iRMX™ 86 1I/0

SYSTEMS WORKSHOP NOTEBOOK

REV. 1.0 OCTOBER 1981

© INTEL CORPORATION 1980, 1981

© INTEL CORPORATION, 1980, 1981

intel Corporation makes no warranty for the use of its products and assumes no responasibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). intel Corporation
assumes no responsibility tor the use of any circuitry other than circuitry embodied in an intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP intelevision MULTIBUS

CREDIT Intellec MULTIMODULE

i iSBC Plug-A-Bubbie

iCE iSBX PROMPT

ICS Library Manager Promware

im MCS RMX

insite Megachassis UPI

Intel Micromainframe uScope
Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Department SV3-3
3065 Bowers Avenue

Santa Clara, CA 95051

INTRODUCTION

COURSE OVERVIEW

1. BASIC Yo SYSTEM REVIEW

A. BASIC I/o SYSTEM CONFIGURATION
3. BOOTSTRAP LOADER

4. FILES VTILITY

5. DEVICE DRIVERS

6. 0.5. EXTENSIONS

2. EXTENDED I/o SYSTEM

8. HUMAN INTERFACE

9. START VP SYSTEM

CHAPTER 1
BASIC Yo SYSTEM REVIEW

THE FILE

- A COLLECTION OF DATA
« ORGANIZED AT BYTE LEVEL

+ MEPIA INDEPENDANT (AT FILE LEVEL)

-2

THE FILE
*A COLLECTION OF DATA

*DATA FROM PROCESS CONTROL

« TEXT (LETTER, REPORT, ETC.)

* ITNFORMATION PASSED FROM
TASK To TASK

« REFERENCE INFORMATION
(INVENTORY, PAYROLL, ETC.)

1-3

THE FIL
«ORGANIZED AT BYTE LEVEL

* LENGTH
* POINTER

Y l

7/ LS ReAD LENGTH

SEEK €—1—>SEEK
—»WRITE

PoINTER

\-4

THE FILE
* MEDIA INDEPENDENT (AT FILE LEVEL)

« DES\GN FLEXIBIL|TY
* TEST FLEXIBILITY

*RUN TIME FLEX\BIL\TY

-5

ACCE$S METHODS

* SEQUENTIAL ACCESS

* RANDOM ACCESS

-6

'RMX-86 FILE TYPES

* PHYSICAL
* NAMED

* STREAM

-7

FILETYPES VS. ACCESS METHOD

AESS
FILE METHOD

TYPE RANDOM SEQUENTIAL

PHYSICAL

NAMED

STREAM

| |

NOTE.: DEVICE MUST sUPPORT RANDoM ACCESS,

-8

SOME EXAMPLES

SEQUENTIAL /PHYSICAL — THE TELETYPE
THE LINEPRINTER, ETC.

RANDOM /NAMED — RMX DIsk OR DISKETTE

OR BUBBLE
SEQUENTIAL / STREAM ~ INTERTASK DATA TRANSFER
RANDOM /PHYsI¢AL

! __ READ OR WRITE ANY FORMAT
oR DISKETTE OR TAPE

SEQUENTIAL/PHYSICAL

RMX-86 Y SYSTEM

WI P> 00000 OMNC

——»;

PHYsS\CAL >

FILE |g DEVICE
DRIVER DRIVER

|
.‘_____ |

NAMED
FILE

Vv
DRIVER > Device

4— DRIVER

——-_—.F

—

STREAM
FILE
DRIWER |&—

I-1Q

THE FILE DRIVER

1

USER Tb REQUEST — 3 /o REQUEST
READ, WRITE, SEEK, ETC. F] SEGMENT(S)

: E

D
R|
V
E
R
T RESULT < T4 RESULT
SEGMENT | SEQMENT(s)

USER PROGRAM » DEVICE DRIVER

THE DEVICE DRIVER

To REQUEST — I D 3 DEVICE COMMANDS
SEGMENT E
vV
'C
, E
Rl
v
ER
T RESULT 4———pDATA FROM/TO
SEGMENT DEVICE /
' FILE DRIVER @ » DEVICE

t-12

BASIC Yo SYSTEM

“MOST INTIMATE FORM OF If5 SYSTEM INTERACTION.

ADVANTAGES

e ASYNCHRONOUS (ALLOWS OVERLAPPEP T/o AND
USER PROCESSING)

e MOST COMPACT VERSION OF ¥/o 3YSTEM.

DISADVANTAGE

o FAIRLY COMPLICATED USER INTERFACE

/-14

BASIC T/o SYSTEM
INTERACT\ON EXAMPLE

3

/% NOwW START I/0 PROCESSING ¥ /
CALL RQAREAD(s 3 @ RESPMBX, @ sTATULS);

/% TEST RESULT OF CALL |TSELF %/
IF (STATUS < > @) THEN
/¥ BAD CALL %/
BAD_cALL: DO,
/% HANDLE PROBLEM WITH CALL ¥/

END BAD-¢ALL

ELSE
" /% O.K. so FAR ¥/

GooOD_cALL: DO ;

/-15

BASIC Yo SYSTEM
INTERACTION EXAMPLE (CONTINVED)

/% DO CONCURRENT PROCESSING %/
/* NOW GET RESPONSE FROM T/o SYSTEM %/
MSGTKN = RQRECEIVE MESSAGE (RESPMBX, , , @ STATUS);
/% CHECK CALL %/
IF (STATUS < > &) THEN
/% BAD SVSTEM CALL HANDLED HERE %/
ELSE "
/% WE ¢AN PROCEED %/
GO _ON: Do/'

M3@GPTR = POINTERIZE (MSGTKN);

/-16

BASIC Yo SYSTEM
INTERACTION EXAMPLE (CONTINVED)

/% CHECK STATUS FIELD I/o& RESULT SEGMENT %/
IF (MSG. STATUS < > @) THEN
/% BAD L/o, HANDLE T AND PELETE IORS ¥/
ELSE
/% FINALLY PRocr-_Ss DATA IN THE BUFFER %/

[-17

EXTENDPED Yo SYSTEM
"THE USER FRIENDLY Yo INTERFACE
ADVANTAGES

e SIMPLE INTEFACE - SINGLE CALL
* AUTOMATIC BUFFERING- READ AHEAD,
WRITE BEHIND

DISADVANTAGES

e MORE. MEMORY REQUIRED (ABOVE BASIC Yo SYSTEM)

* NOT EFFICIENT FOR RANDOM ACCESS

I-18

EXTENDED T/o SYSTEM
INTERACTION EXAMPLE

?

/ % READ DISK FILE AND PLACE DATA IN BUFF %/
NUMBYTES = RQS READMOVE (, BUFF PTR, BYTES REQ, @ STATUS);

/% CHECK STATUS %/

IF (STATVUS < > &) THEN
/% PROCESS ERROR */

ELSE

/% PROCESS DATA */

1-19

/-20

WHY USE THE BASIC Yo SYSTEM®
¢ I NEED EXTREME FLEXIBILITY
© T NEED EFFICIENT RANDOM ACLESS
e T MUST CONSERVE MEMORY

e T WANT TOo oVERLAP MY PROCESSING
WITH I/0 PROCESSING

“

e IM MASOCHISTIC

-2/

WHY USE THE EXTENDED Yo SYSTEM?

I LIKE THE EASY INTERFACE

I ¢AN AFFORD THE MEMORY

IM PRIMARILY USING SEQUENTIAL ACLESS
SO AUTOMATIC BUFFERING HELPS THRUPUT

I DO NOT NEEO oVERLAPPED I/o AND
VSER PROCESSING

[-22

CHAPTER QUIZ

1. WHAT ARE THE THREE ATTRIBVTES OF A FILE 2
e b C..

2. WHAT ARE THE THREE RMX-86 FILE TYPES?
a. b. C.

3. CAN 1 TREATASTREAM FILE DRIVER IN A RANDOM
ACCESS MANNER?

4. WHAT COMBINATION OF FILE TYPE AND ALLESS METHOD
WOULD I USE To READ AN ISiS FORMAT DISKETTE ?
m S AND

/-23

CHAPTER Qu\z (coNT)

B. WHAT KIND OF INFORMATION PASSES RETWEEN THE
FILE DRIVER AND THE DEVILE DRIVER?

6. LIST AN ADVANTAGE OF THE BASIC I/o SYSTEM,

7 LIST AN ADVANTAGE OF TWE EXTENOED I/o SYSTEM.

1-24

CHAPTER 2

BASIC Lo
SYSTEM
CONFIGURAT|ON

2-1

BASIC /o SYSTEM CONFIGURATION

* SELECT FEATURES DESIRED
(I TABLE.A®G)

* DESCRIBE THE I/0 DEVICES
CIDEV(F. ABG)

I TABLE . AB6

|_$ INCLJ;E() |

I SYSTEM cALL SELECHON'

FILE DRIVER GLOBAL DATA

FILE DRIVER TABLES

OPTIONAL FEATURE
SELECTION

END

I TABLE . AB6

SYSTEM CALL SELECTION
NON-FILE INTERFACE

* PARAMETER INTERFACE
LOCAL PARAMETERS

* CONFIGVRATION INTERFACE
ATTACH - PETACH

* POWER-FAIL INTERFACE
POWER-UP, POWER-DOWN

. DATE/TIME INTER FACE
DATE AND TIME INFORMATION

ITABLE.ASe
FILE DRIVER GLOBAL DATA

e NUMBER OF FILE DRIVERS

* ATTACH DEVICE PRIORITY

® TIMER TASK PRIORITY

ITABLE . AB6
FILE DRIVER TABLES

- DO NOT TOUCH!

a=b

I TAGBLE. A86
OPTIONAL FEATURE SELECTION

DUMMY_TIMER

NO_CREATE_FALSE

NO_-TRUNCATE

NO -ALLOCATE

I DEV CF. A8

l $IN£LUDE() I

DEVICE-UNIT INFO.BL

DEVICE INFO. TABLES

UNIT INFO. TABLES

GENERAL DEVICE INFO,

| _END!

T DEVCF. ABG
DEVICE-UNIT INFORMATION BLOCKS

COMPONENTS

DEVICE NAME (vP TO i4- CHARACTERS)

FILE DRIVERS (SUPPORTED)
FUNCTIONS (SUPPORTED)

FLAGS (DISKETTES ONLY, TYPE OF DRIVE)
DEVICE GRANULARITY (RANDOM ACCESS VSUALLY)

Low [HiaH SIZE ~ (DEVICE STORAGE CAPACITY)
DEVICE NUMBER (PER DEVICE (orceNTRO LLER))

UNIT NUMBER (RER VNIT ON A GIYEN DEVICE)

T DEVCF. A86

DEVICE-UNIT INFORMATION BLOCKS

* DEVICE-UNIT NUMBER

* INIT-TO
o FINISH_TO

* QUEQE_TO

o CANCEL.TO

o DEVICE_-INFO

e UNIT_INFO

e UPDATE_TIMEOUT

e NUM_BUFFERS

e PRIORITY

(UNIQUE IN THE SYSTEM)

CINITIALIZE T/o DEVICE DRIVER)
CFINISH TI/o DEVICE DRIVER)

(QUEVE I/o DEVICE DRIVER)
(CANCEL Lo DEVICE DRIVER)
CADDRESS OF DEVICE INFO. BLOCK)
(ADDRESS OF UNIT INFO. BLOCK)
(FREQUENCY OF UPDATE)

(NUMBER OF BUFFERS FOR RAN DOM
ACCESS DEVICES)

(SERVICE TASK PRIORITY)

a-10

DEVICE INFORMATION TABLES
*COMMON OR RANDOM DEVICE TABLE

e LEVEL

o PRIORITY

*» STACK_SIZE

DATA -S12E
NUM_UNITS
DEVICE_INIT
DEVICE - FINISH
DEVICE_START
DEVICE _STOP

DEVICE_ INTERRUPT

(INTERRUPT LEVEL)

CDEVICE INTERRVPT TASK)

CVSER WRITTEN INTERRUPT PROCEDVURE)
(USER PORTION OF DEVICE DATA ORTIECT)
(NVMBER OF UNITS SUPPORTED)

(USER WRITTEN DEVICE INITIALIZATION)

(S " " FINISH)
¢ " " “ START)
C " Y &sTOP)
¢ " “ INTERRVPT)

a -11,

UNIT INFORMATION TABLES
* NORMALLY RANDOM ONLY

RANDOM_ UNIT_INFO

* TRACK_ SIZE (ONE TRACK , @ IF CONTROLLER
. | CAN CROSS TRACK BOUNDERIES)

* MAX-RETRY (NUMBER OF ATTEMPS)

- @

A=A

I DEVCF. A86
GENERAL DEVICE INFORMATION

PEVICE_.TABLES

* TOTAL NUMBER OF D.VU.TB.'s

® NUMBER OF DEVICE UNITS DEFINED

¢ NUMBER OF DEVICES DEFINED

2-13

ASSEMBLING, LINKING AND LOCATING THE BAS\C
L/o SYSTEM

bt MODIFY ITABLE.ABG6 AND IDEVCF.A®Db6
TO YOUR TASTES

®* SET VP SUBMIT FILE TO MATCH YOUR
DEVE LOPEMENT RESOURCES

* SUBMIT :fx:IOS(DATE,LOC_ADPR)

-4

CHAPTER QU\Z
1. T-F T cAN MODIFY THE FILE DRIVERTABLES,
2. WHICH FILE CONTAINS THE DUMMY TIMER?

3. WHAT ARE THE 3. TABLES FOR A RANDOM DRIVER ?
A, 2. <.

4. IN WHICH FILE DO YOU FIND THE ADORESS OF THE
DEVICE START PROCEPVRE?

a-15

CHAPTER QuIZ

(CoNTINVED)

IF T HAD 3 Ls®C 204 CARDS AND 1 LSBC CARD
IN ADDITION TO THE TERMINAL IN A SYSTEM, HOW
MANY DEVILES wOULD I HAVE? _

EACH DISK INTERFACE CARD HAS 2. DRIVES ASSOCIATED
WITH IT. HOw MANY DEVICE-UNIT NUMBERS wouLD
I HAVE?

CHAPTER S

THE BOOTSTRAP LOADER

WHAT 1S IT?

THE BOOTSTRAP LOADER 15 A PROGRAM
WHICH ALLOWS AN RMX-8b SYSTEM TO

BE LOADED INTO MEMORY FROM SOME
PERIPHERAL DEVICE.

3-2

BOOTSTRAP LOADER FEATURES

o AUTOMATIC OR CONTROLLED LOADING
* AUTOMATIC OR USER SELECTABRLE DEVICE

e AUTOMATIC OR USER SELECTABLE FILE NAMES

2-3

DEVICES CURRENTLY SUPPORTE D

LSBC 204 SINGLE DENSITY FLOPPY DISK
LSBC 206 CDC HAWK HARD DisK
LsBC 215 WINCHESTER DISK

LSBX 218 SINGLE DENSITY FLOPPY DlsK‘

(WHEN USED WITH LSBC AIS5)

LSBC 254 BUBBLE MEMORY CONTROLLER

BOOTSTRAP LOADER STRUCTVRE

ROM PERIPHERAL PERIPHERAL
DEVICE DEVICE

FIRST

STAGE

SECOND APPLICATION
LOADS S staqe [LOADS) sveTEm
DEVICE
DRIVER(S)

100 TO 500 BYTES < 6K BYTES
+ DRIVER

o=)

FIRST STAGE OPTIONS
e LOCATION OF FIRST STAGE IN ROM
(ASSIGNED BY USER THROVGH LOLB6)

* LOCATION OF SECOND STAGE IN RAM
CASSIGNED BY USER THROVGH LOC86)

e DEVICE SELECTION METHOD
(ASSIGNED BY USER THROUGH CONFIGURATION)

e FILE SELECTION METHOD
(ASSIGNED BY USER THROUGH CONFIGURATION)

36

BOOTSTRAP LOCATION NOTES

e FIRST STAGE MUST BE AVAILABLE AT RESET
CUSVALLY IN ROM)

* SECOND STAGE MUST NOT OCCVPY MEMORY
"ALREADY OCCUPIED BY THE SYSTEM TO RE
LOADED (CODE AREAS OR INITIALIZED DATA AREAS)

3-7

DEVICE SELECTION

e NONE (ONE DEVICLE ONLY)
o AVTOMATIC SELECTION (HUNT FOR READY DEVICE)

e MANVAL SELECTION (PROMPTUSER FOR DEVICE
THROVGH SYSTEM TERMINAL)

3-8

DEVICE SELECTION NOTES

* NONE

* ONE TRY PER RESET, IF DEVICE 15 NOT
READY:. QuIT.

* AUTOMATIC

* TRY EACH DEVICE INTHE LIST IN ROTATION
UNTIL A READY DEVICE 1S FOUND. I1F NO
DEVICE 15 FOUND REANDY, REPEAT LIST,

DEVICE SELECTION NOTES
(CONTINVE D)

* MANUVAL

* PROMPT USER FOR A DEVICE NAME THROVGH
THE TERMINAL
IF RESPONSE 15 ON THE LIST TRY THAT
DEVICE
IF RESPONSE 1S NOT ON THE LIST BEGIN
AUTOMATIC DEVILE SELECTION FROM
LIST ENTERED AT CONFIQGURATION

3-10

FILE SELECTION NOTES

* NONE
* FILE NAMED /sYSTEM/RMX 86
IS LOADED FROM SELECTED DEVICE
* AVTOMATIC

o SAME FILE 15 LOADED FROM THE FIRSY
AVALABLE DEVICE

¢ MANVUAL

* |F FIRST CHARACTER 15A COLON, TRY TO
PARSE A DEVICE NAME. IF DEVICE NAME
IS IN TABLE TRY (T,

3n

FILE SELECTION NOTES

(CONTINVED)

e MANVAL (conTinvED)

o IF BOOTSTRAP CANNOT PARSE A DEVICE
NAME OR IF NAME PARSED 15 NOT IN THE
TABLE SWITCH TO AUTO DEVICE SELECTION
AND VUSE STRING AS A FILE NAME,

 BLANK LINE \S INTERPRETED AS DEFAULT
FILE NAME /SYSTEM/ RMX 86 WITH AUTO
DEVICE SELECTION,

« £ FILENAME f g [SYSTEM/FILENANE
o :fg: /FILENAME = f . FILENAME

312

DRIVER CONFIQURATION

o SUPPLY ADDRESS PARAMETERS

o ASSEMBLE THE RESULT
EXAMPLE ¢

$ INCLUDE (:FX: BAO4.INC)
% B204 (BAPH, 138,26)

L TN

DEVICE SECTOR F-d
ADDRESS SIZE SECTORS/TRAK

(NOTE: THESE MA(CROS CHANGE FOR EACH DEVICE. SEE
C(HAPTER |l OF THE CONFIQURATION MANVAL)

BOGTSTRAP CONFIGURATION

e SELECT DESIRED BOOTSTRAP FEATURES

e LIST BOOTSTRAP DEVICES

e CONFIGURE EACH DEVICE

* ASSEMBLE, LINK AND LOCATE THE RESULT

3-14

SELECT BOOTSTRAP FEATVRES
« AUTO MACRO
(ENABLES AUTOMATIC DEVICE SELECTION)

e CONSOLE MACLRO |
(ALLOWS RUNTIME FILE SELECTION)

e MANUAL MACRO
(ALLOWS RUN TIME DEVICE SELECTION)

* IF NO MACROS ARE USED, DEVICE AND FILE
SELECTION WILL REVERT TO DEFAULTS WITH A
SINGLE TRY.

y./5

LIST BOOTSTRAP DEVICES

* DEVICE MACRO
* FOR AUTO SELECT DEVICES ARE SCANNED
IN ORDER OF THE CONFIGURATION FILE

¢ MACRO SPECIFIES:
* NAME OF DEVICE
* DEVICE-UNIT NUMBER (SAME AS BIOS)
*DEVICE INITIALIZATION ROVTINE ENTRY POINT
*DEVICE READ ROVUTINE ENTRY POINT

3-16

DRIVER CONFIGVRATION
(USER SUPPLIED DRIVERS)

* YOU (REATE DEVICE § INIT AND DEVICE $READ
ROVTINES.
* ASSEMBLE WITH ENTRY POINTS AS PUBLICS

e LINK TO RESYT OF BOOTSTRAP ROVTINES

(NOTE: ROVTINES MUST BE LARGE MODEL OF
COMPUTATION)

3-17

EXAMPLE BOOTSTRAP CONFIGURATION(S)

¢ NO DEVICE SELECTION

NAME $IMPLE

$ INCLUDE (:fx: BS1.INC) |
9% DEVICE (wFg, @, DEVICE INIT 215, DEVICE READ 215)
% END

3-18

EXAMPLE BOOTSTRAP CONFIGURATION(S)

¢ MANVAL (wITH DEVICE SELECTION)

$ INCLUDE (fx: BS1.INC.)
% CONSOLE

% AUTO

9, MANUAL
% DEVICE (@, @, DEVILE INIT 204, DEVICE READ 204-)

% DEVICE (o@,1,DEVICE INIT 254, DEVICE READ 25%)
% END

319

EXAMPLE BOOTSTRAP CONFIQURATION(S)
(ASSEMBLE, LINK AND LOCATE)
(SIMPLE CASE) |

¢ AFTER BOOTSTRAP CONFIGURATION FILE AND
DEVICE CONFIQURATION FILE(s) ARE PREPARED

SUBMI\T :$x: BSL(DATE, ROM,RAM)

WHERE " DATE = DATE IE O%/2#/8X
ROM = STARTING CODE ADDRESS
FOR STAGE 1.
RAM = STARTING ADDRESS FOR
STAGE 2.

NOTE: MODIFY :fx:BS1.(SD To REFLECT YOUR
ARRANGEMENT BEFORE YOU SUBMIT,

3-20~.

EXAMPLE BOOTSTRAP CONFIGURATION
(ASSEMBLE, LINK AND LOCATE)
(COMPLEX (ASE)

STEP 1. (OMPILE :fx:BCICO.P86 TO GET CONSOLE
ROUTINES FOR DEVICE OR FILE SELECTION

STEP A. ADD Fx: BCICO. OBT TO suBmMIT FILE
| LINK LAST,

STEP 3. SuBMIT :Fx: Bs1(, ,)

3-8/

CHAPTER QUIZ

4. WRAT ARE THE THREE MODES OF LOADING?

A B.__ —_—C.

2. WHAT ARE 1. OP THE DEVICES I CAN BOOT FROM?
A. B

3, HOW DOES THE SECOND STAGE GETON THE DEVICE?

L

& WHAT 1S5 THE FILE NAME FOR THE CONSOLE INTER FACE
FILE®

3-22

CHAPTER 4
THE FILES UTILITY

WHAT 15 IT?

¢ THE FILES VUTILITY I1SA PROGRAM RUNNING

ON AN RMX-86/1SIS SYSTEM WHICH
ALLOWS YOV TO CREATE RMYX-@6 FORMAT

DISKETTES REFORE You MHWAVE A WORRING USER
CREATED SYSTEM,

4-2

FILES VUTILITY FUNCTIONS

*FORMAT AN RMX-86 DISKETTE,

° COPY FILES FROM AN RMX-86 DISKETTE To AN
IS1S FORMAT DISKETTE.

*COPY FILES FROM AN 1%'S FORMAT DISKETTE To
AN RMX-86 FORMAT DISKETTE

*ODELETE FILES ON AN RMX-86 DISKETTE

* CREATE A DIRECTORY FILE ON AN RMX-86 DISKETTE

* DISPLAY THE CONTENTS OF AN RMY-86 DISKETTE
DIRECTORY IN SEVERAL FORMATS

HARDWARE REQUIRED

*INTEL DEVELOPEMENT SYSTEM WITH 4K RAM
ANO AT LEASY ONE DISK DRIVE

(MDS-800, SERIES IT, SERIES TIL, NOS -1)
*LSBC 86/12A WITH AT LEAST 192 K RAM AND
AT LEAST 1 DISK DRIVE

* 457 A INTELLEC To 86/(2A INTERFACE AND
MONITOR

WHERE POES THE FILES VTILITY FIT IN?

STEP 1. DEVELOP VUSER SOFTWARE ON THE INTELLEC
SYSTEM (SERIES IT, SERIESTT, MDS 800)

STEP A. TEST LOAD AND EXECUTE SOFTWARE USING THE
A5+ A INTERFACE

STEP 3. FORMAT A BOOTABLE DISK AND LOAD TESTED SOFTWARE
ONTO IT

STEP 4. PLACE BOOTSTRAP STAGE 1 INTO 86[/IAA PROM.
STEP 5. SET UP (SBC SYSTEM, LOAD DISKETTE FROM STEP 3
INTO A DRIVE AND PRESS RESET,

4-5

FILES UTILITY USAGE

* TO INVOKE THE FILES vTILITY
a., SET UP HARDWARE AND SOFTWARE

b. TYPE
SUBMIT :Fx: FILES (:Fx:)
SBCBLL
G

FILES UTILITY COMMANDS

COMMAND ABBREVIATION
ATTACHDEVKE AD
BREAK BR
(REATEDIR D
PDELETE DE

DETAM oT

FILES UTILITY COMMANDS

(CONT.)

COMMAND

DIR

DOWNCOPY

FORMAT

HELP

VPLOPY

ABBREVIATION

PI

DC

FO

HE

vC

4-8

A TYPICAL FILES UTILITY USAGE SEQUENCLE

-SUBMIT :F1:FILES(:Fl:)
-SBC861

ISIS-II iSBC 86/12 LCADER, V2.0
iSBC 86/12 MONITOR VZ.0

:F1:NUCLUS
:F1:1I0S
.L:F1:EIQS
.L:F1:FILES
:F1:FRCCT

[ou il mal B

.

-:F@:SUBMIT RESTORE :Fl:FILES.CS(:VI:)
-SBC861

IS1IS-I1 iSBC 86/12 LOADER, V2.0

CONTROL-C

.G

iRMX 86 FILES UTILITY V3.0

*FORMAT F6 LAB2 IL=5 NF=50 NAMED

*VOLUME FORMATTED - NAMED FILE OPTION
GRANULARITY = 128

NUMBEROFNODES = 50
INTERLEAVE = 5

4-9

ATYPICAL FILES VUTILITY USAGE SEQUENCE

*AD :F@: = F0

*DIR :FG:
g FILES

*CREATEDIR :F@:SYSTEM
:F£:SYSTEM ,CREATED

*UPCOPY :F1:FIRST.LIB TG :F@:SYSTEM/RMX86

*DIR :F@:
SYSTEM
1 FILES

*DIR :FB:SYSTEM
RMX86
1 FILES
*DETACH :F0:

:F@: DETACHED

*RBRR

4-/0

A TYPICAL FILES UTILITY USAGE SEQUENCE

BREAK AT 18006:186A

.E

9-/

WARNING !!!
TO CHANGE A DISKETTE
1. DETACH
A. CHANGE DISKETTES

3. ATTACH DEVICE (OR FORMAT)

q-12

CHAPTER QUIZ

. TRUE-FALSE THE FILES VUTILITY ALLOWS YOU TO
DISPLAY THE DIRECTORY OF AN 151
DISKETTE,

. NAME THREE DEVICES THAT CAN BE FORMATTED B8Y THE
FILES UTILITY.
- PO b. C.

. WHY CANT I REMOVE ADISKETTE AT ANY TIME WHILE
I'M USING THE FILES UTILITY ?

4-13

WRITING DEVICE DRIVERS
FOR THE IRMX 86 T/o SYSTEM

5-1

TOPILS TO BE DISCUSSED

INTRODUCTION AND CONCEPTS
DEVICE DRIVER INTERFACES
COMMON DEVICE DRIVERS
RANDOM ACCESS DEVICE DRIVERS
CUSTOM DEVICE DRIVERS

DEVICE DRIVER CONFIGURATION

5-%

REFERENCE MANVALS REQUIRED:

e IRMX 86 BASIC I/o SYSTEM REFERENCE MANUAL

« IRMX 86 SYSTEM PROGRAMMERS REFERENCE MANUAL

* IRMX 86 CONFIGURATION QUIDE

e GVUIDE TO WRITING DEVICE DRIVERS FOR THE
IRMX 86 T/o SYSTEM

SYSTEM (ONSTRUCTION

e THE I/0 SYSTEM IS IMPLEMENTED AS A SET OF FILE
DRIVERS AND ASET OF DEVICE DRIVERS

¢ YOUR APPLICATION COMMUNICATES WITH FILE DRIVERS

1. PHYSICAL
USARTS, PRINTERS

2. NAMED
DISK, BUBBLE MEMORY.....

3. STREAM

A PIPELINE BETWEEN TWO TASKS USING
I/o SYSTEM CALLS

5-4

SYSTEM CONSTRUCTION

e FILE DRIVERS COMMVUNICATE WITH DEVICE DRIVERS

e DEVICE DRIVERS COMMUNICATE WITHDEVICES

APPLICATION TASKS
FILE INDEPENDENT INTERFACE
FILE DRIVERS
DEVICE INDEPENDENT INTERFACE
| DEVICE DRIVERS
, DEVICES

INTERFALE

THE INTERFACE BETWEEN YOUR APPLICATION AND
FILE DRIVERS AND BETWEEN FILE DRIVERS AND DEVICE
DRIVERS 15 STANDARD

THIS ALLOWS FOR®

- DEVICE INDEPEND ENCE

~ HARDWARE CONF |G URATION CHANGES
WITHOUT EXTENSIVE SOFTWARE
MODIFICATIONS

— A GREATER RANGE OF DEVICES CAN
BE SUPPORTED

5-6

I/o DEVICE AND DEVICE DRIVERS

EACH I/0 DEVICE CONSISTS OF A CONTROLLER AND
ONE OR MORE UNITS

EACH CONTROLLER 15 ASSIGNED A DEVICE NUMBER

EACH UNIT 1S ASSIGNED A UNIT NUMBER FOR THAT
DEVICE AND A DEVICE UNIT NUMBER FOR ALL DEVICES
IN THE 1I/0 SYSTEM

5-7

SCHEMATIC OF SOFTWARE AT INITIALIZATION TIME

A%PL\%{\TIP?RI%

OFTW

PHYSICAL FILE NAMED FILE STREAM FILE
: DRWVER DRIVER DRIVER

CONFIGURATION (INTERFACE

DEVICE DRIVER DEVICE DRIVER | DEVILE DRIVER

DEVI(CE DEVICE DEVICE DEVILE
CONTROLLER CONTROLLER | CONTROLLER CONTROLLER

DEVICE DEVICE o. | o.lp | o DEVICE
UNIT UNIT UNIT | UNIT] UNITJUNA UNIT

5-8

Yo REQUESTS

TO THE DEVICE DRIVER AREQUEST 15SA REQUEST FROM THE
T/o SYSTEM FOR THE DEVICE To PERFORM A CERTAIN OPERATION

* READ

* WRITE

* SEEK

* SPECIAL

* ATTACH DEVICE
* DETACH DEVICE
° QPEN

* (CLOSE

THESE REQUESTS ARE PASSED TO THE DEVICE DRIVER IN
A SEGQMENT TYPE ORJECT

COMPONENTS OF A DEVILE DRIVER

e AT ITS HIGHEST LEVEL ADEVICE OPERATOR CONSISTS
OF FOUR PROCEDURES

e INITIALIZE T/O
* FINISH T/o

* QUEVE I

* CANCEL T/o

FOR EVERY I/O REQUEST THE /o SYSTEM MAY CALL ONE OR
MORE OF THESE PROCEDURES

5-10

INITIAL T/o PROCEDVURE

* THE Ifo SYSTEM CALLS THIS PROCEDURE WHENEVER
A RQ4% PHYSICAL$ ATTACH$DEVICE SYSTEM CALL 15 MADE
AND THERE ARE CURRENTLY NO OTHER UN ITS ATTACHED
TO THIS DEVICE

5-11

FINISH T/o

* THE Yo SYSTEM CALLS THIS PROCEDVRE WHENEVER
A RQIPHYSICAL$DETACH$DEVICE SYSTEM CALL 1S MADE
AND THERE ARE CURRENTLY NO OTHER UNITS ATTACHED
TO THIS DEVICE

S-1K

QUEUE I/o

°* THIS PROCEDURE 15 CALLED BY THE I/o SYSTEM FOR
ALL VSER TI/O0 REQUESTS. THIS PROCEDPURE MVUST
PLACE THE REQUEST ON THE REQUESY QUEUE SO
THAT (T MAY BE PROCCESSED WHEN APPROPRIATE,

IF DEVICE 15 NOT BUSY THIS PROCEDURE MUST ALSO
START THE I/0 FUNCTION

S5-1%

CANCEL T/o

* THIS PROCEPVRE 1S CALLED BY THE I/o SYSTEM WHEN:

* A RQAPHYSICAL$DETACH$DEVICE CALL IS
MADE WITH THE HARD DETACH OPTION SPECIFIED

* IFTHE JOB CONTAINING THE TASK THAT MADE
THE L/o REQUEST SELECTED

5-14

INTERRUPT HANDLERS

* AFTER A DEVICE HAS FINISHED PROCESSING AN
I/o REQUEST IT SENPS AN INTERRUPTTO THE
PROCESSOR.

AT THIS TIME THE HANDLER MAY SERVICE THE
INTERRUPT OR SIGNAL AN INTERRUPT TAGK THAT
WILL SERVICE THE INTERRUPT

REMEMBER THAT AN INTERRUPT HANDLER I1SLIMITED
TO THE TYPE OF RMX CALLS THAT IT MAY MAKE

5-15

INTERRUPT TASKS

INTERRUPT TASKS FEED THE RESVLTS OF THE
T/o REQUEST RACK TO THE T/o SYSTEM IF THE
REQUEST 1S FINISHED.

IF THE REQUEST IS NOT FINISHED THIS TASK
WILL INITIATE THE NEXT STAGE OF THE REQUEST,

IF THERE ARE ADDITIONAL REQUESTS ON THE

QUEVE THEN THIS TASK MUST START THE
NEXT REQUEST,

%-16

DEVICE DRIWER TYPES

e COMMON DEVICE DRIVERS
EASIEST TO IMPLEMENT

e RANDOM ACCESS DEVICE DRIVERS
MUCH THE SAME AS COMMON DEVICES

e CUSTOM DEVICE DRIVERS
MORE COMPLEX THAN COMMON OR RANDOM
NEEDED FOR MORE SOPHISTICATED DEVICES

5-1%

COMMON DPEVICE REQUIREMENTS

® SIMPLE DEVICES — PRINTERS, USARTS

e DATA EITHER READOR WRITTEN TO THE DEVICE
DOES NOT NEED TO BE BROKEN VP INTO
SPECIFIC BLOCK SIZES

* A FIRST IN/FIRST OUT QUEUE FOR THE
 REQVESTS 15 SUFFICIENT

® ONLY ONE INTERRVPT LEVEL IS NEEDED FOR THE =
DEVICE |

5-13

RANDOM ACCESS DEVICE DRIVER REQVIREMENTS

DEVICES SUCH AS DISKS AND BpvBBLE MEMORY

THE DEVICE MUST SUPPORT RANDOM ACCESS SEEK

THE T/o REQUEST MUST BE BROKEN LP INTO
SPECIFIC BLOCK LENGTHS
(TRACK AND SECTOR, BUBBLE PAGE)

A FIFO QUEVE IS5 SUFFICIENT

ONLY ONE INTERRUPT LEVEL 15 NEEDED FOR THE DEVICE

5-19

CUSTOM DEVICE DRIVER REQUIREMENTS

IF THE OEVICE DOES NOT FIT INTO THE CAT -GORY
OF EITHER COMMON OR RANDOM ACCESS THEN YOV
MUST WRITE A CUSTOM DEVICE DRIVER

* ANY DEVICE THAT REQUIRES PRIORITY QUEVES

e ANY DEVICE THAT REQUIRES MORE THAN ONE INTERRUPT
~ LEVEL

e ANY DEVICE THAT REQUIRES THE INTERRUPT HANDLER
TO SERVICE MORE THAN ONE INTERRUPT REFORE
SIGNALLUNG THE INTERRVUPT TASK

5-20

DEVICE DRIVER QUIZ- 1

1 WHAT ARE THE THREE TYPES OF FILE DRIVERS?
2. APPLICATION TASKS CALL FILE DRIVERS -(TRVE - FALSE)

3. WHAT IS THE DIFFERENCE BETWEEN A DEVICE AND
A UNIT?

4.. WHAT OBJECT TYPE 15 AN I/0 REQUEST?

S. WHAT ARE THE COMPONENTS OF THE DEVICE DRIVER?
6. WHEN 1S THE INITIALIZE I/O PROCEDVRE CALLED?
7

WHAT ARE THE DIFFERENCES BETWEEN A COMMON
AND A CVUSTOM DEVICE DRIVER?

5-A1

DEVICE DRIVER INTERFACES

5-a%

o ALL DEVICEDRIVER INTERFACES ARE IN THE FORM
OF DATA STRUCTURES

e THERE ARE TWO T/0 SYSTEM INTEFACES

DEVICE-UNIT INFORMATION BLOCKS - DVIBS
I/o REQUEST/RESULT SEGMENTS - IORS

e DEVICE INTERFACES DEPEND ON THE DRIVER TYPE
FOR BOTH COMMON AND RANOOM ACCESS DEVICES
THE COMMON DEVICE INFORMATION BLOCK 15 USED
OTHER DEVICE INTERFACE STRULTURES ARE USER
DEFINED |

5-13%

DEVICE UNIT INFORMATION - DUIB
THIS STRUCTURE HAS THE FOLLOWING FORMAT S
DECLARE DEVHUNIT$INFOEBLOCK STRUCTURE (

“NAME (14)
- FILE $DRIVERS
'FUNCTS
~FLAGS
'DEV'$ GRAN
LOWSDEVS S1ZE
HIGHSDEVS SIZE
~ “DEVICE
CouniT
DEV SUNIT

BYTE, NAME USED IN ATTACHDEVICE
WORD, WHAT FILE DRIVERS CAN BE USED
BYTE, WHAT FUNCTIONS ARE SUPPORTED
BYTE, FOR DENSITY AND SIDE SPEC ON DISKS
WORD, FOR DIsks MIN L/o SIZE

WORD, THE SIZE OF THE DEVICE IN BYTES
WORD,

BYTE, THE T/o SYSTEM DEVICE NUMBER
BYTE, UNIT NUMBER FOR THIS DEVICE
WORD, THE DEVICE.UNIT NUMBER

5-24

DEVl(.E UNIT INFORMATION - DVIB
(CONTINVED)

INIT$ IO

FINISH $I0
QUEVE 510
CANCELSIO
DEVICES INFO4P
UNITSINFOSP
UPDATESTIMESOUT
'NUM& BUFFERS

PRIORITY

WORD, PROCEDURE ADDRESSES
WORD,

WORD,

WORD,

POINTER, TO DEVICE INFO

POINTER, TOUNIT INFO

WORD, NVUMBER OF SYS TIME UNITS
WORD, NUMBUFFERS FOR PAD DEVICE
BYTE, PRI FOR T/O SERVICE TASK

5-15

USING DVIBS

e THE I/o SYSTEM USES THE DVIB TO INVOKE THE DEVICE
DRIVER PROCEDVRES WHENEVER AN I/O REQUEST 1$ MADE.

¢ WHEN AN ATTA(H DEVILE CALL 'S MADE THE I/O SYSTEM
WILL SCAN THE DVIB TABLES FOR ANAME MATCH.

EXAMPLE -

CALL RQ$ASPHYSICALS ATTACHSDEVICE (@(6, 'STREAM'),
A, RMBX, @ sTaTUS),

THERE MUST BE ADUIB FOR THE DEVICE NAME 'STREAM'
AND 1T MUST HAVE STREAM FILE DRIVER CAPABILITY

5-A6

DEVICE DRIVER INTERFACES

ATTACHING DEVICES

NAME = UNIT A
PEVAGRAN = 128

DEVICE 21
UNIT 320
CEVLUNIT =

NAME = UNITAL
DEVAGRAN 2512

PEVICE = 1
UN\T 2 O
ODEVAUNIT 2 6

DVUIBS FOF
DEVICE UNIT 6

CALL RQSALPHYSICALSATTACHS DEVICE (UNITA,...)

NAME = UNITB
DEVSGRAN = 1.8

DEVICE =
uNIT =
DEVSVNIT =

1
1
?

I

NAME = UNITB1L
DEVSGRAN =512

SRUE 2%
=
DEVIUNIT = 9

DLIRS FOR
DEVICE UNIT ¥

CALL RQSPHYSICALSATTACHSDEVICE (UNITR, ...)

NAME = UNITS
PEVAGRAN = e

DEVICE
vt T
DEV$VNIT

Mg

1
2
3

CALL RASA&PHYSICALSATTACHSDEVICE (UNITCY,...)

NAME =UNITC1
DEVSGRAN 2512,

DEVICE =1
UNIT = 2
DEVEVNIT =8

DVIRS FOR
DEVICE UNIT &

5-2%

DUPLICATION DEVICES

e YOU MAY DUPLICATE DEVICE AND UNIT NUMBERS (N
SEPARATE DVIBS IN ORDER TO HAVE DIFFERENT
CHARACTERISTICS FOR THE SAME DEVICE

e FOR EXAMPLE IFYOU HAVE ADISK DRIVE THAT CANHAVE
DIFFERENT SECTOR SIZES AND YOU MIGHT WANT TO HAVE
ONE INSTANCE FOR 1A® BYTE SECTORS AND ONE FOR

A56 BYTES |
TO DO THIS YOU DUPLICATE THE DUIB WITH THE EXCEPTION

OF THE NAME AND DEV$ GRAN FIELD

5-2%

THE /0 REQEST/RESVLT STRUCTURE HAS THE FOLLOWING FORMAT™

DECLARE JORS STRUCTVRE (

STATUS
UNITSSTATUS
ACTUAL
ACTUALSFILL
DEVICE

UNIT

FUNCT

SUB $ FUNCT

LOW3$DEVSLOC
HIGHSDEVSLOC

WORD, CONDITION CODE FOR THE OPERATION

WORD, IF sTATUS 15 E$10 THEN UNIT STATUS SHOULD
BE SET

WORD, THE ACTUAL AMOUNT OF DATA TRANSFERED

WORD, RESERVED

WORD, THE DEVILE NUMBER (SAME AS DVIR)

BYTE, THE UNIT NUMBER ($AME AS DVIB)

BYTE, THE FUNCTION To BE PERFORMED

- WORD, VUSEP FOR SPECIAL CALLS

WORD, THE DEVICE LOCATION IN BYTES, FOR RANDOM
WORD, ACCESS DEVICES THIS IS THE SECTOR AND TRACK

5-29

DECLARE 10RS STRUCTURE (
(CONTINVED)

BUFF 4P POINTER, WHERE THEDATA IS TO BE READ FROM .
OR WRITTEN TO

COUNT WORD, HOw MUCH, IF RANDOM ACCESS THIS
WiLL ALWAYS BE IN DEVICE GRAN.
MULTIPLES

COUNT SFILL WO RD, RESERVE

AUX5P POINTER, USED FOR SPECIAL CALLS

LINK$FOR POINTER, LINKED LIST FOR I/0 REGUEST QUEUVES
LINK$ BACK POINTER,

RESP3MBX WORD, THE RESPONSE MAILBOX FOR THIS REQUEST
DONE BYTE, I/o REQUEST STATUS

FILL BYTE, RESERVE

CANCELSTD WORD); THE REQUEST L.D. FOR THE REQUEST

5-30

COMMON DEVICE INFORMATION INTERFACE

¢ THIS STRUCTURE ISUSED FOR ALL COMMON AND RANDOM
ACCESS DEYIE DRIVERS

DECLARE COMMON $DEVAINFO STRUCTURE (

LEVEL WORD, THE INTERRUPT LEVEL USED FOR TH1S DEVICE
PRIORITY BYTE, THE INITIAL PRIORITY OF THE INTERRUPT TASK
STACKSSIZE WORD, THE ADDITIONAL AMOUNT OF STACK THAT
YOUR P

DATASSIZE WORD, THE AMOUNT OF DATA SPACE THAT YOUR

- DEVICE DRIVER NEEDS, (NOT STATIC DATA)
NUM 2 UNITS WORD, HOW MANY UNITS ARE WITH THIS DEVICE
DEVICESINIT WORD, YOUR INIT PROCEDURE

DEVICE$FINISH WORD, YOUR FINISH PROCEDURE

DEVICES START WORD, YOUR START PROCE DURE
DEVICESSTOP WORD, YOUR STOP PROCEDVRE
DEVICE S INTERRUPY WORD); YoUR INTERRUPT PROCEDURE

YOu MAY APPEND To THIS STRUCTURE ANY INFORMATION THAT YOUR DEVICE

NEEDS, SUCH AS I/0 ADDRESSES. . : 5-31

RANDOM ACCESS DEVICE UNIT INFORMATION BLOCKS

* FOR RANDOM ACCESS DEVICE YOU MUST HAVE AUNIT
INFORMATION BLOCK

DECLARE
RADSUNITS INFOSBLOCK sTRUCTURE (
TRACKS SIZE WORD, THE SIZE INBYTES OF
A TRACK
MAX $ RETRY WORD, THE MAX NUMBER OF RETRIES
EQ(STEEP'ERFORMED BY THE I/0
RESERVED WORD).

YOU MAY APPEND TO THIS STRUCTURE AND INFORMATION BY
THE DEVICE

S-3XN

WRITING DEVICE DRIVER

5-33%

GENERAL RULES

IF PL/M 86 1S USED TO WRITE DEVICE DRIVERS THEN
THE COMPACT MODEL OF COMPILATION MUST BE USED.

IF ASM36 15 USED THEN IT MUST BE WRITTEN To
INTERFACE TO COMPACT PL/M 86 PROCEDURES

THE I/o SYSTEM CODE CAN NEVER EXCEED 64K OF
CODE

5-34

WRITING COMMON AND RANOOM
ACCESS DEVILE DRIVERS

5-3S

THERE ARECERTAIN PARAMETERS PASSED TO EACH DEVICE

DRIVER PROCEDURE

 DUIPSP - A POINTER TO THE DUIB STRUCTURE FOR THE
DEVICE

e DADATA4P~ A POINTER TO THE DATA OBTECT THAT WAS

DECLARED IN THE COMMON DEVICE INFORMATION
BLOCK

e TORSSP - APOINTER To THE Ifo REQUEST SEGMENT

e STATUSYP — A POINTER TO THE I/o SYSTEM STATUS WORD

5-3c

1/0 SYSTEM SUPPLIED PROCEDURES

* INIT$TO

* FINISHSTO
e QUEUESIO
¢ CANCELSTO

USER SUPPLIED PROCEDVURE

¢

A DEVICE
A DEVICE
A DEVICE
A DEVICE

A DEVICE

INITIALIZATION PROCEDURE
FINISH PROCEDVRE
START PROCEDURE
STOP PROCEDVRE

INTERRUPT PROCESSING PROCEDURE

S-3%

THE ADDRESSES OF YOUR DEVICE DRIVER
PROCEDURE MUST BE PLACED IN THE COMMON
DEVICE INFORMATION BLOCK FOR THE PEVICE

5-3%

DEVICE INITIALIZATION PROCEDURE

THE INIT4IO PROCEDVRE CALL THIS PROCEDVRE TO
INITIALIZE. THE DEVICE

THE FORM OF THE CALL 15:
CALL DEVICEAINIT(DVIBSP, D4P, STATUS 4P),

YOU MVUST INITIALIZE YOUR DEVICE AND ANYVARIABLES
AND SET THE STATUS WORD TO INDICATE THE SUCCESS
OR FAILURE OF THIS PROCEDVRE

IF YOUR DEVICE DOES NOT NEED ANY INITIALIZATION THEN

YOU MAY USE THE DEFAULTSINIT PROCEDVRE SUPPLIED
BY THE I/0 SYSTEM

5-39

DEVICE FINISH PROCEDURE

THE FINISHSIO PROCEDURE CALLS THIS PROCEDVRE
AFTE E

QUEST HAS BEEN PROCESSED

THE FORM OF THE CALL S°
CALL DEVICEFINISH (DUIBSP, DADATASP);

YOU MUST DO ANY FINAL PROCESSING FOR YOUR DEVICE
WHEN THIS PROCEDVRE 1S CALLED

IF YOUR DEVICE DOES NOT NEED ANY FINAL PROCESSING
THEN YOU MAY USE THE DEFAVLTSFINISH PROCEDVRE
SUPPLIED BY THE T/o SYSTEM

5-40

DEVICE START PROCEDURE

BOTH QUEVESIO AND THE INTERRUPT TASK CALL THIS
PROCEDVRE IN ORDER TO START AN I/o FUNCTION

QUVEVE S$TO CALLS THIS PROCEDURE WHEN A REQUEST
IS MADE AND THERE ARE NO REQUESTS ON THE QUEVE

THE INTERRUPT TASKCALLS THIS PROCEDURE WHEN AN
I/0 REQUEST IS COMPLETED AND THERE ARE ADDITIONAL

REQUESTS IN THE QUEVE

THE FORM OF THE cALL IS°

CALL DEVICESSTART(IORSSPDUIBS,
DS DATASP),

5-41

DEVICE START PROCEDURE REQUIREMENTS

START THE DEVICE PROCESSING THE REQUEST
e RECOGNIZE INVALID REQVESTS

* IF DATA TRANSFERS OCCUR THEN UPDATE THE IORS.
ACTVAL FIELD .

* IF AN ERROR OCCURS UPDATE THE 10RS, STATUS AND
IORS. UNITS$STATUS FIELDS

¢ |IF THE REQUEST 15 COMPLETE SET THE I0RS.DONE
FIELD 7O TRVE

5-4%

DEVICE $TOP PROCEDURE

THIS PROCEDVRE IS CALLED TO STOP THE I/O DEVICE
FROM PERFORMING THE CURRENT I/0 FUNCTION

THE FORM OF THE CALL (S:

CALLDEVICESSTOP (TORS 5P, DUIRSP, DI DATAS P)}

IF YOUR DEVICE QUARANTEES THAT ALL I/O REQVESTS wiLL
FINISH WITHIN A REASONABLE AMOUNT OF TIME THEN YOU
MAY USE THE DEFAULT$STOP PROCEDVRE

5-43%

DEVICE INTERRUPT PROCEDURE

THE DEVICE INTERRVUPT TASK CALL THIS PROCEDURE WHEN
AN INTERRUPT HAs BEEN GENERATED BY THE DEVICE

THE FORM OF THE CALL 1S} |
CALL DEVICES INTERRUPT(IORSSP, DUIBSP, DSDATASP),

YOUR INTERRUPT PROCEDURE MUST DETERMINE IF THE
REQUEST 15 FINISHED AND SET THE IORS.DONE FIELD
TRVE IF (T IS,

IF ITI1S NOT COMPLETE YOU MVUST INITIATE THE NEXT STEP
IN THE PROCEDURE

5-44

DEVICE INTERRUPT PROCEDVRE
EXAMPLE -

1. YOUR APPLICATION TASK MADE A RQSASREAD CALLTO A
DISK.

A. YOUR START PROCEDVRE INITIATED A SEEK REQUEST
FOR ADISK DRIVE ToO POSITION THE HEAD OVER THE
PROPER TRACK.

3. THE DEVICE GENERATED AN INTERRVPT TO SIGNAL THE
COMPLETION OF THE SEEK FUNCTION.

4. THE INTERRUPT PROCEDURE STARTED THE READ FUNCTION
ON THE DISK.

5. THE DISK GENERATED AN INTERRUPT WHEN THE DATA TRANSFER
WAS COMPLETE.

6. THE INTERRUPT PROCEPVRE SET THE TORS, ACTUAL FIELD AND
~ THE TIORS.DONE FIELD TO INDICATE THE REQUEST WAS COMPLETE

g-45%

COMMON AND RANDOM ACLESS DEVICE DRIVER
QuUIZ

1. THE MINIMUN NUMBER OF PROCEDURES THAT YOU MUST
WRITE 157

2, HOW DOES THE Ifo SYSTEM KNOW WHEN THE REQUEST
1S COMPLETE?

3. HOW DOES THE DEVICE DRIVER INFORM THE I/O SYSTEM
OF THE SUCCESS OR FAILURE OF AREQVEST.

4, HOW DOES THE T/O SYSTEM KNOW WHAT DEVICE DRIVER
PROCEDVRES TO CALL?

5. HOW DOES ADEVICE DRIVER KNOW WHAT THE T/o PORT
ADDRESSES ARE FOR ITS DEVICE?

S-46

WRITING CUSTOM DEVICE DRI\VERS

5-47%

CUSTOM DEVICE DRIVER PROCEDURES

e INITSIO = DEVICE INITIALIZATION PROCEDURE

o FlNlSH'éIO -« DEVICE FINISH PROCEDURE

QUEVESIO = DEVICE QUEVUE I/o REQUEST PROCEDURE

CANCELSIO - DEVICE CANCEL Tj/o PROCE DURE

YOU MUST WRITE THESE PROCEDVURES AND AN INTURRUPT
TASK AND HANDLER IF NEEDED

5-49%

INITSIO PROCEDVURE
THIS 1SCALLED BY THE I/0 SYSTEM WHEN THE FIRST ATTACH

DEVICE CALL 15 MADE,

THE FORMOF THIS CALL IS
CALL INITSTO(DUIBS P, DSDATASP, STATUSSP);
DUIB4P = APOINTER TO THE DUIB FOR THE DEVICE To BE INITIALIZED

DLDATALP — A POINTER TO THE WORD WHERE YOU MUST STORE THE
TOKEN FOR A SEGMENT OBTECT 1F NEEDED BY YOUR DEVICE.

THIS SEGMENT MAY CONTAIN PATA SUCH AS A REGION TOKEN
FOR THE QUEVE, APOINTER To THE FIRST IORS ON THE
QUEVUE AND A TOKEN FOR AN INTERRVUPT TASK (F NEEDED.

STATUSSP — APOINTER TO AWORD WHERE YOV MUST STORE THE RESULTS
Ot THIS CALL

NOTE. TIF NQ DATA ORBRJECT 1S NEEDED YQU MyYsST RETURN ZERO AS A TOKEN.

5-49

A POSSIBLE FLOW FOR THIS PROCEDVRE
MIGHT BE !

’—L
®

CREATE ASEGMENT FOR ADATA OBJECT

>

CREATE A REGION FOR ACCESS TO A QUEVE

W

CREATE AN INTERRUPT TASK FOR THE DEVICE
4+ SET THE QUEUE To EMPTY

5« INITIALIZE THE DEVICE HARDWARE AND ANY VARIABLES
NEEDED

IF ALL WENT WELL THEN SET STATUS TO ESOK

o

5-50

FINISH I/0 PROCEPVRE

THE I/O SYSTEM CALLS THIS PROCEDURE AFTER THE LAST DETA(CH
DEVICE CALL 15 MADE ON THIS DEVICE

THE FORM OF THE CALL I1S.

CALL FINISHSTO(DUIBSP, DSDATAST);
DUIBSP — APOINTER TO THE DUIB FOR THIS DEVICE UNAT
DLDATALT — A TOKEN FOR THE DATA OBJIECT SEGMENT

THE FINISH T/O PROCEDURE MUST DO ANY FINAL PROCESSING
ON THE DEVICE IF NEEDED AND DELETE ANY OBJECT THE
INIT$IO PROCEDVURE CREATED

(SEGMENT, REGION, RESET INTERRUPT TASK,.,.)

5-51

QUEVE $T0 PROCEDVRE
THIS PROCEDVRE 1S CALLED FOR EVERY REQUEST To THE DEVICE
DRIVER.
THE FORM OF THE CALL IS
CALL QVEUVE 310(ToRS 4T, DUIBSP,DADATAS),
TORS4T - ATOKEN FOR THE I/o REQUEST SEGMENT

THIS PROCEDVURE MUST PO THE FOLLOWING *

1. IF THE DEVICE IS BUSY PLACE THE REQUEST ON THE QUEVE

A. IF THE DEVICE 15 NOT BUSY THEN START THE T/O FUNCTION

3. IF THE REQVEST CAN BE COMPLETED WITHOUT PLACING
 THE IoRS ON THE QUEUVUE THEN SET THE TORS.DONE
FIELD To TRUE

NOTE. WHENEVER ACCESSING THE QUEVE YOU MUST FIRST GAIN
ACCESS ToO IT BY RECIEVING CONTROL OF THE REGION
THAT PROTECTS |\ T.

5-52,

CANCELS IO

THIS PROCEDURE IS CALLED BY THE T/O SYSTEM WHENEVER
A HARD DETACH DEVICE SYSTEM CALL IS MAPE ORA JOB 15
DELETED THAT STILL HAS- REQUESTS PENDING.

THE FORM OF THE CALLIS:

CALL CANCESTIO(CANCELSID, DUIBSP, DSDATALT);

CANCELSID - THE 1D FOR REQUESTS THAT ARE To BE
REMOVED FROM THE QUEUE.

THIS PROCEDVRE MUST REMOVE ANY REQUVEST FROM THE
QUVEVE THAT CONTAIN THE CANCEL ID VALVE

5-53

IMPLEMENTING A I/O REQUEST QUEVE

WHEN WRITING CUSTOM DEVICE DRIVERS YOU MUST HAVE
SOMESORT OF QUEVE FOR INCOMING REQUESTS.

THE TORS SEGMENT CONTAINS TWO FIELDS THAT ALLOW
FOR A LINKED LIST

TORS.LINKSFOR, TORS.LINKSBACK

THESE TWO POINTER VALVES CAN BE USED TO IMPLEMENT
A QUVEVE

IF IN YOUR DATAOBTJTECT YOU HAVE A VALVE CALLED FIRST$IORS
THAT 1S SET TO ZERO TO INDICATE AN EMPTY QUEVE.

WHEN A REQUEST NEEDS To BRE QUEVED YOU CAN SET THIS
FIELD To POINT TO THE FIRST IORS AND THE LINK FIELDS
OF THE IORS To POINT BOTH FORWARD AND BACK IN THE
QUEUVE.

5-54

REQUEST QUEVE

FIRST TORS
ON QUEVE

LINKS FOR

— LINKSBACK

SECOND IORS

ON QVUEVE

THIRD TORS

ON QUEVE

LINKS FOR

LINKS FOR /

LINKS BACK

LINK $ BACK

LAST IORS
ON QUEVE

LINKS FOR

LINKS BACK

5-55

INTERRUPT TASKS

INTERRUPT TASKS ARE USED TO RESPOND ToO THE INTERRVLPT
GENERATED BY THE DEVICE.

THE INTERRUPT TASK MUST DO THE FOLLOWING:
1. SERVICE THE INTERRVUPT

' 2. DETERMINE IF THE REQUEST 15 COMPLETE

3. IF COMPLETE, (GA\N AWESS TO THE QUEVLE

REMOVE THE IORS FROM THE QUEVE.
SET THE IORS.DONE FIELD TO TRVE.

SEND THE IORS To THE MAILBOX IN TOoRS.RMBX.

IF THE QUEUVUE IS NOT EMPTY THEN START THE NEXT
REQUEST.

4. |IF THE REQUEST ISNOT COMPLETE THEN INITIATE
THE NEXT PROCESS.

5-56

QUIZ #3 - CUSTOM DEVICE DRIVERS

1l WHAT IS THE PURPOSE OF THE DATAORIECT?
. WHEN IS THE CANCEL I/O PROCEDURE CALLED?

3. 15 1T POSSIBLE To USE DEFAVULT I/O PROCEDURES
WITH CUSTOM DEVICE DRIVER?

4. WRITE APROCEDURE TO PLACE REQUESTS ON
THE QUEVE AND ONE TO REMOVE A REQUEST FROM
THE QUEUE.

(ASSUME THAT YOU ALREADY HAVE ACCESS TO THE
QUEVE)

5-5%

LINKING DEVICE DRIVERS TO THE I/0 SYSTEM

AFTER YOU HAVE WRITTEN YOUR DEVICE DRIVER CODE YOu
MUST LINK IT TO THE I/o SYSTEM °

THE FOLLOWING COMMAND CAN BE USED TO ACCOMPLISH THISY

LINK 86
:FO: I0S. LIB(ISTART), &

:F1.ITABLE. OBJ, &

:F1: IDEVCF .0B7, &

:F1. DRIVER, OB3J, &

:FO: IOOPT 1.LIB, &

:FO: I0S. LIB, &

:FO: RPIFC. LIB. &

TO . F1.IOS.LNK (LINKER OPTIONS)

5-5&

CONFlavnin - INTO THE T/o SYSTEM

To CONFIGURE YOUR DEVICE DRIVERS INTO THE TI/o
S5YSTEM YOU MUST ADD THE NECCESSARY DEVICE
DRIVER INTERFACE STRUCTURES TO THE FILE IDEV(F
AB6

THIS CONS|ISTS OF ADDING DVIBS FOR EACH DEVICE

UNIT AND THE REQUIRED COMMON AND VNIT INFO.
BLOCKS AS NEEDED.

5-59

CHAPTER 'F

EXTENDED INPUT/OUTPUT SYSTEM
(e109)

REVIEW QuIZ

NAME 3 FILE TYPES

7-2

i I/o USER

* USER OBJECT

e DEVICE

TERMINOLOGY

e ACCESS RIGHTS

e FILE CONNECTION

e DEVICE CONNECTION

* FILE

BASIC T/o SYSTEM
INTERACTION SEQUENCE

I. OBTAIN VSER TOKEN VUSING A STRUCTURE OF VSER
1D AND ALIASES

USERTKN = RQCREATEUSER (@ STRUCT, @ STATUS),
/% TEST STATUS %/

A. OBTAIN DEVICE CONNECTION TOKEN USING THE
PHYSILAL DEVICE NAME

CALL RQAPHYSICAL ATTACH PEVICE (PEV NAME, FILE
DRIVER, RESPMBX, @ STATUS),

/% TEST STATUS TO CHECK SYNCHONOUS PORTION OF
CALL*/

TKN =RQRECIEVE MESSAGE (MBX, TIME, , @ STATUS);

BASIL Yo SYSTEM
INTERACTION SEQVENCE

A. (coNTINVED)

/% CHECK TOKEN RECIEVED. IF TYPE =|0lH YOV
HAVE A CONNECTION. IF TYPE =6, YOU HAVE
A PROBLEM */

3. OBTAIN FILE CONNECTION VSING THE DEVICE CONNECTION
TOKEN, USER TOKEN, AND A FILE NAME SUBPATH
CALL RQA ATTACH FILE (USER, DEVTKN, SUBPATH, ,@ STATUS);
/% TEST STATUS TO CHECK SYNCHRONOVS PORTION o F CALL%/
TKN= RQ REUEVE MESSAGE (MBX1,TIME, ,@ STATUS);

/% CHECK TOKEN TYPE. IF TYPE IOl H YOU HAVE A FILE
CONNECTION. IF TYPE =0 YOU HAVE A PROBLEM %/

BASIC ‘Yo SNYSTEM
INTERACTION SEQUENCE

4. OPEN FILE FOR VSAGE Usmc THE FILE CONNECTION
AND THE MODE AND SHARING ME THOD
CALL RQA OPEN(CONN, MODE, SHARING, RESPMBX, @ STATUS);
/% TEST STATUS TO CHECK SYNCHRONOUS PORTION OF CALL ¥/

MSGTKN = RQ RECIEVE MESSAGE (RESPMBX, TIME, , @
STATUS);

/% TEST STATUS FIELD OF TORS RETURNED TO CHECK
ASYNCHONOUS PORTION OF CALL. %/

/¥ FINALLY YOU CAN READ OR WRITE!! #/

DIVERSION: THE CONNECTION
BASIC /o STYLE

TO ACLESS A FILE WE MUST HAVE A CONNECTION TOIT
WE GENERALLY OBTAIN THIS CONNECTION ‘N TWO STEPS

. OBTAIN DEVICE CONNECTION USING.,
RQA PHYSICAL ATTACH DEVICE
PASS DEVICE NAME
RECIEVE TOKEN

DIVERSION: THE CONNECTION
BASIC T/o STYLE

2. OBTAIN FILE CONNECTION USING
RQA ATTACH FILE

PASS PREFIX CUSUALLY THE DEVICE TOKEN),
AND SUBPATH

RECIEVE FILE CONNECTION TOKEN

YOU NOW USE THE FILE CONNECTION TOKEN FOR
“ALL FUTHER INTERACTION WITH THE FILE,

AN EXAMPLE

IO

ROOQT
A
B
C
D
E
JACK
JILL
PETE
T
1

o |k

2

A’- DATA FILE

_DWRECTORY

= FIuE

7-9

EXAMPLE CONTINVED

LETS SAY THE DEVICE HAS BEEN ATTACHED TO AND WE HAVE |TS

TOKEN.

POSSIBILITIES,

TO GET TO JILLY

STEPL

STEP X

(TRY SOME OTHERS !)

SUBPATH
AJE/TILL

PREFIX
TOKEN +

OR

\

TOKEN + A
NEW TOKEN + E/JILL

NEW TOKEN

2-/0

EIOS TERMINOLOGY

IN ADDITION TO THE BAS\C Yo SYSTEM TERMINOLOGLY
WE ADD:

* LOGICAL NAMES

¢ I/o JOBS

* DEFAULT PREFIX AND PATH PTR
PARAMETERS

7-1

THE LOGICAL DEVICE NAME

DEFINITION: A NAME ATTACHED TO APHYSICAL DEVICE
~ AT CONFIGURATION OR RUN TIME WHIH
HAS MORE MEANING TO THE USER.

EXAMPLES: PHYSICAL LOGICAL
Fb F@:
FX1 . :HD FLOPPY':
wD1 tWINNY:
Fo ! SYSTEM:
F1 :PATIENT:

?-72

TWO.WAYS TO CREATE A LOGICAL DEVICE NAME

ONE

s USE RQA PHYSICAL ATTACH DEVICE
PASS PHYSICAL DEVICE NAME
RECIEVE TOKEN

e CATALO(G THE TOKEN VUSING RQA CATALOG
CONNECTION
PASS TOKEN, LOGICAL NAME, JToB

(WITH THIS METHOD YOU (AN CATALOG THE CONNECTION IN

ANY JOBS DIRECTORY)

7-/3

TWO WAYS TO CREATE A LOGICAL DEVICE NAME
TWO

o USE RQA LOGICAL ATTACH DEVICE
PASS LOGICAL NAME, DEVICE NAME

(LOGICAL DEVILE OBTECT 1S CATALOGED IN THE ROOT
JOB UNDER THE LOGICAL NAME)

(NOTE: THE LOGICAL DEVICE OBJECT ISNOT A CONNECTION.
THE E|OS WILL CREATE ADEVICE CONNECTION
DVURING THE FIRST EIOS CALL THAT USES THE
LO GICAL NAME)

7-/9

THE LOGICAL FILE NAME

DEFINITION: A NAME ATTACHED TO A FILE CONNECTION
AT RUNTIME FOR USE OF USER.

EXAMPLES. : OUR_DATA"
* MY_DIRECTORY?:
- AL

(MORE ON THis IN A MINUTE !)

7-/%

THE /o TOB

To USE EIOS CALLS YOUR TASK MUST BE RUNNING IN AN
6 JoB.

DEFINITION: AN T/o JoB 15 AN AMX-86 TOB WITH THREE
EXTRA ATTRIBUTES.

1. A CATALOG ENTRY INITS OWN DIRECTORY

UNDER THE NAME “RQ GLOBAL" (508 TOoKEN)
A. A CATALOG ENTRY OF ACONNECTION UNDER

THE NAME "$". (DEFAULT PREFIX)
3. A CATALOG ENTRY OF A USER TOKEN UNDER
THE NAME R?VUSER. (DEFAULT USER)

7-76

TO CREATE AN /o JTOB

* CREATE AT SYSTEM CONFIGQURATION USING THE EIO0S MACRO,

e USE THE CREATE T/o JoB SYSTEM CALL DURING RUN TIME.

PROBLEM: THIS CALL CAN ONLY BE MADE FROM A
TASK RUNNING IN AN T/o JoB.

7-7?

LOGICAL NAMES AND PATHS

2

n
7% o
< %
E\o "

! o
\ Z
. N

g N

* DATABASE" "TACK: TEMP:

7-18

DEFAULT PREFIX

*PURPOSE:. REDUCE PROGRAMMER EFFORT AND ERRORS BY
ALLOWING REFERENCE To A DEFAULT CONNEC-

TION (TO AFILE OR DEVICE) WHICH IS CATALOGED
IN THE T/o 708 DIRECTORY,

e EXAMPLE. A PARTICULAR I/fo Joe MVUST FREQUENTLY
ACCLESS A DATA FILE. OBTAIN THE CONNECTION
FOR THE FILE AND (ATALOG IT IN THE T/o
JoB DIRECTORY UNDER “$' AFTER THIS 1S
DONE ANY ATTACH FILE A CALL WITH A NULL

PATH WILL AUTOMATICALLY ATTA(H TO THE DATA
FILE.

?7-79

CREATING A LOGICLAL FILE NAME

1. ATTACH TO ADEVICE
2. RECIEVE TOKEN (OPTIONAL' CATALOG AS A LOGICAL DEVILE)

3. ATTA(H TO THE DESIRED FILE
RQS ATTACH FILE

PASS PATH NAME STRING
REC\EVE CONNECTION

4. (ATALOG THE CONNECTION
RQS CATALOG CONNECTION

PASS CONNECTION, JOB, LOGICAL NAME

7-20

PATH NAME STRING

4, counT’EM, 4 FLAVORS!

STRING PASSED EI0S ACTION

NULL USE DEFAULT PREFIX

Lot lCAL NAME ONLY USE PATH CATALOGED

SUB PATH ONLY DEFAVULT PREFIX + SUBPATH
LOGICAL NAME + SUBPATH USE PATH (ATALOGED TO

GET To DIRECTORY THEN
FOLLOW SUBPATH FROM THERE

?-21

e NULL

PATH NAME STRINGS
(EXAMPLES)

ASSUME DEFAULT PREFIX 1S
Fg/A/B

PASS NULL FOR ATTACH FILE AND GET

(ONNECTION To F@/A/B

cLOGICAL NAME ASSUME :DATABASE: |\ THE LOGICAL

ONLY

NAME FOR:
WD1/TUE/SECOND/ DATA

PASS THE LOGICAL STRING :DATABASE:
GET CONNECTION TO DATA FILE

7-22

PATH NAME STRINGS

e« SUBPATH QNLY

* LOGICAL NAME

+
SVBPATH

(EXAMPLES)

ASSUME DEFAULT PREFIX | F(.
POINTS TOo F¢ (DEVILE NAME)

PASS SUBPATH Q/1979/ FILE L

ASSUME LOGICAL NAME ‘PATIENT
POINTS TOo F{ [1939/PATIENT

PASS SUBPATH :PATIENT: JACK/STRANGE

RECIEVE CONNECTION TO:
F@/1979 / PATIENT / FALK [STRANGE

7-23

| THE DEFAULT VSER

TO ATTACH TO AFILE YOV NEED

« PATH STRING

« USER ID

7-24

THE DEFAULT USER

THE EXTENDED Yo sYSTEM ATTAH CALL HAS ONLY
2 PARAMETERS, PATH PTR AND STATVS

HOW DOES THE USER ID GET PASSED?Y
SIMPLE, THE EI10S USES THE DEFAULT USER IDOF

THE JOB (10 JOB OF COURSE) THAT CONTAINS THE
CALLING TASK!

?2-25

EI0S INTERACTION SEQUENCE

|. ATTACH To A DEVICE USING A LOGICAL NAME,
PHYSICAL NAME AND FILE DRIVER DES\RED

(ALL RQLOGICAL ATTACHDPEVICE (@ (9, '3PAT|ENT=');

e(x, 'Fg'), 4,
& STATUS);
F@ 15 IN THE SYSTEM DUIB'S

A. ATTA(H TO THE FILE SPECIFYING THE PATH NAME
CONNTKN = RQS ATTACH FILE(@ (12, 'TONES/ ROBERT'),
& STATUS);

7-26

EIOS INTERACTION SEQUENCE

3. OPEN THE FILE SPECIFYINGG THE MODE ANDNUMBRER OF
BUFFERS DESIRED -
CALL. RQS OPEN(CONNTKN, 3,4);

7-2?

'EOIS CALLS QVERVIEW

e RELATING TO LouICAL NAMES

e RQS CATALOG CONNECTION
* RQS LOOKUP CONNECTION
* RQS UNCATALOG CONNECTION

e CREATE FILE OR CONNECTION

* RQS ATTACHE FILE
* RQS CREATE DIRECTORY
* RQS CREATE FILE

7-28

EOIS CALLS QVERVIEW

¢« DATA MAN\PULATION

* RQS OPEN

* RQS CLOSE

« RQS READMOVE

¢ RQS SEEK

* RQS WRITE MOVE

* RQS TRUNCATE FILE

* DEVICE RELATED cALL
* RQS SPECIAL

2-29

EOIS C(ALLS OVERVIEW

o CHANGING ACCESS, RENAMING, OBTAINING STATUS

* RQS C(HANGE ACCESS

* AQS RENAME FILE

* RQS GET CONNECTION STATUS
* RQS GET FILE STATUS

* DELETING FILES AND CONNECTIONS

* RQS DELETE CONNECTION
* RQS DELETE FILE

7- 30

EOIS CONFIGURATION

¢ SELECT THE EOIS CALLS TO BE INCLUDED IN THE
FINAL SYSTEM

¢ SELECT THE LOGICAL DEVICES TO BE INITIALIZER
INTHE FINAL SYSTEM

* CREATE THE INITIAL Yo JoB(S) IN THE SYSTEM

7-3)

EOIS CONFIGURATION

FILES PURPOSE
ETABLE.AB6 SYSTEM CALLS
EDEVCF . AB6 LOGICAL DEVICES
EJOBCF .AR6 Yo JoB

72-32

ETABLE A86

$ INCLUDE

SYSTEM CALL
SELECTION

7-33

ETABLE AB86

NAME

SINCLUDE (: F2: ETABLE.MAC)

JOB INTERFACE

“e wme we

fRRQCREATEIOJCB
$¥ROEXITICJOB

CONFIGURATION INTERFACE

~o we e

$RCLOGICALATTACHDEVICE
$ROLOGICALDETACHDEVICE

SYNCHRONGCUS INTERFACE

~e wme we

tROSCREATEFILE
$ROSATTACHFILE
$RQSDELETECONNECTION
$ROSLOOKUPCONNECTION
$ROSCATALOGCONNECTION
$RCSUNCATALOGCCNNECTION
*ROSCREATEDIRECTORY
*ROSDELETEFILE
*ROSRENAMEFILE
*RCSCHANGEACCESS
3¥RQSOPEN

*¥ROSCLCSE

$RQSREADMOVE
*ROSWRITEMOVE

tRQSSEEK
$ROSTRUNCATEFILE
$ROSGETFILESTATUS
tROSGETCONNECTIONSTATUS
tROSSPECIAL

END

7-34

EDEVCF .AB6

LOGICAL DEVICE
SELECTION

|
| % END.DEV.CONF16

END

?-3§

EDEVCF . A8B6

NAME

CGROUP
SINCLUDE (: F2: EDEVCF.MAC)

BYTE-BUCKET

~e wo weo

RDEV_INFO_BLOCK('BB', 'BB',PHYSICAL)

TERMINAL

-e we wa

$DEV_INFO_BLOCK('T8', 'T0',PHYSICAL)

SHUGART 264, UNIT ¢, DRIVE @

~e we we

¥DEV_INFO_BLOCK('F@','Fg',6NAMED)

SHUGART 204, UNIT 1, DRIVE 1

—e wme ™o

$DEV_INFO_BLOCK('F1','F1',NAMED)

218 WINCHESTER FLCPPY SS/SD, UNIT @, DRIVE @

—a wa we

$DEV_INFO_BLOCK ('WF@', 'WF0',NAMED)

218 WINCHESTER FLGPPY SS/SD, UNIT 1, DRIVE 1

“e wme we

$DEV_INFC_BLOCK('WF1', 'WF1',KNAMED)

STREAM

~e wme ws

$DEV_INFO_BLOCK ('STREAM', 'STREAM', STREAM)
$SEND_DEV_CONFIG(1024)

END

7-36

EJOBCF . ABé6

| $ INCLUDE |

1

% TO_USER MACROS

% 10 JOB MACROS

L % END_TO_JOB_MACROS

o]

7-37

EJOBCF .A86

NAME

CGROUP
$INCLUDE (: F2:EJOBCF.MAC)

H USER 'WORLD' DEFINITION
$I0_USER('WORLD', @FFFFH)

; EIOS TEST JOB

$I0_JOB('T0', 'WORLD', 260H, @FFFFH, 6:0, 0, @, 155, 1800:0, 1A60, 0:0, 1200, 0)
$END_IO_JOB_CONFIG (40)

END

NOTE. THE CONFIGURED TO_JOB IN THE RELEASE FILE
IS FOR THE HUMAN INTERFALE,

7- 38

ASSEMBLING, LINKING AND LOCATING THE EIOS.
(THIS 1S TOUGH, SO PAY ATTENTION !})

SUBMIT :fx: EI0OS(DATE, LOC_ADR)

BEFORE DOING THIS SUBMIT YOU SHOULD PRINT
THE FILE ON ATERMINAL OR A HARD COPYTO
INSURE THAT THE FILE WILL NOT CALL FOR
RESOURCES THAT YOU DO NOT HAVE.

7-39

ADDING THE EIOS TO THE SYSTEM

* ONE JOB MACRO REQUIRED AT SYSTEM
CONFIGURATION TIME.

* PARAMETERS FOR MACRO ARE FOUND

IN THE LRMX-86 CONFIGURATIONS GVUIDE.

7-40

CHAPTER QuIiz!

1. GIVE A PHYSICAL DEVICE NAME,

A. GIVE ALOGICAL DEVICE NAME,

3. WHAT ARE THE CHARACTERISTICS OF AN T/o JOR?

4. WHAT 1S THE “"GOT(HA" IN THE CREATION OF
AN T/o 08 ?

F- 4

CHAPTER QUIZ (conNT.)

5. WHAT 1 A. ..
A. DEFAULT USER
8. DEFAULT PREFIX — .

6. MATCH THE FOLLOWING

A. ETABLE.A86 —_— LOGICAL DEVICES
B. EJOBCF.AB6 ___SYSTEM CALL SELECTION
C. EDEVCF.ABE —10 J0B CREATION

7-42

THE
HUMAN
INTERFACE

/N

§-1

OVERVIEW

THE HUMAN INTERFALE 15 A LAYER OF
THE RMX-86 SYSTEM THAT ALLOWS THE
QPERATOR TO LOAD, EXECUTE AND
SUBSEQUENTLY INTERACT WITH PROGRAM
FILES,

§-2

RMX-86 AND
THE HUMAN [INTERFACE

HUMAN INTERFACE
EXTENDED VO SYSTEM

APPLICATIS
SASIC U0 SYSTE, RZDN

NUCLEUS

USER APPLICATIONS

REleENT/ NON-RESIDENT PROGRAMS

RESIDENT: PROGRAMS LOADED AT SYSTEM RESET
WHICH REMAIN IN MAIN MEMORY.
(¢couLD BE IN ROM)

NON-RESIDENT: PROGRAMS WHICH ARE LOADED INTO
MAIN MEMORY FROM SECONDARY STORAGE
UPON PROGRAM OR OPERATOR COMMAND

SOME EXAMPLES

SYSTEM/RE$|DENT :
SYSTEM / NON-RESIDENT:
VSER/RESIDENT:

USER /NON-RESIDENT:

APPLICATION LOADER,
EXTENDED T/o SYSTEM

COPY, DIR, DELETE

DATA COLLECTION, INTERRUPT
DRIVEN TASKS.

DATA REDUCTION, DATA
ANALYSIS PROGRAM.

HUMAN INTERFACE
SERVICES

* NON-RESIDENT COMMANDS

e RESIDENT SYSTEM SERVICES

2-L

NON-RESIDENT COMMANDOS

e FILE MANIPULATION
* ATTACH DEVILE < COPY

« CREATE DIR * DELETE
* DETACH DEVICE DIR
* DowNCoPY * FORMAT

* RENAME * UPCOPY

* GENERAL UTILITY

* DATE * DEBUG
e SUBMIT * TIME

COMMAND

WHERE:

HUMAN INTERFACE
COMMAND SYNTAX

INPATHLIST [PREPOSlTlON OuTPATHLIST] (PARAMETERS)

INPATHLIST = ONE OR MORE FILES To BE USED AS
~ INPUT DVRINGG COMMAND EXECUTION
PREPOSITION = HOW YOU WANT ouTPuUT HANDLED
OUTPATHLIST = ONE ORMORE FILES To RECIEVE
OUTPUT DURING COMMAND EXECUTION
PARAMETERS = REQUESTED OPTIONAL SERVICES

PATHLISTS

PATHNAME [, PATHNAME] .. .

EXAMPLES:
MY FILE /DATA

YOURFILE /I1979/DATA, JACKFILE /sAMP 1

A/B, A/, AID,Efa/z

e.Q

PREPOS ITIONS

TO-OUTPUT TO NEWFILE
CIF OLD FILE IS SPECIFIED, AQUERY RESULTS)

OVER-OUTPUT TO OLD FILE OVER OLD DATA
CWHETHER OR NOT TARGET FILE EXISTS)

AFTER- OUTPUT APPENDED AFTER DATA IN TARGET FILE
(WHETHER OR NOT TARGET FILE EXISTS)

AS - ASSOCIATES A PHYSICAL DEVICE TOALOGICAL
NAME (oNLY FOR THE ATTACH DEVILE COMMAND)

§-10

CONTROL CHARACTERS

CHARACTER MEANING

pZ END OF FILE

e PROGRAM ABORT

{D INVOKE DEBUGGER

10 SUPRESS /RESTORE OUTPUT

4SS SUSPEND OUTPUT

£Q RESUME OUTPUT

X DELETE CURRENT INPUT LINE

R REPEAT CURRENT LINE OR
PREVIOUS LINE |F CURRENT

LINE IS EMPTY

Q11

orPY
C

)
(s
€

I

=

T

U

P

1
v

o)

o

)T

ILE(S

F

T
)

P

IN

M

(»)

R

F

A

T,
A

D

Y

P

(0]

C

-
Py

§-12

DATE

SET OR DISPLAY CURRENT DATE

DATE

Gy

&-13

DIR

LIST THE NAMES AND ATTRIBVUTTES OF FILES IN A SELECTED
DIRECTORY.

OUT PATH

il &
ééé}

EXTENDED
LONG . |

FAST

0 e

FORMAT

FORMAT OR REFORMAT AVOLUME ON A SECONPARY
STORAGE DEVICE (Disk, DISKETTE, BUBBLE)

:LOGICAL NAME?
OMUME NAME

INTERLENVE
NO.

){. PHYSICAL

8-15

RESIDENT SYSTEM SERVICES

* I/o PROCESSING CALLS

COMMAND PARSING CALLS

MESSAGE PROCESSING CALLS

COMMAND PROCESSING CALLS

PROGRAM CONTROL CALL

8-/6

L/o PROCESSING CALLS

e C GET INPUT CONNECTION
PASS INPUT PATHNAME
RETURN EI0S CONNECTION

e CGET OUTPUT CONNECTION
PASS OUTPUT PATHNAME
RETURN EIOS CONNECTION

817

COMMAND. PARSING CALLS

* CQET INPUT PATHNAME
RETURN PATHNAME FOR STANDARD INTO FILE

* CGET OUTPUT PATHNAME
RETURN PREPOSITION AND PATHNAME FOR
STANDARD OUTPUT FILE

+ CGET PARAMETER
RETURN NEXT PARAMETER FROM INPUT LINE
AS KEYWORD NAME AND VALUE

8-/8

COMMAND PARSING CALLS

» CSET PARSERVFFER
SWITCH TO NEW BUFFER

8-/9

MESSAGE PROCESSING CALLS

« C FORMAT EXCEPTION
PASS EXCEPTION CODPE
RETURN MESSAGE IN USER BUFFER

e CSEND CQRESPONSE
| SEND MESSAGE TO COMMAND ovTPUT
READ RESPONSE FROM COMMAND INPUT

* CSEND EQ RESPONSE
SEND MESSAGE TOERROR OUTPUT
READ RESPONSE FROM ERROR INPUT

840

COMMAND PROCESSING CALLS

e« CCREATE COMMAND CONNECTION
RETURN COMMAND CONNECTION TOKEN

e CDELETE COMMAND CONNECTION
PASS COMMAND CONNECTION TOKEN
DELETE CONNECTION

¢+ CSEND COMMAND

RECIEVE COMMAND LINES FROM CONSOLE
SEND TO COMMAND DATA SPACE AND EXECVTE

ai2p

PROGRAM CONTROL CALL

o C SET CONTROL C

SEND NEW CONTROL-C SEMAPHORE TOKEN

8-22 -

HOW DOES ALL OF THIS WORK?

PHASE 1. COMMAND LINE INTERPRETER PARSES
THE COMMAND LINE TO BREAK oOUT THE
PATHNAME TOTHE PROGRAM FILE,
JACK/PROG1 [> :PROG:JACK/PROG L (FIRsT)
OR :SYSTEM:JACK/PROGL(SECOND)

tF9:JACK/PROGLLE > 1F9: JACK/PROGL (ONLY)

8-2%

HOW DOQES ALL OF THIS WORK?

PHASE 2. PROGRAM EMPLOYS HI COMMANDS TO
CARRY OUT ITS OWN PROCESSING.

EXAMPLE: PRO(:RAM TO ENCODE ADATAFILE

GET INPVT PATHNAME
GET OVTPVUT PATHNAME

QET INPUT CONNECTION
QET OUTPUT CONNECTION

PROCESS FILE

DELETE INPVUT CONNECTION
DELETE OUTPVUT CONNECTION

ExiT /o voB

g-24

CREATING ANEW CUUP
(coMMONLY USED VSER PROGRAM)

1. WRITE THE PROGRAM

A. ASSEMBLE OR COMPILE THE PROGRAM

3. LINK CODE TO APPROPRIATE RMX-86 LIBRARIES
USE BIND, NOINIT COPE AND MEMPOOL DIRECTIVES
TO CREATE LTLOR PIC MOPULE [SERIES [II)

- OR-

8-25

CREATING ANEW CUUP

USE LINK AND LOCATE WITH NOINIT CODE AND
MEMPOOL DIRECTIVES TO cREATE AN ABSOLVTE
MODULE. (THERE MUST BE RESERVED SPACE IN
WHICH To LOAD IT!) (SERIES TIT) |

-OR-

USE LINK AND LOCATE ON A SERIES IT TO
CREATE AN ABSOLUTE MODULE (ONLY)

8-26

CREATING A NEW CVUUP

4. PLACE PROGRAM IN AN APPROPRIATELY NAMED
FILE IN EITHER THE :SYSTEM: DIRECTORY OR
THE :PROG: DIRECTORY

8-27

THE COMMAND CONNECTION
OR
THE ULTIMATE SUBROUTINE

PROBLEM: | HAVE A PROGRAM WHICH WILL
| COPY, PROCESS, SORT AND FURTHER
PROCESS A FILE OF DATA, T HAVE
A SYSTEM COPY AND SORT ALREADY
AND WOULD LIKE TO USE THEM LIKE

MY PROG

GET PARMS
FROM VSER
oPY

PROCESS
'

SORT

FINISH
PROCESS

S
END

g-28

THE COMMAND CONNECTION

* A BOND BETWEEN YOUR PROGRAM AND THE
COMMAND LINE EXECUTOR.

* USED WHEN YOUR PROGRAM WANTS TO SEND A
COMMAND LINE TO BE EXECUTED.

« CAN BE ESTABLISHED ONCE AT PROGRAM START
AND USED THROVGHOVUT THE PROGRAM RUN

8-29

SEND COMMAND

e A SYSTEM PROGRAM TO MOVE A BUFFER OF DATA
(A COMMAND) TO THE COMMAND CONNECTION.

e IF RUFFER CONTAINS A CONFIGURATION CHARACTOR
SEND COMMAND RETURNS IMMEDIATELY OTHERWISE
IT RETURNS AFTER COMMAND 15 EXE(VTED.

8-30

AN EXAMPLE

OVR SORT PROGRAM.

PROGRAM INVOCATION-

FAST SORT F1. JACK/DATA TO :FI: JACK/SORTED
USER COMMAND INPUT FILE OUTPUT FILE

8-31!

AN EXAMPLE

GET INPUT PATHNAME INTO A PRIVATE BUFFER
GET QUTPUT PATHNAME INTO A PRIVATE BUFFER
CREATE COMMAND CONNECTION

FORMAT COPY COMMAND IN PRIVATE COMMAND
BUFFER USING INPUT AND OUTPUT PATHNAMES

SEND ASSEMBLED COMMAND TO COMMAND
CONNECTION

COPY PROGRAM RUNS

8-32

AN EXAMPLE

o

PROCESS COPIED DATA

7

FORMAT SORT COMMAND IN PRIVATE COMMAND
BUFFER AGAIN USING INPVUT AND OUTPUT PATHNAMES

®

SEND ASSEMBLED COMMAND TO THE COMMAND CONNECTION
SORT PROGRAM RUNS

9. DELETE COMMAND CONNECTION

10« FINISH PROCESSING AND EX\T

8- 33

ANOTHER USE

SINCE THE PRIVATE COMMAND BUFFER COULD BE FILLED
FROM ANY SOURCE, IMAGINE.. .

1. READ AFILE INTO COMMAND BVFFER

A. SEND COMMAND

3. REPEAT FOREGOING AS LONG AS "OATA
EXI5TS IN THE FILE.

WHAT DOES THIS REMIND YOU OF ¢

8- 34

HUMAN INTERFALE CONFIGURATION

DESIGNATE PATHNAMES FOR THE LOGICAL NAMES
REQUIRED BY THE HUMAN INTERFALE

SPECIFY THE SIGN ON MESSAGE

SPECIFY THE MAXIMUM COMMAND NAME LENTGH

SPECIFY THE DIRECTORIES AND THE SEQUENCE
THAT THE HUMAN INTERFACE WILL SEARCH THEM
IN FOR USER PROGRAMS

8-35

DATHNAME - LOGICAL NAME
SPECIFICATION

* FOUR DIRECTORIES - SYSTEM
PROG
DEFAULT
WORK

 LOGICAL DEVICE NAME (:F@: IN SUPPLIED FILE)
MUST BE CONFIGURED INTHE EXTENDED T/o SYSTEM

8- 3b

THE SIGN ON MESSAGE
* MAXIMUM LENGTH 15 255 CHARACTERS

* ESSENTIALLY “ANYTHING GOES!"
(WITHIN THE BOUNDS OF GOOD TASTE, OF COURSE)

¢ SOME EXAMPLES

"TJACLYN SYSTEM 2000 V1.0 "
* WORDCRUSHER V.9 JOEN MF(G COPYRIGHT 1987 "

8-37

COMMAND NAME LENGTH

o THEORETICALLY COULD BE 2 '°-1

. HOWEVER, ASINGLE LINE (80) MAKES
A BIT MORE SENSE,

8- 30

DIRECTORIES AND SEARCH SEQUENCE
A MAXIMUM OF A55 DIRECTORIES CAN BE AUTOMATICALLY
SEARCHED
USER SUPPLIES A STRING TABLE OF NAMES

SYSTEM SEARCHES DIRECTORIES IN SEQUENCE GIVEN.

IN ALL CASES THESE DIRECTORIES MUST BE CONFIGURED
IN THE EXTENDED /o SYSTEM (MUST EXIST BEFORE THE
HUMAN INTERFACE BEGINS RUNNING)

8-39

LINKING AND LOCATING THE

HUMAN INTERFACE
(ANOTHER BiG ONE)

o SUBMIT :fx: H|(DATE,LOC)

* WHERE DATE = MM /DD/YY O©OR
DD MMM YY
LOC = LOCATION OF HUMAN

INTERFACE WHEN SYSTEM
IS LOADED.

8-490

HUMAN INTERFACE PREREQUISITS

* NUCLEUS

« DEBUGGER OR TERMINAL HANDLER
* BASIC Yo SYSTEM

« EXTENDED /o SYSTEM’

o APPLICATION LOAPER

IN ALL CASES ABOVE THE CALLS REQVIRED
BY THE HUMAN INTERFACE MUST RE

CONFIGURED.
8-4

TERMINAL HANDLER
REQUIREMENTS

HUMAN INTERFACE

.TO:

BASIC Yo svsreﬂ

RQTHNORM IN RQTHNORMOUT

TERMINAL HANOLER

§-42

TERMINAL HANDLER
REQUIREMENTS

e IF YOU WANT TO USE 49C MODULE FROM HUMAN
INTERFACE FOR PROGRAM CONTROL (ABORT)

MODIFY MTH-CSD or
DR.CSD
ADD Fx: HI. LIB(HeoNTC), &

8-43

BASIC I/o SYSTEM
REQUIREMENTS

* FILE DRIVERS- PHVYSICAL
STREAM
NAMED

* DUIBS - T@ (TERMINAL DEVICE)
BB (BYTE BUCKET)
STREAM (STREAM FILE DEVILE)
? (ANY DISK OR BVUBBLE
DEVICES REQUIRED)

e DEVICE DRIVERS FOR ALL DVIBS

8-44

EXTENDED ¥ SYSTEM
REQUIREMENTS

*+ CONFIGURATION FILE (EDEVCF.ABG) MUST INCLUDE:

T@
BB
STREAM

e 1,708 FILE(EJCBCF. ABG) MUST INCLUDE AN ¥/o TOB
MACRO FOR THE HUMAN INTEREACE

e MEMORY POOL FOR EIOS MUST BE LARGE ENOVGH TO
INCLUDE THE HUMAN INTERFALE

8-45

CHAPTER QUIZ

1. WHAT iISAN EXAMPLE OF A NON-RESIPENT USER
PROGRAM?

2. GIVE A NON-RESIDENT USER COMMANDS

3, WHAT 1S THE EFFECT OF THE AFTER PREPOSITION?

4~ WHAT 1S THE DIFFERENCE BETWEEN AOAND
197

&-46

CHAPTER QUIZ !

5. WHAT A CALLS CAN BE VUSED TO GGET AN INPUT
CONNECTION FROM THE COMMAND LINE?

6. WHAT 1S A COMMAND CONNECTION?

7. WHAT 15 THE FILE FOR HUMAN INTERFACLE
CONFIAGURATION?

_

8-4%

INTEL WORKSHOPS

Introductory Workshops
introduction io Microcompulters (4 days)
Intellec Development Systems (3 days)
Operating Systems Fundamentals (2 days)

8080, 8085 System Design Workshops
MCS-80/85 System Design (& days)
PASCAL Programming (5 days)

PL/M Programming (5 days)
iRMX 88.80 Operating Systems (5 days)

8086, 8088 System Design Workshops
1APX 86,88 System Design (5 days)
1APX 86,88 Advanced Assembly Language (5 days)
ICE 86,88 and iAPX 86/21 (5 days)
1APX 286 Architecture (3 days)

PASCAL Programming (5 days)

PL/M Programming (5 days)

iRMX 88.80 Operating Systemn (5 days)
iRMX 86 Operating System (5 days)
iRMX 86 I/O Operating System (5 days)

432 Workshops
{APX 432 Architecture (3 days)

Ada Programming (4 days)

Programming Language Workshops
PASCAL Programming (5 days)

PL/M Programming (5 days)
iAPX 86,88 Advanced Assembly Language (5 days)
Ada Programming (4 days)

Single Chip Microcomputer Workshops
MCS 48/49 System Design (5 days)
MCS-51 Microconiroller (5 days)

2920 Signal Processor (& days)

Peripheral Chips Design Workshops
Data Communication Chips (4 days)
IEEE-488 GPIB Chips (3 days)

Bubble Memory Design (3 days)

West Region/San Francisco Area Mid-America Region/Chicago Area Eastern Regior_\/Boston Area

setern 1320 Bc/)rdeaux Dr. 2550 Golf Road/Suite 815 27 Industrial Ave.
Sunnyvale, CA 94086 Gould Center Chelmsford, MA 01824
408-734-8102 Rolling Meadows, IL 60008 617-256-1374

312-981-7250

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95061 (408) 987-8080

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	xBack

