
•

• iSBX 331™ FIXED/FLOATING POINT
MATH MULTIMODULE™ BOARD

HARDWARE REFERENCE MANUAL

• Manual Order Number: 142668-002

•

•
•

•

•
Copyright © 1980, 1981 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 r

ii

REV. REVISION HISTORY PRINT
DATE

-001 Original Issue 8/80

-002 16-bit Baseboard Addressing Added 7/81

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(aX9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDI'l'
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachassis
Micromap
Multibus
Multimodule
PROMP'l'
Promware
RMX/SO
System 2000
UPI
/lScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, iMMX or RMX and a numerical
suffix.

A410/881/3K NeG

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

PREFACE

This manual provides general information, preparation for use, programming
information, principles of operation, and service information for the iSBX 331
Math Multimodule Board. Supplementary information is provided in the following
documents:

• Intel MCS-85 User's Manual, Order No. 9800366.

• Intel Peripheral Design Handbook, Order No. 9800676.

• Intel Multibus Specification, Order No. 9800683.

• Intel iSBX Bus Specification, Order No. 142686.

iii

CHAPTER 1
GENERAL INFORMATION Page
Introduction 1-1
Description 1-0
Equipment Supplied 1-2
Compatible Equipment 1-3
Specifications 1-3

CHAPTER 2
PREPARATION FOR USE
Introduction 2-1
Unpacking and Inspection 2-1
Installation Considerations 2-1

Power Requirements 2-1
Cooling Requirements 2-1
Mounting Requirements 2-1
Physical Dimensions 2-1

Connector Configuration 2-3
Jumper Configuration .. 2-3
Installation Procedure 2-3

CHAPTER 3
PROGRAMMING INFORMATION
Introduction 3-1
Addressing 3-1
Command Formats 3-1
Data Formats 3-2

Fixed Point Operands 3-3
Floating Point Operands 3-3

Status Byte Format 3-4
Interrupt .. 3-4
APU Programming 3-4

Stack Control 3-5
Data Entry to Stack 3-5
Data Removal from Stack 3-5

Table

1-1.
2-1.
2-2.
3-1.
3-2.
3-3.
3-4.

iv

Title Page

Specifications 1-2
iSBX Bus Pin Assignments 2-3
User-Configurable Jumpers 2-4
Multimodule Port Addresses 3-1
APU Commands 3-2
Number Conversions 3-4
Typical RESET Subroutine 3-7

CONTENTS

Page
Command Entry 3-5
Status Retrieval 3-6

Programming Examples 3-6
Reset Operation 3-6
Status READ Operation 3-6
WRITE Command Operation 3-6
WRITE Data Operation 3-6
READ Data Operation 3-6

CHAPTER 4
PRINCIPLES OF OPERATION
Introduction 4-1
Clock Generator Operation 4-1
iSBX Bus Signal Description 4-1
APU Operation 4-2

Stack Control 4-2
Data Entry to Stack 4-2
Data Removal from Stack 4-3
Command Entry to APU 4-3
Command Completion 4-3

WAIT-State Request Operation 4-3
Reset Operation 4-4

CHAPTER 5
SERVICE INFORMATION
Introduction 5-1
Replaceable Parts 5-1
Service Diagrams 5-1
Service and Repair Assistance 5-1

APPENDIX A
APU COMMAND DESCRIPTION

Table

3-5.
3-6.
3-7.
3-8.
4-1.
5-1.
5-2.

TABLES I.
Title Page

Typical Status Read Subroutine 3-7
Typical WRITE Command Subroutine .. 3-7
Typical WRITE Data Subroutine 3-7
Typical READ Data Subroutine 3-8
Control Signal Functions 4-2
Replaceable Parts 5-1
Manufacturer Codes 5-2

•

•

•

•

•
..

•

•

•

•

•
•

..

•

Figure

I-I.
2-l.
2-2.
2-3.
3-I.
3-2.
3-3.
3-4.
3-5.
3-6.

3-7.

Title Page

iSBX 331 Math Multimodule Board 1-1
Board Dimensions 2-2
Mounting Clearances 2-2
Mounting Technique 2-4
Command Format 3-2
16-Bit Fixed Point Format 3-3
32-Bit Fixed Point Format 3-4
Floating Point Data Format 3-4
Status Byte Format 3-4
Single Precision Fixed Point

Stack Format 3-5
Double Precision Fixed/Floating

Point Stack Format 3-5

Figure

3-8.

3-9.

4-I.
4-2.
4-3.
5-1.

5-2.

ILLUSTRATIONS

Title Page

Double Precision Stack
Loading Sequence 3-6

Double Precision Stack
Unloading Sequence 3-6

Single Precision Stack Format 4-2
Double Precision Stack Format 4-2
iSBX 331 Functional Block Diagram ... 4-5
iSBX 331 Math Multimodule Board

Parts Location Diagram 5-3
iSBX 331 Math Multimodule Board

Schematic Diagram 5-5

•
..

•

•

•

•
..

•

•

•

•

•

•

•
41

..

•

1-1. INTRODUCTION

The iSBX 331 Fixed/Floating Point Math Multi­
module Board is a member ofIntel's growing line of
expansion boards designed to augment the iSBC
microcomputers. In performing high-speed mathe­
matic functions, the iSBX 331 Math Multimodule
Board (hereafter referred to as the Multimodule
board) accepts data and commands from an iSBC
microprocessor and performs a repertoire of 43 float­
ing point and fixed point commands an order of
magnitude faster than is possible through conven­
tional programming routines.

1-2. DESCRIPTION

The Multimodule board, shown in figure 1-1, is
designed to plug onto any iSBC microcomputer that
contains an iSBX bus connector.

The board contains an 8231 Arithmetic Processing
Unit (APU) that provides high performance single
or double precision floating or fixed point arithmetic

CHAPTER 1
GENERAL INFORMATION

operations. Some of the distinctive characteristics of
the APU are:

• Fixed point 16 and 32 bits operation.

• Floating point 32 bit operation.

• 18 programmable data manipulation commands.

• Square root, Logarithm and Exponentiation
functions.

• Add, Subtract, Multiply and Divide functions.

• 4 MHz on-board clock generator.

• Trigonometric and inverse trigonometric func-
tions.

• Stack oriented operand storage.

• Programmed data transfer mode.

• Floating to fixed or fixed to floating conversions.

• Binary data formats (Input and Output).

• End of operation signal.

• +12 volt and +5 volt power requirement.

• Software Reset capability.

Figure 1-1. iSBX 33FM Fixed/Floating Point Math Multimodule™ Board

1-1

General Inlormation

The Multimodule board may be conveniently divided
into two functional sections; an arithmetic processor
and an iSBC microcomputer interface. Each of these
is detailed in the following text.

The arithmetic processing unit (APU) consists of an
MOS LSI math chip (the 8231) and a clock generator
chip (the 8224). The APU is designed to provide high
performance operation at a maximum of 4 MHz.
Control of the APU is exercised through an iSBC
microcomputer via three basic types of commands:
the floating point, the fixed point, and the data
manipulation commands. The floating and fixed
point commands perform the arithmetic operations,
and the data manipulation commands access the
APU data stack for storage, retrieval, and manipu­
lation of data and/or the results of an operation.

The interface between the iSBX 331 Math Multi­
module Board and the host iSBC microcomputer
allows programmed data transfer. The speed of the
Multimodule board will vary according to the status
of the APU. The interface between the Multimodule
board and the microcomputer includes a signal that
provides an interrupt on completion of an operation.
If the APU cannot conclude an operation at full
speed, the interface passes an MW AIT signal to the
host iSBC microcomputer to indicate that one or
more WAIT-states are required in the microprocessor.

iSBX 331

1-3. EQUIPMENT SUPPLIED

Since the Multimodule board plugs directly onto the
host iSBC microcomputer, no interface cables are
required between the two.
The following items are supplied with the iSBX 331
Math Multimodule Board:

a. Schematic Diagram, drawing number 2003073.

b. 1 plastic spacer, 1/2 inch x 6/32.

c. 2 plastic screws, % inch x 6/32.

1-4. COMPATIBLE EQUIPMENT

The Multimodule board must be used with a host
iSBC microcomputer that includes an iSBX bus
connector.

The Multimodule boards cannot directly access the
Multibus bus structure. Multibus interfacing is pro­
vided indirectly via the host iSBC microcomputer.

Signals from the Multimodule board are accessible
to an external device by means of the serial and/or
parallel output connectors (Jl, J2, J3) on the host
iSBC microcomputer.

1-5. SPECIFICATIONS

The specificaitons of the iSBX 331 Math Multi­
module Board are listed in table 1-1.

Table 1-1. Specifications

1-2

PHYSICAL CHARACTERISTICS

Width:
Length:
Height:

Weight:

ENVIRONMENTAL REQUIREMENTS

Operating Temperature:
Relative Humidity:

POWER REQUIREMENTS

INTERFACE COMPATIBILITY

iSBX Bus:

1/0 ADDRESSING

6.35 cm (2.50 inches).
9.40 cm (3.70 inches).
1.40 cm (0.56 inch) Multimodule board only.
2.82 cm (1.13 inches) Multimodule and iSBC board.
41 gm (1.44 ounces).

0° to 55°C (32° to 131°F).
To 90% without condensation.

Vee = +5 ±5%
Vdd = +12 ±5%

lee = 365 mA max.
Idd = 75 mA max.

Compatible with Intel iSBX Bus speCifications.

Addressing is contingent on the host iSBC microcomputer. Refer to Table 3-1
for specific addresses.

•
•

•

•

•

•
•

•

•

iSBX 331 General Information

Table 1-1. Specifications (Continued) •• TYPICAL COMMAND EXECUTION TIMES

Command Time Clock Command Time Clock
Mnemonic (fJs) Cycles Mnemonic (J.ts) Cycles

ACOS 1800 7200 LOG 1400 5600
ASIN 1800 7200 LN 1400 5600
ATAN 1425 5700 NOP 1 4
CHSD 7 28 POPD 3 12
CHSF 5 20 POPF 3 12
CHSS 6 24 POPS 2 10

• COS 1100 4300 PTOD 5 20
DADD 5 22 PTOF 5 20
DDIV 50 200 PTOS 4 16
DMUL 50 200 PUPI 4 16
DMUU 50 200 PWR 2500 10000

• DSUB 10 40 SADD 4 18
EXP 1050 4200 SDIV 22 90

FADD 50 200 SIN 1050 4200
FDIV 44 170 SMUL 22 90
FIXD 50 200 SMUU 22 90
FIXS 35 140 SQRT 206 830
FLTD 50 200 SSUB 8 32
FLTS 30 120 TAN 1325 5300
FMUL 40 160 XCHD 6 26

• FSUB 50 200 XCHF 6 26
XCHS 5 18

NOTE: Total execution times may require allowances for operand transfer into the APU, command execution, and result
retrieval from the APU. Except for command execution, these times will be heavily influenced by the nature of the
data, the control interface used, the speed of memory, the CPU used, the priority allotted to DMA and Interrupt
operations, the size and number of operands to be transferred, and the use of chained calculations, etc.

•
•

•
1-3/1-4

•

•

•

•

•
•

•

•

•

-

•

•

•
•

•

•

2-1. INTRODUCTION

This chapter provides instructions for preparing and
installing the iSBX 331 Math Multimodule Board.
The instructions cover unpacking and inspection;
installation considerations such as physical, power,
cooling, and mounting requirements; jumper con·
figurations; dc characteristics; connector assign­
ments; and installation procedure.

2-2. UNPACKING AND INSPECTION

Inspect the shipping carton immediately upon
receipt for evidence of mishandling during transit. If
the shipping carton is severely damaged or water­
stained, request that the carrier's agent be present
when the carton is opened. If the carrier's agent is
not present when the carton is opened and the con­
tents of the carton are damaged, keep the carton and
packing material for the agent's inspection.

For repairs to a product damaged in shipment, con­
tact the Intel Technical Support Center to obtain a
Retum Authorization Number and further instruc­
tions. A purchase order will be required to complete
the repair. A copy of the purchase order should be
submitted to the carrier with your claim.

It is suggested that salvageable shipping cartons
and packing material be saved for future use in the
event the product must be shipped.

2-3. INSTALLATION CONSIDERATIONS

The Multimodule board is designed to interface with
Intel iSBC Single Board Computers that contain an
iSBX bus connector. Other installation considera·
tions, such as power, cooling, mounting, and physi·
cal size requirements, are outlined in the following
paragraphs.

2-4. POWER REQUIREMENTS

The board requires +5V (±0.25V) at 365 mA maxi·
mum, + 12V (±0.6V) at 75 mA maximum, and ground.
All power is drawn from the host iSBC microcom­
puter via the iSBX bus connector (PI).

NOTE
If modification of the Multimodule board is
required, ensure that none of the iSBX bus
specifications and standards are violated in
doing so.

CHAPTER 2
PREPARATION FOR USE

2-5. COOLING REQUIREMENTS

The Multimodule board dissipates 39.0 gram·caloriesl
minute (0.16 BTUlminute) and adequate circulation
of air must be provided to prevent a temperature rise
above 55°C (131°F).

2-6. MOUNTING REQUIREMENTS

Figure 2-1 shows the iSBX bus connector and stand­
off locations. The Multimodule board will mount
onto any iSBC microcomputer containing an iSBX
bus connector and the required stand-off hole. The
mounting hardware supplied as part of the Multi­
module board includes:

• 2 plastic screws, 6/32 x % inch, separate from
the board.

• 1 plastic stand-off, 6/32 x 1/2 inch, separate from
the board.

• 36-pin connector PI, factory-installed onto the
board.

NOTE
The Multimodule board, when installed onto
a host iSBC microcomputer, occupies an
additional card slot adjacent to the compo­
nent side of the host microcomputer in an
iSBC 604/614 Cardcage.

2-7. PHYSICAL DIMENSIONS

Physical dimensions of the Multimodule board are
as follows:

• Width: 6.35 cm (2.50 inches).

• Length: 9.40 cm (3.70 inches).

• Height: 1.40 cm (0.56 inch)
Multimodule board only.

2.82 em (1.13 inches)
Multimodule with iSBC board.

Figure 2-1 shows the physical dimensions and figure
2-2 shows clearances for a Multimodule board mounted
onto a host iSBC microcomputer. The dimensions
shown in figure 2-2 are maximum heights.

2-1

Preparation for Use

~14 --3'700--~1
4 1.500 ~

1.127

2-2

t
.200

/i' ' ~

., ~.OU""G
LOCATION

P1 CONNECTOR

I·OOOOOOOO.OOOOOO·~1
.00000000.000000 ••

Figure 2-1. Board Dimensions (Inches)

IC

.400

SOCKET

.337 iSBX L CONNECTOR
(MALE)

.500 ~

-+-.093

iSBX
CONNECTOR

(FEMALE)

MUL TIMODULE BOARD

IC

SOCKET

HOST MICROCOMPUTER BOARD

Figure 2-2. Mounting Clearances (Inches)

iSBX 331

•
2.50 •

•

•

•
•

•

•

•

-

•

•

•
•

•

•

iSBX 331

2-8. CONNECTOR CONFIGURATION

Connector PI interfaces all input and output signals
on the Multimodule board. The signals found on
each pin of the PI connector are listed in table 2-1.

2-9. JUMPER CONFIGURATION

The Multimodule board contains twenty-one jumper
pads labeled El through E16 and E25 through E29.
The functions of the user-configurable jumpers are
outlined in the following paragraphs and in table 2-2.

The configuration of jumper pads El through E9
and E25 through E29 is performed before shipment
and should not be modified by the user.

Jumper pads Ell, E12, E14, E15, and E16 are con­
figured with soldered-wire jumpers and jumper post
EI0 and E13 are wirewrapped to control the clock
generation circuitry on the Multimodule board. The
factory installed jumper from ElO to E13 is required
for operation with the 16 MHz on-board clock.
Jumper pads Ell, E12, E14, E15, and E16 control
four clock frequencies that may be connected so as to
vary the clock rate of the APU. As shipped from the
factory, the Multimodule board contains jumpers
from Ell to E14, E15 to E16, and, as mentioned
earlier, ElO to E13. This configures the board for 4
MHz operation.

The Multimodule board contains eight user-con­
figurable wirewrap jumper posts labeled E17 through

Preparation for Use

E24. The functions of each are outlined in the follow­
ing paragraphs and in table 2-2 .

Jumper posts E17 and E21 gate the service request
signal from the APU when a jumper is installed; as
shipped, the board does not include a jumper from
E17 to E21.

Jumper posts E18 and E22 provide user control of
the service acknowledge signal from the host iSBC
microcomputer. The "as-shipped" configuration
does not include a jumper connecting E18 to E22.

Jumper posts E19, E20, E23, and E24 control the end
acknowledge (EACK) signal to the APU; either +5V
(E19 to E23 connected) or ground (E20 to E24 con­
nected). The factory configuration includes the
jumper between E19 and E23.

2-10. INSTALLATION PROCEDURE

The Multimodule board mounts onto the host iSBC
microcomputer. Install the board as follows:

a. With a nylon 1,4 inch x 6/32 screw, secure the 1/2
inch spacer to the host iSBC microcomputer as
shown in figure 2-3.

b. Locate pin Ion the iSBX bus connector (PI) and
align it with pin 1 of the iSBX bus connector on
the host iSBC microcomputer.

c. Align the Multimodule board mounting hole
with the spacer on the host iSBC microcom­
puter; reference figure 2-1 for hole location.

Table 2-1. iSBXTM Bus Pin Assignments

Pin Mnemonic Description Pin Mnemonic Description

35 GND SIGNAL GROUND 36 +5V +5 Volts

33 MDO MDATA BIT 0 34 - Reserved

31 MD1 MDATA BIT 1 32 - Reserved

29 MD2 MDATA BIT 2 30 OPTO OPTION 0

27 MD3 MDATA BIT 3 28 OPT1 OPTION 1

25 MD4 MDATA BIT 4 26 - Reserved

23 MD5 MDATA BIT 5 24 - Reserved

21 MD6 MDATA BIT 6 22 MCSOI M CHIP SELECT 0

19 MD7 MDATA BIT 7 20 MCS11 M CHIP SELECT 1

17 GND SIGNAL GROUND 18 +5V +5 Volts

15 10RDI 10 READ COMMAND 16 MWAITI M WAIT

13 10WRTI 10 WRITE COMMAND 14 MINTRO M INTERRUPT 0

11 MAO M ADDRESS 0 12 MINTR1 M INTERRUPT 1

9 - Reserved 10 - Reserved

7 - Reserved 8 MPRT M PRESENT

5 RESET RESET 6 - Reserved

3 GND SIGNAL GROUND 4 +5V +5 Volts

1 +12V +12 Volts 2 - Reserved

2-3

Preparation for Use iSBX 331

Table 2·2. User-Contigurable Jumpers

Function Configuration

Clock Enable Factory-installed jumper between posts E10 and E13 allows the Multimodule board to
operate with the on-board 16 MHz clock or an off-board clock via the option lines.

Clock Frequency Select Posts E11, E12, E14, E15 and E16 configure the operating frequency of the APU as
follows:

Frequency Connections Required

4.0 MHz *E16 to E15, E11 to E14

3.2 MHz E12 to E15, E11 to E14

2.0 MHz E16 to E15, E12 to E11

Option Enable Posts E21 and E22 are user-configured to allow flexibility with the Multimodule board.

End Acknowledge Posts E19, E20, E23, and E24 are user-configured to tie EACK high or low, dependent
on the application. Jumper E1g..E23 is the factory default.

Service Request/Acknowledge Posts E17 and E18 are not connected during operation with the 8231 APU.

NOTE: * indicates factory installed jumpers.

d. Gently press the two boards together until the
connector seats.

e. Secure the Multimodule board to the top of the
spacer with the other 1,4 inch x 6/32 screw.

2-4

NOTE
The placement of an installed Multimodule
board and the host board connector number
may vary according to the type of host iSBC
microcomputer that is used.

MUL TIMODULE BOARO

,,, .. 6-32 NYLON SPACER

MICROCOMPUTER BOARD

"". 8-32 NYLON SCREW

Figure 2·3. Mounting Technique

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

CHAPTER 3
PROGRAMMING INFORMATION

3-1. INTRODUCTION

This chapter contains information on programming
the iSBX 331 Math Multimodule Board. Since the
programming consists mainly of that of the 8231
APU, study this chapter of the text in close conjunc­
tion with Chapter 4 which covers the hardware of
the Multimodule board. Included in this chapter are
sections on addressing, command formats, status
word formats, data formats, and programming
examples.

3-2. ADDRESSING

The Multimodule board is addressed by the host
iSBC microcomputer through use of IN and OUT
instructions specifying one of the legal port addresses
for the Multimodule board. These addresses are
listed in table 3-1. The Multimodule board is used
with a host microcomputer that may contain one or
more Multimodule connectors, each of which may be
accessed by 16 port addresses.

Data (operands) are transferred from an 8-bit host
iSBC microcomputer to the Multimodule board and
vice versa by issuing a READ or WRITE command
to anyone of the legal port addresses for data trans­
fer; e.g., port address XO, X2, X4, or X6. Commands
are transferred to the Multimodule board by issuing
a WRITE command to anyone ofthe legal command
port addresses (Xl, X3, X5, or X7). Status may be
input from the Multimodule board to an 8-bit host
iSBC microcomputer by issuing a READ command
to the Multimodule board via any of the legal port
addresses (Xl, X3, X5, or X7). The APU on the Multi­
module board may be reset by issuing a WRITE com­
mand (specifying any data pattern) to the Multi­
module board via any of the legal reset port addresses
(X8 through XF).

NOTE
Ensure that no other commands are issued
to the Multimodule board within 3 JJS after
issuing the RESET command; the Multi­
module board requires 3 JJS of idle time to
perform a RESET command with a 4 MHz
clock frequency.

.1 COMMAND FORMATS

Commands are issued to the APU via execution of
OUT instructions in the host iSBC microcomputer.
Table 3-2 lists the commands that the Multimodule
board can execute. Each of these is described in
detail in Appendix A.

Each command entered into the APU consists of a
single 8-bit byte having the format illustrated in
figure 3-1. Bits 0 through 4 select the operation to be
performed, as shown in table 3-2. Bits 5 and 6 select
the data format for the operation. If bit 5 is high, a
fixed point format is specified. If bit 5 is low, the
floating point format is specified. Bit 6 selects the
precision of the data to be operated on by the fixed
point commands (if bit 5 is low, bit 6 must be low). If
bit 6 is high, single-precision (16-bit) operands are
indicated; if bit 6 is low, double-precision (32-bit)
operands are indicated. Results are undefined for all
illegal combinations of bits in the command byte.
Bit 7 indicates whether a service request is to be
issued after the command is executed. If bit 7 is high,
the service request output (SVREQ) becomes high at
the conclusion of the command and will remain high
until reset by a low on the service acknowledge pin
(SVACK/) or until completion of execution of a sub­
sequent command in which bit 7 is low. Each com­
mand issued to the APU requests post execution
service dependent upon the state of bit 7 of the com­
mand byte. When bit 7 is low, the service request
output (SVREQ) remains low.

Table 3-1. Multimodule Port Addresses

Function Type of Operation Connector Port Address Connector Port Address
(S-blt host) 1 (16-blt hostF

DATA/OPERAND TRANSFER READ OR WRITE XO, X2, X4, or X6 XO, X4, X8, or XC
COMMAND TRANSFER WRITE X1, X3, X5, or X7 X2, X6, XA, or XE
STATUS TRANSFER READ X1, X3, X5, or X7 X2, X6, XA, or XE
RESET WRITE X8 through XF VO, V2, V4, Y6,

V8, VA, YC, VE
NOTE:
1. The high order port address (X) for the Multimodule board is determined by the host iSBC microcomputer; refer to the

respective Hardware Reference Manual to determine the upper address con~traints.
2. Y is the additional chip select term required for a 16-bit interface.

3-1

Programming Information iSBX 331

The APU commands provide a method of doing high
performance fixed and floating point arithmetic and
a variety of floating point trigonometric and math­
ematical functions. When issued a command, the
APU assumes that the required operands are located
at the top of the stack (TOS) and next on the stack
(NOS). The result of an operation is always returned
to the TOS. The result of an operation is always the
same precision and format as the operands.

Command chaining may be performed by using a
result (from a previous operation) as one of the
operands for the next operation. This procedure
reduces the amount of time required for the overall
operation by eliminating the need to load one of the
operands, for the next operation, into the stack; the
result from the previous operation is already there.

The execution times of the APU commands are all
data-dependent. Table 1-1 lists a typical execution
time for each of the APU commands.

Table 3-2 contains an abbreviated description of the
commands that are performed by the Multimodule
board. A more detailed description of the commands
is contained in Appendix A.

OPERATION

I SVREQ SINGLE FIXED I""f------ CODE -----,.~I
. (sr) I I . .

BIT 6 5 4 3 2 o

Figure 3-1. Command Format

Table 3-2. APU Commands

Command Hex Code Hex Code Summary
Mnemonic (sr = 1) (sr = 0) Description

16-BIT FIXED-POINT OPERATIONS

SADD EC 6C Add TOS to NOS. Result to NOS. Pop Stack.

SSUB ED 60 Subtract TOS from NOS. Result to NOS. Pop Stack.

SMUL EE 6E Multiply NOS by TOS. Lower result to NOS. Pop Stack.

SMUU F6 76 Multiply NOS by TOS. Upper result to NOS. Pop Stack.

SDIV EF 6F Divide NOS by TOS. Result to NOS. Pop Stack.

32-BIT FIXED-POINT OPERATIONS

DADO AC 2C Add TOS to NOS. Result to NOS. Pop Stack.

DSUB AD 20 Subtract TOS from NOS. Result to NOS. Pop Stack.

DMUL AE 2E Multiply NOS by TOS. Lower result to NOS. Pop Stack.

DMUU B6 36 Multiply NOS by TOS. Upper result to NOS. Pop Stack.

DDIV AF 2F Divide NOS by TOS. Result to NOS. Pop Stack.

32-BIT FLOATING-POINT PRIMARY OPERATIONS

FADD 90 10 Add TOS to NOS. Result to NOS. Pop Stack.

FSUB 91 11 Subtract TOS from NOS. Result to NOS. Pop Stack.

FMUL 92 12 Multiply NOS by TOS. Result to NOS. Pop Stack.

FDIV 93 13 Divide NOS by TOS. Result to NOS. Pop Stack.

32-BIT FLOATING-POINT DERIVED OPERATIONS

SQRT 81 01 Square Root of TOS. Result to TOS.

SIN 82 02 Sine of TOS. Result to TOS.

COS 83 03 Cosine of TOS. Result to TOS.

TAN 84 04 Tangent of TOS. Result to TOS.

ASIN 85 05 Inverse Sine of TOS. Result to TOS.

ACOS 86 06 Inverse Cosine of TOS. Result to TOS.

ATAN 87 07 Inverse Tangent of TOS. Result to TOS.

LOG 88 08 Common Logarithm of TOS. Result to TOS.

LN 89 09 Natural Logarithm of TOS. Result to TOS.

EXP 8A OA e raised to power in TOS. Result to TOS.

PWR 8B OB NOS raised to power in TOS. Result to NOS. Pop Stack.

3-2

•
..

•

•

•
•

•

•

•

•

•

•
•

•

•

iSBX 331 Programming Information

Table 3-2. APU Commands (Continued)

Command Hex Code He* Code Summary
Mnemonic (sr = 1) (sr = 0) Description

DATA AND STACK MANIPULATION OPERATIONS

NOP 80 00 No Operation. Clear or set SVREQ.

FIXS 9F 1F Convert TOS from floating point format to fixed point format (16-bit).

FIXD 9E 1E Convert TOS from floating point format to fixed point format (32-bit).

FLTS 90 10 Convert TOS from fixed point format to floating point format (16-bit).

FLTD 9C 1C Convert TOS from fixed point format to floating point format (32-bit).

CHSS F4 74 Change sign of fixed point operand on TOS (16-bit).

CHSD 84 34 Change sign of fixed point operand on TOS (32-bit).

CHSF 95 15 Change sign of floating point operand on TOS.

PTOS F7 77 Push stack. Duplicate NOS in TOS (16-bit).

PTOD B7 37 Push stack. Duplicate NOS in TOS (32-bit).

PTOF 97 17 Push stack. Duplicate NOS in TOS (floating point).

POPS F8 78 Pop stack. Old NOS becomes new TOS. Old TOS rotates to bottom (16-bit).

PO PO B8 38 Pop stack. Old NOS becomes new TOS. Old TOS rotates to bottom (32-bit).

POPF 98 18 Pop stack. Old NOS becomes new TOS. Old TOS rotates to bottom (floating point).

XCHS F9 79 Exchange TOS and NOS (16-bit).

XCHD B9 39 Exchange TOS and NOS (32-bit).

XCHF 99 19 Exchange TOS and NOS (floating point).

PUPI 9A 1A Push floating point constant .". onto TOS. Previous TOS becomes NOS.

NOTES: 1. TOS mean Top of Stack. NOS means Next on Stack.
2. Appendix A provides detailed descriptions of each command function, including data ranges, accuracies, stack

configurations, etc.
3. Many commands destroy one stack location (bottom of stack) during development of the result. The derived

functions may destroy several stack locations. See Appendix A.
4. The trigonometric functions handle angles in radians, not degrees.
5. No remainder is available for the fixed-point divide functions.
6. Results will be undefined for any combination of command coding bits not specified in this table.

3-4. DATA FORMATS

Data operands for the APU must be loaded into the
stack (in the APU) before a command is issued to the
Multimodule board. The APU accepts operands in
both floating and fixed point formats. Each is ex­
plained in detail in the following text.

3-5. FIXED POINT OPERANDS

Fixed point operands (shown in figures 3-2 and 3-3)
may be represented in either single (16-bit) or double
(32-bit) precision. Both, however, require that the
operands be represented in a binary two's comple­
ment form.

The sign (positive or negative) of the operand is
located in the most significant bit (M8B) of the oper­
and. Positive values are represented with a sign (8)
bit of "ZERO". Negative values are represented with
a two's complement of the corresponding positive
value with a sign bit of "ONE". The range of values
that can be accommodated by each of these fixed
point formats is -32,768 to +32,767 for single preci­
sion and -2,147,483,648 to +2,147,483,647 for double
precision.

3-6. FLOATING POINT OPERANDS

The format for floating point operands in the APU is
shown in figure 3-4. The mantissa is expressed as a
24-bit (fractional) value; the exponent is expressed as
an unbiased two's complement 7-bit value with a
range of -64 to +63. The most significant bit (bit 31)
is the sign of the mantissa (0 = positive). The binary
point is assumed to be to the left of the most signifi­
cant bit (bit 23) of the mantissa. All floating point
data operands must be normalized; bit 23 must be
one for all operands except zero. The range of values
that can be expressed in this format is ± (2.7 X 10-20

to 9.2 X 10+18) and zero .

Table 3-3 contains several numbers shown in deci­
mal, hexadecimal floating point, and hexadecimal
fixed point representations.

I ----VALUE----lI .. ~11
Sl I I I I I ..

15 0
MSB

Figure 3-2. I6-Bit Fixed Point Format

3-3

Programming Information iSBX 331

I I----------VALUE:--------�-� --'I~ I
'-'S~I-IL...J....J.I....II---L...l-L...J.......L...J---L...I-'-I 1II....J...I ..L.....J.....J....J......I....J....J......I....J....J......I,.....J...,~, •
~ 0

MSB

Figure 3-3. 32-Bit Fixed Point Format

I I'" EXPONENT_I'" MANTISSA 1·1
~ ~I I I I 111 I .•
3130 2423 0

Figure 3-4. Floating Point Data Format

Table 3-3. Number Conversions

Decimal 16-8it 32-8it
Fixed Point Floating Point

0 0000 00000000
1 0001 01800000
-1 FFFF 81800000
255 OOFF 08FFOOOO
-255 FF01 88FFOOOO
2 0002 02800000
5 0005 03AOOOOO
1000 03E8 OAFAOOOO
2377 0949 OC949000
1.537 0001 01C4BC6A
10.9825 OOOA 04AFB852
0.01234 0000 7ACA2DB6

3-7. STATUS BYTE FORMAT

APU status is provided by means of a status register
in the APU. The format of the status byte is shown
in figure 3-5.

If the BUSY bit in the status register is a "ONE",
then the other status bits are not defined; if "ZERO"
(indicating not busy), then the operation is completed
and the other status bits are defined as follows:

BUSY: Indicates that APU is currently executing
a command (1 = Busy).

SIGN: Indicates that the operand on the top of
stack is negative (1 = Negative).

ZERO: Indicates that the operand on the top of
stack is zero (1 = Value is zero).

BUSY SIGN ZERO I'"
BIT 7 4

ERROR
CODE:

This field contains an indication of the
validity of the result of the last operation.
The error codes are:
Bit 4321

0000 . No error.
1000 - Divide by zero.
0100 . Square root or log of negative

number.
1100 - Argument of inverse sine, co­

sine, or e too large.
XXlO - Underflow.
XXOI - Overflow.

CARRY: Previous operation resulted in carry or bor­
row from most significant bit. (1 = Carry /
Borrow, 0 = No Carry/No Borrow).

3-8. INTERRUPT

There is one in terru pt line from the APU that may be
used to generate an interrupt to the host microcom­
puter; END (MINTR1). The End interrupt line from
the APU goes HIGH on command completion to
indicate that command execution is completed. END
(MINTRl) stays HIGH until status is read or until
End Acknowledge (EACK) is asserted.

3-9. APU PROGRAMMING

The following text outlines some of the internal
operations of the APU, including data stack control,
data entry, and data removal. More information on
the operation of the APU may be found in Chapter 4.

ERROR, cODE--__ 1 CARRY I
320

Figure 3-5. Status Byte Format

3·4

•
..

•

•

•
•

•

•
•

•

•

•
..

•

•

iSBX 331

3-10. STACK CONTROL

The user interface to the APU provides access to a 16
byte data stack (within the APU) that may be used
in two configurations as shown in figures 3-6 and 3-7.

Since single precision fixed point operands are 16
bits in length, eight operands may be maintained in
the stack. When using double precision fixed point or
floating point formats four operands may be stored.
The stack, in these two configurations, can be visu­
alized as shown in figures 3-6 and 3-7.

Operands are written onto the stack, eight bits at a
time, in the order shown (Bl, B2, B3, ...). The stack
operates as a true push-down stack or LIFO stack.
That is, the data last written in will be the data first
read out. Within each stack entry, the least signifi­
cant byte is entered first and retrieved last.

NOTE
To ensure proper operation of the APU
when using the stack, always enter or re­
move one whole operand; in single precision
format a "whole operand" includes 2 bytes,
in double precision format it includes 4
bytes, as figures 3-6 and 3-7 show.

NOTE
Keep in mind when using the POP instruc­
tion and when retrieving data, that the
stack operates as a "last-in, first-out"
(LIFO) file with wrap-around capability.

TOS

TOS ___
816 815

814 813

812 811

810 89 I
8 OPERANDS

88 87

86 85

84 83

82 81 1
Figure 3-6. Single Precision
Fixed Point Stack Format

816 815 814 813

812 811 810 89 i
88 87 86 8S

84 83 82 81

1 OPERANDS

... 3281TS ~

Figure 3-7. Double Precision
Fixed/Floating Point Stack Format

Programming Information

3-11. DATA ENTRY TO STACK

When writing operands on the stack, the least signif­
icant byte must be entered first and most significant
byte last. For entering operands and retrieving
results, the number of operands/results must be
equal to the proper number of bytes appropriate for
the chosen format. Otherwise, the internal byte
pointer in the APU will not be aligned properly. The
APU single precision format requires 2 bytes of data
per operand, and double precision and floating point
formats require 4 bytes.

Each new operand entered onto the stack pushes
down the previously entered operand to the "N ext­
On-Stack" (NOS) position. The data on the bottom of
the stack before the entry is lost.

Figure 3-S shows a typical stack loading sequence
with 32-bit operands. Figure 3-SA shows the stack
following entry of byte ZI (the least significant byte
of operand Z). Figure 3-SB shows the stack contents
following entry of all four bytes of operand Z. After
loading all bytes of operands X, Y, and Z, the stack
appears as shown in figure 3-8D.

3-12. DATA REMOVAL FROM STACK

When reading the stack to retrieve the result of an
operation, the most significant byte (MSB) will be
available on the data bus first and the least signifi­
cant byte (LSB) will be last.

The removal of data from the TOS causes the next
successive entry to be redefined as the TOS. Data
read from the TOS recirculates to the bottom of the
stack.

Suppose that a command is issued to add operands
X and Y in figure 3-9A. When the addition is com­
pleted, the APU generates a result (R) and stores it
into the stack as shown in figure 3-9B. After the first
byte (MSB) of R is retrieved from the stack, a shift
occurs, as figure 3-9C shows. Figure 3-9D shows the
stack after complete retrieval of R.

3-13. COMMAND ENTRY

After the appropriate number of bytes of data have
been entered onto the stack, a command may be
issued to perform an operation on that data. Com­
mands which require two operands for execution
(e.g., add) operate on the TOS and NOS values.
Single operand commands operate only on the TOS.
After a command is issued, the host iSBC microcom­
puter can continue execution of its program concur­
rently with the APU command execution.

3-5

Programming Information iSBX 331

I ;0', Zl

! i

,

11°"'''"''
TO'_1 Yl

i
Z4

i

Z3

i

Z2

:
Zl

(A) I"" 32 BITS -I (C)

I
TO'_I Z4

!

Z3

:

Z2

!

Zl TOS_ X4 X3 X2 Xl
Y4 Y3 Y2 Yl
Z4 Z3 Z2 Zl

(B) (0)

Figure 3-8. Double Precision Stack Loading Sequence

TOS • X4 X3 X2 Xl T TOS_ R3 R2 Rl Z4
Y4 Y3 Y2 Yl Z3 Z2 Zl
Z4 Z3 Z2 Zl

4 OPERANDS

i R4

(A) I'" 32 BITS ·1 (C)

TOS_ R4 R3 R2 Rl TOS- Z4 Z3 Z2 Zl
Z4 Z3 Z2 Zl

R4 R3 R2 Rl

(B) (0)

Figure 3-9. Double Precision Stack Unloading Sequence

3-14. STATUS RETRIEVAL

The APU status register can be read by the host
iSBC microcomputer at any time (whether an
operation is in progress or not). The status register is
gated onto the data bus and may be input by the host
iSBC microcomputer.

NOTE
When the BUSY bit in the status register is
HIGH (indicating BUSY), the other status
bits should be considered "undefined".

3-15. PROGRAMMING EXAMPLES

Five simple programming examples are listed in the
following paragraphs.

3-16. RESET OPERATION

A typical RESET subroutine for the Multimodule
board is given in table 3-4.

3-6

3-17. STATUS READ OPERATION

A typical Status Read Operation for the Multimodule
board is given in table 3-5.

3-18. WRITE COMMAND OPERATION

A typical subroutine for writing commands to the
Multimodule board is given in table 3-6.

3-19. WRITE DATA OPERATION

A typical subroutine for writing data into the APU
stack on the Multimodule board is given in table 3-7.

3-20. READ DATA OPERATION

A typical subroutine for reading data from the APU
stack on the Multimodule board is given in table 3-8.

•
..

•

•

•
•

•

•

iSBX 331

•

•

•

•

•
..

•

Programming Information

Table 3-4. Typical RESET Subroutine

;FUNCTION-CHPRST: RESET MATH CHIP.
;USES-NOTHING; DESTROYS-NOTHING.

CSEG
PUBLIC CHPRST
EXTRN BASAD ;BASE ADDRESS OF MATH MIO

CHPRST: OUT LOW BASAD + 8 ;CONTENTS OF A IS UNIMPORTANT
RET
END

Table 3-5. Typical Status Read Subroutine

;FUNCTION- :READ MATH CHIP STATUS INTO A.
;USES-NOTHING; DESTROYS-A.

CSEG
PUBLIC MSTAT
EXTRN BASAD

MSTAT: IN LOW BASAD + 1 ;BASE ADDRESS + 1
RET
END

Table 3-6. Typical WRITE Command Subroutine

;FUNCTION-WCMD: WRITE COMMAND IN C TO MATH CHIP.
;USES-C; DESTROYS-A.

WCMD:

CSEG
PUBLIC
EXTRN

MOV
OUT
RET
END

WCMD
BASAD

A,C
LOW BASAD + 1 ;BASE ADDRESS + 1

Table 3-7. Typical WRITE Data Subroutine

FUNCTION-WDATA: WRITE DATA TO MATH CHIP .
USES-DE: POINTS TO STARTING ADDRESS OF THE NUMBER IN MEMORY (LSB FIRST).

C: BYTE COUNT (2 = SINGLE PRECISION, 4 = DOUBLE PRECISION).
DESTROYS-D, E, C, A, F/F.

WDATA:
LP1:

CSEG
PUBLIC
EXTRN

XCHG
MOV
OUT
INX
DCR
JNZ
XCHG
RET
END

WDATA
BASAD

A,M
LOW BASAD + 0
H
C
LP1

;GET BYTE FROM MEMORY, LSB FIRST
;SEND TO MATH CHIP (BASE ADDRESS + 0)
;POINT TO NEXT BYTE IN MEMORY
;DEC LOOP COUNTER

3-7

Programming Information iSBX 331

3-8

Table 3-8. Typical READ Data Subroutine

;FUNCTION-RDATA: READ DATA FROM MATH CHIP.
;USES-DE: POINTS TO STARTING ADDRESS OF THE NUMBER IN MEMORY-LSB FIRST.

C: BYTE COUNT (4 = SINGLE PRECISION, 8 = DOUBLE PRECISION).
;DESTROYS-D, E, B, C, A, F/F.

RDATA:

LP1:

CSEG

PUBLIC
EXTRN

XCHG
MVI
DAD

DCX
IN
MOV
DCR
JNZ
XCHG
RET
END

RDATA
BASAD

B,O
B

H
LOW BASAD + 0
M,A
C
LP1

;SINCE DATA IS READ FROM CHIP
;MSB FIRST AND IS STORED IN MEMORY
;LSB FIRST, WE HAVE TO START AT THE
;END OF MEMORY AND WORK BACKWARDS.
;DEC MEMORY POINTER
;GET DATA FROM MATH CHIP (BASE ADDRESS + 0)
;STORE IN MEMORY
;DEC LOOP COUNTER

•

•

•

•

•
•

•

•

•

•

•

•
•

•

CHAPTER 4
PRINCIPLES OF OPERATION

4-1. INTRODUCTION

This chapter provides a functional description and
circuit analysis of the iSBX 331 Math Multimodule
Board. The functional description includes para­
graphs on the clock generator, the iSBX bus interface,
the WAIT-state generator and the APU operation
during execution of various commands. Each is
shown in the block diagram included as figure 4-3 .
More detailed information on the operation of the
APU may be found in Appendix A.

4-2. CLOCK GENERATOR OPERATION

The clock generation circuitry on the Multimodule
board consists of a 16 MHz crystal, an 8224 clock
generator chip, and a 74S163 frequency divider.
Shown in figure 5-2, these elements generate a CLK
input to the APU at at frequency dependent on the
configuration of jumpers Ell, E12, E14, E15, and
E16. Reference Chapter 2 - Jumper Configuration
for various wiring configurations of these jumpers.

4-3. iSBX™ BUS SIGNAL DESCRIPTION

Programmed control of the Multimodule board is
achieved by controlling the iSBX bus interface sig­
nals to the APU chip. The interface signals to the
APU are described in the following paragraphs and
shown in figure 5-2.

RESET (Reset) - This active high input signal to
the APU provides initialization for the chip. RESET
also terminates any operation in progress, clears the
status register, and places the APU into the idle
state. Stack contents registers are not affected by
RESET. This signal is derived from the microproces­
sor reset signal on the host iSBC microcomputer or
generated on the Multimodule board as a result of a
WRITE to any of the Reset port addresses by the
host iSBC microcomputer .

MINTRI (End Execution) - This active high output
indicates that execution of the previously entered
command is complete. It can be used as an interrupt
request and is cleared by EACK/, RESET, or any
READ or WRITE command to the APU. MINTRl,
when enabled on the host iSBC microcomputer,
sends an interrupt request (INT) to the microprocessor.

IORDI (Read) - This active low input indicates that
data or status is to be read from the APU onto the

bus (MDO-MD7) if MCSOI is low. The IORDI signal
is generated by the host iSBC microcomputer.

IOWRT! (Write) - This active low input indicates
that data or a command is to be written into the
APU from the bus (MDO-MD7) if MCSOI is low. The
IOWRT I signal is generated by the host iSBC micro­
computer.

MCSO! (Chip Select) - MCSO! is an active low input
signal which selects the APU chip and enables com­
munication with the data bus (DBO-DB7) on the
iSBC microcomputer. MCSO is generated by the I/O
command decode logic on the host iSBC micro­
computer.

MCSl/ (Reset Select) - This active low input enables
the APU Reset circuitry to be controlled by the host
iSBC microcomputer. A low on IOWRTI simulta­
neous with a low on MCSl! causes the APU to be
reset, allowing the programmer to return the APU to
a known state.

MAO (Command/Data) - In conjunction with the
IORDI and IOWRT! signals, the MAO control line
input establishes the type of data exchange that is to
be performed with the APU. MAO is derived from the
address bus in the host iSBC microcomputer. Table
4-1 shows the functional relationship between the
signals.

EACKI (End Acknowledge) - This active low input
clears the end of execution output signal (MINTRl).
If EACKI is tied low, the MINTRI output will be a
pulse that is one clock period wide.

MDO-MD7 (Bidirectional Data Bus) - These eight
bidirectional lines provide for transfer of commands,
status, and data between the APU and the host iSBC
microcomputer. The APU can drive the data bus
only when MCSO! and IORDI are low (reference
table 4-1).

OPTO! (Service Acknowledge) - This active low
input clears the service request output (OPTl) from
the APU. OPTO/, when enabled on the Multimodule
board and on the host iSBC microcomputer, generates
a service acknowledge signal for the APU.

OPTI (Service Request) - This active high output
signal indicates that command execution is com­
plete and that post execution service (bit 7 = 1) was
requested in the previous command byte. OPTI is
cleared by OPTO/, by completion of a new command
which does not require service (bit 7 = 0), or by

4-1

Principles of Operation

execution of RESET command. When enabled on
the Multimodule board and the host iSBC microcom­
puter, OPTI generates a service request signal for
the APU.

MWAIT I (Pause) - This active low output is a hand­
shaking signal indicating that the APU is Busy
executing a command and is unable to communicate
with the CPU. MWAIT I controls the READY line on
the microprocessor and is active only while the APU
is Busy executing a command.

Table 4-1. Control Signal Functions

MAO IORDI IOWRTI MeSOI Function

0 1 0 0
Push data byte
into stack.

0 0 1 0
Pop data byte
from stack.

1 1 0 0 Enter command.

1 0 1 0 Read status.

4-4. APU OPERATION

The APU is mounted in chip location U7 on the
Multimodule board. In order to facilitate a better
understanding of the APU, some of the internal
operations must be explained. The following text
outlines some of the internal operations of the APU,
including data stack, data entry, data removal, com­
mand entry, command completion, and MWAIT I
control. More information on the operation of the
APU may be found in the data sheet for the APU
chip.

4-5. STACK CONTROL

The user interface to the APU provides access to a 16
byte data stack (within the APU) that may be used
in two configurations as shown in figure 4-1 and 4-2.
When operating in single precision format, the APU
stores up to eight 16-bit operands in the stack. In
double precision format, the APU stores four 32-bit
operands. Operands are written into the stack in the
order shown in figures 4-1 and 4-2. Each block (Bl
through B16) in the figures represents eight bits of
operandi data and is numbered in order of entry
from bottom-of-stack (BaS) to top-of-stack (TOS).

4-2

NOTE
To ensure proper operation of the APU
when using the stack, always enter or re­
move one whole operand; in single precision
format a "whole operand" includes 2 bytes,
in double precision format it includes 4
bytes, as figures 4-1 and 4-2 show.

iSBX 331

NOTE
Keep in mind when using the POP instruc­
tion and when retrieving data, that the
stack operates as a "last-in, first-out"
(LIFO) file with wrap-around capability.

B16 B15

B14 B13

B12 Bll

Bl0 B9 I
TOS~

8 OPERANDS
B8 B7

B6 B5

B4 B3

B2 Bl 1
Figure 4-1. Single Precision Stack Format

TOS B16 B15 B14 B13

B12 Bll Bl0 B9 I
4 OPERANDS

B8 B7 B6 B5

B4 B3 B2 Bl t
of 32 BITS ~

Figure 4-2. Double Precision Stack Format

4-6. DATA ENTRY TO STACK

Data is put onto the stack one byte at a time by
performing an 110 WRITE. When writing operands
on the stack, the least significant byte must be
entered first and most significant byte last. For
reading operands and retrieving results, the number
of transactions must be equal to the proper number
of bytes appropriate for the chosen format. Other­
wise, the internal byte pointer will not be aligned
properly. The APU single precision format requires 2
bytes and double precision format requires 4 bytes.

Data entry into the stack is accomplished by bring­
ing the chip select line (MCSO/), the command/data
line (MAO), and the write line (IOWRT/) low. The
entry of each new operand "pushes down" the
previously entered data and places the new data on
the top of the stack (TOS). Data on the bottom ofthe
stack (BaS) prior to the entry is over-written as the
BaS recirculates to become TOS. In figures 4-1 and
4-2, the first operand entered onto the stack is Bl
through B2 (Bl through B4 with double precision).

•

•

•

•

•
•

•

•
<II

•

•

•

•

iSBX 331

4-7. DATA REMOVAL FROM STACK

Data is removed from the stack one byte at a time by
performing an I/O READ to the APU. When reading
the stack to retrieve the result of an operand, the
most significant byte will be available on the data
bus first and the least significant byte will be last.

Data is removed from the APU stack by bringing the
chip select line (MCSO/), the command/data line
(MAO), and the read line (IORD/) low. The removal
of each word redefines the TOS to be the next word
on the stack (NOS). The TOS position recirculates to
become BOS. The first operand removed from a full
stack (reference figures 4-1 and 4-2) is B16 through
B15 (B16 through B13) for double precision).

4-8. COMMAND ENTRY TO APV

After the appropriate number of operands are
entered onto the stack, a command may be issued to
perform an operation with the operands. Commands
are issued via the bidirectional data bus (MDO-MD7)
to the APU by bringing the chip select line (MCSO/)
low, the command/data line (MAO) high, and the
write line (10 WRT I) low. After issuing the command
to the APU, the microprocessor can continue execu­
tion of its program concurrent with the command
execution in the APU, unless MW AIT I is asserted by
the APU. Reference the programming examples con­
tained in paragraph 3-15.

4-9. COMMAND COMPLETION

The APU signals the completion of command execu­
tion by raising the end execution line (MINTRI).
Simultaneously, the busy bit in the status register is
cleared, and the service request bit of the command
register is evaluated; if the service request bit is
high, then SVREQ = 1. The end execution line
(MINTRl) is cleared by a low level on the end ac­
knowledge (EACK) line or by any access ofthe APU
by the host microcomputer. The service request line
is cleared by a low level on the service acknowledge
line (OPTO), or by completion of a subsequent com­
mand which does not request service.

4-10. WAIT-STATE REQUEST

The WAIT-state Request Generator circuitry includes
logic elements UI, U3, U4, and U5. These elements
allow generation of a WAIT-state request on cue
from the APU (via the PAUSE output) during each
READ and WRITE (via UI).

Principles of Operation

In the idle state, MCSOI, lORDI, and IOWRT I are
inactive (high). The low output from U4 pin 3 clears
UI and holds pin 4 of U4 low. This forces U4 pin 6
high and U3 pin 12 low. When MCSOI goes active
(low), it holds U5 pin 6 low, asserting MWAIT I.
MWAITI will remain low until a command is given
to the Multimodule board.

When either IORDI or IOWRT I goes low, the output
of U4 pin 3 becomes high, removing the clear from
UI. UI then begins to shift-in ones. Approximately
200 ns after a command is received, UI pin 10 goes
high. If PAUSEI is low, the output of U4 pin 6
won't change and MW AIT I will remain low until
PAUSE I goes high. If PAUSEI doesn't go low
within 200 ns after the command is received, then
MWAITI goes high when VI pin 10 goes high.

PAUSEI is pulled low by the APU under the follow­
ing conditions:

1. A previously initiated operation is in progress
(device busy) and Command Entry has been
attempted. In this case, the PAUSE I line will be
pulled low and remain low until completion of
the current command execution. It will then go
high permitting entry of the new command.

2. A previously initiated operation is in progress
and stack access has been attempted. In this
case, the PAUSEI line will be pulled low, will
remain in that state until execution is complete,
and will then be raised to permit completion of
the stack access.

3. The APU is not busy, and data removal has
been requested. PAUSEI will be pulled low for
the length of time necessary to transfer the byte
from the top of stack to the interface latch, and
will then go high, indicating availability of the
data.

4. The APU is not busy, and a data entry has been
requested. P AUSEI will be pulled low for the
length of time required to ascertain if the pre­
ceding data byte, if any, has been written to the
stack. If so, PAUSE I will immediately go high.
If not, PAUSEI will remain low until the inter­
face latch is free and will then go high.

5. A status read has been requested. PAUSEI will
be pulled low for the length of time necessary to
transfer the status to the interface latch, and
will then be raised to permit completion of the
status read. Status may be read whether or not
the APU is busy.

NOTE
When MW AIT I goes low, the APU expects
the bus control signals present at the time to
remain stable until MWAIT I goes high.

4·3

Principles of Operation

4-11. RESET OPERATION

The RESET generation circuitry includes logic ele­
ments U3, U4, U5, and U2 on the Multimodule
board. These elements allow generation of a RESET
signal in one of two ways: either synchronous with
the host iSBC microcomputer reset, or an execution
of a RESET command.

When the MCSlI and IOWRTI are both low, the
RESET command is recognized by logic element U5.

RESET ..
MCS11 .. RESET

GENERATOR

,---..

IOROI

IOWRTI

MCSOI

A
OBO/-OB71

"

WAIT-STATE
REQUEST

GENERATOR MWAIT

MINTR1

4-4

iSBX 331

Flip-flop U4 sets, yielding a HIGH at pin 11 which
resets the APU. The HIGH also removes the clear
from U2, allowing it to count to overflow while the
APU is held reset. The counter-generated delay
allows the APU the required time to reset (8 APU
clock cycles). As the counter (U2) overflows, it resets
flip-flop U4, removes the reset from the APU, and
allows restart of normal operation on the Multi­
module board.

CLOCK
GENERATOR

CLOCK

RESET

RO
APU

WR

CS

DB

END

PAUSE

Figure 4-3. iSBX 331 ™ Functional Block Diagram

•

•

•

•

•
•

•

•

•

•

•

•

•

CHAPTER 5
SERVICE INFORMATION

5-1. INTRODUCTION

This chapter provides a list of replaceable parts,
service diagrams, and service and repair assistance
instructions for the iSBX 331 Math Multimodule
Board.

5-2. REPLACEABLE PARTS

Table 5-1 provides a list of replaceable parts for the
Multimodule board. Table 5-2 identifies and locates
the manufacturers specified in the MFR CODE
column in table 5-1. Intel parts that are available on
the open market are listed in the MFR CODE column
as "COML"; every effort should be made to procure
these parts from a local (commercial) distributor.

5-3. SERVICE DIAGRAMS

The parts location diagram and schematic diagram
are provided in figures 5-1 and 5-2, respectively. On
the schematic diagram, a signal mnemonic that
ends with a slash (e.g., MCSO/) is active low. Con­
versely, a signal mnemonic without a slash (e.g.,
OPTO) is active high.

Table 5-2. Manufacturers Codes

Mfr. Code Manufacturer Address

Intel Intel Santa Clara, CA

TI Texas Instruments Oallas, TX

AMP AMP, Inc. Harrisburg, PA

COML
Any commercial source.

Order by description (OBO).

5-4. SERVICE AND REPAIR
ASSISTANCE

United States customers can obtain service and
repair assistance by contacting the Intel Product
Service Hotline in Phoenix, Arizona. Customers
outside the United States. should contact their sales
source (Intel Sales Office or Authorized Distributor)
for service information and repair assistance.

Before calling the Product Service Hotline, your
should have the following information available:

a. Date you received the product.

b. Complete part number of the product (including
dash number). On boards, this number is

Table 5-1. Replaceable Parts

Reference Description Mfr. Part No. Mfr. Code Qty. Designation

U1 IC. 74LS174, QUAO OoType Flip-flop SN74LS174 TI 1

U2 IC. 74LS164, 8-bit Shift Register SN74LS164 TI 1

U3 IC, 74LS04, HEX Inverter SN74LS04 TI 1

U4 IC, 74LSOO. QUAO 2 Input NANO SN74LSOO TI 1

US IC. 74LS32, QUAO 2 Input OR SN74LS32 TI 1

U6 IC, 74S163, Synchronous 4-bit Counter SN74S163 TI 1
U7 IC. 8231, Arithmetic Processing Unit 8231 Intel 1

U8 IC, 8224. Clock Generator/Oriver 8224 Intel 1

Y1 Crystal. 16.0 MHz OBO COML 1
R1. 3 Resistor, 1 K ohm OBO COML 2
R2,4 Resistor, 10K ohm OBO COML 2
C1, 2. 3, 4. 5, 9 Capacitor, 0.1 pf. +80% -20%, 50V OBO COML 4
C6. 7 Capacitor. 22 pf OBO COML 2
C8 CapaCitor, 10 pf, ±5%, 500V OBO COML 1
E10, 13, 17-24 Wire wrap stakes OBO COML 10
P1 Connector, 36-pin, female 103109-001 Intel 1

Spacer, Nylon 6/32 by .50 OBO COML 1
Screw, Nylon 6/32 by .25 OBO COML 2

5-1

Service Information

usually silk-screened onto the board. On other
MCSD products, it is usually stamped on a label.

c. Serial number of product. On boards, this
number is usually stamped on the board. On
other MCSD products, the serial number is
usually stamped on a label.

d. Shipping and billing addresses.

e. If your Intel product warranty has expired, you
must provide a purchase order number for
billing purposes.

f. If you have an extended warranty agreement, be
sure to advise the Hotline personnel of this
agreement.

Use the following numbers for contacting the Intel
Product Service Hotline:

Telephone

All U.S. locations,
except Alaska, Arizona, & Hawaii:

(800) 528-0595

All other locations: (602) 869-4600

5-2

iSBX 331

TWX Number

910 - 951 - 1330

Always contact the Product Service Hotline before
returning a product to Intel for repair. You will be
given a repair authorization number, shipping
instructions, and other important information
which will help Intel provide you with fact, efficient
service. If you are returning the product because of
damage sustained during shipment or if the product
is out of warranty, a purchase order is required
before Intel can initiate the repair.

In preparing the product for shipment to the Repair
Center, use the original factory packing material, if
possible. If this material is not available, wrap the
product in a cushioning material such as Air Cap
TH-240, manufactured by the Sealed Air Corpora­
tion, Hawthorne, N.J. Then enclose in a heavy duty
corrugated shipping carton, and label "FRAGILE"
to ensure careful handling. Ship only to the address
specified by Product Service Hotline personnel.

•
"

•

•

•

•
..

•

D

C

•

It.

• 7 • 5

+"!iN'

~I l ~ C j ::r:(.1..t...F iC 6 +;v :: "$,." ~ ~"'iiDl.I22.J"
.. "'!I.v ~
.... ,·"'Z.v

Cg
-LL<.oF

-I~-~
M~

E ~,

M~c:.

T""\t:J~

~t:>4.

'I'"'\'b-=:::"

~: ~.,

t"'b.

:roat:o~ lS~
~ \

~ 22.. .
~ \ \

... ~

oP"T¢ 'SO.

5

I ~:. -:-II-1.S-· _32.-13 "--~74--LS--OO---' I
MCSll 2O+(___ ---'i.3""1~~

~={~~ ~--------------'
-b It#~~

~:~~ 'SI?e::C.FvsJ:)
\ ~,~ ~~ JIoiil'E \"l~ ~""'l C::,%.
2. C~~~~\U'l""\'C.QCiRRt~

2.O'YaJ \"":;./.

~~~~~~~. 
E) SEE U7 JUMPER c.JVI\QJ'" FOR 1'o.LTE.~A'TE. A':6Eto-Ar.LY. 

- • 7 6 

rD!-, 
'1'1 J..c.e 

tD~~c.s'J...'SJXN 
15 

Ei3 

i8BX 331 

J --- --

p, 
~ ________________ ~ ________________ ~f~~~~~r=~~ ________________________ ~) I~ MINT~~ 

F==-______________ ~--------------~ __ --------~£~.b~,,-E-B-------------.-__7~ M1NTR [ 
: U3-,f7 
_l ____ i_I~~ 

~ ______________ ~ _____________ ,~.~~- ~ ~Ib ~Anl 

L=
'; Iil. 4Ff. __ ~.!..:IS~~EV 

-:;I4LSQO ~ 

r---------------~-----------------J! ?4LS32 

'1 -:P=-W--=R--:D:-I~S.""'=, R::::-::I BU:-::'=-'-::-~--'" 

1
· DEVICE +5 £ND 

Vl Ib B 
V2. 14 7 
u.s 14 7 

U5 14 7 
U," I" B 
U7 2.. I 
UB ,Ie B 

=fU.~~ __ O_O ____________________ ~~ ________ ~1 ClR 

£10 

r-----------------------~--------~\fi 

+sv 9 at!. 

-OI9iC)WN 

lOO:lOrl i.SBC33Z 
i.5I5C.3'3\ --4 1 

@] U7 JUMPER a-;A~" 
-01 (S2.32J -02 (8.231) 
£25-£.210 NON~ 

E .. · £8 E7 - £8 

------C'aF._ . 

~l\C.. 
~-n-t'-'ET\c. f"R.OC~ 

M\..JCT\t""'Ot:IUL.E. "I/O 

Figure 5-2. iSBX 331lM Math Multimodule TM Board Schematic Diagram 

5-5/5-6 

D 

c 

• 

It. 

-D 



o 

-

c 

B 

-

A 

• 7 

Nons: UNlESS OHI'OWIS( SPECIFIED 

TTl ASS"!" Pl:.2T l\ID I':' I OQ3011- 'lUI. -T~\"::> DL __ IW.b '.~T":> L l':>T 
L.:.:J AIJ!::> WII<:.£ LIST ~ Te.AC.t::.IU,," 'DC)(,,:UW\~"'''S 

Z. \NClIb::.WU:., .. ,J.",....,p ~12. o,~·aoo'-QDI. 

r;l M~ ~T ;.jQ. /:lINt::. a'I I..[.\(£l.. .... IT'"" cCJoJ'TIi:A"'.>-nl.,l,~ PE0A CCu::£., 
L::J lUQIo,J, C~Duc.·n~) .Il. ~..tM .. \-I, l>o.Ppe.a,,,, ""'~J;: ~~t.I. 
f4l ~A£I<:..t£.ND~ 'D W1T" C!)IJTeA"'::.'-"..!u ~ CDLDi:., 
~ NOIoJ- C()I..JDUC'N~) a.,p~ wl4£~ ">,Qwt...J. 

..-21 8 I 7 I 

6 

6 

iSBX 331 

5 4 

@]ce CAPiAC1TOP.. LEADS Mf>..Y &E. BENT IN 
DR.DER 10 MEET .4-00 MAx l-iEIGf-'lT UMITATION_ 
IF REQUIRED BE.ND CAP Co -n::JV\tAP..D CR:¥STAL Y I. 

! 5 f 4 

) 

~--rli1-": -------cc:OBCJ!~-==,,._c=:-,_=----- -- lIf"T c... 1 """" -. 
B 1 ::.t::i..!- 4-C~.5 .--------1f--::,,~_+-'-----'5::-.:--'--"-,l+__-,--OO---~__t"'~~,~F____t 
~ I ECD _-,5e!A- -;-:'-'->9 '!'~~IH_'--'" ",l:..-;.. 

B 

D 

t---

c 

ill i u, ji..MP\:e \"''''IALl~TIDLJ T~, 
: C. 3li -01 L32!> I ~ - 02. 

£11 - EJ4 ::..II-EI4 

£2.5 -EZIi:l 
EZ7 - EZ-9 

£1 -E'?> • 

I I , j I .1 

) I 2. I 1 

Figure 5-1. iSBX 331™ Math Multimodule TM Board Parts Location Diagram 

5-3/5-4 



• 

• 

• 

• 

• 

• 

APPENDIX A 
8231 APU COMMAND DESCRIPTION 

A-1. COMMAND DESCRIPTIONS 

This appendix contains detailed descriptions of the 
8231 APU commands. They are arranged in alpha­
betical order by command mnemonic. In the descrip­
tions, TOS means Top Of Stack and NOS means 
Next On Stack. SR marks the Service Request 
Enable bit of each command byte . 

In some operations exponent overflow or underflow 
may be possible. When this occurs, the exponent 
returned in the result will be 128 greater or smaller 
than its true value. 

Many of the functions use portions of the data stack 
as scratch storage during development ofthe results. 
Thus previous values in those stack locations will be 
lost. Scratch locations destroyed are listed in the 
command descriptions and shown by the crossed-out 
locations in the Stack Contents "After" diagram. 

Execution times are listed in terms of clock cycles 
and may be converted into time values by multiply­
ing by the clock period used. Table A-I lists the 
command mnemonics in alphabetical order. A 
detailed explanation of the operation of each 
command is contained in the following text. 

Table A-I. Command Mnemonic 

ACOS ARCCOSINE LOG COMMON LOGARITHM 

ASIN ARCSINE LN NATURAL LOGARITHM 

ATAN ARCTANGENT NOP NO OPERATION 

CHSD CHANGE SIGN DOUBLE POPD POP STACK DOUBLE 

CHSF CHANGE SIGN FLOATING POPF POP STACK FLOATING 

CHSS CHANGE SIGN SINGLE POPS POP STACK SINGLE 

COS COSINE PTOD PUSH STACK DOUBLE 

DADO DOUBLE ADD PTOF PUSH STACK FLOATING 

DDIV DOUBLE DIVIDE PTOS PUSH STACK SINGLE 

DMUL DOUBLE MUL TIPL Y LOWER PUPI PUSH Tr 

DMUU DOUBLE MULTIPLY UPPER PWR POWER (Xv) 

DSUB DOUBLE SUBTRACT SADD SINGLE ADD 

EXP EXPONENTIATION (ex) SDIV SINGLE DIVIDE 

FADD FLOATING ADD SIN SINE 

FDIV FLOATING DIVIDE SMUL SINGLE MULTIPLY LOWER 

FIXD FIX DOUBLE SMUU SINGLE MULTIPLY UPPER 

FIXS FIX SINGLE SQRT SQUARE ROOT 

FLTD FLOAT DOUBLE SSUB SINGLE SUBTRACT 

FLTS FLOAT SINGLE TAN TANGENT 

FMUL FLOATING MULTIPLY XCHD EXCHANGE OPERANDS DOUBLE 

FSUB FLOATING SUBTRACT XCHF EXCHANGE OPERANDS FLOATING 

XCHS EXCHANGE OPERANDS SINGLE 

Al 



Appendix A 

A-2 

ACOS 
32-BIT FLOATING-POINT INVERSE COSINE 

7 6 5 4 3 2 ° 
Binary Coding: LI ~sr----.l_O=---L..:0...---.L---=-o ---L-'--:O~_-----L_-L_0----.J 
Hex Coding: 86 with sr = 1 

06 with sr = ° 
Execution Time: 6304 to 8284 clock cycles 
Description: 
The 32-bit floating-point operand A at the TOS is replaced by the 
32-bit floating-point inverse cosine of A. The result R is a value in 
radians between 0 and 1f. Initial operands A, B, C and 0 are lost. 
ACOS will accept all input data values within the range of -1 .0 to 
+ 1.0. Values outside this range will return an error code of 1100 
in the status register. 
Accuracy: ACOS exhibits a maximum relative error of 2.0 x 

10-7 over the valid input data range. 

Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

R TOS--­
\...".-----~ 

1---32---1 

ASIN 
32-BIT FLOATING-POINT INVERSE SINE 

7 6 543 

Binary Coding: I sr 0 ° ° ° 
Hex Coding: 85 with sr = 1 

05 with sr = ° 
Execution Time: 6230 to 7938 clock cycles 
Description: 

2 ° 
° 

The 32-bit floating-point operand A at the TOS is replaced by the 
32-bit floating-point inverse sine of A. The result R is a value in 
radians between -1f/2 and +1f/2. Initial operands A, B, C and 0 
are lost. 
ASIN will accept all input data values within the range of -1.0 to 
+ 1.0. Values outside this range will return an error code of 1100 
in the status register. 
Accuracy: ASIN exhibits a maximum relative error of 4.0 x 

10-7 over the valid input data range. 
Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A ---TOS---~~_R __ ~ f----B---

C 

o 
1-32-1 1---32-1 

iSBX 331 

ATAN 
32-BIT FLOATING-POINT 

INVERSE TANGENT 

7 6 5 4 3 2 ° 
Binary Coding: LI _sr-L_0---.J_0-----L_O --L_0---1_-----L_--'-------.J 

Hex Coding: 87 with sr = 1 
07 with sr = 0 

Execution Time: 4992 to 6536 clock cycles 
Description: 
The 32-bit floating-point operand A at the TOS is replaced by the 
32-bit floating-point inverse tangent of A. The result R is a value in 
radians between -1f/2 and +1f/2. Initial operands A, C and 0 are 
lost. Operand B is unchanged. 
AT AN will accept all input data values that can be represented in 
the floating point format. 
Accuracy: ATAN exhibits a maximum relative error of 3.0 x 

10-7 over the input data range. 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

A I---TOS R 

B B 

C 

0 

1-32--.. -11 1-01 .. 0--- 32 --_ .. 1 

CHSD 
32-BIT FIXED-POINT SIGN CHANGE 

7 6 5 4 3 2 ° 
° Binary Coding: I sr ° 

L--L_L-~_~_L-~_~~ 
o 0 

Hex Coding: B4 with sr = 1 
34 with sr = ° 

Execution Time: 26 to 28 clock cycles 
Description: 
The 32-bit fixed-point two's complement integer operand A at 
the TOS is subtracted from zero. The result R replaces A at 
the TOS. Other entries in the stack are not disturbed. 
Overflow status will be set and the TOS will be returned un­
changed when A is input as the most negative value possible 
in the format since no positive equivalent exists. 

Status Affected: Sign, Zero, Error Field (overflow) 

STACK CONTENTS 

BEFORE AFTER 

A -TOS - R 

B B 

C C 

0 0 
I .. 32-1 1-1 .. --- 32 --........ 1 

• 

• 

• 

• 

• 
.. 

• 



• 
• 

• 

• 

• 

• 

iSBX 331 

CHSF 
32-BIT FLOATING-POINT SIGN CHANGE 

7 6 5 4 3 2 o 
Binary Coding: I sr I 0 I 0 I 1 I 0 I 1 I 0 I 1 I 
Hex Coding: 95 with sr = 1 

15 with sr = 0 
Execution Time: 16 to 20 clock cycles 
Description: 
The sign of the mantissa of the 32-bit floating-point operand A at 
the TOS is inverted. The result R replaces A at the TOS. Other 
stack entries are unchanged. 
If A is input as zero (mantissa MSB = 0). no change is made. 
Status Affected: Sign. Zero 

STACK CONTENTS 

BEFORE AFTER 

~ ~TOS~~ 

o ~ 
1-32----.--11 1-32 .. I 

CHSS 
16-BIT FIXED-POINT SIGN CHANGE 

7 6 5 4 "3 2 o 
Binary Coding: I sr I 1 I 1 I 1 I 0 I 1 I 0 I 0 I 
Hex Coding: F4 with sr = 1 

74 with sr = 0 
Execution Time: 22 to 24 clock cycles 
Description: 
16-bit fixed-point two's complement integer operand A at the TOS 
is subtracted from zero. The result R replaces A at the TOS. All 
other operands are unchanged. 
Overflow status will be set and the TOS will be returned un­
changed when A is input as the most negative value possible in 
the format since no positive equivalent exists. 
Status Affected: Sign. Zero. Overflow 

STACK CONTENTS 

BEFORE AFTER 
I 

A TOS .. R 

B B 

C C 

0 0 

E E 

F F 

G G 

H H 

1--16 --l 1---16 ---l 

Appendix. A 

COS 
32-BIT FLOATING-POINT COSINE 

7 6 5 4 3 

Binary Coding: I sr I 0 I 0 I 0 I 0 

Hex Coding: 83 with sr = 1 
03 with sr = 0 

Execution Time: 3840 to 4878 clock cycles 
Description: 

2 1 

I 0 I 1 

0 

I 1 

The 32-bit floating-point operand A at the TOS is replaced by 
R. the 32-bit lioating-point cosine of A. A is assumed to be in 
radians. Operands A. C and 0 are lost. B is unchanged. 
The COS function can accept any input data value that can 
be represented in the data format. All input values are range 
reduced to fall within an interval of -1T12 to +11"12 radians . 
Accuracy: COS exhibits a maximum relative error of 5.0 x 

10-7 for all input data values in the range of -21T 
to +27T radians. 

Status Affected: Sign. Zero 

STACK CONTENTS 

BEFORE AFTER 

I 

A I-TOS- R 1 
r-----B----~ r-----B----~I 

C I ==~-=::~-==-_ J 
o I -==- ~J 

1-32----. .. -11 1-32 .. I 

DADO 
32-BIT FIXED-POINT ADD 

7 6 5 4 3 2 o 
Binary Coding: I sr I 0 I 1 I 0 I 1 I 1 I 0 I 0 I 
Hex Coding: AC with sr = 1 

2C with sr = 0 
Execution Time: 20 to 22 clock cycles 
Description: 
The 32-bit fixed-point two·s complement integer operand A at the 
TOS is added to the 32-bit fixed-point two's complement integer 
operand B at the NOS. The result R replaces operand B and the 
Stack is moved up so that R occupies the TOS. Operand B is lost. 
Operands A. C and 0 are unchanged. If the addition generates a 
carry it is reported in the status register. 
If the result is too large to be represented by the data format. the 
least significant 32 bits of the result are returned and overflow 
status is reported. 
Status Affected: Sign. Zero. Carry. Error Field 

STACK CONTENTS 

BEFORE AFTER 

A -TOS- R 

B C 
I 
I 

c l 0 I 
0 I A I 

I. 32 .1 I. 32 .. I 

A-3 



Appendix A iSRX 331 

DDIV DMUU 
32-BIT FIXED-POINT DIVIDE 32-BIT FIXED-POINT MUL TIPL V, UPPER • 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Binary Coding: I sr I 0 I 1 I 0 I 1 I 1 I 1 I 1 I Binary Coding: I sr I 0 I 1 I 1 I 0 I 1 I 1 I 0 I 
Hex Coding: AF with sr = 1 Hex Coding: B6 with sr = 1 

2F with sr = 0 36 with sr = 0 
Execution TIme: 196 to 210 clock cycles when A "F 0 Execution TIme: 182 to 218 clock cycles 

18 clock cycles when A = O. Description: 
Description: The 32-bit fixed-point two's complement integer operand A at 
The 32-bit fixed-point two's complement integer operand B at the TOS is multiplied by the 32-bit fixed-point two's comple-

.. 
NOS is divided by the 32-bit fixed-point two's complement in- ment integer operand B at the NOS. The 32-bit most signifi-
teger operand A at the TOS. The 32-bit integer quotient R re- cant half of the product R replaces B and the stack is moved 
places B and the stack is moved up so that R occupies the up so that R occupies the TOS. The least significant half of 
TOS. No remainder is generated. Operands A and B are lost. the product is lost. Operands A and B are lost. Operands C • 
Operands C and 0 are unchanged. and 0 are unchanged. 
If A is zero, R is set equal to B and the divide-by-zero error If A or B was the most negative value possible in the format, 
status will be reported. If either A or B is the most negative overflow status is set and R is meaningless. 
value possible in the format, R will be meaningless and the Status Affected: Sign, Zero, Overflow 
overflow error status will be reported. 

STACK CONTENTS Status Affected: Sign, Zero, Error Field BEFORE AFTER 

BEFORE 
STACK CONTENTS 

AFTER A -TOS- R 

A -TOS- R B C • B C C 0 - -C 0 0 -- ---
0 ~ 1-32 • 1 I • 32-1 

1-32-1 I- 32-1 

DMUL DSUB • 32-BIT FIXED-POINT MUL TIPL V, LOWER 32-BIT FIXED-POINT SUBTRACT 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

Binary Coding: I sr I 0 I 1 I 0 I 1 I 1 I 1 I 0 I Binary Coding: I sr I 0 I 1 I 0 ! 1 I 1 I 0 I 1 I 
Hex Coding: AE with sr = 1 Hex Coding: AD with sr = 1 

2E with sr = 0 20 with sr = 0 
Execution Time: 194 to 210 clock cycles Execution Time: 38 to 40 clock cycles 
Description: Description: 
The 32-bit fixed-point two's complement integer operand A at the The 32-bit fixed-point two's complement operand A at the 
TOS is multiplied by the 32-bit fixed-point two's complement in- TOS is subtracted from the 32-bit fixed-point two's comple-
teger operand B at the NOS. The 32-bit least significant half of the ment operand B at the NOS. The difference R replaces • product R replaces B and the stack is moved up so that R oc- operand B and the stack is moved up so that R occupies the 
cupies the TOS. The most significant half of the product is lost. TOS. Operand B is lost. Operands A, C and 0 are un-
Operands A and B are lost. Operands CandO are unchanged. changed. 
The overflow status bit is set if the discarded upper half was If the subtraction generates a borrow it is reported in the carry • 
non-zero. If either A or B is the most negative value that can status bit. If A is the most negative value that can be rep-
be represented in the format, that value is returned as Rand resented in the format the overflow status is set. If the result 
the overflow status is set. cannot be represented in the data formal range, the overflow 
Status Affected: Sign, Zero, Overflow bit is set and the 32 least significant bits of the result are re- .. 

STACK CONTENTS 
turned as R. 

BEFORE AFTER Status Affected: Sign, Zero, Carry, Overflow 

A -TOS- R 
BEFORE 

STACK CONTENTS 
AFTER 

B C 
A -TOS- R 

C 0 
B C - -0 -- - C 0 

I- 32 .. I I • 32-1 
0 A 

1-32 ·1 ~32 .. I • 



• 
• 

• 

• 

• 
• 

• 

iSBX 331 

EXP 
32-BIT FLOATING-POINT eX 

7 6 5 4 

Blnery Coding: I sr 0 0 0 

Hex Coding: 8A with sr = 1 
OA with sr = 0 

3 2 

o 
o 
o 

Execution nllMl: 3794 to 4878 clock cycles for IAI E; 1.0 x 25 

34 clock cycles for IAI > 1.0 x 25 

Description: 
The base of natural logarithms, e, is raised to an exponent value 
specified by the 32-bit floating-point operand A at the TOS. The 
result R of fI' replaces A. Operands A, CandO are lost. Operand 
B is unchanged. 
EXP accepts all input data values within the range of -1.0 x 2+5 

to + 1.0 X 2+5. Input values outside this range will retum a code of 
1100 in the error field of the status register. 
Accuracy: EXP exhibits a maximum relative error of 5.0 x 

10-7 over the valid input data range. 
Status Affected: Sign, Zero, Error Field 

BEFORE 
STACK CONTENTS 

AFTER 

A TOS - R 

B B 

C - -- -0 - -- -I- 32 1-32--.... ·~1 

FADD 
32-BIT FLOATING-POINT ADD 

7 6 5 4 3 2 o 
Blnery Coding: I sr 0 0 0 0 0 0 

Hex Coding: 90 with sr = 1 
10 with sr = 0 

Execution nllMl: 54 to 368 clock cycles for A of. 0 
24 clock cycles for A = 0 

DescrIpIIon: 
32-bit floating-point operand A at the TOS is added to 32-bit 
floating-point operand B at the NOS. The result R replaces Band 
the stack is moved up so that R occupies the TOS. Operands A 
and B are lost. Operands CandO are unchanged. 
Exponent alignment before the addition and normalization of the 
result accounts for the variation in execution time. Exponent 
overflow and underflow are reported in the status register, in 
which case the mantissa is correct and the exponent is offset by 
128. 
Status AtfecIecI: Sign, Zero, Error Field 

BEFORE 
STACK CONTENTS 

AFTER 

A TOS- R 

B C 

C 0 

0 ~ 
I. 32 .1 1---32 .1 

Appendix A 

FDIV 
32-BIT FLOATING-POINT DIVIDE 

7 6 5 4 3 2 

Blnery Coding: I sr I 0 0 0 0 

Hex Coding: 93 with sr = 1 
13 with sr = 0 

Execution nllMl: 154 to 184 clock cycles for A#<O 
22 clock cycles for A = 0 

DescrIption: 

o 

32-bit floating-point operand B at NOS is divided by 32-bit 
floating-point operand A at the TOS. The result R replaces Band 
the stack is moved up so that R occupies the TOS. Operands A 
and B are lost. Operands C and 0 are unchanged. 
If operand A is zero, R is set equal to B and the divide-by-zero 
error is reported in the status register. Exponent overflow or 
underflow is reported in the status register, in which case the 
mantissa portion of the result is correct and the exponent portion 
is offset by 128. 
Status AtfecIecI: Sign, Zero, Error Field 

BEFORE 
STACK CONTENTS 

AFTER 

A ---TOS - R 

B C 

C 0 

0 - -- -I- 32 1-32--... ·~1 

FIXD 
32-BIT FLOATING-POINT TO 

32-BIT FIXED-POINT CONVERSION 

7 6 5 4 320 

Binary Coding: I sr 0 0 0 

Hex Coding: 9E with sr = 1 
1Ewithsr=0 

Execution Time: 90 to 336 clock cycles 
Description: 
32-bit floating-point operand A at the TOS is converted to a 
32-bit fixed-point two's complement integer. The result R re­
places A. Operands A and 0 are lost. Operands B and C are 
unchanged. 
If the integer portion of A is larger than 31 bits when con­
verted, the overflow status will be set and A will not be 
changed. Operand 0, however, will still be lost. 
Status AtfecIecI: Sign, Zero Overflow 

BEFORE 
STACK CONTENTS 

AFTER 

A ---TOS - R 

B B 

C C - -- -o 
1-32 ·1 I- 32 ·1 

A-5 



Appendix A 

A-6 

FIXS 
32-BIT FLOATING-POINT TO 

16-BIT FIXED-POINT CONVERSION 

7 6 5 4 3 2 ° 
Binary Coding: LI _sr-----'_0....L_O_L-------.JL-------'-_-----'-_---'---_-' 

Hex Coding: 9F with sr = 1 
1 F with sr = ° 

Execution Time: 90 to 214 clock cycles 
Description: 
32-bit floating-point operand A at the TOS is converted to a 
16-bit fixed-point two's complement integer. The result R re­
places the lower half of A and the stack is moved up by two 
bytes so that R occupies the TOS. Operands A and 0 are 
lost. Operands Band C are unchanged, but appear as upper 
(u) and lower (I) halves on the 16-bit wide stack if they are 
32-bit operands. 
If the integer portion of A is larger than 1 5 bits when con­
verted, the overflOw status will be set and A will not be 
changed. Operand 0, however, will still be lost. 
Status Affected: Sign, Zero, Overflow 

BEFORE 
STACK CONTENTS 

AFTER 

A 

I-
TOS 

B 

C 

0 

Bu 

BI 

Cu 

I .. 32 .. I CI 

FLTD 
32-BIT FIXED-POINT TO 

32-BIT FLOATING-POINT CONVERSION 

7 6 5 4 

Binary Coding: I sr ° ° Hex Coding: 9C with sr = 1 
lC with sr = ° 

Execution Time: 56 to 342 clock cycles 
Description: 

3 2 ° 
° 0 

32-bitfixed-pointtwo's complement integer operand A althe TOS 
is converted to a 32-bit floating-point number. The result R re­
places A at the TOS. Operands A and D are lost. Operands Band 
C are unchanged, 
Status Affected: Sign, Zero 

BEFORE 
STACK CONTENTS 

AFTER 

A -TOS- R 

B B 

C C - -- -0 

I .. 32 -I f41 .. o-- 32 ----4.--11 

iSBX 331 

FLTS 
16-BIT FIXED-POINT TO 

32-BIT FLOATING-POINT CONVERSION 

7 6 5 4 3 2 ° 
° ° Binary Coding: I sr ° 

_-----'-_-L_---'---_~_~_~_L-~ 

Hex Coding: 90 with sr = 1 
10withsr=O 

Execution Time: 62 to 156 clock cycles 
Description: 
l6-bit fixed-point two's complement integer A at the TOS is 
converted to a 32-bit floating-point number. The lower half of the 
result R (RI) replaces A, the upper half (Ru) replaces H and the 
stack is moved down so that Ru occupies the TOS. Operands A, 
F, G and H are lost. Operands B, C, 0 and E are unchanged. 
Status Affected: Sign, Zero 

BEFORE 
STACK CONTENTS 

AFTER 

A TOS ----._1 Ru 

B RI 

C B 

D C 

E D 

F E 

G 

H 

FMUL 
32-BIT FLOATING-POINT 

MULTIPLY 

7 6 5 4 3 

Binary Coding: I sr 0 ° 0 

Hex Coding: 92 with sr = 1 
12 with sr = 0 

Execution Time: 146 to 168 clock cycles 
08scrlptlon: 

2 

0 
° 0 

32-bit floating-point operand A at the TOS is multiplied by the 
32-bit floating-point operand B at the NOS, The normalized result 
R replaces B and the stack is moved up so that R occupies the 
TOS, Operands A and B are lost. Operands C and D are un­
changed. 
Exponent overflow or underflow is reported in the status register, 
in which case the mantissa portion of the result is correct and the 
exponent portion is offset by 128. 
Status Affected: Sign, Zero, Error Field 

BEFORE 
STACK CONTENTS 

AFTER 

A -TOS- R 

B C 

C D 

D 

I .. 32 .1 I- 32 ·1 

• 

• 

• 

• 

• 
• 

• 



• 

• 

• 

• 

• 
• 

• 

iSBX 331 

FSUB 
32-BIT FLOATING-POINT SUBTRACTION 

7 6 5 4 3 2 

Binary Coding: I sr 0 0 0 0 0 

Hex Coding: 91 with sr = 1 
11 with sr = 0 

Execution Time: 70 to 370 clock cycles for A of. 0 
26 clock cycles for A = 0 

Description: 

o 

32-bit floating-point operand A at the TOS is subtracted from 
32-bit floating-point operand B at the NOS. The normalized 
difference R replaces B and the stack is moved up so that R 
occupies the TOS. Operands A and B are lost. Operands C 
and D are unchanged. 
Exponent alignment before the subtraction and normalization 
of the result account for the variation in execution time. 
Exponent overflow or underflow is reported in the status regis­
ter in which case the mantissa portion of the result is correct 
and the exponent portion is offset by 128. 
Status Affected: Sign, Zero, Error Field (overflow) 

BEFORE STACK CONTENTS AFTER 

A -TOS- R 

B C 

C D - ---- -D 

1-32-1 1-01 .. ---32--....... -1 

LOG 
32-BIT FLOATING-POINT 
COMMON LOGARITHM 

7 6 5 4 3 2 

Binary Coding: I sr I 0 I 0 I 0 I 1 I 0 

Hex Coding: 88 with sr = 1 
08 with sr = 0 

o 
o 0 

Execution Time: 4474 to 7132 clock cycles for A> 0 
20 clock cycles for A "'" 0 

Description: 
The 32-bit floating-point operand A at the TOS is replaced by R, 
the 32-bit floating-point common logarithm (base 10) of A. 
Operands A, C and D are lost. Operand B is unchanged. 
The LOG function accepts any positive input dala value thai can 
be represented by the data format. If LOG of a non-positive value 
is attempted an error status of 0100 is returned . 
Accuracy: LOG exhibits a maximum absolute error of 2.0 x 10-7 

for the input range from 0.1 to 10, and a maximum 
relative error of 2.0 x 10-7 for positive values less 
than 0.1 or greater than 10. 

Status Affected: Sign, Zero, Error Field 

BEFORE STACK CONTENTS AFTER 

A -TOS - R 

B B - -- -C - -- -D 

1-32--.. 1 1-o1 ... ---32--....... ~1 

Appendix A 

LN 
32-BIT FLOATING-POINT 
NATURAL LOGARITHM 

7 6 5 4 ·3 

Binary Coding: I sr 0 0 0 

Hex Coding: 89 with sr = 1 
09 with sr = 0 

2 

o o 

Execution Time: 4298 to 6956 clock cycles for A > 0 
20 clock cycles for A"", 0 

Description: 

o 

The 32-bit floating-point operand A at the TOS is replaced by 
R, the 32-bit floating-point natural logarithm (base e) of A. 
Operands A, C and D are lost. Operand B is unchanged. 
The LN function accepts all positive input data values that can 
be represented by the data format. If LN of a non-positive 
number is attempted an error status of 0100 is returned. 
Accuracy: LN exhibits a maximum absolute error of 2 x 10-7 

for the input range from e-1 to e, and a maximum 
relative error of 2.0 x 10-7 for positive values less 
than e -1 or greater than e. 

Status Affected: Sign, Zero, Error Field 

BEFORE STACK CONTENTS AFTER 

A ---TOS- R 
~-----~ ~-----~ 

B B 

C 

D 

1-32--.... ·-11 1-1----32-1 

NOP 
NO 

OPERATION 

7 6 5 

Binary Coding: I sr I 0 I 0 I 
Hex Coding: 80 with sr = 1 

00 with sr = 0 
Execution Time: 4 clock cycles 
Description: 

4 

0 

3 2 0 

0 0 0 0 

The NOP command performs no internal data manipulations. It 
may be used to set or clear the service request interface line 
without changing the contents of the stack. 
Status Affected: The status byte is cleared to all zeroes. 

A-7 



Appendix A 

POPD 
32-BIT 

STACK POP 

7 6 5 

Binary Coding: I sr 0 

Hex Coding: B8 with sr = 1 
38 with sr = 0 

Execution Time: 12 clock cycles 
Description: 

4 3 2 0 

0 0 0 

The 32-bit stack is moved up so that the old NOS becomes the 
new TOS. The previous TOS rotates to the bottom olthe stack. All 
operand values are unchanged. POPD and POPF execute the 
same operation. 
Status Affected: Sign. Zero 

STACK CONTENTS 

BEFORE AFTER 

A -Tos---I B 
1-----------< 

B C 

C D 

D A 

1-32--....... --11 1-32-1 

POPF 
32-BIT 

STACK POP 

7 6 5 

Binary Coding: I sr 0 0 

Hex Coding: 98 with sr = 1 
18 with sr = 0 

Execution Time: 12 clock cycles 
Description: 

4 3 2 0 

0 0 0 

The 32-bit stack is moved up so that the old NOS becomes the 
new TOS. The old TOS rotates to the bottom of the stack. All 
operand values are unchanged. POPF and POPD execute the 
same operation. 
Status Affected: Sign. Zero 

POPS 
16-BIT 

STACK POP 

7 6 5 4 3 2 

iSBX 331 

o 
o o Binary Coding: I sr 0 _-L __ L-~ __ -L __ L-~ __ ~~ 

Hex Coding: F8 with sr = 1 
78 with sr = 0 

Execution Time: 10 clock cycles 
Description: 
The 16-bit stack is moved up so that the old NOS becomes the 
new TOS. The previous TOS rotates to the bottom of the stack. All 
operand values are unchanged. 
Status Affected: Sign. Zero 

STACK CONTENTS 

BEFORE FR_TOS . 

+ 
§; 
1---16 --1 

PTOD 
PUSH 32-BIT 

TOS ONTO STACK 

7 6 5 

Binary Coding: I sr 0 

Hex Coding: B7 with sr = 1 
37 with sr = 0 

Execution Time: 20 clock cycles 
Description: 

4 3 

0 

AFTER 

B 

C I 

D 

E 

2 0 

The 32-bit stack is moved down and the previous TOS is 
copied into the new TOS location. Operand D is lost. All other 
operand values are unchanged. PTOD and PTOF execute the 
same operation. 
Status Affected: Sign. Zero 

STACK CONTENTS STACK CONTENTS 

BEFORE AFTER BEFORE AFTER 

A -TOS- B A -TOS- A 
------~ I--------~ 

B C B A 

C D C B 

D A D C 
1-32 .1 I- 32 .. I 1-32----< .. ..,1 1-32--..... --11 

A-8 

• 

• 

• 

• 

• 
• 

• 



• 

• 

• 

• 

• 
.. 

.. 

• 

iSBX 331 

PTOF 
PUSH 32-BIT 

TOS ONTO STACK 

7 6 5 4 3 2 

Binary Coding: I sr I 0 I 0 I 1 I 0 I 
Hex Coding: 97 with sr = 1 

17 with sr = 0 
Execution Time: 20 clock cycles 
Description: 

o 

The 32-bit stack is moved down and the previous TOS is copied 
into the new TOS location. Operand D is lost. Ail other operand 
values are unchanged. PTOF and PTOD execute the same op­
eration . 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

r-_____ : ____ ~~TOS--.-~-----:----~ 

C B 

D C 

I-32 -I 1-1 0>--- 32-1 

PTOS 
PUSH 16-BIT 

TOS ONTO STACK 

765432 0 

Binary Coding: I sr I 1 I 1 I 1 I 0 I 1 

Hex Coding: F7 with sr = 1 
77 with sr = 0 

Execution Time: 16 clock cycles 
Description: 
The 16-bit stack is moved down and the previous TOS is copied 
into the new TOS location. Operand H is lost and all other 
operand values are unchanged. 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

I A TOS A 
I B A 

C B 

D I C 

E 
I 

D 

F E 

G F 

H G 

Appendix A 

PUPI 
PUSH 32-BIT 

FLOATING-POINT 7T 

7 6 5 4 3 2 

Binary Coding: I sr I 0 I 0 I 1 I 1 I 0 

Hex Coding: 9A with sr = 1 
1A with sr = 0 

Execution Time: 16 clock cycles 
Description: 

o 
o 

The 32-bit stack is moved down so that the previous TOS oc­
cupies the new NOS location. 32-bit floating-point constant 1r is 
entered into the new TOS location. Operand D is lost. Operands 
A, Band C are unchanged .. 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

A - TOS - 1r 

B A 

C B 

D C 

1-1 00---32-1 1-1 '>---32-1 

A9 



Appendix A 

PWR 
32-BIT 

FLOATING-POINT X Y 

7 6 5 4 3 2 ° 
Binary Coding: LI _sr---1._0-L_O_L-0-----'_--"-_0-L_--'--------.J 

Hex Coding: 8B with sr = 1 
OB with sr = ° 

Execution Time: 8290 to 12032 clock cycles 
Description: 
32-bit floating-point operand B at the NOS is raised to the power 
specified by the 32-bit floating-point operand A at the TOS. The 
result R of BA replaces B and the stack is moved up so that R 
occupies the TOS. Operands A, B, and D are lost Operand C is 
unchanged. 
The PWR function accepts all input data values that can be 
represented in the data format for operand A and all positive 
values for operand B. If operand B is non-positive an error status 
of 0100 will be retumed. The EXP and LN functions are used to 
implement PWR using the relationship BA = EXP [A(LN B)l· 
Thus if the term [A(LN B) 1 is outside the range of -1.0 x 2+5 to 
+ 1.0 x 2+ 5 an error status of 1100 will be retumed. Underflow and 
overflow conditions can occur. 

Accuracy: The error performance for PWR is a function of 
the LN and EXP performance as expressed by: 
\(Relative Error)pWR\= \(Relative Error)EXP+ \A(Absolute 
ErrorlLNI 

The maximum relative error for PWR occurs when 
A is at its maximum value while [A(LN B) 1 is near 
1.0 x 25 and the EXP error is also at its maxi­
mum. For most practical applications the relative 
error for PWR will be less than 7.0 x 10-7 . 

Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A ~TOS- R 

B C 

C 

D 

1----32'--~ ..... 1 1-1'~-32-1 

A-lO 

SADD 
16-BIT 

FIXED-POINT ADD 

7 6 5 4 3 

° 

iSBX 331 

2 ° 
° ° Binary Coding: I sr 

L-~ __ ~ __ ~ __ ~ __ ~_~ __ -L_~ 

Hex Coding: EC with sr = 1 
6C with sr = ° 

Execution Time: 16 to 18 clock cycles 
Description: 
16-bit fixed-point two's complement integer operand A at the 
TOS is added to 16-bit fixed-point two's complement integer 
operand B at the NOS. The result R replaces B and the stack 
is moved up so that R occupies the TOS. Operand B is lost. 
All other operands are unchanged. 
If the addition generates a carry bit it is reported in the status 
register. If an overflOW occurs it is reported in the status regis­
ter and the 16 least significant bits of the result are returned. 

Status Affected: Sign, Zero, Carry, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A TOS R 

B C 

C D 

D E 

E F 

F G 

G H 

H A 

• 

• 

• 

• 

• 
• 

• 



• 

• 

• 

• 

• 
• 

• 

iSBX 331 

SDIV 
16-BIT 

FIXED-POINT DIVIDE 

7 6 5 4 

Binary Coding: I sr ° 
Hex Coding: EF with sr = 1 

6F with sr = ° 

3 2 

Execution Time: 84 to 94 clock cycles for A '" ° 
14 clock cycles for A = 0 

Description: 

o 

16-bit fixed-point two's complement integer operand B at the 
NOS is divided by 16-bit fixed-point two's complement integer 
operand A at the TOS. The 16-bit integer quotient R replaces B 
and the stack is moved up so that R occupies the TOS. No 
remainder is generated. Operands A and B are lost. All other 
operands are unchanged. 
If A is zero, R will be set equal to B and the divide-by-zero error 
status will be reported. 
Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A TOS R 

B C 

C D 

D E 

E F 

F G 

G H 
i 

H >< 
i--16----j 

Appendix A 

SIN 
32-BIT 

FLOATING-POINT SINE 

765432 ° 
Binary Coding: ILs_r-L_0--1_0-.L_0--1_0-.L_o_'-------'-_o.,j 

Hex Coding: 82 with sr = 1 
02 with sr = ° 

Execution Time: 3796 to 4808 clock cycles for IAI > 2-12 

radians 
30 clock cycles for IAI ", 2-12 radians 

Description: 
The 32-bit floating-point operand A at the TOS is replaced by 
R, the 32-bit floating-point sine of A. A is assumed to be in 
radians. Operands A, C and D are lost. Operand B is un­
changed. 

The SIN function will accept any input data value that can be 
represented by the data format. All input values are range re­
duced to fall within the interval -1T/2 to +1T/2 radians. 
Accuracy: SIN exhibits a maximum relative error of 5.0 x 

10-7 for input values in the range of -21T to +21T 
radians. 

Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

,-____ A ______ r---TOS---~-----R----~ 
B B 
C 

D 

",,1"---32-1 "",I 00--- 32----1 

A-ll 



Appendix A 

SMUL 
16-BIT FIXED-POINT 
MUL TIPL V, LOWER 

765432 ° 
Binary Coding: LI _sr---'-_--'-_..L-0_L----L_---"--_--'-_O--' 

Hex Coding: EE with sr = 1 
6E with sr = ° 

Execution Time: 84 to 94 clock cycles 
Description: 
16-bit fixed-point two's complement integer operand A atthe TOS 
is multiplied by the 16-bit fixed-point two's complement integer 
operand B at the NOS. The 16-bit least significant half of the 
product R replaces B and the stack is moved up so that R 
occupies the TOS. The most significant half of the product is lost. 
Operands A and B are lost. All other operands are unchanged. 
The overflow status bit is set if the discarded upper half was 
non-zero. If either A or B is the most negative value that can be 
represented in the format, that value is returned as R and the 
overflow status is set. 
Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A TOS R 

B C 

C D 

D E 

E F 

F G 

G H 

H >< 
~16---i 

A-12 

SMUU 
16-BIT FIXED-POINT 
MUL TIPL V, UPPER 

7 6 5 4 3 

Binary Coding: I sr I 1 I 1 I ° 
Hex Coding: F6 with sr = 1 

76 with sr = ° 
Execution Time: 80 to 98 clock cycles 
Description: 

iSBX 331 

2 ° 
° 

16-bit fixed-point two's complement integer operand A at the 
TOS is multiplied by the 16-bit fixed-point two's complement 
integer operand B at the NOS. The 16-bit most significant half 
of the product R replaces B and the stack is moved up so that 
R occupies the TOS. The least significant half of the product 
is lost. Operands A and B are lost. All other operands ,are un­
changed. 

If either A or B is the most negative value that can be rep­
resented in the format, that value is returned as R and the 
overflow status is set. 
Status Affected: Sign, Zero, Error Field 

STACK CONTENTS 

BEFORE AFTER 

A TOS R 

B C 

C D 

D E 

E F 

F G 

G H 

H >< 

• 
.. 

• 

• 

• 
• 

• 

• 



iSBX 331 Appendix A 

SQRT TAN 
32-BIT FLOATING-POINT SQUARE ROOT 32-BIT FLOATING-POINT TANGENT 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 • Binary Coding: I sr I 0 I 0 I 0 I 0 I 0 I 0 I 1 I Binary Coding: I sr I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 
Hex Coding: 81 with sr = 1 Hex Coding: 84 with sr = 1 

01 with sr = 0 04 with sr = 0 
Execution Time: 782 to 870 clock cycles Execution Time: 4894 to 5886 clock cycles for IAI > 2-12 

Description: radians 
32-bit floating-point operand A at the TOS is replaced by R, the 30 clock cycles for IAI ,,; 2-12 radians 
32-bit floating-point square root of A. Operands A and 0 are lost. Description: 
Operands Band C are not changed. The 32-bit floating-point operand A at the TOS is replaced by 
SORT will accept any non-negative input data value that can be the 32-bit floating-point tangent of A. Operand A is assumed 
represented by the data format. If A is negative an error code of to be in radians. A, C and 0 are lost. B is unchanged. 
0100 will be retumed in the status register. The TAN function will accept any input data value that can be 
Status Affected: Sign, Zero, Error Field represented in the data format. All input data values are • 

BEFORE STACK CONTENTS AFTER range-reduced to fall within -rr/4 to +rr/4 radians. TAN is un-

I A -TOS- R I bounded for input values near odd multiples of rr/2 and in 
such cases the overflow bit is set in the status register. For 

! B B angles smaller than 2-12 radians, TAN returns A as the tan-

i C C 
gent of A. 

! ----- - Accuracy: TAN exhibits a maximum relative error of 5.0 x 
0 -- ------

10-7 for input data values in the range of -2rr to 
I .. 32-----1 1 • 32-1 + 27T radians except for data values near odd mul-• tiples of rr/2. 

Status Affected: Sign, Zero, Error Field (overflow) 

BEFORE STACK CONTENTS AFTER 

SSUB A -TOS- R 

B B 
16-BIT FIXED-POINT SUBTRACT C ~ 

7 6 5 4 3 2 1 0 0 -- ----- ------I 

I I I I I I I 1 • 32-----1 I .. 32-1 Binary Coding: sr 1 1 0 1 1 0 1 • Hex Coding: ED with sr = 1 
60 with sr = 0 

Execution Time: 30 to 32 clock cycles 
Description: 
16-bit fixed-point two's complement integer operand A at the 

XCHD TOS is subtracted from 16-bit fixed-point two's complement in-
teger operand B at the NOS. The result R replaces B and the 
stack is moved up so that R occupies the TOS. Operand B is 

EXCHANGE 32-BIT STACK OPERANDS lost. All other operands are unchanged. 

• 

If the subtraction generates a borrow it is reported in the carry 7 6 5 4 3 2 1 0 
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the result Binary Coding: I sr I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 
cannot be represented In the format range, the overflow Hex Coding: B9 with sr = 1 
status is set and the 16 least significant bits of the result are 39 with sr = 0 
returned as R. Execution Time: 26 clock cycles 
Status Affected: Sign, Zero, Carry, Error Field Description: 

• 
BEFORE STACK CONTENTS AFTER 32-bit operand A at the TOS and 32-bit operand B at the NOS 

A TOS R 
are exchanged. After execution, B is at the TOS and A is at 
the NOS. All operands are unchanged. XCHO and XCHF 

B 
i 

C execute the same operation. 

C 0 
Status Affected: Sign, Zero 

0 I 
E BEFORE STACK CONTENTS AFTER 

E F A -TOS- B 

F G B A 

G H C C 

H A 0 0 

~16--J ~16---l 1-32----1 I .. 32----1 

• 
A-13 



Appendix A 

A-14 

XCHF 
EXCHANGE 32-BIT 
STACK OPERANDS 

7 6 5 4 3 2 0 

Binary Coding: I sr 0 0 0 0 

Hex Coding: 99 with sr = 1 
19 with sr = 0 

Execution Time: 26 clock cycles 
Description: 
32-bit operand A at the TOS and 32-bit operand B at the NOS 
are exchanged. After execution, B is at the TOS and A is at 
the NOS. All operands are unchanged. XCHD and XCHF 
execute the same operation. 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

A -TOS- B 

B A 

C C 

0 0 

I .. 32---1 I. 32------1 

XCHS 
EXCHANGE 16-BIT 
STACK OPERANDS 

iSBX 331 

7 6 5 4 3 2 0 

Binary Coding: I sr 0 0 

Hex Coding: F9 with sr = 1 
79 with sr = 0 

Execution Time: 18 clock cycles 
Description: 
16-bit operand A at the TOS and 16-bit operand B at the NOS 
are exchanged. After execution, B is at the TOS and A is at 
the NOS. All operand values are unchanged. 
Status Affected: Sign, Zero 

STACK CONTENTS 

BEFORE AFTER 

A TOS B 

B A 

C C 

0 0 

E E 

F F 

G G 

H H 

1--16--1 

• 

• 

• 

• 

• 
to 

• 

• 


