ntel

PSCOPE-86 HIGH-LEVEL
PROGRAM DEBUGGER
USER’S GUIDE
(SUPPORTING THE iRMX™-86
OPERATING SYSTEM)

pyright 1984, Intel Corporation
el Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 165496-001

PSCOPE-86 HIGH-LEVEL PROGRAM
DEBUGGER USER’S GUIDE
(SUPPORTING THE iRMX™-86
OPERATING SYSTEM)

Order Number: 165496-001

Copyright 1984, Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 [

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limit-
ed to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes
no commitment to update nor to keep current the information contained in this document.

iniei Corporaiion assumes 1o responsibiiity foi the use of any circuiiry ot
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior writ-
ten consent of Intel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no respensibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing vour order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

BITRUS il BX iPDS OpenNFT
COMMputer im iRMX Plue-A-Bubble
CREDIT iMDDX iSBC PROMPT
Data Pipeline iMMX iSBX Promware
Genius Insite iSDM QueX

o Inig! iSXM OUEST
; intel Librarv Manager Ripplemnde
12ICE inteIBOS MCS RMX/R0

ICE Intclevision Megachassis RUPI

ics inteligent Identificr MICROMAINFRAMFE Scamless
iDBP inteligent Proeramming MUILTIBUS SYSTEM 2000
inIs Intellec MULTICHANNF] UPl

Intellink MUITIMODULF

iOSP

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright 1984, Intel Corporation

REV,

REVISION HISTORY

DATE

-001

Original issue.

8/84

iii/iv

PREFACE

The PSCOPE-86 High-Level Program Debugger User’s Guide contains the following:

® Anintroduction to the PSCOPE high-level program debugger.
® Anintroductory PSCOPE debugging session.

® A description of PSCOPE’s internal, screen-oriented editor.

® Descriptions and examples of PSCOPE command language.

® Instructions for loading and executing user programs.

® An introduction to debug objects and symbols, as well as an expianation of
the commands used to manipulate debug objects.

® A description of PSCOPE utility commands.

® PSCOPE error messages.

® Instructions for configuring non-Intel terminals to use PSCOPE.
® PSCOPE syntax.

© PSCOPE reserved keywords.

Manual Organization

This manual contains 11 chapters and 9 appendixes, as follows:

Chapter 1 defines PSCOPE and describes the program development process and
the host system execution environment. Chapter 1 also details PSCOPE’s major
functions and provides an introductory sample session.

Chapter 2 explains how to invoke the debugger and discusses each of the invoca-
tion controls. Chapter 2 also describes invocation error messages, how to enter
commands from the keyboard, and PSCOPE’s internal editor.

Chapter 3 describes PSCOPE command lines and is an overview of tokens, sym-
bolic references, and symbol object types. Chapter 3 defines the operands and
operators used in expressions and explains expression types, stepping, and the GO
command.

Chapter 4 details how to load programs and control execution using the GO
command.

Chapter 5 describes how to reference objects in a program and how to display and
modify program objects. Additionally, Chapter 5 discusses fully qualified and par-
tially qualified symbol references.

Chapter 6 describes the four control constructs used by the PSCOPE command
language: REPEAT, COUNT, IF, and DO.

Preface

vi

PSCOPE-86 User’s Guide

Chapter 7 describes the command syntax necessary for defining, displaying,
modifying, saving, and removing debug objects.

Chapter 8 describes what debug procedures are and how to define, use, display,
save, and remove them.

Chapter 9 explains how to use code patches in a user’s program.

Chapter 10 describes and explains the syntax for each of the utility commands and
string functions available with PSCOPE.

Chapter 11 describes how to use breakpoints and tracepoints to control and moni-
tor program execution.

Appendix A is a numerically ordered list of the PSCOPE error messages.

Appendix B provides the codes necessary to configure PSCOPE to run on non-
Intel terminals.

Appendix C provides further information about using PSCOPE on the Series III
development system.

Appendix D provides further information about using PSCOPE on the Series IV
development system.

Appendix E contains the program upon which the examples in this manual are
based.

. R H
1

A nsman Do P emmm ot
ADPPLIIGix r

L, ITCVUELLILOD.
Appendix G lists the PSCOPE reserved keywords.

Appendix H lists PSCOPE commands and the pages on which they are discussed
in this manual. :

Appendix I provides further information about using PSCOPE on the iRMX™

operating system.

Related Publications

The following publications contain further information on the high-level languages
PSCOPE supports:

Pascal-86 User’s Guide, order number 121539

PL/M-86 User’s Guide for 8086-Based Development Systems, order number
121636

FORTRAN-86 User’s Guide, order number 121570
The following publications contain further information on the Series III:

Intellec ® Series III Microprocessor Development System Product Overview, order
number 121575

Intellec ® Series III Microprocessor Development System Console Operating
Instructions, order number 121609

PSCOPE-86 User’s Guide

Intellec ® Series I1I Microprocessor Development System Programmer’s Reference
Manual, order number 121618

The following publications contain further information on the Series IV:

Intellec ® Series IV Microcomupter Development System Overview, order number

121752

Intellec® Series IV Operating and Programming Guide, order number 121753

Intellec® Series IV ISIS-1V User’s Guide, order number 121880

Notational Conventions

This manual adheres to the following conventions when describing PSCOPE com-

mand syntax.

Convention

UPPERCASE WORDS

italics

abc

punctuation

filename

pathname

directory-name

system-id

Meaning

PSCOPE keywords. You must enter these words exact-
ly as they appear, except that you can use either up-
percase or lowercase.

Grammar symbols for which you must substitute a
value. These symbols are in italic face type.

You must enter the symbols a, b, and ¢ in exactly the
order specified.

The items between the brackets are optional.

The items between the brackets are optional and may
be repeated zero or more times.

Enter either the symbol a or the symbol b.
Replace the symbol a with the symbol b followed by c.

You must enter punctuation other than ellipses (...),
brackets ([1), and braces ({ }) entered as shown. For
example, you must enter all the punctuation shown in
the following command:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81")

A filename is a valid name for the part of a pathname
that names a file.

A pathname uniquely specifies a file and consists of a
directory-name and a filename.

A directory-nameis that portion of a pathname which lo-
cates the file by identifying the device and the directory
containing the filename.

A system-id is a generic label placed on sample listings
where an operating system-dependent name would ac-
tually be printed.

Preface

vil

Preface PSCOPE-86 User’s Guide

CNTL CNTL denotes the terminal’s control key. For
example, CNTL-C means enter C while pressing the
control key.

apostrophe If your terminal has two apostrophe (or single quotes)

symbols, determine which one PSCOPE accepts in
command syntax.

viii

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
WhatPSCOPEIs ..., 1-1
What PSCOPECanDo 1-1
The Program Development Process 1-1
Host System Execution Environment 1-2
Compiling or Assembling the Source Code 1-2
Compiling Under the ISIS Operating System 1-3
Invoking the Pascal Compiler 1-3
Invoking the PL/M-86 Compiler 1-3
Compiling Under the iRMX™-86
Operating Systemc.vieeuneninn. 1-3
Invoking the Pascal Compiler 1-3
Invoking the PL/M-86 Compiler 1-3
Linking the ObjectCode e 1-3
Linking Under the ISIS Operating System 1-4
Invoking the Linker for a Pascal Program 1-4
Invoking the Linker for a PL/M-86 Program 1-4
Linking Under the iRMX™-86
Operating Systemcovvivnnnn.. 1-4
Invoking the Linker for a Pascal Program 1-5
Invoking the Linker for a PL/M-86 Program 1-5
MajorFunctionscociiiiiinnennn.. 1-5
Introductory Sample Session 1-6
A Debug Session with the Sample
Pascal Programovveiineennnn.. 1-6
A Debug Session with the Sample
PL/MProgramcco... 1-14
CHAPTER 2
USING THE DEBUGGER
Invoking the Debugger 2-1
The CRT|NOCRT Control 2-1
The MACRO|NOMACRO Control 2-2
The NOSUBMIT |SUBMIT Control 2-3
The VSTBUFFER Control 2-4
Invocation Error Messages 2-4
Usingthe Debugger 2-5
TerminatingaSession 2-6
CommandEntry 2-6
Line-editingKeys 2-6
Syntax Errors ... 2-7
The Internal Screen-Oriented Editor 2-7
Entering the Internal Editor 2-8
Exiting the Internal Editor 2-8
Internal Editor Display 2-9
Internal Editor Commands 2-9
MenuCommandsco.... 2-11
BLOCK Command (B) 2-11
DELETE Command (D) 2-12
GETCommand (G) 2-12
INSERT Command (1) 2-12
QUITCommand (Q) 2-13

PAGE
VIEW Command (V) 2-13
XCHANGE Command (X) 2-13
The VIEWCommand 2-13
CHAPTER 3
COMMAND LANGUAGE AND
EXPRESSIONS
Tokenscoiiiiiiiii e 3-1
Delimiters i, 3-1
Names ..ot i 32
NamesFormat 322
ReferencingNames 32
LineNumbers 3-3
NumericConstantsc.ou... 3-3
Integersco i 3-3
Floating Point Numbers 3-4
Character String Constants 3-4
185153 ¢:10s) ¢ 3-5
Comments 3-6
Types of Symbol Objectsc.cvevun.. 3-7
Compiler/Assembler Type vs. PSCOPE
TypeNamesccciiiiiinn.. 37
EXpressionsciiiiiiiiiiiaiaan., 3-8
Operands iiiiiii e 3-8
NumericConstants 39
StringConstants0o.... 39
Program Symbol References 39
Machine Register References 39
Memory References with Explicit Typing 39
Line Number References 3-10
Debug Variable References 3-10
Debug Procedure Calls and Parameter
Referencescciieiiiinn. 3-11
(0515 ¢: 170) ¢S 3-11
Type Conversionscoeeueeneennn. 3-12
Type Conversions for Expressions 3-13
Type Conversions for Assignments 3-13
CHAPTER 4
LOADING AND EXECUTING
PROGRAMS
The LOADCommand 4-1
TheGOCommandccouveunn... 4-2
The LSTEP and PSTEP Commands 4-3
The ISTEPCommand 4-4
CHAPTERS
EXAMINING AND MODIFYING
PROGRAM SYMBOLS
Program Symbol References 5-1
Current NameScopeccoionn. 5-1
Fully Qualified References 5-1
Partially Qualified References 5-3

ix

Contents
PAGE
Display Program Symbol 5-3
Change Program Symbol 5-5
Change 8086/8088 Flags 5-5
Change 8086/8088 Registers 5-7
The REGSCommand 5-8
Change 8087 Registers 5-8
Read and Write [/OPorts 5-9
Change Name Scope 5-10
ActiveFunction 5-11
Display Memory, 5-11
ModifyMemory 5-12
The Single Line Assembler/Disassembler 5-13
The Disassembler 5-14
The Single Line Assembler (SLA) 5-15
RETFAR 5-17
CHAPTER 6
CONTROL CONSTRUCTS
The REPEAT and COUNT Constructs 6-1
The IF Construct e 6-2
The DOConstructcoooiin. ... 6-3
CHAPTER 7
DEBUG OBJECT MANIPULATION
COMMANDS
Debug Objectsccooviiiiiio ... 7-1
Memory Type Debug Objects 7-2
Debug Type Debug Objects 7-2
The DEFINECommand 7-2
The DISPLAY Command 7-3
The MODIFY Command 7-5
The REMOVE Command 7-5
The PUT and APPEND Commands 7-6
CHAPTER 8
DEBUG PROCEDURES
DEFINE Debug Procedure 8-1
Debug ProcedureCalls 8-2
Debug Procedure Return 8-2
Accessing Debug Procedure Parameters 8-3
CHAPTER 9
CODE PATCHES
DefiningaPatch 9-1
DisplayingaPatch 9-2
RemovingaPatch 9-3
CHAPTER 10

UTILITY COMMANDS AND STRING
FUNCTIONS

The EXITCommand 10-1
The DIRectory Command 10-2
The CALLSTACK Command 10-4
The HELP Command 10-5
The LIST and NOLIST Commands 10-6
The INCLUDECommand 10-6
The EVALCommand 10-7
The BASECommand 10-9

PSCOPE-86

PAGE
INPUTMODE, 10-10
The WRITECommand 10-12
.The STRING Functions
(SUBSTR, CONCAT, STRLEN, andCI) 10-13
The SELECTORSOF and OFFSETSOF
Functions 10-15
CHAPTER 11
ADVANCED EXECUTION AND
TRACE COMMANDS
Breakingand Tracing 11-1
Break Registers (BRKREG) 11-1
Trace Registers (TRCREG) 11-3
The GOCommand 11-4
Exception Trapping 11-6
APPENDIX A
ERROR MESSAGES
Classesof Errorsoove. ... A-1
Help ... o A-1
ErrorMessagesccouiiiiiina... A-1
APPENDIX B
CONFIGURING PSCOPE FOR
NON-INTEL TERMINALS
ConfigurationCommands B-1
Tested Configurations B-4
AddsRegentModel 200 B-5
Adds Veiwpoint3APlus B-6
BeehiveMini-Bee B-7
DECVTS2 B-8
DECVTIO0 ... B-9
Hazeltine 1420 B-10
Hazeltine 1510 B-11
IntelSeries-IITE B-13
Lear Siegler ADM-3A B-14
Televideo910Plus B-15
Televideo 925and950 B-16
ZeNteC ... B-17
APPENDIX C
ADDITIONAL INFORMATION
FOR SERIES III USERS
Operationof the SeriesIII C-1
Program Development Process C-1
Hardware and Software Required C-2
User Programs Supported C-3
System ResourcesUsed C-3
Memory C-3
File Requirements C-3
Other Resources Required C-4
InvocationLine C-+4
APPENDIX D
ADDITIONAL INFORMATION FOR
SERIES IV USERS
Operation of the SeriesIV D-1

Program Development Process D-1

PSCOPE-86

PAGE
Hardware and Software Required D-2
User Programs Supported D-3
System ResourcesUsed D-3
MemMOrY oot e e e D-3
File Requirementscc.un.. D-3
Other Resources Required D-4
InvocationLine i, D-4
APPENDIX E
SAMPLE PROGRAM LISTING
APPENDIXF
PSCOPE GRAMMAR
PSCOPE Grammarcevieuneinn... F-1
APPENDIX G
RESERVED KEYWORDS
PSCOPEKeywordsoovviiinnnnnnnn.. G-1
PSCOPE Operators and Delimiters G-2
TABLES
TABLE TITLE PAGE
3-1 Special Character Delimiters 3-1
3-2 NamesFormat 3-2
3-3 Elements of Integer Constants 33
3-4 Special Character Operators 3-5
3-5 Standard Symbol Object Types 3-6
3-6 Compiler/Assembler Type vs. PSCOPE
TypeNames 3-7
3-7 Precedence of Operators (Highest to
LOWESt) ..ottt 3-12
5-1 Default Display Formats 5-4
B-1 Configuration Commands B-2
B-2 ADDS Regent Model 200
Configuration B-5
B-3 ADDS Viewpoint 3A Plus
Configuration B-6
FIGURES
FIGURE TITLE PAGE
1-1 Generalized Program Development
Processiiiiiiiiiiiniin.. 1-2
1-2 Listing of Pager in Pascal-86 1-7
1-3 Listing of Pager in PL/M-86 1-17
2-1 EditorDisplayccovniiiin... 2-9
C-1 Series III Program Development
Process i, C-2
D-1 Series IV Program Development
Processccoiiiiiiiiiii.. D-2

Contents
PAGE:
APPENDIX H
PSCOPE COMMAND INDEX
APPENDIX1I
PSCOPE UNDER THE iRMX™
OPERATING SYSTEM
Linkingooviinnn it I-1
Invocation i I-1
Multitasking Supportc.ci i, 1-2
8087 SUPPOTt .o e I-2
Other ResourcesRequired 1-2
INDEX
TABLE TITLE PAGE
B-4 Beehive Mini-Bee Configuration B-7
B-5 DEC VT52 Configuration B-8
‘B-6 DEC VT106 Configuration B-S
B-7 Hazeltine 1420 Configuration B-10
B-8 Hazeltine 1510 Configuration
(TildeLead-in) B-11
B-9 Hazeltine 1510 Configuration
(ESCLead-in)ccoviuunnnn. B-12
B-10 Intel Series-IIIE Configuration B-13
B-11 Lear Siegler ADM-3A Configuration B-14
B-12 Televideo 910 Plus Configuration B-15
B-13 Televideo 925 and 950 Configuration B-16
B-14 Zentec Configuration B-17

xi/xii

CHAPTER 1
INTRODUCTION

This chapter introduces the high-level language debugger called PSCOPE-86. It
contains an overview of PSCOPE-86’s capabilities and describes the preparation of
a user program.

What PSCOPE Is

PSCOPE-86 is an interactive, symbolic debugger for object modules produced by
the following compilers:

Pascal-86 (version 2.0 or later)
PL/M-86 (version 2.0 or later)
FORTRAN-86 (version 2.0 or later)
ASM-86 (version 2.0 or later)

Both PSCOPE and the program being debugged reside in the microcomputer sys-
tem’s memory (which is expandable to 1M byte). PSCOPE runs under the ISIS
operating system, the iNDX operating system, and the iRMXTM-86 operating
system (release 5 or later).

What PSCOPE Can Do

With PSCOPE, you can examine and modify a program’s execution to find soft-
ware logic errors. With PSCOPE commands, you can do the following:

® Set breakpoints.

¢ Single-step through high-level language statements, assembly language
instructions, functions, or procedures.

® Patch user code at either high-level language or assembly language level.

® Display and modify program memory and 8086/8088 registers. When
PSCOPE-86 runs under the iRMX-86 operating system, you can also display
and modify 8087 registers.

® (reate and edit debug procedures, save these debug procedures, and recall
them in future debug sessions.

The Program Development Process

PSCOPE is part of your microcomputer system’s development software. Figure
1-1 shows how PSCOPE fits into a program development process.

Typical program development consists of the following steps:
1. Write the source code with the host system editor.
2. Compile the source code. This results in relocatable object code.

3. Correct any compile-time or assemble-time errors. Recompile or reassemble.

Introduction

PSCOPE-86 User’s Guide

RUN-TIME
LIBRARIES
OTHER 1
FORTRAN-86 RELOCATABLE]|
SOURCE OBJECT
MODULES
- RELOCATABLE
P ROURCE. OBJECT
MODULE

PL/M-86
SOURCE

Figure 1-1 Generalized Program Development Process

v

LIBRARIES

1369

1-2

4. Link the object code file to selected library files with LINK86, using the

BIND option. This creates a loadable version of the program.

5. Execute, test, and debug the loadable object file using PSCOPE.

Host System Execution Environment

Appendixes B, C, D, and I contain information about the host system’s execution
environment, including related manuals, required system hardware and software,
maximum user program size, and host system resources used by the debugger

(such as memory and open files).

Compiling or Assembling the Source Code

When compiling or assembling the source code, include the following controls:

1. The DEBUG control. This control instructs the compiler or assembler to
place symbol information in the object file.

2. The TYPE control. This control instructs the compiler or assembler to place
type information in the object file. Symbol and type information is useful

when debugging a user program with PSCOPE.

3. With a compiler, the OPTIMIZE(0) control. This control instructs the

compiler to turn off object code optimization.

PSCOPE-86 User’s Guide Introduction

Compiling Under the ISIS Operating System

Assume that the source code file is called pager.src and you are running on an In-
tellec® Series III development system under the ISIS operating system.

Invoking the Pascal Compiler

Assume that the Pascal compiler is on disk drive one and that the source code is
on disk drive zero. The following command will invoke the Pascal compiler.

-run:f1:pasc86 pager.src debug type optimize(0)
Note that TYPE is a default option for the Pascal-86 compiler.
Invoking the PL/M-86 Compiler

Assume that the PL/M-86 compiler is on disk drive one and that the source code
is on disk drive zero. The following command will invoke the PL/M-86 compiler.

-run:f1:pIm86 pager.src debug type optimize(0)

Note that TYPE is a default option for the PL/M-86 compiler.

Compiling Under the iRMX™.-86 Operating System

Assume that the source code file is called pager.src and that you are running on an
86/3xx system under the iRMX-86 operating system.

Choose either the COMPACT or the LARGE option. The iRMX-86 operating
system does not support the SMALL or MEDIUM option.
Invoking the Pascal Compiler
Assume that the pathname of the Pascal compiler is /lang/pasc86 and that the
pathname of the source code is /user/world/prog/pager.src. The following com-
mand will invoke the Pascal compiler.
-/lang/pasc86 /user/world/prog/pager.src compact debug type
optimize(0)
Invoking the PL/M-86 Compiler
Assume that the pathname of the PL/M-86 compiler is /lang/plm86 and that the
pathname of the source code is /user/world/prog/pager.src. Here’s how to invoke

the PL/M-86 compiler.

-/lang/plm86 /user/world/prog/pager.src. compact debug type
optimize(0)

Linking the Object Code

PSCOPE does not support overlays. Do not link overlay files into the final debug
load module.

Introduction PSCOPE-86 User’s Guide

Be sure to use the library files supplied with the operating system. The library files
supplied with the ISIS operating system have the same names and perform the
same functions as those supplied with the iRMX-86 operating system, but they
differ internally.

PSCOPE requires that the user program be in load-time-locatable (LTL) code.
This means that code and data addresses are assigned by the system loader. Use
the BIND control when invoking LINK86.

Linking Under the ISIS Operating System

Assume that the object code file is called pager.objand you are running on an Intel-
lec Series III development system under the ISIS operating system. Assume that
LINK86 and the library files are on disk drive one and that pager.obj is on disk
drive zero.

When the program you plan to debug with PSCOPE-86 does real arithmetic, you
have the choice of using the 8087 chip or the 8087 software emulator.

Invoking the Linker for a Pascal Program
The following command will invoke the linker for a Pascal program.

run-:f1:link86 pager.obj, :f1:p86rn0.lib, &
:f1:p86rn1.lib, &
:f1:p86rn2.lib, &
:f1:p86rn3.lib, &
:f1:87null.lib, &
:f1:large.lib to pager.86 bind

This example assumes that your microcomputer system does not contain the 8087
chip. Because the Pascal example in this chapter does not do real arithmetic,
e8087.1ib and e8087 are not required; 87null.lib is required to resolve external
references in p86rn2.lib and p86rn3.lib.

If your microcomputer system contains the 8087 chip, 8087.1ib takes the place of
¢8087.1ib and e8087.

Invoking the Linker for a PL/M-86 Program

Here’s how to invoke the linker for a PL/M-86 program.

-run:f1:link86 pager.obj, :f1:pIlm86.lib, &
:¥1:compac.lib to pager.86 bhind

This example assumes that you chose the COMPAC option when compiling the
PL/M-86 program. The default is SMALL.

Linking Under the iRMX™.-86 Operating System

Assume that you are running on an 86/3xx system under the iRMX-86 operating
system.

When running under the iRMX-86 operating system (release 5 or later) and
invoking LINK86, include the following two options during the final link.

.,A
v
N

PSCOPE-86 User’s Guide Introduction

1. SEGSIZE(STACK(+2048)) This option increases the stack size by
2048 bytes.

2. MEMPOOL(+25000,0FFO00H) LINKS86 reserves 25000 bytes for
dynamic memory allocation.

When the program you plan to debug with PSCOPE-86 does real arithmetic, your
microcomputer system must contain the 8087 chip. The iRMX-86 operating
system does not support the 8087 software emulator.

Invoking the Linker for a Pascal Program

Assume that the pathname of 1ink86 is /lang/1ink86 and that the pathname of the
object file is /user/world/prog/pager.obj. The following command will invoke the
linker for a Pascal program.

-/lang/link86 /user/world/prog/pager.obj, &

/lang/p86rn0.lib, &

/lang/p86rn1.lib, &

/lana/p86rn2.lib, &

/lang/p86rn3.lib, &

/lang/87nulllib, &

/lang/large.lib to /user/worid/prog/pager.86 &
segsize(stack(+2048)) mempool(+25000,0FFO00H)
bind

If your program does real arithmetic, your microcomputer system must contain
the 8087 chip, and you must link your program with 8087.1ib. Although the Pascal
example in this chapter does not do real arithmetic, 87null.lib is required to
resolve external references in p86rn2.lib and p86rn3.1ib.

Invoking the Linker for a PL/M-86 Program

Assume that the pathname of 1ink86 is /lang/link86 and that the pathname of the
object file is /user/world/prog/pager.obj. The following command will invoke the
linker for a PL/M-86 program.

-/lang/link86 /user/world/prog/pager.obj, &
/lang/pIim86.lib, &
/lang/compac.lib to /user/world/prog/pager.86 &
segsize(stack(+2048)) mempool(+25000,0FFOO0H)
bind

Major Functions

The following list briefly describes PSCOPE’s major functions and references the
chapters containing more detailed information.

® Internal editor (Chapter 2). The internal, screen-oriented editor lets you edit
commands, debug procedures, and patches from the keyboard.

® Single-stepping (Chapter 4). PSCOPE allows single-stepping through assem-
bly language instructions, high-level language statements, and procedures.

® Control blocks (Chapter 6). You can use PSCOPE command language condi-

tional and repetitive control constructs to build up blocks of debugger
commands.

1-5

Introduction

1-6

PSCOPE-86 User’s Guide

® Debug objects (Chapter 7). You can define and manipulate various types of
debug objects, such as debug variables, debug procedures, and LITERAL-
LYs (a form of command macro).

® Debug procedures (Chapter 8). You can define and edit debug procedures.
Debug procedures consist of PSCOPE-86 commands.

® Code patches (Chapter 9). PSCOPE lets you add and delete code at the state-
ment or instruction level without permanently changing your program.
Patches made in PSCOPE are not permanent but they can be saved. Your
program will not run with those patches outside of PSCOPE. If you load
another program, PSCOPE deletes any previously defined patches.

® Single-line assembler and disassembler (Chapter 9). With these features you
can modify and display assembly language instructions.

e Utility commands (Chapter 10). With utility commands, you can perform
such functions as obtaining on-line help, recording all or part of a debug ses-
sion in a log file, and executing command files.

® Breakpoints and tracepoints (Chapter 11). By setting breakpoints and
tracepoints, you can control and monitor debugging.

Introductory Sample Session

This section contains two sample programs, one in Pascal-86 and one in PL/M-86.
Both programs are calied pager.src, and boih perform ihe same funciion.

The program reads text from a file called txtin, formats the text, and writes it to a
file called rxtout. The program inserts 10 spaces at the beginning of each line, thus

creating a left margin, inserts page breaks, writes a heading for each page, and
numbers the pages. The program may also double-space.

A Debug Session With the Sample Pascal Program

Figure 1-2 is the list file for the sample Pascal program.

SERIES-IIl Pascal-86, V3.0
Source File: PAGER.SRC
Object File: PAGER.OBJ

==V,

STMT LINE NESTING SOURCE TEXT: PAGER.SRC

procedure init(var leftmargin linesend:integer;
var double:boolean;
var textin:text);

1 1 0 O program pager(input,output);

2 2 0 O const blank="";

3 3 0 O var textin,textout text;

4 4 0 O ch :char;

5 5 0 O leftmargin,i,linenumber :integer;
6 6 0 O linesend,pagenumber .integer;
7 7 0 O double :boolean;
8 8 0 O0

8 g 1 0

(figure continues)

PSCOPE-86 User’s Guide

16

22

—h —d A b b b b b

ek b ek bk O

SERIES-III Pascal-86,

STMT LINE NESTING

16
17
18
19

20

21
22
22
23
24

24
25
26
27

29

31
32
33
34
35

o [sNeoNeNe)

[eNeNeNo Nl

', pagenumber:4);

25

37

o [eNeNoNe] [eNoNoNoNe) [eNeoloNoNeoNoNol o

[eNoloNe]

oo

1
1
1
1

N NN ==

N ARANANON N

W BAOW AEDAO®

NN NN

Introduction

BEGIN (xinit*)
leftmargin:=10;
linesend:=50;
double:=false;

writeln('leftmargin = ',leftmargin:2);

writeln(lines/page = 'linesend:2);
writeln('double ="' double);
writeln

END (xinitx);

$eject

SOURCE TEXT: PAGER.SRC

reset(textin,txtin’);
rewrite(textout, 'txtout’);
pagenumber:=1;
linenumber:=1;

init(leftmargin,linesend,double,textin);

while eof (textin) =false do
begin
writeln (textout);
writeln (textout);
writeln (textout,’ ",
Intel Corporation

writeln (textout);

repeat

for i:=leftmargin down to 1 do
write (textout,blank);

while eoln (textin) =false do
BEGIN
read (textin,ch);
write (textout,ch)
END;

if double=true then
BEGIN
writeln (textout);
writeln (textout);
linenumber:=linenumber+2
END

else
BEGIN
writeln (textout);
linenumber:=linenumber+1
END;

readlin(textin)

until (linenumber=linesend) or (eof(textin)=true);

page(textout);

writeln('page = ,pagenumber:4);
pagenumber:=pagenumber+1;
linenumber:=1

end;
writeln;
writeln(‘'end of file on textin encountered’)
END. (xmainx)

Figure 1-2 Listing of Pager in Pascal-86

1-7

Introduction

1-8

PSCOPE-86 User’s Guide

The sample Pascal program has a bug in it. Statement #41 should read as follows:
until (linenumber > linesend) or (eof(textin) =true);
rather than the following:
until (linenumber=linesend) or (eof(textin) =true);
The program works with the equal sign if you choose the single-space option. The
loop does not terminate if you choose the double-space option and the program

variable linesendis an even number.

What follows is a sample debug session. The boxed text at the top explains the
action of the PSCOPE dialogue following the boxed text.

= Define: .'debug procedure called again. Th sets $ and namescope to begin. .
This debug procedure is useful after you have cxecuted your program once:; ¥
in PSCOPE and w1sh to execute agam '

" Define a debug procedure called ﬁxlmerzumbex« This debug pfdcedﬁre ,éhééks'
if the programi variable linenumberis greater than 50 and if so; sets it 10 50,

‘Define a break register called line41. If you execute your program with this

- break register, execution stops at the end of the loop just before the terminat- -
ing check. If you now: call the debug procedure ﬁxlmenumber, the loop terrm-
nates as intended.

Save the defi ned debug objects. Write them to the disk in a file called
pager.mac. You can call up thls file and use these debug obJects in later debug.
session. :

xlist pager.log

xload pager.86
X
xdefine pointer begin=$
X
xdefine proc again=do
.x$=begin
. xnamescope=9$
. xend
*
xdefine proc fixlinenumber = do
. xif linenumber > 50 then
. xlinenumber=50
. xend
. xend
b 3
xdefine brkreg line41=#41
b 3
xput pager.mac debug

PSCOPE-86 User’s Guide

e

fined ¢

*dlrdebug
LINE41 . . brkreg
BEGIN . . pointer
FIXLNUMBER proc
AGAIN . . proc
X
xdir
DIR of :PAGER
PQ_OUTPUT .
PQ_INPUT |
TEXTOUT ...
TEXTIN
LINENUMBER .
LEFTMARGIN .
PAGENUMBER .
LINESEND
DOUBLE
INIT
Ll:FTMARGlN
LINESEND
DOUBLE
TEXTIN
x :
x$
1C88H:0159H
xgo til #41
leftmargin = 10
lines/page = 50
double =

[Break at #41]

e
isggeiis!

T
o

..... TEXT (file)
TEXT ({file)
..... TEXT (file)
..... TEXT (file)
..... Char

..... integer
..... integer
..... integer
..... integer
..... integer
..... boolean
..... procedure
veve...... integer
veve...... Integer
veveve.... boolean
cevno.... TEXT (file)

-l

il

Introduction

Introduction

xlinenumber

+2

xlinenumber=3
x.linenumber
1CC3H:0024H

X

xeval ds:0024h symbol
:PAGER.LINENUMBER
X

xds

7363

xbase=10h

xds

1CC3

xbase=10t

X

xdir integer

DIR of :PAGER
LINENUMBER

]

LEFTMARGIN
PAGENUMBER
LINESEND
INIT.LEFTMARGIN
INIT.LINESEND

X

xinteger .linenumber
1CC3H:0024H +3

xdouble

FALSE

xboolean .double
1CC3H:002EH FALSE
xdouble=true
xboolean .double
1CC3H:002EH TRUE
X

xgo til #41

[Break at #41]
xlinenumber

+5

xdouble

TRUE

*

xbrkreg line41

define brkreg LINE41 = #41

PSCOPE-86 User’s Guide

Display the value of double. Apply the BOOLEAN memory template com-
mand to .double. Set double to true and again apply the BOOLEAN memory
template command. ‘

Resume execution and break again at statement #41. Display the program
- variables linenumber and double. Display the break register line41. You in-
tended this break register to call the debug procedure fixlinenumber, but you
neglected to inciude that cail.

PSCOPE-86 User’s Guide

A A

S . w
,WM sl

g

by ;tjar(-:f:;sm,

.
i
.m,,m' Ml,(
i o

i
s
i

e
e

N e
s
e Lo A w

“key {for exeoute). The PS| T niow e

R g i ey

breakrepisterdpedls s

o
“(sy R 20
e

iy

xedit line41
define brkreg LINE41 = #41

Block Delete Get Insert Quit View Xchange
defing brkreg LINE41 = #41

[insert]

define brkreg LINE41 = #41 call fixlinenumber

Abort Execute

xdefine brkreg LINE41 = #41 call fixlinenumber

S age‘»md“t roC

S e a2 S e it
o ¢ i

: “ 4 i 0 i i
e L e A i s et s Gapi
,m,.u,«:u;z;wv*“ ww;m;gg 7,“wx.,,,x i m.mvwml«*»f‘ g o e P eeive e B
e },,u,u g H,M
o 53 K & 2‘
S

Hews
s g

S

e war

xbrkreg line41

define brkreg LINE41 = #41 call fixlinenumber

X

xgo using line41

WARNING #514: Invalid return type from PROC called at breakpoint. [x]
[Break at #41]

*help e51 4

E514

Introduction

Introduction

: rf‘fResume" executron,

PSCOPE-86 User’s Guide

xedit fixlinenumber
xdefine proc FIXLNUMBER = do
. xwrite 'linenumber=",linenumber
. xif linenumber > 50 then
. xlinenumber=50
. xwrite 'linenumber=",linenumber
. . xreturn true
. xelse return false
. . xend
. xend

‘;Step through three hlgh }evel language statements The program wmes the
‘program variable pagenumber to the screen. Because the program 1tse1f wrrtes,

tothe screen ‘this output does not appear in the lrst file:

rncremented Step through another statement and notice that the’ program
has returned to the beginning of the loop, ready to take care of the second
page.

xgo

linenumber= +9
linenumber= +11
linenumber= +13
linenumber= +15
linenumber= +17
linenumber= +19
linenumber= +21
linenumber= +23
linenumber= +25
linenumber= +27
linenumber= +29
linenumber= +31
linenumber= +33
linenumber= +35
linenumber= +37
linenumber= +39
linenumber= +41
linenumber= +43
linenumber= +45
linenumber= +47
linenumber= +49
linenumber= +51
linenumber= +50
[Break at #41]

PSCOPE-86 User’s Guide

b 3

x|Istep

[Step at :PAGER#42]
x|step

[Step at :PAGER#43]
x|step

page = 1

[Step at :PAGER#44]
x|step

[Step at :PAGER#45]
xpagenumber

+2

x|step

[Step at :PAGER#21]

xgo using line41
linenumber= +3
linenumber= +5
linenumber= +7
linenumber= 49
linenumber= +11
linenumber= +13
linenumber= +15
linenumber= 417
linenumber= +19
linenumber= +21
linenumber= 423
linenumber= 425
linenumber= +27
linenumber= +29
linenumber= 431
linenumber= +33
linenumber= +35
linenumber= +37
linenumber= +39
linenumber= +41
linenumber= +43
linenumber= +45
linenumber= +47
linenumber= +49
linenumber= +51
linenumber= +50
[Break at #41]

X

xIstep;lstep;listep
[Step at :PAGER#42]
[Step at :PAGER#43]
page = 2

[Step at :PAGER#44]
xIstep

[Step at :PAGER#45]
xinteger .pagenumber
1CC3H:002AH +3

Introduction

1-13

Introduction

- Resume yeyééet:ixft‘ion usmgthcbreakre
. anend-of-file befem’flmenwz’iber exceeds 51

PSCOPE-86 User’s Guide

Close the list file. Exit PSCOPE.

*go using line41

linenumber= +3
linenumber= +5
linenumber= +7
linenumber= +9
linenumber= +11
linenumber= +13
linenumber= +15
linenumber= +17
linenumber= +19
linenumber= +21
page = 3

end of file on textin encountered

EXCEPTION: Program call to DQ$EXxit
[Stop at location 2178H:0030H]

xnolist
xexit
PSCOPE terminated

/ma

A Debug Session wiih the Sampie PL/

Program

Figure 1-3 is the list file for the PL/M-86 program.

SERIES-II1 PL/M-86 V2.3 COMPILATION OF MODULE PAGER
OBJECT MODULE PLACED IN PAGER.OBJ
COMPILER INVOKED BY: :F1:PLM86.86 PAGER.SRC OPTIMIZE(0) COMPACT DEBUG

literally ‘word’;
connection;
word;

word;

literally ‘byte’;
literally 'Offh’;
literally ‘O0Oh’;
byte data(32);
byte data(10,13);
byte data(12);
byte;

declare {leftmargin,linesend,linenumber,pagenumber) word;

TYPE XREF CODE
1 pager:
do;
2 1 declare connection
3 1 declare (conin,conout)
4 1 declare (bytes$read,err)
5 1 declare compl!
6 1 declareboolean
7 1 declaretrue
8 1 declarefalse
9 1 declare blank
10 1 declarelfcr(2)
11 1 declareff
12 1 declare (ch,i)
13 1 declare (textin,textout)
connection;
14 1
15 1 declare double

$eject

boolean;

/*The external procedure declarations follow.x/

(figure continues)

PSCOPE-86 User’s Guide Introduction

16
17
18
19
20
21
22
23

24

25
26

27

28
29

30

31
32

33

34
35

36
37

39

— [y —

MO N

NNNWOWONNDWWWN

dq$attachprocedure (path$p,excep$p) connection external;

' declare path$p pointer,
excep$p pointer;
end;

dg$detacprocedure (conn,excep$p) external;
h:
declare conn connection,
excep$p pointer;
end;

dg$creat procedure (path$p,excep$p) connection external;

e:

declare path$p pointer,
excep$p pointer;

end;

dqS$open: procedure (conn,access,num$buf,excep$p) external;
declare conn connection,
access byte,
num$bufbyte,
excep$p pointer;
end;

dqgS$close: procedure (conn,excep$p) external;
declare conn connection,
excep$p pointer;
end;

dq$read: procedure (conn,buf$p,count,excep$p) word external;
declare conn connection,
buf$p pointer,
count word,
excep$p pointer;
end;

dg$write: procedure (conn,buf$p,count,excep$p) external;
declare conn connection,
buf$p pointer,
count word,
excep$p pointer;
end;

dg$exit: procedure (completion$code) external;
declare completion$code word;
end;

$eject
/xThe local procedures follow.*/

numout:
procedure {value,where);
declare value -word;

declare where connection;

declare digits(x) byte data('0123456789);
declare chars(5) byte;

declare i byte;

doi=1t05;
chars(5-i) =digits(value mod 10);
value=value/10;

end;

i=0;

do while chars(i)='0"and i< 4;
chars(i)="";
i=i+1;

end;

call dg$write(where, @chars,5, @err);

call dg$write(where, @lfcr,2, @err);

end numout; (figure continues)

Introduction

1-16

61
62

63
64

65
66

67
68

81
82

83
84

SRR N = - -

NN N

NN WON

ArBAON

PSCOPE-86 User’s Guide

$eject
/*Now begins the executable codex/

leftmargin=10;
linesend=50;
double=true;

/xIn the interest of space, initial variables are assigned in the code. A more useful program
would read leftmargin, linesend, and double as input.*x/

pagenumber=1;
linenumber=1;

conout=dq$create(@(4,:CO:),@err);
conin =dq$attach(@(4,":Cl:"),@err);

cali dg$open(conin,1,0,@err);
call dg$open(conout,2,0,@err);

call dg$write(conout, @ ('leftmargin= "),12,@err);
call numout(leftmargin,conout);

call dq$write(conout, @ ('lines/page="),12,@err);
call numout(linesend,conout);

call dg$write(conout, @ (‘double = '),12,@err);
if double=true then
do;
call dg$write{conout, @ (true’),5,@err);
call dg$write(conout, @ifcr,2, @err);
end;
else
do;
call dg$write(conout, @ (' false’),6, @err);
call dq$write(conout, @lfcr,2, @err);
end;

/xAttach the file txtin and create the file txtout; open them.x/

textout=dg$create(@ (6,'txtout’), @err);
textin=dqg$attach(@(5,'txtin’), @err);

call dg$open(textin,1,0,@err);
call dg$open (textout, 2,2, @err);

$eject
/xQutput to file textout.*/

bytes$read=1;
do while bytes$read < >0;

/%Qutput the heading.*/

doi=11t050;
call dg$write({textout, @blank,1,@err);
end;
call dqg$write(textout, @ ('Intel Corporation '}),21,@err);
call numout(pagenumber,textout);
call dg$write (textout, @ifcr,2, @err);
call dg$write(textout, @lfcr,2, @err);

/*Output the page.x/

do while linenumber < =linesend and bytes$read < >0;
doi=1toleftmargin;
call dg$write(textout,@blank,1,@err);

end; , .
(figure continues)

PSCOPE-86 User’s Guide

98 3 bytes$read =dq$read(textin,@ch,1,@err);
99 3 do while ch <> 13and bytes$read <>0;
100 4 call dg$write(textout,@ch,1,@err);
101 4 bytes$read =dq$read(textin,@ch,1,@err);
102 4 end;
103 3 bytes$read =dq$read(textin,@ch,1,@err);
104 3 if double=true then
105 3 do;
106 4 call dg$write (textout, @Ifcr,2, @err);
107 4 call dg$write(textout, @lfcr,2, @err);
108 4 linenumber=Ilinenumber+2;
109 4 end;
110 3 else
do;
111 4 call dg$write(textout, @lfcr,2, @err);
112 4 linenumber=linenumber+1;
1183 4 end;
114 3 end;
115 2 call dq$write(textout,@ff,1,@err);
116 2 callda$write(conout,@('page= '),6,@err);
117 2 call numout(pagenumber,conout);
118 2 pagenumber=pagenumber+1;
119 2 linenumber=1;
120 2 end;
$Seject
/*Close and detach files.x/
121 1 calldg$closelconin,@err);
122 1 calldg$close(conout,@err);
123 1 calldg$closeltextin,@err);
124 1 calldg$close(textout,@err);

125 1 calldg$detach{conin,@err);
126 1 call dg$detach{textin,@err);
127 1 call dg$detach(iexiout, @err);

128 1 halt;
129 1 call dg$exit(compl);
130 1 end;

Figure 1-3 Listing of Pager in PL/M-86

This program does not contain any obvious errors. In the interest of space, the
code does not check the status returned after the file handling system calis. It is
good programming practice to check this status and enter an error routine if the

status is non-zero.

Invoke PSCOPE, load the program pager.86. Define ‘a de
: called Inumber. This debug procédure ‘is intended to’ ‘be calle
: reglster It prmts out the current hnc number and retums a valu

Deﬁn& a trace regrster called lzne] Z 5. Statement #1 5;"‘0f the PL/M program . -

writes.a form: feed at'theend of a page inthe. file tetout. Prmt)
berat thIS time- chsplays itsivalue when the loop is exxted

Display the current value of CS:IP.

ug procedure !
{ by a trace’

Introduction

Introduction

xload pager.86

X

xdefine proc LNUMBER =do

. xwrite 'linenumber=",linenumber
. xreturn true

. xend

xdefine trcreg LINE115 =#115 call Inumber

x$
1CC6H:0000H

PSCOPE-86 User’s Guide

1-18

xgo using line115

ieftmargin= 10

lines/page= 50

double= true

linenumber= 51

[At #115]

page= 1

linenumber= 51

[At #115]

page= 2

linenumber= 23

[At #115]

page= 3

EXCEPTION: Program call to DQSEXxit
[Stop at location 1CC6H:04AEH]
*xexit

PSCOPE terminated

CHAPTER 2
USING THE DEBUGGER

This chapter describes how to use the debugger, including the following:
® Invoking the debugger using initialization and configuration controls.
® Entering commands from the keyboard.
e Editing command lines with the line editor or the internal editor.

® Using the menu commands.

Invoking the Debugger

Invoke the debugger by entering the following invocation line (notational conven-
tions are defined in the Preface):

[RUN] [directory-name] PSCOPE [controls]x

Where:
girectory-name is the host system’s file path name.

controls is any of the following invocation controls. The first con-
' trol listed in each pair is the default. The controls can be
specified in any order.

CRT|NOCRT
MACRO|NOMACRO
NOSUBMIT |[SUBMIT
VSTBUFFER (decimal-number)

Each control is described in the following sections.

The CRT|NOCRT Control

CRT specifies a file which defines CRT characteristics that describe the control se-
quences for communicating with the terminal. The form of this file is described in
Appendix B.

If you do not enter either CRT or NOCRT, the debugger looks for the CRT file
PSCOPE.CRT in the same -directory from which the debugger was invoked. If
PSCOPE does not find the file PSCOPE.CRT, the debugger assumes that the key-
board and CRT control sequences are the same as those on a standard Series III or
Series IV development system.

If you specify CRT without a file name, the default file (PSCOPE.CRT) must
exist; otherwise, PSCOPE displays an error message.

2-1

Using the Debugger PSCOPE-86 User’s Guide

If you specify NOCRT, the debugger does not look for a CRT file. It assumes a
Series I1I- or Series IV-based machine.

If you rename the debugger file and invoke it with the new name, the debugger
looks for a CRT file with the new name.

Syntax

CRT [(filename)]
NOCRT

Abbreviation

CR|NOCR

Default

PSCOPE.CRT

Example
Following are some examples of the CRT|NOCR

RUN PSCOPE
run pscope crt(1510t.crt)
RUN PSCOPE NOCRT

The MACRO |[NOMACRO Control

MACRO specifies a file containing debugger commands to be executed during
debugger initialization. You create MACRO files containing command definitions
useful to a particular application, such as abbreviations or debugger procedures
which will be used over several debug sessions.

If you do not enter either MACRO or NOMACRO, the debugger looks for the file
PSCOPE.MAC in the same directory from which the debugger was invoked.

The PSCOPE.MAC file can contain any number of debugger commands to be ex-
ecuted on initialization. For example, the MAC file can automatically define
abbreviations using the LITERALLY command (discussed in Chapter 7).

If you specify MACRO without a file name, the default macro file must already
exist.

If you specify NOMACRO, the debugger does not look for a macro file.

If you rename the debugger and invoke it with the new name, the debugger auto-
matically looks for a MAC file with the new name.

A macro file is not required.

(3]
0
N

PSCOPE-86 User’s Guide Using the Debugger

Syntax

MACRO [{filename)]
NOMACRO

Abbreviation

MR |[NOMR

Default

PSCOPE.MAC

Example
Here are some sample MACRO |[NOMACRO control commands.

run pscope macro (procs.mac)
RUN PSCOPE NOMR

The NOSUBMIT |SUBMIT Control

SUBMIT indicates that PSCOPE is to operate inside of a SUBMIT file. If you speci-
fy SUBMIT, you must use the standard system line editor rather than PSCOPE’s
extended line editor. Using the standard system line editor ensures that SUBMIT
file commands are echoed properly to the system terminal.

Syntax

NOSUBMIT
SUBMIT

Abbreviation

NOSM |SM

Default

NOSUBMIT

Example
The following illustrates how to use the NOSUBMIT |[SUBMIT control.

run pscope sm
RUN PSCOPE NOSM

2-3

Using the Debugger PSCOPE-SG_ User’s Guide

The VSTBUFFER Control

PSCOPE employs a virtual symbol table. Only a portion of the user-program
symbol table need reside in physical memory at any one time. The entire symbol
table resides on disk.

VSTBUFFER specifies the amount of physical memory to be used for the virtual
symbol table. Replace decimal-number with the number of kilobytes that you want
reserved for the virtual symbol table buffer. The parameter decimal-number must
be a number in the range S through 61.

The larger the virtual symbol table buffer is, the less time PSCOPE must spend

manipulating the symbol table. On the other hand, a small virtual symbol table
buffer frees up more memory for use by the user program and debug objects.

Syntax
VSTBUFFER(decimal-numben
Where:
decimal-number is a number in the range 5 through 61, specifying the
amount of physical memory in kilobytes to be used for
the virtual symbol table.

Abbreviation

VSTB(decimal-numben

Default

VSTB(5)

Invocation Error Messages

You can make three types of errors when entering the invocation line:
® An unrecognized control
® A control missing a required parameter
¢ A control with an invalid parameter

When an invocation error occurs, PSCOPE displays an error message, followed by
the operating system prompt. You can then enter a corrected invocation line.

PSCOPE displays the following error message when you enter an unrecognized

control character:

UNKNOWN CONTROL: control

2-4

PSCOPE-86 User’s Guide Using the Debugger

PSCOPE displays the following error message when you do not include the re-
quired parameter with the invocation line:

PSCOPE OPTION ERROR
OPTION: control
ERROR: message

PSCOPE terminated

PSCOPE displays the following error message when you enter an invalid
parameter:

PSCOPE I/0 ERROR
FILE:file-type
NAME:filename
ERROR:message

PSCOPE terminated

Where:

file-tvpe is CRT or MAC.

filename is the name of your file.

message is the error message that identifies the problem.

Using the Debugger

After you correctly enter the invocation line, the debugger clears the screen and
displays the following sign-on message:

system-id PSCOPE-86, Vx.y

The system-id identifies the host system. On the Series III, the host system-id is
SERIES III.

In Vx.j;, xis the debugger version number, and yis the change number. After sign-
ing on, the debugger prompts for commands with an asterisk (x). User software
can then be loaded, executed, tested, and debugged by entering the commands de-

scribed in subsequent chapters. After completing an operation in response to a
command, the debugger prompts for new input.

You can perform any of the following operations when the debugger prompt is
displayed:

® Enter acommand from the keyboard.

® Enter commands from an external file.

® Re-execute the last command (CNTL-E).

® Enter the internal editor to create debug objects or edit commands.
® Suspend or cancel debugger terminal output.

While the debugger is executing, you can interrupt operation as follows:

® Suspend terminal output by entering CNTL-S and resume terminal output
by entering CNTL-Q.

2-5

Using the Debugger

2-6

® (Cancel the command in progress by entering CNTL-C.

You can create a file containing debugger commands, then use the INCLUDE
command described in Chapter 10, to enter the commands from that file.

You can record the debugging session by using the LIST command (described in
Chapter 10). The LIST command sends all debugger terminal output to the speci-
fied file, either on disk or hard copy. The file includes PSCOPE prompts, user
input lines, PSCOPE output, and error messages. It does not, however, contain
output from the program being debugged.

Terminating a Session

Enter the following EXIT command to exit the debugger:
EXIT

The debugger responds with the following message:
PSCOPE terminated

The debugger closes all open files and returns to the operating system.

Command Entry

The debugger prompt (*) indicates that the system is in command-entry mode. In
this mode, the debugger places characters entered at the terminal in a command
buffer until the end of a complete command coincides with the end of a command
line. At this point, the debugger executes all commands in the buffer in the order
in which they were read. (Legal command line length is virtually unlimited,
depending on the amount of workspace available.)

You can continue commands which will not fit on one line on subsequent lines.
The continuation flag, an ampersand (&) at the end of the line to be continued, is
optional because the debugger can recognize the end of a completed command in
most cases. (PSCOPE issues a double asterisk (x*) prompt if it needs more com-
mand input.) The exception is when a command has an optional parameter that is
placed on the next line. In this case, the debugger executes the partial command
(since it is complete) unless you include the continuation flag.

Continuation flags let you specify a multi-line sequence of commands before they
are executed (without using the DO construct explained in Chapter 6).

You must separate commands with a semicolon when you specify more than one
command on a line.

Line-Editing Keys

You can edit command input in line-oriented mode using the following line editing
functions:

RUBOQUT key Deletes the character to the left of the cursor.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide

CNTL-F
or Deletes the character at the cursor.
DEL CHAR
(RUB OUT)
CNTL-X Deletes all characters to the left of the cursor.
CNTL-A Deletes the character at the cursor and all characters to the
right of the cursor.
CNTL-Z
or Deletes the entire current line.
CLEAR LINE

Left Arrow key Moves the cursor one character to the left.
Right Arrow key Moves the cursor one character to the right.

HOME key Operates with the left or right arrow key. Moves the cursor
to the beginning of the line if pressed after the left arrow
key. Moves the cursor to the end of the line if pressed
after the right arrow key.

CNTL-C Cancels the command in progress.

ESC key Enters PSCOPE’s internal editor.

Syntax Errors

A syntax error is an error in the command’s format. When the debugger finds a
syntax error, it displays the following message:

1Syntax error

The arrow (1) is aligned under the portion of the command line containing the
error. If the error is located near the right edge of the screen, the message takes
the following form:

Syntax error |

You can correct commands in which errors were detected by pressing ESC to
invoke the internal editor and using the appropriate editor commands. You can
then execute the corrected command after exiting from the editor.

The Internal Screen-Oriented Editor

PSCOPE contains a built-in editor for modifying debug procedures,
LITERALLYsS, patches, debug registers, the most recent command, and the most
recent GO command. For example, use the editor to modify the specification of a
break register.

The edit-item may be the name of a debug procedure, the name of a debug register,
the name of a LITERALLY definition, the keyword PATCH followed by the
patch’s starting address, or the keyword GO (for editing the current GO
specification).

Without an argument, the EDIT command is invoked with an empty buffer. Press-
ing the ESC key invokes the editor with the last command as the edit item.

Using the Debugger

Using the Debugger PSCOPE-86 User’s Guide

The internal editor is screen-oriented. Figure 2-1 shows a typical menu. If you do
not have an Intel terminal, you must include a CRT configuration file when you
invoke PSCOPE. This file {called PSCOPE.CRT) contains the I/0 sequences for
cursor control. You can also use this file to reprogram special keys such as the di-
rection arrows, ESC, and HOME keys to map their functions to other keys.
Because the internal editor is interactive and screen-oriented, you cannot use it if
you specified the SUBMIT control when you invoked PSCOPE. Nor can you use
the VIEW command when PSCOPE is running under SUBMIT.

Entering the Internal Editor

You can invoke the internal editor in the following two ways:

® By pressing the ESC key either at the debugger prompt or during command
entry.

If you press ESC immediately after the debugger prompt, the last command
is recalled for editing.

If you press ESC during command entry, you can edit the entire command
being entered.

® By entering the EDIT command immediately after the debugger prompt.

Syntax
EDIT [edit-item]
Where:

edit-item is one of the following:

debug-symbol is the name of an existing debug object of one of the
debug types (not memory or user types) specified in
Table 3-5. If you specified debug-symbol, its defini-
tion (the command that defined the debug object) is
brought up for editing.

PATCH address

GO

If you specify PATCH, the corresponding debugger program PATCH is made
availabie for editing.

If you specify GO, the text of the last GO command is brought up for editing.

If you do not specify anything, the editor invokes with an empty edit space.
Exiting the Internal Editor

After exiting the internal editor (using the QUIT command), you can either exe-
cute or ignore the command(s) you just edited.

2-8

PSCOPE-86 User’s Guide Using the Debugger

Internal Editor Display

As shown in Figure 2-1, the internal editor uses the screen’s two bottom lines for
the edit message line and the menu option line. The remainder of the screen is the
edit display area.

<text>

---<msg>

Block Delete Insert Xchange

1372

Figure 2-1 Editor Display

The internal editor displays a maximum of 79 columns of text but supports longer
lines. For lines exceeding 79 characters, an exclamation point (!) is displayed as
the last character to indicate that more text exists beyond the end of the display.

When you move the cursor logically beyond the display, it remains physically in
the right-most position in the line. All edit functions can act on text existing

J3810)0 Ip O Eun S 8 Ly § 0 Lrippye ¥ LIy 2L

beyond the display area, but the display is not affected.

The internal editor displays the printable ASCII characters (20h to 7Eh). It dis-
plays unprintable characters as question marks (?). The internal editor considers
the carriage return (CR) and the linefeed (LF) characters printable characters.
The CR/LF combination acts as a single character called return. A tab is interpret-
ed as four spaces.

Internal Editor Commands

The internal editor uses the cursor control keys and editor display options for com-
mand input.

Cursor Control Keys. The following cursor control keys control movement
within the text being edited:

® Uparrow

® Down arrow
® [eftarrow

® Rightarrow
e HOME

e RETURN

2-9

Using the Debugger PSCOPE-86 User’s Guide

The cursor control keys operate as described in the following sections.

Up Arrow Key. Pressing the up arrow key moves the cursor up one line from its
current column position. If the cursor is already in the top line of the screen, press-
ing the up arrow key moves the cursor to the preceding line and displays the text
with that line positioned six lines from the top of the screen (standard Intel
terminals). The up arrow has no effect if the cursor is on the first line of the text
being edited.

Down Arrow Key. Pressing the down arrow key moves the cursor one line down
from its current column position. If the cursor is already in the last line on the
screen, the text scrolls up one line. The down arrow key has no effect if the cursor
is in the last line of text.

Left Arrow Key. Pressing the left arrow key moves the cursor one character to
the left. If the cursor is at the beginning of a line, the cursor moves to the carriage
return at the end of the preceding line. If the cursor is at the beginning of the
screen, pressing the left arrow key moves the cursor to the end of the preceding
line and displays the text with that line positioned six lines from the top of the
screen (standard Intel terminals). The left arrow key has no effect if the cursor is
at the beginning of the text.

Right Arrow Key. Pressing the right arrow key moves the cursor one character to
the right. If the cursor is at the last character of the last line on the screen, the
screen scrolls up one line. The right arrow key has no effect if the cursor is at the
end of the text.

HOME Key. The HOME key is used with the directional cursor keys, as follows:

® Pressing HOME after pressing an up or down arrow key displays the previous
or next screen of text, respectively. The cursor remains in the same relative
location on the new page.

® Pressing HOME after pressing a left or right arrow key moves the cursor to
the beginning or end of the line, respectively.

You can press HOME any number of times after pressing a directional key.

RETURN Key. Pressing the RETURN key when the editor is expecting a com-
mand moves the cursor to the beginning of the next line of text. If the cursor is in
the last line of the text display area, the text is scrolled up one line. If the cursor is
at the end of the text, pressing the RETURN key has no effect.

Delete Keys. You can use the following delete keys when the editor is at the com-
mand level or in the insert or exchange mode:

e RUBOUT key

Deletes the character to the left of the cursor.

® CNTL-F
Deletes the character at the cursor.

(5]
-
=)

PSCOPE-86 User’s Guide Using the Debugger

e CHARDEL
Deletes the character at the cursor.

® CNTL-X
Deletes all characters to the left of the cursor.

e CNTL-A
Deletes the character at the cursor and all characters to the right of the
CUISOL

® CNTL-Z
Deletes the current line.

® CLEARLINE
Deletes the current line.

Menu Commands

The menu command provides the following command options:
® Biock
® Delete
® QGet
® Insert
® Quit
® View

® Xchange

To select each menu command, enter the first letter of the command (either
lowercase or uppercase). The editor beeps if you give it an unexpected command
character.

Enter CNTL-C to abort the menu command in progress. The editor ignores the
CNTL-C if it is waiting for a command.

The menu always indicates which options are available. Some menu commands
lead to sub-menus (for example, Quit and Block).

BLOCK Command (B)

The BLOCK command lets you mark off a block of text and place it in the block
buffer for later retrieval (with the GET command).

To place text into the buffer, move the cursor to the first character in the block of
text desired and press B. The editor displays the following sub-menu:

Buffer Delete

Using the Debugger PSCOPE-86 User’s Guide

Move the cursor just beyond the character at the end of the block to be delimited
and again enter B. (The beginning and ending characters of the block being
delimited are marked with an at sign (@).) The text is now in the buffer.

Use the left, right, up and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a block or

delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

DELETE Command (D)

The DELETE command lets you mark off a block of text, place it in the block
buffer for later retrieval (with the GET command), and then delete it.

To place text in the buffer, move the cursor to the first character in the block of
text desired and press D. The editor displays the following sub-menu:

Buffer Delete
Move the cursor just beyond the character at the end of the block to be delimited
and again enter D. (The beginning and ending characters of the block being

delimited are marked with an at sign (@).)

Use the left, right, up and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a block or

delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

GET Command (G)

The GET command retrieves the contents of the block buffer (see the block and
delete commands) and inserts it at the current cursor location. The block buffer is
initially the null string.

You can move text from one part of the file to another by doing one of the
following:

® Placing the text to be inserted in the block buffer with the delete command.

® Moving the cursor (with the cursor control keys) to where you want the text
inserted.

® Entering the GET command.

INSERT Command (I)

The INSERT command puts the editor into insert mode, which is indicated by
[insert] on the menu line. Each character you enter is then inserted at the cursor
until you press ESC. The display echoes the new text as you insert each character.

PSCOPE-86 User’s Guide Using the Debugger

In insert mode, you can use the cursor control keys (left, right, up and down
arrow, HOME and RETURN) and the delete keys. Pressing RETURN after insert-
ing text in the last line scrolls the text up one line.

If the cursor is positioned beyond the end of a line when entering text in insert

mode, the cursor moves to the point immediately before the end (or carriage
return) of the current line, and the insertion begins beyond the line.

QU'IT Command (Q)

The QUIT command lets you exit the editor and either pass or not pass a command
back to the debugger. The editor displays the following sub-menu when you enter
Q:

Abort Execute

Enter A (abort) to exit the editor without passing a command back to the
debugger.

Enter E {execute) to exit the editor and process the edited text as a command.

VIEW Command (V)

The VIEW command redisplays the screen with the line containing the cursor
positioned in the middle of the screen, unless centering places the beginning of
the text below the top of the screen.

XCHANGE Command (X)

The XCHANGE command puts the editor into exchange mode, indicated by
[exchange] on the menu line. The XCHANGE command lets you replace the char-
acter at the cursor, one for one. The cursor moves one character to the right each
time you replace a character.

Press ESC to end the exchange mode.

While in exchange mode, you can use any of the cursor control keys to move the
cursor. Characters you enter beyond the end of a line are inserted before the
RETURN in that line.

The VIEW Command

The VIEW command allows you to examine files without exiting PSCOPE. This is
a PSCOPE command,; it is distinct from the view command that belongs to the
PSCOPE internal editor.

Syntax

VIEW pathname
Where:

pathname is the fully-qualified name of the text file you want to examine.

2-13

Using the Debugger PSCOPE-86 User’s Guide

Description

The VIEW command is menu driven. After you issue the command, the first 23
lines of the specified file appear on the screen. The last two lines of the screen con-
tain the VIEW menu as shown in the following example:

----- VIEW :f1:pager.src
Again Find -find Jump Quit Roll Set View

Choose a menu item by entering its first letter (VIEW is not case-sensitive). For
example, entering Q chooses Quit, which terminates the VIEW command and re-
turns you to the PSCOPE prompt.

Again Repeats the last command option. For example, if you just
searched for the text string “reset”, entering A searches for the
next occurrence of that text string.

Find Searches for a text string in the forward direction. After you enter
the F, VIEW requests a text string. Enter the text string and termi-
nate it with an ESC. Find remembers the specified text string. If
you enter another F, you can search for the next occurrence of the
string by just entering an ESC.

-find Searches for a text string in the reverse direction. After you enter
the hyphen (-), VIEW requests a text string. Enter the text string
and terminate it with an ESC.

Jump Moves the cursor to the start or the end of the file. After you enter
the J, VIEW presents the following new menu:

Start End
Choose S for the start of the file and E for the end of the file.

Quit Returns you to the PSCOPE prompt.

Roll Moves the cursor to the last line on the screen, then moves the
screen down through the file one line at a time. You can stop rolling
with CNTL-S and resume rolling with CNTL-Q. Terminate the roll
with an ESC.

Set Determines the way VIEW displays the file. After you enter the S,
VIEW presents the following new menu:

Leftcol Tabs Viewrow
Choose one item by entering its first letter.
Leftcol is zero by default; zero identifies the first column. You can
change the first column displayed on the screen. This is useful
when your file contains rows longer than the screen display. When

leftcol is other than zero, column zero contains an exclamation
point (!).

2-14

PSCOPE-86 User’s Guide Using the Debugger

Tab is four spaces by default. You can alter the tab settings in your
file display. This alteration is only for the display. Your file is not
edited.

Viewrow is line five by default. The rows on the screen are labeled
0 through 22. Setting viewrow to a row number moves the row the
cursor is on to that row number.

2-15/2-16

CHAPTER 3
COMMAND LANGUAGE AND
EXPRESSIONS

This chapter describes PSCOPE command line format. It gives an overview of
tokens and symbol object types. It defines the operands and operators you can use
in expressions and explains the rules for combining different expression types.

Tokens

Tokens are the smallest meaningful units in a command line. Each token belongs
to one of the following classes:

® Delimiters

® Names

® Line numbers

& Numeric constants

® Character string constants
® Operators

® Comments

Delimiters

A delimiter is a character or a pair of characters that separate or mark the beginning
or end of a token. The debugger recognizes delimiters for names, lines,
commands, strings, range specifications, modules, lists, and comments. Table 3-1

lists the delimiters.
Table 3-1 Special Character Delimiters
Character Description Function
Space Blank separator
Tab Blank separator
<cr> Carriage return Line terminator
& Ampersand Continuation line indicator
; Semicolon Command separator
! Apostrophe String delimiter
. Dot Compound name separator
“ Quotation marks User symbol flag
: Colon Module name prefix
, Comma List separator
/% Slash asterisk Start-of-comment delimiter
x/ Asterisk slash End-of-commment delimiter

Command Language and Expressions PSCOPE-86 User’s Guide

Names
There are three types of names:

® Keywords
Keywords are reserved elements of the debugger command language. Key-
words have special meaning within the debugger language and, therefore,
cannot be used in other ways. For example, a keyword cannot be used as a
debug symbol. Appendix G contains a complete list of PSCOPE keywords.

® Program symbols
The compiler includes program symbol information in your object file when
you compile your source module with the compiler DEBUG control. The
debugger enters the program symbols into its symbol table when you load
your object code.

® Debug symbols
Debug symbols are any symbols defined by the user in a debug session.
Chapters 7 and 8 describe debug symbols and their use.
Names Format
A name is a sequence of letters, digits, underscores, at-signs, question marks, or

dollar signs, of which the first character must be a letter, underscore, at-sign, or
question mark. This format is summarized in Table 3-2.

Table 3-2 Names Format

Valid Valid
First Character Remaining Characters Description
A-Z -Z Letters
@ @ At-sign
? ? Question mark
0-9 Digits
$ Dollar sign*
_ - Underscore

*Embedded dollar signs are ignored by the debugger and may be used to improve the readability of a
name.

To convert Pascal labels (which are numbers in the source code) to the name
format, the compiler removes leading zeros from each label and attaches a leading
at sign (@) to the label. For example, the label ‘9999’ in module ‘DC' is as follows:

:DC.@9999
The debugger accepts names of unlimited length; however, it uses only the first 40
characters. The debugger interprets uppercase and lowercase characters as the
same character (i.e., b and B are interpreted as the same character).

Referencing Names

Names have the following precedence: command keywords, debug symbols, pro-
gram symbols. The debugger checks symbols it encounters to see if they are

PSCOPE-86 User’s Guide Command Language and Expressions

keywords. If a symbol is not a keyword, the debugger checks to see if it is the name
of a debugger object. If the symbol is not the name of a debugger object, the debug-
ger assumes that the symbol is the name of a program object.

A debug symbol must not duplicate a keyword. A debug symbol is referenced by
entering its name.

A program symbol name may duplicate a keyword or debug symbol if you precede
it with quotation marks ("), as shown in the following example:

FOO + "Line

In all cases, you can reference a program symbol by using a fully qualified name. A
fully qualified name is a compound name, where each level of the name is specified
beginning with the module name, including any names of enclosing procedures,
and ending with the symbol name. For example, use the following reference for
the variable “TEST” in procedure “GETSCORE” of module “SYSTEM”:

:SYSTEM.GETSCORE.TEST

Alternatively, you can use a partially qualified reference depending on where you
are in the program. A partially qualified reference lets you abbreviate the reference
by omitting leading parts of the reference, such as the module name. This method
is explained further in Chapter 5.

Line Numbers

The compiler produces line numbers. The following format is for a line number
reference.

[:module-name] #line-number

For example:
:MOD1#23
or
#23

Note that module names must begin with a colon (), as shown in the first
example.

Numeric Constants

Numeric constants are integers or floating point numbers.

Integers

An integer constant is a number consisting of one or more digits and an optional
one-character suffix that identifies the number base. The suffix is not required if
the integer’s number base corresponds to the current default base set with the
BASE command. (Note that a 0 (zero) must precede hexadecimal numbers begin-
ning with the letters A through F to distinguish them from names.)

You can enter alphabetic hexadecimal digits A through F and base suffixes (Y, T,
H, K) in either uppercase or lowercase.

Command Language and Expressions

Table 3-3 summarizes integer constants.

Table 3-3 Elements of Integer Constants

Number Base Valid Digits Suffix Example
Binary (base 2) 0,1 Y 11110011Y
Decimal (base 10) 0-9 T 243T
Hexadecimal (base 16) 0-9,A-F H OF3H
Decimal multiple of 1024T 0-9 K 4K

Floating Point Numbers

Floating point numbers are decimal numbers consisting of a significand
(expressed in one or more digits), a decimal point, one or more additional digits,
and an optional exponent. The exponent consists of the letter E followed by a
signed integer value. For example, the following decimal value:

0.24x10 -2
May be expressed as follows:

0.0024
or
0.24E -2

Use the following guidelines when working with floating point numbers:

® You must use the decimal point in a floating point number to distinguish the
E as a scale factor (e.g., 44.0E30); otherwise, E might look like a digit in a
hexadecimal number (e.g., 44E30).

e Digits must appear on both sides of the decimal point. For example, 0.85E2
and 85.0E2 are acceptable, but .85E2 is not because there is no digit before
the decimal point.

® A floating point number must have a value in the following range: 64-bit
mantissa, 15-bit exponent, and a sign bit, for a total of 80 bits.

Floating point (real) arithmetic used in PSCOPE conforms to the proposed IEEE
standard for binary floating point arithmetic. This standard specifies internal data
representations, normalization, rounding modes, and error handling. All real
arithmetic performed by Intel microprocessors and software (except VSP
software) conforms to this standard. (The 8086 Family User’s Manual explains the

ok ok wi0s]

proposed IEEE floating poini standard.)

Character String Constants

The term string in a command format means a sequence of one or more ASCII
printing characters enclosed in delimiters of apostrophes. Examples are as follows:

'"ABCDE'

'"Testing 1 2 3’

VX!

'THIS IS A STRING’
'This is a string’

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide

Command Language and Expressions

To enter a literal apostrophe inside a string, use two apostrophes to distinguish the
literal apostrophe from those used as delimiters.

For exampie, the following:

"WHAT"”S UP?'

Is stored as follows:

WHAT'S UP?

The debugger accepts strings of up to 254 characters, not counting the enclosing
delimiters. You can extend strings over more than one line; the debugger concate-
nates (links) adjacent strings into a single string. You can separate adjacent strings
with spaces, tabs, or carriage returns.

When a string value is stored in memory, the value is the one-byte ASCII value of
each character. If the string has more than one character, the debugger stores the
subsequent ASCII values in consecutive locations.

Operators

The command language contains tokens that serve as operaiors. Table 3-4 lists the.
special character operators that the debugger recognizes.

Table 3-4 Special Character Operators

Operator Description Function
* Multiply sign L. Multiplication
- Minus sign Negation or subtraction
+ Plus sign Identity or addition
/ Slash Division
== Double equal Equality
signs
<> Angle brackets Inequality
> Angle bracket Greater than
< Angle bracket Less than
> = Bracket,equals Greater than or equal to
< = Bracket,equals Less than or equal to
. Dot Address of (prefix operator)
() Parenthesis Bracketing
[1 Square brackets Array indexing
= Equal sign Assignment
Colon Pointer constructor

In addition to the special character operators shown in Table 3-4, PSCOPE also
supports several keyword operators. OR, XOR, AND, and NOT are the conven-
tional Boolean operators. MOD is the conventional remainder (or modulo) opera-
tor (as defined in Pascal), extended to also work with real numbers.

3-5

Command Language and Expressions

3-6

Comments

PSCOPE-86 User’s Guide

The debugger ignores characters enclesed by the comment delimiters, /* and */.
The following comments would be ignored by PSCOPE:

/* THIS PROGRAM WAS DEBUGGED WITH PSCOPE */

/x THIS COMMENT IS
SPREAD OVER TWO LINES. */

Types of Symbol Objects

All objects referred to by debug or program symbols have an associated type. Sym-
bols are divided into three types. The first two types, memory and debug, are basic
types whose names and definitions are determined by PSCOPE. The third type,
referred to as user types, consists of user-defined symbols. PSCOPE obtains this
type of information from the debug information in the load module of a program.
Table 3-5 lists the standard types recognized by the debugger.

Table 3-5 Standard Symbol Object Types

Symbol Object Type Definition
Type
Memory BOOLEAN TRUE or FALSE

CHAR String of ASClI character(s)

POINTER Pointer value

BYTE unsigned 8-bit quantity

WORD Unsigned 16-bit quantity

DWORD Unsigned 32-bit quantity

SELECTOR Unsigned 16-bit quantity

ADDRESS Unsigned 16-bit quantity

SHORTINT Signed 8-bit quantity

INTEGER Signed 16-bit quantity

LONGINT Signed 32-bit quantity

EXTINT Signed 64-bit quantity

BCD Signed 18-digit binary coded
decimal number

REAL 32-bit floating point number

LONGREAL 64-bit floating point number

TEMPREAL 80-bit floating point number

Debug PROC Debug procedure

LITERALLY String macro

BRKREG Break register

TRCREG Trace register

PATCH Debug patch code

User ARRAY Array

RECORD Pascal record or PL/M
structure

PROCEDURE User program procedure or
function

LABEL User program label

LINE User program line number

FILE User file

MODULE User program module

ENUMERATION User-defined PASCAL
enumerated type

PSCOPE-86 User’s Guide

Command Language and Expressions

Compiler/Assembler Type vs. PSCOPE Type Names

PSCOPE does not always identify a program variable as the same memory type as
the user program. For example, PSCOPE considers an ASM-86 program variable
of type DWORD to be a program variable of type POINTER. Table 3-6 lists the
memory type differences between ASM-86, PL/M-86, Pascal-86, FORTRAN-86,

and PSCOPE.

Table 3-6 Compiler/Assembler Type vs. PSCOPE Type Names

ASM-86 PSCOPE for ASM-86 PL/M-86 PSCOPE for PL/M-86

BYTE BYTE BYTE BYTE

WORD WORD WORD WORD
INTEGER INTEGER
SELECTOR SELECTOR

POINTER POINTER POINTER (small) ADDRESS
POINTER (compact POINTER
or large)

DWORD POINTER DWORD DWORD
REAL REAL

QWORD LONGREAL

TBYTE TEMPREAL

STRUC RECORD STRUCTURE RECORD

RECORD

RFIELD

STRUC ARRAY OR RECORD STRUCTURE ARRAY ARRAY OF RECORD

ARRAY

Pascal-86 | PSCOPE for FORTRAN-86 PSCOPE for

Pascal-86 FORTRAN-86

BOOLEAN | BOOLEAN LOGICALx1 BOOLEAN

CHAR CHAR INTEGERx1 SHORTINT
CHARACTERxn CHAR

WORD WORD LOGICALx2 WORD

INTEGER INTEGER INTEGERx2 INTEGER

LONGINT LONGINT LOGICAL x4 DWORD

REAL REAL REALx4 REAL
INTEGERx4 LONGINT

LONGREAL | LONGREAL REALx8 LONGREAL
DOUBLE PRECISION

TEMPREAL | TEMPREAL TEMPREAL TEMPREAL

RECORD RECORD

ARRAY ARRAY

FILE FILE

SET SET

Pascal-86 uses POINTER types to allocate, access, and de-allocate dynamic

variables. Pascal POINTERSs are not analagous to PL/M-86 POINTERsS.

3-7

Command Language and Expressions PSCOPE-86 User’s Guide

Expressions

Expressions can be used as command arguments to specify numeric, Boolean, or
string values.

Expressions can be one of the following:

® A single number, constant, or symbolic reference. Example areas follow:

0 (Number without explicit suffix)
100H (Hexadecimal numeric constant)

‘A’ (One-character string constant)

X (Symbolic reference yielding a value)

e A formula applying operators and functions to numbers, constants, and sym-
bolic references as operands.

The debugger performs the calculation, using parenthetical and operator
precedence and left-to-right order to determine the sequence of operations.

Examples of expressions are as follows:
243
174 /4
0100H + 00FH
2x(6+4)
.BUFFER + 2
:MOD1.SAM + 21
To evaluate and display the value of an expression, enter the expression. An ex-

pression evaluates to a type component and a value component. The rules for
determining expression types and values are discussed later in this chapter.

Operands
You can use the following types of operands in expressions:
® Numeric constants
® String constants
® Program symbol references
® Machine register references
® Memory references with explicit typing
® Line number references
® Debug variable references
® Debug procedure calls
® Debug procedure parameters

® Debug built-in function calls

3-8

PSCOPE-86 User’s Guide Command Language and Expressions

Numeric Constants

Numeric constants can be integers or floating point numbers, described previously
in this chapter.

String Constants
You can use character strings as arithmetic values in expressions, as follows:
® A one-character string, which has a byte value corresponding to the charac-
ter's ASCII representation. For example, the string constant ‘A’ has the
value 41H.

® I onger string constants (up to 254 characters), which you may also use as
parameters of debug procedures or as arguments to built-in string functions.

Program Symbol References

When you enter a program symbol reference as an operand, its value is obtained
from the debugger symbol table and used in the associated expression.

To reference the value of a program symbol, use the following format:
symbolic-reference

Where:

symbolic-reference is a fully or partially qualified reference as described
in Chapter 5.

To reference the address of a program symbol, prefix symbolic-reference with the
dot operator as shown in the following exampie:

.symbolic-reference

Machine Register References

You can reference the 8086 registers symbolically, within expressions, just like
variables.

The registers are as follows:

AH AL AX BH BL BP
BX CH CL CS X DH
DI DL DS DX ES FH
FL FLAG [IP SI SP SS

Memory References with Explicit Typing

To reference a memory location and interpret it as a particular type of object in an
expression, use the following format:

memory-type location

3-9

Command Language and Expressions PSCOPE-86 User’s Guide

Where:

memory-type is one of the object types shown in Table 3-5.

location is an expression that evaluates to a pointer. The pointer must
refer to a single valid address.

The memory reference format uses memory-type to interpret the area of memory
pointed to by the address expression. The following example:

BYTE .FOO

interprets the first byte at the address of FOO as a byte regardless of the type of
FOO.

Other examples of memory references are as follows:

BYTE (.buffer + bufindex)
WORD DS:22H

X + (INTEGER .ABLE)
(LONGREAL TEST) MOD 5

Line Number References

When you use a line number reference in an expression, you get the address of the
first instruction generated by the compiler for the source line number. In other
words, you are referencing a program location through the line number.

awa 13
alc LN

11 Ulllﬁlclll IIIUUUI(:D \cdbll Wllll LllUll OWil bld C 1 nuii n‘
must sometimes specify a module name in the line mbe r reference, as follows:

[:module] #line-number

You must use fully qualified line references (those with a module specified) when
referring to a line number that is not in the current default module (determined by
the current name scope). You can use partially qualified references (those without
a module name) when the line reference is in the current default module.

The statement number must be a decimal integer. Examples of line number refer-
ences are as follows:

#45
:TEST#1
#23

Debug Variable References

After defining a debug variable (described in Chapter 7), you can use its value as
an operand within an expression. PSCOPE also includes the following predefined

variables:
Name Object Type Use
BASE BYTE Current default numeric base
NAMESCOPE POINTER Starting point for program symbol
lookup
$ POINTER Value of CS: 1P

PSCOPE-86 User’s Guide Command Language and Expressions

Debug Procedure Calls and Parameter References

After defining a debug procedure within the debugger (described in Chapter 8),
you can call that procedure from within an expression and have it return a value.

PSCOPE includes several built-in functions, as follows:

Name Use

SUBSTR Substring selection (Chapter 10)

CONCAT String concatenation (Chapter 10)

STRLEN String length (Chapter 10)

CI Console character input (Chapter 10)

ACTIVE Testing for program symbol accessibility (Chapter 5)

SELECTORS$OF Segment portion of pointer (Chapter 10)

OFFSET$OF Offset portion of pointer (Chapter 10)

Operators
An expression can contain any combination of unary and binary operators.

The debugger recognizes five groups of operators: dereference operators, pointer
selector operators (pointer selection uses built-in functions), arithmetic

1 b 1 An + - Ao 1 P
operators, memory-type operators, relational operators, and logical operators.

Table 3-7 shows the operators in each group in descending order (from highest to
lowest precedence). In the table, all operators apply to both real and integer oper-
ands unless otherwise noted. All operations are binary unless specified as unary
operations.

3-11

Command Language and Expressions

PSCOPE-86 User’s Guide

Table 3-7 Precedence of Operators (Highest to Lowest)

Group | Operator Operation Precedence
Arithmetic | + Unary plus 1
- Unary minus (2's complement)
x Multiplication 2
/ Division
MOD Integer remainder
+ Addition 3
- Subtraction
Relational | = = Is equal to 4
> Is greater than
< Is less than
>= Is greater than or equal to
<= Is less than or equal to
<> Is not equal to
Logical NOT 1’s complement 5
AND Logical AND 6
OR Logical OR 7
XOR Exclusive OR
Memory BOOLEAN TRUE or FALSE value 8
Type CHAR 8-bit ASCll character
POINTER Pointer value
BYTE Unsigned 8-bit quantity
WORD Unsigned 16-bit quantity
ADDRESS Unsigned 16-bit quantity
SELECTOR Unsigned 16-bit quantity
DWORD Unsigned 32-bit quantity
SHORTINT Signed 8-bit quantity
INTEGER Signed 16-bit quantity
LONGINT Signed 32-bit quantity
EXTINT Signed 64-bit quantity
BCD Signed 18-digit binary coded
decimal number
REAL 32-bit floating point number
LONGREAL 64-bit floating point number
TEMPREAL 80-bit floating point number

Type Conversions

PSCOPE automatically converts values from one type to another during expres-
sion evaluation and during modify commands (described in Chapter 7).

The following type classification is useful for describing the type conversions per-
formed by PSCOPE. The numbers in parentheses are the number of bytes used to
store a value of that type (precision). The type in each class considered to have the
maximum precision for that class is listed at the bottom of each column.

PSCOPE-86 User’s Guide Command Language and Expressions

Unsigned Signed Real

BYTE (1) SHORTINT (1) REAL (4)
WORD (2) INTEGER (2) LONGREAL (8)
ADDRESS (2) LONGINT (4) EXTINT (8)
SELECTOR (2) BCD (10)
DWORD (4) TEMPREAL (10)

Note that Pascal enumeration types are treated as unsigned types of the smallest
precision necessary to hold the ordinal representation of that type.
Type Conversions for Expressions

The automatic type conversions that PSCOPE performs during expression evalua-
tion are dictated by the following two things:

® The type of value expected by an operator or function.
® Not losing any significant portion of a value when performing an operation.

To accomplish these objectives, PSCOPE performs the following type conversions
during expression evaluation:

1. Each value used by the operation is extended to the maximum precision for
that type class.

2. Each value is converted to the type required by the operation.

3. The operation is performed, and the resulting value is left in its maximum
precision and passed on as a value to other operations in the expression (if
any).

Type Conversions for Assignments

The type of the source value and the type of the target variable dictate the automat-
ic type conversions PSCOPE performs during assignment. In general, the type
conversion proceeds as follows:

1. The source value is extended to the maximum precision for its type class.

2. The resulting value is converted to the maximum precision type of the type
class of the target variable.

3. The resulting value is truncated to the exact precision required for the target
variable type.

There are a few minor exceptions to these rules when non-numeric types are in-
volved (CHAR, POINTER, and BOOLEAN). In these cases, conversions between
some types may not be allowed or are handled as special cases. However, even for
these types, the automatic conversions performed by PSCOPE extend those
provided by Pascal and PL/M.

3-13/3-14

CHAPTER 4
LOADING AND
EXECUTING PROGRAMS

This chapter describes how to load programs and control execution by setting
breakpoints with the GO command and by stepping through the program.

The LOAD Command

The LOAD command loads the program file you want to debug. With the LOAD
command, you can specify that certain debugging information not be loaded, that
the 8087 emulator be linked with the program file (ISIS and iNDX only), or that
8087 chip support be included iIRMX-86 only).

Syntax
LOAD file [load-Option]x [CONTROLS command-tail]

Where:

file is the name of the program file you want to debug.
This name may be a complete pathname.

load-option is one of the following:

E8087 informs PSCOPE that your program uses the 8087 soft-

ware emulator. Select this option if your program per-
forms real arithmetic and PSCOPE is running under
the ISIS or iNDX operating systems. (The 8087 Support
Library Reference Manual contains information on the

8087 emulator and numeric support.)

CH8087 informs PSCOPE that your program uses the iSBC®
337 MULTIMODULE™ (the 8087 hardware). Select
this option if your program performs real arithmetic
and PSCOPE is running under the iRMX-86 operating
system.

NOLINES specifies that line number information is not loaded
from the program file.

NOSYMBOLS specifies that symbol information is not loaded from
the program file.

command-tail is any arbitrary text expected by your program. For
example, if your program expects parameters on its
invocation line, (a PL/M-86 program that uses the
DQSGETSARGUMENT system call), those parame-
ters would appear here.

Description

The load command loads the specified file into the microcomputer system
memory. The debug information in file is processed to produce PSCOPE’s symbol

Loading and Executing Programs PSCOPE-86 User’s Guide

table of information about the loaded program. If necessary, PSCOPE sends part
of this symbol table to disk, using a temporary work file.

The controls command lets you specify information your program may need to
execute.

You can extend the invocation line as you would any command line.

The object file must conform to the 8086 object module formats. The object pro-
gram must be position independent code (PIC) or load time locatable (LTL), with
absolute segments for interrupt vectors only. Because they do not use absolute
addressing, PIC and LTL object programs are less likely to cause conflicts with
PSCOPE’s address base. PSCOPE issues an error message if you try to load a pro-
gram which is neither PIC nor LTL.

The loaded object file must contain information initializing the CS, IP, SS, and DS
8086 registers. If these registers are not initialized during loading, PSCOPE dis-
plays an error message.

PSCOPE removes all previously set break registers (BRKREGs), trace registers

(TRCREGs), and patches when you load a program, even if the load is
unsuccessful.

Example

The following example uses the LOAD command.

*LOAD dc.86

The GO Command

The GO command transfers execution control to the loaded program.

Syntax (simplified)

GO [TIL expression [, expression]x]
or

GO FOREVER

Where:

expression is a symbolic expression specifying an address in the program
code where you want a breakpoint.

Description
The GO command transfers control from PSCOPE to the program under debug
and specifies the conditions under which the user program stops executing and

transfers control back to PSCOPE.

TIL lets you specify any number of breakpoints. Breakpoints are stopping points at
specific addresses in your program.

PSCOPE-86 User’s Guide Loading and Executing Programs

~ GO FOREVER specifies that your program will be executed without breakpoints.

If you do not specify neither TIL nor FOREVER, control passes to your program
using the same breakpoints as those used by the previous GO command (if any).

During program execution, you can interrupt execution any time by entering
CNTL-C. Note that entering CNTL-C while your program is executing the UDI
primitive DQ8$Read from :CI: causes an end of file condition on :CI:. The sample
program DC (found in Appendix E) is included on the PSCOPE disk and shows
one way of avoiding this problem in its procedure GET_LINE.

Note that the GO command always executes at least one instruction, so you can
set a breakpoint at the current execution point.

Chapter 11 explains how to use the GO command with break and trace registers.

Example

Each of the following examples is based on the sample program DC found in Ap-
pendix E.

The following example executes the program using two breakpoints, one set at a
specific statement and the other set at the address of a procedure.

xgo til :dc#26, :dc.gettoken

The following example executes using the previous breakpoints:
*go

The following example executes using no breakpoints at all:

xgo forever

The LSTEP and PSTEP Commands

The LSTEP and PSTEP commands let you single-step through the program by ex-
ecuting numbered (high-level) language statements.
Syntax
LSTEP
or

PSTEP

Description

PSTEP and LSTEP are PSCOPE’s source-level statement stepping commands.
PSTEP treats a procedure or function as a single statement, executing it entirely
before returning control to you at the next statement. LSTEP steps through proce-
dures and functions one statement at a time.

4-3

Loading and Executing Programs

IF you enter PSTEP or LSTEP from a normal command level, PSCOPE returns
the following message after executing the statement:

[Step at line-number]
Where:

line-number refers to the current execution point, after the step is
complete.

PSCOPE does not print a message if either command is issued from a nested
PSCOPE command (DO, IF, COUNT or REPEAT).

PSTEP and LSTEP must be entered when the execution point is at the start of a
statement. Note that any code patches are executed when stepping, but that no
other user-set breakpoints are active (run-time exceptions, however, are still
trapped).

Note also that both PSTEP and LSTEP require line information; stepping from a
location with line information into one without it causes execution to continue
until a known line is reached.

Example

The following example uses the PSTEP command.

xpstep

The ISTEP Command

The ISTEP command allows you to single-step your program through assembly
language instructions.

Syntax

ISTEP

Description

The ISTEP command executes one assembly language instruction, displays the
next assembly language instruction to be executed, then halts. When stepping
through an intruction that alters a segment register the step will execute two
instructions.

PSCOPE-86 User’s Guide

CHAPTER 5
EXAMINING AND MODIFYING
PROGRAM SYMBOLS

This chapter describes how to reference objects (variables, procedures, etc.) in a
program you have loaded and how to display and modify program objects. It ex-
plains the concept of current name scope (CNS) and how CNS allows abbreviated
(partially qualified) references to program symbols. The following commands are
explained in this chapter:

¢ Program symbol references
Display program symbol
Change program symbol
Change 8086/8088 flags
Change 8086/8088 registers
The REGS command
Change 8087 registers
Change name scope
Active function

® Memory manipulation commands
Display memory
Modify memory
The single line assembler/disassembler

Program Symbol References

Program symbols are produced by the compiler (when you specify the DEBUG
option) and loaded into the debugger symbol table with the LOAD command
(described in Chapter 4).

Current Name Scope

The current name scope (CNS) is the set of symbols accessible from a specific loca-
tion in the program, as defined by the compiler. This program location is called the
debug cursor and changes as the program execution point changes. You can also
change)the debug cursor with the NAMESCOPE command (described later in this
chapter).

In a Pascal procedure, the scope of local variables is the procedure they are defined
in; outside that scope, the symbols have either no meaning or an entirely different
meaning. To illustrate, suppose you have two variables of the same name in two
different procedures. In this case, specifying the variable name alone is not
sufficient. You must also specify the procedure in which the variable is found.

References to program symbols can be fully or partially qualified, as explained in
the following section.

Fully Qualified References

A fully qualified reference always begins with a module name. It also specifies the

name of the procedure (or procedures) containing the referenced symbol, includ-
ing the names of all procedures enclosing the symbol.

5-1

Examining and Modifying Program Symbols ‘ PSCOPE-86 User’s Guide

Syntax

:module-name [.procedure-symbollx .symbol-reference
Where:
module.name is the name of the load module.

procedure-symbol is the name of the procedure.
symbol-reference isone of the following:

variable-symbol is a program symbol that specifies a program
variable.

variable-name [qualifier]

variable-name isa variable name.

qualifier is one of the following:
left-bracket expr [, exprlx right-bracket

left-bracket and right-bracket are the characters [and § and
specify array indexing.

expr is an expression used to index an array variable.

.field-symbol specifies a field within a record (structure)

variahla
Yariaoio.

pointer is the character land indicates Pascal pointer
dereferencing.

Description

For fully qualified references, procedure-symbols must be direct references to
procedure names; procedure variables are not allowed.

To illustrate, assume you want to reference a parameter named C contained in the
function DIGIT in the procedure GET_TOKEN of module DC. Your fully quali-
fied reference to the variable C is the following;:

:dc.get_token.digit.c

A fully qualified reference establishes a path from the module level of the program
down to the desired symbol.

For example, to reference the variable named VARIABLE_INDEX of the proce-
dure FACTOR, you must specify both the variable and the procedure containing
it. Specifying the following:

:dc.variable_index
does not work. Because PSCOPE does not know which procedure contains the
variable VARIABLE_INDEX, it assumes that VARIABLE_INDEX is either a
variable or a procedure declared at the main level of DC. Specifying the following:

:dc.factor.variable_index

establishes a path for PSCOPE to follow to the desired variabie.

5-2

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

" Structures nested within other structures (or records within records) are refer-
enced in the same way (outer to inner levels), thus establishing a path that speci-
fies all enclosing structures.

Partially Qualified References

A partially qualified reference omits some or all of the leading part of a fully quali-
fied reference, depending on the current name scope (CNS).

Using the previous fully qualified reference example (:dc.get_tbken.digit.c), you
can use varying degrees of partially qualified references, depending upon the cur-
rent name scope. For example, if the CNS is within the procedure GET_TOKEN,
the partially qualified reference DIGIT.C is sufficient. If, however, the debug
cursor is at the main level of module DC, the partially qualified reference should
be as foilows:

get_token.digit.c

The fully qualified reference is required when the debug cursor is in a module
other than DC.

The following examples illustrate fully qualified references (FQR) and partially
qualified references (PQR):

FQK PQR Required CNS for PQR

:dc.get_token.digit.c c :dc.get_token.digit
digit.c :dc.get_token

:dc.term.term_value term_value :dc.term
term.term_value :dc

dc.@9999 @9999 :dc

Note that changing the name scope or using a more qualified reference lets you
reference symbols outside of the symbols scope. This is useful for operations like
setting breakpoints, patches, etc. However, referencing symbols outside of their
scope may not let you examine the value of some local variables because the
values are undefined outside their scope.

Display Program Symbol

You can obtain the value of the program symbol, like the value of an expression,
by entering the name of the program object whose value you want.

Syntax
symbol-name
Where:

symbol-name s either a fully qualified or a partially qualified symbolic
reference to a program symbol.

Description

Entering symbol-name yields a typed value. The format of the symbol value dis-
played depends on the referenced symbol type. Table 5-1 describes default display
formats.

Examining and Modifying Program Symbols PSCOPE-86 User’s Guide

Example

The following example references a CHAR variable C (with a value of a) in the
sample program DC (found in Appendix E):

x:dc.get_token.digit.c
a

*C

a

The following example displays the value of a field CLASS in the record T. Note
that class is of type enumeration:

xt.class
3

The following example references an element of an array within a record. Note
that the components of the array are of type CHAR:

xbuffer.str[1]
a

Table 5-1 shows the default display formats for predefined program symbol types.

These formats are used by the display program symbol, unformatted WRITE, and
display memory commands.

Table 5-1 Default Display Formats

Predefined Symbol Types
Type Display
BOOLEAN Byte value displays FALSE if low order bit is O or TRUE if low order bit
is 1.
BYTE Unsigned 8-bit quantity in current base.
CHAR 8-bit ASCll character.
WORD Unsigned 16-bit quantity in current base.
DWORD Unsigned 32-bit quantity in current base.
POINTER Pair of words as nnnn:nnnn (always hex).
ADDRESS Unsigned 16-bit quantity in current base.
SELECTOR Unsigned 16-bit quantity in current base.
SHORTINT Signed 8-bit quantity in current base.
INTEGER Signed 16-bit quantity in current base.
LONGINT Signed 32-bit quantity in current base.
EXTINT Signed 64-bit quantity in current base.
BCD Signed 18-digit quantity in current base.
REAL 32-bit quantity in floating point notation, (always decimal).
LONGREAL 84-bit guantity in floating noint notation, (always decimal).

TEMPREAL 80-bit quantity in floating point notation,(always decimal).
ENUMERATION| Elements displayed as ordinal number.

ARRAY Array components that are predefined symbol types are displayed as
described previously. PSCOPE does not display entire arrays or array
components that are not predefined types.

PROCEDURE Entry point address.

LABEL Address.

FILE No display.

MODULE Address.

RECORD Record fields that are predefined symbol types are displayed as de-

scribed previously. PSCOPE does not display entire records or fields
that are not pre-defined types.

5-4

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

Change Program Symbol

This section shows you how to change the value of a program symbol.

Syntax

symbol-name = new-value

Where:
symbol-name is the name of a program symbol.
new-value is the new value for symbol-name. The new-wlue can be an
expression that evaluates to the correct type for the

assignment. The expression can contain program or debug
symbol references, constants, strings, etc.

Description

The new value must yield a typed value that matches the type of the program
symbol referenced, or the new value can be forced to match under the type coer-
cion rules given in Chapter 3.

The debugger displays an error message if the change value yields the wrong type.

Example

The following example illustrates how to change the value of a program symbol.
xbuffer.str[bufferindex] = 'x’
xbufferindex = bufferindex + 1

xterm.factor_1_value =0
x:dc.variable_table['a’] = -23

Change 8086/8088 Flags

PSCOPE allows you to display and modify 8086/8088 flags.
Syntax

[=expression]
8086/8088-flag

Where:

expression resolves to a 16-bit number to be loaded into the FLAG
word.

8086-8088-flag is a symbol representing one of the 8086/8088 flags.

FLAG represents the flag word.

5-5

Examining and Modifying Program Symbols

FH

FL

PSCOPE-86 User’s Guide

represents the upper (most significant) byte of the flag
word.

represents the lower (least significant) byte of the flag
word.

8086-8088 Description
Flag

OFL Overflow flag

DFL Direction flag

IFL Interrupt flag

TFL Trap flag

SFL Sign flag

ZFL Zero flag

AFL Auxiliary flag

PFL Parity flag

CFL Carry flag

Type

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

Interpret the FLAG word as follows:

15

0]

XX

>
>

OFL

DFL

IFL

TFL

SFL|ZFL|X

AFL

PFL

CFL

where X

Description

L

1ITPIOSCILILS a4

PR PR I
Uolil -<di

(¢}

[
Ui

The FLAG word displays in the current radix. The flag names are pseudo-variables
and may be used within an expression.

These pseudo-variables only affect the copy of the 8086/8088 flags used by the pro-
gram being debugged. These pseudo-variables do not affect the copy of the
8086/8088 flags used by PSCOPE.

Example

To display the 8086/8088 flags, enter the following:

BASE=10Y;BASE /xSetting the current radix to binary/

BINARY
*FLAG

1111000010000110

To set the overflow flag (OFL) enter the following:

Another way of setting the overflow flag is as follows:

*OFL=TRUE

*OFL

TRUE

*FLAG=FLAG OR 0100H

PSCOPE-86 User’s Guide

Change 8086/8088 Registers

PSCOPE allows you to display and modify 8086/8088 registers.

Syntax

8086-8088-register [=expression]

Where:
expression resolves to a number to be loaded into the specified
8086/8088 register.
8086/8088-register is a symbol representing one of the 8086/8088
registers.
8086-8088 Description Type
Register
AX Accumulator register WORD
AH Accumulator highbyte BYTE
AL Accumulator low byte BYTE
BX B register WORD
BH B register high byte BYTE
BL B register low byte BYTE
CX C register WORD
CH C register high byte BYTE
CL C register low byte BYTE
DX D register WORD
DH D register high byte BYTE
DL D register low byte BYTE
CS Code segment register WORD
DS Data segment register WORD
ES Extra segment register WORD
SS Stack segment register WORD
SP Stack pointer WORD
BP Base pointer WORD
IP Instruction pointer WORD
DI Destination index WORD
SI Source index WORD
Description

These pseudo-variables only affect the copy of the 8086/8088 flags used by the pro-
gram being debugged. These pseudo-variables do not affect the copy of the
8086/8088 flags used by PSCOPE.

Examining and Modifying Program Symbols

5-7

Examining and Modifying Program Symbols

Example

The following example illustrates how to load the AX register with 12ABH:
xAX=12ABH

xAX
12AB

The REGS Command

The REGS command displays the 8086/8088 registers.

Syntax

REGS

Description

The REGS command displays the registers in hexadecimal regardless of what the
current radix is. Flags are identified by mnemonic only when they are set. If no
flags are set, the word none appears.

The registers displayed are the four data registers (AX, BX, CX, and DX), the
four segment registers (CS, DS, SS, and ES), the instruction pointer (IP), the
base pointer (BP), the stack pointer (SP), and the two index registers (SI and DI).
Example

To display the 8086/8088 registers enter the following command:

*REGS

AX=0004H BX=0005H CX=0000H DX=0002H
CS=5588H DS=0188H SS=0104H ES=0000H
IP=46C7H BP=0634H SP=0104H SI=0830H
DI=03A2H

FLAGS: ZFL PFL

Change 8087 Registers

When running under the iRMX-86 operating system, PSCOPE requires that your
microcomputer system contain the iSBC 337 MULTIMODULE (the 8087
hardware). The MULTIMODULE resides on the 86/30 card. When loading your
program, use the CH8087 option.

When running under the ISIS or iNDX operating systems, PSCOPE requires that
your program be linked with the 8087 software emulator. When loading your
program, use the E8087 option.

When running under the iRMX-86 operating system, PSCOPE allows you to dis-
play and modify 8087 registers.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

Syntax
8087-register [=expression]
Where:
expression resolves to a number to be loaded into an 8087 register.

8087-register isasymbol representing one of the 8087 registers.

8087 Description Type
Register

STO Internal stack register 0 TEMPREAL
ST1 Internal stack register 1 TEMPREAL
ST2 Internal stack register 2 TEMPREAL
ST3 Internal stack register 3 TEMPREAL
ST4 Internal stack register 4 TEMPREAL
STS Internal stack register 5 TEMPREAL
STé6 Internal stack register 6 TEMPREAL
ST7 Internal stack register 7 TEMPREAL
FSW Status word WORD
FCW Control word WORD

FIA Instruction address DWORD
FDA Data address DWORD
FIO Instruction WORD
Example

To display the ST4 register enter the following command:

xST4
+2.3596874320856382E + 00001

Read and Write 1/0 Ports

This section explains how to read and write the I/0 ports. The 8086/8088 1/0
space contains byte-wide ports and word-wide ports. The port addresses are from

0000H to FFFFH.
Syntax
SV%F(;LT {(expr-for-port-numben = expr]
Where:
PORT identifies a byte-wide port.
WPORT . identifies a word-wide port.

expr-for-port-number represents the port number in the current radix.
expr represents the data in the current radix. If the value

takes up more than one byte, PSCOPE truncates
the data to a byte.

5-9

Examining and Modifying Program Symbols PSCOPE-86 User’s Guide

Example

The following example writes 10 to the port 100. The H identifies 199 as a hex
number. The T identifies the 100 as a decimal number. The value 199H is written
to a byte-wide port.

xPORT(100T)=10H
The following example writes 199 to the port 100. The H identifies the 199 as a
hex number. The T identifies the 100 as a decimal number. The value 199H is writ-
ten to a word-wide port.

*WPORT(100T)=199H

The following example displays the word-wide port 100. PSCOPE always displays
the port value in hexadecimal, regardless of what the current radix is.

*PORT(100T)
199

Note that accessing ports on the microcomputer system may cause undesirable

results. Consult the user documentation for your microcomputer system before
you access any of its ports.

Change Name Scope

Syntax
NAMESCOPE [= expression]
Where:

expression is the location to which the debug cursor is to be reset.

Description

If you do not specify an expression, PSCOPE displays the address of the current
name scope. Changing the current name scope affects the set of symbols to which
the debugger has access. However, changing the current name scope does not acti-
vate symbols that are not already active.

Note that the dollar sign ($) is a predefined symbol equivalent to the current exe-
cution point. Entering the following:

NAMESCOPE=$%
returns the current name scope to the current execution point.

Resuming program execution (using GO, LSTEP, ISTEP, or PSTEP) automatical-
ly resets the debug cursor to the current execution point.

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

Example

The following example illustrates how changing the current name scope affects the
lookup of a partially qualified reference to the procedure DIGIT in the sample pro-
gram DC (found in Appendix E):

xget_token.digit

1C50H:02D2H

xdigit

DIGIT

ERROR #12: Symbol not known in current context.
xnamescope = get_token

xdigit

1C50H:02D2H

Active Function

The ACTIVE function determines if a program object is active at the point where
execution was suspended. ACTIVE will tell you if a stack-based variable is current-
ly allocated and accessible.

ACTIVE (symbolic-reference)
Where:

symbolic-reference is any program symbol, fully or partially qualified.

Description

ACTIVE is a Boolean function which indicates whether a symbolic-reference refers
to a program object that can be displayed or modified at the current execution
point. Statically allocated variables are always active. Dynamically allocated
(stack-based) variables are active if they are available in the current (top) stack
frame. ACTIVE returns a TRUE if symbolic-reference is active and a FALSE if it is
not.

Example

*ACTIVE (:dc.factor.expression_value)
TRUE

xif ACTIVE(op) then write op =",op

. x else write "-op not active-’

. xendif

-op not active-

Display Memory

This section explains how to display the contents of one or more memory
locations.

5-11

Examining and Modifying Program Symbols PSCOPE-86 User’s Guide

Syntax

memory-type start-address llength-specifier]
Where:
memory-type is one of the predefined memory types listed in Table 5-1.
start-address is the address of the first location in memory to be
displayed, expressed with an expression. Recall that you

can obtain the address of a symbol by prefixing the
symbol with the dot operator.

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be accessed.

TO end-address specifies the last address of a range of memory to
be displayed.

Description
You can specify portions of memory you want displayed using memory-type
(indicates the memory type to be used in displaying that portion of memory). The

memory address is displayed first (as a pointer value), followed by the value(s) at
that location.

Example

The following example illustrates using the display memory command.

xchar .buffer.str[1] to .buffer.str[buffer.”length]
1CCBH:0018H'1+2+3+4+5+"'

The following example references the CHAR variable c, (in the sample program
DC found in Appendix E) asa BYTE. Displaying memory as BYTE values also dis-
plays them as CHARSs, as shown here:

xbyte .c

1CCBH:0074H 97 ‘a’

Modify Memory

This section explains how to modify the contents of one or more memory
locations.

Syntax

mem-type start-addr [length-specifier] = chg-value

Where:
mem-type is one of the memory types shown in Table 5-1.
start-addr is the first memory address to be displayed.

5-12

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be displayed.

TO end-addr is the last address of a range of memory to be
displayed.
chg-value is the new value to which the contents of the specified
memory locations are to be set; chg-wlue is one of the
following: ’

expression [,expression]*

mem-type start-addr [length-specifier]

Description

The change value must be of a type that either matches the memory type or can be

v &

forced to match under the type coercion rules given in Chapter 3. The debugger

displays an error message if the change value is the wrong type.

Example

The following example initializes the first five values in the array “variable_table”:
xinteger .variable_table = 2,4,6,8,10

The following example initializes the entire contents of the ‘array variable_table to

0 and 1, with 0 in the first location and every other location thereafter, and 1 in the

second location and every other location thereafter:

xinteger .variable_table length 26 = 0,1

The following example uses the 8086 registers to reference the WORD value on
top of the 8086 stack and set it to O:

xword ss:sp=0

The Single Line Assembler/Disassembler

You can modify and display memory as 8086/8088/8087 mnemonics.

Syntax
Assignment

ighsﬁlvjl address='assembler-mnemonic’[,’assembler-mnemonic’lx

Display

ASM start-address [length-specifier]

5-13

Examining and Modifying Pregram Symbels PSCOPE-86 User’s Guide

Where:

SASM and ASM are keywords identifying the single-line assembler.
SASM and ASM are equivalent. SASM is included
to make the PSCOPE syntax familiar to 1AICE™
users.

start-address is the address of the first location in memory to be
displayed.

length-specifier is one of the following;:

LENGTH expression specifies the number of instructions to
disassemble.

TO end-address specifies the last address of a range of
memory to be displayed.

address is a single address or an expression that resolves to

a single address.

assembler-mnemonic is an 8086/8088/8087 instruction.

Description

With the disassembler, you can display memory locations as 8086/8088/8087
mnemonics.

With the assembler, you can load memory locations with 8086/8088/8087
instructions.

The Disassembler

PSCOPE interprets the start-address as the beginning of an assembly language
instruction. If you give a start-address that is not the beginning of an instruction,
PSCOPE still interprets the memory location as an instruction.

A single address displays the instruction beginning at that address. A range of ad-
dresses (start-address TO end-address) displays all instructions that start within
that range. To specify an exact number of instructions to be displayed, use the
form, start-addressLENGTH number-of-instructions.

The following example displays the assembly language instructions making up
statement #16.

xASM :pager#16 TO :pager#i7
063CH:01F9H FF361C00 PUSH ES:WORD PTR[SI]
063CH:01FDH 9A00000000 CAll 0:0

063CH:0202H 3C00 CMP AL,OH
063CH:0204H 7403 JE $+5H
063CH:0206H E95401 JMP $+0000AH

063CH:0208H FF361400 PUSH ES:WORD PTR [Sl]

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

Interpret the display this way. The first entry is the starting address where the in-
struction resides; the second entry is the hexadecimal representation of the in-
struction (displayed in hex, regardless of what the current radix is); the third entry
is the mnemonic representation of the instruction.

If you did not specify a partition, you would only get the assembly language in-
struction at the start address, as in the following example:

xASM :pager#16
01F9 FF361C00 PUSH ES:WORD PTR [SI]

The Single Line Assembler (SLA)

You specify the instructions with assembler mnemonics. The SLA does not accept
all the possible forms of the 8086 instructions (as described in the Assembler
Operators section).

Assembler Directives. The SLA does not support assembler directives. For
exampie, you cannot repiace assembler-mnemonic with MY_VAR DB ?. What you
put in for assembler-mnemonic must actually generate code.

Assembler Operators. The SLA does not recognize all the possible assembler
operators. Consider the instruction MOV AL,BYTE PTR [BX]. This instruction
would be an incorrect form for the SLA because the SLA does not recognize PTR.
You can still put that instruction into memory with the SLA, but you must code it
as MOV AL,BYTE [BX]. In some cases, what is a correct form for the SLA is an
incorrect form for ASM-86.

The assembler type operators recognized by the SLA are the following:

BYTE Specifies a number that takes up one byte. The corresponding
PSCOPE memory type is BYTE.

DWORD Specifies a number that takes up four bytes. The corresponding
PSCOPE memory type is POINTER.

FAR Specifies that both the CS and the IP take partin a JMP or CALL.

QWORD Specifies a number that takes up eight bytes. The corresponding
PSCOPE memory type is LONGREAL.

TBYTE Specifies a number that takes up 10 bytes. The corresponding
PSCOPE memory type is TEMPREAL.

WORD Specifies a 16-bit unsigned number. The corresponding PSCOPE
memory type is WORD.

segment Specifies that an operand is to be taken from a non-default
override segment.
prefixes

Absolute Addresses. Unlike ASM-86, the SLA allows you to specify an absolute
address within an instruction. For example, the SLA recognizes the instruction
JMP 12:34. This instruction is a direct-far jump. ASM-86 would require that you
use a label or jump indirectly through a register.

5-15

Examining and Modifying Program Symbols PSCOPE-86 User’s Guide

Like ASM-86, the SLA accepts a symbol, but the SLA requires a fully-qualified
symbolic reference. For example, to jump to a label within the same module and
procedure, you must code JMP :mod.proc.label. To load BX with a program
variable, code MOV BX, .:mod.proc.var.

Remember that PSCOPE itself consists of load-time-locatable code. So does the
program that you are debugging. The result is that the absolute addresses corre-
sponding to program locations may differ from application to application. Be care-
ful only to change instructions that exist in locations assigned to your program. Do
not change instructions in any locations used by PSCOPE. The consequence of
this restriction is that the SLA is good for replacement patches, not for insertion
patches.

Also, when constructing a replacement patch, be careful not to leave part of an in-
struction hanging. You may need to pad your replacement with NOPs.

Jumps and Calls. The SLA expects the control transfer instruction to obey slight-
ly different mnemonic conventions than ASM-86. Consider the five kinds of
jumps: direct-short, direct-near, indirect-near, direct-far, and indirect-far.

The SLA does not produce a direct-short jump. This is not a problem because you
can use a direct-near jump instead.

The direct-near jump consists of three bytes. The first byte is E9, the opcode. The
next two bytes are the difference between the current location and the destination.

The SLA uses an absolute address as the operand for a direct-near jump. With this
feature, you always know the destination of the jump without having to compute
ihe relative offset from the current IP. For examiple, io load ihe absoluie address
1BFOOH with a direct-near instruction that jumps to absolute address 1BF05H,
enter the following:

*SASM 1BFOOH="JMP 1BFO5H’
01BFO00 ES0200

The relative displacement from the IP is 0002. This instruction skips two bytes. To
load absolute address 1BFOOH with a direct-near instruction that jumps to absolute
address 1BFFCH, enter the following:

*SASM 1BFOOH="JMP 1BFFCH’
01BFOO ESFOFF

The relative displacement from the IP is FFF9H. This is a -7 in 2’s complement
notation.

The indirect-near jump consists of two bytes and possibly a 16-bit displacement.
The first byte is the opcode FF, and the second byte contains the MOD fieid, the
R/M field, and three more bits of the opcode (100Y). For example, to load abso-
lute address 1BFOOH with an instruction that jumps to the offset contained in BX
(the instruction assumes the current CS), enter the following:

*ASM 1BFOOH='JMP BX'
01BFOOH FFE3

The previous example used the keyword ASM instead of SASM. ASM is an alter-
nate form of SASM.

You can get another level of indirection by using brackets around the register
name. For example, to load absolute address 1BFOOH with an instruction that

N
fn
o

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

jumps to the offset (assuming current CS) that is stored in the memory location
whose offset is in BX (assuming the current DS), enter the following:

*SASM 1BFOOH="JMP [BX]’
01BFOOH FF27

The direct-far jump consists of five bytes. The first byte is the opcode EA, and the
last four bytes contain the offset and the selector of the target instruction. The
SLA recognizes a direct-far jump by the FAR operator. For example, to load loca-
tion 3:300H with an instruction that jumps to location 12:34, enter the following:

*ASM 3:300H="JMP FAR 12:34’
0003:0300H EA34001200

If you leave out the selector of the target address, the SLA assumes zero. For
example, JMP FAR 34H transfers control to the location 00:34. If you specify an
address that takes up more than 16 bits, the extra upper bits are ignored. For
example, JMP FAR 12345H transfers control to the location 00:2345H.

The indirect-far jump consists of two bytes and possibly a 16-bit displacement. The
first byte is the opcode FF. The second byte contains the MOD field, the R/M
field, and three more bits of the opcode (101Y). For example, to load absolute ad-
dress 1BFOOH with an instruction that jumps to the selector and the offset
(assuming the current CS) stored in the memory location whose offset is in BX

(assuming the current DS), enter the following:

*SASM 1BFOOH="JMP DWORD [BX]’
01BFOOH FF2F

The SLA mnemonic conventions are similar for the CALL instruction.

RETFAR

To return from a far jump or a far call, the SLA requires the mnemonic RETFAR.
ASM-86 knows whether a procedure is near or far, and consequently, it generates
the appropriate return. Because the SLA does not have this information, you must
specify whether you want a near return or a far return. With the SLA, specify a
near return as RET and a far return as RETFAR. For example, to load absolute ad-
dress 1BFOOH with a far return that discards three words from the stack after
returning, enter the following:

*SASM 1BFOOH="RETFAR 6’
01BFOOH CAO0300

Symbolic Addresses. The SLA will accept symbolic addresses, but, because the
SLA does not use the current NAMESCOPE, you must supply a fully-qualified
symbolic reference. For example, the SLA accepts the instruction MOV
AX,.:mod.proc.var

The period before the colon is a standard PSCOPE operator. It identifies the sym-
bolic reference as resolving to the address of warand not the actual value of wr.

Multiple Forms of an Instruction. ASM-86 is a versatile assembler that often
allows more than one version of the same instruction. For example, ASM-86 has a
form of the MOV instruction that moves a byte from AL to a memory location.
This form is distinct from the one that moves a byte from a register to a memory
location. The general MOV from register to memory does contain the ability to

5-17

Examining and Modifying Program Symbols

5-18

specify AL, but ASM-86 uses the shorter form because AX is the accumulator and
hence a preferred register.

The SLA assembles the general form and not the shorter form. For example, con-
sider the instruction MOV SUM,AL. ASM-86 assembles this in three bytes as
A200 01H, assuming that 100H is the offset of the program variable sum. The SLA
requires a fully qualified symbolic reference for sum and assembles the same in-
struction in four bytes as 8806 0001H.

Indirect Addressing. ASM-86 allows you to express an indirect address in many
different ways. For example, with ASM-86, the following instructions assemble to
the same value.

MOV AX,[BX +DI+2]
MOV AX,[BX][DII[2]
MOV AX, [BX][DIl+2

The SLA only accepts the last form. The following is the general form for an indi-
rect address accepted by the SLA.

symbollbaseregllindexreg] + offset

All the parts are optional. The brackets are part of the syntax and are required
when you choose the option. You must choose an option in the order given. For
example, if you construct an indirect address with a base register (BX or BP) and
an index register (SI or DI), the base register must precede the index register. For
example, to load offset 21:3CH with an instruction that moves the contents of the
AX register to memory through an indirect address, enter the following:

*SASM 21:3C="MOV .:.cmaker.purchase[BX1[S1]+300H,AX’
0021:003CH 89801003

This instruction loads a memory location with the contents of AX. It forms the ad-
dress of the memory location in the following way:

i. Adds 300H to the offset of the address of the program variabie purchase in
the module cmaker. The address of purchaseis 44:10H.

x.:cmaker.purchase
0044:0010H

xDS

0044

2. At runtime, adds the contents of BX, the contents of SI, and the sum from
step 1. This value is the final offset.

3. Assumes the data segment. Gets the selector value from the DS register.
Constructs the physical address and loads the contents of AX into the ad-
dressed memory location.

The Default Radix. The SLA assumes the PSCOPE current radix. You can over-
ride the current radix for an individual number by appending a letter to the
number. The SLA interprets a number as binary if you append a Y, as decimal if
you append a T, as hexadecimal if you append an H, and as a multiple of 1024
(decimal) if you append a K. PSCOPE always considers line numbers to be decimal
regardless of what the current radix is. The SL A always displays the assembled in-
struction in hexadecimal regardless of what the current radix is.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide Examining and Modifying Program Symbols

String Moves. ASM-86 provides the MOVS, MOVSB, and the MOVSW
mnemonics. You must have previously loaded the SI and DI registers. The
mnemonic MOVS requires two operands: the name of the destination string (the
symbolic name for the first location) and the name of the source string. ASM-86
uses these operands to determine whether you are moving bytes or words. The
mnemonics MOVSB and MOVSW do not require operands because the B and W
identify whether you are moving bytes or words.

The SLA only accepts the MOVSB and MOVSW mnemonics.

8087 Instructions. The SLA handles 8087 instructions differently than ASM-86.
There are four areas of difference, as follows:

The SLA represents a stack register without the syntactic parentheses.

The SLA does not recognize the ESC mnemonic.

The SLA is consistent in its treatment of the 8087 no-wait mnemonics.

The SLA does not recognize FWAIT. (FWAIT is an alternate way of specify-
ing WAIT, which the SLA does recognize.)

NG FS I NS I

The Stack Registers. The SLA expects the 8087 stack registers to be STO
through ST7 rather than ST(0) through ST (7). ASM-86 accepts ST as a symbol for
the top of the stack. The SLA does not recognize ST; you must code STO.

The ESC Mnemonic. The SLA supports all of the 8087 mnemonics except the
ESC mnemonic. For example, with the SLA, you can code FADD STO0,ST1. This
corresponds to FADD ST(0),ST(1) for ASM-86. ASM-86, but not the SLA, ac-
cepts ESC 18H,1 as well. ASM-86 would accept both forms of the instruction and
load memory with the word, D§C1H.

The No-Wait Mnemonics. ASM-86 inserts a WAIT instruction before the 8087
instruction unless you insert an N as the second character in the 8087 mnemonic.
For example, FDISI is preceded by a WAIT; FNDISI is not preceded by a WAIT.
There is one exception. The 8087 instruction FNOP is a no-operation that does
generate a wait.

The SLA, however, is consistent when it interprets the second character of the
8087 mnemonic. FNOP does not generate a WAIT; FOP does generate a WAIT.
ASM-86 does not recognize FOP.

In addition, ASM-86 does not allow some 8087 instructions to have the no-wait
form. The SLA always accepts a no-wait mnemonic.

FWAIT. FWAIT is actually not an 8087 instruction. It is an alternate form of the
CPU instruction WAIT. The SLA considers one form to be sufficient.

5-19/5-20

CHAPTER 6
CONTROL CONSTRUCTS

This chapter describes the four control constructs used in PSCOPE’s command
language; REPEAT, COUNT, IF, and DO.

The IF construct conditionally executes commands. The REPEAT and COUNT
constructs repeat a sequence of debugger commands under the control of a variety
of exit conditions. The DO construct groups multiple commands and treats them
as a single command.

The level to which you can nest REPEAT, COUNT, IF, and DO controi constructs
depends upon the amount of workspace available to the debugger.

After you enter the first line of a compound command, each subsequent line dis-
plays a prompt preceded by a dot (.). The dot indicates that the line is inside a com-

pound construct. The number of dots preceding the prompt indicates the current
nesting level.

The REPEAT and COUNT Constructs

The REPEAT and COUNT constructs let you repeat a sequence of debugger com-
mands controlled by any number of exit conditions.

Syntax

REPEAT
[loop-item]x
ENDREPEAT
or
COUNT expression

lloop-item]x
ENDCOUNT

Where:
loop-item is any of the following:
command is any debugger command.
WHILE expression
UNTIL expression

expression is any expression that can be forced to a Boolean value.

Description

The loop-item of the REPEAT command executes until an UNTIL expression eval-
uates to TRUE or until a WHILE expression evaluates to FALSE.

6-1

Control Constructs

o
)

The COUNT command is evaluated similarly, but the number of times that the
loop body is executed is bound by COUNT expression. COUNT expression is eval-
uated only once, when the command is first encountered.

If you prefer, you can use END in place of ENDREPEAT or ENDCOUNT.

Example
The following example uses REPEAT to implement a form of data breakpoint:

xrepeat

. x|step

.xuntil :dc.c=="+'
.endrepeat

The following example steps through 10 statements and then stops:

xCOUNT 10
. xLSTEP
. *xEND

The IF Construct

The IF construct lets you conditionally execute commands.

Syntax

IF expression THEN
[command]x*
[ORIF expression THEN

[command]x]x
[ELSE

[command]x
ENDIF

Where:
expression isany expression that evaluates to a Boolean value.

command is any PSCOPE command.

Description

The IF construct contains an IF clause, any number of ORIF clauses, an optionai
ELSE clause, and a closing ENDIF.

PSCOPE evaluates IFs as follows:

® If the IF expression evaluates to TRUE, PSCOPE executes the command list
following the IF expression up to the first ORIF clause, the ELSE clause, or
the ENDIF.

® If the IF expression is FALSE, PSCOPE evaluates the subsequent ORIF
clauses in order until it finds an ORIF expression that is TRUE, in which case
it executes the ensuing command list up to the next ORIF clause, ELSE
clause, or ENDIF.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide Control Constructs

® If the IF clause is FALSE and there are no TRUE ORIF clauses (or no ORIF
clauses at all), PSCOPE executes the ELSE clause (if present) up to the
ENDIF.

® [f the IF clause and no ORIF clauses are TRUE and no ELSE clause is
present, PSCOPE resumes execution with the first executable statement fol-
lowing the IF construct.

You may use END, if you prefer, in place of ENDIF.

Example

The following example illustrates using the IF construct.

xIF 1 ==2 THEN

.x'THIS SHOULDN''T BE PRINTED’
.xORIF 2 ==2 THEN

.x'THIS SHOULD BE PRINTED’

. xELSE

.x THIS ALSO SHOULDN"'T BE PRINTED’
.xEND

THIS SHOULD BE PRINTED

The DO Construct

The DO construct lets you group commands.

Syntax

DO
[command]x
END

Where:

command is any PSCOPE command (with a few restrictions, like LOAD
and INCLUDE).

Description

Debugger objects defined in a DO block (using the DEFINE command described
in Chapter 7) are local to that block and supercede any previously defined debug
symbols with the same names. You can define global debug symbols within a DO
block by using the GLOBAL option on the DEFINE command.

You can nest DO blocks; however, each DO must have a corresponding END. A
DO block is not complete (and is not executed) until PSCOPE reaches its match-
ing END.

6-3/6-4

CHAPTER 7
DEBUG OBJECT
MANIPULATION COMMANDS

Debug objects, which you define during the debugging session, are symbolic enti-
ties similar to the variables and procedures in your program. Debug objects can be
variables of any memory type, command abbreviations, debug procedures, code
patches, or a collection of breakpoints and tracepoints.

Note that PSCOPE uses the same commands to display, modify, and obtain a
directory of program objects and debug objects. Program objects are part of a
program; they are accessible to PSCOPE when the program is loaded and are inac-
cessible when a different program is loaded. Debug objects are not tied to any par-
ticular program. PSCOPE has explicit commands to define debug objects, to
remove them, and to save their definitions.

This chapter describes the following commands which are used to manipulate
debug objects:

Define debug object
Display debug object
Modify debug object
Remove debug object
Put/append debug objects

Debug Objects

Like objects in a program, debug objects have a name and a type. The DEFINE
command which creates the debug object specifies the name and tvpe. Debug ob-
jects are either global or local.

Global debug objects exist from the time you create them until you remove them
with the REMOVE command. (The LOAD command (described in Chapter 4)
implicitly removes some global debug objects.) Local objects can exist only within
PSCOPE’s DO blocks. PSCOPE automatically removes them when control passes
out of the DO block within which they were defined.

Like keywords, debug object names have precedence over program symbol
names. Thus, to access a program symbol with the same name as a debug object,
you must prefix the program symbol with quotation marks (). (“Referencing
Names” in Chapter 3 discusses how to do this.)

Some debug object names also have precedence over other debug object names.
Local debug objects have precedence over global debug objects of the same name.
Likewise, the most recently defined local debug object takes precedence over
other local debug objects with the same name.

You must remove a global debug object’s name (with the REMOVE command,
described later in this chapter) before you can redefine the global debug object to
be a different type. You can define a local debug object with the same name as a

- global debug object without affecting the definition or value of the global debug
object.

You cannot find the address of a debug object using the dot operator (.) explained
in Chapter 3. PSCOPE displays an error message if you try.

Debug objects can have any of the memory types or debug types specified in Table
3-5. The properties of the debug objects depend on their type.

7-1

Debug Object Manipulation Commands PSCOPE-86 User’s Guide

Memory Type Debug Objects

In general, you can use a debug object defined as a memory type (BYTE, WORD,
INTEGER, REAL, etc.), like a program variable of that type (in expressions, to
display and modify). Hence, a memory type debug object is a debug variable.

Debug variables of type CHAR have more capabilities than CHAR variables in a
Pascal-86 program. Debug variables can be assigned string values from 0 to 254
characters, including the results the PSCOPE built-in string functions CONCAT
and SUBSTR return.

Debug Type Debug Objects

A debug object defined to have one of the five debug types listed in Table 3-5 has
different properties from those of program objects.

LITERALLYs are string-replacement macros. When PSCOPE finds a symbol that
is a LITERALLY name, it replaces the LITERALLY name with the string value
associated with that name (just as in PL/M). LITERALLYs provide a convenient
way to abbreviate commands and keywords.

The debug type debug objects are as follows:

Type Description Reference

PROC Debug procedure Chapter 8
BRKREG Group of breakpoints Chapter 11
TRCREG Group of tracepoints Chapter 11
PATCH Debug patch code Chapter 9

You must redefine debug type objects in order to change their definitions. Use the
EDIT command to recall the previous definition of a debug type object in order to
redefine it.

The DEFINE Command

The DEFINE command creates a debug object.

Syntax

DEFINE [GLOBAL] type symbol-name [= valuel

Where:

GLOBAL indicates that the debug object will be global. Debug
type debug objects are always global, the GLOBAL
option is not allowed for these objects. Memory type
debug objects are global unless they are defined inside
a PSCOPE DO block. Hence, use the GLOBAL option
for memory type objects inside a DO block that you do
not want to be automatically removed when control
passes out of that block.

type is any of the memory types or debug types shown in
Table 3-5.

PSCOPE-86 User’s Guide

symbol-name is any name other than a PSCOPE keyword (for local
objects) or a keyword or existing debug object name
(for global debug objects). The name can be up to 254
characters long; the first 40 characters must be a
unique combination.

value is the value to be assigned to the debug object. The
value can be the result of evaluating an expression.
PSCOPE assigns a null value if you do not give a value.
The wlue is required for debug type debug objects.
The wlueis optional for memory type debug objects.

Description

The DEFINE command creates a debug object with the name, type, and value you
specify. If the object being defined is a memory type, the debug object has the
same properties as a program variable of the same type. Memory type debug ob-
jects can be any of the object types listed in Table 3-5, but cannot be a user-defined
type. You cannot use the same name for iwo different debug objects uniess a
debug object is defined locally within a DO block. When PSCOPE exits the block,
PSCOPE automatically removes the local debug object. You can then assign the
name to another object of a different type for use in another block.

The DEFINE command lets you optionally assign initial values to the objects
being defined.

Example

The following example illustrates memory type debug variables.

xdefine byte num

xdefine integeri=13

xdo

.xdefine word local_word = 2 x i
.xend

xdefine char char_1 = 'this is a string’

The following example illustrates LITERALLYs.

define literally lit = "literally’

define lit def = 'define’
def it el ="eval 8 line’
The DISPLAY Command

The DISPLAY command displays the values of debug objects.

Debug Object Manipulation Commands

Debug Object Manipulation Commands

7-4

Syntax
{type) symbol-name
Where:

type defines the debug symbol. If you specify type, PSCOPE
displays the definition of the debug symbol. If you
omit type, PSCOPE expands the symbol (for
LITERALLYs) or executes the symbol (for PROCs).
You must enter type to display any of the following:

LITERALLY

PROC

PATCH
BRKREG/TRCREG

symbol-name is the name of a previously defined debug object.

Description

For program symbols and memory-type debug variables, you can access the value
of a symbol by entering the symbol name. PSCOPE displays the value of the
symbol on the following line. Similarly, you can access the value in an expression
by entering the name of the symbol.

For debug objects of any of the debug types, you can access the definition of the

debug object by entering the type, followed by the symbol name. PSCOPE displays
the definition of the named object.

Example

Suppose you defined a memory type debug variable as follows:
xdefine word wi = 400

Entering the symbol name yields the following value:

*w1
400

However, a debug type debug object functions differently. Consider the following
LITERALLY definition:

xdefine literally w = 'write’
Entering w by itself automatically expands the LITERALLY, as though you en-

tered write. You can display w definitions by preceding the w with its type, as
follows:

xliterally w
PSCOPE responds by printing the following:
define literally W = 'write’

which is the definition of w.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide Debug Object Manipulation Commands

The MODIFY Command

The MODIFY command modifies the previously defined value of a memory type
debug symbol.
Syntax
name = value
Where:
name is the name of a memory type variable.

value is the new value to be assigned to the debug symbol.

Description

The type of wilue must be the same as namé's type, or you must be able to force
that type (using the type coercion rules described in Chapter 3). PSCOPE displays
an error message if the change is not possible. Note that the MODIFY command
for debug memory type variables has the same syntax as the MODIFY command
for program symbols.

The MODIFY command works only with memory type objects. You must redefine
a debug type object in order to modify it.

Exampie

The following example shows the operation of the MODIFY command:
*fiefine integeri=-150
Z 150
xji=—2xj

*i
+300

The REMOVE Command

The REMOVE command deletes one or more debug symbols from the debug
symbol table by symbol name and object type (or by symbol name or object type).
Syntax

REMOVE remove-list

Where:
remove-list is one of the following:

DEBUG

Debug Object Manipulation Commands

~3

remove-item [, remove-item]x
remove-item is one of the following:

memory-type is one of the memory types given in Table
3-5. PSCOPE deletes all debug symbols of
the specified type.

debug-type is one of the debug-types given in Table
3-5. PSCOPE deletes debug symbols of the
specified type.

PATCH expression is an expression yielding an address where
you set a patch. PSCOPE removes the
patch at this location.

symbol-name is the name of a debug symbol of any
memory type or debug type (except patch).
PSCOPE deletes the specified symbol.

Description

The REMOVE command deletes global debug objects. The user specifies the
debug type or the memory type object (or a list of objects) to be deleted by type
and name (or by type or name). Specifying DEBUG instead of a list of types and
names (or a list of types or names) removes all debug objects.

Do not use the REMOVE command to deiete iocai debug objecis; PSCOPE auto-
matically deletes them once control passes out of the PSCOPE DO block in which
they are defined.

Example

The following examples use the REMOVE command.

xremove proc /* Remove all PROCs *x/
xremove i /* Remove the single object i */
xremove debug /*x Remove all debug symbols x/
xremove proc, i /* Remove all PROCs and i x/

The PUT and APPEND Commands

The PUT and APPEND commands save the definitions of the debug objects in a
disk file.

Syntax
PUT pathname put-list
APPEND pathname put-list
Where:
pathname is the path name which identifies a file (or any output device)

to which you want to send the text containing the debug object
definitions.

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide

put-list is one of the following:
DEBUG
put-item [, put-item]x
put-item is one of the following:

memory-type is one of the memory types given in Table
3-5. PSCOPE saves the definitions of all
debug symbols of the specified type in the
specified file.

debug type is one of the debug types given in Table
3-5. PSCOPE saves the definitions of all
debug symbols of the specified type in the
specified file.

PATCH expression is an expression yielding an address where
you set a patch. PSCOPE saves the patch at
this address in the specified file.

symbol-name is the name of a debug symbol of any
memory type or debug type (except
PATCH). PSCOPE saves the definition of
}_he specified debug symbol in the specified
ile.

Description

The PUT and APPEND commands place definitions of the specified objects in the
selected disk file (or the specified output device). (You can retrieve the definitions
with the INCLUDE command described in Chapter 10.)

PUT creates a new file to contain the specified definitions, unless a file of that
name already exists. In that case, PUT replaces the old file with a new file contain-
ing the definitions.

APPEND adds onto the end of an existing file or creates a new file if the specified
file does not already exist.

For debug type debug objects, the entire definition text (including the value
portion) is placed in the specified file. For memory type debug variables, only the
type and name are included in the object definition because memory type debug
objects can be easily changed using the modify command, whereas debug type
debug objects must be redefined.

Note that except for the file specification, the formats of the PUT and APPEND
commands are identical to the REMOVE command’s format.

Example
The following example illustrates using the PUT command.

xdefine literally lit = 'literally’
xdefine lit def = 'define’

xdef lit stacktop = 'word ss:sp’
xdef integeri=13

xdef word j =100

xput defs.mac debug

Debug Object Manipulation Commands

7-7

Debug Object Manipulation Commands PSCOPE-86 User’s Guide

The file DEFS.MAC contains the following:

define literally lit = 'literally’
define literally def = 'define’

def literally stacktop = 'word ss:sp’
define integer i

define word j

Note that the values of the memory type variables i and j are not saved.
The following PUT command:
put defs2.mac lit, def, integer
places the following text into the file DEFS2. MAC:
define literally lit = 'literally’
define literally def = 'define’
define integer i
Note that in this example, lit is not expanded to literally when it appears in the
PUT command. PSCOPE treats lit as the name of a debug object that happens to

be a LITERALLY. The same is true for the REMOVE command and, in fact, for
all commands that let you specify a debug object by name.

7-8

CHAPTER 8
DEBUG PROCEDURES

PSCOPE lets you define debug procedures to expand the debugger command lan-
guage and to aid development of the program you are debugging. Debug proce-
dures are one of PSCOPE’s most powerful features.

You can use debug procedures (whose type is PROC) to automate the software
test process, set up breakpoints based on data values or Boolean conditions, and
put together complex commands using PSCOPE’s command language. Debug
procedures let you use parameters (LITERALLYS do not).

This chapter explains debug procedures basics: how to define them, return values
from them, make calls to them, and remove them.

Define Debug Procedure

The DEFINE command defines a debug procedure.

Syntax
DEFINE PROC name = command
Where:
name is any name except a reserved keyword. The rame can be up to
254 characters long, of which the first 40 must be a unique
combination.

command is a PSCOPE command.

Description

A debug procedure contains a single PSCOPE command. This command is usually
a DO construct, which allows multiple commands and the declaration of local
variables.

A debug procedure does not execute when it is defined, only when it is called.
PSCOPE checks syntax when you define the debug procedure. However, if you
define a debug procedure within another debug procedure, PSCOPE does not
define the inner debug procedure until the enclosing debug procedure is called.
Note that while you can define a debug procedure within another debug
procedure, all debug procedures are global.

PSCOPE determines the types of all objects in the debug procedure when you
define the debug procedure. Changing the type and the definition (or the type or
the definition) of an object referenced in a debug procedure before you execute it
can cause errors when you run the debug procedure.

Referencing actual and formal parameters when you execute a debug procedure is
described later in this chapter.

8-1

Debug Procedures PSCOPE-86 User’s Guide

Debug Procedure Calls

You can call debug procedures using the syntax shown in the following section.

Syntax

name [(exprl, exprix)]
Where:

name is the name of the debug procedure.

expr is any expression yielding a numeric or string value that is to be

passed as an actual parameter in the debug procedure.

Description
PSCOPE executes the command specified in the debug procedure definition.
PSCOPE substitutes the values of expr for the actual parameter specifier during
the execution of the command.

You can call a debug procedure in the following three ways:

® Inresponse to a PSCOPE prompt.

& A oo SR S PR
& ASan operainda o1 an exXpression.

e Upon reaching a breakpoint or tracepoint that uses the CALL option (as ex-
plained in Chapter 11).

Debug Procedure Return

You can return a value from a debug procedure by placing the RETURN command
in the debug procedure.
Syntax
RETURN [expr]
Where:

expr isany expression.

Description

PSCOPE returns the null value if you do not specify expr. This can cause a type
conversion error if you use the debug procedure as a function.

PSCOPE displays the expr value if you use a RETURN command outside a debug

procedure. PSCOPE displays an error message if it expects a return value (such as
when the debug procedure is used in an expression) but no RETURN is executed.

8-2

PSCOPE-86 User’s Guide Debug Procedures

Return values are required from debug procedures used as operands in expressions
or automatically called upon reaching a breakpoint or a tracepoint (but not from
debug procedures called in response to a PSCOPE prompt).

Accessing Debug Procedure Parameters

You can reference the values of the parameters passed to the debug procedure
when it executes.

Syntax
% parameter
Where:
parameter is one of the following:

integer-constant is an arbitrary unsigned integer constant specifying
which parameter you desire. Note that %0 specifies
the first parameter in the list of parameters passed

o1

to the debug procedure, %1 specifies the second
parameter in the list, and so forth.

(expn) is an expression that specifies the desired
parameter.
NP is the total number of parameters in the parameter

list passed to the debug procedure. PSCOPE does

not limit the number of parameters that you can
pass to a debug procedure.

Description

All parameters are passed by value and are local to the specific execution of the
debug procedure to which they are passed. Thus, you can call debug procedures
recursively.

A debug procedure cannot assign new values to the parameters passed to it.

PSCOPE displays error messages if you try to access non-existent parameters or
try to access parameters when no debug procedure is executing.

Example
The following debug procedure executes a recursive factorial function:

xdefine proc factorial = do

- xif %0 < 2 thenreturn 1

. . xelse return %0 x factorial(%0 — 1)
- . xendif

. xend

xfactorial(5)
120

8-3

Debug Procedures PSCOPE-86 User’s Guide

The following debug procedure returns the sum of all the parameters passed to it:

xdefine proc sum = do
. xdefine longintn=0
. xdefine integeri=0
. xcount %np
..xp=n+ %(i)
Loxi=i4+1

. . xendcount
.xreturnn

- xend

xsum(1,2,3,4)
+10

xsum(factorial(3), factorial(4))
+30

The following debug procedure lets you trace a byte value every time it is modified
in a program:

x define proc trace_byte = do

. x define byte current_value = byte %0
. x write 'value =', current_value

. x repeat until $ == %1

. . x Istep

- - x if current_value < > byte %0 then
- . . x current_value = byte %0

... xeval $line

. . . x write 'value =', current_value

. . . x endif

- « x endrepeat

. x eval $ line

- x end

x trace_byte {.c, get_iine)

value = 32
:DC#

8-4

CHAPTER 9
CODE PATCHES

This chapter shows you how to define, display, and remove code patches from
your program.

This chapter describes the following commands:
Define patch

Display patch
Remove patch

Defining a Patch

The DEFINE command is used to create a PATCH.

Syntax
DEFINE PATCH addr1 [TIL addr2] = patch-value

Where:

addr1and addr2 are expressions which evaluate to a program location
(e.g., line, procedure, or label reference, preceded by a
module name if necessary).

patch-value is one of the following:

command is any PSCOPE command, except LOAD, GO, LSTEP,
or PSTEP. Use a compound construct (see Chapter 6) to
specify more than one command.

NOP is a special command which implies that no operation is
to be performed in the patch. When used with TIL addr2,
NOP allows statements in your program to be effectively
deleted.

Description

A PSCOPE patch is a PSCOPE command that is executed prior to a statement in
your program or instead of a sequence of statements in your program. Like all
other PSCOPE commands, patches are interpreted (rather than translated).

Patches are active as soon as you define them and remain active until you remove
them. Note that the LOAD command implicitly removes them.

You are allowed only one patch per address; PSCOPE will replace the first patch if
you specify a second patch.

If you specify only addrl, then program execution resumes at addrl. If you specify
both addrl and addr2, then program execution resumes at addr2. In either case the
patch may have changed the execution point (by reassigning $ or CS:IP), in which
case execution resumes at the reassigned location.

Code Patches PSCOPE-86 User’s Guide

PSCOPE executes patches after it handles any breaks or traces at the same
location. (Chapter 12 discusses the break and trace commands.)

PSCOPE executes command (or NOP) upon reaching but before executing addrl.
Be careful not to overlap patches. For example, because the following:

DEFINE PATCH #10 TIL #15
and the following:

DEFINE PATCH #13 TIL #18

overlap, PSCOPE ignores part of the second patch. The first patch skips lines 10
through 14 and resumes at line 15; PSCOPE will not see the patch at line 13.

You can stop program execution and set the execution point to the location where
the patch exists by pressing CNTL-C while executing the patch.
Example
The following patch inserts a command before statement 10:
define patch #10 = write'x = ' x
The following patch skips statement 15:

define patch 15 til 16 = NOP

Displaying a Patch

This section shows you how to display patches.

Syntax
PATCH addr1
Where:
addr1 is an expression that evaluates to a location in your program that is
the beginning of a patch.
Description
PSCOPE displays the patch that begins at addrl.
Since addr is an expression, you can use any other expression which evaluates to

the same program location to reference a patch. However, do not use a symbol
whose name is a constant but whose value changes (e.g., $) as a patch name.

9-2

PSCOPE-86 User’s Guide Code Patches

Example

The following example displays a patch in the sample program DC (found in Ap-
pendix E):

xdefine patch #41 = write ‘enter get_line’

xpatch #41
define patch #41 = write ‘enter get_line’

Removing a Patch

You can delete patches with the REMOVE command.

Syntax
REMOVE PATCH [addrl
Where:

addr isthe location of the patch you want to remove.

Description

The REMOVE command lets you delete the patch at addr If you do not specify
addr, PSCOPE deletes all patches. PSCOPE displays an error message if you try to
remove a patch which you have not defined.

This syntax is required regardless of which form of the DEFINE command you
used to define the patch.

Example

The following example removes the patch at line (or statement) 10:

xremove patch #10

9-3/9-4

CHAPTER 10
UTILITY COMMANDS AND
STRING FUNCTIONS

PSCOPE furnishes a variety of utility commands. This chapter discusses these
commands, which include the following:

e EXIT
e DIR

CALLSTACK

HELP

LIST/NOLIST

INCLUDE

EVAL

BASE

INPUTMODE
e WRITE
This chapter also describes the following PSCOPE built-in functions:

e SUBSTR

CONCAT

STRLEN
e (I

SELECTORS$OF

OFFSETS$OF

The EXIT Command

The EXIT command ends the debugging session.

Syntax
EXIT

The EXIT command has no arguments.

Description

The EXIT command automatically closes all open files, prints a termination
message, and returns you to the host operating system.

10-1

Utility Commands and String Functions PSCOPE-86 User’s Guide

Example
The following example iliustrates using the EXIT command.

xexit /x User ends debug session x/
PSCOPE terminated /* PSCOPE prints termination message */

The DIRectory Command

The DIR command displays the names of all objects of a specified type that are
found in a specified set of symbols. The set of symbols can be either program sym-
bols or debug symbols. '

Syntax
DIR [directory] [typel
Where:
directory is one of the following:

DEBUG specifies that the symbols PSCOPE displays come
from the set of debug symbols (those that were creat-
ed with the DEFINE command).

® specifies that the symibols
found in the user program and that only those sym-
bols with the PUBLIC attribute are to be listed.

module-name specifies that the program symbol table (as opposed
to the debug symbol table) is to be used for the direc-
tory and that symbols in only the specified module
are to be listed.

type is any type (memory, debug, or user). PSCOPE lists only objects
of the specified type.

Description

The DIR command displays the names and types of the set of objects that
PSCOPE recognizes. You can list either program symbols or debug symbols with
the DIR command.

PSCOPE lists all symbols from the specified directory if you do not specify type.

If you do not specify directory, PSCOPE uses the current module of the user
program, unless fypeimplies that PSCOPE uses the debug directory.

Example

Suppose that you entered the following commands:
define literally lit = 'literally’

define lit def = 'define’
foad dc.86

10-2

PSCOPE-86 User’s Guide

The following command lists all debug symbols:

xdir debug
DEF literally
LIT literally

The following command lists all symbols in the module DC. The indentation
within some of the procedures indicates local symbol definitions:

Utility Commands and String Functions

xdir :dc
DIR of :DC
PQ_OUTPUT it TEXT (file)
PQ_INPUT it TEXT (file)
@1000 e label
@9999 ... label
T o TOKEN (record)
C o char
BUFFER it TEXT_BUFFER (record)
VARIABLE_TABLE array of integer
ERRORiiiiii.. procedure
E ERROR_CLASS (enumeration)
GET_LINE procedure
GET_TOKEN procedure
.......................... procedure
......................... char
UPPER_CASE procedure
......................... char
LOWER_CASE procedure
......................... char
GET_CHAR procedure
FACTOR procedure
FACTORVALUE integer
EXPRESSION_VALUE integer
VARIABLE_INDEX char
TERM ... procedure
TERM_VALUE integer
FACTOR_1_VALUE integer
FACTOR_2_VALUE integer
OP .. e char
EXPRESSION procedure
EXPRESSION_VALUE integer
TERM_1_VALUE integer
TERM_2_VALUE integer
OP .. char
STATEMENT procedure
EXPRESSION_VALUE integer

In the following example, PSCOPE assumes module DC because the user did not
specify a module. Note that additional qualification indicates local (not module

level) symbols.

i0-3

Utility Commands and String Functions PSCOPE-86 User’s Guide

xdir procedure

DIR of :DC

ERROR

GET_LINE

GET_TOKEN
GET_TOKEN.DIGIT
GET_TOKEN.UPPER_CASE
GET_TOKEN.LOWER_CASE
GET_TOKEN.GET_CHAR
FACTOR

TERM

EXPRESSION

STATEMENT

In the following example, the user does not specify a module, but the type speci-
fied is a debug type. Hence, PSCOPE uses the debug symbol table for the
directory:

xdir literally

DEF
LIT

The CALLSTACK Command

The CALLSTACK command displays your program'’s dynamic calling sequence.
Syniax
CALLSTACKIn]

Where:

n is an optional integer expression that indicates how much of the call
stack you want to see.

Description

Using the CALLSTACK command, you can symbolically display the current
chain of procedure calls in your program. In response to this command, PSCOPE
prints a sequence of fully qualified references to procedures, one per line. The
reference listed first is the point to which execution control will return when the
current procedure returns (its return address). The second entry is the return ad-
dress for the procedure that called the current procedure, and so on.

The optional expression » indicates how much of the call stack you want PSCOPE
to display. PSCOPE displays the entire call stack if you do not specify n. A positive
n value indicates that the first nentries are to be displayed (the nmost recent proce-
dure calls). A negative n value indicates that the bottom 7 entries of the call stack
are to be displayed (the rleast recent procedures).

Note that the CALLSTACK command works only when the current execution
point is inside a module for which PSCOPE has symbol information.

Example

The following example illustrates using the CALLSTACK command.

10-4

PSCOPE-86 User’s Guide Utility Commands and String Functions

xload dc.86

xgo til get_char

[Break at get_char]
xcallstack
:DC.GET_TOKEN +323
:DC.FACTOR + 156
:DC.TERM + 15
:DC.EXPRESSION + 37
:DC.STATEMENT + 15
:DC +1787

NOTE

The CALLSTACK command does not operate correctly if the
nesting sequence includes a procedure written in assembly
language.

The CALLSTACK command does not operate correctly if the last

1

executable statement of the main module calls a procedure. The
top-level return address must not be within a procedure.

The HELP Command

The HELP command displays explanatory text about various topics, including
PSCOPE commands and extended messages for those errors whose primary error
message ends with [*].

Syntax
HELP [topic]
Where:
topic is one of of the following;

topic-name is the topic name for which you want help information.

En is the error number for which you want the extended
error message. Note that the form En is used even for
warnings.

Description

If you do not specify fopic, PSCOPE lists all topics for which help is available.

Example

The following example shows how the HELP command is used to get information
about the BASE command.

xhelp base

BASE

... (The help information is printed here.)

10-5

Utility Commands and String Functions PSCOPE-86 User’s Guide

10-6

The following example shows what happens when you request HELP on a topic
for which there is no HELP information.

xhelp problem

<sorry, but no help is available>

The LIST and NOLIST Commands

The LIST command puts all of PSCOPE terminal output into the specified file,
and NOLIST closes the file.

Syntax
LIST [file-namel]
NOLIST
Where:

file-name is the name of the file into which all PSCOPE terminal output
is placed.

Description

The LIST command sends all PSCOPE output to the specified file. If you do not
specify file-name, PSCOPE displays the name of the currently selected LIST file.

NOLIST closes the currently active LIST file (if any). Changing the LIST file
closes the old LIST file.

Note that PSCOPE sends only PSCOPE terminal output to the file. PSCOPE does
not send any terminal output printed by a user program to the LIST file.

Example

The following example uses the LIST and the NOLIST command.
xlist exampl.log
xlist

exampl.log
xnolist

The INCLUDE Command

The INCLUDE command gets input from a file.

PSCOPE-86 User’s Guide Utility Commands and String Functions

Syntax
INCLUDE file-name [NOLIST]
Where:
file-name is the name of the file from which input is to be taken.

NOLIST suppresses echoing of the selected file’s input on the screen.

Description

The INCLUDE command takes input from file-name until it reaches the end of
the file, at which point input continues from the previous source.

INCLUDE commands may be nested. The level of nesting depends upon available
memory.

You can enter INCLUDE commands from the terminal; they must be the last
command on a line.

Depending on the severity of the error, an error in the INCLUDE file returns exe-
cution to the next command or to the standard command level.

Example
The following example illustrates using the INCLUDE command.

xinclude regs.inc
xinclude file2 nolist /* Suppress printing of contents */

The EVAL Command

The EVAL command has two forms. The first form evaluates expressions and
prints the results. The second form displays program locations symbolically.

Syntax
EVAL expr[eval-typel
Where:
expr is the expression to be evaluated.
eval-type is one of the following three optional evaluation types:
LINE indicates line number
PROCEDURE indicates procedure name
SYMBOL indicates a fully-qualified reference

SYMBOL ALL indicates all symbolic variables referenced by
a particular address

10-7

Utility Commands and String Functions PSCOPE-86 User’s Guide

Description

EVAL prints the results of the expression according to the indicated eval-type.
EVAL can evaluate an expression in different bases or as a program symbol or line
number.

If you do not specify ewl-type, the value of expris printed in the following manner,
depending upon its type:

Type Form of EVAL Display

BYTE All 3 bases (binary, decimal, hex) and ASCII
BOOLEAN

WORD

ADDRESS

SHORTINT

INTEGER

LONGINT

SELECTOR

DWORD

POINTER seg:off (hex) and 20-bit normalized address
REAL Hexadecimal bytes

LONGREAL

TEMPREAL

EXTINT

BCD

CHAR
Note that PSCOPE prints non-printing ASCII characters as a dot (.).

If you specify ewal-type, PSCOPE tries to find a program symbol whose address is
equal to the value obtained by evaluating the expression.

If ewal-typeis LINE, then PSCOPE displays the following:
:module-name #line-number [+ offset]

Where:

module-name isthe name of the module in which the address occurs.

line-number is the nearest line number in that module-name to that
address.

offset is the amount by which the address exceeds the exact ad-
dress of line-number.

If ewal-typeis PROCEDURE, then the next message is displayed:
:module-name [.procedure-namelx [+ offsef]

Where:
module-name is the name of the module in which the address occurs.

procedure-name is the name of the procedure with the closest match to the
address.

10-8

PSCOPE-86 User’s Guide Utility Commands and String Functions

offset is the amount by which the address exceeds the exact ad-
dress of the procedure-name.

If ewal-typeis SYMBOL, then the next message is displayed:
fully-qualified-reference [+ offset]
Where:

fully-qualified-reference is a fully qualified reference, such as
ds:token_1.m.

offset is the amount by which the address exceeds
the exact address of fully-qualified-reference.

Example

The following example uses the EVAL command.

xevai $ procedure
xeval $
xeval ds:14h symbol

If ewal-typeis SYMBOL ALL, PSCOPE displays all symbolic variables whose start-
ing address is expr, that is, PSCOPE supports the FORTRAN EQUIVALENCE
and COMMON statements and the PL/M AT attribute. For example, if expris the
address of more than one program variable, PSCOPE displays all variables stored
at that location.

The BASE Command

The BASE command establishes the default base for numeric constants during
input and output.
Syntax
BASE [= expr]
Where:

expr isan expression that evaluates to 2, 10, or 16 (decimal).

Description

PSCOPE displays the current radix. When the current base is hexadecimal,
PSCOPE displays HEX. When the current base is decimal, PSCOPE displays
DECIMAL. When the current base is binary, PSCOPE displays BINARY.

You can change the current radix by setting BASE equal to 2T, 10T, or 16T as
shown in the following example.

*BASE=10H /xSetting the current radix to hex.*x/

xBASE=16T /* Another way of setting the current radix to hex.*/
BASE=10000Y /xAnother way of setting the current radix to hex./
xBASE

HEX

10-9

Utility Commands and String Functions PSCOPE-86 User’s Guide

10-10

The initial default base is decimal. During input, you can override the default base
by putting an explicit base suffix on the constant (for example, 12t).

Note that PSCOPE command processing goes through the following two steps:
® Scanning for syntax errors and deciding what to do.
® Executing the command.

PSCOPE evaluates numeric constants during the first phase of command
processing. PSCOPE assigns values to variables during the second phase. Thus,
commands such as the following:

xbase = 10t
xbase =16; VAR1 =10

will give VAR1 the value 10 (decimal), not 16 (decimal), because PSCOPE scans
the entire second command line before either of the two commands in the com-
mand line are executed. Thus, the numeric constant 10, in the second command
line, is interpreted as 10 (decimal). If you want VAR1 interpreted as 16 (decimal),
put the expression VAR1 = 10 on a separate line, as shown below:

xbase = 10t

xbase =16

xVAR1 =10
EXampie

The following examples use the BASE command.

xbase = 16t
xbase = 0A
INPUTMODE

With the INPUTMODE pseudo-variable, you inform PSCOPE what DQ$SPE-
CIAL mode the program being debugged is using. The DQ$SPECIAL mode deter-
mines how the operating system interprets console input.

Syntax
INPUTMODE[=n]
Where:

n is an expression resolving to 1T, 2T, or 3T.

Default

PSCOPE-86 User’s Guide Utility Commands and String Functions
Description

INPUTMODE informs PSCOPE what DQSSPECIAL mode the program being
debugged uses. PSCOPE uses mode 1. Whenever your program reaches a
breakpoint, PSCOPE sets DQSSPECIAL to 1 before delivering the prompt. When
your program resumes executing (you enter a GO command or a STEP
command) , PSCOPE sets DQ$SPECIAL to the value specified by INPUTMODE.

You need to be aware of this if your program sets the DQSSPECIAL mode to
other than the current setting of INPUTMODE. If you break and then resume pro-
gram execution, your program may be resuming with a different DQSSPECIAL
mode than what you intended.

DQS$SPECIAL is a UDI system call that determines how another UDI system call,
the DQSREAD, handles input from the console keyboard.

Input comes from the console keyboard into a system buffer. The DQSREAD
transfers the input from the system buffer to a user buffer specified as a
DQS$READ parameter. There are three DQSSPECIAL modes, called 1, 2, and 3.
The default is 2, line-editing mode. The following describes modes 1, 2, and 3.

1 Transparent 1 mode. Sometimes this mode is just referred to as transparent
mode.

The DQSREAD specifies a number of characters. When the system buffer
contains that number, the DQSREAD transfers those characters to the user
buffer. If the system buffer already contains the specified number of
characters, the DQSREAD transfers them immediately, and the user pro-
gram continues. Otherwise, the DQSREAD waits until the system buffer
gains the specified number of characters.

The DQSREAD transfers the characters exactly as you type them. All charac-
ters (except CNTL-D and CNTL-C) go into the user buffer. These characters
are not echoed to the screen.

2 Line-editing 2 mode. This mode is the default. The operating system allows
editing of the console input line. A line terminates with a carriage return.
Once you enter the carriage return, you lose the ability to edit that line. The
operating system interprets and removes all editing characters (such as
backspace) from the input line and adds a linefeed to the final carriage return
if the buffer has enough room.

If the system buffer already contains an edited line, the DQ$READ transfers
it immediately, and the user program continues. Otherwise, the DQSREAD
waits until the system buffer obtains a carriage return and completes the line
editing.

3 Transparent 3 mode. This mode is sometimes called flush mode and some-
times called polling mode.

The DQSREAD transfers whatever characters are in the system buffer to the
user buffer. If the system buffer contains no characters, no characters are
transferred. The DQSREAD does not wait for the system buffer to obtain
any characters.

The DQSREAD transfers the characters exactly as you type them. All charac-

ters (except CNTL-D and CNTL-C) go into the user buffer. These characters
are not echoed to the screen.

10-11

Utility Commands and String Functions PSCOPE-86 User’s Guide

10-12

Example
Set INPUTMODE to 1 and display it as follows.

*INPUTMODE=1
*INPUTMODE
1

Because INPUTMODE is a pseudo-variable, you can use it in a debug procedure.
For example, the following debug procedure displays yes on the console if INPUT-
MODE is 1 and no otherwise.

*DEFINE PROC checkinput=DO

. *|[FINPUTMODE==1 THEN WRITE 'yes’
. . xELSE WRITE 'no’

. . xENDIF

-xEND

xcheckinput

no

The WRITE Command

The WRITE command lets you display and format information at the terminal.

Syntax

WRITE [USING ('[radix,] format-item |, [radix,] format-item]x")] list

Where:
USING lets you control output using a format string.
radix is one of the following:

H Set WRITE command display base to hexadecimal.
T Set WRITE command display base to decimal.

Y Set WRITE command display base to binary.

format-item is one of the following:

n Decimal number specifying the width of the output field.
PSCOPE determines the format of the field by the type of the
expression in the argument corresponding to this format item.
If n = 0, then PSCOPE uses the normal display length of the
item without padding or truncation for the width of the output
field.

nC Move output buffer to column # (first columnis 1).
nX Skip nspaces in the output buffer.

Terminates the format string (optional).

PSCOPE-86 User’s Guide Utility Commands and String Functions

> Terminates the format string and specifies that no carriage
return or line feed is to be issued following the WRITE
command.

& Terminates the format string and specifies that the write

output buffer is not to be flushed at the end of this WRITE
command but is to be added to by later WRITE commands.

"text” Puts the text between the quotation marks (") into the output
buffer.

list uses the following syntax:
name ,name x
expression ,expression
string-spec ,string-spec
Where:
string-spec is an expression that evaluates to a string.
expression is an expression whose value you want to display at the
terminal.
Description
The WRITE command displays the items in its argument list at your terminal.

In its simplest form, the WRITE command lets you print a list of expressions.
PSCOPE prints the value to be printed according to the current output base.

The USING option lets you control output using a format string consisting of
format items separated by commas. If you use a format item for one variable, then
you must use a format item for each variable in /ist. When text is the only format
item, you must use a terminator (., >, or $).

Example
The following example uses the WRITE command.

xwrite "hello’
hello

xdefine byteb=5
xwrite using (’b=",0') b
b=5

The String Functions (SUBSTR, CONCAT,
STRLEN, and Cl)

PSCOPE provides three string manipulation commands: SUBSTR, CONCAT, and
STRLEN. In addition, the CI function lets you enter a single character string from
the keyboard.

10-13

Utility Commands and String Functions PSCOPE-86 User’s Guide

Syntax
SUBSTR (string-spec, start, length)
CONCAT (string-spec [, string-speclx)
STRLEN (string-spec)
Cl
Where:
string-spec is an expression that evaluates to a CHAR value.

startand length are expressions that evaluate to integer values.

Description

The SUBSTR function returns the specified substring starting at startand of length
length. The first character of a string is in position 1. PSCOPE returns the null
string if arguments do not make sense (for example, negative length, start past
end of string, etc.). If start is valid but length goes beyond the end of the string,
PSCOPE returns the rest of the string beginning at start.

The CONCAT function creates a new string by concatenating specified string-specs.
You can implicitly concatenate string constants (as described in Chapter 3).

The STRLEN function returns the length of its argument string. The length of the
null string is zero. You can use the STRLEN function anywhere a number is valid.

The CI function reads one character from the keyboard and returns a string of
length one having that character as its value. When CI is referenced in an
expression, execution pauses until you enter a character. PSCOPE does not display
the entered character on the terminal screen.

Example

The following examples use the CONCAT, SUBSTR, and the STRLEN
commands.

xdefine char ch1 ='The’
xdefine char ch2 =’ quick’
xdefine char ch3 ="' brown’
xdefine char ch4 =’ fox’
xconcat (ch1,ch2,ch3,ch4)
The quick brown fox

*SUBSTR (ch3, 3, 3)
row

*STRLEN (CONCAT(ch1, ch4))
7

10-14

PSCOPE-86 User’s Guide Utility Commands and String Functions

The following example assumes that the character z is entered when execution
pauses during the execution of the command:

xif ci = "2’ then write 'sleepy?’

.xendif
sleepy?

The SELECTORSOF and OFFSETS$OF Functions

PSCOPE provides two functions for extracting the selector (or segment) and
offset portions of a pointer value.

Syntax
SELECTORSOF (expr)
OFFSETS$OF (expr)
Where:

expr is an expression that evaluates to a pointer value.

Description

SELECTORSOF returns the selector (or segment) portion of a pointer value.
OFFSETSOF returns the offset portion of a pointer value.

The dollar sign (8$) in the names of these functions is optional (as in all PSCOPE
names) and is included here to improve readability.

Note that these functions correspond to the PL/M V2.0 functions with the same
names.

Example

The following examples use the SELECTORS$OF and the OFFSETS$OF functions.
xbase = 16t
xdefine pointer p = 123:456
3‘1)23H :0456H

xselector$of(p)
123

xoffset$of(p)
456

10-15/10-16

CHAPTER 11
ADVANCED EXECUTION AND
TRACE COMMANDS

This chapter explains how to control and trace program execution. It describes the
break and trace registers, as well as how to load and use them. Automatic calling of
debug procedures, conditional break and trace, and the break/trace/patch table are
covered as well.

Breaking and Tracing

Using procedures, labels, and statements, PSCOPE’s breaking and tracing com-
mands let you control and monitor the execution of the program you are
debugging.

Breaking and tracing makes use of debugger objects called break registers
(BRKREGSs) and trace regisiers (TRCREGs). Breakpoinis and tracepoints are
defined and stored in these registers and activated with the GO command.

Break Registers (BRKREG)

Break registers are named registers that can hold any number of breakpoints. You
can define any number of break registers within PSCOPE’s workspace limits.

Placing breakpoints in a named break register lets you easily switch active break-
points while maintaining control of program execution.

PSCOPE lets you break upon reaching a particular program location, which can be
referenced symbolically as a line number, label, or procedure (see Chapters 3 and
5) or as an actual address. In the latter case, PSCOPE assumes that the user en-
tered a valid break location. This location must be on an instruction boundary.

A break occurs when PSCOPE reaches a specified location and before execution of
the statement at that location. If you set a breakpoint at a procedure, PSCOPE
stops execution at the prologue of the procedure, before processing the declara-
tions for the procedure and before the first executable statement of the procedure.

Since BRKREG is a debug type, the standard debug object manipulation com-
mands described in Chapter 7 apply to BRKREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified in the following
syntax section.

The address you specify in a break register can be the address of a high-level lan-
guage statement or an assembly language instruction.

Syntax

DEFINE BRKREG name = break-item [, break-item]x
Where:

name is the name of the break register.

Advanced Execution and Trace Commands PSCOPE-86 User’s Guide

break-item is one of the following:
breaks [CALL proc-name]

breaks is one of the following:
break-pt|, break-pt]*

break-pt can be any expression that evaluates to a location in
your program.

proc-name is the name of a debug procedure that returns a value.

Description

You can create a break register with a specified name that contains all the listed
break-pt’s as its breakpoints. Note that PSCOPE associates the breakpoints only
with their defined break register. Breakpoints are not active until you specify their
break rggister in a GO command. (The GO command is discussed later in this
chapter.

If you specify the CALL option, PSCOPE associates proc-name with the single or
parenthesized list of break-pt’s preceding it.

Note that you cannot modify break registers with a PSCOPE modify command,;
you must redefine break registers. However, you can add or delete breakpoints
from an existing break register by editing the BRKREG definition with PSCOPE’s
internal editor (discussed in Chapter 2).

After you activate a break register with the GO command, program execution pro-
ceeds until PSCOPE encounters one of the breakpoints contained in that register
(i.e., program execution reaches that point). Then PSCOPE stops program execu-
tion and displays a breakpoint message. If a debug procedure is associated with the
breakpoint, PSCOPE automatically executes the debug procedure. PSCOPE con-
verts the return value from the debug procedure to a Boolean. If the Boolean value
is TRUE, PSCOPE breaks and displays a break message, as if it had not called the
debug procedure. If the Boolean value is FALSE, PSCOPE continues execution
without interruption, as if no breakpoint was there. If there is no return value,
PSCOPE detects an error and stops execution. This feature lets you set conditional
breakpoints with the decision to break based on any Boolean condition, including
program variable values or terminal input (see the CI command in Chapter 10).
Note that PSCOPE does not allow parameters on the debug procedure specified in
the CALL option.

Break messages have the following form:

[Break at break-pt]

Where:

break-pt is the location you specified in the definition of the break register.

Example

Note that all the following examples use the sample program DC (shown in Ap-
pendix E).

PSCOPE-86 User’s Guide Advanced Execution and Trace Commands

The following example defines one break register containing four breakpoints,
each at a different procedure in DC:

xDefine Brkreg break_1 = error, statement, term, factor
This break register has one breakpoint, which calls a debug procedure:
xDefine Brkreg input_check = get_line CALL PROC2

The following example defines a break register with four breakpoints, two of
which call the debug procedure PR1:

xDefine Brkreg special = (term, value) CALL PR1,
xx :dc#68, :dc + 1741

Trace Registers (TRCREG)

Trace registers (TRCREG) are defined and operate almost exactly like break regis-
ters (BRKREG). The only difference is that the tracepoints contained in trace
registers do not stop program execution; they display trace messages instead.

Trace registers are named registers that can hold any number of tracepoints. You
can define any number of trace registers within PSCOPE’s workspace limits.

Putting tracepoints into a named trace register lets you easily switch active trace-
points while maintaining control of program execution.

PSCOPE lets you trace upon reaching a particular program statement, label, or
procedure.

The trace occurs when PSCOPE reaches a specified location and before execution
of the statement at that location. Tracing a procedure stops execution at the prol-
ogue of the procedure, before the declarations in the procedure are processed and
before the procedure’s first executable statement.
Since TRCREG is a debug type, the standard debug object manipulation com-
mands described in Chapter 7 apply to TRCREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified in the following
syntax section.
Syntax
DEFINE TRCREG name = trace-item [, trace-item]x
Where:
trace-item is one of the following:
traces [CALL proc-namel]
traces is one of the following:

trace-pt[, trace-pt]x

trace-pt can be any expression that evaluates to a location
within the user program.

proc-name is the name of a debug procedure that returns a value.

Advanced Execution and Trace Commands PSCOPE-86 User’s Guide

Description

You can create a trace register with a specified name that contains all the listed
trace-pt’s as its tracepoints. Note that PSCOPE associates the tracepoints only with
their defined trace register. Tracepoints are not active until you specify the trace
register in a GO command. (The GO command is discussed later in this chapter.)

If you specify the CALL option, PSCOPE associates proc-name with the single
trace-ptor parenthesized list of trace-pts preceding it.

Note that you cannot modify trace registers with a PSCOPE modify command; you
must redefine trace registers. However, you can add or delete tracepoints from an
existing trace register by editing the TRCREG definition with PSCOPE’S internal
editor (discussed in Chapter 2).

After you activate a trace register with the GO command, program execution pro-
ceeds until PSCOPE encounters one of the tracepoints contained in that register
(i.e., program execution reaches that point). Then PSCOPE displays a trace
message, and program execution continues. If a debug procedure is associated
with a tracepoint, PSCOPE automatically executes the debug procedure. PSCOPE
converts the return value from the debug procedure to a Boolean. If the Boolean -
value is TRUE, PSCOPE displays the trace message, as if the debug procedure was
called. If the Boolean value is FALSE, PSCOPE continues execution without dis-
playing a message, as if there was no tracepoint. If there is no return value,
PSCOPE detects an error but continues program execution. This feature lets you
set conditional tracepoints with the decision to trace based on any Boolean
condition, including program variable values or terminal input (see the CI com-
mand in Chapter 10). Note that PSCOPE does not allow parameters on the debug
procedure specified in the CALL option.

Trace messages have the following format:
[At trace-p]

Where:

trace-pt is the location specified in the definition of the trace register.

Example

Note that all the following examples use the sample program DC (found in Appen-
dixE).

The following example defines a trace register containing three tracepoints:
xdefine TRCREG trace_1 = #80, #224, @1000

The following trace register contains one tracepoint, which calls a debug
procedure:

xdefine trcreg error_check = :dc.error CALL write_message

The GO Command

The GO command controls user program execution. It also lets you activate any
number of breakpoints or tracepoints.

11-4

PSCOPE-86 User’s Guide

Syntax
GO [brk-spec]*
GO FOREVER
Where:
brk-spec is one of the following:
TIL break-pt|, break-pt]x
USING reg-item [, reg-item]x
reg-item is one of the following:
break-register specifies a previously defined break register.
trace-register specifies a previously déﬁned trace register.
BRKREG

TRCREG

Description

The GO command starts executing your program from the current execution
point ($). The LOAD command sets the initial value of $.

If you specify FOREVER, PSCOPE starts executing without any breakpoints.
Note that you can use CNTL-C to interrupt execution, but execution may stop in a
location for which PSCOPE has no symbol information (for example, inside UDI,
the universal development interface).

If you do not specify brk-spec, PSCOPE resumes execution with the same set of
break and tracepoints that the last GO command used (except for any break regis-
ters or trace registers that were removed or redefined, in which case they are
inactive). If you specify USING, PSCOPE starts program execution using the
breakpoints and tracepoints in the break and trace registers specified. If you specify
the keywords BRKREG and TRCREG with USING, PSCOPE uses all break regis-
ters or trace registers.

If you specify TIL, PSCOPE starts program execution using the points listed. As
described in Chapter 4, these may be labels, line numbers, procedures, or actual
addresses (in which case PSCOPE assumes that the user entered a valid break
address).

You can specify any number of TIL and USING clauses. The number of active
breakpoints and tracepoints is limited only by the amount of PSCOPE workspace
available.

You can set both a breakpoint and a tracepoint at the same location but only one of
each type at the same location. PSCOPE displays a warning message if you try to
set a breakpoint (or tracepoint) where an active break (trace) point already exists.
The original breakpoint (tracepoint) remains intact.

In addition, you can define a patch at a breakpoint and a tracepoint location (or a
breakpoint or a tracepoint location). In this case, PSCOPE handles the tracepoint

Advanced Execution and Trace Commands

Advanced Execution and Trace Commands PSCOPE-86 User’s Guide

first (including any debug procedures associated with it). PSCOPE next handles
the breakpoint (including any debug procedures associated with it) and finally the
patch. However, if PSCOPE stops because of the breakpoint, PSCOPE does not
execute the patch until the next GO command.

Breakpoints and tracepoints are active only during execution initiated with the GO
command. They are automatically deactivated when control returns to PSCOPE.
Note that breakpoints and tracepoints are not active during stepping with the
PSTEP and LSTEP commands, while patches are active during stepping.

Note that PSCOPE deactivates all breakpoints and removes all break registers,
trace registers, and patches when you invoke the LOAD command.

Example
The following example executes break and trace registers:
GO USING break_1, error_check, input

The following example reuses the breakpoints and tracepoints activated during the
previous GO command:

GO

The following example activates all trace registers and one breakpoint:
GO USING trcreg TIL :dc.error

The following example initiates execution with no break or tracepoints:
GO FOREVER

The following sequence of commands illustrates the combined use of break
registers, trace registers, and breakpoints. The example starts execution and prints
a trace message every time procedure get_token is called. Execution stops when
either error or get_line is called:

DEFINE TRCREG T1 = :dc.get_token
*DEFINE BRKREG B3 = error
*GO USING T1, B3 TIL get_line

Exception Trapping

PSCOPE automatically traps exception conditions within the user program. The
exceptions trapped are from UTS, UDI, and the 8087 emulator and include
DQEXIT. Unlike standard user breakpoints, these exceptions are always active;
they are created, removed, and replaced only by the LOAD command.

PSCOPE displays two messages when an exception condition occurs. The first
message identifies the type of exception. The second message is as follows:

[Stop at location]

Where:

location is the line number or address of the exception handler, not the lo-
cation within the user program where the exception occurred.

PSCOPE-86 User’s Guide Advanced Execution and Trace Commands

A trap at DQSEXIT lets you inspect variables and continue normal debugging
when the program has completed its execution. This is a good opportunity to save
definitions of debugger objects that you want to use in future debug sessions, such
as patches, debug procedures, and break registers. At this point, you cannot con-
tinue program execution. A GO command after trapping at DQEXIT causes
PSCOPE to exit.

11-7/11-8

APPENDIX A
ERROR MESSAGES

This appendix lists the PSCOPE error messages. PSCOPE error messages are
coded by number and listed in numeric order for easy reference.

Classes of Errors

Each of the errors detected by PSCOPE falls into one of the following five classes:

® WARNING. A minor problem which PSCOPE attempts to correct, then
executes.

e ERROR. A problem of sufficient severity that PSCOPE aborts the command
currently executing and either prompts for a new command or retrieves the
next command from the current INCLUDE file (if any).

e SEVERE ERROR. A problem that may cause difficulties beyond the current
command. PSCOPE aborts the current command, cancels any pending com-
mands from INCLUDE files, and prompts for a new command from the
terminal.

® FATAL ERROR. A problem from which PSCOPE cannot recover and relia-
bly continue operating. PSCOPE closes all files, frees all resources that it or
the program being debugged may have allocated, and returns control to the
host operating system. (Very few PSCOPE errors are fatal. Do not worry
about fatal errors aborting a debug session.)

TR —nTo T =

® INTERNAL ERROR. A violation of one of PSCOPE’s internai consisiency
checks. Please document the situation in which the error occurred and report
it to your Intel representative.

HELP

Some errors have extended error messages. You can reach the extended error
messages by using the following HELP command:

HELP En
Where:
n is the number of the error message.

PSCOPE indicates errors that have extended error messages by placing an asterisk
enclosed in brackets ([*]) at the end of the primary message for that error.

Error Messages

0 Type definition record with an unrecognizable format.

1 Array’s lower bound is unknown - zero is assumed.

2 Symbol is not an array or the symbol has fewer dimensions than
specified.

A-1

Error Messages PSCOPE-86 User’s Guide

3 Size of the array elements is not known.
4 Referenced array expects a single character array index.
5 Address of module is not known.

Tried to reference an assembly language module, a run-time library,
OS run-time, or a module with no debug information.

6 Unknown module specified.

7 No line information was loaded for module.

8 No symbol information was loaded for module.

9 Cannot determine module for specified location. [x]

Could not find specified location in any known module. Specified loca-
tion is either outside of the program or in a module for which there is
no symbol information.

10 Cannot determine current default module. [x]
Could not find current location in any known module. Either the cur-
rent execution point is outside of the program or it is in a module for
which there is no symbol information.

11 Symbol currently not active. [*]
Symbol is either not known or is not local to the current procedure.
12. Symbol not known in current context. Change context with the
NAMESCOPE command or use a fully qualified symbol reference.

13 No symbol information was loaded for program.

14 Attempt to reference a program symbol of an unsupported type.

15 Symbol is not known to be a record and cannot be qualified.

16 Symbol is not a known record field name.

17 Cannot determine offset of a field from the start of record. [*]. The

requested field cannot be referenced because the debugger cannot
determine the size of one of the preceding record fields.

18 Nested symbolic references not permitted.

19 Symbol isn’t a pointer variable or its dereference type is unknown.
20 Specified line is not an executable statement.

21 Specified line does not exist in module.

22 Cannot evaluate line reference. [*]

The segment part of the line reference pointer is not known. Maybe
the symbol information was not loaded for the module.

23 Specified type is incompatible with directory. [x]
Specified type cannot be used with the specified (or default) directory.
For example, DIR PUBLIC LINE is contradictory, as there are no
public lines.

24 Cannot perform symbol table request. No user program loaded.

A-2

PSCOPE-86 User’s Guide

40

41

42
43
44
45
46
47
48
49
50
51

52
64
65
66
67
68
69
70
71

72
73

74

75

Error Messages

Tried to REMOVE debugger object declared locally in DO..END
block.

Workspace exceeded. [*]

Out of workspace. Delete any unnecessary debugger objects (e.g.,
PROCs, LITERALLYs, PATCHes). This can also be caused by
deeply recursive debug procedures.

The name is either undefined or not of the correct type.

The name is undefined.

The name is already defined with a different type.

Parameter outside the body of a PROC.

The name is not a PROC.

Iilegal type specified in DIR DEBUG command.

The named object is not a literally.

Illegal assignment to register.

String too long to perform assignment.

Error in debug symbol lookup. [*]

May be caused by removing a global debug variable referenced in a
debug procedure (or patch) and then executing the debug procedure
(or patch).

No patch defined at the specified location.

Attempt to PUT or APPEND a local debug object.

I/0 error on PUT file.

This command is not currently implemented.

This command not allowed inside of a compound command.

Invalid type.

Invalid type conversion.

String longer than 254 characters.

String too long for numeric conversion. [¥]
Character strings must be of length 1 to convert to unsigned numbers.

Illegal type in output.

Unmatched double quotes in format string.

Write list too long.
The maximum is 20 items.

Write data too large.
The maximum is 256 bytes.

A-3

Error Messages

~1
~2

78
79

80
81
82
83
84

85
86
87

88

89

110

111

A-4

PSCOPE-86 User’s Guide

Invalid format string in WRITE command.

Output buffer overfiow.
The limit is 128 characters per line.

Invalid floating point value for output.

Invalid expression for MTYPE.
An illegal value is being assigned to a memory template.

Invalid boolean operation.
Invalid string operation.
Invalid pointer operation.
Invalid unknown operation.

Attempt to assign value to code instead of variable. [x]

Tried to assign an expression to a location associated with user data
(e.g., :main.procl = 5, where procl is a procedure in module main).
Straight assignments may be made only to variables or with memory
modify commands (e.g., byte 100:200 = 5).

Attempt to assign illegal value to BASE variable.
Cannot use editor if debugger was invoked with SUBMIT control.

Not in a procedure or in a procedure with no debug information. [*]

In order for the calling procedure to be identified (and the CALL-
STACK command to function properly), the current execution point
must be in a procedure or in a procedure for which there is debug
information.

The debugger has overflowed its 86 stack. [*]
The debugger has overflowed its stack, probably due to deep recursion
of a debug procedure.

UDI exception.
A PSCOPE operation resulted in a UDI exception. A divide-by-zero
on unsigned values will cause this error.

Literally nesting too deep.

Illegal extended integer.

Attempt to assign illega! value to INPUTMODE variable,

Error in VIEW command.

No data segment information. Program may execute incorrectly. [x]
The load module did not provide any information about the data
segment. Therefore, execution of the program may have unexpected
results.

No stack segment information. Program may execute incorrectly. [x]
The load module did not provide any information about the stack

segment. Therefore, execution of the program may have unexpected
results.

PSCOPE-86 User’s Guide Error Messages

112 Program cannot be loaded. [*]
Program start address needs a fix up by the linker.

113 The 8087 Emulator was not found in the load module. [*]
If the E8087 option is specified in the load command, then the 8087
emulator must be linked into the program being debugged. It was not
found at load, so it either never existed or it was purged.

114 Missing CH8087 option when loading a program with real math.

115 Bad object record in load file.
Verify that you are loading an LTL object file. If there are still bad
records, relink module.

116 Load file contains absolute load addresses. [*]
Load file is not PIC or LTL. Relink with the BIND control.

117 Load file contains unresolved externals. .
Program must be relinked before debugging.

118 Support for overlays not implemented.
Loaded program cannot contain overlays.

119 Memory segment request failure during load. [*]
More memory is needed to load the program. Deleting debugger ob-
jects will not increase available memory for loading.

120 Load module contained no starting address information. [x]
The load module did not provide any information about the starting
address. The load was aborted, and execution of the program is not

possibie.
136 Divide by zero (operation yields 0 result).
137 Invalid type for arithmetic.
138 Invalid integer operation.
139 Real math is not available. [x]

In order to use real math (including any operations or reference to
real numbers), you must use the E8087 option on the LOAD com-
mand and have the 8087 emulator linked into the program under
debug. This error may be detected if the E8087 option was used on
the LOAD command with a program that appears to have the emula-
tor linked into it but does not. (This can happen with Pascal and FOR-
TRAN programs linked with 87NULL.LIB.)

140 Invalid real number.

141 Attempted real comparison with NAN, +infinity or -infinity.
142 Invalid real operation.

143 Invalid extended integer operation.

144 Illegal numeric constant.

160 Attempt to INCLUDE :CI..

161 1/0 error on INCLUDE file.

Error Messages PSCOPE-86 User’s Guide

162 1/0 error on LIST file.

163 I/0 error while loading object file.

164 Could not open load file.

165 Error while attempting to open virtual symbol table. [x]

The virtual symbol table uses :WORK: for the disk-resident portion of
the virtual symbol table. Ensure that the device for :WORK: is ready
and that PSCOPE has access rights to it.

166 Error while attempting to seek in virtual symbol table.

167 Error while attempting to write to virtual symbol table.

168 Error while attempting to close virtual symbol table.

169 Error while attempting to read virtual symbol table.

177 First address is greater than second address.

178 Attempt to use VIEW command while running PSCOPE under
SUBMIT.

196-249 Errors 196 through 511 are PSCOPE internal errors. They result from
consistency check failures and should never occur. If an internal error
does occur, please notify an Intel representative.

353 Illegal number.
354 Unrecognized 8086/8087 mnemonic.
355 Illegal use of indirect addressing. [*]

The correct forms of indirect addressing are:
<symbolic ref> [BX] + offset
< symbolic ref> [BP] + offset
< symbolic ref> [DI] + offset
< symbolic ref> [SI] + offset
< symbolic ref> [BP] [DI] + offset
<symbolic ref> [BP] [SI] + offset
<symbolic ref> [BX] [DI] + offset
<symbolic ref> [BX] [SI] + offset
The symbolic reference (of the form :MODULE.SYMBOL.SYM
BOL.etc)and the ‘+ offset’ are optional.

356 Illegal single line assembler operand.

357 Single line assembler syntax error. See HELP SASM.

358 Memory pointer (eg. BYTE, WORD, etc) without memory
operand (eg. number or symbolic reference).

359 Too few operands for this instruction.

360 Illegal operands, both operands appear to reference memory.

361 T lLe types of the operand(s) do not match the mnemonic or each
other.

A-6

PSCOPE-86 User’s Guide

362
512

513

514

515

528

529

530
531
532
544-546

Error Messages

One byte relative jump is out of range. Range is —128 to +127.

The cause of execution break is unknown to PSCOPE. [x]

PSCOPE cannot determine how execution was broken; it was not
through a known breakpoint or a CNTL-C. You probably placed an in-
terrupt at the given address or entered CNTL-D.

This breakpoint is already active. [*]

You can activate only one breakpoint of each type (break, trace, or
patch) at any one address. The break you originally activated is still
intact.

Invalid return type from PROC called at breakpoint. [*]

The debugger procedure called at the breakpoint or tracepoint re-
turned a value with an invalid type or had no return value. The return
value must be a BYTE, WORD, DWORD, BOOLEAN, or INTEGER
(including LONG/SHORT). PSCOPE manufactured a return value of
TRUE, causing the associated break or trace to be executed.

There was a patch in progress and it was not completed. [x]

A code PATCH was being executed when execution was interrupted.
The current execution point is the standard resume address (the point
in the program to which control would normally be transferred after
the patch), as if the PATCH had completed (unless the PATCH
changed it). The entire PATCH will most likely not have completed
execution. If the resume address is the PATCH address, then restart-
ing execution re-executes the patch.

Attempted recursive definition of a break or trace register. [*]

Tried to define the named break register or trace register while already
in the process of defining one. This happens when an expression in
the definition of a break or trace register calls a debug procedure
which defines the named break or trace register.

Cannot determine proper statement address for step. [*]

Either PSCOPE cannot determine the current execution point and,
therefore, cannot do statement level stepping, or you tried to start
statement-level stepping when the current execution point is not the
beginning of a statement. In the latter case, use the GO command to
get to a statement, then retry the step.

No break or trace registers (of the requested type) have been defined.
This command cannot occur inside of a PATCH.

No program was loaded.

Errors 544 through 546 are PSCOPE internal errors. They result from

consistency check failures and should never occur. If an internal error
does occur, please notify an Intel representative.

A-7/A-8

APPENDIX B
CONFIGURING PSCOPE FOR
NON-INTELTERMINALS

Configuration Commands

PSCOPE is designed to run on an Intellec Series III or Series IV development
system. The editor expects code from the terminal or sent to the terminal to be
code used by Intel terminals.

You can, however, configure PSCOPE to operate with other terminals. You need
configuration files when using a non-standard or non-Intel terminal with charac-
teristics different from those of the Series III or Series IV screen. Configuration
files let you indicate characteristics of your particular terminal by setting various
parameters and specifying control sequences by which various screen functions
can be performed. Configuration files are not needed when using a Series III or
Series IV with the integrated screen.

You should put configuration commands in a CRT configuration file (e.g.,
PSCOPE.CRT) so that they are automatically executed when you invoke
PSCOPE. The configuration commands let you modify certain keyboard and CRT
codes. In some situations, you may not be able to use certain editing functions.

To create a PSCOPE configuration file, compare your terminal’s behavior to the
actions expected by PSCOPE. Refer to your user manual for the codes that your
terminal expects and generates. (See Table B-1 for a list of the PSCOPE configura-
tion commands, their default values, and meaning.)

Note that the CRT configuration commands are compatible with the configuration
commands accepted by the Series III or a Series IV text editor, AEDIT, in its
AEDITMAC file. (See AEDIT Text Editor User’s Guide, order number 121756.)

PSCOPE expects the following characteristics in a terminal:

e ASCII codes 20H through 7EH display some symbol requiring one column
space. Carriage return (ODH) and line feed (0AH) perform their usual
functions.

® There are cursor key output codes and CRT cursor output codes for the fol-
lowing cursor functions: down, home, left, right, and up. Output codes for
clear screen, clear rest of screen, clear line, clear rest of line, and direct
cursor addressing are desirable but not required. You can change default
.codes, shown in Table B-1, with the configuration commands.

e The terminal accepts a blankout code that blanks out the contents of the
screen location from which it is entered. You can change the default, 20H,
with the configuration commands.

® The CRT has 22 to 25 lines. You can change the default, 25 lines, with the
configuration commands.

e PSCOPE automatically generates a line feed each time you enter a carriage
return. Your terminal should not generate a line feed with a carriage return.
You can switch this feature on and off on some terminals.

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User’s Guide

When configuring to execute on a non-Intel terminal, you may have to change
some or all of the codes assigned to the following configuration commands:

e The cursor key output codes expected by the editor: AFCH, AFCU, AFCD,
AFCR, and AFCL..

e The editor-generated cursor movement codes sent to the CRT: AFMH,
AFMU, AFMD, AFMR, AFML.

® The erase screen code, AFES.

e The blankout code, AFBK.

e The screen size code, AV.

® The BREAK character code, AB.

® The codes expected by the editor for the screen mode éommands: AFXA,
AFXF, AFXX, AFXU, and AFXZ. You may want to change these codes to

match function keys or other convenient keys on the terminal keyboard.

Table B-1 lists the configuration commands, their default values, and their
meaning.

The following conventions apply to Table B-1:
e pmustbe22,23,24, or25.
& hisaone-byte hexadecimal number.

® }/hhhis a one- to four-byte hexadecimal number. A null value indicates that
the function is not available.

e Tis'T or't’, indicating true.
® Fis'F or'f, indicating false.

You must end all commands in the CRT file with a semicolon (;) or a carriage

return.
Table B-1 Configuration Commands
Series Il
Command Default Meaning
AV=n 25 Sets the number of lines of the display.
AB=hhhh 1BH Sets ESC.
AR=hhhh 7FH Sets RUBOUT.
AFXA=hhhh| 1H Sets DELETE RIGHT (CNTL-A)
AFXF=hhhh | 6H Sets CHAR DELETE (CNTL-F)
AFXX=hhhh} 18H Sets DELETE LEFT (CNTL-X)

PSCOPE-86 User’s Guide

Configuring PSCOPE for Non-Intel Terminals

Table B-1 Configuration Commands (continued)

Series Il

Command Default Meaning

AFXZ=hhhh | 1AH Sets CLEAR LINE (CNTL-2)

AFCD=hhhh| 1CH Sets DOWN.

AFCH=hhhh | 1DH Sets HOME.

AFCL=hhhh | 1FH Sets LEFT.

AFCR=hhhh | 14H Sets RIGHT.

AFCU=hhhh | 1EH Sets UP.

AFIG=h This character will be ignored if it is entered. This character
is needed on terminals, which have multiple character key
codes for UP and DOWN, such as the Hazeltine 1510. AFIG
should be set to the lead in (tilde) and UP and DOWN should
be set to the second ieiter of the cursor up or down key code.
This avoids problems caused by the lack of a type-ahead
buffer.

AFMB=hhhh| ODH Moves the cursor to the start of the line.

AFMD=hhhh| 1CH Moves the cursor down.

AFMH=hhhh| 1DH Moves the cursor home.

AFML=hhhh | 1FH Moves the cursor left.

AFMR=hhhh} 14H Moves the cursor right.

AFMU=hhhh| 1EH Moves the cursor up.

AFES=hhhh | 1B45H Erases the entire screen.

AFER=hhhh | 1B4AH Erases the rest of the screen.

AFEK=hhhh | 1B4BH Erases the entire line.

AFEL=hhhh Erases the rest of the line.

AFAC=hhhh Addresses the cursor lead-in. When used, the code will be
followed by a column number (0 to 79) and a row number (0 to
24),

AO=h OH Offset to add both a row and a column number with an ad-
dress cursor command.

AX=TorF T True if X {column) precedes Y (row) in the address cursor
command.

AW=TorF T Allows the user to indicate that the terminal wraps when the
character is printed in column 80.

AFIL=hhhh Inserts the line code. Used in line O for reverse scrolling.

AFDL=hhhh Deletes the line code. Used to speed up the display on the
Hazeltine 1510 and similar terminals.

AFBK=h 20H Blankout character. BLANK on most terminals.

B-3

Configuring PSCOPE for Non-Intel Terminals

B-4

Tested Configurations

PSCOPE-86 User’s Guide

This appendix contains tested configurations for several non-Intel terminalis. The
terminals presented here are not the only ones on which you can use PSCOPE;
they are just the ones that have been tested. The following sections list the configu-
ration functions and values required to run PSCOPE on the Intel tested terminals.
The terminals are as follows:

ADDS Regent 200 (2400 baud only)

ADDS Viewpoint 3A Plus
Beehive Mini-Bee

DEC VT52

DEC VT100

Hazeltine 1420

Hazeltine 1510 (Tilde lead-in)
Hazeltine 1510 (ESC lead-in)
Intel SeriesIIT E

Lear Seigler ADM-3A
Televideo 910 Plus

Televideo 925 and 950

Zentec

The commands to configure PSCOPE for the tested terminals are included on the
disk with the PSCOPE program. The name of the file is included in each
description.

Configuration files for the following terminals can be created by entering the com-

mands specified in the corresponding tables.

ADDS Viewpoint 3A Plus
Hazeltine 1420

Intel Series I1IE
Televideo 910 Plus
Televideo 925 and 950
Zentec

PSCOPE-86 User’s Guide Configui‘ing PSCOPE for Non-Intel Terminals

ADDS Regent Model 200

The ADDS model has a 24-line CRT display with 80 characters per line. Each char-
acter is formed in an 8 by 8 dot matrix as a dark character on a light background.
The 25th line of the screen displays the operating condition of the terminal. Table
B-2 shows the ADDS Regent Model 200 configuration.

Table B-2 ADDS Regent Model 200 Configuration

Function Hexadecimal Graphic or
Code Value ASCIl Name

CD OA Line Feed

CH 01 SOH

CL 15 NAK or BS

CR 06 ACK

CcuU 1A SuB

MD OA Line Feed

MH 1B 59 20 20

ML 15 NAK or BS

MR 06 ACK

MU 1A SuUB

AC 1B 59 ESCY

EK not available

ER 1B 6B ESCK

ES oC FF

XA 14 DC4

AO 20 SP

AX F

XF 1B 45 ESCE

Xz 1B 6C ESCI

AB 5C

AV 24

Command File: ADDS.CRT

AFCD=0A AFCL=15 AFCR=06
AFCU=1A AFCH=01 AFMD=0A
AFML=15 AFMR =06 AFMU=1A
AFMH=1B592020 AFEK= AFER=1B 6B
AV=24 AFXA=14 AFES=0C
AFER=1b6b AFAC=1B359 AO0=20
AX=F AFXF=1B45 AFXZ=1B 6C
AB=5C

NOTE

You must enter DEL CHAR instead of CNTL-F for the delete
character. You must enter DEL LINE instead of CNTL-Z for
delete line. You must enter CNTL-T instead of CNTL-A for
delete right. You must enter the backslash (\) instead of
ESCAPE.

Configuring PSCOPE for Non-Intel Terminals

B-6

ADDS Viewpoint 3A Plus

Table B-3 ADDS Viewpoint 3A Plus Configuration

AFCD=0A
AFCU=0B
AFML =08
AFMH=1E
AFEL=1B 54
AO0=20

Command File: ADDS.CRT

Function Hexadecimal Graphic or
Code Value ASCIll Name

CD 0A Line Feed

CL 08 BS

CR 0oC FF

Ccu 0B vT

CH 1E RS

MD 0A Line Feed

ML 08 BS

MR oC FF

MU 0B vT

MH 1E RS

EK not available

ER 1B 59 ESCY

EL 1B 54 ESC

ES 1B 2A ESC

AC 1B 3D ESC=

AO 20 SP

AX F

AV 24
AFCL=08 AFCR=0C
AFCH=1E AFMD=0A
AFMR=0C AFMU=0B
AFEK= AFER=1B 59
AFES=1B2A AFAC=1B 3D
AX=F AV=24

PSCOPE-86 User’s Guide

This terminal has a 24-line CRT display with 80 characters per line. Table B-3
shows the ADDS Viewpoint 3A Plus configuration.

PSCOPE-86 User’s Guide

Beehive Mini-Bee

You can format the Beehive Mini-Bee terminal to display either 12 or 25 lines of
80 characters per line. Only the 25-character format is usable with PSCOPE. Each
character is generated in a 5 by 7 dot matrix. The maximum transmission rate for
this terminal is 9600 baud. Note that you must change the ESCAPE character so
that the default ESCAPE code can be used; choosing the {K is a personal
preference. Table B-4 shows the Beehive Mini-Bee configuration.

Table B-4 Beehive Mini-Bee Configuration

NOTE

Function Hexadecimal Graphic or
Code Value ASCll Name

cD 1B 42 ESCB

CH 1B 48 ESCH

CL 1B 44 ESCD

CR 1B 43 ESCC

cu 18 41 ESCA

MD 1B 42 ESCB

MH 1B 48 ESCH

ML 1B 44 ESCD

MR 1B 43 ESCC

MU 1B 41 ESCA

EL 1B 4B ESCK

ER 1B 4A ESCJ

B 0B K

AV 24

Command File: MICROB.CRT

AFCU=1B 41 AFCD=1B 42 AFCR=1B 43
AFCL=1B 44 AFCH=1B 48 AFMU=1B 41
AFMD=1B 42 AFMR=1B 43 AFML=1B 44
AFMH=1B 48 AFEL=1B4B AFER=1B4A
AB=0B AV=24

You must enter CNTL-K instead of ESCAPE.

Configuring PSCOPE for Non-Intel Terminals

Configuring PSCOPE for Non-Intel Terminals

DEC VT52

PSCOPE-86 User’s Guide

The DEC VT352 displays 24 lines of 80 characters per line. The characters are
generated in a 7 by 9 dot matrix. The maximum transmission rate is 19.2K baud.
Note that you must change the ESCAPE character so that the default ESCAPE
code can be used; choosing CNTL-K (] K) is a personal preference. The DEC
VT52 does not have a HOME key. Choosing CNTL-O (1 O) for the HOME func-
tion is a personal preference. Table B-5 shows the DEC VT52 configuration.

Table B-5 DEC VT52 Configuration

Function Hexadecimal Graphic or
Code Value ASCIl Name

cD 1B 42 ESCB

CH OF 10

CL 1B 44 ESCD

CR 1B 43 ESCC

CuU 1B 41 ESCA

MD 1B 42 ESCB

MH 1B 48 ESCH

ML 1B 44 ESCD

MR 1B 43 ESCC

MU 1B 41 ESCA

AC i85S ESCY

W F

AO 20 SP

AX F

EL 1B 4B ESCK

ER 1B 4A ESCJ

ES not available

EK not available

AV 24

B oB 1K

Command File: VT52.CRT

AFCU=1B 41 AFCD=1B 42 AFCR=1B43
AFCL=1B 44 AFCH=0F AFMU=1B 41
AFMD=1B 42 AFMR=1B43 AFML=1B 44
AFMH=1B 438 AFES= AFER=1B4A
AFEL=1B 4B AFEK = AB=0B
AV=24 AFAC=1B 59 AO=20
AX=F AW=F

NOTE

You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

B-8

PSCOPE-86 User’s Guide Configuring PSCOPE for Non-Intel Terminals

DECVT100

You can format the DEC VT100 terminal with 14 lines of 132 characters per line
or 24 lines of 80 characters per line. Only the 24-line format is compatible with
PSCOPE. The characters are generated in a 7 by 9 dot matrix. The maximum trans-
mission rate is 19.2K baud. You can choose between the DEC VT52 compatible
and the ANSI standard (X3.41-1974, X3.64-1977) compatible terminal escape se-
quences for cursor control and screen erase functions. The ANSI codes are given
in the following table. See the DEC VT52 description for the VT52 codes. Note
that you must change the ESCAPE character so that the default ESCAPE code can
be used; choosing CNTL-K (1 K) is a personal preference. The DEC VT100 termi-
nal does not have a HOME key. Choosing CNTL-O (1 O) for the HOME function
is a personal preference. Table B-6 shows the DEC VT100 configuration.

Table B-6 DEC YT100 Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CD iB 42 ESCB

CH OF 10

CL 1B 44 ESCD

CR 1B 43 ESCC

CcuU 1B 41 ESCA

MD 1B 5B 42 ESCI[B

MH 1B 5B 48 ESC[H

ML 1B 5B 44 ESCID

MR 1B 5B 43 ESCIC

MU 1B 5B 41 ESC[A

EK 1B 5B 30 4B ESC[OK

ER 1B 5B 30 4A . EscloJ

ES not available

EL 1B 5B 4B

w F

AV 24

B 0B 1K

Command File: VT100.CRT

AFCU=1B 41 AFCD=1B 42 AFCR=1B43
AFCL=1B 44 AFCH=0F AFMU=1B 5B 41
AFMD=1B 5B 42 AFMR=1B 5B 43 AFML=1B 5B 44
AFMH=1B 5B 48 AFES= AFER=1B 5B 30 4A
AFEK=1B 5B 30 4B AFEL=1B5B4B AB=0B

AV=24 AW=F

NOTE

You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

B-9

Configuring PSCOPE for Non-Intel Terminals

B-10

PSCOPE-86 User’s Guide

Hazeltine 1420

This terminal displays 24 lines, with 80 characters per line. The maximum trans-
mission rate is 9600 baud. You may choose between the tilde key or the ESC char-
acter as the control sequence lead-in. To use the ESC character as the lead-in, sub-
stitute escape (1B) for the tilde (7E) in the command file, and add the function
code AB=7E. When using the escape lead-in, the tilde must be typed instead of
escape. Table B-7 shows the Hazeltine 1420 configuration.

Table B-7 Hazeltine 1420 Configuration

Function Hexadecimal Graphic or
Code Value ASCIl Name

CcD oB VT

CH 12 DC2

CL 08 BS

CR 10 DLE

cu 0C FF

MD 7E0B ~ VT

MH 7E12 ~ DC2

ML 08 BS

MR 10 DLE

MU 7EO0C ~ FF

MB oD CR

ES not available

ER 7E 18 ~ CAN

EK not available

EL 7E OF ~ 8I

AC TE 11 ~ DC1

IL TE1A ~ SUB

DL 7E13 ~ DC3

AV 24

iIG 7E ~

Command File: 1420T.MAC

AV=24 AFIG=TE AFCU=0C
AFCD=0B AFCR=10 AFCL=8
AFCH=12 AFMU=T7E 0C AFMD=7E 0B
AFMR=10 AFML=8 AFMH=T7E 12
AFMB=0D AFES= AFER=TE 18
AFEK = AFEL=7E OF AFAC=T7E 11
AFIL=7E 1A AFDL=7E 13

PSCOPE-86 User’s Guide Configuring PSCOPE for Non-Intel Terminals

Hazeltine 1510

The Hazeltine 1510 terminal displays 24 lines of 80 characters per line. The charac-
ters are generated in a 7 by 10 dot matrix. The maximum transmission rate is
19.2K baud. You can choose between the ESC or the tilde character (~) as the
control sequence lead-in. However, if you use ESC, you must change the BREAK
character, so the tilde is easier to use. Table B-8 shows the Hazeltine 1510 configu-
ration with the tilde lead-in and Table B-9 shows the Hazeltine 1510 configuration
with the ESC lead-in.

Table B-8 Hazeltine 1510 Configuration (Tilde Lead-in)

Function Hexadecimal Graphic or
Code Value ASCII Name
(~ lead-in)

CcD [o]=} ~ VT

CH 12 ~ DC2

cL 08 ~ BS

CR 10 ~ DLE

cu oC ~ FF

MD 7E0B ~ VT

MH 7E12 ~ DC2

ML 08 ~ BS

MR 10 ~ DLE

MU 7EOC ~ FF

MB oD

AC 7E 11 ~ DC1

EK not available

ER 7E18 ~ CAN

ES not available

EL 7E OF ~

XP OF Sl

IL 7TE1A ~ SUB

DL 7E13 ~ DC3

AV 24

Command File: 1510T.CRT

AV=24 AFIG=TE AFCU=0C
AFCD=0B AFCR=10 AFCL=8
AFCH=12 AFMU=7E0C AFMD=7E 0B
AFMR=10 AFML=8 AFMH=7E 12
AFMB=0D AFES= AFER=7E 18
AFEK = AFEL=7E OF AFAC=T7E 11
AFIL=7E 1A AFDL=7E 13

Configuring PSCOPE for Non-Intel Terminals

B-12

Table B-9 Hazeltine 1510 Configuration (ESC Lead-in)

Function Hexadecimal Graphic or
Code Value ASCIl Name
(ESC lead-in)

CcDh 0B ESCVT

CH 12 ESC DC2

CL 08 ESC BS

CR 10 ESCDLE

Ccu (0]¢] ESCFF

MD 1B 0B ESCVT

MH 1B 12 ESCDC2

ML 08 ESC BS

MR 10 ESCDLE

MU 1B0OC ESC FF

MB oD

EK not available

ER 1B 18 ESC CAN

ES not available

EL 1B OF

1L 1B 1A ESC SuB

DL 1B13 ESCDC3

XP OF Sl

AC 1B 11 ESC DC1

AV 24

B 7E

Command File: 1510E.CRT

AV=24 AB=TE AFIG=1B
AFCU= 0C AFCD= 0B AFCR=10
AFCL=8 AFCH= 12 AFMU=1B0C
AFMD=1B0B AFMR=10 AFML=38
AFMH=1B12 AFMB=0D AFES=
AFER=1BI18 AFEK= AFEL=1B0OF
AFAC=1Bl11 AFIL=1B1A AFDL=1B13

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide

Intel Series-IIIE

The Intel Series-11IE terminal displays 24 lines of 80 characters per line. The maxi-
mum transmission rate is 19.2K baud. Table B-10 shows the Intel Series-IIIE

configuration.

Table B-10 Intel Series-IIIE Configuration

Configuring PSCOPE for Non-Intel Terminals

Function Hexadecimal Graphic or

Code Value ASCIl Name

ER 1B 53 ESC S

AC 18 59 ESCY

IL 1B 57 60 3F ESCW'?

DL 1B 57 3F 60 ESCW ?’

EL 1B 52 ESCR

AX F

AC 20 SP

Command File: 51110C.MAC

AX=F A0=20 AFER=1B 53
AFAC= 1B 59 AFIL= 1B 57 60 3F AFDL=1B 57 3F 60
AFEL=1B 52

NOTE

A Series-IIIE with 511 IOC firmware must use this macro to take
advantage of the enhanced functionality.

Configuring PSCOPE for Non-Intel Terminals PSCOPE-86 User’s Guide

Lear Siegler ADM-3A

The Lear Siegler ADM-3A terminal displays 24 lines of 80 characters per line. The
characters are generated in 5 by 7 dot matrix. The maximum transmission rate is
19.2K baud. Table B-11 shows the Lear Siegler ADM-3 A configuration.

Table B-11 Lear Siegler ADM-3A Configuration

Function Hexadecimal Graphic or
Code Value ASCIil Name

CcD 0A LF

CH 1E RS

CL 08 BS

CR oC FF

cu 0B vT

MD 0A LF

MH 1E RS

ML 08 BS

MR oc FF

MU 0B vT

EK not available

ER not available

ES 1A SUB

AX F

AO 20 SP

AC 1B 3D ESC =

AV 24

Command File: LEAR.CRT

AFCU=0B AFCD=0A AFCR=0C
AFCL=08 AFCH=1E AFMU=0B
AFMD=0A AFMR=0C AFML=08
AFMH=1E AV=24 AFES=1A
AFER= AFEK= AFAC=1B 3D
AX=F AO0=20

PSCOPE-86 User’s Guide

Televideo 910 Plus

Configuring PSCOPE for Non-Intel Terminals

The Televideo 910 Plus displays 24 lines of 80 characters per line. The maximum
transmission rate is 19.2K baud. Table B-12 shows the Televideo 910 Plus

configuration.

Table B-12 Televideo 910 Plus Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CcD 16 SYN

CH 1E RS

CL 08 BS

CR ocC FF

cu 0B VT

MD 16 SYN

MH 1E RS

ML 08 BS

MR oC FF

MU 0B vT

ES 1B 2B ESC +

ER 1B 59 ESCY

EK not available

EL 1B 54 ESCT

AC 1B 3D ESC =

AX F

AO 20 SF

IL 1B 45 ESCE

DL 1B 52 ESCR

AV 24

Command File: TV910P.MAC

AFCU=0B AFCD=16 AFCR=0C
AFCL=08 AFCH=1E AFMU=0B
AFMD=16 AFMR=0C AFML=08
AFMH=1E AV=24 AFES=1B 2B
AFER=1B 59 AFEK = AFEL=1B 54
AFAC=1B 3D AX=F AO=20
AFIL=1B 45 AFDL=1B 52

Configuring PSCOPE for Non-Intel Terminals

B-16

Televideo 925 and 950

Table B-13 Televideo 925 and 950 Configuration

AV=24
AFBK=20
AFXU=15
AFCD=16
AFCR=0C
AFMD=16
AFMR=0C
AFER=1B 59
AFEL=1B 54
AO=20

Command File: TV925.MAC

Function Hexadecimal Graphic or
Code Value ASCIt Name

XA 01 NUL

XF 06 ACK

XU 15 NAK

XX 18 CAN

XZ 1A SuUB

CcD 16 SYN

CH 1E RS

CL 08 BS

CR oC FF

cuU 0B VT

MB oD CR

MD 16 SYN

MH 1E RS

ML 08 BS

MR ocC FF

MU 0B vT

ES 1B 28 ESC +

ER 1B 59 ESCY

EK not available

DL 1B 52 ESCR

EL 1B 54 ESCT

IL 1B 45 ESCE

AC 1B 3D ESC =

AO 20 SP

AX F

AV 24

AB 1B ESC

AR 7F DEL

BK 20 SP
AB=1B AR=T7F
AFXA=1 AFXF=6
AFXX=18 AFXZ=1A
AFCH=1E AFCL=08
AFCU=0B AFMB=0D
AFMH=1E AFML =08
AFMU=0B AFES=1B 2B
AFEK = AFDL=1B 52
AFIL=1B 45 AFAC=1B 3D
AX=F

PSCOPE-86 User’s Guide

The Televideo 925 and 950 displays 24 linies of 80 characters per line. The maxi-
mum transmission rate is 19.2K baud. Table B-13 shows the Televideo 925 and
950 configuration.

PSCOPE-86 User’s Guide Configuring PSCOPE for Non-Intel Terminals

Zentec

The Zentec displays 24 lines of 80 characters per line. The maximum transmission
rate is 19.2K baud. To rub out a character on this terminal you must use the delete
key, SHIFT plus ESC. Table B-14 shows the Zentec configuration.

Table B-14 Zentec Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

XA 1 SOH

XF 6 ACK

XU 15 NAK

XX 18 CAN

XZ 1A SUB

CD OA LF

CH 1E RS

CL 08 BS

CR oC FF

Ccu 0B VT

MB oD CR

MD OA LF

MH 1E RS

ML 08 BS

MR oC FF

MU oB vT

ES iB 2B ESC +

ER 1B 59 ESCY

EK not available

DL 1B 52 ESCR

EL 1B 54 ESCT

IL 1B 45 ESCE

AC 1B 3D ESC =

AO 20 SP

AX F

BE 20 SP

AV 24

AB 1B ESC

AR 7F DEL

Command File: ZENTEC.MAC

AV=24 AB=1B AR=TF
AFXA=1 AFXF=6 AFXU=15
AFXX=18 AFXZ=1A AFCD=0A
AFCH=1E AFCL=08 AFCR=0C
AFCU=0B AFMB=0D AFMD=0A
AFMH=1E AFML=08 AFMR=0C
AFMU=0B AFES=1B 2B AFER=1B 59
AFEK= AFDL=1B 52 AFEL=1B 54
AFIL=1B45 AFAC=1B3D AO0=20
AX=F AFBK =20

B-17/B-18

APPENDIX C
ADDITIONAL INFORMATION FOR
SERIES liIl USERS

This appendix contains specific information on the Intellec Series III development
system. It covers the following subjects:

® Series I1I program development process (and related manuals).
® Hardware and software required.

® User programs supported.

® System resources used by the debugger.

® System-specific examples of debugger invocation line, sign-on message, and
commands.

Operation of the Series 11l

The following manuals describe the general operation of the Series III:

® [ntellec® Series III Microcomputer Development System Product Overview,
order number 121575

® [ntellec® Series I1I Microcomputer Development System Console Operating
Instructions , order number 121609

o [ntellec® Series I1I Microcomputer Development System Programmer’s Reference
Manual, order number 121618

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure C-1 shows the same process. The following manuals will provide informa-
tion on the different stages of your program development.

® JSIS-II CREDIT™ CRT-Based Text Editor User’s Guide, -
order number 9800902

® AEDIT TEXT EDITOR User’s Guide, order number 121756
® Pascal-86 User’s Guide, order number 121539

® PL/M-86 User’s Guide for 8086-Based Development System,
order number 121636

® FORTRAN-86 User’s Guide, order number 121570

® iAPX 86,88 Family Utilities User’s Guide, order number 121616

C-1

Additional Information for Series III Users PSCOPE-86 User’s Guide

RUN-TIME
LIBRARIES

OTHER |
RELOCATABLE

OBJECT
MODULES

RELOCATABLEl
"OBJECT

MODULE

'

FORTRAN-86
SOURCE

PASCAL-86
SOURCE

PL/M-86
SOURCE

LIBRARIES

1369

Figure C-1 Series I1I Program Deveiopment Process

Hardware and Software Required

You need the following hardware and software to run the debugger:
® Intellec Series III development system (run release 2.0 or later).
® ISIS operating system (release 4.1 or later).
® At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density flexible drive, or a remote disk on an NDS I

or NDSII.

® Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 2.0 or later).

® 8086-based utilities.

® PSCOPE high-level program debugger.

PSCOPE-86 User’s Guide Additional Information for Series III Users

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
III up to one megabyte of memory addressable by the 8086. PSCOPE requires ap-
proximately 110K bytes. You must add more memory to accommodate additional
workspace and your program.

Your program must be a load-time locatable (LTL) or a position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro-
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a
FORTRAN-86 compiler (release 2.0 or later) with the DEBUG control. Because

the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used

The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 110K bytes of memory, including space for symbol and
line number information.

To reduce memory usage, the debugger provides for virtual storage of compiler-
generated debug information. Symbol table information {from the compiler) is
sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the Series III operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because
the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow-
ing groups:

® (Console input

® Virtual symbol table

e LOAD, HELP, PUT, INCLUDE, CRT, MACRO, PSCOPE overlay
® List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

C-3.

Additional Information for Series I1I Users PSCOPE-86 User’s Guide

Other Resources Required
The debugger requires the following additional host system resources:
o The software interrupt 3 (the one-byte, debugger-oriented INT instruction)
® The trap flag (used for single-stepping)
® The CNTL-C trap (system call DQSTRAPSCC)
Your program should not use these host system resources.
In addition, PSCOPE uses interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. However, your program can use these

interrupts, since PSCOPE maintains separate copies of these interrupt vectors for
itself and your program.

Invocation Line

To invoke the debugger in the 8086 execution environment of the Series III, pre-
face the invocation line with the RUN command. The ISIS-II operating system
prompt is a hyphen (-).
The general format of the invocation is:

-RUN [:Fn:] PSCOPE [controls]
or

>[:Fn:] PSCOPE [controls]
Where:

:Fn: is the disk in drive n. The ncan be 0 through 9.

controis is any number of invocation controls from the list specified in
Chapter 3.

PSCOPE signs on with the following message:

SERIES-III PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:
-RUN PSCOPE MACRO(:F1:PROCS.MAC)
SERIES-1Il PSCOPE-86, Vx.y

xLOAD :F1:DC.86
*GO

APPENDIX D
ADDITIONAL INFORMATION FOR
SERIES IV USERS

This appendix contains specific information on the Intellec Series IV development
system. It covers the following subjects:

® Series IV program development process (and related manuals).
® Hardware and software required.

e User programs supported.

e System resources used by the debugger.

® System-specific examples of the debugger invocation line, sign-on message,
and commands.

Operation of the Series IV

The following manuals describe the general operation of the Series IV:

® [Intellec® Series IV Microcomputer Development System Overview,
order number 121752

® [ntellec® Series IV Operating and Programming Guide, order number 121753

® Intellec® Series IV ISIS-1V User’s Guide, order number 121880

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure D-1 shows the same process. The following manuals provide information
that will aid in your program development.

® ISIS-IV CREDIT™ CRT-Based Text Editor User’s Guide,
order number 9800902

® AEDIT TEXT EDITOR User’s Guide, order number 121756
® Pascal 86 User’s Guide, order number 121539

® PL/M-86 User’s Guide for 8086-Based Development System,
order number 121636

® FORTRAN-86 User’s Guide, order number 121570

® iAPX 86,88 Family Utilities User’s Guide, order number 121616

D-1

Additional Information for Series IV Users PSCOPE-86 User’s Guide

Hardware and Software Required

You need the foliowing hardware and software to run the debugger:
® Intellec Series IV development system.
® iNDX operating system.
® At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density 5 1/4 inch floppy, or a remote disk on an

NDSTorNDSIL

® Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 2.0 or later).

® 8086-based utilities.

® PSCOPE high-level program debugger.

RUN-TIME
LIBRARIES

FORTRAN-86

OTHER |
RELOCATABLE|
SOURCE OBJECT

MODULES

!
e

1
! %
| T
PASCAL-86 |reLocaTasLe I
>| OBJE |
SOURCE MODULE !
1
L |
-
PL/M-86
>| SOURCE L1886
\
LIBRARIES

1369

Figure D-1 Series IV Program Development Process

D-2

PSCOPE-86 User’s Guide Additional Information for Series IV. Users

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
IV up to one megabyte of memory addressable by the 8086. PSCOPE requires ap-
proximately 110K bytes. You must add more memory to accommodate additional
workspace and the user program.

Your program must be a load-time locatable (LTL) or a position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro-
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a
FORTRAN-86 compiler (release 2.0 or later) with the DEBUG control. Because

the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used
The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 110K bytes of memory, including space for symbol and
line number information.

To reduce memory usage, the debugger provides for virtual storage of compiler-

generated debug information. Symbol table information (from the compiler) will
be sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the Series IV operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because

the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow-
ing groups:

® Terminal input

e Virtual symbol table

e [OAD, HELP, PUT, INCLUDE, CRT, MACRO, or PSCOPE overlay
® List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

D-3

Additional Information for Series IV Users PSCOPE-86 User’s Guide

Other Resources Required

The debugger requires the following additional host system resources:
¢ The software interrupt 3 (the one-byte, debugger-oriented INT instruction).
e The trap flag and interrupt 1 (used for single-stepping).
® The CNTL-C trap (system call DQ$STRAPSCC).

Your program or any background program should not use these host system
resources.

In addition, PSCOPE uses interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. Your program can use these interrupts,
since PSCOPE maintains separate copies of these interrupt vectors for itself and
your program. However, a background program must not use any of these
interrupts.

Invocation Line

The general format of the invocation is as follows:

/W/ PSCOPE [controls]
or

PSCOPE [controls]
Where:

controls is any number of invocation controls from the list specified in
Chapter 3.

PSCOPE signs on with the following message:
SERIES-IV PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:
-PSCOPE MACRO(PROCS.MAC)
SERIES-IV PSCOPE-86, Vx.y

*LOAD DC.86
xGO

D-4

SAMPLE PROGRAM LISTING

APPENDIXE

This appendix contains the sample program DC referred to throughout this
manual.

SERIES-III Pascal-86, VZ.0

Source File: :F7:DC7.PAS
Object File: :F7:DC7.0BJ
Controls Specified: XREF, DEBUG, -

STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
1 1 0 0 {# This program implements an interactive Desk Calculator. It
accepts lines of text as input. Each line should contain one
expression. Each line is parsed, evalvated, and the result
is printed. The expressions are allowed to contain embedded
assignment statements to single-letter variables. An error
will abert the evaluation of the current expression. #*}

‘program dc (input, output);

z 10 0 0 label 1000, 9999;

3 12 0 0 const max_line_length = 40;

L) 14 0 O type error_class = (illegal_token, line_ton_long, end_of_line,
missing_r_paren, error_in_expression, error_in_factor,
error_in_statement, error_in_term);

5 18 0 O token_class = (add_op, mul_op, assign, 1_paren,
r_paren, variable, int_const, line_end);

-] 21 0 0 token = record

] zz 0 1 case class : token_class of

7 23 0 1 add_op ¢ (add_op_value : char);

8 24 0 1 mul_op : (mul_op_value : char);

9 2S5 0 1 assign : ()

10 26 0 ¢ 1_paren EE@H

11 27 0 1 r_paren HE O]

12z 28 0 1 variable : (variable_value : char);

13 29 0 1 int_const : (int_const_value : integer);

14 30 0 1 line_end : ();

1§ 31 0 1 end (¥ record *}j

14 32 0 0 text_buffer = record

16 34 0 1 status : {empty, full);

17 35 0 1 length : 0 .. max_line_length;

18 36 0 1 index t 0 .. max_line_length;

19 237 0 1 last_index : O .. max_line_length;

20 38 0 1 str s packed array [l..max_line_lengthl of cha
end (*# record #);

21 41 0 O var t 1 token;

22 4z 0 O [: charg

23 43 0 O buffer : text_buffer;

24 45 0 O variable_table : arrayl’a’..’2’] of integer;

25 47 0 O [il L LI LD LI LD LT *)

procedure error(e : error_class); (* print error & restart *)

26 49 1 0O begin

26 SO0 1 1 write (’ ':(buffer.last_index+3), *~ DC Error: '};

27 St 1 1 case e of

r

Sample Program Listing PSCOPE-86 User’s Guide

SERIES-111 Pascal-84, VZ.0

ERROR
STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
28 52 1 2 illegal_token t write ('Illegal token’);
29 53 t 2 line_too_long t write ("Input line too long?);
30 54 1 2z end_of_line t write ('End of line’);
31 55 1 2 missing_r_paren : write ('Missing right paren’);
32 56 1 2 error_in_factor s write ('Illegal factor');
33 57 1 2 error_in_term s write ("Error detected in term’);
34 S8 1t 2 error_in_expression : write ('Error detected in expression’);
3% 859 1 2 error_in_statement : write ('Illegal statement’);
36 60 1 2 end (¥ case *);
38 61 1 1 writeln;
39 62 1 1 goto 9999;
40 63 1 1 end (*# error %);
41 65 0 O [R kbl el *)
procedure get_line; (* input line & set c to 1st char of line *)
4z 47 1 O begin (# get_line %)
4z 628 1 1 buffer.length HEvH
42 69 11 buffer.status = empty;
44 76 1 1 buffer.last_index := 1;
45 71 1 1 repeat
45 7z 1 2 write(’)
46 73 1 2 while eof do reset(inpui);
48 74 1 2 while not eoln do
43 75 1 2 if buffer.length < max_line_length then begin
50 76 1 S buffer.length := buffer.length + 1;
51 77 1 3 read(buffer.stribuffer.lengthl)
end
52 79 1 2 else error(line_too_long);
54 € 1 2 readln;
55 81 1 Z until buffer.length > 05
57 g 1 1 buffer.status 1= fulljy
58 83 1 1 buffer.index = 1;
59 84 1 1 c 1= buffer.stribuffer.indexl;
60 85 1 1 end (*¥ gei_line *);
41 87 0 0 [T Lot T gy *)
procedure get_token; (% scan line & set t to its value *)
62 90 t O function digit(c: char): boelean; (% true if ¢ is a digit %)
63 91 2 0O begin
&3 92 z % digit = ('0' <= ¢) and (c <= 3"}
ands
b4 95 1 0 function upper_case(c: char): boolean; (% true if ¢ is upper case %)
85 9% Z 0 begin
55 97 € 1 upper_rcase 1= ('AY <= ¢} and (c {= 'I")
end;
46 100 1 0O function lower_case(c: char): boolean; (% true if ¢ is lower case #*)
67 101 2z O begin
67 10z 2 ! lower_case := ('a’' <= ¢) and (¢ <= '2")
end;
48. 105 1 0 (# =-=mmmmccecccmcmcecccmceecemeeaeo *)

procedure get_char; {(# set ¢ to next char in line %)

E-2

PSCOPE-86 User’s Guide Sample Program Listing

SERIES-I1I Pascal-86, Vz.0
GET_CHAR

STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
69 107 2z 0 begin (# get_char %)

69 108 z 1 if buffer.status = empty then get_line
70 109 2z i else begin
71 110 z 2 if buffer.index { buffer.length then begin
72 11y 2 3 buffer.index := buffer.index + 1;
72 112 2z 3 c t= buffer.stribuffer.index];
74 113 2 3 end
75 114 2 2 else begin
76 115 2z 3 c 1= cr;
77 116 z 3 buffer.status := empty

end
78 118 z 2 end
79 119 z 1 end (* get_char #*};
80 121 1t ¢ (¥ ~o-wo-omoa bt e *)

begin (¥ get_token: scan line & set t to its value %)

80 124 1 1 while ¢ = ? ? do get_char; (* skip leading spaces %)
8z 125 1 1 buffer.lasi_index := buffer.index; (% for error reporting %)
83 12 1 1 if lower_case(c) then begin (% lower case variable %)
84 128 1 z t.class := variable;
85 129 1 2 t.variable_value := c3
86 130 1 2 get_char;
87 131 1 2 end
88 133 1 1 " else if upper_case(c) then begin (# upper case variable *)
9¢ 13% 1 2 t.class = variable;
91 135 1 2 t.variable_value := chr{ord(c) + (ord('a’) - ord(’A?)));
92 136 1 2 get_char;
93 137 { 2 end
94 139 1 1 else if digit(c) then kegin {# integer constant %)
9% 180 1 2 t.class := int_const;
97 141 1 2 t.int_const_value := 0;
98 14z 1 2 while digit(c) do begin
99 143 1 3 t.int_const_value := 10%#t.int_const_value + ordic) - ord(’0');
100 144 1 3 get_char;
101 145 1 3 end;
103 146 1 2 end
104 148 1 1 else if ¢ = cr then begin (# end of line *)
106 149 1 2 t.class == line_end;
107 150 1 2 [1= 1f;
108 1S1 1 2z and
109 153 1 1 else begin (¥ symbol: + - % / 2= () # %)
110 154 1 2 case ¢ of
111 155 1 3 *+!, ?-7 : begin t.class := add_op; t.add_op_value := c; end;
115 186 1 3 '#', /% ¢ begin t.class := mul_op; t.mul_op_value := ¢; end;
119 157 1t 3 '’ ¢ begin
119 158 1 4 get_char;
120 159 1 4 if ¢ = =" then {.class := assign
121 160 1 4 else error(illegal_token);
123 161 1 4 end;

E-3

Sample Program Listing PSCOPE-86 User’s Guide

SERIES-I11 Pascal-84, VZ.0

GET_TOKEN
STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
125 162 1 3 T : t.class := 1_paren;
126 163 1 3 ')’ : t.class = r_paren;
127 164 1 3 T’ 1 goto 10003
128 165 1 2 otherwise error(illegal_token);
130 146 1 3 end (¥ case ¥*);
132 167 1| 2 get_char;
133 168 1 2 end (* begin *);
135 170 1 1 end (* get_token *);
136 172 0 0O L e e el kb g *)
procedure factor(var factor_value : integer);
137 174 1 0 (% parse: {variable> [":=" <{expression>] | "("<expression>")" | <number> %)
var expression_value ¢ integer;
138 176 1 0 variable_index 1 charj
139 177 1 O begin (¥ factor #*)
139 178 1 1 case t.class of
140 179 1 2 variable : begin
140 180 1 3 variable_index := t.variable_value;
141 181 1 3 get_token;
142 182 1 3 if t.class <> assign then
143 183 1 3 factor_value := variable_tablelvariable_index]
else begin
144 185 1 4 get_token;
145 186 1 4 expression(expression_valuve);
146 187 1 4 variable_tablelvariable_index] := expression_value;
147 188 1 4 factor_value := expression_value;
148 189 1 4 end;
150 190 1 3 end;
152 191 1 2 1_paren : begin
152 192 { 3 get_tokenj
153 193 1 3 expression{expression_value};
154 194 1 3 factor_value := expression_value;
155 195 1 3 if t.class = r_paren then
156 196 1 3 get_token
else errorimissing_r_paren);
158 198 1 3 end;
160 199 1t 2 int_const : begin factor_value 1= t.int_const_value; get_token; end;
164 200 1 2 otherwise error{error_in_factor);
166 201 1 2 end (% case #*);
168 202 1 1 end (#% factor #);
169 204 0 O [i it e EE P L L *)
procedure iterm(var term_value : integer);
170 206 1 © (% parse: <{factor> [<mul_op> <factor>l... *)
var factor_1_value : integer;
171 208 1 O factor_2_value : integer;
172 209 1 0 op : charj
173 210 1 0 begin (% term %)
173 21t 1 factor (factor_J_value);
174 212 1 1t while t.class = mul_op do begin
175 213 1 2 op = t.mul_op_value;
176 214 1 2 get_token;
177 215 1 2 factor (factor_2_valuel;
178 214 1 2 case op of

E-4

PSCOPE-86 User’s Guide Sample Program Listing

SERIES-III Pascal-86, V2.0

TERM
STMT LINE NESTING SOURCE TEXT: :F7:DC7.PAS
i79 217 1 3 '#? 3 factor_1_value := factor_1_value * factor_2_value;
180 218 1 3 '/ 1 factor_1_value := factor_1_value div factor_Z_value;
181 219 t 3 otherwise error (error_in_term};
183 220 1 3 end (*# case *);
185 221 1 z end}
187 222 1 ¢ term_value := facter_1_value;
188 223 1 1 end (* term *);
189 225 0 ¢ [gy U *)
procedure expression (var expression_value : integer);
190 227 1 0 {% parse: [<add_op>] <term> [<add_op> {term>l... %)
var term_1_value : integer;
191 229 t o0 term_2Z_value : integer;
192 230 1 © op : charj
193 231 1 © begin (* expression %)
193 232 1 1 if t.class = add_op then begin
194 233 1 2 op := t.add_op_values
195 234 1 2 get_token;
196 235 1 2 end
197 236 1 1 else op = '+7;
199 237 ¢t 1 term (term_1_value);
200 238 1 1 case op of
201 239 1 2z T+Y 2 (% null ¥);
z0Z 240 1 2 '-r 1 term_1_value := -term_1_value;
203 241 1 2z otherwise error(error_in_expression);
205 242 1 2 end (¥ case ¥*);
207 243 1 1 while t.class = add_op do begin
2028 244 1 2 ep s= t.add_op_vaiue;
209 245 1 2 get_tokenj
210 246 1 2 term (term_Z_valuel;
211 247 1 2 case op of
21z 248 1 3 '+7 @ term_1_value := term_1_value + term_2Z_value;
213 249 1 3 -7 3 term_1_value := term_1_value - term 2 walue;
214 250 1 S otherwise error{error_in_expression); .
216 251 1 3 end (% case *);
218 252 1 2 end;
220 253 1 1 expression_value := term_1_value;
221 254 1 1 end (# expression #);
22z 256 0 O [et *)
procedure statement;
223 258 1 0 {% parse: <{expression> <{line_end> *)
var expression_value : integer;
224 260 1 O bagin (*# statement *)
224 261 1 1 expression (expression_value);
225 262 1 1 if t.class = line_end then writeln(expression_value:l)
226 263 1 1 else error(error_in_statement);
228 264 1 1 end (# statement *);
229 267 O O begin (¥ main program *)
229 269 O 1 (¥ initialize variable table #*)

for ¢ := 'a’ to 'z' do variable_tablelc] := 03

[es}

Sample Program Listing

SERIES-1I1 Pascal-86, V2.0

STMT LINE NESTING

231

232

232
233
234
235

z38

272

275

278
279
280
281

283

287

0

O 0000

1

NN

SOURCE TEXT: :F7:DC7.PAS
(* sign on *)
writeln ('Desk Calculator

(* error restart #)

9999
repeat (% forever %)
get_line;

get_token;
statement;
until false;

(% sign off *)
1000:
writeln (TExit?);

end.

(DC)Y "5

PSCOPE-86 User’s Guide

PSCOPE-86 User’s Guide Sample Program Listing

SERIES-II1 Pascal-84, VZ.0
Cross-Reference Listing

Name Offset Length Attributes and References
1000 & v v label in DC at 237; read: 127.
9999 « 0 . 0 . . label in DC at Z32; read: 39.
ADD OP ¢ . 1 TOKEN_CLASS constant in DC at S5; read: 7 111 193 207.
ASSIGN 1 TOKEN_CLASS constant in DC at 3; read: 9 1Z1 142,
BOOLEAN. 1 primitive type; read: 62 64 b6.
BUFFER 14H 44 TEXT_BUFFER variable in DC at 23; write: 42 43 44 50 51 57 58 72 77 82;
read: 26 49 50 51 56 59 59 6% 71 71 72 73 73 €2.
Co v o v v e e e e 74H 1 CHAR variable in DC at 2Z; write: 59 73 76 107 Z29; read: 80 83 85 8% 91 95
98 99 105 110 112 116 120 230.
Co v v v v a0 o s & 4H 1 CHAR parameter in DIGIT at 4Z; read: 63 43.
T 4H) CHAR parameter in LOWER_CASE at 66; read: 67 67.
Cio v v v v 0 s o o« 4H i CHAR parameter in UPPER_CASE at &4; read: &5 &
CHAR . . « « « « « & 1 primitive type; read: 7 T8 12 20 22 62 64 b6 138 172 192.
CR ¢« ¢« v s o 2 & & i predefined CHAR constantj read: 76 105.
DIGIT. v ¢« v » « & = BOOLEAN function in GET_TOKEN at 62; write: 63; read: 95 98.
Ee v v v s o s o a 4H 1 ERROR_CLASS parameter in ERROR at 25; read: Z7.
EMPTY. « + ¢« & & « & 1 (EMPTY,...,FULL) constant in DC at 16; read: 43 69 77.
END_OF_LINE. 1 ERRDR_CLASS constant in DC at 4; read: 30.
ERROR. « « « o o« + & procedure in DC at 25; read: 53 122 129 157 165 182 204 215 227.
ERROR_CLASS. .. 1 (ILLEGAL TOKEN,...,ERROR IN_TERM) type in DC at 4; read: 25.
ERROR_ IN_EXPRESSIDN. 1 ERROR_CLASS constant in DC at 4; read: 34 204 21S.
ERRCR_IN_FACTOR. . . 1 ERROR CLASS constant in DC at 4; read: 32 165.
ERROR_IN_STATEMENT . 1 ERROR_CLASS constant in DC at 4; read: 35 227.
ERROR_IN_TERM. . . . 1 ERROR_CLASS constant in DC at 43 read: 33 18Z.
EXPRESSION procedure in DC at 189; read: 145 153 2zZ4.
EXPRESSION_VALUE . . 4K 2 INTEGER var parameter in EXPRESSION at 189; write: 220.
EXPRESSION_VALUE . . FFFCH 2 INTEGER variable in FACTOR at 137; write: 145 153; read: 1446 147 154,
EXPRESSION_VALUE . . FFFCH 2 INTEGER variable in STATEMENT at 223; write: 224; read: 226.
FACTOR . . . e procedure in DC at 136; read: 173 177.
FACTOR_1 VﬂLUE [N FFFCH z INTEGER variable in TERM at 170; write: 173 179 180; read: 179 180 187.
FACTOR_Z_VQLUE P FFFAH 2 INTEGER variable in TERM at 171; write: 177; read: 179 180.
FACTOR_VALUE 4H z INTEGER var parameter in FACTOR at 134; write: 143 147 1354 140.
FALSE. 1 predefined BOOLEAN constant; read: 235.
FULL . .+« & o . & 1 (EMPTY,...,FULL) constant in DC at 146; read: 57.
GET CHAR procedure in GET_TOKEN at 48; read: 81 86 92 100 119 132.
GET_LINE procedure in DC at 41; read: 70 232.
GET_TOKEN. procedure in DC at 613 read: 141 144 152 156 161 176 195 209 233.
ILLEGAL_TOKEN. . . . 1 ERROR_CLASS constant in DC at 4; read: 28 122 129.
INPUT. « v v @ 0 & & 8H 8 predefined TEXT variable; write: 47; read: 46 48 51 54,
INTEGER. . « « + « & F4 primitive typej read: 13 Z4 136 137 169 170 171 189 190 191 223.
INT_CONST. . . « . . 1 TOKEN_CLASS constant in DC at 5; read: 13 96 160.
R i predefined CHAR constanij read: 107.
LINE_END . . e e 1 TOKEN_CLASS constant in DC at 5; read: 14 106 225,
LINE_TOO_ LONG. e s 1 ERROR_CLASS constant in DC at 4; read: 29 53.
LOWER CASE BOOLEAN function in GET_TOKEN at 66; write: &7; read: 83.
LPAREN. 1 TOKEN_CLASS constant in DC at 5; read: 10 125 1S5Z.
MAX_LINE_LENGTH. . . 2 INTEGER constant in DC at 3; read: 17 18 19 20 49.
MISSING_R_PAREN. . . 1 ERROR_CLASS constant in DC at 4; read: 31 157.
MULOP . . ¢« .+« o & 1 TOKEN_CLASS constant in DC at 5; read: 8 115 174.
OP . . & & 0 v s oW FFF9H 1 CHAR wariable in EXPRESSION at 192, write: 194 198 208; read: 200 Z11.
BP . v v v v v v o FFF9H 1 CHAR wvariable in TERM at 172; write: 175; read: 178.
OUTPUT . . &« . « . . [¢].} 8 predefined TEXT variablej read 26 28 29 30 31 32 33 34 35 38 45 226 231

E-7

Sample Program Listing PSCOPE-86 User’s Guide

SERIES-III Pascal-864, V2.0
Cross-Reference Listing

TOKEN_CLASS.
UPPER_CASE .

(ADD_OP,...,LINE_END) type in DC at 5; read: 6.
EOOLEAN function in GET_TOKEN at 44; write: 43; read: 89.

237.

R_PAREN. i TOKEN_CLASS constant in DC at 5; read: 11 126 155.

STATEMENT. procedure in DC at 22Z; read: 234.

Te o o v 0 o v v v 75H 3 TOKEN variable in DC at Z1; write: 84 85 90 91 96 97 99 106 111 112 115 114
121 125 126; read: 99 139 140 14Z 155 160 174 175 193 194 207 208 z25.

TERM procedyre in BC at 169; read: 199 210.

TERM_1_VALUE FFFCH 2z INTEGER variable in EXPRESSION at 190; write: 199 202 212 213; read: Z0Z
21z z13 2z0.

TERM_Z_VALUE . FFFAH 2 INTEGER variable in EXPRESSION at 191; write: Z210; read: 212 Z13.

TERM_VALUE . . 4H 2 INTEGER var parameter in TERM at 169; write: 187,

TEXT_BUFFER. . 44 record type in DC at 146; read: Z3.

TOKEN. . . . 3 record type in DC at 6; read: 21.

« e s m oam e

P N

P
-

VARIABLE . . . 1 TOKEN_CLASS constant in DC at S; read: 12 84 90 140,

VARIABLE_INDEX FFFBH 1 CHAR variable in FACTOR at 138; write: 140; read: 143 146.

VARIABLE_TABLE 40H 52 arrayl 'a' .. 'z? 1 of INTEGER variable in DC at Z4; write: 146 2305 read:
143,

Summary Information:

PROCEDURE OFFSET CODE SIZE DATA SIZE STACK SIZE

ERROR Q0C8H 014CH 332D 000EH 14D

GET_LINE 0Z14H OOBEH 190D 0012ZH 128D

GET_TOKEN 0399H 0147H 327D 0008H 8D

DIGIT 02DZH 00ZCH 44D 0008H - 8D

UPPER_CASE 02FEH 00ZCH 44D 0008H 8D

LOWER_CASE 03ZAH 00ZCH 44N Q00SH 2D

GET_CHAR 03546H 0043H 47D 0008H en

FACTOR 04ECH OQO0B4H 180D 000EH 14D

TERM 0594H O0O07BH 123D 0010H 146D

EXPRESSION Q40FH OOB7H 183D Q010H 16D

STATEMENT 04C6H 0036H 54D 0DOCH 12D

DC 04FCH OOE7H 231D 0078H 120D O0OOEH 14D

-CONST IN CODE- 00C8H 2000

Total O7ESH 2019D° 0Q078H 120D 0O0C4H 196D

287 Lines Read.
O Errors Detected.
447 Utilization of Memory.

E-8

APPENDIXF
PSCOPE GRAMMAR

This appendix contains the grammar that describes the syntax of PSCOPE’s com-
mand language. “Notational Conventions” in the Preface to this manual explains
the notational conventions used.

Note that the command line is the unit in which PSCOPE commands are
processed. Hence, the symbol command-lineis the start symbol of the grammar.

PSCOPE Grammar

command-line ::= [command] [; command]x

command ::= asm-command
| base-command
| callstack-command
|count-command
|define-command
|directory-command
|display-command
|do-command
|edit-command
|eval-command
| exit-command
jgo-command
| help-command
|if-command
|inputmode-command
|include-command
|list-command
|load-command
| modify-command
| port-command
| put-command
|remove-command
| repeat-command
|return-command
| step-command
| view-command
| write-command

asm-command ::= ASM ADDRESS = 'assembler-mnemonic
'[,'assembler-mnemonic]x

|[SASM ADDRESS = 'assembler-mnemonic
'[,’'assembler-mnemoniclx

|[ASM ADDRESS [/ength-spec]

|SASM ADDRESS [/ength-spec]

base-command ::= BASE [=expr]

callstack-command ::= CALLSTACK [expr]

PSCOPE Grammar PSCOPE-86 User’s Guide

count-command ::= COUNT expr
[loop-command]x
end-count

loop-command ::= WHILE expr
|UNTIL expr
|[command]

end-count ::= ENDCOUNT
|END

define-command ::= DEFINE BRKREG name = break-group [, break-grouplx
IDEFINE TRCREG name = break-group [, break-group]*
|DEFINE PATCH expr [TIL exprl = patch-value
|DEFINE PROC name = command
|IDEFINE LITERALLY name = string [string]x
|DEFINE [GLOBAL] mtype name [= expr]

break-group ::= (break-point|, break-point]*) [CALL proc-name]
| break-point [CALL proc-namel

break-point::= expr

patch-value ::= command
INOP

directory-command ::= DIR [directory] [directory-typel

|PUBLIC
|: module-name

directory-type ::= mtype

|dtype
|[PATCH
|ARRAY
|ENUMERATION
|FILE

|[LABEL

ILINE
IMODULE
|PROCEDURE
|[RECORD
|SET

display-command ::= PROC proc-name
ILITERALLY literally-name
IBRKREG brkreg-name
|TRCREG trcreg-name
|PATCH expr
| mtype address [length-spec]
|expr
|REGS

length-spec ::= LENGTH expr
| TO expr

do-command ::= DO

[commandlx
END

F-2

PSCOPE-86 User’s Guide PSCOPE Grammar

edit-command ::= EDIT [edit-item]

edit-item ::= name
|PATCH expr
|GO

eval-command ::= EVAL expr[eval-typel

eval-type ::= LINE
|PROCEDURE
|SYMBOL [ALL]

exit-command ::= EXIT

go-command ::= GO [break-spec]x
|GO FOREVER

break-spec ::= USING brkreg-item [, brkreg-item] x
ITIL exprl, exprlx

brkreg-item ::= BRKREG
| brkreg-name
|TRCREG
|trcreg-name

help-command ::= HELP [name]

if~command ::= IF expr THEN
[command]x
[ORIF expr THEN
{command]*]x
[ELSE
[command]x]
end-if

end-if ::= ENDIF .
|END
include-command ::= INCLUDE pathname [NOLIST]
inputmode-command ::= INPUTMODE [=N]

list-command ::= LIST [pathnamel]
INLIST

load-command ::= LOAD pathname [load-option]*
[CONTROLS controls-text]

load-option ::= NOLINES

INOSYMBOLS
|CH8087 /xfor iRMXx/
|E8087 /xfor Series I11/Series IVx/

port-command ::= PORT port-# expr[=expr]
|WPORT port-# expr[=expr]

modify-command ;.= variable = expr
| mtype address [length-spec] = modify-list

PSCOPE Grammar PSCOPE-86 User’s Guide

modify-list::= expr|, exprl*
| mtype address [length-spec]

length-spec ::= LENGTH expr
|TO expr

put-command ::= PUT pathname put-list
|APPEND pathname put-list

put-list::= put-item [, put-item]x

|DEBUG
put-item ::= mtype
|dtype
|name

|PATCH [expr]

remove-command ::= REMOVE remove-item |, remove-item]x
|REMOVE DEBUG

remove-item ::= mtype

|dtype

|name

|PATCH [expr]

repeat-command ::= REPEAT
[loop-commandlx
end-repeat

loop-command ::= WHILE expr

[UNTIL expr
|lcommand]

end-repeat ::= ENDREPEAT
|END

return-command ::= RETURN l[expr]
step-command ::= LSTEP
|PSTEP
|ISTEP
view-command ::= VIEW view-jtem
view-item ::= file-name
write-command ::= WRITE
[USING (string-expr)]
[exprl, expr]x]

expr::= logic-term [or-op logic-term]*

or-op ::= OR
|XOR

logic-term ::= logic-factor [AND logic-factorlx
logic-factor::= [NOT] logic-primary

logic-primary ::= arith-expr[relational-op arith-expr]

F-4

PSCOPE Grammar

PSCOPE-86 User’s Guide

A

relational-op ::

AVAT VI

ARE

arith-exp ::= [mtypel address

address ::= term [add-op term]x

add-op ::|= +

[/
IMOD

term ::= factor [mulit-op factor]x

factor ::= ladd-op] primary

primary ::= primitive [: primitive]

primitive ::= (expr)
|variable
|value

= gsymbolic-reference
| mtype-variabie-name
|$

|BASE
INAMESCOPE

|reg-name

variable ::

symbolic-reference ::= [: module-name .]
symbol [qualifier]x

|[: module-namel
#line-number

|symbol ::= ["] name

qualifier ::= left-bracket expr [, expr]*
right-bracket

|. symbol
hi

left-bracket::= [

right-bracket ::=]

F-5

PSCOPE Grammar PSCOPE-86 User’s Guide

reg-name ;= AX /* for IRMX only */

IBX ISTO
|CX |ST1

|DX |ST2
IBP IST3
ISP |ST4
iDI |ST5
ISl IST6
Ics |ST7
IDS |FIA

IES IF10

ISS }ch
IP FDA
|IFLAGS

IAL

|AH

IBL

|BH

ICL

ICH

DL

|DH

[FL

|FH

value ::= integer-constant
|real-constant
Boolean-constant

siring-constant {stiing-co
|proc-name [(expr |, exprlx
% actual-parameter
SUBSTR (string-expr, expr, expr)

| CONCAT (string-exprl, string-exprlx)
STRLEN (string-expr)

Cl

ACTIVE (symbolic-reference)

. symbolic-reference

SELECTOROF (expr)

| OFFSETOF (expr)
Iactual-parameter ::= jnteger-constant
(expr)
NP

dtype ::= LITERALLY
|BRKREG
|TRCREG
[PROC

F-6

PSCOPE-86 User’s Guide

mtype ::= BOOLEAN

|CHAR
|BYTE
[WORD
|DWORD
|ADDRESS
[SELECTOR
|POINTER
|SHORTINT
|INTEGER
ILONGINT
|[EXTINT
|BCD
|IREAL

|LONGREAL

|ITEMPREAL

PSCOPE Grammar

F-7/F-8

APPENDIX G
RESERVED KEYWORDS

This appendix contains the keywords PSCOPE recognizes and uses. You cannot
use keywords as user-defined object names. To reference a program symbol whose
name is the same as a PSCOPE keyword, you must prefix the symbol with a quota-
tion mark ("), as discussed in Chapter 3. PSCOPE also recognizes special operators
and delimiters which, like the reserved keywords, you cannot use in any other
way. PSCOPE reports all attempts to incorrectly use a PSCOPE keyword or delimi-

ter as syntax errors.

PSCOPE Keywords

A ACTIVE
AH AL
APPEND ARRAY
BASE BCD
BOOLEAN BP

BYTE CALL
CHS8087 CH

CL CONCAT
CS cxX

DFL DH

DL DO

DX ES087
END ENDCOUNT
ENUMERATION ES
EXTINT FALSE
FDA FIA

FL FLAG
GLOBAL GO

IFL INCLUDE
IP ISTEP
LINE LIST
LONGINT LONGREAL
MODE MODULE
NOLINES NOLIST
NOT NP

OFL OR

PFL POINTER
PROCEDURE PSTEP
REAL RECORD
REPEAT RETURN
SELECTORSOF SELECTOROF
SHORTINT SI

STO ST1

ST4 STS
STRLEN SUBSTR
TFL THEN
TRACEACT TRACEREGS
UNTIL USING
VSTBUFFER WHILE
WRITE XOR

ADDRESS
ALL

ASM

BH

BRKREG
CALLSTACK
CHAR
CONTROLS
DEBUG

DI

DS

EDIT

ENDIF
EVAL

FCW

FILE
FOREVER
HELP
INPUTMODE
LABEL
LITERALLY
LSTEP
NAMESCOPE
NOSYMBOLS
OFFSETS$OF
ORIF

PORT
PUBLIC
REGS

SASM

SET

SP

ST2

ST6
SYMBOL

TIL
TRCREG
VIEW
WORD

ZFL

AFL

AND

AX

BL

BX

CFL

CI

COUNT
DEFINE
DIR
DWORD
ELSE
ENDREPEAT
EXIT

FH

FIO

FSwW

IF
INTEGER
LENGTH
LOAD
MOD
NOCODE
NOP
OFFSETOF
PATCH
PROC

PUT
REMOVE
SELECTOR
SFL

SS

ST3

ST7
TEMPREAL
TO

TRUE
VSTB
WPORT

G-1

PSCOPE-86 User’s Guide Reserved Keywords

PSCOPE Operators and Delimiters

G-2

APPENDIXH
PSCOPE COMMAND INDEX

This appendix lists each PSCOPE
manual where you can find more in

command and refers you to the section in this
formation.

Command Page Command Page
Y e 8-3 INCLUDE 10-6
INPUTMODE 10-10
ACTIVE 5-11 I(nsert)c..... 2-11
APPEND 7-6 ISTEP ..., 4-4
ASM ... 5-13
line number reference 3-3
BASE 10-9 LIST 10-6
Block)cooviiin. 2-11 LOAD 4-1
BRKREG ii-1 LSTEPl 4-3
call debug procedures 8-2 MACRO 2-2
CALLSTACK ceeev... 10-4 memory reference 39
change 8086/8088 flags 5-5 MODIFY 7-5
change 8086/8088 registers 5-7 modify memory 5-12
change 8087 register 5-8 modify debug symbol 7-5
change NAMESCOPE 5-10
change program symbol 5-5 NAMESCOPE 5-1, 5-10
Cl 10-13 NOCRT 2-1
CONCAT 10-13 NOLIST 10-6
COUNT 6-1 NOMACRO 2-2
CRT 2-1 NOSUBMIT 2-3
debug procedurecalls 8-2 OFFSETS$OF 10-15
debug procedure parameters ... 8-3
debug procedure return 8-2 PATCH 9-1
D(elete) 2-11 PSTEP 4.3
DEFINE 7-2 PUT 7-6
DEFINE debug procedure 8-1
DIR 10-2 Qit) 2-12
DISPLAY 7-3
display debug objects 7-3 REGS 5-8
display memory 5-11 read and write /O ports 5-9
display program symbol 5-3 REPEAT 6-1
....................... 6-3 REMOVE 15
RUN 2-1
EDIT 2-8
EVAL 10-7 SASM ... 5-13
EXIT 10-1 SELECTORSOF 10-15
SLA ... 5-15
fully qualified reference 5-1 STRLEN 10-13
SUBMIT 2-3
Glet) 2-11 SUBSTR 10-13
GO 4-2,11-4 symbolicreference 3-9
HELP 10-5,A-1 TRCREG 11-3
IF .. 6-2 Vi@ew) 2-12,2-13

H-1

Command Index PSCOPE-86 User’s Guide

Command Page
VSTBUFFER 2-4
WRITE 10-12
X(change) 2-12

H-2

APPENDIX |
PSCOPE UNDER THE iRMX™
OPERATING SYSTEM

PSCOPE runs on any 86/3xx microcomputer system running the iRMX-86 operat-
ing system, release 5 or greater. PSCOPE requires at least 110K bytes of user
memory. Your application program requires additional memory.

The following major iRMX-86 subsystems must be present.

Nucleus

Basic I/0 system

Extended I/0 system

Human interface

Application loader

Universal Development Interface (UDI)

When running under the iRMX-86 operating system, PSCOPE differs in the fol-

lowing areas.

Linking

Invocation
Multitasking support
8087 support
CNTL-C limitation

Linking
Be sure to use the link library files supplied with the iIRMX-86 operating system.

When invoking 1ink86, include the following two options during the final link.

SEGSIZE(STACK (+2048))
MEMPOOL (+2500,0FF000H)

Invocation

Because systems that run iRMX-86 are 8086-based, you do not use the RUN pro-
gram to invoke PSCOPE. A typical invocation line is as follows:
pathname PSCOPE.86 options
Where:
pathname specifies the path of the file back to the root directory.
For example, /user/world/prog/pscope.86 means that PSCOPE is a file in the

directory prog which itself is in the directory world which itself is in the directory
user which is a directory under the root.

I-1

PSCOPE Under The iRMX™ Operating System PSCOPE-86 User’s Guide

Multitasking Support

Although the iRMX-86 operating system handles multiple tasks, PSCOPE can
only debug one task at a time. PSCOPE has no cognizance of tasks initiated by the
task being debugged.

Because PSCOPE directly manipulates the iRMX-86 interrupt vector table, no
other task may manipulate the interrupt vector table while PSCOPE is running.
When you invoke PSCOPE, PSCOPE saves the interrupt vector table. When you
exit PSCOPE, PSCOPE restores the interrupt vector table. The consequence of
this is that in a multi-station system, only one station at a time may run PSCOPE.

~ If PSCOPE hangs, you cannot be sure of what the interrupt vector table may hold.

Reboot the system to return the interrupt vector table to a known state.

8087 Support

If the program you want to debug performs real arithmetic,bthe microcomputer
system must contain the iSBC 337 MULTIMODULE (8087 hardware). You
cannot use the 8087 software emulator.

When you load your program with the LOAD command, include the CH8087
option, as in the following example:

*LOAD pager.86 CH8087

Other Resources Required

The debugger requires the following additional host resources:
® The software interrupt 3 (the one-byte, debugger-oriented INT instruction).
® The trap flag and interrupt 1 (used for single-stepping).
® The CNTL-C trap (system call DQSTRAP$CC).
Your program should not use these host system resources.
In addition, PSCOPE uses interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. However, your program can use these in-

terrupts since PSCOPE maintains separate copies of these interrupt vectors for
itself and your program.

INDEX

&, 2-6, 3-1
$,3-2,11-5
%, 8-3

Accessing debug procedure parameters, 8-3, 8-4

ACTIVE function, 5-11

ADDS Regent Model 200 (2400 baud only)
configuration, B-5

ADDS Viewpoint 3A Plus configuration, B-6

APPEND command, 7-6 thru 7-8

BASE command, 10-9, 10-10
BLOCK command, 2-11, 2-12

Break registers, 11-1 thru 11-3
Beehive Mini-Bee configuration, B-7
Breakpoints, 11-1 thru 11-7
BRKREG command, 11-1 thru 11-3

Cailing debug procedures, 3-11, 8-2
Calling sequence, see CALLSTACK command
CALLSTACK command, 10-4, 10-5
Change 8086/8088 flags, 5-5, 5-6
Change 8086/8088 registers, 5-7, 5-8
Change 8087 registers, 5-8, 5-9
Change name scope, 5-10, 5-11
Change program symbol, 5-5
Character string constants, 3-4, 3-5
Cl command, 10-13 thru 10-15
Code patch display, 9-2, 9-3
Code patches, 9-1 thru 9-3
Command entry, 2-6
Command index, H-1, H-2
Commands, see PSCOPE commands
Comments, 3-6
Compile restrictions, 1-2
CONCAT command, 10-13 thru 10-15
Configuration commands, B-1 thru B-3
Configuration
ADDS Regent Model 200 (2400 baud only), B-5
ADDS Viewpoint 3A Plus, B-6
Beehive Mini-Bee, B-7
DEC VT52, B-8
DEC VT100, B-9
Hazeltine 1420, B-10
Hazeltine 1510 (Tilde Lead-in), B-11
Hazeltine 1510 (ESC Lead-in), B-12
Intel Series ITIE, B-13
Lear Siegler ADM-3A, B-14
Televideo 910 Plus, B-15
Televideo 925 and 950, B-16
Zentec, B-17
Configuring PSCOPE for non-Intel
terminals, B-1 thru B-17
Constants, 3-9

Continuation flags

&, 2-6, 3-1

1,29
Control constructs

COUNT, 6-1, 6-2

DO, 6-3

IF, 6-2, 6-3

REPEAT, 6-1, 6-2
COUNT control construct, 6-1, 6-2
CRT invocation control, 2-1, 2-2
Current name scope, 5-1 thru 5-3
Cursor control keys (for edit), 2-6, 2-7, 2-9 thru 2-11

DEC VT52 configuration, B-8
DEC VT100 configuration, B-9
Debug objects, 7-1, 7-2
debug type, 7-2
memory type, 7-2
Debug parameter reference, 3-11
Debug procedure calls, 3-11, 8-2
Debug procedure definitions, 8-1
Debug procedure parameter access, 8-3, 8-4
Debug procedure return, 8-2, 8-3
Debug session example, 1-6 thru 1-18
Debug symbol object types, 3-3
Debug symbols, 3-2
Debug type debug objects, 7-2
Debug variable references, 3-10
Debugger invocation, 2-1
Debugging session termination, see EXIT command
DEC VT52 configuration, B-8
DEC VT100 configuration, B-9
DEFINE BRKREG command, 11-1 thru11-3
DEFINE code patches, 9-1, 9-
DEFINE command, 7-2, 7-3, 8-1
DEFINE debug procedures, 8-1
DEFINE PATCH command, 9-1, 9-2
DEFINE PROC command, 8-1
DEFINE TRCREG command, 11-3, 11-4
DELETE (D) command, 2-12
Delimiters, 3-1, G-2
DIR command, 10-2 thru 10-4
Directory command, see DIR command
Display code patch, 9-2, 9-3
DISPLAY command, 7-3, 7-4
Display information at the terminal,
see WRITE command
Display memory, 5-11, 5-12
Display program symbol, 5-3, 5-4
DO control construct, 6-3

EDIT command, 2-8

Editor display, 2-9
Editor, see internal screen-oriented editor

Index-1

Index

End a debugging session, see EXIT command
Enter PSCOPE commands, 2-1, 2-2 thru 2-6
Error messages, A-1 thru A-7
Error messages, invocation, A-1
Errors in syntax, 2-7
ESC key to invoke the internal editor, 2-8
EVAL command, 10-7 thru 10-9
Evaluating expressions, see EVAL command
Example PSCOPE debug session, 1-6 thru 1-18
Exception trapping, 11-6, 11-7
Execute user program, see GO command
EXIT command, 10-1, 10-2
Explicit typing of memory references,

see memory references with explicit typing
Expression evaluation, see EVAL command
Expressions, 3-8

Fatal errors, A-1

Floating point numbers, 3-4

Fully qualified line references, 5-1 thru 5-3
Fully qualified name, 5-1 thru 5-3

Fully qualified references, 5-1 thru 5-3
Further reading, vi, vii

GET (G) command, 2-12

Global debug objects, 7-1

GO command, 4-2, 4-3, 11-4 thru 11-6
Grammar, PSCOPE, F-1 thru F-7

Hazeltine 1420 configuration, B-10

Hazeltine 1510 (Tilde Lead-in) configuration, B-11
Hazeltine 1510 (ESC Lead-in) configuration, B-12
HELP command, 10-5, 10-6, A-1

Host system execution environment, 1-2

IF control construct, 6-2, 6-3
INCLUDE command, 10-6, 10-7
Index of PSCOPE commands, H-1
INPUTMODE command, 10-10 thru 10-12
iRMX information, I-1
INSERT (I) command, 2-12, 2-13
Integers, 3-3, 3-4
Intellec Series III information, C-1
Intellec Series IV information, D-1
Intel Series III E configuration, B-13
Internal errors, A-1
Internal screen-oriented editor, 2-7 thru 2-11
Cursor control, 2-9 thru 2-11
Commands, 2-9
Display, 2-9
Entering, 2-8
Exiting, 2-8
Invocation controls, 2-1 thru 2-5
CRT| NOCRT, 2-1, 2-2
MACRO| NOMACRO, 2-2, 2-3
NOSUBMIT | SUBMIT, 2-3
VSTBUFFER, 2-4
Invocation error messages, 2-4, 2-5
Invoking the debugger, 2-1

Index-2

PSCOPE-86 User’s Guide

ISTEP command, 4-4

Keys
Cursor control during edit, 2-9 thru 2-11
Line editing, 2-6, 2-7

Keywords, 3-2, 3-3, G-1

Lear Siegler ADM-3 A configuration, B-14
Line editing keys, 2-6, 2-7

Line number references, 3-3, 3-10

Line numbers, 3-3

LIST command, 10-6

Listing file, see LIST command

LOAD command, 4-1, 4-2

Local debug objects, 7-1

LSTEP command, 4-3, 4-4

Machine register references, 3-9

MACRUO invocation control, 2-2, 2-3

Memory display, 5-11, 5-12

Memory modification, 5-12, 5-13

Memory references with explicit typing, 3-9, 3-10
Memory symbol object types, 7-5, 7-6

Memory type debug objects, 7-2

Memory type differences, 3-7

Menu commands, see PSCOPE menu commands
MODIFY command, 7-5

Modify memory, 5-12 thru 5-14

Name scope, 5-1 thru 5-3

Name scope change, 5-10, 5-11

Names, 3-2, 3-3

NOCRT invocation control, 2-1, 2-2
NOLIST command, 10-6

NOMACRUO invocation control, 2-2, 2-3
NOSUBMIT invocation control, 2-3
Notational conventions, vii, viii
Number base, see BASE command
Numeric constants, 3-3, 3-4

Object file, 7-6 thru 7-8

OFFSETS$OF command, 10-15

Operands, 3-8 thru 3-11

Operators, 3-5, 3-11, 3-12, G-2
OPTIMIZE(O) compiler option, 1-2 thru 1-4

Parameter accessing, 8-3, 8-4
Parameter references, 3-11
Partially qualified line references, 3-3, 5-3
Pascal program example,

see sample PSCOPE debug session
PATCH command, 9-1 thru 9-3
Patch definition, 9-1, 9-2
Patch removal, 9-3
PL/M program example,

see example PSCOPE debug session
Precedence of operators, see operators
PROC command, 8-1
Procedure calls, 3-11, 8-2

PSCOPE-86 User’s Guide

Product definition, 1-1

Program development process, 1-1, 1-2
Program example, E-1 thru E-8
Program execution, see GO command
Program symbol change, 5-5

Program symbol display, 5-3, 5-4

Program symbol references, 3-9, 5-1 thru 5-3

Program symbols, 3-2
PSCOPE command entry, 2-6
PSCOPE command index, H-1
PSCOPE commands

Accessing debug procedure parameters, 8-3, 8-4

ACTIVE, 5-11

APPEND, 7-6 thru 7-8

ASM, 5-13 thru 5-19

BASE, 10-9, 10-10

BLOCK, 2-11, 2-12

BRKREG, 11-1 thru 11-3

CALLSTACK, 10-4, 10-5

Change name scope, 5-10, 5-11

Change program symboi, 5-3

Change 8086/8088 flags, 5-5, 5-6

Change 8086/8088 registers, 5-7, 5-8
. Change 8087 registers, 5-8, 5-9

CI, 10-13 thru 10-15

CONCAT, 10-13 thru 10-15

COUNT construct, 6-1, 6-2

Debug procedure calls, 8-2

Debug procedure return, 8-2, 8-3

DEFINE, 7-2,7-3

DEFINE BRKREG, 11-1 thru 11-3

DEFINE debug procedure, 8-1

DEFINE PATCH, 9-1, 9-2

DEFINE PROC, 8-1

DEFINE TRCREG, 11-3, 11-4

DELETE, 2-12

DIR, 10-2 thru 10-4

DISPLAY, 5-11, 5-12,7-3,7-4

Display PATCH, 9-2, 9-3

Display program symbol, 5-3, 5-4

DO construct, 6-3

EDIT, 2-8

EVAL, 10-7 thru 10-9

Exception trapping, 11-6, 11-7

EXIT, 10-1, 10-2

Fully qualified references, 5-1 thru 5-3

GET, 2-12

GO, 4-2,4-3,11-4 thru 11-6
HELP, 10-5, 10-6, A-1

IF construct, 6-2, 6-3
INCLUDE, 10-6, 10-7
INPUTMODE, 10-10 thru 10-12
INSERT, 2-12, 2-13

ISTEP, 44

LIST, 10-6

LOAD, 4-1, 4-2

LSTEP, 4-3,4-4

MODIFY, 5-12, 5-13, 7-5
NOLIST, 10-6

OFFSETS$OF, 10-15

PATCH, 9-1 thru 9-3

PROC, 8-1

PSTEP, 4-3, 4-4

PUT, 7-6 thru 7-8

QUIT, 2-13

Read and Write I/0 ports, 5-9, 5-10

REGS, 5-8

REMOVE, 7-5, 7-6

REMOVE PATCH, 9-3

REPEAT construct, 6-1, 6-2

SASM, 5-13 thru 5-19

SELECTORSOF, 10-15

STRLEN, 10-13 thru 10-15

SUBSTR, 10-13 thru 10-15

TRCREG, 11-3,11-4

VIEW, 2-13 thru 2-15

WRITE, 10-12, 10-13

XCHANGE, 2-13
PSCOPE constructs

COUNT, 6-1, 6-2

DO, 6-3

IF, 6-2, 6-3

REPEAT, 6-1, 6-2
PSCOPE controls

CRT, 2-1,2-2

Invocation, 2-1

MACRO, 2-2, 2-3

NOCRT, 2-1, 2-2

NOMACRO, 2-2, 2-3

NOSUBMIT, 2-3

SUBMIT, 2-3

VSTBUFFER, 2-4

PSCOPE debug session example, 1-6 thru 1-18

PSCOPE delimiters, G-2
PSCOPE directory, 10-2 thru 10-4
PSCOPE grammar, F-1 thru F-7
PSCOPE menu commands
BLOCK (B), 2-11, 2-12
DELETE (D), 2-12
GET (G), 2-12
INSERT (D, 2-12, 2-13
QUIT (Q), 2-13
VIEW (V), 2-13 thru 2-15
XCHANGE (X), 2-13
PSCOPE operators, G-2
PSCOPE reserved keywords, G-1
PSCOPE.CRT file, 2-8
PSCOPE.MAC file, 2-2
PSTEP command, 4-3, 4-4
PUT command, 7-6 thru 7-8

QUIT (Q) command, 2-13

Related publications, vi, vii
Read and write I/0 ports, 5-9, 5-10
Referencing names, 3-2, 3-3
Referencing program symbols,

see program symbol reference

Index

Index-3

Index

Registers

Break, 11-1 thru 11-3

Trace, 11-3, 114
Remove code patch, 9-3
REMOVE command, 7-5, 7-6
REMOVE PATCH command, 9-3
REPEAT control construct, 6-1, 6-2
Reserved keywords, G-1
Returning from a debug procedure, 8-2, 8-3
RUN command, C-4

Sample Pascal program,

see sample PSCOPE debug session
Sample PL/M-86 program,

see sample PSCOPE debug session
Sample PSCOPE debug session, 1-7 thru 1-18
Screen-oriented editor,

see internal screen-oriented editor
SELECTORSOF command, 10-15
Series Il information, C-1
Series IV information, D-1
Severe errors, A-1
SLA, see single-line assembler
Single-line assembler, 5-13 thru 5-17
Single-line disassembler, 5-13 thru 5-17
Single-stepping through a program, 4-3, 4-4
Stepping commands,

see the ISTEP, LSTEP, and PSTEP commands
String constants, 3-9
String functions

CI, 10-13 thru 10-15

CONCAT, 10-13 thru 10-15

STRLEN, 10-13 thru 10-15

SUBSTR, 10-13 thru 10-15
STRLEN command, 10-13 thru 10-15
SUBMIT file, 2-3
SUBMIT invocation control, 2-3
SUBSTR command, 10-13 thru 10-15
Symbol object types, 3-6
Symbol references, see program symbol references
Symbol table, 3-6

index-4

PSCOPE-86 User’s Guide

Syntax errors, 2-7
Syntax notation conventions, vii, viii

Televideo 910 Plus configuration, B-15
Televideo 925 and 950 configuration, B-16
Terminate debugging session, 2-6
Tested configurations, B-4 thru B-17
Tokens, 3-1 thru 3-6
Trace registers, 11-3, 11-4
Tracepoints, 11-3 thru 11-6
Trapping exceptions, 11-6, 11-7
TRCREG command, 11-3, 11-4
Type conversions, 3-12, 3-13

for expressions, 3-13

for assignments, 3-13

Unprintable characters, 2-9
User symbol object types, 3-6
Utility commands, 10-1 thru 10-13
BASE, 10-9, 10-10
CALLSTACK, 10-4, 10-5
DIR, 10-2 thru 10-4
EVAL, 10-7 thru 10-9
EXIT, 10-1, 10-2
HELP, 10-5, 10-6, A-1
INCLUDE, 10-6, 10-7
INPUTMODE, 10-10 thru 10-12
LIST, 10-6
NOLIST, 10-6
WRITE, 10-12, 10-13
VIEW command, 2-13 thru 2-15
Virtual symbol table, see VSTBUFFER invocation control
VSTBUFFER invocation control, 2-4

Warnings, A-1
WRITE command, 10-12, 10-13

XCHANGE (X) command, 2-13

Zentec configuration, B-17

1e Single Line A bler/Dis bler

ASM address [LENGTH expr
TO address]

{ASM address =" bl ic’l, b icl
SASM)

3COPE Memory Types

ADDRESS

BCD

BOOLEAN

BYTE

CHAR

DWORD

EXTINT

INTEGER

LONGINT

LONGREAL

POINTER

REAL

SELECTOR

SELECTOR PSCOPE-86

TEMPREAL

WORD Pull-out Reference Card
3COPE Operations

AND Logical AND

MOD Modulo

NOT Logical NOT

OR Logical OR

XOR Logical exclusive OR

* Multiplication

- Negation or subtraction

+ Identity or addition

/ Division

== Boolean equality

< > Inequality

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

The address of
Bracketing

Array indexing

Assignment
Pointer constructor

I Copyright 1983, 1984, Intel Corporation

How to Use This Card

italics

Italics indicate a generic term. Replace it with a user-defined symboi, a
PSCOPE keyword, or other system-defined term.

Brackets indicate an option. You may or may not enter one of the
choices set off by brackets. Do not type the brackets.

Braces indicate a required choice. You must choose one of the choices
set off by the braces. Do not type the braces.

An asterisk after a set of brackets means that you can make multiple
choices from within the brackets or repeat your choice. Do not type the
asterisk.

Any other symbols (parentheses or commas) are to be considered as part of the
command.

Invoking and Exiting PSCOPE

{[pathnamelPSCOPE 86 ICRT [MACRO [SUBMIT (VSTB(decimal-number)]

RUN{

pathnamelPSCOPE} NOCRT! NOMACRO} NOSUBMIT)

EXIT

File Handling Commands

APPEND pathname [memory-type [,memory-type
debug-type .debug-type
FATCH address PATCH address
debug-object] .deb blect s

9
INCLUDE pathname [NOLIST]

LIST [pathname]

LOAD pathname [E8087 {CONTROLS command-tail]
CHBo087
NOLINES
NOSYMBOLS]
NOLIST
PUT pathname Imemory-type [Lmemory-type
debug-type .debug-type
PATCH address PATCH address

debug-object-name)] ,debug-object-name]s

Defining Debug Registers

DEFINE BRKREG name=break-pt [CALL proc-name] [.break-pt [CALL proc-namells

DEFINE TRCREG name= trace-pt [CALL proc-name] [trace-pt {CALL proc-name)lx

Thec

alled debug procedure must return a boolean value, as follows.

RETURN TRUE
RETURN FALSE

Defining Debug Procedures, Debug Variables and Patches

DEFINE PROC name =~ [command]

Accessing Debug Procedure Parameters

%expr-for-passed-parameter
%NP

DEFINE memory-tyep name = expr

DEFINE PATCH address [TIL address] = [command
NOP

2

Removing Debug Objects

REMOVE [memory-type [memory-type
debug-type ,debug-type
PATCH address ,PATCH address
debug-object-name) ,debug-object-namel»

Entering Emulation

GO [TIL break-pt .break-ptls
USING |break-register-name | break-register-name
trace-register-name trace-register-name

BRKREG ,BRKREG
TRCREG ,TRCREG 1s}
FOREVER)
ISTEP
PSTEP
LSTEP

Displaying Debug Objects, Program Variables, and Registers

BRKREG break-register-name
TRCREG trace-register-name
name

memory-type |address [LENGTH expr

.name } TO address]
PATCH address
REGS
8086/8088 Registers:
AX cX Ccs DI
AH CH DS SI
AL CL ES
BX DX S35
BH DH Sp
BL DL g
8087 Registers:
STO ST4 FSW F10
ST1 STS FCW
ST3 ST6 FIA
ST4 ST? FDA

Block Commands

COUNT expr
[WHILE expr
UNTIL expr
{commandl»]
ENDICOUNT]

REPEAT
[WHILE expr
UNTIL expr
[command]x
ENDIREPEAT]

DO
[command)»
END

IF expr THEN [command)
[ORIF expr THEN [commandl]s
[ELSE [commandl]

ENDIIF]

String Commands

CONCAT (string-specl,string-spec))
Ci
STRLEN(string-spec)

SUBSTR(string-spec.starl,length}

Utility Commands

$l=expr

ACTIVE (symolic-reference)

BASE(= expr]

CALLSTACK [expr

DIR [DEBUG {memory-type
PUBLIC debug-type
module-name] user-type]

EDIT [debug-object-name

PATCH address
CNTL-A Deletes line to right of cursor.
CNTL-C Cancels current editing command.
CNTL-F Deletes character at the cursor position.
CNTL-X Deletes line to left of cursor.
CNTL-Z Deietes current line.
HOME Moves cursor to left/right of line after left/right arrow.
RUBOUT Deletes character to left of cursor.
EVAL axpr [LINE
PROCEDURE
SYMBOL {ALL]
HELP [topic-name
en
INPUTMODE({ = expr
Utility Commands
NAMESCOPE[= expr
OFFSETSOF (expn)

PORT (port-numben|=expr

WPORT (port-numben|= expr
SELECTORSOF (expr

WRITE [USING (format-item)] (expr,exprix]

format-item =

n Decimal number specifying the width of the output fieid.

nC Move output buffer pointer to column n (first column).

nX Skip nspaces.

H Set display base in hexadecimal.

T Set display base to decimal.

Y Set display base to binary.

. Terminate the format string.

> Terminate the format string;, do not issue a <cr> or <If> until
the next WRITE; only has meaning when within a block command
or procedure that has more than one WRITE.

& Terminate the format string; do not execute the WRITE until the
next WRITE.

" Delimit text to be written.

VIEW pathname

®
l PSCOPE-86 User’s Guide
165496-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel

- product users. This form lets you participate directly in the publication process. Your comments will help

us correct and improve our pubiications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. s this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIP CODE
(COUNTRY)

Please check here if yvou require a written reply. D

ANE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

| ” “ | NO POSTAGE
NECESSARY
IF MAILED
‘ IN U.S.A.
)
o m m em s m m ommm e e mm s o = = = _
3 :Q I
BUSINESS REPLY MAIL
]
FIRSTCLASS PERMITNO.79 BEAV ;RTON,OR E——
POSTAGE WILL BE PAID BY ADDRESSEE |
I
Intel Corporation [
5200 N.E. Elam Young Parkway. S
Hillsboro, Oregon 97123
I
]

DSHO Technical Publications

-nl I@
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

INSTRUMENTATION

DS-132/5K/0784/0SPS

