has two performance-monitoring counters for use in monitoring
internal hardware operations. These counters are duration or event counters that can be
programmed to count any of approximately 100 different types of events, such as the number of
instructions decoded, number of interrupts received, or number of cache loads. Appendix C,
Model-Specific Registers (MSRs), in the Pentium® Pro Family Developer's Manual, Volume 3
lists all the events that can be counted. The counters are set up, started, and stopped using two
MSRs and the RDMSR and WRMSR instructions. The current count for a particular counter can
be read using the new RDPMC instruction.

The performance-monitoring counters are useful for debugging programs, optimizing code,
diagnosing system failures, or refining hardware designs. See Chapter 10, Debugging and
Performance Monitoring, in the Pentium® Pro Family Developer's Manual, Volume 3 for more
information on these counters.

2.3. INTRODUCTION TO THE PENTIUM@ PRO PROCESSOR'S
ADVANCED MICROARCHITECTURE

The Pentium processor (introduced by Intel in 1993) set an impressive performance standard
with its superscalar microarchitecture. In designing the Pentium Pro processor, one of the
primary goals of the Intel chip architects was to exceed the performance of the 100-MHz
Pentium processor significantly while still using the same O.6-micrometer, four-layer, metal
BICMOS manufacturing process. Using the same manufacturing process as the Pentium
processor meant that performance gains could only be achieved through substantial advances in
the microarchitecture.

The resulting Pentium Pro processor microarchitecture is a three-way superscalar, pipelined
architecture. The term "three-way superscalar" means that using parallel processing techniques,
the processor is able on average to decode, dispatch, and complete execution of (retire) three
instructions per clock cycle. To handle this level of instruction throughput, the Pentium Pro
processor uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execu­
tion. Figure 2-1 shows a conceptual view ofthis pipeline, with the pipeline divided into four
processing units (the fetch/decode unit, the dispatch/execute unit, the retire unit, and the instruc­
tion pool). Instructions and data are supplied to these units through the bus interface unit.

To insure a steady supply of instructions and data to the instruction execution pipeline, the
Pentium Pro processor microarchitecture incorporates two cache levels. The L1 cache provides
an 8-KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline.
The L2 cache is a 256-KByte static RAM that is coupled to the core processor through a full
clock-speed, 64-bit, cache bus.

I
2-5

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

The centerpiece of the Pentium Pro processor microarchitecture is an innovative out-of-order
execution mechanism called "dynamic execution." Dynamic execution incorporates three data­
processing concepts:

•
•
•

Deep branch prediction.

Dynamic data flow analysis.

Speculative execution.

System Bus

Bus Interface Unit

l2 Cache

Cache Bus

L 1 Data Cache

Fetch!Decode
Unit

Load

Dispatch!
Execute Unit

Dispatch!
Execute Unit

Intel
Architecture

Registers

Figure 2-1. The Processing Units in the Pentium@ Pro Processor Microarchitecture and
Their Interface with the Memory Subsystem

Branch prediction is a concept found in most mainframe and high-speed microprocessor archi­
tectures. It allows the processor to decode instructions beyond branches to keep the instruction
pipeline full. In the Pentium Pro processor, the instruction fetch/decode unit uses a highly opti­
mized branch prediction algorithm to predict the direction of the instruction stream through
multiple levels of branches, procedure calls, and returns.

Dynamic data flow analysis involves real-time analysis of the flow of data through the processor
to determine data and register dependencies and to detect opportunities for out-of-order instruc­
tion execution. The Pentium Pro processor dispatch/execute unit can simultaneously monitor

2-6

I

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

many instructions and execute these instructions in the order that optimizes the use of the
processor's multiple execution units, while maintaining the integrity of the data being operated
on. This out-of-order execution keeps the execution units even when cache misses and data
dependencies among instructions occur.

Speculative execution refers to the processor's ability to execute instructions ahead of the
program counter but ultimately to commit the results in the order of the original instruction
stream. To make speculative execution possible, the Pentium Pro processor micro architecture
decouples the dispatching and executing of instructions from the commitment of results. The
processor's dispatch/execute unit uses data-flow analysis to execute all available instructions in
the instruction pool and store the results in temporary registers. The retirement unit then linearly
searches the instruction pool for completed instructions that no longer have data dependencies
with other instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory and/or the Intel
Architecture registers (the processor's eight general-purpose registers and eight floating-point
unit data registers) in the order they were originally issued and retires the instructions from the
instruction pool.

Through deep branch prediction, dynamic data-flow analysis, and speculative execution,
dynamic execution removes the constraint of linear instruction sequencing between the tradi­
tional fetch and execute phases of instruction execution. It allows instructions to be decoded
deep into multi-level branches to keep the instruction pipeline full. It promotes out-of-order
instruction execution to keep the processor's six instruction execution units running at full
capacity. And finally it commits the results of executed instructions in original program order to
maintain data integrity and program coherency.

The following section describes the Pentium Pro processor micro architecture in greater detail.

2.4. DETAILED DESCRIPTION OF THE PENTIUM@ PRO
PROCESSOR MICROARCHITECTURE

Figure 2-2 shows a functional block diagram of the Pentium Pro processor microarchitecture. In
this diagram, the following blocks make up the four processing units and the memory subsystem
shown in Figure 2-1:

•

•

•
•

•

I

Memory subsystem-System bus, L2 cache, bus interface unit, instruction cache (LI), data
cache unit (LI), memory interface unit, and memory reorder buffer.

Fetch/decode unit-Instruction fetch unit, branch target buffer, instruction decoder,
microcode sequencer, and register alias table.

Instruction pool-Reorder buffer

Dispatch/execute unit-Reservation station, two integer units, two floating-point units, and
two address generation units.

Retire unit-Retire unit and retirement register file.

2-7

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

2.4.1. Memory Subsystem

The memory subsystem for the Pentium Pro processor consists of main system memory, the
primary cache (LI), and the secondary cache (L2). The bus interface unit accesses system
memory through the external system bus. This 64-bit bus is a transaction-oriented bus, meaning
that each bus access is handled as separate request and response operations. While the bus inter­
face unit is waiting for a response to one bus request, it can issue numerous additional requests.

System Bus (External)

I L2 Cache ..
f

..
~ Cache Bus

Bus Interface Unit

• t
Next IP

Instruction Fetch Unit I Instruction Cache (L 1) ~ Unit

• ------
Memory Branch

Instruction Decoder ---.. Target

~
Reorder

Buffer Buffer
Simple Simple Complex

Instruction Instruction Instruction
Decoder Decoder Decoder

~
Microcode From

I I I Instruction Integer

• • •• JJ Sequencer Unit

Register Alias Table

Retirement
Retirement Unit - Register File Data Cache

~
-------------- (Intel Arch. Unit (L 1)

Reorder Buffer (Instruction Pool) Registers)

t
Reservation Station

t t t
Floating- Floating- Integer Integer

Memory
Point Unit Point Unit Interface ~

(FPU) (FPU) Unit Unit Unit

I t
To Branch
Target Buffer

I Internal Data-Results Buses I
Figure 2-2. Functional Block Diagram of the Pentium@ Pro Processor Microarchitecture

2-8

I

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

The bus interface unit accesses the close-coupled L2 cache through a 64-bit cache bus. This bus
is also transactional oriented, supporting up to four concurrent cache accesses, and operates at
the full clock speed of the processor.

Access to the Ll caches is through internal buses, also at full clock speed. The 8-KByte Ll
instruction cache is four-way set associative; the 8-KByte Ll data cache is dual-ported and two­
way set associative, supporting one load and one store operation per cycle.

Coherency between the caches and system memory are maintained using the MESI (modified,
exclusive, shared, invalid) cache protocol. This protocol fosters cache coherency in single- and
mUltiple-processor systems. It is also able to detect coherency problems created by self-modi­
fying code.

Memory requests from the processor's execution units go through the memory interface unit and
the memory order buffer. These units have been designed to support a smooth flow of memory
access requests through the cache and system memory hierarchy to prevent memory access
blocking. The Ll data cache automatically forwards a cache miss on to the L2 cache, and then,
if necessary, the bus interface unit forwards an L2 cache miss to system memory.

Memory requests to the L2 cache or system memory go through the memory order buffer, which
functions as a scheduling and dispatch station. This unit keeps track of all memory requests and
is able to reorder some requests to prevent blocks and improve throughput. For example, the
memory reorder buffer allows loads to pass stores. It also issues speculative loads. (Stores are
always dispatched in order, and speCUlative stores are never issued.)

2.4.2. The Fetch/Decode Unit

The fetch/decode unit reads a stream of Intel Architecture instructions from the L1 instruction
cache and decodes them into a series of micro-operations called "micro-ops." This micro-op
stream (still in the order of the original instruction stream) is then sent to the instruction pool.

The instruction fetch unit fetches one 32-byte cache line per clock from the instruction cache. It
marks the beginning and end of the Intel Architecture instructions in the cache lines and trans­
mits 16 aligned bytes to the decoder.

The instruction fetch unit computes the instruction pointer, based on inputs from the branch
target buffer, the exception/interrupt status, and branch-misprediction indications from the
integer execution units. The most important part of this process is the branch prediction
performed by the branch target buffer. Using an extension of Yeh's algorithm, the 512 entry
branch target buffer looks many instructions ahead of the retirement program counter. Within
this instruction window there may be numerous branches, procedure calls, and returns that must
be correctly predicted if the dispatch/execute unit is to do useful work.

The instruction decoder contains three parallel decoders: two simple-instruction decoders and
one complex instruction decoder. Each decoder converts an Intel Architecture instruction into
one or more triadic micro-ops (two logical sources and one logical destination per micro-op).
Micro-ops are primitive instructions that are executed by the processor's six parallel execution
units.

I
2-9

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

Many Intel Architecture instructions are converted directly into single micro-ops by the simple
instruction decoders, and some instructions are decoded into from one to four micro-ops. The
more complex Intel Architecture instructions are decoded into sequences of preprogrammed
micro-ops obtained from the microcode instruction sequencer. The instruction decoders also
handle the decoding of instruction prefixes and looping operations. The instruction decoder can
generate up to six micro-ops per clock cycle (one each for the simple instruction decoders and
four for the complex instruction decoder).

The Intel Architecture's register set can cause resource stalls due to register dependencies. To
solve this problem, the processor provides 40 internal, general-purpose registers, which are used
for the actual computations. These registers can handle both integer and floating-point values.
To allocate the internal registers, the enqueued micro-ops from the instruction decoder are sent
to the register alias table unit, where references to the logical Intel Architecture registers are
converted into internal physical register references.

In the final step of the decoding process, the allocator in the resister alias table unit adds status
bits and flags to the micro-ops to prepare them for out-of-order execution and sends the resulting
micro-ops to the instruction pool.

2.4.3. Instruction Pool (Reorder Buffer)

Prior to entering the instruction pool (known formally as the reorder buffer), the micro-op
instruction stream is in the same order as the Intel Architecture instruction stream that was sent
to the instruction decoder. No reordering of instructions has taken place.

The reorder buffer is an array of content-addressable memory, arranged into 40 micro-op regis­
ters. It contains micro-ops that are waiting to be executed, as well as those that have already been
executed but not yet committed to machine state. The dispatch/execute unit can execute instruc­
tions from the reorder buffer in any order.

2.4.4. Dispatch/Execute Unit

The dispatch/execute unit is an out-of-order unit that schedules and executes the micro-ops
stored in the reorder buffer according to data dependencies and resource availability and tempo­
rarily stores the results of these speculative executions.

The scheduling and dispatching of micro-ops from the reorder buffer is handled by the reserva­
tion station. It continuously scans the reorder buffer for micro-ops that are ready to be executed
(that is, all the source operands are available) and dispatches them to the available execution
units. The results of a micro-op execution are returned to the reorder buffer and stored along with
the micro-op until it is retired. This scheduling and dispatching process supports classic out-of­
order execution, where micro-ops are dispatched to the execution units strictly according to
data-flow constraints and execution resource availability, without regard to the original ordering
of the instructions. When two or more micro-ops of the same type (for example, integer opera­
tions) are available at the same time, they are executed in a pseudo FIFO order in the reorder
buffer.

2-10

I

INTRODUCTION TO THE INTEL PENTIUM® PRO PROCESSOR

Execution of micro-ops is handled by two integer units, two floating-point units, and one
memory-interface unit, allowing up to five micro-ops can be scheduled per clock.

The two integer units can handle two integer micro-ops in parallel. One of the integer units is
designed to handle branch micro-ops. This unit has the ability to detect branch mispredictions
and signal the branch target buffer to restart the pipeline. This operation is handled as follows.
The instruction decoder tags each branch micro-op with both branch destination addresses (the
predicted destination and the fall-through destination). When the integer unit executes the
branch micro-op, it is able to determine whether the predicted or the fall-through destination was
taken. If the predicted branch is taken, then speculatively executed micro-ops are marked usable
and execution continues along the predicted instruction path. If the predicted branch was not
taken, a jump execution unit in the integer unit changes the status of all of the micro-ops
following the branch to remove them from the instruction pool. It then provides the proper
branch destination to the branch target buffer, which in turn restarts the pipeline from the new
target address.

The memory interface unit handles load and store micro-ops. A load access only needs to specify
the memory address, so it can be encoded in one micro-op. A store access needs to specify both
an address and the data to be written, so it is encoded in two micro-ops. The part of the memory
interface unit that handles stores has two ports allowing it to process the address and the data
micro-op in parallel. The memory interface unit can thus execute both a load and a store in
parallel in one clock cycle.

The floating-point execution units are similar to those found in the Pentium processor. Several
new floating-point instructions have been added to the Pentium Pro processor to streamline
conditional branches and moves.

2.4.5. Retirement Unit

The retirement unit commits the results of speculatively executed micro-ops to permanent
machine state and removes the micro-ops from the reorder buffer. Like the reservation station,
the retirement unit continuously checks the status of micro-ops in the reorder buffer, looking for
ones that have been executed and no longer have any dependencies with other micro-ops in the
instruction pool. It then retires completed rnicro-ops in their original program order, taking into
accounts interrupts, exceptions, breakpoints, and branch mispredictions.

The retirement unit can retire three micro-ops per clock. In retiring a micro-op, it writes the
results to the retirement register file and/or memory. The retirement register file contains the
Intel Architecture registers (eight general-purpose registers and eight floating-point data regis­
ters). After the results have been committed to machine state, the micro-op is removed from the
reorder buffer.

I
2-11

Basic Execution
Environment

I

3

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of the Pentium Pro processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipUlates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

The execution environment for the floating-point unit (FPU) is described in Chapter 7, Floating­
Point Unit.

3.1. MODES OF OPERATION

The Pentium Pro processor has three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

•

•

•

Protected mode. This is the native state of the processor. In this mode all instructions and
architectural features are available, providing the highest performance and capability. This
is the recommended mode for all new applications and operating systems.

Among the capabilities of protected mode is the ability to directly execute "real-address
mode" 8086 software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode). The processor is placed in real-address mode following
power-up or a reset. From real-address mode, only a single instruction is required to switch
to protected mode.

System management mode. The system management mode (SMM) is a standard archi­
tectural feature unique to all Intel processors, beginning with the Inte1386 SL processor.
This mode provides an operating system or executive with a transparent mechanism for
implementing platfonn-specific functions such as power management. The processor
enters SMM the external SMM interrupt pin (SMI#) is activated or an SMI is received
from the advanced programmable interrupt controller (APIC). In SMM, the processor
switches to a separate address space while saving the entire context of the currently
running program or task. SMM-specific code may then be executed transparently. Upon
returning from SMM, the processor is placed back into its state prior to the system
management interrupt.

The basic execution environment is the same for each of these operating modes, as is described
in the remaining sections of this chapter.

I
3-1

BASIC EXECUTION ENVIRONMENT

3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on a Pentium Pro processor is given a set of resources for
executing instructions and for storing code, data, and state information. These resources (shown
in Figure 3-1) include an address space of up to 232 bytes, a set of general data registers, a set of
segment registers, and a set of status and control registers. When a program calls a procedure, a
procedure stack is added to the execution environment. (procedure calls and the procedure stack
implementation are described in Chapter 4, Procedure Calis, Interrupts, and Exceptions.)

Eight 32-bit
Registers

32-bits

General-Purpose
Registers

Segment Registers

EFLAGS Register

EIP (Instruction
Pointer Register)

'The address space can be flat or segmented.

0'------'

Address
Space'

Figure 3-1. Pentiumepro Processor Basic Execution Environment

3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical memory
is organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a phys­
ical address. The physical address space ranges from zero to a maximum of 232 -1 (4 gigabytes).

Virtually any operating system or executive designed to work with the Pentium Pro processor
will use the processor's memory management facilities to access memory. These facilities
provide features such as segmentation and paging, which allow memory to be managed effi­
ciently and reliably. Memory management is described in detail in Chapter 3, Protected-Mode
Memory Management, of the Pentium® Pro Family Developer's Manual, Volume 3. The
following paragraphs describe the basic methods of addressing memory when memory manage­
ment is used. .

When employing the processor's memory management facilities, programs do not directly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

With the flat memory model (see Figure 3-2), memory appears to a program as a single, contin­
uous address space, called a linear address space. Code (a program's instructions), data, and the

3-2

I

BASIC EXECUTION ENVIRONMENT

procedure stack are all contained in this address space. The linear address space is byte addres­
sable, with addresses running contiguously from 0 to 232 - 1. An address for any byte in the linear
address space is called a linear address.

Flat Model

Linear Address

Segmented Model

Offset

Logical
Address Segment Selector

Linear
Address

Space

Real-Address Mode Model

Offset
I

Logical
Address Segment Selector

Linear Address
Space Divided

Into Equal
Sized Segments

Figure 3-2. Three Memory Management Models

With the segmented memory mode, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue a logical
address, which consists of a segment selector and an offset. (A logical address is often referred
to as afar pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on a Pentium Pro
processor can address up to 16,383 segments of different sizes and types.

Internally, all the segments that are defined for a system are mapped into the processor's linear
address space. So, the processor translates each logical address into a linear address to access a
memory location. This translation is transparent to the application program.

I
3·3

BASIC EXECUTION ENVIRONMENT

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program's stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. And
placing the operating system's or executive's code, data, and stack in separate segments protects
them from the application program and vice versa.

The real-address mode model, uses the memory model for the Intel 8086 processor. It is
provided in the Pentium Pro processor for compatibility with existing programs written to run
on the Intel 8086. The real-address mode uses a specific implementation of segmented memory
in which the linear address space for the program and the operating system/executive consists of
an array of equally sized segments. (See Chapter 12, 8086 Emulation, in the Pentium® Pro
Family Developer's Manual, Volume 3 for more information on this memory model.)

3.4. MODES OF OPERATION

When writing code for the Pentium Pro processor, a programmer needs to know the operating
mode the processor is going to be in when executing the code and the memory model being used.
The relationship between operating modes and memory models is as follows:

•

•

•

Protected mode. When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mode memory model is ordinarily
used only when the processor is in the virtual-8086 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple­
mented, individual tasks can use different memory models.

Real-address mode. When in real-address mode, the processor only supports the real­
address mode memory model.

System management mode. When in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
9, System Management Mode (SMM), in the Pentium® Pro Family Developer's Manual,
Volume 3 for more information on the memory model used in SMM.)

3.5. 32-BIT VS. 16-BIT ADDRESS AND OPERAND SIZES

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232),
and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes, the
maximum linear address or segment offset is FFFFH (216), and operand sizes are typically 8 bits
or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

3-4

I

BASIC EXECUTION ENVIRONMENT

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler then sets up the segment
descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32 bit addressing; however, the
maximum allowable 32-bit address is still OOOOFFFFH (216).

3.6. REGISTERS

The processor provides 16 registers for use in general system and application programing. As
shown in Figure 3-3, these registers can be grouped as follows:

•

•
•

General-purpose data registers. These eight registers are available for storing operands
and pointers.

Segment registers. These registers hold up to six segment selectors.

Status and control registers. These registers report and allow modification of the state of
the processor and of the program being executed.

3.6.1. General-Purpose Data Registers

The 32-bit general-purpose data registers EAX, EBX, ECX, EDX, ESI, ED!, EBP, and ESP are
provided for holding the following items:

•
•
•

Operands for logical and arithmetic operations

Operands for address calculations

Memory pointers.

Although all of these registers are available for general storage of operands, results, and pointers,
caution should be used when referencing the ESP register. The ESP register holds the stack
pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use
the contents of the ECX, ESI, and EDI registers as operands. When using a segmented memory
model, some instructions assume that pointers in certain registers are relative to specific
segments. For instance, some instructions assume that a pointer in the EBX register points to a
memory location in the DS segment.

The special uses of general-purpose registers by instructions are described in Chapter 6, Instruc­
tion Set Summary and Chapter 11, Instruction Set Reference. The following is a summary of
these special uses:

•
•

I

EAX-Accumulator for operands and results data.

EBX-Pointer to data in the DS segment.

3-5

BASIC EXECUTION ENVIRONMENT

•
•
•

•

•
•

31
General-Purpose Registers o

EAX
r-----------------------~

ESX
r-----------------------~

ECX
~----------------------~

EOX
r-----------------------~

ESI
r-----------------------~

EOI
~----------------------~ ESP

~----------------------~

Segment Registers
15 0

ESP

CS
~---------l

OS
~---------l SS

ES
r--------------l

FS
r--------------l

GS
'---------------'

31 Status and Control Registers 0

1<--_________ -----'1 EFLAGS

31 0
IL--________ -----'I EIP

Figure 3-3. Application Programming Registers

ECX-Counter for string and loop operations.

EDX-I/O pointer.

ESI-Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.

EDI-Pointer to data (or destiImtion) in the segment pointed to by the ES register;
destination pointer for string operations.

ESP-Stack pointer (in the SS segment).

EBP-Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BR, CR, and DR (high bytes) and AL, BL,
CL, and DL (low bytes).

3-6

I

BASIC EXECUTION ENVIRONMENT

General-Purpose Registers
31 1615 8 7 0 16-bit 32-bit

AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
OH OL OX EOX

BP EBP
SI ESI
01 EOI
SP ESP

Figure 3-4. Alternate General-Purpose Register Names

3.6.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
registers.

When writing application code, you generally create segment selectors with assembler direc­
tives and symbols. The assembler and/or linker then creates the actual segment selectors associ­
ated with these directives and symbols. If you are writing system code, you may need to create
segment selectors directly. (A detailed description of the segment-selector data structure is given
in Chapter 3, Protected-Mode Memory Management, of the Pentium® Pro Family Developer's
Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, all
the segment registers are loaded with the same segment selector (as shown in Figure 3-5). Thus
all memory accesses that a program makes are to a single linear-address space.

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment (as shown
in Figure 3-6). At any time, a program can thus access up to six segments of memory. To access
a segment not pointed to by one of the segment registers, a program must first load the segment
selector for the segment to be accessed into a segment register.

Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contains the segment selector for the code segment, where
the instructions being executed are stored. The processor fetches instructions from the code
segment, using a logical address made up of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the linear address within the code segment
of the next instruction to be executed. The CS register cannot be loaded explicitly by an appli­
cation program. Instead it is loaded implicitly by instructions or internal processor operations
that change program control (such as, procedure calls, interrupt handling, or task switching).

I
3-7

BASIC EXECUTION ENVIRONMENT

Linear Address
Space for Program

Segment Registers
15 0

CS-
DS-
SS-
ES--
FS-
GS-

Each segment register
contains the same
segment selector.

Figure 3-5. Use of Segment Selectors for Flat Memory Model

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example,
separate data segments can be created for the data structures of the current module, data exported
from a higher-level module, a dynamically-created data structure, and data shared with another
program. To access additional data segments, the application program must load segment selec­
tors for these segments into the DS, ES, FS, and GS registers, as needed.

3-8

I

BASIC EXECUTION ENVIRONMENT

Code I
Segment Registers

Segment

15 0 ~L- Data I gCS Segment

DS

LL-
Stack

SS

I

Segment
ES
FS
GS~ ..

Data I
Segment

Data I
Segment

Data
Segment

Figure 3-6. Use of Segment Selectors in Segmented Memory Model

The SS register contains the segment selector for a stack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded explic­
itly, which permits application programs to set up multiple stacks and switch among them.

See Section 3.1., "Modes of Operation" for an overview of how the segment registers are used
in the virtual 8086 mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the
Intel Architecture with the Inte1386 family of processors.

3.6.3. EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 defines the flags within this register. Following initialization of the
processor (either by asserting the RESET pin or the INIT pin), the state of the EFLAGS register
is 00000002H. Bits 1,3,5, 15, and 22 through 31 of this register are reserved. Software should
not use or depend on the states of any of these bits.

I
3-9

BASIC EXECUTION ENVIRONMENT

313029282726252423222120191817161514131211109 8 7 654 3 2 1 0

X 10 F~g (10) I II
X Virtual Interrupt Pending (VIP)
X Virtual Interrupt Flag (VIF)
X Alignment Check (AC) ______ ---.J
X Virtual 8086 Mode (VM) -----------'
X Resume Flag (RF)------------.J
X Nested Task (NT) ----------------'

I F'
o ODITSZ16'A
P F F F F F F I~ F
L ~ii

X 1/0 Privilege Level (IOPL) --------------'
X Overilow Flag (OF) -------------
X Direction Flag (OF) ----------------'
X Interrupt Enable Flag (IF) ---------------'
X Trap Flag (TF) ----------------------'
S Sign Flag (SF) -----------------
S Zero Flag (ZF) __________________ ---.J

S Auxiliary Carry Flag (AF) ------------------'
S Parity Flag (PF) -----------------------'
S Carry Flag (CF) ----------------------'

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

~ Reserved bit positions. DO NOT USE.
I!!illll!l Always set to values previously read.

Figure 3-7. EFLAGS Register

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EAX re gister, the flags can be examined and modified using
the processor's bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor's multitasking facilities), the processor automati­
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task's TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception
is handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.

3-10

I

BASIC EXECUTION ENVIRONMENT

As the Intel Architecture has evolved, various flags have been added to the EFLAGS register,
but the arrangement of flags in the register has remained the same. As a result, all actions
regarding these flags in software written for the Intel Architecture should work as expected.

3.6.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith­
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0)

PF (bit 2)

AF (bit 4)

ZF (bit 6)

SF (bit 7)

Carry flag. Set if an arithmetic operation generates a carry or a borrow out
of the most-significant bit of the result; cleared otherwise. This flag indi­
cates an overflow condition for unsigned-integer arithmetic. It is also used
in multiple-precision arithmetic.

Parity flag. Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.

Adjust flag. Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used in binary-
coded decimal (BCD) arithmetic.

Zero flag. Set if the result is zero; cleared otherwise.

Sign flag. Set equal to the most-significant bit of the result, which is the
sign bit of a signed integer. (0 indicates a positive value and 1 indicates a
negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or
too small a negative number (excluding the sign-bit) to fit in the destina­
tion operand; cleared otherwise. This flag indicates an overflow condition
for signed-integer (two's complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper­
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two's complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned­
integer zero.

When performing multiple-precision arithmetic on unsigned integers, the CF flag is used in
conjunction with the add with carry (ADC) and subtract with borrow (SBB) instructions to prop­
agate a carry or borrow from one computation to the next.

The condition instructions Jcc Uump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

I
3-11

BASIC EXECUTION ENVIRONMENT

3.6.3.2. OF FLAG

The direction flag (DF) is the only control flag in the EFLAGS register. This flag (bit 10 ofthe
register) controls the string instructions (MOYS, CMPS, SCAS, LODS, and STOS). Setting the
DF flag causes the string instructions to auto-decrement (that is, to process strings from high
addresses to low addresses). Clearing the DF flag causes the string instructions to auto­
increment (process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.6.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not he modified by application programs. The functions of the status
flags are as follows:

IF (bit 9)

TF (bit 8)

Interrupt enable flag. Controls the response of the processor to maskable
interrupt requests. Set to respond to maskable interrupts; cleared to inhibit .
maskable interrupts.

Trap flag. Set to enable single-step mode for debugging; clear to disable
single-step mode.

10PL (bits 12 and 13)1/0 privilege level field. Indicates the I/O privilege level of the currently
running program or task. The current privilege level (CPL) of the currently
running program or task must be less than or equal to the I/O privilege
level to access the I/O address space. This field can only be modified by
the POPF and IRET instructions when operating at a CPL of O.

NT (bit 14)

RF (bit 16)

VM (bit 17)

AC (bit 18)

VIF (bit 19)

VIP (bit 20)

3-12

Nested task flag. Controls the chaining of interrupted and called tasks. Set
when the current task is linked to the previously executed task; cleared
when the current task is not linked to another task.

Resume flag. Controls the processor's response to debug exceptions.

Virtual 8086 mode flag. Set to enable virtual-8086 mode; clear to return
to protected mode.

Alignment check flag. Set this flag and the AM bit in the CRO register to
enable alignment checking of memory references; clear the AC flag and/or
the AM bit to disable alignment checking.

Virtual interrupt flag. Yirtual image of the IF flag. Used in conjunction
with the YIP flag. (To use this flag and the YIP flag the virtual mode exten­
sions are enabled by setting the VME flag in control register CR4.)

Virtual interrupt pending flag. Set to indicate to that an interrupt is
pending; clear when no interrupts are pending. (Software sets and clears
this flag. The processor only reads it.) Used in conjunction with the YIF
flag.

I

ID (bit 21)

BASIC EXECUTION ENVIRONMENT

Identification flag. The ability of a program to set or clear this flag indi­
cates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the Pentium® Pro Family Developefs
Manual, Volume 3 for a detail description of these flags.

3.7. INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight­
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jcc, CALL, RET, and IRET instructions. The EIP cannot be accessed directly by software; it is
controlled implicitly by control-transfer instructions (such as JMP, Jcc, CALL, and RET), inter­
rupts, and exceptions. The EIP register can be loaded indirectly by modifying the value of a
return instruction pointer on the procedure stack and executing a return instruction (RET or
IRET). See Section 4.2.3.2., "Return Instruction Pointer".

Because of instruction pre fetching, an instruction address read from the bus during an instruc­
tion load does not match the value of the EIP. The only way to read the EIP is to execute a CALL
instruction and then read the value of the return instruction pointer from the procedure stack.

The EIP register is fully compatible with all software written to run on Intel Architecture
processors.

3.8. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When processor is executing in protected mode, every code segment has a default operand-size
attribute and address-size attribute. These attributes are selected with the D (default size) flag in
the segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory Manage­
ment, in the Pentium® Pro Family Developer's Manual, Volume 3. When the B flag is set, the
32Hbit operand-size and address-size attributes are selected; when the flag is clear, the 16-bit
size attributes are selected. When the processor is executing in real-address mode, virtual-8086
mode, or SMM, the default operand-size and address-size attributes are always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32
bits. When the 16-bit address-size attribute is in force, segment offsets and displacements are
16-bits. This restriction limits the size of a segment that can be addressed 64 KBytes. When the
32-bit address-size attribute is in force, segment offsets and displacements are 32-bits, allowing
segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a partic­
ular instruction by adding an operand-size and/or address-sized prefix to an instruction (see
Section 11.1.1., "Instruction Prefixes "). The effect of this prefix applies only to the instruction
it is attached to.

I
3-13

BASIC EXECUTION ENVIRONMENT

Table 3-1 shows effective operand size and address size (when executing in protected mode),
depending on the settings of the B flag and the operand-size and address-size prefixes.

Table 3-1. Effective Operand- and Address-Size Attributes

B Flag in Code Segment
Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

NOTES:

Y Yes, this instruction prefix is present

N No, this instruction prefix is not present

3-14

I

Procedure Calls,
Interrupts, and
Exceptions

I

4

CHAPTER 4
PROCEDURE CALLS, INTERRUPTS, AND

EXCEPTIONS

This chapter describes the facilities in the Pentium Pro processor for executing calls to proce­
dures or subroutines. It also describes how interrupts and exceptions are handled from the
perspective of an application programmer.

4.1. PROCEDURE CALL TYPES

The processor supports procedure calls in two different ways:

• CALL and RET instructions .

• ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions .

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply
as "the stack," to save the state ofthe calling procedure, pass parameters to the called procedure,
and store local variables for the currently executing procedure.

The processor's facilities for handling interrupts and exceptions is similar to those used by the
CALL and RET instructions.

4.2. PROCEDURE STACK

The procedure stack (shown in Figure 4-1) is a contiguous array of memory locations. It is
contained in a segment and identified by the segment selector in the SS register. (When using
the flat memory model, the stack can be located anywhere in the linear address space for the
program.) A stack can be up to 4 gigabytes long, the maximum size of a segment.

The next available memory location on the stack is called the top of stack. At any given time,
the stack pointer (contained in the ESP register) gives the address (that is the offset from the base
of the SS segment) of the top of the stack.

Items are placed on the stack using the PUSH instruction and removed from the stack using the
POP instruction. When an item is pushed onto the stack, the processor decrements the ESP
register, then writes the item at the new top of stack. When an item is popped off the stack, the
processor reads the item from the top of stack, then increments the ESP register. In this manner,
the stack grows down in memory (towards lesser addresses) when items are pushed on the stack
and grows up (towards greater addresses) when the items are popped from the stack.

I
4-1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

A program, operating system, or executive can set up many stacks. For example, in multitasking
systems, each task can be given its own stack. The number of stacks in a system is limited by the
maximum number of segments and the available physical memory. When a system sets up many
stacks, only one stack, the current stack, is available at a time. The current stack is the one
contained in the segment referenced by the SS register.

s Local Variable
for Callin
Procedur

g
e

s
0
d
e

Parameter
Passed t

Calle
Procedur

Frame Boundary

Procedure Stack

I

I
I

I
Return Instruction

Pointer

Top of Stack

~ Bottom of Stack
(Initial ESP Value)

The Stack Can Be
16 or 32 Bits Wide

The EBP register is
typically set to point
to the retu rn
instruction pointer.

..- EBP Register

..- ESP Register

+ Pushes Move the
Top Of Stack to
Lower Addresses

t Pops Move the
Top Of Stack to
Higher Addresses

Figure 4-1. Procedure Stack Structure

The processor references the SS register automatically for all stack operations. For example,
when the ESP register is used as a memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE instructions all perform
operations on the current stack.

4.2.1. Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word)
boundaries, depending on the width of the stack segment. The Bflag in the segment descriptor
for the current code segment sets the stack-segment width (see the discussion of segment
descriptors in Chapter 3, Protected-Mode Memory Management, in the Pentium® Pro Family

4-2

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Developer's Manual, Volume 3). The PUSH and POP instructions use the Bflag to determine
how much to decrement or increment the stack pointer on a push or pop operation, respectively.
When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit incre­
ments; when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit in­
crements. If a 16-bit value is pushed onto a 32-bit wide stack, the value is automatically padded
with zeros out to 32 bits.

The processor does not check stack pointer alignment. It is the responsibility of the programs,
tasks, and system procedures running on the processor to maintain proper alignment of stack
pointers. Misaligning a stack pointer can cause serious performance degradation and in some
instances program failures.

4.2.2. Address-Size Attribute for Stack

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have an
address-size attribute of either 16 or 32 bits. Instructions with a address-size attribute of 16 use
the 16-bit SP stack pointer register and can use a maximum stack address of FFFFH; instructions
with a address-size attribute of 32 bits use the 32-bit ESP register and can use a maximum
address of FFFFFFFFH.

The default address-size attribute for data segments used as stacks is controlled by the Bflag of
the segment's segment descriptor. When this flag is clear, the default address-size attribute is 16;
when the flag is set, the address-size attribute is 32.

4.2.3. Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and
the return instruction pointer. When used in conjunction with a standard software procedure-call
technique, these pointers permit reliable and coherent linking of procedures

4.2.3.1. STACK-FRAME BASE POINTER

The stack is typically divided into frames. Each stack frame can then contain local variables,
parameters to be passed to another procedure, and procedure linking information. The stack­
frame base pointer (contained in the EBP register) identifies a fixed reference point within the
stack frame for the called procedure. To use the stack-frame base pointer, the called procedure
typically copies the contents of the ESP register into the EBP register prior to pushing any local
variables on the stack. The stack-frame base pointer then permits easy access to data structures
passed on the stack, to the return instruction pointer, and to local variables added to the stack by
the called procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack.

I
4-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.2.3.2. RETURN INSTRUCTION POINTER

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes
the address in the EIP register into onto the current stack. This address is then called the return­
instruction pointer and it points to the instruction where execution of the calling procedure
should resume following a return from the called procedure. Upon returning from a called
procedure, the RET instruction pops the return-instruction pointer from the stack back into the
EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up
to the programmer to insure that stack pointer is pointing to the return-instruction pointer on the
stack, prior to issuing a RET instruction. A common way to reset the stack pointer to the point
to the return-instruction pointer is to move the contents of the EBP register into the ESP register.
If the EBP register is loaded with the stack pointer following a procedure call, it should point to
the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling proce­
dure. Prior to executing the RET instruction, the return instruction pointer can be manipulated
in software to point to any address in the code segment. Performing such an operation, however,
should be undertaken very cautiously, using only well defined code entry points.

4.3. CALLING PROCEDURES USING CALL AND RET

The CALL instructions allows jumps to procedures within the current code segment (near call)
and in a different code segment (jar call). (When using the flat memory model, a near call refer­
ences a procedure within the current linear address space and a far call references a procedure
in another linear address space.) Near calls provide access to procedures within the currently
running program or task. Far calls are used to access operating system procedures or procedures
in a different task. See Chapter 11, "CALL-Call Procedure" for a detailed description of the
CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the
CALL instruction. In addition, the RET instruction allows a program to increment the stack
pointer on a return to release parameters from the stack. The number of bytes released from the
stack is determined by an optional argument to the RET instruction. See Chapter 11,
"RET-Return from Procedure" for a detailed description of the RET instruction.

4.3.1. Near CALL and RET Operation

When executing a near call, the processor does the following:

1. Pushes the current value of the EIP register on the stack.

2. Loads the address of the called procedure in the EIP register.

3. Begins execution of the called procedure.

4-4

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

3. Resumes execution of the calling procedure.

4.3.2. Far CALL and RET Operation

When executing a far call, the processor performs these actions:

1. Pushes current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS
register.

4. Loads the address of the called procedure in the EIP register.

S. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to)
into the CS register.

3. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

4. Resumes execution of the calling procedure.

4.3.3. Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose
registers, in an argument list, or on the stack.

4.3.3.1. PASSING PARAMETERS THROUGH THE GENERAL-PURPOSE
REGISTERS

The processor does not save the state of the general-purpose registers on procedure calls. A
calling procedure can thus pass up to six parameter to the called procedure by copying the
parameters into any of these registers (except the ESP and EBP registers) prior to executing the
CALL instruction. The called procedure can likewise pass parameters back to the calling proce­
dure through general-purpose registers.

I
4-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.3.3.2. PASSING PARAMETERS ON THE STACK

To pass a large number of parameters to the called procedure, the parameters can be placed on
the stack, in the stack frame for the calling procedure. Here, it is useful to use the stack-frame
base pointer (in the EBP register) to make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling
procedure.

4.3.3.3. PASSING PARAMETERS IN AN ARGUMENT LIST

An alternate method of passing a larger number of parameters (or a data structure) to the called
procedure is to place the parameters in an argument list in memory (in one of the data segments).
A pointer to the argument list can then be passed to the called procedure through a general­
purpose register or the stack. Parameters can also be passed back to the calling procedure in this
same manner.

4.3.4. Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or
the EFLAGS register on a procedure call. A calling procedure should explicitly save the values
in any of the general-purpose registers that it will need when it resumes execution after a return.
These values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA instruction facilitates saving and restoring the contents of the general­
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in
the following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing the PUSHA
instruction), EBP, ESI, and ED!. The POPA instruction pops all the register values saved with a
PUSHA instruction (except the ESI value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former value before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register it can save and restore
all or part of the register using the PUSHF, PUSHFH, POPF, and POPFH instructions. The
PUSHF instruction pushes the lower word of the EFLAGS register on the stack and the
PUSHFH instruction pushes the entire register. The POPF instruction pops a word from the
stack into the lower word of the EFLAGS register and the POPFH instruction pops a double
word from the stack into the register.

4.3.5. Calls to Other Privilege Levels

The Pentium Pro processor's protection mechanism recognizes four privilege levels, numbered
from 0 to 3, where greater numbers mean lesser privileges. The primary reason to use these priv­
ilege levels is to improve the reliability of operating systems. For example, Figure 4-2 shows
how privilege levels can be interpreted as rings of protection.

4-6

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments
that contain the most critical code modules in the system, usually the kernel of an operating
system. The outer rings (with progressively lower privileges) are used for segments that contain
code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at higher privilege
segments by means of a tightly controlled and protected interface called a gate. Attempts to
access higher privilege segments without going through a protection gate and without having
sufficient access rights causes a general-protection exception (#GP) to be generated.

Protection Rings

Operating
System -1---1---+--1:'"
Kernel

Operating System
Services (Device --=--\----1.------'l.----J~

Highest
o
I

Drivers, Etc.)

Applications

2

I
Privilege Levels

Figure 4-2. Protection Rings

If an operating system or executive uses this multilevel protection mechanism, a call to a proce­
dure that is in a more privileged protection level than the calling procedure is handled in a
similar manner as a far call (see Section 4.3.2., "Far CALL and RET Operation"). The differ­
ences are as follows:

•

I

The segment selector provided in the CALL instruction references a special data structure
called a call gate descriptor. Among other things, the call gate descriptor provides the
following:

Access rights information.

The segment selector for the code segment of the called procedure.

An offset into the code segment (that is, the instruction pointer for the called
procedure).

4-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

• The processor switches to a new stack to execute the called procedure. The segment
selector for the new stack is also contained in the call gate descriptor. On a return from the
called procedure, the processor restores the stack of the calling procedure.

The use of a call gate and the stack switch are transparent to the calling procedure, except when
a general-protection exception is raised.

4.3.6. CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see
Figure 4-3):

1. Pushes current values of the CS and EIP register on the stack.

2. Performs an access rights check (privilege check).

3. Switches to the stack for the privilege level being called.

4. Copies the SS and ESP values for the calling procedure's stack to the new stack.

5. Copies the parameters from the calling procedure's stack to the new stack. (A value in the
call gate descriptor determines how many parameters to copy to the new stack.)

6. Copies the CS and EIP values from the calling procedure's stack to the new stack.

7. Loads the address of the called procedure in the EIP register.

8. Begins execution of the called procedure.

4-8

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Frame [
Before Call

Stack for
Calling Procedure

Parm 1
Parm 2
Parm 3 ~

Error Code
Calling CS

ESP Before Call

Stack for
Called Procedure

Calling SS 1-

Calling ESP
Parm 1
Parm 2
Parm 3

Error Code
Calling CS

Calling EIP ESP After Call-' Calling EIP 1-

~ ESP After Return
1-------1

ESP Before Return --.

Calling SS
Calling ESP

Parm 1
Parm 2
Parm 3

Error Code

Calling CS
Callinq EIP

Figure 4-3. Stack Switch on a Call to a Different Privilege Level

Stack Frame
After Call

When executing a return from the privileged procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS, EIP, SS, and ESP registers to their values prior to the call.

3. Switches back to the stack of the calling procedure

4. (Optional) Increments the stack pointer by the amount specified in an optional RET
instruction parameter.

5. Resumes execution of the calling procedure.

See Chapter 4, Protection, in the Pentium® Pro Family Developer's Manual, Volume 3 for
detailed information on calls to privileged levels and the call gate descriptor.

I
4-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

4.4. INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution: interrupts and
exceptions:

• An interrupt is an asynchronous events that is typically triggered by an 110 device.

• An exception is a synchronous event that is generated when the processor detects one or
more predefined conditions while executing an instruction.

The processor responds to interrupts and exceptions in essentially the same way. When an inter­
rupt and exception is signaled, the processor halts execution of the current program or task and
switches to a handler procedure that has been written specifically to handle the interrupt or
exception condition. When the handler has completed handling the interrupt or exception,
program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and excep­
tions independently from application programs or tasks. Application programs can, however,
access the interrupt and exception handlers incorporated in an operating system or executive
through assembly-language calls. The remainder of this section gives a brief overview of the
processor's interrupt and exception handling mechanism. See Chapter 5, Interrupt and Excep­
tion Handling, in the Pentium® Pro Family Developer's Manual, Volume 3 for a detailed descrip­
tion of this mechanism.

The Pentium Pro processor defines 16 predefined interrupts and exceptions and 224 user defined
interrupts. Each interrupt and exception is identified with a number, called a vector. Table 4-1
lists the interrupts and exceptions that the processor recognizes and their respective vector
numbers. Vectors 0 through 8, 10 through 14, and 16 through 18 are the predefined interrupts
and exceptions, and vectors 32 through 255 are the user-defined interrupts, called maskable
interrupts.

When the processor detects an interrupt or exception, it does one of the following things:

•
•

4-10

Executes an implicit call to a handler procedure.

Executes an implicit call to a handler task.

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 4-1. Exceptions and Interrupts

Vector No. Description Source

0 Divide Error (#DE) DIV and IDIV instructions.

1 Debug (#DB) Any code or data reference.

2 N MI Interrupt External interrupt.

3 Breakpoint (#BP) INT 3 instruction.

4 Overflow (#OF) INTO instruction.

5 BOUND Range Exceeded (#BR) BOUND instruction.

6 Invalid Opcode (#UD) UD2 instruction or reserved opcode.

7 Device Not Available (#NM) Floating-point or WAIT/FWAIT instruction.

8 Double Fault (#DF) Any instruction.

9 CoProcessor Segment Overrun Floating-point instruction. Pentium'" Pro processor does
(reserved) not generate this exception.

10 Invalid TSS (#TS) Task switch.

11 Segment Not Present (#NP) Loading segment registers or accessing system
segments.

12 Stack Fault (#SS) Stack operations.

13 General Protection (#GP) Any memory reference.

14 Page Fault (#PF) Any memory reference.

15 (Intel reserved. Do not use.)

16 Floating-Point Error (#MF) Floating-point or WAIT/FWAIT instruction.

17 Alignment Check (#AC) Any data reference in memory.

18 Machine Check (#MC) Model dependent.

19-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts External interrupt or INT n instruction.

4.4.1. Call and Return Operation for Interrupt or Exception
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another
protection level (as described in Section 4.3.6., "CALL and RET Operation Between Privilege
Levels"). Here, the interrupt vector references one of two kinds of gates: an interrupt gate or a
trap gate. Interrupt and trap gates are similar to call gates in that they provide the following
information:

•
•
•

I

Access rights information.

The segment selector for the code segment that contains the handler procedure.

An offset into the code segment to the first instruction of the handler procedure.

4-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS int:et

The difference between an interrupt gate and a trap gate are as follows. If an interrupt or excep­
tion handler is called through an interrupt gate, the processor clears the interrupt enable (IF) flag
in the EFLAGS register to prevent subsequent interrupts from interfering with the execution of
the handler. When a handler is called through a trap gate, the state of the IF flag is not changed.

If the code segment for the handler procedure has the same privilege level as the currently
executing program or task, the handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for the handler's privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or excep­
tion handler (see Figure 4-4):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the
stack.

2. Pushes an error code (if appropriate) on the stack.

3. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

4. Transfers program control to the handler procedure.

4-12

Calling and Handler
Procedure's Stack

EFLAGS
Calling CS
Calling EIP

Stack Usage with No
Privilege-Level Change

Error Code ~ ESP After
Call to Handler

Stack Usage with
Privilege-Level Change

Calling Procedure's Stack Handler Procedures's Stack

Calling SS
Calling ESP

EFLAGS
Calling CS
Calling EIP

Vell

~ ESP Before
Call to Handler

E SP After
dler to Han

Calling SS

Calling ESP
Calling EFLAGS

Calling CS
Calling EIP
Error Code

Figure 4-4. Stack Usage on Calls to Interrupt and Exception Handling Routines

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If a stack switch does occur, the processor does the following:

1. Pushes the current contents of the SS, ESP, EFLAGS, CS, and EIP registers (in that order)
on the stack.

2. Switches to the handler's stack.

3. Copies the SS, ESP, EFLAGS, CS, and EIP values from the interrupted procedure's stack
to the new stack.

4. Pushes an error code on the new stack (if appropriate).

S. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

6. Transfers program control to the handler procedure.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET
instruction is similar to the RET instruction, except that it also restores the contents of the
EFLAGS register for the interrupted procedure:

When executing a return from an interrupt or exception handler from the same privilege level as
the interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level
than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception.

S. Switches back to the stack of the calling procedure

6. Resumes execution of the calling procedure.

4.4.2. Calls to an Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an inter­
rupt or exception causes a task switch to a handler task. The handler task is given its own address
space and (optionally) can execute at a higher protection level than application programs or
tasks.

I
4-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The switch to the handler task is accomplished with an implicit task call that references a task
gate descriptor. The task gate provides access to the address space for the handler task. As part
of the task switch, the processor saves complete state information for the interrupted program or
task. Upon returning from the handler task, the state of the interrupted program or task is
restored and execution continues. See Chapter 5, Interrupt and Exception Handling, in the
Pentium® Pro Family Developer's Manual, Volume 3 for a detailed description of the processor's
mechanism for handling interrupts and exceptions through handler tasks.

4.4.3. Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with
a far call to an interrupt or exception handler. The processor uses the interrupt or exception
vector number as an index into an interrupt table. The interrupt table contains instruction
pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an
optional error code on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction.

See Chapter 12, 8086 Emulation, in the Pentium® Pro Family Developer's Manual, Volume 3 for
more information on handling interrupts and exceptions in real-address mode.

4.4.4. INTn, INTO, INT3, and BOUND Instructions

The INTn, INTO, INT3, and BOUND instructions allow a program or task to explicitly call an
interrupt or exception handler. The INTn instruction uses an interrupt vector as an argument,
which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag
(OF) in the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions,
but it does not automatically raise an overflow exception. An overflow exception can only be
raised explicitly in either of the following ways:

•
•

Execute the INTO instruction .

Test the OF flag and execute the INTn instruction with an argument of 4 (the vector
number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at
specific places in the instruction stream.

The INT3 instruction explicitly calls the breakpoint exception (#BP) handler. The action of this
instruction is slightly different than that of the INT 3 instruction (see Chapter 11,
"INTnJINTOIINT3-Call to Interrupt Procedure").

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler
if an operand is found to be not within predefined boundaries in memory. This instruction is
provided for checking references to arrays and other data structures. Like the overflow

4-14

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

exception, the BOUND-range exceeded exception can only be raised explicitly with the
BOUND instruction or the INTn instruction with an argument of 5 (the vector number of the
bounds-check exception). The processor does not implicitly perform bounds checks and raise
the BOUND-range exceeded exception.

4.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The Pentium Pro processor supports an alternate method of performing procedure calls with the
ENTER (enter procedure) and LEAVE (leave procedure) instructions. These instructions auto­
matically create and release, respectively, stack frames for called procedures. The stack frames
have predefined spaces for local variables and the necessary pointers to allow coherent returns
from called procedures. They also allow scope rules to be implemented, so that procedures can
access their own local variables and some number of other variables located in other stack
frames.

The ENTER and LEAVE instructions offer two benefits:

• They provide machine-language support for implementing block-structured languages,
such as C and Pascal.

• They simplify procedure entry and exit in compiler-generated code .

4.5.1. ENTER Instruction

The enter procedure instruction (ENTER) creates a stack frame compatible with the scope rules
typically used in block-structured languages. In block-structured languages, the scope of a
procedure is the set of variables to which it has access. The rules for scope vary among
languages. They may be based on the nesting of procedures, the division of the program into
separately-compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be reserved
on the stack for dynamic storage for the procedure being called. Dynamic storage is the memory
allocated for variables created when the procedure is called, also known as automatic variables.
The second parameter is the lexical nesting level (from 0 to 31) of the procedure. The nesting
level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unrelated
to either the protection privilege level or to the 110 privilege level of the currently running
program or task.

The ENTER instruction in the following example, allocates 2K bytes of dynamic storage on the
stack and sets up pointers to two previous stack frames in the stack frame for this procedure.

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access the
variables of a procedure. The set of stack frame pointers used by a procedure to access the

I
4-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

variables of other procedures is called the display. The first double word in the display is a pointer
to the previous stack frame. This pointer is used by a LEAVE instruction to undo the effect of an
ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic (auto­
matic) local variables for the procedure by decrementing the contents of the ESP register by the
number of bytes specified in the first parameter. This new value in the ESP register serves as the
initial top-of-stack for all PUSH and POP operations within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions that specify
the EBP register as a base register automatically address locations within the stack segment
instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is
0, the non-nested form is used. The non-nested form pushes the contents of the EBP register on
the stack, copies the contents of the ESP register into the EBP register, and subtracts the first
operand from the contents of the ESP register to allocate dynamic storage. The non-nested form
differs from the nested form in that no stack frame pointers are copied. The nested form of the
ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE
is the number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

PUSH ESP;
FRAME_PTR ~ ESP;
IF LEVEL> 0

THEN
REPEAT (LEVEL-1) times

ESP ~ ESP-4;
PUSH Pointer(ESP); (* doubleword pOinted to by ESP *)

TAEPER
PUSH FRAME_PTR;

FI;
ESP ~ FRAME_PTR;
ESP ~ ESP - STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A level
2 procedure can access the variables of the main program, which are at fixed locations specified
by the compiler. In the case of levell, the ENTER instruction allocates only the requested
dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to its
variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical levels.

4-16

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The new stack frame does not include the pointer for addressing the calling procedure's stack
frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical
level. In this case, each succeeding iteration of the re-entrant procedure can address only its own
variables and the variables of the procedures within which it is nested. A re-entrant procedure
always can address its own variables; it does not require pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels, not
those at parallel lexical levels (see Figure 4-5).

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

I Procedure B (Lexical Level 3) I
Procedure C (Lexical Level 3)

I Procedure D (Lexical Level 4) I

Figure 4-5. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to the
variables of nested procedures. In Figure 4-5, for example, if procedure A calls procedure B
which, in turn, calls procedure C, then procedure C will have access to the variables of the MAIN
procedure and procedure A, but not those of procedure B because they are at the same lexical
level. The following definition describes the access to variables for the nested procedures in
Figure 4-5.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot
access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. procedure C cannot
access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure
D cannot access the variables of procedure B.

I
4-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

In Figure 4-6, an ENTER instruction at the beginning of the MAIN procedure creates three
doublewords of dynamic storage for MAIN, but copies no pointers from other stack frames. The
first doubleword in the display holds a copy of the last value in the EBP register before the
ENTER instruction was executed. The second doubleword holds a copy of the contents of the
EBP register following the ENTER instruction. After the instruction is executed, the EBP
register points to the first double word pushed on the stack, and the ESP register points to the last
doubleword in the stack frame.

",,,,I.y [
Old EBP ~EBP

Main's EBP

~~{ Storage
~ESP

Figure 4-6. Stack Frame after Entering the MAIN Procedure

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 4-7).
The first double word is the last value held in MAIN's EBP register. The second doubleword is a
pointer to MAIN's stack frame which is copied from the second doubleword in MAIN's display.
This happens to be another copy of the last value held in MAIN's EBP register. Procedure A can
access variables in MAIN because MAIN is at level 1. Therefore the base address for the
dynamic storage used in MAIN is the current address in the EBP register, plus four bytes to
account for the saved contents of MAIN's EBP register. All dynamic variables for MAIN are at
fixed, positive offsets from this value.

4-18

I

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP

Main's EBP

Display [
Main's EBP

Main's EBP

...--EBP

Dynamic [
Storage

Procedure A's EBP

...--ESP

Figure 4-7. Stack Frame after Entering Procedure A

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure
4-8). The first doubleword holds a copy of the last value in procedure A's EBP register. The
second and third doublewords are copies of the two stack frame pointers in procedure A's
display. Procedure B can access variables in procedure A and MAIN by using the stack frame
pointers in its display.

I
4-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old ESP

Main's ESP

Main's ESP

Main's ESP

Procedure f\s ESP

[

Procedure f\s EBP .--ESP

Main's ESP
Display I---P-r-oc-e-d-u-re-A-'s-E-S-P---1

Procedure S's ESP

Dynamic [
Storage I--------------j

'--ESP I--------------j

Figure 4-8. Stack Frame after Entering Procedure B

When procedure B calls procedure C, the ENTER instruction creates a new display for proce­
dure C (see Figure 4-9). The first doubleword holds a copy of the last value in procedure B's
EBP register. This is used by the LEAVE instruction to restore procedure B's stack frame. The
second and third doublewords are copies of the two stack frame pointers in procedure A's
display. If procedure C were at the next deeper lexical level from procedure B, a fourth double­
word would be copied, which would be the stack frame pointer to procedure B's local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to
access procedure B's variables. This does not mean that procedure C is completely isolated from
procedure B; procedure C is called by procedure B, so the pointer to the returning stack frame
is a pointer to procedure B's stack frame. In addition, procedure B can pass parameters to proce­
dure C either on the stack or through variables global to both procedures (that is, variables in the
scope of both procedures).

4-20

I

4.5.2.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

O;'PI'>'[

Dynamic [
Storage

Old EBP

Main's EBP

Main's EBP

Main's EBP

Procedure /'is EBP

Procedure A's EBP

Main's EBP

Procedure /'is EBP

Procedure B's EBP

Procedure B's EBP

Main's EBP

Procedure /'is EBP

Procedure C's EBP

~EBP

~ESP

Figure 4-9. Stack Frame after Entering Procedure C

LEAVE Instruction

The LEAVE instruction reverses the action of the previous ENTER instruction. The LEAVE
instruction does not have any operands. The LEAVE instruction copies the contents of the EBP
register into the ESP register to release all stack space allocated to the procedure. Then the
LEAVE instruction restores the old value of the EBP register from the stack. This simulta­
neously restores the ESP register to its original value. A subsequent RET instruction then can
remove any arguments and the return address pushed on the stack by the calling program for use
by the procedure.

I
4-21

Data Types and
Addressing Modes

I

5

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes data types and addressing modes available to programmers of the
Pentium Pro processor.

5.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the Pentium Pro processor are bytes, words, double words, and
quadwords (see Figure 5-1). A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4
bytes (32 bits), and a quadword is 8 bytes (64 bits).

7 0

DByte

N
15 87 0

I
High

I
Low I Word Byte Byte

N+1 N
31 1615 0

High Word I Low Word I Doubleword

N+2 N
63 3231 0

High Doubleword Low Doubleword I Quadword

N+4 N

Figure 5-1. Fundamental Data Types

Figure 5-2 shows the byte order of each of the fundamental data types when referenced as oper­
ands in memory. The low byte (bits 0 through 7) of each data type occupies the lowest address
in memory and that address is also the address of the operand.

5.1.1. Alignment of Words, Doublewords, and Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural bound­
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respec­
tively.) To improve the performance of programs, however, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the

I
5-1

DATA TYPES AND ADDRESSING MODES

processor requires two clock cycles to make an unaligned memory access; whereas, aligned
accesses require only one clock cycle. For the Pentium Pro processor, a word or doubleword
operand that crosses a 4-byte boundary and a quadword operand that crosses an 8-byte boundary
is considered an unaligned and requires two clock cycles to access; a word that starts on an odd
address but does not cross a word boundary is considered aligned and can still be accessed in
one clock cycle.

Word at Address BH I .
Contains FE06H

i
Byte at Address 9H

Contains 1 FH T
Word at Address 6H I

Contains 230BH

Word at Address 2H
Contains 74CBH

Word at Address 1 H
Contains CB31 H

7AH

FEH

06H

36H

1FH

A4H

23H

OHB

74H

CBH

31H

EH

-f: DH

CH Doubleword at Address AH
BH Contains 7AFE0636H

AH

9H
Quadword at Address 6H

8H Contains 7AFE06361 FA4230BH

7H

6H

5H

4H

3H

2H

1H

OH

Figure 5-2. Bytes, Words, Doublewords and Quadwords in Memory

5.2. NUMERIC, POINTER, BIT FIELD, AND STRING DATA TYPES

Although bytes, words, and double words are the fundamental data types for the Pentium Pro
processor, some instructions recognize and operate on additional numeric, pointer, bit field, and
string data types (see in Figure 5-3). These additional data types are described in the following
sections.

5.2.1. Integers

Integers are signed binary numbers held in a byte, word, or doubleword. All operations assume
a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a
word integer, and bit 31 in a doubleword integer. The sign bit is set for negative integers and
cleared for positive integers and zero. Integer values range from -128 to +127 for a byte integer,
from -32,768 to +32,767 for a word integer, and from _231 to +231 - 1 for a doubleword integer.

5-2

I

47

I

DATA TYPES AND ADDRESSING MODES

Byte Signed Integer

Sign-.j" I 1

7 6 0

Word Signed Integer

Sign-~L..JI ______ -11
15 14 o

Doubleword Signed Integer

sign-~L..JI _____________ ----1

31 30

31

15

o
Byte Unsigned Integer

1 I
7 0

Word Unsigned Integer

o
Doubleword Unsigned Integer

o
BCD Integers

X I BCD I. . . . 1 X I BCD I X I BCD I
7 43 0

Packed BCD Integers

r-I B-C-D-'-I-BC-D-'I. . • . I BCD I BCD I BCD I BCD 1

7 43 0
Near Pointer

Offset or Linear Address

31

Far Pointer or Logical Address

Segment Selector I Offset

3231
Bit Field

~ Field Length ~
Least

Significant
Bit

Figure 5-3. Numeric, Pointer, and Bit Field Data Types

o

o

5-3

DATA TYPES AND ADDRESSING MODES

5.2.2. Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, or doubleword.
Unsigned integer values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for
an unsigned word integer, and from 0 to 232 - 1 for an unsigned doubleword integer. Unsigned
integers are sometimes referred to as ordinals.

5.2.3. BCD Integers

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from 0 to 9. BCD integers can be unpacked (one BCD digit per byte) or packed (two
BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half­
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition
and subtraction, but must be zero during multiplication and division.

Packed BCD integers allow two BCD digits to be contained in one byte. Here, the digit in the
high half-byte is more significant than the digit in the low half-byte.

5.2.4. Pointers

Pointers are addresses of locations in memory. The Pentium Pro processor recognizes two types
of pointers: a near pointer (32 bits) and afar pointer (48 bits). A near pointer is a 32-bit offset
(also called an effective address) within a segment. Near pointers are used for all memory refer­
ences in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied. A far pointer is a 48-bit logical address, consisting of a 16-bit
segment selector and a 32-bit offset. Far pointers are used for memory references in a segmented
memory model where the identity of a segment being accessed must be specified explicitly.

5.2.5. Bit Fields

A bitfield is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

5.2.6. Strings

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin
at any bit position of any byte and can contain up to 232_1 bits. A byte string can contain bytes,
words, or doublewords and can range from zero to 232 _ 1 bytes (4 gigabytes).

5.2.7. Floating-Point Data Types

The processor's floating-point instructions also recognize a set of real, integer, and BCD integer
data types (see Chapter 7, Floating-Point Unit).

5-4

I

DATA TYPES AND ADDRESSING MODES

5.3. OPERAND ADDRESSING

A Pentium Pro processor machine-instruction acts on zero or more operands. Some operands are
specified explicitly in an instruction and others are implicit to an instruction. Whether specified
explicitly or implicitly, an operand can be located in any of the following places:

•
•
•
•

The instruction itself (an immediate operand).

A register.

A memory location.

An I/O port.

5.3.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are called immediate operands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:
ADD EAX, 14

All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate value varies among
instructions, but can never be greater than the maximum value of an unsigned double word
integer (232).

5.3.2. Register Operands

Source and destination operands can be located in any of the following registers, depending on
the instruction being executed:

•
•
•
•
•
•

The 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).

The 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

The 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

The segment registers (CS, DS, SS, ES, FS, and GS).

The EFLAGS register.

System registers, such as the global descriptor table (GDTR) or the interrupt descriptor
table register (IDTR).

Some instructions (such as the DIV and MUL instructions) use quadword operands contained
in a pair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, in the register pair EDX:EAX, EDX contains the high order bits and EAX contains the
low order bits of a quadword operand.

I
5-5

DATA lYPES AND ADDRESSING MODES

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as the Jcc instructions) use the state of the status flags in the EFLAGS register
as condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory manage­
ment, interrupt and exception handling, task management, processor management, and debug­
ging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a system
register with a system instruction, the register is generally an implied operand of the instruction.

5.3.3. Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 5-4). The segment selector specifies the segment containing the operand
and the offset (the number of bytes from the beginning of the segment to the first byte of the
operand) specifies the linear or effective address of the operand.

5.3.3.1.

31 0

I Offset (or Linear Address) I
Figure 5-4. Memory Operand Address

SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector is to load it in a segment register and then allow the processor
to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 5-1.

5·6

I

DATA TYPES AND ADDRESSING MODES

Table 5-1. Default Segment Selection Rules

Type of Register Segment
Reference Used Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination ES Data Segment Destination of string instructions.
Strings pointed to with

the ES register

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon ":" operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is
contained in the EBX register:
MOV ES: [EBX] , EAX;

(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

•
•

•

Instruction fetches must be made from the code segment.

Destination strings in string instructions must be stored in the data segment pointed to by
the ES register.

Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

5.3.3.2. SPECIFYING AN OFFSET

The offset part of a memory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

I
5-7

DATA TYPES AND ADDRESSING MODES

•
•
•
•

Displacement-An 8-, 16-, or 32-bit value.

Base-The value in a general-purpose register.

Index-The value in a general-purpose register.

Scale factor-A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep­
tion of the scaling factor. Figure 5-5 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.

Base Index Scale Displacement

EAX
EBX None
ECX

8-bit EDX 2

ESP + * +
EBP 3 16-bit

ESI 4 32-bit
EDI

Offset = Base + (Index * Scale) + Displacement

Figure 5-5. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restricted in the following
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default selection.
In all other cases, the DS segment is the default selection.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso­
lute or static address. It is commonly used to access a statically allocated scalar operand.

5-8

I

DATA TYPES AND ADDRESSING MODES

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Base + Displacement

A base register and a displacement can be used together for two distinct purposes:

• As an index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

• To access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. This is a compact encoding for this common function.

(Index * Scale) + Displacement

This address mode offers an efficient way to index into a static array when the element size is 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registers together supports either a two-dimensional array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index * Scale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

5.3.3.3. ASSEMBLER ADDRESSING MODES

At the machine level, the selected combination of displacement, base register, index register, and
scale factor is encoded in an instruction. All assemblers provide addressing modes based on
combinations of these addressing components.

5.3.4. 1/0 Port Addressing

The processor supports an 110 address space that contains up to 65,536 8-bit 110 ports. An 1/0
port can be addressed with either an immediate operand or a value in the DX register. See
Chapter 8, Input/Output, for more information about 110 port addressing.

I
5-9

Instruction Set
Summary

I

6

CHAPTER 6
INSTRUCTION SET SUMMARY

This chapter lists all the instructions in the Pentium Pro processor's instruction set, divided into
three functional groups: integer, floating-point, and system. It also briefly describes each of the
integer instructions.

Brief descriptions of the floating-point instructions are given in Chapter 7, Floating-Point Unit;
brief descriptions of the system instructions are given in the Pentium® Pro Family Developer's
Manual, Volume 3.

Detailed descriptions of all the Pentium Pro processor instructions are given in Chapter 11,
Instruction Set Reference. Included in this chapter are a description of each instruction's
encoding and operation, the effect of an instruction on the EFLAGS flags, and the exceptions an
instruction may generate.

6.1. NEW INSTRUCTIONS IN THE PENTIUM@ PRO PROCESSOR

The following instructions are new in the Pentium Pro processor:

•
•

•

•

•

CMOVcc-Conditional move (see Section 6.3.1.2., "Conditional Move Instructions").

FCMOV cc-Floating-point conditional move on condition-code flags in EFLAGS register
(see Section 7.5.3., "Data Transfer Instructions").

FCOMIIFCOMIPIFUCOMIIFUCOMIP-Floating-point compare and set condition-code
flags in EFLAGS register (see Section 7.5.6., "Comparison and Classification Instruc­
tions").

RDPMC-Read performance monitoring counters (see Chapter 11, "RDPMC-Read
Performance-Monitoring Counters").

UD2-Undefined instruction (see Section 6.15.4., "No-Operation and Undefined Instruc­
tions").

6.2. INSTRUCTION SET LIST

This section lists all the Pentium Pro processor instructions divided into three major groups:
inter, floating-point, and system instructions. For each instruction, the mnemonic and descrip­
tive names are given. When two or more mnemonics are given (for example,
CMOVAICMOVNBE), they represent different mnemonics for the same instruction opcode.
Assemblers support redundant mnemonics for some instructions to make it easier to read code
listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Conditional move
is not below or equal) represent the same condition.

I
6-1

INSTRUCTION SET SUMMARY

6.2.1. Integer Instructions

Integer instructions perform the integer arithmetic, logic, and program flow control operations
that programmers commonly use to write application and system software to run on the Pentium
Pro processor. In the following sections, the integer instructions are divided into several instruc­
tion subgroups.

6.2.1.1.

MOV

DATA TRANSFER INSTRUCTIONS

Move

CMOVE/CMOVZ Conditional move if equaVConditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVAICMOVNBE Conditional move if above/Conditional move if not below
or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move ifbelow/Conditional move if not above
or equal

CMOVBE/CMOVNA

CMOVG/CMOVNLE

CMOVGE/CMOVNL

CMOVLlCMOVNGE

CMOVLE/CMOVNG

CMOVC

CMOVNC

CMOVO

CMOVNO

CMOVS

CMOVNS

CMOVP/CMOVPE

CMOVNP/CMOVPO

XCHG

6-2

Conditional move if below or equal/Conditional move if
not above

Conditional move if greater/Conditional move if not less
or equal

Conditional move if greater or equaVConditional move if
not less

Conditional move if less/Conditional move if not greater
or equal

Conditional move if less or equal/Conditional move if
not greater

Conditional move if carry

Conditional move if not carry

Conditional move if overflow

Conditional move if not overflow

Conditional move if sign (negative)

Conditional move if not sign (non-negative)

Conditional move if parity/Conditional move if parity even

Conditional move if not parity/Conditional move if parity odd

Exchange

I

INSTRUCTION SET SUMMARY

BSWAP

XADD

CMPXCHG

CMPXCHG8B

PUSH

POP

PUSHAIPUSHAD

POPAIPOPAD

IN

OUT

CWD/CDQ

CBW/CWDE

MOVSX

MOVZX

Byte swap

Exchange and add

Compare and exchange

Compare and exchange 8 bytes

Push onto stack

Pop off of stack

Push general-purpose registers onto stack

Pop general-purpose registers from stack

Read from a port

Write to a port

Convert word to doubleword/Convert doubleword to quad word

Convert byte to word/Convert word to doubleword

Move and sign extend

Move and zero extend

6.2.1.2. BINARY ARITHMETIC

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply

MUL Unsigned multiply

IDlY Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare

6.2.1.3. DECIMAL ARITHMETIC

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

I
6-3

INSTRUCTION SET SUMMARY

AAA

AAS

AAM

AAD

6.2.1.4.

AND

OR

XOR

NOT

SAR

SHR

SALISHL

SHRD

SHLD

ROR

ROL

RCR

RCL

6.2.1.5.

BT

BTS

BTR

BTC

BSF

BSR

SETE/SETZ

ASCII adjust after addition

ASCII adjust after subtraction

ASCII adjust after multiplication

ASCII adjust before division

LOGIC INSTRUCTIONS

And

Or

Exclusive or

Not

Shift arithmetic right

Shift logical right

Shift arithmetic left/Shift logical left

Shift right double

Shift left double

Rotate right

Rotate left

Rotate through carry right

Rotate through carry left

BIT AND BYTE INSTRUCTIONS

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward

Bit scan reverse

Set byte if equal/Set byte if zero .

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETAISETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte
if not carry

6-4

I

SETB/SETNAE/SETC

SETBE/SETNA

SETG/SETNLE

SETGE/SETNL

SETLISETNGE

SETLE/SETNG

SETS

SETNS

SETO

SETNO

SETPE/SETP

SETPO/SETNP

TEST

INSTRUCTION SET SUMMARY

Set byte if below/Set byte if not above or equal/Set byte
if carry

Set byte if below or equal/Set byte if not above

Set byte if greater/Set byte if not less or equal

Set byte if greater or equal/Set byte if not less

Set byte if less/Set byte if not greater or equal

Set byte if less or equal/Set byte if not greater

Set byte if sign (negative)

Set byte if not sign (non-negative)

Set byte if overflow

Set byte if not overflow

Set byte if parity even/Set byte if parity

Set byte if parity odd/Set byte if not parity

Logical compare

6.2.1.6.

JMP

JE/JZ

JNE/JNZ

JA/JNBE

JAE/JNB

JB/JNAE

JBE/JNA

JG/JNLE

JGE/JNL

JLlJNGE

JLE/JNG

JC

CONTROL TRANSFER INSTRUCTIONS

JNC

10

JNO

I

Jump

Jump if equal/Jump if zero

Jump if not equal/Jump if not zero

Jump if above/Jump if not below or equal

Jump if above or equal/Jump if not below

Jump if below/Jump if not above or equal

Jump if below or equal/Jump if not above

Jump if greater/Jump if not less or equal

Jump if greater or equal/Jump if not less

Jump if less/Jump if not greater or equal

Jump if less or equal/Jump if not greater

Jump if carry

Jump if not carry

Jump if overflow

Jump if not overflow

6-5

INSTRUCTION SET SUMMARY intet

JS

JNS

JPO/JNP

JPE/JP

JCXZlJECXZ

LOOP

LOOPZlLOOPE

LOOPNZ/LOOPNE

CALL

RET

IRET

INT

INTO

BOUND

ENTER

LEAVE

Jump if sign (negative)

Jump if not sign (non-negative)

Jump if parity odd/Jump if not parity

Jump if parity even/Jump if parity

Jump register CX zero/Jump register ECX zero

Loop with ECX counter

Loop with ECX and zerolLoop with ECX and equal

Loop with ECX and not zero/Loop with ECX and not equal

Call procedure

Return

Return from interrupt

Software interrupt

Interrupt on overflow

Detect value out of range

High-level procedure entry

High-level procedure exit

6.2.1.7. STRING INSTRUCTIONS

MOVS/MOVSB

MOVS/MOVSW

MOVS/MOVSD

CMPS/CMPSB

CMPS/CMPSW

CMPS/CMPSD

SCAS/SCASB

SCAS/SCASW

SCAS/SCASD

LODSILODSB

LODSILODSW

LODSILODSD

STOS/STOSB

6-6

Move string/Move byte string

Move string/Move word string

Move string/Move double word string

Compare string/Compare byte string

Compare string/Compare word string

Compare string/Compare doubleword string

Scan string/Scan byte string

Scan string/Scan word string

Scan string/Scan doubleword string

Load stringlLoad byte string

Load stringlLoad word string

Load stringlLoad double word string

Store string/Store byte string

I

INSTRUCTION SET SUMMARY

STOS/STOSW

STOS/STOSD

REP

REPE/REPZ

REPNE/REPNZ

INSIINSB

INSIINSW

INSIINSD

OUTS/OUTSB

OUTS/OUTSW

OUTS/OUTSD

Store string/Store word string

Store string/Store doubleword string

Repeat while ECX not zero

Repeat while equallRepeat while zero

Repeat while not equal/Repeat while not zero

Input string from portlInput byte string from port

Input string from port/Input word string from port

Input string from portlInput double word string from port

Output string to port/Output byte string to port

Output string to port/Output word string to port

Output string to port/Output double word string to port

6.2.1.8. FLAG CONTROL INSTRUCTIONS

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHFIPUSHFD Push EFLAGS onto stack

POPFIPOPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

6.2.1.9.

LDS

LES

LFS

LGS

LSS

SEGMENT REGISTER INSTRUCTIONS

I

Load far pointer using DS

Load far pointer using ES

Load far pointer using FS

Load far pointer using GS

Load far pointer using SS

6·7

INSTRUCTION SET SUMMARY

6.2.1.10.

LEA

NOP

MISCELLANEOUS INSTRUCTIONS

UB2

XLAT/XLATB

Load effective address

No operation

Undefined instruction

Table lookup translation

Processor Identification CPUID

6.2.2. Floating-Point Instructions

The floating-point instructions are those that are executed by the processor's floating-point unit
(FPU). These instructions are used to operate on floating-point (real), extended integer, and
binary-coded decimal (BCD) operands. As with the integer instructions, the following list of
floating-point instructions is divided into subgroups.

6.2.2.1.

FLD

FST

FSTP

FILD

FIST

FISTP

FBLD

FBSTP

FXCH

FCMOVE

FCMOVNE

FCMOVB

FCMOVBE

FCMOVNB

FCMOVNBE

FCMOVU

FCMOVNU

6-8

DATA TRANSFER

Load real

Store real

Store real and pop

Load integer

Store integer

Store integer and pop

Load BCD

Store BCD and pop

Exchange registers

Floating-point conditional move if equal

Floating-point conditional move if not equal

Floating-point conditional move if below

Floating-point conditional move if below or equal

Floating-point conditional move if not below

Floating-point conditional move if not below or equal

Floating-point conditional move if unordered

Floating-point conditional move if not unordered

I

6.2.2.2.

FADD

FADDP

FIADD

FSUB

FSUBP

FISUB

FSUBR

FSUBRP

FISUBR

FMUL

FMULP

FIMUL

FDIV

FDIVP

FIDIV

FDIVR

FDIVRP

FIDIVR

FPREM

FPREMI

FABS

FCHS

FRNDINT

FSCALE

FSQRT

FXTRACT

6.2.2.3.

FCOM

FCOMP

I

BASIC ARITHMETIC

Add real

Add real and pop

Add integer

Subtract real

Subtract real and pop

Subtract integer

Subtract real reverse

Subtract real reverse and pop

Subtract integer reverse

Multiply real

Multiply real and pop

Multiply integer

Divide real

Divide real and pop

Divide integer

Divide real reverse

Divide real reverse and pop

Divide integer reverse

Partial remainder

IEEE Partial remainder

Absolute value

Change sign

Round to integer

Scale by power of two

Square root

Extract exponent and significand

COMPARISON

Compare real

Compare real and pop

INSTRUCTION SET SUMMARY

6-9

INSTRUCTION SET SUMMARY

FCOMPP

FUCOM

FUCOMP

FUCOMPP

FICOM

FICOMP

FCOMI

FUCOMI

FCOMIP

FUCOMIP

FfST

FXAM

6.2.2.4.

FSIN

FCOS

FSINCOS

FPTAN

FPATAN

F2XMl

FYL2X

FYL2XPl

6.2.2.5.

FLDI

FLDZ

FLDPI

FLDL2E

FLDLN2

FLDL2T

FLDLG2

6-10

Compare real and pop twice

Unordered compare real

Unordered compare real and pop

Unordered compare real and pop twice

Compare integer

Compare integer and pop

Compare real and set EFLAGS

Unordered compare real and set EFLAGS

Compare real, set EFLAGS, and pop

Unordered compare real, set EFLAGS, and pop

Test real

Examine real

TRANSCENDENTAL

Sine

Cosine

Sine and cosine

Partial tangent

Partial arctangent

2x-l

y*log2x

y*logix+l)

LOAD CONSTANTS

Load +1.0

Load +0.0

Load 7t

Load log2e

Loadloge2

Loadlog21O

Load log102

I

INSTRUCTION SET SUMMARY

6.2.2.6.

FINCSTP

FDECSTP

FFREE

FINIT

FNINIT

FCLEX

FPU CONTROL

FNCLEX

FSTCW

FNSTCW

FLDCW

FSTENV

FNSTENV

FLDENV

FSAVE

FNSAVE

FRSTOR

FSTSW

FNSTSW

WAIT/FWAIT

FNOP

Increment FPU register stack pointer

Decrement FPU register stack pointer

Free floating-point register

Initialize FPU after checking error conditions

Initialize FPU without checking error conditions

Clear floating-point exception flags after checking for error
conditions

Clear floating-point exception flags without checking for error
conditions

Store FPU control word after checking error conditions

Store FPU control word without checking error conditions

Load FPU control word

Store FPU environment after checking error conditions

Store FPU environment without checking error conditions

Load FPU environment

Save FPU state after checking error conditions

Save FPU state without checking error conditions

Restore FPU state

Store FPU status word after checking error conditions

Store FPU status word without checking error conditions

Wait forFPU

FPU no operation

6.2.3. System Instructions

The following system instructions are used to control those functions of the processor that are
provided to support for operating systems and executives.

LGDT

SGDT

LLDT

SLDT

LTR

I

Load global descriptor table (GDT) register

Store global descriptor table (GDT) register

Load local descriptor table (LDT) register

Store local descriptor table (LDT) register

Load task register

6-11

INSTRUCTION SET SUMMARY

STR

LIDT

SIDT

MOV

LMSW

SMSW

CLTS

ARPL

LAR

LSL

VERR

VERW

MOV

INVD

WBINVD

INVLPG

LOCK (prefix)

HLT

RSM

RDMSR

WRMSR

RDPMC

RDTSC

Store task register

Load interrupt descriptor table (IDT) register

Store interrupt descriptor table (IDT) register

Load and store control registers

Load machine status word

Store machine status word

Clear the task-switched flag

Adjust requested privilege level

Load access rights

Load segment limit

Verify segment for reading

Verify segment for writing

Load and store debug registers

Invalidate cache, with write back

Invalidate cache, no writeback

Invalidate TLB Entry

Lock Bus

Halt processor

Return from system management mode (SSM)

Read model-specific register

Write model-specific register

Read performance monitoring counters

Read time stamp counter

6.3. DATA MOVEMENT INSTRUCTIONS

The data movement instructions move bytes, words, doublewords, or quadwords both between
memory and the processor's registers and between registers. These instructions are divided into
three groups:

•
•
•
•

6-12

General-purpose data movement.

Exchange.

Stack manipUlation.

Type-conversion.

I

INSTRUCTION SET SUMMARY

6.3.1. General-Purpose Data Movement Instructions

The MOV (move) and CMOVcc (conditional move) instructions transfer data between memory
and registers or between registers.

6.3.1.1. MOVE INSTRUCTION

The MOV instruction performs basic load data and store data operations between memory and
the processor's registers and data movement operations between registers. It handles data trans­
fers along the paths listed in Table 6-1. (See Chapter 11, "MOV-Move to/from Control Regis­
ters" and Chapter 11, "MOV-Move to/from Debug Registers" for information on moving data
to and from the control and debug registers.)

Table 6-1. Move Instruction Operations

Type of Data Movement Source -7 Destination

From memory to a register Memory location -7 General-purpose register
Memory location -7 Segment register

From a register to memory General-purpose register -7 Memory location
Segment register -7 Memory location

Between registers General-purpose register -7 General-purpose register
General-purpose register -7 Segment register
Segment register -7 General-purpose register
General-purpose register -7 Control register
Control register -7 General-purpose register
General-purpose register -7 Debug register
Debug register -7 General-purpose register

Immediate data to a register Immediate -7 General-purpose register

Immediate data to memory Immediate -7 Memory location

The MOV instruction cannot move data from one memory location to another or from one
segment register to another segment register. Memory-to-memory moves can be performed with
the MOVS (string move) instruction (see Section 6.10., "String Operations").

6.3.1.2. CONDITIONAL MOVE INSTRUCTIONS

The CMOVcc instructions are a group of instructions that check the state of the status flags in
the EFLAGS register and perform amove operation if the flags are in a specified state (or condi­
tion). These instructions can be used to move a 16- or 32-bit value from memory to a general­
purpose register or from one general-purpose register to another. The flag state being tested for
each instruction is specified with a condition code (cc) that is associated with the instruction. If
the condition is not satisfied, a move is not performed and execution continues with the instruc­
tion following the CMOV cc instruction.

I
6-13

INSTRUCTION SET SUMMARY intet

Table 6-4 shows the mnemonics for the CMOV cc instructions and the conditions being tested
for each instruction. The condition code mnemonics are appended to the letters "CMOV" to
form the mnemonics for the CMOVcc instructions. The instructions listed in Table 6-4 as pairs
(for example, CMOVA/CMOVNBE) are alternate names for the same instruction. The assem­
bler provides these alternate names to make it easier to read program listings.

Table 6-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

CMOVAICMOVNBE (CF or ZF)=O Above/not below or equal

CMOVAE/CMOVNB CF=O Above or equal/not below

CMOVNC CF=O Not carry

CMOVB/CMOVNAE CF=1 Below/not above or equal

CMOVC CF=1 Carry

CMOVBE/CMOVNA (CF or ZF)=1 Below or equaVnot above

CMOVE/CMOVZ ZF=1 EquaVzero

CMOVNE/CMOVNZ ZF=O Not equaVnot zero

CMOVP/CMOVPE PF=1 Parity/parity even

CMOVNP/CMOVPO PF=O Not parity/parity odd

Signed Conditional Moves

CMOVGElCMOVNL (SF xor OF)=O Greater or equal/not less

CMOVUCMOVNGE (SF xor OF)=1 Less/not greater or equal

CMOVLElCMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater

CMOVO OF=1 Overflow

CMOVNO OF=O Not overflow

CMOVS SF=1 Sign (negative)

CMOVNS SF=O Not sign (non-negative)

The CMOV cc instructions are useful for optimizing small IF constructions. They also help elim­
inate branching overhead for IF statements and the possibility of branch mispredictions by the
processor.

These instructions may not be supported on some processors in the Pentium Pro processor
family. Software can check if the CMOVcc instructions are supported by checking the
processor's feature information with the CPUID instruction (see Chapter 11, "CPUID-CPU
Identification") .

6-14

I

INSTRUCTION SET SUMMARY

6.3.1.3. EXCHANGE INSTRUCTIONS

The exchange instructions swap the contents of one or more operands and, in some cases,
performs additional operations such as asserting the LOCK signal or modifying flags in the
EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes
the place of three MOV instructions and does not require a temporary location to save the
contents of one operand location while the other is being loaded. When a memory operand is
used with the XCHG instruction, the processor's LOCK signal is automatically asserted. This
instruction is thus useful for implementing semaphores or similar data structures for process
synchronization. (See Chapter 7, Multiple Processor Management, in the Pentium® Pro Family
Developer's Manual, Volume 3 for more information on bus locking.)

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit posi­
tions 0 through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 23. Executing this instruction twice in a row leaves the register in
the same value as before. The BSWAP instruction is useful for converting between "big-endian"
and "little-endian" data formats. This instruction also speeds execution of decimal arithmetic.
(The XCHG instruction can be used two swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the
two operands in the destination operand. The status flags in the EFLAGS register indicate the
result of the addition. This instruction can be combined with the LOCK prefix (see Chapter 11,
"LOCK-Assert LOCK# Signal Prefix") in a multiprocessing system to allow multiple proces­
sors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of the
other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register
reflect the result that would have been obtained by subtracting the destination operand from the
value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks
to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the
ID of the current owner. This is all done in one uninterruptible operation. In a single-processor
system, the CMPXCHG instruction eliminates the need to switch to protection level 0 (to disable
interrupts) before executing multiple instructions to test and modify a semaphore. For multiple
processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare
and exchange operation atomically.

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a
64-bit value in ECX:EBX, and a destination operand in memory. The instruction compares the
64-bit value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit
value in the ECX:EBX register is stored in the destination operand. If the EDX:EAX register

I
6-15

INSTRUCTION SET SUMMARY intet

and the destination are not equal, the destination is loaded in the EDX:EAX register. The
CMPXCHG8B instruction can be combined with the LOCK prefix to perform the operation
atomically.

6.3.2. Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and paPA (pop all registers) instructions let you
move data to and from the procedure stack. The PUSH instruction decrements the stack pointer
(contained in the ESP register), then copies the source operand to the top of stack (see Figure
6-1). It operates on memory operands, immediate operands, and register operands (including
segment registers). The PUSH instruction is commonly used to place parameters on the stack
before calling a procedure. It can also be used to reserve space on the stack for temporary vari­
ables.

Stack
Growth

~

Procedure Stack

Before Pushing Doubleword

n

31 o
..-ESP

1---------1
n - 4 1------------1
n-8

I-------~

After Pushing Doubleword

31 o

Doubleword Value ..-ESP

Figure 6-1. Operation of the PUSH Instruction

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack
(see Figure 6-2). This instruction simplifies procedure calls by reducing the number of instruc­
tions required to save the contents of the general-purpose registers. The registers are pushed on
the stack in the following order: EAX, ECX, EDX, EBX, the initial value of ESP before EAX
was pushed, EBP, ESI, and ED!.

6-16

I

I

INSTRUCTION SET SUMMARY

Procedure Stack

Before Pushing Registers

cf:~ 1
31

°1 ~ :::_ESP
n -12

n - 16
n - 20
n - 24
n - 28
n - 32

n - 36

After Pushing Registers
31 0

EAX
ECX

EDX
EBX

Old ESP
EBP

ESI
EDI ...-ESP

Figure 6-2. Operation of the PUSHA Instruction

The pap instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 6-3). The destination operand may specify a
general-purpose register, a segment register, or a memory location.

Stack
Growth

~ n
n-4
n-8

Procedure Stack

Before Popping Doubleword After Popping Doubleword

31 ° 131 01_ESP
Doubleword Value ...-ESP

Figure 6-3. Operation of the POP Instruction

The paPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words
or doublewords from the top of the stack into the general-purpose registers, except for the ESP
register (see Figure 6-4). If the address-size attribute is 32, the doublewords on the stack are
transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword, EBX,
EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. If the
address-size attribute is 16, the words on the stack are transferred to the registers in the following
order: DI, Sl, BP, ignore word, BX, DX, CX, and AX.

6-17

INSTRUCTION SET SUMMARY in1et

Stack
Growth

~
n

n-4
n-8

n - 12

n - 16

n - 20
n - 24
n - 28

n - 32

n - 36

Procedure Stack
Before Popping Registers After Popping Registers

o 31

t------------I a ~31 ~ESP
EAX

ECX
EDX

EBX

Ignored

EBP

ESI

EDI ~ESP

Figure 6-4. Operation of the POPA Instruction

6.3.2.1. TYPE CONVERSION INSTRUCTIONS

The type conversion instructions convert bytes into words, words into doublewords, and double­
words into quadwords. These instructions are especially useful for converting integers to larger
integer formats, because they perform sign extension (see Figure 6-5).

Two kinds of type conversion instructions are provided: simple conversion and move and
convert.

15 0

lsi NI NI NI NI NI NI NI NI NI NINI NI NI NI NI ~~:~~~i~~gn
31 15 0

lsi sl sl sl sl sl sl sl sl slsl sl sl sl sl sl sl NI NI NI NI NINI NI NI NI NI NI NI NI NI NI ~~~:n~:~~

Figure 6-5. Sign Extension

6.3.2.2. SIMPLE CONVERSION

The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD
(convert word to doubleword), and CDQ (convert doubleword to quadword) instructions
perform sign extension to double the size of the source operand.

6-18

I

INSTRUCTION SET SUMMARY

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position
of the upper byte of the AX register. The CWDE instruction copies the sign (bit 15) of the word
in the AX register into every bit position of the high word of the EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit posi­
tion in the DX register. The CDQ instruction copies the sign (bit 31) of the doubleword in the
EAX register into every bit position in the EDX register. The CWD instruction can be used to
produce a doubleword dividend from a word before a word division, and the CDQ instruction
can be used to produce a quadword dividend from a doubleword before doubleword division.

6.3.2.3. MOVE AND CONVERT

The MOVSX (move with sign extension) and MOVZX (move with zero extension) instructions
move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit
value by sign extending the source operand, as shown in Figure 6-5. The MOVZX instruction
extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit value by zero extending
the source operand.

6.4. BINARY ARITHMETIC INSTRUCTIONS

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed
or unsigned binary integers. Operations include the add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign (negate). The binary arithmetic instructions
may also be used in algorithms that operate on decimal (BCD) values.

6.4.1. Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on
signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is
set. This instruction is used to propagate a borrow when subtracting numbers in stages.

6.4.2. Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.

I
6-19

INSTRUCTION SET SUMMARY

6.4.3. Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are
not modified, nor is the result saved. The CMP instruction is commonly used in conjunction with
a Icc (jump) or SETcc (byte set on condition) instruction, with the latter instructions performing
an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the
NEG instruction is to change the sign of a two's complement operand while keeping its
magnitude.

6.4.4. Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed
multiply), and two divide instructions, DIY (unsigned divide) and IDlY (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice
the size of the source operands (for example, if word operands are being multiplied, the result is
a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice
the size of the source operands; however, in some cases the result is truncated to the size of the
source operands (see Chapter 11, "IMUL-Signed Multiply").

The DIY instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDlY instruction is identical to the DIY instruction, except that IDlY performs a signed
division.

6.5. DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic can be performed with the Pentium Pro processor by combining the binary
arithmetic instructions ADD, SUB, MUL, and DIY (discussed in Section 6.4., "Binary Arith­
metic Instructions") with the decimal arithmetic instructions. The decimal arithmetic instruc­
tions are provided to carry out the following operations:

•

•

To adjust the results of a previous binary arithmetic operation to produce a valid BCD
result.

To adjust the operands of a subsequent binary arithmetic operation so that the operation
will produce a valid BCD result.

These instructions operate only on both packed and unpacked BCD values.

6-20

I

INSTRUCTION SET SUMMARY

6.5.1. Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see Section 5.2.3., "BCD
Integers"). Adding two packed BCD values requires two instructions: an ADD instruction
followed by a DAA instruction. The ADD instruction adds (binary addition) the two values and
stores the result in the AL register. The DAA instruction then adjusts the value in the AL register
to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry occurred as
the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed
by a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from
another and stores the result in the AL register. The DAS instruction then adjusts the value in the
AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal borrow
occurred as the result of the subtraction.

6.5.2. Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the
results of arithmetic operations performed in unpacked BCD values (see Section 5.2.3.,
"BCD Integers"). All these instructions assume that the value to be adjusted in stored in the AL
register or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the result in the AL register in unpacked BCD format (the decimal number is stored in the
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a result
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value. If
a borrow was required to complete the decimal subtract, the CF flag is set and the contents of
the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
the most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
DIV instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD
value in registers AH (most significant digit) and AL (least significant digit) into a binary value
and stores the result in register AL. When the value in AL is divided by an unpacked BCD value,
the quotient and remainder will be automatically encoded in unpacked BCD format.

I
6-21

INSTRUCTION SET SUMMARY

6.6. LOGICAL INSTRUCTIONS

The logical instructions AND, OR, XOR (exclusive or), and NOT perfonn the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper­
ands; the NOT instruction operates on a single operand.

6.7. SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

• Shift.

• Double shift.

• Rotate.

6.7.1. Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 6-6). They shift the
source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag
is loaded with the last bit shifted out of the operand.

6-22

I

INSTRUCTION SET SUMMARY

Initial State

CF Operand o [10001000100010001000100010001111

After 1-bit SHLISAL Instruction

[2]4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 [-c:- 0

After 10-bit SHUSAL Instruction

04 001 00 0 1 000 1 00 0 1 000 1 1 1 1 00 0 0 0 0 0 000 ['-0

Figure 6-6. SHLISAL Instruction Operation

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure
6-7). As with the SHLISAL instruction, the empty bit positions are cleared and the CF flag is
loaded with the last bit shifted out of the operand.

Initial State Operand CF

[10001000100010001000100010001111[[]

After 1-bit SHR Instruction

o --.[0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 ~~[2J

After 10-bit SHR Instruction

o --.[0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 ~0

Figure 6-7. SHR Instruction Operation

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure
6-8). This instruction differs from the SHR instruction in that it preserves the sign of the source
operand by clearing empty bit positions if the operand is positive or setting the empty bits if the
operand is negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

I
6-23

INSTRUCTION SET SUMMARY

The SAR and SHR instructions can also be used to perform division by powers of 2 (see Chapter
11, "SALISARlSHLlSHR-Shift Instructions").

Initial State (Positive Operand) Operand CF

10100010001000100010001000100011110

After 1-bit SAR Instruction

001 000 1 000 1 0 0 0 1 000 1 0 0 0 1 000 1 0 0 0 1 1

Initial State (Negative Operand)

1 1 000 1 0 0 0 1 000 1 0 0 0 1 000 1 000 1 000 1 1 1

After 1-bit SAR Instruction

1 1 100 0 1 000 1 000 1 000 1 000 1 000 1 0 0 0 1 1

Figure 6-8. SAR Instruction Operation

6.7.2. Double-shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified
number of bits from one operand to another (see Figure 6-9). They are provided to facilitate
operations on unaligned bit strings. They can also be used to implement a variety of bit string
move operations.

6-24

I

INSTRUCTION SET SUMMARY

SHLD Instruction
31 0

~~ Destination (Memory or Register) I
31 0

Source (Register)

31
SHRD Instruction

0

:

Source (Register) Ii
0 ~31 Destination (Memory or Register) I~~

Figure 6-9. SHLD and SHRD Instruction Operations

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can
range from 0 to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the desti­
nation operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the
left in the destination operand, with the empty bit positions filled with bits shifted out of the
source operand.

6.7.3. Rotate Instructions

The ROL (Rotate Left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate
through carry right) instructions rotate the bits in the destination operand out of one end of an
operand and back through the other end (see Figure 6-10). Unlike a shift, no bits are lost during
a rotation. The rotate count can range from 0 to 31.

I
6-25

INSTRUCTION SET SUMMARY

ROL Instruction
31 o

Destination (Memory or Register)

31 ROR Instruction 0

~LI ____________ D_e_st_in_a_tio_n __ (M_e_m_o_~ __ or_R_e_g_is_te_r_) __________ ~~-1cFI

RCL Instruction o
Destination (Memo~ or Register)

RCR Instruction
31
~Ir------------D-es-ti-n-ru-io-n-(-M-e-m-o-~-o-r-R-e-g-is-te-r)------------~

Figure 6-10. ROL, ROR, RCL, and RCR Instruction Operations

The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca­
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruc­
tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

6-26

I

INSTRUCTION SET SUMMARY

6.8. BIT AND BYTE INSTRUCTIONS

The bit and byte instructions operate on bit or byte strings. They are divided into three groups:

•
•
•
•

Bit test and modify instructions.

Bit scan instructions.

Byte set on condition.

Test

6.8.1. Bit Test and Modify Instructions

The bit test and modify instructions (see Table 6-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined
by the modify operation for the instruction.

Table 6-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ~ Selected Bit No effect

BTS (Bit Test and Set) CF flag ~ Selected Bit Selected Bit ~ 1

BTR (Bit Test and Reset) CF flag ~ Selected Bit Selected Bit ~ 0

BTC (Bit Test and Complement) CF flag ~ Selected Bit Selected Bit ~ NOT (Selected Bit)

6.8.2. Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first set bit found in a destination register. The
bit index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The
BSF instruction scans the source operand low-to-high (from bit 0 of the source operand toward
the most significant bit); the BSR instruction scans high-to-Iow (from the most significant bit
toward the least significant bit).

6.8.3. Byte-Set-On-Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1,
depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register.
The suffix (cc) added to the SET mnemonic determines the condition being tested for. For
example, the SETO instruction tests for overflow. If the OF flag is set, destination byte is set to
1; if OF is clear, the destination byte is cleared to O. Appendix B, EFIAGS Condition Codes lists
the conditions it is possible to test for with this instruction.

I
6-27

INSTRUCTION SET SUMMARY in1et

6.8.4. Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions
or the SETcc instructions. The TEST instruction differs from the AND instruction in that it does
not alter either of the operands.

6.9. CONTROL TRANSFER INSTRUCTIONS

The processor provides both conditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the
status flags in the EFLAGS register. Unconditional control transfers are always executed.

6.9.1. Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

6.9.1.1. JUMP INSTRUCTION

The JMP (jump) instruction unconditionally transfers program control to a destination instruc­
tion. The transfer is a one-way: a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address can be a relative
address or an absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the
EIP register. The displacement is specified with a signed integer, allowing jumps either forward
or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

•

•

An address in a general-purpose register. This address is treated as a near pointer, which
is copied into the EIP register. Program execution then continues at the new address within
the current code segment.

An address specified using the standard addressing modes of the processor. Here, the
address can be a near pointer or a far pointer. If the address is for a near pointer, the address
is translated into an offset and copied into the EIP register. If the address is for a far pointer,
the address is translated into a segment selector (which is copied into the CS register) and
an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task­
state segment.

6-28

I

INSTRUCTION SET SUMMARY

6.9.1.2. CALL AND RETURN INSTRUCTIONS

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from
one procedure (or subroutine) to another and a subsequent jump back (return) to the calling
procedure.

The CALL instruction transfers program control from the current (or calling procedure) to
another procedure (the called procedure). To allow a subsequent return to the calling procedure,
the CALL instructions saves the current contents of the EIP register on the procedure stack
before jumping to the called procedure. The EIP register (prior to transferring program control)
contains address of the instruction following the CALL instruction. When this address is pushed
on the stack is referred to as the return instruction pointer.

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see
Section 6.9.1.1., "Jump Instruction"). The address can be specified with as a relative address or
an absolute address. If an absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the
called procedure) back to the procedure that called it (the calling procedure). Transfer of control
is accomplished by copying the return instruction pointer from the stack into the EIP register.
Program execution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the
ESP register as part of the return operation. This operand allows to stack pointer to be incre­
mented to remove parameters from the stack that were pushed on the stack by the calling
procedure.

See Section 4.3., "Calling Procedures Using CALL and RET", for more information on the
mechanics of making procedure calls with the CALL and RET instructions.

6.9.1.3. RETURN-FROM-INTERRUPT INSTRUCTION

When the processor services in interrupt, it performs an implicit call to an interrupt-handling
procedure. The IRET (return from interrupt) instruction returns program control from an inter­
rupt handler to the interrupted procedure (that is, the procedure that was executing when the
interrupt occurred). The IRET instruction performs a similar operation to the RET instruction
(see Section 6.9.1.2., "Call and Return Instructions") except that it also restores the EFLAGS
register from the procedure stack. The contents of the EFLAGS register are automatically stored
on the stack along with the return instruction pointer when the processor services an interrupt.
(As with the RET instruction, the IRET instruction has an optional operand for adjusting the
stack pointer.)

6.9.2. Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions for
control transfer are specified with a set of condition codes that define various states of the status
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

I
6-29

INSTRUCTION SET SUMMARY int:et

6.9.2.1., CONDITIONAL JUMP INSTRUCTIONS

The Jcc (conditional) jump instructions transfers program control to a destination instruction if
the conditions specified with the condition code (cc) associated with the instruction are satisfied ..
If the condition is not satisfied, execution continues with the instruction following the Jcc
instruction. As with the JMP instruction, the transfer is a one-way; that is, a return address is not
saved.

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to a instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
a Jcc and a IMP instruction (see Chapter 11, "Jcc-Jump if Condition Is Met").

Table 6-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter "J" to form the mnemonic
for a Jcc instruction. The instructions are divided into two groups: unsigned and signed condi­
tional jumps. These groups correspond to the results of operations performed on unsigned and
signed integers, respectively. Those instructions listed as pairs (for example, JAlJNBE) are alter­
nate names for the same instruction. The assembler provides these alternate names to make it
easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one
or more status flags. See Section 6.9.2.3., "Jump If Zero Instructions" for more information
about these instructions.

6-30

I

in1et INSTRUCTION SET SUMMARY

Table 6-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

JA/JNBE (CF orZF)=O Above/not below nor equal

JAE/JNB CF=O Above or equal/not below

JB/JNAE CF=1 Below/not above nor equal

JBElJNA (CF or ZF)=1 Below or equal/not above

JC CF=1 Carry

JE/JZ ZF=1 Equal/zero

JNC CF=O Not carry

JNE/JNZ ZF=O Not equal/not zero

JNP/JPO PF=O Not parity/parity odd

JP/JPE PF=1 Parity/parity even

JCXZ CX=O Register CX is zero

JECXZ ECX=O Register ECX is zero

Signed Conditional Jumps

JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less nor equal

JGE/JNL (SF xor OF)=O Greater or equal/not less

JUJNGE (SF xor OF)=1 Less/not greater nor equal

JLElJNG ((SF xor OF) or ZF)=1 Less or equaVnot greater

JNO OF=O Not overflow

JNS SF=O Not sign (non·negative)

JO OF=1 Overflow

JS SF=1 Sign (negative)

6.9.2.2. LOOP INSTRUCTIONS

The LOOP (loop while ECX not zero), LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are condi­
tionaljump instructions that use the value of the ECX register as a count for the number of times
to execute a loop. All the loop instructions decrement the count in the ECX register each time
they are executed and terminate a loop when zero is reached. Some of the loop instructions also
accept the ZF flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the
count in the ECX register are non-zero, program control is transferred to the instruction address
specified by the destination operand. The destination operand is a relative address (that is, a
offset relative to the contents of the EIP register), and it generally points the first instruction in

I
6-31

INSTRUCTION SET SUMMARY

the block of code that is to be executed in the loop. When the count in the ECX register reaches
zero, program control is transferred to the instruction immediately following the LOOP
instruction, which terminates the loop. If the count in the ECX register is zero when the LOOP
instruction is first executed, the register is pre-decremented to FFFFFFFFH, causing the loop to
be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag. If the count in the ECX register is not zero and the ZF flag is set, program
control is transferred to destination operand. When the count reaches zero or the ZF flag is clear,
the loop is terminated by transferring program control to the instruction immediately following
the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the
same as the LOOPEILOOPPZ instructions, except that they terminate the loop if the ZF flag
is set.

6.9.2.3. JUMP IF ZERO INSTRUCTIONS

The JECXZ Gump if ECX zero) instruction jumps to the location specified in the destination
operand if the ECX register contains the value zero. This instruction can be used in combination
with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX
register prior to beginning a loop. As described in Section 6.9.2.2., "Loop Instructions", the loop
instructions decrement the contents of the ECX register before testing for zero. If the value in
the ECX register is zero initially, it will be decremented to FFFFFFFFH on the first loop instruc­
tion, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction
can be inserted at the beginning of the code block for the loop, causing a jump out the loop if
the EAX register count is initially zero. When used with repeated string scan and compare
instructions, the JECXZ instruction can determine whether the loop terminated because the
count reached zero or because the scan or compare conditions were satisfied.

The JCXZ Gump if CX is zero) instruction operates the same as the JECXZ instruction when the
. 16-bit address-size attribute is used. Here, the CX register is tested for zero.

6.9.3. Software Interrupts

The INTn (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of
range) instructions allow a program to explicitly raise a specified interrupt or exception, which
in tum causes the handler routine for the interrupt or exception to be called.

The INTn instruction can raise any of the processors interrupts or exceptions by encoding the
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception handlers.
The IRET instruction (see Section 6.9.1.3., "Return-From-Interrupt Instruction") allows returns
from interrupt handling routines.

6-32

I

INSTRUCTION SET SUMMARY

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access the
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises
the "B OUND range exceeded" exception if the value is less than the lower bound or greater than
the upper bound. This instruction is useful for operations such as checking an array index to
make sure it falls within the range defined for the array.

6.10. STRING OPERATIONS

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string),
and STOS (Store string) instructions permit large data structures, such as alphanumeric char­
acter strings, to be moved and examined in memory. These instructions operate on individual
elements in a string, which can be a byte, word, or doubleword. The string elements to be oper­
ated on are identified with the ESI (source string element) and EDI (destination string element)
registers. Both of these registers contain absolute addresses (offsets into a segment) that point to
a string element.

By default, the ESI register addresses the segment identified with the DS segment register. A
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS
segment register. The EDI register addresses the segment identified with the ES segment
register; no segment override is allowed for the EDI register. The use of two different segment
registers in the string instructions permits operations to be performed on strings located in
different segments. Or by associating the ESI register with the ES segment register, both the
source and destination strings can be located in the same segment.

The MOVS instruction moves the string element addressed by the ESI register to the location
addressed by the EDI register. The assembler recognizes three versions of this instruction, which
specify the size of the string to be moved: MOVSB (move byte string), MOVSW (move word
string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element
and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to
the results. Neither string element is written back to memory. The assembler recognizes three
versions of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compare word
strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,
AX, or AL register (depending on operand length) and updates the status flags according to the
results. The string element and register contents are not modified. The following variations of
the SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan
word string), and SCASD (scan double word string).

The LODS instruction loads the source string element identified by the ESI register into the
EAX register (for a doubleword string), the AX register (for a word string), or the AL register
(for a byte string). The mnemonics normally used for this instruction are LODSB (load byte
string), LODSW (load word string), and LODSD (load doubleword string). This instruction is

I
6-33

INSTRUCTION SET SUMMARY

usually used in a loop, where other instructions process each element of the string after they are
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI
register. The mnemonics normally used for this instruction are STOSB (store byte string),
STOSW (store word string), and STOSD (store doubleword string). This instruction is also
normally used in a loop. Here a string is commonly loaded into the register with a LODS
instruction, operated on by other instructions, and then stored again in memory with a STOS
instruction.

The 110 instructions (see Section 6.11., "110 Instructions") also perform operations on strings in
memory.

6.10.1. Repeating String Operations

The string instructions described in Section 6.10., "String Operations" perform one iteration of
a string operation. To operate strings longer than a doubleword, the string instructions can
combined with a repeat prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in the string. String operations can thus begin at higher addresses and work toward
lower ones, or they can begin at lower addresses and work toward higher ones. The DF flag in
the EFLAGS register controls whether the registers are incremented (DF=O) or decremented
(DF=l). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to
cause a string instruction to repeat:

•
•
•

REP-Repeat while the ECX register not zero.

REPEIREPZ-Repeat while the ECX register not zero and the ZF flag is set.

REPNEIREPNZ-Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNEIREPNZ prefixes
are used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
is the fastest way to initialize a large block of memory.

6.11. 1/0 INSTRUCTIONS

The IN (input from port to register), INS (input from port to string), OUT (output from register
to port), and OUTS (output string to port) instructions move data between the processor's 110
ports and either a register or memory.

The register 110 instructions (IN and OUT) move data between an 110 port and the EAX register
(32-bit 110), the AX register (16-bit 110), or the AL (8-bit 110) register. The 110 port being read
or written to is specified with an immediate operand or an address in the DX register.

6-34

I

INSTRUCTION SET SUMMARY

The block 1/0 instructions (INS and OUTS) instructions move blocks of data (strings) between
an I/O port and memory. These instructions operate similar to the string instructions (see Section
6.10., "String Operations"). The ESI and EDI registers are used to specify string elements in
memory and the repeat prefixes (REP) are used to repeat the instructions to implement block
moves. The assembler recognizes the following alternate mnemonics for these instructions:
INSB (input byte), INSW (input word), and INSD (input double word), and OUTB (output byte),
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be
read or written to.

6.12. ENTER AND LEAVE INSTRUCTIONS

The ENTER and LEAVE instructions provide machine-language support for procedures calls in
block-structured languages, such as C and Pascal. These instructions and the call and return
mechanism that they support are described in detail in Section 4.5., "Procedure Calls for Block­
Structured Languages".

6.13. EFLAGS INSTRUCTIONS

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read or
modified.

6.13.1. Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the state the flag in an oper­
ation is executed. They are also used in conjunction with the rotate-with-carry instructions (RCL
and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers ESI and EDI are stepped when executing string processing instructions. If the DF flag
is clear, the index registers are incremented after each iteration of a string instruction; if the DF
flag is set, the registers are decremented.

6.13.2. Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF flag
in the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware­
generated interrupts (those received at the processor's INTR pin). If the IF flag is set, the
processor services hardware interrupts; if the F flag is clear, hardware interrupts are masked.

I
6-35

INSTRUCTION SET SUMMARY intet

6.13.3. EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to copied to a
register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of
the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags
to bits 7, 6,4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the
register 5, 3, and 1 are undefined, and the contents of the EFLAGS register remain unchanged.
The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF,
and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop
flags double) instructions copy the flags in the EFLAGS register to and from the procedure
stack. The PUSHF instruction pushes the lower word of the EFLAGS register onto the stack (see
Figure 6-11). The PUSHFD instruction pushes the entire EFLAGS register onto the stack (with
the RF and VM flags read as clear).

PUSHFD/POPFD

PUSHF/POPF

31302928272625242322212019181716151413121110987 6 5 4 3 2 1 0

I V V A
I

o 0 o 0 o 0 o 0 o 0 V R o N 0 o D I T S Z o A o ~ 1
C

D I IC M F T P F F F F F F F F
P F

L

Figure 6-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the
current privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits
(bits 13 and 12) also are affected. If the 110 privilege level (IOPL) is 0, the IF flag (bit 9) also is
affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can
change the state ofthe AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a
POPF instruction.

6.13.4. Interrupt Flag Instructions

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt
flag (IF) in the EFLAGS register, respectively. Clearing the IF flag causes external interrupts to
be ignored. The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to execute
these instructions.

6-36

I

INSTRUCTION SET SUMMARY

6.14. SEGMENT REGISTER INSTRUCTIONS

The processor provides a variety of instructions that address the segment registers of the
processor directly. These instructions are only used when an operating system or executive is
using the segmented or the real-address mode memory model.

6.14.1. Segment-Register Load and Store Instructions

The MOV instruction (introduced in Section 6.3.1., "General-Purpose Data Movement Instruc­
tions") and the PUSH and POP instructions (introduced in Section 6.3.2., "Stack Manipulation
Instructions") can transfer 16-bit segment selectors to and from segment registers (DS, ES, FS,
GS, and SS). The transfers are always made to or from a segment register and a general-purpose
register or memory. Transfers between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control­
transfer versions of the JMP, CALL, and RET instructions (see Section 6.14.2., "Far Control
Transfer Instructions") affect the CS register directly.

6.14.2. Far Control Transfer Instructions

The lMP and CALL instructions (see Section 6.9., "Control Transfer Instructions") both accept
a far pointer as a source operand to transfer program control to a segment other than the segment
currently being pointed to by the CS register. When a far call is made with the CALL instruction,
the current values of the EIP and CS registers are both pushed on the stack.

The RET instruction (see Section 6.9.1.2., "Call and Return Instructions") can be used to
execute a far return. Here, program control is transferred from a code segment that contains a
called procedure back to the code segment that contained the calling procedure. The RET
instruction restores the values of the CS and EIP registers for the calling procedure from the
stack.

6.14.3. Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and !RET (see Section 6.9.3., "Soft­
ware Interrupts") can also call and return from interrupt and exception handler procedures that
are located in a code segment other than the current code segment. With these instructions,
however, the switching of code segments is handled transparently from the application program.

6.14.4. Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
ES), LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer
using SS) load a far pointer from memory into a segment register and a general-purpose general

I
6-37

INSTRUCTION SET SUMMARY intet

register. The segment selector part of the far pointer is loaded into the selected segment register
and the offset is loaded into the selected general-purpose register.

6.15. MISCELLANEOUS INSTRUCTIONS

The following instructions perform miscellaneous operations that are of interest to applications
programmers.

6.15.1. Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruc­
tion can interpret any of the Pentium Pro processor's addressing modes and can perform any
indexing or scaling that may be needed. It is especially useful for initializing the ESI or EDI
registers before the execution of string instructions or for initializing the EBX register before an
XLAT instruction.

6.15.2. Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents ofthe AL register with
a byte read from a translation table in memory. The initial value in the AL register is interpreted
as an unsigned index into the translation table. This index is added to the contents of the EBX
register (which contains the base address of the table) to calculate the address of the table entry.
These instructions are used for applications such as converting character codes from one
alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equiv­
alent in a table).

6.15.3. Processor Identification Instruction

The CPUID (processor identification) instruction provides information about the processor on
which the instruction is executed. To obtain processor information, a value of from 0 to 2 is
loaded in the EAX register and then the CPUID instruction is executed. The resulting processor
information is placed in the EAX, EBX, ECX, and EDX registers. Table 6-5 shows the informa­
tion that is provided depending on the value initially entered in the EAX register. See Section
9.1., "Processor Identification" for detailed information on the output of the CPUID instruction;

Table 6-5. Information Provided by the CPUID Instruction

Initial EAX Value Information Provided about the Processor

0 Maximum CPUID input value.
Vendor identification string ("Genuinelntel").

1 Version information (family ID, modellD, and stepping ID).
Feature information (identifies the feature set for the processor model).

6-38

I

INSTRUCTION SET SUMMARY

Table 6-5. Information Provided by the CPUID Instruction (Contd.)

Initial EAX Value Information Provided about the Processor

2 Cache information (about the processor's internal cache memory).

6.15.4. No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instruction,
but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the
opcode for this instruction for this function. The instruction is provided to allow software to test
an invalid opcode exception handler.

I
6-39

7
Floating-Point Unit

I

CHAPTER 7
FLOATING-POINT UNIT

The Pentium Pro processor's Floating-Point Unit (FPU) provides high-performance floating­
point processing capabilities. It supports the real, integer, and BCD-integer data types and the
floating-point processing algorithms and exception handling architecture defined in the IEEE
754 and 854 Standards for Floating-Point Arithmetic. The FPU executes instructions from the
processor's normal instruction stream and greatly improves the efficiency of the processor in
handling the types of high-precision floating-point processing operations commonly found in
scientific, engineering, and business applications.

This chapter describes the data types that the FPU operates on, the FPU's execution environ­
ment, and the FPU-specific instruction set. Detailed descriptions of the FPU instructions are
given in Chapter 11, Instruction Set Reference.

7.1. COMPATIBILITY WITH INTEL ARCHITECTURE MATH
COPROCESSORS

The Pentium Pro processor's FPU extends the floating-point processing capability of earlier
math coprocessors in the Intel Architecture family of processors. It is fully compatible with the
Intel486 DX and Pentium processors.

The Pentium Pro processor's FPU offers several new instructions to improve processing
throughput. The FCMOVcc (floating-point conditional move) instructions perform a floating­
point move operation based on the state of the status flags in the EFLAGS register (see Chapter
11, "FCMOV cc-Floating-Point Conditional Move"). The FCOMI (floating-point compare and
set EFLAGS) instructions set the status flags in the EFLAGS register according to the
results of a comparison of two floating-point values (see Chapter 11, "FCOMUFCOMIP/
FUCOMUFUCOMIP-Compare Real and Set EFLAGS").

7.2. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the Pentium
Pro processor's FPU. It also introduces terms such as normalized numbers, denormalized
numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar with
floating-point processing techniques and the IEEE standards may wish to skip this section.

7.2.1. Real Number System

As shown in Figure 7-1, the real-number system comprises the continuum of real numbers from
minus infinity (-00) to plus infinity (+00).

I
7-1

FLOATING-POINT UNIT

Binary Real Number System
-100 -10 -1 0 1 10 100

... "----+1----1-1 ---+I----,-IIf--+-1 -----;1-----+-1 - ,,--

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format

-100 -10 -1 0 1 10 100
I· 1······ .. ·1········+"·····1·········1· 1

+10

+ + + +

----L 10.0000000000000000000000

1.11111111111111111111111

Precision 1""'-- 24 Binary Digits-------"I

Numbers within this range
cannot be represented.

Figure 7-1. Binary Real Number System

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number calculations. As shown at the bottom of
Figure 7-1, the subset of real numbers that a particular FPU supports represents an approxima­
tion of the real number system. The range and precision of this real-number subset is determined
by the format that the FPU uses to represent real numbers.

7.2.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers or FPUs typically
represent real numbers in a binary floating-point format. In this format, a real number has three
parts: a sign, a significand, and an exponent. Figure 7-2 shows the binary floating-point format
that the Pentium Pro processor uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a I-bit binary integer (also referred to as the J-bit) and a binary

7-2

I

FLOATING-POINT UNIT

fraction. The J-bit is often not represented, but instead is an implied value. The exponent is a
binary integer that represents the base-2 power that the significand is raised to.

Sign

II Exponent Significand

II Fraction

Integer or J-Bit ~
Figure 7-2. Binary Floating-Point Format

Table 7-1 shows how the real number 178.125 (in ordinary decimal format) is stored in floating­
point format. The table lists a progression of real number notations that leads to the format that
the FPU uses. In this format, the binary real number is normalized and the exponent is biased
(see Section 7.2.2.1., "Normalized Numbers" and Section 7.2.2.2., "Biased Exponent").

Table 7-1. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001 E2111

Scientific Binary 1.0110010001 E21000011 0
(Biased Exponent)

Single Format (Normalized) Sign Biased Exponent Significand

0 10000110 01100100010000000000000
1. (Implied)

7.2.2.1. NORMALIZED NUMBERS

In most cases, the FPU represents real numbers in normalized form. This means that except for
zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff ... ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo­
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo­
nent that specifies the number's binary point.

I
7-3

FLOATING-POINT UNIT

7.2.2.2. BIASED EXPONENT

The FPU represents exponents in a biased form. This means that a constant is added to the actual
exponent so that the biased exponent is always a positive number. The value of the biasing
constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized number can
be reciprocated without overflow.

(See Section 7.4.1., "Real Numbers" for a list of the biasing constants that the FPU uses for the
various sizes of real data-types.)

7.2.3. Real Number and Non-Number Encodings

A variety of real numbers and special values can be encoded in the FPU's floating-point format.
These numbers and values are generally divided into the following classes:

• Signed zeros.

• Denormalized finite numbers.

• Normalized finite numbers.

• Signed infinities.

• NaNs.

• Indefinite numbers.

(The term NaN stands for "Not a Number.")

Figure 7-3 shows how the encodings for these numbers and non-numbers fit into the real number
continuum. The encodings shown here are for the IEEE single-precision (32-bit) format, where
the term "s" indicates the sign bit, "E" the biased exponent, and "F" the fraction. (The exponent
values are given in decimal.)

The FPU can operate on and/or return any of these values, depending on the type of computation
being performed. The following sections describe these number and non-number classes.

7.2.3.1. SIGNED ZEROS

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of an 00 that has been reciprocated.

7-4

I

FLOATING-POINT UNIT

7.2.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and 00. In the single-real format shown in Figure
7-3, this group of numbers includes all the numbers with biased exponents ranging from 1 to
25410 (unbiased, the exponent range is from -126 10 to + 12710).

NaN
I-l

-=
I I

-Denormalized Finite +Denormalized Finite

-Normalized Finite ~ -0 +0 / +Normalized Finite
I I I I I

+=

NaN
I-l

I I

Real Number and NaN Encodings For 32-bit Floating-point Format
S E F S E F
1 I 0 0 -0 +0 0 I 0 0

.... 1....,1r--o-..-0-.X-X-X-2-., -Denormalized
. Finite

+Denormalized
01 0 0.XXX2 Finite

+Normalized 011 ... 254 Any Value
Finite

1 11 ... 2541 Any Value -Normalized
.. Finite

1-1 1_2_55--'-1_0_---' -= +00 01 255 0

IX11 255' 1 1.0XX2 -SNaN +SNaN IX11 255 1.0XX2

IX11 255 1 1.1XX -QNaN +QNaN IX11 255 1.1XX

NOTES:
1. Sign bit ignored
2. Fractions must be non-zero

Figure 7-3. Real Numbers and NaNs

When real numbers become very close to zero, the normalized-number format can no longer be
used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented. However, this denormalization causes a loss of preci­
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an FPU normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an undeiflow condition.

I
7-5

FLOATING-POINT UNIT intet
A denormalized number is computed through a technique called gradual underflow. Table 7-2
gives an example of gradual underflow in the denormalization process. Here the single-real
format is being used, so the minimum exponent (unbiased) is -12610• The true result in this
example requires an exponent of -12910 in order to have a normalized number. Since -12910

is beyond the allowable exponent range, the result is denormalized by inserting leading zeros
until the minimum exponent of -12610 is reached.

Table 7-2. Denormalization Process

Operation Sign Exponent· Significand

True Result 0 -129 1.01011100000 ... 00

Denormalize 0 -128 0.10101110000 ... 00

Denormalize 0 -127 0.01010111000 ... 00

Denormalize 0 -126 0.00101011100 ... 00

Denormal Result 0 -126 0.00101011100 ... 00

NOTE:

• Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The FPU deals with denormal values in the following ways:

•
•

•

It avoids creating denormals by normalizing numbers whenever possible.

It provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

When a denormal number in single- or double-real format is used as a source operand and the
denormal exception is masked, the FPU automatically normalizes the number when it is
converted to extended-real format.

7.2.3.3. SIGNED INFINITIES

The two infinities, +00 and -00, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero significand (fraction and integer bit) and the maximum biased exponent allowed in the
specified format (for example, 25510 for the single-real format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter­
preted in the affine sense; that is, -00 is less than any finite number and +00 is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

7-6

I

FLOATING-POINT UNIT

Whereas denonnalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

7.2.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 7-3, the
encoding space for NaNs in the FPU floating-point formats is shown above the ends of the real
number line. This space includes any value with the maximum allowable biased exponent and a
non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two classes of NaN: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an invalid-operation excep­
tion whenever they appear as operands in arithmetic operations. Exceptions are discussed in
Section 7.7., "Floating-Point Exception Handling".

See Section 7.6., "Operating on NaNs" for detailed information on how the FPU handles NaNs.

7.2.4. Indefinite

For each FPU data type, one unique encoding is reserved for representing the special value
indefinite. For example, when operating on real values, the real indefinite value is a QNaN
(see Section 7.4.l., "Real Numbers"). The FPU produces indefinite values as responses to a
masked floating-point exceptions.

7.3. FPU ARCHITECTURE

From an abstract, architectural view, the FPU is a coprocessor that operates in parallel with the
processor's integer unit (see Figure 7-4). The FPU gets its instructions from the same instruction
decoder and sequencer as the integer unit and shares the system bus with the integer unit. Other
than these connections, the integer unit and FPU operate independently and in parallel. (The
actual micro architecture of the Pentium Pro processor has two integer units and two FPUs, see
Section 2.4.4., "Dispatch/Execute Unit".)

I
7-7

FLOATING-POINT UNIT

Instruction
Decoder and
Sequencer

I
••• ••••••• III

I

Data Bus

Figure 7-4. Relationship Between the Integer Unit and the FPU

in1et

The instruction execution environment of the FPU (see Figure 7-5) consists of 8 data registers
(called the FPU data registers) and the following special-purpose registers:

•
•
•
•
•
•

The status register.

The control register.

The tag word register.

Instruction pointer register.

Last operand (data pointer) register.

Opcode register.

These registers are described in the following sections.

7-8

I

FLOATING-POINT UNIT

FPU Data Registers

Sign 7978 -".:
6463 o

R7 Exponent Significand

R6

R5

R4

R3

R2

R1

RO

47 o
Instruction Pointer

Data Pointer

10 0

I Opcode I

Figure 7-5. FPU Execution Environment

7.3.1. The FPU Data Registers

The FPU data registers (shown in Figure 7-5) consist of eight SO-bit registers. Values are stored
in these registers in the extended-real format shown in Figure 7-17. When real, integer, or
packed BCD integer values are loaded from memory into any of these registers, the values are
automatically converted into extended-real format (see Section 7.4., "Floating-Point Data Types
and Formats"). Computation results are subsequently converted back into one of the FPU data
formats when they are transferred back into memory from any of the FPU registers.

The FPU instructions treat the eight FPU data registers as a register stack (see Figure 7-6). All
addressing of the data registers is relative to the register on the top of the stack. The register
number of the current top-of-stack register is stored in the TOP (stack TOP) field in the FPU
status word. Load operations decrement TOP by one and load a value into the new top-of-stack
register, and store operations store the value from the current TOP register in memory and then
increment TOP by one. (For the FPU, a load operation is equivalent to a push and a store oper­
ation is equivalent to a pop.)

I
7-9

FLOATING-POINT UNIT int:et

FPU Data Register Stack

7

6
Growth 5 ST(2) Stack

l
4 ST(1) Top

3 ST(O)~
2

1

0

Figure 7-6. FPU Data Register Stack

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicate when wraparound might
cause an unsaved value to be overwritten (see Section 7.8.1.1., "Stack Overflow or Underflow
Exception (#IS)").

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(O), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 ::; i ::; 7). For example, if TOP contains OllB (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 7-7 shows an example of how the stack structure of the FPU registers and instructions
are typically used to perform a series of computations. Here, a two-dimensional dot product is
computed, as follows:

1. The first instruction (FLD valuel_ptr) decrements the stack register pointer (TOP) and
loads the value 5.6 from memory into ST(O). The result of this operation is shown in snap­
shot (a).

2. The second instruction multiplies the value in ST(O) by the value 2.4 from memory and
stores the result in ST(O), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(O).

4. The fourth instruction multiplies the value in ST(O) by the value 10.3 from memory and
stores the result in ST(O), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(l) and stores the result in ST(O),
shown in snap-shot (d).

7-10

I

FLOATING-POINT UNIT

The style of programming demonstrated in this example, is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange FPU register contents) instruction can be used to streamline a computation.

Computation
Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD valuel.Jltr ; (a) valuel=5.6
FMUL value2.Jltr ; (b) value2=2.4
FLD value3.Jltr ; value3=3.8
FMUL value4.Jltr ; (c)value4=lO.3
FADD ST(l) ; (d)

(a) (b) (c) (d)

R7 R7 R7 R7

R6 R6 R6 R6

R5 R5 R5 R5

R4 5.6 ST(O) R4 13.44 ST(O) R4 13.44 ST(1) R4 13.44 ST(1)

R3 R3 R3 39.14 ST(O) R3 52.58 ST(O)

R2 R2 R2 R2

R1 R1 R1 R1

RO RO RO RO

Figure 7-7. Example FPU Dot Product Computation

7.3.1.1. PARAMETER PASSING WITH THE FPU REGISTER STACK

Like the general-purpose registers in the processor's integer unit, the contents of the FPU data
registers are unaffected by procedure calls, or in other words, the values are maintained across
procedure boundaries. A calling procedure can thus use the FPU data registers (as well as the
procedure stack) for passing parameter between procedures. The called procedure can reference
parameters passed through the register stack using the current stack register pointer (TOP) and
the ST(O) and STU) nomenclature.

I
7-11

FLOATING-POINT UNIT

7.3.2. FPU Status Register

The 16-bit FPU status register (see in Figure 7-8) indicates the current state of the FPU. The
flags in the FPU status register include the FPU busy flag, top-of-stack (TOP) pointer, condition
code flags, error summary status flag, stack fault flag, and exception flags. The FPU sets the
flags in this register to show the results of operations.

The contents of the FPU status register (referred to as the FPU status word) can be stored in
memory using the FSTSWIFNSTSW, FSTENV/FNSTENV, and FSAVE/FNSAVE instructions.
It can also be stored in the AX register of the integer unit, using the FSTSW/FNSTSW
instructions.

7.3.2.1.

,--~~~~- FPU Busy I Top of Stack Pointer

c~no~~on I IIII
Error Summary Status ~
Stack Fault ~----­
Exception Flags

Precision ------------"
Underflow ~~~~~~~-----"
Overflow ____ ~~~~.....J
Zero Divide -~---~-~------"
Denormalized Operand ---------'
Invalid Operation -~-~-~-~-----"

Figure 7-8. FPU Status Word

TOP OF STACK (TOP) POINTER

A pointer to the FPU data register that is currently at the top of the FPU register stack is
contained in bits 11 through 13 of the FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See Section 7.3.1., "The
FPU Data Registers" for more information about the TOP pointer.

7.3.2.2. CONDITION CODE FLAGS

The four FPU condition code flags (CO through C3) indicate the results of floating-point
comparison and arithmetic operations. Table 7-3 summarizes the manner in which the floating­
point instructions set the condition code flags. These condition code bits are used principally for
conditional branching and for storage of information used in exception handling (see Section
7.3.3., "Branching and Conditional Moves on FPU Condition Codes").

7-12

I

FLOATING-POINT UNIT

As shown in Table 7-3, the Cl condition code flag is used for a variety of functions. When both
the IE and SF flags in the FPU status word are set, indicating a stack overflow or underflow
exception (#IS), the Cl flag distinguishes between overflow (Cl=l) and underflow (Cl=O).
When the PE flag in the status word is set, indicating an inexact (rounded) result, the C 1 flag is
set to 1 if the last rounding by the instruction was upward. The FXAM instruction sets C 1 to the
sign of the value being examined.

Table 7-3. FPU Condition Code Interpretation

Instruction CO C3 C2 C1

FCOM, FCOMP, FCOMPP, Result of Comparison Operands o or #IS
FICOM, FICOMP, FTST, are not
FUCOM, FUCOMP, Comparable
FUCOMPP

FCOMI, FCOMIP, FUCOMI, Undefined. (These instructions set the #IS
FUCOMIP status flags in the EFLAGS register.)

FXAM Operand class Sign

FPREM,FPREM1 02 01 O=reduction 00 or #IS
complete
1=reduction
incomplete

F2XM1, FADD, FADDP, Undefined Roundup or #IS
FBSTP, FCMOVcc, FIADD,
FDIV, FDIVP, FDIVR, FDIVRP,
FIDIV, FIDIVR, FIMUL, FIST,
FISTP, FISUB,
FISUBR,FMUL, FMULP,
FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB,
FSUBP, FSUBR,
FSUBRP,FSORT, FYL2X,
FYL2XP1

FCOS, FSIN, FSINCOS, Undefined 1=source Roundup or #IS
FPTAN operand out of (Undefined if

range. C2=1)

FABS, FBLD, FCHS, Undefined o or #IS
FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. real), FXCH, FXTRACT

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW,
FCLEX/FNCLEX, FNOP, Undefined
FSTCW/FNSTCW,
FSTENV IFNSTENV,
FSTSW/FNSTSW,

FINIT/FNINIT, 0 0 0 0
FSAVE/FNSAVE

I
7-13

FLOATING-POINT UNIT

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the CO, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, Q1, and QO, respectively. See Chapter 11, "FPREM-Partial Remainder" or Chapter 11,
"FPREM1-Partial Remainder" for more information on how these instructions use the condi­
tion code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range of ±263.

Where the state of the condition code flags are listed as undefined in Table 7-3, do not rely on
any specific value in these flags.

7.3.2.3. EXCEPTION FLAGS

The 6 exception flags (bits 0 through 5) of the status word and the exception summary status
(ES) flag (bit 7) indicate that one or more floating-point exceptions has been detected since the
bits were last cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are
described in detail in Section 7.7., "Floating -Point Exception Handling". Each of the exception
flags can be masked by an exception mask bit in the FPU control word (see Section 7.3.4., "FPU
Control Word"). The ES flag is set when any of the unmasked exception bits are set. The excep­
tion flags are "sticky" bits, meaning that once set, they remain set until explicitly cleared. They
can be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitial­
izing the FPU with the FINIT/FNINIT or FSAVEIFNSAVE instructions, or by overwriting the
flags with an FRS TOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents ofthe ES flag.

7.3.2.4. STACK FAULT FLAG

The stack fault flag (bit 6 of the FPU status word) indicates that stack overflow or stack under­
flow has occurred. The FPU explicitly sets the SF flag when it detects a stack overflow or under­
flow condition, but it does not explicitly clear the flag when it detects an invalid-arithmetic­
operand condition. When this flag is set, the condition code flag C1 indicates the nature of the
fault: overflow (C1 = 1) and underflow (C1 = 0). The SF flag is a "sticky" flag, meaning that
after it is set, the processor does not clear it until it is explicitly instructed to do so (for example,
by an FINIT/FNINIT or FSAVEIFNSAVE instruction).

See Section 7.3.6., "FPU Tag Word" for more information on FPU stack faults.

7.3.3. Branching and Conditional Moves on FPU Condition
Codes

The Pentium Pro processor supports two mechanisms for branching and performing conditional
moves according to comparisons of two floating-point values. These mechanism are referred to
here as the "old mechanism" and the "new mechanism."

7-14

I

FLOATING-POINT UNIT

The old mechanism is available in FPU's prior to the Pentium Pro processor and in the Pentium
Pro processor. This mechanism uses the floating-point compare instructions (FCOM, FCOMP,
FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point values and
set the condition code flags (CO through C3) according to the results. The contents of the condi­
tion code flags are then copied into the status flags of the EFLAGS register using a two step
process (see Figure 7-9):

1. The FSTSW AX instruction moves the FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

Condition Status
Code Flag

CO CF
C1 (none)
C2 PF
C3 ZF

31

15 FPU Status Word

FSTSW AX Instruction

15

SAHF Instruction

EFLAGS Register

AX Register

I

7

o

o

I

o

Figure 7-9. Moving the FPU Condition Codes to the EFLAGS Register

When the condition code flags have been loaded into the EFLAGS register, conditional jumps
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

The new mechanism is available only in the Pentium Pro processor. Using this mechanism, the
new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP, FUCOMI, and
FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags in the EFLAGS
register directly. A single instruction thus replaces a three instructions, using the old mechanism.

Note also that the FCMOVcc instructions (also new in the Pentium Pro processor) allow condi­
tional moves of floating-point values (values in the FPU data registers) based on the setting of
the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the need
for an IF statement to perform conditional moves of floating-point values.

I
7-15

FLOATING-POINT UNIT in1et

7.3.4. FPU Control Word

The 16-bitFPU control word (see in Figure 7-10) controls the precision of the FPU and rounding
method used. It also contains the exception-flag mask bits. The control word is cached in the
FPU in the FPU control register. The contents of this register can be loaded with the FLDCW
instruction and stored in memory with the FSTCWIFNSTCW instructions.

When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction, the
FPU control word is set to 037FH, which masks all floating-point exceptions, sets rounding to
nearest, and sets the FPU precision to 64 bits.

7.3.4.1.

~
Infinity Control

~ Rounding Control
I I Precision Control

'~511"t11t3,:,1~:o,9p: ,~r61';'~';' ~,;, :,

Exception M_a_s_ks _____ ----'II
Precision .
Underflow -----------'
Overflow --------~
Zero Divide --------~
Denormalized Operand ---------'
Invalid Operation ----------"

Reserved

Figure 7-10. FPU Control Word

EXCEPTION-FLAG MASKS

The exception-flag mask bits (bits 0 through 5 of the FPU control word) mask the 6 exception
flags in the FPU status word (also bits 0 through 5). When one of these mask bits is set, its corre­
sponding floating-point exception is inhibited from being generated.

7.3.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the FPU control word) determines the precision
(64,53, or 24 bits) of floating-point calculations made by the FPU (see Table 7-4). The default
precision is extended precision, which uses the full 64-bit significand available with the
extended-real format of the FPU data registers. This setting is best suited for most applications,
because it allows applications to take full advantage of the precision of the extended-real format.

7-16

I

in1et FLOATING-POINT UNIT

Table 7-4. Precision Control Field (PC)

Precision PC Field

Single Precision (24-Bits"} OOB

Reserved 01B

Double Precision (53-Bits') 10B

Extended Precision (64-Bits) 11 B

NOTE:

'Includes the implied integer bit.

The double precision and single precision settings, reduce the size of the significand to 53 bits
and 24 bits, respectively, These settings are provided to support the IEEE standard and to provide
compatibility with the earlier Intel Architecture NPXs. Using these settings nullifies the advan­
tages of the extended-real format's 64-bit significand length. When reduced precision is speci­
fied, the rounding of the significand value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-point instructions:
FADD, FADDP, FSUB, FSUBP, FSUBR, FSUBRP, FMUL, FMULP, FDIV, FDIVP, FDIVR,
FDIVRP, and FSQRT.

7.3.4.3. ROUNDING CONTROL FIELD

The rounding-control (Re) field of the FPU control register (bits 10 and 11) controls how the
results of floating-point instructions are rounded. Four rounding modes are supported (see Table
7-5): round to nearest, round up, round down, and round toward zero. Round to nearest is the
default rounding mode and is suitable for most applications. It provides the most accurate and
statistically unbiased estimate of the true result.

Table 7-5. Rounding Control Field (RC)

Rounding RC Field
Mode Setting Description

Round to OOB Rounded result is the closest to the infinitely precise result. If two values
nearest (even) are equally close, the result is the even value (that is, the one with the

least-significant bit of zero).

Round down 01B Rounded result is close to but no greater than the infinitely precise
(toward -=) result.

Round up 10B Rounded result is close to but no less than he infinitely precise result.
(toward +=)

Round toward 11B Rounded result is close to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

The round up and round down modes are termed directed rounding and can be used to imple­
ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the

I
7-17

FLOATING-POINT UNIT intet
true result of a multistep computation, when the intermediate results of the computation are
subject to rounding.

The round toward zero mode (sometimes called the "chop" mode) is commonly used when
performing integer arithmetic with the FPU.

Whenever possible, the FPU produces an infinitely precise result in the destination format
(single, double, or extended real). However, it is often the case that the infinitely precise result
of an arithmetic or store operation cannot be encoded exactly in the format of the destination
operand. For example, the following value (a) has a 24-bit fraction. The least-significant bit of
this fraction (the underlined bit) cannot be encoded exactly in the single-real format (which has
only a 23-bit fraction):

(a) 1.0001 0000 10000011 1001 011lE2 101

To round this result (a), the FPU first selects two representable fractions band c that most closely
bracket a in value (b < a < c).

(b) 1.0001 0000 10000011 1001 011E2 101

(c) 1.0001 0000 10000011 1001 100E2 101

The FPU then sets the result to b or to c according to the rounding mode selected in the RC field.
Rounding introduces an error in a result that is less than one unit in the last place to which the
result is rounded.

The rounded result is called the inexact result. When the FPU produces an inexact result, the
floating-point precision (inexact) flag (PE) is set in the FPU status word.

When the infinitely precise result is between the largest positive finite value allowed in a partic­
ular format and +00, the FPU rounds the result as shown in Table 7-6.

Table 7-6. Rounding of Positive Numbers

Rounding Mode Result

Rounding to nearest (even) +00

Rounding toward zero (Truncate) Maximum, positive finite value

Rounding up (toward +00) +00

Rounding down) (toward -00) Maximum, positive finite value

When the infinitely precise result is between the largest negative finite value allowed in a partic­
ular format and -00, the FPU rounds the result as shown in Table 7-7.

7-18

I

intet FLOATING-POINT UNIT

Table 7-7. Rounding of Negative Numbers

Rounding Mode Result

Rounding to nearest (even) -00

Rounding toward zero (Truncate) Maximum, negative finite value

Rounding up (toward +00) Maximum, negative finite value

Rounding down) (toward -00) -00

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

7.3.5. Infinity Control Flag

The infinity control flag (bit 12 of the FPU control word) is provided for compatibility with the
Intel287™ Math Coprocessor; it is not meaningful for the Pentium Pro processor FPU or for the
Pentium processor FPU, the Intel486 processor FPU, or Inte1387™ processor NPX. See Section
7.2.3.3., "Signed Infinities" for information on how the Pentium Pro processor handles infinity
values.

7.3.6. FPU Tag Word

The 16-bit tag word (see in Figure 7 -11) indicates the contents of each the 8 registers in the FPU
data-register stack (one 2-bit tag per register). The tag codes indicate whether a register contains
a valid number, zero, or a special floating-point number (NaN, infinity, denormal, or unsup­
ported format), or whether it is empty. The FPU tag word is cached in the FPU in the FPU tag
word register. When the FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE
instruction, the FPU tag word is set to FFFFH, which marks all the FPU data registers as empty.

15 0

I TAG(7) I TAG(6) I TAG(5) I TAG(4) I TAG(3) I TAG(2) I TAG(1) I TAG{O) I

TAG Values
OO-Valid
01 -Zero
10 - Special: invalid (NaN, unsupported), infinity, or denormal
11 - Empty

Figure 7-11. FPU Tag Word

Each tag in the FPU tag word corresponds to a physical register (numbers 0 through 7). The
current top-of-stack (TOP) pointer stored in the FPU status word can be used to associate tags
with registers relative to ST(O).

I
7-19

FLOATING-POINT UNIT

The FPU uses the tag values to detect stack overflow and underflow conditions. Stack overflow
occurs when the TOP pointer is decremented (due to a register load or push operation) to point
to a non-empty register. Stack underflow occurs when the TOP pointer is incremented (due to a
save or pop operation) to point to an empty register or when an empty register is also referenced
as a source operand. A non-empty register is defined as a register containing a zero (01), a valid
value (00), or an special (10) value.

Application programs and exception handlers can use this tag information to check the contents
of an FPU data register without performing complex decoding of the actual data in the register.
To read the tag register, it must be stored in memory using either the FSTENV IFNSTENV or
FSAVEIFNSAVE instructions. The location of the tag word in memory after being saved with
one of these instructions is shown in Figure 7 -l3 through Figure 7-14.

Software cannot directly load or modify the tags in the tag register. The FLDENV and FRSTOR
instructions load an image of the tag register into the FPU; however, the FPU uses those tag
values only to determine if the data registers are empty (lIB) or non-empty (OOB, OIB, or lOB).
If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (lIB); if the tag register image indicates that the data register is
non-empty, the FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action prevents a program from setting the values in the tag register to incor­
rectly represent the actual contents of non-empty data registers.

7.3.7. The Floating-Point Instruction and Data Pointers

The FPU stores pointers to the instruction and data (operand) for the last non-control instruction
executed in two 48-bit registers: the FPU instruction pointer and FPU data pointer registers (see
Figure 7-5). (This information is saved to provide state information for exception handlers.)

The contents of the FPU instruction and data pointer registers remain unchanged when any of
the control instructions (FINITIFNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVEIFNSAVE, FRSTOR, and
WAIT/FWAIT) are executed. The contents of the data register are undefined if the prior non­
control instruction did not have a memory operand.

The pointers stored in the FPU instruction and data pointer registers consist of an offset (stored
in bits 0 through 31) and a segment selector (stored in bits 32 through 47).

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT,
FSAVEIFNSAVE and FRSTOR instructions. The FINITIFNINIT and FSAVE/FNSAVE instruc­
tions clear these registers.

For all the Intel Architecture FPUs and NPXs except the 8087, the FPU instruction pointer
points to any prefixes that preceded the instruction. For the 8087, the instruction pointer points
only to the actual opcode.

7-20

I

FLOATING-POINT UNIT

7_3_8. Last Instruction Opcode

The FPU stores the opcode of the last non-control instruction executed in an II-bit FPU opcode
register. (This information provides state information for exception handlers.) Only the first and
second opcode bytes (after all prefixes) are stored in the FPU opcode register. Figure 7-12 shows
the encoding of these two bytes. Since the upper 5 bits of the first opcode byte are the same for
all floating-point opcodes (11 0 llB), only the lower 3 bits of this byte are stored in the opcode
register.

7.3.9.

7
1 st Instruction Byte

2
2nd Instruction Byte

070 r---------;I---,I =1 =======1
:-\~ 8'7 I 0

1 1

FPU Opcode Register

Figure 7-12. Contents of FPU Opcode Registers

Saving the FPU's State

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENVIFNSTENV instruction saves the contents of the status, control, tag, instruction
pointer, data pointer, and opcode registers. The FSAVE instruction stores that information plus
the contents of the FPU data registers.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 7-13 through 7-16. In virtual-8086 mode, the real-address mode
formats are used.

I
7-21

FLOATING-POINT UNIT in1et

32-bit Protected Mode Format
31 16 15 0

Control Word 0

Status Word 4

Tag Word 8

12

CS Selector 16

20

Operand Selector 24

Figure 7-13. Protected-Mode FPU State Image in Memory, 32-Bit Format

7-22

31

32-bit Real-address Mode Format
1615 o

Control Word 0

Status Word 4

Tag Word 8

12
~~~~~~~~'~~~----,-,--------------I 

Opcode10 ... 00 16 
r---~-----------------'----~~------------~ 

Reserved 20 
I-----c----------------~----_,--------------~ 

24 

Figure 7-14. Real Mode FPU State Image in Memory, 32-Bit Format 

I 



16-bit Protected Mode Format 
15 0 

Control Word 

Status Word 

Tag Word 

IP Offset 

CS Selector 

Operand Offset 

Operand Selector 

o 
2 

4 

6 

8 

10 

12 

FLOATING-POINT UNIT 

Figure 7-15. Protected-Mode FPU State Image in Memory, 16-Bit Format 

16-bit Real-address Mode and 
Virtual 8086 Mode Format 

15 0 

Control Word 0 

Status Word 2 

Tag Word 4 

Instruction Pointer 15 ... 00 6 

IP 19 ... 16\0\ Opcode 10 ... 00 8 

Operand Pointer 15 ... 00 10 

DP 19 ... 16\ 0\00000000000 12 

Figure 7-16. Real Mode FPU State Image in Memory, 16-Bit Format 

The FLDENV and FRS TOR instructions allow FPU state information to be loaded from 
memory into the FPU. Here, the FLDENV instruction loads only the status, control, tag, instruc­
tion pointer, data pointer, and opcode registers, and the FRSTOR instruction loads all the FPU 
registers, including the data registers. 

7.4. FLOATING-POINT DATA TYPES AND FORMATS 

The Pentium Pro processor's FPU recognizes and operates on 7 data types, divided into three 
groups: reals, integers, and packed BCD integers. Figure 7-17 shows the data formats for each 
of the FPU data types. Table 7 -8 gives the length, precision, and approximate normalized range 
that can be represented of each FPU data type. Denormal values are also supported in each of 
the real types, as required by IEEE Std. 854. 

I 
7-23 



FLOATING-POINT UNIT 

With the exception of the 80-bit extended-real format, all of these data types exist in memory 
only. When they are loaded into FPU data registers, they are converted into extended-real format 
and operated on in that format. 

Sign 

t 
II 

7978 

Sign 

Single Real 

Sign -----Eul __ E_X'-p . ...JI....:~!;;....,.._--F-ra-c-ti-on--...I 
3130 2322 0:::::::: Implied Integer o 

Double Real 

Sign -----E I Exponent I~ Fraction 

6362 5251 0::::::::::::: Implied Integer o 

Extended Real 

Exponent 1£ Fraction 

646362 ~ Integer o 
Word Integer 

Sign -----ful ____ ----' 
15 14 

Short Integer 

o 

Sign--FI 
3w1~30----------------------~0 

Long Integer 
Sign~L..1....1 ____________________ ----1 

6362 o 
Packed BCD 

017 016 015 014 013 012 011 010 09 08 07 06 05 04 03 02 01 00 

4 Bits = 1 BCD Digit o 

Figure 7-17. Floating-Point Unit Data Type Formats 

When stored in memory, the least significant byte an FPU data-type value is stored at the initial 
address specified for the value. Successive bytes from the value are then stored in successively 
higher addresses in memory. The floating-point instructions load and store memory operands 
using only the initial address of the operand. 

7.4.1. Real Numbers 

The FPU's three real data types (single-real, double-real, and extended-real) correspond directly 
to the single-precision, double-precision, and double-extended-precision formats in the IEEE 
standard. The extended-precision format is the format used by the data registers in the FPU. 
Table 7-8 gives the precision and range of these data types and Figure 7-17 gives the formats. 

7-24 

I 



FLOATING-POINT UNIT 

For the single-real and double-real formats, only the fraction part of the significand is encoded. 
The integer is assumed to be I for all numbers except 0 and denormalized finite numbers. For 
the extended-real format, the integer is contained in bit 63, and the most-significant fraction bit 
is bit 62. Here, the integer is explicitly set to I for normalized numbers, infinities, and NaN s, and 
to 0 for zero and denormalized numbers. 

Table 7-8. Length, Precision, and Range of FPU Data Types 

Data Type Length Precision Approximate Normalized Range 
(Bits) 

Binary Decimal 

Binary Real 
Single real 32 24 2-126 to 2'27 1 .18 X 10-38 to 3.40 x 1 038 

Double real 64 53 2-1022 to 21023 2.23 x 10-308 to 1.79 x 10308 

Extended real 80 64 2-16382 to 2'6383 3.37 x 10-4932 to 1.18 x 104932 

Binary Integer 
Word integer 16 15 _215 to 215 - 1 -32,768 to 32,767 

Short integer 32 31 _231 to 231 - 1 -2.14 X 109 to 2.14 X 109 

Long integer 64 63 _263 to 263 - 1 -9.22 x 10'8 to 9.22 X 10'8 

Packed BCD 80 18 (decimal Not Pertinent (_1018 + 1) to (101"-1) 
Integers digits) 

The exponent of each real data type is encoded in biased format. The biasing constant is 127 for 
the single-real format, 1023 for the double-real format, and 16,383 for the extended-real format. 

Table 7-9 shows the encodings for all the classes of real numbers (that is, zero, denormalized­
finite, normalized-finite, and 00) and NaNs for each of the three real data-types. It also gives the 
format for the real indefinite value. 

When storing real values in memory, single-real values are stored in 4 consecutive bytes in 
memory; double-real values are stored in 8 consecutive bytes; and extended-real values are 
stored in 10 consecutive bytes. 

As a general rule, values should be stored in memory in double-real format. This format provides 
sufficient range and precision to return correct results with a minimum of programmer attention. 
The single-real format is appropriate for applications that are constrained by memory; however, 
it provides less precision and a greater chance of overflow. The single-real format is also useful 
for debugging algorithms, because rounding problems will manifest themselves more quickly in 
this format. The extended-real format is normally reserved for holding intermediate results in 
the FPU registers and constants. Its extra length is designed to shield final results from the 
effects of rounding and overflow/underflow in intermediate calculations. However, when an 
application requires the maximum range and precision of the FPU (for data storage, computa­
tions, and results), values can be stored in memory in extended-real format. 

The real indefinite value is a QN aN encoding that is stored by several floating-point instructions 
in response to a masked floating-point invalid-operation exception (see Table 7-20). 

I 
7-25 



FLOATING-POINT UNIT in1et 

Table 7-9. Real Number and NaN Encodings 

Class Sign Biased Exponent Significand 

Integer' Fraction 

Positive +00 0 11 .. 11 1 00 .. 00 

+Normals 0 11 .. 10 1 11 .. 11 

0 00 .. 01 1 00 .. 00 

+Denormals 0 00 .. 00 0 11.11 

0 00 .. 00 0 00 .. 01 

+Zero 0 00 .. 00 0 00 .. 00 

Negative -Zero 1 00 .. 00 0 00 .. 00 

-Denormals 1 00 .. 00 0 00 .. 01 

1 00 .. 00 0 11 .. 11 

-Normals 1 00 .. 01 1 00 .. 00 

1 11 .. 10 1 11 .. 11 

-00 1 11 .. 11 1 00 .. 00 

NaNs SNaN X 11 .. 11 1 OX .. XX2 

QNaN X 11..11 1 1X .. XX 

Real Indefinite 1 11..11 1 10 .. 00 
(QNaN) 

Single-Real: ~ 8 Bits ~ ~23Bits~ 
Double-Real: ~11 Bits~ ~52Bits~ 

Extended-Real ~15Bits~ ~63Bits~ 

NOTES: 

1. Integer bit is implied and not stored for single-real and double-real formats. 

2. The fraction for SNaN encodings must be non-zero. 

7.4.2. Binary Integers 

The FPU's three binary integer data types (word, short, and long) have identical formats, except 
forlength. Table 7-8 gives the precision and range ofthese data types and Figure 7-17 gives the 
formats. Table 7-10 gives the encodings of the three binary integer types. 

7-26 

I 



FLOATING-POINT UNIT 

Table 7-10. Binary Integer Encodings 

Class Sign Magnitude 

Positive Largest 0 11 .. 11 

Smallest 0 00 .. 01 

Zero 0 00 .. 00 

Negative Smallest 1 11 .. 11 

Largest 1 00 .. 00 

Integer Indefinite 1 00 .. 00 

Word Integer: f- 15 bits --? 
Short Integer: f- 31 Bits--? 
Long Integer: f- 63 Bits --? 

The most significant bit of each format is the sign bit (0 for positive and 1 for negative). Negative 
values are represented in standard two's complement notation. The quantity zero is represented 
with all bits (including the sign bit) set to zero. Note that the FPU's word-integer data type is 
identical to the word-integer data type used by the processor's integer unit and the short-integer 
format is identical to the integer unit's doubleword-integer data type. 

Word-integer values are stored in 2 consecutive bytes in memory; short-integer values are stored 
in 4 consecutive bytes; and long-integer values are stored in 8 consecutive bytes. When loaded 
into the FPU's data registers, all the binary integers are exactly representable in the extended­
real format. 

The binary integer encoding 100 .. 00B represents either of two things, depending on the circum­
stances of its use: 

• 
• 

The largest negative number supported by the format (-215, _231 , or _263) • 

The integer indefinite value . 

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruc­
tion), the FPU interprets it as the largest negative number representable in the format being used. 
If the FPU detects an invalid operation when storing an integer value in memory with an 
FIST/FISTP instruction and the invalid-operation exception is masked, the FPU stores the 
integer indefinite encoding in the destination operand as a masked response to the exception. In 
situations where the origin of a value with this encoding may be ambiguous, the invalid-opera­
tion exception flag can be examined to see if the value was produced as a response to an 
exception. 

I 
7-27 



FLOATING-POINT UNIT int:et 

If the integer indefinite is stored in memory and is later loaded back into an FPU data register, 
it is interpreted as the largest negative number supported by the format. 

7.4_3. Decimal Integers 

Decimal integers are stored in a lO-byte, packed BCD format. Table 7-8 gives the precision and 
range of this data type and Figure 7-17 shows the format. In this format, the first 9 bytes hold 
18 BCD digits, 2 digits per byte (see Section 5.2.3., "BCD Integers"). The least-significant digit 
is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the 
upper half-byte of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive 
and 1 = negative). (Bits 0 through 6 of byte 10 are don't care bits.) Negative decimal integers 
are not stored in two's complement form; they are distinguished from positive decimal integers 
only by the sign bit. 

Table 7-11 gives the possible encodings of value in the decimal integer data type. 

Table 7-11. Packed Decimal Integer Encodings 

Magnitude 

Class Sign digit I digit J digit I digit I ... I digit 

Positive 
Largest 0 0000000 1001 1001 1001 1001 ... 1001 

0 0000000 0000 0000 0000 0000 ... 0001 
Smallest 

Zero 0 0000000 0000 0000 0000 0000 ... 0000 

Negative 
Zero 1 0000000 0000 0000 0000 0000 ... 0000 

1 0000000 0000 0000 0000 0000 ... 0001 
Smallest 

Largest 1 0000000 1001 1001 1001 1001 ... 1001 

Decimal 1 1111111 1111 1111 UUUU' UUUU ... UUUU 
Integer 
Indefinite 

<-- 1 byte --7 <-- 9 bytes --7 

NOTE: 

• UUUU means bit values are undefined and may contain any value. 

7-28 

I 



FLOATING-POINT UNIT 

The decimal integer format exists in memory only. When a decimal integer is loaded in a data 
register in the FPU, it is automatically converted to the extended-real format. All decimal inte­
gers are exactly representable in extended-real format. 

The packed decimal indefinite encoding is stored by the FBSTP instruction in response to a 
masked floating-point invalid-operation exception. Attempting to load this value with the FBLD 
instruction produces an undefined result. 

7.4.4. Unsupported Extended-Real Encodings 

The extended-real format permits many encodings that do not fall into any of the categories 
shown in Table 7-9. Table 7-12 shows these unsupported encodings. Some of these encodings 
were supported by the Intel287 math coprocessor; however, most of them are not supported by 
the Inte1387 math coprocessor, or the internal FPUs in the Inte1486, Pentium, or Pentium Pro 
processors. These encodings are no longer supported due to changes made in the final version 
of IEEE Std. 754 that eliminated these encodings. 

The categories of encodings formerly known as pseudo-NaNs, pseudo-infinities, and un-normal 
numbers are not supported. The Inte1387 math coprocessor and the internal FPUs in the 
Inte1486, Pentium, and Pentium Pro processors generate the invalid-operation exception when 
they are encountered as operands. 

The encodings formerly known as pseudo-denormal numbers are not generated by the Pentium 
Pro processor; however, they are used correctly when encountered as operands. The exponent is 
treated as if it were OO .. OlB and the mantissa is unchanged. The denormal exception is 
generated. 

7.5. FPU INSTRUCTION SET 

The floating-point instruction set available on the Pentium Pro processor's FPU can be grouped 
into six functional categories: 

• Data transfer instructions 

• Basic arithmetic instructions 

• Comparison instructions 

• Transcendental instructions 

• Load constant instructions 

• FPU control instructions 

See Section 6.2.2., "Floating-Point Instructions" for a list of the floating-point instructions by 
category. 

The following section briefly describes the instructions in each category. Detailed descriptions 
of the floating-point instructions are given in Chapter 11, Instruction Set Reference. 

I 
7-29 



FLOATING-POINT UNIT 

Table 7-12. Unsupported Extended-Real Encodings 

Class Sign Biased Exponent Significand 

Integer Fraction 

Positive 0 11 .. 11 0 11 .. 11 
Pseudo-NaNs Quiet 

0 11 .. 11 10 .. 00 

0 11 .. 11 0 01 .. 11 
Signaling 

0 11 .. 11 00 .. 01 

Positive Reals Pseudo-infinity 0 11 .. 11 0 00 .. 00 

0 11 .. 10 0 11 .. 11 
Unnormals 

0 00 .. 01 00 .. 00 

Pseudo-denormals 0 00 .. 00 1 11 .. 11 

0 00 .. 00 00 .. 00 

Negative Reals Pseudo-de normals 1 00 .. 00 1 11 .. 11 

1 00 .. 00 00 .. 00 

1 11 .. 10 0 11 .. 01 
Unnormals 

1 00 .. 01 00 .. 00 

Pseudo-infinity 1 11 .. 11 0 00 .. 00 

Negative 1 11 .. 11 0 01 .. 11 
Pseudo-NaNs Signaling 

1 11 .. 11 00 .. 01 

1 11 .. 11 0 11 .. 11 
Quiet 

1 11 .. 11 10 .. 00 

f-- 15 bits---+ f-- 63 bits ---+ 

7.5.1. Escape (ESC) Instructions 

All of the instructions in the FPU instruction set fall into a class of instructions known as escape 
(ESC) instructions. All of these instructions have a common opcode format, which is slightly 
different from the format used by the integer and operating-system instructions. 

7.5.2. FPU Instruction Operands 

Most floating-point instructions require one or two operands, which are located on the FPU data­
register stack or in memory. (None of the floating-point instructions accept immediate 
operands.) 

7-30 

I 



FLOATING-POINT UNIT 

When an operand is located in a data register, it is referenced relative to the ST(O) register (the 
register at the top of the register stack), rather than by a physical register number. Often the ST(O) 
register is an implied operand. 

Operands in memory can be referenced using the same operand addressing methods available 
for the integer and system instructions. 

7.5.3. Data Transfer Instructions 

The data transfer instructions (see Table 7-13) perform the following operations: 

• 
• 
• 

Load real, integer, or packed BCD operands from memory into the ST(O) register. 

Store the value in the ST(O) register in memory in real, integer, or packed BCD format. 

Move values between registers in the FPU register stack. 

Table 7-13. Data Transfer Instructions 

Real Integer Packed Decimal 

FLO Load Real FILD Load Integer FBLD Load Packed 
Decimal 

FST Store Real FIST Store Integer 

FSTP Store Real and FISTP Store Integer FBSTP Store Packed 
Pop and Pop Decimal and Pop 

FXCH Exchange Register 
Contents 

FCMOVcc Conditional Move 

Operands are normally stored in the FPU data registers in extended-real format (see Section 
7.3.4.2., "Precision Control Field"). The FLD (load real) instruction pushes a real operand from 
memory onto the top of the FPU data-register stack. If the operand is in single- or double-real 
format, it is automatically converted to extended-real format. This instruction can also be used 
to push the value in a selected FPU data register onto the top of the register stack. 

The FILD (load integer) instruction converts an integer operand in memory into extended-real 
format and pushes the value onto the top of the register stack. The FBLD (load packed decimal) 
instruction performs the same load operation for a packed BCD operand in memory. 

The FST (store real) and FIST (store integer) instructions store the value in register ST(O) in 
memory in the destination format (real or integer, respectively). Again, the format conversion is 
carried out automatically. 

The FSTP (store real and pop), FISTP (store integer and pop), and FBSTP (store packed decimal 
and pop) instructions store the value in the ST(O) registers into memory in the destination format 
(real, integer, or packed BCD), then performs a pop operation on the register stack. A pop oper­
ation causes the ST(O) register to be marked empty and the stack pointer (TOP) in the FPU 

I 
7-31 



FLOATING-POINT UNIT intet 

control work to be incremented by 1. The FSTP instruction can also be used to copy the value 
in the ST(O) register to another FPU register [ST(i)]. 

The FXCH (exchange register contents) instruction exchanges the value in a selected register in 
the stack [ST(i)] with the value in ST(O). 

The FCMOV cc (conditional move) instructions move the value in a selected register in the stack 
[ST(i)] to register ST(O). These instructions move the value only if the conditions specified with 
a condition code (cc) are satisfied (see Table 7-14). The conditions being tested with the 
FCMOVcc instructions are represented by the status flags in the EFLAGS register. The condi­
tion code mnemonics are appended to the letters "FCMOV" to form the mnemonic for a 
FCMOV cc instruction. 

Table 7-14. Floating-Point Conditional Move Instructions 

Instruction Mnemonic Status Flag States Condition Description 

FCMOVB CF=1 Below 

FCMOVNB CF=O Not below 

FCMOVE ZF=1 Equal 

FCMOVNE ZF=O Not equal 

FCMOVBE (CF or ZF)=1 Below or equal 

FCMOVNBE (CF orZF)=O Not below nor equal 

FCMOVU PF=1 Unordered 

FCMOVNU PF=O Not unordered 

Like the CMOV cc instructions, the FCMOV cc instructions are useful for optimizing small IF 
constructions. They also help eliminate branching overhead for IF operations and the possibility 
of branch mispredictions by the processor. 

7.5.4. 

NOTE 

The FCMOV cc instructions may not be supported on some processors in the 
Pentium Pro processor family. Software can check if the FCMOV cc instruc­
tions are supported by checking the processor's feature information with the 
CPUID instruction (see Chapter 11, "CPUID-CPU Identification"). 

Load Constant Instructions 

The following instructions push commonly used constants onto the top [ST(O)] of the FPU 
register stack: 

FLDZ 
FLDI 
FLDPI 

7-32 

Load +0.0 
Load +1.0 
Load 1t 

I 



FLDL2T 
FLDL2E 
FLDLG2 
FLDLN2 

Load log2 10 
Load log2e 
Load loglO2 
Load loge2 

FLOATING-POINT UNIT 

The constant values have full extended-real precision (64 bits) and are accurate to approximately 
19 decimal digits. They are stored internally in a format more precise than extended real. When 
loading the constant, the FPU rounds the more precise internal constant according to the RC 
(rounding control) field of the FPU control word. See Section 7.5.8., "Pi" for information on the 
1t constant. 

7.5.5. Basic Arithmetic Instructions 

The following floating-point instructions perform basic arithmetic operations on real numbers. 
Where applicable, these instructions match IEEE Standard 754: 

FADDIFADDP 
FIADD 
FSUB/FSUBP 
FISUB 
FSUBRIFSUBRP 
FISUBR 
FMUL/FMULP 
FIMUL 
FDIVIFDIVP 
FIDIV 
FDIVRIFDIVRP 
FIDIVR 
FABS 
FCHS 
FSQRT 
FPREM 
FPREMI 
FRNDINT 
FXTRACT 

Add real 
Add integer to real 
Subtract real 
Subtract integer from real 
Reverse subtract real 
Reverse subtract real from integer 
Multiply real 
Multiply integer by real 
Divide real 
Divide real by integer 
Reverse divide 
Reverse divide integer by real 
Absolute value 
Change sign 
Square root 
Partial remainder 
IEEE partial remainder 
Round to integral value 
Extract exponent and significand 

The add, subtract, multiply and divide instructions operate on the following types of operands: 

• Two FPU register values . 

• A register value and a real or integer value in memory . 

Operands in memory can be in single-real, double-real, short-integer, or word-integer format. 
They are converted to extended-real format automatically. 

Reverse versions of the subtract and divide instructions are provided to foster efficient coding. 
For example, the FSUB instruction subtracts the value in a specified FPU register [STU)] from 
the value in register ST(O); whereas, the FSUBR instruction subtracts the value in ST(O) from 
the value in ST(i). The results of both operations are stored in register ST(O). These instructions 

I 
7-33 



FLOATING-POINT UNIT 

eliminate the need to exchange values between register ST(O) and another FPU register to 
perform a subtraction or division. 

The pop versions ofthe add, subtract, multiply and divide instructions pop the FPU register stack 
following the arithmetic operation. 

The FPREM instruction computes the remainder from the division of two operands in the 
manner used by the Intel 8087 and Inte1287 math coprocessors; the FPREMI instructions 
computes the remainder is the manner specified in the IEEE specification. 

The FSQRT instruction computes the square root of the source operand. 

The FRNDINT instructions rounds a real value to its nearest integer value, according to the 
current rounding mode specified in the RC field of the FPU control word. This instruction 
performs a function similar to the FISTIFISTP instructions, except that the result is saved in a 
real format. 

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The 
FABS instruction produces the absolute value of the source operand. The FCHS instruction 
changes the sign of the source operand. The FXTRACT instruction separates the source operand 
into its exponent and fraction and stores each value in a register in real format. 

7.5.6. Comparison and Classification Instructions 

The following instructions compare or classify real values: 

FCOMIFCOMPIFCOMPP 
FUCOMIFUCOMPIFUCOMPP 
FICOMIFICOMP 
FCOMIIFCOMIP 
FUCOMIIFUCOMIP 
FrST 
FXAM 

Compare real and set FPU condition code flags. 
Unordered compare real and set FPU condition code flags. 
Compare integer and set FPU condition code flags. 
Compare real and set EFLAGS status flags. 
Unordered compare real and set EFLAGS status flags. 
Test (compare real with 0.0). 
Examine. 

Comparison of real values differ from comparison of integers because real values have four 
(rather than three) mutually exclusive relationships: less than, equal, greater than, and 
unordered. 

The unordered relationship is true when at least one of the two values being compared is a NaN 
or in an undefined format. This additional relationship is required because, by definition, NaNs 
are not numbers, so they cannot have less than, equal, or greater than relationships with other 
real values. 

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(O) with a real 
source operand and set the condition code flags (CO, C2, and C3) in the FPU status word 
according to the results (see Table 7-15). If an unordered condition is detected (one or both of 
the values is a NaN or in an undefined format), a floating-point invalid-operation exception is 
generated. 

The pop versions of the instruction pop the FPU register stack once or twice after the comparison 
operation is complete. 

7-34 

I 



FLOATING-POINT UNIT 

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP, 
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and 
FUCOMPP instructions, if an unordered condition is detected because one or both of the oper­
ands is a QNaN, the floating-point invalid-operation exception is not generated. 

Table 7-15. Setting of FPU Condition Code Flags for Real Number Comparisons 

Condition C3 C2 CO 

ST(O) > Source Operand 0 0 0 

ST(O) < Source Operand 0 0 1 

ST(O) = Source Operand 1 0 0 

Unordered 1 1 1 

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instruc­
tions, except that the source operand is an integer value in memory. The integer value is auto­
matically converted into an extended real value prior to making the comparison. The FICOMP 
instruction pops the FPU register stack following the comparison operation. 

The FfST instruction performs the same operation as the FCOM instruction, except that the 
value in register ST(O) is always compared with the value 0.0. 

The FCOMI and FCOMIP instructions are new in the Intel Pentium Pro processor. They 
perform the same comparison as the FCOM and FCOMP instructions, except that they set the 
status flags (ZF, PF, and CF) in the EFLAGS register to indicate the results of the comparison 
(see Table 7-16) instead of the FPU condition code flags. The FCOMI and FCOMIP instructions 
allow condition branch instructions (Jce) to be executed directly from the results of their 
comparison. 

Table 7-16. Setting of EFLAGS Status Flags for Real Number Comparisons 

Comparison Results ZF PF CF 

STO > ST(J) 0 0 0 

STO < ST(J) 0 0 1 

STO =ST(J) 1 0 0 

Unordered 1 1 1 

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP 
instructions, except that they do not generate a floating-point invalid-operation exception if the 
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP 
and FUCOMIP instructions pop the FPU register stack following the comparison operation. 

The FXAM instruction determines the classification of the real value in the ST(O) register (that 
is, whether the value is zero, a denormal number, a normal finite number, 00, a NaN, or an unsup­
ported format) or that the register is empty. It sets the FPU condition code flags to indicate the 
classification (see Chapter 11, "FXAM-Exarnine").1t also sets the Cl flag to indicate the sign 
of the value. 

I 
7-35 



FLOATING-POINT UNIT 

7.5.6.1. BRANCHING ON THE FPU CONDITION CODES 

The processor does not offer any control-flow instructions that branch on the setting of the 
condition code flags (CO, C2, and C3) in the FPU status word. To branch on the state of these 
flags, the FPU status word must first be moved to the AX register in the integer unit. The 
FSTSW AX (store status word) instruction can be used for this purpose. When these flags are 
in the AX register, the TEST instruction can be used to control conditional branching as follows: 

1. Check for an unordered result. Use the TEST instruction to compare the contents of the 
AX register with the constant 0400H (see Table 7-17). This operation will clear the ZF flag 
in the EFLAGS register if the condition code flags indicate an unordered result; otherwise, 
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if 
necessary) to a procedure for handling unordered operands. 

Table 7-17. TEST Instruction Constants for Conditional Branching 

Order Constant Branch 

ST(O) > Source Operand 4500H JZ 

ST(O) < Source Operand 0100H JNZ 

ST(O) = Source Operand 4000H JNZ 

Unordered 0400H JNZ 

2. Check ordered comparison result. Use the constants given in Table 7-17 in the TEST 
instruction to test for a less than, equal to, or greater than result, then use the corresponding 
conditional branch instruction to transfer program control to the appropriate procedure or 
section of code. 

If a program or procedure has been thoroughly tested and it incorporates periodic checks for 
QN aN results, then it is not necessary to check for the unordered result every time a comparison 
is made. 

Some non-comparison FPU instructions update the condition code flags in the FPU status word. 
To ensure that the status word is not altered inadvertently, store it immediately following a 
comparison operation. 

7.5.7. Trigonometric Instructions 

The following instructions perform four common trigonometric functions: 

FSIN 
FCOS 
FSINCOS 
FPTAN 
FPATAN 

Sine 
Cosine 
Sine and cosine 
Tangent 
Arctangent 

These instructions operate on the top one or two registers of the FPU register stack and they 
return their results to the stack. The source operands must be given in radians. 

7-36 

I 



FLOATING-POINT UNIT 

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper­
ates faster than executing the FSIN and FCOS instructions in succession. 

The FPATAN instruction computes the arctangent of ST(l) divided by ST(O). It is useful for 
converting rectangular coordinates to polar coordinates. 

7.5.8. Pi 

When the argument (source operand) of a trigonometric function is within the range of the func­
tion, the argument is automatically reduced by the appropriate multiple of 21t through the same 
reduction mechanism used by the FPREM and FPREMI instructions. The internal value of 1t 
that the Pentium Pro processor uses for argument reduction and other computations is as 
follows: 

1t = O.f* 2e 

where: 

f= C90FDAA2 2168C234 C 

e = 2 if the significand is O.f 

(The spaces in the fraction above indicate 32-bit boundaries.) 

This internal1t value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand 
of an extended-real value. (Since 66 bits is not an even number of hexadecimal digits, two addi­
tional zeros have been added to the value so that it can be represented in hexadecimal 
format. The least-significant hexadecimal digit (C) is thus 1100B, where the two least­
significant bits represent bits 67 and 68 of the mantissa.) 

This value of 1t has been chosen to guarantee no loss of significance in a source operand, 
provided the operand is within the specified range for the instruction. 

If the results of computations that explicitly use 1t are to be used in the FSIN, FCOS, FSINCOS, 
or FPfAN instructions, the full 66-bit fraction of 1t should be used. This insures that the results 
are consistent with the argument-reduction algorithms that these instructions use. Using a 
rounded version of 1t can cause inaccuracies in result values, which if propagated through several 
calculations, might result in meaningless results. 

A common method of representing the full 66-bit fraction of 1t is to separate the value into two 
numbers. For example, the following two double-real values (given in hexadecimal) added 
together give the value for 1t shown earlier in this section with the full 66-bit fraction: 

1t = high1t + 10w1t 

where: 

high1t = 400921FB 54400000 

10w1t = 3DDOB4661 lA600000 

Here high1t gives the most-significant 33 bits of 1t and 10w1t gives the least-significant 33 bits. 
Similar versions of 1t can also be written in extended-real format. 

I 
7-37 



FLOATING-POINT UNIT 

When using this two-part 1t value in an algorithm, parallel computations should be performed 
on each part, with the results kept separate. When all the computations are complete, the two 
results can be added together to form the final result. 

The complications of maintaining a consistent value of 1t for argument reduction can be avoided, 
either by applying the trigonometric functions only to arguments within the range of the 
automatic reduction mechanism, or by performing all argument reductions (down to a magni­
tude less than 1t/4) explicitly in software. 

7.5.9. Logarithmic, Exponential, and Scale 

The following instructions provide two different logarithmic functions, an exponential function, 
and a scale function. 

FYL2X 
FYL2XPI 
F2XMl 
FSCALE 

Compute log (y * log2x) 
Compute log epsilon (y * log2(x + 1)) 
Compute exponential (2x - 1) 
Scale 

The FYL2X and FYL2XPI instructions perform two different base 2 logarithmic operations. 
The FYL2X instruction computes the log of (y * log2x). This operation permits the calculation 
of the log of any base using the following equation: 

10gb X = (l/log2b) * log2x 

The FYEXPI instruction computes the log epsilon of (y * log2 (x + 1)). This operation provides 
optimum accuracy for values of epsilon (e) that are close to O. 

The F2XMl instruction computes the exponential (2X - 1). This instruction only operates on 
source values in the range -1.0 to + 1.0. 

The FSCALE instruction multiplies the source operand by a power of 2. 

7.5.10. Transcendental Instruction Accuracy 

The algorithms that the Intel Pentium and Pentium Pro processors use for the transcendental 
instructions (FSIN, FCaS, FSINCaS, FPfAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) 
allow a higher level of accuracy than was possible in earlier Intel Architecture math coproces­
sors and FPUs. The accuracy of these instructions is measured in terms of units in the last place 
(ulp). For a given argument x, letfi.x) andF(x) be the correct and computed (approximate) func­
tion values, respectively. The error in ulps is defined to be: 

error = V-(x) - F (x) I 
I l-63 

wherekisanintegersuchthat 1 S;2-kf(x) <2. 

7-38 

I 



FLOATING-POINT UNIT 

With the Pentium Pro processor, the worst case error on transcendental functions is less than 
1 ulp when rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. 
The functions are guaranteed to be monotonic, with respect to the input operands, throughout 
the domain supported by the instruction. 

7.5.11. FPU Control Instructions 

The following instructions control the state and modes of operation of the FPU. They also allow 
the status of the FPU to be examined: 

FINIT/FNINIT 
FLDCW 
FSTCWIFNSTCW 
FSTSW IFNSTSW 
FCLEXlFNCLEX 
FLDENV 
FSTENV IFNSTENV 
FRSTOR 
FSAVE/FNSAVE 
FINCSTP 
FDECSTP 
FFREE 
FNOP 
WAITIFWAIT 

Initialize FPU 
Load FPU control word 
Store FPU control word 
Store FPU status word 
Clear FPU exception flags 
Load FPU environment 
Store FPU environment 
Restore FPU state 
Save FPU state 
Increment FPU register stack pointer 
Decrement FPU register stack pointer 
Free FPU register 
No operation 
Check for and handle pending unmasked FPU exceptions 

The FINIT/FNINIT instructions initialize the FPU and its internal registers to default values. 

The FLDCW instructions loads the FPU control word register with a value from memory. The 
FSTCW/FNSTCW and FSTSWIFNSTSW instructions store the FPU control and status words, 
respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose register). 

The FSTENVIFNSTENV and FSAVEIFNSAVE instructions save the FPU environment and 
state, respectively, in memory. The FPU environment includes all the FPU's control and status 
registers; the FPU state includes the FPU environment and the data registers in the FPU register 
stack. The FLDENV and FRS TOR instructions load the FPU environment and state, respec­
tively, from memory into the FPU. These instructions are commonly used when switching tasks 
or contexts. 

The WAITIFWAIT instructions are synchronization instructions. (They are actually mnemonics 
for the same opcode.) These instructions check FPU status word for pending unmasked FPU 
exceptions. If any pending unmasked FPU exceptions are found, they are handled before the 
processor resumes execution of the instructions (integer, floating-point, or system instruction) 
in the instruction stream. The WAIT/FWAIT instructions are provided to allow synchronization 
of instruction execution between the FPU and the processor's integer unit. See Section 7.9., 
"Floating-Point Exception Synchronization" for more information on the use of the 
WAIT/FWAIT instructions. 

I 
7-39 



FLOATING-POINT UNIT 

7.5.12. Waiting Vs. Non-Waiting Instructions 

All of the floating-point instructions except a few special control instructions perform a wait 
operation (similar to the WAlT/FWAlT instructions), to check for and handle pending unmasked 
FPU exceptions, before they perform their primary operation (such as adding two real numbers). 
These instructions are called waiting instructions. Some of the FPU control instructions, such as 
FSTSW/FNSTSW, have both a waiting and a non-waiting versions. The version waiting version 
(with the "F" prefix) executes a wait operation before it performs its primary operation; whereas, 
the non-waiting version (with the "FN" prefix) ignores pending unmasked exceptions. Non­
waiting instructions allow software to save the current FPU state without first handling pending 
exceptions or to reset or reinitialize the FPU without regard for pending exceptions. 

7.5.13. Unsupported FPU Instructions 

The Intel 8087 instructions FENI and FDISI and the Intel287 math coprocessor instruction 
FSETPM perform no function in the Pentium Pro processor. If these opcodes are detected in the 
instruction stream, the FPU performs no specific operation and no internal FPU states are 
affected. 

7.6. OPERATING ON NANS 

As was described in Section 7.2.3.4., "NaNs", the FPU supports two types of NaNs: SNaNs and 
QNaNs. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least 
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an 00.) A QNaN is 
any NaN value with the most-significant fraction bit set to 1. The sign bit ofa NaN is not inter­
preted. 

As a general rule, when a QNaN is used in one or more arithmetic floating-point instructions, it 
is allowed to propagate through a computation. An SNaN on the other hand causes a floating­
point invalid-operation exception to be signaled. SNaNs are typically used to trap or invoke an 
exception handler. 

The floating-point invalid-operation exception has a flag and a mask bit associated with it in the 
FPU status and control registers, respectively (see Section 7.7., "Floating-Point Exception 
Handling"). The mask bit determines how the FPU handles an SNaN value. If the floating-point 
invalid-operation mask bit is set, the SNaN is convert to a QNaN by setting the most-significant 
fraction bit of the value to 1. The result is then stored in the destination operand and the floating­
point invalid-operation flag is set. If the invalid-operation mask is clear, a floating-point invalid­
operation fault is signaled and no result is stored in the destination operand. 

When a real operation or exception delivers a QNaN result, the value of the result depends on 
the source operands, as shown in Table 7-18. 

Except for the rules given at the beginning of this section for encoding SNaNs and QNaNs, soft­
ware is free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs 
can be encoded to carry and store data, such as diagnostic information. 

7-40 

I 



FLOATING-POINT UNIT 

Table 7-18. Rules for Generating QNaNs 

Source Operands QNaN Result 

An SNaN and a QNaN. The QNaN source operand. 

Two SNaNs. The SNaN with the larger significand converted 
into a QNaN. 

TwoQNaNs. The QNaN with the larger significand. 

An SNaN and a real value. The SNaN converted into a QNaN. 

A QNaN and a real value. The QNaN source operand. 

Neither source operand is a NaN and a floating- The default QNaN real indefinite. 
point invalid-operation exception is signaled. 

7.7. FLOATING-POINT EXCEPTION HANDLING 

The FPU detects six classes of exception conditions while executing floating-point instructions: 

• 

• 
• 
• 
• 
• 

Invalid operation (#1) 

Stack overflow or underflow (#IS) 

Invalid arithmetic operation (#IA) 

Divide-by-zero (#Z) 

Denormalized operand (#D) 

Numeric overflow (#0) 

Numeric underflow (#U) 

Inexact result (precision) (#P) 

The nomenclature of "#" symbol followed by one or two letters (for example, #IS) is used in this 
manual to indicate exception conditions. It is merely a short-hand form and is not related to 
assembler mnemonics. 

Each of the six exception classes has a corresponding flag bit in the FPU status word and a mask 
bit in the FPU control word (see Section 7.3.2., "FPU Status Register" and Section 7.3.4., "FPU 
Control Word", respectively). In addition, the exception summary (ES) flag in the status word 
indicates when any of the exceptions has been detected, and the stack fault (SF) flag (also in the 
status word) distinguishes between the two types of invalid-operation exceptions. 

When the FPU detects a floating-point exception, it sets the appropriate flags in the FPU status 
word, then takes one of two possible courses of action: 

• 

• 

I 

Handles the exception automatically, producing a predefined (and often times usable 
result), while allowing program execution to continue undisturbed. 

Invokes a software exception handler to handle the exception. 

7-41 



FLOATING-POINT UNIT 

The following sections describe how the FPU handles exceptions (either automatically or by 
calling a software exception handler), how the FPU detects the various floating-point excep­
tions, and the automatic (masked) response to the floating-point exceptions. 

7.7.1. Arithmetic vs. Non-Arithmetic Instructions 

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic 
instructions and non-arithmetic instructions. Non-arithmetic instructions have no operands or 
do not make substantial changes to their operands. Arithmetic instructions do make significant 
changes to their operands; in particular, they make changes that could result in a floating-point 
exception being signaled. Table 7-19 lists the non-arithmetic and arithmetic instructions. It 
should be noted that some non-arithmetic instructions can signal a floating-point stack (fault) 
exception, but this exception is not the result of an operation on an operand. 

7.7.2. Automatic Exception Handling 

If the FPU detects an exception condition for a masked exception (an exception with its mask 
bit set), it delivers a predefined (default) response and continues executing instructions. The 
masked (default) responses to exceptions have been chosen to deliver a reasonable result for 
each exception condition and are generally satisfactory for most floating-point applications. By 
masking or unmasking specific floating-point exceptions in the FPU control word, programmers 
can delegate responsibility for most exceptions to the FPU and reserve the most severe exception 
conditions for software exception handlers. 

Because the exception flags are "sticky," they provide a cumulative record of the exceptions that 
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a 
calculation, and then inspect the exception flags to see if any exceptions were detected during 
the calculation. 

Note that when exceptions are masked, the FPU may detect mUltiple exceptions in a single 
instruction, because it continues executing the instruction after performing its masked response. 
For example, the FPU can detect a denormalized operand, perform its masked response to this 
exception, and then detect numeric underflow. 

7.7.3. Software Exception Handling 

If the FPU detects an exception condition for an unmasked exception (an exception with its mask 
bit cleared), a software exception handler is invoked immediately before execution of any of the 
following instructions in the processor's instruction stream: 

• 

• 

7-42 

The next floating-point instruction, unless it is one of the non-waiting instructions 
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 

The next WAITIFWAIT instruction . 

I 



int'et FLOATING-POINT UNIT 

Table 7-19. Arithmetic and Non-Arithmetic Instructions 

Non-arithmetic Instructions Arithmetic Instructions 

FABS F2XM1 

FCHS FADD/FADDP 

FCLEX FBLD 

FDECSTP FBSTP 

FFREE FCOM/FCOMP/FCOMPP 

FINCSTP FCOS 

FINIT/FNINIT FDIV/FDIVP/FDIVRlFDIVRP 

FLD (register-to-register) FIADD 

FLD (extended format from memory) FICOM/FICOMP 

FLD constant FIDIV/FIDIVR 

FLDCW FILD 

FLDENV FIMUL 

FNOP FIST/FISTP 

FRSTOR FISUB/FISUBR 

FSAVE/FNSAVE FLD (conversion) 

FST/FSTP (register-to-register) FMUUFMULP 

FSTP (extended format to memory) FPATAN 

FSTCW/FNSTCW FPREM/FPREM1 

FSTENV IFNSTENV FPTAN 

FSTSW/FNSTSW FRNDINT 

WAIT/FWAIT FSCALE 

FXAM FSIN 

FXCH FSINCOS 

FSQRT 

FST/FSTP (conversion) 

FSUB/FSUBP/FSUBR/FSUBRP 

FTST 

FUCOM/FUCOM P/FUCOMPP 

FXTRACT 

FYL2X1FYL2XP1 

I 
7-43 



FLOATING-POINT UNIT 

The method the processor uses to invoke the floating-point exception handler depends on the 
setting of the NE flag of the CRO control register and the state of the processor's IGNNE# pin. 
If the NE flag is set, the exception handler is invoked through a floating-point-error exception 
(#MF, vector 16). (When the NE flag is set, the IGNNE# signal has no effect on the processor.) 

If the NE flag is cleared, but the IGNNE# pin is asserted, the processor disregards the exception 
and continues executing instructions. (Here, the FPU never calls the floating-point exception 
handler, but still generates masked and unmasked exception responses.) 

If the NE bit is cleared and the IGNNE# pin is deasserted, an unmasked floating-point exception 
causes the processor to do the following: 

1. Stop instruction execution immediately before executing the next waiting floating-point 
instruction or WAIT/FWAIT instruction and wait for an external interrupt. (Waiting 
instructions are those floating-point instructions that cause the processor to check for and 
service pending unmasked interrupts before the instructions are executed.) 

2. Assert its FERR# pin to generate a external interrupt. 

When using this external interrupt mechanism, the FERR# pin must be connected to an input to 
an external interrupt controller. An external interrupt is then generated when the FERR# output 
drives the input to the interrupt controller. (Regardless of the value ofNE, an unmasked floating­
point exception always causes the FERR# pin to be asserted upon completion of the instruction 
that caused the exception.) 

Error reporting by means of an external interrupt is provided to support PC-style error reporting. 
See Chapter 2, System Architecture Overview, in the Pentium® Pro Family Developers Manual, 
Volume 3 for more information about the NE bit. 

After a floating-point exception handler is invoked, the processor handles the exception in the 
same manner that it handles non-FPU exceptions. (The floating-point exception handler is 
normally part of the operating system or executive software.) A typical action of the exception 
handler is to store FPU state information in memory (with the FSTENV/FNSTENV or 
FSAVEIFNSAVE instructions) so that it can evaluate the exception and formulate an appropriate 
response (see Section 7.3.9., "Saving the FPU's State"). Other typical exception handler actions 
include: 

• 

• 
• 
• 

Examine stored FPU state information (control, status, and tag words, and operand and 
instruction pointers) to determine the nature of the error. 

Taking action to correct the condition that caused the error. 

Clear the exception bits in the status word. 

Return to the interrupted program and resume normal execution. 

If the faulting floating-point instruction is followed by one or more non-floating-point instruc­
tions, it may not be useful to re-execute the faulting instruction. See Section 7.9., "Floating­
Point Exception Synchronization" for more information on synchronizing floating-point excep­
tions. 

In cases where the handler needs to restart program execution with the faulting instruction, the 
IRET instruction cannot be used directly. The reason for this is that because the exception is not 

7-44 

I 



FLOATING-POINT UNIT 

generated until the next floating-point or WAITIFWAIT instruction following the faulting 
floating-point instruction, the return instruction pointer on the stack may not point to the faulting 
instruction. To restart program execution at the faulting instruction, the exception handler must 
obtain a pointer to the instruction from the saved FPU state information, load it into the return 
instruction pointer location on the stack, and then execute the IRET instruction. 

In lieu of writing recovery procedures, the exception handler can do the following: 

• 
• 
• 

Increment an exception counter for later display or printing. 

Print or display diagnostic information (such as, the FPU environment and registers). 

Halt further program execution. 

7.8. FLOATING-POINT EXCEPTION CONDITIONS 

The following sections describe the various conditions that cause a floating-point exception to 
be generated and the masked response of the FPU when these conditions are detected. Chapter 
11, Instruction Set Reference, lists the floating-point exceptions that can be signaled for each 
floating-point instruction. 

7.8.1. Invalid Operation Exception 

The floating-point invalid-operation exception occurs in response to two general types of oper­
ations: 

• 
• 

Stack overflow or underflow (#IS). 

Invalid arithmetic operand (#IA). 

The flag for this exception (IE) is bit 0 of the FPU status word, and the mask bit (1M) is bit 0 of 
the FPU control word. The stack fault flag (SF) of the FPU status word indicates the type of 
operation caused the exception. When the SF flag is set to 1, a stack operation has resulted in 
stack overflow or underflow; when the flag is cleared to 0, an arithmetic instruction has encoun­
tered an invalid operand. Note that the FPU explicitly sets the SF flag when it detects a stack 
overflow or underflow condition, but it does not explicitly clear the flag when it detects an 
invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1 following an 
invalid-arithmetic-operation exception, if it was not cleared from the last time a stack overflow 
or underflow condition occurred. See Section 7.3.2.4., "Stack Fault Flag" for more information 
about the SF flag. 

7.8.1.1. STACK OVERFLOW OR UNDERFLOW EXCEPTION (#IS) 

The FPU tag word keeps track of the contents of the registers in the FPU register stack (see 
Section 7.3.6., "FPU Tag Word"). It then uses this information to detect two different types of 
stack faults: 

• 
• 

I 

Stack overflow-an instruction attempts to write a value into a non-empty FPU register 

Stack underflow-an instruction attempts to read a value from an empty FPU register. 

7-45 



FLOATING-POINT UNIT 

When the FPU detects stack overflow or underflow, it sets the IE and SF flags in the FPU status 
word to 1. It then sets condition-code flag C1 in the FPU status word to 1 if stack overflow 
occurred or to 0 if stack underflow occurred. 

If the invalid-operation exception is masked, the FPU then returns the real, integer, or BCD­
integer indefinite value to the destination operand, depending on the instruction being executed. 
This value overwrites the destination register or memory location specified by the instruction. 

If the invalid-operation exception is not masked, a software exception handler is invoked (see 
Section 7.7.3., "Software Exception Handling") and the top-of-stack point~r (TOP) and source 
operands remain unchanged. 

The term stack overflow comes from the condition where the a program has pushed eight values 
onto the FPU register stack and the next value pushed on the stack causes a stack wraparound to 
a register that already contains a value. The term stack underflow refers to the opposite condition 
from stack overflow. Here, a program has popped eight values from the FPU register stack and 
the next value popped from the stack causes stack wraparound to an empty register. 

A possible action of the invalid-operand exception handler for handling stack faults is to create 
and maintain an extension of the FPU register stack (a virtual stack) in memory. The handler can 
then adjust the stack contents by writing values to memory when stack overflow occurs or 
reading values from memory when stack underflow occurs. 

7.8.1.2. INVALID ARITHMETIC OPERAND EXCEPTION (#IA) 

The FPU is able to detect a variety of invalid arithmetic operations that can be coded in a 
program. These operations generally indicate a programming error, such as dividing 00 by 00. 

Table 7-20 lists the invalid arithmetic operations that the FPU detects. This group includes the 
invalid operations defined in IEEE Std. 854. 

When the FPU detects an invalid arithmetic operand, it sets the IE flag in the FPU status word 
to 1. If the invalid-operation exception is masked, the FPU then returns an indefinite value to the 
destination operand or sets the floating-point condition codes, as shown in Table 7-20. If the 
invalid-operation exception is not masked, a software exception handler is invoked (see Section 
7.7.3., "Software Exception Handling") and the top-of-stack pointer (TOP) and source operands 
remain unchanged. 

7.8.2. Division-By-Zero Exception (#Z) 

The FPU reports a floating-point zero-divide exception whenever an instruction attempts to 
divide a finite non-zero operand by O. The flag (ZE) for this exception is bit 2 of the FPU status 
word, and the mask bit (ZM) is bit 2 of the FPU control word. The FDIV, FDIVP, FDIVR, 
FDIVRP, FIDIV, and FIDIVR instructions and the other instructions that perform division inter­
nally (FYL2X and FXTRACT) can report the divide-by-zero exception. 

7-46 

I 



in1et FLOATING-POINT UNIT 

Table 7-20. Invalid Arithmetic Operations and the Masked Responses to Them 

Condition Masked Response 

Any arithmetic operation on an operand that is in an Return the real indefinite value to the destination 
unsupported format. operand. 

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see 
Section 7.6., "Operating on NaNs"). 

Compare and test operations: one or both operands Set the condition code flags (CO, C2, and C3) in 
are NaNs. the FPU status word to 111 B (not comparable). 

Addition: operands are opposite-signed infinities. Return the real indefinite value to the destination 
Subtraction: operands are like-signed infinities. operand. 

Multiplication: 00 by 0; ° by 00. Return the real indefinite value to the destination 
operand. 

Division: 00 by 00; 0 by O. Return the real indefinite value to the destination 
operand. 

Remainder instructions FPREM, FPREM1: modulus Return the real indefinite; clear condition code 
(divisor) is 0 or dividend is 00. flag C2 to O. 

Trigonometric instructions FCOS, FPTAN, FSIN, Return the real indefinite; clear condition code 
FSINCOS: source operand is 00. flag C2 toO. 

FSQRT: negative operand (except FSQRT (-0) = -0); Return the real indefinite value to the destination 
FYL2X: negative operand (except FYL2X (-0) = -00); operand. 
FYL2XP1: operand more negative than -1. 

FBSTP: source register is empty or it contains a NaN, Store BDC integer indefinite value in the 
00, or a value that cannot be represented in 18 destination operand. 
decimal digits. 

FXCH: one or both registers are tagged empty. Load empty registers with the real indefinite 
value, then perform the exchange. 

When a divide-by-zero exception occurs and the exception is masked, the FPU sets the ZE flag 
and returns the values shown in Table 7-20. If the divide-by-zero exception is not masked, the 
ZE flag is set, a software exception handler is invoked (see Section 7.7.3., "Software Exception 
Handling"), and the top-of-stack pointer (TOP) and source operands remain unchanged. 

I 
7-47 



FLOATING-POINT UNIT 

Table 7-21. Divide-By-Zero Conditions and the Masked Responses to Them 

Condition Masked Response 

Divide or reverse divide operation Returns an 00 signed with the exclusive OR of the sign of the two 
with a 0 divisor. operands to the destination operand. 

FYL2X instruction. Returns an 00 signed with the opposite sign of the non-zero 
operand to the destination operand. 

FXTRACT instruction. ST(1) is set to -00; ST(O) is set to 0 with the same sign as the 
source operand. 

7.8.3. Oenormal Operand Exception (to) 

The FPU signals the denormal-operand exception under the following conditions: 

• If an arithmetic instruction attempts to operate on a denormal operand (see Section 
7.2.3.2., "Normalized and Denormalized Finite Numbers"). 

• If an attempt is made to load a denormal single- or double-real value into an FPU register . 
(If the denormal value being loaded is an extended-real value, the denormal-operand 
exception is not reported.) 

The flag (DE) for this exception is bit 1 of the FPU status word, and the mask bit (DM) is bit 1 
of the FPU control word. 

When a denormal-operand exception occurs and the exception is masked, the FPU sets the DE 
flag, then proceeds with the instruction. The denormal operand in single- or double-real format 
is automatically normalized when converted to the extended-real format. Operating on denormal 
numbers will produce results at least as good as, and often better than, what can be obtained 
when denormal numbers are flushed to zero. In fact, subsequent operations will benefit from the 
additional precision of the internal extended-real format. Most programmers mask this excep­
tion so that a computation may proceed, then analyze any loss of accuracy when the final result 
is delivered. 

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set 
and a software exception handler is invoked (see Section 7.7.3., "Software Exception 
Handling"). The top-of-stack pointer (TOP) and source operands remain unchanged. When 
denormal operands have reduced significance due to loss of low-order bits, it may be advisable 
to not operate on them. Precluding denormal operands from computations can be accomplished 
by an exception handler that responds to unmasked denormal-operand exceptions. 

7.8.4. Numeric Overflow Exception (to) 

The FPU reports a floating-point numeric overflow exception (#0) whenever the rounded result 
of an arithmetic instruction exceeds the largest allowable finite value that will fit into the real 
format of the destination operand. For example, if the destination format is extended-real (80 
bits), overflow occurs when the rounded result falls outside the unbiased range of -1.0 * 216384 

to 1.0 * 216384 ( exclusive). Numeric overflow can occur on arithmetic operations where the result 
is stored in an FPU data register. It can also occur on store-real operations (with the FST and 

7-48 

I 



intet FLOATING-POINT UNIT 

FSTP instructions), where a within-range value in a data register is stored in memory in a single­
or double-real format. The overflow threshold range for the single-real format is -1.0 * 2128 to 
1.0 * 2128 ; the range for the double-real format is -1.0 * 21024 to 1.0 * 21024. 

The numeric overflow exception cannot occur when overflow occurs when storing values in an 
integer or BCD integer format. Instead, the invalid-arithmetic-operand exception is signaled. 

The flag (OE) for the numeric-overflow exception is bit 3 of the FPU status word, and the mask 
bit (OM) is bit 3 of the FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the FPU sets the OE 
flag and returns one of the values shown in Table 7-22. The value returned depends on the 
current rounding mode of the FPU (see Section 7.3.4.3., "Rounding Control Field"). 

Table 7-22. Masked Responses to Numeric Overflow 

Rounding Mode Sign of True Result Result 

To nearest + +00 

- -00 

Toward -00 + Largest finite positive number 

- -00 

Toward +00 + +00 

- Largest finite negative number 

Toward zero + Largest finite positive number 

- Largest finite negative number 

The action that the FPU takes when numeric overflow occurs and the numeric-overflow excep­
tion is not masked, depends on whether the instruction is supposed to store the result in memory 
or on the register stack. 

If the destination is a memory location, the OE flag is set and a software exception handler is 
invoked (see Section 7.7.3., "Software Exception Handling"). The top-of-stack pointer (TOP) 
and source operands remain unchanged. 

If the destination is the register stack, the exponent of the rounded result is divided by 224576 and 
stored with the significand in the destination operand. Condition code bit C1 in the FPU status 
word (called in this situation the "round-up bit") is set if the significand was rounded upward 
and cleared if the result is rounded toward O. After the result is stored, the OE flag is set and a 
software exception handler is invoked. 

The scaling bias value 24,576 is equal to 3 * 213. Biasing the exponent by 24,576 normally trans­
lates the number as nearly as possible to the middle of the extended-real exponent range so that, 
if desired, it can be used in subsequent scaled operations with less risk of causing further 
exceptions. 

I 
7-49 



FLOATING-POINT UNIT intet 

When using the FSCALE instruction, massive overflow can occur, where the result is too large 
to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the 
result has been biased, a properly signed 00 is stored in the destination operand. 

7.8.5. Numeric Underflow Exception (#U) 

The FPU reports a floating-point numeric underflow exception (#U) whenever the rounded 
result of an arithmetic instruction is tiny; that is, less than the smallest possible normalized, finite 
value that will fit into the real format of the destination operand. For example, if the destination 
format is extended-real (80 bits), underflow occurs when the rounded result falls in the unbiased 
range of -1.0 * 2-16382 to 1.0 * 2-16382 (exclusive). Like numeric overflow, numeric underflow 
can occur on arithmetic operations where the result is stored in an FPU data register. It can also 
occur on store-real operations (with the FST and FSTP instructions), where a within-range value 
in a data register is stored in memory in a single- or double-real format. The underflow threshold 
range for the single-real format is -1.0 * 2-126 to 1.0 * 2-126; the range for the double-real format 
is -1.0 * 2-1022 to 1.0 * 2-1022. (The numeric underflow exception cannot occur when storing 
values in an integer or BCD integer format.) 

The flag (UE) for the numeric-underflow exception is bit 4 of the FPU status word, and the mask 
bit (UM) is bit 4 of the FPU control word. 

When a numeric-underflow exception occurs and the exception is masked, the FPU denormal­
izes the result (see Section 7.2.3.2., "Normalized and Denormalized Finite Numbers"). If the 
denormalized result is exact, FPU stores the result in the destination operand, without setting the 
UE flag. If the denormal result is inexact, the FPU sets the UE flag, then goes on to handle the 
inexact-result exception condition (see Section 7.8.6., "Inexact-Result (Precision) Exception 
(#P)"). It is important to note that if numeric-underflow is masked, a numeric-underflow excep­
tion is signaled only if the denormalized result is inexact. If the denormalized result is exact, no 
flags are set and no exceptions are signaled. 

The action that the FPU takes when numeric underflow occurs and the numeric-underflow 
exception is not masked, depends on whether the instruction is supposed to store the result in 
memory or on the register stack. 

If the destination is a memory location, the UE flag is set and a software exception handler is 
invoked (see Section 7.7.3., "Software Exception Handling"). The top-of-stack pointer (TOP) 
and source operands remain unchanged. 

If the destination is the register stack, the exponent of the rounded result is multiplied by 
224576 and stored with the significand in the destination operand. Condition code bit Cl in the 
FPU the status register (acting here as a "round-up bit") is set if the significand was rounded 
upward and cleared if the result is rounded toward o. After the result is stored, the UE flag is set 
and a software exception handler is invoked. 

The scaling bias value 24,576 is the same as is used for the overflow exception and has the same 
effect, which is to translates the result as nearly as possible to the middle of the extended-real 
exponent range. 

7-50 

I 



FLOATING-POINT UNIT 

When using the FSCALE instruction, massive underflow can occur, where the result is too tiny 
to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again, after the 
result has been biased, a properly signed 0 is stored in the destination operand. 

7.8.6. Inexact-Result (Precision) Exception (#P) 

The inexact-result exception (also called the precision exception) occurs if the result of an oper­
ation is not exactly representable in the destination format. For example, the fraction 113 cannot 
be precisely represented in binary form. This exception occurs frequently and indicates that 
some (normally acceptable) accuracy has been lost. The exception is supported for applications 
that need to perform exact arithmetic only. Because the rounded result is generally satisfactory 
for most applications, this exception is commonly masked. Note that the transcendental instruc­
tions [FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XMl, FYL2X, and FYL2XPl] by nature 
produce inexact results. 

The inexact-result exception flag (PE) is bit 4 of the FPU status word, and the mask bit (PM) is 
bit 4 of the FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric 
overflow or underflow condition has not occurred, the FPU sets the PE flag and stores the 
rounded result in the destination operand. The current rounding mode determines the method 
used to round the result (see Section 7.3.4.3., "Rounding Control Field"). The Cl (round-up) bit 
in the FPU status word indicates whether the inexact result was rounded up (Cl is set) or "not 
rounded up" (Cl is cleared). In the "not rounded up" case (Cl is cleared), the least-significant 
bits of the inexact result are truncated so that the result fits in the destination format. 

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow 
or underflow has not occurred, the FPU performs the same operation described in the previous 
paragraph and, in addition, invokes a software exception handler (see Section 7.7.3., "Software 
Exception Handling"). 

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the 
following operations is carried out: 

• 

• 

• 

I 

If an inexact result occurs along with masked overflow or underflow, the OE or UE flag 
and the PE flag are set and the result is stored as describe for the overflow or underflow 
exceptions (see Section 7.8.4., "Numeric Overflow Exception (#0)" or Section 7.8.5., 
"Numeric Underflow Exception (#U)"). If the inexact-result exception is unmasked, the 
FPU also invokes the software exception handler. 

If an inexact result occurs along with unmasked overflow or underflow and the destination 
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as 
describe for the overflow or underflow exceptions, and the software exception handler is 
invoked. 

If an inexact result occurs along with unmasked overflow or underflow and the destination 
operand is a memory location, the inexact-result condition is ignored. 

7-51 



FLOATING-POINT UNIT 

7.8.7. Exception Priority 

The processor handles exceptions according to a predetermined precedence. When an instruc­
tion generates two or more exception conditions, the exception precedence sometimes results in 
the higher-priority exception being handled and the lower-priority exceptions being ignored. For 
example, dividing an SNaN by zero can potentially signal an invalid-arithmetic-operand excep­
tion (due to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are 
masked, the FPU handles the higher-priority exception only (the invalid-arithmetic-operand 
exception), returning a real indefinite to the destination. Alternately, a denormal-operand or 
inexact-result exception can accompany a numeric underflow or overflow exception, with both 
exceptions being handled. 

The precedence for floating-point exceptions is as follows: 

1. Invalid-operation exception, subdivided as follows: 

a. Stack underflow. 

b. Stack overflow. 

c. Operand of unsupported format. 

d. SNaN operand. 

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has 
precedence over lower-priority exceptions. For example, a QNaN divided by zero results in 
a QNaN, not a zero-divide exception. 

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception. 

4. Denormal-operand exception. If masked, then instruction execution continues, and a 
lower-priority exception can occur as well. 

5. Numeric overflow and underflow exceptions in conjunction with the inexact-result 
exception. 

6. Inexact-result exception. 

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating­
point operation begins, whereas overflow, underflow, and precision errors are not detected until 
a true result has been computed. When a pre-operation exception is detected, the FPU register 
stack and memory have not yet been updated, and appear as if the offending instructions has not 
been executed. When a post-operation exception is detected, the register stack and memory may 
be updated with a result (depending on the nature ofthe error). 

7.9. FLOATING-POINT EXCEPTION SYNCHRONIZATION 

Because the integer unit and FPU are separate execution units, it is possible for the processor to 
execute floating-point, integer, and system instructions concurrently. No special programming 
techniques are required to gain the advantages of concurrent execution. (Floating-point instruc­
tions are placed in the instruction stream along with the integer and system instructions.) 
However, concurrent execution can cause problems for floating-point exception handlers. 

7-52 

I 



FLOATING-POINT UNIT 

The root of this problem concerns the way the FPU signals the existence of unmasked floating­
point exceptions. (Special exception synchronization is not required for masked floating-point 
exceptions, because the FPU always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the FPU stops 
further execution of the floating-point instruction and signals the exception event. On the next 
occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction 
stream, the processor checks the ES flag in the FPU status word for pending floating-point 
exceptions. It floating-point exceptions are pending, the FPU makes an implicit call (traps) to 
the floating-point software exception handler. The exception handler can then execute recovery 
procedures for selected or all floating-point exceptions. 

Synchronization problems occur in the time frame between when the exception is signaled and 
when it is actually handled. Because of concurrent execution, integer or system instructions can 
be executed during this time frame. It is thus possible for the source or destination operands for 
a floating-point instruction that faulted to be overwritten in memory, making it impossible for 
the exception handler to analyze or recovery from the exception. 

To solve this problem, an exception synchronizing instruction (either a floating-point instruction 
or a WAITIFWAIT instruction) can be placed immediately after any floating-point instruction 
that might present a situation where state information pertaining to a floating-point exception 
might be lost or corrupted. Floating-point instructions that store data in memory are prime candi­
dates for synchronization. For example, the following three lines of code have the potential for 
exception synchronization problems: 

FILD COUNT 

INC COUNT 
FSQRT 

Floating-point instruction 

Integer instruction 

Subsequent floating-point instruction 

In this example, the INC instruction modifies the result of a floating-point instruction (FILD). 
If an exception is signaled during the execution of the FILD instruction, the result stored in the 
COUNT memory location might be overwritten before the exception handler is called. 

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD 
instruction, synchronizes the exception handlihg and eliminates the possibility of the exception 
being handled incorrectly. 

FILD COUNT 

FSQRT 

INC COUNT 

Floating-point instruction 

Subsequent floating-point instruction synchronizes 

any exceptions generated by the FILD instruction. 

Integer instruction 

The FSQRT instruction does not require any synchronization, because the results of this instruc­
tion are stored in the FPU data registers and will remain there, undisturbed, until the next 
floating-point or WAITIFWAIT instruction is executed. To absolutely insure that any exceptions 
emanating from the FSQRT instruction are handled (for example, prior to a procedure call), a 
WAIT instruction can be placed directly after the FSQRT instruction. 

Note that some floating-point instructions (non-waiting instructions) do not check for pending 
unmasked exceptions (see Section 7.5.11., "FPU Control Instructions"). They include the 
FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an 

I 
7-53 



FLOATING-POINT UNIT 

FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all pending exceptions are 
essentially lost (either the FPU status register is cleared or all exceptions are masked). The 
FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not 
modify the FPU status and control registers. A subsequent "waiting" floating-point instruction 
can then handle any pending exceptions. 

7-54 

I 



8 
Input/Output 

I 





CHAPTER 8 
INPUT/OUTPUT 

In addition to transferring data to and from external memory, the Pentium Pro processor can also 
transfer data to and from input/output ports (UO ports). I/O ports are created in system hardware 
by circuity that decodes the control, data, and address pins on the processor. These I/O ports are 
then configured to communicate with peripheral devices. An I/O port can be an input port, an 
output port, or a bidirectional port. Some I/O ports are used for transmitting data, such as to and 
from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports 
are used to control peripheral devices, such as the control registers of a disk controller. 

This chapter describes the processor's I/O architecture. The topics discussed include: 

• I/O port addressing. 

• I/O instructions . 

• The UO protection mechanism . 

8.1. I/O PORT ADDRESSING 

The processor allows I/O ports to be accessed in either of two ways: 

• Through a separate I/O address space. 

• Through memory-mapped I/O. 

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions 
and a special I/O protection mechanism. Accessing I/O ports through memory-mapped I/O is 
handled with the processors general-purpose move and string instructions, with protection 
provided through segmentation or paging. I/O ports can be mapped so that they appear in the I/O 
address space or the physical-memory address space (memory mapped UO) or both. 

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be 
completed before the next instruction in the instruction stream is executed. Thus, I/O writes to 
control system hardware cause the hardware to be set to its new state before any other instruc­
tions are executed. See Section 8.6., "Ordering I/O" for more information on serializing of I/O 
operations. 

8.2. 1/0 PORT HARDWARE 

From a hardware point of view, I/O is handled through the processor's address lines. A special 
memory-I/O transaction on the system bus indicates whether the address lines are being driven 
with a memory address or an I/O address. When the separate UO address space is selected, it is 
the responsibility of the hardware to decode the memory-I/O bus transaction to select I/O ports 
rather than memory. 

Data is transmitted between the processor and an I/O device through the data lines. 

I 
8-1 



INPUT/OUTPUT 

8.3. 1/0 ADDRESS SPACE 

The processor's 110 address space is separate and distinct from the physical-memory address 
space. The 110 address space consists of 216 (64K) individually addressable 8-bit 110 ports, 
numbered 0 through FFFFH. 110 port addresses OF8H through OFFH are reserved. Do not assign 
110 ports to these addresses. 

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports 
can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 32 bits to or from a device 
in the 110 address space. Like words in memory, 16-bit ports should be aligned to even addresses 
(0, 2, 4, ... ) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports 
should be aligned to addresses that are multiples of four (0,4,8, ... ). The processor supports data 
transfers to unaligned ports, but there is a performance penalty because one or more extra bus 
cycle must be used. 

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed 
to remain the same in future Intel Architecture processors. If hardware or software requires that 
1/0 ports be written to in a particular order, that order must be specified explicitly. For example, 
to load a word-length 110 port at address 2H and then another word port at 4H, two word-length 
writes must be used, rather than a single doubleword write at 2H. 

Note that the processor does not mask parity errors for bus cycles to the 110 address space. 
Accessing 110 ports through the 1/0 address space is thus a possible source of parity errors. 

8.3.1. Memory-Mapped I/O 

110 devices that respond like memory components can be accessed through the processor's phys­
ical-memory address space (see Figure 8-1). When using memory-mapped 110, any of the 
processor's instructions that reference memory can be used to access an 110 port located at a 
physical-memory address. For example, the MOV instruction can transfer data between any 
register and a memory-mapped 1/0 port. The AND, OR, and TEST instructions may be used to 
manipulate bits in the control and status registers of a memory-mapped peripheral devices. 

If caching is enabled in real-address mode, caching of 110 accesses can be prevented by using 
MTRRs to map the 110 address space as uncacheable (UC). See Chapter 11, Memory Cache 
Control, in the Pentium® Pro Family Developer's Manual, Volume 3 for a complete discussion 
of the MTRRs. 

8-2 

I 



INPUT/OUTPUT 

8.4. 1/0 INSTRUCTIONS 

The processor's I/O instructions provide access to I/O ports through the I/O address space. 
(These instructions cannot be used to access memory-mapped 110 ports). There are two groups 
of 110 instructions: 

• 

• 

Those which transfer a single item (byte, word, or doubleword) between an 110 port and a 
general-purpose register. 

Those which transfer strings of items (strings of bytes, words, or doublewords) between an 
110 port and memory. 

Physical Memory 
FFFF FFFFH 

EPROM 

lID Port 

lID Port 

lID Port 

RAM 

0 

Figure 8-1. Memory-Mapped I/O 

The register 110 instructions IN (input from 110 port) and OUT (output to 110 port) move data 
between 110 ports and the EAX register (32-bit 110), the AX register (l6-bit 110), or the AL 
(8-bit 110) register. The address of the 110 port can be given with an immediate value or a value 
in the DX register. 

The string 110 instructions INS (input string from 110 port) and OUTS (output string to 110 port) 
move data between an 110 port and a memory location. The address of the 110 port being 
accesses is given in the DX register; the source or destination memory address is given in the 
DS:ESI or ES:EDI register, respectively. 

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions 
perform string (or block) input or output operations. The repeat prefix REP modifies the INS and 
OUTS instructions to transfer blocks of data between an 110 port and memory. Here, the ESI or 
EDI register is incremented or decremented (according to the setting of the DF flag in the 
EFLAGS register) after each byte, word, or doubleword is transferred between the selected 110 
port and memory. 

I 
8-3 



INPUT/OUTPUT 

See the individual references for the IN, INS, OUT, and OUTS instructions in Chapter 11, 
Instruction Set Reference, for more information on these instructions. 

8.5. PROTECTED-MODE 1/0 

When the processor is running in protected mode, the following protection mechanisms regulate 
access to I/O ports: 

• 

• 

When accessing I/O ports through the I/O address space, two protection devices control 
access: 

The I/O privilege level (IOPL) field in the EFLAGS register. 

The I/O permission bit map of a task state segment (TSS). 

When accessing memory-mapped I/O ports, the normal segmentation and paging 
protection and the memory type range registers (MTRRs) also affect access to I/O ports. 
See Chapter 4, Protection, and Chapter 11, Memory Cache Control, in Pentium® Pro 
Family Developer's Manual, Volume 3 for a complete discussion of memory protection. 

The following sections describe the protection mechanisms available when accessing I/O ports 
in the I/O address space with the I/O instructions. 

8.5.1. 1/0 Privilege Level 

In systems where I/O protection is used, the 10PL field in the EFLAGS register controls access 
to the I/O address space by restricting use of selected instructions. This protection mechanism 
permits the operating system or executive to set the privilege level needed to perform I/O. In a 
typical protection ring model, access to the I/O address space is restricted to privilege levels 0 
and 1. Here, kernel and the device drivers are allowed to perform I/O, while less privileged 
device drivers and application programs are denied access to the I/O address space. Application 
programs must then make calls to the operating system to perform I/O. 

The following instructions can be executed only if the current privilege level (CPL) of the 
program or task currently executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI 
(clear interrupt-enable flag), and STI (set interrupt-enable flag). These instructions are called 
I/O sensitive instructions, because they are sensitive to the 10PL field. Any attempt by a less 
privileged program or task to use an I/O sensitive instruction results in a general-protection 
exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register, 
each task can have a different 10PL. 

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensi­
tive instructions, allowing access to some I/O ports by less privileged programs or tasks (see 
Section 8.5.2., "I/O Permission Bit Map"). 

A program or task can change its 10PL only with the POPF and IRET instructions; however, 
such changes are privileged. No procedure may change the current IOPL unless it is running at 
privilege level O. An attempt by a less privileged procedure to change the IOPL does not result 
in an exception; the 10PL simply remains unchanged. 

8-4 

I 



INPUT/OUTPUT 

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and 
STI instructions); however, the POPF instruction in this case is also 110 sensitive. A procedure 
may use the POPF instruction to change the setting of the IF flag only if the CPL is less than or 
equal to the current IOPL. An attempt by a less privileged procedure to change the IF flag does 
not result in an exception; the IF flag simply remains unchanged. 

8.5.2. 1/0 Permission Bit Map 

The 110 permission bit map is a device for permitting limited access to 110 ports by less privi­
leged programs or tasks and for tasks operating in virtual-8086 mode. The 110 permission bit 
map is located in the TSS (see Figure 8-2) for the currently running task or program. The address 
of the first byte of the 110 permission bit map is given in the 110 map base address field of the 
TSS. The size of the I/O permission bit map and its location in the TSS are variable. 

Task State Segment (TSS) 
31 2423 a 

Last byte of bit ---.. 1 1 
map must be 

1 1 1 1 1 11 

followed by a byte 
with all bits set 

I/O Permission Bit Map 

~ 
C 110 Map Base I 64H 

liD base map must ~ 
not exceed DFFFH. .( .( 

I 
I 0 

Figure 8-2. I/O Permission Bit Map 

Because each task has its own TSS, each task has its own 110 permission bit map. Access to indi­
vidual 110 ports can thus be granted to individual tasks. 

If in protected mode the CPL is less than or qual to the current IOPL, the processor allows all 
110 operations to proceed. If the CPL is greater than the IOPL or if the processor is operating in 
virtual-8086 mode, the processor checks the 110 permission bit map to determine if access to a 
particular 110 port is allowed. Each bit in the map corresponds to an 110 port byte address. For 
example, the control bit for 110 port address 29H in the 110 address space is found at bit position 
1 of the sixth byte in the bit map. Before granting 110 access, the processor tests all the bits corre­
sponding to the 110 port being addressed. For a doubleword access, for example, the processors 
tests the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set, 
a general-protection exception (#GP) is signaled. If all tested bits are clear, the 110 operation is 
allows to proceed. 

I 
8·5 



INPUT/OUTPUT 

Because 110 port addresses are not necessarily aligned to word and double word boundaries, the 
processor read two bytes from the 110 permission bit map for every access to an 110 port. To 
prevent exceptions from being generated when the ports with the highest addresses are accessed, 
an extra byte needs to included in the TSS immediately after the table. This byte must have all 
of its bits set, and it must be within the segment limit. 

It is not necessary for the 110 permission bit map to represent all the 110 addresses. 110 addresses 
not spanned by the map are treated as if they had set bits in the map. For example, if the TSS 
segment limit is 10 bytes past the bit-map base address, the map has 11 bytes and the first 80110 
ports are mapped. Higher addresses in the 110 address space generate exceptions. 

If the 110 bit map base address is greater than or equal to the TSS segment limit, there is no 110 
permission map, and all 110 instructions generate exceptions when the CPL is greater than the 
current 10PL. The 110 bit map base address must be less than or equal to DFFFH. 

8.5.3. Caching and Paging 

In protected mode, the paging mechanism can be used to control caching of data buffers used 
for 110 and memory-mapped 110 addresses. If caching is enabled, either the MTRRs or the 
paging mechanism (the PCD bit in the page table entry) must be used to prevent caching of data 
buffers or memory-mapped 110 addresses. 

The segmentation or paging mechanism can also be used to manage the data space accessed by 
the 110 mechanism. The operating system or executive can use the AVL (available) fields in 
segment descriptors or page table entries to mark pages containing data buffers as unrelocatable 
and unswappable. 

8.6. ORDERING 1/0 

When controlling 110 devices it is often important that memory and 110 operations be carried 
out in precisely the order programmed. For example, a program may write a command to an 110 
port, then read the status of the 110 device from another 110 port. It is important that the status 
returned be the status of the device after it receives the command, not before. 

When using memory-mapped 110, caution should be taken to avoid situations in which the 
programmed order is not preserved by the processor. To optimize performance, the processor 
allows memory reads to be reordered ahead of buffered writes in most situations. Internally, 
processor reads (cache hits) can be reordered around buffered writes. Memory reordering does 
not occur externally at the pins, reads (cache misses) and writes appear in-order. Using memory­
mapped 110, therefore, creates the possibility that an 110 read might be performed before the 
memory write of a previous instruction. The recommended method of enforcing program 
ordering of I/O accesses with the Pentium Pro processor, is to use the MTRRs to make the 
memory mapped 110 address space uncacheable. This operation insures that reads and writes of 
110 devices are carried out in program order. See Chapter 11, Memory Cache Control, in the 
Pentium® Pro Family Developer's Manual, Volume 3 for more information on using MTRRs. 

8-6 

I 



INPUT/OUTPUT 

Another method of enforcing program order is to insert one of the serializing instructions, such 
as the CPUID instruction, between operations. See Chapter 7, Multiple Processor Management, 
in the Pentium® Pro Family Developer's Manual, Volume 3 for more information on serialization 
of instructions. 

When the I/O address space is used instead of memory-mapped I/O, the situation is different in 
two respects: 

• 

• 

1/0 writes are never buffered. Therefore, strict ordering of 1/0 operations is enforced by the 
processor. 

The processor synchronizes I/O instruction execution with external bus activity (see Table 
8-1). 

Table 8-1. I/O Instruction Serialization 

Processor Delays Execution of ... Until Completion of ... 

Instruction Being Current 
Instruction? Next Instruction? Pending Stores? Current Store? Executed 

IN Yes Yes 

INS Yes Yes 

REP INS Yes Yes 

OUT Yes Yes Yes 

OUTS Yes Yes Yes 

REP OUTS Yes Yes Yes 

I 
8-7 





Processor 
Identification 
and Feature 
Determination 

I 

9 





CHAPTER 9 
PROCESSOR IDENTIFICATION AND FEATURE 

DETERMINATION 

When writing software intended to run on several different processors in the Intel Architecture 
family, it is generally necessary to identify the type of processor present in a system and the 
processor features that are available to an application. This chapter describes how to identify the 
processor that is executing the code and determine the features the processor supports. It also 
shows how to determine if an FPU or NPX is present. See Chapter 10, Intel Architecture 
Compatibility, for a complete list of the features that are available for the different Intel Archi­
tecture processors. 

9.1. PROCESSOR IDENTIFICATION 

The CPUID instruction returns the processor type for the processor that executes the instruction. 
It also indicates the features that are present in the processor, including the existence of an 
on-chip FPU. The following information can be obtained with this instruction: 

• 
• 
• 
• 

I 

The highest operand value the instruction responds to (2 for the Pentium Pro processor). 

The processor's family identification (ID) number, model ID, and stepping ID. 

The presence of an on-chip FPU. 

Support for or the presence ofthe following architectural extensions and enhancements: 

Virtual-8086 mode enhancements. 

Debugging extensions. 

Page-size extensions. 

Read time stamp counter (RDTSC) instruction. 

Read model specific registers (RDMSR) and write model specific registers (WRMSR) 
instructions. 

Physical address extension. 

Machine check exceptions. 

Compare and exchange 8 bytes instruction (CMPXCHG8B). 

On-chip, advanced programmable interrupt controller (APIC). 

Memory-type range registers (MTRRs). 

Page global flag. 

9-1 



PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION 

Machine check architecture. 

Conditional move instruction (CMOV cc). 

• Cache information. 

To use this instruction, a source operand value of 0, 1 or 2 is placed in the EAX register. 
Processor identification and feature information is then returned in the EAX, EBX, ECX, and 
EDX registers. See Chapter 11, "CPUID-CPU Identification" for more detailed information 
about the instruction. 

9.2. IDENTIFICATION OF EARLIER INTEL ARCHITECTURE 
PROCESSORS 

The CPUID instruction is only available in the Pentium Pro and Pentium processors. For the 
Inte1486 and earlier Intel Architecture processors, several other architectural features can be 
exploited to identify the processor. 

The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register (see 
Figure 3-7) is different for Intel's 32-bit processors than for the Intel 8086 and Intel 286 proces­
sors. By examining the settings of these bits (with the PUSHF/PUSHFD and POPIPOPFD 
instructions), an application program can determine whether the processor is an 8086, Inte1286, 
or one of the Intel 32-bit processors: 

• 
• 
• 

8086 processor - Bits 12 through 15 of the EFLAGS register are always set. 

Intel 286 processor - Bits 12 through 15 are always clear in real-address mode. 

32-bit processors - In real-address mode, bit 15 is always clear and bits 12 through 14 
have the last value loaded into them. In protected mode, bit 15 is always clear, bit 14 has 
the last value loaded into it, and the IOPL bits depends on the current privilege level (CPL). 
The IOPL field can be changed only if the CPL is O. 

Other EFLAG register bits that can be used to differentiate between the 32-bit processors: 

• 

• 

Bit 18 (AC) - Implemented only on the Pentium Pro, Pentium, and Inte1486 processors. 
The inability to set or clear this bit distinguishes an Inte1386 processor from the other Intel 
32-bit processors. 

Bit 21 (ID) - Determines if the processor is able to execute the CPUID instruction. The 
ability to set and clear this bit indicates that the processor is either a Pentium Pro or a 
Pentium processor. 

To determine whether an FPU or NPX is present in a system, applications can write to the 
FPUINPX status and control registers using the FNINIT instruction and then verify the correct 
values are read back using the FNSTENV instruction. 

9-2 

I 



PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION 

After determining that an FPU or NPX is present, its type can then be determined. In most cases, 
the processor type will determine the type of FPU or NPX; however, an Inte1386 processor is 
compatible with either an Intel287 or Inte1387 math coprocessor. The method the coprocessor 
uses to represent 00 indicates which coprocessor is present. The Intel287 math coprocessor uses 
the same bit representation for +00 and -00; whereas, the Intel387 math coprocessor uses 
different representations for +00 and -00. 

See "Intel Application Note 485 - Intel Processor Identification With the CPUID Instruction" 
for more information on identifying Intel Architecture processors. This application note also 
provides example source code for using the CPUID instruction and the other processor identifi­
cation techniques. 

I 
9-3 





Intel Architecture 
Compatibility 

I 

10 





CHAPTER 10 
INTEL ARCHITECTURE COMPATIBILITY 

The Pentium Pro processor is fully binary compatible with all Intel Architecture processors, 
including the Pentium, Intel486 DX and SX, Inte1386 DX and SX, Intel 286, and the 8086/8088 
processors. Compatibility means that, within certain limited constraints, programs that execute 
on previous generations of Intel Architecture processors will produce identical results when 
executed on the Pentium Pro processor. The compatibility constraints and any implementation 
differences between the Intel Architecture processors are described in this chapter and in 
Chapter 15, Intel Architecture Compatibility, in the Pentium® Pro Family Developer's Manual, 
Volume 3. The compatibility issues described in this chapter deal with new instructions, the basic 
execution environment, and the floating-point unit (FPU) and math coprocessors. Compatibility 
issues regarding the system architecture of the processors are covered in the Pentium® Pro 
Family Developer's Manual, Volume 3. 

The Pentium Pro processor also includes extensions to the registers, instruction set, and control 
functions found in earlier Intel Architecture processors. Those extensions have been defined 
with consideration for compatibility with previous and future processors. This chapter also 
summarizes the compatibility considerations for those extensions. 

10.1. RESERVED BITS 

Throughout this manual, certain bits are marked as reserved in many register and memory layout 
descriptions. When bits are marked as undefined or reserved, it is essential for compatibility 
with future processors that software treat these bits as having a future, though unknown effect. 
Software should follow these guidelines in dealing with reserved bits: 

• 

• 

• 
• 

Do not depend on the states of any reserved bits when testing the values of registers or 
memory locations that contain such bits. Mask out the reserved bits before testing. 

Do not depend on the states of any reserved bits when storing them to memory or to a 
register. 

Do not depend on the ability to retain information written into any reserved bits. 

When loading a register, always load the reserved bits with the values indicated in the 
documentation, if any, or reload them with values previously read from the same register. 

Avoid any software dependence upon the state of reserved Pentium Pro processor bits. 
Depending on the values of reserved bits will make software dependent upon the unspecified 
manner in which the Pentium Pro processor handles these bits. Depending upon reserved values 
risks incompatibility with future processors. 

Software written for an Pentium, Inte1486, or Inte1386 processor that handles reserved bits 
correctly will port to the Pentium Pro processor without generating protection exceptions. 

I 
10-1 



INTEL ARCHITECTURE COMPATIBILITY 

10.2. ENABLING NEW FUNCTIONS AND MODES 

Most of the new control functions defined for the Pentium Pro processor are enabled by new 
mode flags in the control registers (primarily register CR4). This register is undefined for Intel 
Architecture processors earlier than the Pentium processor. Attempting to access this register 
with an Intel486 or earlier Intel Architecture processor results in an invalid-opcode exception 
(#UD). Consequently, programs that execute correctly on the Intel486 or earlier Intel Architec­
ture processor cannot erroneously enable these functions. Attempting set a reserved bit in 
register CR4 to a value other than its original value results in a general-protection exception 
(#GP). So, programs that execute on the Pentium Pro processor cannot erroneously enable func­
tions that may be implemented in future processors. 

The Pentium Pro processor does not check for attempts to set reserved bits in model-specific 
registers. It is the obligation of the software writer to enforce this discipline. These reserved bits 
may be used in future Intel processors. 

10.3. DETECTING THE PRESENCE OF NEW FEATURES 
THROUGH SOFTWARE 

Software can check for the presence of new architectural features and extensions in either of two 
ways: 

• 

• 

Test for the presence of the feature or extension - Software can test for the presence of 
new flags in the EFLAGS register and control registers. If these flags are reserved 
(meaning not present in the processor executing the test), an exception is generated. 
Likewise, software can attempt to execute a new instruction, which results in an invalid­
opcode exception (#UD) being generated if it is not supported. 

Execute the CPUID instruction - The CPUID instruction (added to the Intel Architecture 
in the Pentium processor) indicates the presence of new features directly. 

See Chapter 9, Processor Identification and Feature Determination, for detailed information on 
detecting new processor features and extensions. 

10.4. NEW INSTRUCTIONS 

This section identifies the introduction of new instructions for the 32-bit Intel Architecture 
processors. 

10.4.1. New Pentium® Pro Processor Instructions 

The following instructions are new in the Pentium Pro processor: 

• 

10-2 

CMOVcc (conditional move) instruction, see Chapter 11, "CMOVcc-Conditional 
Move". 

I 



• 

• 

• 

• 

INTEL ARCHITECTURE COMPATIBILITY 

FCMOVcc (floating-point conditional move) 
"FCMOVcc-Floating-Point Conditional Move". 

instructions, see Chapter 11, 

FCOMI (floating-point compare and set EFLAGS) instructions, see Chapter 11, 
"FCOMIIFCOMIPI FUCOMIIFUCOMIP-Compare Real and Set EFLAGS". 

RDPMC (read performance monitoring counters) instruction, see Chapter 11, 
"RDPMC-Read Performance-Monitoring Counters". This instruction was available in 
the Pentium processor, but was undocumented. 

UD2 (undefined) instruction, see Chapter 11, "UD2-Undefined Instruction". 

10.4.2. New Pentium® Processor Instructions 

The following instructions are new in the Pentium processor: 

• 
• 
• 
• 
• 
• 

CMPXCHG8B (compare and exchange 8 bytes) instruction. 

CPUID (CPU identification) instruction. 

RDTSC (read time-stamp counter) instruction. 

RDMSR (read model-specific register) instruction. 

WRMSR (write model-specific register) instruction. 

RSM (resume from SSM) instruction. 

The form of the MOV instruction used to access the test registers has been removed on the 
Pentium and future Intel Architecture processors. 

10.4.3. New Intel486™ Processor Instructions 

The following instructions are new in the Intel486 processor: 

• 
• 
• 
• 
• 
• 

I 

BSWAP (byte swap) instruction. 

XADD (exchange and add) instruction. 

CMPXCHG (compare and exchange) instruction. 

INVD (invalidate cache) instruction. 

WBINVD (write-back and invalidate cache) instruction. 

INVLPG (invalidate TLB entry) instruction. 

10-3 



INTEL ARCHITECTURE COMPATIBILITY 

10.4.4. New Intel386™ Processor Instructions 

The following instructions are new in the Inte1386 processor: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

LSS, LFS, and LGS (load SS, FS, and GS registers) 

Long-displacement conditional jumps. 

Single-bit instructions. 

Bit scan instructions. 

Double-shift instructions. 

Byte set on condition instruction. 

Move with sign/zero extension. 

Generalized multiply instruction. 

MOV to and from control registers. 

MOV to and from test registers (now obsolete). 

MOV to and from debug registers. 

10.5. OBSOLETE INSTRUCTIONS 

The MOV to and from test registers instructions were removed the Pentium and future Intel 
Architecture processors. Execution of these instructions generates an invalid-opcode exception 
(#UD). 

10.6. UNDEFINED OPCODES 

All new instructions defined for Intel Architecture processors use binary encodings that were 
reserved on earlier-generation processors. Attempting to execute a reserved opcode always 
results in an invalid-opcode (#UD) exception being generated. Consequently, programs that 
execute correctly on earlier-generation processors cannot erroneously execute these instructions 
and thereby produce unexpected results when executed on later Intel Architecture processors. 

10.7. NEW FLAGS IN THE EFLAGS REGISTER 

Figure 3-7 shows the configuration of flags in the EFLAGS register for the Pentium Pro 
processor. No new flags have been added to this register in the Pentium Pro processor. The flags 
added to this register in the Pentium and Intel486 processors are described in the following 
sections. 

10-4 

I 



INTEL ARCHITECTURE COMPATIBILITY 

10.7.1. New Pentium® Processor Flags 

The following flags were added to the EFLAGS register in the Pentium processor: 

• 
• 
• 

VIF (virtual interrupt flag), bit 19. 

VIP (virtual interrupt pending), bit 20. 

ID (identification flag), bit 21. 

10.7.2. New Intel486™ Processor Flags 

The AC flag (bit 18) was added to the EFLAGS register in the Inte1486 processor. 

10.7.3. Using EFlAGS Flags to Distinguish Between 32-Bit Intel 
Architecture Processors 

The following bits in the EFLAGS register that can be used to differentiate between the 32-bit 
Intel Architecture processors: 

• 

• 

• 

Bit 18 (the AC flag) can be used to distinguish an Inte1386 processor from the Pentium Pro, 
Pentium, and Inte1486 processors. Since it is not implemented on the Inte1386 processor, it 
will always be clear. 

Bit 21 (the ID flag) indicates whether an application can execute the CPUID instruction. 
The ability to set and clear this bit indicates that the processor is a Pentium Pro or Pentium 
processor. The CPUID instruction can then be used to determine which processor. 

Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that do not 
support virtual mode extensions, which includes all 32-bit processors prior to the Pentium 
processor. 

See Chapter 9, Processor Identification and Feature Determination, for more information on 
identifying processors. 

10.8. STACK OPERATIONS 

This section identifies the differences in stack implementation between the various Intel Archi­
tecture processors. 

10.8.1. PUSH SP 

The Pentium Pro, Pentium, Inte1486, Inte1386, and Intel 286 processors push a different value 
on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit processors push the 
value of the SP register before it is decremented as part of the push operation; the 8086 processor 

I 
10-5 



INTEL ARCHITECTURE COMPATIBILITY 

pushes the value of the SP register after it is decremented. If the value pushed is important, 
replace PUSH SP instructions with the following three instructions: 

PUSH BP 
MOV BP, SP 
XCHG BP, [BPj 

This code functions as the 8086 processor PUSH SP instruction on the Pentium Pro, Pentium, 
Inte1486, Inte1386, and Intel 286 processors. 

10.8.2. EFLAGS Pushed On The Stack 

The setting of the stored values of bits 12 through 15 (which includes the IOPL field and the NT 
flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and by exceptions is 
different with the 32-bit Intel Architecture processors than with the 8086 and Intel 286 proces­
sors. The differences are as follows: 

• 
• 
• 

8086 processor-bits 12 through 15 are always set. 

Intel 286 processor-bits 12 through 15 are always cleared in real-address mode. 

32-bit processors in real-address mode-bit 15 (reserved) is always cleared, and bits 12 
through 14 have the last value loaded into them. 

10.9. FPU 

This section addresses the issues that must be faced when porting floating-point software 
designed to run on earlier Intel Architecture processors and math coprocessors to a Pentium Pro 
processor with integrated FPU. To software, the Pentium Pro processor looks very much like a 
Pentium processor. Floating-point software which runs on the Pentium or Inte1486 DX 
processor, or on an Intel486 SX processor/Intel487 SX math coprocessor system or an Inte1386 
processorlInte1387 math coprocessor system, will run with at most minor modifications on the 
Pentium Pro processor. To port code directly from an Intel 286 processor/lnte1287 math 
coprocessor system or an Intel 8086 processor/8087 math coprocessor system to the Pentium 
Pro processor, certain additional issues must be addressed. 

In the following sections, the term "32-bit Intel Architecture FPUs" refers to the Pentium Pro, 
Pentium, and Inte1486 DX processors, and to the Inte1487 SX and Inte1387 math coprocessors; 
the term "16-bit Intel Architecture math coprocessors" refers to the Inte1287 and 8087 math 
coprocessors. 

10.9.1. Control Register CRO Flags 

The ET, NE, and MP flags in control register eRO control the interface between the integer unit 
of an Intel Architecture processor and either its internal FPU or an external math coprocessor. 
The effect of these flags in the various Intel Architecture processors are described in the 
following paragraphs. 

10-6 

I 



INTEL ARCHITECTURE COMPATIBILITY 

The ET (extension type) flag (bit 4 of the CRO register) is used in the Inte1386 processor to indi­
cate whether the math coprocessor in the system is an Inte1287 math coprocessor (flag is clear) 
or an Inte1387 DX math coprocessor (flag is set). This bit is hardwired to 1 in the Pentium Pro, 
Pentium, and Inte1486 processors. 

The NE (Numeric Exception) flag (bit 5 of the CRO register) is used in the Pentium Pro, 
Pentium, and Inte1486 processors to determine whether unmasked floating-point exceptions are 
reported internally through interrupt vector 16 (flag is set) or externally through an external 
interrupt (flag is clear). On a hardware reset, the NE flag is initialized to 0, so software using the 
automatic internal error-reporting mechanism must set this flag to 1. This flag is nonexistent on 
the Inte1386 processor. 

As on the Intel 286 and Inte1386 processors, the MP (monitor coprocessor) flag (bit 1 of register 
CRO) determines whether the WAITIFWAIT instructions or waiting-type floating-point instruc­
tions trap when the context of the FPU is different from that of the currently-executing task. If 
the MP and TS flag are set, then a WAIT/FWAIT instruction and waiting instructions will cause 
a device-not-avai1able exception (interrupt vector 7). The MP flag is used on the Intel 286 and 
Inte1386 processors to support the use of a WAIT/FWAIT instruction to wait on a device other 
than a math coprocessor. The device reports its status through the BUSY# pin. Since the Pentium 
Pro, Pentium, and Inte1486 processors do not have such a pin, the MP flag has no relevant use 
and should be set to 1 for normal operation. 

10.9.2. FPU Status Word 

This section identifies differences to the FPU status word for the different Intel Architecture 
processors and math coprocessors, the reason for the differences, and their impact on software. 

10.9.2.1. CONDITION CODE FLAGS (CO THROUGH C3) 

The following information pertains to differences in the use of the condition code flags (CO 
through C3) located in bits 8, 9, 10, and 14 ofthe FPU status word. 

After execution of an FINIT instruction or a hardware reset on a 32-bit Intel Architecture FPU, 
the condition code flags are set to o. The same operations on a 16-bit Intel Architecture math 
coprocessor leave these flags intact (they contain their prior value). This difference in operation 
has no impact on software and provides a consistent state after reset. 

Transcendental instruction results in the core range of the Pentium Pro and Pentium processors 
(see Section 7.5.10., "Transcendental Instruction Accuracy") may differ from the Inte1486 DX 
processor and Inte1487 SX math coprocessor by 2 to 3 units in the last place (ulps). As a result, 
the value saved in the C 1 flag may also differ. 

After an incomplete FPREMIFPREM1 instruction, the CO, C1, and C3 flags are set to 0 on the 
32-bit Intel Architecture FPUs. After the same operation on a 16-bit Intel Architecture math 
coprocessor, these flags are left intact. 

I 
10-7 



INTEL ARCHITECTURE COMPATIBILITY 

On the 32-bit Intel Architecture FPUs, the C2 flag serves as an incomplete flag for the FrAN 
instruction. On the 16-bit Intel Architecture math coprocessors, the C2 flag is undefined for the 
FPTAN instruction. This difference has no impact on software, because Intel287 or 8087 
programs do not check C2 after an FPTAN instruction. The use of this flag on later processors 
allows fast checking of operand range. 

10.9.2.2. STACK FAULT FLAG 

When unmasked stack overflow or underflow occurs on a 32-bit Intel Architecture FPU, the IE 
flag (bit 0) and the SF flag (bit 6) of the FPU status word are set to indicate a stack fault and 
condition code flag CI is set or cleared to indicate overflow or underflow, respectively. When 
unmasked stack overflow or underflow occurs on a 16-bit Intel Architecture math coprocessor, 
only the IE flag is set. Bit 6 is reserved on these processors. The addition of the SF flag on a 32-
bit Intel Architecture FPU has no impact on software. Existing exception handlers need not 
change, but may be upgraded to take advantage of the additional information. 

10.9.3. FPU Control Word 

Only affine closure is supported for infinity control on a 32-bit Intel Architecture FPU. The 
infinity control flag (bit 12 of the FPU control word) remains programmable on these proces­
sors, but has no effect. This change was made to conform to IEEE Standard 754. On a 16-bit 
Intel Architecture math coprocessor, both affine and projective closures are supported, as deter­
mined by the setting of bit 12. After a hardware reset, the default value of bit 12 is projective. 
Software that requires projective infinity arithmetic may give different results. 

10.9.4. FPU Tag Word 

When loading the tag word of a 32-bit Intel Architecture FPU, using an FLDENV or FRSTOR 
instruction, the processor examines the incoming tag and classifies the location only as empty 
or non-empty. Thus, tag values of 00,01, and 10 are interpreted by the processor to indicate a 
non-empty location. The tag value of 11 is interpreted by the processor to indicate an empty 
location. Subsequent operations on a non-empty register always examine the value in the 
register, not the value in its tag. The FSTENV and FSAVE instructions examine the non-empty 
registers and put the correct values in the tags before storing the tag word. 

The corresponding tag for a 16-bit Intel Architecture math coprocessor is checked before each 
register access to determine the class of operand in the register; the tag is updated after every 
change to a register so that the tag always reflects the most recent status of the register. Software 
can load a tag with a value that disagrees with the contents of a register (for example, the register 
contains a valid value, but the tag says special). Here, the 16-bit Intel Architecture math copro­
cessors honor the tag and do not examine the register. 

Software written to run on a 16-bit Intel Architecture math coprocessor may not operate 
correctly on a 16-bit Intel Architecture FPU, if it uses FLDENV or FRSTOR to change tags to 
values (other than to empty) that are different from actual register contents. 

10-8 

I 



INTEL ARCHITECTURE COMPATIBILITY 

The encoding in the tag word for the 32-bit Intel Architecture FPUs for unsupported data 
formats (including pseudo-zero and unnormal) is special (lOB), to comply with the IEEE 
Standard 754 standard. The encoding in the 16-bit Intel Architecture math coprocessors for 
pseudo-zero and unnormal is valid (OOB) and the encoding for other unsupported data formats 
is special (lOB). Code that recognizes the pseudo-zero or unnormal format as valid must there­
fore be changed if it is ported to a 32-bit Intel Architecture FPU. 

10.9.5. Data Types 

This section discusses the differences of data types for the various Intel Architecture FPUs and 
math coprocessors. 

10.9.5.1. NANS 

The 32-bit Intel Architecture FPUs distinguish between signaling NaNs (SNaNs) and quiet 
NaNs (QNaNs). These FPUs only generate QNaNs and normally do not generate an exception 
upon encountering a QNaN. An invalid-operation exception (#1) is generated only upon encoun­
tering a SNaN, except for the FCOM, FIST, and FBSTP instructions, which also generates an 
invalid-operation exceptions for a QNaNs. This behavior matches the IEEE Standard 754. 

The 16-bit Intel Architecture math coprocessors only generate one kind of NaN (the equivalent 
of a QNaN), but the raise an invalid-operation exception upon encountering any kind of NaN. 

When porting software written to run on a 16-bit Intel Architecture math coprocessor to a 32-bit 
Intel Architecture FPU, uninitialized memory locations that contain QNaNs should be changed 
to SNaNs to cause the FPU or math coprocessor to fault when uninitialized memory locations 
are referenced. 

10.9.5.2. PSEUDO-ZERO, PSEUDO-NAN, PSEUDO-INFINITY, AND 
UNNORMALFORMATS 

The 32-bit Intel Architecture FPUs neither generate nor support the pseudo-zero, pseudo-NaN, 
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arithmetic opera­
tion, they raise an invalid-operation exception. The 16-bit Intel Architecture math coprocessors 
define and support special handling for these formats. Support for these formats was dropped to 
conform with the IEEE Standard 754. 

This change should not impact software ported from 16-bit Intel Architecture math coprocessors 
to 32-bit Intel Architecture FPUs. The 32-bit Intel Architecture FPUs do not generate these 
formats, and therefore will not encounter them unless software explicitly loads them in the data 
registers. The only affect may be in how software handles the tags in the tag word (see Section 
10.9.4., "FPU Tag Word"). . 

I 
10-9 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.6. Floating-Point Exceptions 

This section identifies the implementation differences in exception handling for floating-point 
instructions in the various Intel Architecture FPUs and math coprocessors. 

10.9.6.1. DENORMAL OPERAND EXCEPTION (#0) 

When the denormal operand exception is masked, the 32-bit Intel Architecture FPUs automati­
cally normalize denormalized numbers when possible; whereas, the 16-bit Intel Architecture 
math coprocessors return a denormal result. A program written to run on a 16-bit Intel Architec­
ture math coprocessor that uses the denormal exception solely to normalize denormalized 
operands is redundant when run on the 32-bit Intel Architecture FPUs. If such a program is run 
on 32-bit Intel Architecture FPUs, performance can be improved by masking the denormal 
exception. Floating-point programs run faster when the FPU performs normalization of denor­
malized operands. 

The denormal operand exception is not raised for transcendental instructions and the FXTRACT 
instruction on the 16-bit Intel Architecture math coprocessors. This exception is raised for these 
instructions on the 32-bit Intel Architecture FPUs. The exception handlers ported to these latter 
processors need to be changed only if the handlers gives special treatment to different opcodes. 

10.9.6.2. NUMERIC OVERFLOW EXCEPTION (#0) 

On the 32-bit Intel Architecture FPUs, when the numeric overflow exception is masked and the 
rounding mode is set to chop (toward 0), the result is the largest positive or smallest negative 
number. The 16-bit Intel Architecture math coprocessors do not signal the overflow exception 
when the masked response is not 00; that is, they signal overflow only when the rounding control 
is not set to round to O. If rounding is set to chop (toward 0), the result is positive or negative 00. 
Under the most common rounding modes, this difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit Intel Architecture FPU produces, under 
overflow conditions, a result that is different in the least significant bit of the significand, 
compared to the result on a 16-bit Intel Architecture math coprocessor. The reason for this differ­
ence is IEEE Standard 754 compatibility. 

When the overflow exception is not masked, the precision exception is flagged on the 32-bit 
Intel Architecture FPUs. When the result is stored in the stack, the significand is rounded 
according to the precision control (PC) field of the FPU control word or according to the opcode. 
On the 16-bit Intel Architecture math coprocessors, the precision exception is not flagged and 
the significand is not rounded. The impact on existing software is that if the result is stored on 
the stack, a program running on a 32-bit Intel Architecture FPU produces a different result under 
overflow conditions than on a 16-bit Intel Architecture math coprocessor. The difference is 
apparent only to the exception handler. This difference is for IEEE Standard 754 compatibility. 

10-10 

I 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.6.3. NUMERIC UNDERFLOW EXCEPTION (#U) 

When the underflow exception is masked on the 32-bit Intel Architecture FPUs, the underflow 
exception is signaled when both the result is tiny and denormalization results in a loss of accu­
racy. When the underflow exception is unmasked and the instruction is supposed to store the 
result on the stack, the significand is rounded to the appropriate precision (according to the PC 
flag in the FPU control word, for those instructions controlled by PC, otherwise to extended 
precision), after adjusting the exponent. 

When the underflow exception is masked on the 16-bit Intel Architecture math coprocessors and 
rounding is toward 0, the underflow exception flag is raised on a tiny result, regardless of loss 
of accuracy. When the underflow exception is not masked and the destination is the stack, the 
significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing software. 
The underflow exception occurs less often when rounding is toward O. 

When the underflow exception not masked. A program running on a 32-bit Intel Architecture 
FPU produces a different result during underflow conditions than on a 16-bit Intel Architecture 
math coprocessor if the result is stored on the stack. The difference is only in the least significant 
bit of the significand and is apparent only to the exception handler. 

10.9.6.4. EXCEPTION PRECEDENCE 

There is no difference in the precedence of the denormal-operand exception on the 32-bit Intel 
Architecture FPUs, whether it be masked or not. When the denormal-operand exception is not 
masked on the 16-bit Intel Architecture math coprocessors, it takes precedence over all 
other exceptions. This difference causes no impact on existing software, but some unneeded 
normalization of denormalized operands is prevented on the Inte1486 processor and Inte1387 
math coprocessor. 

10.9.6.5. CS AND EIP FOR FPU EXCEPTIONS 

On the Intel 32-bit Intel Architecture FPUs, the values from the CS and EIP registers saved for 
floating-point exceptions point to any prefixes that come before the floating-point instruction. 
On the 8087 math coprocessor, the saved CS and IP registers points to the floating-point 
instruction. 

10.9.6.6. FPU ERROR SIGNALS 

The floating-point error signals to the Pentium Pro, Pentium, and Inte1486 processors do not 
pass through an interrupt controller; an INT# signal from an Inte1387, Inte1287 or 8087 math 
coprocessors does. If an 8086 processor uses another exception for the 8087 interrupt, both 
exception vectors should call the floating-point-error exception handler. Some instructions in a 
floating-point-error exception handler may need to be deleted if they use the interrupt controller. 
The Pentium Pro, Pentium, and Inte1486 processors have signals that, with the addition of 
external logic, support reporting for emulation of the interrupt mechanism used in many 
personal computers. 

I 
10-11 



INTEL ARCHITECTURE COMPATIBILITY 

On the Pentium Pro, Pentium, and Intel486 processors, an undefined floating-point opcode will 
cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined floating-point opcodes, 
like legal floating-point opcodes, cause a device not available exception (#NM, interrupt vector 
7) when either the TS or EM flag in control register CRO is set. The Pentium Pro, Pentium, and 
Intel486 processors do not check for floating-point error conditions on encountering an unde­
fined floating-point opcode. 

10.9.6.7. ASSERTION OF THE FERR# PIN 

When using this external interrupt mechanism, the FERR# pin must be connected to an input to 
an external interrupt controller. An external interrupt is then generated when the FERR# output 
drives the input to the interrupt controller. For the Pentium Pro and Inte1386 processors, an 
unmasked floating-point exception always causes the FERR# pin to be asserted upon comple­
tion of the instruction that caused the exception; for the Pentium and Intel486 processors, an 
unmasked floating-point exception always causes the FERR# pin to be asserted prior to 
executing the next waiting floating-point instruction. See Section 7.7.3., "Software Exception 
Handling" for more information on the use of the FERR# pin. 

10.9.6.8. INVALID OPERATION EXCEPTION ON DENORMALS 

An invalid-operation exception is not generated on the 32-bit Intel Architecture FPUs upon 
encountering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon 
conversion to BCD or to integer. The operation proceeds by first normalizing the value. On the 
16-bit Intel Architecture math coprocessors, upon encountering this situation, the invalid­
operation exception is generated. This difference has no impact on existing software. Software 
running on the 32-bit Intel Architecture FPUs continues to execute in cases where the 16-bit 
Intel Architecture math coprocessors trap. The reason for this change was to eliminate an excep­
tion from being raised. 

10.9.6.9. ALIGNMENT CHECK EXCEPTIONS (#AC) 

If alignment checking is enabled, a misaligned data operand on the Pentium Pro, Pentium, and 
Inte1486 processors causes an alignment check exception (#AC) when a program or procedure 
is running at pri vilege-IeveI3, except for the stack portion of the FSA VE/FNSAVE and FRSTOR 
instructions. 

10.9.6.10. SEGMENT NOT PRESENT EXCEPTION DURING FLDENV 

On the Intel486 processor, when a segment not present exception (#NP) occurs in the middle of 
an FLDENV instruction, it can happen that part of the environment is loaded and part not. In 
such cases, the FPU control word is left with a value of 007FH. The Pentium Pro and Pentium 
processors ensures the internal state is correct at all times by attempting to read the first and last 
bytes of the environment before updating the internal state. 

10-12 

I 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.6.11. DEVICE NOT AVAILABLE EXCEPTION (#NM) 

The device-not-available exception (#NM, interrupt 7) will occur in the Pentium Pro, Pentium, 
and Intel486 processors when they encounter a floating-point instruction while either the TS or 
EM flag in control register CRO is set. If the TS and MP flags are set, then a WAIT/FWAIT 
instruction will also cause a device-not-available exception. An exception handler should be 
included in Pentium Pro, Pentium, or Intel486 processor code to handle these situations. 

10.9.6.12. COPROCESSOR SEGMENT OVERRUN EXCEPTION 

The coprocessor segment overrun exception (interrupt 9) does not occur in the Pentium Pro, 
Pentium, and Intel486 processors. In situations where the Inte1387 math coprocessor would 
cause an interrupt 9, the Pentium Pro, Pentium, and Intel486 processors simply abort the instruc­
tion. To avoid undetected segment overruns, it is recommended that the floating-point save area 
be placed in the same page as the TSS. This placement will prevent the FPU environment from 
being lost is a page fault occurs during the execution of an FLDENV or FRS TOR instruction 
while the operating system is performing a task switch. 

10.9.6.13. GENERAL PROTECTION EXCEPTION (#GP) 

A general-protection exception (#GP, interrupt 13) occurs if the starting address of a floating­
point operand falls outside a segment's size. An exception handler should be included to report 
these programming errors. 

10.9.6.14. FLOATING-POINT ERROR EXCEPTION (#MF) 

In real mode and protected mode (not including virtual 8086 mode), interrupt vector 16 must 
point to the floating-point exception handler. In virtual 8086 mode, the virtual-8086 monitor can 
be programmed to accommodate a different location of the interrupt vector for floating-point 
exceptions. 

10.9.7. Changes to Floating-Point Instructions 

This section identifies the differences in floating-point instructions for the various Intel FPU and 
math coprocessor architectures, the reason for the differences, and their impact on software. 

10.9.7.1. NEW FLOATING-POINT INSTRUCTIONS IN THE INTEL PENTIUM® 
PRO PROCESSOR 

The following floating-point instructions are new in the Pentium Pro processor: 

• 

• 

I 

FCMOVcc (floating-point conditional move) 
"FCMOVcc-Floating-Point Conditional Move". 

instructions, see Chapter 11, 

FCOMI (floating-point compare and set EFLAGS) instructions, see Chapter 11, 
"FCOMIFCOMPIFCOMPP-Compare Real". 

10-13 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.7.2. FDIV, FPREM, AND FSQRT INSTRUCTIONS 

The 32-bit Intel Architecture FPUs support operations on denormalized operands and, when 
detected, an underflow exception can occur, for compatibility with the IEEE Standard 754. The 
16-bit Intel Architecture math coprocessors do not operate on denormalized operands or return 
underflow results. Instead, they generate an invalid-operation exception when they detect an 
underflow condition. An existing underflow exception handler will require change only if it 
gives different treatment to different opcodes. Also, it is possible that fewer invalid-operation 
exceptions will occur. . 

10.9.7.3. FSCALE INSTRUCTION 

With the 32-bit Intel Architecture FPUs, the range of the scaling operand is not restricted. If (0 
< 1 ST(l) < 1), the scaling factor is 0; therefore, ST(O) remains unchanged. If the rounded result 
is not exact or if there was a loss of accuracy (masked underflow), the precision exception is 
signaled. With the 16-bit Intel Architecture math coprocessors, the range of the scaling operand 
is restricted. If (0 < 1 ST(I) 1 < 1), the result is undefined and no exception is signaled. The 
impact of this difference on exiting software is that different results are delivered on the 32-bit 
and 16-bit FPUs and math coprocessors when (0 < 1 ST(l) 1 < 1). 

10.9.7.4. FPREM1 INSTRUCTION 

The 32-bit Intel Architecture FPUs compute a partial remainder according to the IEEE Standard 
754 standard. This instruction does not exist on the 16-bit Intel Architecture math coprocessors. 
The availability of the FPREMI instruction has is no impact on existing software. 

10.9.7.5. FPREM INSTRUCTION 

On the 32-bit Intel Architecture FPUs, the condition code flags CO, C3, Cl in the status word 
correctly reflect the three low-order bits of the quotient following execution of the FPREM 
instruction. On the 16-bit Intel Architecture math coprocessors, the quotient bits are incorrect 
when performing a reduction of (64N + M) when (N ~ 1) and Mis 1 or 2. This difference does 
not affect existing software; software that works around the bug should not be affected. 

10.9.7.6. FUCOM, FUCOMP, AND FUCOMPP INSTRUCTIONS 

When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit Intel Architec­
ture FPUs perform unordered compare according to IEEE Standard 754 standard. These instruc­
tions do not exist on the 16-bit Intel Architecture math coprocessors. The availability of these 
new instructions has no impact on existing software. 

10.9.7.7. FPTAN INSTRUCTION 

On the 32-bit Intel Architecture FPUs, the range of the operand for the FPTAN instruction is 
much less restricted (I ST(O) 1 < 263) than on earlier math coprocessors. The instruction reduces 
the operand internally using an internal1t/4 constant that is more accurate. The range of the 

10-14 

I 



INTEL ARCHITECTURE COMPATIBILITY 

operand is restricted to (I ST(O) 1 < 1t/4) on the 16-bit Intel Architecture math coprocessors; the 
operand must be reduced to this range using FPREM. This change has no impact on existing 
software. 

10.9.7.8. STACK OVERFLOW 

On the 32-bit Intel Architecture FPUs, if a stack overflow occurs when the invalid-operation 
exception is masked, both the ST(O) and ST(I) registers will contain QNaNs. On the 16-bit Intel 
Architecture math coprocessors, the original operand remains unchanged following a stack 
overflow, but it is loaded into register ST(I). This difference has no impact on existing software. 

10.9.7.9. FSIN, FCOS, AND FSINCOS INSTRUCTIONS 

On the 32-bit Intel Architecture FPUs, these instructions perform three common trigonometric 
functions. These instructions do not exist on the 16-bit Intel Architecture math coprocessors. 
The availability of these instructions has no impact on existing software, but using them provides 
a performance upgrade. 

10.9.7.10. FPATAN INSTRUCTION 

On the 32-bit Intel Architecture FPUs, the range of operands for the FPATAN instruction is unre­
stricted. On the 16-bit Intel Architecture math coprocessors, the absolute value of the operand 
in register ST(O) must be smaller than the absolute value of the operand in register ST( 1). This 
difference has impact on existing software. 

10.9.7.11. F2XM1 INSTRUCTION 

The 32-bit Intel Architecture FPUs support a wider range of operands (-1 < ST (0) < + 1) for 
the F2XMl instruction. The supported operand range for the 16-bit Intel Architecture math 
coprocessors is (O:S; ST(O) :s; 0.5). This difference has no impact on existing software. 

10.9.7.12. FLD INSTRUCTION 

On the 32-bit Intel Architecture FPUs, when using the FLD instruction to load an extended-real 
value, a denormal-operand exception is not generated because the instruction is not arithmetic. 
The 16-bit Intel Architecture math coprocessors do report a denormal-operand exception in this 
situation. This difference does not affect existing software. 

On the 32-bit Intel Architecture FPUs, loading a denormal value that is in single- or double-real 
format causes the value to be converted to extended-real format. Loading a denormal value on 
the 16-bit Intel Architecture math coprocessors causes the value to be converted to an unnormal. 
If the next instruction is FXTRACT or FXAM, the 32-bit Intel Architecture FPUs will give a 
different result than the 16-bit Intel Architecture math coprocessors. This change was made for 
IEEE Standard 754 compatibility. 

I 
10-15 



INTEL ARCHITECTURE COMPATIBILITY 

On the 32-bit Intel Architecture FPUs, loading an SNaN that is in single- or double-real fonnat 
causes the FPU to generate an invalid-operation exception. The 16-bit Intel Architecture math 
coprocessors do not raise an exception when loading a signaling NaN. The invalid-operation 
exception handler for 16-bit math coprocessor software needs to be updated to handle this condi­
tion when porting software to 32-bit FPUs. This change was made for IEEE Standard 754 
compatibility. 

10.9.7.13. FXTRACT INSTRUCTION 

On the 32-bit Intel Architecture FPUs, if the operand is 0 for the FXTRACT instruction, the 
divide-by-zero exception is reported and -00 is delivered to register ST(l). If the operand is +00, 
no exception is reported. If the operand is 0 on the 16-bit Intel Architecture math coprocessors, 
o is delivered to register ST(l) and no exception is reported. If the operand is +00, the invalid­
operation exception is reported. These differences have no impact on existing software. Soft­
ware usually bypasses 0 and 00. This change is due to the IEEE 754 recommendation to fully 
support the "10gb" function. 

10.9.7.14. LOAD CONSTANT INSTRUCTIONS 

On 32-bit Intel Architecture FPUs, rounding control is in effect for the load constant instruc­
tions. Rounding control is not in effect for the 16-bit Intel Architecture math coprocessors. 
Results for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 
16-bit Intel Architecture math coprocessors when rounding control is set to round to nearest or 
round to +00. They are the same for the FLDL2T instruction when rounding control is set to 
round to nearest, round to -=, or round to zero. Results are different from the l6-bit Intel Archi­
tecture math coprocessors in the least significant bit of the mantissa if rounding control is set to 
round to -= or round to 0 for the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions; they 
are different for the FLDL2T instruction if round to +00 is specified. These changes were imple­
mented for compatibility with IEEE 754 recommendations. 

10.9.7.15. FSETPM INSTRUCTION 

With the 32-bit Intel Architecture FPUs, the FSETPM instruction is treated as FNOP (no oper­
ation). This instruction infonns the Inte1287 math coprocessor that the processor is in protected 
mode. This change has no impact on existing software. The 32-bit Intel Architecture FPUs 
handle all addressing and exception-pointer infonnation, whether in protected mode or not. 

10.9.7.16. FXAM INSTRUCTION 

With the 32-bit Intel Architecture FPUs, if the FPU encounters an empty register when 
executing the FXAM instruction, it not generate combinations of CO through C3 equal to 1101 
or 1111. The l6-bit Intel Architecture math coprocessors may generate these combinations, 
among others. This difference has no impact on existing software; it provides a perfonnance 
upgrade to provide repeatable results. 

10-16 

I 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.7.17. FSAVE AND FSTENV INSTRUCTIONS 

With the 32-bit Intel Architecture FPUs, the address of a memory operand pointer stored by 
FSAVE or FSTENV is undefined if the previous floating-point instruction did not refer to 
memory 

10.9.S. Transcendental Instructions 

The floating -point results of the Pentium Pro and Pentium processors for transcendental instruc­
tions in the core range may differ from the Intel486 processors by about 2 or 3 ulps (see Section 
7.5.10., "Transcendental Instruction Accuracy"). Condition code flag C 1 of the status word may 
differ as a result. The exact threshold for underflow and overflow will vary by a few ulps. The 
Pentium Pro and Pentium processor's results will have a worst case error of less than 1 ulp when 
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. The transcen­
dental instructions are guaranteed to be monotonic, with respect to the input operands, 
throughout the domain supported by the instruction. 

Transcendental instructions may generate different results in the round-up flag (C1) on the 
32-bit Intel Architecture FPUs. The round-up flag is undefined for these instructions on the 
16-bit Intel Architecture math coprocessors. This difference has no impact on existing software. 

10.9.9. Obsolete Instructions 

The 8087 math coprocessor instructions FENI and FDISI and the Intel287 math coprocessor 
instruction FSETPM are treated as integer NOP instructions in the 32-bit Intel Architecture 
FPU s. If these opcodes are detected in the instruction stream, no specific operation is performed 
and no internal states are affected. 

10.9.10. WAIT/FWAIT Prefix Differences 

On the Intel486 processor, when a WAITIFWAIT instruction precedes a floating-point instruc­
tion (one which itself automatically synchronizes with the previous floating-point instruction), 
the WAITIFWAIT instruction is treated as a no-op. Pending floating-point exceptions from a 
previous floating-point instruction are processed not on the WAIT/FWAIT instruction but on the 
floating-point instruction following the WAITIFWAIT instruction. In such a case, the report of 
a floating-point exception may appear one instruction later on the Intel486 processor than on a 
Pentium Pro or Pentium FPU, or on Inte1387 math coprocessor. 

10.9.11. Operands Split Across Segments and/or Pages 

On the Pentium Pro, Pentium, and Intel486 processor FPUs, when the first half of an operand to 
be written is inside a page or segment and the second half is outside, a memory fault can cause 
the first half to be stored but not the second half. In this situation, the Inte1387 math coprocessor 
stores nothing. 

I 
10-17 



INTEL ARCHITECTURE COMPATIBILITY 

10.9.12. FPU Instruction Synchronization 

On the 32-bit Intel Architecture FPUs, all floating-point instructions are automatically synchro­
nized; that is, the processor automatically waits until the previous floating-point instruction has 
completed before completing the next floating-point instruction. No explicit WAITIFWAIT 
instructions are required to assure this synchronization. For the 8087 math coprocessors, explicit 
waits are required before each floating-point instruction to ensure synchronization. Although 
8087 programs having explicit WAIT instructions execute perfectly on the 32-bit Intel Architec­
ture processors without reassembly, these WAIT instructions are unnecessary. 

Since the 32-bit Intel Architecture FPU's do not require WAIT/FWAIT instructions before each 
floating-point instruction, 32-bit Intel Architecture assemblers do not automatically generate 
these WAIT instructions. The ASM86 assembler, however, automatically precedes every 
floating-point instruction with a WAIT instruction. Although floating-point routines generated 
using the ASM86 assembler will generally execute correctly on the 32-bit Intel Architecture 
FPU's, reassembly using a 32-bit Intel Architecture assembler may result in a more compact 
code image and faster execution. The control instructions for the 32-bit Intel Architecture FPU's 
can be coded using either a wait or non-wait form of the mnemonic. The wait forms of these 
instructions cause a 32-bit Intel Architecture assembler to precede the floating-point instruction 
with a WAIT instruction, in the identical manner as does ASM86. 

10-18 

I 



Instruction Set 
Reference 

I 

11 





CHAPTER 11 
INSTRUCTION SET REFERENCE 

This chapter describes the complete Pentium Pro processor instruction set, including the integer, 
floating-point, and system instructions. The instruction descriptions are arranged in alphabetical 
order. For each instruction, the forms are given for each operand combination, including the 
opcode, operands required, and a description. Also given for each instruction are a description 
of the instruction and its operands, an operational description, a description of the effect of the 
instructions on flags in the EFLAGS register, and a summary of the exceptions that can be 
generated. 

The following sections describe the instruction format for all Intel Architecture processors and 
a description of the information contained in the various sections of the instruction descriptions. 

11.1. INSTRUCTION FORMAT 

All instruction encodings are subsets of the general instruction format shown in Figure 11-1. 
Instructions consist of optional instruction prefixes (in any order), one or two primary opcode 
bytes, an addressing-form specifier (if required) consisting of the ModR/M byte and the SIB 
(Scale-Index-Base) byte, a displacement (if required), and an immediate data field (if required). 

Up to four 
prefixes of 
1-byte each 
(optional) 

1 or 2 byte 
opcode 

1 byte 
(if required) 

/ 
7 65 32 0 

I Mod I o~~~e I RIM I 

1 byte 
(if required) 

~ 

Displacement 

Address 
displacement 
of1,2,or4 

bytes or none 

7 65 32 0 

I Scale I Index I Base I 
Figure 11-1. Instruction Format 

11.1.1. Instruction Prefixes 

Immediate 
data of 

1,2, or 4 
bytes or none 

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes: 

• Lock and repeat prefixes . 

FOH-LOCK prefix. 

F2H-REPNEIREPNZ prefix (used only with string instructions). 

I 
11-1 



INSTRUCTION SET REFERENCE 

• 

• 
• 

F3H-REP prefix (used only with string instructions). 

F3H-REPE/REPZ prefix (used only with string instructions). 

Segment override. 

2EH-CS segment override prefix. 

36H-SS segment override prefix. 

3EH-DS segment override prefix. 

26H-ES segment override prefix. 

64H-FS segment override prefix. 

65H-GS segment override prefix. 

Operand-size override, 66H 

Address-size override, 67H 

For each instruction, one prefix may be used from each of these groups and be placed in any 
order. The effect of redundant prefixes (more than one prefix from a group) is undefined and may 
vary from processor to processor. 

11.1.2. Opcode 

The primary opcode is either 1 or 2 bytes. An additional3-bit opcode field is sometimes encoded 
in the ModRlM byte. Smaller encoding fields can be defined within the primary opcode. These 
fields define the direction of the operation, the size of displacements, the register encoding, 
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on 
the class of operation. 

11.1.3. ModR/M and SIB Bytes 

Most instructions that refer to an operand in memory have an addressing-form specifier byte 
(called the ModRIM byte) following the primary opcode. The ModRIM byte contains three 
fields of information: 

• 

• 

• 

11-2 

The mod field combines with the rim field to form 32 possible values: eight registers and 
24 addressing modes. 

The reglopcode field specifies either a register number or three more bits of opcode infor­
mation. The purpose of the reglopcode field is specified in the first byte of the primary 
opcode. 

The rim field can specify a register as an operand or can be combined with the mod field to 
encode an addressing mode. 

I 



INSTRUCTION SET REFERENCE 

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully 
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit 
addressing require the SIB byte. The SIB byte includes the following fields: 

• 
• 
• 

The scale field specifies the scale factor. 

The index field specifies the register number of the index register. 

The base field specifies the register number of the base register. 

The values and the corresponding addressing forms of the ModRIM and SIB bytes are shown in 
Table 11-1 through Table 11-3. The l6-bit addressing forms specified by the ModRlM byte are 
in Table 11-1. The 32-bit addressing forms specified by the ModRlM byte are in Table 11-2. 
Table 11-3 shows the 32-bit addressing forms specified by the SIB byte. 

11.1.4. Displacement and Immediate Bytes 

Some addressing forms include a displacement immediately following either the ModR/M or 
SIB byte. If a displacement is required, it can be 1,2, or 4 bytes. 

If the instruction specifies an immediate operand, the operand a1 ways follows any displacement 
bytes. An immediate operand can be 1, 2 or 4 bytes. 

I 
11-3 



INSTRUCTION SET REFERENCE 

Table 11-1. 16-Bit Addressing Forms with the Mod RIM Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP1 SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
Idigit (Opcode) 0 1 2 3 4 5 6 7 
REG= 000 001 010 011 100 101 110 111 

Effective 
Address Mod RIM ModR/M Values in Hexadecimal 

[BX+SI] 00 000 00 08 10 18 20 28 30 38 
[BX+OI] 001 01 09 11 19 21 29 31 39 
[BP+SI] 010 02 OA 12 1A 22 2A 32 3A 
[BP+OI] 011 03 OB 13 1B 23 2B 33 3B 
[SI] 100 04 OC 14 1C 24 2C 34 3C 
[01] 101 05 00 15 10 25 20 35 3D 
disp162 110 06 OE 16 1E 26 2E 36 3E 
[BX] 111 07 OF 17 1F 27 2F 37 3F 

[BX+SI]+disp83 01 000 40 48 50 58 60 68 70 78 
[BX+01]+disp8 001 41 49 51 59 61 69 71 79 
[BP+SI]+d isp8 010 42 4A 52 SA 62 6A 72 7A 
[BP+01]+disp8 011 43 4B 53 5B 63 6B 73 7B 
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C 
[01]+disp8 101 45 40 55 50 65 60 75 70 
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E 
[BX]+disp8 111 47 4F 57 SF 67 6F 77 7F 

[BX+SI]+disp16 10 000 80 88 90 98 AO A8 BO B8 
[BX+01]+disp16 001 81 89 91 99 A1 A9 B1 B9 
[BP+SI]+disp16 010 82 8A 92 9A A2 AA B2 BA 
[BP+01]+disp16 011 83 8B 93 9B A3 AB B3 BB 
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC 
[01]+disp16 101 85 80 95 90 AS AD B5 BO 
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE 
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF 

EAXlAXlAL 11 000 CO C8 DO 08 EO E8 FO F8 
ECXlCX/CL 001 C1 C9 01 09 EQ E9 F1 F9 
EOXIOX/OL 010 C2 CA 02 OA E2 EA F2 FA 
EBXlBXlBL 011 C3 CB 03 DB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 DC E4 EC F4 FC 
EBP/BP/CH 101 C5 CD 05 DO E5 ED F5 FO 
ESI/SI/OH 110 C6 CE 06 DE E6 EE F6 FE 
EOI/OI/BH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: 

1. The default segment register is SS for the effective addresses containing a BP index, OS for other effec­
tive addresses. 

2. The "disp16" nomenclature denotes a 16-bit displacement following the ModRlM byte, to be added to the 
index. 

3. The "disp8" nomenclature denotes an 8-bit displacement following the Mod RIM byte, to be sign-extended 
and added to the index. 

11-4 

I 



INSTRUCTION SET REFERENCE 

Table 11-2. 32-Bit Addressing Forms with the Mod RIM Byte 

r8(/r) AL CL OL BL AH CH OH BH 
r16(/r) AX CX OX BX SP BP SI 01 
r32(/r) EAX ECX EOX EBX ESP EBP ESI EOI 
Idigit (Opcode) 0 1 2 3 4 5 6 7 
REG= 000 001 010 011 100 101 110 111 

Effective 
Address Mod RIM ModRlM Values in Hexadecimal 

[EAX] 00 000 00 08 10 18 20 28 30 38 
[ECX] 001 01 09 11 19 21 29 31 39 
[EOX] 010 02 OA 12 1A 22 2A 32 3A 
[EBX] 011 03 OB 13 1B 23 2B 33 3B 
HHl 100 04 OC 14 1C 24 2C 34 3C 
disp322 101 05 00 15 10 25 20 35 30 
[ESI] 110 06 OE 16 1E 26 2E 36 3E 
[EOI] 111 07 OF 17 1F 27 2F 37 3F 

disp8[EAXI' 01 000 40 48 50 58 60 68 70 78 
disp8[ECX] 001 41 49 51 59 61 69 71 79 
disp8[EOX] 010 42 4A 52 5A 62 6A 72 7A 
disp8[EBX]; 011 43 4B 53 5B 63 6B 73 7B 
disp8[--]H 100 44 4C 54 5C 64 6C 74 7C 
disp8[EBP] 101 45 40 55 50 65 60 75 70 
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E 
disp8[EOI] 111 47 4F 57 5F 67 6F 77 7F 

disp32[EAX] 10 000 80 88 90 98 AO A8 BO B8 
disp32[ECX] 001 81 89 91 99 A1 A9 B1 B9 
disp32[EOX] 010 82 8A 92 9A A2 AA B2 BA 
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB 
disp32[ --II-oJ 100 84 8C 94 9C A4 AC B4 BC 
disp32[EBP] 101 85 80 95 90 A5 AO B5 BO 
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE 
disp32[EOI] 111 87 8F 97 9F A7 AF B7 BF 

EAXIAX/AL 11 000 CO C8 00 08 EO E8 FO F8 
ECXlCXlCL 001 C1 C9 01 09 E1 E9 F1 F9 
EOXlOXIOL 010 C2 CA 02 OA E2 EA F2 FA 
EBXlBX/BL 011 C3 CB 03 OB E3 EB F3 FB 
ESP/SP/AH 100 C4 CC 04 OC E4 EC F4 FC 
EBP/BP/CH 101 C5 CO 05 00 E5 EO F5 FO 
ESIISIIOH 110 C6 CE 06 OE E6 EE F6 FE 
EOIIOIIBH 111 C7 CF 07 OF E7 EF F7 FF 

NOTES: 

1. The [--][--] nomenclature means a SIB follows the Mod RIM byte. 

2. The disp32 nomenclature denotes a 32-bit displacement following the SIB byte, to be added to the index. 

3. The disp8 nomenclature denotes an 8-bit displacement following the SIB byte, to be sign-extended and 
added to the index. 

I 
11-5 



INSTRUCTION SET REFERENCE 

Table 11-3. 32-Bit Addressing Forms with the SIB Byte 

EAX ECX EDX EBX ESP [*] ESI EDI 
r32 0 1 2 3 4 5 6 7 
Base = 000 001 010 011 100 101 110 111 
Base = 

Scaled Index SS Index SIB Values in Hexadecimal 

[EAX] 00 000 00 01 02 03 04 05 06 07 
[ECX] 001 08 09 OA OB OC 00 OE OF 
[EOX] 010 10 11 12 13 14 15 16 17 
[EBX] 011 18 19 1A 1B 1C 10 1E 1F 
none 100 20 21 22 23 24 25 26 27 
[EBP] 101 28 29 2A 2B 2C 20 2E 2F 
[ESI] 110 30 31 32 33 34 35 36 37 
[EOI] 111 38 39 3A 3B 3C 30 3E 3F 

[EAX*2] 01 000 40 41 42 43 44 45 46 47 
[ECX*2] 001 48 49 4A 4B 4C 40 4E 4F 
[ECX*2] 010 50 51 52 53 54 55 56 57 
[EBX*2] 011 58 59 5A 5B 5C 50 5E 5F 
none 100 60 61 62 63 64 65 66 67 
[EBP*2] 101 68 69 6A 6B 6C 60 6E 6F 
[ESI*2] 110 70 71 72 73 74 75 76 77 
[EOI*2] 111 78 79 7A 7B 7C 70 7E 7F 

[EAX*4] 10 000 80 81 82 83 84 85 86 87 
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F 
[EOX*4] 010 90 91 92 93 94 95 96 97 
[EBX*4] 011 98 89 9A 9B 9C 90 9E 9F 
none 100 AO A1 A2 A3 A4 A5 A6 A7 
[EBP*4] 101 A8 A9 AA AB AC AO AE AF 
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7 
[EOI*4] 111 B8 B9 BA BB BC BO BE BF 

[EAX*8] 11 000 CO C1 C2 C3 C4 C5 C6 C7 
[ECX*8] 001 C8 C9 CA CB CC CD CE CF 
[EDX*8] 010 00 01 02 D3 04 D5 D6 D7 
[EBX*8] 011 08 D9 DA DB DC DO DE DF 
none 100 EO E1 E2 E3 E4 E5 E6 E7 
[EBP*8] 101 E8 E9 EA EB EC ED EE EF 
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7 
[EDI*8] 111 F8 F9 FA FB FC FD FE FF 

NOTE: 
1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the 

following addressing modes: 

disp32[index] 
disp8[EBP][index] 
disp32[EBP][index] 

11-6 

(MOO=OO). 
(MOO=01). 
(MOD=10). 

I 



INSTRUCTION SET REFERENCE 

11.2. INTERPRETING THE INSTRUCTION REFERENCE PAGES 

This section describes the information contained in the various sections of the instruction refer­
ence pages that make up the majority of this chapter. It also explains the notational conventions 
and abbreviations used in these sections. 

11.2.1. Instruction Format 

The following is an example of the format used for each processor instruction description in this 
chapter: 

CMC-Complement Carry Flag 

Opcode 

F5 

Instruction 

CMC 

Description 

Complement carry flag 

11.2.1.1. OPCODE COLUMN 

The "Opcode" column gives the complete object code produced for each form of the instruction. 
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear 
in memory. Definitions of entries other than hexadecimal bytes are as follows: 

• 

• 

• 

• 

• 

• 

I 

Idigit-A digit between 0 and 7 indicates that the ModRlM byte of the instruction uses 
only the rim (register or memory) operand. The reg field contains the digit that provides an 
extension to the instruction's opcode. 

Ir-Indicates that the ModRIM byte of the instruction contains both a register operand and 
an rim operand. 

cb, cw, cd, cp-A I-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code segment 
register. 

ib, iw, id-A I-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction 
that follows the opcode, ModRIM bytes or scale-indexing bytes. The opcode determines if 
the operand is a signed value. All words and doublewords are given with the low-order byte 
first. 

+rb, +rw, +rd-A register code, from 0 through 7, added to the hexadecimal byte given at 
the left of the plus sign to form a single opcode byte. The register codes are given in Table 
11-4. 

+i-A number used in floating-point instructions when one of the operands is ST(i) from 
the FPU register stack. The number i (which can range from 0 to 7) is added to the 
hexadecimal byte given at the left of the plus sign to form a single opcode byte. 

11-7 



INSTRUCTION SET REFERENCE in1et 

Table 11-4. Register Encodings Associates With the Hb, HW, and Hd Nomenclature 

rb rw rd 

AL = 0 AX = 0 EAX = 0 

CL = 1 CX = 1 ECX = 1 

OL = 2 OX = 2 EOX = 2 

BL = 3 BX = 3 EBX = 3 

rb rw rd 

AH = 4 SP = 4 ESP = 4 

CH = 5 BP = 5 EBP = 5 

OH = 6 SI = 6 ESI = 6 

BH = 7 01 = 7 EOI = 7 

11.2.1.2. INSTRUCTION COLUMN 

The "Instruction" column gives the syntax of the instruction statement as it would appear in an 
ASM386 program. The following is a list of the symbols used to represent operands in the 
instruction statements: 

• 

• 

• 

• 
• 
• 
• 

• 

11-8 

rel8-A relative address in the range from 128 bytes before the end of the instruction to 
127 bytes after the end of the instruction. 

re116 and re132-A relative address within the same code segment as the instruction 
assembled. The re116 symbol applies to instructions with an operand-size attribute of 16 
bits; the re132 symbol applies to instructions with an operand-size attribute of 32 bits. 

ptr16:16 and ptr16:32---A far pointer, typically in a code segment different from that of 
the instruction. The notation 16: 16 indicates that the value of the pointer has two parts. The 
value to the left of the colon is a 16-bit selector or value destined for the code segment 
register. The value to the right corresponds to the offset within the destination segment. 
The ptr16:16 symbol is used when the instruction's operand-size attribute is 16 bits; the 
ptr16:32 symbol is used with the 32-bit attribute. 

r8-0ne of the byte registers AL, CL, DL, BL, AR, CR, DR, or BR. 

r16-0ne of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. 

r32---0ne of the doubleword registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, or EDI. 

imm8-An immediate byte value. The imm8 symbol is a signed number between -128 
and + 127 inclusive. For instructions in which imm8 is combined with a word or 
doubleword operand, the immediate value is sign-extended to form a word or double word. 
The upper byte of the word is filled with the topmost bit of the immediate value. 

imml6-An immediate word value used for instructions whose operand-size attribute is 
16 bits. This is a number between -32,768 and +32,767 inclusive. 

I 



• 

• 

• 

• 

• 
• 

• 

• 

• 
• 

• 

• 

• 

• 

I 

INSTRUCTION SET REFERENCE 

imm32-An immediate doubleword value used for instructions whose operand-size 
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and 
-2,147,483,648 inclusive. 

r/m8-A byte operand that is either the contents of a byte register (AL, BL, CL, DL, AH, 
BH, CH, and DH), or a byte from memory. 

r/m16-A word register or memory operand used for instructions whose operand-size 
attribute is 16 bits. The word registers are: AX, BX, CX, DX, Sp, BP, SI, and DI. The 
contents of memory are found at the address provided by the effective address compu­
tation. 

r/m32-A doubleword register or memory operand used for instructions whose operand­
size attribute is 32 bits. The doubleword registers are: EAX, EBX, ECX, EDX, ESP, EBP, 
ESI, and EDI. The contents of memory are found at the address provided by the effective 
address computation. 

m-A 16- or 32-bit memory operand. 

m8-A memory byte addressed by DS:[E]SI or ES:[E]DI (used only by string 
instructions). 

m16-A memory word addressed by DS:[E]SI or ES:[E]DI (used only by string 
instructions ). 

m32-A memory doubleword addressed by DS:[E]SI or ES:[E]DI (used only by string 
instructions). 

m64-A memory quadword (used only by the CMPXCHG8B instruction). 

m16:16, m16:32-A memory operand containing a far pointer composed of two numbers. 
The number to the left of the colon corresponds to the pointer's segment selector. The 
number to the right corresponds to its offset. 

m16&32, m16&16, m32&32-A memory operand consisting of data item pairs whose 
sizes are indicated on the left and the right side of the ampersand. All memory addressing 
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND 
instruction to provide an operand containing an upper and lower bounds for array indices. 
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load 
the limit field, and a doubleword with which to load the base field of the corresponding 
GDTR and IDTR registers. 

moffs8, moffs16, moffs32-A simple memory variable (memory offset) of type BYTE, 
WORD, or DWORD used by some variants of the MOV instruction. The actual address is 
given by a simple offset relative to the segment base. No ModRIM byte is used in the 
instruction. The number shown with moffs indicates its size, which is determined by the 
address-size attribute of the instruction. 

Sreg-A segment register. The segment register bit assignments are ES=O, CS=I, SS=2, 
DS=3, FS=4, and GS=5. 

m32real, m64real, m80real-A single-, double-, and extended-real (respectively) 
floating-point operand in memory. 

11-9 



INSTRUCTION SET REFERENCE intet 

• 

• 
• 

m16int, m32int, m64int-A word-, short-, and long-integer (respectively) floating-point 
operand in memory. 

ST or ST(O)-The top element of the FPU register stack. 

ST(i)-The ith element from the top of the FPU register stack. (i = 0 through 7) 

11.2.1.3. DESCRIPTION COLUMN 

The "Description" column following the "Instruction" column briefly explains the various forms 
of the instruction. The following Description and Operation sections contain more details of the 
instruction's operation. 

11.2.1.4. DESCRIPTION 

The "Description" section describes the purpose of the instructions and the required operands. 
It also discusses the effect of the instruction on flags. 

11.2.2. Operation 

The "Operation" section contains an algorithmic description (written in pseudo-code) of the 
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo­
rithms are composed of the following elements: 

• 
• 

• 

• 

• 
• 

Comments are enclosed within the symbol pairs "(*" and "*)". 

Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if 
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement. 

A register name implies the contents of the register. A register name enclosed in brackets 
implies the contents of the location whose address is contained in that register. For 
example, ES:[DI] indicates the contents of the location whose ES segment relative address 
is in register DI. [SI] indicates the contents of the address contained in register SI relative 
to SI's default segment (DS) or overridden segment. 

Brackets are also used for memory operands, where they mean that the contents of the 
memory location is a segment-relative offset. For example, [SRC] indicates that the 
contents of the' source operand is a segment-relative offset. 

A ~ B; indicates that the value of B is assigned to A. 

The symbols =, '# , :e::, and :5: are relational operators used to compare two values, meaning 
equal, not equal, greater or equal, less or equal, respectively. A relational expression such 
as A = B is TRUE if the value of A is equal to B ; otherwise it is FALSE. 

The following identifiers are used in the algorithmic descriptions: 

• OperandSize and AddressSize-The OperandSize identifier represents the operand-size 
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier 
represents the address-size attribute, which is either 16 or 32 bits. For example, the 

11-10 

I 



• 

• 
• 

INSTRUCTION SET REFERENCE 

following pseudo-code indicates that the operand-size attribute depends on the form of the 
CMPS instruction used. 

IF instruction = CMPSW 

FI; 

THEN OperandSize ~ 16; 
ELSE 

IF instruction = CMPSD 
THEN OperandSize ~ 32; 

FI; 

See Section 3.8., "Operand-Size and Address-Size Attributes" for general guidelines on 
how these attributes are determined. 

StackAddrSize-Represents the stack address-size attribute associated with the 
instruction, which has a value of 16 or 32 bits (see Section 4.2.2., "Address-Size Attribute 
for Stack"). 

SRC-Represents the source operand. 

DEST -Represents the destination operand. 

The following functions are used in the algorithmic descriptions: 

• 

• 

• 

• 

• 

• 

I 

ZeroExtend(value)-Returns a value zero-extended to the operand-size attribute of the 
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of 
-10 converts the byte from F6H to a doubleword value of OOOOOOF6H. If the value passed 
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend 
returns the value unaltered. 

SignExtend(value)-Returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if the operand-size attribute is 32, sign extending a byte 
containing the value -10 converts the byte from F6H to a doubleword value of 
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute 
are the same size, SignExtend returns the value unaltered. 

Push(value)-Pushes a value onto the procedure stack. The number of bytes pushed is 
determined by the operand-size attribute of the instruction. See the Operation section in 
Chapter 11, "PUSH-Push Word or Doubleword Onto the Stack" for more information on 
the push operation. 

PopO removes the value from the top of the procedure stack and returns it. The statement 
EAX f- PopO; assigns to EAX the 32-bit value from the top of the stack. Pop will return 
either a word or a doubleword depending on the operand-size attribute. See the Operation 
section in Chapter 11, "POP-Pop a Value from the Stack" for more information on the 
pop operation. 

PopRegisterStack-Marks the FPU ST(O) register as empty and increments the FPU 
register stack pointer (TOP) by l. 

Switch-Tasks-Performs a standard task switch. 

11-11 



INSTRUCTION SET REFERENCE in1:et 

• Bit(BitBase, BitOffset)-Returns the value of a bit within a bit string, which is a sequence 
of bits in memory or a register. Bits are numbered from low-order to high-order within 
registers and within memory bytes. If the base operand is a register, the offset can be in the 
range 0 .. 31. This offset addresses a bit within the indicated register. An example, the 
function Bit[EAX, 21] is illustrated in Figure 11-2. 

31 21 o 

II 
t~ ___ BitOffset = 21 ---~ 

Figure 11-2. Bit Offset for BIT[EAX,21] 

If BitBase is a memory address, BitOffset can range from -2 GBits to 2 GBits. The 
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset 
DIV 8», where DIV is signed division with rounding towards negative infinity, and MOD 
returns a positive number. This operation is illustrated in Figure 11-3. 

7 5 o 7 o 7 o 

I II II 
BitBase + 1 BitB~ 

~ BitOffset = + 13 

BitBase -1 

7 o 7 075 o 

II I II 
BitBase LitBase - 1 BitBase - 2 

BitOffset = - ----.t 
Figure 11-3. Memory Bit Indexing 

11.2.3. Flags Affected 

The "Flags Affected" section lists the flags in the EFLAGS register that are affected by the 
instruction. When a flag is cleared, it is set to 0; when it is set, it is set to 1. The arithmetic and 
logical instructions usually assign values to the status flags in a uniform manner (see Appendix 
A, EFLAGS Cross-Reference). Non-conventional assignments are described in the Operation 

11-12 

I 



in1et INSTRUCTION SET REFERENCE 

section. The values of flags listed as undefined may be changed by the instruction in an indeter­
minate manner. Flags that are not listed are unchanged by the instruction. 

11.2.4. FPU Flags Affected 

The floating-point instructions have an "FPU Flags Affected" section that describes how each 
instruction can affect the four condition code flags of the FPU status word. 

11.2.5. Protected Mode Exceptions 

The "Protected Mode Exceptions" section lists the exceptions that can occur when the instruc­
tion is executed in protected mode and the reasons for the exceptions. Each exception is given a 
mnemonic that consists of a pound sign (#) followed by two letters and an optional error code 
in parentheses. For example, #GP(O) denotes a general protection exception with an error code 
of O. Table 11-5 associates each two-letter mnemonic with the corresponding interrupt vector 
number and exception name. See Chapter 5, Interrupt and Exception Handling, in the Pentium® 
Pro Family Developer's Manual, Volume 3 for a detailed description of the exceptions. 

I 
11-13 



INSTRUCTION SET REFERENCE 

Table 11-5. Exception Mnemonics, Names, and Vector Numbers 

Vector 
No. Mnemonic Name Source 

0 #DE Divide Error DIV and IDIV instructions. 

1 #DB Debug Exception Any code or data reference. 

3 #BP Breakpoint INT 3 instruction. 

4 #OF Overflow INTO instruction. 

5 #BR BOUND Range Exceeded BOUND instruction. 

6 #UD Invalid Opcode UD2 instruction or reserved opcode. 

7 #NM Device Not Available Floating-point or WAIT/FWAIT 
instruction. 

8 #DF Double Fault Any instruction. 

10 #TS Invalid TSS Task switch. 

11 #NP Segment Not Present Loading segment registers or accessing 
system segments. 

12 #SS Stack Fault Stack operations. 

13 #GP General Protection Any memory reference. 

14 #PF Page Fault Any memory reference. 

16 #MF Floating-Point Error Floating-point or WAIT/FWAIT 
instruction. 

17 #AC Alignment Check Any data reference in memory. 

18 #MC Machine Check Model dependent. 

Application programmers should consult the documentation provided with their operating 
systems to determine the actions taken when exceptions occur. 

11.2.6. Real-Address Mode Exceptions 

The "Real-Address Mode Exceptions" section lists the exceptions that can occur when the 
instruction is executed in real-address mode. 

11.2.7. Virtual-8086 Mode Exceptions 

The "Virtual-SOS6 Mode Exceptions" section lists the exceptions that can occur when the 
instruction is executed in virtual-S086 mode. 

11-14 

I 



INSTRUCTION SET REFERENCE 

11.2.8. Floating-Point Exceptions 

The "Floating-Point Exceptions" section lists additional exceptions that can occur when a 
floating-point instruction is executed in any mode. All of these exception conditions result in a 
floating-point error exception (#MF, vector 16) being generated. Table 11-6 associates each one­
or two-letter mnemonic with the corresponding exception narne. See Section 7.8., "Floating­
Point Exception Conditions" for a detailed description of these exceptions. 

Table 11-6. Floating-Point Exception Mnemonics and Names 

Vector 
No. Mnemonic Name Source 

16 Floating-point invalid operation: 
#IS - Stack overflow or underflow - FPU stack overflow or underflow 
#IA - Invalid arithmetic operation - Invalid FPU arithmetic operation 

16 #Z Floating-point divide-by-zero FPU divide-by-zero 

16 #0 Floating-point denormalized Attempting to operate on a denormal 
operation number 

16 #0 Floating-point numeric overflow FPU numeric overflow 

16 #U Floating-point numeric underflow FPU numeric underflow 

16 #P Floating-point inexact result Inexact result (precision) 
(precision) 

11.3. INSTRUCTION REFERENCE 

The remainder of this chapter provides detailed descriptions of each of the Pentium Pro 
processor instructions. 

I 
11-15 



INSTRUCTION SET REFERENCE 

AAA-ASCIl Adjust After Addition 

Opcode 

37 

Description 

Instruction 

AAA 

Description 

ASCII adjust AL after addition 

intet 

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The AL 
register is the implied source and destination operand for this instruction. The AAA instruction 
is only useful when it follows an ADD instruction that adds (binary addition) two unpacked 
BCD values and stores a byte result in the AL register. The AAA instruction then adjusts the 
contents of the AL register to contain the correct I-digit unpacked BCD result. 

If the addition produces a decimal carry, the AH register is incremented by 1, and the CF and 
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH 
register is unchanged. In either case, bits 4 through 7 of the AL register are cleared to O. 

Operation 

IF ((AL AND FH) > 9) OR (AF = 1) 

FI; 

THEN 
AL ~ (AL + 6); 
AH ~ AH + 1; 
AF~ 1; 
CF~ 1; 

ELSE 
AF~O; 

CF~O; 

AL ~ AL AND FH; 

Flags Affected 

The AF and CF flags are set to I if the adjustment results in a decimal carry; otherwise they are 
cleared to O. The OF, SF, ZF, and PF flags are undefined. 

Exceptions (All Operating Modes) 

None. 

11-16 

I 



INSTRUCTION SET REFERENCE 

AAD-ASCII Adjust AX Before Division 

Description Opcode 

05 OA 

Instruction 

AAO ASCII adjust AX before division 

Description 

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the most­
significant digit in the AH register) so that a division operation performed on the result will yield 
a correct unpacked BCD value. The AAD instruction is only useful when it precedes a DIV 
instruction that divides (binary division) the adjusted value in the AL register by an unpacked 
BCD value. 

The AAD instruction sets the value in the AL register to (AL + (10 * AH», and then clears the 
AH register to OOH. The value in the AX register is then equal to the binary equivalent of the 
original unpacked two-digit number in registers AH and AL. 

Operation 

tempAL *- AL; 
tempAH *- AH; 
AL *- (tempAL + (tempAH * immB)) AND FFH; 
AH *- 0 

The immediate value (imm8) is taken from the second byte of the instruction, which under 
normal assembly is OAH (10 decimal). However, this immediate value can be changed to 
produce a different result. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined. 

Exceptions (All Operating Modes) 

None. 

I 
11-17 



INSTRUCTION SET REFERENCE 

AAM-ASCII Adjust AX After Multiply 

Opcode 

D4 OA 

Description 

Instruction 

AAM 

Description 

ASCII adjust AX after multiply 

intet 

Adjusts the result of the multiplication of two unpacked BCD values to create a pair of unpacked 
BCD values. The AX register is the implied source and destination operand for this instruction. 
The AAM instruction is only useful when it follows an MUL instruction that multiplies (binary 
multiplication) two unpacked BCD values and stores a word result in the AX register. The AAM 
instruction then adjusts the contents of the AX register to contain the correct 2-digit unpacked 
BCD result. 

Operation 

tempAL ~ AL; 
AH ~ tempAL / imm8; 
AL ~ tempAL MOD imm8; 

The immediate value (imm8) is taken from the second byte of the instruction, which under 
normal assembly is OAH (10 decimal). However, this immediate value can be changed to 
produce a different result. 

Flags Affected 

The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined. 

Exceptions (All Operating Modes) 

None. 

11-18 

I 



INSTRUCTION SET REFERENCE 

AAS-ASCII Adjust AL After Subtraction 

Opcode 

3F 

Description 

Instruction 

AAS 

Description 

ASCII adjust AL after subtraction 

Adjusts the result of the subtraction of two unpacked BCD values to create a unpacked BCD 
result. The AL register is the implied source and destination operand for this instruction. The 
AAS instruction is only useful when it follows a SUB instruction that subtracts (binary subtrac­
tion) one unpacked BCD value from another and stores a byte result in the AL register. The AAA 
instruction then adjusts the contents of the AL register to contain the correct I-digit unpacked 
BCD result. 

If the subtraction produced a decimal carry, the AH register is decremented by I, and the CF and 
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH 
register is unchanged. In either case, the AL register is left with its top nibble set to O. 

Operation 

IF ((AL AND FH) > 9) OR (AF = 1) 
THEN 
AL~ AL- 6; 
AH ~ AH -1; 
AF~ 1; 
CF~ 1; 

ELSE 
CF~O; 

AF~O; 

FI; 
AL ~ AL AND FH; 

Flags Affected 

The AF and CF flags are set to I if there is a decimal borrow; otherwise, they are cleared to O. 
The OF, SF, ZF, and PF flags are undefined. 

Exceptions (All Operating Modes) 

None. 

I 
11-19 



INSTRUCTION SET REFERENCE 

ADC-Add with Carry 

Opcode Instruction 

14 ib ADC AL,immB 

15 iw ADC AX,imm16 

15 id ADC EAX,imm32 

8012 ib ADC rlmB,immB 

81 12 iw ADC rim 16,imm16 

81 12 id ADC rlm32,imm32 

8312 ib ADC rim 16,immB 

8312 ib ADC rlm32,immB 

10lr ADC rlmB,rB 

11 Ir ADC rim 16,r16 

11 I r ADC rlm32,r32 

121r ADC rB,rlmB 

131r ADC r16,rlm16 

131r ADC r32,rlm32 

Description 

Description 

Add with carry immB to AL 

Add with carry imm16 to AX 

Add with carry imm32 to EAX 

Add with carry immB to rlmB 

Add with carry imm16to rim 16 

Add with CF imm32 to rlm32 

intet 

Add with CF sign-extended immBto rlm16 

Add with CF sign-extended immBinto rlm32 

Add with carry byte register to rlmB 

Add with carry r16to rlm16 

Add with CF r32 to rlm32 

Add with carry rlmB to byte register 

Add with carry rim 16 to r16 

Add with CF rlm32 to r32 

Adds the destination operand (first operand), the source operand (second operand), and the carry 
(CF) flag and stores the result in the destination operand. The destination operand can be a 
register or a memory location; the source operand can be an immediate, a register, or a memory 
location. The state of the CF flag represents a carry from a previous addition. When an imme­
diate value is used as an operand, it is sign-extended to the length of the destination operand 
format. 

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the 
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry 
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result. 

The ADC instruction is usually executed as part of a multibyte or multi word addition in which 
an ADD instruction is followed by an ADC instruction. 

Operation 

DEST f- DEST + SRC + CF; 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result. 

11-20 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-21 



INSTRUCTION SET REFERENCE 

ADD-Add 

Opcode 

04 ib 

05 iw 

05 id 

8010 ib 

81 10 iw 

81 10 id 

8310 ib 

8310 ib 

OOlr 

011r 

01 Ir 

021r 

031r 

031r 

Description 

Instruction 

ADD AL,immB 

ADD AX,imm 16 

ADD EAX,imm32 

ADD rlmB,immB 

ADD rim 16,imm16 

ADD rlm32,imm32 

ADD rim 16,immB 

ADD rlm32,immB 

ADD rlmB,rB 

ADD rim 16,r16 

ADD rlm32,r32 

ADD rB,rlmB 

ADD r16,rlm16 

ADD r32,rlm32 

Description 

Add immB to AL 

Add imm16to AX 

Add imm32 to EAX 

Add immB to rlmB 

Add imm16 to rim 16 

Add imm32 to rlm32 

Add sign-extended immBto rlm16 

Add sign-extended immB to rlm32 

Add rB to rlmB 

Add r16to rlm16 

Add r32 to rlm32 

Add rlmBto rB 

Add rim 16 to r16 

Add rlm32 to r32 

Adds the first operand (destination operand) and the second operand (source operand) and stores 
the result in the destination operand. The destination operand can be a register or a memory 
location; the source operand can be an immediate, a register, or a memory location. When an 
immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format. 

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the 
processor evaluates the result for both data types and sets the OF and CF flags to indicate a carry 
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed result. 

Operation 

DEST (- DEST + SRC; 

Flags Affected 

The OF, SF, ZF, AF, CF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) 

11-22 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

I 



#SS(O) 

#PF(fault-code) 

#AC(O) 

INSTRUCTION SET REFERENCE 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-23 



INSTRUCTION SET REFERENCE 

AND-Logical AND 

Opcode 

24 ib 

25 iw 

25 id 

8014 ib 

81 14 iw 

81 14 id 

8314 ib 

8314 ib 

20 Ir 

21 Ir 

21 Ir 

221r 

231r 

231r 

Description 

Instruction 

AND AL,immB 

AND AX,imm16 

AND EAX,imm32 

AND rlmB,immB 

AND rim 16,imm 16 

AND rlm32,imm32 

AND rlm16,immB 

AND rlm32,immB 

AND rlmB,rB 

AND rlm16,r16 

AND rlm32,r32 

AND rB,rlmB 

AND r16,rlm16 

AND r32,rlm32 

Description 

ALAND immB 

AX AND imm16 

EAX AND imm32 

rlmB AND immB 

rlm16 AND imm16 

rlm32 AND imm32 

rlm16 AND immB 

rlm32 AND immB 

rlmBAND rB 

rlm16AND r16 

rlm32 AND r32 

rBAND rlmB 

r16 AND rlm16 

r32 AND rlm32 

Performs a bitwise AND operation on the destination (first) and source (second) operands and 
stores the result in the destination operand location. The source operand can be an immediate, a 
register, or a memory location; the destination operand can be a register or a memory location. 

Operation 

DEST (- DEST AND SRC; 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The 
state of the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-24 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-25 



INSTRUCTION SET REFERENCE in1et 

ARPL-Adjust RPL Field of Segment Selector 

Opcode 

631r 

Description 

Instruction 

ARPL rlm16,r16 

Description 

Adjust RPL of rim 16 to not less than RPL of r16 

Compares the RPL fields of two segment selectors. The first operand (the destination operand) 
contains one segment selector and the second operand (source operand) contains the other. (The 
RPL field is located in bits 0 and 1 of each operand.) If the RPL field of the destination operand 
is less than the RPL field of the source operand, the ZF flag is set and the RPL field of the desti­
nation operand is increased to match that of the source operand. Otherwise, the ZF flag is cleared 
and no change is made to the destination operand. (The destination operand can be a word 
register or a memory location; the source operand must be a word register.) 

The ARPL instruction is provided for use by operating-system procedures (however, it can also 
be used by applications). It is generally used to adjust the RPL of a segment selector that has 
been passed to the operating system by an application program to match the privilege level of 
the application program. Here the segment selector passed to the operating system is placed in 
the destination operand and segment selector for the application program's code segment is 
placed in the source operand. (The RPL field in the source operand represents the privilege level 
ofthe application program.) Execution of the ARPL instruction then insures that the RPL ofthe 
segment selector received by the operating system is no lower (does not have a higher privilege) 
than the privilege level of the application program. (The segment selector for the application 
program's code segment can be read from the procedure stack following a procedure call.) 

See "Checking Caller Access Privileges" in Chapter 4, Protection, of the Pentium® Pro Family 
Developer's Manual, Volume 3 for more information about the use ofthis instruction. 

Operation 

IF DEST(RPL) < SRC(RPL) 
THEN 
ZF~ 1; 
DEST(RPL) ~ SRC(RPL); 

ELSE 
ZF ~O; 

FI; 

Flags Affected 

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source 
operand; otherwise, is cleared to O. 

11-26 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#PF( fault -code) 

#ACCO) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#UD The ARPL instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The ARPL instruction is not recognized in virtual 8086 mode. 

I 
11-27 



INSTRUCTION SET REFERENCE in1et 

BOUND-Check Array Index Against Bounds 

Opcode 

621r 

621r 

Description 

Instruction 

BOUND r16,m16&16 

BOUND r32,m32&32 

Description 

Check if r16 (array index) is within bounds specified by 
m16&16 

Check if r32 (array index) is within bounds specified by 
m16&16 

Determines if the first operand (array index) is within the bounds of an array specified the second 
operand (bounds operand). The array index is a signed integer located in a register. The bounds 
operand is a memory location that points to a pair of signed double word-integers (when the 
operand-size attribute is 32) or a pair of signed word-integers (when the operand-size attribute 
is 16). The first doubleword (or word) is the lower bound of the array and the second doubleword 
(or word) is the upper bound of the array. The array index must be greater than or equal to the 
lower bound and less than or equal to the upper bound plus the operand size in bytes. If the index 
is not within bounds, a BOUND range exceeded exception (#BR) is signaled. (When a this 
exception is generated, the saved return instruction pointer points to the BOUND instruction.) 

The bounds limit data structure (two words or doublewords containing the lower and upper 
limits of the array) is usually placed just before the array itself, making the limits addressable 
via a constant offset from the beginning of the array. Because the address of the array already 
will be present in a register, this practice avoids extra bus cycles to obtain the effective address 
of the array bounds. 

Operation 

IF (Arraylndex < LowerBound OR Arraylndex > (UppderBound + OperandSize/8])) 
(* Below lower bound or above upper bound *) 
THEN 

#BR; 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

If the bounds test fails. 

If second operand is not a memory location. 

#BR 

#UD 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

11-28 

I 



intet 

#SS(O) 

#PF(fault -code) 

#AC(O) 

INSTRUCTION SET REFERENCE 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#BR 

#GP 

#SS 

If the bounds test fails. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#BR If the bounds test fails. 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-29 



INSTRUCTION SET REFERENCE in1et 

BSF-Bit Scan Forward 

Opcode 

OF BC 

OF BC 

Description 

Instruction 

BSF r16,rlm16 

BSF r32,rlm32 

Description 

Bit scan forward on rlm16 

Bit scan forward on rlm32 

Searches the source operand (second operand) for the least significant set bit (1 bit). If a least 
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The 
source operand can be a register or a memory location; the destination operand is a register. The 
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand 
are 0, the contents of the destination operand is undefined. 

Operation 

IF SRC = 0 
THEN 

FI; 

ZF~ 1; 
DEST is undefined; 

ELSE 
ZF~O; 

temp ~ 0; 
WHILE Bit(SRC, temp) = 0 
DO 

temp ~ temp + 1; 
DEST ~ temp; 

aD; 

Flags Affected 

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, 
OF, SF, AF, and PF, flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-30 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#OP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-31 



INSTRUCTION SET REFERENCE 

BSR-Bit Scan Reverse 

Opcode 

OFBD 

OFBD 

Description 

Instruction 

BSR r16,rlm16 

BSR r32,rlm32 

Description 

Bit scan reverse on rlm16 

Bit scan reverse on rlm32 

Searches the source operand (second operand) for the most significant set bit (l bit). If a most 
significant 1 bit is found, its bit index is stored in the destination operand (first operand). The 
source operand can be a register or a memory location; the destination operand is a register. The 
bit index is an unsigned offset from bit 0 of the source operand. If the contents source operand 
are 0, the contents of the destination operand is undefined. 

Operation 

IF SRC = 0 
THEN 

FI; 

ZF (- 1; 
DEST is undefined; 

ELSE 
ZF (- 0; 
temp (- OperandSize - 1; 

WHILE Bit(SRC, temp) = 0 
DO 

temp (- temp - 1; 
DEST (- temp; 

00; 

Flags Affected 

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, 
OF, SF, AF, and PF, flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-32 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



in1et INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#OP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-33 



INSTRUCTION SET REFERENCE 

BSWAP-Byte Swap 

Opcode 

OF C8+rd 

Description 

Instruction 

BSWAP r32 

Description 

Reverses the byte order of a 32-bit register. 

Reverses the byte order of a 32-bit (destination) register: bits 0 through 7 are swapped with bits 
24 through 31, and bits 8 through 15 are swapped with bits 16 through 23. This instruction is 
provided for converting little-endian values to big-endian format and vice versa. 

To swap bytes in a word value (l6-bit register), use the XCHG instruction. When the BSWAP 
instruction references a l6-bit register, the result is undefined. 

Operation 

TEMP,""" DEST 
DEST(7 .. 0) '""" TEMP(31 .. 24) 
DEST(15 .. 8) '""" TEMP(23 .. 16) 
DEST(23 .. 16) '""" TEMP(15 .. 8) 
DEST(31 .. 24) '""" TEMP(7 .. 0) 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

None. 

Intel Architecture Compatibility Information 

The BSWAP instruction is not supported on Intel Architecture processors earlier than the 
Inte1486 processor family. For compatibility with this instruction, include functionally­
equivalent code for execution on Intel processors earlier than the Inte1486 processor family. 

11-34 

I 



in1:et 

BT-Bit Test 

Opcode 

OFA3 

OFA3 

OFBA/4ib 

OF BA/4 ib 

Description 

Instruction 

BT r/m16,r16 

BT r/m32,r32 

BT r/m16,imm8 

BT r/m32,imm8 

INSTRUCTION SET REFERENCE 

Description 

Store selected bit in CF flag 

Store selected bit in CF flag 

Store selected bit in CF flag 

Store selected bit in CF flag 

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit­
position designated by the bit offset operand (second operand) and stores the value of the bit in 
the CF flag. The bit base operand can be a register or a memory location; the bit offset operand 
can be a register or an immediate value. If the bit base operand specifies a register, the instruction 
takes the modulo 16 or 32 (depending on the register size) of the bit offset operand, allowing any 
bit position to be selected in a 16- or 32-bit register, respectively (see Figure 11-2). If the bit base 
operand specifies a memory location, it represents the address of the byte in memory that 
contains the bit base (bit a of the specified byte) of the bit string (see Figure 11-3). The offset 
operand then selects a bit position within the range _231 to 231 - 1 for a register offset and 0 to 
31 for an immediate offset. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. In this case, the low­
order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit operands) of the immediate bit offset are 
stored in the immediate bit offset field, and the high-order bits are shifted and combined with 
the byte displacement in the addressing mode by the assembler. The processor will ignore the 
high order bits if they are not zero. 

When accessing a bit in memory, the processor may access 4 bytes starting from the memory 
address for a 32-bit operand size, using by the following relationship: 

Effective Address + (4 * (BitOffset DIV 32)) 

Or, it may access 2 bytes starting from the memory address for a 16-bit operand, using this rela­
tionship: 

Effective Address + (2 * (BitOffset DIV 16)) 

It may do so even when only a single byte needs to be accessed to reach the given bit. When 
using this bit addressing mechanism, software should avoid referencing areas of memory close 
to address space holes. In particular, it should avoid references to memory-mapped 110 registers. 
Instead, software should use the MOV instructions to load from or store to these addresses, and 
use the register form of these instructions to manipulate the data. 

Operation 

CF f- Bit(BitBase, BitOffset) 

I 
11-35 



INSTRUCTION SET REFERENCE 

Flags Affected 

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are 
undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-36 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

BTC-Bit Test and Complement 

Opcode 

OFBB 

OF BB 

OF BA/7 ib 

OF BA/7 ib 

Description 

Instruction 

BTC r/m16,r16 

BTC r/m32,r32 

BTC r/m16,immB 

BTC r/m32,immB 

Description 

Store selected bit in CF flag and complement 

Store selected bit in CF flag and complement 

Store selected bit in CF flag and complement 

Store selected bit in CF flag and complement 

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit­
position designated by the bit offset operand (second operand), stores the value of the bit in the 
CF flag, and complements the selected bit in the bit string. The bit base operand can be a register 
or a memory location; the bit offset operand can be a register or an immediate value. If the bit 
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the 
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit 
register, respectively (see Figure 11-2). If the bit base operand specifies a memory location, it 
represents the address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) of the bit string (see Figure 11-3). The offset operand then selects a bit position within the 
range _231 to 231 - 1 for a register offset and 0 to 31 for an immediate offset. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. See Chapter 11, 
"BT-Bit Test" for more information on this addressing mechanism. 

Operation 

CF ~ Bit(BitBase, BitOffset) 
Bit(BitBase, BitOffset) ~ NOT Bit(BitBase, BitOffset); 

Flags Affected 

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF, 
AF, and PF flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-37 



INSTRUCTION SET REFERENCE intet 

#AC(O) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-38 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

BTR-Bit Test and Reset 

Opcode 

OF B3 

OF B3 

OF BA/6 ib 

OF BA/6 ib 

Description 

Instruction 

BTR r/m16,r16 

BTR r/m32,r32 

BTR r/m16,immB 

BTR r/m32,immB 

Description 

Store selected bit in CF flag and clear 

Store selected bit in CF flag and clear 

Store selected bit in CF flag and clear 

Store selected bit in CF flag and clear 

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit­
position designated by the bit offset operand (second operand), stores the value of the bit in the 
CF flag, and clears the selected bit in the bit string to O. The bit base operand can be a register 
or a memory location; the bit offset operand can be a register or an immediate value. If the bit 
base operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the 
register size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit 
register, respectively (see Figure 11-2). If the bit base operand specifies a memory location, it 
represents the address of the byte in memory that contains the bit base (bit 0 of the specified 
byte) ofthe bit string (see Figure 11-3). The offset operand then selects a bit position within the 
range _231 to 231 - 1 for a register offset and 0 to 31 for an immediate offset. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit offset 
field in combination with the displacement field of the memory operand. See Chapter 11, 
"BT-Bit Test" for more information on this addressing mechanism. 

Operation 

CF ~ Bit(BitBase, BitOffset) 
Bit(BitBase, BitOffset) ~ 0; 

Flags Affected 

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and 
PF flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-39 



INSTRUCTION SET REFERENCE int"et 

#AC(O) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-40 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



in1et INSTRUCTION SET REFERENCE 

BTS-Bit Test and Set 

Opcode 

OFAB 

OFAB 

OF BA/5 ib 

OF BA/5 ib 

Description 

Instruction 

BTS rim 16,r16 

BTS rlm32,r32 

BTS rlm16,imm8 

BTS rlm32,imm8 

Description 

Store selected bit in CF flag and set 

Store selected bit in CF flag and set 

Store selected bit in CF flag and set 

Store selected bit in CF flag and set 

Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit­
position designated by the bit offset operand (second operand), stores the value of the bit in the 
CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a register or 
a memory location; the bit offset operand can be a register or an immediate value. If the bit base 
operand specifies a register, the instruction takes the modulo 16 or 32 (depending on the register 
size) of the bit offset operand, allowing any bit position to be selected in a 16- or 32-bit register, 
respectively (see Figure 11-2). If the bit base operand specifies a memory location, it represents 
the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the 
bit string (see Figure 11-3). The offset operand then selects a bit position within the range _231 

to 231 - 1 for a register offset and 0 to 31 for an immediate offset. 

Some assemblers support immediate bit offsets larger than 31 by using the immediate bit ol'l'set 
field in combination with the displacement field of the memory operand. See Chapter II, 
"BT-Bit Test" for more information on this addressing mechanism. 

Operation 

CF ~ Bit(BitBase, BitOffset) 
Bit(BitBase, BitOffset) ~ 1; 

Flags Affected 

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF 
flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-41 



INSTRUCTION SET REFERENCE intet 
#AC(O) If alignment checking is enabled and an unaligned memory reference is 

made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#PF(fault-code) 

#AC(O) 

11-42 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

CALL-Call Procedure 

Opcode 

E8 cw 

E8 cd 

FF /2 

FF /2 

9A cd 

9A cp 

FF /3 

FF /3 

Instruction 

CALL rel16 

CALL rel32 

CALL rlm16 

CALL rlm32 

CALL ptr16:16 

CALL ptr16:32 

CALL m16:16 

CALL m16:32 

Description 

Call near, displacement relative to next instruction 

Call near, displacement relative to next instruction 

Call near, rim 16 indirect 

Call near, rlm32 indirect 

Call far, to full pointer given 

Call far, to full pointer given 

Call far, address at rim 16 

Call far, address at rlm32 

Description 

Saves procedure linking information on the procedure stack and jumps to the procedure (called 
procedure) specified with the destination (target) operand. The target operand specifies the 
address of the first instruction in the called procedure. This operand can be an immediate value, 
a general-purpose register, or a memory location. 

This instruction can be used to execute four different types of calls: 

• 

• 

• 

• 

Near call-A call to a procedure within the current code segment (the segment currently 
pointed to by the CS register), sometimes referred to as an intrasegment call. 

Far call-A call to a procedure located in a different segment than the current code 
segment, sometimes referred to as an intersegment call. 

Inter-privilege-Ievel far call-A far call to a procedure in a segment at a different privilege 
level than that of the currently executing program or procedure. 

Task switch-A call to a procedure located in a different task. 

The latter two call types (inter-privilege-Ievel call and task switch) can only be executed in 
protected mode. See Section 4.3., "Calling Procedures Using CALL and RET" for detailed 
information on near, far, and inter-pri vilege-Ievel calls; see Chapter 6 in the P entium® Pro F amity 
Developer's Manual, Volume 3 for information on task switching with the CALL instruction. 

When executing a near call, the processor pushes the value of the EIP register (which contains 
the address of the instruction following the CALL instruction) onto the procedure stack (for use 
later as a return-instruction pointer. The processor then jumps to the address specified with the 
target operand for the called procedure. The target operand specifies either an absolute address 
in the code segment (that is an offset from the base of the code segment) or a relative offset (a 
signed offset relative to the current value of the instruction pointer in the EIP register, which 
points to the instruction following the call). An absolute address is specified directly in a register 
or indirectly in a memory location (rlm16 or rlm32 target-operand form). (When accessing an 
absolute address indirectly using the stack pointer (ESP) as a base register, the base value used 
is the value of the ESP before the instruction executes.) A relative offset (re1l6 or rel32) is gener­
ally specified as a label in assembly code, but at the machine code level, it is encoded as a signed, 
16- or 32-bit immediate value, which is added to the instruction pointer. 

I 
11-43 



INSTRUCTION SET REFERENCE 

When executing a near call, the operand-size attribute detennines the size of the target operand 
(16 or 32 bits) for absolute addresses. Absolute addresses are loaded directly into the EIP 
register. When a relative offset is specified, it is added to the value of the EIP register. If the 
operand-size attribute is 16, the upper two bytes of the EIP register are cleared to Os, resulting 
in a maximum instruction pointer size of 16 bits. The CS register is not changed on near calls. 

When executing a far call, the processor pushes the current value of both the CS and EIP regis­
ters onto the procedure stack for use as a return-instruction pointer. The processor then performs 
a far jump to the code segment and address specified with the target operand for the called proce­
dure. Here the target operand specifies an absolute far address either directly with a pointer 
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). With the 
pointer method, the segment and address of the called procedure is encoded in the instruction 
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With 
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines 
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the 
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register 
are cleared to Os. 

Any far call from a 32-bit code segment to a 16-bit code segment should be made from the first 
64 Kbytes of the 32-bit code segment, because the operand-size attribute of the instruction is set 
to 16, allowing only a 16-bit return address offset to be saved. Also, the call should be made 
using a 16-bit call gate so that 16-bit values will be pushed on the stack. 

When the processor is operating in protected mode, a far call can also be used to access a code 
segment at a different privilege level or to switch tasks. Here, the processor uses the segment 
selector part of the far address to access the segment descriptor for the segment being jumped 
to. Depending on the value of the type and access rights information in the segment selector, the 
CALL instructon can perform: 

• 
• 
• 

A far call to the same privilege level (described in the previous paragraph). 

An far call to a different privilege level. 

A task switch. 

When executing an inter-privilege-Ievel far call, the code segment for the procedure being called 
is accessed through a call gate. The segment selector specified by the target operand identifies 
the call gate. In executing a call through a call gate where a change of privilege level occurs, the 
processor switches to the stack for the privilege level of the called procedure, pushes the current 
values of the CS and EIP registers and the SS and ESP values for the old stack onto the new 
stack, then performs a far jump to the new code segment. The new code segment is specified in 
the call gate descriptor; the new stack segment is specified in the TSS for the currently running 
task. The jump to the new code segment occurs after the stack switch. On the new stack, the 
processor pushes the segment selector and stack pointer for the calling procedure's stack, a set 
of parameters from the calling procedures stack, and the segment selector and instruction pointer 
for the calling procedure's code segment. (A value in the call gate descriptor determines how 
many parameters to copy to the new stack.) 

Finally, the processor jumps to the address of the procedure being called within the new code 
segment. The procedure address is the offset specified by the target operand. Here again, the 

11-44 

I 



INSTRUCTION SET REFERENCE 

target operand can specify the far address of the call gate and procedure either directly with a 
pointer (ptr16:16 or ptrl6:32) or indirectly with a memory location (m16:16 or m16:32). 

Executing a task switch with the CALL instruction, is similar to executing a call through a call 
gate. Here the target operand specifies the segment selector of the task gate for the task being 
switched to and the address of the procedure being called in the task. The task gate in tum points 
to the TSS for the task, which contains the segment selectors for the task's code and stack 
segments. The CALL instruction can also specify the segment selector of the TSS directly. See 
Chapter 6, Task Management, in Pentium® Pro Family Developer's Manual, Volume 3 the for 
detailed information on the mechanics of a task switch. 

Operation 

IF near call 

FI; 

I 

THEN IF near relative call 

FI; 

IF the instruction pointer is not within code segment limit THEN #GP(O); FI; 
THEN IF Operand8ize = 32 

FI; 

THEN 
IF stack not large enough for a 4-byte return address THEN #88(0); FI; 
Push(EIP); 
EIP ~ EIP + DE8T; (* DE8T is re/32*) 

EL8E (* Operand8ize = 16 *) 
IF stack not large enough for a 2-byte return address THEN #88(0); FI; 
Push(IP); 
EIP ~ (EIP + DE8T) AND OOOOFFFFH; (* DE8T is rel16 *) 

EL8E (* near absolute call *) 

FI: 

IF the instruction pOinter is not within code segment limit THEN #GP(O); FI; 
IF Operand8ize = 32 

FI; 

THEN 
IF stack not large enough for a 4-byte return address THEN #88(0); FI; 
Push(EIP); 
EIP ~ DE8T; (* DE8T is r/m32 *) 

EL8E (* Operand8ize = 16 *) 
IF stack not large enough for a 2-byte return address THEN #88(0); FI; 
Push(IP); 
EIP ~ DE8T AND OOOOFFFFH; (* DE8T is r/m16 *) 

11-45 



INSTRUCTION SET REFERENCE 

IF far call AND (PE = 0 OR (PE = 1 AND VM = 1» (* real address or virtual 8086 mode *) 
THEN 

FI; 

IF OperandSize = 32 

FI; 

THEN 
IF stack not large enough for a 6-byte return address THEN #SS(O); FI; 
IF the instruction pOinter is not within code segment limit THEN #GP(O); FI; 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); 
CS ~ DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *) 
EI P ~ DEST[31 :0]; (* DEST is ptr16:32 or [m 16:32] *) 

ELSE (* OperandSize = 16 *) 
IF stack not large enough for a 4-byte return address THEN #SS(O); FI; 
IF the instruction pointer is not within code segment limit THEN #GP(O); FI; 
Push(CS); 
Push(IP); 
CS ~ DEST[31 :16]; (* DEST is ptr16:16 or [m16:16j *) 
EIP ~ DEST[15:0]; (* DEST is ptr16:16 or [m16:16j *) 
EIP ~ EIP AND OOOOFFFFH; (* clear upper 16 bits *) 

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *) 
THEN 

FI; 

IF segment selector in target operand null THEN #GP(O); FI; 
IF segment selector index not within descriptor table limits 

THEN #GP(new code selector); 
FI; 
Read type and access rights of selected segment descriptor; 
I F segment type is not a conforming or nonconforming code segment, call gate, 

task gate, or TSS THEN #GP(segment selector); FI; 
Depending on type and access rights 

GO TO CONFORMING-CODE-SEGMENT; 
GO TO NONCONFORMING-CODE-SEGMENT; 
GO TO CALL-GATE; 
GO TO TASK-GATE; 
GO TO TASK-STATE-SEGMENT; 

CONFORMING-CODE-SEGMENT: 
IF DPL > CPL THEN #GP(new code segment selector); FI; 
IF segment not present THEN #NP(new code segment selector); FI; 
IF OperandSize = 32 

11-46 

THEN 
IF stack not large enough for a 6-byte return address THEN #SS(O); FI; 
IF the instruction pointer is not within code segment limit THEN #GP(O); FI; 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); 

I 



INSTRUCTION SET REFERENCE 

CS f- DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *) 
CS(RPL) f- CPL 
EIP f- DEST(offset); 

ELSE (* OperandSize = 16 *) 
IF stack not large enough for a 4-byte return address THEN #SS(O); FI; 
IF the instruction pointer is not within code segment limit THEN #GP(O); FI; 
Push(CS); 
Push(IP); 
CS f- DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *) 
CS(RPL) f- CPL 
EIP f- DEST(offset) AND OOOOFFFFH; (* clear upper 16 bits *) 

FI; 
END; 

NONCONFORMING-CODE-SEGMENT: 
IF (RPL > CPL) OR (DPL *- CPL) THEN #GP(new code segment selector); FI; 
IF segment not present THEN #NP(new code segment selector); FI; 
IF stack not large enough for return address THEN #SS(O); FI; 
tempEIP f- DEST(offset) 
IF OperandSize=16 

THEN 
tempEIP f- tempEIP AND OOOOFFFFH; (* clear upper 16 bits *) 

FI; 
IF tempEIP outside code segment limit THEN #GP(O); FI; 
IF OperandSize = 32 

THEN 
Push(CS); (* padded with 16 high-order bits *) 
Push(EIP); 
CS f- DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *) 
CS(RPL) f- CPL; 
EIP f- tempEIP; 

ELSE (* OperandSize = 16 *) 
Push(CS); 
Push(IP); 
CS f- DEST(NewCodeSegmentSelector); 
(* segment descriptor information also loaded *) 
CS(RPL) f- CPL; 
EIP f- tempEIP; 

FI; 
END; 

I 
11-47 



INSTRUCTION SET REFERENCE 

CALL-GATE: 
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); FI; 
IF call gate not present THEN #NP(call gate selector); FI; 
IF call gate code-segment selector is null THEN #GP(O); FI; 
IF call gate code-segment selector index is outside descriptor table limits 

THEN #GP(code segment selector); FI; 
Read code segment descriptor; 
IF code-segment segment descriptor does not indicate a code segment 
OR code-segment segment descriptor DPL > CPL 

. THEN #GP(code segment selector); FI; 
IF code segment not present THEN #NP(new code segment selector); FI; 
IF code segment is non-conforming AND DPL < CPL 

FI; 
END; 

THEN go to MORE-PRIVILEGE; 
ELSE go to SAME-PRIVILEGE; 

MORE-PRIVILEGE: 
IF current TSS is 32-bit TSS 

THEN 

FI; 

TSSstackAddress ~ new code segment (DPL * 8) + 4 
IF (TSSstackAddress + 7) > TSS limit 

THEN #TS(current TSS selector); FI; 
newSS ~ TSSstackAddress + 4; 
newESP ~ stack address; 

ELSE (* TSS is 16-bit *) 
TSSstackAddress ~ new code segment (DPL * 4) + 2 
IF (TSSstackAddress + 4) > TSS limit 

THEN #TS(current TSS selector); FI; 
newESP ~ TSSstackAddress; 
newSS ~ TSSstackAddress + 2; 

IF stack segment selector is null THEN #TS(stack segment selector); FI; 
IF stack segment selector index is not within its descriptor table limits 

THEN #TS(SS selector); FI 
Read code segment descriptor; 
IF stack segment selector's RPL"# DPL of code segment 

OR stack segment DPL "# DPL of code segment 
OR stack segment is not a writable data segment 

THEN #TS(SS selector); FI 
IF stack segment not present THEN #SS(SS selector); FI; 
IF CaliGateSize = 32 

11-48 

THEN 
IF stack does not have room for parameters plus 16 bytes 

THEN #SS(SS selector); FI; 
IF CaIlGate(lnstructionPointer) not within code segment limit THEN #GP(O); FI; 
SS ~ newSS; 

I 



INSTRUCTION SET REFERENCE 

FI; 

(* segment descriptor information also loaded *) 
ESP (- newESP; 
CS:EI P (- CaIiGate(CS:lnstructionPointer); 
(* segment descriptor information also loaded *) 
Push(oldSS:oldESP); (* from calling procedure *) 
temp (- parameter count from call gate, masked to 5 bits; 
Push(parameters from calling procedure's stack, temp) 
Push(oldCS:oldEIP); (* return address to calling procedure *) 

ELSE (* CaliGateSize = 16 *) 
IF stack does not have room for parameters plus 8 bytes 

THEN #SS(SS selector); FI; 
IF (CaIiGate(lnstructionPointer) AND FFFFH) not within code segment limit 

THEN #GP(O); FI; 
SS (- newSS; 
(* segment descriptor information also loaded *) 
ESP (- newESP; 
CS:I P (- CaIiGate(CS:lnstructionPointer); 
(* segment descriptor information also loaded *) 
Push(oldSS:oldESP); (* from calling procedure *) 
temp (- parameter count from call gate, masked to 5 bits; 
Push(parameters from calling procedure's stack, temp) 
Push(oldCS:oldEIP); (* return address to calling procedure *) 

CPL (- CodeSegment(DPL) 
CS(RPL) (- CPL 

END; 

SAME-PRIVILEGE: 
IF CaliGateSize = 32 

THEN 

FI; 

IF stack does not have room for 8 bytes 
THEN #SS(O); FI; 

IF EIP not within code segment limit then #GP(O); FI; 
CS:EIP (- CaIiGate(CS:EIP) (* segment descriptor information also loaded *) 
Push(oldCS:oldEIP); (* return address to calling procedure *) 

ELSE (* CaliGateSize = 16 *) 
IF stack does not have room for parameters plus 4 bytes 

THEN #SS(O); FI; 
IF IP not within code segment limit THEN #GP(O); FI; 
CS:IP (- CaIiGate(CS:instruction pointer) 
(* segment descriptor information also loaded *) 
Push(oldCS:oldIP); (* return address to calling procedure *) 

CS(RPL) (- CPL 
END; 

I 
11-49 



INSTRUCTION SET REFERENCE 

TASK-GATE: 
IF task gate DPL < CPL or RPL 

THEN #GP(task gate selector); 
FI; 
IF task gate not present 

THEN #NP(task gate selector); 
FI; 
Read the TSS segment selector in the task-gate descriptor; 
IF TSS segment selector local/global bit is set to local 

OR index not within GDT limits 
THEN #GP(TSS selector); 

FI; 
Access TSS descriptor in GDT; 

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001) 
THEN #GP(TSS selector); 

FI; 
IF TSS not present 

THEN #NP(TSS selector); 
FI; 
SWITCH-TASKS (with nesting) to TSS; 
IF EIP not within code segment limit 

FI; 
END; 

THEN #GP(O); 

TASK-STATE-SEGMENT: 
IF TSS DPL < CPL or RPL 
OR TSS descriptor indicates TSS not available 

THEN #GP(TSS selector); 
FI; 
IF TSS is not present 

THEN #NP(TSS selector); 
FI; 
SWITCH-TASKS (with nesting) to TSS 
IF EIP not within code segment limit 

FI; 
END; 

11-50 

THEN #GP(O); 

intet 

I 



INSTRUCTION SET REFERENCE 

Flags Affected 

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur. 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

#SS(O) 

I 

If target offset in destination operand is beyond the new code segment 
limit. 

If the segment selector in the destination operand is null. 

If the code segment selector in the gate is null. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If code segment or gate or TSS selector index is outside descriptor table 
limits. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, noncon­
forming-code segment, call gate, task gate, or task state segment. 

If the DPL for a nonconforming-code segment is not equal to the CPL or 
the RPL for the segment's segment selector is greater than the CPL. 

If the DPL for a conforming-code segment is greater than the CPL. 

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less 
than the CPL or than the RPL of the call-gate, task-gate, or TSS's segment 
selector. 

If the segment descriptor for a segment selector from a call gate does not 
indicate it is a code segment. 

If the segment selector from a call gate is beyond the descriptor table 
limits. 

If the DPL for a code-segment obtained from a call gate is greater than the 
CPL. 

If the segment selector for a TSS has its local/global bit set for local. 

If a TSS segment descriptor specifies that the TSS is busy or not available. 

If pushing the return address, parameters, or stack segment pointer onto 
the stack exceeds the bounds of the stack segment, when no stack switch 
occurs. 

If a memory operand effective address is outside the SS segment limit. 

11-51 



INSTRUCTION SET REFERENCE intet 
#SS(selector) 

#NP(selector) 

#TS(selector) 

#PF(fault-code) 

#AC(O) 

If pushing the return address, parameters, or stack segment pointer onto 
the stack exceeds the bounds of the stack segment, when a stack switch 
occurs. 

If the SS register is being loaded as part of a stack switch and the segment 
pointed to is marked not present. 

If stack segment does not have room for the return address, parameters, or 
stack segment pointer, when stack switch occurs. 

If a code segment, data segment, stack segment, call gate, task gate, or TSS 
is not present. 

If the new stack segment selector and ESP are beyond the end of the TSS. 

If the new stack segment selector is null. 

If the RPL of the new stack segment selector in the TSS is not equal to the 
DPL of the code segment being accessed. 

If DPL of the stack segment descriptor for the new stack segment is not 
equal to the DPL of the code segment descriptor. 

If the new stack segment is not a writable data segment. 

If segment -selector index for stack segment is outside descriptor table 
limits. 

If a page fault occurs. 

If an unaligned memory access occurs when the CPL is 3 and alignment 
checking is enabled. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the target offset is beyond the code segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF( fault-code) 

#AC(O) 

11-52 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the target offset is beyond the code segment limit. 

If a page fault occurs. 

If an unaligned memory access occurs when alignment checking is 
enabled. 

I 



INSTRUCTION SET REFERENCE 

CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword 

Opcode 

98 

98 

Description 

Instruction 

CBW 

CWDE 

Description 

AX (- sign-extend of AL 

EAX (- sign-extend of AX 

Double the size of the source operand by means of sign extension (see Figure 6-5). The CBW 
(convert byte to word) instruction copies the sign (bit 7) in the source operand into every bit in 
the AH register. The CWDE (convert word to doubleword) instruction copies the sign (bit 15) 
of the word in the AX register into the higher 16 bits of the EAX register. 

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction is intended 
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand­
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and 
to 32 when CWDE is used. Others may treat these mnemonics as synonyms (CBW/CWDE) and 
use the current setting of the operand-size attribute to determine the size of values to be 
converted, regardless of the mnemonic used. 

The CWDE instruction is different from the CWD (convert word to double) instruction. The 
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE 
instruction uses the EAX register as a destination. 

Operation 

IF OperandSize = 16 (* instruction = CBW *) 
THEN AX (- SignExtend(AL); 

FI; 

ELSE (* OperandSize = 32, instruction = CWDE *) 
EAX (- SignExtend(AX); 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

None. 

I 
11-53 



INSTRUCTION SET REFERENCE in1et 

CDQ-Convert Double to Quad 

See entry for CWD/CDQ - Convert Word to Double/Convert Double to Quad. 

11-54 

I 



CLC-Clear Carry Flag 

Opcode 

F8 

Description 

Instruction 

CLC 

Clears the CF flag in the EFLAGS register. 

Operation 

CF~O; 

Flags Affected 

Description 

Clear CF flag 

INSTRUCTION SET REFERENCE 

The CF flag is cleared to O. The OF, ZF, SF, AF, and PF flags are unaffected. 

Exceptions (All Operating Modes) 

None. 

I 
11-55 



INSTRUCTION SET REFERENCE 

CLD-Clear Direction Flag 

Opcode 

FC 

Description 

Instruction 

CLO 

Description 

Clear OF flag 

in1et 

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre­
ment the index registers (ESI and/or EDI). 

Operation 

DF~O; 

Flags Affected 

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected. 

Exceptions (All Operating Modes) 

None. 

11-56 

I 



INSTRUCTION SET REFERENCE 

CLI-Clear Interrupt Flag 

Description Opcode 

FA 
Instruction 

CLI Clear interrupt flag; interrupts disabled when interrupt 
flag cleared 

Description 

Clears the IF flag in the EFLAGS register. No other flags are affected. Clearing the IF flag causes 
the processor to ignore maskable external interrupts. The IF flag and the CLI and STI instruction 
have no affect on the generation of exceptions and NMI interrupts. 

The following decision table indicates the action of the CLI instruction (bottom of the table) 
depending on the processor's mode of operating and the CPL and IOPL of the currently running 
program or procedure (top of the table). 

PE= 

VM= 

CPL 

IOPL 

IF~O 

#GP(O) 

NOTES: 

X Don't care 

N Action in column 1 not taken 

Y Action in column 1 taken 

Operation 

0 1 

X 0 

X :;;IOPL 

X X 

Y Y 

N N 

IF PE = 0 (* Executing in real-address mode *) 
THEN 

I 

IF~O; 

ELSE 
IF VM = 0 (* Executing in protected mode *) 

THEN 

FI; 

IF CPL:O; IOPL 
THEN 

IF~O; 

ELSE 
#GP(O); 

FI; 

1 1 1 

X 0 1 

X > IOPL X 

=3 X <3 

Y N N 

N y y 

11-57 



INSTRUCTION SET REFERENCE 

FI; 
FI; 

ELSE (* Executing in Virtual-8086 mode *) 
IF IOPL= 3 

FI; 

THEN 
IF +- 0 

ELSE 
#GP(O); 

Flags Affected 

intet 

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, the it is not affected. 
The other flags in the EFLAGS register are unaffected. 

Protected Mode Exceptions 

#GP(O) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) 

11-58 

If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 

I 



INSTRUCTION SET REFERENCE 

CLTS-Clear Task-Switched Flag in CRO 

Description Opcode 

OF 06 

Instruction 

CLTS Clears TS flag in CRO 

Description 

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for use in 
operating-system procedures. It is a privileged instruction that can only be executed at a CPL of 
O. It is allowed to be executed in real-address mode to allow initialization for protected mode. 

The processor sets the TS flag every time a task switch occurs. The flag is used to synchronize 
the saving of FPU context in multitasking applications. See the description of the TS flag in 
Chapter 2, "Control Registers", of the Pentium® Pro Family Developer's Manual, Volume 3 for 
more information about this flag. 

Operation 

CRO(TS) f- 0; 

Flags Affected 

The TS flag in CRO register is cleared. 

Protected Mode Exceptions 

#GP(O) If the CPL is greater than O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) If the CPL is greater than O. 

I 
11-59 



INSTRUCTION SET REFERENCE 

CMC-Complement Carry Flag 

Opcode 

F5 

Description 

Instruction 

CMC 

Description 

Complement CF flag 

Complements the CF flag in the EFLAGS register. 

Operation 

CF~ NOTCF; 

Flags Affected 

in1et 

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are 
unaffected. 

Exceptions (All Operating Modes) 

None. 

11-60 

I 



INSTRUCTION SET REFERENCE 

CMOV co-Conditional Move 

Opcode Instruction Description 

OF 47 cwlcd CMOVA r16, rlm16 Move if above (CF=O and ZF=O) 

OF 47 cwlcd CMOVA r32, rlm32 Move if above (CF=O and ZF=O) 

OF 43 cw/cd CMOVAE r16, rlm16 Move if above or equal (CF=O) 

OF 43 cw/cd CMOVAE r32, rlm32 Move if above or equal (CF=O) 

OF 42 cw/cd CMOVB r16, rim 16 Move if below (CF=1) 

OF 42 cwlcd CMOVB r32, rlm32 Move if below (CF=1) 

OF 46 cw/cd CMOVBE r16, rlm16 Move if below or equal (CF=1 or ZF=1) 

OF 46 cw/cd CMOVBE r32, rlm32 Move if below or equal (CF=1 or ZF=1) 

OF 42 cw/cd CMOVC r16, rlm16 Move if carry (CF=1) 

OF 42 cwlcd CMOVC r32, rlm32 Move if carry (CF=1) 

OF 44 cw/cd CMOVE r16, rim 16 Move if equal (ZF=1) 

OF 44 cw/cd CMOVE r32, rlm32 Move if equal (ZF=1) 

OF 4F cw/cd CMOVG r16, rlm16 Move if greater (ZF=O and SF=OF) 

OF 4F cw/cd CMOVG r32, rlm32 Move if greater (ZF=O and SF=OF) 

OF 40 cwlcd CMOVGE r16, rlm16 Move if greater or equal (SF=OF) 

OF 40 cwlcd CMOVGE r32, rlm32 Move if greater or equal (SF=OF) 

OF 4C cwlcd CMOVL r16, rlm16 Move if less (SF<>OF) 

OF 4C cw/cd CMOVL r32, rlm32 Move if less (SF<>OF) 

OF 4E cwlcd CMOVLE r16, rlm16 Move if less or equal (ZF=1 or SF<>OF) 

OF 4E cw/cd CMOVLE r32, rlm32 Move if less or equal (ZF=1 or SF<>OF) 

OF 46 cw/cd CMOVNA r16, rlm16 Move if not above (CF=1 or ZF=1) 

OF 46 cw/cd CMOVNA r32, rlm32 Move if not above (CF=1 or ZF=1) 

OF 42 cwlcd CMOVNAE r16, rlm16 Move if not above or equal (CF=1) 

OF 42 cwlcd CMOVNAE r32, rlm32 Move if not above or equal (CF=1) 

OF 43 cwlcd CMOVNB r16, rlm16 Move if not below (CF=O) 

OF 43 cwlcd CMOVNB r32, rlm32 Move if not below (CF=O) 

OF 47 cwlcd CMOVNBE r16, rlm16 Move if not below or equal (CF=O and ZF=O) 

OF 47 cwlcd CMOVNBE r32, rlm32 Move if not below or equal (CF=O and ZF=O) 

OF 43 cw/cd CMOVNC r16, rlm16 Move if not carry (CF=O) 

OF 43 cw/cd CMOVNC r32, rlm32 Move if not carry (CF=O) 

OF 45 cw/cd CMOVNE r16, rim 16 Move if not equal (ZF=O) 

OF 45 cwlcd CMOVNE r32, rlm32 Move if not equal (ZF=O) 

OF 4E cwlcd CMOVNG r16, rim 16 Move if not greater (ZF=1 or SF<>OF) 

OF 4E cw/cd CMOVNG r32, rlm32 Move if not greater (ZF=1 or SF<>OF) 

OF 4C cw/cd CMOVNGE r16, rlm16 Move if not greater or equal (SF<>OF) 

OF 4C cwlcd CMOVNGE r32, rlm32 Move if not greater or equal (SF<>OF) 

OF 40 cwlcd CMOVNL r16, rim 16 Move if not less (SF=OF) 

OF 40 cw/cd CMOVNL r32, rlm32 Move if not less (SF=OF) 

OF 4F cw/cd CMOVNLE r16, rlm16 Move if not less or equal (ZF=O and SF=OF) 

OF 4F cw/cd CMOVNLE r32, rlm32 Move if not less or equal (ZF=O and SF=OF) 

I 
11-61 



INSTRUCTION SET REFERENCE 

Opcode Instruction Description 

OF 41 cw/cd CMOVNO r16, rlm16 Move if not overflow (OF=O) 

OF 41 cwlcd CMOVNO r32, rlm32 Move if not overflow (OF=O) 

OF 48 cw/cd CMOVNP r16, rim 16 Move if not parity (PF=O) 

OF 48 cwlcd CMOVNP r32, rlm32 Move if not parity (PF=O) 

OF 49 cw/cd CMOVNS r16, rim 16 Move if not sign (SF=O) 

OF 49 cw/cd CMOVNS r32, rlm32 Move if not sign (SF=O) 

OF 45 cw/cd CMOVNZ r16, rlm16 Move if not zero (ZF=O) 

OF 45 cwlcd CMOVNZ r32, rlm32 Move if not zero (ZF=O) 

OF 40 cwlcd CMOVO r16, rim 16 Move if overflow (OF=O) 

OF 40 cwlcd CMOVO r32, rlm32 Move if overflow (OF=O) 

OF 4A cwlcd CMOVP r16, rim 16 Move if parity (PF=1) 

OF 4A cw/cd CMOVP r32, rlm32 Move if parity (PF=1) 

OF 4A cw/cd CMOVPE r16, rlm16 Move if parity even (PF=1) 

OF 4A cw/cd CMOVPE r32, rlm32 Move if parity even (PF=1) 

OF 48 cw/cd CMOVPO r16, rlm16 Move if parity odd (PF=O) 

OF 48 cwlcd CMOVPO r32, rlm32 Move if parity odd (PF=O) 

OF 48 cwlcd CMOVS r16, rlm16 Move if sign (SF=1) 

OF 48 cwlcd CMOVS r32, rlm32 Move if sign (SF=1) 

OF 44 cwlcd CMOVZ r16, rlm16 Move if zero (ZF=1 ) 

OF 44 cwlcd CMOVZ r32, rlm32 Move if zero (ZF=1) 

Description 

The CMOV cc instructions check the state of one or more of the status flags in the EFLAGS 
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified 
state (or condition). A condition code (cc) is associated with each instruction to indicate the 
condition being tested for. If the condition is not satisfied, a move is not performed and execu­
tion continues with the instruction following the CMOV cc instruction. 

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or 
from one general-purpose register to another. Conditional moves of 8-bit register operands are 
not supported. 

The conditions for each CMOV cc mnemonic is given in the description column of the above 
table. The terms "less" and "greater" are used for comparisons of signed integers and the terms 
"above" and "below" are used for unsigned integers. 

Because a particular state of the status flags can sometimes be interpreted in two ways, two 
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if 
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are 
alternate mnemonics for the opcode OF 47H. 

The CMOV cc instructions are new for the Pentium Pro processor family; however, they may not 
be supported by all the processors in the family. Software can determine if the CMOV cc instruc­
tions are supported by checking the processor's feature information with the CPUID instruction 
(see Chapter 11, "CPUID-CPU Identification"). 

11-62 

I 



Operation 

temp~ DEST 
IF condition TRUE 

THEN 

INSTRUCTION SET REFERENCE 

DEST~ SRC 
ELSE 

DEST ~ temp 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11·63 



INSTRUCTION SET REFERENCE 

CMP-Compare Two Operands 

Opcode Instruction Description 

3C ib CMPAL, immB Compare immBwith AL 

3Diw CMP AX, imm16 Compare imm16with AX 

3D id CMP EAX, imm32 Compare imm32 with EAX 

8017 ib CMP rlmB, immB Compare immB with rlmB 

8117 iw CMP rlm16, imm16 Compare imm16with rlm16 

8117 id CMP rlm32,imm32 Compare imm32 with rlm32 

8317 ib CMP rlm16,immB Compare immBwith rlm16 

8317 ib CMP rlm32,immB Compare immB with rlm32 

381r CMP rlmB,rB Compare rB with rlmB 

391r CMP rlm16,r16 Com pare r16 with rim 16 

391r CMP rlm32,r32 Compare r32 with rlm32 

3A Ir CMP rB,rlmB Compare rlmB with rB 

3B Ir CMP r16,rlm16 Com pare rim 16 with r16 

3B Ir CMP r32,rlm32 Compare rlm32 with r32 

Description 

Compares the first source operand with the second source operand and sets the status flags in 
the EFLAGS register according to the results. The comparison is performed by subtracting the 
second operand from the first operand and then setting the status flags in the same manner as the 
SUB instruction. When an immediate value is used as an operand, it is sign-extended to the 
length of the first operand. 

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition 
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and 
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi­
tion Codes, shows the relationship of the status flags and the condition codes. 

Operation 

temp f- SRC1 - SignExtend(SRC2); 
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*) 

Flags Affected 

The CF, OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

11-64 

I 



#SS(O) 

#PF( fault -code) 

#AC(O) 

INSTRUCTION SET REFERENCE 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-65 



INSTRUCTION SET REFERENCE 

CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands 

Opcode Instruction Description 

A6 CMPS DS:(E)SI, ES:(E)DI Compares byte at address DS:(E)SI with byte at 
address ES:(E)DI and sets the status flags accordingly 

A7 CMPS DS:SI, ES:DI Compares byte at address DS:SI with byte at address 
ES:DI and sets the status flags accordingly 

A7 CMPS DS:ESI, ES:EDI Compares byte at address DS:ESI with byte at address 
ES:EDI and sets the status flags accordingly 

A6 CMPSB Compares byte at address DS:(E)SI with byte at 
address ES:(E)DI and sets the status flags accordingly 

A7 CMPSW Compares byte at address DS:SI with byte at address 
ES:DI and sets the status flags accordingly 

A7 CMPSD Compares byte at address DS:ESI with byte at address 
ES:EDI and sets the status flags accordingly 

Description 

Compares the byte, word, or double word specified with the first source operand with the byte, 
word, or double word specified with the second source operand and sets the status flags in the 
EFLAGS register according to the results. The first source operand specifies the memory loca­
tion at the address DS:ESI and the second source operand specifies the memory location at 
address ES:EDI. (When the operand-size attribute is 16, the SI and DI register are used as the 
source-index and destination-index registers, respectively.) The DS segment may be overridden 
with a segment override prefix, but the ES segment cannot be overridden. 

The CMPSB, CMPSW, and CMPSD mnemonics are synonyms of the byte, word, and double­
word versions of the CMPS instructions. They are simpler to use, but provide no type or segment 
checking. (For the CMPS instruction, "DS:ESI" and "ES:EDr' must be explicitly specified in 
the instruction.) 

After the comparison, the ESI and EDI registers are incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and 
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.) 
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations, 
or by 4 for double word operations. 

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for 
block comparisons of ECX bytes, words, or double words. More often, however, these instruc­
tions will be used in a LOOP construct that takes some action based on the setting of the status 
flags before the next comparison is made. See Chapter 11, "REPIREPE/REPZlREPNE 
IREPNZ-Repeat String Operation Prefix" for a description of the REP prefix. 

11-66 

I 



Operation 

temp f-SRC1 - SRC2; 
SetStatusFlags(temp) ; 
IF (byte comparison) 

THEN IF OF = 0 
THEN (E)OI f- 1; 
ELSE (E)OI f- -1; 

FI; 
ELSE IF (word comparison) 

THEN IF OF = 0 

FI; 
FI; 

FI; 

THEN 01 f- 2; 
ELSE 01 f- -2; 

ELSE (* doubleword comparison *) 
THEN IF OF= 0 

THEN EOI f- 4; 
ELSE EOI f- -4; 

FI; 

Flags Affected 

INSTRUCTION SET REFERENCE 

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

11-67 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-68 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

CMPXCHG-Compare and Exchange 

Opcode 

OF BOlr 

OF B11r 

OF B11r 

Description 

Instruction 

CMPXCHG rlmB,rB 

CMPXCHG rlm16,r16 

CMPXCHG rlm32,r32 

Description 

Compare AL with rlmB. If equal, ZF is set and rB is loaded 
into rlmB. Else, clear ZF and load rlmB into AL. 

Compare AX with rlm16. If equal, ZF is set and r16 is 
loaded into rlm16. Else, clear ZF and load rlm16 into AL 

Compare EAX with rlm32. If equal, ZF is set and r32 is 
loaded into rlm32. Else, clear ZF and load rlm32 into AL 

Compares the value in the AL, AX, or EAX register (depending on the size of the operand) with 
the first operand (destination operand). If the two values are equal, the second operand (source 
operand) is loaded into the destination operand. Otherwise, the destination operand is loaded 
into the AL, AX, or EAX register. 

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi­
cally. To simplify the interface to the processor's bus, the destination operand receives a write 
cycle without regard to the result of the comparison. The destination operand is written back if 
the comparison fails; otherwise, the source operand is written into the destination. (The 
processor never produces a locked read without also producing a locked write.) 

Operation 

(* accumulator = AL, AX, or EAX, depending on whether *) 
(* a byte, word, or doubleword comparison is being performed*) 
IF accumulator = DEST 

FI; 

THEN 
ZF f- 1 
DEST f- SRC 

ELSE 
ZF f- 0 
accumulator ~. DEST 

Flags Affected 

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are; 
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the 
comparison operation. 

I 
11-69 



INSTRUCTION SET REFERENCE in1et 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( faul t -code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

This instruction is not supported on Intel processors earlier than the Intel486 processors. 

11-70 

I 



INSTRUCTION SET REFERENCE 

CMPXCHG8B-Compare and Exchange 8 Bytes 

Opcode 

OF C7/1 m64 

Description 

Instruction 

CMPXCHG8B m64 

Description 

Compare EDX:EAX with m64. If equal, set ZF and load 
ECX:EBX into m64. Else, clear ZF and load m64 into 
EDX:EAX. 

Compares the 64-bit value in EDX:EAX with the operand (destination operand). If the values 
are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Otherwise, the 
value in the destination operand is loaded into EDX:EAX. The destination operand is an 8-byte 
memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX contain the 
high-order 32 bits and EAX and EBX contain the low-order 32 bits of a 64-bit value. 

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi­
cally. To simplify the interface to the processor's bus, the destination operand receives a write 
cycle without regard to the result of the comparison. The destination operand is written back if 
the comparison fails; otherwise, the source operand is written into the destination. (The 
processor never produces a locked read without also producing a locked write.) 

Operation 

IF (EDX:EAX = DEST) 
ZF f-1 
DEST f- ECX:EBX 

ELSE 
ZF f- 0 
EDX:EAX f- DEST 

Flags Affected 

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. 
The CF, PF, AF, SF, and OF flags are unaffected. 

Protected Mode Exceptions 

#UD 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the destination operand is not a memory location. 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-71 



INSTRUCTION SET REFERENCE in1et 

#ACCO) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#ACCO) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

This instruction is not supported on Intel processors earlier than the Pentium processors. 

11-72 

I 



INSTRUCTION SET REFERENCE 

CPUID-CPU Identification 

Opcode 

OF A2 

Description 

Instruction 

CPUIO 

Description 

EAX ~ Processor identification information 

Provides processor identification information in registers EAX, EBX, ECX, and EDX. This 
information identifies Intel as the vendor, gives the family, model, and stepping of processor, 
feature information, and cache information. An input value loaded into the EAX register deter­
mines what information is returned, as shown in Table 11-7. 

Table 11-7. Information Returned by CPUID Instruction 

Initial EAX 
Value Information Provided about the Processor 

0 EAX Maximum CPUIO Input Value (2 for the Pentium® Pro Processor) 
EBX "Genu" 
ECX lIinel li 

EOX "ntel" 

1 EAX Version Information (Type, Family, Model, and Stepping 10) 
EBX Reserved 
ECX Reserved 
EOX Feature Information 

2 EAX Cache Information 
EBX Cache Information 
ECX Cache Information 
EOX Cache Information 

The CPUID instruction can be executed at any privilege level to serialize instruction execution. 
Serializing instruction execution guarantees that any modifications to flags, registers, and 
memory for previous instructions are completed before the next instruction is fetched and 
executed (see "Serializing Instructions" in Chapter 7, Multiple Processor Management, of the 
Pentium® Pro Family Developer's Manual, Volume 3). 

When the input value in register EAX is 0, the processor returns the highest value the CPUID 
instruction recognizes in the EAX register. For the Pentium Pro processor, the highest recog­
nized value is 2. A vendor identification string is returned in the EBX, EDX, and ECX registers. 
For Intel processors, the vendor identification string is "GenuineIntel" as follows: 

EBX f- 756e6547h (* "Genu", with G in the low nibble of BL *) 

EDX f- 49656e69h (* "ineI" , with i in the low nibble of DL *) 
ECX f- 6c65746eh (* "ntel", with n in the low nibble of CL *) 

When the input value is 1, the processor returns version information in the EAX register and 
feature information in the EDX register (see Figure 11-4). 

I 
11-73 



INSTRUCTION SET REFERENCE 

31 14 131211 8 7 43 0 

EAXLI ~ __ ~~~~~~~~~~~~·LI __ LI_F_a_m_iIY~I_M_O_d_e_I~I_s_te_~_p_in~gl 
Processor Type ~ 
Family (0110B for the Pentium@ Pro Processor Family}-
Model (Beginning with 0001 B) -------------------' 

31 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0 

EDX ~I ~~"----L-LII ~111__"_'__'_ill__L_.L....I.III__L....L...lIII__L......l._J111 
CMOV-Cond. Move/Cmp. In_st_. ______ 1---"1 II 
MCA-Machine Check Arch. . 
PGE-PTE Global Bit -------------' 
MTRR-Mem. Type Range Req. ________ ---.J 

APIC-APIC on Chip -------------------' 
CXS-CMPXCHG8B Inst. -------------~ 
MCE-Machine Check Exception ____________ ---.J 

PAE-Physical Address Extensions _____________ ---.J 

MSR-RDMSR and WRMSR Support -------------' 
TSC-Time Stamp Counter ----------------­
PSE-Page Size Extensions -----------------~ 
DE-Debugging Extensions __________________ ---.J 

VME-Virtual 8086 Mode Enhancement -----------------" 
FPU-FPU on Chip ---------------------------' 

Reserved 

Figure 11-4. Version and Feature Information in Registers EAX and EDX 

The version information consists of an Intel Architecture family identifier, a model identifier, a 
stepping ID, and a processor type. The model, family, and processor type for the first processor 
in the Intel Pentium Pro family is as follows: 

• 
• 
• 

Model-OOOlE 

Family-OllOB 

Processor Type-OOB 

See "Intel Application Note 485 - Intel Processor Identification With the CPUID Instruction" 
and the "Intel Pentium® Pro Processor Specification Update" for more information on identi­
fying earlier Intel Architecture processors. The available processor types are given in Table 
11-8. Intel releases information on stepping IDs as needed. 

11-74 

I 



INSTRUCTION SET REFERENCE 

Table 11·8. Processor Type Field 

Type Encoding 

Original OEM Processor OOB 

Intel OverDrive® Processor 01B 

Dual processor' 10B 

Intel reserved. 118 

NOTE: 

, Not applicable to Intel386 and Intel486 processors. 

Table 11-9 shows the encoding of the feature flags in the EDX register. A feature flag set to 1 
indicates the corresponding feature is supported. Software should identify Intel as the vendor to 
properly interpret the feature flags. 

Table 11·9. Feature Flags Returned in EDX Register 

Bit Feature Description 

0 FPU-Floating Point Unit Processor contains an FPU and executes the Intel387™ 
on Chip instruction set. 

1 VME-Virtual8086 Mode Processor supports the following virtual 8086 mode 
Enhancements enhancements: 

• CR4.VME bit enables virtual 8086 mode extensions. 
• CR4.PVI bit enables protected-mode virtual interrupts. 
• Expansion of the TSS with the software indirection bitmap. 
• EFLAGS.VIF bit enables the virtual interrupt flag. 
• EFLAGS.VIP bit enables the virtual interrupt pending flag. 

2 DE-Debugging Processor supports 1/0 breakpoints, including the CR4.DE bit 
Extensions for enabling debug extensions and optional trapping of access 

to the DR4 and DRS registers. 

3 PSE-Page Size Processor supports 4-Mbyte pages, including the CR4.PSE bit 
Extensions for enabling page size extensions, the modified bit in page 

directory entries (POEs), page directory entries, and page table 
entries (PTEs). 

4 TSC-Time Stamp Processor supports the RDTSC (read time stamp counter) 
Counter instruction, including the CR4.TSD bit that, along with the CPL, 

controls whether the time stamp counter can be read. 

5 MSR-Model Specific Processor supports the ROMSR (read model-specific register) 
Registers and WRMSR (write model-specific register) instructions. 

6 PAE-Physical Address Processor supports physical addresses greater than 32 bits, 
Extension the extended page-table-entry format, an extra level in the page 

translation tables, and 2-MByte pages. The CR4.PAE bit 
enables this feature. The number of address bits is 
implementation specific. The Pentium® Pro processor supports 
36 bits of addressing when the PAE bit is set. 

I 
11-75 



INSTRUCTION SET REFERENCE in1et 

Table 11-9. Feature Flags Returned in EDX Register (Contd.) 

Bit Feature Description 

7 MCE-Machine Check Processor supports the CR4.MCE bit, enabling machine check 
Exception exceptions. However, this feature does not define the model-

specific implementations of machine-check error logging, reporting, 
or processor shutdowns. Machine-check exception handlers might 
have to check the processor version to do model-specific 
processing of the exception or check for the presence of the 
standard machine-check feature. 

8 CX8-CMPXCHG8B Processor supports the CMPXCHG8B (compare and exchange 8 
Instruction bytes) instruction. 

9 APIC Processor contains an on-chip Advanced Programmable Interrupt 
Controller (API C) and it has been enabled and is available for use. 

10,11 Reserved 

12 MTRR-Memory Type Processor supports machine-specific memory-type range registers 
Range Registers (MTRRs). The MTRRs contains bit fields that indicate the 

processor's MTRR capabilities, including which memory types the 
processor supports, the number of variable MTRRs the processor 
supports, and whether the processor supports fixed MTRRs. 

13 PGE-PTE Global Flag Processor supports the CR4.PGE flag enabling the global bit in 
both PTDEs and PTEs. These bits are used to indicate translation 
lookaside buffer (TLB) entries that are common to different tasks 
and need not be flushed when control register CR3 is written. 

14 MCA-Machine Check Processor supports the MCG_CAP (machine check global 
Architectu re capability) MSR. The MCG_CAP register indicates how many 

banks of error reporting MSRs the processor supports. 

15 CMOV-Conditional Processor supports the CMOVcc instruction and, if the FPU feature 
Move and Compare flag (bit 0) is also set, supports the FCMOVcc and FCOMI 
Instructions instructions. 

16-31 Reserved 

When the input value is 2, the processor returns information about the processor's internal 
caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers 
is as follows: 

• 

• 

• 

The least-significant byte in register EAX (register AL) indicates the number of times the 
CPUID instruction must be executed with an input value of 2 to get a complete description 
of the processor's caches and TLBs. The Pentium Pro family of processors will return a 1. 

The most significant bit (bit 31) of each register indicates whether the register contains 
valid information (cleared to 0) or is reserved (set to 1). 

If a register contains valid information, the information is contained in 1 byte descriptors. 
Table 11-10 shows the encoding of these descriptors. 

11-76 

I 



INSTRUCTION SET REFERENCE 

Table 11-10. Encoding of Cache and TLB Descriptors 

Descriptor Value Cache or TLB Description 

OOH Null descriptor 

01H Instruction TLB: 4K-Byte Pages, 4·way set associative, 64 entries 

02H Instruction TLB: 4M·Byte Pages, 4·way set associative, 4 entries 

03H Data TLB: 4K·Byte Pages, 4·way set associative, 64 entries 

04H Data TLB: 4M-Byte Pages, 4-way set associative, 8 entries 

06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size 

OAH Data cache: 8K Bytes, 2-way set associative, 32 byte line size 

41H Unified cache: 128K Bytes, 4-way set associative, 32 byte line size 

42H Unified cache: 256K Bytes, 4-way set associative, 32 byte line size 

43H Unified cache: 512K Bytes, 4-way set associative, 32 byte line size 

The first member of the Pentium Pro processor family will return the following information 
about caches and TLBs when the CPUID instruction is executed with an input value of 2: 

EAX 
EBX 
ECX 
EDX 

0302010IR 
OH 
OH 
0604 OA 42H 

These values are interpreted as follows: 

• 

• 

• 

• 
• 

I 

The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID 
instruction needs to be executed only once with an input value of 2 to retrieve complete 
information about the processor's caches and TLBs. 

The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, 
indicating that each register contains valid I-byte descriptors. 

Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following: 

OIH-A 64-entry instruction TLB (4-way set associative) for mapping 4-KByte pages. 

02H-A 4-entry instruction TLB (4-way set associative) for mapping 4-MByte pages. 

03H-A 64-entry data TLB (4-way set associative) for mapping 4-KByte pages. 

The descriptors in registers EBX and ECX are valid, but contain null descriptors. 

Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following: 

42H-A 256-KByte unified cache (the L2 cache), 4-way set associative, with a 
32-byte cache line size. 

OAH-An 8-KByte data cache (the LI data cache), 2-way set associative, with a 
32-byte cache line size. 

04H-An 8-entry data TLB (4-way set associative) for mapping 4M-byte pages. 

11-77 



INSTRUCTION SET REFERENCE in1:et 

06H-An 8-KByte instruction cache (the L1 instruction cache), 4-way set associative, 
with a 32-byte cache line size. 

Operation 

CASE (EAX)OF 
EAX = 0: 

EAX f- highest input value understood by CPUID; (* 2 for Pentium Pro processor *) 
EBX f- Vendor identification string; 
EDX f- Vendor identification string; 
ECX f- Vendor identification string; 

BREAK; 
EAX = 1: 

EAX[3:0] f- Stepping ID; 
EAX[7:4] f- Model; 
EAX[11 :8] f- Family; 
EAX[13: 12] f- Processor type; 
EAX[31:12] f- Reserved; 
EBX f- Reserved; 
ECX f- Reserved; 
EDX f- Feature flags; (* See Figure 11-4 *) 

BREAK; 
EAX = 2: 

EAX f- Cache information; 
EBX f- Cache information; 
ECX f- Cache information; 
EDX f- Cache information; 

BREAK; 
DEFAULT: (* EAX> highest value recognized by CPUID *) 

EAX f- reserved, undefined; 
EBX f- reserved, undefined; 
ECX f- reserved, undefined; 
EDX f- reserved, undefined; 

BREAK; 
ESAC; 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

None. 

11-78 

I 



INSTRUCTION SET REFERENCE 

Intel Architecture Compatibility 

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel 
Architecture processor earlier than the Inte1486 processor. The ID flag in the EFLAGS register 
can be used to determine if this instruction is supported. If a procedure is able to set or clear this 
flag, the CPUID is supported by the processor running the procedure. 

I 
11-79 



INSTRUCTION SET REFERENCE 

CWD/CDQ-Convert Word to Doubleword/Convert Doubleword 
to Quadword 

Opcode 

99 

99 

Description 

Instruction 

CWO 

COO 

Description 

OX:AX f- sign-extend of AX 

EOX:EAX f- sign-extend of EAX 

Doubles the size of the operand in register AX or EAX (depending on the operand size) by 
means of sign extension and stores the result in registers DX:AX or EDX:EAX, respectively. 
The CWD instruction copies the sign (bit 15) of the value in the AX register into every bit posi­
tion in the DX register (see Figure 6-5). The CDQ instruction copies the sign (bit 31) of the value 
in the EAX register into every bit position in the EDX register. 

The CWD instruction can be used to produce a doubleword dividend from a word before a word 
division, and the CDQ instruction can be used to produce a quadword dividend from a double­
word before doubleword division. 

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended 
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size 
attribute is 32. Some assemblers may force the operand size to 16 when CWD is used and to 32 
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the 
current setting of the operand-size attribute to determine the size of values to be converted, 
regardless of the mnemonic used. 

Operation 

IF OperandSize = 16 (* CWO instruction *) 
THEN OX f-- SignExtend(AX); 

FI; 

ELSE (* OperandSize = 32, COO instruction *) 
EOX f-- SignExtend(EAX); 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

None. 

11-80 

I 



INSTRUCTION SET REFERENCE 

CWDE-Convert Word to Doubleword 

See entry for CBW/CWDE-Convert Byte to Word/Convert Word to Doubleword. 

I 
11-81 



INSTRUCTION SET REFERENCE 

DAA-Decimal Adjust AL after Addition 

Opcode 

27 

Description 

Instruction 

DAA 

Description 

Decimal adjust AL after addition 

intet 

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL register is 
the implied source and destination operand. The DAA instruction is only useful when it follows 
an ADD instruction that adds (binary addition) two 2-digit, packed BCD values and stores a byte 
result in the AL register. The DAA instruction then adjusts the contents of the AL register to 
contain the correct 2-digit, packed BCD result. If a decimal carry is detected, the CF and AF 
flags are set accordingly. 

Operation 

IF (((AL AND OFH) > 9) or AF = 1) 
THEN 

AL f-- AL + 6; 
CF f-- CF OR CarryFromLastAddition; (* CF OR carry from AL f-- AL + 6 *) 
AF f-- 1; 

ELSE 
AF f-- 0; 

FI; 
IF ((AL AND FOH) > 90H) or CF = 1) 

THEN 
AL f-- AL + 60H; 
CF f-- 1; 

ELSE 
CF f-- 0; 

FI; 

Example 
ADD AL, BL Before: 

After: 
DAA Before: 

After: 

Flags Affected 

AL=79H 

AL=AEH 

AL=79H 

AL=AEH 

BL=35H EFLAGS (OSZAPC) =XXXXXX 

BL=35H EFLAGS(OSZAPC)=llOOOO 

BL=35H EFLAGS(OSZAPC)=llOOOO 

BL=35H EFLAGS(OSZAPC)=XOOlll 

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either 
digit of the result (see "Operation" above). The SF, ZF, and PF flags are set according to the 
result. The OF flag is undefined. 

Exceptions (All Operating Modes) 

None. 

11-82 

I 



INSTRUCTION SET REFERENCE 

DAS-Decimal Adjust AL after Subtraction 

Opcode 

2F 

Description 

Instruction 

DAS 
Description 

Decimal adjust AL after subtraction 

Adjusts the result of the subtraction of two packed BCD values to create a packed BCD result. 
The AL register is the implied source and destination operand. The DAS instruction is only 
useful when it follows a SUB instruction that subtracts (binary subtraction) one 2-digit, packed 
BCD value from another and stores a byte result in the AL register. The DAS instruction then 
adjusts the contents of the AL register to contain the correct 2-digit, packed BCD result. If a 
decimal borrow is detected, the CF and AF flags are set accordingly. 

Operation 

IF (AL AND OFH) > 9 OR AF = 1 
THEN 

AL~AL-6; 

CF ~ CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL ~ AL - 6 *) 
AF~ 1; 

ELSE AF ~ 0; 
FI; 
IF «AL > 9FH) or CF = 1) 

THEN 
AL~AL-60H; 

CF~ 1; 
ELSE CF ~ 0; 

FI; 

Example 
SUB AL, BL Before: 

After: 

DAA Before: 

After: 

Flags Affected 

AL=35H BL=47H EFLAGS(OSZAPC}=XXXXXX 
AL=EEH BL=47H EFLAGS(OSZAPC}=010111 
AL=EEH BL=47H EFLAGS(OSZAPC} =010111 

AL=88H BL=47H EFLAGS(OSZAPC}=X10111 

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either 
digit of the result (see "Operation" above). The SF, ZF, and PF flags are set according to the 
result. The OF flag is undefined. 

Exceptions (All Operating Modes) 

None. 

I 
11-83 



INSTRUCTION SET REFERENCE 

DEC-Decrement by 1 

Opcode 

FE 11 
FF 11 
FF 11 
48+rw 

48+rd 

Description 

Instruction 

DEC rlmB 

DEC rim 16 

DEC rlm32 

DEC r16 

DEC r32 

Description 

Decrement rlmB by 1 

Decrement rim 16 by 1 

Decrement rlm32 by 1 

Decrement r16by 1 

Decrement r32 by 1 

Subtracts 1 from the operand, while preserving the state of the CF flag. The source operand can 
be a register or a memory location. This instruction allows a loop counter to be updated without 
disturbing the CF flag. (Use a SUB instruction with an immediate operand of 1 to perform a 
decrement operation that does updates the CF flag.) 

Operation 

DEST +- DEST - 1; 

Flags Affected 

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

11-84 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-85 



INSTRUCTION SET REFERENCE 

DIV-Unsigned Divide 

Opcode 

F6/6 

F7/6 

F7/6 

Description 

Instruction 

DIV rlmB 

DIV rlm16 

DIV rlm32 

Description 

Unsigned divide AX by rlm8, AL f- Quotient, 
AH f- Remainder 

Unsigned divide DX:AX by rlm16; AX f- Quotient, 
DX f- Remainder 

Unsigned divide EDX:EAX by rlm32doubleword; 
EAX f- Quotient, EDX f- Remainder 

Divides (unsigned) the value in the AL, AX, or EAX register (dividend) by the source operand 
(divisor) and stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand 
can be a general-purpose register or a memory location. The action of this instruction depends 
on the operand size, as shown in the following table: 

Maximum 
Operand Size Dividend Divisor Quotient Remainder Quotient 

Wordlbyte AX rIm 8 AL AH 255 

Doubleword/word DX:AX r/m16 AX DX 65,535 

Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 -1 

Non-integral results are truncated (chopped) towards O. The remainder is always less than the 
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than 
with the CF flag. 

Operation 

IF SRC = 0 
THEN #DE; (* divide error *) 

FI; 
IF OpernadSize = 8 (* word/byte operation *) 

THEN 
temp f- AX / SRC; 
IF temp> FFH 

THEN #DE; (* divide error *) ; 
ELSE 

AL f- temp; 
AH f- AX MOD SRC; 

FI; 
ELSE 

11-86 

IF OpernadSize = 16 (* doublewordlword operation *) 
THEN 

I 



temp ~ DX:AX / SRC; 

IF temp> FFFFH 

FI; 

THEN #DE; (* divide error *) ; 
ELSE 

AX~temp; 

DX ~ DX:AX MOD SRC; 

INSTRUCTION SET REFERENCE 

ELSE (* quadword/doubleword operation *) 
temp ~ EDX:EAX / SRC; 
IF temp> FFFFFFFFH 

FI; 
FI; 

FI; 

Flags Affected 

THEN #DE; (* divide error *) ; 
ELSE 

EAX~temp; 

EDX ~ EDX:EAX MOD SRC; 

The CF, OF, SF, ZF, AF, and PF flags are undefined. 

Protected Mode Exceptions 

#DE 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the source operand (divisor) is 0 

If the quotient is too large for the designated register. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#DE If the source operand (divisor) is o. 

#GP 

I 

If the quotient is too large for the designated register. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

11-87 



INSTRUCTION SET REFERENCE intet 
Virtual 8086 Mode Exceptions 

#DE If the source operand (divisor) is O. 

#GP(O) 

#SS 

#PF(fault-code) 

#AC(O) 

11-88 

If the quotient is too large for the designated register. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

ENTER-Make Stack Frame for Procedure Parameters 

Opcode 

C8 iwOO 

C8 iw01 

C8 iwib 

Description 

Instruction 

ENTER imm16,O 

ENTER imm16,1 

ENTER imm16,immB 

Description 

Create a stack frame for a procedure 

Create a nested stack frame for a procedure 

Create a nested stack frame for a procedure 

Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the 
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the proce­
dure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of the 
procedure. The nesting level determines the number of stack frame pointers that are copied into 
the "display area" of the new stack frame from the preceding frame. Both of these operands are 
immediate values. 

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies 
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer. 

The ENTER and companion LEAVE instructions are provided to support block structured 
languages. They do not provide a jump or call to another procedure; they merely set up a new 
stack frame for an already called procedure. An ENTER instruction is commonly followed by a 
CALL, JMP, or Jce instruction to transfer program control to the procedure being called. 

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the 
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the 
ESP register with the current stack-pointer value minus the value in the size operand. For nesting 
levels of I or greater, the processor pushes additional frame pointers on the stack before 
adjusting the stack pointer. These additional frame pointers provide the called procedure with 
access points to other nested frames on the stack. See Section 4.5., "Procedure Calls for Block­
Structured Languages" for more information about the actions of the ENTER instruction. 

Operation 

NestingLevel +-- NestingLevel MOD 32 
IF StackSize = 32 

FI; 

THEN 
Push(EBP) ; 
FrameTemp +-- ESP; 

ELSE (* StackSize = 16*) 
Push(BP); 
FrameTemp +-- SP; 

IF NestingLevel = 0 
THEN GOTO CONTINUE; 

FI; 

I 
11-89 



INSTRUCTION SET REFERENCE 

IF (NestingLevel > 0) 
FOR i +- 1 TO (NestingLevel - 1) 

DO 

00; 

IF OperandSize = 32 
THEN 

FI; 

IF StackSize = 32 
EBP +- EBP - 4; 
Push([EBP]); (* doubleword push *) 

ELSE (* StackSize = 16*) 
BP +- BP- 4; 
Push([BP]); (* doubleword push *) 

FI; 
ELSE (* OperandSize = 16 *) 

IF StackSize = 32 

FI; 

THEN 
EBP +- EBP - 2; 
Push([EBP]); (* word push *) 

ELSE (* StackSize = 16*) 
BP +- BP-2; 
Push([BP]); (* word push *) 

IF OperandSize = 32 
THEN 

FI; 

Push(FrameTemp); (* doubleword push *) 
ELSE (* OperandSize = 16 *) 

Push(FrameTemp); (* word push *) 

GOTO CONTINUE; 
FI; 
CONTINUE: 
IF StackSize = 32 

THEN 
EBP +- FrameTemp 
ESP +- EBP - Size; 

ELSE (* StackSize = 16*) 
BP +- FrameTemp 
SP +- BP - Size; 

FI; 
END; 

Flags Affected 

None. 

11-90 

intet 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#SS(O) If the new value of the SP or ESP register is outside the stack segment 
limit. 

#PF(fault-code) If a page fault occurs. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 

I 
11-91 



INSTRUCTION SET REFERENCE 

F2XM1-Compute 2x-1 

Opcode 

09 FO 

Description 

Instruction 

F2XM1 

Description 

Replace ST(O) with (2ST(O) - 1 ) 

Calculates the exponential value of 2 to the power of the source operand minus 1. The source 
operand is located in register ST(O) and the result is also stored in ST(O). The value of the source 
operand must lie in the range -1.0 to + 1.0. If the source value is outside this range, the result is 
undefined. 

The following table shows the results obtained when computing the exponential value of various 
classes of numbers, assuming that neither overflow nor underflow occurs. 

ST(O) SRC ST(O) DEST 

-1.0 to-O -0.5 to-O 

-0 -0 

+0 +0 

+0 to +1.0 +0 to 1.0 

Values other than 2 can be exponentiated using the following formula: 

xy = 2(Y • I092x) 

Operation 

ST(O) ~ (2ST(O) -1); 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO,C2, C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#U 

11-92 

Stack underflow occurred. 

Source operand is an SNaN value or unsupported format. 

Result is a denormal value. 

Result is too small for destination format. 

I 



INSTRUCTION SET REFERENCE 

#P Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-93 



INSTRUCTION SET REFERENCE 

FABS-Absolute Value 

Opcode 

09 E1 

Description 

Instruction 

FABS 

Description 

Replace ST with its absolute value. 

Clears the sign bit of ST(O) to create the absolute value of the operand. The following table 
shows the results obtained when creating the absolute value of various classes of numbers. 

ST(O) SRC 

-00 

-F 

-0 

+0 

+F 

+00 

NaN 

NOTE: 
F Means finite-real number 

Operation 

ST(O) ~ IST(O)I 

FPU Flags Affected 

ST(O) DEST 

+00 

+F 

+0 

+0 

+F 

+00 

NaN 

Cl Set to 0 if stack underflow occurred; otherwise, cleared to o. 
CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

11-94 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-95 



INSTRUCTION SET REFERENCE 

FADD/FADDP/FIADD-Add 

Opcode Instruction 

D8/0 FADD m32 real 

DC 10 FADD m64real 

D8 CO+i FADD ST(O), ST(i) 

DCCO+i FADD ST(i), ST(O) 

DE CO+i FADDP ST(i), ST(O) 

DE C1 FADDP 

DA/O FIADD m32int 

DE 10 FIADD m16int 

Description 

Description 

Add m32rea/to ST(O) and store result in ST(O) 

Add m64rea/to ST(O) and store result in ST(O) 

Add ST(O) to ST(i) and store result in ST(O) 

Add ST(i) to ST(O) and store result in ST(t) 

Add ST(O) to ST(i), store result in ST(t), and pop the 
register stack 

Add ST(O) to ST(1), store result in ST(1), and pop the 
register stack 

Add m32int to ST(O) and store result in ST(O) 

Add m16intto ST(O) and store result in ST(O) 

Adds the destination and source operands and stores the sum in the destination location. The 
destination operand is always an FPU register; the source operand can be a register or a memory 
location. Source operands in memory can be in single-real, double-real, word-integer, or short­
integer formats. 

The no-operand version of the instruction adds the contents of the ST(O) register to the ST(1) 
register. The one-operand version adds the contents of a memory location (either a real or an 
integer value) to the contents of the ST(O) register. The two-operand version, adds the contents 
of the ST(O) register to the ST(i) register or vice versa. The value in ST(O) can be doubled by 
coding: 

FADD ST(O), ST(O); 

The FADDP instructions perform the additional operation of popping the FPU register stack 
after storing the result. To pop the register stack, the processor marks the ST(O) register as empty 
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add 
instructions always results in the register stack being popped. In some assemblers, the 
mnemonic for this instruction is FADD rather than FADDP.) 

The FIADD instructions convert an integer source operand to extended-real format before 
performing the addition. 

The table on the following page shows the results obtained when adding various classes of 
numbers, assuming that neither overflow nor underflow occurs. 

When the sum of two operands with opposite signs is 0, the result is +0, except for the round 
toward -00 mode, in which case the result is -0. When the source operand is an integer 0, it is 
treated as a +0. 

When both operand are infinities of the same sign, the result is 00 of the expected sign. If both 
operands are infinities of opposite signs, an invalid-operation exception is generated. 

11-96 

I 



INSTRUCTION SET REFERENCE 

DEST 

-00 -F -0 +0 

-00 -00 -00 -00 -00 

-F or-I -00 -F SRC SRC 

SRC -0 -00 DEST -0 ±O 

+0 -00 DEST ±O +0 

+For +1 -00 ±F or ±O SRC SRC 

+00 . +00 +00 +00 

NaN NaN NaN NaN NaN 

NOTES: 

F Means finite-real number. 

Means integer. 

• Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

Operation 

IF instruction is FIADD 
THEN 

FI; 

DEST ~ DEST + ConvertExtendedReal(SRC); 
ELSE (* source operand is real number *) 

DEST ~ DEST + SRC; 

IF instruction = FADDP 
THEN 

PopRegisterStack; 
FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

+F +00 NaN 

-00 . NaN 

±F or±O +00 NaN 

DEST +00 NaN 

DEST +00 NaN 

+F +00 NaN 

+00 +00 NaN 

NaN NaN NaN 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

I 

Operand is an SNaN value or unsupported format. 

Operands are infinities of unlike sign. 

Result is a denormal value. 

11-97 



INSTRUCTION SET REFERENCE 

#u 
#0 

#P 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF( fault-code) 

#AC(O) 

11-98 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FBLD-Load Binary Coded Decimal 

Opcode 

DF /4 

Description 

Instruction 

FBLD mBOdec 

Description 

Convert BCD value to real and push onto the FPU stack. 

Converts the BCD source operand into extended-real format and pushes the value onto the FPU 
stack. The source operand is loaded without rounding errors. The sign of the source operand is 
preserved, including that of -0. 

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not 
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an 
undefined result. 

Operation 

TOP f- TOP - 1; 
ST(O) f- ExtendedReal(SRC); 

FPU Flags Affected 

Cl 

CO, C2, C3 

Set to 1 if stack overflow occurred; otherwise, cleared to O. 

Undefined. 

Floating-Point Exceptions 

#IS Stack overflow occurred. 

Protected Mode Exceptions 

#GP(O) 

.#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

11-99 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

Ifa memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF( fault-code) 

#AC(O) 

11-100 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



intet INSTRUCTION SET REFERENCE 

FBSTP-Store BCD Integer and Pop 

Description Opcode 

DF 16 

Instruction 

FBSTP mBObcd Store ST(O) in mBObcd and pop ST(O). 

Description 

Converts the value in the ST(O) register to an I8-digit packed BCD integer, stores the result in 
the destination operand, and pops the register stack. If the source value is a non-integral value, 
it is rounded to an integer value, according to rounding mode specified by the RC field of the 
FPU control word. To pop the register stack, the processor marks the ST(O) register as empty 
and increments the stack pointer (TOP) by 1. 

The destination operand specifies the address where the first byte destination value is to be 
stored. The BCD value (including its sign bit) requires 10 bytes of space in memory. 

The following table shows the results obtained when storing various classes of numbers in 
packed BCD format. 

ST(O) 

-0 

-F <-1 

-1 < -F <-0 

-0 

+0 

+0 < +F < +1 

+F > +1 

+00 

NaN 

NOTES: 

F Means finite-real number 

D Means packed-BCD number 

* Indicates floating-paint invalid-operation (#IA) exception 

** ±O or ±1, depending on the rounding mode 

DEST 

* 

-D 

** 

-0 

+0 

** 

+D 

* 

* 

If the source value is too large for the destination format and the invalid-operation exception is 
not masked, an invalid-operation exception is generated and no value is stored in the destination 
operand. If the invalid-operation exception is masked, the packed BCD indefinite value is stored 
in memory. 

If the source value is a quiet NaN, an invalid-operation exception is generated. Quiet NaNs do 
not normally cause this exception to be generated. 

I 
11-101 



INSTRUCTION SET REFERENCE intet 

Operation 

DEST +-- BCD(ST(O)); 
PopRegisterStack; 

FPU Flags Affected 

C 1 Set to 0 if stack underflow occurred. 

CO, C2, C3 

Indicates rounding direction ifthe inexact exception (#P) is generated: 
o = not roundup; 1 = roundup. 

Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#P 

Source operand is empty; contains a NaN, ±oo, or unsupported format; or 
contains value that exceeds 18 BCD digits in length. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a segment register is being loaded with a segment selector that points to 
a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

11-102 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-103 



INSTRUCTION SET REFERENCE 

FCHS-Change Sign· 

Opcode 

09 EO 

Description 

Instruction 

FCHS 

Description 

Complements sign of ST(O) 

Complements the sign bit of ST(O). This operation changes a positive value into a negative value 
of equal magnitude or vice-versa. The following table shows the results obtained when creating 
the absolute value of various classes of numbers. 

ST(O)SRC ST(O) DEST 

-00 +00 

-F +F 

-0 +0 

+0 -0 

+F -F 

+00 --00 

NaN NaN 

NOTE: 

F Means finite-real number 

Operation 

SignBit(ST(O)) +-- NOT (SignBit(ST(O))) 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred; otherwise, cleared to O. 

CO,C2,C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

11-104 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-105 



INSTRUCTION SET REFERENCE 

FCLEXlFNCLEX-Clear Exceptions 

Opcode 

9B DB E2 

DB E2 

Description 

Instruction 

FCLEX 

FNCLEX 

Description 

Clear floating-point exception flags after checking for 
pending unmasked floating-point exceptions. 

Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions. 

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception summary 
status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU status word. The 
FCLEX instruction checks for and handles any pending unmasked floating-point exceptions 
before clearing the exception flags; the FNCLEX instruction does not. 

Operation 

FPUStatusWord[O .. 7] ~ 0; 
FPUStatusWord[15] ~ 0; 

FPU Flags Affected 

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The CO, 
CI, C2, and C3 flags are undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-106 

I 



INSTRUCTION SET REFERENCE 

FCMOV cc--Floati ng-Poi nt Conditional Move 

Opcode 

DACO+i 

DA C8+i 

DA DO+i 

DA D8+i 

DB CO+i 

DB C8+i 

DB DO+i 

DB D8+i 

Description 

Instruction 

FCMOVB ST(O), ST(/) 

FCMOVE ST(O), ST(/) 

FCMOVBE ST(O), ST(/) 

FCMOVU ST(O), ST(/) 

FCMOVNB ST(O), ST(/) 

FCMOVNE ST(O), ST(/) 

FCMOVNBE ST(O), ST(/) 

FCMOVNU ST(O), ST(/) 

Description 

Move if below (CF=1) 

Move if equal (ZF=1) 

Move if below or equal (CF=1 or ZF=1) 

Move if unordered (PF=1) 

Move if not below (CF=O) 

Move if not equal (ZF=O) 

Move if not below or equal (CF=O and ZF=O) 

Move if not unordered (PF=O) 

Tests the status flags in the EFLAGS register and moves the source operand (second operand) 
to the destination operand (first operand) if the given test condition is true. The conditions for 
each mnemonic are given in the Description column above and in Table 6-4. The source operand 
is always in the STU) register and the destination operand is always ST(O). 

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help 
eliminate branching overhead for IF operations and the possibility of branch mispredictions by 
the processor. 

A processor in the Pentium Pro processor family may not support the FCMOVcc instructions. 
Software can check if the FCMOV cc instructions are supported by checking the processor's 
feature information with the CPUID instruction (see Chapter 11, "CPUID-CPU Identifica­
tion"). If both the CMOV and FPU feature bits are set, the FCMOV cc instructions are supported. 

Operation 

IF condition TRUE 
ST(O) f- ST(/) 

FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

Integer Flags Affected 

None. 

I 
11-107 



INSTRUCTION SET REFERENCE intet 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

11-108 

I 



INSTRUCTION SET REFERENCE 

FCOM/FCOMP/FCOMPP-Compare Real 

Opcode 

08/2 

DC /2 

08 OO+i 

0801 

08/3 

OC/3 

0808+i 

0809 

DE 09 

Description 

Instruction 

FCOM m32real 

FCOM m64real 

FCOM ST(i) 

FCOM 

FCOMP m32real 

FCOMP m64real 

FCOMP ST(i) 

FCOMP 

FCOMPP 

Description 

Compare ST(O) with m32real. 

Compare ST(O) with m64real. 

Compare ST(O) with ST(i). 

Compare ST(O) with ST(1). 

Compare ST(O) with m32real and pop register stack. 

Compare ST(O) with m64real and pop register stack. 

Compare ST(O) with ST(i) and pop register stack. 

Compare ST(O) with ST(1) and pop register stack. 

Compare ST(O) with ST(1) and pop register stack twice. 

Compares the contents of register ST(O) and source value and sets condition code flags CO, C2, 
and C3 in the FPU status word according to the results (see the table below). The source operand 
can be a data register or a memory location. If no source operand is given, the value in ST(O) is 
compared with the value in ST(l). The sign of zero is ignored, so that -0.0 = +0.0. 

Condition C3 C2 CO 

ST(O) > SRC a a a 
ST(O) < SRC a a 1 

ST(O) = SRC 1 a a 
Unordered* 1 1 1 

NOTE: 

* Flags not set if unmasked invalid-arithmetic-aperand (#IA) exception is generated. 

This instruction checks the class of the numbers being compared (see Chapter 11, 
"FXAM-Examine"). If either operand is a NaN or is in an unsupported format, an invalid­
arithmetic-operand exception (#IA) is raised and, if the exception is masked, the condition flags 
are set to "unordered." If the invalid-arithmetic-operand exception is unmasked, the condition 
code flags are not set. 

The FCOMP instruction pops the register stack following the comparison operation and the 
FCOMPP instruction pops the register stack twice following the comparison operation. To pop 
the register stack, the processor marks the ST(O) register as empty and increments the stack 
pointer (TOP) by 1. 

The FCOM instructions perform the same operation as the FUCOM instructions. The only 
difference is how they handle QNaN operands. The FCOM instructions raise an invalid-arith­
metic-operand exception (#IA) when either or both of the operands is a NaN value or is in an 
unsupported format. The FUCOM instructions perform the same operation as the FCOM 

I 
11-109 



INSTRUCTION SET REFERENCE 

instructions, except that they do not generate an invalid-arithmetic-operand exception for 
QNaNs. 

Operation 

CASE (relation of operands) OF 
ST > SRC: C3, C2, CO +-- 000; 
ST < SRC: C3, C2, CO +-- 001 ; 
ST = SRC: C3,. C2, CO +-- 100; 

ESAC; 
IF ST{O) or SRC = NaN or unsupported format 

THEN 

FI; 

#IA 
IF FPUControlWord.IM = 1 

THEN 
C3, C2, CO +-- 111; 

FI; 

IF instruction = FCOMP 
THEN 

PopRegisterStack; 
FI; 
IF instruction = FCOMPP 

THEN 
PopRegisterStack; 
PopRegisterStack; 

FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred; otherwise, cleared to O. 

CO, C2, C3 See table on previous page. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

Stack underflow occurred. 

One or both operands are NaN values or have unsupported formats. 

Register is marked empty. 

One or both operands are denormal values. 

Protected Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

11-110 

I 



#SS(O) 

#NM 

#PF( fault -code) 

#AC(O) 

INSTRUCTION SET REFERENCE 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-111 



INSTRUCTION SET REFERENCE intel® 

FCOMI/FCOMIP/FUCOMI/FUCOMIP-Compare Real and Set 
EFLAGS 

Opcode 

DB FO+i 

DF FO+i 

DB E8+i 

DF E8+i 

Description 

Instruction 

FCOMI ST, ST(/) 

FCOMIP ST, ST(/) 

FUCOMI ST, ST(/) 

FUCOMIP ST, ST(/) 

Description 

Compare ST(O) with ST(/) and set status flags accordingly 

Compare ST(O) with ST(/), set status flags accordingly, and 
pop register stack 

Compare ST(O) with ST(/), check for ordered values, and 
set status flags accordingly 

Compare ST(O) with ST(/), check for ordered values, set 
status flags accordingly, and pop register stack 

Compares the contents of register ST(O) and ST(i) and sets the status flags ZF, PF, and CF in the 
EFLAGS register according to the results (see the table below). The sign of zero is ignored for 
comparisons, so that -0.0 = +0.0. 

Comparison Results ZF PF CF 

STO> ST(/) 0 0 0 

STO< ST(/) 0 0 1 

STO= ST(/) 1 0 0 

Unordered' 1 1 1 

NOTE: 

, Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated. 

The FCOMIIFCOMIP instructions perform the same operation as the FUCOMIIFUCOMIP 
instructions. The only difference is how they handle QNaN operands. The FCOMIIFCOMIP 
instructions set the status flags to "unordered" and generate an invalid-arithmetic-operand 
exception (#IA) when either or both of the operands is a NaN value (SNaN or QNaN) or is in an 
unsupported format. 

The FUCOMIIFUCOMIP instructions perform the same operation as the FCOMIIFCOMIP 
instructions, except that they do not generate an invalid-arithmetic-operand exception for 
QNaNs. See Chapter 11, "FXAM-Exarnine" for additional information on unordered compar­
isons. 

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic­
operand exception is generated. 

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison 
operation. To pop the register stack, the processor marks the ST(O) register as empty and incre­
ments the stack pointer (TOP) by 1. 

11-112 

I 



INSTRUCTION SET REFERENCE 

Operation 

CASE (relation of operands) OF 
ST(O) > ST(/): ZF, PF, CF (- 000; 
ST(O) < ST(/): ZF, PF, CF (- 001; 
ST(O) = ST(/): ZF, PF, CF (- 100; 

ESAC; 
IF instruction is FCOMI or FCOMIP 

THEN 

FI; 

IF ST(O) or ST(/) = NaN or unsupported format 
THEN 

FI; 

#lA 
IF FPUControlWord.IM = 1 

THEN 
ZF, PF, CF (-111; 

FI; 

IF instruction is FUCOMI or FUCOMIP 
THEN 

FI; 

IF ST(O) or ST(/) = QNaN, but not SNaN or unsupported format 
THEN 

FI; 

ZF, PF, CF (- 111; 
ELSE (* ST(O) or ST(/) is SNaN or unsupported format *) 

#IA; 
IF FPUControlWord.IM = 1 

THEN 
ZF, PF, CF (- 111; 

FI; 

IF instruction is FCOMIP or FUCOMIP 
THEN 

PopRegisterStack; 
FI; 

FPU Flags Affected 

Cl 

CO, C2, C3 

I 

Set to 0 if stack underflow occurred; otherwise, cleared to O. 

Not affected. 

11-113 



INSTRUCTION SET REFERENCE 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or 
have unsupported formats. 

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN 
values (but not QNaNs) or have undefined formats. Detection of a QNaN 
value does not raise an invalid-operand exception. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-114 

I 



FCOS-Cosine 

Opcode 

D9 FF 

Description 

Instruction 

FeOS 

INSTRUCTION SET REFERENCE 

Description 

Replace ST(O) with its cosine 

Calculates the cosine of the source operand in register ST(O) and stores the result in ST(O). The 
source operand must be given in radians and must be within the range _263 to +263. The following 
table shows the results obtained when taking the cosine of various classes of numbers, assuming 
that neither overflow nor underflow occurs. 

ST(O) SRC ST(O) DEST . -= 

-F -1 to +1 

-0 +1 

+0 +1 

+F -1 to +1 

+= * 

NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, 
and the value in register ST(O) remains unchanged. The instruction does not raise an exception 
when the source operand is out of range. It is up to the program to check the C2 flag for out-of­
range conditions. Source values outside the range _263 to +263 can be reduced to the range of the 
instruction by subtracting an appropriate integer multiple of 2n or by using the FPREM instruc­
tion with a divisor of 2n. See Section 7.5.8., "Pi" for a discussion of the proper value to use for 
n in perfonning such,reductions. 

Operation 

IF IST(O)I < 263 

THEN 
C2 f- 0; 
ST(O) f- cosine(ST(O)); 

ELSE ('source operand is out-of-range *) 
C2 f- 1; 

FI; 

I 
11-115 



INSTRUCTION SET REFERENCE int'et 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

Undefined if C2 is 1. 

C2 Set to 1 if source operand is outside the range _263 to +263; otherwise, 
cleared to O. 

CO,C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#U 

#P 

Stack underflow occurred. 

Source operand is an SNaN value, 00, or unsupported fonnat. 

Result is a denormal value. 

Result is too small for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-116 

I 



INSTRUCTION SET REFERENCE 

FDECSTP-Decrement Stack-Top Pointer 

Opcode 

D9 F6 

Description 

Instruction 

FDECSTP 

Description 

Decrement TOP field in FPU status word. 

Subtracts one from the TOP field of the FPU status word (decrements the top-of-stack pointer). 
The contents of the FPU data registers and tag register are not affected. 

Operation 

IFTOP=O 
THEN TOP f-7; 
ELSE TOP f- TOP - 1; 

FI; 

FPU Flags Affected 

The CI flag is set to 0; otherwise, cleared to O. The CO, C2, and C3 flags are undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-117 



INSTRUCTION SET REFERENCE 

FDIV/FDIVP/FIDIV-Divide 

Opcode Instruction 

08/6 FDIV m32real 

DC 16 FDIV m64real 

08 FO+i FDIV ST(O), ST(/) 

DC F8+i FDIV ST(i), ST(O) 

DE F8+i FDIVP ST(/), ST(O) 

DE F9 FDIVP 

DA/6 FIDIV m32int 

DE 16 FI DIV m t6int 

Description 

intet 

Description 

Divide ST(O) by m32real and store result in ST(O) 

Divide ST(O) by m64real and store result in ST(O) 

Divide ST(O) by ST(/) and store result in ST(O) 

Divide ST(/) by ST(O) and store result in ST(/) 

Divide ST(/) by ST(O), store result in ST(/), and pop the 
register stack 

Divide ST(1) by ST(O), store result in ST(1), and pop the 
register stack 

Divide ST(O) by m32int and store result in ST(O) 

Divide ST(O) by m64int and store result in ST(O) 

Divides the destination operand by the source operand and stores the result in the destination 
location. The destination operand (dividend) is always in an FPU register; the source operand 
(divisor) can be a register or a memory location. Source operands in memory can be in single­
real, double-real, word-integer, or short-integer formats. 

The no-operand version of the instruction divides the contents of the ST(l) register by the 
contents of the ST(O) register. The one-operand version divides the contents of the ST(O) register 
by the contents of a memory location (either a real or an integer value). The two-operand 
version, divides the contents of the ST(O) register by the contents of the STU) register or vice 
versa. 

The FDIVP instructions perform the additional operation of popping the FPU register stack after 
storing the result. To pop the register stack, the processor marks the ST(O) register as empty and 
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide 
instructions always results in the register stack being popped. In some assemblers, the 
mnemonic for this instruction is FDIV rather than FDIVP. 

The FIDIV instructions convert an integer source operand to extended-real format before 
performing the division. When the source operand is an integer 0, it is treated as a +0. 

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception 
is masked, an 00 of the appropriate sign is stored in the destination operand. 

The following table shows the results obtained when dividing various classes of numbers, 
assuming that neither overflow nor underflow occurs. 

11-118 

I 



INSTRUCTION SET REFERENCE 

-~ 

-~ * 

-F +~ 

-I +~ 

SRC -0 +00 

+0 -00 

+1 -00 

+F -00 

+00 . 
NaN NaN 

NOTES: 

F Means finite-real number. 

I Means integer. 

DEST 

-F -0 +0 

+0 +0 -0 

+F +0 -0 

+F +0 -0 

• * . . 
.. . . 
-F -0 +0 

-F -0 +0 

-0 -0 +0 

NaN NaN NaN 

• Indicates floating-point invalid-arithmetic-operand (#IA) exception . 

•• Indicates floating-point zero-divide (#Z) exception. 

Operation 

IF SRC=O 
THEN 

#Z 
ELSE 

IF instruction is FIDIV 
THEN 

FI; 
FI; 

DEST f- DEST I ConvertExtendedReal(SRC); 
ELSE (* source operand is real number *) 

DEST f- DEST I SRC; 

IF instruction = FDIVP 
THEN 

PopRegisterStack 
FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

+F +~ NaN 

-0 . NaN 

-F -00 NaN 

-F -00 NaN .. -00 NaN .. +00 NaN 

+F +00 NaN 

+F +00 NaN 

+0 . NaN 

NaN NaN NaN 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO, C2,C3 Undefined. 

I 
11-119 



INSTRUCTION SET REFERENCE in1et 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#z 

#u 
#0 

#P 

Stack underflow occurred. 

Operand is an SNaN value or unsupported format. 

±oo / ±oo; ±O / ±O 

Result is a denormal value. 

DEST / ±O, where DEST is not equal to ±O. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF( fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-120 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FDIVR/FDIVRP/FIDIVR-Reverse Divide 

Opcode 

D8/7 

DC 17 
D8 F8+i 

DC FO+i 

DE FO+i 

DE F1 

DAI7 

DE 17 

Description 

Instruction 

FDIVR m32real 

FDIVR m64real 

FDIVR ST(O), ST(i) 

FDIVR ST(i), ST(O) 

FDIVRP ST(i), ST(O) 

FDIVRP 

FIDIVR m32int 

FIDIVR m16int 

Description 

Divide m32real by ST(O) and store result in ST(O) 

Divide m64real by ST(O) and store result in ST(O) 

Divide ST(/) by ST(O) and store result in ST(O) 

Divide ST(O) by ST(/) and store result in ST(/) 

Divide ST(O) by ST(/), store result in ST(/), and pop the 
register stack 

Divide ST(O) by ST(1), store result in ST(1), and pop the 
register stack 

Divide m32int by ST(O) and store result in ST(O) 

Divide m64int by ST(O) and store result in ST(O) 

Divides the source operand by the destination operand and stores the result in the destination 
location. The destination operand (divisor) is always in an FPU register; the source operand 
(dividend) can be a register or a memory location. Source operands in memory can be in single­
real, double-real, word-integer, or short-integer formats. 

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions. 
They are provided to support more efficient coding. 

The no-operand version of the instruction divides the contents of the ST(O) register by the 
contents of the ST(I) register. The one-operand version divides the contents of a memory loca­
tion (either a real or an integer value) by the contents of the ST(O) register. The two-operand 
version, divides the contents of the ST(i) register by the contents of the ST(O) register or vice 
versa. 

The FDIVRP instructions perform the additional operation of popping the FPU register stack 
after storing the result. To pop the register stack, the processor marks the ST(O) register as empty 
and increments the stack pointer (TOP) by I. The no-operand version of the floating-point divide 
instructions always results in the register stack being popped. In some assemblers, the 
mnemonic for this instruction is FDIVR rather than FDIVRP. 

The FIDIVR instructions convert an integer source operand to extended-real format before 
performing the division. 

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception 
is masked, an 00 of the appropriate sign is stored in the destination operand. 

The following table shows the results obtained when dividing various classes of numbers, 
assuming that neither overflow nor underflow occurs. 

I 
11-121 



INSTRUCTION SET REFERENCE 

-00 

-00 * 

SRC -F +0 

-I +0 

-0 +0 

+0 -0 

+1 -0 

+F -0 

+00 * 

NaN NaN 

NOTES: 

F Means finite-real number. 

I Means integer. 

-F 

+00 

+F 

+F 

+0 

-0 

-F 

-F 

-00 

NaN 

DEST 

-0 +0 

+00 -. 
** ** 

** ** 

* * 

* * 

** ** 

** ** 

-00 +00 

NaN NaN 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

** Indicates floating-point zero-divide (#Z) exception. 

When the source operand is an integer 0, it is treated as a +0. 

Operation 

IF DEST=O 
THEN 

#z 
ELSE 

IF instruction is FIDIVR 
THEN 

FI; 
FI; 

DEST f-- ConvertExtendedReal(SRC) / DEST; 
ELSE (* source operand is real number *) 

DEST f-- SRC / DEST; 

IF instruction = FDIVRP 
THEN 

PopRegisterStack 
FI; 

11-122 

+F +00 NaN 

-00 * NaN 

-F -0 NaN 

-F -0 NaN 

-0 -0 NaN 

+0 +0 NaN 

+F +00 NaN 

+F +00 NaN 

+00 * NaN 

NaN NaN NaN 

I 



INSTRUCTION SET REFERENCE 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

CO, C2, C3 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#Z 

#U 

#0 

#P 

Stack underflow occurred. 

Operand is an SNaN value or unsupported format. 

±oo I ±oo; ±O I ±O 

Result is a denormal value. 

SRC / ±O, where SRC is not equal to ±O. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#OP 

#SS 

#NM 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

11-123 



INSTRUCTION SET REFERENCE in1et 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-124 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FFREE-Free Floating-Point Register 

Description Opcode 

DD CO+i 

Instruction 

FFREE ST(/) Sets tag for ST(/) to empty 

Description 

Sets the tag in the FPU tag register associated with register STU) to empty (UB). The contents 
of STU) and the FPU stack-top pointer (TOP) are not affected. 

Operation 

TAG(i) f- 118; 

FPU Flags Affected 

CO, Ct, C2, C3 undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-125 



INSTRUCTION SET REFERENCE 

FICOM/FICOMP-Compare Integer 

Opcode 

DE 12 

DA 12 

DE 13 
DA/3 

Description 

Instruction 

FICOM m16int 

FICOM m32int 

FICOMP m16int 

FICOMP m32int 

Description 

Compare ST(O) with m16int 

Compare ST(O) with m32int 

Compare ST(O) with m16int and pop stack register 

Compare ST(O) with m32intand pop stack register 

Compares the value in ST(O) with an integer source operand and sets the condition code flags 
CO, C2, and C3 in the FPU status word according to the results (see table below). The integer 
value is converted to extended-real format before the comparison is made. 

Condition C3 C2 CO 

ST(O) > SRC 0 0 0 

ST(O) < SRC 0 0 1 

ST(O) = SRC 1 0 0 

Unordered 1 1 1 

These instructions perform an "unordered comparison." An unordered comparison also checks 
the class of the numbers being compared (see Chapter 11, "FXAM-Examine"). If either 
operand is a NaN or is in an undefined format, the condition flags are set to "unordered." 

The sign of zero is ignored, so that -0.0 = +0.0. 

The FICOMP instructions pop the register stack following the comparison. To pop the register 
stack, the processor marks the ST(O) register empty and increments the stack pointer (TOP) by 1. 

Operation 

CASE (relation of operands) OF 
ST(O) > SRC: C3, C2, CO f-- 000; 
ST(O) < SRC: C3, C2, CO f-- 001 ; 
ST(O) = SRC: C3, C2, CO f-- 100; 
Unordered: C3, C2, CO f-- 111; 

ESAC; 
IF instruction = FICOMP 

THEN 
PopRegisterStack; 

FI; 

11-126 

I 



INSTRUCTION SET REFERENCE 

FPU Flags Affected 

Cl 

CO, C2, C3 

Set to 0 if stack underflow occurred; otherwise, set to o. 
See table on previous page. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

Stack underflow occurred. 

One or both operands are NaN values or have unsupported formats. 

One or both operands are denormal values. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-127 



INSTRUCTION SET REFERENCE intet 

FILD-Load Integer 

Opcode 

OF /0 

DB /0 

OF /5 

Description 

Instruction 

FILO m16int 

FILO m32int 

FILO m64int 

Description 

Push m16intonto the FPU register stack. 

Push m32intonto the FPU register stack. 

Push m64int onto the FPU register stack. 

Converts the signed-integer source operand into extended-real format and pushes the value onto 
the FPU register stack. The source operand can be a word, short, or long integer value. It is 
loaded without rounding errors. The sign of the source operand is preserved. 

Operation 

TOP ~ TOP-1; 
ST(O) ~ ExtendedReal(SRC); 

FPU Flags Affected 

Cl Set to 1 if stack overflow occurred; cleared to 0 otherwise. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack overflow occurred. 

Protected Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-128 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



in1et INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#OP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-129 



INSTRUCTION SET REFERENCE in1et 

FINCSTP-Increment Stack-Top Pointer 

Opcode 

09 F7 

Description 

Instruction 

FINCSTP 

Description 

Increment the TOP field in the FPU status register 

Adds one to the TOP field of the FPU status word (increments the top-of-stack pointer). The 
contents of the FPU data registers and tag register are not affected. This operation is not equiv­
alent to popping the stack, because the tag for the previous top-of-stack register is not marked 
empty. 

Operation 

IF TOP = 7 
THEN TOP f- 0; 
ELSE TOP f- TOP + 1; 

FI; 

FPU Flags Affected 

The Cl flag is set to 0; otherwise, cleared to O. The CO, C2, and C3 flags are undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-130 

I 



INSTRUCTION SET REFERENCE 

FINIT/FNINIT-Initialize Floating-Point Unit 

Opcode 

9B DB E3 

Instruction 

FINIT 

Description 

Initialize FPU after checking for pending unmasked 
floating-point exceptions. 

DB E3 FNINIT Initialize FPU without checking for pending unmasked 
floating-point exceptions. 

Description 

Sets the FPU control, status, tag, instruction pointer, and data pointer registers to their default 
states. The FPU control word is set to 037FH (round to nearest, all exceptions masked, 64-bit 
precision). The status word is cleared (no exception flags set, TOP is set to 0). The data registers 
in the register stack are left unchanged, but they are all tagged as empty (UB). Both the instruc­
tion and data pointers are cleared. 

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions 
before performing the initialization; the FNINIT instruction does not. 

Operation 

FPUControlWord f- 037FH; 
FPUStatusWord f- 0; 
FPUTagWord f- FFFFH; 
FPUDataPointer f- 0; 
FPUlnstructionPointer f- 0; 
FPULastinstructionOpcode f- 0; 

FPU Flags Affected 

CO, Cl, C2, C3 cleared to O. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-131 



INSTRUCTION SET REFERENCE 

FIST/FISTP-Store Integer 

Opcode 

DF/2 

DB /2 

OF /3 

DB /3 

OF /7 

Description 

Instruction 

FIST m16int 

FIST m32int 

FISTP m16int 

FISTP m32int 

FISTP m64int 

Description 

Store ST(O) in m16int 

Store ST(O) in m32int 

Store ST(O) in m16int and pop register stack 

Store ST(O) in m32int and pop register stack 

Store ST(O) in m64int and pop register stack 

The FIST instruction converts the value in the ST(O) register to a signed integer and stores the 
result in the destination operand. Values can be stored in word- or short-integer format. The 
destination operand specifies the address where the first byte of the destination value is to be 
stored. 

The FISTP instruction performs the same operation as the FIST instruction and then pops the 
register stack. To pop the register stack, the processor marks the ST(O) register as empty and 
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long­
integer format. 

The following table shows the results obtained when storing various classes of numbers in 
integer format. 

ST(O) 

-00 

-F <-1 

-1 < -F <-0 

-0 

+0 

+0 < +F < +1 

+F> +1 

+00 

NaN 

NOTES: 

F Means finite-real number 

I Means integer 

* Indicates floating-point invalid-operation (#IA) exception 

** ±O or ±1 , depending on the rounding mode 

11-132 

DEST 

· 
-I 

.* 

0 

0 

*. 

+1 

· 
· 

I 



INSTRUCTION SET REFERENCE 

If the source value is a non-integral value, it is rounded to an integer value, according to the 
rounding mode specified by the RC field of the FPU control word. 

If the value being stored is too large for the destination format, is an 00, is a NaN, or is in an 
unsupported format and if the invalid-arithmetic-operand exception (#IA) is unmasked, an 
invalid-operation exception is generated and no value is stored in the destination operand. If the 
invalid-operation exception is masked, the integer indefinite value is stored in the destination 
operand. 

Operation 

DEST f- Integer(ST(O)); 
IF instruction = FISTP 

FI; 

THEN 
PopRegisterStack; 

FPU Flags Affected 

Cl Set to a if stack underflow occurred. 

Indicates rounding direction of if the inexact exception (#P) is generated: 
a = not roundup; 1 = roundup. 

Cleared to a otherwise. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#P 

Source operand is too large for the destination format 

Source operand is a NaN value or unsupported format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

I 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

11-133 



INSTRUCTION SET REFERENCE 

#AC(O) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-134 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FLO-Load Real 

Opcode 

09/0 

00/0 

OB/5 

09 CO+i 

Description 

Instruction 

FLO m32real 

FLO m64real 

FLO mBOreal 

FLO STeil 

Description 

Push m32real onto the FPU register stack. 

Push m64real onto the FPU register stack. 

Push mBOreal onto the FPU register stack. 

Push STeil onto the FPU register stack. 

Pushes the source operand onto the FPU register stack. If the source operand is in single- or 
double-real format, it is automatically converted to the extended-real format before being 
pushed on the stack. 

The FLD instruction can also push the value in a selected FPU register [STeil] onto the stack. 
Here, pushing register STeO) duplicates the stack top. 

Operation 

IF SRC is ST(/) 
THEN 

temp f- ST{I) 
TOP f- TOP - 1 ; 
IF SRC is memory-operand 

THEN 
ST(O) f- ExtendedReal(SRC); 

ELSE (* SRC is ST(/) *) 
ST(O) f- temp; 

FPU Flags Affected 

Cl 

CO, C2,C3 

Set to 1 if stack overflow occurred; otherwise, cleared to O. 

Undefined. 

Floating-Point Exceptions 

Stack overflow occurred. 

Source operand is an SNaN value or unsupported format. 

#IS 

#IA 

#D Source operand is a denormal value. Does not occur if the source operand 
is in extended-real format. 

I 
11-135 



INSTRUCTION SET REFERENCE intet~ 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF( fault-code) 

#AC(O) 

If destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-136 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load 
Constant 

Opcode 

09 E8 

09 E9 

09 EA 

09 EB 

09 EC 

09 EO 

09 EE 

Description 

Instruction 

FL01 

FLOL2T 

FLOL2E 

FLOPI 

FLOLG2 

FLOLN2 

FLOZ 

Description 

Push +1.0 onto the FPU register stack. 

Push log210 onto the FPU register stack. 

Push log2e onto the FPU register stack. 

Push rc onto the FPU register stack. 

Push log,02 onto the FPU register stack. 

Push loge2 onto the FPU register stack. 

Push +0.0 onto the FPU register stack. 

Push one of seven commonly-used constants (in extended-real format) onto the FPU register 
stack. The constants that can be loaded with these instructions include + 1.0, +0.0, log21O, log2e, 
n, log lO2, and loge2. For each constant, an interna166-bit constant is rounded (as specified by the 
RC field in the FPU control word) to external-real format. The inexact-result exception (#P) is 
not generated as a result of the rounding. 

See Section 7.S.S., "Pi" for a description of the n constant. 

Operation 

TOP +-- TOP - 1; 
ST(O) +-- CONSTANT; 

FPU Flags Affected 

Cl Set to 1 if stack overflow occurred; otherwise, cleared to O. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack overflow occurred. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-137 



INSTRUCTION SET REFERENCE intet 
Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

Intel Architecture Compatibility Information 

When the RC field is set to round-to-nearest, the FPU produces the same constants that is 
produced by the Intel 8087 and Inte1287 math coprocessors. 

11-138 

I 



INSTRUCTION SET REFERENCE 

FLDCW-Load Control Word 

Opcode 

09/5 

Descri pti on 

Instruction 

FLOCW m2byte 

Description 

Load FPU control word from m2byte. 

Loads the 16-bit source operand into the FPU control word. The source operand is a memory 
location. This instruction is typically used to establish or change the FPU's mode of operation. 

If one or more exception flags are set in the FPU status word prior to loading a new FPU control 
word and the new control word unmasks one or more of those exceptions, a floating-point excep­
tion will be generated upon execution of the next floating-point instruction (except for the no­
wait floating-point instructions, see Section 7.7.3., "Software Exception Handling"). To avoid 
raising exceptions when changing FPU operating modes, clear any pending exceptions (using 
the FCLEX or FNCLEX instruction) before loading the new control word. 

Operation 

FPUControlWord *- SRC; 

FPU Flags Affected 

CO, C I, C2, C3 undefined. 

Floating-Point Exceptions 

None; however, this operation might unmask a pending exception in the FPU status word. That 
exception is then generated upon execution of the next waiting floating-point instruction. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#ACCO) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

11-139 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-140 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FLDENV-Load FPU Environment 

Opcode 

D9/4 

Description 

Instruction Description 

FLDENV m14128byte Load FPU environment from m14byte or m28byte. 

Loads the complete FPU operating environment from memory into the FPU registers. The 
source operand specifies the first byte of the operating-environment data in memory. This data is 
typically written to the specified memory location by a FSTENV or FNSTENV instruction. 

The FPU operating environment consists of the FPU control word, status word, tag word, 
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in 
memory of the loaded environment, depending on the operating mode of the processor 
(protected orreal) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 
mode, the real mode layouts are used. 

The FLDENV instruction should be executed in the same operating mode as the corresponding 
FSTENV IFNSTENV instruction. 

If one or more unmasked exception flags are set in the new FPU status word, a floating-point 
exception will be generated upon execution of the next floating-point instruction (except for the 
no-wait floating-point instructions, see Section 7.7.3., "Software Exception Handling"). To 
avoid generating exceptions when loading a new environment, clear all the exception flags in 
the FPU status word that is being loaded. 

Operation 

FPUControlWord f- SRC(FPUControIWord); 
FPUStatusWord f- SRC(FPUStatusWord); 
FPUTagWord f- SRC(FPUTagWord); 
FPUDataPointer f- SRC(FPUDataPointer); 
FPUlnstructionPointer f- SRC(FPUlnstructionPointer); 
FPULastinstructionOpcode f- SRC(FPULastlnstructionOpcode); 

FPU Flags Affected 

The CO, C 1, C2, C3 flags are loaded. 

Floating-Point Exceptions 

None; however, if an unmasked exception is loaded in the status word, it is generated upon 
execution of the next waiting floating-point instruction. 

I 
11-141 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-142 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FMUUFMULP/FIMUL-Multiply 

Opcode 

D8/1 

DC/1 

D8 C8+i 

DC C8+i 

DEC8+i 

DEC9 

DA/1 

DE/1 

Description 

Instruction 

FMUL m32real 

FMUL m64real 

FMUL ST(O), ST(i) 

FMUL ST(/), ST(O) 

FMULP ST(/), ST(O) 

FMULP 

FIMUL m32int 

FIMUL m16int 

Description 

Multiply ST(O) by m32realand store result in ST(O) 

Multiply ST(O) by m64real and store result in ST(O) 

Multiply ST(O) by ST(i) and store result in ST(O) 

Multiply ST(/) by ST(O) and store result in ST(/) 

Multiply ST(/) by ST(O), store result in ST(/), and pop the 
register stack 

Multiply ST(O) by ST(1), store result in ST(O), and pop the 
register stack 

Multiply m32int by ST(O) and store result in ST(O) 

Multiply m16int by ST(O) and store result in ST(O) 

Multiplies the destination and source operands and stores the product in the destination location. 
The destination operand is always an FPU data register; the source operand can be a register or 
a memory location. Source operands in memory can be in single-real, double-real, word-integer, 
or short-integer formats. 

The no-operand version of the instruction multiplies the contents of the ST(O) register by the 
contents of the ST(I) register. The one-operand version multiplies the contents of a memory 
location (either a real or an integer value) by the contents of the ST(O) register. The two-operand 
version, multiplies the contents of the S T(O) register by the contents of the ST(i) register or vice 
versa. 

The FMULP instructions perform the additional operation of popping the FPU register stack 
after storing the product. To pop the register stack, the processor marks the ST(O) register as 
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point 
multiply instructions always results in the register stack being popped. In some assemblers, the 
mnemonic for this instruction is FMUL rather than FMULP. 

The FIMUL instructions convert an integer source operand to extended-real format before 
performing the multiplication. 

The sign ofthe result is always the exclusive-OR of the source signs, even if one or more of the 
values being multiplied is 0 or 00. When the source operand is an integer 0, it is treated as a +0. 

The following table shows the results obtained when multiplying various classes of numbers, 
assuming that neither overflow nor underflow occurs. 

I 
11-143 



INSTRUCTION SET REFERENCE 

-00 

-00 +00 

-F +00 

-I +00 

SRC -0 . 
+0 . 
+1 -00 

+F -00 

+00 -00 

NaN NaN 

NOTES: 

F Means finite-real number 

Means Integer 

-F 

+00 

+F 

+F 

+0 

-0 

-F 

-F 

-00 

NaN 

-0 . 
+0 

+0 

+0 

-0 

-0 

-0 . 
NaN 

* Indicates invalid-arithmetic-operand (#IA) exception. 

Operation 

IF instruction is FIMUL 
THEN 

DEST 

DEST f- DEST * ConvertExtendedReal(SRC); 
ELSE (* source operand is real number *) 

DEST f- DEST * SRC; 
FI; 
IF instruction = FMULP 

THEN 
PopRegisterStack 

FI; 

FPU Flags Affected 

+0 . 
-0 

-0 

-0 

+0 

+0 

+0 . 
NaN 

Cl Set to 0 if stack underflow occurred. 

+F +00 NaN 

-00 -00 NaN 

-F -00 NaN 

-F -00 NaN 

-0 . NaN 

+0 . NaN 

+F +00 NaN 

+F +00 NaN 

+00 +00 NaN 

NaN NaN NaN 

Indicates rounding direction if the inexact-result exception (#P) fault is 
generated: 0 = not roundup; 1 = roundup. 

CO,C2, C3 Undefined. 

11-144 

I 



in1et INSTRUCTION SET REFERENCE 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

#u 
#0 

#P 

Operand is an SNaN value or unsupported format. 

One operand is ±O and the other is ±oo. 

Source operand is a denormal value. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in eRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#OP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-145 



INSTRUCTION SET REFERENCE 

FNOP-No Operation 

Opcode 

D9 DO 

Description 

Instruction 

FNOP 

Description 

No operation is performed. 

Perfonns no FPU operation. This instruction takes up space in the instruction stream but does 
not affect the FPU or machine context, except the EIP register. 

FPU Flags Affected 

CO, Cl, C2, C3 undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-146 

I 



INSTRUCTION SET REFERENCE 

FPATAN-Partial Arctangent 

Opcode 

09 F3 

Instruction 

FPATAN 

Description 

Description 

Replace ST(1) with arctan(ST(1 )/ST(O)) and pop the register stack 

Computes the arctangent of the source operand in register ST(l) divided by the source operand 
in register ST(O), stores the result in ST( 1), and pops the FPU register stack. The result in register 
ST(O) has the same sign as the source operand ST(I) and a magnitude less than +1t. 

The following table shows the results obtained when computing the arctangent of various classes 
of numbers, assuming that underflow does not occur. 

ST(O) 

-= -F -0 +0 +F += 

-= -3rc/4 -rc/2 -rc/2 -rc/2 -rc/2 -rc/4 

ST(1) -F -rc -rc to -rc/2 -rc/2 -rc/2 -rc/2 to-O -0 

-0 -rc -rc -rc -0 -0 -0 

+0 +rc +rc +rc +0 +0 +0 

+F +rc +rc to +rc/2 +rc/2 +rc/2 +rc/2 to +0 +0 

+= +3rc/4 +rc/2 +rc/2 +rc/2 +rc/2 +rc/4 

NaN NaN NaN NaN NaN NaN NaN 

NOTE: 

F Means finite-real number 

There is no restriction on the range of source operands that FPATAN can accept. 

Operation 

ST(1) f-- arctan(ST(1) / ST(O)); 
PopRegisterStack; 

FPU Flags Affected 

CI Set to 0 if stack underflow occurred. 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

NaN 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO,C2,C3 Undefined. 

I 
11-147 



INSTRUCTION SET REFERENCE 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

#u 
#P 

Source operand is an SNaN value or unsupported format. 

Source operand is a denormal value. 

Result is too small for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

Intel Architecture Compatibility Information 

The source operands for this instruction are restricted for the 80287 math coprocessor to the 
following range: 

O:S; IST(I)1 < IST(O)I < +00 

11-148 

I 



intet 

FPREM-Partial Remainder 

Opcode 

09 F8 

Description 

Instruction 

FPREM 

INSTRUCTION SET REFERENCE 

Description 

Replace ST(O) with the remainder obtained on dividing 
ST(O) by ST(1) 

Computes the remainder obtained on dividing the value in the ST(O) register (the dividend) by 
the value in the ST(l) register (the divisor or modulus), and stores the result in ST(O). The 
remainder represents the following value: 

Remainder = ST(O) - (N * ST(l» 

Here, N is an integer value that is obtained by truncating the real-number quotient of [ST(O) / 
ST(I)] toward zero. The sign of the remainder is the same as the sign of the dividend. The magni­
tude of the remainder is less than that of the modulus, unless a partial remainder was computed 
(as described below). 

This instruction produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. The following table shows the results obtained when 
computing the remainder of various classes of numbers, assuming that underflow does not occur. 

ST(1) 

-00 -F -0 +0 

* * -00 * * 

ST(O) -F ST(O) -F or-O ** ** 

-0 -0 -0 * * 

+0 +0 +0 * * 

+F ST(O) +F or +0 ** ** 

+00 * * * * 

NaN NaN NaN NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

** Indicates floating-point zero-divide (#Z) exception. 

+F +00 NaN 

* * NaN 

-F or-O ST(O) NaN 

-0 -0 NaN 

+0 +0 NaN 

+F or +0 ST(O) NaN 

* * NaN 

NaN NaN NaN 

When the result is 0, its sign is the same as that of the dividend. When the modulus is 00, the 
result is equal to the value in ST(O). 

The FPREM instruction does not compute the remainder specified in IEEE Std 754. The IEEE 
specified remainder can be computed with the FPREMI instruction. The FPREM instruction is 
provided for compatibility with the Intel 8087 and Intel287 math coprocessors. 

I 
11-149 



INSTRUCTION SET REFERENCE 

The FPREM instruction gets its name "partial remainder" because of the way it computes the 
remainder. This instructions arrives at a remainder through iterative subtraction. It can, however, 
reduce the exponent of ST(O) by no more than 63 in one execution of the instruction. If the 
instruction succeeds in producing a remainder that is less than the modulus, the operation is 
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result 
in ST(O) is called the partial remainder. The exponent of the partial remainder will be less than 
the exponent of the original dividend by at least 32. Software can re-execute the instruction 
(using the partial remainder in ST(O) as the dividend) until C2 is cleared. (Note that while 
executing such a remainder-computation loop, a higher-priority interrupting routine that needs 
the FPU can force a context switch in-between the instructions in the loop.) 

An important use of the FPREM instruction is to reduce the arguments of periodic functions. 
When reduction is complete, the instruction stores the three least-significant bits of the quotient 
in the C3, Cl, and CO flags of the FPU status word. This information is important in argument 
reduction for the tangent function (using a modulus of 1t/4), because it locates the original angle 
in the correct one of eight sectors of the unit circle. 

Operation 

Dr exponent(ST(O» - exponent(ST(1»; 
IF D < 64 

FI; 

THEN 
Q r Integer(TruncateTowardZero(ST(O) / ST(1))); 
ST(O) r ST(O) - (ST(1) * Q); 
C2rO; 
co, C3, C1 r LeastSignificantBits(Q); (* Q2, Q1, QO *) 

ELSE 
C2r 1; 
N r an implementation-dependent number between 32 and 63; 
QQ r Integer(TruncateTowardZero((ST(O) / ST(1» / 2(D-N»); 
ST(O) r ST(O) - (ST(1) * QQ * 2(D- N»; 

FPU Flags Affected 

CO Set to bit 2 (Q2) of the quotient. 

Cl Set to 0 if stack underflow occurred; otherwise, set to least significant bit 
of quotient (QO). 

C2 

C3 

Set to 0 if reduction complete; set to 1 if incomplete. 

Set to bit 1 (Q l) of the quotient. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

11-150 

Source operand is an SN aN value, modulus is 0, dividend is 00, or unsup­
ported format. 

I 



INSTRUCTION SET REFERENCE 

#D 

#U 

Source operand is a denormal value. 

Result is too small for destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-151 



INSTRUCTION SET REFERENCE 

FPREM1-Partial Remainder 

Opcode 

D9 F5 

Description 

Instruction 

FPREM1 

Description 

Replace ST(O) with the IEEE remainder obtained on 
dividing ST(O) by ST(1) 

Computes the IEEE remainder obtained on dividing the value in the ST(O) register (the dividend) 
by the value in the STet) register (the divisor or modulus), and stores the result in ST(O). The 
remainder represents the following value: 

Remainder = ST(O) - (N * STet)) 

Here, N is an integer value that is obtained by rounding the real-number quotient of [ST(O) I 
STet)] toward the nearest integer value. The sign of the remainder is the same as the sign of the 
dividend. The magnitude of the remainder is less than half the magnitude of the modulus, unless 
a partial remainder was computed (as described below). 

This instruction produces an exact result; the precision (inexact) exception does not occur and 
the rounding control has no effect. The following table shows the results obtained when 
computing the remainder of various classes of numbers, assuming that underflow does not occur. 

ST(1) 

-00 -F -0 +0 

-00 * * * * 

ST(O) -F ST(O) -F or-O *. .. 
-0 -0 -0 · . 
+0 +0 +0 · * 

+F ST(O) +F or +0 .. * • 

+00 . . · . 
NaN NaN NaN NaN NaN 

NOTES: 

F Means finite-real number 

• Indicates floating-point invalid-arithmetic-operand (#IA) exception . 

•• Indicates floating-point zero-divide (#Z) exception. 

+F +00 NaN 

* * NaN 

-F or-O ST(O) NaN 

-0 -0 NaN 

+0 +0 NaN 

+F or +0 ST(O) NaN . . NaN 

NaN NaN NaN 

When the result is 0, its sign is the same as that of the dividend. When the modulus is 00, the 
result is equal to the value in ST(O). 

The FPREMI instruction computes the remainder specified in IEEE Std 754. This instruction 
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(O) 
divided by STet) to an integer (see the "Operation" below). 

11-152 

I 



in1et INSTRUCTION SET REFERENCE 

Like the FPREM instruction, the FPREMl computes the remainder through iterative subtrac­
tion, but can reduce the exponent of ST(O) by no more than 63 in one execution of the instruc­
tion. If the instruction succeeds in producing a remainder that is less than one half the modulus, 
the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, 
and the result in ST(O) is called the partial remainder. The exponent of the partial remainder will 
be less than the exponent of the original dividend by at least 32. Software can re-execute the 
instruction (using the partial remainder in ST(O) as the dividend) until C2 is cleared. (Note that 
while executing such a remainder-computation loop, a higher-priority interrupting routine that 
needs the FPU can force a context switch in-between the instructions in the loop.) 

An important use of the FPREMl instruction is to reduce the arguments of periodic functions. 
When reduction is complete, the instruction stores the three least-significant bits of the quotient 
in the C3, Cl, and CO flags of the FPU status word. This information is important in argument 
reduction for the tangent function (using a modulus of n14) , because it locates the original angle 
in the correct one of eight sectors of the unit circle. 

Operation 

D ~ exponent(ST(O» - exponent(ST(1»; 
IF D < 64 

FI; 

THEN 
Q ~ Integer(RoundTowardNearestlnteger(ST(O) / ST(1))); 
ST(O) ~ ST(O) - (ST(1) * Q); 
C2~0; 

CO, C3, C1 ~ LeastSignificantBits(Q); (* Q2, Q1, QO *) 
ELSE 

C2~ 1; 
N ~ an implementation-dependent number between 32 and 63; 
QQ ~ Integer(TruncateTowardZero((ST(O) / ST(1» I 2(D- Nl»; 
ST(O) ~ ST(O) - (ST(1) * QQ * 2(D - Nl); 

FPU Flags Affected 

CO Set to bit 2 (Q2) of the quotient. 

CI Set to 0 if stack underflow occurred; otherwise, set to least significant bit 
of quotient (QO). 

C2 

C3 

Set to 0 if reduction complete; set to 1 if incomplete. 

Set to bit 1 (Q l) of the quotient. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

I 

Source operand is an SNaN value, modulus (divisor) is 0, dividend is 00, 

or unsupported format. 

11-153 



INSTRUCTION SET REFERENCE 

#D 

#U 

Source operand is a denormal value. 

Result is too small for destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

11-154 

I 



FPTAN-Partial Tangent 

Opcode 

09 F2 

Description 

Instruction 

FPTAN 
Clocks 

17-173 

INSTRUCTION SET REFERENCE 

Description 

Replace ST(O) with its tangent and push 1 
onto the FPU stack. 

Computes the tangent of the source operand in register ST(O), stores the result in ST(O), and 
pushes a 1.0 onto the FPU register stack. The source operand must be given in radians and must 
be less than ±263. The following table shows the unmasked results obtained when computing the 
partial tangent of various classes of numbers, assuming that underflow does not occur. 

ST(O) SRC ST(O) DEST 

-00 * 

-F -Fto +F 

-0 -0 

+0 +0 

+F -Fto +F 

+00 * 

NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, 
and the value in register ST(O) remains unchanged. The instruction does not raise an exception 
when the source operand is out of range. It is up to the program to check the C2 flag for out-of­
range conditions. Source values outside the range _263 to +263 can be reduced to the range of the 
instruction by subtracting an appropriate integer multiple of 21t or by using the FPREM instruc­
tion with a divisor of21t. See Section 7.5.8., "Pi" for a discussion of the proper value to use for 
1t in performing such reductions. 

The value 1.0 is pushed onto the register stack after the tangent has been computed to maintain 
compatibility with the Intel 8087 and Intel287 math coprocessors. This operation also simplifies 
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip­
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN 
instruction. 

I 
11-155 



INSTRUCTION SET REFERENCE 

Operation 

IF 8T(0) < 263 

THEN 
C2~0; 

8T(0) ~ tan(8T(0»; 
TOP ~ TOP-1; 
8T(0) ~ 1.0; 

EL8E (*source operand is out-of-range *) 
C2~ 1; 

FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

C2 Set to 1 if source operand is outside the range _263 to +263; otherwise, 
cleared to O. 

CO,C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#U 

#P 

Stack underflow occurred. 

Source operand is an SNaN value, 00, or unsupported format. 

Source operand is a denormal value. 

Result is too small for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-156 

I 



INSTRUCTION SET REFERENCE 

FRNDINT-Round to Integer 

Opcode 

D9 Fe 

Description 

Instruction 

FRNDINT 

Description 

Round ST(O) to an integer. 

Rounds the source value in the ST(O) register to the nearest integral value, depending on the 
current rounding mode (setting of the RC field of the FPU control word), and stores the result 
in ST(O). 

If the source value is 00, the value is not changed. If the source value is not an integral value, the 
floating-point inexact-result exception (#P) is generated. 

Operation 

ST(O) f- RoundTolntegraIValue(ST(O)); 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

#P 

Source operand is an SNaN value or unsupported format. 

Source operand is a denormal value. 

Source operand is not an integral value. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-157 



INSTRUCTION SET REFERENCE 

FRSTOR-Restore FPU State 

Opcode 
00/4 

Description 

Instruction Description 
FRSTOR m94110Bbyte Load FPU state from m94byte or m10Bbyte. 

Loads the FPU state (operating environment and register stack) from the memory area specified 
with the source operand. This state data is typically written to the specified memory location by 
a previous FSAVEIFNSAVE instruction. 

The FPU operating environment consists of the FPU control word, status word, tag word, 
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in 
memory of the stored environment, depending on the operating mode of the processor (protected 
or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes 
immediately follow the operating environment image. 

The FRS TOR instruction should be executed in the same operating mode as the corresponding 
FSAVEIFNSAVE instruction. 

If one or more unmasked exception bits are set in the new FPU status word, a floating-point 
exception will be generated. To avoid raising exceptions when loading a new operating environ­
ment, clear all the exception flags in the FPU status word that is being loaded. 

Operation 

FPUControlWord ~ SRC(FPUControIWord); 
FPUStatusWord ~ SRC(FPUStatusWord); 
FPUTagWord ~ SRC(FPUTagWord); 
FPUDataPointer ~ SRC(FPUDataPointer); 
FPU I nstruction Poi nter ~ SRC( FPU I nstruction Pointer); 
FPULastlnstructionOpcode ~ SRC(FPULastinstructionOpcode); 
ST(O) ~ SRC(ST(O)); 
ST(1) ~ SRC(ST(1)); 
ST(2) ~ SRC(ST(2)); 
ST(3) ~ SRC(ST(3)); 
ST(4) ~ SRC(ST(4»; 
ST(5) ~ SRC(ST(5»; 
ST(6) ~ SRC(ST(6)); 
ST(7) ~ SRC(ST(7»; 

FPU Flags Affected 

The CO, Cl, C2, C3 flags are loaded. 

11-158 

I 



INSTRUCTION SET REFERENCE 

Floating-Point Exceptions 

None; however, this operation might unmask an existing exception that has been detected but 
not generated, because it was masked. Here, the exception is generated at the completion of the 
instruction. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-159 



INSTRUCTION SET REFERENCE in1et 

FSAVElFNSAVE-Store FPU State 

Opcode 

9800/6 

00/6 

Description 

Instruction Description 

FSAVE m94110Bbyte Store FPU state to m94byte or m10Bbyte after checking for 
pending unmasked floating-point exceptions. Then re-initialize 
the FPU. 

FNSAVE m94110Bbyte Store FPU environment to m94byteor m10Bbyte without 
checking for pending unmasked floating-point exceptions. 
Then re-initialize the FPU. 

Stores the current FPU state (operating environment and register stack) at the specified destina­
tion in memory, and then re-initializes the FPU. The FSAVE instruction checks for and handles 
pending unmasked floating-point exceptions before storing the FPU state; the FNSAVE instruc­
tion does not. 

The FPU operating environment consists of the FPU control word, status word, tag word, 
instruction pointer, data pointer, and last opcode. Figures 7-13 through 7-14 show the layout in 
memory of the stored environment, depending on the operating mode of the processor (protected 
or real) and the size of the current address attribute (16-bit or 32-bit). In virtual-8086 mode, the 
real mode layouts are used. The contents of the FPU register stack are stored in the 80 bytes 
immediately follow the operating environment image. 

The saved image reflects the state of the FPU after all floating-point instructions preceding the 
FSAVEIFNSAVE instruction in the instruction stream have been executed. 

After the FPU state has been saved, the FPU is reset to the same default values it is set to with 
the FINITIFNINIT instructions (see Chapter 11, "FINIT/FNINIT-Initialize Floating-Point 
Unit"). 

The FSAVElFNSAVE instructions are typically used when the operating system needs to 
perform a context switch, an exception handler needs to use the FPU, or an application program 
needs to pass a "clean" FPU to a procedure. 

Operation 

(* Save FPU State and Registers *) 
DEST(FPUControIWord) ~ FPUControlWord; 
DEST(FPUStatusWord) ~ FPUStatusWord; 
DEST(FPUTagWord) ~ FPUTagWord; 
DEST(FPUDataPointer) ~ FPUDataPointer; 
DEST(FPUlnstructionPointer) ~ FPUlnstructionPointer; 
DEST(FPULastlnstructionOpcode) ~ FPULastinstructionOpcode; 
DEST(ST(O)) ~ ST(O); 
DEST(ST(1)) ~ ST(1); 
DEST(ST(2)) ~ ST(2); 
DEST(ST(3)) ~ ST(3); 
DEST(ST(4)) ~ ST(4); 

11-160 

I 



DEST(ST(5)) (- ST(5); 
DEST(ST(6)) (- ST(6); 
DEST(ST(7)) (- ST(7); 
(* Initialize FPU *) 
FPUControlWord (- 037FH; 
FPUStatusWord (- 0; 
FPUTagWord (- FFFFH; 
FPUDataPointer (- 0; 
FPUlnstructionPointer (- 0; 
FPULastlnstructionOpcode (- 0; 

FPU Flags Affected 

The CO, CI, C2, and C3 flags are saved and then cleared. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

INSTRUCTION SET REFERENCE 

#GP(O) If destination is located in a nonwritable segment. 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

11-161 



INSTRUCTION SET REFERENCE 

#SS(O) 

#NM 

#PF( fault-code) 

#AC(O) 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in eRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility Information 

For Intel math coprocessors and FPUs prior to the Intel Pentium processor, an FWAIT instruc­
tion should be executed before attempting to read from the memory image stored with a prior 
FSAVEIFNSAVE instruction. This FWAIT instruction helps insure that the storage operation 
has been completed. 

11-162 

I 



FSCALE-Scale 

Opcode 

09 FO 

Description 

Instruction 

FSCALE 

INSTRUCTION SET REFERENCE 

Description 

Scale ST(O) by ST(1). 

Multiplies the destination operand by 2 to the power of the source operand and stores the result 
in the destination operand. This instruction provides rapid multiplication or division by integral 
powers of 2. The destination operand is a real value that is located in register ST(O). The source 
operand is the nearest integer value that is smaller than the value in the ST(I) register (that is, 
the value in register ST(I) is truncate toward 0 to its nearest integer value to form the source 
operand). The actual scaling operation is performed by adding the source operand (integer 
value) to the exponent of the value in register ST(O). The following table shows the results 
obtained when scaling various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

ST(O) 

NOTES: 

F Means finite-real number. 

N Means integer. 

--00 

-F 

-0 

+0 

+F 

+00 

NaN 

ST(1) 

-N 

--00 

-F 

-0 

+0 

+F 

+00 

NaN 

0 +N 

--00 -00 

-F -F 

-0 -0 

+0 +0 

+F +F 

+00 +00 

NaN NaN 

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged. 
However, when the value being scaled in ST(O) is a denormal value, the mantissa is also changed 
and the result may tum out to be a normalized number. Similarly, if overflow or underflow 
results from a scale operation, the resulting mantissa will differ from the source's mantissa. 

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as 
shown in the following example: 

FXTRACT; 

FSCALE; 

FSTP ST(l); 

I 
11-163 



INSTRUCTION SET REFERENCE intet 

In this example, the FXTRACT instruction extracts the significand and exponent from the value 
in ST(O) and stores them in ST(O) and ST(I) respectively. The FSCALE then scales the signifi­
cand in ST(O) by the exponent in ST( l), recreating the original value before the FXTRACT oper­
ation was performed. The FSTP ST(l) instruction returns the recreated value to the FPU register 
where it originally resided. 

Operation 

ST(O) +- ST(O) * 2ST(1); 

FPU Flags Affected 

C 1 Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

CO,C2, C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#U 

#0 

#P 

Stack underflow occurred. 

Source operand is an SNaN value or unsupported format. 

Source operand is a denormal value. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-164 

I 



FSIN-Sine 

Opcode 

D9FE 

Description 

Instruction 

FSIN 

INSTRUCTION SET REFERENCE 

Description 

Replace ST(O) with its sine. 

Calculates the sine of the source operand in register ST(O) and stores the result in ST(O). The 
source operand must be given in radians and must be within the range _263 to +263. The following 
table shows the results obtained when taking the sine of various classes of numbers, assuming 
that underflow does not occur. 

SRC (ST(O» DEST (ST(O» 

-00 . 
-F -1 to +1 

-0 -0 

+0 +0 

+F -1 to +1 

+00 . 
NaN NaN 

NOTES: 

F Means finite-real number 

• Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, 
and the value in register ST(O) remains unchanged. The instruction does not raise an exception 
when the source operand is out of range. It is up to the program to check the C2 flag for out-of­
range conditions. Source values outside the range _263 to +263 can be reduced to the range of the 
instruction by subtracting an appropriate integer mUltiple of 21t or by using the FPREM instruc­
tion with a divisor of21t. See Section 7.5.8., "Pi" for a discussion of the proper value to use for 
1t in performing such reductions. 

Operation 

IF ST(O) < 263 

THEN 
C2 +- 0; 
ST(O) +- sin(ST(O)); 

ELSE (* source operand out of range *) 
C2 +-1; 

FI: 

I 
11-165 



INSTRUCTION SET REFERENCE 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

C2 Set to 1 if source operand is outside the range _263 to +263; otherwise, 
cleared to O. 

CO,C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#P 

Stack underflow occurred. 

Source operand is an SNaN value, 00, or unsupported fonnat. 

Source operand is a denormal value. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

11-166 

I 



FSINCOS-Sine and Cosine 

Opcode 

D9FB 

Description 

Instruction 

FSINCOS 

INSTRUCTION SET REFERENCE 

Description 

Compute the sine and cosine of ST(O); replace ST(O) with 
the sine, and push the cosine onto the register stack. 

Computes both the sine and the cosine of the source operand in register ST(O), stores the sine in 
ST(O), and pushes the cosine onto the top of the FPU register stack. (This instruction is faster 
than executing the FSIN and FCOS instructions in succession.) 

The source operand must be given in radians and must be within the range _263 to +263. The 
following table shows the results obtained when taking the sine and cosine of various classes of 
numbers, assuming that underflow does not occur. 

SRC DEST 

ST(O) ST(O) Cosine ST(1) Sine 

-00 * * 

-F -1 to +1 -1 to +1 

-0 +1 -0 

+0 +1 +0 

+F -1 to +1 -1 to +1 

+00 * * 

NaN NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set, 
and the value in register ST(O) remains unchanged. The instruction does not raise an exception 
when the source operand is out of range. It is up to the program to check the C2 flag for out-of­
range conditions. Source values outside the range _263 to +263 can be reduced to the range of the 
instruction by subtracting an appropriate integer multiple of 21t or by using the FPREM instruc­
tion with a divisor of21t. See Section 7.5.8., "Pi" for a discussion of the proper value to use for 
1t in performing such reductions. 

I 
11-167 



INSTRUCTION SET REFERENCE 

Operation 

IF ST(O) < 263 

THEN 
C2 +- 0; 
TEMP +- cosine(ST(O)); 
ST(O) +- sine(ST(O)); 

TOP +- TOP -1; 
ST(O) +- TEMP; 

ELSE (* source operand out of range *) 
C2 +-1; 

FI: 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; 1 = roundup. 

C2 Set to 1 if source operand is outside the range _263 to +263; otherwise, 
cleared to O. 

CO,C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

#U 

#P 

Source operand is an SNaN value, 00, or unsupported fonnat. 

Source operand is a denormal value. 

Result is too small for destination format. 

Value cannot be represented exactly in destination fonnat. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-168 

I 



FSQRT-Square Root 

Opcode 

09 FA 

Description 

Instruction 

FSQRT 

INSTRUCTION SET REFERENCE 

Description 

Calculates square root of ST(O) and stores the result in 
ST(O) 

Calculates the square root of the source value in the ST(O) register and stores the result in ST(O). 

The following table shows the results obtained when taking the square root of various classes of 
numbers, assuming that neither overflow nor underflow occurs. 

SRC (ST(O» DEST (ST(O» 

* -00 

-F * 

-0 -0 

+0 +0 

+F +F 

+00 +00 

NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

Operation 

ST(O) f-- SquareRoot(ST(O)); 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if inexact-result exception (#P) is generated: 
o = not roundup; 1 = roundup. 

CO, C2, C3 Undefined. 

I 
11-169 



INSTRUCTION SET REFERENCE 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

#P 

Source operand is an SNaN value or unsupported format. 

Source operand is a negative value (except for -0). 

Source operand is a denormal value. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

11-170 

I 



FST/FSTP-Store Real 

Opcode Instruction 

09/2 FST m32real 

00/2 FST m64real 

OOOO+i FST ST(/) 

0913 FSTP m32real 

00/3 FSTP m64real 

OB/7 FSTP mBOreal 

0008+i FSTP ST(/) 

Description 

INSTRUCTION SET REFERENCE 

Description 

Copy ST(O) to m32real 

Copy ST(O) to m64real 

Copy ST(O) to ST(i) 

Copy ST(O) to m32real and pop register stack 

Copy ST(O) to m64real and pop register stack 

Copy ST(O) to mBOreal and pop register stack 

Copy ST(O) to ST(/) and pop register stack 

The FST instruction copies the value in the ST(O) register to the destination operand, which can 
be a memory location or another register in the FPU registers stack. When storing the value in 
memory, the value is converted to single- or double-real format. 

The FSTP instruction performs the same operation as the FST instruction and then pops the 
register stack. To pop the register stack, the processor marks the ST(O) register as empty and 
increments the stack pointer (TOP) by 1. The FSTP instruction can also stores values in memory 
in extended-real format. 

If the destination operand is a memory location, the operand specifies the address where the first 
byte of the destination value is to be stored. If the destination operand is a register, the operand 
specifies a register in the register stack relative to the top of the stack. 

If the destination size is single- or double-real, the significand of the value being stored is 
rounded to the width of the destination (according to rounding mode specified by the RC field 
of the FPU control word), and the exponent is converted to the width and bias of the destination 
format. If the value being stored is too large for the destination format, a numeric overflow 
exception (#0) is generated and, if the exception is unmasked, no value is stored in the destina­
tion operand. If the value being stored is a denormal value, the denormal exception (#D) is not 
generated. This condition is simply signaled as a numeric underflow exception (#U) condition. 

If the value being stored is ±O, ±oo, or a NaN, the least-significant bits of the significand and the 
exponent are truncated to fit the destination format. This operation preserves the value's identity 
as a 0,00, or NaN. 

If the destination operand is a non-empty register, the invalid-operation exception is not 
generated. 

I 
11-171 



INSTRUCTION SET REFERENCE 

Operation 

DEST ~ ST(O); 
IF instruction = FSTP 

THEN 
PopRegisterStack; 

FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction of if the floating-point inexact exception (#P) 
is generated: 0 = not roundup; 1 = roundup. 

CO,C2, C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#U 

#0 

#P 

Stack underflow occurred. 

Source operand is an SNaN value or unsupported fonnat. 

Result is too small for the destination fonnat. 

Result is too large for the destination fonnat. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

11-172 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-173 



INSTRUCTION SET REFERENCE intet 

FSTCW/FNSTCW-Store Control Word 

Opcode 

98 D917 

D917 

Description 

Instruction 

FSTCW m2byte 

FNSTCW m2byte 

Description 

Store FPU control word to m2byte after checking for 
pending unmasked floating-point exceptions. 

Store FPU control word to m2byte without checking for 
pending unmasked floating-point exceptions. 

Stores the current value of the FPU control word at the specified destination in memory. The 
FSTCW instruction checks for and handles pending unmasked floating-point exceptions before 
storing the control word; the FNSTCW instruction does not. 

Operation 

DEST ~ FPUControlWord; 

FPU Flags Affected 

The CO, CI, C2, and C3 flags are undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-174 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-175 



INSTRUCTION SET REFERENCE 

FSTENV/FNSTENV-Store FPU Environment 

Opcode 
9809/6 

09/6 

Description 

Instruction Description 
FSTENV m14128byte Store FPU environment to m14byte or m28byte after 

checking for pending unmasked floating-point exceptions. 
Then mask all floating-point exceptions. 

FNSTENV m14128byte Store FPU environment to m 14byte or m28byte without 
checking for pending unmasked floating-point exceptions. 
Then mask all floating-point exceptions. 

Saves the current FPU operating environment at the memory location specified with the desti­
nation operand, and then masks all floating-point exceptions. The FPU operating environment 
consists of the FPU control word, status word, tag word, instruction pointer, data pointer, and 
last opcode. Figures 7-13 through 7-14 show the layout in memory of the stored environment, 
depending on the operating mode of the processor (protected or real) and the size of the current 
address attribute (l6-bit or 32-bit). (In virtual-8086 mode, the real mode layouts are used.) 

The FSTENV instruction checks for and handles any pending unmasked floating-point excep­
tions before storing the FPU environment; the FNSTENV instruction does not.The saved 
image reflects the state of the FPU after all floating-point instructions preceding the 
FSTENV IFNSTENV instruction in the instruction stream have been executed. 

These instructions are often used by exception handlers because they provide access to the FPU 
instruction and data pointers. The environment is typically saved in the procedure stack. 
Masking all exceptions after saving the environment prevents floating-point exceptions from 
interrupting the exception handler. 

Operation 

DEST(FPUControIWord) f- FPUControlWord; 
DEST(FPUStatusWord) f- FPUStatusWord; 
DEST(FPUTagWord) f- FPUTagWord; 
DEST(FPUDataPointer) f- FPUDataPointer; 
DEST(FPUlnstructionPointer) f- FPUlnstructionPointer; 
DEST(FPULastlnstructionOpcode) f- FPULastlnstructionOpcode; 

FPU Flags Affected 

The CO, Cl, C2, and C3 are undefined. 

Floating-Point Exceptions 

None. 

11-176 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-177 



INSTRUCTION SET REFERENCE 

FSTSW/FNSTSW-Store Status Word 

Opcode 

96 DO 17 

96 OF EO 

00/7 

OF EO 

Description 

Instruction 

FSTSW m2byte 

FSTSWAX 

FNSTSW m2byte 

FNSTSW AX 

Description 

Store FPU status word at m2byte after checking for 
pending unmasked floating-point exceptions. 

Store FPU status word in AX register after checking for 
pending unmasked floating-point exceptions. 

Store FPU status word at m2byte without checking for 
pending unmasked floating-point exceptions. 

Store FPU status word in AX register without checking for 
pending unmasked floating-point exceptions. 

Stores the current value of the FPU status word in the destination location. The destination 
operand can be either a two-byte memory location or the AX register. The FSTSW instruction 
checks for and handles pending unmasked floating-point exceptions before storing the status 
word; the FNSTSW instruction does not. 

The FNSTSW AX form of the instruction is used primarily in conditional branching (for 
instance, after an FPU comparison instruction or an FPREM, FPREMl, or FXAM instruction), 
where the direction of the branch depends on the state of the FPU condition code flags. (See 
Section 7.3.3., "Branching and Conditional Moves on FPU Condition Codes".) This instruction 
can also be used to invoke exception handlers (by examining the exception flags) in environ­
ments that do not use interrupts. When the FNSTSW AX instruction is executed, the AX register 
is updated before the processor executes any further instructions. The status stored in the AX 
register is thus guaranteed to be from the completion of the prior FPU instruction. 

Operation 

DEST f- FPUStatusWord; 

FPU Flags Affected 

The CO, Cl, C2, and C3 are undefined. 

Floating-Point Exceptions 

None. 

11-178 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

#NM 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-179 



INSTRUCTION SET REFERENCE 

FSUB/FSUBP/FISUB-Subtract 

Opcode 

D8/4 

DC/4 

D8 EO+i 

DC E8+i 

DE E8+i 

DE E9 

DA/4 

DE /4 

Description 

Instruction 

FSUB m32real 

FSUB m64real 

FSUB ST(O), ST(/) 

FSUB ST(/), ST(O) 

FSUBP ST(/), ST(O) 

FSUBP 

FISUB m32int 

FISUB m16int 

Description 

Subtract m32rea/from ST(O) and store result in ST(O) 

Subtract m64real from ST(O) and store result in ST(O) 

Subtract ST(/) from ST(O) and store result in ST(O) 

Subtract ST(O) from ST(/) and store result in ST(/) 

Subtract ST(O) from ST(/), store result in ST(/), and pop 
register stack 

Subtract ST(O) from ST(1), store result in ST(1), and pop 
register stack 

Subtract m32intfrom ST(O) and store result in ST(O) 

Subtract m16intfrom ST(O) and store result in ST(O) 

Subtracts the source operand from the destination operand and stores the difference in the desti­
nation location. The destination operand is always an FPU data register; the source operand can 
be a register or a memory location. Source operands in memory can be in single-real, double­
real, word-integer, or short-integer formats. 

The no-operand version of the instruction subtracts the contents of the ST(O) register from the 
ST(I) register and stores the result in ST(I). The one-operand version subtracts the contents of 
a memory location (either a real or an integer value) from the contents ofthe ST(O) register and 
stores the result in ST(O). The two-operand version, subtracts the contents of the ST(O) register 
from the ST(i) register or vice versa. 

The FSUBP instructions perform the additional operation of popping the FPU register stack 
following the subtraction. To pop the register stack, the processor marks the ST(O) register as 
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point 
subtract instructions always results in the register stack being popped. In some assemblers, the 
mnemonic for this instruction is FSUB rather than FSUBP. 

The FISUB instructions convert an integer source operand to extended-real format before 
performing the subtraction. 

The following table shows the results obtained when subtracting various classes of numbers 
from one another, assuming that neither overflow nor underflow occurs. Here, the SRC value is 
subtracted from the DEST value (DEST - SRC = result). 

When the difference between two operands of like sign is 0, the result is +0, except for the round 
toward -00 mode, in which case the result is -0. This instruction also guarantees that +0 - (-0) 
= +0, and that -0 - (+0) = -0. When the source operand is an integer 0, it is treated as a +0. 

When one operand is 00, the result is 00 of the expected sign. If both operands are 00 of the same 
sign, an invalid-operation exception is generated. 

11-180 

I 



INSTRUCTION SET REFERENCE 

-00 . 
~ 

-F +00 

DEST -0 +00 

+0 +00 

+F +00 

+00 +00 

NaN NaN 

NOTES: 

F Means finite-real number 

Means integer. 

SRC 

-F or-I -0 +0 

~ ~ -00 

±F or±O DEST DEST 

-SRC ±O -0 

-SRC +0 ±O 

+F DEST DEST 

+00 +00 +00 

NaN NaN NaN 

• Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

Operation 

IF instruction is FISUB 
THEN 

FI; 

DEST f- DEST - ConvertExtendedReal(SRC); 
ELSE (* source operand is real number *) 

DEST f- DEST - SRC; 

IF instruction = FSUBP 
THEN 

PopRegisterStack 
FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

+F or +1 +00 NaN 

-00 ~ NaN 

-F -00 NaN 

-SRC -00 NaN 

-SRC ~ NaN 

±F or±O ~ NaN 

+00 . NaN 

NaN NaN NaN 

Indicates rounding direction if the inexact-result exception (#P) fault is 
generated: 0 = not roundup; 1 = roundup. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

I 

Stack underflow occurred. 

Operand is an SNaN value or unsupported format. 

Operands are infinities of like sign. 

Source operand is a denormal value. 

11-181 



INSTRUCTION SET REFERENCE 

#u 
#0 

#P 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

11-182 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

FSUBRlFSUBRP/FISUBR-Reverse Subtract 

Opcode 

08/5 

DC 15 
08 E8+i 

DC EO+i 

DE EO+i 

DE E1 

DA/5 

DE/5 

Description 

Instruction 

FSUBR m32real 

FSUBR m64real 

FSUBR ST(O), ST(i) 

FSUBR ST(i), ST(O) 

FSUBRP ST(i), ST(O) 

FSUBRP 

FISUBR m32int 

FISUBR m16int 

Description 

Subtract ST(O) from m32realand store result in ST(O) 

Subtract ST(O) from m64real and store result in ST(O) 

Subtract ST(O) from ST(/) and store result in ST(O) 

Subtract ST(/) from ST(O) and store result in ST(/) 

Subtract ST(O) from ST(/), store result in ST(f), and pop 
register stack 

Subtract ST(1) from ST(O), store result in ST(1), and pop 
register stack 

Subtract ST(O) from m32int and store result in ST(O) 

Subtract ST(O) from m16int and store result in ST(O) 

Subtracts the destination operand from the source operand and stores the difference in the desti­
nation location. The destination operand is always an FPU register; the source operand can be a 
register or a memory location. Source operands in memory can be in single-real, double-real, 
word-integer, or short-integer formats. 

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc­
tions. They are provided to support more efficient coding. 

The no-operand version of the instruction subtracts the contents of the ST(I) register from the 
ST(O) register and stores the result in ST(l). The one-operand version subtracts the contents of 
the ST(O) register from the contents of a memory location (either a real or an integer value) and 
stores the result in ST(O). The two-operand version, subtracts the contents of the STU) register 
from the ST(O) register or vice versa. 

The FSUBRP instructions perform the additional operation of popping the FPU register stack 
following the subtraction. To pop the register stack, the processor marks the ST(O) register as 
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point 
reverse subtract instructions always results in the register stack being popped. In some assem­
blers, the mnemonic for this instruction is FSUBR rather than FSUBRP. 

The FISUBR instructions convert an integer source operand to extended-real format before 
performing the subtraction. 

The following table shows the results obtained when subtracting various classes of numbers 
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value 
is subtracted from the SRC value (SRC - DEST = result). 

When the difference between two operands of like sign is 0, the result is +0, except for the round 
toward -00 mode, in which case the result is -0. This instruction also guarantees that +0 - (-0) 
= +0, and that -0 - (+0) = -0. When the source operand is an integer 0, it is treated as a +0. 

When one operand is 00, the result is 00 of the expected sign. If both operands are 00 of the same 
sign, an invalid-operation exception is generated. 

I 
11-183 



INSTRUCTION SET REFERENCE 

--00 

--00 * 

DEST -F or-I --00 

-0 --00 

+0 --00 

+F or +1 --00 

+00 --00 

NaN NaN 

NOTES: 

F Means finite-real number 

Means integer 

-F 

+00 

±F or±O 

SRC 

SRC 

-F 

--00 

NaN 

SRC 

-0 +0 

+00 +00 

-DEST -DEST 

±O +0 

-0 ±o 

-DEST -DEST 

-00 --00 

NaN NaN 

* Indicates floating-point invalid-arithmetic-operand (#IA) exception. 

Operation 

IF instruction is FISUBR 
THEN 

FI; 

DEST f- ConvertExtendedReal(SRC) - DEST; 
ELSE (* source operand is real number *) 

DEST f- SRC - DEST; 

IF instruction = FSUBRP 
THEN 

PopRegisterStack 
FI; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

intet 

+F +00 NaN 

+00 +00 NaN 

+F +00 NaN 

SRC +00 NaN 

SRC +00 NaN 

±F or±O +00 NaN 

--00 * NaN 

NaN NaN NaN 

Indicates rounding direction if the inexact-result exception (#P) fault is 
generated: 0 = not roundup; 1 = roundup. 

CO,C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#D 

11-184 

Operand is an SNaN value or unsupported format. 

Operands are infinities of like sign. 

Source operand is a denormal value. 

I 



#u 
#0 

#P 

INSTRUCTION SET REFERENCE 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#NM 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#NM 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

EM or TS in CRO is set. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-185 



INSTRUCTION SET REFERENCE 

FTST-TEST 

Opcode 

D9 E4 

Description 

Instruction 

FrST 

Description 

Compare ST(O) with 0.0. 

Compares the value in the ST(O) register with 0.0 and sets the condition code flags CO, C2, and 
C3 in the FPU status word according to the results (see table below). 

Condition C3 C2 CO 

ST(O) > 0.0 0 0 0 

ST(O) < 0.0) 0 0 1 

ST(O) = 0.0 1 0 0 

Unordered 1 1 1 

This instruction performs an "unordered comparison." An unordered comparison also checks 
the class of the numbers being compared (see Chapter 11, "FXAM-Examine"). If the value in 
register ST(O) is a NaN or is in an undefined format, the condition flags are set to "unordered.") 

The sign of zero is ignored, so that -0.0 = +0.0. 

Operation 

CASE (relation of operands) OF 
Not comparable: C3, C2, CO f- 111; 
ST(O) > 0.0: C3, C2, CO f- 000; 
ST(O) < 0.0: C3, C2, CO f- 001 ; 
ST(O) = 0.0: C3, C2, CO f- 100; 

ESAC; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred; otherwise, cleared to O. 

CO, C2, C3 See above table. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

11-186 

Stack underflow occurred. 

One or both operands are NaN values or have unsupported formats. 

One or both operands are denormal values. 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-187 



INSTRUCTION SET REFERENCE 

FUCOMIFUCOMPIFUCOMPP-Unordered Compare Real 

Opcode 

DD EO+i 

DD E1 

DD E8+i 

DD E9 

DA E9 

Description 

Instruction 

FUCOM ST(i) 

FUCOM 

FUCOMP ST(i) 

FUCOMP 

FUCOMPP 

Description 

Compare ST(O) with ST(i) 

Compare ST(O) with ST(1) 

Compare ST(O) with ST(i) and pop register stack 

Compare ST(O) with ST(1) and pop register stack 

Compare ST(O) with ST(1) and pop register stack twice 

Performs an unordered comparison of the contents of register ST(O) and ST(i) and sets condition 
code flags CO, C2, and C3 in the FPU status word according to the results (see the table below). 
If no operand is specified, the contents of registers ST(O) and ST(l) are compared. The sign of 
zero is ignored, so that -0.0 = +0.0. 

Comparison Results C3 C2 CO 

STO> ST(i) 0 0 0 

STO< ST(i) 0 0 1 

STO= ST(i) 1 0 0 

Unordered 1 1 1 

NOTE: 
• Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated. 

An unordered comparison checks the class of the numbers being compared (see 
Chapter 11, "FXAM-Exarnine"). The FUCOM instructions perform the same operation as the 
FCOM instructions. The only difference is that the FUCOM instruction raises the invalid-arith­
metic-operand exception (#IA) only when either or both operands is an SNaN or is in an unsup­
ported format; QNaNs cause the condition code flags to be set to unordered, but do not cause an 
exception to be generated. The FCOM instruction raises an invalid-operation exception when 
either or both of the operands is a NaN value of any kind or is in an unsupported format. 

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand excep­
tion being raised, the condition code flags are set only if the exception is masked. 

The FUCOMP instructions pop the register stack following the comparison operation and the 
FUCOMPP instructions pops the register stack twice following the comparison operation. To 
pop the register stack, the processor marks the ST(O) register as empty and increments the stack 
pointer (TOP) by 1. 

11-188 

I 



intet INSTRUCTION SET REFERENCE 

Operation 

CASE (relation of operands) OF 
ST > SRC: C3, C2, CO f- 000; 
ST < SRC: C3, C2, CO f- 001; 
ST = SRC: C3, C2, CO f- 100; 

ESAC; 
IF ST(O) or SRC = QNaN, but not SNaN or unsupported format 

THEN 

FI; 

C3, C2, CO f- 111; 
ELSE (* ST(O) or SRC is SNaN or unsupported format *) 

#IA; 
IF FPUControlWord.IM = 1 

THEN 
C3, C2, CO f- 111; 

FI; 

IF instruction = FUCOMP 
THEN 

PopRegisterStack; 
FI; 
IF instruction = FUCOMPP 

THEN 
PopRegisterStack; 
PopRegisterStack; 

FI; 

FPU Flags Affected 

Cl 

CO,C2,C3 

Set to ° if stack underflow occurred. 

See table on previous page. 

Floating-Point Exceptions 

Stack underflow occurred. #IS 

#IA One or both operands are SNaN values or have unsupported fonnats. 
Detection of a QNaN value in and of itself does not raise an invalid­
operand exception. 

#D One or both operands are denormal values. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-189 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

11-190 

I 



FWAIT-Wait 

See entry for WAIT. 

I 

INSTRUCTION SET REFERENCE 

11-191 



INSTRUCTION SET REFERENCE 

FXAM-Examine 

Opcode 

09 E5 

Description 

Instruction 

FXAM 

Description 

Classify value or number in ST(O) 

Examines the contents of the ST(O) register and sets the condition code flags CO, C2, and C3 in 
the FPU status word to indicate the class of value or number in the register (see the table below). 

Class C3 C2 CO 

Unsupported 0 0 0 

NaN 0 0 1 

Normal finite number 0 1 0 

Infinity 0 1 1 

Zero 1 0 0 

Empty 1 0 1 

Oenormal number 1 1 0 

The Cl flag is set to the sign of the value in ST(O), regardless of whether the register is empty 
or full. 

Operation 

C1 ~ sign bit of ST; (* 0 for positive, 1 for negative *) 
CASE (class of value or number in ST(O)) OF 

Unsupported:C3, C2, CO ~ 000; 
NaN: C3, C2, CO ~ 001 ; 
Normal: C3, C2, CO ~ 010; 
Infinity: C3, C2, CO ~ 011; 
Zero: C3, C2, CO ~ 100; 
Empty: C3, C2, CO ~ 101; 
Denormal: C3, C2, CO ~ 110; 

ESAC; 

FPU Flags Affected 

CI 

CO,C2, C3 

11-192 

Sign of value in ST(O). 

See table above. 

I 



Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM EM or TS in eRa is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRa is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRa is set. 

I 

INSTRUCTION SET REFERENCE 

11-193 



INSTRUCTION SET REFERENCE 

FXCH-Exchange Register Contents 

Opcode 

D9 C8+i 

D9C9 

Description 

Instruction 

FXCH ST(i) 

FXCH 

Description 

Exchange the contents of ST(O) and ST(/) 

Exchange the contents of ST(O) and ST(1) 

Exchanges the contents of registers ST(O) and ST(i). If no source operand is specified, the 
contents of ST(O) and ST(l) are exchanged. 

This instruction provides a simple means of moving values in the FPU register stack to the top 
of the stack [ST(O)], so that they can be operated on by those floating-point instructions that can 
only operate on values in ST(O). For example, the following instruction sequence takes the 
square root of the third register from the top of the register stack: 

FXCH ST(3); 

FSQRT; 
FXCH ST(3); 

Operation 

IF number-of-operands is 1 
THEN 

temp ~ ST(O); 
ST(O) ~ SRC; 
SRC ~temp; 

ELSE 
temp ~ ST(O); 
ST(O) ~ ST(1); 
ST(1) ~ temp; 

FPU Flags Affected 

Cl 

CO,C2, C3 

Set to 0 if stack underflow occurred; otherwise, cleared to o. 
Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

11-194 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-195 



INSTRUCTION SET REFERENCE 

FXTRACT-Extract Exponent and Significand 

Opcode 

09 F4 

Description 

Instruction 

FXTRACT 

Description 

Separate value in ST(O) into exponent and significand, 
store exponent in ST(O), and push the significand onto the 
register stack. 

Separates the source value in the ST(O) register into its exponent and significand, stores the 
exponent in ST(O), and pushes the significand onto the register stack. Following this operation, 
the new top-of-stack register ST(O) contains the value of the original significand expressed as a 
real number. The sign and significand of this value are the same as those found in the source 
operand, and the exponent is 3FFFH (biased value for a true exponent of zero). The ST(l) 
register contains the value of the original operand's true (unbiased) exponent expressed as a real 
number. (The operation perfonned by this instruction is a superset of the IEEE-recommended 
logb(x) function.) 

This instruction and the F2XMl instruction are useful for perfonning power and range scaling 
operations. The FXTRACT instruction is also useful for converting numbers in extended-real 
format to decimal representations (e.g., for printing or displaying). 

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an 
exponent value of -00 is stored in register ST(l) and 0 with the sign of the source operand is 
stored in register ST(O). 

Operation 

TEMP t- Significand(ST(O»; 
ST(O) t- Exponent(ST(O»; 
TOPt- TOP - 1; 
ST(O) t- TEMP; 

FPU Flags Affected 

C 1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#Z 

#D 

11-196 

Stack overflow occurred. 

Source operand is an SNaN value or unsupported format. 

ST(O) operand is ±O. 

Source operand is a denormal value. 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#NM EM or TS in eRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in eRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in eRO is set. 

I 
11-197 



INSTRUCTION SET REFERENCE 

FYL2X-Compute y X I092X 

Opcode 

09 F1 

Description 

Instruction 

FYL2X 

Description 

Replace ST(1) with (ST(1) * log2ST(0)) and pop the 
registe r stack 

Calculates (ST(l) * log2 (ST(O))), stores the result in resister ST(l), and pops the FPU register 
stack. The source operand in ST(O) must be a non-zero positive number. 

The following table shows the results obtained when taking the log of various classes of 
numbers, assuming that neither overflow nor underflow occurs. 

ST(O) 

-00 -F +0 

-00 · · +00 

ST(1) -F · · .. 
-0 · · . 
+0 · · . 
+F · · .. 
+00 · · -00 

NaN NaN NaN NaN 

NOTES: 

F Means finite-real number 

• Indicates floating-point invalid-operation (#IA) exception . 

•• Indicates floating-point zero-divide (#Z) exception. 

+0 +F +00 NaN 

+00 +00 -00 NaN .. ±F -00 NaN . +0 . NaN . +0 . NaN .. ±F +00 NaN 

-00 -00 +00 NaN 

NaN NaN NaN NaN 

If the divide-by-zero exception is masked and register ST(O) contains ±D, the instruction returns 
00 with a sign that is the opposite of the sign of the source operand in register ST(l). 

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of 
logarithms with an arbitrary positive base (b): 

logbx = (log2bt1 * IOg2X 

Operation 

ST(1) f- ST(1) * IOg2ST(O); 
PopRegisterStack; 

11-198 

I 



INSTRUCTION SET REFERENCE 

FPU Flags Affected 

CI Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is gener­
ated: 0 = not roundup; I = roundup. 

CO, C2,C3 Undefined. 

Floating-Point Exceptions 

#IS Stack underflow occurred. 

#IA 

#z 
#D 

#U 

#0 

#P 

Either operand is an SNaN or unsupported format. 

Source operand in register ST(O) is a negative finite value (not -0). 

Source operand in register ST(O) is ±O. 

Source operand is a denormal value. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-199 



INSTRUCTION SET REFERENCE 

FYL2XP1-Compute y * I092{X +1) 

Opcode 

D9 F9 

Description 

Instruction 

FYL2XP1 

Description 

Replace ST(1) with ST(1) * log2(ST(0) + 1.0) and pop the 
register stack 

Calculates the log epsilon (ST(l) * log2(ST(0) + 1.0)), stores the result in register ST(I), and 
pops the FPU register stack. The source operand in ST(O) must be in the range: 

- (1 - JiI2) ) to (1 - JiI2) 

The source operand in ST(I) can range from -00 to +00. If either of the source operands is outside 
its acceptable range, the result is undefined and no exception is generated. 

The following table shows the results obtained when taking the log epsilon of various classes of 
numbers, assuming that underflow does not occur. 

ST(O) 

-00 -(1 - (.J2/2 )) to -0 -0 +0 +0 to +(1 - (.J2/2 )) +00 NaN 

-00 · +00 . . -00 -00 NaN 

ST(1) -F · +F +0 -0 -F -00 NaN 

-0 · +0 +0 -0 -0 . NaN 

+0 · -0 -0 +0 +0 . NaN 

+F · -F -0 +0 +F +00 NaN 

+00 · -00 . * +00 +00 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

NOTES: 

F Means finite-real number 

* Indicates floating-point invalid-operation (#IA) exception. 

This instruction provides optimal accuracy for values of epsilon [the value in register ST(O)] that 
are close to O. When the epsilon value (E) is small, more significant digits can be retained by 
using the FYL2XPI instruction than by using (£+1) as an argument to the FYL2X instruction. 
The (£+1) expression is commonly found in compound interest and annuity calculations. The 
result can be simply converted into a value in another logarithm base by including a scale factor 
in the ST(I) source operand. The following equation is used to calculate the scale factor for a 
particular logarithm base, where n is the logarithm base desired for the result of the FYL2XPI 
instruction: 

scale factor = logn 2 

11-200 

I 



INSTRUCTION SET REFERENCE 

Operation 

ST(1) f- ST(1) * log2(ST(0) + 1.0); 
PopRegisterStack; 

FPU Flags Affected 

Cl Set to 0 if stack underflow occurred. 

Indicates rounding direction if the inexact-result exception (#P) is 
generated: 0 = not roundup; 1 = roundup. 

CO, C2, C3 Undefined. 

Floating-Point Exceptions 

#IS 

#IA 

#D 

#U 

#0 

#P 

Stack underflow occurred. 

Either operand is an SNaN value or unsupported format. 

Source operand is a denormal value. 

Result is too small for destination format. 

Result is too large for destination format. 

Value cannot be represented exactly in destination format. 

Protected Mode Exceptions 

#NM EM or TS in CRO is set. 

Real Address Mode Exceptions 

#NM EM or TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM EM or TS in CRO is set. 

I 
11-201 



INSTRUCTION SET REFERENCE 

HLT-Halt 

Opcode 

F4 

Description 

Instruction 

HLT 

Description 

Halt 

Stops instruction execution and places the processor in a HALT state. An enabled interrupt, 
NMI, or a reset will resume execution. If an interrupt (including NMI) is used to resume execu­
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction 
following the HLT instruction. 

The HLT instruction is a privileged instruction. When the processor is running in protected or 
virtual 8086 mode, the privilege level of a program or procedure must to 0 to execute the HLT 
instruction. 

Operation 

Enter Halt state; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) If the current privilege level is not O. 

11-202 

I 



IDIV-Signed Divide 

Opcode 

F617 

F717 

F717 

Description 

Instruction 

IDIV rlmB 

IDIV rim 16 

IDIV rlm32 

INSTRUCTION SET REFERENCE 

Description 

Signed divide AX (where AH must contain sign­
extension of AL) by rim byte. (Results: AL=Quotient, 
AH=Remainder) 

Signed divide DX:AX (where DX must contain sign­
extension of AX) by rim word. (Results: AX=Quotient, 
DX=Remainder) 

Signed divide EDX:EAX (where EDX must contain 
sign-extension of EAX) by rim doubleword. (Results: 
EAX=Quotient, EDX=Remainder) 

Divides (signed) the value in the AL, AX, or EAX register by the source operand and stores the 
result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a general-purpose 
register or a memory location. The action of this instruction depends on the operand size, as 
shown in the following table: 

Quotient 
Operand Size Dividend Divisor Quotient Remainder Range 

Word/byte AX rIm 8 AL AH -128 to +127 

Doubleword/word DX:AX r/m16 AX DX -32,768 to 
+32,767 

Quadword/doubleword EDX:EAX r/m32 EAX EDX _231 to 
232_1 

Non-integral results are truncated (chopped) towards O. The sign of the remainder is always the 
same as the sign of the dividend. The absolute value of the remainder is always less than the 
absolute value of the divisor. Overflow is indicated with the #DE (divide error) exception rather 
than with the OF flag. 

Operation 

IF SRC = a 
THEN #DE; (* divide error *) 

FI; 
IF OpernadSize = B (* word/byte operation *) 

I 

THEN 
temp ~ AX / SRC; (* signed division *) 
IF (temp> 7FH) OR (temp < BaH) 
(* if a positive result is greater than 7FH or a negative result is less than BaH *) 

THEN #DE; (* divide error *) ; 
ELSE 

11-203 



INSTRUCTION SET REFERENCE 

FI; 

FI; 
ELSE 

AL +- temp; 
AH +- AX SignedModulus SRC; 

IF OpernadSize = 16 (* doubleword/word operation *) 

FI; 

THEN 
temp +- DX:AX / SRC; (* signed division *) 
I F (temp> 7FFFH) OR (temp < 8000H) 
(* if a positive result is greater than 7FFFH *) 
(* or a negative result is less than 8000H *) 

FI; 

THEN #DE; (* divide error *) ; 
ELSE 

AX +-temp; 
DX +- DX:AX SignedModulus SRC; 

ELSE (* quadword/doubleword operation *) 
temp +- EDX: EAX / SRC; (* signed division *) 
IF (temp> 7FFFFFFFH) OR (temp < 80000000H) 
(* if a positive result is greater than 7FFFFFFFH *) 
(* or a negative result is less than 80000000H *) 

FI; 

THEN #DE; (* divide error *) ; 
ELSE 

EAX +-temp; 
EDX +- EDXE:AX SignedModulus SRC; 

Flags Affected 

The CF, OF, SF, ZF, AF, and PF flags are undefined. 

Protected Mode Exceptions 

#DE If the source operand (divisor) is O. 

The signed result (quotient) is too large for the destination. 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-204 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#DE If the source operand (divisor) is O. 

#GP 

#SS 

The signed result (quotient) is too large for the destination. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#DE If the source operand (divisor) is o. 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

I 

The signed result (quotient) is too large for the destination. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-205 



INSTRUCTION SET REFERENCE 

IMUL-Signed Multiply 

Opcode Instruction 

F6/5 IMUL rlmB 

F7/5 IMUL rlm16 

F7/5 IMUL rlm32 

OF AF Ir IMUL r16,rlm16 

OF AF Ir IMUL r32,rlm32 

681rib IMUL r16,rlm16,immB 

681rib IMUL r32,rlm32,immB 

68 Ir ib IMUL r16,immB 

68 Ir ib IMUL r32,immB 

691r iw IMUL r16,rl 
m16,imm16 

691r id IMUL r32,rl 
m32,imm32 

691riw IMUL r16,imm16 

691rid IMUL r32,imm32 

Description 

AXf- AL * rim byte 

DX:AX f- AX * rim word 

EDX:EAX f- EAX * rim doubleword 

word register f- word register * rim word 

doubleword register f- doubleword register * rim 
doubleword 

word register f- rlm16 * sign-extended immediate byte 

doubleword register f- rlm32 * sign-extended immediate 
byte 

word register f- word register * sign-extended immediate 
byte 

doubleword register f- doubleword register * sign-extended 
immediate byte 

word register f- rlm16 * immediate word 

doubleword register f- rlm32 * immediate doubleword 

word register f- rlm16 * immediate word 

doubleword register f- rlm32 * immediate doubleword 

Description 

Performs a signed multiplication of two operands. This instruction has three forms, depending 
on the number of operands. 

• 

• 

• 

One-operand form. This form is identical to that used by the MUL instruction. Here, the 
source operand (in a general-purpose register or memory location) is multiplied by the 
value in the AL, AX, or EAX register (depending on the operand size) and the product is 
stored in the AX, DX:AX, or EDX:EAX registers, respectively. 

Two-operand form. With this form the destination operand (the first operand) is 
multiplied by the source operand (second operand). The destination operand is a general­
purpose register and the source operand is an immediate value, a general-purpose register, 
or a memory location. The product is then stored in the destination operand location. 

Three-operand form. This form requires a destination operand (the first operand) and two 
source operands (the second and the third operands). Here, the first source operand (which 
can be a general-purpose register or a memory location) is multiplied by the second source 
operand (an immediate value). The product is then stored in the destination operand (a 
general-purpose register). 

When an immediate value is used as an operand, it is sign-extended to the length of the destina­
tion operand format. 

11-206 

I 



INSTRUCTION SET REFERENCE 

The CF and OF flags are set when significant bits are carried into the upper half of the result. 
The CF and OF flags are cleared when the result fits exactly in the lower half of the result. 

The three forms of the IMUL instruction are similar in that the length of the product is calculated 
to twice the length of the operands. With the one-operand form, the product is stored exactly in 
the destination. With the two- and three- operand forms, however, result is truncated to the length 
of the destination before it is stored in the destination register. Because of this truncation, the CF 
or OF flag should be tested to ensure that no significant bits are lost. 

The two- and three-operand forms may also be used with unsigned operands because the lower 
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF 
flags, however, cannot be used to determine if the upper half of the result is non-zero. 

Operation 

IF (NumberOfOperands = 1) 
THEN IF (OperandSize = 8) 

THEN 
AX ~ AL * SRC (* signed multiplication *) 
IF ((AH = OOH) OR (AH = FFH)) 

THEN CF = 0; OF = 0; 
ELSE CF = 1; OF = 1; 

FI; 
ELSE IF OperandSize = 16 

THEN 

FI; 

DX:AX ~ AX * SRC (* signed multiplication *) 
IF ((DX = OOOOH) OR (DX = FFFFH)) 

THEN CF = 0; OF = 0; 
ELSE CF = 1; OF = 1; 

FI; 
ELSE (* OperandSize = 32 *) 

EDX:EAX ~ EAX * SRC (* signed multiplication *) 
IF ((EDX = OOOOOOOOH) OR (EDX = FFFFFFFFH)) 

THEN CF = 0; OF = 0; 
ELSE CF = 1; OF = 1; 

FI; 

ELSE IF (NumberOfOperands = 2) 
THEN 

temp ~ DEST * SRC (* signed multiplication; temp is double DEST size*) 
DEST ~ DEST * SRC (* signed multiplication *) 
IF temp "* DEST 

FI; 

THEN CF = 1; OF = 1; 
ELSE CF = 0; OF = 0; 

ELSE (* NumberOfOperands = 3 *) 
DEST ~ SRC1 * SRC2 (* signed multiplication *) 
temp ~ SRC1 * SRC2 (* signed multiplication; temp is double SRC1 size *) 

I 
11-207 



INSTRUCTION SET REFERENCE 

IF temp *- DEST 

FI; 
FI; 

FI; 

THEN CF = 1; OF = 1; 
ELSE CF = 0; OF = 0; 

Flags Affected 

For the one operand form of the instruction, the CF and OF flags are set when significant bits 
are carried into the upper half of the result and cleared when the result fits exactly in the lower 
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags 
are set when the result must be truncated to fit in the destination operand size and cleared when 
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-208 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

IN-Input from Port 

Opcode 

E4 ib 

E5 ib 

E5 ib 

EC 
ED 
ED 

Description 

Instruction 

IN AL,immB 

IN AX,immB 

IN EAX,immB 

IN AL,OX 

IN AX,OX 

IN EAX,OX 

Description 

Input byte from immBI/O port address into AL 

Input byte from immB 1/0 port address into AX 

Input byte from immBI/O port address into EAX 

Input byte from I/O port in OX into AL 

Input word from 1/0 port in OX into AX 

Input doubleword from 1/0 port in OX into EAX 

Copies the value from the I/O port specified with the second operand (source operand) to the 
destination operand (first operand). The source operand can be a byte-immediate or the DX 
register; the destination operand can be register AL, AX, or EAX, depending on the size of the 
port being accessed (8, 16, or 32 bits, respectively). Using the DX register as a source operand 
allows I/O port addresses from 0 to 65,535 to be accessed; using a byte immediate allows I/O 
port addresses 0 to 255 to be accessed. 

When accessing an 8-bit I/O port, the opcode determines the port size; when accessing a 16- and 
32-bit I/O port, the operand-size attribute determines the port size. 

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the 
upper eight bits of the port address will be O. 

This instruction is only useful for accessing I/O ports located in the processor's I/O address 
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O 
address space. 

Operation 

IF ((PE = 1) AND ((VM = 1) OR (CPL > 10PL))) 

FI; 

THEN (* Protected mode or virtual-8086 mode with CPL > 10PL *) 
IF (Any I/O Permission Bit for I/O port being accessed = 1) 

THEN #GP(O); 
FI; 

ELSE ( * Real-address mode or protected mode with CPL ~ 10PL *) 
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *) 

DEST f- SRC; (* Reads from I/O port *) 

Flags Affected 

None. 

I 
11-209 



INSTRUCTION SET REFERENCE in1et 

Protected Mode Exceptions 

#GP(O) If the CPLis greater than (has less privilege) the I/O privilege level (lOPL) 
and any of the corresponding I/O permission bits in TSS for the I/O port 
being accessed is 1. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) 

11-210 

If any of the I/O permission bits in the TSS for the I/O port being accessed 
is 1. 

I 



INSTRUCTION SET REFERENCE 

INC-Increment by 1 

Opcode 

FE 10 

FF 10 

FF 10 

40+ rw 
40+ rd 

Description 

Instruction 

INC rlmB 

INC rlm16 

INC rlm32 

INC r16 

INC r32 

Description 

Increment rim byte by 1 

Increment rim word by 1 

Increment rim doubleword by 1 

Increment word register by 1 

Increment doubleword register by 1 

Adds 1 to the operand, while preserving the state of the CF flag. The source operand can be a 
register or a memory location. This instruction allows a loop counter to be updated without 
disturbing the CF flag. (Use a ADD instruction with an immediate operand of 1 to perform a 
increment operation that does updates the CF flag.) 

Operation 

DEST ~ DEST - 1 ; 

Flags Affected 

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If the operand is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

I 
11-211 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-212 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

INS/INSB/INSWIINSD-Input from Port to String 

Opcode 

6C 

60 
60 
6C 

60 
60 

Description 

Instruction 

INS ES:(E)OI, OX 

INS ES:OI, OX 

INS ES:EOI, OX 

INSB 

INSW 

INSO 

Description 

Input byte from port OX into ES:(E)OI 

Input word from port OX into ES:OI 

Input doubleword from port OX into ES:EOI 

Input byte from port OX into ES:(E)OI 

Input word from port OX into ES:OI 

Input doubleword from port OX into ES:EOI 

Copies the data from the I/O port specified with the second operand (source operand) to the 
destination operand (first operand). The source operand must be the DX register, allowing I/O 
port addresses from 0 to 65,535 to be accessed. When accessing an 8-bit I/O port, the opcode 
determines the port size; when accessing a 16- and 32-bit I/O port, the operand-size attribute 
determines the port size. 

The destination operand is a memory location at the address ES:EDI. (When the operand-size 
attribute is 16, the DI register is used as the destination-index register.) The ES segment cannot 
be overridden with a segment override prefix. 

The INSB, INSW, and INSD mnemonics are synonyms of the byte, word, and double word 
versions of the INS instructions. (For the INS instruction, "ES:EDI" must be explicitly specified 
in the instruction.) 

After the byte, word, or double word is transfer from the I/O port to the memory location, the 
EDI register is incremented or decremented automatically according to the setting of the DF flag 
in the EFLAGS register. (If the DF flag is 0, the EDI register is incremented; if the DF flag is 1, 
the EDI register is decremented.) The EDI register is incremented or decremented by 1 for byte 
operations, by 2 for word operations, or by 4 for doubleword operations. 

The INS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input 
of ECX bytes, words, or doublewords. See Chapter 11, "REP/REPEIREPZlREPNE 
IREPNZ-Repeat String Operation Prefix" for a description of the REP prefix. 

This instruction is only useful for accessing I/O ports located in the processor's I/O address 
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O 
address space. 

I 
11-213 



INSTRUCTION SET REFERENCE 

Operation 

IF ((PE = 1) AND ((VM = 1) OR (CPL > 10PL))) 

FI; 

THEN (* Protected mode or virtual-BOB6 mode with CPL > 10PL *) 
I F (Any I/O Permission Bit for I/O port being accessed = 1) 

THEN #GP(O); 
FI; 

ELSE ( * I/O operation is allowed *) 
DEST f- SRC; (* Reads from 110 port *) 
IF (byte transfer) 

FI; 

THEN IF DF = 0 
THEN (E)DI f- 1; 
ELSE (E)DI f- -1; 

FI; 
ELSE IF (word transfer) 

THEN IF DF = 0 
THEN DI f- 2; 
ELSE DI f- -2; 

FI; 

FI; 
ELSE (* doubleword transfer *) 

THEN IF DF = 0 

FI; 

THEN EDI f- 4; 
ELSE EDI f- -4; 

Flags Affected 

None. 

Protected Mode Exceptions 

in1et 

#GP(O) If the CPL is greater than (has less privilege) the JlO privilege level (IOPL) 
and any of the corresponding JlO permission bits in TSS for the JlO port 
being accessed is 1. 

#PF(fault-code) 

#AC(O) 

11-214 

If the destination is located in a nonwritable segment. 

If an illegal memory operand effective address in the ES segments is given. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF(fault-code) 

#AC(O) 

I 

If any of the I/O permission bits in the TSS for the 110 port being accessed 
is l. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-215 



INSTRUCTION SET REFERENCE 

INTn/INTO/INT3-Call to Interrupt Procedure 

Opcode 

CC 

CD ib 

CE 

Description 

Instruction 

INT3 

INT immB 

INTO 

Description 

Interrupt 3-trap to debugger 

Interrupt vector numbered by immediate byte 

Interrupt 4-if overflow flag is 1 

The INTn instruction generates a call to the interrupt or exception handler specified with the 
destination operand (see Section 4.4., "Interrupts and Exceptions"). The destination operand 
specifies an interrupt vector from 0 to 255, encoded as an 8-bit unsigned intermediate value. The 
first 32 interrupt vectors are reserved by Intel for system use. Some of these interrupts are used 
for internally generated exceptions. 

The INTn instruction is the general mnemonic for executing a software-generated call to an 
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception 
(#OF), interrupt vector 4. The overflow interrupt checks the OF flag in the EFLAGS register and 
calls the overflow interrupt handler if the OF flag is set to 1. 

The INT3 instruction is a special mnemonic for calling the debug exception handler. The action 
ofthe INT3 instruction (opcode CC) is slightly different from the operation of the INT 3 instruc­
tion (opcode CC03), as follows: 

• 

• 

Interrupt redirection does not happen when in VME mode; the interrupt is handled by a 
protected-mode handler. 

The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at 
any IOPL level. 

The action of the INTn instruction (including the INTO and INT3 instructions) is similar to that 
of a far call made with the CALL instruction. The primary difference is that with the INTn 
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return 
address is a far address consisting of the current values of the CS and EIP registers.) Returns 
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS infor­
mation and return address from the stack. 

The interrupt vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that 
is, it provides index into the IDT. The selected interrupt descriptor in turn contains a pointer to 
an interrupt or exception handler procedure. In protected mode, the IDT contains an array 
of 8-byte descriptors, each of which points to an interrupt gate, trap gate, or task gate. In real­
address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and 
a 2-byte instruction pointer), each of which point directly to procedure in the selected segment. 

The following decision table indicates which action in the lower portion of the table is taken 
given the conditions in the upper portion of the table. Each Y in the lower section of the decision 
table represents a procedure defined in the "Operation" section for this instruction (except #GP). 

11-216 

I 



PE 

VM 

IOPL 

DPUCPL 
RELATIONSHIP 

INTERRUPT TYPE 

GATE TYPE 

REAL-ADDRESS-
MODE 

PROTECTED-MODE 

TRAP-OR-
INTERRUPT-GATE 

INTER-PRIVILEGE-
LEVEL-INTERRUPT 

INTRA-PRIVILEGE-
LEVEL-INTERRUPT 

INTERRUPT-FROM-
VIRTUAL-SOS6-
MODE 

TASK-GATE 

#GP 

NOTES: 

- Don't Care 

Y Yes, Action Taken 

BlankAction Not Taken 

0 1 1 

- - -
- - -

- DPL< -
CPL 

- S/W -
- - Task 

Y 

Y Y 

Y 

Y 

INSTRUCTION SET REFERENCE 

1 1 1 1 1 

- - 0 1 1 

- - - <3 =3 

DPL> DPL= DPL< - -
CPL CPL or C CPL& 

NC 

- - - - -
Trap or Trap or Trap or Trap or Trap or 
Interrupt Interrupt Interrupt Interrupt Interrupt 

Y Y Y Y Y 

Y Y Y Y Y 

Y 

Y 

Y 

Y Y 

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the 
INTn instruction. If the IOPL is less than 3, the processor generates a general protection excep­
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level 
O. The interrupt gate's DPL must be set to three and the target CPL of the interrupt handler proce­
dure must be 0 to execute the protected mode interrupt to privilege level O. 

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the 
IDT. The initial base address value of the IDTR after the processor is powered up or reset is O. 

Operation 

The following operational description applies not only to the INTn and INTO instructions, but 
also to external interrupts and exceptions. 

I 
11-217 



INSTRUCTION SET REFERENCE 

IF PE=O 
THEN 

FI; 

GOTO REAL-ADDRESS-MODE; 
ELSE (* PE=1 *) 

IF (VM=1 AND IOPL < 3 AND INTn) 
THEN 

FI; 

#GP(O); 
ELSE (* protected mode or virtual-8086 mode interrupt *) 

GOTO PROTECTED-MODE; 

REAL-ADDRESS-MODE: 
IF ((DEST * 4) + 3) is not within IDT limit THEN #GP; FI; 
IF stack not large enough for a 6-byte return information THEN #SS; FI; 
Push (EFLAGS[15:0]); 
IF f- 0; (* Clear interrupt flag *) 
TF f- 0; (* Clear trap flag *) 
AC f- 0; (*Clear AC flag*) 
Push(CS); 
Push(IP); 
(* No error codes are pushed *) 
CS f- IDT(Descriptor (vector * 4), selector)); 
EIP f- IDT(Descriptor (vector * 4), offset)); (* 16 bit offset AND OOOOFFFFH *) 

END; 

PROTECTED-MODE: 
IF ((DEST * 8) + 7) is not within IDT limits 

FI; 

OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type 
THEN #GP((DEST * 8) + 2 + EXT); 
(* EXT is bit 0 in error code *) 

IF software interrupt (* generated by INTn, INT3, or INTO *) 
THEN 

IF gate descriptor DPL < CPL 
THEN #GP((vector number * 8) + 2 ); 
(* PE=1, DPL<CPL, software interrupt *) 

FI; 
FI; 
IF gate not present THEN #NP((vector number * 8) + 2 + EXT); FI; 
I F task gate (* specified in the selected interrupt table descriptor *) 

FI; 
END; 

11-218 

THEN GOTO TASK-GATE; 
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *) 

I 



INSTRUCTION SET REFERENCE 

TASK-GATE: (* PE=1, task gate *) 
Read segment selector in task gate (lOT descriptor); 

IF local/global bit is set to local 
OR index not within GOT limits 

THEN #GP(TSS selector); 
FI; 
Access TSS descriptor in GOT; 
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001) 

THEN #GP(TSS selector); 
FI; 
IF TSS not present 

THEN #NP(TSS selector); 
FI; 

SWITCH-TASKS (with nesting) to TSS; 
IF interrupt caused by fault with error code 

THEN 

FI; 

IF stack limit does not allow push of two bytes 
THEN #SS(O); 

FI; 
Push(error code); 

IF EIP not within code segment limit 
THEN #GP(O); 

FI; 
END; 
TRAP-OR-I NTERRU PT -GATE 

I 

Read segment selector for trap or interrupt gate (lOT descriptor); 
IF segment selector for code segment is null 

THEN #GP(OH + EXT); (* null selector with EXT flag set *) 
FI; 
IF segment selector is not within its descriptor table limits 

THEN #GP(selector + EXT); 
FI; 
Read trap or interrupt handler descriptor; 
IF descriptor does not indicate a code segment 

OR code segment descriptor OPL > CPL 
THEN #GP(selector + EXT); 

FI; 
IF trap or interrupt gate segment is not present, 

THEN #NP(selector + EXT); 
FI; 
IF code segment is non-conforming AND OPL < CPL 

THEN IFVM=O 
THEN 

GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT; 
(* PE=1, interrupt or trap gate, nonconforming *) 
(* code segment, OPL<CPL, VM=O *) 

11-219 



INSTRUCTION SET REFERENCE 

FI; 
END; 

FI; 

ELSE (* VM=1 *) 
IF code segment DPL"* 0 THEN #GP(new code segment selector); FI; 
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; 
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *) 

ELSE (* PE=1, interrupt or trap gate, DPL <?: CPL *) 
IF VM=1 THEN #GP(new code segment selector); FI; 
IF code segment is conforming OR code segment DPL = CPL 

THEN 

FI; 

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT; 
ELSE 

#GP(CodeSegmentSelector + EXT); 
(* PE=1, interrupt or trap gate, nonconforming *) 
(* code segment, DPL>CPL *) 

INTER-PREVILEGE-LEVEL-INTERRUPT 
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *) 
(* Check segment selector and descriptor for stack of new privilege level in current TSS *) 
I F current TSS is 32-bit TSS 

FI; 

THEN 
TSSstackAddress ~ new code segment (DPL * 8) + 4 
IF (TSSstackAddress + 7) > TSS limit 

THEN #TS(current TSS selector); FI; 
NewSS ~ TSSstackAddress + 4; 
New ESP ~ stack address; 

ELSE (* TSS is 16-bit *) 
TSSstackAddress ~ new code segment (DPL * 4) + 2 
IF (TSSstackAddress + 4) > TSS limit 

THEN #TS(current TSS selector); FI; 
NewESP ~ TSSstackAddress; 
NewSS ~ TSSstackAddress + 2; 

IF segment selector is null THEN #TS(EXT); FI; 
IF segment selector index is not within its descriptor table limits 

OR segment selector's RPL "* DPL of code segment, 
THEN #TS(SS selector + EXT); 

FI; 
Read segment descriptor for stack segment in GDT or LDT; 

IF stack segment DPL"* DPL of code segment, 
OR stack segment does not indicate writable data segment, 

THEN #TS(SS selector + EXT); 
FI; 
IF stack segment not present THEN #SS(SS selector+EXT); FI; 
IF 32-bit gate 

11-220 

I 



FI; 

INSTRUCTION SET REFERENCE 

THEN 
IF new stack does not have room for 24 bytes (error code pushed) 

OR 20 bytes (no error code pushed) 
THEN #SS(segment selector + EXT); 

FI; 
ELSE (* 16-bit gate *) 

IF new stack does not have room for 12 bytes (error code pushed) 
OR 10 bytes (no error code pushed); 

THEN #SS(segment selector + EXT); 
FI; 

IF instruction pOinter is not within code segment limits THEN #GP(O); FI; 
SS:ESP ~ TSS(SS:ESP) (* segment descriptor information also loaded *) 
IF 32-bit gate 

FI; 

THEN 
CS:EIP ~ Gate(CS:EIP); (* segment descriptor information also loaded *) 

ELSE (* 16-bit gate *) 
CS:IP ~ Gate(CS:IP); (* segment descriptor information also loaded *) 

IF 32-bit gate 
THEN 

Push(far pOinter to old stack); (* old SS and ESP, 3 words padded to 4 *); 
Push(EFLAGS); 
Push(far pOinter to return instruction); (* old CS and EIP, 3 words padded to 4*); 
Push(ErrorCode); (* if needed, 4 bytes *) 

ELSE(* 16-bit gate *) 

FI; 

Push(far pointer to old stack); (* old SS and SP, 2 words *); 
Push(EFLAGS); 
Push(far pointer to return instruction); (* old CS and IP, 2 words *); 
Push(ErrorCode); (* if needed, 2 bytes *) 

CPL ~ CodeSegmentDescriptor(DPL); 
CS(RPL) ~ CPL; 
IF interrupt gate 

THEN IF ~ 0 (* interrupt flag to 0 (disabled) *); FI; 
TF~O; 

VM~O; 

RF~O; 

NT~O; 

END; 

INTERRUPT-FROM-VIRTUAL-8086-MODE: 

I 

(* Check segment selector and descriptor for privilege level 0 stack in current TSS *) 
IF current TSS is 32-bit TSS 

THEN 
TSSstackAddress ~ new code segment (DPL * 8) + 4 
IF (TSSstackAddress + 7) > TSS limit 

11-221 



INSTRUCTION SET REFERENCE 

FI; 

THEN #TS(current TSS selector); FI; 
NewSS f-- TSSstackAddress + 4; 
NewESP f-- stack address; 

ELSE (* TSS is 16-bit *) 
TSSstackAddress f-- new code segment (DPL * 4) + 2 
IF (TSSstackAddress + 4) > TSS limit 

THEN #TS(current TSS selector); FI; 
NewESP f-- TSSstackAddress; 
NewSS f-- TSSstackAddress + 2; 

IF segment selector is null THEN #TS(EXT); FI; 
I F segment selector index is not within its descriptor table limits 

OR segment selector's RPL "* DPL of code segment, 
THEN #TS(SS selector + EXT); 

FI; 
Access segment descriptor for stack segment in GDT or LDT; 
IF stack segment DPL"* DPL of code segment, 

OR stack segment does not indicate writable data segment, 
THEN #TS(SS selector + EXT); 

FI; 
IF stack segment not present THEN #SS(SS selector+EXT); FI; 
IF 32-bit gate 

THEN 
.IF new stack does not have room for 40 bytes (error code pushed) 

OR 36 bytes (no error code pushed); 
THEN #SS(segment selector + EXT); 

FI; 
ELSE (* 16-bit gate *) 

FI; 

IF new stack does not have room for 20 bytes (error code pushed) 
OR 18 bytes (no error code pushed); 

THEN #SS(segment selector + EXT); 
FI; 

IF instruction pointer is not within code segment limits THEN #GP(O); FI; 
tempEFLAGS f-- EFLAGS; 
VM f-- 0; 
TF f-- 0; 
RF f-- 0; 
IF service through interrupt gate THEN IF f-- 0; FI; 
TempSS f-- SS; 
TempESP f-- ESP; 
SS:ESP f-- TSS(SSO:ESPO); (* Change to level 0 stack segment *) 
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *) 
(* Segment selector pushes in 32-bit mode are padded to two words *) 
Push(GS); 
Push(FS); 
Push(DS); 

11-222 

I 



INSTRUCTION SET REFERENCE 

Push(ES); 
Push(TempSS) ; 
Push(TempESP); 
Push(TempEFlags); 
Push(CS); 
Push(EIP); 
GS f-- 0; (*segment registers nullified, invalid in protected mode *) 
FS f-- 0; 
DS f-- 0; 
ES f-- 0; 
CS f-- Gate(CS); 
IF OperandSize=32 

THEN 
EIP f-- Gate(instruction pointer); 

ELSE (* OperandSize is 16 *) 
EIP f-- Gate(instruction pointer) AND OOOOFFFFH; 

FI; 
(* Starts execution of new routine in Protected Mode *) 

END; 

INTRA-PRIVILEGE-LEVEL-INTERRUPT: 

I 

(* PE=1, DPL = CPL or conforming segment *) 
IF 32-bit gate 

THEN 
IF current stack does not have room for 16 bytes (error code pushed) 

OR 12 bytes (no error code pushed); THEN #SS(O); 
FI; 

ELSE (* 16-bit gate *) 
IF current stack does not have room for 8 bytes (error code pushed) 

OR 6 bytes (no error code pushed); THEN #SS(O); 
FI; 

IF instruction pointer not within code segment limit THEN #GP(O); FI; 
IF 32-bit gate 

FI; 

THEN 
Push (EFLAGS); 
Push (far pointer to return instruction); (* 3 words padded to 4 *) 
CS:EIP f-- Gate(CS:EIP); (* segment descriptor information also loaded *) 
Push (ErrorCode); (* if any *) 

ELSE (* 16-bit gate *) 
Push (FLAGS); 
Push (far pointer to return location); (* 2 words *) 
CS:IP f-- Gate(CS:IP); (* segment descriptor information also loaded *) 
Push (ErrorCode); (* if any *) 

CS(RPL) f-- CPL; 
IF interrupt gate 

THEN 

11-223 



INSTRUCTION SET REFERENCE 

IF f- 0; FI; 
TF f- 0; 
NT f- 0; 
VM f- 0; 
RF f- 0; 

FI; 
END; 

Flags Affected 

The EFLAGS register is pushed onto stack. The IF, TF, NT, AC, RF, and VM flags may be 
cleared, depending on the mode of operation of the processor when the INT instruction is 
executed (see "Operation" section.) 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

#SS(O) 

#SS(selector) 

#NP(selector) 

#TS(selector) 

11-224 

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate 
is beyond the code segment limits. 

Ifthe segment selector in the interrupt-, trap-, or task gate is null. 

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector 
index is outside its descriptor table limits. 

If the interrupt vector is outside the IDT limits. 

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor. 

If an interrupt is generated by the INTn instruction and the DPL of an 
interrupt-, trap-, or task-descriptor is less than the CPL. 

If the segment selector in an interrupt- or trap-gate does not point to a 
segment descriptor for a code segment. 

If the segment selector for a TSS has its local/global bit set for local. 

If a TSS segment descriptor specifies that the TSS is busy or not available. 

If pushing the retum address, flags, or error code onto the stack exceeds 
the bounds of the stack segment and no stack switch occurs. 

If the SS register is being loaded and the segment pointed to is marked not 
present. 

If pushing the return address, flags, error code, or stack segment pointer 
exceeds the bounds of the stack segment. 

If code segment, interrupt-, trap-, or task gate, or TSS is not present. 

If the RPL of the stack segment selector in the TSS is not equal to the DPL 
of the code segment being accessed by the interrupt or trap gate. 

I 



#PF(fault-code) 

INSTRUCTION SET REFERENCE 

If DPL of the stack segment descriptor pointed to by the stack segment 
selector in the TSS is not equal to the DPL of the code segment descriptor 
for the interrupt or trap gate. 

If the stack segment selector in the TSS is null. 

If the stack segment for the TSS is not a writable data segment. 

If segment-selector index for stack segment is outside descriptor table 
limits. 

If a page fault occurs. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the interrupt vector is outside the IDT limits. 

If stack limit violation on push. 

If pushing the return address, flags, or error code onto the stack exceeds 
the bounds of the stack segment when a stack switch occurs. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#GP(selector) 

I 

(For INTn instruction) If the IOPL is less than 3 and the DPL of the 
interrupt-, trap-, or task-gate descriptor is not equal to 3. 

If the instruction pointer in the IDT or in the interrupt -, trap-, or task gate 
is beyond the code segment limits. 

If the segment selector in the interrupt-, trap-, or task gate is null. 

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector 
index is outside its descriptor table limits. 

If the interrupt vector is outside the IDT limits. 

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor. 

If an interrupt is generated by the INTn instruction and the DPL of an 
interrupt-, trap-, or task-descriptor is less than the CPL. 

If the segment selector in an interrupt- or trap-gate does not point to a 
segment descriptor for a code segment. 

If the segment selector for a TSS has its 10caVglobal bit set for local. 

11-225 



INSTRUCTION SET REFERENCE in1:et 

#SS( selector) 

#NP(selector) 

#TS(selector) 

#PF(fault-code) 

#BP 

#OF 

11-226 

If the SS register is being loaded and the segment pointed to is marked not 
present. 

If pushing the return address, flags, error code, stack segment pointer, or 
data segments exceeds the bounds of the stack segment. 

If code segment, interrupt-, trap-, or task gate, or TSS is not present. 

If the RPL of the stack segment selector in the TSS is not equal to the DPL 
of the code segment being accessed by the interrupt or trap gate. 

If DPL of the stack segment descriptor for the TSS's stack segment is not 
equal to the DPL of the code segment descriptor for the interrupt or trap 
gate. 

If the stack segment selector in the TSS is null. 

If the stack segment for the TSS is not a writable data segment. 

If segment-selector index for stack segment is outside descriptor table 
limits. 

If a page fault occurs. 

If the INT3 instruction is executed. 

If the INTO instruction is executed and the OF flag is set. 

I 



INSTRUCTION SET REFERENCE 

INVO-Invalidate Internal Caches 

Description Opcode 

OF 08 

Instruction 

INVD Flush internal caches; initiate flushing of external caches. 

Description 

Invalidates (flushes) the processor's internal caches and issues a special-function bus cycle that 
directs external caches to also flush themselves. Data held in internal caches is not written back 
to main memory. 

After executing this instruction, the processor does not wait for the external caches to complete 
their flushing operation before proceeding with instruction execution. It is the responsibility of 
hardware to respond to the cache flush signal. 

The INVD instruction is a privileged instruction. When the processor is running in protected 
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction 
is also implementation-dependent; its function may be implemented differently on future Intel 
Architecture processors. 

Use this instruction with care. Data cached internally and not written back to main memory will 
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back 
modified cache lines (for example, testing or fault recovery where cache coherency with main 
memory is not a concern), software should use the WBINVD instruction. 

Operation 

Flush(lnternaICaches); 
SignaIFlush(ExternaICaches); 
Continue (* Continue execution); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) The INVD instruction cannot be executed at the virtual 8086 mode. 

I 
11-227 



INSTRUCTION SET REFERENCE 

Intel Architecture Compatibility 

This instruction is not supported on Intel Architecture processors earlier than the Intel486 
processor. 

11-228 

I 



INSTRUCTION SET REFERENCE 

INVLPG-Invalidate TLB Entry 

Description Opcode 

OF 01/7 

Instruction 

INVLPG m Invalidate TLB Entry for page that contains m 

Description 

Invalidates (flushes) the translation lookaside buffer (TLB) entry specified with the source 
operand. The source operand is a memory address. The processor determines the page that 
contains that address and flushes the TLB entry for that page. 

The INVLPG instruction is a privileged instruction. When the processor is running in protected 
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction 
is also implementation-dependent; its function may be implemented differently on future Intel 
Architecture processors. 

The INVLPG instruction normally flushes the TLB entry only for the specified page; however, 
in some cases, it flushes the entire TLB. See Chapter 11, "MOV-Move to/from Control Regis­
ters" for further information on operations that flush the TLB. 

Operation 

Flush(RelevantTLBEntries); 
Continue (* Continue execution); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#UD 

If the current privilege level is not O. 

Operand is a register. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) The INVLPG instruction cannot be executed at the virtual 8086 mode. 

Intel Architecture Compatibility 

This instruction is not supported on Intel Architecture processors earlier than the Intel486 
processor. 

I 
11-229 



INSTRUCTION SET REFERENCE 

IRETnRETD-lnterrupt Return 

Opcode 

CF 

CF 

Description 

Instruction 

IRET 

IRETD 

Description 

Interrupt return (16-bit operand size) 

Interrupt return (32-bit operand size) 

Returns program control from an exception or interrupt handler to a program or procedure that 
was interrupted by an exception, an external interrupt or, a software-generated interrupt, or 
returns from a nested task. IRET and IRETD are mnemonics for the same opcode. The IRETD 
mnemonic (interrupt return double) is intended for use when returning from an interrupt when 
using the 32-bit operand size; however, most assemblers use the IRET mnemonic interchange­
ably for both operand sizes. 

In Real Address Mode, the IRET instruction preforms a far return to the interrupted program or 
procedure. During this operation, the processor pops the return instruction pointer, return code 
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, 
respectively, and then resumes execution of the interrupted program or procedure. 

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested 
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on 
the current stack. Depending on the setting of these flags, the processor performs the following 
types of interrupt returns: 

• 
• 
• 
• 
• 

Return from virtual-8086 mode. 

Return to virtual-8086 mode. 

Intra-privilege level return. 

Inter-privilege level return. 

Return from nested task (task switch). 

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the 
interrupt procedure, without a task switch. The code segment being returned to must be equally 
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code 
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET 
instruction pops the return instruction pointer, return code segment selector, and EFLAGS image 
from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execution 
of the interrupted program or procedure. If the return is to another privilege level, the IRET 
instruction also pops the stack pointer and SS from the stack, before resuming program execu­
tion. If the return is to virtual-8086 mode, the processor also pops the data segment registers 
from the stack. 

If the NT flag is set, the IRET instruction performs a return from a nested task (switches from 
the called task back to the calling task) or reverses the operation of an interrupt or exception that 
caused a task switch. The updated state of the task executing the IRET instruction is saved in its 
TSS. If the task is reentered later, the code that follows the IRET instruction is executed. 

11-230 

I 



INSTRUCTION SET REFERENCE 

Operation 

IF PE = 0 
THEN 

FI; 

GOTO REAL-ADDRESS-MODE:; 
ELSE 

GOTO PROTECTED-MODE; 

REAL-ADDRESS-MODE; 
IF OperandSize = 32 

THEN 
IF top 12 bytes of stack not within stack limits THEN #SS; FI; 
IF instruction pointer not within code segment limits THEN #GP(O); FI; 
EIP ~ PopO; 
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 
tempEFLAGS ~ PopO; 
EFLAGS ~ (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1AOOOOH); 

ELSE (* OperandSize = 16 *) 
IF top 6 bytes of stack are not within stack limits THEN #SS; FI; 
IF instruction pointer not within code segment limits THEN #GP(O); FI; 
EIP ~ PopO; 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ PopO; (* 16-bit pop *) 
EFLAGS[15:0] ~ PopO; 

FI; 
END; 

PROTECTED-MODE: 

I 

IF VM = 1 (* Virtual-8086 mode: PE=1, VM=1 *) 
THEN 

GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *) 
FI; 
IF NT = 1 

THEN 
GOTO TASK-RETURN;( *PE=1, VM=O, NT=1 *) 

FI; 
IF OperandSize=32 

THEN 
IF top 12 bytes of stack not within stack limits 

THEN #SS(O) 
FI; 
tempEIP ~ PopO; 
tempCS ~ PopO; 
tempEFLAGS ~ PopO; 

ELSE (* OperandSize = 16 *) 
IF top 6 bytes of stack are not within stack limits 

THEN #SS(O); 

11-231 



INSTRUCTION SET REFERENCE int"et 

FI; 

FI; 
tempEIP ~ PopO; 
tempCS ~ PopO; 
tempEFLAGS ~ PopO; 
tempEIP ~ tempEIP AND FFFFH; 
tempEFLAGS ~ tempEFLAGS AND FFFFH; 

IF tempEFLAGS(VM) = 1 AND CPL=O 
THEN 

FI; 

GOTO RETURN-TO-VIRTUAL-8086-MODE; 
(* PE=1, VM=1 in EFLAGS image *) 

ELSE 
GOTO PROTECTED-MODE-RETURN; 
(* PE=1, VM=O in EFLAGS image *) 

RETURN-FROM-VI RTUAL-8086-MODE: 
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *) 

IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPl=3 *) 

FI; 
END; 

THEN IF OperandSize = 32 
THEN 

IF top 12 bytes of stack not within stack limits THEN #SS(O); FI; 
IF instruction pointer not within code segment limits THEN #GP(O); FI; 
EIP ~ PopO; 
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 
EFLAGS ~ PopO; 
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *) 

ELSE (* OperandSize = 16 *) 

FI; 
ELSE 

IF top 6 bytes of stack are not within stack limits THEN #SS(O); FI; 
IF instruction pointer not within code segment limits THEN #GP(O); FI; 
EIP~ PopO; 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ PopO; (* 16-bit pop *) 
EFLAGS[15:0] ~ PopO; (* IOPL in EFLAGS is not modified by pop *) 

#GP(O); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *) 

RETURN-TO-VIRTUAL-8086-MODE: 
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *) 

IF top 24 bytes of stack are not within stack segment limits 
THEN #SS(O); 

FI; 
IF instruction pointer not within code segment limits 

THEN #GP(O); 

11-232 

I 



INSTRUCTION SET REFERENCE 

FI; 
CS +- tempCS; 
EIP +- tempEIP; 
EFLAGS +- tempEFLAGS 
TempESP +- PopO; 
TempSS +- PopO; 
ES +- PopO; (* pop 2 words; throwaway high-order word *) 
DS +- PopO; (* pop 2 words; throwaway high-order word *) 
FS +- PopO; (* pop 2 words; throwaway high-order word *) 
GS +- PopO; (* pop 2 words; throwaway high-order word *) 
SS:ESP +- TempSS:TempESP; 
(* Resume execution in Virtual 8086 mode *) 

END; 

TASK-RETURN: (* PE=1, VM=1, NT=1 *) 
Read segment selector in link field of current TSS; 
IF local/global bit is set to local 

FI; 

OR index not within GDT limits 
THEN #GP(TSS selector); 

Access TSS for task specified in link field of current TSS; 
IF TSS descriptor type is not TSS or if the TSS is marked not busy 

THEN #GP(TSS selector); 
FI; 
IF TSS not present 

THEN #NP(TSS selector); 
FI; 
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS; 
Mark the task just abandoned as NOT BUSY; 
IF EIP is not within code segment limit 

THEN #GP(O); 
FI; 

END; 

PROTECTED-MODE-RETURN: (* PE=1, VM=O in flags image *) 
IF return code segment selector is null THEN GP(O); FI; 

I 

IF return code segment selector addrsses descriptor beyond descriptor table limit 
THEN GP(selector; FI; 

Read segment descriptor pOinted to by the return code segment selector 
IF return code segment descriptor is not a code segment THEN #GP(selector); FI; 
IF return code segment selector RPL < CPL THEN #GP(selector); FI; 
IF return code segment descriptor is conforming 

AND return code segment DPL > return code segment selector RPL 
THEN #GP(selector); FI; 

IF return code segment descriptor is not present THEN #NP(selector); FI: 
IF return code segment selector RPL > CPL 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL; 

11-233 



INSTRUCTION SET REFERENCE 

FI; 
END; 

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL 

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=O in flags image, RPL=CPL *) 
IF EIP is not within code segment limits THEN #GP(O); FI; 
EIP ~ tempEIP; 
CS ~ tempCS; (* segment descriptor information also loaded *) 
EFLAGS (CF, PF, AF, ZF, SF, TF, OF, OF, NT) ~ tempEFLAGS; 
IF OperandSize=32 

THEN 
EFLAGS(RF, AC, 10) ~ tempEFLAGS; 

FI; 
IFCPL:s; IOPL 

THEN 
EFLAGS(IF) ~ tempEFLAGS; 

FI; 
IF CPL= 0 

THEN 

FI; 
END; 

EFLAGS(IOPL) ~ tempE FLAGS; 
IF OperandSize=32 

THEN EFLAGS(VM, VIF, VIP) ~ tempEFLAGS; 
FI; 

RETURN-TO-OUTER-PRIVILGE-LEVEL: 
IF OperandSize=32 

THEN 

FI; 

IF top 8 bytes on stack are not within limits THEN #SS(O); FI; 
ELSE (* OperandSize=16 *) 

IF top 4 bytes on stack are not within limits THEN #SS(O); FI; 

Read return segment selector; 
IF stack segment selector is null THEN #GP(O); FI; 
IF return stack segment selector index is not within its descriptor table limits 

THEN #GP(SSselector); FI; 
Read segment descriptor pointed to by return segment selector; 
IF stack segment selector RPL -:f. RPL of the return code segment selector 

IF stack segment selector RPL -:f. RPL of the return code segment selector 
OR the stack segment descriptor does not indicate a a writable data segment; 
OR stack segment DPL -:f. RPL of the return code segment selector 

THEN #GP(SS selector); 
FI; 
IF stack segment is not present THEN #NP(SS selector); FI; 

IF tempEIP is not within code segment limit THEN #GP(O); FI; 
EIP ~ tempEIP; 

11-234 

I 



INSTRUCTION SET REFERENCE 

CS +- tempCS; 
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) +- tempEFLAGS; 
IF OperandSize=32 

THEN 
EFLAGS(RF, AC, ID) +- tempEFLAGS; 

FI; 
IF CPO :5 IOPL 

THEN 
EFLAGS(IF) +- tempEFLAGS; 

FI; 
IF CPL= 0 

THEN 

FI; 

EFLAGS(IOPL) +- tempEFLAGS; 
IF OperandSize=32 

THEN EFLAGS(VM, VIF, VIP) +- tempEFLAGS; 
FI; 

CPL +- RPL of the return code segment selector; 
FOR each of segment register (ES, FS, GS, and DS) 

DO; 
IF segment register points to data or non-conforming code segment 
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *) 

THEN (* segment register invalid *) 
SegmentSelector +- 0; (* null segment selector *) 

FI; 
OD; 

END: 

Flags Affected 

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode 
of operation of the processor. 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

I 

If the return code or stack segment selector is null. 

If the return instruction pointer is not within the return code segment limit. 

If a segment selector index is outside its descriptor table limits. 

If the return code segment selector RPL is greater than the CPL. 

If the DPL of a conforming-code segment is greater than the return code 
segment selector RPL. 

If the DPL for a nonconforming-code segment is not equal to the RPL of 
the code segment selector. 

11-235 



INSTRUCTION SET REFERENCE 

#SS(O) 

#NP(selector) 

#PF(fault-code) 

#AC(O) 

If the stack segment descriptor DPL is not equal to the RPL of the return 
code segment selector. 

If the stack segment is not a writable data segment. 

If the stack segment selector RPL is not equal to the RPL of the return code 
segment selector. 

If the segment descriptor for a code segment does not indicate it is a code 
segment. 

If the segment selector for a TSS has its local/global bit set for local. 

If a TSS segment descriptor specifies that the TSS is busy or not available. 

If the top bytes of stack are not within stack limits. 

If the return code or stack segment is not present. 

If a page fault occurs. 

If an unaligned memory reference occurs when the CPL is 3 and alignment 
checking is enabled. 

Real Address Mode Exceptions 

#GP If the return instruction pointer is not within the return code segment limit. 

#SS If the top bytes of stack are not within stack limits. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF(fault-code) 

#SS(O) 

#AC(O) 

11-236 

If the return instruction pointer is not within the return code segment limit. 

IF IOPL not equal to 3 

If a page fault occurs. 

If the top bytes of stack are not within stack limits. 

If an unaligned memory reference occurs and alignment checking is 
enabled. 

I 



INSTRUCTION SET REFERENCE 

Jcc-Jump if Condition Is Met 

Opcode Instruction Description 

77 cb JA relB Jump short if above (CF=O and ZF=O) 

73 cb JAE relB Jump short if above or equal (CF=O) 

72 cb JB relB Jump short if below (CF=1) 

76 cb JBE relB Jump short if below or equal (CF=1 or ZF=1) 

72 cb JC relB Jump short if carry (CF=1) 

E3 cb JCXZ relB Jump short if CX register is 0 

E3 cb JECXZ relB Jump short if ECX register is 0 

74 cb JE relB Jump short if equal (ZF=1) 

7F cb JG relB Jump short if greater (ZF=O and SF=OF) 

70 cb JGE relB Jump short if greater or equal (SF=OF) 

7Ccb JL relB Jump short if less (SF<>OF) 

7E cb JLE relB Jump short if less or equal (ZF=1 or SF<>OF) 

76 cb JNA relB Jump short if not above (CF=1 or ZF=1) 

72 cb JNAE relB Jump short if not above or equal (CF=1) 

73 cb JNB relB Jump short if not below (CF=O) 

77 cb JNBE relB Jump short if not below or equal (CF=O and ZF=O) 

73 cb JNC relB Jump short if not carry (CF=O) 

75 cb JNE relB Jump short if not equal (ZF=O) 

7E cb JNG relB Jump short if not greater (ZF=1 or SF<>OF) 

7C cb JNGE relB Jump short if not greater or equal (SF<>OF) 

70 cb JNL relB Jump short if not less (SF=OF) 

7F cb JNLE relB Jump short if not less or equal (ZF=O and SF=OF) 

71 cb JNO relB Jump short if not overflow (OF=O) 

7B cb JNP relB Jump short if not parity (PF=O) 

79 cb JNS relB Jump short if not sign (SF=O) 

75 cb JNZ relB Jump short if not zero (ZF=O) 

70 cb JO relB Jump short if overflow (OF=1) 

7A cb JP relB Jump short if parity (PF=1) 

7A cb JPE relB Jump short if parity even (PF=1) 

7B cb JPO relB Jump short if parity odd (PF=O) 

78 cb JS relB Jump short if sign (SF=1) 

74 cb JZ relB Jump short if zero (ZF = 1) 

OF 87 cwlcd JA rel16132 Jump near if above (CF=O and ZF=O) 

OF 83 cwlcd JAE rel16132 Jump near if above or equal (CF=O) 

OF 82 cwlcd JB rel16132 Jump near if below (CF=1) 

OF 86 cw!cd JBE rel16132 Jump near if below or equal (CF=1 or ZF=1) 

OF 82 cw!cd JC rel16132 Jump near if carry (CF=1) 

OF 84 cwlcd JE rel16132 Jump near if equal (ZF=1) 

OF 84 cwlcd JZ rel16132 Jump near if 0 (ZF=1) 

OF 8F cwlcd JG rel16132 Jump near if greater (ZF=O and SF=OF) 

I 
11-237 



INSTRUCTION SET REFERENCE 

Opcode Instruction Description 

OF 80 cw/cd JGE rel16132 Jump near if greater or equal (SF=OF) 

OF 8C cwlcd JL ,el16132 Jump near if less (SF<>OF) 

OF 8E cwlcd JLE rel16132 Jump near if less or equal (ZF=1 or SF<>OF) 

OF 86 cwlcd JNA ,e116132 Jump near if not above (CF=1 or ZF=1) 

OF 82 cwlcd JNAE ,e116132 Jump near if not above or equal (CF=1) 

OF 83 cw/cd JN8,e116132 Jump near if not below (CF=O) 

OF 87 cw/cd JN8E ,el16132 Jump near if not below or equal (CF=O and ZF=O) 

OF 83 cw/cd JNC rel16132 Jump near if not carry (CF=O) 

OF 85 cw/cd JNE ,e116132 Jump near if not equal (ZF=O) 

OF 8E cw/cd JNG ,el16132 Jump near if not greater (ZF=1 or SF<>OF) 

OF 8C cwlcd JNGE ,e116132 Jump near if not greater or equal (SF<>OF) 

OF 80 cwlcd JNL ,el16132 Jump near if not less (SF=OF) 

OF 8F cwlcd JNLE ,el16132 Jump near if not less or equal (ZF=O and SF=OF) 

OF 81 cwlcd JNO ,el16132 Jump near if not overflow (OF=O) 

OF 88 cw/cd JNP ,el16132 Jump near if not parity (PF=O) 

OF 89 cwlcd JNS ,el16132 Jump near if not sign (SF=O) 

OF 85 cw/cd JNZ ,e116132 Jump near if not zero (ZF=O) 

OF 80 cw/cd JO rel16132 Jump near if overflow (OF=1) 

OF 8A cwlcd JP ,e116132 Jump near if parity (PF=1) 

OF 8A cwlcd JPE ,el16132 Jump near if parity even (PF=1) 

OF 88 cwlcd JPO ,el16132 Jump near if parity odd (PF=O) 

OF 88 cwlcd JS ,el16132 Jump near if sign (SF=1) 

OF 84 cw/cd JZ ,el16132 Jump near if 0 (ZF=1) 

Description 

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and 
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc­
tion specified by the destination operand. A condition code (cc) is associated with each instruc­
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not 
performed and execution continues with the instruction following the Jcc instruction. 

The target instruction is specified with a relative offset (a signed offset relative to the current 
value of the instruction pointer in the EIP register). A relative offset (reI8, re116, or re132) is 
generally specified as a label in assembly code, but at the machine code level, it is encoded as a 
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction 
coding is most efficient for offsets of -128 to + 127. If the operand-size attribute is 16, the upper 
two bytes of the EIP register are cleared to Os, resulting in a maximum instruction pointer size 
of 16 bits. 

The conditions for each Jcc mnemonic are given in the "Description" column of the above table. 
The terms "less" and "greater" are used for comparisons of signed integers and the terms 
"above" and "below" are used for unsigned integers. 

11-238 

I 



intet INSTRUCTION SET REFERENCE 

Because a particular state of the status flags can sometimes be interpreted in two ways, two 
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and 
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H. 

The Jce instruction does not support far jumps (jumps to other code segments). When the target 
for the conditional jump is in a different segment, use the opposite condition from the condition 
being tested for the Jee instruction, and then access the target with an unconditional far jump 
(JMP instruction) to the other segment. For example, the following conditional far jump is 
illegal: 

JZ FARLABEL; 

To accomplish this far jump, use the following two instructions: 

JNZ BEYOND; 
JMP FARLABEL; 
BEYOND: 

The JECXZ and JCXZ instructions differs from the other Jee instructions because they do not 
check the status flags. Instead they check the contents of the ECX and CX registers, respectively, 
for O. These instructions are useful at the beginning of a conditional loop that terminates with a 
conditional loop instruction (such as LOOPNE). They prevent entering the loop when the ECX 
or CX register is equal to 0, which would cause the loop to execute 232 or 64K times, respectively, 
instead of zero times. 

All conditional jumps are converted to code fetches of one or two cache lines, regardless 
of jump address or cacheability. 

Operation 

IF condition 
THEN 

EIP f- EIP + SignExtend(DEST); 
IF OperandSize = 16 

THEN 
EIP f- EIP AND OOOOFFFFH; 

FI; 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the offset being jumped to is beyond the limits of the CS segment. 

I 
11-239 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#OP If the offset being jumped to is beyond the limits of the CS segment or is 
outside of the effecti ve address space from 0 to FFFFH. This condition can 
occur if 32-address size override prefix is used. 

Virtual 8086 Mode Exceptions 

#GP(O) 

11-240 

If the offset being jumped to is beyond the limits of the CS segment or is 
outside of the effective address space from 0 to FFFFH. This condition can 
occur if 32-address size override prefix is used. 

I 



INSTRUCTION SET REFERENCE 

JMP-Jump 

Opcode 

EB cb 

E9 cw 

E9 cd 

FF /4 

FF /4 

EAcd 

EAcp 

FF /5 

FF /5 

Instruction 

JMP rel8 

JMP rel16 

JMP rel32 

JMP rim 16 

JMP rlm32 

JMP ptr16:16 

JMP ptr16:32 

JMP m16:16 

JMP m16:32 

Description 

Jump near, relative address 

Jump near, relative address 

Jump near, relative address 

Jump near, indirect address 

Jump near, indirect address 

Jump far, absolute address 

Jump far, absolute address 

Jump far, indirect address 

Jump far, indirect address 

Description 

Transfers program control to a different point in the instruction stream without recording return 
information. The destination (target) operand specifies the address of the instruction being 
jumped to. This operand can be an immediate value, a general-purpose register, or a memory 
location. 

• 

• 

• 

Near jump-A jump to an instruction within the current code segment (the segment 
currently pointed to by the CS register), sometimes referred to as an intrasegment call. 

Far jump-A jump to an instruction located in a different segment than the current code 
segment, sometimes referred to as an intersegment call. 

Task switch-A jump to an instruction located in a different task. (This is a form of a far 
jump.) 

A task switch can only be executed in protected mode (see Chapter 6 in the Pentium® Pro Family 
Developer's Manual, Volume 3 for information on task switching with the JMP instruction). 

When executing a near jump, the processor jumps to the address (within the current code 
segment) that is specified with the target operand. The target operand specifies either an absolute 
address (that is an offset from the base of the code segment) or a relative offset (a signed offset 
relative to the current value of the instruction pointer in the EIP register). An absolute address is 
specified directly in a register or indirectly in a memory location (rlm16 or rlm32 operand form). 
A relative offset (reI8, re116, or re132) is generally specified as a label in assembly code, but at 
the machine code level, it is encoded as a signed, 8-bit or 32-bit immediate value. which is added 
to the value in the EIP register (that is, to the instruction following the JMP instruction). The 
operand-size attribute determines the size of the target operand (16 or 32 bits) for absolute 
addresses. Absolute addresses are loaded directly into the EIP register. When a relative offset is 
specified, it is added to the value of the EIP register. If the operand-size attribute is 16, the upper 
two bytes of the EIP register are cleared to Os, resulting in a maximum instruction pointer size 
of 16 bits. The CS register is not changed on near jumps. 

When executing a far jump, the processor jumps to the code segment and address specified with 
the target operand. Here the target operand specifies an absolute far address either directly with 

I 
11-241 



INSTRUCTION SET REFERENCE 

a pointer (ptr 16: 16 or ptr 16:32) or indirectly with a memory location (m16: 16 or m16: 32). With 
the pointer method, the segment and address of the called procedure is encoded in the instruction 
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With 
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit 
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines 
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the 
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register 
are cleared to Os. 

When the processor is operating in protected mode, a far jump can also be used to access a code 
segment through a call gate or to switch tasks. Here, the processor uses the segment selector part 
of the far address to access the segment descriptor for the segment being jumped to. Depending 
on the value of the type and access rights information in the segment selector, the JMP instructon 
can perform: 

• 

• 
• 

A far jump to a conforming or non-conforming code segment (same mechanism as the far 
jump described in the previous paragraph, except that the processor checks the access 
rights of the code segment being jumped to). 

An far jump through a call gate. 

A task switch. 

The JMP instruction cannot be used to perform inter-privilege level jumps. 

When executing an far jump through a call gate, the segment selector specified by the target 
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor 
then jumps to the code segment specified in the call gate descriptor and begins executing the 
instruction at the offset specified in the gate. No stack switch occurs. Here again, the target 
operand can specify the far address of the call gate and instruction either directly with a pointer 
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). 

Executing a task switch with the JMP instruction, is similar to executing a jump through a call 
gate. Here the target operand specifies the segment selector of the task gate for the task being 
switched to. (The offset part of the target operand is ignored). The task gate in turn points to the 
TSS for the task, which contains the segment selectors for the task's code, data, and stack 
segments and the instruction pointer to the target instruction. One form of the JMP instruction 
allows the jump to be made directly to a TSS, without going through a task gate. See Chapter 13 
in Pentium® Pro Family Developer's Manual, Volume 3 the for detailed information on the 
mechanics of a task switch. 

All branches are converted to code fetches of one or two cache lines, regardless of jump address 
or cacheability. 

11-242 

I 



INSTRUCTION SET REFERENCE 

Operation 

IF near jump 
THEN IF near relative jump 

THEN 

FI; 

tempEIP f- EIP + DEST; (* EIP is instruction following JMP instruction*) 
ELSE (* near absolute jump *) 

tempEIP f- DEST; 

IF tempEIP is beyond code segment limit THEN #GP(O); FI; 
IF OperandSize = 32 

FI; 
FI: 

THEN 
EIP f- tempEIP; 

ELSE (* OperandSize=16 *) 
EIP f- tempEIP AND OOOOFFFFH; 

IF far jump AND (PE = 0 OR (PE = 1 AND VM = 1)) (* real address or virtual 8086 mode *) 

FI; 

THEN 
tempEIP f- DEST(offset); (* DEST is ptr16:32 or [m16:32] *) 
IF tempEIP is beyond code segment limit THEN #GP(O); FI; 
CS f- DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *) 
IF OperandSize = 32 

FI; 

THEN 
EIP f- tempEIP; (* DEST is ptr16:32 or [m16:32] *) 

ELSE (* OperandSize = 16 *) 
EIP f- tempEIP AND OOOOFFFFH; (* clear upper 16 bits *) 

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual 8086 mode *) 
THEN 

I 

IF effective address in the CS, OS, ES, FS, GS, or SS segment is illegal 
OR segment selector in target operand null 
THEN #GP(O); 

FI; 
IF segment selector index not within descriptor table limits 

THEN #GP(new selector); 
FI; 
Read type and access rights of segment descriptor; 
IF segment type is not a conforming or nonconforming code segment, call gate, 

task gate, or TSS THEN #GP(segment selector); FI; 
Depending on type and access rights 

GO TO CONFORMING-CODE-SEGMENT; 
GO TO NONCONFORMING-CODE-SEGMENT; 
GO TO CALL-GATE; 
GO TO TASK-GATE; 
GO TO TASK-STATE-SEGMENT; 

11-243 



INSTRUCTION SET REFERENCE 

ELSE 
#GP(segment selector); 

FI; 

CONFORMING-CODE-SEGMENT: 
IF DPL > CPL THEN #GP(segment selector); FI; 
IF segment not present THEN #NP(segment selector); FI; 
tempEIP f-- DEST(offset); 
IF OperandSize=16 

THEN tempEIP f-- tempEIP AND OOOOFFFFH; 
FI; 
IF tempEIP not in code segment limit THEN #GP(O); FI; 
CS f-- DEST(SegmentSelector); (* segment descriptor information also loaded *) 
CS(RPL) f-- CPL 
EIP f-- tempEIP; 

END; 

NONCONFORMING-CODE-SEGMENT: 
IF (RPL > CPL) OR (DPL"# CPL) THEN #GP(code segment selector); FI; 
IF segment not present THEN #NP(segment selector); FI; 
IF instruction pointer outside code segment limit THEN #GP(O); FI; 
tempEIP f-- DEST(offset); 
IF OperandSize=16 

THEN tempEIP f-- tempEIP AND OOOOFFFFH; 
FI; 
IF tempEIP not in code segment limit THEN #GP(O); FI; 
CS f-- DEST(SegmentSelector); (* segment descriptor information also loaded *) 
CS(RPL) f-- CPL 
EIP f-- tempEIP; 

END; 

CALL-GATE: 
IF call gate DPL < CPL 

OR call gate DPL < call gate segment-selector RPL 
THEN #GP(call gate selector); FI; 

IF call gate not present THEN #NP(call gate selector); FI; 
IF call gate code-segment selector is null THEN #GP(O); FI; 
IF call gate code-segment selector index is outside descriptor table limits 

THEN #GP(code segment selector); FI; 
Read code segment descriptor; 
IF code-segment segment descriptor does not indicate a code segment 

OR code-segment segment descriptor is conforming and DPL > CPL 
OR code-segment segment descriptor is non-conforming and DPL "# CPL 

THEN #GP(code segment selector); FI; 
IF code segment is not present THEN #NP(code-segment selector); FI; 
IF instruction pOinter is not within code-segment limit THEN #GP(O); FI; 
tempEIP f-- DEST(offset); 

11-244 

I 



INSTRUCTION SET REFERENCE 

IF GateSize=16 
THEN tempEIP f- tempEIP AND OOOOFFFFH; 

FI; 
IF tempEIP not in code segment limit THEN #GP(O); FI; 
CS f- DEST(SegmentSelector); (* segment descriptor information also loaded *) 
CS(RPL) f- CPL 
EIP f- tempEIP; 

END; 

TASK-GATE: 
IF task gate DPL < CPL 

OR task gate DPL < task gate segment-selector RPL 
THEN #GP(task gate selector); FI; 

IF task gate not present THEN #Np(gate selector); FI; 
Read the TSS segment selector in the task-gate descriptor; 
IF TSS segment selector local/global bit is set to local 

OR index not within GDT limits 
OR TSS descriptor specifies that the TSS is busy 

THEN #GP(TSS selector); FI; 
IF TSS not present THEN #NP(TSS selector); FI; 
SWITCH-TASKS to TSS; 
IF EIP not within code segment limit THEN #GP(O); FI; 

END; 

TASK-STATE-SEGMENT: 
IF TSS DPL < CPL 

OR TSS DPL < TSS segment-selector RPL 
OR TSS descriptor indicates TSS not available 

THEN #GP(TSS selector); FI; 
IF TSS is not present THEN #NP(TSS selector); FI; 
SWITCH-TASKS to TSS 
IF EIP not within code segment limit THEN #GP(O); FI; 

END; 

Flags Affected 

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur. 

Protected Mode Exceptions 

#GP(O) 

I 

If offset in target operand, call gate, or TSS is beyond the code segment 
limits. 

If the segment selector in the destination operand, call gate, task gate, or 
TSS is null. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

11-245 



INSTRUCTION SET REFERENCE 

#GP( selector) 

#SS(O) 

#NP (selector) 

#PF( fault-code) 

#AC(O) 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If segment selector index is outside descriptor table limits. 

If the segment descriptor pointed to by the segment selector in the 
destination operand is not for a conforming-code segment, noncon­
forming-code segment, call gate, task gate, or task state segment. 

If the DPL for a nonconforming-code segment is not equal to the CPL 

(When not using a call gate.) If the RPL for the segment's segment selector 
is greater than the CPL. 

If the DPL for a conforming-code segment is greater than the CPL. 

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less 
than the CPL or than the RPL of the call-gate, task-gate, or TSS's segment 
selector. 

If the segment descriptor for selector in a call gate does not indicate it is a 
code segment. 

If the segment descriptor for the segment selector in a task gate does not 
indicate available TSS. 

If the segment selector for a TSS has its 10caUgiobai bit set for local. 

If a TSS segment descriptor specifies that the TSS is busy or not available. 

If a memory operand effective address is outside the SS segment limit. 

If the code segment being accessed is not present. 

If call gate, task gate, or TSS not present. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. (Only occurs when fetching 
target from memory.) 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

11-246 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If the target operand is beyond the code segment limits. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. (Only occurs when fetching target from memory.) 

11-247 



INSTRUCTION SET REFERENCE 

LAHF-Load Status Flags into AH Register 

Opcode 

9F 

Description 

Instruction 

LAHF 

Description 

Load: AH = EFLAGS(SF:ZF:O:AF:O:PF:1 :CF) 

intet 

Moves the low byte of the EFLAGS register (which includes status flags SF, ZF, AF, PF, and CF) 
to the AH register. Reserved bits 1, 3, and 5 of the EFLAGS register are set in the AH register 
as shown in the "Operation" below. 

Operation 

AH ~ EFLAGS(SF:ZF:O:AF:O:PF:1 :CF); 

Flags Affected 

None (that is, the state of the flags in the EFLAGS register are not affected). 

Exceptions (All Operating Modes) 

None. 

11-248 

I 



INSTRUCTION SET REFERENCE 

LAR-Load Access Rights Byte 

Opcode 

OF 02 Ir 

OF 02 Ir 

Instruction 

LAR r16,rlm16 

LAR r32,rlm32 

Description 

r16 f- rim 16 masked by FFOOH 

r32 f- rlm32 masked by OOFxFFOOH 

Description 

Loads the access rights from the segment descriptor specified by the second operand (source 
operand) into the first operand (destination operand) and sets the ZF flag in the EFLAGS 
register. The source operand (which can be a register or a memory location) contains the 
segment selector for the segment descriptor being accessed. The destination operand is a 
general-purpose register. 

The processor performs access checks as part of the loading process. Once loaded in the desti­
nation register, software can preform additional checks on the access rights information. 

When the operand size is 32 bits, the access rights for a segment descriptor comprise the type 
and DPL fields and the S, P, AVL, D/B, and G flags, all of which are located in the second 
doubleword (bytes 4 through 7) of the segment descriptor. The doubleword is masked by 
OOFXFFOOH before it is loaded into the destination operand. When the operand size is 16 bits, 
the access rights comprise the type and DPL fields. Here, the two lower-order bytes of the 
double word are masked by FFOOH before being loaded into the destination operand. 

This instruction performs the following checks before it loads the access rights in the destination 
register: 

• 
• 

• 

• 

Checks that the segment selector is not null. 

Checks that the segment selector points to a descriptor that is within the limits of the GDT 
or LDT being accessed 

Checks that the descriptor type is valid for this instruction. All code and data segment 
descriptors are valid for (can be accessed with) the LAR instruction. The valid system 
segment and gate descriptor types are given in the following table. 

If the segment is not a conforming code segment, it checks that the specified segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment selector are 
less than or equal to the DPL of the segment selector). 

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag 
is cleared and no access rights are loaded in the destination operand. 

The LAR instruction can only be executed in protected mode. 

I 
11-249 



INSTRUCTION SET REFERENCE 

Type Name 

0 Reserved 

1 Available 16-bit TSS 

2 LDT 

3 Busy 16-bit TSS 

4 16-bit call gate 

5 16-bit/32-bit task gate 

6 16-bit trap gate 

7 16-bit interrupt gate 

8 Reserved 

9 Available 32-bit TSS 

A Reserved 

B Busy 32-bit TSS 

C 32-bit call gate 

D Reserved 

E 32-bit trap gate 

F 32-bit interrupt gate 

Operation 
IF SRC(Offset) > descriptor table limit THEN ZF ~ 0; FI; 
Read segment descriptor; 
IF SegmentDescriptor(Type) *" conforming code segment 

AND (CPL > DPL) OR (RPL > DPL) 

FI; 

OR Segment type is not valid for instruction 
THEN 

ZF~O 

ELSE 
IF OperandSize = 32 

THEN 

FI; 

DEST ~ [SRC) AND OOFxFFOOH; 
ELSE (*OperandSize = 16*) 

DEST ~ [SRC) AND FFOOH; 

Flags Affected 

intet~ 

Valid 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

No 

Yes 

Yes 

No 

No 

No 

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to O. 

11-250 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. (Only occurs when fetching 
target from memory.) 

Real Address Mode Exceptions 

#UD The LAR instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The LAR instruction cannot be executed in virtual 8086 mode. 

I 
11-251 



INSTRUCTION SET REFERENCE 

LDS/LES/LFS/LGS/LSS-Load Far Pointer 

Opcode 

C5/r 

C51r 

OF 821r 

OF 821r 

C41r 

C41r 

OF 841r 

OF 841r 

OF 851r 

OF 851r 

Description 

Instruction 

LOS r16,m16:16 

LOS r32,m16:32 

LSS r16,m16:16 

LSS r32,m16:32 

LES r16,m16:16 

LES r32,m16:32 

LFS r16,m16:16 

LFS r32,m16:32 

LGS r16,m16:16 

LGS r32,m 16:32 

Description 

Load OS:r16 with far pointer from memory 

Load OS:r32 with far pointer from memory 

Load SS:r16with far pointer from memory 

Load SS:r32 with far pointer from memory 

Load ES:r16with far pointer from memory 

Load ES:r32 with far pointer from memory 

Load FS:r16 with far pointer from memory 

Load FS:r32 with far pointer from memory 

Load GS:r16 with far pointer from memory 

Load GS:r32 with far pointer from memory 

Load a far pointer (segment selector and offset) from the second operand (source operand) into 
a segment register and the first operand (destination operand). The source operand specifies a 
48-bit or a 32-bit pointer in memory depending on the current setting of the operand-size 
attribute (32 bits or 16 bits, respectively). The instruction opcode and the destination operand 
specify a segment register/general-purpose register pair. The 16-bit segment selector from the 
source operand is loaded into the segment register implied with the opcode (DS, SS, ES, FS, or 
GS). The 32-bit or 16-bit offset is loaded into the register specified with the destination operand. 

If one of these instructions is executed in protected mode, additional information from the 
segment descriptor pointed to by the segment selector in the source operand is loaded in the 
hidden part of the selected segment register. 

Also in protected mode, a null selector (values 0000 through 0003) can be loaded into DS, ES, 
FS, or GS registers without causing a protection exception. (Any subsequent reference to a 
segment whose corresponding segment register is loaded with a null selector, causes a general­
protection exception (#GP) and no memory reference to the segment occurs.) 

Operation 

IF Protected Mode 
THEN IF SS is loaded 

11-252 

THEN IF SegementSelector = null 
THEN #GP(O); 

FI; 
ELSE IF Segment selector index is not within descriptor table limits 
OR Segment selector RPL ;#; CPL 
OR Access rights indicate nonwritable data segment 
OR DPL;#;CPL 

THEN #GP(selector); 
FI; 

I 



INSTRUCTION SET REFERENCE 

ELSE IF Segment marked not present 
THEN #SS(selector); 

FI; 
SS f- SegmentSelector(SRC); 
SS f- SegmentDescriptor([SRC]); 

ELSE IF DS, ES, FS, or GS is loaded with non-null segment selector 
THEN IF Segment selector index is not within descriptor table limits 
OR Access rights indicate segment neither data nor readable code segment 
OR (Segment is data or nonconforming-code segment 

FI; 

AND both RPL and CPL > DPL) 
THEN #GP(selector); 

ELSE IF Segment marked not present 
THEN #NP(selector); 

FI; 
SegmentRegister f- SegmentSelector(SRC) AND RPL; 
Segment Register f- SegmentDescriptor([SRC]); 

ELSE IF DS, ES, FS or GS is loaded with a null selector: 
SegmentRegister f- NuliSelector; 
SegmentRegister(DescriptorValidBit) f- 0; (*hidden flag; not accessible by software*) 

FI; 
FI; 
IF (Real-Address or Virtual 8086 Mode) 

THEN 
SS f- SegmentSelector(SRC); 

FI; 
DEST f- Offset(SRC); 

Flags Affected 

None. 

Protected Mode Exceptions 

#UD If source operand is not a memory location. 

#GP(O) 

#GP(selector) 

I 

If a null selector is loaded into the SS register. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If the SS register is being loaded and any of the following is true: the 
segment selector index is not within the descriptor table limits, the 
segment selector RPL is not equal to CPL, the segment is a nonwritable 
data segment, or DPL is not equal to CPL. 

11-253 



INSTRUCTION SET REFERENCE 

#SS(O) 

#SS(selector) 

#NP(selector) 

#PF(fault-code) 

#AC(O) 

If the DS, ES, FS, or GS register is being loaded with a non-null segment 
selector and any of the following is true: the segment selector index is not 
within descriptor table limits, the segment is neither a data nor a readable 
code segment, or the segment is a data or nonconforming-code segment 
and both RPL and CPL are greater than DPL. 

If a memory operand effective address is outside the SS segment limit. 

If the SS register is being loaded and the segment is marked not present. 

If DS, ES, FS, or GS register is being loaded with a non-null segment 
selector and the segment is marked not present. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#UD 

If a memory operand effective address is outside the SS segment limit. 

If source operand is not a memory location. 

Virtual 8086 Mode Exceptions 

#UD If source operand is not a memory location. 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-254 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

LEA-Load Effective Address 

Opcode 

8Dlr 

8Dlr 

Description 

Instruction 

LEA r16,m 

LEA r32,m 

Description 

Store effective address for m in register r16 

Store effective address for m in register r32 

Computes the effective address of the second operand (the source operand) and stores it in the 
first operand (destination operand). The source operand is a memory address (offset part) spec­
ified with one of the processors addressing modes; the destination operand is a general-purpose 
register. The address-size and operand-size attributes affect the action performed by this instruc­
tion, as shown in the following table. The operand-size attribute of the instruction is determined 
by the chosen register; the address-size attribute is determined by the attribute of the code 
segment. 

Operand Size Address Size Action Performed 

16 16 16-bit effective address is calculated and stored in requested 
16-bit register destination. 

16 32 32-bit effective address is calculated. The lower 16 bits of the 
address are stored in the requested 16-bit register destination. 

32 16 16-bit effective address is calculated. The 16-bit address is zero-
extended and stored in the requested 32-bit register destination. 

32 32 32-bit effective address is calculated and stored in the requested 
32-bit register destination. 

Different assemblers may use different algorithms based on the size attribute and symbolic refer­
ence of the source operand. 

I 
11-255 



INSTRUCTION SET REFERENCE 

Operation 

IF OperandSize = 16 AND AddressSize = 16 
THEN 

DEST +- EffectiveAddress(SRC); (* 16-bit address *) 
ELSE IF OperandSize = 16 AND AddressSize = 32 

THEN 
temp +- EffectiveAddress(SRC); (* 32-bit address *) 
DEST +- temp[O .. 15]; (* 16-bit address *) 

ELSE IF OperandSize = 32 AND AddressSize = 16 
THEN 

temp +- EffectiveAddress(SRC); (* 16-bit address *) 
DEST +- ZeroExtend(temp); (* 32-bit address *) 

ELSE IF OperandSize = 32 AND AddressSize = 32 
THEN 

DEST +- EffectiveAddress(SRC); (* 32-bit address *) 
FI; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#UD If source operand is not a memory location. 

Real Address Mode Exceptions 

#UD If source operand is not a memory location. 

Virtual 8086 Mode Exceptions 

#UD If source operand is not a memory location. 

11-256 

intet 

I 



INSTRUCTION SET REFERENCE 

LEAVE-High Level Procedure Exit 

Opcode 

C9 

C9 

Description 

Instruction 

LEAVE 

LEAVE 

Description 

Set SP to BP, then pop BP 

Set ESP to EBP, then pop EBP 

Executes a return from a procedure or group of nested procedures established by an earlier 
ENTER instruction. The instruction copies the frame pointer (in the EBP register) into the stack 
pointer register (ESP), releasing the stack space used by a procedure for its local variables. The 
old frame pointer (the frame pointer for the calling procedure that issued the ENTER instruc­
tion) is then popped from the stack into the EBP register, restoring the calling procedure's frame. 

A RET instruction is commonly executed following a LEAVE instruction to return program 
control to the calling procedure and remove any arguments pushed onto the stack by the proce­
dure being returned from. 

See Section 4.5., "Procedure Calls for Block-Structured Languages" for detailed information on 
the use of the ENTER and LEAVE instructions. 

Operation 

IF StackAddressSize = 32 
THEN 

FI; 

ESP f- EBP; 
ELSE (* StackAddressSize = 16*) 

SP f- BP; 

IF OperandSize = 32 
THEN 

FI; 

EBP f- PopO; 
ELSE (* OperandSize = 16*) 

BP f- PopO; 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) If the EBP register points to a location that is not within the limits of the 
current stack segment. 

I 
11-257 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If the EBP register points to a location outside of the effective address 
space from 0 to OFFFFH. 

Virtual 8086 Mode Exceptions 

#GP(O) 

11-258 

If the EBP register points to a location outside of the effective address 
space from 0 to OFFFFH. 

I 



INSTRUCTION SET REFERENCE 

LES-Load Full Pointer 

See entry for LDSILES/LFSILGS/LSS. 

I 
11-259 



INSTRUCTION SET REFERENCE 

LFS-Load Full Pointer 

See entry for LDSILESILFS/LGSILSS. 

11-260 

I 



INSTRUCTION SET REFERENCE 

LGDT/LlDT-Load Global/Interrupt Descriptor Table Register 

Opcode 

OF 01/2 

OF 01 13 

Description 

Instruction 

LGDT m16&32 

LlDT m16&32 

Description 

Load minto GDTR 

Load minto IDTR 

Loads the values in the source operand into the global descriptor table register (GDTR) or the 
interrupt descriptor table register (IDTR). The source operand is a pointer to 6 bytes of data in 
memory that contains the base address (a linear address) and the limit (size of table in bytes) of 
the global descriptor table (GDT) or the interrupt descriptor table (IDT). If operand-size attribute 
is 32 bits, a 16-bit limit (lower 2 bytes of the 6-byte data operand) and a 32-bit base address 
(upper 4 bytes of the data operand) are loaded into the register. If the operand-size attribute 
is 16 bits, a 16-bit limit (lower 2 bytes) and a 24-bit base address (third, fourth, and fifth byte) 
are loaded. Here, the high-order byte of the operand is not used and the high-order byte of the 
base address in the GDTR or IDTR is filled with zeros. 

The LGDT and LIDT instructions are used only in operating-system software; they are not used 
in application programs. They are the only instructions that directly load a linear address (that 
is, not a segment-relative address) and a limit in protected mode. They are commonly executed 
in real-address mode to allow processor initialization prior to switching to protected mode. 

See Chapter 11, "SGDT/SIDT -Store Global/Interrupt Descriptor Table Register" for informa­
tion on storing the contents of the GDTR and IDTR. 

Operation 

IF instruction is LlDT 
THEN 

I 

IF OperandSize = 16 
THEN 

FI; 

IDTR(Limit) ~ SRC[O:15]; 
IDTR(8ase) ~ SRC[16:47] AND OOFFFFFFH; 

ELSE (* 32-bit Operand Size *) 
IDTR(Limit) ~ SRC[O:15]; 
IDTR(8ase) ~ SRC[16:47]; 

ELSE (* instruction is LGDT *) 
IF OperandSize = 16 

THEN 

FI; 

GDTR(Limit) ~ SRC[O:15]; 
GDTR(8ase) ~ SRC[16:47] AND OOFFFFFFH; 

ELSE (* 32-bit Operand Size *) 
GDTR(Limit) ~ SRC[O:15]; 
GDTR(8ase) ~ SRC[16:47]; 

11-261 



INSTRUCTION SET REFERENCE intet 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#UD If source operand is not a memory location. 

#GP(O) 

#SS(O) 

#PF(fault-code) 

If the current privilege level is not o. 
If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS registeris used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

Real Address Mode Exceptions 

#UD If source operand is not a memory location. 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#UD If source operand is not a memory location. 

#GP(O) 

#SS(O) 

#PF(fault-code) 

11-262 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

I 



INSTRUCTION SET REFERENCE 

LGS-Load Full Pointer 

See entry for LDSILES/LFSILGSILSS. 

I 
11-263 



INSTRUCTION SET REFERENCE 

LLDT-Load Local Descriptor Table Register 

Opcode 

OF 00/2 

Description 

Instruction 

LLDT rlm16 

Description 

Load segment selector rlm16 into LDTR 

intet 

Loads the source operand into the segment selector field of the local descriptor table register 
(LDTR). The source operand (a general-purpose register or a memory location) contains a 
segment selector that points to a local descriptor table (LDT). After the segment selector is 
loaded in the LDTR, the processor uses to segment selector to locate the segment descriptor for 
the LDT in the global descriptor table (GDT). It then loads the segment limit and base address 
for the LDT from the segment descriptor into the LDTR. The segment registers DS, ES, SS, FS, 
GS, and CS are not affected by this instruction, nor is the LDTR field in the task state segment 
(TSS) for the current task. 

If the source operand is 0, the LDTR is marked invalid and all references to descriptors in the 
LDT (except by the LAR, VERR, VERW or LSL instructions) cause a general protection excep­
tion (#GP). 

The operand-size attribute has no effect on this instruction. 

The LLDT instruction is provided for use in operating-system software; it should not be used in 
application programs. Also, this instruction can only be executed in protected mode. 

Operation 
IF SRC(Offset) > descriptor table limit THEN #GP(segment selector); FI; 
Read segment descriptor; 
IF SegmentDescriptor(Type) "#- LOT THEN #GP(segment selector); FI; 
IF segment descriptor is not present THEN #NP(segment selector); 
LOTR(SegmentSelector) +- SRC; 
LOTR(SegmentDescriptor) +- GOTSegmentDescriptor; 

Flags Affected 

None. 

11-264 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

#SS(O) 

#NP(selector) 

#PF(fault-code) 

If the current privilege level is not O. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If the selector operand does not point into the Global Descriptor Table or 
if the entry in the GDT is not a Local Descriptor Table. 

Segment selector is beyond GDT limit. 

If a memory operand effective address is outside the SS segment limit. 

If the LDT descriptor is not present. 

If a page fault occurs. 

Real Address Mode Exceptions 

#UD The LLDT instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The LLDT instruction is recognized in virtual 8086 mode. 

I 
11-265 



INSTRUCTION SET REFERENCE 

LlDT-Load Interrupt Descriptor Table Register 

See entry for LGDTILIDT-Load Global Descriptor Table Register/Load Interrupt Descriptor 
Table Register. 

11-266 

I 



in1et INSTRUCTION SET REFERENCE 

LMSW-Load Machine Status Word 

Opcode 

OF 01/6 

Description 

Instruction 

LMSW rlm16 
Description 

Loads rim 16 in machine status word of CRO 

Loads the source operand into the machine status word, bits 0 through 15 of register CRO. The 
source operand can be a 16-bit general-purpose register or a memory location. Only the low­
order 4 bits of the source operand (which contains the PE, MP, EM, and TS flags) are loaded 
into CRO. The PG, CD, NW, AM, WP, NE, and ET flags of CRO are not affected. The operand­
size attribute has no effect on this instruction. 

If the PE flag of the source operand (bit 0) is set to 1, the instruction causes the processor to 
switch to protected mode. The PE flag in the CRO register is a sticky bit. Once set to 1, the 
LMSW instruction cannot be used clear this flag and force a switch back to real address mode. 

The LMSW instruction is provided for use in operating-system software; it should not be used 
in application programs. In protected or virtual 8086 mode, it can only be executed at CPL O. 

This instruction is provided for compatibility with the Intel 286 processor; programs and proce­
dures intended to run on the Pentium Pro, Pentium, Inte1486, and Inte1386 processors should use 
the MOV (control registers) instruction to load the machine status word. 

This instruction is a serializing instruction. 

Operation 

CRO[O:3] f- SRC[O:3]; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the current privilege level is not o. 
If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-267 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault-code) 

11-268 

If the current privilege level is not O. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

I 



INSTRUCTION SET REFERENCE 

LOCK-Assert LOCK# Signal Prefix 

Description Opcode 

FO 
Instruction 

LOCK Asserts LOCK# signal for duration of the accompanying 
instruction 

Description 

Causes the processor's LOCK# signal to be asserted during execution of the accompanying 
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment, 
the LOCK# signal insures that the processor has exclusive use of any shared memory while the 
signal is asserted. 

The LOCK prefix can be prepended only to the following instructions and to those forms of the 
instructions that use a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, 
DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. An undefined opcode 
exception will be generated if the LOCK prefix is used with any other instruction. The XCHG 
instruction always asserts the LOCK# signal regardless of the presence or absence of the LOCK 
prefix. 

The LOCK prefix is typically used with the BTS instruction to perform a read-modify-write 
operation on a memory location in shared memory environment. 

The integrity of the LOCK prefix is not affected by the alignment of the memory field. Memory 
locking is observed for arbitrarily misaligned fields. 

Operation 

AssertLOCK#(DurationOfAccompaninglnstruction) 

Flags Affected 

None. 

Protected Mode Exceptions 

#UD If the LOCK prefix is used with an instruction not listed in the "Descrip­
tion" section above. Other exceptions can be generated by the instruction 
that the LOCK prefix is being applied to. 

Real Address Mode Exceptions 

#UD If the LOCK prefix is used with an instruction not listed in the "Descrip­
tion" section above. Other exceptions can be generated by the instruction 
that the LOCK prefix is being applied to. 

I 
11-269 



INSTRUCTION SET REFERENCE int:et 

Virtual 8086 Mode Exceptions 

#UD If the LOCK prefix is used with an instruction not listed in the "Descrip­
tion" section above. Other exceptions can be generated by the instruction 
that the LOCK prefix is being applied to. 

11-270 

I 



INSTRUCTION SET REFERENCE 

LODS/LODSB/LODSW/LODSD-Load String Operand 

Opcode 

AC 

AD 

AD 

AC 

AD 

AD 

Description 

Instruction 

LODS DS:(E)SI 

LODS DS:SI 

LODS DS:ESI 

LODSB 

LODSW 

LODSD 

Description 

Load byte at address DS:(E)SI into AL 

Load word at address DS:SI into AX 

Load doubleword at address DS:ESI into EAX 

Load byte at address DS:(E)SI into AL 

Load word at address DS:SI into AX 

Load doubleword at address DS:ESI into EAX 

Load a byte, word, or doubleword from the source operand into the AL, AX, or EAX register, 
respectively. The source operand is a memory location at the address DS:ESI. (When the 
operand-size attribute is 16, the SI register is used as the source-index register.) The DS segment 
may be overridden with a segment override prefix. 

The LODSB, LODSW, and LODSD mnemonics are synonyms of the byte, word, and double­
word versions of the LODS instructions. (For the LODS instruction, "DS:ESI" must be 
explicitly specified in the instruction.) 

After the byte, word, or doubleword is transfer from the memory location into the AL, AX, or 
EAX register, the ESI register is incremented or decremented automatically according to the 
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI register is incre­
mented; if the DF flag is 1, the ESI register is decremented.) The ESI register is incremented or 
decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword opera­
tions. 

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for 
block loads of ECX bytes, words, or doublewords. More often, however, these instructions 
are used within a LOOP construct, because further processing of the data moved into the register 
is usually necessary before the next transfer can be made. See Chapter 11, 
"REP/REPEIREPZlREPNE lREPNZ-Repeat String Operation Prefix" for a description of the 
REP prefix. 

Operation 

IF (byte load) 
THEN 

I 

AL (- SRC; (* byte load *) 
THEN IF DF= 0 

THEN (E)SI (- 1; 
ELSE (E)SI (- -1; 

FI; 
ELSE IF (word load) 

THEN 
AX (- SRC; (* word load *) 

11-271 



INSTRUCTION SET REFERENCE 

FI; 
FI; 

THEN IF DF = 0 
THEN SI ~2; 
ELSE SI ~-2; 

FI; 
ELSE (* doubleword transfer *) 

EAX ~ SRC; (* doubleword load *) 
THEN IF DF=O 

THEN ESI ~4; 
ELSE ESI ~ -4; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-272 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

LOOP/LOOPeo-Loop According to ECX Counter 

Opcode 

E2 cb 

E1 cb 

E1 cb 

EO cb 

EO cb 

Description 

Instruction 

LOOP rel8 

LOOPE rel8 

LOOPZ rel8 

LOOPNE rel8 

LOOPNZ rel8 

Description 

Decrement count; jump short if count *- 0 

Decrement count; jump short if count *- 0 and ZF=1 

Decrement count; jump short if count *- 0 and ZF=1 

Decrement count; jump short if count *- 0 and ZF=O 

Decrement count; jump short if count *- 0 and ZF=O 

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP 
instruction is executed, the count register is decremented, then checked for O. If the count is 0, 
the loop is terminated and program execution continues with the instruction following the LOOP 
instruction. If the count is not zero, a near jump is performed to the destination (target) operand, 
which is presumably the instruction at the beginning of the loop. If the address-size attribute is 
32 bits, the ECX register is used as the count register; otherwise the CX register is used. 

The target instruction is specified with a relative offset (a signed offset relative to the current 
value of the instruction pointer in the EIP register). This offset is generally specified as a label 
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value, 
which is added to the instruction pointer. Offsets of -128 to +127 are allowed with this 
instruction. 

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi­
nating the loop before the count reaches zero. With these forms of the instruction, a condition 
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the 
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other 
instructions in the loop. 

All branches are converted to code fetches of one or two cache lines, regardless of jump address 
or cache ability. 

Operation 

IF AddressSize = 32 
THEN 

FI; 

Count is ECX; 
ELSE (* AddressSize = 16 *) 

Count is CX; 

Count ~ Count - 1 ; 

IF instruction in not LOOP 
THEN 

I 

IF (instruction = LOOPE) OR (instruction = LOOPZ) 
THEN 

11-273 



INSTRUCTION SET REFERENCE 

FI; 

FI; 

IF (ZF =1) AND (Count"* 0) 
THEN BranchCond f- 1; 
ELSE BranchCond f- 0; 

FI; 

IF (instruction = LOOPNE) OR (instruction = LOOPNZ) 
THEN 

FI; 

IF (ZF =0 ) AND (Count"* 0) 
THEN BranchCond f- 1; 
ELSE BranchCond f- 0; 

FI; 

ELSE (* instruction = LOOP *) 
IF (Count"* 0) 

FI; 

THEN BranchCond f- 1; 
ELSE BranchCond f- 0; 

IF BranchCond = 1 
THEN 

EIP f- EIP + SignExtend(DEST); 
IF OperandSize = 16 

THEN 
EIP f- EIP AND OOOOFFFFH; 

FI; 
ELSE 

Terminate loop and continue program execution at EIP; 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the offset jumped to is beyond the limits of the code segment. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

None. 

11-274 

I 



INSTRUCTION SET REFERENCE 

LSL-Load Segment Limit 

Opcode 

OF 03 Ir 

OF 03 Ir 

Instruction 

LSL r16,rlm 16 

LSL r32,rlm32 

Description 

Load: r16 f- segment limit, selector rlm16 

Load: r32 f- segment limit, selector rlm32) 

Description 

Loads the unscrambled segment limit from the segment descriptor specified with the second 
operand (source operand) into the first operand (destination operand) and sets the ZF flag in the 
EFLAGS register. The source operand (which can be a register or a memory location) contains 
the segment selector for the segment descriptor being accessed. The destination operand is a 
general-purpose register. 

The processor performs access checks as part of the loading process. Once loaded in the desti­
nation register, software can compare the segment limit with the offset of a pointer. 

The segment limit is a 20-bit value contained in bytes 0 and 1 and in the first 4 bits of byte 6 of 
the segment descriptor. If the descriptor has a byte granular segment limit (the granularity flag 
is set to 0), the destination operand is loaded with a byte granular value (byte limit). If the 
descriptor has a page granular segment limit (the granularity flag is set to 1), the LSL instruction 
will translate the page granular limit (page limit) into a byte limit before loading it into the desti­
nation operand. The translation is performed by shifting the 20-bit "raw" limit left 12 bits and 
filling the low-order 12 bits with Is. 

When the operand size is 32 bits, the 32-bit byte limit is stored in the destination operand. When 
the operand size is 16 bits, a valid 32-bit limit is computed; however, the upper 16 bits are trun­
cated and only the low-order 16 bits are loaded into the destination operand. 

This instruction performs the following checks before it loads the segment limit into the desti­
nation register: 

• 
• 

• 

• 

Checks that the segment selector is not null. 

Checks that the segment selector points to a descriptor that is within the limits of the GDT 
or LDT being accessed 

Checks that the descriptor type is valid for this instruction. All code and data segment 
descriptors are valid for (can be accessed with) the LSL instruction. The valid special 
segment and gate descriptor types are given in the following table. 

If the segment is not a conforming code segment, the instruction checks that the specified 
segment descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL of the segment selector). 

If the segment descriptor cannot be accessed or is an invalid type for the instruction, the ZF flag 
is cleared and no value is loaded in the destination operand. 

I 
11-275 



INSTRUCTION SET REFERENCE 

Type Name 

0 Reserved 

1 Available 16-bit TSS 

2 LDT 

3 Busy 16-bit TSS 

4 16-bit call gate 

5 16-biV32-bit task gate 

6 16-bit trap gate 

7 16-bit interrupt gate 

8 Reserved 

9 Available 32-bit TSS 

A Reserved 

B Busy 32-bit TSS 

C 32-bit call gate 

D Reserved 

E 32-bit trap gate 

F 32-bit interrupt gate 

Operation 
IF SRC(Offset) > descriptor table limit 

THEN ZF ~ 0; FI; 
Read segment descriptor; 
IF SegmentDescriptor(Type) t= conforming code segment 

AND (CPL > DPL) OR (RPL > DPL) 

FI; 

OR Segment type is not valid for instruction 
THEN 

ZF~O 

ELSE 
temp ~ SegmentLimit([SRC]); 
IF(G=1) 

THEN 
temp ~ ShiftLeft(12, temp) OR OOOOOFFFH; 

FI; 
IF OperandSize = 32 

THEN 

FI; 

DEST ~temp; 
ELSE (*OperandSize = 16*) 

DEST ~ temp AND FFFFH; 

11-276 

Valid 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

Yes 

No 

Yes 

No 

No 

No 

No 

I 



INSTRUCTION SET REFERENCE 

Flags Affected 

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to O. 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#UD The LSL instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The LSL instruction is not recognized in virtual 8086 mode. 

I 
11-277 



INSTRUCTION SET REFERENCE 

LSS-Load Full Pointer 

See entry for LDS/LESILFS/LGS/LSS. 

11-278 

I 



INSTRUCTION SET REFERENCE 

LTR-Load Task Register 

Opcode 

OF 00 /3 

Description 

Instruction 

LTR rim 16 

Description 

Load rim 16 into TR 

Loads the source operand into the segment selector field of the task register. The source operand 
(a general-purpose register or a memory location) contains a segment selector that points to a 
task state segment (TSS). After the segment selector is loaded in the task register, the processor 
uses to segment selector to locate the segment descriptor for the TSS in the global descriptor 
table (ODT). It then loads the segment limit and base address for the TSS from the segment 
descriptor into the task register. The task pointed to by the task register is marked busy, but a 
switch to the task does not occur. 

The LTR instruction is provided for use in operating-system software; it should not be used in 
application programs. It can only be executed in protected mode when the CPL is o. It is 
commonly used in initialization code to establish the first task to be executed. 

The operand-size attribute has no effect on this instruction. 

Operation 
IF SRC(Offset) > descriptor table limit OR IF SRC(type) *" global 

THEN #GP(segment selector); 
FI; 
Reat segment descriptor; 
IF segment descriptor is not for an available TSS THEN #GP(segment selector); FI; 
IF segment descriptor is not present THEN #NP(segment selector); 
TSSsegmentDescriptor(busy) *- 1 ; 
(* Locked read-modify-write operation on the entire descriptor when setting busy flag *) 
TaskRegister(SegmentSelector) *- SRC; 
TaskRegister(SegmentDescriptor) *- TSSSegmentDescriptor; 

Flags Affected 

None. 

Protected Mode Exceptions 

#OP(O) If the current privilege level is not O. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

I 

If the DS, ES, FS, or OS register is used to access memory and it contains 
a null segment selector. 

11-279 



INSTRUCTION SET REFERENCE 

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a 
task that is already busy. 

#NP(selector) 

#SS(O) 

#PF(fault-code) 

If the selector points to LDT or is beyond the GDT limit. 

If the TSS is marked not present. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

Real Address Mode Exceptions 

#UD The LTR instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The LTR instruction is not recognized in virtual 8086 mode. 

11-280 

I 



MOV-Move 

Opcode 

881r 

891r 

891r 

8A Ir 

881r 

881r 

8C Ir 

8E Ir 

AO 

A1 

A1 

A2 

A3 

A3 

80+ rb 

88+ rw 
88+ rd 

C610 

C710 

C710 

NOTES: 

Instruction 

MOV rlmB,rB 

MOV rim 16,r16 

MOV rlm32,r32 

MOV rB,rlmB 

MOV r16,rlm16 

MOV r32,rlm32 

MOV rim 16,Sreg** 

MOV Sreg,rlm16 

MOV AL, moffs8* 

MOV AX,moffs16* 

MOV EAX,moffs32* 

MOV moffsB*,AL 

MOV moffs16*,AX 

MOV moffs32*,EAX 

MOV rB,immB 

MOV r16,imm16 

MOV r32,imm32 

MOV rlmB,immB 

MOV rim 16,imm 16 

MOV rlm32,imm32 

INSTRUCTION SET REFERENCE 

Description 

Move rB to rlmB 

Move r16to rlm16 

Move r32 to rlm32 

Move rlmB to rB 

Move rlm16 to r16 

Move rlm32 to r32 

Move segment register to rim 16 

Move rlm16 to segment register 

Move byte at (seg:offse~ to AL 

Move word at (seg:offse~ to AX 

Move doubleword at (seg:offse~ to EAX 

Move AL to (seg:offse~ 

Move AX to (seg:offset) 

Move EAX to (seg:offset) 

Move immB to rB 

Move imm16to r16 

Move imm32 to r32 

Move immB to rlmB 

Move imm16to rim 16 

Move imm32 to rlm32 

* The moffsB, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where 
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size 
of the offset, either 16 or 32 bits. 

** In 32-bit mode, the assembler may require the use of the 16-bit operand size prefix (a byte with the value 
66H preceding the instruction). 

Description 

Copies the second operand (source operand) to the first operand (destination operand). The 
source operand can be an immediate value, general-purpose register, segment register, or 
memory location; the destination register can be a general-purpose register, segment register, or 
memory location. Both operands must be the same size, which can be a byte, a word, or a 
doubleword. 

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an 
invalid opcode exception (#UD). To load the CS register, use the RET instruction. 

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must 
be a valid segment selector. In protected mode, moving a segment selector into a segment 
register automatically causes the segment descriptor information associated with that segment 
selector to be loaded into the hidden (shadow) part of the segment register. While loading this 

I 
11-281 



INSTRUCTION SET REFERENCE 

information, the segment selector and segment descriptor information is validated (see the 
"Operation" algorithm below). The segment descriptor data is obtained from the GDT or LDT 
entry for the specified segment selector. 

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers 
without causing a protection exception. However, any subsequent attempt to reference a segment 
whose corresponding segment register is loaded with a null value causes a general protection 
exception (#GP) and no memory reference occurs. 

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution 
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register 
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs. The LSS 
instruction offers a more efficient method of loading the SS and ESP registers. 

When moving data in 32-bit mode between a segment register and a 32-bit general-purpose 
register, the Pentium Pro processor does not require the use of a 16-bit operand size prefix; 
however, some assemblers do require this prefix. The processor assumes that the 16 least­
significant bits of the general-purpose register are the destination or source operand. When 
moving a value from a segment selector to a 32-bit register, the processor fills the two high-order 
bytes of the register with zeros. 

Operation 

DEST (-SRC; 

Loading a segment register while in protected mode results in special checks and actions, as 
described in the following listing. These checks are performed on the segment selector and the 
segment descriptor it points to. 

IF SS is loaded; 
THEN 

I F segment selector is null 
THEN #GP(O); 

FI; 
IF segment selector index is outside descriptor table limits 

OR segment selector's RPL * CPL 

FI; 

OR segment is not a writable data segment 
OR DPL* CPL 

THEN #GP(selector); 

IF segment not marked present 
THEN #SS(selector); 

ELSE 

FI; 
FI; 

SS (- segment selector; 
SS (- segment descriptor; 

IF DS, ES, FS or GS is loaded with non-null selector; 
THEN 

IF segment selector index is outside descriptor table limits 

11-282 

I 



INSTRUCTION SET REFERENCE 

OR segment is not a data or readable code segment 
OR ((segment is a data or nonconforming code segment) 

AND (both RPL and CPL > DPL)) 
THEN #GP(selector); 

IF segment not marked present 
THEN #NP(selector); 

ELSE 
Segment Register f- segment selector; 
SegmentRegister f- segment descriptor; 

FI; 
FI; 
IF OS, ES, FS or GS is loaded with a null selector; 

THEN 
SegmentRegister f- segment selector; 
Segment Register f- segment descriptor; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

#SS(O) 

#SS(selector) 

I 

If attempt is made to load SS register with null segment selector. 

If the destination operand is in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If segment selector index is outside descriptor table limits. 

If the SS register is being loaded and the segment selector's RPL and the 
segment descriptor's DPL are not equal to the CPL. 

If the SS register is being loaded and the segment pointed to is a non writ­
able data segment. 

Ifthe DS, ES, FS, or GS register is being loaded and the segment pointed 
to is not a data or readable code segment. 

If the DS, ES, FS, or GS register is being loaded and the segment pointed 
to is a data or nonconforming code segment, but both the RPL and the CPL 
are greater than the DPL. 

If a memory operand effective address is outside the SS segment limit. 

If the SS register is being loaded and the segment pointed to is marked not 
present. 

11-283 



INSTRUCTION SET REFERENCE intet 

#NP 

#PF(fault-code) 

#AC(O) 

#UD 

If the DS, ES, FS, or GS register is being loaded and the segment pointed 
to is marked not present. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

If attempt is made to load the CS register. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS 

#UD 

If a memory operand effective address is outside the SS segment limit. 

If attempt is made to load the CS register. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

#UD 

11-284 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

If attempt is made to load the CS register. 

I 



INSTRUCTION SET REFERENCE 

MOV-Move to/from Control Registers 

Opcode Instruction Description 

OF 221r MOV CRO,r32 Move r32 to CRO 

OF 221r MOVCR2,r32 Move r32 to CR2 

OF 221r MOVCR3,r32 Move r32 to CR3 

OF 221r MOV CR4,r32 Move r32 to CR4 

OF 20lr MOV r32,CRO Move CRO to r32 

OF 20 Ir MOV r32,CR2 Move CR2 to r32 

OF 20 Ir MOV r32,CR3 Move CR3 to r32 

OF 20 Ir MOV r32,CR4 Move CR4 to r32 

Description 

Moves the contents of a control register (CRO, CR2, CR3, or CR4) to a general-purpose register 
or vice versa. The operand size for these instructions is always 32 bits, regardless of the operand­
size attribute. (See "Control Registers" in Chapter 2, System Architecture Overview, of the 
Pentium® Pro Family Developer's Manual, Volume 3 for a detailed description of the flags and 
fields in the control registers.) 

When loading a control register, a program should not attempt to change any of the reserved bits; 
that is, always set reserved bits to the value previously read. 

At the opcode level, the reg field within the ModRIM byte specifies which of the control registers 
is loaded or read. The 2 bits in the mod field are always lIB. The rim field specifies the general­
purpose register loaded or read. 

These instructions have the following side effects: 

• 

• 

• 

• 

• 

I 

When writing to control register CR3, all non-global TLB entries are flushed (see "Trans­
lation Lookaside Buffers (TLBs)") in Chapter 3, Protected-Mode Memory Management, of 
the Pentium® Pro Family Developer's Manual, Volume 3. 

When modifying any of the paging flags in the control registers (PE and PG in register 
CRO and PGE, PSE, and PAE in register CR4), all TLB entries are flushed, including 
global entries. This operation is implementation specific for the Pentium Pro processor. 
Software should not depend on this functionality in future Intel Architecture processors. 

If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1 (to 
enable the physical address extension mode), the pointers (PDPfRs) in the page-directory 
pointers table will be loaded into the processor (into internal, non-architectural registers). 

If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3 will 
cause the PDPfRs to be reloaded into the processor. 

If the PAE flag is set to 1 and control register CRO is written to set the PG flag, the 
PDPfRs are reloaded into the processor. 

11-285 



INSTRUCTION SET REFERENCE 

Operation 

DEST +- SRC; 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are undefined. 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not O. 

If an attempt is made to write a 1 to any reserved bit in CR4. 

int:et 

If an attempt is made to write reserved bits in the page-directory pointers 
table (used in the extended physical addressing mode) when the PAE flag 
in control register CR4 and the PG flag in control register CRO are set to 1. 

Real Address Mode Exceptions 

#GP If an attempt is made to write a 1 to any reserved bit in CR4. 

Virtual 8086 Mode Exceptions 

#GP(O) These instructions cannot be executed in virtual 8086 mode. 

11-286 

I 



INSTRUCTION SET REFERENCE 

MOV-Move to/from Debug Registers 

Opcode 

OF 211r 

OF 211r 

OF 211r 

OF 23 Ir 

OF 23 Ir 

OF 23 Ir 

Description 

Instruction 

MOV r32, DRO-DR3 

MOV r32, DR4-DR5 

MOV r32, DR6-DR7 

MOV DRO-DR3, r32 

MOV DR4-DR5, r32 

MOV DR6-DR7,r32 

Description 

Move debug registers to r32 

Move debug registers to r32 

Move debug registers to r32 

Move r32 to debug registers 

Move r32 to debug registers 

Move r32 to debug registers 

Moves the contents of two or more debug registers (DRO through DR3, DR4 and DRS, or DR6 
and DR7) to a general-purpose register or vice versa. The operand size for these instructions is 
always 32 bits, regardless of the operand-size attribute. (See Chapter 10, Debugging and Peifor­
mance Monitoring, of the Pentium® Pro Family Developer's Manual, Volume 3 for a detailed 
description of the flags and fields in the debug registers.) 

The instructions must be executed at privilege level 0 or in real-address mode. 

When the debug extension (DE) flag in register CR4 is clear, these instructions operate on debug 
registers in a manner that is compatible with Intel386 and Intel486 processors. In this mode, 
references to DR4 and DRS refer to DR6 and DR7, respectively. When the DE set in CR4 is set, 
attempts to reference DR4 and DRS result in an undefined opcode (#UD) exception. 

At the opcode level, the reg field within the ModR/M byte specifies which of the debug registers 
is loaded or read. The two bits in the mod field are always 11. The rim field specifies the general­
purpose register loaded or read. 

Operation 

IF ((DE = 1) and (SRC or DEST = DR4 or DR5)) 
THEN 

#UD' 
ELSE ' 

DEST f- SRC; 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are undefined. 

Protected Mode Exceptions 

If the current privilege level is not O. #GP(O) 

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is 
executed involving DR4 or DRS. 

I 
11-287 



INSTRUCTION SET REFERENCE 

#DB If any debug register is accessed while the GD flag in debug register DR7 
is set. 

Real Address Mode Exceptions 

#UD If the DE (debug extensions) bit of CR4 is set and a MOV instruction is 
executed involving DR4 or DRS. 

#DB If any debug register is accessed while the GD flag in debug register DR7 
is set. 

Virtual 8086 Mode Exceptions 

#GP(O) The debug registers cannot be loaded or read when in virtual 8086 mode. 

11-288 

I 



INSTRUCTION SET REFERENCE 

MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String 

Instruction Description Opcode 

A4 MOVS ES:(E)DI, DS:(E)SI Move byte at address DS:(E)SI to address ES:(E)DI 

A5 MOVS ES:DI,DS:SI Move word at address DS:SI to address ES:DI 

A5 MOVS ES:EDI, DS:ESI Move doubleword at address DS:ESI to address 
ES:EDI 

A4 

A5 

A5 

MOVSB Move byte at address DS:(E)SI to address ES:(E)DI 

Description 

MOVSW Move word at address DS:SI to address ES:DI 

MOVSD Move doubleword at address DS:ESI to address 
ES:EDI 

Moves the byte, word, or doubleword specified with the second operand (source operand) to the 
location specified with the first operand (destination operand). The source operand specifies the 
memory location at the address DS:ESI and the destination operand specifies the memory loca­
tion at address ES:EDI. (When the operand-size attribute is 16, the SI and DI register are used 
as the source-index and destination-index registers, respectively.) The DS segment may be over­
ridden with a segment override prefix, but the ES segment cannot be overridden. 

The MOVSB, MOVSW, and MOVSD mnemonics are synonyms of the byte, word, and double­
word versions of the MOVS instructions. They are simpler to use, but provide no type or 
segment checking. (For the MOVS instruction, "DS:ESI" and "ES:EDI" must be explicitly spec­
ified in the instruction.) 

After the transfer, the ESI and EDI registers are incremented or decremented automatically 
according to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the ESI and 
EDI register are incremented; if the DF flag is 1, the ESI and EDI registers are decremented.) 
The registers are incremented or decremented by 1 for byte operations, by 2 for word operations, 
or by 4 for doubleword operations. 

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix 
(see Chapter 11, "REP/REPEIREPZ/REPNE IREPNZ-Repeat String Operation Prefix") for 
block moves of ECX bytes, words, or doublewords. 

Operation 

DEST f-SRC; 
IF (byte move) 

I 

THEN IF DF = 0 
THEN (E)DI f- 1; 
ELSE (E)DI f- -1; 

FI; 
ELSE IF (word move) 

THEN IF DF = 0 
THEN DI f- 2; 

11-289 



INSTRUCTION SET REFERENCE 

FI; 

ELSE DI f- -2; 
FI; 
ELSE (* doubleword move*) 

THEN IF DF = 0 

FI; 

THEN EDI f- 4; 
ELSE EDI f- -4; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-290 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

MOVSX-Move with Sign-Extension 

Opcode 

OF BE Ir 

OF BE Ir 

OF BF Ir 

Description 

Instruction 

MOVSX r16,r/mB 

MOVSX r32,r/mB 

MOVSX r32,r/m16 

Description 

Move byte to word with sign-extension 

Move byte to doubleword, sign-extension 

Move word to doubleword, sign-extension 

Copies the contents of the source operand (register or memory location) to the destination 
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5). The size of the 
converted value depends on the operand-size attribute. 

Operation 

DEST f- SignExtend(SRC); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-291 



INSTRUCTION SET REFERENCE 

MOVZX-Move with Zero-Extend 

Opcode 

OF 861r 

OF 86 Ir 

OF 87 Ir 

Description 

Instruction 

MOVZX r16,rlmB 

MOVZX r32,rlmB 

MOVZX r32,rlm16 

Description 

Move byte to word with zero-extension 

Move byte to doubleword, zero-extension 

Move word to doubleword, zero-extension 

Copies the contents of the source operand (register or memory location) to the destination 
operand (register) and sign extends the value to 16 or 32 bits (see Figure 6-5). The size of the 
converted value depends on the operand-size attribute. 

Copies the contents of the source operand (register or memory location) to the destination 
operand (register) and zero extends the value to 16 or 32 bits. The size of the converted value 
depends on the operand-size attribute. 

Operation 

DEST f- ZeroExtend(SRC); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

11-292 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-293 



INSTRUCTION SET REFERENCE 

MUL-Unsigned Multiplication of AL, AX, or EAX 

Opcode 

F6/4 

F7/4 

F7/4 

Description 

Instruction 

MUL rlmB 

MUL rlm16 

MUL rlm32 

Description 

Unsigned multiply (AX ~ AL * rlmB) 

Unsigned multiply (DX:AX ~ AX * rlm16) 

Unsigned multiply (EDX:EAX ~ EAX * rlm32) 

Performs an unsigned multiplication of the first operand (destination operand) and the second 
operand (source operand) and stores the result in the destination operand. The destination 
operand is an implied operand located in register AL, AX or EAX (depending on the size of the 
operand); the source operand is located in a general-purpose register or a memory location. The 
action of this instruction and the location of the result depends on the opcode and the operand 
size as shown in the following table. 

Operand Size Source 1 Source 2 Destination 

Byte AL rImS AX 

Word AX r/m16 DX:AX 

Doubleword EAX rIm 32 EDX:EAX 

The AH, DX, or EDX registers (depending on the operand size) contain the high-order bits of 
the product. If the contents of one of these registers are 0, the CF and OF flags are cleared; other­
wise, the flags are set. 

Operation 

IF byte operation 
THEN 

FI; 

AX t- AL * SRC 
ELSE (* word or doubleword operation *) 

IF OperandSize = 16 

FI; 

THEN 
DX:AX t- AX * SRC 

ELSE (* OperandSize = 32 *) 
EDX:EAX t- EAX * SRC 

Flags Affected 

The OF and CF flags are cleared to ° if the upper half of the result is 0; otherwise, they are set 
to 1. The SF, ZF, AF, and PF flags are undefined. 

11-294 

I 



intet INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#ACCO) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#ACCO) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-295 



INSTRUCTION SET REFERENCE 

NEG-Two's Complement Negation 

Opcode 

F6/3 

F7/3 

F7/3 

Description 

Instruction 

NEG rlmB 

NEG rlm16 

NEG rlm32 

Description 

Two's complement negate rlmB 

Two's complement negate rlm16 

Two's complement negate rlm32 

Replaces the value of operand (the destination operand) with its two's complement. The desti­
nation operand is located in a general-purpose register or a memory location. 

Operation 

IF DEST = 0 
THEN CF +- 0 
ELSE CF +-1; 

FI; 
DEST +- - (DEST) 

Flags Affected 

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, 
and PF flags are set according to the result. 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#OP 

#SS 

11-296 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-297 



INSTRUCTION SET REFERENCE 

NOP-No Operation 

Opcode 

90 

Description 

Instruction 

NOP 

Description 

No operation 

Performs no operation. This instruction is a one-byte instruction that takes up space in the 
instruction stream but does not affect the machine context, except the EIP register. 

The NOP instruction is an alias mnemonic for the XCHG EAX, EAX instruction. 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

None. 

11-298 

I 



INSTRUCTION SET REFERENCE 

NOT-One's Complement Negation 

Opcode 

F6/2 

F7/2 

F7/2 

Description 

Instruction 

NOT rlmB 

NOT rlm16 

NOT rlm32 

Description 

Reverse each bit of rlmB 

Reverse each bit of rlm16 

Reverse each bit of rlm32 

Performs a bitwise NOT operation (1 's complement) on the destination operand and stores the 
result in the destination operand location. The destination operand can be a register or a memory 
location. 

Operation 

DEST f- NOT DEST; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
as segment limit. 

If the DS, ES, FS, or as register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
as segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

I 
11-299 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-300 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

OR-Logical Inclusive OR 

Opcode 

OCib 

OOiw 

00 id 

8011 ib 

81/1 iw 

81 /1 id 

83/1 ib 

83/1 ib 

081r 

091r 

091r 

OAIr 

OB/r 

OB/r 

Description 

Instruction 

ORAL,immB 

OR AX,imm16 

OR EAX,imm32 

OR rlmB,immB 

OR rim 16,imm16 

OR rlm32,imm32 

OR rim 16,immB 

OR rlm32,immB 

OR rlmB,rB 

OR rim 16,r16 

OR rlm32,r32 

OR rB,rlmB 

OR r16,rlm16 

OR r32,rlm32 

Description 

ALOR immB 

AX OR imm16 

EAXORimm32 

rlmBOR immB 

rim 16 OR imm16 

rlm32 OR imm32 

rim 16 OR immB 

rlm32 OR immB 

rlmBOR rB 

rim 16 OR r16 

rlm32 OR r32 

rBOR rlmB 

r160R rim 16 

r320R rlm32 

Performs a bitwise OR operation on the destination (first) and source (second) operands and 
stores the result in the destination operand location. The source operand can be an immediate, a 
register, or a memory location; the destination operand can be a register or a memory location. 

Operation 

DEST f- DEST OR SRC; 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The 
state of the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

11-301 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fauIt-code) 

#AC(O) 

11-302 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

OUT-Output to Port 

Opcode 

E6 ib 

E7 ib 

E7 ib 

EE 

EF 
EF 

Description 

Instruction 

OUT immB,AL 

OUT immB,AX 

OUT immB, EAX 

OUT DX, AL 

OUTDX, AX 

OUTDX, EAX 

Description 

Output byte AL to immBI/O port address 

Output word AX to immBI/O port address 

Output doubleword EAX to immBI/O port address 

Output byte AL to 1/0 port address in DX 

Output word AX to 1/0 port address in DX 

Output doubleword EAX to 1/0 port address in DX 

Copies the value from the second operand (source operand) to the I/O port specified with the 
destination operand (first operand). The source operand can be register AL, AX, or EAX, 
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination 
operand can be a byte-immediate or the DX register. Using a byte immediate allows 110 port 
addresses 0 to 255 to be accessed; using the DX register as a source operand allows 110 ports 
from 0 to 65,535 to be accessed. 

When accessing an 8-bit 110 port, the opcode determines the port size; when accessing a 16- and 
32-bit 110 port, the operand-size attribute determines the port size. 

At the machine code level, I/O instructions are shorter when accessing 8-bit 110 ports. Here, the 
upper eight bits of the port address will be O. 

This instruction is only useful for accessing 110 ports located in the processor's 110 address 
space. See Chapter 8, Input/Output, for more information on accessing I/O ports in the I/O 
address space. 

Operation 

IF ((PE = 1) AND ((VM = 1) OR (CPL > 10PL))) 

FI; 

THEN (* Protected mode or virtual-8086 mode with CPL > 10PL *) 
IF (Any I/O Permission Bit for I/O port being accessed = 1) 

THEN #GP(O); 
FI; 

ELSE ( * Real-address mode or protected mode with CPL ~ 10PL *) 
(* or virtual-8086 mode with all I/O permission bits for I/O port cleared *) 

DEST f- SRC; (* Writes to selected I/O port *) 

Flags Affected 

None. 

I 
11-303 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) If the CPL is greater than (has less privilege) the 110 privilege level (IOPL) 
and any of the corresponding 110 permission bits in TSS for the 110 port 
being accessed is 1. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) 

11-304 

If any of the 110 permission bits in the TSS for the 110 port being accessed 
is 1. 

I 



INSTRUCTION SET REFERENCE 

OUTS/OUTSB/OUTSW/OUTSD-Output String to Port 

Opcode 

6E 

6F 

6F 

6E 

6F 

6F 

Description 

Instruction 

OUTS OX, OS:(E)SI 

OUTS OX, OS:SI 

OUTS OX, OS:ESI 

OUTSB 

OUTSW 

OUTSO 

Description 

Output byte at address OS:(E)SI to 1/0 port in OX 

Output word at address OS:SI to 1/0 port in OX 

Output doubleword at address OS:ESI to 1/0 port in OX 

Output byte at address OS:(E)SI to 1/0 port in OX 

Output word at address OS:SI to 1/0 port in OX 

Output doubleword at address OS:ESI to 1/0 port in OX 

Copies data from the second operand (source operand) to the I/O port specified with the first 
operand (destination operand). The source operand is a memory location at the address DS:ESI. 
(When the operand-size attribute is 16, the SI register is used as the source-index register.) The 
DS register may be overridden with a segment override prefix. 

The destination operand must be the DX register, allowing I/O port addresses from 0 to 65,535 
to be accessed. When accessing an 8-bit 110 port, the opcode determines the port size; when 
accessing a 16- and 32-bit I/O port, the operand-size attribute determines the port size. 

The OUTSB, OUTSW and OUTSD mnemonics are synonyms of the byte, word, and double­
word versions of the OUTS instructions. (For the OUTS instruction, "DS:ESI" must be 
explicitly specified in the instruction.) 

After the byte, word, or double word is transfer from the memory location to the 110 port, the ESI 
register is incremented or decremented automatically according to the setting of the DF flag in 
the EFLAGS register. (If the DF flag is 0, the ESI register is incremented; if the DF flag is 1, the 
EDI register is decremented.) The ESI register is incremented or decremented by 1 for byte oper­
ations, by 2 for word operations, or by 4 for doubleword operations. 

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for 
block input ofECX bytes, words, or doublewords. See Chapter 11, "REP/REPEIREPZ/REPNE 
IREPNZ-Repeat String Operation Prefix" for a description of the REP prefix. 

After an OUTS, OUTSB, OUTSW, or OUTSD instruction is executed, the processor ensures 
that the EWBE# pin has been sampled active before beginning to execute the next instruction. 
Note that the instruction may be prefetched if EWBE# is not active, but it will not execute until 
EWBE# is sampled active. 

This instruction is only useful for accessing I/O ports located in the processor's 110 address 
space. See Chapter 8, Input/Output, for more information on accessing 110 ports in the 110 
address space. 

Operation 

IF ((PE = 1) AND ((VM = 1) OR (CPL > IOPL))) 
THEN (* Protected mode or virtual-8086 mode with CPL > IOPL *) 

I 
11-305 



INSTRUCTION SET REFERENCE 

FI; 

I F (Any I/O Permission Bit for I/O port being accessed = 1) 
THEN #GP(O); 

FI; 
ELSE ( * I/O operation is allowed *) 

OEST ~ SRC; (* Writes to I/O port *) 
IF (byte operation) 

FI; 

THEN IF OF= 0 
THEN (E)OI ~ 1 ; 
ELSE (E)OI ~ -1; 

FI; 
ELSE IF (word operation) 

THEN IFOF = 0 
THEN 01 ~2; 
ELSE 01 ~-2; 

FI; 

FI; 
ELSE (* doubleword operation *) 

THEN IF OF = 0 
THEN EOI ~4; 
ELSE EOI ~ -4; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#PF( fault-code) 

#AC(O) 

11-306 

If the CPLis greater than (has less privilege) the I/O privilege level (IOPL) 
and any of the corresponding I/O permission bits in TSS for the I/O port 
being accessed is 1. 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the limit of the ES 
segment. 

If the ES register contains a null segment selector. 

If an illegal memory operand effective address in the ES segments is given. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF(fault-code) 

#AC(O) 

I 

If any of the I/O permission bits in the TSS for the UO port being accessed 
is 1. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-307 



INSTRUCTION SET REFERENCE 

POP-POp a Value from the Stack 

Opcode 

8F 10 

8F 10 
58+ IW 

58+ rd 

1F 

07 

17 

OF A1 

OF A9 

Description 

Instruction 

POP m16 

POP m32 

POP r16 

POP r32 

POP OS 

POP ES 

POPSS 

POP FS 

POPGS 

Description 

Pop top of stack into m16; increment stack pointer 

Pop top of stack into m32; increment stack pointer 

Pop top of stack into r16; increment stack pointer 

Pop top of stack into r32; increment stack pointer 

Pop top of stack into OS; increment stack pOinter 

Pop top of stack into ES; increment stack pointer 

Pop top of stack into SS; increment stack pointer 

Pop top of stack into FS; increment stack pointer 

Pop top of stack into GS; increment stack pointer 

Loads the value from the top of the procedure stack to the location specified with the destination 
operand and then increments the stack pointer. The destination operand can be a general-purpose 
register, memory location, or segment register. 

The current address-size attribute for the stack segment and the operand-size attribute determine 
the amount the stack pointer is incremented (see the "Operation" below). For example, if 32-bit 
addressing and operands are being used, the ESP register (stack pointer) is incremented by 4 and, 
if 16-bit addressing and operands are being used, the SP register (stack pointer for 16-bit 
addressing) is incremented by 2. The B flag in the stack segment's segment descriptor deter­
mines the stack's address-size attribute. 

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded 
into the register must be a valid segment selector. In protected mode, popping a segment selector 
into a segment register automatically causes the descriptor information associated with that 
segment selector to be loaded into the hidden (shadow) part of the segment register and causes 
the selector and the descriptor information to be validated (see the "Operation" below). 

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a 
general protection fault. However, any subsequent attempt to reference a segment whose corre­
sponding segment register is loaded with a null value causes a general protection exception 
(#GP). In this situation, no memory reference occurs and the saved value ofthe segment register 
is null. 

The POP instruction cannot pop a value into the CS register. To load the CS register, use the RET 
instruction. 

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution 
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP 
instructions without the danger of having an invalid stack during an interrupt. However, use of 
the LSS instruction is the preferred method of loading the SS and ESP registers. 

11-308 

I 



INSTRUCTION SET REFERENCE 

If the ESP register is used as a base register for addressing a destination operand in memory, the 
POP instructions computes the effective address of the operand after it increments the ESP 
register. 

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack 
is written into the destination. 

Operation 

IF StackAddrSize = 32 
THEN 

FI; 

IF OperandSize = 32 
THEN 

FI; 

DEST f- SS:ESP; (* copy a doubleword *) 
ESP f- ESP + 4; 

ELSE (* OperandSize = 16*) 
DEST f- SS:ESP; (* copy a word *) 

ESP f- ESP + 2; 

ELSE (* StackAddrSize = 16* ) 
IF OperandSize = 16 

THEN 

FI; 

DEST f- SS:SP; (* copy a word *) 
SP f- SP + 2; 

ELSE (* OperandSize = 32 *) 
DEST f- SS:SP; (* copy a doubleword *) 
SP f- SP + 4; 

Loading a segment register while in protected mode results in special checks and actions, as 
described in the following listing. These checks are performed on the segment selector and the 
segment descriptor it points to. 

IF SS is loaded; 

I 

THEN 
IF segment selector is null 

THEN #GP(O); 
FI; 
IF segment selector index is outside descriptor table limits 

OR segment selector's RPL '" CPL 

FI; 

OR segment is not a writable data segment 
OR DPL",CPL 

THEN #GP(selector); 

IF segment not marked present 
THEN #SS(selector); 

ELSE 
SS f- segment selector; 

11 -309 



INSTRUCTION SET REFERENCE 

SS f- segment descriptor; 
FI; 

FI; 
IF OS, ES, FS or GS is loaded with non-null selector; 
THEN 

FI; 

IF segment selector index is outside descriptor table limits 
OR segment is not a data or readable code segment 
OR ((segment is a data or nonconforming code segment) 

ANO (both RPL and CPL > OPL)) 
THEN #GP(selector); 

IF segment not marked present 
THEN #NP(selector); 

ELSE 

FI; 

SegmentRegister f- segment selector; 
SegmentRegister f- segment descriptor; 

IF OS, ES, FS or GS is loaded with a null selector; 
THEN 

SegmentRegister f- segment selector; 
SegmentRegister f- segment descriptor; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

11-310 

If attempt is made to load SS register with null segment selector. 

If the destination operand is in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If segment selector index is outside descriptor table limits. 

If the SS register is being loaded and the segment selector's RPL and the 
segment descriptor's DPL are not equal to the CPL. 

If the SS register is being loaded and the segment pointed to is a nonwrit­
able data segment. 

If the DS, ES, FS, or GS register is being loaded and the segment pointed 
to is not a data or readable code segment. 

If the DS, ES, FS, or GS register is being loaded and the segment pointed 
to is a data or nonconforming code segment, but both the RPL and the CPL 
are greater than the DPL. 

I 



#SS(O) 

#SS(selector) 

#NP 

#PF(fault-code) 

#AC(O) 

INSTRUCTION SET REFERENCE 

If the current top of stack is not within the stack segment. 

If a memory operand effective address is outside the SS segment limit. 

If the SS register is being loaded and the segment pointed to is marked not 
present. 

If the DS, ES, FS, or GS register is being loaded and the segment pointed 
to is marked not present. 

If a page fault occurs. 

If an unaligned memory reference is made while the current privilege level 
is 3 and alignment checking is enabled. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF( fault -code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a page fault occurs. 

If an unaligned memory reference is made while alignment checking is 
enabled. 

11-311 



INSTRUCTION SET REFERENCE 

POPAIPOPAD-Pop All General-Purpose Registers 

Opcode 

61 

61 

Description 

Instruction 

POPA 

POPAO 

Description 

Pop 01, 81, BP, BX, OX, CX, and AX 

Pop EOI, E81, EBP, EBX, EOX, ECX, and EAX 

Pops doublewords (POP AD) or words (POP A) from the procedure stack into the general­
purpose registers. The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, 
ECX, and EAX (if the current operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX 
(if the operand-size attribute is 16). (These instructions reverse the operation of the 
PUSHA/PUSHAD instructions.) The value on the stack for the ESP or SP register is ignored. 
Instead, the ESP or SP register is incremented after each register is loaded (see the "Operation" 
below). 

The POP A (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The 
POP A instruction is intended for use when the operand-size attribute is 16 and the POPAD 
instruction for when the operand-size attribute is 32. Some assemblers may force the operand 
size to 16 when POP A is used and to 32 when POPAD is used. Others may treat these 
mnemonics as synonyms (POPAIPOPAD) and use the current setting of the operand-size 
attribute to determine the size of values to be popped from the stack, regardless of the mnemonic 
used. 

Operation 

IF OperandSize = 32 (* instruction = POPAO *) 
THEN 

EOI ~ PopO; 
ESI ~ PopO; 
EBP ~ PopO; 
increment ESP by 4 (* skip next 4 bytes of stack *) 
EBX ~ PopO; 
EOX~ PopO; 
ECX~ PopO; 
EAX ~ PopO; 

ELSE (* OperandSize = 16, instruction = POPA *) 
01 ~ PopO; 

FI; 

SI ~ PopO; 
BP ~ PopO; 
increment ESP by 2 (* skip next 2 bytes of stack *) 
BX~ PopO; 
OX~ PopO; 
CX~PopO; 

AX ~ PopO; 

11-312 

I 



INSTRUCTION SET REFERENCE 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) 

#PF(fault -code) 

If the starting or ending stack address is not within the stack segment. 

If a page fault occurs. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

I 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-313 



INSTRUCTION SET REFERENCE 

POPF/POPFD-Pop Stack into EFLAGS Register 

Opcode 

90 
90 

Description 

Instruction 

POPF 

POPFO 

Description 

Pop top of stack into EFLAGS 

Pop top of stack into EFLAGS 

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is 
32) and stores the value in the EFLAGS register or pops a word from the top of the stack (if the 
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register. (These 
instructions reverse the operation of the PUSHF/PUSHFD instructions.) 

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode. 
The POPF instruction is intended for use when the operand-size attribute is 16 and the POPFD 
instruction for when the operand-size attribute is 32. Some assemblers may force the operand 
size to 16 when POPF is used and to 32 when POPFD is used. Others may treat these mnemonics 
as synonyms (POPF/POPFD) and use the current setting of the operand-size attribute to deter­
mine the size of values to be popped from the stack, regardless of the mnemonic used. 

The effect of the POPF/POPFD instructions on the EFLAGS register changes slightly, 
depending on the mode of operation of the processor. When the processor is operating in 
protected mode at privilege level 0 (or in real-address mode, which is equivalent to privilege 
level 0), all the non-reserved flags in the EFLAGS register except the VIP and VIP flags can be 
modified. The VIP and VIF flags are cleared. 

When operating in protected mode, but with a privilege level greater an 0, all the flags can be 
modified except the IOPL field and the VIP and VIF flags. Here, the IOPL flags are masked and 
the VIP and VIF flags are cleared. 

When operating in virtual-8086 mode, the VO privilege level (IOPL) must be equal to 3 to use 
POPF/POPFD instructions and the VM, RF, IOPL, VIP, and VIF flags are masked. If the IOPL 
is less than 3, the POPFIPOPFD instructions cause a general protection exception (#GP). 

See Section 3.6.3., "EFLAGS Register" for information about the EFLAGS registers. 

The IOPL is altered only when executing at privilege level O. The interrupt flag is altered only 
when executing at a level at least as privileged as the IOPL. (Real-address mode is equivalent to 
privilege levelO.) If a POPFIPOPFD instruction is executed with insufficient privilege, an excep­
tion does not occur, but the privileged bits do not change. 

Operation 

IF VM=O (* Not in Virtual-8086 Mode *) 
THEN IF CPL=O 

11-314 

THEN 
IF OperandSize = 32; 

THEN 
EFLAGS ~ PopO; 

I 



FI; 

FI; 

INSTRUCTION SET REFERENCE 

(* All non-reserved flags except VIP and VIF can be modified; *) 
(* VIP and VIF are cleared *) 

ELSE (* OperandSize :::: 16 *) 
EFLAGS[15:0] ~ PopO; (* All non-reserved flags can be modified; *) 

ELSE (* CPL > 0 *) 
IF OperandSize:::: 32; 

FI; 

THEN 
EFLAGS ~ PopO 
(* All non-reserved bits except IOPL, VIP, and VIF can be modified; *) 
(* IOPL is masked; VIP and VIF are cleared *) 

ELSE (* OperandSize :::: 16 *) 
EFLAGS[15:0] ~ PopO; 
(* All non-reserved bits except IOPL can be modified; IOPL is masked *) 

ELSE (* In Virtual-BOB6 Mode *) 
IF IOPL::::3 

THEN IF OperandSize::::32 
THEN 

EFLAGS ~ PopO 
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF *) 
(* can be modified; VM, RF, IOPL, VIP, and VIF are masked*) 

ELSE 
EFLAGS[15:0] ~ PopO 
(* All non-reserved bits except IOPL can be modified; IOPL is masked*) 

FI; 
FI; 

FI; 

FI; 
ELSE (* IOPL < 3 *) 

#GP(O); (* trap to virtual-BOB6 monitor *) 

Flags Affected 

All flags except the reserved bits. 

Protected Mode Exceptions 

#SS(O) If the top of stack is not within the stack segment. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

I 
11-315 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

11-316 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
as segment limit. 

If the 110 privilege level is less than 3. 

If an attempt is made to execute the POPFIPOPFD instruction with an 
operand-size override prefix. 

If a memory operand effective address is outside the SS segment limit. 

I 



in1et INSTRUCTION SET REFERENCE 

PUSH-Push Word or Doubleword Onto the Stack 

Opcode Instruction Description 

FF /6 PUSH rlm16 Push rlm16 

FF /6 PUSH rlm32 Push rlm32 

50+1W PUSH r16 Push r16 

50+rd PUSH r32 Push r32 

6A PUSH immB Push immB 

68 PUSH imm16 Push imm16 

68 PUSH imm32 Push imm32 

OE PUSH CS Push CS 

16 PUSH SS Push SS 

1E PUSH DS Push DS 

06 PUSH ES Push ES 

OFAO PUSH FS Push FS 

OFA8 PUSH GS Push GS 

Description 

Decrements the stack pointer and then stores the source operand on the top of the procedure 
stack. The current address-size attribute for the stack segment and the operand-size attribute 
determine the amount the stack pointer is decremented (see the "Operation" below). For 
example, if 32-bit addressing and operands are being used, the ESP register (stack pointer) is 
decremented by 4 and, if 16-bit addressing and operands are being used, the SP register (stack 
pointer for 16-bit addressing) is decremented by 2. Pushing 16-bit operands when the stack 
address-size attribute is 32 can result in a misaligned the stack pointer (that is, the stack pointer 
not aligned on a doubleword boundary). 

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc­
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP register 
is used as a base register for computing the operand address, the effective address of the operand 
is computed before the ESP register is decremented. 

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed, 
the processor shuts down due to a lack of stack space. No exception is generated to indicate this 
condition. 

Operation 

IF StackAddrSize = 32 
THEN 

I 

IF OperandSize = 32 
THEN 

ESP~ ESP-4; 
SS:ESP ~ SRC; (* push doubleword *) 

ELSE (* OperandSize = 16*) 

11-317 



INSTRUCTION SET REFERENCE intet~ 

ESP (- ESP - 2; 
SS:ESP (- SRC; (* push word *) 

FI; 
ELSE (* StackAddrSize = 16*) 

IF OperandSize = 16 
THEN 

FI; 
FI; 

SP (- SP-2; 
SS:SP (- SRC; (* push word *) 

ELSE (* OperandSize = 32*) 
SP (- SP-4; 
SS:SP (- SRC; (* push doubleword *) 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

If the new value of the SP or ESP register is outside the stack segment 
limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. . 

#SS(O) 

#PF(fault-code) 

11-318 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

I 



#AC(O) 

INSTRUCTION SET REFERENCE 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

For Intel Architecture processors from the Intel 286 on, the PUSH ESP instruction pushes the 
value of the ESP register as it existed before the instruction was executed. (This is also true in 
the real-address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction 
pushes the new value of the SP register (that is the value after it has been decremented by 2). 

I 
11-319 



INSTRUCTION SET REFERENCE 

PUSHAIPUSHAD-Push All General-Purpose Registers 

Opcode 

60 

60 

Description 

Instruction 

PUSHA 

PUSHAO 

Description 

Push AX, CX, OX, BX, original SP, BP, SI, and 01 

Push EAX, ECX, EOX, EBX, original ESP, EBP, ESI, and EOI 

Push the contents of the general-purpose registers onto the procedure stack. The registers are 
stored on the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), 
EBP, ESI, and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (orig­
inal value), BP, SI, and DI (if the operand-size attribute is 16). (These instructions perform the 
reverse operation of the POPAIPOPAD instructions.) The value pushed for the ESP or SP 
register is its value before prior to pushing the first register (see the "Operation" below). 

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode. 
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the 
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the 
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat 
these mnemonics as synonyms (PUSHAIPUSHAD) and use the current setting of the operand­
size attribute to determine the size of values to be pushed from the stack, regardless of the 
mnemonic used. 

In the real-address mode, if the ESP or SP register is 1,3, or 5 when the PUSHAIPUSHAD 
instruction is executed, the processor shuts down due to a lack of stack space. No exception is 
generated to indicate this condition. 

Operation 

IF OperandSize = 32 (* PUSHAD instruction *) 
THEN 

Temp ~ (ESP); 
Push(EAX); 
Push(ECX); 
Push(EDX); 
Push(EBX); 
Push(Temp); 
Push(EBP); 
Push(ESI); 
Push(EDI); 

ELSE (* OperandSize = 16, PUSHA instruction *) 
Temp~ (SP); 
Push(AX); 
Push(CX); 
Push(DX); 
Push(BX); 
Push(Temp); 

11-320 

I 



INSTRUCTION SET REFERENCE 

FI; 

Push(BP); 
Push(SI); 
Push(DI); 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) 

#PF(fault-code) 

If the starting or ending stack address is outside the stack segment limit. 

If a page fault occurs. 

Real Address Mode Exceptions 

#GP If the ESP or SP register contains 7, 9, 11, 13, or 15. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PF(fault-code) 

I 

If the ESP or SP register contains 7, 9, 11,13, or 15. 

If a page fault occurs. 

11-321 



INSTRUCTION SET REFERENCE 

PUSHF/PUSHFD-Push EFLAGS Register onto the Stack 

Opcode 

9C 

9C 

Description 

Instruction 

PUSHF 

PUSHFD 

Description 

Push EFLAGS 

Push EFLAGS 

Decrement the stack pointer by 4 (if the current operand-size attribute is 32) and push the entire 
contents of the EFLAGS register onto the procedure stack or decrement the stack pointer by 2 
(if the operand-size attribute is 16) push the lower 16 bits of the EFLAGS register onto the stack. 
(These instructions reverse the operation of the POPF/POPFD instructions.) See Section 3.6.3., 
"EFLAGS Register" for information about the EFLAGS registers. 

When copying the entire EFLAGS register to the stack, bits 16 and 17, called the VM and RF 
flags, are not copied. Instead, the values for these flags are cleared in the EFLAGS image stored 
on the stack. 

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same 
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the 
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the 
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these 
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size 
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic 
used. 

When the I/O privilege level (IOPL) is less than 3 in virtual-8086 mode, the PUSHFIPUSHFD 
instructions causes a general protection exception (#GP). The IOPL is altered only when 
executing at privilege level O. The interrupt flag is altered only when executing at a level at least 
as privileged as the IOPL. (Real-address mode is equivalent to privilege level 0.) If a 
PUSHFIPUSHFD instruction is executed with insufficient privilege, an exception does not 
occur, but the privileged bits do not change. 

In the real-address mode, if the ESP or SP register is 1,3, or 5 when the PUSHAIPUSHAD 
instruction is executed, the processor shuts down due to a lack of stack space. No exception is 
generated to indicate this condition. 

Operation 

IF VM=O (* Not in Virtual-BOB6 Mode *) 
THEN 

11-322 

IF OperandSize = 32 
THEN 

FI; 

push(EFLAGS AND OOFCFFFFH); 
(* VM and RF EFLAG bits are cleared in image stored on the stack*) 

ELSE 
push(EFLAGS); (* Lower 16 bits only *) 

I 



ELSE (* In Virtual-8086 Mode *) 
IF IOPL=3 

THEN 
IF OperandSize = 32 

INSTRUCTION SET REFERENCE 

THEN push(EFLAGS AND OFCFFFFH); 
(* VM and RF EFLAGS bits are cleared in image stored on the stack*) 

ELSE push(EFLAGS); (* Lower 16 bits only *) 
FI; 

ELSE 

FI; 
FI; 

#GP(O); (* Trap to virtual-8086 monitor *) 

Flags Affected 

None. 

Protected Mode Exceptions 

#SS(O) If the new value of the ESP register is outside the stack segment boundary. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) If the 110 privilege level is less than 3. 

I 
11·323 



INSTRUCTION SET REFERENCE 

RCLJRCRlROLJROR--Rotate 

Opcode Instruction Description 

DO /2 RCL rlmB,1 Rotate 9 bits (CF,rlmB) left once 

02/2 RCL rlmB,CL Rotate 9 bits (CF,rlmB) left CL times 

CO /2 ib RCL rlmB,immB Rotate 9 bits (CF, rlmB) left immB times 

01/2 RCL rim 16,1 Rotate 17 bits (CF,rlm16) left once 

03/2 RCL rim 16,CL Rotate 17 bits (CF,rlm 16) left CL times 

C1 /2 ib RCL rim 16,immB Rotate 17 bits (CF,rlm16) left immB times 

01 /2 RCL rlm32,1 Rotate 33 bits (CF,rlm32) left once 

03/2 RCL rlm32,CL Rotate 33 bits (CF,rlm32) left CL times 

C1 /2 ib RCL rlm32,immB Rotate 33 bits (CF,rlm32) left immB times 

00/3 RCR rlmB,1 Rotate 9 bits (CF,rlmB) right once 

02/3 RCR rlmB,CL Rotate 9 bits (CF,rlmB) right CL times 

CO /3 ib RCR rlmB,immB Rotate 9 bits (CF,rlmB) right immBtimes 

01/3 RCR rlm16,1 Rotate 17 bits (CF,rlm16) right once 

03/3 RCR rlm16,CL Rotate 17 bits (CF,rlm16) right CL times 

C1 /3 ib RCR rlm16,immB Rotate 17 bits (CF,rlm16) right immBtimes 

01/3 RCR rlm32,1 Rotate 33 bits (CF,rlm32) right once 

03/3 RCR rlm32,CL Rotate 33 bits (CF,rlm32) rightCL times 

C1 /3 ib RCR rlm32,immB Rotate 33 bits (CF,rlm32) right immBtimes 

00/0 ROL rlmB,1 Rotate 8 bits rlmBleft once 

02/0 ROL rlmB,CL Rotate 8 bits rlmBleft CL times 

CO /0 ib ROL rlmB,immB Rotate 8 bits rlmBleft immBtimes 

01/0 ROL rim 16,1 Rotate 16 bits rim 16 left once 

03/0 ROL rim 16,CL Rotate 16 bits rim 16 left CL times 

C1 /0 ib ROL rlm16,immB Rotate 16 bits rim 16 left immB times 

01 /0 ROL rlm32,1 Rotate 32 bits rlm32 left once 

03/0 ROL rlm32,CL Rotate 32 bits rlm32 left CL times 

C1 /0 ib ROL rlm32,immB Rotate 32 bits rlm32 left immB times 

DO /1 ROR rlmB,1 Rotate 8 bits rlmB right once 

02/1 ROR rlmB,CL Rotate 8 bits rlmB right CL times 

CO /1 ib ROR rlmB,immB Rotate 8 bits rlm16 right immBtimes 

0111 ROR rlm16,1 Rotate 16 bits rim 16 right once 

03/1 ROR rlm16,CL Rotate 16 bits rim 16 right CL times 

C1 /1 ib ROR rlm16,immB Rotate 16 bits rim 16 right immB times 

0111 ROR rlm32,1 Rotate 32 bits rlm32 right once 

03/1 ROR rlm32,CL Rotate 32 bits rlm32 right CL times 

C1 /1 ib ROR rlm32,immB Rotate 32 bits rlm32 right immB times 

11-324 

I 



INSTRUCTION SET REFERENCE 

Description 

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions 
specified in the second operand (count operand) and stores the result in the destination operand. 
The destination operand can be a register or a memory location; the count operand is an unsigned 
integer that can be an immediate or a value in the CL register. The processor restricts the count 
to a number between 0 and 31 by masking all the bits in the count operand except the 5 least­
significant bits. 

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward 
more-significant bit positions, except for the most-significant bit, which is rotated to the least­
significant bit location (see Figure 6-10). The rotate right (ROR) and rotate through carry right 
(RCR) instructions shift all the bits toward less significant bit positions, except for the least­
significant bit, which is rotated to the most-significant bit location (see Figure 6-10). 

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts 
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag (see 
Figure 6-10). The RCR instruction shifts the CF flag into the most-significant bit and shifts the 
least-significant bit into the CF flag (see Figure 6-10). For the ROL and ROR instructions, the 
original value of the CF flag is not a part of the result, but the CF flag receives a copy of the bit 
that was shifted from one end to the other. 

The OF flag is defined only for the I-bit rotates; it is undefined in all other cases. For left rotates, 
the OF flag is set to the exclusive OR of the CF bit (after the rotate) and the most-significant bit 
of the result. For right rotates, the OF flag is set to the exclusive OR of the two most-significant 
bits of the result. 

Operation 
SIZE ~ OperandSize 
CASE (determine count) OF 

SIZE = 8: tempCOUNT ~ (COUNT AND 1 FH) MOD 9; 
SIZE = 16: tempCOUNT ~ (COUNT AND 1FH) MOD 17; 
SIZE = 32: tempCOUNT ~ COUNT AND 1 FH; 

ESAC; 
(* ROL instruction operation *) 
WHILE (tempCOUNT"* 0) 

DO 

00; 
ELlHW; 

tempCF ~ MSB(DEST); 
DEST ~ (DEST * 2) + tempCF; 
tempCOUNT ~ tempCOUNT - 1 ; 

CF ~tempCF; 
IF COUNT = 1 

FI; 

THEN OF ~ MSB(DEST) XOR CF; 
ELSE OF is undefined; 

(* ROR instruction operation *) 
WHILE (tempCOUNT"* 0) 

I 
11-325 



INSTRUCTION SET REFERENCE 

DO 

aD; 

tempCF +-- LSB(SRC); 
DEST +-- (DEST / 2) + (tempCF * 2SIZE); 

tempCOUNT +-- tempCOUNT - 1; 

IF COUNT = 1 

FI; 

THEN OF +-- MSB(DEST) XOR MSB - 1 (DEST); 
ELSE OF is undefined; 

(* RCL instruction operation *) 
WHILE (tempCOUNT '" 0) 

DO 
tempCF +-- MSB(DEST); 
DEST +-- (DEST * 2) + tempCF; 
tempCOUNT +-- tempCOUNT - 1; 

aD; 
ELlHW; 
CF +-- tempCF; 
IF COUNT = 1 

FI; 

THEN OF +-- MSB(DEST) XOR CF; 
ELSE OF is undefined; 

(* RCR instruction operation *) 
WHILE (tempCOUNT '" 0) 

DO 

aD; 

tempCF +-- LSB(SRC); 
DEST +-- (DEST / 2) + (tempCF * 2SIZE); 

tempCOUNT +-- tempCOUNT - 1; 

IF COUNT = 1 
IF COUNT = 1 

FI; 

THEN OF +-- MSB(DEST) XOR MSB - 1 (DEST); 
ELSE OF is undefined; 

Flags Affected 

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single­
bit rotates (see "Description" above); it is undefined for multi-bit rotates. The SF, ZF, AF, and 
PF flags are not affected. 

11-326 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the source operand is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If the DS, ES, FS, or OS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#OP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

The 8086 does not mask the rotation count. All Intel Architecture processors from the Inte1386 
processor on do mask the rotation count in all operating modes. 

I 
11-327 



INSTRUCTION SET REFERENCE 

RDMSR-Read from Model Specific Register 

Opcode 

OF 32 

Description 

Instruction 

RDMSR 

Description 

Load MSR specified by ECX into EDX:EAX 

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX register into 
registers EDX:EAX. The EDX register is loaded with the high-order 32 bits of the MSR and the 
EAX register is loaded with the low-order 32 bits. If less than 64 bits are implemented in the 
MSR being read, the values returned to EDX:EAX in unimplemented bit locations are unde­
fined. 

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a 
general protection exception #GP(O) will be generated. Specifying a reserved or unimplemented 
MSR address in ECX will also cause a general protection exception. 

The MSRs control functions for testability, execution tracing, performance-monitoring and 
machine check errors. Appendix C, Model-Specific Registers (MSRs), in the Pentium® Pro 
Family Developer's Manual, Volume 3 lists all the MSRs that can be read with this instruction 
and their addresses. 

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1) 
before using this instruction. 

Operation 

EDX:EAX f- MSR[ECX]; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not O. 

If the value in ECX specifies a reserved or unimplemented MSR address. 

Real Address Mode Exceptions 

#GP If the current privilege level is not 0 

If the value in ECX specifies a reserved or unimplemented MSR address. 

Virtual 8086 Mode Exceptions 

#GP(O) The RDMSR instruction is not recognized in virtual 8086 mode. 

11-328 

I 



INSTRUCTION SET REFERENCE 

Intel Architecture Compatibility 

The MSRs and the ability to read them with the RDMSR instruction were introduced into the 
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi­
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD. 

I 
11-329 



INSTRUCTION SET REFERENCE in1et 

RDPMC-Read Performance-Monitoring Counters 

Opcode 

OF 33 

Description 

Instruction 

RDPMC 

Description 

Read performance-monitoring counter specified by ECX 
into EDX:EAX 

Loads the contents of the 40-bit performance-monitoring counter specified in the ECX register 
into registers EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter 
and the EAX register is loaded with the low-order 32 bits. The Pentium Pro processor has two 
performance-monitoring counters (0 and 1), which are specified by placing OOOOH or 0001H, 
respectively, in the ECX register. 

The RDPM C instruction allows application code running at a pri vilege level of 1, 2, or 3 to read 
the performance-monitoring counters if the PCE flag in the CR4 register is set. This instruction 
is provided to allow performance monitoring by application code without incurring the overhead 
of a call to an operating-system procedure. 

The performance-monitoring counters are event counters that can be programmed to count 
events such as the number of instructions decoded, number of interrupts received, or number of 
cache loads. Appendix B, Performance Monitoring Counters, in the Pentium® Pro Family 
Developer's Manual, Volume 3 lists all the events that can be counted. 

The RDPMC instruction does not serialize instruction execution. That is, it does not imply that 
all the events caused by the preceding instructions have been completed or that events caused by 
subsequent instructions have not begun. If an exact event count is desired, software must use a 
serializing instruction (such as the CPUID instruction) before and/or after the execution of the 
RDPCM instruction. 

The RDPMC instruction can execute in 16-bit addressing mode or virtual 8086 mode; however, 
the full contents of the ECX register are used to determine the counter to access and a fu1l40-bit 
result is returned (the low-order 32 bits in the EAX register and the high-order 9 bits in the EDX 
register). 

Operation 

IF (ECX = 0 OR 1) AND ((CR4.PCE = 1) OR ((CR4.PCE = 0) AND (CPL=O))) 
THEN 

FI; 

EDX:EAX f-- PMC[ECX]; 
ELSE (* ECX is not 0 or 1 and/or CR4.PCE is 0 and CPL is 1, 2, or 3 *) 

#GP(O) 

Flags Affected 

None. 

11-330 

I 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not 0 and the PCE flag in the CR4 register 
is clear. 

If the value in the ECX register is not 0 or 1. 

Real Address Mode Exceptions 

#GP If the PCE flag in the CR4 register is clear. 

If the value in the ECX register is not 0 or 1. 

Virtual 8086 Mode Exceptions 

#GP(O) 

I 

If the PCE flag in the CR4 register is clear. 

If the value in the ECX register is not 0 or 1. 

11-331 



INSTRUCTION SET REFERENCE 

RDTSC-Read Time-Stamp Counter 

Opcode 

OF 31 

Description 

Instruction 

RDTSC 

Description 
Read time-stamp counter into EDX:EAX 

Loads the current value of the processor's time-stamp counter into the EDX:EAX registers. The 
time-stamp counter is contained in a 64-bit MSR. The high-order 32 bits of the MSR are loaded 
into the EDX register, and the low-order 32 bits are loaded into the EAX register. The processor 
increments the time-stamp counter MSR every clock cycle and resets it to 0 whenever the 
processor is reset. 

The time stamp disable (TSD) flag in register CR4 restricts the use of the RDTSC instruction. 
When the TSD flag is clear, the RDTSC instruction can be executed at any privilege level; when 
the flag is set, the instruction can only be executed at privilege level O. The time-stamp counter 
can also be read with the RDMSR instruction. 

The RDTSC instruction is not serializing instruction. Thus, it does not necessarily wait until all 
previous instructions have been executed before reading the counter. Similarly, subsequent 
instructions may begin execution before the read operation is performed. 

This instruction was introduced into the Intel Architecture in the Pentium processor. 

Operation 

IF (CR4.TSD = 0) OR ((CR4.TSD = 1) AND (CPL=O)) 
THEN 

EDX:EAX ~ TimeStampCounter; 
ELSE (* CR4 is 1 and CPL is 1, 2, or 3 *) 

#GP(O) 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the TSD flag in register CR4 is set and the CPL is greater than O. 

Real Address Mode Exceptions 

#GP If the TSD flag in register CR4 is set. 

Virtual 8086 Mode Exceptions 

#GP(O) If the TSD flag in register CR4 is set. 

11-332 

I 



intet INSTRUCTION SET REFERENCE 

REP/REPElREPZlREPNE/REPNZ-Repeat String Operation Prefix 

Opcode 

F36C 

F36D 

F36D 

F3A4 

F3A5 

F3A5 

F36E 

F36F 

F36F 

F3AC 

F3AD 

F3AD 

F3AA 

F3AB 

F3AB 

F3A6 

F3A7 

F3A7 

F3AE 

F3AF 

F3 AF 

F2 A6 

F2A7 

F2 A7 

F2AE 

F2 AF 

F2 AF 

Description 

Instruction 

REP INS rlmB, DX 

REP INS rim 16,DX 

REP INS rlm32,DX 

REP MOVS mB,mB 

REP MOVS m16,m16 

REP MOVS m32,m32 

REP OUTS DX,rlmB 

REP OUTS DX,rlm16 

REP OUTS DX,rlm32 

REP LODSAL 

REP LODS AX 

REP LODS EAX 

REP STOS mB 

REP STOS m16 

REP STOS m32 

REPE CMPS mB,mB 

REPE CMPS m16,m16 

REPE CMPS m32,m32 

REPE SCAS mB 

REPE SCAS m16 

REPE SCAS m32 

REPNE CMPS mB,mB 

REPNE CMPS m16,m16 

REPNE CMPS m32,m32 

REPNE SCAS mB 

REPNE SCAS m16 

REPNE SCAS m32 

Description 

Input ECX bytes from port DX into ES:[EDI] 

Input ECX words from port DX into ES:[EDI] 

Input ECX doublewords from port DX into ES:[EDI] 

Move ECX bytes from DS:[ESI] to ES:[EDI] 

Move ECX words from DS:[ESI] to ES:[EDI] 

Move ECX doublewords from DS:[ESI] to ES:[EDI] 

Output ECX bytes from DS:[ESI] to port DX 

Output ECX words from DS:[ESI] to port DX 

Output ECX doublewords from DS:[ESI] to port DX 

Load ECX bytes from DS:[ESI] to AL 

Load ECX words from DS:[ESI] to AX 

Load ECX doublewords from DS:[ESI] to EAX 

Fill ECX bytes at ES:[EDI] with AL 

Fill ECX words at ES:[EDI] with AX 

Fill ECX doublewords at ES:[EDI] with EAX 

Find nonmatching bytes in ES:[EDI] and DS:[ESI] 

Find nonmatching words in ES:[EDI] and DS:[ESI] 

Find nonmatching doublewords in ES:[EDI] and DS:[ESI] 

Find non-AL byte starting at ES:[EDI] 

Find non-AX word starting at ES:[EDI] 

Find non-EAX doubleword starting at ES:[EDI] 

Find matching bytes in ES:[EDI] and DS:[ESI] 

Find matching words in ES:[EDI] and DS:[ESI] 

Find matching doublewords in ES:[EDI] and DS:[ESI] 

Find AL, starting at ES:[EDI] 

Find AX, starting at ES:[EDI] 

Find EAX, starting at ES:[EDI] 

Repeats a string instruction the number of times specified in the count register (ECX) or until 
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while 
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while 
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP 
prefix can be added to the INS, OUTS, MOVS, LaDS, and STOS instructions, and the REPE, 
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The 
REPZ and REPNZ prefixes are synonymous fonns of the REPE and REPNE prefixes, respec­
tively.) The behavior of the REP prefix is undefined when used with non-string instructions. 

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, 
use the LOOP instruction or another looping construct. 

I 
11-333 



INSTRUCTION SET REFERENCE 

All of these repeat prefixes cause the associated instruction to be repeated until the count in 
register ECX is decremented to 0 (see the following table). The REPE, REPNE, REPZ, and 
REPNZ prefixes also check the state of the ZF flag after each iteration and terminate the repeat 
loop if the ZF flag is not in the specified state. When both termination conditions are tested, the 
cause of a repeat termination can be determined either by testing the ECX register with a JECXZ 
instruction or by testing the ZF flag with a JZ, JNZ, and JNE instruction. 

Repeat Conditions 

Repeat Prefix Termination Condition 1 Termination Condition 2 

REP ECX=O None 

REPE/REPZ ECX=O ZF=O 

REPNE/REPNZ ECX=O ZF=l 

When the REPE/REPZ and REPNEIREPNZ prefixes are used, the ZF flag does not require 
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the 
results of the comparisons they make. 

A repeating string operation can be suspended by an exception or interrupt. When this happens, 
the state of the registers is preserved to allow the string operation to be resumed upon a return 
from the exception or interrupt handler. The source and destination registers point to the next 
string elements to be operated on, the EIP register points to the string instruction, and the ECX 
register has the value it held following the last successful iteration of the instruction. This mech­
anism allows long string operations to proceed without affecting the interrupt response time of 
the system. 

When a page fault occurs during CMPS or SCAS instructions that are prefixed with REPNE, the 
EFLAGS value is restored to the state prior to the execution of the instruction. Since SCAS and 
CMPS do not use EFLAGS as an input, the processor can resume the instruction after the page 
fault handler. 

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate 
at which these instructions execute. 

A REP STOS instruction is the fastest way to initialize a large block of memory. 

11-334 

I 



Operation 

IF AddressSize = 16 
THEN 

FI; 

use CX for CountReg; 
ELSE (* AddressSize = 32 *) 

use ECX for CountReg; 

WHILE CountReg "* 0 
DO 

service pending interrupts (if any); 
execute associated string instruction; 
Count Reg f- CountReg - 1; 
IF CountReg = 0 

THEN exit WHILE loop 
FI; 
IF (repeat prefix is REPZ or REPE) AND (ZF=O) 
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1) 

THEN exit WHILE loop 
FI; 

00; 

Flags Affected 

INSTRUCTION SET REFERENCE 

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS register. 

Exceptions (All Operating Modes) 

None; however, exceptions can be generated by the instruction a repeat prefix is associated with. 

I 
11-335 



INSTRUCTION SET REFERENCE in1et 

RET-Return from Procedure 

Opcode Instruction 

C3 RET 

CB RET 

C2 iw RET imm16 

CAiw RET imm16 

Description 

Near retu rn to call ing procedu re 

Far return to calling procedure 

Near return to calling procedure and pop imm16 bytes 
from stack 

Far return to calling procedure and pop imm16 bytes from 
stack 

Description 

Transfers program control to a return address located on the top of the stack. The address is 
usually placed on the stack by a CALL instruction, and the return is made to the instruction that 
follows the CALL instruction. 

The optional source operand specifies the number of stack bytes to be released after the return 
address is popped; the default is none. This operand can be used to release parameters from the 
stack that were passed to the called procedure and are no longer needed. 

The RET instruction can be used to execute three different types of returns: 

• 

• 

• 

Near return-A return to a calling procedure within the current code segment (the segment 
currently pointed to by the CS register), sometimes referred to as an intrasegment return. 

Far return-A return to a calling procedure located in a different segment than the current 
code segment, sometimes referred to as an intersegment return. 

Inter-privilege-Ievel far return-A far return to a different privilege level than that of the 
currently executing program or procedure. 

The inter-privilege-level return type can only be executed in protected mode. See Section 4.3., 
"Calling Procedures Using CALL and RET" for detailed information on near, far, and inter-priv­
ilege-level returns. 

When executing a near return, the processor pops the return instruction pointer (offset) from the 
top of the procedure stack into the EIP register and begins program execution at the new instruc­
tion pointer. The CS register is unchanged. 

When executing a far return, the processor pops the return instruction pointer from the top of the 
procedure stack into the EIP register, then pops the segment selector from the top of the stack 
into the CS register. The processor then begins program execution in the new code segment at 
the new instruction pointer. 

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except 
that the processor examines the privilege levels and access rights of the code and stack segments 
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and 
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if 
they refer to segments that are not allowed to be accessed at the new privilege level. Since a 

11-336 

I 



in1et INSTRUCTION SET REFERENCE 

stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded 
from the stack. 

Operation 

(* Near return *) 
IF instruction = near return 

THEN; 
IF Operand8ize = 32 

THEN 

FI; 

IF top 12 bytes of stack not within stack limits THEN #88(0); FI; 
EIP f- PopO; 

EL8E (* Operand8ize = 16 *) 
IF top 6 bytes of stack not within stack limits 

THEN #88(0) 
FI; 
tempEIP f- PopO; 
tempEIP f- tempEIP AND OOOOFFFFH; 
IF tempEIP not within code segment limits THEN #GP(O); FI; 
EIP f- tempEIP; 

IF instruction has immediate operand 
THEN IF 8tackAddress8ize=32 

THEN 

FI; 
FI; 

E8P f- E8P + 8RC; 
EL8E (* 8tackAddress8ize=16 *) 

8P f- 8P + 8RC; 

(* Real-address mode or virtual-8086 mode *) 
IF ((PE = 0) OR (PE = 1 AND VM = 1)) AND instruction = far return 

THEN; 
IF Operand8ize = 32 

FI; 

THEN 
IF top 12 bytes of stack not within stack limits THEN #88(0); FI; 
EIP f- PopO; 
C8 f- PopO; (* 32-bit pop, high-order 16-bits discarded *) 

EL8E (* Operand8ize = 16 *) 
IF top 6 bytes of stack not within stack limits THEN #88(0); FI; 
tempEIP f- PopO; 
tempEIP f- tempEIP AND OOOOFFFFH; 
IF tempEIP not within code segment limits THEN #GP(O); FI; 
EIP f- tempEIP; 
C8 f- PopO; (* 16-bit pop *) 

IF instruction has immediate operand THEN 8P f- 8P + (8RC AND FFFFH); FI; 
FI; 

I 
11-337 



INSTRUCTION SET REFERENCE 

(* Protected mode, not virtual 8086 mode *) 
IF (PE = 1 AND VM = 0) AND instruction = far RET 

THEN 
IF OperandSize = 32 

THEN 

FI; 

IF second doubleword on stack is not within stack limits THEN #SS(O); FI; 
ELSE (* OperandSize = 16 *) 

IF second word on stack is not within stack limits THEN #SS(O); FI; 

IF return code segment selector is null THEN GP(O); FI; 
IF return code segment selector addrsses descriptor beyond diescriptor table limit 

THEN GP(selector; FI; 
Obtain descriptor to which return code segment selector points from descriptor table 
IF return code segment descriptor is nat a code segment THEN #GP(selector); FI; 
if return code segment selector RPL < CPL THEN #GP(selector); FI; 
IF return code segment descriptor is condorming 

AND return code segment DPL > return code segment selector RPL 
THEN #GP(selector); FI; 

IF return code segment descriptor is not present THEN #NP(selector); FI: 
IF return code segment selector RPL > CPL 

FI; 
END;FI; 

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL; 
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL 

RETURN-SAME-PRIVILEGE-LEVEL: 
IF the return instruction pointer is not within ther return code segment limit 

THEN #GP(O); 
FI; 
IF OperandSize=32 

FI; 

THEN 
EIP f- PopO; 
CS f- PopO; (* 32-bit pop, high-order 16-bits discarded *) 
ESP f- ESP + SRC; 

ELSE (* OperandSize=16 *) 
EIP f- PopO; 
EIP f- EIP AND OOOOFFFFH; 
CS f- PopO; (* 16-bit pop *) 
ESP f- ESP + SRC; 

RETURN-OUTER-PRIVILEGE-LEVEL: 
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32) 

FI; 

OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16) 
THEN #SS(O); FI; 

Read return segment selector; 

11-338 

I 



I 

INSTRUCTION SET REFERENCE 

IF stack segment selector is null THEN #GP(O); FI; 
IF return stack segment selector index is not within its descriptor table limits 

THEN #GP(selector); FI; 
Read segment descriptor pointed to by return segment selector; 
IF stack segment selector RPL"* RPL of the return code segment selector 

OR stack segment is not a writable data segment 
OR stack segment descriptor DPL "* RPL of the return code segment selector 

THEN #GP(selector); FI; 
IF stack segment not present THEN #SS(StackSegmentSelector); FI; 

IF the return instruction pointer is not within the return code segment limit THEN #GP(O); FI: 
CPL ~ ReturnCodeSegmentSelector(RPL); 

IF OperandSize=32 
THEN 

EIP ~ PopO; 
CS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 
(* segment descriptor information also loaded *) 

CS(RPL) ~ CPL; 
ESP ~ ESP + SRC; 
tempESP ~ PopO; 
tempSS ~ PopO; (* 32-bit pop, high-order 16-bits discarded *) 
(* segment descriptor information also loaded *) 
ESP ~ tempESP; 
SS ~tempSS; 

ELSE (* OperandSize=16 *) 
EIP ~ PopO; 
EIP ~ EIP AND OOOOFFFFH; 
CS ~ PopO; (* 16-bit pop; segment descriptor information also loaded *) 
CS(RPL) ~ CPL; 
ESP ~ ESP + SRC; 
tempESP ~ PopO; 
tempSS ~ PopO; (* 16-bit pop; segment descriptor information also loaded *) 
(* segment descriptor information also loaded *) 
ESP ~ tempESP; 
SS ~ tempSS; 

FI; 
FOR each of segment register (ES, FS, GS, and DS) 

DO; 
IF segment register points to data or non-conforming code segment 
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *) 

THEN (* segment register invalid *) 

FI; 
OD; 

SegmentSelector ~ 0; (* null segment selector *) 

For each of ES, FS, GS, and DS 
DO 

11-339 



INSTRUCTION SET REFERENCE 

aD; 

I F segment selector index is not within descriptor table limits 
OR segment descriptor indicates the segment is not a data or 

readable code segment 
OR if the segment is a data or non-conforming code segment and the segment 

descriptor's DPL < CPL or RPL of code segment's segment selector 
THEN 

segment selector register f- null selector; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#GP(selector) 

#SS(O) 

#NP(selector) 

#PF(fault-code) 

#AC(O) 

11-340 

If the return code or stack segment selector null. 

If the return instruction pointer is not within the return code segment limit 

If the RPL of the return code segment selector is less then the CPL. 

If the return code or stack segment selector index is not within its 
descriptor table limits. 

If the return code segment descriptor does not indicate a code segment. 

If the return code segment is non-conforming and the segment selector's 
DPL is not equal to the RPL of the code segment's segment selector 

If the return code segment is conforming and the segment selector's DPL 
greater than the RPL of the code segment's segment selector 

If the stack segment is not a writable data segment. 

If the stack segment selector RPL is not equal to the RPL of the return code 
segment selector. 

If the stack segment descriptor DPL is not equal to the RPL of the return 
code segment selector. 

If the top bytes of stack are not within stack limits. 

If the return stack segment is not present. 

If the return code segment is not present. 

If a page fault occurs. 

If an unaligned memory access occurs when the CPL is 3 and alignment 
checking is enabled. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If the return instruction pointer is not within the return code segment limit 

#SS If the top bytes of stack are not within stack limits. 

Virtual 8086 Mode Exceptions 

#GP(O) If the return instruction pointer is not within the return code segment limit 

#SS(O) If the top bytes of stack are not within stack limits. 

#PF(fault-code) If a page fault occurs. 

#AC(O) If an unaligned memory access occurs when alignment checking is 
enabled. 

I 
11-341 



INSTRUCTION SET REFERENCE 

ROUROR-Rotate 

See entry for RCURCRIROUROR. 

11-342 

I 



INSTRUCTION SET REFERENCE 

RSM-Resume from System Management Mode 

Opcode 

OFAA 

Description 

Instruction 

RSM 

Description 

Resume operation of interrupted program 

Returns program control from system management mode (SMM) to the application program or 
operating system procedure that was interrupted when the processor received an SSM interrupt. 
The processor's state is restored from the dump created upon entering SMM. If the processor 
detects invalid state information during state restoration, it enters the shutdown state. The 
following invalid information can cause a shutdown: 

• Any reserved bit of CR4 is set to 1. 

• 
• 

Any illegal combination of bits in CRO, such as (PG=l and PE=O) or (NW=1 and CD=O). 

(Intel Pentium and Intel486 processors only.) The value stored in the state dump base field 
is not a 32-KByte aligned address. 

The contents of the model-specific registers are not affected by a return from SMM. 

See Chapter 9 in the Pentium® Pro Family Developer's Manual, Volume 3 for more information 
about SMM and the behavior of the RSM instruction. 

Operation 

ReturnFromSSM; 
ProcessorState <- Restore(SSMDump); 

Flags Affected 

All. 

Protected Mode Exceptions 

#UD If an attempt is made to execute this instruction when the processor is not 
inSMM. 

Real Address Mode Exceptions 

#UD If an attempt is made to execute this instruction when the processor is not 
inSMM. 

Virtual 8086 Mode Exceptions 

IIUD 

I 

If an attempt is made to execute this instruction when the processor is not 
in SMM. 

11-343 



INSTRUCTION SET REFERENCE 

SAHF-Store AH into Flags 

Opcode 

9E 

Description 

Instruction 

SAHF 

Clocks 

2 

Description 

Loads SF, ZF, AF, PF, and CF from AH into 
EFLAGS register 

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corre­
sponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register 
AH are ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS registers are set as 
shown in the "Operation" below 

Operation 

EFLAGS(SF:ZF:O:AF:O:PF:1:CF) f- AH; 

Flags Affected 

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1,3, and 5 
of the EFLAGS register are set to I, 0, and 0, respectively. 

Exceptions (All Operating Modes) 

None. 

11-344 

I 



INSTRUCTION SET REFERENCE 

SAUSARISHUSHR-Shift Instructions 

Opcode Instruction Description 

00/4 SAL rlmB,1 Multiply rlmB by 2, once 

02/4 SAL rlmB,CL Multiply rlmB by 2, CL times 

CO 14 ib SAL rlmB,immB Multiply rlmB by 2, immB times 

01/4 SAL rim 16,1 Multiply rlm16 by 2, once 

03/4 SAL rim 16,CL Multiply rlm16 by 2, CL times 

C1 14 ib SAL rim 16,immB Multiply rlm16 by 2, immB times 

01/4 SAL rlm32,1 Multiply rlm32 by 2, once 

03/4 SAL rlm32,CL Multiply rlm32 by 2, CL times 

C1 14 ib SAL rlm32,imm8 Multiply rlm32 by 2, imm8 times 

00/7 SAR rlmB,1 Signed divide* rlmB by 2, once 

02/7 SAR rlmB,CL Signed divide* rlmB by 2, CL times 

CO 17 ib SAR rlm8,imm8 Signed divide* rlmB by 2, immBtimes 

01/7 SAR rlm16,1 Signed divide* rim 16 by 2, once 

03/7 SAR rim 16,CL Signed divide* rlm16 by 2, CL times 

C1 17 ib SAR rlm16,immB Signed divide* rim 16 by 2, imm8 times 

01/7 SAR rlm32,1 Signed divide* rlm32 by 2, once 

03/7 SAR rlm32,CL Signed divide* rlm32 by 2, CL times 

C1 17 ib SAR rlm32,imm8 Signed divide* rlm32 by 2, imm8 times 

00/4 SHL rlm8,1 Multiply rlm8 by 2, once 

02/4 SHL rlm8,CL Multiply rlmB by 2, CL times 

CO 14 ib SHL rlmB,immB Multiply rlmB by 2, immB times 

01/4 SHL rim 16,1 Multiply rlm16 by 2, once 

03/4 SHL rim 16,CL Multiply rlm16 by 2, CL times 

C1 14 ib SHL rim 16,immB Multiply rim 16 by 2, immBtimes 

01/4 SHL rlm32,1 Multiply rlm32 by 2, once 

03/4 SHL rlm32,CL Multiply rlm32 by 2, CL times 

C1 14 ib SHL rlm32,immB Multiply rlm32 by 2, immB times 

00/5 SHR rlmB,1 Unsigned divide rlmB by 2, once 

02/5 SHR rlmB,CL Unsigned divide rlmB by 2, CL times 

CO 15 ib SHR rlmB,immB Unsigned divide rlmB by 2, immB times 

01/5 SHR rim 16,1 Unsigned divide rlm16 by 2, once 

03/5 SHR rim 16,CL Unsigned divide rlm16 by 2, CL times 

C1 15 ib SHR rim 16,immB Unsigned divide rlm16 by 2, immB times 

01/5 SHR rlm32,1 Unsigned divide rlm32 by 2, once 

03/5 SHR rlm32,CL Unsigned divide rlm32 by 2, CL times 

C1 15 ib SHR rlm32,immB Unsigned divide rlm32 by 2, immB times 

NOTE: 

* Not the same form of division as 101V; rounding is toward negative infinity. 

I 
11-345 



INSTRUCTION SET REFERENCE 

Description 

Shift the bits in the first operand (destination operand) to the left or right by the number of bits 
specified in the second operand (count operand). Bits shifted beyond the destination operand 
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, thc 
CF flag contains the last bit shifted out of the destination operand. 

The destination operand can be a register or a memory location. The count operand can be an 
immediate value or register CL. The count is masked to 5 bits, which limits the count range to 
from 0 to 31. A special opcode encoding is provide for a count of l. 

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper­
ation; they shift the bits in the destination operand to the left (toward more significant bit loca­
tions). For each shift count, the most significant bit of the destination operand is shifted into the 
CF flag, and the least significant bit is cleared (see Figure 6-6). 

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the 
destination operand to the right (toward less significant bit locations). For each shift count, the 
least significant bit of the destination operand is shifted into the CF flag, and the most significant 
bit is either set or cleared depending on the instruction type. The SHR instruction clears the most 
significant bit (see Figure 6-7); the SAR instruction sets or clears the most significant bit to 
correspond to the sign (most significant bit) of the original value in the destination operand. In 
effect, the SAR instruction fills the empty bit position's shifted value with the sign of the 
unshifted value (see Figure 6-8). 

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively, 
of the destination operand by powers of 2. For example, using the SAR instruction shift a signed 
integer 1 bit to the right divides the value by 2. 

Using the SAR instruction to perform a division operation does not produce the same result as 
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas 
the "quotient" of the SAR instruction is rounded toward negative infinity. This difference is 
apparent only for negative numbers. For example, when the IDIV instruction is used to divide 
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by 
two bits, the result is -3 and the "remainder" is +3; however, the SAR instruction stores only the 
most significant bit of the remainder (in the CF flag). 

The OF flag is affected only on I-bit shifts. For left shifts, the OF flag is cleared to 0 if the most­
significant bit of the result is the same as the CF flag (that is, the top two bits of the original 
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared 
for all I-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the 
original operand. 

11-346 

I 



intet 
Operation 

tempCOUNT ~ COUNT; 
tempO EST ~ DEST; 
WHILE (tempCOUNT::;:' 0) 
DO 

IF instruction is SAL or SHL 
THEN 

FI; 

CF ~ MSB(DEST); 
ELSE (* instruction is SAR or SHR *) 

CF ~ LSB(DEST); 

IF instruction is SAL or SHL 
THEN 

DEST ~ DEST * 2; 
ELSE 

IF instruction is SAR 
THEN 

INSTRUCTION SET REFERENCE 

DEST ~ DEST 12 (*Signed divide, rounding toward negative infinity*); 
ELSE (* instruction is SHR *) 

DEST ~ DEST 1 2 ; (* Unsigned divide *); 
FI; 

FI; 
temp ~ temp - 1 ; 

00; 
(* Determine overflow for the various instructions *) 
IFCOUNT= 1 

FI; 

I 

THEN 
IF instruction is SAL or SHL 

THEN 

FI; 
ELSE 

OF ~ MSB(DEST) XOR CF; 
ELSE 

IF instruction is SAR 
THEN 

FI; 

OF~O; 

ELSE (* instruction is SHR *) 
OF ~ MSB(tempDEST); 

OF ~ undefined; 

11-347 



INSTRUCTION SET REFERENCE 

Flags Affected 

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde­
fined for SHL and SHR instructions count is greater than or equal to the size of the destination 
operand. The OF flag is affected only for I-bit shifts (see "Description" above); otherwise, it is 
undefined. The SF, ZF, and PF flags are set according to the result. If the count is 0, the flags are 
not affected. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault-code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

The 8086 does not mask the shift count. All Intel Architecture processors from the Inte1386 
processor on do mask the rotation count in all operating modes. 

11-348 

I 



INSTRUCTION SET REFERENCE 

SBB-Integer Subtraction with Borrow 

Opcode 

1C ib 

1Diw 

1Did 

80/3 ib 

81/3 iw 

81 13 id 

83/3 ib 

83/3 ib 

181r 

191r 

191r 

1A Ir 

1B Ir 

1B Ir 

Description 

Instruction 

SBB AL,immB 

SBB AX,imm 16 

SBB EAX,imm32 

SBB rlmB,immB 

SBB rim 16,imm16 

SBB rlm32,imm32 

SBB rlm16,immB 

SBB rlm32,immB 

SBB rlmB,rB 

SBB rim 16,r16 

SBB rlm32,r32 

SBB rB,rlmB 

SBB r16,rlm16 

SBB r32,rlm32 

Description 

Subtract with borrow immB from AL 

Subtract with borrow imm16 from AX 

Subtract with borrow imm32 from EAX 

Subtract with borrow immB from rlmB 

Subtract with borrow imm16 from rlm16 

Subtract with borrow imm32 from rlm32 

Subtract with borrow sign-extended immB from rim 16 

Subtract with borrow sign-extended immB from rlm32 

Subtract with borrow rB from rlmB 

Subtract with borrow r16from rlm16 

Subtract with borrow r32 from rlm32 

Subtract with borrow rlmB from rB 

Subtract with borrow rim 16 from r16 

Subtract with borrow rlm32 from r32 

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from 
the destination operand (first operand). The result of the subtraction is stored in the destination 
operand. The destination operand can be a register or a memory location; the source operand can 
be an immediate, a register, or a memory location. The state of the CF flag represents a borrow 
from a previous subtraction. 

When an immediate value is used as an operand, it is sign-extended to the length of the destina­
tion operand format. 

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the 
processor evaluates the result for both data types and sets the OF and CF flags to indicate a 
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed 
result. 

The SBB instruction is usually executed as part of a multibyte or multi word subtraction in which 
a SUB instruction is followed by a SBB instruction. 

Operation 

DEST f- DEST - (SRC + CF); 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

I 
11-349 



INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-350 

If a memory operand effectIve address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

SCAS/SCASB/SCASW/SCASD-Scan String Data 

Opcode 

AE 

AF 
AF 
AE 

AF 
AF 

Description 

Instruction 

SCAS ES:(E)DI 

SCAS ES:DI 

SCAS ES:EDI 

SCASB 

SCASW 

SCASD 

Description 

Compare AL with byte at ES:(E)DI and set status flags 

Compare AX with word at ES:DI and set status flags 

Compare EAX with doubleword at ES:EDI and set status flags 

Compare AL with byte at ES:(E)DI and set status flags 

Compare AX with word at ES:DI and set status flags 

Compare EAX with doubleword at ES:EDI and set status flags 

Compares the byte, word, or double word specified with the source operand with the value in 
the AL, AX, or EAX register, respectively, and sets the status flags in the EFLAGS register 
according to the results. The source operand specifies the memory location at the address 
ES:EDI. (When the operand-size attribute is 16, the DI register is used as the source-index 
register.) The ES segment cannot be overridden with a segment override prefix. 

The SCASB, SCASW, and SCASD mnemonics are synonyms of the byte, word, and double­
word versions of the SCAS instructions. They are simpler to use, but provide no type or segment 
checking. (For the SCAS instruction, "ES:EDI" must be explicitly specified in the instruction.) 

After the comparison, the EDI register is incremented or decremented automatically according 
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is incre­
mented; ifthe DF flag is 1, the EDI register is decremented.) The EDI register is incremented or 
decremented by 1 for byte operations, by 2 for word operations, or by 4 for double word opera­
tions. 

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for 
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc­
tions will be used in a LOOP construct that takes some action based on the setting of the status 
flags before the next comparison is made. See Chapter 11, "REP/REPEIREPZ/REPNE 
IREPNZ-Repeat String Operation Prefix" for a description of the REP prefix. 

Operation 

IF (byte cmparison) 
THEN 

I 

temp f- AL - SRC; 
SetStatusFlags(temp); 

THEN IF OF = 0 
THEN (E)OI f- 1; 
ELSE (E)OI f- -1; 

FI; 
ELSE IF (word comparison) 

THEN 
temp f- AX - SRC; 

11-351 



INSTRUCTION SET REFERENCE intet 

FI; 
FI; 

SetStatusFlags(temp) 
THEN IF DF = 0 

THEN DI f- 2; 
ELSE DI f- -2; 

FI; 
ELSE (* doubleword comparison *) 

temp f- EAX - SRC; 
SetStatusFlags(temp) 

THEN IF DF = 0 

FI; 

THEN EDI f- 4; 
ELSE EDI f- -4; 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison. 

Protected Mode Exceptions 

#GP(O) 

#PF( fault -code) 

#AC(O) 

If a memory operand effective address is outside the limit of the ES 
segment. 

If the ES register contains a null segment selector. 

If an illegal memory operand effective address in the ES segment is given. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault-code) 

#AC(O) 

11-352 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



SETcc-Set Byte on Condition 

Opcode Instruction 

OF 97 SETA rlmB 

OF 93 SETAE rlmB 

OF 92 SETB rlmB 
OF 96 SETBE rlmB 

OF 92 SETC rlmB 

OF 94 SETE rlmB 
OF9F SETG rlmB 

OF9D SETGE rlmB 
OF9C SETL rlmB 

OF9E SETLE rlmB 

OF 96 SETNA rlmB 

OF 92 SETNAE rlmB 

OF 93 SETNB rlmB 

OF 97 SETNBE rlmB 

OF 93 SETNC rlmB 

OF 95 SETNE rlmB 

OF9E SETNG rlmB 

OF9C SETNGE rlmB 
OF9D SETNL rlmB 

OF9F SETNLE rlmB 

OF 91 SETNO rlmB 

OF9B SETNP rlmB 
OF 99 SETNS rlmB 

OF 95 SETNZ rlmB 

OF 90 SETO rlmB 

OF9A SETP rlmB 

OF9A SETPE rlmB 
OF9B SETPO rlmB 

OF 98 SETS rlmB 

OF 94 SETZ rlmB 

Description 

INSTRUCTION SET REFERENCE 

Description 

Set byte if above (CF=O and ZF=O) 

Set byte if above or equal (CF=O) 

Set byte if below (CF=1) 

Set byte if below or equal (CF=1 or (ZF=1) 

Set if carry (CF=1) 

Set byte if equal (ZF=1) 

Set byte if greater (ZF=O and SF=OF) 

Set byte if greater or equal (SF=OF) 

Set byte if less (SF<>OF) 

Set byte if less or equal (ZF=1 or SF<>OF) 

Set byte if not above (CF=1 or ZF=1) 

Set byte if not above or equal (CF=1) 

Set byte if not below (CF=O) 

Set byte if not below or equal (CF=O and ZF=O) 

Set byte if not carry (CF=O) 

Set byte if not equal (ZF=O) 

Set byte if not greater (ZF=1 or SF<>OF) 

Set if not greater or equal (SF<>OF) 

Set byte if not less (SF=OF) 

Set byte if not less or equal (ZF=O and SF=OF) 

Set byte if not overflow (OF=O) 

Set byte if not parity (PF=O) 

Set byte if not sign (SF=O) 

Set byte if not zero (ZF=O) 

Set byte if overflow (OF=1) 

Set byte if parity (PF=1) 

Set byte if parity even (PF=1) 

Set byte if parity odd (PF=O) 

Set byte if sign (SF=1) 

Set byte if zero (ZF=1) 

Set the destination operand to the value 0 or I, depending on the settings of the status flags (CF, 
SF, OF, ZF, and PF) in the EFLAGS register. The destination operand points to a byte register or 
a byte in memory. The condition code suffix (cc) indicates the condition being tested for. 

The terms "above" and "below" are associated with the CF flag and refer to the relationship 
between two unsigned integer values. The terms "greater" and "less" are associated with the SF 
and OF flags and refer to the relationship between two signed integer values. 

I 
11-353 



INSTRUCTION SET REFERENCE 

Many of the SETcc instruction opcodes have alternate mnemonics. For example, the SETG (set 
byte if greater) and SETNLE (set if not less or equal) both have the same opcode and test for the 
same condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make 
code more intelligible. Appendix B, EFIAGS Condition Codes, shows the alternate mnemonics 
for various test conditions. 

Some languages represent a logical one as an integer with all bits set. This representation can be 
arrived at by choosing the mutually exclusive condition for the SETcc instruction, then decre­
menting the result. For example, to test for overflow, use the SETNO instruction, then decrement 
the result. 

Operation 

IF condition 
THEN DEST~ 1 
ELSE DEST ~ 0; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If theDS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

11-354 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-355 



INSTRUCTION SET REFERENCE 

SGDT/SIDT-Store Global/Interrupt Descriptor Table Register 

Opcode 

OF 01/0 

OF 01/1 

Description 

Instruction 

SGOTm 

SIOTm 

Description 

Store GOTR to m 

Store IOTR to m 

Stores the contents of the global descriptor table register (GDTR) or the interrupt descriptor 
table register (IDTR) in the destination operand. The destination operand is a pointer to 6-byte 
memory location. If the operand-size attribute is 32 bits, the l6-bit limit field of the register is 
stored in the lower 2 bytes of the memory location and the 32-bit base address is stored in the 
upper 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the lower 2 bytes and 
the 24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte is filled 
with Os. 

The SGDT and SIDT instructions are useful only in operating-system software; however, they 
can be used in application programs. 

See Chapter 11, "LGDT/UDT-Load GloballInterrupt Descriptor Table Register" for informa­
tion on loading the GDTR and IDTR. 

Operation 

IF instruction is IDTR 
THEN 

FI; 

IF OperandSize = 16 

FI; 

THEN 
DEST[0:15] ~ IDTR(Limit); 
DEST[16:39] ~ IDTR(8ase); (* 24 bits of base address loaded; *) 
DEST[40:47] ~ 0; 

ELSE (* 32-bit Operand Size *) 
DEST[0:15] ~ IDTR(Limit); 
DEST[16:47] ~ IDTR(8ase); (* full 32-bit base address loaded *) 

ELSE (* instruction is SGDT *) 
IF OperandSize = 16 

FI; 

THEN 
DEST[0:15] ~ GDTR(Limit); 
DEST[16:39] ~ GDTR(8ase); (* 24 bits of base address loaded; *) 
DEST[40:47] ~ 0; 

ELSE (* 32-bit Operand Size *) 
DEST[0:15] ~ GDTR(Limit); 
DEST[16:47] ~ GDTR(8ase); (* full 32-bit base address loaded *) 

11-356 

I 



Flags Affected 

None. 

INSTRUCTION SET REFERENCE 

Protected Mode Exceptions 

#UD 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination operand is a register. 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If an unaligned memory access occurs when the CPL is 3 and alignment 
checking is enabled. 

Real Address Mode Exceptions 

#UD If the destination operand is a register. 

#GP 

#SS 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#UD 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If the destination operand is a register. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If an unaligned memory access occurs when alignment checking is 
enabled. 

Intel Architecture Compatibility 

The 16-bit forms of the SGDT and SmT instructions are compatible with the Intel 286 
processor, if the upper 8 bits are not referenced. The Intel 286 processor fills these bits with Is; 
the Pentium Pro processor fills these bits with Os. 

I 
11-357 



INSTRUCTION SET REFERENCE 

SHUSHR-5hift Instructions 

See entry for SAL/SARISHUSHR. 

11-358 

I 



intet INSTRUCTION SET REFERENCE 

SHLD-Double Precision Shift Left 

Opcode 

OFA4 

OFA5 

OFA4 

OFA5 

Instruction 

SHLD r/m16,r16,immB 

SHLD r/m16,r16,CL 

SHLD r/m32,r32,immB 

SHLD r/m32,r32,CL 

Description 

Shift r/m16to left immBplaces while shifting bits from r16 
in from the right 

Shift r/m 16 to left CL places while shifting bits from r16in 
from the right 

Shift r/m32 to left immB places while shifting bits from r32 
in from the right 

Shift r/m32 to left CL places while shifting bits from r32 in 
from the right 

Description 

Shifts the first operand (destination operand) to the left the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the 
right (starting with bit 0 of the destination operand). The destination operand can be a register 
or a memory location; the source operand is a register. The count operand is an unsigned integer 
that can be an immediate byte or the contents of the CL register. Only bits 0 through 4 of the 
count are used, which masks the count to a value between 0 and 31. If the count is greater than 
the operand size, the result in the destination operand is undefined. 

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination 
operand. For a I-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If 
the count operand is 0, the flags are not affected. 

The SHLD instruction is useful for multiprecision shifts of 64 bits or more. 

Operation 

COUNT t- COUNT MOD 32; 
SIZE t- OperandSize 
IFCOUNT=O 

I 

THEN 
no operation 

ELSE 
IF COUNT <?: SIZE 

THEN (* Bad parameters *) 
DEST is undefined; 
CF, OF, SF, ZF, AF, PF are undefined; 

ELSE (* Perform the shift *) 
CF t- BIT[DEST, SIZE - COUNT]; 
(* Last bit shifted out on exit *) 
FOR it-SIZE - 1 DOWNTO COUNT 
DO 

Bit(DEST, i) t- Bit(DEST, i-COUNT); 
aD; 
FOR it-COUNT - 1 DOWNTO 0 

11-359 



INSTRUCTION SET REFERENCE 

FI; 
FI; 

DO 
BIT[DEST, i] ~ BIT[SRC, i-COUNT + SIZE]; 

00; 

Flags Affected 

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination 
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift, 
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than I bit, 
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the 
flags are not affected. If the count is greater than the operand size, the flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a non writable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-360 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

SHRD-Double Precision Shift Right 

Opcode 

OFAC 

OFAD 

OFAC 

OFAD 

Instruction 

SHRD rim 16,r16,immB 

SHRD rlm16,r16,CL 

SHRD rlm32,r32,immB 

SHRD rlm32,r32,CL 

Description 

Shift rlm16 to right immB places while shifting bits from 
r16 in from the left 

Shift rlm16 to right CL places while shifting bits from r16 
in from the left 

Shift rlm32 to right immB places while shifting bits from 
r32 in from the left 

Shift rlm32 to right CL places while shifting bits from r32 
in from the left 

Description 

Shifts the first operand (destination operand) to the right the number of bits specified by the third 
operand (count operand). The second operand (source operand) provides bits to shift in from the 
left (starting with the most significant bit of the destination operand). The destination operand 
can be a register or a memory location; the source operand is a register. The count operand is an 
unsigned integer that can be an immediate byte or the contents of the CL register. Only bits ° 
through 4 of the count are used, which masks the count to a value between ° and 31. If the count 
is greater than the operand size, the result in the destination operand is undefined. 

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination 
operand. For a I-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If 
the count operand is 0, the flags are not affected. 

The SHRD instruction is useful for multiprecision shifts of 64 bits or more. 

Operation 

COUNT +- COUNT MOD 32; 
SIZE +- OperandSize 
IFCOUNT=O 

I 

THEN 
no operation 

ELSE 
IF COUNT ~ SIZE 

THEN (* Bad parameters *) 
DEST is undefined; 
CF, OF, SF, ZF, AF, PF are undefined; 

ELSE (* Perform the shift *) 
CF +- BIT[DEST, COUNT -1]; (* last bit shifted out on exit *) 
FOR i +- 0 TO SIZE - 1 ~ COUNT 

DO 
BIT[DEST, i] +- BIT[DEST, i-COUNT]; 

00; 
FOR i +- SIZE - COUNT TO SIZE - 1 

DO 

11-361 



INSTRUCTION SET REFERENCE 

FI; 
FI; 

Flags Affected 

BIT[OEST,i] f- BIT[inBits,i+COUNT - SIZE]; 
00; 

If the count is I or greater, the CF flag is filled with the last bit shifted out of the destination 
operand and the SF, ZF, and PF flags are set according to the value of the result. For a I-bit shift, 
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than I bit, 
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the 
flags are not affected. If the count is greater than the operand size, the flags are undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11·362 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

SlOT-Store Interrupt Descriptor Table Register 

See entry for SGDT/SIDT. 

I 
11-363 



INSTRUCTION SET REFERENCE 

SLOT-Store Local Descriptor Table Register 

Opcode 

OF 00/0 

OF 00/0 

Description 

Instruction 

SLOT rim 16 

SLOT rlm32 

Description 

Stores segment selector from LOTR in rlm16 

Store segment selector from LOTR in low-order 16 bits of 
rlm32; high-order 16 bits are undefined 

Stores the segment selector from the local descriptor table register (LDTR) in the destination 
operand. The destination operand can be a general-purpose register or a memory location. The 
segment selector stored with this instruction points to the LDT. 

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the 
lower 16 bits of the register and the upper 16 bits of the register are cleared to Os. With the desti­
nation operand is a memory location, the segment selector is written to memory as a 16-bit quan­
tity, regardless of the operand size. 

The SLDT instruction is only useful in operating-system software; however, it can be used in 
application programs. Also, this instruction can only be executed in protected mode. 

Operation 

DEST f- LDTR(SegmentSelector); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#UD The SLDT instruction is not recognized in real address mode. 

11-364 

I 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#UD The SLDT instruction is not recognized in virtual 8086 mode. 

I 
11-365 



INSTRUCTION SET REFERENCE intet 

SMSW-Store Machine Status Word 

Opcode 

OF 01/4 

OF 01/4 

Description 

Instruction 

SMSW rim 16 

SMSW r321m16 

Description 

Store machine status word to rim 16 

Store machine status word in low-order 16 bits of r321m 16; 
high-order 16 bits of r32 are undefined 

Stores the machine status word (bits 0 through 15 of control register CRO) into the destination 
operand. The destination operand can be a 16-bit general-purpose register or a memory location. 

When the destination operand is a 32-bit register, the low-order 16 bits of register CRO are 
copied into the low-order 16 bits of the register and the upper 16 bits of the register are unde­
fined. With the destination operand is a memory location, the low-order 16 bits of register CRO 
are written to memory as a 16-bit quantity, regardless ofthe operand size. 

The SMSW instruction is only useful in operating-system software; however, it is not a privi­
leged instruction and can be used in application programs. 

This instruction is provided for compatibility with the Intel 286 processor; programs and proce­
dures intended to run on the Pentium Pro, Pentium, Inte1486, and Inte1386 processors should use 
the MOV (control registers) instruction to load the machine status word. 

Operation 

DEST ~ CRO[15:0]; (* MachineStatusWord *); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the destination is located in a non writable segment. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-366 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

I 



INSTRUCTION SET REFERENCE 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#PFCfault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-367 



INSTRUCTION SET REFERENCE 

STC-Set Carry Flag 

Opcode 

F9 

Description 

Instruction 

STC 

Sets the CF flag in the EFLAGS register. 

Operation 

CF~ 1; 

Flags Affected 

Description 

Set CFflag 

The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected. 

Exceptions (All Operating Modes) 

None. 

11-368 

I 



STD-Set Direction Flag 

Opcode 

FD 

Description 

Instruction 

STD 

Description 

Set DFflag 

INSTRUCTION SET REFERENCE 

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre­
ment the index registers (ESI and/or EDI). 

Operation 

DF~ 1; 

Flags Affected 

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected. 

Operation 

DF~ 1; 

Exceptions (All Operating Modes) 

None. 

I 
11-369 



INSTRUCTION SET REFERENCE 

STI-Set Interrupt Flag 

Opcode 

FB 

Description 

Instruction 

STI 

intet 

Description 

Set interrupt flag; interrupts enabled aUhe end of the next 
instruction 

Sets the interrupt flag (IF) in the EFLAGS register. After the IF flag is set, the processor begins 
responding to external maskable interrupts after the next instruction is executed. If the STI 
instruction is followed by a CLI instruction (which clears the IF flag) the effect of the STI 
instruction is negated. 

The IF flag and the STI and CLI instruction have no affect on the generation of exceptions and 
NMI interrupts. 

The following decision table indicates the action of the STI instruction (bottom of the table) 
depending on the processor's mode of operating and the CPL and IOPL of the currently running 
program or procedure (top of the table). 

PE= 

VM= 

CPL 

IOPL 

IF f-1 

#GP(O) 

NOTES: 

X Don't care 

N Action in Column 1 not taken 

Y Action in Column 1 taken 

11-370 

0 

X 

X 

X 

Y 

N 

1 1 1 

0 0 1 

:510PL >IOPL =3 

X X =3 

Y N Y 

N Y N 

I 



INSTRUCTION SET REFERENCE 

Operation 

IF PE=O (* Executing in real-address mode *) 
THEN 

FI; 

IF f- 1; (* Set Interrupt Flag *) 
ELSE (* Executing in protected mode or virtual-8086 mode *) 

IF VM=O (* Executing in protected mode*) 

FI; 

THEN 
IF IOPL = 3 

THEN 

FI; 

IF f- 1; 
ELSE 

IF CPL~ IOPL 
THEN 

FI; 

IF f- 1; 
ELSE 

#GP(O); 

ELSE (* Executing in Virtual-8086 mode *) 
#GP(O); (* Trap to virtual-8086 monitor *) 

Flags Affected 

The IF flag is set to 1. 

Protected Mode Exceptions 

#GP(O) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) If the CPL is greater (has less privilege) than the IOPL of the current 
program or procedure. 

I 
11-371 



INSTRUCTION SET REFERENCE 

STOS/STOSB/STOSW/STOSD-Store String Data 

Opcode 

AA 

AS 

AS 

AA 

AS 

AS 

Description 

Instruction 

STOS ES:(E)DI 

STOS ES:DI 

STOS ES:EDI 

STOSS 

STOSW 

STOSD 

Description 

Store AL at address ES:(E)DI 

Store AX at address ES:DI 

Store EAX at address ES:EDI 

Store AL at address ES:(E)DI 

Store AX at address ES:DI 

Store EAX at address ES:EDI 

intet 

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the 
destination operand. The destination operand is a memory location at the address ES:EDI. 
(When the operand-size attribute is 16, the DI register is used as the source-index register.) The 
ES segment cannot be overridden with a segment override prefix. 

The STOSB, STOSW, and STOSD mnemonics are synonyms of the byte, word, and doubleword 
versions of the STOS instructions. They are simpler to use, but provide no type or segment 
checking. (For the STOS instruction, "ES:EDI" must be explicitly specified in the instruction.) 

After the byte, word, or doubleword is transfer from the AL, AX, or EAX register to the memory 
location, the EDI register is incremented or decremented automatically according to the setting 
of the DF flag in the EFLAGS register. (If the DF flag is 0, the EDI register is incremented; if 
the DF flag is 1, the EDI register is decremented.) The EDI register is incremented or decre­
mented by 1 for byte operations, by 2 for word operations, or by 4 for double word operations. 

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for 
block loads of ECX bytes, words, or doublewords. More often, however, these instructions are 
used within a LOOP construct, because data needs to be moved into the AL, AX, or EAX 
register before it can be stored. See Chapter 11, "REP/REPE/REPZ/REPNE 
IREPNZ-Repeat String Operation Prefix" for a description of the REP prefix. 

Operation 

I F (byte store) 
THEN 

OEST +- AL; 
THEN IF OF = 0 

THEN (E)OI +- 1; 
ELSE (E)OI +- -1; 

FI; 
ELSE IF (word store) 

THEN 

11-372 

OEST +- AX; 
THEN IF OF = 0 

THEN 01 +- 2; 

I 



INSTRUCTION SET REFERENCE 

ELSE 01 ~-2; 
FI; 

ELSE (* doubleword store *) 
OEST~ EAX; 

FI; 
FI; 

THEN IF OF = 0 
THEN EOI ~4; 
ELSE EOI ~ -4; 

FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#PF(fault-code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the limit of the ES 
segment. 

If the ES register contains a null segment selector. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

11-373 



INSTRUCTION SET REFERENCE intet 

STR-Store Task Register 

Opcode 

OF 00/1 

Description 

Instruction 

STR rim 16 

Description 

Stores segment selector from TR in rim 16 

Stores the segment selector from the task register (TR) in the destination operand. The destina­
tion operand can be a general-purpose register or a memory location. The segment selector 
stored with this instruction points to the task state segment (TSS) for the currently running task. 

When the destination operand is a 32-bit register, the l6-bit segment selector is copied into the 
lower 16 bits of the register and the upper 16 bits of the register are cleared to Os. With the desti­
nation operand is a memory location, the segment selector is written to memory as a l6-bit 
quantity, regardless of operand size. 

The STR instruction is useful only in operating-system software. It can only be executed in 
protected mode. 

Operation 

DEST ~ TR(SegmentSelector); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If the destination is a memory operand that is located in a nonwritable 
segment or if the effective address is outside the CS, DS, ES, FS, or GS 
segment limit. 

If the DS, ES, FS, or GS register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#UD The STR instruction is not recognized in real address mode. 

Virtual 8086 Mode Exceptions 

#UD The STR instruction is not recognized in virtual 8086 mode. 

11-374 

I 



INSTRUCTION SET REFERENCE 

SUB-Integer Subtraction 

Opcode Instruction 

2C ib SUBAL,immB 

20 iw SUB AX,imm16 

20id SUB EAX,imm32 

8015 ib SUB rlmB,immB 

81 15 iw SUB rlm16,imm16 

81 15 id SUB rlm32,imm32 

8315 ib SUB rlm16,immB 

8315 ib SUB rlm32,immB 

281r SUB rlmB,rB 

291r SUB rlm16,r16 

291r SUB rlm32,r32 

2A Ir SUB rB,rlmB 

2B Ir SUB r16,rlm16 

2B Ir SUB r32,rlm32 

Description 

Description 

Subtract immBfrom AL 

Subtract imm 16 from AX 

Subtract imm32 from EAX 

Subtract immB from rlmB 

Subtract imm 16 from rlm16 

Subtract imm32 from rlm32 

Subtract sign-extended immB from rim 16 

Subtract sign-extended immB from rlm32 

Subtract rB from rlmB 

Subtract r16from rlm16 

Subtract r32 from rlm32 

Subtract rlmB from rB 

Subtract rim 16 from r16 

Subtract rlm32 from r32 

Subtracts the second operand (source operand) from the first operand (destination operand) and 
stores the result in the destination operand. The destination operand can be a register or a 
memory location; the source operand can be an immediate, register, or memory location. When 
an immediate value is used as an operand, it is sign-extended to the length of the destination 
operand format. 

The SUB instruction does not distinguish between signed or unsigned operands. Instead, the 
processor evaluates the result for both data types and sets the OF and CF flags to indicate a 
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed 
result. 

Operation 

DEST f- DEST - SRC; 

Flags Affected 

The OF, SF, ZF, AF, PF, and CF flags are set according to the result. 

Protected Mode Exceptions 

#GP(O) If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

I 
11-375 



INSTRUCTION SET REFERENCE intet 

#SS(O) 

#PF(fault-code) 

#ACCO) 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#OP If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#OP(O) 

#SS(O) 

#PF(fault-code) 

#ACCO) 

11-376 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
OS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



TEST-Logical Compare 

Opcode Instruction 

A8 ib TEST AL,immB 

A9iw TEST AX,imm16 

A9 id TEST EAX,imm32 

F6/0 ib . TEST rlmB,immB 

F710 iw TEST rim 16,imm 16 

F710 id TEST rlm32,imm32 

841r TEST rlmB,rB 

851r TEST rim 16,r16 

851r TEST rlm32,r32 

Description 

INSTRUCTION SET REFERENCE 

Description 

AND immB with AL; set SF, ZF, PF according to result 

AND imm16with AX; set SF, ZF, PF according to result 

AND imm32 with EAX; set SF, ZF, PF according to result 

AND immB with rlmB; set SF, ZF, PF according to result 

AND imm16 with rlm16; set SF, ZF, PF according to result 

AND imm32 with rlm32; set SF, ZF, PF according to result 

AND rBwith rlmB; set SF, ZF, PF according to result 

AND r16with rim 16; set SF, ZF, PF according to result 

AND r32with rlm32; set SF, ZF, PF according to result 

Computes the bit-wise logical AND of first operand (source I operand) and the second operand 
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is 
then discarded. 

Operation 

TEMP ~ SRC1 AND SRC2; 
SF ~ MSB(TEMP); 
IFTEMP = 0 

THEN ZF ~ 0; 
ELSE ZF ~ 1; 

FI: 
PF ~ BitwiseXNOR(TEMP[0:7]); 
CF~O; 

OF~O; 

(*AF is Undefined*) 

Flags Affected 

The OF and CF flags are cleared to O. The SF, ZF, and PF flags are set according to the result 
(see "Operation" above). The state of the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-377 



INSTRUCTION SET REFERENCE 

#AC(O) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-378 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

UD2-Undefined Instruction 

Opcode 

OF 08 

Description 

Instruction 

UD2 

Description 

Raise invalid opcode exception 

Generates an invalid opcode. This instruction is provided for software testing to explicitly 
generate an invalid opcode. The opcode for this instruction is reserved for this purpose. 

Other than raising the invalid opcode exception, this instruction is the same as the Nap instruc­
tion. 

Operation 

#UD (* Generates invalid opcode exception *); 

Flags Affected 

None. 

Exceptions (All Operating Modes) 

#UD 

I 

Instruction is guaranteed to raise an invalid opcode exception in all oper­
ating modes). 

11-379 



INSTRUCTION SET REFERENCE 

VERR, VERW-Verify a Segment for Reading or Writing 

Opcode 

OF 00/4 

OF 00/5 

Description 

Instruction 

VERR rlm16 
VERW rim 16 

Description 

Set ZF=1 if segment specified with rim 16 can be read 

Set ZF=1 if segment specified with rim 16 can be written 

Verifies whether the code or data segment specified with the source operand is readable (VERR) 
or writable (VERW) from the current privilege level (CPL). The source operand is a 16-bit 
register or a memory location that contains the segment selector for the segment to be verified. 
If the segment is accessible and readable (VERR) or writable (VERW), the ZF flag is set; other­
wise, the ZF flag is cleared. Code segments are never verified as writable. This check cannot be 
performed on system segments. 

To set the ZF flag, the following conditions must be met: 

• 
• 

• 

• 

• 

The segment selector is not null. 

The selector must denote a descriptor within the bounds of the descriptor table (GDT or 
LDT). 

The selector must denote the descriptor of a code or data segment (not that of a system 
segment or gate). 

For the VERR instruction, the segment must be readable; the VERW instruction, the 
segment must be a writable data segment. 

If the segment is not a conforming code segment, the segment's DPL must be greater than 
or equal to (have less or the same privilege as) both the CPL and the segment selector's 
RPL. 

The validation performed is the same as if the segment were loaded into the DS, ES, FS, or GS 
register, and the indicated access (read or write) were perfonned. The selector's value cannot 
result in a protection exception, enabling the software to anticipate possible segment access 
problems. 

Operation 

IF SRC(Offset) > (GDTR(Limit) OR (LDTR(Limit)) 
THEN 

ZF +-- 0 
Read segment descriptor; 
IF SegmentDescriptor(DescriptorType) = 0 (* system segment *) 

OR (SegmentDescriptor(Type) "* conforming code segment) 
AND (CPL > DPL) OR (RPL > DPL) 

11-380 

THEN 
ZF +-- 0 

ELSE 

I 



INSTRUCTION SET REFERENCE 

IF ((Instruction = VERR) AND (segment = readable)) 

FI; 
FI; 

OR ((Instruction = VERW) AND (segment = writable)) 
THEN 

ZF~ 1; 

Flags Affected 

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW); 
otherwise, it is cleared to O. 

Protected Mode Exceptions 

The only exceptions generated for these instructions are those related to illegal addressing of the 
source operand. 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or as register is used to access memory and it contains 
a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#UD The VERR and VERW instructions are not recognized in real address 
mode. 

Virtual 8086 Mode Exceptions 

#UD The VERR and VERW instructions are not recognized in virtual 8086 
mode. 

I 
11-381 



INSTRUCTION SET REFERENCE 

WAIT/FWAIT-Wait 

Opcode 

98 
98 

Description 

Instruction 

WAIT 

FWAIT 

Description 

Check pending unmasked floating-point exceptions. 

Check pending unmasked floating-point exceptions. 

Causes the processor to check for and handle pending unmasked floating-point exceptions 
before proceeding. (FWAIT is an alternate mnemonic for the WAIT). 

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a 
WAIT instruction after a floating-point instruction insures that any unmasked floating-point 
exceptions the instruction may raise are handled before the processor can modify the instruc­
tion's results. See Section 7.9., "Floating-Point Exception Synchronization" for more informa­
tion on using the WAITIFWAIT instruction. 

Operation 
CheckPendingUnmaskedFloatingPointExceptions; 

FPU Flags Affected 

The CO, Ct, C2, and C3 flags are undefined. 

Floating-Point Exceptions 

None. 

Protected Mode Exceptions 

#NM MP and TS in CRO is set. 

Real Address Mode Exceptions 

#NM MP and TS in CRO is set. 

Virtual 8086 Mode Exceptions 

#NM MP and TS in CRO is set. 

11-382 

I 



INSTRUCTION SET REFERENCE 

WBINVD-Write-Back and Invalidate Cache 

Opcode 

OF 09 

Description 

Instruction 

WBINVD 

Description 

Write-back and flush Internal caches; initiate writing-back 
and flushing of external caches. 

Writes back all modified cache lines in the processor's internal cache to main memory, invali­
dates (flushes) the internal caches, and issues a special-function bus cycle that directs external 
caches to also write back modified data. 

After executing this instruction, the processor does not wait for the external caches to complete 
their write-back and flushing operations before proceeding with instruction execution. It is the 
responsibility of hardware to respond to the cache write-back and flush signals. 

The WDINVD instruction is a privileged instruction. When the processor is running in protected 
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction 
is also a serializing instruction (see "Serializing Instructions" in Chapter 7, Multiple Processor 
Management, ofthe Pentium® Pro Family Developer's Manual, Volume 3). 

In situations where cache coherency with main memory is not a concern, software can use the 
INVD instruction. 

Operation 

WriteBack(lnternaICaches); 
Flush(lnternaICaches); 
SignalWriteBack(ExternalCaches) ; 
SignaIFlush(ExternaICaches); 
Continue (* Continue execution); 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the current pri vilege level is not O. 

Real Address Mode Exceptions 

None. 

Virtual 8086 Mode Exceptions 

#GP(O) The WBINVD instruction cannot be executed at the virtual 8086 mode. 

I 
11-383 



INSTRUCTION SET REFERENCE int:et 

Intel Architecture Compatibility 

The WDINVD instruction implementation-dependent; its function may be implemented 
differently on future Intel Architecture processors. The instruction is not supported on Intel 
Architecture processors earlier than the Intel486 processor. 

11·384 

I 



INSTRUCTION SET REFERENCE 

WRMSR-Write to Model Specific Register 

Description Opcode 

OF 30 

Instruction 

WRMSR Write the value in EDX:EAX to MSR specified by ECX 

Description 

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) speci­
fied in the ECX register. The high-order 32 bits are copied from EDX and the low-order 32 bits 
are copied from EAX. Always set undefined or reserved bits in an MSR to the values previously 
read. 

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a 
general protection exception #GP(O) will be generated. Specifying a reserved or unimplemented 
MSR address in ECX will also cause a general protection exception. 

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated, including 
the global entries (see "Translation Lookaside Buffers (TLBs)" in Chapter 3, Protected-Mode 
Memory Management, of the Pentium® Pro Family Developer s Manual, Volume 3). 

The MSRs control functions for testability, execution tracing, performance-monitoring and 
machine check errors. Appendix D in the Pentium® Pro Family Developers Manual, Volume 3 
lists all the MSRs that can be written to with this instruction and their addresses. 

The WRMSR instruction is a serializing instruction (see "Serializing Instructions" in Chapter 7, 
Multiple Processor Management, of the Pentium® Pro Family Developer's Manual, Volume 3). 

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1) 
before using this instruction. 

Operation 

MSR[ECX] f- EDX:EAX; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) If the current privilege level is not o. 
If the value in ECX specifies a reserved or unimplemented MSR address. 

Real Address Mode Exceptions 

#GP If the current privilege level is not 0 

If the value in ECX specifies a reserved or unimplemented MSR address. 

I 
11-385 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) The WRMSR instruction is not recognized in virtual 8086 mode. 

Intel Architecture Compatibility 

The MSRs and the ability to read them with the WRMSR instruction were introduced into the 
Intel Architecture with the Pentium processor. Execution of this instruction by an Intel Archi­
tecture processor earlier than the Pentium processor results in an invalid opcode exception #UD. 

11-386 

I 



INSTRUCTION SET REFERENCE 

XADD-Exchange and Add 

Opcode 

OF CO/r 

OF C1/r 

OF C1/r 

Description 

Instruction 

XADD rlmB,rB 

XADD rim 16,r16 

XADD rlm32,r32 

Description 

Exchange rB and rlmB; load sum into rlmB. 

Exchange r16and rlm16; load sum into rim 16. 

Exchange r32 and rlm32; load sum into rlm32. 

Exchanges the first operand (destination operand) with the second operand (source operand), 
then loads the sum of the two values into the destination operand. The destination operand can 
be a register or a memory location; the source operand is a register. 

This instruction can be used with a LOCK prefix. 

Operation 

TEMP f- SRC + DEST 
SRC f- DEST 
DEST f- TEMP 

Flags Affected 

The CF, PF, AF, SF, ZF, and OF flags are set according to the result stored in the destination 
operand. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF( fault -code) 

#AC(O) 

If the destination is located in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP 

#SS 

I 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

11-387 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault -code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

Intel Architecture Compatibility 

Intel Architecture processors earlier than the Intel486 processor do not recognize this instruc­
tion. If this instruction is used, you should provide an equivalent code sequence that runs on 
earlier processors. 

11-388 

I 



INSTRUCTION SET REFERENCE 

XCHG-Exchange Register/Memory with Register 

Opcode 

90+rw 

90+rw 

90+rd 

90+rd 

861r 

861r 

871r 

871r 

871r 

871r 

Description 

Instruction 

XCHG AX,r16 

XCHG r16,AX 

XCHG EAX,r32 

XCHG r32,EAX 

XCHG rlmB,rB 

XCHG rB,rlmB 

XCHG rim 16,r16 

XCHG r16,rlm16 

XCHG rlm32,r32 

XCHG r32,rlm32 

Description 

Exchange r16with AX 

Exchange r16with AX 

Exchange r32 with EAX 

Exchange r32 with EAX 

Exchange byte register with EA byte 

Exchange byte register with EA byte 

Exchange r16 with EA word 

Exchange r16 with EA word 

Exchange r32with EA doubleword 

Exchange r32with EA doubleword 

Exchanges the contents of the destination (first) and source (second) operands. The operands can 
be two general-purpose registers or a register and a memory location. When the operands are 
two registers, one of the registers must be the EAX or AX register. If a memory operand is refer­
enced, the LOCK# signal is automatically asserted for the duration of the exchange operation, 
regardless of the presence or absence of the LOCK prefix or of the value of the IOPL. 

This instruction is useful for implementing semaphores or similar data structures for process 
synchronization. (See Chapter 5, Processor Management and Initialization, in the Pentium® Pro 
Family Developer's Manual, Volume 3 for more information on bus locking.) 

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands. 

Operation 

TEMP f- DEST 
DEST f- SRC 
SRC f- TEMP 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

I 

If either operand is in a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

11-389 



INSTRUCTION SET REFERENCE 

#PF( fault-code) 

#AC(O) 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-390 

lf a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

XLATIXLATB-Table Look-up Translation 

Opcode 

D7 

D7 

Description 

Instruction 

XLAT rnB 

XLATB 

Description 

Set AL to memory byte DS:[(E)BX + unsigned ALI 
Set AL to memory byte DS:[(E)BX + unsigned ALI 

Locates a byte entry in a table in memory, using the contents of the AL register as a table index, 
then copies the contents of the table entry back into the AL register. The index in the AL register 
is treated as unsigned integer. The XLAT and XLATB instructions get the base address of the 
table in memory from the DS:EBX registers (or the DS:BX registers when the address-size 
attribute of 16 bits.) The XLAT instruction allows a different segment register to be specified 
with a segment override. When assembled, the XLAT and XLATB instructions produce the same 
machine code. 

Operation 

IF AddressSize = 16 
THEN 

AL ~ (DS:BX + ZeroExtend(AL)) 
ELSE (* AddressSize = 32 *) 

AL ~ (DS:EBX + ZeroExtend(AL)); 
FI; 

Flags Affected 

None. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

I 
11-391 



INSTRUCTION SET REFERENCE 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

11-392 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 

I 



INSTRUCTION SET REFERENCE 

XOR-Logical Exclusive OR 

Opcode 

34 ib 

35 iw 

35 id 

8016 ib 

81 16 iw 

81 16 id 

8316 ib 

8316 ib 

30lr 

31 Ir 

31 If 

32 If 

33 If 

33 If 

Description 

Instruction 

XOR AL,immB 

XOR AX,imm16 

XOR EAX,imm32 

XOR rlmB,immB 

XOR rim 16,imm16 

XOR rlm32,imm32 

XOR rim 16,immB 

XOR rlm32,immB 

XOR rlmB,rB 

XOR rim 16,r16 

XOR rlm32,r32 

XOR rB,rlmB 

XOR r16,rlm16 

XOR r32,rlm32 

Description 

ALXOR immB 

AXXOR imm16 

EAX XOR imm32 

rlmB XOR immB 

rlm16XOR imm16 

rlm32 XOR imm32 

rlm16XOR immB 

rlm32 XOR immB 

rlmBXOR rB 

rim 16 XOR r16 

rlm32 XOR r32 

rBXOR rlmB 

rBXOR rlmB 

rBXOR rlmB 

Performs a bitwise exclusive-OR (XOR) operation on the destination (first) and source (second) 
operands and stores the result in the destination operand location. The source operand can be an 
immediate, a register, or a memory location; the destination operand can be a register or a 
memory location. 

Operation 

DEST (- DEST XOR SRC; 

Flags Affected 

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The 
state of the AF flag is undefined. 

Protected Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

I 

If the destination operand points to a nonwritable segment. 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If the DS, ES, FS, or GS register contains a null segment selector. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

11-393 



#AC(O) If alignment checking is enabled and an unaligned memory reference is 
made while the current privilege level is 3. 

Real Address Mode Exceptions 

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

#SS If a memory operand effective address is outside the SS segment limit. 

Virtual 8086 Mode Exceptions 

#GP(O) 

#SS(O) 

#PF(fault-code) 

#AC(O) 

If a memory operand effective address is outside the CS, DS, ES, FS, or 
GS segment limit. 

If a memory operand effective address is outside the SS segment limit. 

If a page fault occurs. 

If alignment checking is enabled and an unaligned memory reference is 
made. 



A 
EFLAGS 
Cross-Reference 

I 





APPENDIX A 
EFLAGS CROSS-REFERENCE 

The cross-reference in Table A-I summarizes how the flags in the processor's EFLAGS register 
are affected by each instruction. For detailed infonnation on how flags are affected, see Chapter 
11, Instruction Set Reference. The following codes describe the how the flags are affected: 

I 

T 

M 

o 

R 

Blank 

Instruction tests flag. 

Instruction modifies flag (either sets or resets depending on operands). 

Instruction resets flag. 

Instruction sets flag. 

Instruction's effect on flag is undefined. 

Instruction restores prior value of flag. 

Instruction does not affect flag. 

Table A-1. EFLAGS Cross-Reference 

Instruction OF SF ZF AF PF CF TF IF OF 

AAA - - - TM - M 

AAD - M M - M -
AAM - M M - M -

AAS - - - TM - M 

ADC M M M M M TM 

ADD M M M M M M 

AND 0 M M - M 0 

ARPL M 

BOUND 

BSF/BSR - - M - - -

BSWAP 

BT IBTS/BTR/BTC - - - - - M 

NT RF 

A·1 



EFLAGS CROSS-REFERENCE 

Table A-1. EFLAGS Cross-Reference (Contd.) 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

CAll 

CBW 

ClC 0 

ClD 0 

CLI 0 

ClTS 

CMC M 

CMOVcc T T T T T 

CMP M M M M M M 

CMPS M M M M M M T 

CMPXCHG M M M M M M 

CMPXCHG8B M 

CPUID 

CWD 

DAA - M M TM M TM 

DAS - M M TM M TM 

DEC M M M M M 

DIV - - - - - -
ENTER 

ESC 

FCMOVcc T T T 

FCOMI, FCOMIP, M M M 
FUCOMI, FUCOMIP 

HlT 

IDIV - - - - - -
IMUl M - - - - M 

IN 

INC M M M M M 

INS T 

INT 0 0 

INTO T 0 0 

INVD 

INVlPG 

A-2 

I 



EFLAGS CROSS-REFERENCE 

Table A-1. EFLAGS Cross-Reference (Contd.) 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

IRET R R R R R R R R R T 

Jcc T T T T T 

JCXZ 

JMP 

LAHF 

LAR M 

LDS/LES/LSS/LFS/LGS 

LEA 

LEAVE 

LGDT/LIDT/LLDT/LMSW 

LOCK 

LODS T 

LOOP 

LOOPEILOOPNE T 

LSL M 

LTR 

MOV 

MOV control, debug, test - - - - - -
MOVS T 

MOVSXlMOVZX 

MUL M - - - - M 

NEG M M M M M M 

NOP 

NOT 

OR 0 M M - M 0 

OUT 

OUTS T 

POP/POPA 

POPF R R R R R R R R R R 

PUSH/PUSHAIPUSHF 

RCURCR 1 M TM 

RCURCR count - TM 

I 
A-3 



EFLAGS CROSS-REFERENCE 

Table A-1. EFLAGS Cross-Reference (Contd.) 

Instruction OF SF ZF AF PF CF TF IF OF NT RF 

RDMSR 

RDPMC 

RDTSC 

REP/REPE/REPNE 

RET 

ROUROR1 M M 

ROUROR count - M 

RSM M M M M M M M M M M M 

SAHF R R R R R 

SAUSARISHUSHR 1 M M M - M M 

SAUSARISHUSHR count - M M - M M 

SBB M M M M M TM 

SCAS M M M M M M T 

SETcc T T T T T 

SGDT/SI DT/SLDT/SMSW 

SHLD/SHRD - M M - M M 

STC 1 

STD 1 

STI 1 

STOS T 

STR 

SUB M M M M M M 

TEST 0 M M - M 0 

UD2 

VERRNERRW M 

WAIT 

WBINVD 

WRMSR 

XADD M M M M M M 

XCHG 

XLAT 

XOR 0 M M - M 0 

A-4 

I 



EFLAGS 
Condition Codes 

I 

B 





APPENDIX 8 
EFLAGS CONDITION CODES 

Table B-l gives all the condition codes that can be tested for by the CMOV cc, FCMOV cc, J cc 
and SETcc instructions. The condition codes refer to the setting of one or more status flags (CF, 
OF, SF, ZF, and PF) in the EFLAGS register. The "Mnemonic" column gives the suffix (cc) add­
ed to the instruction to specific the test condition. The "Condition Tested For" column describes 
the condition specified in the "Status Flag Setting" column. The "Instruction Subcode" column 
gives the opcode suffix added to the main opcode to specify a test condition. 

Table B-1. EFLAGS Condition Codes 

Instruction 
Mnemonic (ee) Condition Tested For Subcode Status Flags Setting 

0 Overflow 0000 OF= 1 

NO No overflow 0001 OF=O 

B Below 0010 CF = 1 
NAE Neither above nor equal 

NB Not below 0011 CF= 0 
AE Above or equal 

E Equal 0100 ZF = 1 
Z Zero 

NE Not equal 0101 ZF=O 
NZ Not zero 

BE Below or equal 0110 (CF OR ZF) = 1 
NA Not above 

NBE Neither below nor equal 0111 (CF OR ZF) = 0 
A Above 

S Sign 1000 SF = 1 

NS No sign 1001 SF=O 

P Parity 1010 PF = 1 
PE Parity even 

NP No parity 1011 PF =0 
PO Parity odd 

Instruction 
Mnemonic Meaning Subcode Condition Tested 

L Less 1100 (SF xOR OF) = 1 
NGE Neither greater nor equal 

NL Not less 1101 (SF xOR OF) = 0 
GE Greater or equal 

I 
B-1 



EFLAGS CONDITION CODES 

Table 8-1. EFLAGS Condition Codes (Contd.) 

Instruction 
Mnemonic (cc) Condition Tested For Subcode Status Flags Setting 

LE Less or equal 1110 ((SF XOR OF) OR ZF) = 1 
NG Not greater 

NLE Neither less nor equal 1111 ((SF XOR OF) OR ZF) = 0 
G Greater 

Many of the test conditions are described in two different-ways. For example LE (less or equal) 
and NG (not greater) describe the same test condition. Alternate mnemonics are provided to 
make code more intelligible. 

The terms "above" and "below" are associated with the CF flag and refer to the relation between 
two unsigned integer values. The terms "greater" and "less" are associated with the SF and OF 
flags and refer to the relation between two signed integer values. 

8-2 

I 



Floating-Point 
Exceptions Summary 

I 

c 





APPENDIX C 
FLOATING-POINT EXCEPTIONS SUMMARY 

Table C-I lists the floating-point instruction mnemonics in alphabetical order. For each 
mnemonic, it summarizes the exceptions that the instruction may cause. See Section 7.8., 
"Floating-Point Exception Conditions" for a detailed discussion of the floating-point excep­
tions. The following codes indicate the floating-point exceptions: 

#IS Invalid-operation exception for stack underflow or stack overflow. 

#IA Invalid-operation exception for invalid arithmetic operands and 
unsupported formats. 

#D Denormal-operand exception. 

#Z Divide-by-zero exception. 

#0 Numeric-overflow exception. 

#U Numeric-underflow exception. 

#P Inexact-result (precision) exception. 

Table C-1. Floating-Point Exceptions Summary 

Mnemonic Instruction #IS #IA #0 #Z #0 #U #P 

F2XM1 2x-1 y y y y y 

FABS Absolute value Y 

FADD(P) Add real Y y y y y y 

FBLD BCD load Y 

FBSTP BCD store and pop Y Y Y 

FCHS Change sign Y 

FCLEX Clear exceptions 

FCMOVcc Floating-point conditional move y 

FCOM, FCOMP, FCOMPP Compare real Y Y Y 

FCOMI, FCOMIP, FUCOMI, Compare real and set EFLAGS y y 
FUCOMIP 

FCOS Cosine y y y y y 

FDECSTP Decrement stack pointer 

FDIV(R)(P) Divide real Y Y Y Y Y y y 

FFREE Free register 

I 
C-1 



FLOATING-POINT EXCEPTIONS SUMMARY 

Table C-1. Floating-Point Exceptions Summary (Contd.) 

Mnemonic Instruction #IS #IA #0 #z #0 #U #P 

FIADD Integer add Y Y Y Y Y Y 

FICOM(P) Integer compare Y Y Y 

FIDIV Integer divide Y Y Y Y Y Y 

FIDIVR Integer divide reversed Y Y Y Y Y Y Y 

FILD Integer load Y 

FIMUL Integer multiply Y Y Y Y Y Y 

FINCSTP Increment stack pointer 

FINIT Initialize processor 

FIST(P) Integer store Y Y Y 

FISU8(R) Integer subtract Y Y Y Y Y Y 

FLD extended or stack Load real Y 

FLD single or double Load real Y Y y 

FLD1 Load + 1.0 Y 

FLDCW Load Control word Y Y Y Y Y Y Y 

FLDENV Load environment Y Y Y Y Y Y Y 

FLDL2E Loadlog2e Y 

FLDL2T Load log21O Y 

FLDLG2 Load log102 Y 

FLDLN2 Load 10ge2 Y 

FLDPI Load It Y 

FLDZ Load + 0.0 y 

FMUL(P) Multiply real Y Y Y Y Y Y 

FNOP No operation 

FPATAN Partial arctangent Y Y Y Y Y 

FPREM Partial remainder Y Y Y Y 

FPREM1 IEEE partial remainder Y Y Y Y 

FPTAN Partial tangent Y Y Y Y Y 

FRNDINT Round to integer Y Y Y Y 

FRSTOR Restore state Y Y Y Y Y Y Y 

FSAVE Save state 

FSCALE Scale y y y y y y 

FSIN Sine y y y y y 

FSINCOS Sine and cosine Y Y Y Y Y 

C-2 

I 



FLOATING-POINT EXCEPTIONS SUMMARY 

Table C-1. Floating-Point Exceptions Summary (Contd.) 

Mnemonic Instruction #15 #IA #0 #Z #0 #U #P 

FSQRT Square root Y Y Y Y 

FST(P) stack or extended Store real Y 

FST(P) single or double Store real Y Y Y Y Y Y 

FSTCW Store control word 

FSTENV Store environment 

FSTSW (AX) Store status word 

FSUB(R)(P) Subtract real Y Y Y Y Y Y 

FTST Test Y Y Y 

FUCOM(P)(P) Unordered compare real Y Y Y 

FWAIT CPU Wait 

FXAM Examine 

FXCH Exchange registers Y 

FXTRACT Extract Y Y Y Y 

FYL2X Y ·log2X Y Y Y Y Y Y Y 

FYL2XP1 Y . log2(X + 1) Y Y Y Y Y 

I 
C-3 





Index 

I 





A 
AAA instruction ................... 6-21, 11-16 
AAD instruction .................. 6-21, 11-17 
AAM instruction .................. 6-21, 11-18 
AAS instruction ................... 6-21, 11-19 
AC (alignment check) flag, EFLAGS 

register .................. 3-12, 10-5 
Access rights, segment descriptor ..... 4-7,4-11, 

11-249 
ADC instruction ........... 6-19, 11-20, 11-269 
ADD instruction ...... 6-19, 11-16, 11-20, 11-22, 

11-82, 11-269 
Address size attribute 

code segment. ...................... 3-13 
description of ....................... 3-13 
of stack ............................ .4-3 
override prefix ....................... 11-2 

Address size override prefix ............... 11-2 
Address sizes ........................... 3-4 
Addressing modes 

assembler ........................... 5-9 
base ........................... 5-8, 5-9 
base plus displacement ................ 5-9 
base plus index plus displacement ........ 5-9 
base plus index time scale plus 

displacement ...................... 5-9 
displacement. ........................ 5-8 
effective address ...................... 5-8 
immediate operands ................... 5-5 
index ............................... 5-8 
index times scale plus displacement ...... 5-9 
memory operands ..................... 5-6 
register operands ..................... 5-5 
scale factor .......................... 5-8 
specifying a segment selector ........... 5-6 
specifying an offset. ................... 5-7 

Addressing, segments .................... 1-6 
Advanced programmable interrupt controller 

(see APIC) 
AF (adjust) flag, EFLAGS register .......... 3-11 
AH register ............................. 3-6 
Alignment 

exception ......................... 10-12 
of words, doublewords, and quadwords .... 5-1 

Alignment check exception (#AC) ......... 10-12 
AND instruction ........... 6-22, 11-24, 11-269 
APIC flag, CPUID instruction ............. 11-76 
APIC, presence of ................. 9-1, 11-76 
Arctangent, FPU operation ......... 7-36, 11-147 
Arithmetic instructions, FPU ............... 7-42 
ARPL instruction ...................... 11-26 
Assembler, addressing modes .............. 5-9 
AX register ............................. 3-6 

I 

INDEX 

B 
B (default size) flag, segment 

descriptor ...... 3-13,4-2,4-3,11-308 
Base (operand addressing) ....... 5-8,5-9, 11-3 
Basic execution environment .............. 3-2 
B-bit, FPU status word .................. 7-14 
BCD ................................. 5-4 
BCD integers .......................... 5-4 

FPU encoding ...................... 7-28 
packed ....... 5-4, 6-21, 11-82, 11-83, 11-99, 

11-101 
relationship to status flags ............. 3-11 
unpacked ..... 5-4, 6-21, 11-16, 11-17, 11-18, 

11-19 
BH register ............................ 3-6 
Bias value 

numeric overflow .................... 7-49 
numeric underflow ................... 7-50 

Biased exponent. ....................... 7-4 
Binary numbers ........................ 1-6 
Binary-coded decimal (see BCD) 
Bit fields .............................. 5-4 
Bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-4 
BOUND instruction ...... 4-14, 6-33, 6-37, 11-28 
BOUND range exceeded exception (#BR) ... 4-14, 

11-28 
BP register ............................ 3-6 
Branch prediction ....................... 2-6 
Branching, on FPU condition codes .... 7-14,7-36 
BSF instruction ................... 6-27, 11-30 
BSR instruction ................... 6-27, 11-32 
BSWAP instruction ........... 6-15,10-3,11-34 
BT instruction ............... 3-10,6-27,11-35 
BTC instruction ....... 3-10, 6-27, 11-37, 11-269 
BTR instruction ....... 3-10, 6-27, 11-39,11-269 
BTS instruction ....... 3-10, 6-27, 11-41, 11-269 
Bus interface unit ....................... 2-9 
BX register ............................ 3-6 
Byte ................................. 5-1 
Byte order. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-4 

C 
C1 flag, FPU status word .. 7-13,7-46,7-49,7-51, 

10-7,10-17 
C2 flag, FPU status word ............ 7-14, 10-8 
Caches, invalidating (flushing) .... 11-227, 11-383 
Caching, 1/0 ports ....................... 8-6 
Call gate ....................... .4-7, 11-244 
CALL instruction ...... 3-13,4-4,4-7,6-29,6-37, 

11-43 
Calls (see Procedure calls) 
CBW instruction .................. 6-19, 11-53 
CDa instruction .................. 6-19, 11-80 

INDEX-1 



INDEX 

CF (carry) flag, EFLAGS register .... 3-11,11-20, 
11-22,11-35,11-37,11-39,11-41, 
11-55, 11-60, 11-84, 11-207, 11-211, 
11-294, 11-325, 11-349, 11-359, 
11-361, 11-368, 11-375 

CH register ............................. 3-6 
Classify floating-point value, 

FPU operation ............... 11-192 
CLC instruction .............. 3-11, 6-35, 11-55 
CLD instruction .............. 3-12, 6-35, 11-56 
CLI instruction ............... 6-36, 8-4, 11-57 
CL TS instruction ....................... 11-59 
CMC instruction ............. 3-11, 6-35, 11-60 
CMOV flag, CPUID instruction ............ 11-76 
CMOVcc instructions ....... 2-2, 6-1, 6-13,10-2, 

11-61, 11-76 
CM P instruction .................. 6-20, 11-64 
CMPS instruction ..... 3-12,6-33,11-66,11-333 
CM PSB instruction ..................... 11-66 
CM PSD instruction ..................... 11-66 
CM PSW instruction .................... 11-66 
CMPXCHG instruction ........ 6-15,10-3,11-69, 

11-269 
CMPXCHG8B instruction .. 6-15,9-1,10-3, 11-71 
Code segment .......................... 3-7 
Compare 

compare and exchange ............... 6-15 
integers ............................ 6-20 
real numbers, FPU ................... 7-35 
stri ngs ............................. 6-33 

Compatibility 
Intel Architecture ..................... 10-1 
software ............................ 1-4 

Condition code flags, EFLAGS register ..... 11-61 
Condition code flags, FPU status word 

branching on ........................ 7-14 
compatibility information ............... 10-7 
conditional moves on ................. 7-14 
description of ....................... 7-12 
flags affected by instructions .......... 11-13 
interpretation of. ..................... 7-13 
setting ............. 11-186,11-188,11-192 
use of ............................. 7-34 

Conditional jump ..................... 11-237 
Conditional moves, on FPU condition codes .. 7-14 
Conforming code segment. ...... 11-244, 11-249 
Constants (floating point) 

descriptions of. ...................... 7-32 
loading .......................... 11-137 

Control registers, moving values to 
and from .................... 11-285 

Coprocessor segment overrun exception ... 10-13 
Cosine, FPUoperation ..... 7-36,11-115,11-167 
CPL ......................... 11-57, 11-380 
CPUID instruction ...... 2-2, 6-38, 9-1, 9-2, 10-2, 

10-3,11-73 
CRO control register ....... 10-6, 11-267, 11-366 
CR4 control register ..................... 10-2 

INDEX-2 

CS register ............. 3-7, 4-8, 10-11, 11-44, 
11-216, 11-230, 11-241, 11-281, 11-308 

CS segment override prefix .............. 11-2 
CTI instruction ........................ 6-35 
Current privilege level (see CPL) 
Current stack ...................... .4-2, 4-3 
CWO instruction .................. 6-19, 11-80 
CWDE instruction ................. 6-19, 11-53 
CX register ............................ 3-6 
CX8 flag, CPUID instruction ............. 11-76 

D 
DAA instruction ................... 6-21, 11-82 
DAS instruction ................... 6-21, 11-83 
Data pointer, FPU ...................... 7-20 
Data segment .......................... 3-8 
Data types 

alignment of words, doublewords, and 
quadwords ....................... 5-1 

BCD integers .................... 5-4, 6-21 
bit fields ............................ 5-4 
FPU BCD decimal ................... 7-28 
FPU integer ........................ 7-26 
FPU real number .................... 7-24 
fundamental data types ................ 5-1 
integers ................... 5-2, 6-19, 6-20 
pointe rs . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-4 
strings ............................. 5-4 
unsigned integers ........... 5-4,6-19,6-20 

DE (debugging extensions) flag, 
CPUID instruction ............. 11-75 

DE (denormal operand exception) flag, 
FPU status word ........... 7-14, 7-48 

Debug registers, moving value to 
and from ................... 11-287 

DEC instruction ............ 6-19, 11-84, 11-269 
Decimal integers, FPU 

description of. ...................... 7-28 
encodings ......................... 7-28 

Denormal number (see Denormalized finite 
number) 

Denormal operand exception (#0) .... 7-48,10-10 
Denormalization process ................. 7-6 
Denormalized finite number .... 7-5,7-25,11-192 
Denormalized operand ................. 10-14 
Device not available exception 

(#NM) ................. 10-12,10-13 
OF (direction) flag, EFLAGS register ....... 3-12, 

11-56,11-66,11-213,11-271,11-289, 
11-305, 11 -351, 11-369 

DH register ............................ 3-6 
01 register ............................. 3-6 
Dispatch/execute unit ................... 2-10 
Displacement (operand addressing) ..... 5-8, 5-9, 

11-3 
DIV instruction ................... 6-20, 11-86 
Divide error exception (#DE) ............ 11-86 

I 



intet 

I 

Division-by-zero exception (#Z) ............ 7-46 
Double-extended-precision, IEEE floating-point 

fo rmat. ....................... 7-24 
Double-precision, IEEE floating-point 

format. ....................... 7-24 
Double-real floating-point format ........... 7-24 
Doubleword ............................ 5-1 
DS register ..... 3-7,3-8,11-66,11-252,11-271, 

11-305 
DS segment override prefix ............... 11-2 
DX register ............................. 3-6 
Dynamic data flow analysis ................ 2-6 
Dynamic execution ....................... 2-6 

E 
EAX register ............................ 3-5 
EBP register ................ 3-5, 4-3, 4-4, 4-6 
EBX register ............................ 3-5 
ECX register ............................ 3-5 
EDI register ....... 3-5, 11-289, 11-351, 11-369, 

11-372 
EDX register ............................ 3-5 
Effective address ................. 5-8, 11-255 
EFLAGS Condition Codes ................ B-1 
EFLAGS register ........................ 3-9 

condition codes ....... 11-62, 11-107,11-112 
flags affected by instructions .......... 11-12 
loading .......................... 11-248 
new flags .......................... . 10-4 
popping .......................... 11-314 
popping on return from interrupt ...... . 11-230 
pushing .......................... 11-322 
pushing on interrupts ............... 11-216 
restoring from procedure stack .......... .4-6 
saving ........................... 11-344 
saving on a procedure call ............. .4-6 
status flags ....... 7-15,7-35, 11-64, 11-238, 

11-353, 11-377 
using flags to distinguish between 32-bit Intel 

Architecture processors ............ . 10-5 
8086/8088 processor ............... 1 0-1, 10-5 
8087 math coprocessor ................. . 10-6 
EIP register ....... 3-7,3-13,4-8,10-11,11-43, 

11-216,11-230,11-241 
EM (emulation) flag, CRO register ........ . 10-13 
ENTER instruction ........... 4-15,6-35,11-89 
Error signals ................... . 10-11,10-12 
ES register ..... 3-7, 3-8, 11-66, 11-213, 11-252, 

11-305, 11-351, 11-372 
ES segment override prefix ............... 11-2 
ES (exception summary) flag, FPU status 

word .................... 7-14,7-53 
ESC instructions, FPU .................. . 7-30 
ESI register ....... 3-5, 11-271, 11-289, 11-305, 

11-369 
ESP register. .. 3-5,4-1,4-3,4-4,11-43,11-308, 

11-317 

INDEX 

ET (extension type) flag, CRO register ...... 10-7 
Exception flags, FPU status word .......... 7-14 
Exception handler. ..................... 4-10 
Exception priority, FPU exceptions .... 7-52, 10-11 
Exception-flag masks, FPU control word .... 7-16 
Exceptions 

alignment check . . . . . . . . . . . . . . . . . .. 10-12 
BOUND range exceeded (#BR) .. .4-14, 11-28 
coprocessor segment overrun ......... 10-13 
description of. ...................... 4-10 
device not available ................. 10-13 
floating-point error. . . . . . . . . . . . . . . . .. 10-13 
general protection. . . . . . . . . . . . . . . . .. 10-13 
implicit call to handler ................. 4-1 
in real-address mode ................ 4-14 
invalid-opcode ...................... 10-4 
list of ........................ 4-11, 11-14 
notation. . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-6 
overflow exception (#OF) ...... .4-14, 11-216 
returning from .................... 11-230 
segment not present ................ 10-12 
vector ............................ 4-10 

Exponent 
extracting from floating-point number .. 11-196 
floating-point number ................. 7-2 

Exponential, FPU operation .............. 7-38 
Extended real 

encodings, unsupported .............. 7-29 
floating-pointformat ................. 7-24 

Extract exponent and significand, 
FPU operation .............. 11-196 

F 
F2XM1 instruction .. .. 7-38,10-15,11-92,11-196 
FABS instruction .................. 7-33,11-94 
FADD instruction ................. 7-33, 11-96 
FADDP instruction ................ 7-33, 11-96 
Far call 

CALL instruction . . . . . . . . . . . . . . . . . .. 11-43 
description of ........................ 4-4 
operation ........................... 4-5 

Far pointer 
16-bit addressing ..................... 3-4 
32-bit addressing ..................... 3-4 
description of ..................... 3-3, 5-4 
loading .......................... 11-252 

Far return 
RET instruction ................... 11-336 

FBLD instruction. . . . . . . . . . . . . . . . . . . . .. 11-99 
FBSTP instruction ................ 7-31, 11-101 
FCHS instruction ................ 7-33, 11-104 
FCLEXlFNCLEX instructions ....... 7-14, 11-106 
FCMOVcc instructions ...... 2-2, 6-1,7-15, 7-32, 

10-3,10-13,11-76,11-107 
FCOM instruction ........... 7-15,7-34,11-109 
FCOM I instruction ..... 2-2, 6-1, 7-15, 7-34, 10-3, 

10-13, 11-76, 11-112 

INDEX-3 



INDEX 

FCOMIP instruction ... 2-2,6-1,7-15,7-34, 10-3, 
10-13,11-112 

FCOMP instruction .......... 7-15, 7-34, 11-109 
FCOM PP instruction ........ 7-15, 7-34, 11-109 
FCOS instruction ..... 7-14,7-36,10-15,11-115 
FDECSTP instruction .................. 11-117 
FDISI instruction (obsolete) .............. 10-17 
FDIVinstruction ..... 7-33,10-12,10-14,11-118 
FDIVP instruction ................ 7-33, 11-118 
FDIVR instruction ................ 7-33, 11-121 
FDIVRP instruction ............... 7-33, 11-121 
Feature determination, of processor .... 9-1, 10-2 
Feature information, processor ...... 10-2, 11-73 
FENI instruction (obsolete) ............... 10-17 
Fetch/decode unit. ....................... 2-9 
FFREE instruction .................... 11-125 
FIADD instruction ................. 7-33, 11-96 
FICOM instruction .......... 7-15, 7-34, 11-126 
FICOMP instruction ......... 7-15, 7-34, 11-126 
FIDIV instruction ................. 7-33, 11-118 
FIDIVR instruction ............... 7-33,11-121 
FI LD instruction ................. 7-31, 11-128 
FIMUL instruction ................ 7-33, 11-143 
FINCSTP instruction .................. 11-130 
FINIT/FNINIT instructions ...... 7-14, 7-16, 7-19, 

7-39,10-7,11-131,11-160 
FIST instruction ................. 7-31,11-132 
FI STP instruction ................ 7-31, 11-132 
FISUB instruction ................ 7-33,11-180 
FISUBR instruction ............... 7-33,11-183 
Flat memory model .................. 3-2, 3-7 
FLD instruction ............ 7-31, 10-15, 11-135 
FLD1 instruction ................. 7-32,11-137 
FLDCW instruction .......... 7-16, 7-39, 11-139 
FLDENV instruction ...... 7-14, 7-20, 7-23, 7-39, 

10-12,10-13,11-141 
FLDL2E instruction ......... 7-33, 10-16, 11-137 
FLDL2T instruction ......... 7-33, 10-16, 11-137 
FLDLG2 instruction ........ 7-33, 10-16, 11-137 
FLDLN2 instruction ........ 7-33, 10-16, 11-137 
FLDPI instruction .......... 7-32, 10-16, 11-137 
FLDSW instruction ...................... 7-39 
FLDZ instruction ................. 7-32,11-137 
Floating-point data types ................. 7-23 
Floating-point error exception (#MF) ....... 10-13 
Floating-point exceptions 

automatic handling ................... 7-42 
denormal operand exception ..... 7-48, 10-10 
division-by-zero ...................... 7-46 
exception conditions .................. 7-45 
exception priority ..................... 7-52 
handling ........................... 7-41 
inexact-result (precision)-............... 7-51 
invalid arithmetic operand ......... 7-45, 7-46 
invalid operation .................... 10-16 
list of, including mnemonics ........... 11-15 
numeric overflow ............... 7-48, 10-10 
numeric underflow ............. 7-50, 10-11 

INDEX-4 

intet 
saved CS and EIP values ............ 10-11 
software handling ................... 7-42 
stack overflow .................. 7-13,7-45 
stack underflow ................. 7-13,7-45 
summary of ........................ 7-41 
synchronization ..................... 7-52 

Floating-point format 
biased exponent ..................... 7-4 
description of ....................... 7-23 
exponent ........................... 7-2 
fraction ............................ 7-2 
real number system ................... 7-1 
real numbers ....................... 7-24 
sign ............................... 7-2 
significand .......................... 7-2 

Flushing 
caches .................... 11-227, 11-383 
TLB entry. . . . . . . . . . . . . . . . . . . . . . . . 11-229 

FMUL instruction ................ 7-33,11-143 
FMULP instruction ............... 7-33, 11-143 
FNOP instruction ................ 7-39,11-146 
FNSTENV instruction ................. 11-141 
FPATAN instruction ... 7-36, 7-37, 10-15, 11-147 
FPREM instruction ....... 7-14, 7-33, 7-37,10-7, 

10-12,10-14,11-149 
FPREM1 instruction ...... 7-14, 7-33, 7-37, 10-7, 

10-14, 11-152 
FPTAN instruction .... 7-14,10-8,10-14,11-155 
FPU 

architecture ......................... 7-7 
checking for pending FPU exceptions .. 11-382 
compatibility with Intel Architecture FPUs 

and math coprocessors ......... 7-1,10-6 
constants. . . . . . . . . . . . . . . . . . . . . . . . 11-137 
error signals ................. 10-11, 10-12 
existence of ....................... 11-75 
floating-point format ............... 7-1, 7-2 
IEEE standards ...................... 7-1 
initialization ...................... 11-131 
instruction synchronization . . . . . . . . . .. 10-18 
presence of ......................... 9-1 
transcendental instruction accuracy ..... 7-38 

FPU control word 
compatibility, Intel Architecture 

processors ...................... 10-8 
description of. ...................... 7-16 
exception-flag masks ................ 7-16 
loading .................... 11-139, 11-141 
PC field ........................... 7-16 
RCfield ....... 7-17, 11-133, 11-137, 11-171 
restoring ........................ 11-158 
saving .................... 11-160, 11-176 
storing . . . . . . . . . . . . . . . . . . . . . . . . . . 11-174 

FPU data pointer .. 7-20, 11-141, 11-158, 11-160, 
11-176 

FPU data registers ...................... 7-9 
FPU flag, CPUID instruction ............. 11-75 

I 



I 

FPU instruction pointer ..... 7-20,11-141,11-158, 
11-160,11-176 

FPU instructions 
arithmetic vs. non-arithmetic instructions .. 7-42 
instruction set ....................... 7-29 
operands ........................... 7-30 
overview ........................... 7-29 
unsupported ........................ 7-40 

FPU integer 
description of ....................... 7-26 
encodings .......................... 7.-27 

FPU lastopcode ... 7-21,11-141,11-158,11-160, 
11-176 

FPU register stack 
description of ........................ 7-9 
parameter passing ................... 7-11 

FPU state 
image ........................ 7-22, 7-23 
saving ............................. 7-21 

FPU status word 
condition code flags ...... 7-12, 10-7, 11-109, 

11-126, 11-186, 11-188, 11-192 
OE flag ............................ 7-48 
description of ..................... ' .. 7-12 
exception flags ...................... 7-14 
FPU flags affected by instructions ...... 11-13 
loading .......................... 11-141 
OE flag ............................ 7-48 
PE flag ............................ 7-13 
restoring ......................... 11-158 
saving ............. 11-160, 11-176, 11-178 
TOP field ..................... 7-9, 11-130 

FPU tag word ....... 7-19, 10-8, 11-141, 11-158, 
11-160,11-176 

Fraction, floating-point number ............. 7-2 
FRNOINT instruction ............. 7-33, 11-157 
FRSTOR instruction ...... 7-14,7-20,7-23,7-39, 

10-12, 10-13, 11-158 
FS register .................. 3-7,3-8, 11-252 
FS segment override prefix ............... 11-2 
FSAVElFNSAVE instructions .... 7-12,7-14,7-20, 

7-21,7-39,10-12,10-17,11-158, 
11-160 

FSCALE instruction ........ 7-38, 10-14, 11-163 
FSIN instruction ...... 7-14,7-36,10-15,11-165 
FSINCOS instruction .. 7-14,7-37,10-15,11-167 
FSQRT instruction ... 7-33,10-12,10-14,11-169 
FST instruction .................. 7-31, 11-171 
FSTCW/FNSTCW instructions ....... 7-16,7-39, 

11-174 
FSTENV/FNSTENV instructions ..... 7-12, 7-20, 

7-21,7-39,10-17,11-176 
FSTP instruction ................. 7-31, 11-171 
FSTSW/FNSTSW instructions ....... 7-12, 7-39, 

11-178 
FSUB instruction ................ 7-33,11-180 
FSUBP instruction ............... 7-33,11-180 
FSUBR instruction ............... 7-33,11-183 

INDEX 

FSUBRP instruction .............. 7-33, 11-183 
FT AN instruction ....................... 10-8 
FTST instruction ............ 7-15, 7-34, 11-186 
FUCOM instruction ......... 7-34,10-14,11-188 
FUCOMI instruction ... 2-2,6-1,7-15,7-34, 10-3, 

10-13, 11-112 
FUCOMIP instruction .. 2-2,6-1,7-15,7-34, 10-3, 

10-13,11-112 
FUCOMP instruction ........ 7-34,10-14,11-188 
FUCOMPP instruction ....... 7-15,7-34,10-14, 

11-188 
FXAM instruction ...... 7-13, 7-34,10-15,10-16, 

11-192 
FXCH instruction ................ 7-32, 11-194 
FXTRACT instruction .. 7-33, 10-10, 10-15,10-16, 

11-163,11-196 
FYL2X instruction ................ 7-38, 11-198 
FYL2XP1 instruction .............. 7-38, 11-200 

G 
GOT (global descriptor table) ..... 11-261, 11-264 
GOTR (global descriptor table register) ... 11-261, 

11-356 
General protection exception (#GP) ....... 10-13 
General-purpose registers ................ 3-5 

moving value to and from ........... 11-281 
parameter passing ................... 4-5 
poppingall. ...................... 11-312 
pushing all ....................... 11-320 

GS register .................. 3-7, 3-8, 11-252 
GS segment override prefix .............. 11-2 

H 
Hexadecimal numbers ................... 1-6 
HL T instruction ...................... 11-202 

10 flag, EFLAGS register ................ 10-5 
10 (identification) flag, EFLAGS register ..... 3-13, 

10-5 
10lV instruction .................. 6-20, 11-203 
lOT (interrupt descriptor table) .... 11-216, 11-261 
10TR (interrupt descriptor table register) .. 11-261, 

11-356 
IE (invalid operation exception) flag, FPU status 

word ............... 7-14,7-46,10-8 
IEEE 754 and 854 standards for floating-point 

arithmetic ............ 7-1, 10-8, 10-9 
IF (interrupt enable) flag, EFLAGS register .. 3-12, 

4-12,8-5,11-57,11-370 
Immediate operands ................. 5-5, 11-3 
IMUL instruction ................. 6-20, 11-206 
IN ................................... 8-3 
IN instruction ............ 6-34,8-3,8-4, 11-209 
INC instruction ........... 6-19, 11-211, 11-269 

INDEX-5 



INDEX 

Indefinite rotate instructions ................... 6-25 
description of ........................ 7-7 segment register instructions .......... 6-37 
integer ............................. 7-27 shift instructions .................... 6-22 
packed BCD decimal ................. 7-29 software interrupt instructions .......... 6-32 
real ............................... 7-26 string instructions . . .. 11-66, 11-213, 11-271 , 

Index (operand addressing) ....... 5-8, 5-9, 11-3 11-289, 11-305, 11-372 
Inexact result, FPU ...................... 7-18 string operation instructions ........... 6-33 
Inexact-result (precision) exception (#P) ..... 7-51 summary ........................... 6-1 
Infinity control flag, FPU control word ....... 7-19 system instructions .................. 6-11 
Infinity, floating-point format. ............... 7-6 test instruction ...................... 6-28 
INIT pin ................................ 3-9 type conversion instructions ........... 6-18 
Initialization FPU ....... , ............. 11-131 INSW instruction ....... " .... " ...... 11-213 
InpuVoutput (see I/O) INT instruction ................... .4-14, 6-37 
INS instruction .... 6-34, 8-3, 8-4, 11-213, 11-333 INT3 instruction ...... , .............. 11-216 
INSB instruction ...................... 11-213 Integers ...................... 5-2, 6-19, 6-20 
INSD instruction ...................... 11-213 Integer, FPU data type 
Instruction decoder ....................... 2-9 description of. ...................... 7-26 
Instruction format indefinite .......................... 7-27 

base field .......................... 11-3 storing .......................... 11-132 
description of ....................... 11-1 Intel 286 processor ................. 10-1, 10-6 
description of reference information ...... 11-7 Intel 8086 processor .................... 10-6 
displacement. ....................... 11-3 Intel Architecture 
illustration of ........................ 11-1 compatibility ....................... 10-1 
immediate .......................... 11-3 processors ......................... 10-1 
index field .......................... 11-3 Intel287 math coprocessor ............... 10-6 
Mod field ........................... 11-2 Intel386 DX processor .............. 10-1, 10-6 
Mod R/M byte ....................... 11-2 Intel386 SX processor . . . . . . . . . . . . . . . . .. 10-1 
opcode ............................ 11-2 Intel387 math coprocessor system ......... 10-6 
prefixes ............................ 11-1 Intel486 DX processor .............. 10-1,10-6 
reglopcode field ..................... 11-2 Intel486 SX processor .............. 10-1, 10-6 
rim field ............................ 11-2 Intel487 SX math coprocessor ............ 10-6 
scale field .......................... 11-3 Inter-privilege level call 
SIB byte ........................... 11-2 CALL instruction . . . . . . . . . . . . . . . . . .. 11-43 

Instruction operands ...................... 1-5 description of ........................ 4-6 
Instruction pOinter (EI P register) ........... 3-13 operation ........................... 4-8 
Instruction pOinter, FPU .................. 7-20 Inter-privilege level retum 
Instruction pool (reorder buffer) ............ 2-10 description of ...................... " 4-6 
Instruction prefixes (see Prefixes) operation ........................... 4-8 
Instruction reference, nomenclature ......... 11-7 RET instruction ................... 11-336 
Instruction set Interrupt gate ......................... 4-11 

binary arithmetic instructions ........... 6-19 Interrupt handler ....................... 4-10 
bit scan instructions .................. 6-27 Interrupt vector ........................ 4-10 
bit test and modify instructions .......... 6-27 Interrupts 
byte-set-on-condition instructions ........ 6-27 description of ....................... 4-10 
control transfer instructions ............. 6-28 implicit call to an interrupt handler 
data movement instructions ............ 6-12 procedure ....................... 4-11 
decimal arithmetic instructions .......... 6-20 implicit call to an interrupt handler task ... 4-13 
EFLAGS instructions ................. 6-35 in real-address mode ................ 4-14 
floating-point instructions ............... 6-8 interrupt vector 4 .................. 11-216 
integer instructions .................... 6-2 list of ............................. 4-11 
I/O instructions ...................... 6-34 maskable .......................... 4-10 
lists of .............................. 6-1 returning from .................... 11-230 
logical instructions ................... 6-22 software ......................... 11-216 
new instructions ..................... 10-2 user-defined ....................... 4-10 
obsolete instructions .................. 10-4 vector ............................ 4-10 
processor identification instruction ....... 6-38 INTn instruction ...... , " ........ 6-32, 11-216 
reference ........................... 11-1 INTO instruction ....... 4-14, 6-33, 6-37, 11-216 
repeating string operations ............. 6-34 

INDEX-6 

I 



in1et INDEX 

Invalid arithmetic operand exception (#IA), FPU LLDT instruction ..................... 11-264 
description of ....................... 7-46 LMSW instruction .................... 11-267 
masked response to .................. 7-47 Load effective address operation ........ 11-255 

Invalid operation exception ............... 7-45 LOCK prefix ........ 11-1,11-69,11-71,11-269, 
Invalid operation exception, FPU .... 10-12, 10-16 11-387,11-389 
Invalid-opcode exception (#UD) ...... 10-4, 10-12 LOCK signal .......................... 6-15 
INVD instruction ................. 10-3, 11-227 Locking operation .................... 11-269 
INVLPG instruction ............... 10-3, 11-229 LODS instruction .... 3-12, 6-33, 11-271, 11-333 
10PL (lID privilege level) field, EFLAGS LODSB instruction ................... 11-271 

register. ............ 3-12, 8-4, 11-57, LODSD instruction ................... 11-271 
11-322, 11-370 LODSW instruction ................... 11-271 

IRETinstruction ......... 3-13, 4-13, 4-14, 6-29, Log epsilon, FPU operation ........ 7-38, 11-198 
6-37, 8-4, 11-230 Log (base 2), FPU computation ........... 7-38 

IRETD instruction ..................... 11-230 Log (base 2), FPU operation ........... 11-200 
lID address space ....................... 8-2 Logical address ........................ 3-3 
lID instructions LOOP instructions ............... 6-31, 11-273 

overview of ..................... 6-34, 8-3 LOOPcc instructions ......... 3-11,6-31, 11-273 
serialization .......................... 8-6 LSL instruction ...................... 11-275 

lID map base ........................... 8-5 LSS instruction .................. 6-37,11-252 
lID permission bit map .................... 8-5 L TR instruction ...................... 11-279 
lID ports 

addressing .......................... 8-1 
caching and paging .................... 8-6 
defined ............................. 8-1 

M 
Machine check architecture ............... 2-4 

hardware ............................ 8-1 Machine check exception ................. 2-4 
memory-mapped lID . .................. 8-2 
ordering ............................. 8-6 
protected mode 110 . ................... 8-4 

lID privilege level (see 10PL) 
lID sensitive instructions .................. 8-4 

Machine status word, CRO register ...... 11-267, 
11-366 

Maskable interrupts .................... 4-10 
Masked responses 

to denormal operand exception ......... 7-48 
to division-by-zero exception ........... 7-48 

J 
to FPU stack overflow or underflow 

exception ....................... 7-46 
J-bit .................................. 7-2 to inexact-result (precision) exception .... 7-51 
Jcc instructions ........ 3-11,3-13,6-30,11-237 to invalid arithmetic operation .......... 7-47 
JM P instruction ........ 3-13, 6-28, 6-37, 11-241 to numeric overflow exception .......... 7-49 
Jump operation ...................... 11-241 to numeric underflow exception ........ 7-50 

Masks, exception-flags, FPU control word ... 7-16 

L MCA (machine check architecture), 
CPUID instruction ............. 11-76 

L 1 (level 1 ) cache .................... 2-5, 2-8 
L2 (level 2) cache .................... 2-5, 2-8 

MCE (machine check exception) flag, 
CPUID instruction ............. 11-76 

LAHF instruction ............ 3-10, 6-36, 11-248 
LAR instruction ....................... 11-249 

Memory 
order buffer ......................... 2-9 

Last instruction opcode, FPU .............. 7-21 
LDS instruction .................. 6-37, 11-252 
LDT (local descriptor table) ............. 11-264 
LDTR (local descriptor table register) .... 11-264, 

11-364 
LEA instruction .................. 6-38, 11-255 
LEAVE instruction ..... 4-15,4-21,6-35,11-257 
LES instruction .................. 6-37, 11-252 

organization ...................... 3-2, 3-3 
subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 

Memory interface unit. ................... 2-9 
Memory operands ....................... 5-6 
Memory-mapped lID . ................. 8-1, 8-2 
MESI (modified, exclusive, shared, invalid) 

cache protocol ................. 2-9 
Microarchitecture 

LFS instruction ....................... 11-252 
LGDT instruction ..................... 11-261 

detailed description ................... 2-7 
overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 

LGS instruction .................. 6-37, 11-252 
LlDT instruction ...................... 11-261 
Linear address .......................... 3-2 
Linear address space 

defined ............................. 3-2 
maximum size ........................ 3-2 

Micro-ops ............................. 2-9 
Mod field, instruction format .............. 11-2 
Modes, operating ....................... 3-4 
ModR/M byte 

16-bit addressing forms of ............. 11-4 
32-bit addressing forms of ............. 11-5 

I 
INDEX-7 



INDEX 

description of ....................... 11-2 
format of ........................... 11-1 

MOV instruction ............ 6-13, 6-37, 11-281 
MOV instruction (control registers) ........ 11-285 
MOV instruction (debug registers) ........ 11-287 
MOVS instruction .... 3-12,6-33,11-289,11-333 
MOVSB instruction .................... 11-289 
MOVSD instruction .................... 11-289 
MOVSW instruction ................... 11-289 
MOVSX instruction ............... 6-19,11-291 
MOVZX instruction ............... 6-19, 11-292 
MP (monitor coprocessor) flag, 

CRO register ............. 10-7,10-13 
MSR flag, CPUID instruction ............. 11-75 
MSRs (model specific registers) 

existence of ........................ 11-75 
oveNiew of .......................... 2-3 
reading .......................... 11-328 
writing ........................... 11-385 

MTRRs (memory type range registers) 
flag, CPUID instruction ............... 11-76 
oveNiew of .......................... 2-4 
presence of. ......................... 9-1 

MUL instruction ........... 6-20,11-18, 11-294 

N 
NaN 

compatibility, Intel Architecture 
processors ....................... 10-9 

description of .................... 7-4, 7-7 
encoding of ..................... 7-5, 7-26 
operating on ........................ 7-40 
SNaNs vs. QNaNs .................... 7-7 
testing for ........................ 11-186 

NE (numeric error) flag, CRO register .. 7-44, 10-7 
Near call 

CALL instruction .................... 11-43 
description of ....................... .4-4 
operation ........................... .4-4 

Near pointer 
description of ........................ 5-4 

Near return 
operation ........................... .4-4 
RET instruction .................... 11-336 

Near retu rn operation .................... .4-5 
NEG instruction .......... 6-20, 11-269, 11-296 
Nomenclature, used in instruction 

reference pages ................ 11-7 
Non-arithmetic instructions, FPU ........... 7-42 
Nonconforming code segment ........... 11-244 
Non-number encodings, FPU ............... 7-4 
Non-waiting instructions ............. 7-40,7-42 
NOP instruction ................. 6-39,11-298 
Normalized finite number .............. 7-3, 7-5 
NOT instruction .......... 6-22, 11-269, 11-299 
Notation 

bit and byte order ..................... 1-4 

INDEX-8 

exceptions. . . . . . . . . . . . . . . . . . . . . . . . .. 1-6 
hexadecimal and binary numbers ........ 1-6 
instruction operands . . . . . . . . . . . . . . . . .. 1-5 
reseNed bits . . . . . . . . . . . . . . . . . . . . . . .. 1-4 
segmented addressing ................ 1-6 

Notational conventions. . . . . . . . . . . . . . . . . .. 1-4 
NT (nested task) flag, EFLAGS register ..... 3-12, 

11-230 
Numeric overflow exception (#0) ..... 7-13, 7-48, 

10-10 
Numeric underflow exception (#U) .... 7-13,7-50, 

10-11 

o 
Obsolete instructions .............. 10-4, 10-17 
OE (numeric overflow exception) flag, FPU status 

word .................... 7-14,7-49 
OF (carry) flag, EFLAGS register ........ 11-207 
OF (overflow) flag, EFLAGS register .. 3-11,4-14, 

11-20, 11-22, 11-216, 11-294, 11-349, 
11-359,11-361,11-375 

Offset (operand addressing) ............... 5-7 
Opcodes 

format of .......................... 11-2 
undefined ......................... 10-4 

Operand 
FPU instructions .................... 7-30 
instruction . . . . . . . . . . . . . . . . . . . . . . . . .. 1-5 

Operand addressing, modes .............. 5-5 
Operand sizes ......................... 3-4 
Operand-size attribute 

code segment ...................... 3-13 
description 01. ...................... 3-13 
override prefix ...................... 11-2 

Operand-size override prefix ............. 11-2 
Operating modes ....................... 3-4 
OR instruction ............ 6-22, 11-269, 11-301 
Ordering 1/0 ........................... 8-6 
OUT instruction .......... 6-34,8-3,8-4, 11-303 
OUTS instruction . 6-34, 8-3, 8-4, 11-305, 11-333 
OUTSB instruction ................... 11-305 
OUTSD instruction ................... 11-305 
OUTSW instruction ................... 11-305 
Overflow exception (#OF) ......... .4-14,11-216 
Overflow, FPU exception 

(see Numeric overflow exception) 
Overflow, FPU stack .................... 7-45 

p 
Packed BCD integers .................... 5-4 
Packed decimal indefinite ................ 7-29 
PAE (physical address extension) flag, 

CPUID instruction ............. 11-75 
PAE (physical address extension) flag, 

CR4 register ................... 2-3 
Pages, split. ......................... 10-17 

I 



intet 

I 

Paging, I/O ports ........................ 8-6 
Parameter passing 

argument list ........................ .4-6 
FPU register stack ................... 7-11 
on procedure stack ................... .4-5 
on the procedure stack ................ .4-6 
through general-purpose registers ....... .4-5 

PC (precision) field, FPU control word ....... 7-16 
PE (inexact result exception) flag, FPU status 

word .......... 7-13,7-14,7-18,7-51 
PE (protection enable) flag, CRO register .. 11-267 
Pentium Pro processor 

introduction to ........................ 2-1 
microarchitecture ................. 2-5, 2-7 
new features ......................... 2-2 
new memory management features ....... 2-3 
new model specific features ............. 2-3 
overview of microarchitecture ............ 2-1 

Pentium processor ................. 10-1, 10-6 
Performance-monitoring counters 

overview of .......................... 2-5 
reading .......................... 11-330 

PF (parity) flag, EFLAGS register .......... 3-11 
PGE (page global enable) flag, CR4 register ... 2-3 
PGE (page-table-entry global flag), 

CPUID instruction ............. 11-76 
Physical address space ................... 3-2 
Physical memory ........................ 3-2 
Pi 

description of FPU constant ............ 7-37 
loading .......................... 11-137 

Pointers ............................... 5-4 
POP instruction .... .4-1, 4-3, 6-17, 6-37, 11-308 
POPAinstruction ............ 4-6, 6-17,11-312 
POPAD instruction .................... 11-312 
POPF instruction .... 3-10, 4-6, 6-36, 8-5, 11-314 
POPFD instruction .......... 3-10, 6-36, 11-314 
POPFH instruction ...................... .4-6 
Prefixes 

address size override ................. 11-2 
instruction, description of .............. 11-1 
LOCK ...................... 11-1, 11-269 
operand-size override ................. 11-2 
repeat ............................. 11-1 
REP/REPE/REPZ/REPNE/REPNZ .... 11-333 
segment override .................... 11-2 

Privilege levels 
description of ....................... .4-7 
inter-privilege level calls ............... .4-6 
stack switching ..................... .4-12 

Procedure calls 
description of ....................... .4-4 
far call ............................. .4-4 
for block-structured languages ......... .4-15 
inter-privilege level call ................. 4-8 
linking ............................. .4-3 
near call ........................... .4-4 
overview ........................... .4-1 

INDEX 

procedure stack ...................... 4-1 
return instruction pointer (EIP register) .... 4-4 
saving procedure state information ....... 4-6 
stack switching ...................... 4-8 
to exception handler procedure ......... 4-11 
to exception task .................... 4-13 
to interrupt handler procedure .......... 4-11 
to interrupt task ..................... 4-13 
to other privilege levels ................ 4-6 
types of ............................ 4-1 

Procedure stack 
address-size attribute ................. 4-3 
alignment of stack pointer .............. 4-2 
current stack .................... .4-2, 4-3 
description 01. ....................... 4-1 
EIP register (return instruction pointer) .... 4-4 
maximum size ....................... 4-1 
number allowed ...................... 4-2 
passing parameters on ................ 4-6 
popping values from ........... .4-1,11-308 
procedure linking information ........... 4-3 
pushing values on ............. .4-1,11-317 
return instruction pointer ............... 4-4 
SS register ......................... 4-1 
stack pointer ........................ 4-1 
stack segment. ...................... 4-1 
stack-frame base pointer, ESP register ... 4-3 
switching ........................... 4-8 
top of stack ......................... 4-1 
width .............................. 4-2 

Processor identification 
earlier Intel architecture processors ...... 9-2 
using CPUID instruction ............... 9-1 

Processor state information, saving on a 
procedure call. ................. 4-6 

Protected mode 
description of ........................ 3-4 
I/O ................................ 8-4 

PSE (page size extensions) flag, 
CPUID instruction ............. 11-75 

PSE (page size extension) flag, 
CR4 register ................... 2-3 

Pseudo-denormal number ............... 7-29 
Pseudo-infinity .................... 7-29, 10-9 
Pseudo-NaN ...................... 7-29, 10-9 
Pseudo-zero .......................... 10-9 
PUSH instruction ......... .4-1 , 4-3, 6-16, 6-37, 

10-5,11-317 
PUSHAinstruction ........... 4-6, 6-16, 11-320 
PUSHAD instruction .................. 11-320 
PUSHF instruction. 3-10,4-6,6-36, 10-6,11-322 
PUSHFD instruction ......... 3-10, 6-36, 11-322 
PUSHFH instruction ..................... 4-6 

INDEX-9 



INDEX 

Q 
QNaN 

compatibility, Intel Architecture 
processors ....................... 10-9 

description of ........................ 7-7 
operating on ........................ 7-40 
rules for generating ................... 7-41 

Quadword .............................. 5-1 
Quiet NaN (see QNaN) 

R 
RC (rounding control) field, FPU control 

word .... 7-17, 11-133, 11-137, 11-171 
RCL instruction .................. 6-26, 11-324 
RCR instruction ................. 6-26, 11-324 
RDMSR instruction ........ 2-2, 9-1,10-3,11-75, 

11-328, 11-332 
RDPMC instruction ....... 2-2, 6-1, 10-3, 11-330 
RDTSC instruction ..... 9-1, 10-3, 11-75, 11-332 
Real numbers 

encoding ................... 7-4, 7-5, 7-26 
floating-point format .................. 7-24 
indefinite ........................... 7-26 
notation ............................. 7-3 
system ............................. 7-1 

Real-address mode ...................... 3-4 
handling exceptions in ............... .4-14 
handling interrupts in ................ .4-14 

Register operands ....................... 5-5 
Register stack, FPU ...................... 7-9 
Registers 

EFLAGS register. ..................... 3-9 
EI P register. ........................ 3-13 
general-purpose registers ............... 3-5 
MSRs .............................. 2-3 
MTRRs ............................. 2-4 
segment registers ................. 3-5, 3-7 

Reg/opcode field, instruction format. ........ 11-2 
Related literature ........................ 1-7 
Remainder, FPU operation ...... 11-149,11-152 
REP/REPE/REPZlREPNElREPNZ 

prefixes ....... 6-34, 8-3, 11-2, 11-66, 
11-213,11-305,11-333 

Reserved bits ...................... 1-4, 10-1 
RESET pin ............................. 3-9 
RET instruction ..... 3-13, 4-4, 6-29, 6-37, 11-336 
Retirement unit. ........................ 2-11 
Return instruction pointer ................. .4-4 
Returns, from procedure calls 

exception handler, return from ......... .4-11 
far return ........................... .4-5 
interrupt handler, return from .......... .4-11 

Returns, from procedures calls 
inter-privilege level return .............. .4-8 
near return ......................... .4-4 

RF (resume) flag, EFLAGS register ......... 3-12 
ROL instruction ................. 6-26,11-324 

INDEX-10 

ROR instruction ................. 6-26, 11-324 
Rotate operation ..................... 11-324 
Rounding 

control, RC field of FPU control word .... 7-17 
modes, FPU ....................... 7-17 
results, FPU ................... 7-18, 7-19 
round to integer, FPU operation ...... 11-157 

RPL field. . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-26 
RSM instruction ................. 10-3, 11-343 
RIm field, instruction format .............. 11-2 

S 
SAHF instruction ................... 3-10, 6-36 
SAL instruction .................. 6-22, 11-345 
SA~ instruction .................. 6-23, 11-345 
Saving the FPU state ................... 7-21 
SBB instruction ........... 6-19,11-269,11-349 
Scale (operand addressing) ....... 5-8,5-9, 11-3 
Scale, FPU operation ............. 7-38,11-163 
Scaling bias value .................. 7-49,7-50 
SCAS instruction .... 3-12,6-33,11-333,11-351 
SCASB instruction ................... 11-351 
SCASD instruction ................... 11-351 
SCASW instruction ................... 11-351 
Segment descriptor 

segment limit. .................... 11-275 
Segment limit ....................... 11-275 
Segment override prefixes ............... 11-2 
Segment registers 

description of. .................... 3-5, 3-7 
moving values to and from .......... 11-281 

Segment selector 
description of. .................... 3-3, 3-7 
RPL field. . . . . . . . . . . . . . . . . . . . . . . .. 11-26 
specifying .......................... 5-6 

Segmented addressing ................... 1-6 
Segmented memory model ............ 3-3, 3-7 
Segments 

defined ............................ 3-3 
maximum number .................... 3-3 

Serialization of 1/0 instructions ............. 8-6 
SETccinstructions .......... 3-11, 6-27, 11-353 
SF (sign) flag, EFLAGS register ..... 3-11,11-20, 

11-22 
SF (stack fault) flag, FPU status 

word ............... 7-14,7-46,10-8 
SGDT instruction .................... 11-356 
SHAF instruction ..................... 11-344 
SHL instruction .................. 6-22, 11-345 
SHLD instruction ................. 6-25, 11-359 
SHR instruction .................. 6-23,11-345 
SHRD instruction ................ 6-25,11-361 
SI register ............................. 3-6 
SIB byte 

32-bit addressing forms of ............. 11-6 
description of. ...................... 11-2 
format of .......................... 11-1 

I 



intet 

I 

SI DT instruction ...................... 11-356 
Signaling NaN (see SNaN) 
Signed infinity ........................... 7-6 
Signed zero ............................ 7-4 
Significand 

extracting from floating-point number ... 11-196 
of floating-point number ................ 7-2 

Sign, floating-point number ................ 7-2 
Sine, FPU operation ....... 7-36,11-165,11-167 
Single-precision, IEEE floating-point format. .. 7-24 
Single-real floating-point format ............ 7-24 
16-bit 

address size ......................... 3-4 
operand size ......................... 3-4 

SLDT instruction ...................... 11-364 
SMSW instruction ..................... 11-366 
SNaN 

compatibility, Intel Architecture 
processors ................. 10-9, 10-16 

description of ........................ 7-7 
operating on ........................ 7-40 
typical uses of. ...................... 7-40 

SP register ............................. 3-6 
Speculative execution .................... 2-7 
Split pages ........................... 10-17 
Square root, FPU operation ............. 11-169 
SS register ....... 3-7, 3-9, 4-1, 11-252, 11-282, 

11-308 
SS segment override prefix ............... 11-2 
Stack alignment ........................ .4-2 
Stack fault, FPU ............. 7-14,10-8,10-15 
Stack overflow and underflow exceptions (#IS), 

FPU ......................... 7-45 
Stack overflow exception, FPU ....... 7-13,7-45 
Stack pointer (ESP register) ......... 4-1, 11-317 
Stack segment .......................... 3-9 
Stack switching 

on calls to interrupt and exception 
handlers ........................ .4-12 

on inter-privilege level calls ............. .4-8 
Stack underflow exception, FPU ...... 7-13, 7-45 
Stack (see Procedure stack) 
Stack-frame base pointer, EBP register ...... .4-3 
Status flags, EFLAGS register ... 3-11,7-15,7-35, 

11-62, 11-64, 11-107, 11-112, 11-238, 
11-353, 11-377 

STC instruction ............. 3-11,6-35, 11-368 
STD instruction ............. 3-12, 6-35, 11-369 
STI instruction ......... 6-35,6-36,8-4, 11-370 
STOS instruction .... 3-12,6-34,11-333,11-372 
STOSB instruction .................... 11-372 
STOSD instruction .................... 11-372 
STOSW instruction .................... 11-372 
STR instruction ....................... 11-374 
String operations ........ 11-66, 11-213, 11-271, 

11-289, 11-305, 11-372 
Strings ................................ 5-4 
ST(O), top-of-stack register ............... 7-10 

INDEX 

SUB instruction ...... 6-19, 11-19, 11-83, 11-269, 
11-375 

Superscaler ........................... 2-5 
Synchronization, of floating-point exceptions. 7-52 
System flags, EFLAGS register ........... 3-12 
System management mode (SSM) ......... 3-4 

T 
Tangent, FPU operation ........... 7-36,11-155 
Task gate ..................... .4-14, 11-245 
Task register 

loading .......................... 11-279 
storing .......................... 11-374 

Task state segment (see TSS) 
Task switch 

CALL instruction . . . . . . . . . . . . . . . . . .. 11-43 
return from nested task, 

IRET instruction ................ 11-230 
Tasks 

exception handler ................... 4-13 
interrupt handler .................... 4-13 

TEST instruction ................. 6-28, 11-377 
TF (trap) flag, EFLAGS register ........... 3-12 
32-bit 

address size ........................ 3-4 
operand size ........................ 3-4 

Time-stamp counter, reading ........... 11-332 
Tiny number ........................... 7-5 
TLB entry, invalidating (flushing) ........ 11-229 
TOP (stack TOP) field, FPU status word ..... 7-9 
Transcendental instruction accuracy .. 7-38,10-7, 

10-17 
Trap gate ............................ 4-11 
TS (task switched) flag, CRO register .1 0-13, 11-59 
TSC (time stamp counter) flag, 

CPUID instruction ............. 11-75 
TSD flag, CR4 register ................ 11-332 
TSS 

floating-point save area .............. 10-13 
I/O map base ........................ 8-5 
I/O permission bit map ................ 8-5 
relationship to task register .......... 11-374 
saving state of EFLAGS register ........ 3-10 

U 
UD2 instruction ..... 2-2, 6-1, 6-39, 10-3, 11-379 
UE (numeric overflow exception) flag, FPU status 

word .................... 7-14, 7-50 
Undefined 

format opcodes ................... 11-186 
opcodes ........................... 10-4 

Underflow, FPU exception (see Numeric 
underflow exception) 

Underflow, FPU stack ................... 7-45 
Underflow, numeric ...................... 7-5 
Un-normal number ................. 7-29, 10-9 

INDEX-11 



INDEX 

Unordered values ....... 11-109,11-112,11-186, 
11-188 

Unsigned integers ............. 5-4, 6-19, 6-20 
Unsupported floating-point formats ......... 7-29 
Unsupported FPU instructions ............. 7-40 

V 
Vector (see Interrupt vector) 
VERR instruction ..................... 11-380 
Version information, processor ........... 11-73 
VERW instruction ..................... 11-380 
VIF flag, EFLAGS register ................ 10-5 
VI F (virtual interrupt) flag, EFLAGS register .. 3-12 
VIP (virtual interrupt pending) flag, EFLAGS 

register .................. 3-12, 10-5 
Virtual 8086 mode 

description of ....................... 3-12 
memory model ....................... 3-4 

VM (virtual 8086 mode) flag, EFLAGS 
register ................ 3-12, 11-230 

VME (virtual 8086 mode enhancements) flag, 
CPUID instruction ............. 11-75 

W 
Waiting instructions ..................... 7-40 
WAIT/FWAIT instructions ....... 7-39,7-53,10-7, 

10-13,10-17,10-18,11-382 
WBINVD instruction .............. 10-3, 11-383 
Word .................................. 5-1 
Write-back and invalidate caches ........ 11-383 
WRMSR instruction .2-2,9-1, 10-3, 11-75, 11-385 

X 
XADD instruction .... 6-15,10-3,11-269,11-387 
XCHG instruction ......... 6-15,11-269,11-389 
XLAT/XLATB instruction .......... 6-38, 11-391 
XOR instruction .......... 6-22, 11-269, 11-393 

Z 
ZE (division-by-zero exception) flag, FPU status 

word ......................... 7-14 
Zero, floating-point format ................. 7-4 
ZF (zero) flag, EFLAGS register .... 3-11,11-69, 

11-71,11-249,11-273,11-275,11-333, 
11-380 

INDEX-12 

I 



NORTH AMERICAN SALES OFFICES 
ARIZONA Intel Carf" Intel Corp. TEXAS 

Intel Corp. 
2250 Lucien Way Lincroft Center 
Suite 100 125 Half Mile Road Intal Corp. 

410 North 44th Street Suite 8 Red Bank 07701 8911 Capital of Texas Hwy 
Suite 470 Maitland 32751 Tel: (800) 628-8686 Suite 4230 
Phoenix 85008 Tel: (800) 628-8686 FAX: (908) 747-0983 Austin 78759 
Tel: (800) 628-8686 FAX: (407) 660-1283 Tel: (800) 628-8686 
FAX: (602) 244-0446 NEW YORK FAX: (512) 338-9335 

GEORGIA 
Intel Corp. CALIFORNIA Intel Corp. 

Intel Corp. 850 Cross Keys Office Pk 5000 Quorum Drive 
Intel Corp. 20 Technology Park Fairport 14450 Suite 750 
26707 W. Agoura Road Suite 150 Tel: (800) 628-8686 Dallas 75240 
Suite 203 Norcross 30092 TWX: 510-253-7391 Tel: (800) 628-8686 
Calabasas, CA 91302 Tel: (800) 628-8686 FAX: (716) 223-2561 FAX: (214) 233-1325 
Tel: (800) 628-8686 FAX: (404) 448-0875 

Intel Corp. Intel Corp. FAX: (818)-880-1820 

Intel Corp. 
IDAHO 2950 Expressway Drive 20405 State Hwy 249 

Islandia 11722 Suite 8aO 
3550 Walt Avenue 

~~t~I~.°Ma'in Street 
Tel: (800) 628-8686 Houston 77070 

Suite 140 TWX: 510-227-6236 Tel: (800) 628-8686 
Sacramento 95821 Suite 236 FAX: (516) 348-7939 TWX: 910-881-2490 
Tel: (800) 628-8686 Boise 83702 FAX: (713) 376-2891 
FAX: (916) 979-7011 Tel: (800) 628-8686 OHIO 

Intel Corp. FAX: (208) 331-2295 UTAH 
Intel Corp. 

9655 Granite Ridge Drive 56 Milford Drive Intol Corp. 
3rd Floor ILLINOIS Suite 205 428 East 6400 South 
Suite 4A Hudson 44236 Suite 135 
San Diego 92123 Intel Corp. Tel: (800) 628-8686 Murray 84107 
Tel: (800) 628-8686 300 North Martingale Road FAX: (216) 528-1026 Tel: (800) 628-8686 
FAX: (619) 467-2460 Suite 400 

·tlntal Corp. 
FAX: (801) 268-1457 

Intal Corp. Schaumburg 60173 
Tell: (800) 628-8686 3401 Park Center Drive WASHINGTON 

1781 Fox Drive FAX: (708) 605-9762 Suite 220 
San Jose 95131 Daylon 45414 Intel Corp. 
Tel: (800) 628-8686 INDIANA Tel: (800) 628-8686 2800 156th Avenue SE 
FAX: (408) 441-9540 TWX: 810-450-2528 Suite 105 

Intel Corp. Intel Corp. FAX: (513) 890-8658 Bellevue 98007 

1551 North Tustin Avenue 8041 Knue Road Tel: (800) 628-8686 

Suite 800 Indianapolis 46250 OKLAHOMA FAX: (206) 746-4495 

Santa Ana 92701 Tel: (800) 628-8686 
Intel Corp. WISCONSIN 

Tel: (800) 628-8686 FAX: (317) 577-4939 
6801 North Broadway 

TWX: (910) 595-1114 MARYLAND Suite 115 Intel Corp. 
FAX: (714) 541-9157 Oklahoma City 73162 400 North Executive Drive 

~~t:IV~:g'e' la Valle 
Intel Corp. Tel: (800) 628-8686 Suite 401 
131 National Bus. Pkwy FAX: (405) 840-9819 Brookfield 53005 

Suite 20B-RCO Suite 200 Tel: (800) 628-8686 

Solana Beach 92075 Annapolis Junction 20701 OREGON FAX: (414) 789-2746 
Tel: (800) 628-8686 

Intel Corp. 
~~t:b ~~~;and AVenue 

FAX: (301) 206-3678 
15254 NW Greenbrier CANADA 

Suite 150 MASSACHUSETTS ~~irJing B EI Segundo, CA 90245 BRITISH COLUMBIA 
Tel: (800) 628-8686 Intel Corp. Beaverton 97006 
FAX: (310) 640-7133 Nagog Park Tel: (800) 628-8686 Intel of Canada, Ltd. 

125 Nagog Park TWX: 910-467-8741 999 Canada Place 
COLORADO Acton 01720 FAX: (503) 645-8181 Suite 404 

Tel: (800) 628-8686 Suite 11 

~nJ~ls~~r~'Cherry Street 
FAX: (508) 266-3867 PENNSYLVANIA Vancouver V6e 3E2 

MICHIGAN Intel Corp. 
Tel: (800) 628-8686 

Suite 700 FAX: (604) 844-2813 
Denver 80222 925 Harvest Drive 
Tel: (800) 628-8686 Intel Corp. Suite 200 ONTARIO 
TWX: 910-931-2289 32255 North Western Hwy. Blue Bell 19422 

FAX: (303) 322-8670 Suite 212, Tri Atria Tel: (800) 628-8686 Intel of Canada, Ltd. 
Farmington Hills 48334 FAX: (215) 641-0785 2650 Queensview Drive 

CONNECTICUT Tel: (800) 628-8686 Suite 250 
FAX: (313) 851-8770 SOUTH CAROLINA Ottawa K2B BH6 

Intel Corp:. 
MINNESOTA ~~tg1 ~~~eiane Road 

Tel: (800) 628-8686 
40 Old Rldgebury Road FAX: (613) 820-5936 
Suite 311 
Danbury 06811 Intel Corp. Suite 4 Intel of Canada, Ltd. 

Tel: (800) 628-8686 3500 West 80th Street Columbia 29223 190 AtlweU Drive 

FAX: (203) 778-2168 Suite 360 Tel: (800) 628-8686 Suite 500 
Bloomington 55431 FAX: (803) 788-7999 Rexdale M9W 6Ha 

FLORIDA Tel: (800) 628-8686 
Intel Corp. 

Tel: (800) 628-8686 
TWX: 910·576-2867 FAX: (416) 675-2438 

Intel Corp. FAX: (612) 831-6497 100 Executive Center Dr 
600 West Hillsboro Blvd. Suite 109, B183 QUEBEC 

Suite 348 NEW JERSEY Greenville 29615 
Deertield Beach 33441 Tel: (800) 628-8686 Intel of Canada, Ltd. 
Tel: (800) 628-8686 Intel Corp. FAX: (803) 297-3401 1 Rue Holiday, Tour West 

FAX: (305) 421-2444 2001 Route 46 Suite 320 
Suite 310 PI. Claire H9R 5N3 
Parsippany 07054 Tel: (800) 628-8686 
Tel: (800) 628-8686 FAX: 514-694-0064 
FAX: (201) 402-4893 



NORTH AMERICAN SERVICE OFFICES 
Computervision 

Intel Corporation's North American Preferred Service Provider 
Central Dispatch: 1-800-876-SERV (1-800-876-7378) 

ALABAMA GEORGIA MICHIGAN NORTH CAROLINA UTAH 

Birmingham Atlanta Detroit Ashville Salt Lake City 
Huntsvillo 

HAWAII 
Flint Charlotte 

VERMONT 
ALASKA 

Grand Rapids Greensboro 
Honolulu Lansing Raleigh While River JUnction 

Anchorage 
ILLINOIS Troy Wilmington VIRGINIA 

ARIZONA Chicago MINNESOTA OHIO Charlottesville 
Phoenix Wood Dale Minneapolis Cincinnati Richmond 
Tucson 

INDIANA Cleveland Roanoke 
MISSOURI Virginia Beach 

ARKANSAS Carmel Columbus 

North little Rock Evansville 
Springfield Dayton WASHINGTON 
Street Louis 

CALIFORNIA 
Ft. Wayne OKLAHOMA Renton 
South Bend MISSISSIPPI Oklahoma City Richland 

Concord Jackson 
Los Angeles IOWA Tulsa WASHINGTON D.C." 

Ontario Cedar Rapids NEW HAMPSHIRE OREGON WEST VIRGINIA 
Orange Davenport Manchester· Beaverton 
Redwood City West Des Moines Charleston 

MONTANA 
Sacramento PENNSYLVANIA WISCONSIN 
San Diego 

KANSAS Butte Camp Hill 
Kansas City Milwaukee 

San Francisco NEBRASKA Erie 
Van Nuys Wichita Pittsburgh CANADA 

Omaha 

COLORADO KENTUCKY Wayne Calgary 

Louisville NEW JERSEY 
SOUTH CAROLINA 

Edmonton 
Colorado Springs 

Madisonville Cherry Hill Fredericton 
Denver Hamilton Township Charleston Halifax 

CONNECTICUT LOUISIANA Westfield Columbia Mississauga 
Baton Rouge Greenville Montreal E. Windsor NEW MEXICO 

Middlebury New Orleans TENNESSEE Ottawa 

MAINE 
Albuquerque 

Chattanooga Toronto 
FLORIDA NEW YORK Knoxville Vancouver, Be" 

Auburn FI. Lauderdale Albany Memphis Winnipeg 
Jacksonville MARYLAND Binghampton Nashville Quebec City 
Miami Baltimore Buffalo Regina 
Orlando Farmingdale 

TEXAS St.John's 
Pensacola MASSACHUSETTS 

New York City Austin 
Tampa Bedfoird Rochester Houston 

S. Easton Dryden Dallas 
Tyler 




