intal

iPDS™
PERSONAL DEVELOPMENT SYSTEM
USER’S GUIDE

oo

|
\ Order Number 162606-003

Copyright © 1982, 1983, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used
in accordance with the instruction manual, may cause interference to radio communications. It has
been tested and found to comply with the limits for a Class A Computing Device pursuant to Subpart J
of Part 15 of FCC rules, which are designed to provide reasonable protectlon against such interference
when operated in a commercial environment. Operation of this equipment in a residential area is likely
to cause interference in which case the user, at his own expense, will be required to take whatever
measures may be required to correct the interference.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
;in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use.
duplication or disclosure is subject to restncuons stated in Intel’s software license, or as defined in
ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

AEDIT iLBX iOSP MULTIBUS
BITBUS im PDS MULTICHANNEL
BXP iMMX iRMX MULTIMODULE
COMMputer Insite iSBC Plug-A-Bubble
CREDIT Intel iSBX PROMPT

i Inte!lBOS iSDM Promware

iATC Intelevision iSXM Ripplemode

1AICE inteligent Identifier Library Manager RMX/80

ICE inteligent Programming MCS RUPI

iCS Intellec Megachassis System 2000
iDBP Intellink MICROMAINFRAME UPI

iDIS

Copyright 1983, Intel Corporation

iii

iv

REV. REVISION HISTORY DATE
-001 Original Issue 2/82
-002 Change Notice #1. Change pages, clarify COPY 10/82

command description. Expand Multimodule
application information, and character set data,
and correct front matter. Index references and
typographical errors.
-003 Incorporate Change Notice #1, reformat, show 2/83

current installation of I/O connector, revise to be
system specific and reprint.

PREFACE

This manual describes the Intel Personal Development System (iPDS™) and
provides the information needed to install, maintain, and operate the system and
the Intel System Implementation Supervisor for the system (ISIS-PDS).

There is a great deal of information in this manual. The order in which to read the
material depends on the goals of the reader. For example, Chapters 1 and 2
contain only background and overview information. The user who is interested in
using the system as quickly as possible can skip this material.

Figure 1 shows two possible paths through the manual: one for the user who is
_anxious to get started with the system as quickly as possible and the other for the
user who wishes to spend more time gaining background information prior to
actually starting with the system. Typically, a person who has had previous
experience with an interactive computer system will take the quick path while the
inexperienced user will choose the more leisurely path.

- QUICK PATH LEISURELY PATH

.. APPENDIX A

CHAPTERS 1 AND 2

READ TO BECOME FOLLOW ALL HANDS-ON
OISTALL SYSTEW FAMILIAR WITH SYSTEM EXAMPLES TO GET
DESCRIBED. . AND DEVELOPMENT FAMILIAR WITH SYSTEM
: CYCLES. OPERATION.
. “SAMPLE INITIALIZA * REMOVE SYSTEM
DION SESSION AT SHIPPING CARTON.
END OF CHAPTER 3. SAVE CARTON.

" EoLion RO
I
SYSTEM. SKIP OTHER CHAPTER 3
EXAMPLES.

FOLLOW HANDS-ON
EXAMPLES TO LEARN
ISIS COMMANDS.

REST OF MANUAL

g

READ DOWN TO “SAMPLE

INITIALIZATION SESSION"
CHAPTER 4 AND STOP. REFER TO

SYSTEM TO LEARN

LOCATION OF PARTS.

FOLLOW HANDS-ON
EXAMPLES TO GET
FAMILIAR WITH ISIS
COMMANDS

APPENDIX A

REFER TO CHAPTER 5
AND REST OF MANUAL
AS NEEDED FOR MORE
INFORMATION.

0

1
REST OF MANUAL INSTALL SYSTEW/

OPTIONS AS
DESCRIBED.

REFER TO CHAPTER 5*
AND REST OF MANUAL
AS NEEDED FOR MORE
DETAILED INFOR-
MATION.

“SAMPLE INITIALIZA.
TION SESSION" AT
END OF CHAPTER 3.

0281

Figure 1 Paths Through the Manual

The key to using the information in this manual is being able to access the needed
facts quickly. Features provided to aid in this process are: an Index for the entire
manual at the end of the manual, a Table of Contents for the entire manual at the
beginning of the manual, a detailed Table of Contents for each chapter at the
beginning of the chapter, and tabbed chapters to quickly find the desired section.
In addition, an overview is given below of the information in each chapter of the
manual.

Preface iPDS™User’s Guide

® Chapter 1 contains overview information. It describes the features of the
basic system and describes the available options for the system. It also
contains information on the organization and use of this manual and related
publications.

® (Chapter 2 contains background information. It outlines the process of
developing a microcomputer-based product and illustrates how a
development system aids in this process.

® Chapter 3 describes the basic operator controls for the system and introduces
the operating system software in a hands-on demonstration.

® Chapter 4 describes the operating system commands from a functional point
of view, illustrating through hands-on examples how and when to use
particular commands.

® Chapter 5 describes the operating system commands in alphabetical order
and in a reference format for the experienced user.

® Chapter 6 describes the CREDIT text editing features unique to the iPDS
system . The editing macro CMACRDO is explained. Command descriptions
and examples are found in the ISIS CREDIT CRT- Based Text Editor User’s
Guide, manual order number 9800902.

® Chapter 7 describes the use of the DEBUG command. The material is
organized in a reference format with a brief introduction and hands-on
debugging session.

® Chapter 8 provides detailed technical information on the system. This
chapter is aimed at the systems programmer who will add customized I/0 -
drivers to the system. The information is organized in a reference format.

® Chapter 9 describes the use of the optional processor with the system.
Hands-on examples are included.

¢ Chapter 10 describes software for the PROM programmer option unique to
the iPDS system

® Appendix A describes step-by-step procedures for installing the system and
its options.

® Appendix B contains all the error messages for the operating system in a
standard format and describes error conditions. It also includes a detailed
description of the Confidence Test for the iPDS system.

® Appendix C contains reference tables for different number bases, for ASCII
code, for the control characters, and for the graphics characters.

® Appendix D contains a comparison of the ISIS-PDS operating system and
' the ISIS-II operating system.

¢ Appendix E contains helpful hints for operating at maximum efficiency
depending on the configuration (the features and options available) of the
system being used.

® A glossary of technical terms and abbreviations is included for reference
after the last appendix.

Additional information on this manual and related pﬁblications is in Chapter 1.

vi

| SERVICE
INFORMATION

The best service for your Intel product is provided by an Intel Customer Engineer.
These professionals provide prompt, efficient, on-site installlation, preventive
maintenance, and corrective maintenance services required to keep your
equipment in the best possible operating condition.

The Intel Customer Engineer provides the service needed through a prepaid
service contract or on an hourly charge basis. For further information, contact
your local Intel sales office.

When the Intel Customer Engineer is not available, contact the Product Service
Center.

United States customers can obtain service and repair assistance from Intel
Corporation by contacting the Intel Product Service Center in their local area.
Customers outside the United States should contact their sales source (Intel Sales
Office or Authorized Distributer) for service information and repair assistance.

Before calling the Product Service Center, Have the following information
available: '

1. The date you received the product.

2. The complete part number of the product (including dash number). On
boards, this number is usually silk-screened onto the board. On other MCSD
products, it is usually stamped on a label.

3. The serial number of the product. On boards, this number is usually stamped
on the board. On other MCSD products, the serial number is usually
stamped on a label mounted on the outside of the chassis.

4. The shipping and billing address.

5. If the Intel Product warranty has expired, a purchase order number is needed
for billing purposes.

6. Be sure to advise the Center personnel of any extended warranty agreements
that apply.

Use the following numbers for contacting the Intel Product Service Center:

Western Region call: (602) 869-4951
Midwest Region call: (602) 869-4392
Eastern Region call: (602) 869-4045
International call: (602) 869-4391

Always contact the Product Service Center before returning a product to Intel for
repair. You are given a repair authorization number, shipping instructions, and
other important information which helps Intel provide you with fast, efficient
service. If you are returning a product because of damage sustained during
shipment, or if the product is out of warranty, a purchase order is required before
Intel can initiate the repair.

vii

Service Information ' iPDS™User’s Guide

If available, use the original factory packaging material, when preparing a product
for shipment to the Intel Product Service Center. If the original packaging material
is not available, wrap the product in a cushioning material such as Air Cap
SD-240, manufactured by the Sealed Air Corporation, Hawthorne, N.J. Securely
enclose it in a heavy-duty corrugated shipping carton, mark it “FRAGILE” to
ensure careful handling, and ship it to the address specified by the Intel Product
Service Center.

viii

WARNINGS
AND CAUTIONS

This section lists all the warnings and cautions in the order they appear in the
manual. Refer to the indicated page number for the context of the warning or the
caution.

PAGE

WARNING

i

Never remove the top cover. There is a risk of electric shock or fire
from high voltage. Repairs should be performed by qualified service
personnelonly it e 1-4/A-7

Refer to Appendix A of this manual for installation instructions before
attempting to operate thesystem i, 3-1

:

Ensuring trouble-free storage of data on the flexible disk requires
proper care. Specific precautions follow:

® Return the disk to its envelope when not in use
® Do not touch or clean the recording surface
® Do not smoke around the disk

e Do not bend the disk or use paper clips or other mechanical
deviceson it

e Use a felt tip pen on the user label, not a pencil or ball point pen

The following actions can also damage or modify the data stored on the
flexible disk:

e Turning the system on or off with a disk inserted in the drive
® Opening the disk drive door while the drive select light is on

e Pressing the RESET switch while the drive select lightison ... 3-14/3-15

In addition, the use of the pause option (P) for the COPY, DIR, and
DELETE commands is prohibited when these commands are run from
a SUBMIT file. No error or warning message is issued; however, use of
the option can destroy files on one or more of the disks. 5-47

Warnings and Cautions iPDS™User’s Guide

PAGE

i

Do not operate the system in the carrying position. The system must be
opened and in the operating position to dissipate the heat properly. To
allow proper cooling of the unit, a minimum of six inches (15.24 cm) of
clearance is recommended on all sides and the air vents must be clear
of any ObSIIUCHONS, iitite ittt it aaen s A-3

WARNING

i

Changing the power cord involvés hazardous voltage and current
levels. To avoid the risk of electric shock and fire, the power cord
should be changed only by qualified technical personnel. A-4

WARNING

i

Installation of some of the options involves working with hazardous
voltage and current levels. To avoid the risk of electric shock and fire,
options should be installed only by qualified technical personnel. A-7

!

The plug-in module slot breaches the electrical shielding of the iPDS
system. There is a chance of electro-static discharge (ESD) passing, via
the plug-in module, to the internal circuitry of the iPDS system and
causing system RESET’s, disk file damage, or component damage.
Ensure that the iPDS system is turned.OFF before inserting or remov-
ingany plug-inmodule. i A-27

CONTENTS

CHAPTER 1
INTRODUCTION PAGE
PUIPOSE v vtvviee it iiin e raianecaneeenns 1-1
Typical USES «vvvvviiii i eneneenn 1-1
Major Characteristicsovvveerieiinnns 1-1
System COmMPONENtscoveveonnnunnnenes 1-1
Hardwareovvevenenenennnnnnansnnns 1-1
BasicUnitovviiniiieieiiiiiiiannns 1-2
Add-OnMassStoragecooveeveniee 1-4
Dual Processors . ..vvvevvvninennennnanens 1-5
Plug-InModulescoooveeieiinn 1-6
Multimodules ..ot 1-6
SOftWATE . .ivvurie it iiene s 1-7
Operating System ccoovvviennnnn 1-8
ASSEMDIETS . vt 1-8
High Level Languages 1-8
ULIES « ot ottt ie et e i i eiieeens 1-8
OtherSoftwarecoviiiinennannnsn 1-8
Overview of System Publications 1-8
Hardware Installation and Checkout 1-9
System Operationsc.ceevveinnnns 1-9
TextEditingcoovvvvnviiiienennnns 1-10
Software Debugging 1-10
Systems Programming 1-10
Dual Processingooviriiunnennnen 1-10
PROM Programmingc..... 1-10
Microprocessor Emulation 1-10
Multimodule Expansion 1-11
Applications Programming 1-11
Notational Conventions 1-11
OtherConventionsccvevuvens 1-11
CAUTION, WARNING, and NOTE
Symbols ...l 1-11
Commonly UsedTerms 1-12
CHAPTER 2
DEVELOPMENT SYSTEMS
The Development Taskcoieiiinn. 2-1
Software Development 2-1
Hardware Development 2-2
Integrationcoeiiiiiiiiiiiinn 2-2
ProductionTestingccovviieni e, 2-3
FieldServiceovvvvveneiiiiiniinenennnns 2-3
The DevelopmentToolsociiiitn 2-4
Software Development Tools eeraenna 2-4
EmMulators . ..ovueriieenennenennnenennans 2-4
SUMMATY o iitietieerenninannneennnns .. 25
Overview of the DevelopmentCycle 2-6

CHAPTER 3
BASIC SYSTEM OPERATION PAGE
Hardware Operationcooeviinnnnaennes 3-1
Rear ControlPanel 3-2
Removable I[/OPanelcc.ciivninn 3-3
StOrage AT€avvvviinieeninnenaenanen 3-3
Powering the System Onand Off 3-4
Keyboard e e 3-5
Display SCreencvieivieerenaneennns 3-8
Disk DIIVES v vvv it iee ittt 3-10
Care and Use of Flexible Disk 3-11
Bubble MEMOTY .. .ivvviieiiniiniininanns 3-14
Other Componentsc.oeeevueennnons 3-14
Software Operationcoevevunnennnns 3-15
Initializationccciiniiiiiiiiiiiaann 3-15
Error Conditionscovvvinnnn. 3-17
User Configurations et 3-17
CommandSuveerrrnrneeacniiiiiianns 3-17
CommandLinescoiiiiiiiienn 3-19
Command Line Defaults 3-20 -
Entering Command Lines 3-20
Entering Command Lines from the
Keyboardooveveneneneninns L3221
Editing Command Lines 3-21
Pausing the Display 3-22
Entering Command Lines fromaFile 3-22
Other Ways to Enter Command Lines 3-23
Sample Initialization Session 3-23
Initializing the System from Disk 3-24
Duplicating the System Disk on Single Drive
SYStEMS . .vveteeee i 3-25
Duplicating the System Disk on Multiple Drive
SYStEMS . .ectiiiiiin e 3-27
Entering Command Lines 3-28
Using Control Characters 3-34
Editing Command Lines 3-36
Initializing the System from Bubble
MEMOTY o \iitiie e en e 3-39
Running the Confidence Test 3-42
CHAPTER 4
COMMAND APPLICATIONS
Functional Summary of Commands 4-1
System Management Commands 4-1
Sample System Management Commands 4-2
Device Management Commands 4-7
Formatting a Non-System Disk 4-8
Changing the System Input and Output
DEVICES v vviviit i i e 4-9
Using the Serial Port 4-12
File Management Commands 4-14
Displayinga Listof Files 4-14

Xi

CONTENTS

(continued)
PAGE PAGE
Assigning and Removing File Attributes ... 4-18 JOB . 5-30
CopyingFiles 4-21 RENAME 5-32
Changing Filenames 4-22 SERIAL 5-33
AppendingFiles 4-22 SUBMIT, 5-36
Displaying a Text Fileonthe CRT 4-23 Y 5-42
Using Wildcard Characters 4-34 @ 5-43
File Operations With a Single Drive L 5-44
S System ... 4-37 B e 5-45
Text Editing Commands 4-40 e e e e e e 5-46
Editing TextFiles 4-40 FUNC<n> e 5-47
Creating a Source Program B 4-49 ESC .. e 5-48
Program Development Commands 4-52
Creatingan ObjectFile 4-53
Debugging aProgram 4-54
Program Execution Commands 4-59 CHAPTER 6
Using the JOBCommand 4-60 CREDIT TEXT EDITOR
Automatic Job Execution 4-61 Introduction 6-1
Configuring a User System Getting Started With the CREDIT Text Editor 6-1
Automatically 4-65 Screen Mode Features 6-1
Using the SUBMIT Command 4-66 The CREDIT Display 6-1
Running the SUBMITFile 4-70 TheKeyboard 6-2
TheCursor R 6-4
Command Mode Features 6-4
CHAPTER 5 The CREDIT Display 6-4
COMMAND DICTIONARY The Keyboard P 6-5
Notational Conventions 5-1 DiskFileUse 6-5
Special Command Format Terms 52 TemporaryFiles 6-6
DeviceNames 5-2 BackupFiles 6-7
Physical Devices, 5-2 Files Used By CREDIT Commands 6-7
System-Defined Devices 5-3 LimitsonDisk FileUse 6-7
User-Defined Devices 5-3 Performance and File Size 6-8
Logical Devicescouuv..... 5-4 CMACROMAC i 6-8
Filenames 5-5 The CMACROFile 6-8
Wildcard Filenames R 5-6 Cursor Movement Macros 6-8
Pathnames 5-6 Text ControlMacros 6-9
SOUMCE v 5-7 Block Transfer Macros 6-9
Destination 5-7 File Formatting Macros 6-10
Nand A 5-7 DataFileMacros 6-11
Jobfile 5-8
Command Description Format 5-8
Functional Summary of Commands 5-9
ASSIGN ... 5-10 CHAPTER 7
ATTACH ... 5-13 DEBUG COMMAND
ATTRIB ... 5-14 Software Debugging and the Development Task ... 7-1
COPY (Transfersfiles)coovunmuuu.. 5-16 DEBUG Featuresccuu.u... 7-1
COPY (Appendsfiles)oivennnnn. 5-19 DEBUGCommandc........ 7-2
DELETE e 5-21 Command Format 7-2
DETACH, 5-23 Commentsiiiiiinann.. 7-2
DIR ..., 5-24 Examples 7-3
ENDIJOB e, 5-26 Overview of the Debugging Commands 7-4
HELP ... 5-27 I/OlInterface 7-4
IDISK .o 5-28 Software Development 7-4

xii

CONTENTS

Entering Debugging Commands
Command Format for Debugging Commands ...
Entry Errors

Invalid Characters
Address Value Errors
Parameter Errors

Categories of Debugging Commands
Program Execution Commands
1/0 Configuration Commands
1/0 Control Commands
Memory Control Commands
Register Commands
Utility Commands

Sample Debugging Session

Debugging Commands in Alphabetical Order
A Assign Command
C Disassemble Command
D Display Memory Command
E Exit Command
F Fill Memory Command
FUNCT-R Manual Interrupt Command
G Execute Command
H Hexadecimal Add/Subtract Command
I Input Command
M Move Memory Command
N Single Step Command
O Output Command
Q Query Command
S Substitute Memory Command
T Disassemble Command
X Display/Modify Registers Command

CHAPTER 8
SYSTEM PROGRAMMER’S REFERENCE
Operating System Considerations
Needed Functions
Features of the ISIS-PDS Operating System
System Calls
Overview of System Calls
Functional Categories of System Calls
High Level System Calls

File I/0 Operations
Disk Directory Maintenance
Console Device Assignment
Error Message Output
Program Loading and Execution
I/0 Driver Extensions
Primitive System Calls
Peripheral I/0 Routines
System Status Routines

1/0 Driver Extensions

(continued)
PAGE
Differences Between High Level and Primitive
SystemCalls 8-5
System Call FormatandUse 8-5
PL/MCalls ..ot 8-6
Assembly Language Calls 8-6
Assembly Language Calls to High Level
System Routines 8-7
Assembly Language Calls to Primitive
System Routines 8-8
ErrorHandling it 8-8
System Calls in Alphabetical Order 8-9
Notational Conventions 8-9
General Format Terms 8-9
Description Formats 8-12
ATTACH ... i 8-14
CATTRIB oot 8-16
CCL o e e 8-18
CLOSE .\t e 8-19
CO oo e 8-21
CONSOL ..t 8-22
CSTS ottt e e e 8-24
DELETE i 8-25
DETACH ...t 8-26
ERROR ... 8-28
EXIT oot e 8-30
IOCHK ..t 8-32
IODEF ... 8-34
IOSET .t 8-36
LO oot e 8-37
LOAD .ot 8-38
MEMCK ... 8-40
OPEN .. e e 8-41
PO e 8-44
READ ..o i 8-45
RENAME i 8-48
RESCAN . it 8-50
RI et e 8-52
SEEK ..o 8-53
SPATH ...t 8-57
WHOCON .. i 8-60
WRITE .. s 8-62
Example Programs Using System Calls 8-64
System Architecture i, 8-70
Memory Organization and Allocation 8-70
Interrupt Vectors ..., 8-71
ISIS Resident Areal 8-71
Buffer Area and ISIS Resident Area2 8-71
User Programs and ISIS Non-resident
ATEA vttt 8-72
Examples of Calculating the User Program
Base Address 8-73

Xiii

CONTENTS
(continued)

PAGE
I/O AddressSpacecoiiiiiinnnn... 8-73
CRT and KeyboardI1/O 8-75
Cursor Addressing and Graphics
Mode e 8-75
Seriall/O i 8-76
PrinterI/O, 8-77
Multimodule I/O0 8-78
Peripheral Device I/0 Operations 8-80
Filel/O 8-80
Dynamic File Control 8-82
Line EditedFiles 8-82
Terminating Characters 8-83
Editing Characters 8-83
Reading from the Line Editing Buffer 8-83
ReadingaCommandLine 8-84
DiskFileTypesciiiiiiivinnnn. 8-85
Notation Used to Describe Records 8-85
MCS-80/85 Absolute Object File
Format 8-86
Disk Structure, 8-88
General Disk File Structure 8-88
Blockscoiiiiiiiii -8-89
Interleaving Factors T, 8-91
SystemDisk Files 8-92
ISISPDS 8-92
ISIS.CLI i, 8-92
ISISTO 8-93
ISISLAB, 8-93
ISISDIR e e 8-93
ISISFRE 8-95
Disk File Structure Summary ,............ 8-96
CHAPTER Y
DUAL PROCESSING
Introduction, 9-1
Operating a Dual Processing System 9-1
Sharing the Keyboard 9-2
Sharing the CRT Display 9-2
Sharing Disk Drives cooviiinnnn.... 9-4
Sharing Multimodules 9-5
SharingFilesioviiiiis, 9-5
TemporaryFiles 9-6
DataFilescooiiiiiinii .. 9-6
Initializing the System 9-7
Sample Dual Processing 9-8
Programming on a Dual Processing System 9-12
Shared Resources P 9-13
Semaphorescooviiiiiiiiiaann. 9-13
Shared Multimodules 9-13
SharedFilescc. i, 9-14

Xiv

CHAPTER 10 PAGE
PROM PROGRAMMING
Firmware Development 10-1
EPROMErasureccoiviniiunenn.. 10-2
Overview of PROM Programming on the
System ... 10-3
Personality Modules 10-3
Plug-in Module Adapter Board 10-3
iPPSSoftware, 10-3
PROM Programming Subsystem 10-4
iPPS Software e et 10-5
iPPS Initialization 10-5
Command Line Invocation 10-5
Invocation ViaaSUBMIT File 10-6
iPPS General Operation 10-6
Major Functions 10-6
iPPS Storage Devices 10-7
PROMDevicecovvvvinn... 10-7
BufferDevice 10-7
FileDevice 10-8
CommandEntry 10-9
Command Entry Editing 10-10
Form of iPPSCommands 10-10
APPENDIX A
INSTALLATION INSTRUCTIONS
Installation Considerations A-1
Initial Installation Procedures A-1
ChangingtheFuse A-5
InstallingOptionscccovunnnnn. A-6
Removing the /OPanel A-T
Connecting a Serial Device A-10
Configuring the CTS and RTS Lines A-11
Configuring the RXC and TXC Lines A-11
Configuring the DTR Line A-13
Configuring the RXD and TXD Lines A-13
Connecting a Serial Device A-13
Serial Interface Specifications A-14
Optional Processorccouuui... A-14
Multimodule Adapter A-17
Multimodule A-19
Plug-in Module Adapter A-23
Plug-inModule A-24
Connectinga Line Printer A-24
Line Printer Interface Specifications A-24
Functional Description A-26
SystemChassisc.0v ... - A-27
Base Processor Board A-27
Keyboard A-27
Integral CRTcoo .. A-27
Integral Disk Drive A-27
PowerSupply A-28

CONTENTS

(continued)
PAGE PAGE
UserControlscooiieiiiivenennnns A-28 Test A - Formatted Disk Data Read
Optional ProcessorBoard A-28 Test .o e B-25
Optional Multimodule Adapter Board A-28 Test B - Disk Random Seek/Write/Read
Optional Plug-in Module Adapter Board A-28 Test oo B-26
Specificationscoiiiiiiiiiii .. A-28 Test C - Keyboard Echo Test B-26
Test D - Bubble Memory Seek and Read
Test ..o B-26
Test E - Bubble Memory Random
Seek/Write/Read Test B-26
Test F - PROM Programmer Plug-in Module
APPENDIX B TESt oot B-27
ERROR INDICATIONS Test 10 - 32K RAM Relocating Random Data
Command Entry Error Messages B-1 Test ..o B-27
ISIS-PDS Exception and Error Handling B-2 Confidence Test Error Messages B-27
Non-FatalErrorsccovviiiinnennnn. B-2
FatalErrorscciiiiiiiinnn... B-3
Console Interface Errors B-4
Error Messages in NumericOrder B-4 APPENDIX C
Resident ISIS Routines B-4 REFERENCE TABLES
Console Interface Routines B-11 Hexadecimal To Decimal Conversion C-1
Diagnostic EITOrS ... vvvveeeeeee e B-13 Base Conversionscoi C-2
LED INdicators = ... oo, B-13 Powersof Twoand Sixteen C-4
Diagnostic Error Messages B-14 ASCIICodeListcccviivienvennnn.. C-5
Confidence Testccvvvininerannnn.. B-15 ASCII Code Definition C-7
PCONF Commandooouurennnni. B-17 ASCIICodeinBinaryccciiiunn. C-7
INIT CONPDS Command oonoenennnn.. B-17 ControlCodesciiiiiiiiinnnnan, C-8
Confidence Test Commands -oouuun.. B-17 FunctionCodescoiniiiiiinnnnnnn. C-8
CLEAR Command ... B-18 Graphics Codes and Escape Sequences C-9
DESCRIBECommand B-18 ‘
ERRORCommand B-19
EXITCommandc......... B-19
IGNORE Command B-19 APPENDIX D
LIST Commandcevuenn... B-20 ISIS-PDS AND ISIS-11
RECOGNIZE Command ...nnnonnn.. .. B-20 ISIS-PDS and ISIS-II Features D-1
SUMMARY Command B-20
TESTCommand B-21
Test0-CPUTest B-23
Test1-CRT Interface Test B-23 APPENDIX E
Test 2 - Programmable Timer Test B-23 TIPS FOR OPERATING EFFICIENTLY
Test 3 - Line Printer Interface Test B-23 Single DriveSystemc.iiiiinan.. E-1
Test 4 - Serial Interface Test B-23 Bubble Memory System ci0iiiiien.. E-4
Test S - Disk Semaphore Test B-24 Dual Processor System ccovvvnnun.. E-5
Test 6 - Disk Drive Recalibrate and Ready
Test .o B-24
Test 7 - Disk Drive Seek and Read GLOSSARY
= B-24
Test 8 - Serial Loopback Test B-25
Test 9 - Disk Format Test B-25 INDEX

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
3-1 Keyboard Characters and Functions 3-6 A-1 Serial Interface Specifications A-14
7-1 Possible Values for <logical device> 7-17 A-2 Printer Interface Specifications A-26
7-2 Possible Values for <physical device> 7-18 A-3 Electrical Specifications for Printer
7-3 Logical Devicesccoveneenenn.. 7-29 Interfacecocuienn... A-26
7-4 Possible Values for Physical Device 7-30 A-4 Intel Personal Development System
7-5 Character Symbols for Register Specifications A-29
Modification 7-34 A-5 External Disk Drive Power Supply A-29
8-1 Field Values and Physical Device A-6 External Disk Drive Physical
Assignment ..., ieeeiian.. 8-32 Characteristicscooen.... A-29
8-2 MaskValuescoiiiiiiniintn 8-32 A-7 PowerSupplyccveiiiiiiiiiiinnn. A-29
8-3 Interrupt Line Pin Numbers 8-80 A-8 Option Electrical Requirements A-30
8-4 ‘System Filelocations 8-92 B-1 8272Status Registers B-6
8-5 Valuesof System file BitMaps 8-95 B-2 7220 StatusRegisters B-9
FIGURES
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 Typical Products Created With a Development 6-3 DiskFileUse e 6-6
System ...t 1-2 8-1 Internal and External Environment 8-1
1-2 BasicSystemiiiiiinieiaeanan 1-3 8-2 Needed Capabilities 8-2
1-3 System in Carrying Position 1-4 8-3 Format of System Call Descriptions 8-13
1-4 System WithOptions 1-5 84 MemoryMapo, 8-70
1-5 Plug-InModules 1-6 8-5 Interrupt Vectorsic..ccinvvnnnn 8-71
1-6 Overview of Operating System Software 1-7 8-6 Record Format Conventions 8-85
2-1 Typical Product Development Cycle 2-1 8-7 Module Header Record 8-87
2-2 Software DevelopmentCycle 2-2 8-8 ContentRecordccvvvenaen.. 8-87
2-3 Hardware DevelopmentCycle 2-2 89 ModuleEndRecord 8-87
2-4 ProductionTestingcoooonn. 2-3 8-10 Disk File Components 8-88
2-5 FieldServiceciiiiiiiinenaann 2-3 8-11 PointerBlock oo, 8-89
3-1 BasicSystem 3-1 8-12 DataBlockcoiiriiiiiii.. 8-89
3-2 RearPanelControls 3-2 8-13 Relation of Data and Pointer Blocks 8-90
3-3 RemovableI/OPanel«...... 33 8-14 Pointer and Data BlocksinaPFile 8-91
3-4 Accessing the Storage Area 3-4 8-15 SectorInterleaving 8-91
3-5 TheKeyboardccciiniiuienann 3-5 8-16 DirectoryEntry 8-93
3-6 Closing the Keyboard for Carrying 3-9 8-17 Disk File Structure Summary 8-97
3-7 DisplayScreencoiiiiiiiiienan 3-10 9-1 SplitScreenDisplayt 9-3
3-8 DiskDriveiiiiiiii i 3-11 9-2 Logical and Physical Screens 9-4
3-9 FlexibleDiskcco it 3-11 10-1 Firmware DevelopmentCycle 10-2
3-10 DiskInsertioncoviivnien... 3-13 10-2 PROM Programming Subsystem 10-4
3-11 Door Release on Disk Drives 3-13 A-1 Lowering the Keyboard to Operating
3-12 Plug-inModulesoian.. 3-14 Position A-2
3-13 Flowchart of Initialization Program 3-18 A-2 Door Release on Disk Drive A-3
5-1 Format of Command Descriptions 5-8 A-3 PowerCableo, A-3
6-1 TheCREDITDisplayccvvvennnn. 6-2 A-4 Line VoltageSwitch A-4
6-2 TheKeyboardc.cciiieenann. 6-3 A-5 PowerSwitchcooiviiiieii... A-5

FIGURES

(continued)
FIGURE TITLE PAGE FIGURE TITLE PAGE
A-6 ChangingtheFuse A-6 A-19 Aligning the Multimodule Adapter
A-7 Removingthe [/OPanel A-8 Board A-18
A-8 Using the Connector Locks A-9 A-20 Mounting Locations for Double Wide
A-9 Replacingthel/OPanel A-9 Multimodule Boards A-20
A-10 Schematics for the Serial I/O Interface A-10 A-21 Aligning Double Wide Multimodule
A:11 Removable Jumper Location and Boards ol A-20
Configuration A-12 A-22 Mounting Technique for Multimodule
A-12 Removing and Replacing the Plug-in Type Boards A-21
Jumpers ... A-12 A-23 Mounting a Single Wide Multimodule
A-13 Mounting Locations for Optional Board A-21
Processor A-15 A-24 Removing Rear Panel Cutouts A-22
A-14 Mounting Technique for Optional .
Processoriiiiiiin.. A-15 A-25 Connecting Cable to the Rear Panel
A-15 Aligning the Optional Processor Board A-16 Cutouts i A-22
A-16 Optional Processor Connection to Multimodule A-26 Installing the Adapter Board
Adapter ... A-16 Assembly A-23
A-17 Mounting Locations for Multimodule A-27 Cable Connection for Adapter
Adapter A-17 Assembly A-24
A-18 Mounting Technique for the Multimodule A-28 Installing Plug-inModule A-25
AdapterBoard A-19 B-1 Diagnostic LED Indicators B-14

xvii/xviii

CHAPTER 1
INTRODUCTION

Purpose

The iPDS system supports the design and development of products that incorpo-
rate Intel microprocessors or microcontrollers.

The system and its options aid in both hardware and software development for pro-
ducts based on many different families of chips, such as the following:

® MCS-51 microcontroller family
® MCS-85 general purpose microprocessor family

® jAPX-88 general purpose microprocessor family

Typical Uses

By incorporating microprocessors from these families, products can range in com-
plexity from a simple process controller to an advanced microcomputer system.
Software can range from a single-purpose control program to a complex software
system. Figure 1-1 illustrates a few application projects which are produced with
the aid of a development system.

The iPDS system is useful at all stages of product design from the initial idea to

customer support after the product is in the field. See Chapter 2 for further infor-
mation on role of the development system in the product design cycle.

Major Characteristics

The development system supports integrated hardware and software development
by assembling or compiling source programs for execution and by emulating the
target microprocessor, the processor used in the product. Emulation is discussed
in Chapter 2.

The system optionally includes a PROM Programmer for programming EPROMS
as well as E’PROM s to store software in the target processor’s memory.

Another feature of the development system is its portability; the basic system
weighs only 29 pounds and has a handle for carrying.

System Components

The system consists of both hardware and software components to aid in the devel-
opment effort.

Hardware

The following sections describe the hardware components of the basic system and
options.

1-1

Introduction iPDS™ User’s Guide

1

(. AN R
HOSPITAL MULTI
<> MONITORING USER
Q) system OFFICE

it

iPDS SYSTEM

iPDS SYSTEM

\
SMALL MICROWAVE - HOME (b
BUSINESS CONTROLLER |l SYSTEM
SYSTEM =

J

— J L J
| 0001

Figure 1-1 Typical Products Created With a Development System

Basic Unit

A single main enclosure and a detachable keyboard enclosure house the system
hardware. In operating position (see figure 1-2), the system is 8"H x 16"W x 20"L.

The keyboard detaches from the main enclosure and is connected to the develop-
ment system with a flat ribbon cable. It consists of standard typewriter keys with
cursor control keys, a function key, and a system reset key. Chapter 3 contains a
complete description of the keyboard.

The main enclosure without the keyboard is 8“H x 16”W x 18“L and contains the
following parts:

® Base processor board
® 9-inch, Cathode Ray Tube (CRT) display unit, 80 characters by 24 lines
® (640K-byte formatted, 5-1/4 inch, flexible disk drive for mass storage

® Switching type power supply

1-2

iPDS™ User’s Guide

Introduction

0002

Figure 1-2 Basic System

The power plug, power on/off switch, 115/230 voltage selector switch, and CRT
contrast control knob are all on the rear panel as are the connectors for serial [/0,
printer I/0, and additional disk drives. See Chapter 3 for the operation of the
switches and controls and Appendix A for installation instructions and connector
specifications.

| WARNING I

Never remove the top cover. There is a risk of electric shock or
fire from high voltages. Repairs should be performed by qualified
service personnel only.

The base processor board contains the following parts:

8085A-2 Central Processor Unit (CPU) operating at SMHz
64K bytes of Random Access Memory (RAM)

2K bytes of Read Only Memory (ROM) containing the initialization program
and diagnostics

CRT and keyboard controller

Flexible disk controller with port for three additional drives
Emulator and PROM programmer port

Serial input/output (I/0) port

Line printer I/0O port

1-3

Introduction

iPDS™ User’s Guide

The keyboard attaches to the front of the main enclosure for carrying the system;
it covers the CRT and flexible disk drive. The handle is attached to the front of the
main enclosure and folds out of the way when the system is in use. Figure 1-3
shows the iPDS system in the carrying position.

4
7
Z
z
7,
2
7
7

0003

Figure 1-3 System in Carrying Position

_ A storage area for cables and plug-in modules is on the top rear of the main

1-4

enclosure. A slot on the right side of the basic unit is provided for inserting the op-
tional plug-in modules during use. A bail (metal bar) is on the bottom of the unit
to position the unit at an angle.

The basic system, without options, provides the foundation for microprocessor
product development. Additional hardware and software packages are available as
options to build on this foundation. The main enclosure houses the optional
system boards and accepts the optional plug-in modules for PROM programming
or target microprocessor emulation.

Figure 1-4 shows the iPDS system with an optional plug-in module (a PROM
programmer) and three additional flexible disk drives.

Add-On Mass Storage

For many applications, additional mass storage is a desirable feature. One choice is
to add mass storage through external disk drives. One to three external drives can
be added to the iPDS system. Each additional drive has a 640K-byte capacity
(formatted) for a maximum disk storage of 2.56M bytes. The first external drive
attaches to the rear of the main enclosure with a round cable. The other two exter-
nal drives are connected to the rear of the previous external drive. Each additional
drive has its own power supply and is mounted in its own housing external to the
main system. See figure 1-4.

iPDS™ User’s Guide

Introduction

Figure 1-4 System with Options

Another choice for adding mass storage is through iSBX 251 Bubble Memory
Multimodules. A maximum of two bubble multimodules, with 128K-bytes each,
can be added to a system which already contains the multimodule adapter option.
The bubble memory is treated by the system as an additional disk drive with the
same file structure and directory structure as a diskette. Additional bubble
memory is recommended for systems requiring portability, since the bubble
memory boards are completely housed in the main enclosure.

Dual Processors

A second 8085A-2 processor board added to the system increases processing
throughput by allowing one program to run on one processor while another pro-
gram is running on the other processor. For example, while one processor is
compiling or assembling a program, the other processor can be used to edit a text
file.

This option consists of a single board that is installed through the removable rear
panel of the main enclosure. The board contains an 8085A-2 microprocessor with
64K bytes of RAM and is functionally the same as the base processor. However, it
does not include the integrated serial and parallel I/O ports and cannot be used
with the PROM Programmer or Emulator plug-in modules. The two processors
share the flexible disk drives, CRT, and multimodules. The keyboard is used by
one processor at a time.

Software to control the optional board is included in the operating system. Optional
processor features that extend the capabilities of the development system are cov-
ered in Chapter 9 of this manual.

1-5

Introduction

iPDS™ User’s Guide

Plug-In Modules

Plug-in modules slide into a slot on the side of the main enclosure adding features
to the system. These options include both hardware and software. The following
plug-in modules are available (see figure 1-5):

® Emulators that provide debug capabilities for different families of micropro-
cessors and microcontrollers

® PROM Programmer Personality Modules that accept different families of
PROMs for programming

For example, the EMV-51 emulator aids in debugging applications based on the
MCS-51 family of microcontrollers. The emulator hardware plugs into the side of
the iPDS system while the software runs on the base processor. Emulator debug-
ging features are discussed in Chapter 2.

The PROM programmer personality modules plug into the slot on the side of the
system and allow programming and verification of Intel EPROMSs and E’PROM:s.
The PROM programmer software runs as a utility program under the operating
system.

EMULATOR
MODULE PROM
PERSONALITY
MODULE

0005

Figure 1-5 Plug-In Modules

1-6

Multimodules
The development system can be expanded through the multimodule adapter
option which allows a maximum of four multimodule boards to be added. Multi-
module boards are small, special function boards which use the iSBX bus to inter-
face to the CPU.
The multimodule adapter board is installed through the rear panel of the system.
The iSBX multimodule boards available for the iPDS system are:

® iSBX 251 Bubble Memory Multimodule Board

® iSBX 350 Parallel Port Multimodule Board

iPDS™ User’s Guide

iSBX 351 Serial Port Multimodule Board

iSBX 488 IEEE-488 Interface Multimodule Board

The iSBX 251 multimodule board is discussed in this chapter in the section entitled
“Add-On Mass Storage”. The iSBX 350 and iSBX 351 provide parallel and serial
170 in addition to the parallel printer port and the serial I/O port already on the
base processor board. The iSBX 488 provides additional system expansion
through the IEEE-488 General Purpose Interface Bus (GPIB).

Software routines for these multimodules must be provided by the user. Many of
these routines are available from the INSITE Software Library. See Chapter 8 of
this manual for technical information to aid in writing custom I/0O drivers.

Software

The following software is supplied on the system disk:

ISIS-PDS operating system
Operating system commands
CREDIT text editor
DEBUG command

Customer confidence test

"'ASM-SO Macro Assembler

MCS-80/85 software development utilities

Assemblers, high level languages, and utilities for different target microprocessors
are optionally available to aid the software development effort. See figure 1-6.

Introduction

COMMAND

LINE
CREDIT INTERPRETER OPERATING
TEXT EDITOR SYSTEM
COMMANDS COMMANDS

HI
LE(\;IIII!L USER
CANGUAGES APPLICATIONS
/prROM
MACRO . PROGRAMMING
ASSEMBLERS \ COMMANDS

- EMULATOR

SOFTWARE
DEVELOPMENT SOFTWARE
UTILITIES . DEBUG COMMANDS
MONITOR
COMMANDS

0148

Figure 1-6 Overview of Operating System Software

1-7

Introduction iPDS™ User’s Guide

Operating System

The ISIS-PDS operating system provides an easy-to-use set of commands
(including a HELP command) to control system operations. It also includes a set
of routines that the systems programmer can incorporate into applications
software. The commands and routines provide powerful features to control disk
files, to handle I/0 from different peripheral devices, and to control the execution
of programs in a standard way.

Assemblers

Macro assemblers produce relocatable object code for different families of micro-
processors and microcontrollers, such as the MCS-85 and the MCS-51. The code
is compatible with the code produced by high level language compilers for the
same chip. Therefore, modules written in assembly language can be combined
with modules written in a high level language using the link and locate utilities.

High Level Languages

High level languages help to reduce system design and maintenance costs by allow-
ing the programmer to design software at a more abstract level than with an
assembler. PL/M, a block structured language, is available for several families of
chips. Other languages available include FORTRAN and BASIC.

Utilities

Utility programs are available to edit text, to link and locate program modules, to
convert file formats, to debug MCS-80/85 programs, to program PROMs, and to
control emulation vehicles. All of these utilities aid in producing reliable, efficient
software.

Other Software

Since the ISIS-PDS operating system is functionally compatible with the ISIS-II

operating system, most ISIS-II software runs on the development system without
modification.

Overview of System Publications
A library of technical manuals support development work using the system and its
options. The basic manuals are shipped with the system, and additional manuals
are provided with the optional hardware or software packages to which they apply.
The Literature Kit shipped with the basic system contains a customer letter, a soft-
ware registration card, other informational literature, and the following technical
manuals:

o iPDS™ User’s Guide, order no. 162606

e PDS™ Pocket Reference, order no. 162607

o MCS™.-8085 Utilities User’s Guide JSor 8080/8085-Based Development Systems,
order no. 121617

1-8

iPDS™ User’s Guide

® [SIS-11 8080/8085 Macro Assembler Operator’s Manual, order no. 9800292
® 8080/8085 Assembly Language Programming Manual, order no. 9800301

® 8080/8085 Assembly Language Reference Card, order no. 9800438

® ISIS CREDIT™ CRT-Based Text Editor User’s Guide, order no. 9800902
o iPDS™ Field Service Manual, order no. 143861.

A three-ring binder and tabs to mark the beginning of each section of the user’s
guide are provided.

Copies of the technical manuals are shipped with the products that they support.
Additional copies of any of these manuals may be ordered through the Literature
Department, Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051.
The address is also on the back of the title page of this manual.

Use the order numbers shown above when placing an order. Use the order
number 164181 to order an extra three-ring binder.

The Literature Department also distributes other Intel literature, such as applica-
tion notes, magazine article reprints, and brochures on new products.

NOTE

Because of the compatibility between the ISIS-II and ISIS-PDS
operating systems, some of the manuals provided for this devel-
opment system refer to the ISIS-II operating system and were
written for the ISIS-II version of the software.

In these cases, the operation of the product is identical under
either system. The ISIS-II version of the manual is shipped with
the ISIS-PDS version of the product.

Hardware Installation and Checkout

The first material to consult upon receiving a new system or a new option is Ap-
pendix A of this manual. Follow the installation instructions before attempting to
use the system or an option. Appendix A also contains specifications for 1/Q
connectors.

Hardware troubleshooting is covered in detail in the iPDS™ Field Service Manual,
order no. 143861, which contains schematic drawings, troubleshooting
procedures, and the theory of operation for the system. This guide is included in
the Literature Kit shipped with the system.

System Operations

Once the system is installed and ready to run, consult Chapters 3, 4, and 5 of this
manual. Chapter 3 explains how to initialize the system, how to use the disk
drives, how to give simple commands to the operating system, and how to adjust
operator controls on the system. The tutorial demonstration included in Chapter 3
illustrates system initialization, backing up the system disk, and running the confi-
dence test. Running the confidence tests before proceeding to Chapter 4 is
recommended.

Introduction

1-9

Introduction iPDS™ User’s Guide

Chapter 4 provides more detailed information on the operating system commands
and gives examples of how and when they are used. The several tutorial demon-
strations included in Chapter 4 illustrate how to use these commands.

Chapter 5 is organized as a reference guide for the operating system commands
and contains complete information for each command.

After becoming gamiliar with the material in Chapters 3, 4, and 5 of this manual,
consult the iPDS™ Pocket Reference for summaries of the commands.

Appendix E contains tips for efficient operation with specific system
configurations.

Text Editing

An important feature of the system is the CREDIT text editor. The editor is used
extensively in software development to enter the source code for the software
modules. To use the CREDIT editor, refer to Chapter 6 of this manual and the
ISIS CREDIT™ CR T-Based Text Editor User’s Guide provided in the literature Kit.

Software Debugging

The DEBUG command provides MCS-80/85 software debugging facilities. It is de-
scribed in Chapter 7 of this manual.

Systems Programming

The operating system provides a set of system calls and standard 1/0 routines that
can be incorporated into a user-written program. A technical description of these
features can be found in Chapter 8. :

Dual Processing

Information on the optional processor is in Chapter 9 of this manual. Installation
instructions for the board are in Appendix A.

PROM Programming

EPROM and E2PROM devices are programmed using the Intel PROM Program-
ming Software (iPPS) that runs under the operating system and controls the op-
tional PROM Personality Modules. An EMV/PROM adapter board is also required
to program PROMs on the iPDS development system. The iPPS commands are
covered in the iUP-200/201 Universal Programmer User’s Guide, Order No. 162613.
Each Personality Module is shipped with a reference manual containing specifica-
tions for the particular module. Installation instructions for the EMV/PROM adap-
ter board and the PROM personality module are in Appendix A. ,

Microprocessor Emulation
Each emulator is shipped with an operating instructions manual and a pocket refer-

ence describing how to use the emulator.

1-10

iPDS™ User’s Guide Introduction

Multimodule Expansion

A hardware reference manual is shipped with each iSBX multimodule board to
provide detailed specifications for the board. User-written I/0 routines for multi-
modules can be added to the operating system as described in Chapter 8. General
installation instructions for double and single wide multimodule boards are given
in Appendix A.

Applications Programming

Each language provided for developing applications software is described in a pro-
grammer’s reference manual and an operating instruction manual. These two
manuals are sometimes combined into a single user’s guide, and a pocket refer-
ence is also provided.

Software development utilities are covered in the MCS-80/85 Utilities User’s Guide
JSor 8080/8055-Based Development Systems.

Technical reference information on target microprocessors and microcontrollers
can be found in the family user’s manual for the chip.

Notational Conventions

Throughout this manual, procedures and operations that can be carried out on the
system are described. Because of the general nature of many of these procedures
and operations, it is not possible or desirable to list all of the correct ways of carry-
ing out a given task. Instead, general classes of procedures are described using spe-
cial symbols or notational conventions. Notational conventions are described in
Chapter 5. ’

Other Conventions
In addition to notational conventions, several standard formats have been adopted-

in describing commands, system calls, and error messages. These formats are de-
scribed prior to their use in Chapters 5, 7, and Appendix B.

CAUTION, WARNING, and NOTE Symbols

A section of text introduced by the symbol

gives instructions necessary to avoid possible damage to equipment or loss of
stored information.

A section of text introduced by the symbol

I WARNING I

gives instructions necessary for safety reasons.

Introduction iPDS™ User’s Guide

A section of text introduced by the symbol

NOTE

gives emphasis to comments with special significance for the user.

Commonly Used Terms

Many special terms and abbreviations are encountered when using computer
products. In most cases, specialized vocabulary is needed to clearly explain the
technical concepts involved. However, to the new computer user, the unfamiliar
terminology can be a source of confusion and frustration.

To help the new computer user, a glossary is included before the Index to define
terms and abbreviations. Anyone unfamiliar with computer terminology should
skim over the glossary before starting on the rest of the manual, and then refer to
it later whenever it is needed.

1-12

CHAPTER 2
DEVELOPMENT SYSTEMS

The Development Task

A typical product development cycle is illustrated in figure 2-1 involving software
development, hardware development, integration, and testing.

A development system should aid in all phases of product development. The iPDS

development system can be used both in the software and hardware development,

as well as in production testing after the development and in customer support
- after the product is in the field.

I SCOPE OF INTEL PERSONAL DEVELOPMENT SYSTEM
WITH AN EMULATOR

—N] CONSTRUCT VERIFY | —
PROTOTYPE PROTOTYPE
] 1
HARDWARE HARDWARE

SPECIFY
PRODUCT

oy

DESIGN

INTEGRATE :> PRODUCTION :> INSTALL FIELD
PRODUCT SYSTEM TEST PRODUCT SERVICE

PREPARE F\] TRANSLATE veriry
A SOURCE /] SOURCE OBJECT | |
CODE CODE CODE

Figure 2-1 Typical Product Development Cycle

Software Development

Software development involves programming the target processor to correctly per-
form the required task usmg instructions eventually stored in the product’s own
memory. This effort requires the following software:

e Text editor program for creating the source code for the software

® Assembler or compiler with related support programs to produce a machine
readable form of the software

® Various utility programs that manipulate and test the software as it is devel-
oped

With support programs that run under the Intel System Implementation Supervi-
sor (ISIS-PDS), the software development phase of a project can be completed.
Software testing and debugging can be carried out with operating system programs
and with the aid of emulators available as system options.

The software development task is illustrated in figure 2-2.

Development Systems iPDS™ User’s Guide

asm |
N source LB
cobE [
DEFINE DESIGN write | vERIEY INTEGRATE
SOFTWARE SOURCE SOURCE LINK ;‘> Loc i> USING ;’> Wi
FUNCTION CODE CODE T EMULATOR HARDWARE

PLM ||
SOURCE [|
CODE

0007

Figure 2-2 Software Development Cycle

Hardware Development

Hardware development involves designing the circuits that make up a product
(the microprocessor, memory, and input/output circuits) and designing the rela-
tionship of these circuits to one another. As the hardware prototype is assembled,
it can be tested and debugged using the appropriate emulator.

If the product includes EPROMs, EZPROMs, or a part containing EPROM or
EZPROM, a PROM Programmer is required to store the control program in the
product’s own memory. See figure 2-3.

PROGRAM
PROMS

z

VERIFY INTEGRATE
DEFINE DESIGN CONSTRUCT
FUNCTION :> HARDWARE :\,> PROTOTYPE :> oS :> T WARE

it

Figure 2-3 Hardware Development Cycle

0008

Integration

The integration of the hardware and the software involves further testing and
debugging, requiring the use of the emulator as well as the operating system sup-
port software until the project is completed.

iPDS™ User’s Guide Development Systems

Production Testing

During manufacture of the new product, test programs running on the emulator
can be used to test samples and to maintain quality control during production.
Figure 2-4 illustrates production testing.

(TESTING OF
USER'S PRODUCT

IN
MANUFACTURING

0009

Figure 2-4 Production Testing

Field Service

~ Because of its portability, the iPDS development system can be used as a diagnostic
tool in field service. Additionally, it can be used on-site for product installations
and customer training. Figure 2-5 illustrates the field service use of the system.

(SERVICING OF
USER'S PRODUCT
IN FIELD

0010

Figure 2-5 Field Service

2-3

Development Systems iPDS™ User’s Guide

The Development Tools

The tools required to develop a microprocessor/microcontroller based product
differ from the tools used to develop electronic products not incorporating micros.

For a product without micros, the oscilloscope, the logic analyzer, and meters
serve as useful development tools. They provide the logic designer with signals
generated at different points in the circuit, allowing testing and debugging of the
hardware. Software development is not required for this type of product.

For micro-based products, however, the traditional electronics development tools
are not sufficient for two reasons. First, they do not support the software develop-
ment required in a micro-based product. Second, many of the circuits and signals
previously available to the designer are integrated onto a single silicon chip and are
not accessible through the connector pins on the chip’s package.

A development system, such as the iPDS system, provides software development
tools and emulators for many families of target micros to satisfy the requirements
of a micro-based development task. An optional PROM programmer for EPROMs
or E2PROM s is also available.

Software Development Tools

Writing the source code and debugging the resulting object code are the two most
time consuming parts of the software development cycle. Therefore, software de-
velopment tools should concentrate on supporting these two parts of the cycle.

A development system text editor should ensure ease in entering source code and
should also provide high level commands such as block COPYs, block MOVEs,
READs and WRITEs to files, and FIND/SUBSTITUTE text to correct errors.
Additionally, the editor should allow the automatic execution of sequences of
commands, so the user’s time is not wasted performing repetitive editing tasks.

The ISIS-PDS CREDIT text editor is designed for software development
applications. Since it is a CRT-based text editor, it provides constant visual refer-
ence to the text being edited, making text entry and text corrections easy. It pro-
vides the advanced commands needed, including macros and compatibility with
the ISIS SUBMIT command, to automate repetitive editing tasks.

Language translators should reduce the time spent debugging the software by sup-
porting modular program development and by producing debug data such as cross
reference lists and symbol tables. With the language translators available for the
iPDS system, program modules can be developed independently and can then be
linked and located to form a single software system. Both assemblers and high
level language translators produce debug data to reduce the time spent troublesh-
ooting the software.

Emulators (discussed in the next section) also aid in the debugging and verifica-
tion phase of the software development cycle.

Emulators

To debug a product efficiently, the user must be able to exercise the product (for
example, run the software) under controlled conditions and monitor the results.
By repeatedly exercising the product and comparing the expected results with the
actual results, the user can identify and solve the problems (bugs) in the product.

2-4

iPDS™ User’s Guide

An emulator has the features to provide a controlled environment for exercising

the product and, then, to monitor the results. It can duplicate the behavior of a
target microprocessor/microcontroller and, at the same time, can provide informa-
tion to the user to aid in debugging the hardware and software being developed.

For example, emulators have a breakpoint feature that allows the user to specify a
portion of the program to be run real time and then stop. Once stopped at the
breakpoint, the emulator acts as a window to the internal registers and logic signals
that are inaccessible from the connector pins. In this way, the internal state of the
micro can be examined and altered. Data about the internal state of the chip can
also be collected and saved in a buffer called the trace buffer.

Additionally, the emulator accepts debug data, such as symbol tables, produced by
the language translators. The programmer can reference locations in the program
with the symbolic debug information, such as module names and variable names,
rather than by using absolute memory addresses.

Another advantage of using an emulator is that functional hardware is not required
to begin software debugging. The emulator duplicates the behavior of the target
micro and provides some resources, such as memory, that can be used until the
hardware prototype is more complete.

The software that controls the emulator consists of a set of commands that the
user can enter to directly control an interactive debugging session. Also, sequences

of emulator commands can be executed automatically provndmg the basis of manu-
facturing and field test routines.

Summary

In summary, a development system should offer the following tools to support the
development task:

o Text editing facility

® Language support for softwaré development

® Target microprocessor/microcontroller emulation
® PROM programming capability

In addition, a development system should provide features common to all comput-
er systems:

o File handling utilities

® System configuration utilities

® Job control utilities

® Resource control utilities

® Support for common peripherals
All the tools offered on the development system should be compatible with one
another forming an integrated environment for development and testing of

products. The ISIS-PDS operating system ensures compatible tools provided for
micro-based development projects.

Development Systems

2-5

Development Systems iPDS™ User’s Guide

Overview of the Development Cycle

In this section, a summary is given of the sequence of events to follow in develop-
ing a micro-based product using the iPDS development system and an emulator.

® Complete the specification for the prototype hardware design, software con-
trol logic, and integrated system performance. The CREDIT text editor can
be used in preparing this document.

® Organize both the hardware and software design into logical blocks that are
understandable, have well-defined inputs and outputs, and are easy to test.
Methodical design techniques, such as top down structured design, reduce
the time required later for prototyping, programming, testing, and
modification. The CREDIT text editor helps in preparing reports on the de-
velopment progress.

® Program the software modules in PL/M or assembly language, naming and
storing program modules as files under the operating system. Compile or
assemble the modules using the options necessary to produce debug data.
Link and locate the combinations ready for testing to create object code
(machine language) version containing the debug data. Manually, verify
each module as it is completed before running it on the machine. The
CREDIT text editor is used to enter the source code. A number of language
translators and development utilities are available to produce object code.
See the section on “High Level Languages” in Chapter 1 for further refer-
ences on the languages available.

® As the software modules are ready for testing, load them into the emulator
. and execute them. The emulator can be used before any prototype hardware
is available. The emulator provides single step execution, breakpoints, soft-
ware trace capabilities, and processor register examination for testing and
debugging the software. It also provides RAM in which the module can run,
allowing patches to be made quickly and easily. In later stages, PROM or
ROM can be substituted for the RAM in the prototype hardware.

® As software modules pass the initial stages of check-out, they can be loaded
in the emulator’s memory for real-time testing.

® The emulator is plugged into the microprocessor/microcontroller socket of
the user’s prototype system. Hardware prototyping can begin with the micro
socket alone. As each part of the hardware becomes available, it can be added
to the prototype. In this way, modules can be tested as they become
available. The emulator’s ability to execute in single step mode, to examine
or modify the memory and processor registers, to trace the program flow,
and to break in real time mode, provides the user with substantial power to
debug the hardware system.

® Debugging and testing can proceed through each hardware and software
module, using emulator commands to control execution, to check that each
module gets data or control information from the correct source, and to place
correct data in the proper locations for subsequent modules to use.

® Eventually, all hardware and software is tested together. The emulator is con-
nected to the prototype through the prototype microprocessor/microcon-
troller socket, so all operations of the system can be tested.

2-6

iPDS™ User’s Guide Development Systems

® After the prototype has been completely debugged, the emulator can be used
to verify samples during production testing. The test procedures developed
for the final prototype testing can serve as the basis for production test and di-
agnostic routines.

® The test and diagnostic routines used during manufacture can serve as the
basis for a set of field diagnostics used in service and repair of equipment in
the field.

In summary, the product should be designed methodically, and the development
system should be used at every step to increase efficiency during the project.

2-7/2-8

CHAPTER 3
BASIC SYSTEM OPERATION

Hardware Operation

The hardware subsystem consists of a CPU, memory, mass storage, and
peripherals. Figure 3-1 shows the outward appearance of the basic system. The
operating procedures for the hardware components are described in the following
section. Procedures are given for operating the rear panel controls, the keyboard,

and the disk drives.

Refer to Appendix A of this manual for installation instructions
before attempting to operate the system.

STORAGE COMPARTMENT
ACCESS DOOR

CRT
DISPLAY
SCREEN

PLUGHN
MODULE
ACCESS
DOOR

INTERNAL
FLEXIBLE
DISK DRIVE

HANDLE

KEYBOARD

001

Figure 3-1 Basic System

3-1

Basic System Operation iPDS™ User’s Guide

Rear Control Panel

Figure 3-2 illustrates the rear panel and the location of basic operator controls.

@ Q M ,ﬁ. VOLTAGE) ®
® . [[® seLecT @ lll ®
SERIS '. POWER
i FUBE
L 3A/120VAC onN
& 15A/230VAC oFF
conTRasT)
%
L ©
une |f3 T 3
% PRINTER V01 voa L:
) N N WARNING
& [1 DISCONNECT POWER
BEFORE CHANGING
VOLTAGE SETTING
2

exr |3
DRIVE (3

l ® | % ® cowes é |

/0 120VAC 3A 60HZ
230VAC 154 50 HZ

<l
L

<
a
n
s

0013

Figure 3-2 Rear Panel Controls

POWER The switch labeled POWER (upper right corner of rear
panel) turns on the power to the basic system and the
integral disk drive and resets the system.

POWER PLUG The power cord is plugged into the socket labeled
POWER located in the lower right corner of the rear
panel.

VOLTAGE SELECT The voltage select switch can be set to 115 or 230 volts
to accommodate the available line voltage. '

CONTRAST The contrast adjustment for the CRT display screen is
on the rear panel next to the serial I/O port.

SERIAL I/O The serial 1/0 connector accepts a plug for an RS-232
compatible device which is controlled by the base pro-
cessor and is not accessible by the optional processor.

Technical information on the connector can be found

‘ in Appendix A.

LINE PRINTER The line printer connector accepts a plug for a
Centronics*-compatible printer which is controlled by
the base processor and is not accessible by the optional
processor. Refer to Appendix A for information on the
connector.

*Centronics is a trademark of Centronics, Inc.

3-2

iPDS™ User’s Guide Basic System Operation

EXT DRIVE The external drive connector allows up to three addi-
tional flexible disk drives to be daisy-chained to the
system with flat ribbon cable. Refer to Appendix A for
instructions on connecting the external drives.

I/0 1 through1/04 Four multimodule I/O connectors are provided to
allow connection of peripherals to the optional multi-
module boards. See Appendix A for installation
instructions.

Removable 1/0 Panel

The compartment behind the removable panel slides out from the rear of the
system to allow installation of optional boards. The panel contains four knockouts
for peripheral connection to the multimodule boards. See figure 3-2 for the knock-
outs and figure 3-3 for the connectors. The tabs on the knockout must be cut prior
to tapping them out. Appendix A contains instructions for removing the knock-
outs and installing connectors.

[

e)b

SERIAL |[:0
170 ::

CONTRAST o

®
) &=
O)
& el
®

une ||
PRINTER || 3}

k* OPTIONAL
=T /0 CONNECTORS

<
0
s
<
0
w

/

EXT
DRIVE

@
o o=
&S)P
e&&mm&x?
@

Gj\& ERTTE TR LT rrre)
:
:

0014

Figure 3-3 Removable I/0 Panel

Storage Area

A storage area is accessed from the top cover to allow the storage of two plug-in
modules with cables. See figure 3-4. Diskettes can also be stored safely in this area.

3-3

Basic System Operation iPDS™ User’s Guide

ACCESS MODULE

¥ TTSATTTTILLLLL

PROM
PERSONALITY
MODULE

\

ACCESS
DOOR

0158

Figure 3-4 Accessing the Storage Area

Powering the System On and Off

NOTE

Before powering the system on, see Appendix A for detailed in-
stallation instructions including instructions for setting the line
voltage to 115 or 230 Vac and instructions for changing the power
connector to the type of connector required locally.

To turn the system on:

1. Ensure that the power cord is disconnected. See figure 3-2 for the location of
the plug.

2. Ensure that the Voltage Selector switch is set to the available line voltage.
See figure 3-2 for the location of the switch. See Appendix A for instructions
on setting the line voltage switch.

3. Connect the power cord to the system and to an external power source. See
figure 3-2 for the location of the iPDS power plug. '

4. Setthe POWER switch to ON. See figure 3-2.

34

iPDS™ User’s Guide Basic System Operation

To turn the system off:

1. Remove all flexible disks as described in this chapter in the section entitled
“Disk Drives”.

2. Hitthe RESET key to ensure the disk head is back as far as possible.
3. Turn off the power to any external drives.
4. Turn off the power to the main system.

5. Insert the diskette card to transport unit.

Keyboard

Figure 3-5 shows the keyboard, the basic user interface to the system. Two plastic
guides on the back of the keyboard housing attach the keyboard housing to the
main enclosure. A flat cable connects the keyboard to the main processor board
through a slot on the front of the main enclosure below the flexible disk drive.
This cable plugs into a connector on the back of the keyboard housing as shown in
figure 3-5.

Through the keyboard, commands and data are entered to the operating system. A
temporary holding area in memory, called a line editing buffer, stores the charac-
ters typed at the keyboard until the RETURN key is pressed or 122 characters are
entered.

Before pressing RETURN, commands and data can be edited or even canceled
from the buffer. After pressing RETURN, commands and data can be re-edited.
Command line editing and re-editing are described in detail at the end of this
chapter.

The keyboard includes an Auto Repeat feature. Any key that is held down will be
automatically repeated as if it were repeatedly pressed and released. This feature is
useful in editing text files.

TYPEWRITER
KEYS l«——— MAIN
L SYSTEM
\ 1 CABLE
r)
|l reser
RESET
ESCAPE ’
i pAD B HHBBANAGE AN e
| 2 3 4 5 6 7 8 9 [— (] N
ilévcnc" |jmcr A8 n Q “ Y ﬂ E;l RI|IT|Y[|VU | O P 3 L e f
CONTROL cTRL J AlslolF “ G " H " J " K] Ll ¥l % | reronn ~<—|noms - - CURSOR
KEY I ! - CONTROL
BHpEnoonaEnEn ik
l — el J
0015

Figure 3-5 The Keyboard

3-5

Basic System Operation) “iPDS™ User’s Guide

In addition to the standard typewriter keys, the keyboard has several special pur-
pose keys. For example, the CTRL key works with other keys to form control
characters. Control characters perform control functions, such as line editing. Con-
trol characters are listed in Table 3-1.

The FUNCT key also works with other keys to form function characters. Function
characters also perform control functions. For example, if the system contains
dual processors, the keyboard is assigned to either the base processor or the op-
tional processor through function characters as described in Chapter 9. The func-
tion characters are also listed in Table 3-1.

The demonstration at the end of this chapter illustrates the use of these keys.
Some of the special keys are also discussed in connection with the operation of the
software.

Keyboard characters and the functions they perform are summarized in table 3-1.

Table 3-1 Keyboard Characters and Functions

KEY FUNCTION

functions. A key whose function is changed by the CTRL key is called a
control character. To enter a control character, hold down the CTRL key
while typing the character. This action is similar to using the SHIFT key on
a typewriter. A control character generates a single control code in the
line editing buffer even though two keys are pressed. Some examples of
control characters are CTRL-R and CTRL-S. Valid control characters are
defined below. Control characters are also used as commands within the
CREDIT Text Editor and are described in Chapter 6 and the /SIS CREDIT™
CRT-Based Text Editor User’s Guide.

. The CTRL (Control) key is used with other keys to perform control
TRL

cTaRL || A CTRL-A inserts a character into a command line during command line
editing mode. See the ESC key.

CTRL iBl CTRL-B is used for two purposes. During command line editing mode, it

¢——=3| moves the cursor to the beginning of the command line being edited. It

also acts as an alternate ESC key when not in editing mode. it can be used
in the display of graphics symbols within programs that use the ESC key
for other purposes. See Chapter 8 for information on the use of graphics .
symbols. Appendix C contains a chart of the graphics symbols available.

" CTRL " D CTRL-D deletes the preceding character during command line editing
I mode. See the ESC key.
cTRL ||} E CTRL-E is used in processing SUBMIT files. It is described in Chapters 4
- and 5.
CTRL L CTRL-L moves the cursor to the end of the command line being edited
during command line editing mode. See the ESC key.
CcTRL ||} P CTRL-P causes a character that normally would be interpreted as a line.
y editing character and perform an editing function {(Control Characters,
RUBOUT, etc.) to be entered literally into the line editing buffer without
performing any function.
cThL ||} Q .
CTRL-Q resumes the display after a CTRL-S.
l CTRL “ R CTRL-R displays the current contents of the line editing buffer.
o

3-6

iPDS™ User’s Guide

Basic System Operation

Table 3-1 Keyboard Characters and Functions (continued)

lzc_:rm. Z

ESC

iFUNCT|

FUNCT HOME|

-

[FUNCT R

FUNCT

FUNCT T

FUNCT|

B
—\

thr

c

[{FUNCT

FUNCT

sonsoscoosscons =
HEIEE] e

KEY FUNCTION
CTRL S CTRL-S suspends the display on the CRT screen. This function is useful
when output from a program is scrolling off the screen too quickly.
1 .
CTRL x CTRL-X performs two functions. It deletes the entire contents of the line
:—.:.:L editing buffer without terminating the buffer. A number sign (#) is dis-

played followed by a carriage return and line feed. CTRL-X also terminates
the command line editing mode. See the ESC key.

CTRL-Z deletes the entire contents of the line editing buffer and also ter-
minates the buffer. It displays a carriage return and linefeed and the
operating system prompt appears as the first characters of the next line.

The ESC (escape) key is used to enter command line editing mode to cor-
rect or change command lines. After editing mode has been entered,
several control characters can be used to modify the command line. It is
also used in the display of graphics symbols. See Chapter 8 for informa-
tion on graphics symbols.

The FUNCT key is used with other keys to perform predefined functions.
The functions are either user defined or are predefined by Intel supplied
software. To enter a function character, hold down the FUNCT key while
another key is pressed and then release both keys. Valid function charac-
ters are defined below and in Chapters 4, 5, and 9.

FUNCT-HOME controls the assignment of the keyboard in dual processor
systems. See Chapter 9.

FUNCT-R is used to reload the ISIS-PDS operating system if interrupts
are enabled. See Chapter 9 for information on using this function in dual
processor systems. The RESET key generates a hardware reset for the
system.

FUNCT-S switches between two speeds for the CRT display. The slower
rate is about ten times slower than the faster rate. See CTRL-S for another
character to control the CRT display.

FUNCT-T alternately switches the keyboard between typewriter mode
and non-typewriter (caps locked) mode. In typewriter mode, non-shifted
keys result in lower case characters while shifted keys result in upper
case characters. In caps locked mode, all non-shifted alpha keys resultin
upper case characters. Shifted keys result in the upper character for all
other keys.

FUNCT-0 through FUNCT-9 are user defined function keys. See Chapters
4 and 5 for details on their use.

FUNCT 1 is used in dual processor systems to control the display screen.

See Chapter 9 for more details.

FUNCT | is used in dual processor systems to control the display screen.

See Chapter 9 for more details.

The HOME key is used in text editing and with the dual processor option.
See Chapters 6 and 9.

The RESET switch generates a hardware reset for the entire system. The
top of the RESET switch is flush with the keyboard enclosure so it cannot
easily be pressed. This feature helps prevent accidental resets. When the
system is reset, any work in progress is terminated.

3-7

N

Basic System Operation iPDS™ User’s Guide

Table 3-1 Keyboard Characters and Functions (continued)

KEY FUNCTION

’- The RETURN key enters the carriage return and line feed characters into
RETURN| || the buffer. It also terminates the line edited input signaling the operating
system to read the entire buffer.

The RUBOUT key deletes the preceding character from the line editing
buffer.

SHIFT In typewriter mode, the SHIFT key causes the next key pressed to be en-
tered as an uppercase ASCIl code and to be displayed in its uppercase
form. In caps locked mode as well as typewriter mode, the SHIFT key
causes the upper character on all keys except alpha keys to be entered
and displayed.

The four keys with arrows are used as cursor control keys. The cursor is
the reverse video blank that appears on the CRT display screen. These
. keys perform special functions described in Chapters 6 and 9, and the
" l 1SIS CREDIT™ CRT-Based Text Editor User's Guide when used in the
CREDIT Text Editor or with the dual processor option.

- = ﬁ é

Figure 3-6 illustrates how the keyboard is opened and closed. To open the system
into operating position:

1. Lower the bail.
2. Setthe system on the table horizontally.
3. Lower the handle until it is flush with the system’s housing.

4. Press the keyboard latch and pull the keyboard down.

To close the system for carrying:

1. Insert the plastic guides on the back of the keyboard into the tabs on the sys-
tem’s housing.

2. Raise the keyboard until it locks into place covering the CRT and disk driVe.
3. Lift the handle away from the housing.
4. Raise the unit vertically on the table.

5. Push the bail against the bottom of the cabinet.

- Display Screen

Figure 3-7 shows the CRT display screen, the basic output device for the system.
Characters typed at the keyboard are displayed on the screen. Characters without
corresponding display symbols, e.g., control characters, are shown as a tilde (~).
Error messages and prompts for additional information are displayed by programs
on the screen. A cursor (the reverse video block) indicates where the next charac-
ter will be displayed. Graphics symbols are described in Chapter 8.

Basic System Operation

iPDS™ User’s Guide

OPERATING
POSITION

POSITION

ASMNNNBANNNNNN

L)
//

XL

o \\\\\\\\\% 1, .\\\\ o
Wi

CARRYING
POSITION

“ ////////////////
“, THH Ik

BAIL ——

LATCHING

0016

CLOSING

Figure 3-6 Opening and Closing the Keyboard

3-9

Basic System Operation iPDS™ User’s Guide

- ' A

o J

0025

Figure 3-7 Display Screen

The 9-inch CRT has a display area that is 80 characters wide by 24 lines long. With
dual processors, this area can be divided between the processors by using the
FUNCT keys as described in Chapter 9.

Information on the display screen scrolls up from the bottom of the screen. Scroll-
ing means that as new lines appear at the bottom of the screen, existing lines roll
up one at a time.

If the screen is scrolling too fast, the user can slow down the display by a factor of

ten by entering FUNCT-S. Alternate FUNCT-S characters restore the normal dis-

play speed. The display can be stopped by typing the CTRL-S character. CTRL-S

stops the display as well as the program which was running. Any key pressed after
" CTRL-S is ignored except CTRL-Q which restarts the display.

Disk Drives

Flexible disk drives are shown in figure 3-8. On the front of each drive is a door, a
door release mechanism, and a drive indicator which is lit during disk 1I/0
operations. The door release mechanism is shown in figure 3-11.

A maximum of three external drives can be daisy-chained to the development
system through the disk drive connector on the rear panel. The first drive is
attached to the connector on the rear panel. See figure 3-2. The second drive is at-
tached to the connector on the rear of the first external drive. The third drive is at-
tached to the connector on the rear of the second external drive. See figure 3-8.

3-10

iPDS™ User’s Guide . Basic System Operation

LED INDICATOR

DRIVE DOOR

DISKETTE SLOT

0018

Figure 3-8 Disk Drive

A power on/off switch is also located on the rear panel of external drives.

Care and Use of Flexible Disks

A 5 1/4" diameter flexible disk (96 Tracks per inch) is used with the system. Itis a
double density, double sided disk (16 sectors per side). Figure 3-9 shows a flexible
disk. The write enable notch determines whether or not data can be written to the
disk. If the notch is covered with the write protect tab, nothing can be written to
the disk. Write protect tabs are opaque, self-adhesive tabs supplied with the disk.

WRITE
o] / ENABLE .
/ NOTCH ‘
LABEL
SPINDLE _@ § >o<——/ HoLE @
HOLE /_ o}

JACKET

USER'S
LABEL

WRITE
PROTECT
TAB

PROTECTIVE
ENVELOPE

READ/
- " WRITE
OPENING

0019

Figure 3-9 Flexible Disk

Basic System Operation

3-12

The spindle hole is used to align the disk inside the drive. The index hole is used
by the drive to locate the first sector of the disk. The read/write opening is the
point where the disk drive read/write head contacts the surface of the disk. The
jacket protects the surface of the disk. A user label can be marked to indicate the
contents of the disk and can be attached next to the disk label. Use a felt tip pen to
mark the user label.

The following precautions are recommended and should be followed to protect
diskettes. In addition to following these precautions, files containing valuable data
should be backed up at regular intervals. Backing up a file means making a dupli-
cate copy of the file on a different diskette. The file will then be stored on two dif-

ferent diskettes. If something happens to one of the diskettes, the file will still be
available on the other diskette. Back-up procedures are given in the examples at

the end of this chapter.

Ensuring trouble-free storage of data on the flexible disk requires
proper care. Specific precautions follow:

e Return the disk to its envelope when not in use
¢ Do not touch or clean the recording surface
® - Do not smoke around the disk

e Do not bend the disk or use paper clips or other mechanical
devices on it

e Use a felt tip pen on the user label, not a pencil or ball point
pen ‘

The following actions can also damage or modify the data stored
on the flexible disk:

e Turning on or turning off the power to the system or the
power to an external drive with a disk inserted in the drive

® Opening the disk drive door while the drive select light is on
e Pressing the RESET switch while the drive select light is on
Before inserting a flexible disk, be sure that power to the system and to any exter-

nal disk drives is turned on, that the LED indicator is not on, and that the drive
motor is off. Insert the disk with the write enable notch as shown in figure 3-10.

The drives have a lever type door release. Close the door by pressing the latch to
the left and towards the drive as shown in figure 3-11.

To remove a disk, follow these steps:

1. Ensure that the drive indicator light and the drive motor are off. If the light
remains on for more than 30 seconds and a read/write operation is not in
progress (no head movement is detected), disengage the drive by pressing
FUNCT-R to reload the ISIS-PDS operating system.

iPDS™ User’s Guide

iPDS™ User’s Guide Basic System Operation

2. To remove the disk from the drive, flip the lever out and to the right. This
action releases the door and the disk can be removed. See figure 3-11.

3. Remove the disk and place it in its protective cover.

WRITE

RELEASE RELEASE

0159

Figure 3-11 Door Release on Disk Drives

3-13

Basic System Operation iPDS™ User’s Guide

Bubble Memory

Each bubble memory multimodule board provides 128K bytes of additional mass
storage. The development system supports up to two bubble memory boards. The
operating system treats bubble memory the same as a disk. Bubble memory multi-
module boards are treated as drive 4 and drive 5 by the operating system. Installa-
tion instructions for the bubble memory multimodule boards are in Appendix A
of this manual. After installation, the bubble memory must be initialized with the
IDISK command as if it were a blank disk as described at the end of this chapter.
Technical details on the use of these boards are in Chapter 8.

Other Components

The plug-in modules, either emulators or the PROM programmer personality
modules, are shown in figure 3-12. They are inserted into the slot on the side of
the system and connect to the Plug-in Module Adapter Board. Operation of the
PROM modules specific to the iPDS system is covered in Chapter 10 of this
manual. Command descriptions and example of PROM programming are found in
the iUP-200/201 Universal Programmer User’s Guide, order number 162613.
Emulator plug-in modules are covered in separate manuals.

EMULATOR
MODULE

PROM
PERSONALITY
MODULE

0005

Figure 3-12 Plug-In Modules

Multimodule boards are small single purpose boards that enhance the capabilities
of the system. See Chapter 1 for a list of multimodule boards available with the
system. Installation instructions for multimodule boards are in Appendix A. Infor-
mation on software for these boards is in Chapter 8.

A printer with a Centronics*-compatible interface can be connected to the line
printer port on the rear panel of the system. See figure 3-2 for location of the
connector. Appendix A details the technical specifications for attaching a line
printer.

A serial device with an RS-232 interface can be connected to the serial port on the
rear panel of the system. See figure 3-2 for the location of the connector. Appendix
A details the technical specifications for attaching a serial device.

Dual processing is covered in Chapter 9. Installation of the additional processor
board is covered in Appendix A.

*Centronics is a trademark of Centronics, Inc.

3-14

iPDS™ User’s Guide

Software Operation

The software subsystem is made up of the ISIS-PDS operating system, utility
programs, language translators, and user-written, application programs. The
system overview in Chapter 1 describes the available software and the correspond-
ing manuals. Chapters 4-10 describe the operating system and many of the com-
mands that are provided with it.

Operating the software involves, first, loading and running the operating system
and, then, loading and running programs under the control of the operating
system.

The sections “Initialization” and “Configuration” in this chapter describe how to
initially load and run the operating system.

Once ISIS is initially loaded, software operation consists of entering command
lines that cause programs to be loaded and run. Command lines are accepted by a
part of the operating system called the Command Line Interpreter (CLI). The CLI
loads and runs a program as specified in the command line. Later sections in this
chapter describe how to enter command lines to run programs.

Initialization

The operating system is contained in several files on the system disk or the system
bubble multimodule and must be loaded into the development system’s memory
in a process called initialization or bootstrapping.

The system disk is the disk supplied by Intel containing the operating system files
needed to initialize the system. See the IDISK command in Chapter 5 for a more
specific description of the files required on a system disk. The disk supplied with
the system should be duplicated on another disk or on a bubble memory
multimodule. The new disk or bubble also becomes a system disk or system
bubble. At least one extra copy of the system disk should be maintained, so that
the system can still be initialized even if one of the system disks or bubbles is
destroyed. An example of the procedure for duplicating a system disk from the
disk supplied by Intel is given at the end of this chapter.

~ Initialization occurs when the system is powered on or when the RESET key on
the keyboard is pressed. Either action causes a program contained in the 2K bytes
of PROM to be executed. The PROM program performs a diagnostic test and
loads a bootstrap from the disk. The bootstrap program disables the 2K bytes of
PROM, enables 32K bytes of RAM, and loads the ISIS-PDS operating system.

To initialize the system from a system disk in the internal disk drive (drive 0),
power on the system, insert the system disk, and then press the RESET key.
These steps are described in detail in the following. First, the steps are given for a
system with no bubble memory installed.

1. Power on the development system. (The power switch is located on the
upper right side of the rear panel.) As soon as the system is powered on, the
diagnostic/loader program begins executing. This program attempts to ini-
tialize the system from drive O (the internal disk drive). However, it is not
recommended that the system be powered on with a disk in the drive.

2. Power on any peripheral devices, such as printers or external disk drives.
Since the system disk is not yet inserted in the drive, the following message
is displayed:

NO BOOT DEVICE

Basic System Operation

3-15

Basic System Operation iPDS™ User’s Guide

3. Place a system disk in drive 0. Insert the disk as shown in figure 3-10. Drive 0
is initially used as the system drive.

4. Press the RESET key causing the diagnostic/loader program to search for a
disk again, this time initializing the system from drive 0.

5. The message
ISIS-PDS, Vn.m

is displayed on the screen where n.m is replaced by the actual version
number for the system.

6. The opérating system displays the prompt characters
AO>
on the screen indicating that commands can be entered.
7. If there is a file named ABOOT.CSD on the system drive, the base processor
automatically executes operating system commands from that file. This file

is used to initially configure a system and is described in more detail in Chap-
ter 4.

To initialize from a system containing bubble memory (drive 4):

1. Make sure that no disk is in drive 0 (the internal disk drive).

2. 'Make sure that a bubble multimodule that contains the operating system is
installed as drive 4. See Appendix A for installation instructions. See the
IDISK command in Chapters 4 and 5 for instructions on initializing the
bubble memory multimodule as a system disk.

3. Power on the development system. The program will first attempt to initialize
the system from drive 0.

However, since there is no disk in drive 0, the attempt will fail. Since a
bubble memory multimodule is installed, the following message is displayed:

BOOT FROM BUBBLE? (Y or N)
This message is displayed when the bubble is present and no disk is in drive

0, or when the disk drive door is open.

4. Type Y in response to the message to complete the initialization from the
bubble multimodule in drive 4. (Insert a system disk in drive 0 and type N to
boot from disk when bubble memory is installed. Steps 5-7 from the previous
procedure will then occur.)

5. The message:

ISIS-PDS, Vn.m

is displayed on the screen where n.m is replaced by the -actual version
number for the system.

3-16

iPDS™ User’s Guide

6. The operating system displays the prompt characters
A4>
on the screen indicating that commands can be entered.

7. If there is a file named ABOOT.CSD on the system drive, the base processor
automatically executes operating system commands from that file. See Chap-
ter 4 for information on creating ABOOT.CSD.

8. Power on any peripheral devices, such as printers or external disk drives.

Initialization procedures for dual processor systems are covered in detail in Chap-
ter 9. The initialization program flowchart is shown in figure 3-13.

As soon as the system is initialized for the first time, the system disk supplied by
Intel should be duplicated. At least two copies of the system disk should be main-
tained in case one diskette is destroyed. The example at the end of this chapter
gives the procedure for duplicating the system disk.

Error Conditions

During the diagnostic phase of the initialization program, errors are indicated
either by four diagnostic LED indicators or by a message on the display screen.
The LED indicators are on the iPDS processor board and can be checked by hold-
ing open the plug-in module door on the side of the system and looking through
the opening.

During the initialization phase when the operating system is loaded, errors are in-
dicated by a message on the display screen.

Error conditions and messages are described in detail in Appendix B with instruc-
tions on interpreting the LED indicators.

User Configurations

For some user applications, it is necessary to further initialize the system. For
example, the 8251 USART serial I/0 device may need to be initialized automati-
cally whenever the system is initialized.

ISIS-PDS allows the user to automatically run a program or a series of programs as
soon as the system is initialized with no operator interaction. Configuration is ac-
complished by creating a special JOB file called ABOOT.CSD as described in Chap-
ter 4 and Chapter 5 in the sections on the JOB command. This file contains the
commands necessary to configure the user’s environment when the system is
initialized. The file must end with the ENDJOB command.

Commands

A command causes a program to be loaded and run under the control of the operat-
ing system. To be more specific, most commands correspond to an object program
stored as a file on a disk or bubble memory device. To issue a command to the
operating system, enter the correct command line. The file containing the program
is then loaded into memory and run by the operating system. When the program
has finished running, it returns control to the operating system so that another
command can be issued. Some commands are embedded in the resident portion of
ISIS-PDS and are always present in memory. These commands are also run from
command lines but no disk file need be loaded.

Basic System Operation

3-17

Basic System Operation iPDS™ User’s Guide

POWER ON SYSTEM

!

DIAGNOSTICS ARE RUN

ATTEMPTS TO BOOT
ON DRIVE 0

IS
DISK
IN DRIVE
?

YES

READS TRACK 0

IS
SYSTEM
DISK IN
DRIVE?

LOADS OPERATING SYSTEM \I

IS
BUBBLE
MULTIMODULE
INSTI'\)LLED

No DISPLAYS
“NO BOOT DEVICE”

YES

PROMPTS TO BOOT FROM
BUBBLE DRIVE-4

SOUNDS BUZZER

NEITHER
?

NO

READS TRACK 0

DISPLAYS
“NO BOOT DEVICE”

H LOADS OPERATING SYSTEM‘-}I
0160

Figure 3-13 Flowchart of Initialization Program

3-18

iPDS™ User’s Guide

User written programs can also be run as commands. See Chapter 8 for further
information.

There are two different types of commands provided with the operating system: in-
teractive and non-interactive commands.

An interactive command performs many different functions through a set of
subcommands. Subcommands are entered from the keyboard after the initial com-
mand is issued and the corresponding program is loaded. These subcommands are
processed by the program loaded, not by the ISIS-PDS command line interpreter.

Some interactive commands provided with ISIS-PDS are:

e CREDIT, which provides screen oriented text editing for source programs
and other documents

e DEBUG, which provides a minimum set of debugging commands

e LIB, which allows the user to manage a library of MCS-80/85 program
modules

Some of these commands are described in Chapters 4-10; others are in separate
manuals. See Chapter 1 for further references.

Non-interactive commands perform a single function through an ISIS-PDS com-
mand line. Some non-interactive commands are:

® COPY, which duplicates a file from one device to another
e IDISK, which initializes a disk or a bubble memory multimodule
e DIR, which displays the files currently stored on the specified device

e HELP, which displays information about the system and other ISIS-PDS
commands

Most of these commands are described in Chapters 4 and 5; others are in separate
manuals. See Chapter 1 for further references.

Command Lines

To issue a command, the user must enter the correct command line. A command
line consists of two parts: a command name which corresponds to the filename
containing the program and the command parameters that are needed by individu-
al commands. The entire command line is terminated by the RETURN key. The
general format for a command line is illustrated below using the notational con-
ventions described in detail in Chapter 5. These conventions are used throughout
the manual to describe the format of commands.

<command name> <parameters>
{ ; <comment> } RETURN

The angle brackets (< >) enclose general terms that must be replaced by a specif-
ic member of the class specified. For example, <command name> is replaced by
a specific command name like COPY, DELETE, or RENAME. The braces ({ })
enclose a vertical list of items and imply a choice of one and only one of the items
listed.

Basic System Operation

3-19

Basic System Operation iPDS™ User’s Guide

The command name is the same as the name of the file containing the program to
be run. The complete format of the command name is:

:<logical device name>:<filename>.<extension >

In most cases, the complete format need not be specified to run the program.
Instead, enter only the filename allowing the system to default the device name
and the extension as described below. The logical device name is a two-character
identifier enclosed by colons (:). The filename is one- to six-characters, and the
extension is one- to three- characters preceded by a period (.).

Parameters are entered as a sequence of characters on the command line;
however, the number of parameters and the form in which they are entered vary
from command to command. In general, parameters specify the data used by the
command. ‘

Some commands have no parameters. For other commands, a parameter could be
an input file identifier or an output device identifier. For example, an input file
identifier is a parameter for the COPY command.

Sometimes a command can perform one or more operations, and the parameter
identifies which operation to perform. For example, the IDISK command can ini-
tialize a system disk or a non-system disk depending on the parameters entered on
the IDISK command line.

In addition to entering a command name with its associated parameters, a com-
ment line may be entered. Comment lines are used primarily in SUBMIT files. See
the SUBMIT command in Chapters 4 and 5 for details. Comments are preceded by
a semicolon (;) and must be followed by the RETURN key.

Command Line Defaults

The default system drive (known by ISIS-PDS as :FO0:) is initially assigned to drive
0 or drive 4 depending on whether the system was initialized from the internal disk
drive or bubble memory. The system drive can be changed by the ASSIGN com-
mand . The current system drive is displayed as the second character in the ISIS-
PDS prompt (see the following section describing the ISIS-PDS prompt).

By storing command files on the default device, the device name need not be en-
tered as part of the command name. Command files usually do not have an
extension, meaning the filename alone is usually enough to specify the command.

Default values for parameters vary from command to command and are discussed
in sections describing a particular command.

Entering Command Lines

Command lines can be entered either through the keyboard or from a file. They
are echoed on the display screen as they are entered. Non-displayable characters
are echoed as a tilde (e) unless they are preceded by a CTRL-P which enters them
literally into the buffer.

3-20

iPDS™ User’s Guide Basic System Operation

Entering Command Lines from the Keyboard

Whenever the ISIS-PDS prompt characters are displayed, a command line can be
entered from the keyboard. For example, the DIR command can be run by typing
the following on the keyboard:

DIR
The prompt characters are of the form:
Pd>

where P indicates the current processor and can be either A for the base processor
or B for the optional processor. The d is the number of the physical drive currently
assigned to :FO:, the system default disk device. It can be physical drive 0, 1, 2, 3,
4, or 5 depending on the last ASSIGN command.

The command line can not be greater than 122 characters. The display screen
echoes these characters as they are entered. After 77 characters have filled one dis-
play line, the cursor automatically wraps around to the line below and the remain-
ing 45 characters can be typed.

Editing Command Lines. The command line is actually stored in a buffer, a hold-
ing area in memory, called the line editing buffer as it is typed on the keyboard.
The entire command line is presented to the operating system only after the
RETURN is typed. The RETURN terminates the line edited input.

A command line can be corrected in two ways: by entering control characters that
are only recognized prior to terminating the line edited input with the RETURN
key or by entering the editing mode and then using control characters that are
recognized during edit mode.

The following characters can only be used to edit a command line prior to terminat-
ing the line edited input with the RETURN key. Most of these characters are con-
trol characters, characters typed while the CTRL key is held down.

CTRL R || CTRL-R echoes a carriage return/linefeed on the display line fol-

b= Jowed by the current contents of the line editing buffer. CTRL-R
does not cancel or execute the contents of the buffer, nor does it
enter the command line editing mode described below. It is useful
if a teletype terminal is connected to the system for command line
input.

CTRL X || CTRL-X erases the entire buffer, but it must be typed before the
RETURN is entered. CTRL-X is echoed on the display line as a
“#” followed by a carriage return/linefeed, so the cursor is posi-
tioned as the first character of the next line. CTRL-X does not ter-
minate the line editing buffer, so no command line is presented to
the operating system. The operating system prompt does not
appear in the next line.

CTRL " Z || CTRL-Z deletes the entire line editing buffer and terminates the
buffer, so the operating system prompt appears at the beginning
of the next line.

Aue | RUBOUT erases the most recently entered key.

3-21

Basic System Operation iPDS™ User’s Guide

The following characters can be used to enter command line editing mode to cor-
rect a command line either before or after the RETURN key has been pressed.
The ESC key can be pressed to enter editing mode and correct the most recent
command line. The most recent command line is displayed as it is stored in the
line editing buffer, and the prompt character > changes to + to indicate that edit-
ing mode is in effect. The following keys can be used to modify and re-execute the
command line.

I cae | Il A || CTRL-A inserts any number of characters before the current

cursor position. Pressing CTRL-A the first time enters insert
mode. Then, any characters typed are inserted before the cursor.
Pressing CTRL-A a second time ends the insert.

'L CTRL B || CTRL-B moves the cursor to the beginning of the line.

CTRL |TD CTRL-D deletes the character at the current cursor position
L unless the cursor is at the end of the line. Then, the character
preceding the end of the line is deleted.

CTRL

CTRL-L moves the cursor to the end of the line.

line and returns to ISIS for another command.

2

L
CTRL " X CTRL-X terminates the re-edit without executing the command
ESC

Press ESC a second time to execute the entire command line.

return|| Press RETURN to execute the command line up to the current
cursor position.

U
u

o
=11

Pressing the RUBOUT key is the same as pressing CTRL-D.

T

The left arrow, cursor control key moves the cursor to the left.

— The right arrow, cursor control key moves the cursor to the right.

Only command lines of six or more characters (including spaces) are saved for re-
editing.

Pausing the Display. Two control characters, CTRL-S and CTRL-Q, allow the
operator to control the scrolling of the display screen. CTRL-S stops the scrolling
of the output on the display screen and also stops the program generating the
display. The display remains stopped until a CTRL-Q is entered from the
keyboard. Any characters typed between the CTRL-S and the CTRL-Q are
ignored.

FUNCT-S switches the display speed between slow and fast scrolling.

Entering Command Lines from a File

Another way to enter command lines is from a command file. ISIS-PDS allows two
types of command files: SUBMIT files and JOB files. The SUBMIT file is a text file
that can be created with a text editor, such as the CREDIT text editor described in
Chapter 6. It contains command lines that appear in the file just as they would
appear if they were typed on the keyboard.

To execute the commands in the SUBMIT file, the SUBMIT program is run as an

operating system command. It submits command lines from the file to the operat-
ing system as if they had been typed on the keyboard.

3-22

iPDS™ User’s Guide Basic System Operation

The SUBMIT command is described in detail in Chapters 4 and 5.

The JOB file is created with the JOB command and can be executed in several
ways as described in Chapters 4 and 5. The JOB command allows the user to type a
sequence of command lines at the keyboard which can then be executed in the se-
quence in which they were typed. The JOB file must end with an ENDJOB
command.

Other Ways to Enter Command Lines

There are other ways to enter command lines which are varjations and combina-
tions of entering from the keyboard and of entering from a file.

Most of these additional methods involve an operating system command and are
discussed in Chapter 4 and Chapter 5.

Sample Initialization Session

The rest of this chapter contains a series of examples using screen displays,
comments, and key-in sequences. These examples illustrate the concepts intro-
duced in this chapter.

The examples are complete, so that the key-in sequences can be entered to pro-
duce the results shown in the screen displays. However, in some cases, operator
action besides keying in a command line is required. Thus, the comments should
be read prior to entering the key-in sequence. Also, many of the examples depend
on the output from the previous examples. In most cases, the examples should be
followed in order to guarantee the same results. Finally, in some of the examples,
the screen display shown may not be exactly the same as the display generated by
the user. In these cases, the exact display depends on the version of the operating
system and the order in which the examples were run.

3-23

Basic System Operation

iPDS™ User’s Guide

Initializing the System from Disk

This example shows how to initialize a system from the disk in drive 0.

%

[SESESESRSES I

ISIS-PDS. V1.0
AD>

o

DIAGNOSTIC TESTING COMPLETED

N

eeeeee @ aeeee @eaeee

@ @ @ @ @

@ @ @ @ @

@ @ @ @ @

@ @ @ @

eeeeee @ @ @eeee

@ @ @ @
@ @ @ @
@ @ @ @
@ @ @ @
@ @

@eeoe . Qe eeee

s

Key-in Sequence

RESET

FUNCT T

FUNCT T

3-24

Comments

This example assumes that the bubble memory is not
installed. If the bubble memory multimodule is installed,
see the bubble memory example at the end of this
chapter. Power on the system with no disk in the drive.
When the red LED indicator on the drive goes off, insert
the system diskette and press the reset key. Immediately
after pressing the reset key, the character ‘A’ appears on
the top line of the CRT screen. After a few seconds, the
initialization is complete and the screen appears as
shown. When the dual processor is installed, the top 2
lines are shown as reverse video with the letter ‘B’ on the
top line. Press the up arrow key two times while holding
down the FUNCT key to get rid of the display from the
dual processor.

iPDS™ User’s Guide

Basic System Operation

Duplicating the System Disk on Single Drive Systems

In this series of examples, a back-up copy of the system disk is made.

COPIED
COPIED
COPIED
COPIED
COPIED
"~ COPIED

Key-in Sequence

IDISK :FO:LEARN.PDS S P Make a duplicate copy of system diskette.

AD> IDISK:FO:LEARN.PDSSP
SYSTEMDISKETTE

LOAD OUTPUT DISKETTE- THEN TYPE (CR)
LOAD SYSTEM DISKETTE. THEN TYPE (CR)
AD>COPY**TO*.*SPC

LOAD SOURCE DISKETTE. THEN TYPE (CR)
LOAD OUTPUT DISKETTE~ THEN TYPE (CR)
:FO:
:FD:
:FO:
:FD:
:FO:
:FO:

ISIS.MAP TO :FO:ISIS.MAP
ASMBO TO :FD:ASMA0
ASM80.0VO TO :FO:ASM80.0VO
ASMBO.0OVL TO :FO:ASMAD.0V]
ASM8O.0V2 TO :FO:ASMBD.0VE
ASMBO0.0V3 TO :FO:ASMAD.0V3

Comments

First, initialize a new diskette with the
RETURN IDISK command. This example shows how

to run the IDISK command on a system with
a single disk drive. If a mistake is made in
typing any of these commands, use the
RUBOUT key to backspace and type the cor-
rect characters. When more than one drive is
available, go to the section entitled
‘Duplicating the System Disk on Multiple
Drive Systems.’

RETURN Remove the system diskette. Insert a new
diskette without a write protect tab and press
the RETURN key.

RETURN Remove the newly created diskette and

insert the system diskette. Press the
RETURN key. The operating system
prompt is then displayed.

COPY**TO*.*SPC The second step in duplicating the system
. —N“ diskette is copying the files from the master
ETUR to the newly created diskette with the COPY
command.
RETURN The source diskette in this case is the system

diskette. Press the RETURN key to begin
reading files to be copied. Files are read until
the temporary storage area in memory is full.

RETURN Press the RETURN key after removing the
source diskette and inserting the newly creat-
ed diskette. Files read from the source dis-
kette and stored in memory are written to
the output diskette.

(continued)

3-25

Basic System Operation

3-26

Key-in Sequence

iPDS™ User’s Guide

Comments

RETURN A message is displayed for each file copied. The exact se-

quence of messages depends on the software package
selected by the user and the files on the system disk.
When all the files are copied, re-insert the system
diskette. Press the RETURN key and more files are read
from the system diskette. '

LOAD SOURCE DISKETTE. THEN TYPE (CR)
LOAD OUTPUT DISKETTE+ THEN TYPE (CR)

COPIED
COPIED
COPIED

COPIED
COPIED
COPIED
LOAD SYSTEM DISKETTE+ THEN TYPE (CR)
AD>

:FO:
:FO:
tFO:
:FO:
:FO:
:FD:

Key-in Sequence

ASM&O.OVY TO :FO:ASHMBO.0VY
ASM80.0V5 TO :FD:ASNAB0.0VS
ASXREF TO :FO:ASXREF
ASSIGN TO :FO:ASSIGN
ATTACHTO :FO:ATTACH
ATTRIB TO :FO:ATTRIB

Comments

RETURN Remove the system diskette and insert the diskette being

created. Press the RETURN key to continue copying.

RETURN The sequence of switching the source diskette and the

output diskette is repeated several more times to com-
plete the copying of the system files. These steps are not
shown in detail.

iPDS™ User’s Guide Basic System Operation

Duplicating the System Disk on Multiple Drive Systems

In this example, a back-up of the system disk is made on a multiple drive system.

AO0> IDISK :F1:LEARN.PDS S

SYSTEM DISKETTE

AD>COPY *.* TO :F1:*.*

COPIED :FO:ATTACH TO :FL:ATTACH
COPIED :FD:ATTRIBTO :FL:ATTRIB
COPIED :FO:COPY TO :FL:COPY
COPIED :FO:CREDITTO :FL:CREDIT
COPIED :FO:CREDIT-MACTO :FL:CREDIT. MAC
COPIED :FD:DEBUGTO :FL:DEBUG
COPIED :FO:DELETE TO :FL:DELETE
COPIED :FO:DETACHTO :FL:DETACH
COPIED :FO:DIRTO :F1:DIR

COPIED :FDO:HELP TO :FL:HELP
COPIED :FO:HEXOBJ TO :FL:HEXOBY
COPIED :FO:IDISK TO :FL:IDISK
COPIED :FD:IXREF TO :FL:IXREF
COPIED :FO:LIBTO :FL:LIB

COPIED :FO:LINKTO :FL:LINK
COPIED :FO:LINK.OVL TO :F1:LINK.OVL
COPIED :FO:LOCATE TO :FL:LOCATE
COPIED :FO:0BJHEX TO :FL:0BJHEX
COPIED :FO:PDS.HLP TO :F1:PDS.HLP
COPIED :FOD:RENAME TO :FL:RENAME
COPIED :FO:SERIAL TO :F1:SERIAL
AD>

Key-in Sequence Comments

L,
IDISK :EOJLEARN.PDS S Place a new diskette without a write protect tab

‘j;_» : in drive 1 and enter the command as shown.
L RETURN When the initialization is complete, the operat-
ing system prompt is displayed.

COPY *.*TO :F1:*.* After the IDISK command is complete, the
— 1 files are copied to the new disk to complete the
RETURN duplication. A message is displayed for each
file copied, and when all the files are copied,
the operating system prompt is returned. The
message for the first files coped will scroll off
the top of the screen.

3-27

Basic System Operation ‘ iPDS™ User’s Guide

Entering Command Lines

The next series of examples illustrate how to enter a command line.

o A

eeeeea @ eeeee @eee

@ @ @ @ @

@ @ @ @ @
@ @ @ @ @ @

@ @ @ @ @
@ eeeeaee @ @ @eee@
@ @ @ @ @
@ @ @ @ @
@ @ @ @ @
@ @ @ @ @
@ @ @ oeee@ eeeeea

DIAGNOSTIC TESTING COMPLETED

ISIS-PDS. VY.O
AD>

_J

RESET Remove the system disk and insert the newly created dis-
kette in drive 0. Press the RESET key to re-initialize the
system. When the dual processor is installed, press the
uparrow key two times while holding down the FUNCT
key to get rid of the reverse video display at the top of the
screen.

Key-in Sequence Comments

3-28

iPDS™ User’s Guide

Basic System Operation

A0D> DIR

NAME JEXT
ISIS <MAP
ASXREF
ATTACH

COPY

CREDIT .MAC
DELETE

DIR

HEX0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT

Key-in Sequence

DIRECTORY OF :FO:LEARN.PDS
BLKS LENGTH ATTR NAME +EXT BLKS LENGTH ATTR

4
20

4
3t

y
20
8
20
4y
5b
oY1)
12
20

L456L FREE / 2544 TOTAL BLOCKS
AD>HELP COPY

1021k
1307y
15021

DIR

RETURN

HELP COPY

a—
_asesas

RETURN

)

512
4294
522
83kk
;
4L99
bh25
u3yy

ASMa0 O L4594
ASSIGN 1k 3073
ATTRIB 24 4999
CREDIT 840 19740
DEBUG 12 2502
DETACH 4 43y
HELP b 3771
IDISK EF 7035
LIB 44y Luo2evr
LINK . 20 4578
0BJHEX b 3347
SERIAL 1b 3148
SYSPDS . 1b 3101

2557
Ykb9e

[2 B % T 7 T e T 7 B % I 7 T 7 B % B 7 B % B 7% I % |
nmrnurvuurmuuynLm vy

o
(=]
=

Comments

The DIR command displays a list of the files on
the disk. In this case, the files on the disk in drive
0 are displayed. The display will be similar to dis-
play shown above. The exact display depends on
the files on the system disk. Notice that IDISK,
COPY, and DIR, are also files on the disk. The
file named HELP in the second column contains
the HELP command which displays information
about other operating system commands.

Typing HELP followed by the RETURN key dis-
plays general help about the operating system.
Typing HELP followed by a command name dis-
plays information about that command. In this
example, HELP is displayed for the COPY
command.

3-29

Basic System Operation iPDS™ User’s Guide

3-30

COPY Transferring files

’ COPY <srce> T0 <dest> [{S | N} [{B | U} [U} K] [L][C][P][a]
<srce> Pathname of input file- the filebeing copied.
<dest> Pathname of output file.

S Copy only system files (withSattribute).

N Copy only non-system files (without S or F
attribute).

B No prompt if destination exists. Delete existing

: files copy source tonewly created destination.

U Same as B except existing file is not deleted
first.

J Copyonly fileswith User Definedattribute J.

K Copyonly fileswith User DefinedattributeK.

L Copyonly fileswith User Definedattributel.

C Copy the source file's attributes.

P Singledrive COPY.

[Prompt before processing.

COPY Appending files
COPY <srcel> +<srceg>[+...-<srcen>]T0 <dest> [B | UI[C][P]
<srcel>
thru

<scren> Specifiesthe input files.
<dest> Specifiestheoutput file.

Comments

Information about the COPY command is displayed as a
result of entering the previous HELP command. The
square brackets ([1) indicate options. The simplest way
to transfer files without any options is: COPY <srce>
TO <dest>. '

A0> COPYDIRTO CAT

COPIED :FO:DIRTO :FO:CAT
AOD>

Key-in Sequence Comments

COPY DIR TO CAT {lreruan This command makes a duplicate of the

: file, DIR, under the name CAT for
catalog. Thus, the file, CAT, also con-
tains the directory command. The operat-
ing system prompt is always returned
after the command is finished.

iPDS™ User’s Guide

Basic System Operation

AD> CAT

NAME -EXT
ISIS -MAP
ASXREF
ATTACH

COPY

CREDIT .MAC
DELETE

DIR

HEX0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT

CAT

AD>

DIRECTORY OF :FO:LEARN.PDS

BLKS LENGTH ATTR NAME EXT BLKS LENGTH ATTR

Y4 512 S ASMa&0 B0 14594 S
20 429y s ASSIGN 1ib 3073 s

4 522 s ATTRIB 2y 4999 S
b 83LL S CREDIT 80 19740 S

L] ? s DEBUG 12 2502 S
20 4699 S DETACH L] 434 S
28 bbk25 S HELP 1k 3771 S
20 LELL I IDISK 3 7035 S
44 1021b S LIB 44 10227 S
56 13074 S LINK - 0VL 20 4578 S
L0 15021 S 0BJHEX 1k 3347 S
12 2557 § SERIAL ib 3148 S
aa 4b9e S SYSPDS .PDS 1k 3101 S

28

L428 FREE 7/ 2544 TOTAL BLOCKS

bb25
712

Key-in Sequence

CAT RETURN

Comments

This example illustrates that the file, CAT, contains the
directory, command. Typing CAT causes the file CAT to
be loaded aind executed as a command. The same function
is performed as in the previous DIR command example.
The file CAT appears in the directory here and not in the
previous directory. This file was added to the directory
when it was created by the COPY command.

AD> RENAME CAT TO FILES

RENAMED CAT TO FILES
AD>

Key-in Sequence

Comments

RENAME CAT TO FILES The RENAME command only changes the name

Yy —

RETURN

of the file specified. It does not make a copy of
that file. In this case, the file CAT is renamed to

FILES. Thus, the file, FILES, is now a copy of
the directory command. Many of the operating
system command files can be renamed at user
convenience.

3-31

Basic System Operation

3-32

AD> FILES

DIRECTORY OF :FO:LEARN.PDS

NAME CEXT
ISIS -MAP
ASXREF
ATTACH

CoPY
CREDIT. MAC
DELETE

DIR

HEXO0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT
FILES

1428 FREE 7 2544 TOTAL BLOCKS

AD>

Key-in Sequence

=

BLKS

y
20

y
3b

y
20
28
=]
Wy
5k
&0
b=
20
ca

LENGTH
512
429y
s52e
83bb
?
4699
bb25
y3uy
1021k
13074
15021
2557
4YkL92
bk25

[% I 7 I 7 T 7 T 7 TR 70 N 7 T 7% N 7 I 7 I 7% N 7 I 7 |

Comments

ATTR NAME
ASMB0
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK
0BJHEX
SERIAL
SYSPDS

71

LEXT

LOVL

BLKS
L0
1k
2y
ao
12

y
1k
3z
yy
20
1k
1b
ik

LENGTH
1459y
3073
4999
19740
2502
43y
3771
7035
10227
4578
3347
3148
3101

7 O 7 T 7 T 7 T 7% T 7 I 7 IO 2 I 7 B % B %o B 7 I 7 |

iPDS™ User’s Guide

ATTR

Typing FILES is now equivalent to entering the DIR
command. Notice that the file CAT no longer appears in
the resulting list of files. The file, FILES, now appears in
its place.

AD> DELETEFILES

:FO:FILES. DELETED

AD>

Key-in Sequence

DELETE FILES

l!RETUHN

ey

Comments

The DELETE command removes the specified file from
the disk and from the directory. Now, the file, FILES, no

longer appears in the directory listing.

iPDS™ User’s Guide

Basic System Operation

AO> DIR
DIRECTORY OF :FO:LEARN.PDS
NAME -EXT BLKS LENGTH ATTR NANE -EXT BLKS LENGTH ATTR
ISIS -MAP L] 512 S ASnan b0 14594 S
ASXREF 20 4294 S ASSIGN 1b 3073 S
ATTACH 4 522 s ATTRIB 24 4999 S
CoPY Y 43bL S CREDIT 840 19740 S
CREDIT. MAC 4 7S DEBUG 12 2502 s
DELETE 20 4699 S DETACH 4 434 S
DIR 28 bkk25 S HELP 1k 3?71 S
HEX0BJ e0 43uy s IDISK EL 7035 S
IXREF 44 10216 S LIB 44 L0227 S
LINK 5b 13074 S LINK S OVL 20 4578 S
LOCATE 60 15021 S O0BJHEX 1k 3347 S
RENAME e 2557 § SERIAL 1k 3148 S
SUBMIT 20 4692 S SYSPDS .PDS 1lb 3101 S
bay
1456 FREE 7 2544 TOTAL BLOCKS

Key-in Sequence Comments

DIR ||reTurn Enter the DIR command to verify that the file, FILES,
no longer appears in the directory.

AD> :FO:DIR
DIRECTORY OF :FO:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS -MAP 4 512 S ASMBO L0 L4594 S
ASXREF 20 4a9u s ASSIGN 1L 3073 S
ATTACH y saa s ATTRIB 2y 4999 S
CoOPY 3 83kb S CREDIT 80 19740 S
CREDIT. MAC Y 7S DEBUG 12 2502 S
DELETE 20 u4bA9 S DETACH y 43y s
DIR 28 bb35 S HELP 1k 3771 S
HEX0BJ 20 u3yy S IDISK 32 7035 S
IXREF 4y 1021k S LIB 4y 10227 S
LINK 5t 13074 S LINK . ovL 20 4578 S
LOCATE b0 15021 S 0BJHEX 1k 3347 S
RENAME 12 2557 S SERIAL 16 3148 S
SUBMIT 20 4yb92 S SYSPDS .PDS 16 3101 S
145k FREE / 2544 TOTAL BLOCKS

Key-in Sequence

:FO:DIR

RETURN

Comments

The commands entered under the ISIS operating system
are actually programs. Many of these command programs
are stored in files on the disk and are loaded into memory
and executed when needed. Thus, the pathname of the
file is entered first on the command line. In this example,
the drive number portion of the pathname is entered re-
sulting in the command being executed. If the drive
number is left off, logical drive 0 is assumed.

3-33

Basic System Operation

3-34

Using Control Characters

The next series of examples illustrate how to use control characters.

iPDS™ User’s Guide

A0O>DIRI
NAME
ISIS
ISIS
ISIS
ISIS
ASMao
ASna0
ASM80
ASXRE
ATTACH
COPY
CREDIT
DELETE
DIR
HEXOBJ
IXREF
LINK
LOCATE
PDS
SERIAL
SYSPDS

EXT
«DIR
- TO

.PDS
-MAP
.ovo
-ove
. 0VYy

- MAC

-HLP

.LIB

BLKS LENGTH

1k
1k
5e
y
12
1e
100
20
y
3k
y
20
28
20
yy
5b
1]
e
1b
1b

3840
3840
12088
512
Lay7?
2115
ci4l3
429y
sae
83bb
?
4699
bbk25
43uy
1021k
13074
15021
17376
3148
3101

145L FREE / 2544 TOTAL BLOCKS
AD>

ATTR NAME

I

I
SI
S
SI
SI
SI

2]

[7 T 7 T 7 T 7% T 7 T 7 B 7 I 7 I 7 I % I % I 7 |

F ISIS

F ISIS

F ISIS
ASmao
ASnao
ASnMao
AsSmMao
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK
OBJHEX
RENAME
SUBMIT

1088

SEXT
-FRE
.LAB
-CLI

-0Vl

]
-0VsS

-0VL

BLKS LENGTH

y

y
1k
1]
12

8
a0
1k
2y
a0
12

y
1k
EL
Yy
ea
1b
12
20

80
%
3113
14594
2108
99k
20037
3073
4999
19470
2502
43y
3771
7035
10227
4578
3347
2557
LIS E

L2 2 T 2 I 2 T 2 I % I % I 7 B % B 7 I)

Key-in Sequence

DIR | || RETURN

CTRL

S

CTRL

Comments

The DIR command only displays a list of the visible files
on the disk. A file may be assigned an attribute of I for
invisible. It then does not show up on a normal directory
listing. To include invisible files in the listing, use the
DIR command with the I option. This example also illus-
trates the use of CTRL-S to stop the output on the CRT
display. Depending on when the CTRL-S is typed, the

display is similar to the screen shown.

Use CTRL-Q to restart the display. The rest of the direc-
tory is then displayed.

iPDS™ User’s Guide

Basic System Operation

AO0> COPY CREDIT.MAC TO EDIT.MAC
COPY CREDIT-MACTOEDIT-MAC#

COPY CREDIT.MAC TO EDIT2.MAC
AO0>

Key-in Sequence

COPY CREDIT.MAC TO

EDIT.MAC

CTRL

R

CTRL

COPY CREDIT.MAC TO

EDIT2.MAC

CTRL

Z

Comments

The control character CTRL-R typed before the
RETURN key is pressed causes the command
line currently being typed to be re-displayed.

The CTRL-R function is useful in applications
where a TTY (teletype) terminal is connected to
the system and used to input commands. TTY
terminals print the display on paper. They do not
have a rubout function. However, the RUBOUT
(or backspace) key still corrects typing errors as
the command line is being entered. The line
printed on the. TTY terminal shows both the
error and the correction. After a few corrections
on the same command line, the line may not be
readable. CTRL-R can then be used to re-display
the command line after the corrections so that it
is readable.

Type CTRL-X to delete the command buffer but
not close the buffer. The same command or a dif-
ferent command can then be entered.

Type the COPY command into the buffer emp-
tied by the previous CTRL-X. Then, type CTRL-
Z. This deletes the buffer and closes it; returning
to the operating system prompt.

3-35

Basic System Operation iPDS™ User’s Guide

Editing Command Lines

The next series of examples illustrate how to edit a command line.

AO0> COPY RENAME TO EDIT.TST
COPIED :FD:RENAME TO :FO:EDIT.TST

AD>s$
AD+COPYRENAME TO EDIT.TST

Key-in Sequence Comments

COPY RENAME TO EDIT.TST This example is used to illustrate the

command line editing features of the

RETURN operating system. This command copies
the file RENAME to the file EDIT.TST.

ESC After the command is executed,(or

while it is still being entered before the
RETURN key is pressed), the ESC key
can be pressed to enter a mode where the
command line can be edited. The com-
mand line previously entered (or the one
currently being entered) is re-displayed
with the cursor at the end of the line.
Several characters can then be used to
edit the line.

CTRL B Type the control character CTRL-B to
move the cursor to the beginning of the

line.
— Press the right arrow key five times to
. move the cursor the R of RENAME.
]
_)
—_—
—)

3-36

iPDS™ User’s Guide Basic System Operation

AD> COPYRENAME TO EDIT.TST
COPIED :FO:RENAME TO :FO:EDIT.TST

AD> S
AD+COPY TOEDIT.TST

R —

Key-in Sequence Comments

CTAL HD Type the control character CTRL-D to delete the charac-
ter R.

l CTRL D Type CTRL-D again to delete the E of RENAME.

v CTRL WD Type CTRL-D four more times to delete the entire word

RENAME.
CTRL D
E CTRL D
CTRL D

AD> COPYRENAME TOEDIT.TST
COPIED :FD:RENAME TO :FO:EDIT.TST

AD>3
AD+COPYCREDITTO EDIT.TST

n———

Key-in Sequence Comments
CTRL A Type the control character CTRL-A to begin an insert.
The screen opens up to allow any number of characters to
be entered.
CREDIT Type the word CREDIT to replace RENAME.

CTRL A Type CTRL-A again to end the insert. The screen closes
back up again.

3-37

Basic System Operation iPDS™ User’s Guide

A0> COPY RENAME TOEDIT.TST
COPIED :FO:RENAME TO :FO:EDIT.TST
AD> s

AD+COPY CREDIT TOEDIT2.TST

COPIED :FO:CREDIT TO :FO:EDITZ.TST
AD>

Key-in Sequence Comments

Type the control character, CTRL-L to move the cursor
to the end of the line.

CTRL

Press the left arrow four times to move the cursor back to
the period before TST.

] [F

CTRL || | A Type the control character, CTRL-A, to begin an insert.

2 Type the 2 key to insert the digit 2 in the filename.

CTRL A) .
IL____ | Type CTRL-A to end the insert.

CTRL l L J Type CTRL-L to move the cursor to the end of the line.

"asm; Press the RETURN key to execute the new edited

command. In addition to the features illustrated in this
example, characters may be replaced by moving the
cursor to the desired character and typing over it with a
single replacement character. When the cursor is at the
end of the line, the line is extended by typing characters.

3-38

iPDS™ User’s Guide Basic System Operation

Initializing the System from Bubble Memory

The next series of examples illustrates how to initialize the system from bubble
memory.

A
BOOT FROM BUBBLE? (Y or N)N

Key-in Sequence Comments

N With the bubble memory multimodule installed in J1/J2
power on the system. When the red LED indicator on the
internal disk drive goes off, insert the system disk. Then,
type the N key to initialize the system.

eeeee® @ eeaee eeaeee
@ @ @ @ @
@ @ @ @ @
@ @ @ @ @ @
@ @ @ @ @
@ eeeeee @ @ eeaae
: @ @ @ @ @
@ @ @ @ @
@ @ @ @ @
@ @ @ @ @
@ @ @ @eeee eeeeea
DIAGNOSTIC TESTING COMPLETED
ISIS-PDS. V1.0
AD>
Comments

The system is initialized from the disk in drive 0. The
bubble memory is like a blank diskette and must be for-
matted before it can be used.

3-39

Basic System Operation iPDS™ User’s Guide

AD>IDISK :F4:BUBBLE.SYS S
SYSTEMDISKETTE

AD>COPY *.* TO:F4:*.*

Key-in Sequence Comments

IDISK :F4:BUBBLE.SYS S Enter the command as shown above to

RETURN format the the bubble memory.
When the initialization is complete, the
operating system prompt is displayed.
COPY *.* TO :F4:*.* After the IDISK command is done, the files

must be copied to the new disk to complete
RETURN the duplication. Key-in the command as
shown.

COPIED :FO:ATTACHTO :FU:ATTACH
COPIED :FO:ATTRIB TO :F4:ATTRIB
COPIED :FO:COPY TO :FU4:COPY
COPIED :FO:CREDIT TO :F4:CREDIT
COPIED :FO:CREDIT.-MACTO :F4:CREDIT.MAC
COPIED :FO:DEBUG TO :F4:DEBUG
COPIED :FO:DELETE TO :FU:DELETE
COPIED :FO:DETACHTO :FUY:DETACH
COPIED :FO:DIRTO :Fuy:DIR
COPIED :FO:HELP TO :FL4:HELP
COPIED :FD:HEXOBJ TO :FU:HEXO0BJ
COPIED :FO:IDISKTO :F4:IDISK
COPIED :FO:IXREF TO :FuY:IXREF

COPIED :FO:LIBTO :F4:LIB
COPIED :FO:LINKTO :FYy:LINK
COPIED :FD:LINK.OVL TO :Fu:LINK.OVL

COPIED :FD:LOCATE TO :F4:LOCATE

COPIED :FO:0BJHEX TO :FU4:0BJHEX

COPIED :FO:PDS.HLP TO :F4:PDS.HLP
COPIED :FO:RENAME TO :F4:RENAME

COPIED :FO:SERIAL TO :F4:SERIAL

COPIED :FO:SUBMIT TO :Fu4:SUBMIT

COPIED :FD:SYSPDS.LIBTO :F4:SYSPDS.LIB
AD>

Comments

A message is displayed for each file copied, and, when all
the files are copied, the operating system prompt is
returned. Now, the bubble memory can be used inter-
changeably with a system disk. The files appearing in
copied message depend on the software package being
used.

3-40

iPDS™ User’s Guide

Basic System Operation

BOOT FROM BUBBLE? (Yor N) Y

Key-in Sequence

RESET]|

Y

Comments

Remove the diskette from drive 0. Press the RESET key.
The message shown above is displayed. Press the Y key
to initialize from bubble memory.

A4>

O0OPBe ©

DIAGNOSTIC TESTING COMPLETED

ISIS-PDS- V1.0

Qoeeee eeeee @eaee@
@ @ @
@ @ @]

@ @

@ . @

@

@ @

@ @
Q @ @
@ @ @
@aeaae @ @ @eeea
@ @ @ @
@ @ @ @
@ @ @ @
@ @ @ @
@ @ eeee@ eoeeea

_J

Comments

The system will initialize from the bubble memory
device. See Appendix D for suggestions on the best use
of the bubble memory.

3-41

Basic System Operation

3-42

iPDS™ User’s Guide

Running the Confidence Test

It is recommended that the confidence test be run before proceeding further to
ensure that the system is functioning properly. The confidence test is described in
detail in Appendix B. Before running these tests, use the IDISK command as de-
scribed previously to generate one ISIS-PDS disk for each drive in the system.
Place an initialized disk in each drive in the system. The disk test is a read only
test, so the disk will not be harmed.

A0>PCONF

ISIS-PDPSPCONF.VE.1
*INIT CONPDS
iPDS CONFIDENCE TESTS. V1.0
USER RETURN

*x

Key-in Sequence

PCONF J RETURN.
INIT CONPDS

Ewnu

Comments

Enter the PCONF command under ISIS-PDS to load the
test programs.

The INIT CONPDS commands are now ready for
execution. The USER RETURN line displayed on the
screen means that the confidence test has been initialized.

iPDS™ User’s Guide Basic System Operation

*DESCRIBE
D000H 8085 INSTRUCTIONS TEST
O0D1H CRT OUTPUT TEST

ODO02H TIMER TEST

DOD3H LINE PRINTER TEST

DODOYH SERIAL QUTPUT TEST
ODDSHFDC SEMAPHORES

DOOLH READY DRIVE DETERMINATION
0D07H FDD SEEK AND READ TEST
0008H USART LOOPBACK TEST

0009H DISKETTE FORMATTER xxxx IGNORED *xxx
O00AH READ AFTER FORMAT TEST xxxx IGNORED *xxx
OD0BH RANDOM WRITE/READ AFTER FORMAT *xxx IGNORED x*xx
0DOCH KEYBOARD ECHO TEST *xxx IGNORED *xxx
0DODH BUBBLE READ TEST *x%%x IGNORED *xxx
OODEH BUBBLE RANDOM WRITE/READ *x%% IGNORED *xxx
O000FH PROM MODULE CHECKSUM TEST *x%x%x IGNORED *x*xx

00X0H RELOCATING RAM TEST *%xxx IGNORED **xx
x

xxxx IGNORED *xxx

*xxxx IGNORED xxxx

Key-in Sequence Comments

DESCRIBE The DESCRIBE command displays a listing of the tests
f— available and thg tests currently ignored. This screen
shows the tests initially recognized when CONPDS is
first run. Only these default tests are run in this example. .
The other tests require iPDS options and/or user
interaction. See Appendix B for a complete description of
all the tests available. To run a test, it must be
recognized. Two CONPDS commands (IGNORE and
RECOGNIZE) are used to set up the tests to be run
based on the equipment and options in the system.

3-43

iPDS™ User’s Guide Basic System Operation

*xTEST

TEST 0003H xxxx IGNORED xxxx
TEST D0D&H x*xxx TGNORED xxxx
TEST 0009H xxxx TGNORED xxxx
TEST OODOAH *x%xxx TGNORED xxxx
TEST OD00OBH *xxx IGNORED *xxx
TEST 000CH xxxx TGNORED *xxxx
TEST OOODH xxxx IGNORED *xxx
TEST O0O0EH *xxxx TGNORED **xx
TEST O00OFH xxxx IGNORED *xxxx
TEST 0010H *xxxx IGNORED xxxx
D000OH 8085 INSTRUCTIONS TEST f'PASSED'!'

000XH CRT OUTPUT TEST

Key-in Sequence Comments

TEST ||reruan The TEST command runs the tests recognized. Tests
03H and O8H through 10H are ignored. Tests 00H
through 02H and 04H through 07H are run. None of
these tests require user interaction. However, one of the
tests is a read only disk test, so there is disk activity
during the testing. In the initial state, pass/fail messages
are displayed for each test run.

0ODO02H TIMER TEST " "PASSED'"!
ODOYH SERIAL OUTPUT TEST ""PASSED'"!
ODDSHFDC SEMAPHORES " 'PASSED'"!
DDOLH READY DRIVE DETERMINATION ' 'PASSED''

DRV-0READY- DRV-LNRDY. DRV-2 NRDY., DRV-3 NRDY
" TPASSED'"'

0007?HFDD SEEK AND READ TEST " TPASSED'"!

*EXIT

AD>

Key-in Sequence Comments

This screen shows the rest of the display .after the CRT
characters test. In this example, only one disk drive was
ready for the disk drive tests. See Appendix B for a
detailed description of the confidence test and other com-
mands that can be run.

g 1
EXIT | return When the tests are complete, the EXIT command is en-
tered to return to the ISIS-PDS operating system.

3-44

CHAPTER 4
COMMAND APPLICATIONS

Functional Summary of Commands

The commands recognized by the ISIS-PDS operating system can be divided into
six functional groups:

® System management group
® Device management group
® File management group

® Textediting group

® Program development group

® Program execution group

These groups are described in more detail in the following sections. The com-
mands for each group are listed with that group. A reference is included for further
information on each command. Chapters that are mentioned refer to further infor-
mation in this manual; titles refer to other manuals. Examples are also given to
show how to use these commands.

The examples in this chapter assume the disk that was created in the demonstra-
tion in Chapter 3 is available. Many of the examples in this chapter and in the rest
of the manual assume the files created in previous examples.

Additionally, in some of these examples, the screen shown in the manual may not
exactly match the screen resulting from actually running the examples. However,
the differences are insignificant. For example, the version numbers actually ap-
pearing on the screen when a command is run may differ from that shown in the
manual if a new version of the command is used.

System Management Commands

The system management commands display status and help information for the
system. Some of these commands also control the processors in a dual processor
system. The following commands are in this group and are described in the chap-
ters indicated. Only the HELP command has a corresponding command file on the
disk. A sample dual processing session is given in Chapter 9.

HELP displays help information for operating system commands.

Chapter 5.
IL? displays the version number of the current Command Line
Interpreter (CLI). Chapter 5.
i .
FUNCT reloads the ISIS-PDS operating system. Chapter 9.

Command Applications iPDS™ User’s Guide

i“"‘“L S switches the CRT display speed between a slow and fast
‘ . speed. The slower speed is about ten times slower than the
faster speed. Chapter 3.

FUNCT T switches the keyboard between typewriter mode and non-
typewriter mode. Chapter 3.

[]ruucf I.IMOME switches the current foreground and background
= processors. Chapter 9.

n"u"ﬂ T increases the display for the foreground processor by one
= line and decreases the background processor display by
one line. Chapter 9.

lTsum " 1 decreases the display for the foreground processor by one
' | line and increases the background processor display by one
line. Chapter 9.

Sample System Management Commands

This series of examples illustrates the use of the commands already described.

AD>?
CLIVY-0

AO0>HELP

Key-in Sequence Comments

? "ETU"'] The ? function displays the version number of the current
Command Line Interpreter. Note that ? is one example
of a command that does not correspond to a file on the
disk. The ? command is always resident in memory.

HELP |rerurn | The HELP command is one of the most important com-
mands for the new user.

42

iPDS™ User’s Guide

Command Applications

error number.

ERKEKKKKKKKKKKKKK K KKK

ASN80

Help is available for the following commandsa definitions. and errors.
Type HELP followed by the command name. the definition word. or the

ISIS-PDS COMMANDS KXKKKKKKRKKKKKKRKRKRKKK

COPY
DIR
JOB
0BJHEX

ASSIGN ATTACH ATTRIB
DEBUG DELETE DETACH
ENDJOB HEX0BJ IDISK
LIB LINK LOCATE
RENAME SERIAL SUBMIT

KKKXKKXKEKKKKKRKK K KKK
'/'(assignconsole input)
'"#'(assignoutput to CRT)

'?'(return CLI version)

XEEERKXRKKEXKXKRKKKK X KKK

SPECIAL FUNCTIONS EXEKKKKKKKKKKRKKKKKKK XX
"'(quick single line submit)
'@'(display fileon CRT)

ESC(line reedit)

DEVICES
NOTATION

A0 > help dir

DEFINITIONS

XKEKKRKKRKRKKRKKKKKKKKKK KX

FUNCTIONKEYS
WILDCARD CHARACTERS

KEYBOARD CONTROLS

Key-in Sequence

Comments

HELP displays information about the system. Additional
information is displayed about any of the names shown in
this screen by typing HELP followed by the name.

Type T while holding down the FUNCT key to switch to

fo— T
help dir |[rerunn

typewriter mode on the keyboard. Then, characters typed
at the keyboard are lower case unless the SHIFT key is
used. The output displayed on the CRT screen by a pro-
gram is not affected by FUNCT-T.

Typing help dir returns information about the DIR
command.

4-3

Command Applications iPDS™ User’s Guide

Displays index of disk files on the specified disk |
device

DIR[TO <pn>]IFOR <pn>1[<n>1[I|J|KILIFlOIPI2Z]

TO <pn> Device toreceivedirectorylisting.

FOR <pn>Scopeof thedirectory listing.

<n> Logical device formwhichfilesarelisted.

I All filess including those with the invisible attri-
bute I.arelisted.
Only fileswithUser Defined attribute J included.
Only fileswithUser Defined attribute Kincluded.
Only fileswithUser Defined attributel included.
Fast listingi only filenames and extensions.
Single columnlisting.
Singledrivedirectory.
Only summary lineis listed.

AO>help esc

Key-in Sequence Comments

!mm ” S Type S while holding down the FUNCT key to slow down
. the scrolling on the screen display.

help esc iRETURN” Typing help esc returns information about the use of the
escape key for editing command lines.

Re-edit previous command line or current command line and re-}
execute.

ESC
After entering command. the following keyboard commands canbe used:

ESC Execute entireline

RETURN Execute lineuptocurrentcursor position
— Move cursor left

ke Move cursor right

CTRL-A Encloses characters tobe ingerted

CTRL-B Move cursor tobeginningof line

CTRL-D Delete character at current cursor
CTRL-L Move cursor toendof line.

CTRL-X Terminatere-edit andreturntoISIS
RUBOUT Same as CTRL-D.

AD>HELP FUNCTION

Key-in Sequence Comments

This is the resulting screen display showing the ESC key
information.

4-4

iPDS™ User’s Guide Command Applications

Key-in Sequence Comments

FUNCT ! T The FUNCT-T key combination returns the keyboard to
non-typewriter mode.

uet |)l § Typing FUNCT-S returns the screen to normal scrolling
speed. Both of these function key combinations act as
switches setting and resetting the function every other
time.

HELP FUNCTION Typing HELP followed by FUNCTION returns informa-
tion on the user-defined function keys.

[RETURN

FUNCTIONKEYS

FUNC-<n> Pressing the 'FUNC' key and a numerical key-.
simultaneously. causes console input to be
input from the file JOB<n>.(CSD. <n>'s value
isfromDto9.

FUNC=R Pressing the 'FUNC' key and "R’ will cause a
software reset. If running under DEBUG. it
will cause abreak inuser programexecution.

FUNC-S Toggles the display rate of the CRT.

FUNC-T Toggles the keyboard between upper and lower
case.

FUNC-HOME Alternately switches the keyboard between

processors on a dual processing system. Also-
switches the bottom part of the screenwith the
top part. -

FUNC-1 Increases by one line the display size of the
bottom half of the CRT screen in adual process-
ing system-

FUNC-<Down Arrow> Decreases by one line the display size of the
bottom half of the CRT screen in adual process-
ing system.

Comments

This is the screen display resulting from the HELP
FUNCTION command.

4-5

Command Applications iPDS™ User’s Guide

ISIS-PDS. V1.D

AD> help wildcard

Key-in Sequence Comments
Funcr R Type R while holding down the FUNCT key to reset the
4 processor. :
F”"C‘J T Switch to typewriter mode.
| vesveessendat]
help wildcard Type help wildcard to display information on wildcard
characters.
RETURN

WILDCARD CHARACTERS

The wildcard characters (x and ?) can appear ina filename with the fol-
lowing meanings. The chart below lists the commands that allow wildcard
characters.

* Inafilename specifies amatch to any characters and any number
of characters inthat position.

? In a filename specifies a match to any single character in that
position.

.The commands that allowwildcard characters are:
ATTRIB
COPY (To Transfer), i.e. 1 non-appending formof the command.
DELETE '
DIR

Key-in Sequence Comments

This screen is displays the information concerning wild-
card characters.

Ir
If‘“"“ ” T Type the FUNCT-T combination to return to non-
> typewriter mode..

4-6

iPDS™ User’s Guide

Command Applications

Device Management Commands

Many different devices can be connected to the development system for data stor-
age and input/output operations. The operating system provides commands to
control some of these devices. The following device management commands are
covered in Chapter 5. The /, #, and FUNCT-<n> commands are not separate
files on the disk but are part of the operating system that is resident in memory at

all times.

IDISK

ASSIGN

#

FUNCT|

| <n>

SERIAL
ATTACH

DETACH

initially prepares disks and bubble memory for use with the
operating system.

displays or assigns the mapping of physical to logical devices.

re-assigns the system output to the CRT display screen.

| changes the system input from the keyboard to the file

named JOB<n>.CSD where <n> is a one-digit number
from 0 to 9. Pressing <n> followed by the RETURN key is
the same as pressing FUNCT <n>. This function is useful
in executing often used commands such as the DIR com-
mand and the HELP command. Examples are in the section
“Program Execution Commands” in this chapter.

changes the system input from the keyboard to a file or
device which is specified by the user. See the JOB command
for related information. An example of this command is
given in the “Program Execution Commands” of this
chapter.

initializes the serial I/0O port.

assigns a row of multimodules to a processor.

releases a row of multimodules from a processor.

47

Command Applications

4-8

iPDS™ User’s Guide

Formatting a Non-System Disk

In this series of examples, a non-system disk is formatted on a multiple drive
system and then on a single drive system.

AD>IDISK :F1:NONSYS.DSK
NON-SYSTEM DISKETTE

AD>

Key-in Sequence

IDISK :F1:NONSYS.DSK

RETURN

]

AD>IDISK :FO:NONSYS.DSK P
NON-SYSTEM DISKETTE

AD>

Key-in Sequence

LOAD OUTPUT DISKETTE~ THEN TYPE (CR)
LOAD SYSTEM DISKETTE~ THEN TYPE (CR)

Comments

This command illustrates formatting a non-
system diskette on a system with more than
one drive. The next screen display illustrates
formatting of a non-system disk on a single
drive system. See Chapter 3 for an example of
formatting a system disk.

Place a new diskette (without a write protect
tab) in drive 1. Enter the command as shown.
When the new disk is formatted, the operating
system prompt appears.

Comments

IDISK :FO:NONSYS.DSK P This example shows how to format a non-

RETURN

|

RETURN

RETURN

systen diskette on a single drive system.
With the system disk in the drive, enter the
command line.

When the prompt appears, remove the
system diskette and insert the blank diskette
without a write protect tab. Then, press the
RETURN key.

When the next prompt appears, remove the
diskette being formatted, and insert the
system diskette. Then, press the RETURN
key. The operating system prompt appears.

iPDS™ User’s Guide Command Applications

Changing the System Input and Output Devices

In the next few examples, the ASSIGN command is illustrated as it would be used

to assign logical device names recognized by the operating system to physical
devices.

AD>ASSIGN : X

LOGICAL PHYSICAL

:CI:
:CO:

:FO: 1]
:Fl: 1
:Fa2: 2
:F3: 3
tFY: L] BUBBLE
:FS: 5 BUBBLE

Key-in Sequence Comments

ASSIGN |[reTurN| The ASSIGN command is a multiple purpose command.
In the simple form shown, it displays the mapping of ISIS
logical device names to the corresponding physical
devices of the system. This screen example shows the

default assignment after initializing the system from
drive 0.

The ISIS logical device names are shown on the left and
the physical device names are shown on the right. These
names are explained in detail in Chapter 5. However, the
digits 0 through 5 refer to the disk devices and bubble
memory. The digit 0 is the internal disk drive, 4 is the
bubble memory installed at connector J1, and 5 is the
bubble memory installed at connector at J3. The digits 1
through 3 are the optional external disk drives.

49

Command Applications : iPDS™ User’s Guide

A4 >ASSIGN

LOGICAL PHYSICAL

:CI: tVI:
:CO: VO

:FO:] BUBBLE
H 1]
:Fa: 1
tF3: =
HaH 3
:F5: 5 BUBBLE

Ay>

Key-in Sequence Comments

RESET Open the drive door and reset the system. This example
shows the default assignment after initializing the system
ASSIGN |[retuan from the bubble memory multimodule.

Close the drive door and reset the system.

RESET)|

AD>ASSIGN:F1: TO 4

LOGICAL PHYSICAL

BUBBLE

BUBBLE
BUBBLE

Key-in Sequence Comments

ASSIGN :F1: TO 4 In this example, the bubble memory multimodule in-
stalled at connector J1 is assigned to the logical device
RETURN :F1.. This assignment is appropriate for a system with
bubble memory and no external disk drives.

4-10

iPDS™ User’s Guide

Command Applications

AD>ASSIGN :F2: TO 5

LOGICAL PHYSICAL

:CI: VI:

:CO0: Vo:

:FO: 0

:Fl: 4 BUBBLE
:Fa: 5 BUBBLE
F3: 3

Fl:] BUBBLE
H-H 5 BUBBLE

Key-in Sequence Comments

-—

connector J3 to the logical device :F2:. This assignment is
RETURN

appropriate for a system with bubble memory and no ex-
ternal drives.

ASSIGN F2 TO 5 This example shows how to assign the bubble memory at

4-11

Command Applications : iPDS™ User’s Guide

AD>ASSIGN :F1: TO 2
LOGICAL PHYSICAL
:CI:
:CO:
:FO:
tFLl:

:Fa: BUBBLE
:F3:

B BUBBLE
:F5: BUBBLE
AD>ASSIGN :CO: TO :FO:FILES.TXT

AD>

Key-in Sequence Comments

ASSIGN :F1: TO 2 ||reTusn This example shows how to
’ reassign disk drives when a drive is
not working. This eliminates the
need to reconfigure or re-install the
other drives when one drive is not
working. Here, programs which
expect files to be on the logical
device, :F1:, can still be run.

ASSIGN :CO: TO :FO:FILES.TXT This command assigns the system
output file on on drive 0. The dis-
play generated by the ASSIGN com-
mand is not on the screen. This dis-
play is stored in the file FILES.TXT
ondrive 0.

RETURN

DIR |[reTusn After changing the system output
device, type the DIR command. No
output appears on the screen. The
DIR command and the resulting
directory listing are stored in the
file FILES.TXT on drive 0.

! # || |{RETURN After running the DIR command,
enter the # command to return the
system output to the CRT screen.

Using the Serial Port

The next example shows the SERIAL command used to conﬁgure the serial port
and then the ASSIGN command to use the serial port in the system.

AO>SERIAL AB=1200P=N S=2W=8

AD>ASSIGN :CO: TO :SO:
AD>

4-12

iPDS™ User’s Guide

Key-in Sequence

Command Applications

Comments

SERIAL AB=1200 P=N S=2 W=8 There are two steps in using a

ASSIGN :CO: TO :SO:

RETURN

RETURN

RETURN

RESET

serial device: first, configure the
system for the device with the
SERIAL command and, second,
assign the device to one of the sys-
tem’s logical devices with the
ASSIGN command. The SERIAL
command shown here prepares
the system for communication
with an asynchronous, serial
device at a speed of 1200 baud,
with no parity, with two stop bits
and with a word length of 8.

This command assigns the console
output (initially the CRT screen)
to the serial device. The output dis-
play of the command showing the
new assignment of device appears
on the serial device. If no serial
device is connected, the display is
not echoed anywhere. There is no
way to way to determine what is ac-
tually typed in further commands.

A quick way to re-assign the
system output device to the iPDS
CRT screen is with the #
command. Type # followed by the
return key, and the operating
system prompt is displayed on the
iPDS CRT screen, indicating that
system output is again echoed on
the CRT. The # command is
another example of a command
always resident in memory and not
corresponding to a file.

Reset all the assignments to their
defaults by pressing the RESET
key to reset the system.

4-13

Command Applications iPDS™ User’s Guide

File Management Commands

Two important features of the operating system are its device and file handling
capabilities. Several file management commands are provided with the operating
system. The following commands are covered in Chapter 5:
DIR displays a list of the files stored on a disk or on bubble memory.
ATTRIB displays and modifies the attributes of a file.
COPY transfers files and appends files.
DELETE removesfiles from the disk.

RENAME changes the filename and/or extension of a file.

@ displays the contents of a file on the screen. This command is
- in the part of ISIS-PDS that is resident in memory, and it does
not correspond to a command file on the disk.

Displaying a List of Files

The DIR command is used display available files.

AD> DIRFORFILES.TXT
DIRECTORY OF :FO:LEARNPDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
FILES. TXT 8 133k
-]

1432 FREE / 2544 TOTAL BLOCKS
AD>

Key-in Sequence Comments

DIR FOR FILES.TXT This example illustrates a form of the DIR command
| that can be used to find out if a file exists on a drive
' or not. Only the file requested in the FOR clause is
displayed in the listing. A search of all the files on
the disk is not needed. In this screen display, all the
directory information on the file is shown: the
. filename, the number of blocks used by the file, the
length of the file in bytes, and any attributes set for

the file.

iPDS™ User’s Guide

Command Applications

AO0>DIRO

DIRECTORY OF :FO:LEARN.PDS

Key-in Sequence

NAME .EXT BLKS LENGTH ATTR
ISIS .MAP y 512 S
ASMAO0 L0 1459y S
ASXREF 20 4294 S
ASSIGN 1L 3073 S
ATTACH y 582 S
ATTRIB 24 4999 S
CoPY 3L A&3bk S
CREDIT 80 19470 S
CREDIT .MAC y 7 s
DEBUG 12 2spe s
DELETE 20 y4L99 S
DETACH y 43y S
DIR 28 bLk25 S
HELP 1L 3771 S
HEX0BJ 20 434y S
IDISK 3@ 7035 S
IXREF 44 1021k S
LIB 4y 10227 S
LINK S5b 13074 S
LINK .ovL 20 4578 S
LOCATE b0 15021 S
Comments

DIRO

RETURN

CTRL

This sample display results from the DIR command with
the O option which lists the files in a single column with
all the directory information about each file.

Type the CTRL-S key combination to stop the scrolling
of the screen display. The resulting display depends on
when the CTRL-S is typed.

OBJHEX
RENAME
SERIAL
SUBMIT

SYSPDS.LIB
FILES .TXT

AD>

Key-in Sequence

1b
12
1b
2o
1lb

-}

ka2
1432 FREE /7 2544 TOTAL BLOCKS

3347
2557
3148
4k9e
3101
133b

Comments

Type the CTRL-Q combination to continue scrolling of
the screen display. This example shows the rest of the dis-

play from the preceding command.

4-15

Command Applications . iPDS™ User’s Guide

AO>DIRF
DIRECTORY OF :FO:LEARN-PDS
ISIS MAP ASMBO

ASXREF ASSIGN
ATTACH ATTRIB

CoPY CREDIT
CREDIT .MAC DEBUG

DELETE DETACH

DIR HELP

HEX0BJ IDISK

IXREF LIB

LINK: LINK.OVL
LOCATE 0BJHEX
RENAME SERIAL
SUBMIT SYSPDS.LIB
FILES.TXT

1432 FREE 7 2544 TOTAL BLOCKS

AD>

Key-in Sequence Comments

DIR F ||return This sample display shows the results from the DIR com-
mand with the F option. The F option produces a fast list-
ing without the detailed data of the normal directory
listing. The actual display may vary depending on the ver-
sion of the operating system being used.

4-16

iPDS™ User’s Guide

Command Applications

ISIS
ASNao
ASXREF
ASSIGN
ATTACH
ATTRIB
COPY
CREDIT
CREDIT
DEBUG
DELETE
DETACH
DIR
HELP
HEXO0BJ
IDISK
IXREF
LIB
LINK
LINK
LOCATE
0BJHEX

AO0>DIROF
DIRECTORY OF :FO:LEARN.PDS
-MAP

-MAC

-0VL

Key-in Sequence

DIR OF }|return

T crm E

RENAME
SERIAL

SUBMIT
SYSPDS.LIB
FILES.TXT
L432 FREE/254Y4 TOTAL BLOCKS
AD>

Key-in Sequence

CTRL

Q

T
J

Comments

"This example shows the results of combining the O and F

options.

Type the CTRL-S key combination to halt scrolling of the
screen display.

Comments
Type the CTRL-Q combination to continue the scrolling

of the screen display. This example shows the rest of the
display from the preceding command. '

4-17

Command Applications iPDS™ User’s Guide

AO>DIRZ
DIRECTORY OF :FO:LEARN.PDS

1432 FREE 7/ 2455 TOTAL BLOCKS
AD>

Key-in Sequence Comments

DIR Z ||reTurn This screen display shows sample output from the DIR
command with the Z option. The Z option displays only

the summary line of the normal directory listing.

Assigning and Removing File Attributes

The following screens illustrate how attributes are assigned and how these attri-
butes are used.

AO>ATTRIB FO:FILES.TXT J1

FILE CURRENT ATTRIBUTES
tFO:FILES.TXT J
AD>DIRJ
DIRECTORY OF :FO:LEARN.PDS
NAME <EXT BLKS LENGTH ATTR NAME <EXT BLKS LENGTH ATTR
FILES «TXT -} 133k J 8

1432 FREE /7 2544 TOTAL BLOCKS
AOD>ATTRIB DIR

FILE CURRENT ATTRIBUTES
:FO:DIR Y
AO>ATTRIBDIRI1

FILE CURRENT ATTRIBUTES
:FO:DIR SI
AO>

Key-in Sequence Comments

ATTRIB FILES.TXT J1 The ATTRIB command assigns attributes to
files and removes attributes from files. See
RETURN Chapter 5 for a detailed explanation of
attributes. Here, the J attribute is assigned to
the file by specifying the file’s pathname and
the attribute name followed by the digit 1. The
digit 1 sets the attributes; 0 resets it. Attributes
can be used to limit the scope of commands.

4-18

iPDS™ User’s Guide

Key-in Sequence

DIR J

ATTRIB DIR

ATTRIB DIR I1

RETURN

r— - —1
RETURN

RETURN

Command Applications

Comments

When the DIR command is entered followed
by an attribute, the directory listing is pro-
duced for only those files having the specified
attribute. Attributes can be combined to fur-
ther limit the scope of files used in the
command.

The ATTRIB command can also be used to
display the current attributes of a file.

The Invisible attribute is set for the file DIR.
Invisible files are not included in a normal
directory listing.

Key-in Sequence

DIR ||reTurn

Comments

A0> DIR
DIRECTORY OF :FO:LEARN.PDS
NAME <EXT BLKS LENGTH ATTR NAME «EXT BLKS LENGTH ATTR
ISIS -MAP 4 512 s ASMB0 bO L4594 S
ASXREF 20 429y 3 ASSIGN 1b 3073 S
ATTACH L] 5@ 3 ATTRIB 24 4999 S
COPY 3k 83bkb S CREDIT 840 19740 S
CREDIT .MAC Y4 ? s DEBUG 12 2502 s
DELETE 20 4699 3 DETACH 4 434 S
DIR 28 kb5 S HELP 1b 3771 S
HEX0BJ 20 EELL BN IDISK EL 7035 3
IXREF 44y 10216 S LIB 44 LD22? S
LINK S5b 13074 S LINK < OVL 20 4578 S
LOCATE LD 15021 S 0BJHEX 1b 3347 3
RENAME e 2557 S SERIAL 1k 3148 S
SUBMIT 20 4Ykq92 S SYSPDS .LIB 1b 3101 S
FILES «TXT 8 1336 J

’ bbY4
L432 FREE / 2544 TOTAL BLOCKS
AD>

Now that the file, DIR, has the Invisible attribute, it no
longer appears in the normal directory listing even

though it is

still on the diskette.

4-19

Command Applications

4-20

iPDS™ User’s Guide

NAME
ISIS
ISIS
ISIS
ISIS
ASMBOD
ASM&D
ASM&D
ASXREF
ATTACH
COPY
CREDIT
DELETE
DIR

Key-in Sequence

AD> DIRI
DIRECTORY OF :FO:LEARN.PDS
BLKS LENGTH

CEXT
.DIR 1b
.TO 1k
.PDS 52
.MAP y
.ovo 12
.ova 12
.0vy 100
20

y

3b

.MAC Y
20

28

3840
3840
12088
512
1847
2115
24413
429y
522
B3bk
;
L
bb25

ATTR
I F
I F
SI F
N

SI

SI

SI

N

S

S

S

3

N

NAME
ISIS
ISIS
ISIS
ASM80
ASMBD
ASMBD
ASMBD
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP

SEXT
-FRE
-LAB
-CLI

LoVl

.0v3
- 0V5S

Comments

DIR |

RETURN

BLKS
y

y

1b
kO
12

)

8D
1k
2y
a0
12
y
1b

LENGTH
a0

7hb
3113
1459y
2108
998
20037
3073
49499
19470
2502
43y
3771

This example shows the results from the DIR command
with the I option. Note that the I option differs slightly

from the use of the other attributes as options. When
other attributes are used as options, only files with the
specified option appear in the directory. When the I
option is used, Invisible files are included in addition to
the other files. Notice the files near the top of the listing
with the F attribute. The F attribute designates system
files used in formatting a new disk and should not be as-

signed or removed.

CTRL

PDS
SERIAL
SYSPDS

L432 FRE
AOD>

Key-in Sequence

+HLP 72 17376 SI RENAME
1b 3148 S SUBMIT
1k 3101 S FILES

109k

-LIB <TXT

E /2544 TOTAL BLOCKS

Comments

Il CTRL

e
20
[}

S Type CTRL-S to halt the scrolling of the screen.

2557 S
492 S
133b

Q Type the CTRL-Q combination to continue scrolling the
screen display. Depending on the version of the operating

system used, directory listings may vary slightly, but the
listing will be similar to this one. -

iPDS™ User’s Guide Command Applications

AO>ATTRIBDIRIO
FILE CURRENT ATTRIBUTES

:FO:DIR S
AO>

Key-in Sequence Comments

ATTRIBDIRIO To remove an attribute from a file, specify the file’s path-
name and the attribute name followed by the digit 0 to
[RETUR" remove the attribute.

Copying Files

Two files are created with the COPY command in the next example. These files
will be used in later examples.

A0>COPYFILES.TXT TO FILES2.TXT
COPIED :FO:FILES.TXTTO :FO:FILES2.TXT

AD>COPY FILES.TXT TO FILES3.TXT
COPIED :FD:FILES.TXTTO :FO:FILES3.TXT
AD>

Key-in Sequence Comments

COPY FILES.TXT TO FILES2.TXT The file being copied (the source
file) was created in a previous
example. The COPY command is
used here to duplicate the source
file in the destination file. After
this command is complete, the file,
FILES2.TXT, contains a copy of
tlre data in FILES.TXT as indicated
in the message displayed.

RETURN

COPY FILES.TXT TO FILES3.TXT The file, FILES3.TXT, contains a

RETURN duplicate of the data in
FILES.TXT.

4-21

Command Applications

4-22

Changing Filenames

iPDS™ User’s Guide

The name of a file can be changed with the RENAME command as shown in the

following example.

AD>RENAMEFILES.TXT TO FILES1.TXT

RENAMED FILES.TXT TO FILES1.TXT
AD>

Key-in Sequence

RENAME FILES.TXT TO

FILES1.TXT

Appending Files

RETURN

Comments

The RENAME command is used to rename the
source file. It does not create a new file nor does
it affect the content of the source file. There is
now no file named FILES.TXT; it is now named
FILES1.TXT.

The COPY command can also be used to appehd files as shown in the next

example.

A0>COPY FILES1.TXT, FILES2.TXT, FILES3.TXT TO FILES4.TXT
APPENDED :FO:FILESL.TXT TO :FO:FILESY.TXT
APPENDED :FD:FILES2-TXT TO :FO:FILESYH.TXT

APPENDED :FO:FILES3.TXT TO :FO:FILESY.TXT

AD>

Key-in Sequence

COPY FILES1.TXT, FILES2.TXT,
FILES3.TXT TO FILES4.TXT

‘HRETURN

Comments

The COPY command can also be
used . to append files. If more than
one source file is specified, each
source is appended to the previous
source. In this case, the files created
in the previous examples are
appended. Since FILES1.TXT,
FILES2.TXT, and FILES3.TXT all
contain the same data, FILES4. TXT
will contain three copies of this data.

iPDS™ User’s Guide Command Applications

Displaying a Text File on the CRT

The @ command can be used to display a text file on the CRT. The COPY com-
mand can also be used. However, with the @ command, several controls are
available that determine the speed of the display. The @ command also provides
other controls over the display of the file. Any byte in the file with no correspond-
ing display character is displayed as a blank.

' AO0> @FILES1.TXT \

LOGICAL PHYSICAL

H VI
:CO: tFO:FILES.TXT

:FO: 8]
:Fl: 1
:Fa: I
:F3: 3
HLH Yy
:FS: 5

BUBBLE
BUBBLE

AD>DIR

DIRECTORY OF :FO:LEARN.PDS

ISIS -MAP L] 51e ASNMaD 60 L4594 S
ASXREF 20 4a9y ASSIGN b 3073 S
ATTACH Yy sae ATTRIB 24 4999 S

Key-in Sequence Comments

@FILES1.TXT The @ command is used to display the contents of a file
on the CRT screen. It should be used to display ASCII
files. The @ command displays the file until the screen is
full and then stops. In this case, the file, FILES1.TXT, is
displayed. Remember, the file was created by assigning
the system output to the file. Thus, the output from the
ASSIGN command appears first in the file. Then, the
DIR command was entered. So, the DIR command line
and the output from the DIR command appears next in
the file.

RETURN

4-23

Command Applications

4-24

CoPY

CREDIT .MAC
DELETE

DIR

HEX0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT
FILES -TXT

AD> #

AO>

Key-in Sequence

RETURN

E]

3k

y
20
28
20
uy

5h

kO
12
20

y

Comments

83kk
-
4699
bb25
434y
1021k
13074
15021
2557
(TE
0

L4e0 FREE /7 2544 TOTAL BLOCKS

nrnmnnmmununumunuy

CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK
OBJHEX
SERIAL
SYSPDS

L% I T % B B 7 B 7 B 7 I 7% B % I %)

iPDS™ User’s Guide

Press any key other than one of the @ commands (E, L,
Z,B,F, S, orP) to continue the display. The @ command
then displays the next screen of data from the file. The

RETURN key is used here.

The display is now at the end of the file. Notice the #
which was the command entered to change the output
back to the CRT screen in the example where
FILES.TXT was created. Press the E key to end the dis-

play and return to the operating system.

iPDS™ User’s Guide

Command Applications

AD> @FILES2.TXT

LOGICAL PHYSICAL

:CI: :VI:

:CO: tFO:FILES.TXT

:FO: 0

tFl: 1

:F2: 2

:F3: 3

HH L} BUBBLE

:F5: 5 BUBBLE
AD>DIR
DIRECTORY OF :FO:LEARN.PDS
NAME «EXT BLKS LENGTH ATTR NAME <EXT BLKS LENGTH ATTR
ISIS «MAP L} 512 S ASMa0 b0 4594 S
ASXREF 20 4294 S ASSIGN 1k 3073 S
ATTACH L] 522 s ATTRIB 2y 4999 S

Key-in Sequence Comments

@FILES2.TXT

RETURN

This example show that FILES2.TXT contains the same
data as FILES1.TXT. The @ command is another exam-
ple of a command that is resident in memory. There is
not file, @, corresponding to this command.

CoPY
CREDIT .MAC
DELETE

DIR

HEXO0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT
FILES

- TXT

AD> #

AD>

Key-in Sequence

RETURN

E

L1420 FREE /7 2544 TOTAL BLOCKS

EL 83bb S CREDIT 4019470 S
Y ? 3 DEBUG 12 2502 s
20 4699 S DETACH L] 43y s
2a bb25 S HELP ik 3771 S
20 43yy S IDISK 3 7035 S
4y 10216 S LIB 44 10227 S
Sk 13074 S LINK -OVL 20 4578 S
L0 15021 S 0BJHEX b 334? s
pT 2557 § SERIAL 1k 3L48 S
=) 4692 s SYSPDS .LIB 1k 3101 S
] 0

Comments

Press any key to continue the display.

Again, this is the end of the file. Press the E key to end
the display and return to the operating system.

4-25

Command Applications

4-26

Key-in Sequence

@FILES3.TXT

Key-in Sequence

AD> @FILES3.TXT

LOGICAL PHYSICAL

:CI: :VI:
:CO0: :FO:FILES.-TXT

:FO: [n]
tFl: 1
:Fa: 2
3
n
5

:F3:
Hil N
:F5:

BUBBLE
BUBBLE

AD>DIR

DIRECTORY OF :FO:LEARN.PDS
NAME «EXT BLKS LENGTH
ISIS -MAP L] 512
ASXREF 20 429y
ATTACH 4 52a

RETURN

Comments

NAME
ASMAED
ASSIGN
ATTRIB

CoPY
CREDIT
DELETE
DIR
HEX0BJ
IXREF
LINK
LOCATE
RENAME
SUBMIT
FILES -TXT Y 0

1420 FREE / 2544 TOTAL BLOCKS
AOD> #

AD>

Comments

[ZEZ R Z R Z Rz N2 N 2)

CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK
OBJHEX
SERIAL
SYSPDS

SEXT

BLKS
k0
ik
24

LENGTH
14594
3073
4999

194708
2502
43y
3771
7035
1pea?
4578
3347
3Lud
3101

(7 I 7 T 7 T 7 T 7 T 7% I % I % I % |

iPDS™ User’s Guide

This example shows that FILES3.TXT contains the same
data as FILES1.TXT and FILES2.TXT.

RETURN Press any key, except one of the @ command keys, to
continue the display.

E Press the E key to end the display and return to the
operating system.

iPDS™ User’s Guide Command Applications

LOGICAL PHYSICAL

:CI: VI
:CO: sFO:FILES.TXT

:FO: 0
:F1: 1
:F2: 2
tF3: 3
HLH Yy BUBBLE ;
:F5: 5 BUBBLE

AO>DIR

DIRECTORY OF :FO:LEARN.PDS

NAME -EXT BLKS LENGTH ATTR NAME +EXT BLKS LENGTH ATTR
ISIS -MAP Y4 512 S ASMA0 B0 14594
ASXREF 20 429y s ASSIGN 1k 3073
ATTACH Y 522 § ATTRIB a2y 4999 S

Key-in Sequence Comments

AD> @FILES4.TXT
N
S

@FILES4.TXT In this example, the output file from the append opera-
tion is displayed. This file should contain three copies of
iRETURN

the data in the other files.

4-27

Command Applications

iPDS™ User’s Guide

AD> #

LOGICAL

:CI:
:CO:

1420 FREE 7 2544 TOTAL BLOCKS

PHYSICAL

—
CoPY ELY 83kt S CREDIT 80 19470 S \
CREDIT -MAC 4 73S DEBUG b 2502 S
DELETE 20 4b99 S DETACH Y4 43y s

DIR 28 bk25 S HELP b 3771 S
HEX0BJ c0 43yy s IDISK 32 7035 S

IXREF 44 1021k S LIB 4y 10227 S

LINK 56 13074 S LINK OVL 20 4578 S

LOCATE b0 15021 S OBJHEX 1b 3347 S
RENAME 12 2557 S SERIAL 1b 3148 S
SUBMIT 20 yk92 S SYSPDS -LIB 1b 3101 S

FILES -TXT Y 0

Y13

:VI:
:FO:FILES.TXT

Key-in Sequence Comments
RETURN Press any key to continue the display
:CI: :VI:
1C0: :FO:FILES.TXT
:FO: 0
:Fl: 1
:Fa2: e
:F3: 3
:F4: 4 BUBBLE
:F5: 5 BUBBLE
AD>DIR

DIRECTORY OF :FO:LEARN.PDS

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH
ISIS .MAP Y 512 S ASMAD GO 14594 S
ASXREF 20 4aqu s ASSIGN 1L 3073 S
ATTACH Y 522 S ATTRIB 2y 4999 S
copy 36 B3kLkL S CREDIT 80 19470 S
CREDIT .MAC y 7S DEBUG 12 2502 s
DELETE 20 4699 S DETACH 4 43y s
DIR 28 bba5 S HELP 1k 3771 S
HEX0BJ 20 43wy S IDISK g 7035 S
IXREF yy 1021k S LIB yy 10227 S
LINK 56 13074 S LINK -O0VL 20 4578 S
Key-in Sequence Comments

’ RETURN

Press any key, except one of the @ command keys, to

4-28

continue the display. Continue pressing a key to continue
the display until the end of the file. At the end of the file,
the data has appeared three times and pressing a key to
continue the display has no effect.

iPDS™ User’s Guide Command Applications

Key-in Sequence Comments

Iu_ The @ command has several subcommands in addition
2 to E. Press the L key. This causes the command to enter
line mode where the file is displayed line by line instead
of page by page.

Eﬁ Press the B key several times or hold it down until the
screen is blank. This causes the @ command to back up
1024 characters (1K bytes) at a time. Eventually, the

B beginning of the file is reached. Since the command is in

B

B

line mode, only the first line of the file is displayed. It is a
blank line, so the screen display is blank.

LOGICAL PHYSICAL
:CI: VIt
:C0: tFO:FILES.TXT

:FO:
HI

0
1

Key-in Sequence Comments

RETURN Press any key (RETURN is shown here) until the first
line of the file appears. Press any key several times to dis-
play the file one line at a time.

RETURN

RETURN

RETURN

IRETURN
RETURN

RETURN

4-29

Command Applications

4-30

iPDS™ User’s Guide

HqH tFO:FILES.TXT

:FO: 0

:FLl: 1

Hi-H e

:F3: 3

:Fu: 4 BUBBLE

:F5: 5 BUBBLE
AD>DIR
DIRECTORY OF :FO:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS -MAP y 512 S ASMBO LD 14594 S
ASXREF 20 4294 S ASSIGN 1L 3073 S
ATTACH y 522 S ATTRIB ay 4999 S
CoPY L a3kb S CREDIT 80 19470 S
CREDIT .MAC y 7S DEBUG 12 2502 S
DELETE 20 4L99 S DETACH Y 43y s
DIR 28 bka5 S HELP 1L 3771 S
HEXO0BJ 20 43ayy S IDISK 32 7035 S
IXREF 44 1021k S LIB 4y 102287 S
LINK 5L 13074 S LINK .oVL 20 4578 S
LOCATE O 15021 S 0BJHEX 1b 3347 S

Key-in Sequence Comments

:F5: BUBBLE

AD>DIR

DIRECTORY OF :FO:LEARN.PDS
NAME +EXT BLKS LENGTH
ISIS -MAP L] 512

ASXREF 20 4y
ATTACH Yy sae
COPY 3b 83kb
CREDIT .] v
DELETE 20 4699
DIR 28 bb25
HEXO0BJ

Key-in Sequence Comments

[ZEZEZEZEZ N2 N Z 2]

NAME
ASM80
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK

.EXT BLKS
60
1k
24
a0
12

y
1b
32

LENGTH
1459y
3073
4999
19470
2502
43y
3771

(ZEZEZEZEZ 2N Z 2]

E Press P to switch back to Page mode and display the file a
page at a time.

Press S to enter a Slow scroll mode. This causes the file to
be displayed slowly without stopping at the end of the

“ "CTRf pdge. Press the CTRL-S to stop the display at any time.

iPDS™ User’s Guide

Command Applications

:F5: 5

AD>DIR

NAMNE
ISIS
ASXREF
ATTACH
CoPY
CREDIT
DELETE
DIR
HEX0BJ
IXREF
LINK
LOCATE
RENAME
SUBHMIT
FILES

<EXT
-MAP

«TXT

AOD> #
AD>

DIRECTORY OF :FO:LEARN.PDS

L420 FREE / 2544 TOTAL BLOCKS

BUBBLE
BLKS LENGTH ATTR NAME +EXT BLKS LENGTH A
L] 512 S ASNA0 L0 14594 S
0 4294 s ASSIGN 1b 3073 3
L] 5@z § ATTRIB a2y 4999 S
3b 83bb S CREDIT 80 19470 S
4y 783 DEBUG e 2502 s
20 4699 S DETACH 4 43y S
28 bb25 S HELP 1b 3?71 S
c0 434y S IDISK EX 7035 S
44 1021k S LIB 44 L022? S
56 13074 S LINK OVL 20 4578 S
LD 15021 S O0BJHEX b 3347 S
12 2557 S SERIAL 1b ERLT- TN
20 Yb9e S SYSPDS .LIB 1k 3101 S
4 0
Laa

Key-in Sequence

RETURN

F

Comments

Press any key (the RETURN key is used here) to con-
tinue the slow scroll display.

Press the F key to speed up the display. This causes the
file to be displayed in a Fast scroll mode until the end of
the file.

4-31

Command Applications iPDS™ User’s Guide

ASXREF 20 - 4294
ATTACH 4 s2e
COPY 3k 83khL
CREDIT . Y ?
DELETE 20 4699
DIR 28 bbd5
HEXO0BJ 20 434y
IXREF 44 1021k
LINK 56 13074
LOCATE L0 15021
RENAME 12 2557
SUBMIT 20 4b9e
FILES - TXT 4 D

ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK -
0BJHEX
SERIAL
SYSPDS .LIB

7% T 7 T 7 T 7 T 7 T 7 N 7 B 2 T 2 I 7 B 7o B 2 |

N
N
N
N
S
S
N
N
S
S
S
S

1420 FREE / 2544 TOTAL BLOCKS
AD>#

AD>

Key-in Sequence Comments
4 Press Z to display the last 1024 characters (1K bytes) of
» the file. ‘
E Press E to end the display and return to the operating
system.

AD>COPY FILES1.TXTTO :CO:

Key-in Sequence Comments

COPY FILES1.TXTTO :CO: The COPY command can also be used to
display the contents of a file on the CRT
RETURN screen. However, the display cannot be
controlled as with the @ command. The
specification :CO: is the pathname of the
console output device. This command
copies the file to the device currently as-
signed to receive system output. Note
that displaying a non-ASCII file can have
unpredictable results.

4-32

iPDS™ User’s Guide

Command Applications

HCH Y BUBBLE

:FS: 5 BUBBLE
A0O>DIR
DIRECTORY OF :FO:LEARN.PDS
NAME -EXT BLKS LENGTH A
ISIS «MAP Yy 512 s
ASXREF 20 4294 S
ATTACH] 522 S
CoPY Ib 43bL S
CREDIT .-MAC 4 ? S
DELETE 20 4699 S
DIR 28 bbk25 S
HEXO0BJ 2o LELL N
IXREF Hy 102k S
LINK 5b 13074 S
LOCATE L0 15021 S
RENAME L2 2557 s
SUBMIT 20 4b92 S
FILES «TXT L] a]
1420 FREE /7 2544 TOTAL BLOCKS
AD> #
COPIED :FO:FILESL.TXTTO :C0:
AD>

TTR

NAME
ASMa0
ASSIGN
ATTRIB
CREDIT
DEBUG
DETACH
HELP
IDISK
LIB
LINK
0BJHEX
SERIAL
SYSPDS

CEXT

-0VL

.LIB

BLKS
b0
1k
2y
a0
ie

y
1b
EN
4y
20
1k
1b
1k

LENGTH
1459y
3073
4999
19470
2502
43y
3771
7035
10227
4578
3347
3148
3101

TTR

[% I %0 N 72 N % TN 7 BN % I % T % T 7 T 7% I % I 7 I 7% B> 3

Comments

This screen shows the results from entering the previous

command

4-33

Command Applications iPDS™ User’s Guide

Using Wildcard Characters

Wildcard characters are placeholders that can be used in filenames to hold the
place of the actual filename character. For example, the * wildcard character takes
the place of any number of characters in a filename. The following examples show
the use of wildcard characters.

AD>DIRFORFILES?.*
DIRECTORY OF :FO:LEARN.PDS .
NAME JEXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
FILESL .TXT a 1336 FILESZ -TXT 8 133k
FILES3 .TXT & 133b FILESY .TXT a 4oos

Yy

139k FREE /7 2544 TOTAL BLOCKS
AD>RENAME FILES1.TXT TO PROGA.SRC

RENAMED FILESYL.TXT TO PROGA.SRC
AD>RENAMEFILES2.TXT TO PROGA.OBJ
RENAMED FILES2.TXT TO PROGA.OBJ
AD>RENAME FILES3.TXT TO PROGA.BAK
RENAMED FILES3.TXT TO PROGA.BAK
AOD>RENAMEFILES4.TXT TO PROGA
RENAMED FILES4.TXT TO PROGA

AD>

Key-in Sequence Comments

DIRFORFILES?.* This example shows the use of the wildcard
characters: ? and *. The ? character can be
given as part of a filename. It substitutes for
any single character in the position where it
appears. The * character can be given as part
of a filename and substitutes for any number
of characters starting at the position where it
appears. Thus, the DIR command in this
example is for a directory of any file beginning
with the characters FI L E S, with any charac-
ter in the sixth position and with any
extension. The result is shown in the screen.

RENAME FILES1.TXTTO The file, FILES1.TXT is renamed to
PROGA.SRC. PROGA.SRC

RETURN

RETURN

RENAME FILES2.TXT TO FILES2.TXT is renamed to PROGA.OBJ.

PROGA.OBJ [T,

RENAME FILES3.TXT TO FILES3.TXT is renamed to PROGA.BAK.
PROGA.BAK

RETURN

RENAME FILES4A.TXT TO FILES4.TXT is renamed to PROGA.
PROGA

RETURN

4-34

iPDS™ User’s Guide

AD>DIRFORFILES?.*

DIRECTORY OF :FO:LEARN.PDS

NAME .EXT BLKS LENGTH ATTR NAME +EXT BLKS LENGTH ATTR
0

139bL FREE 7/ 2544 TOTAL BLOCKS

AD>DIRFORPROGA.*

DIRECTORY OF :FO:LEARN.PDS

NAME LEXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
PROGA .SRC a 1336 PROGA -0BJ a 1336
PROGA .BAK 8 133L PROGA a yooa

4y

1396 FREE / 2544 TOTAL BLOCKS
AD>ATTRIB PROGA.* J1

FILE CURRENT ATTRIBUTES
:FO:PROGA.SRC J
:FO:PROGA.OBYJ J
:FO:PROGA.BAK J
:FO:PROGA dJ

AD>COPY**TO:F1:*.*J

COPIED :FO:PROGA-SRCTO :F1:PROGA.SRC
COPIED :FO:PROGA.0BJ TO :FL:PROGA-0BJ
COPIED :FD:PROGA-BAK TO :FL1:PROGA.BAK

AD>

COPIED :FO:PROGATO :FL:PROGA

Key-in Sequence

DIR FOR FILES?.*

RETURN

DIR FOR PROGA.*

RETURN

ATTRIB PROGA.* J1

RETURN

COPY **TO :F1:*.*J

RETURN

Comments

Verify that all the files are renamed.

The results of this command show that all the files
are renamed.

Backing up files means saving a copy of the fileson a
second disk. Saving back-ups of important files is a
good practice to adopt to avoid losses. The first step
in backing up a group of files is to assign a unique at-
tribute to all the files to be backed up. For this
example, the ATTRIB command is used to assign
the J attribute to the files to be backed up. The
ATTRIB command accepts wildcard filenames.

The second step in backing up a group of files is to
copy the files with the unique attribute. This exam-
ple assumes a multiple drive system with a format-
ted disk in drive 1. Use the non-system disk created
in a previous example. Also shown is the use of
wildcard filenames with the COPY command. The
unique attribute limits the scope of the wildcard file
specification. Here, all files with the J attribute set
are copied.

Command Applications

4-35

Command Applications

4-36

AD>DELETE PROGA.*Q
:FO:PROGA-SRC- DELETE? N
:FO:PROGA.0BJ- DELETE? Y
:FO:PROGA.0BJ DELETED
:FO:PROGA.BAK- DELETE? Y
:FO:PROGA.BAK. DELETED
:FO:PROGA- DELETE? Y
:FO:PROGA~ DELETED

AO>DIRFORPROGA.x

DIRECTORY OF :FD:LEARN.PDS

NAME .EXT BLKS LENGTH ATTR

PROGA .SRC 8 133k 4

1432 FREE 7/ 2544 TOTAL BLOCKS
AD> :

Key-in Sequence

DELETE PROGA.* Q RETURN

N || [{reTURN

Y [perom
ﬂ? IF&LK

DIR FOR PROGA.*

RETURN

iPDS™ User’s Guide

NAME .EXT BLKS LENGTH ATTR

Comments

This example shows the use of wildcard
characters to delete a group of files. The
Q option is used so that the command
prompts before deleting each file.

Because N is entered in response to the
first prompt, the file, PROGA.SRC, is
not deleted. Do not delete this file. It is
used in a later example.

Delete the other files specified.

The DIR command for PROGA.* veri-
fies that all the files except PROGA.SRC
were deleted.

iPDS™ User’s Guide

Command Applications

File Operations With a Single Drive System

Special considerations must be made to handle files efficiently on a single drive
system. The following examples illustrate the techniques of using a single drive
system. Appendix E contains some additional techniques and procedures for use

with single drive systems.

AOD>COPYDIRTODIRP

COPIED :FO:DIRTO :FO:DIR

AO>DIRFORDIRP

DIRECTORY OF :FO:NONSYS.DSK

DIR 28 bhas

247?7b FREE 7 2544 TOTAL BLOCKS
LOAD SYSTEMDISKETTE~ THEN TYPE (CR)
AD>

Key-in Sequence

COPYDIRTODIRP [[rerum|

LOAD SOURCE DISKETTE~ THEN TYPE (CR)
LOAD OUTPUT DISKETTE~ THEN TYPE (CR)

LOAD SYSTEMDISKETTE THEN TYPE (CR)

LOAD SOURCE DISKETTE~ THEN TYPE (CR)

NAME «EXT BLKS LENGTH ATTR

28

RETURN

RETURN

‘\

NAME «EXT BLKS LENGTH ATTR

Comments

This screen is an example of copying to
disk other that the system disk on
single drive systems. The P option is
used to pause while the disks are alter-
nately removed and inserted.

Press RETURN to begin the copy,
since, the source file is on the system
disk. When the source file is not on the
system disk, the system disk should be
removed and source disk inserted
before pressing the RETURN key.

Wait until the red LED on the drive is
off and motor has stopped, indicating
that the drive is not being accessed.
Remove the source diskette and insert
the output diskette. Press the
RETURN key to continue the copy.
Use the non-system diskette created in
a previous example as the output
diskette. The disk used for output must
have been formatted with the IDISK
command first.

(continued)

4-37

Command Applications iPDS™ User’s Guide

Key-in Sequence Comments

RETURN When the file is copied, a message is
displayed and a prompt is issued to
insert the system disk. Remove the
output diskette and insert the system
diskette when the disk drive motor is
off. Press RETURN to end the copy
and return to the operating system.
When copying groups of files, there
may be several alternations of loading
the source and output diskette before
inserting the system diskette and
completing the copy. Be careful to
insert the correct diskette at each
prompt to ensure the correct copying of
data.

DIRFORDIR P |jreturn This is how to display a directory for a
disk other than the current system disk.
The P option causes the system to
pause to insert and remove diskettes.

RETURN When the prompt appears, and the disk
drive motor is off, remove the system
diskette and. insert the diskette for
which a directory is required. Use the
non-system diskette from the previous
example. -

RETURN A prompt is given after the directory is
'displayed. Remove the non-system dis-
kette and insert the system diskette.
Press the RETURN key to return to the
operating system prompt.

4-38

iPDS™ User’s Guide

AO>COPYDIRTOFILES P

LOAD SOURCE DISKETTE~ THEN TYPE (CR)
LOAD QUTPUT DISKETTE. THEN TYPE (CR)
COPIED :FO:DIRTO :FO:FILES

LOAD SYSTEM DISKETTE. THEN TYPE (CR)

AO>DELETEDIRP

LOAD SOURCE DISKETTE. THEN TYPE (CR)
:FO:FILES. DELETED

LOAD SYSTEMDISKETTE~ THEN TYPE (CR)

AD>

Key-in Sequence

COPYDIRTO FILES P f

—

RETURN

RETUA;

RETURN

DELETEDIRP

RETURN

RETURN

Command Applications

Comments

Rename a file named DIR to a file
named FILES on a non-system disk
in a single drive system. The
RENAME command does not have
the P option and can only be used to
rename files on the system disk. Use
the COPY command followed by
the DELETE command to rename
files that are not on the system disk.

Remove the system disk and insert
the disk from which the file is to be
deleted. Press RETURN to delete
the file.

Remove the system disk and insert
the disk with the file to be
renamed. Press the RETURN.

When the prompt appears to load

the output diskette, do not remove
the disk. Press RETURN and the
file is duplicated with the new
name specified.

Delete the file DIR.

Remove the system disk and insert
the disk from which the file is to be
deleted. Insert the non-system disk
and press RETURN to delete the
file.

A message is displayed when the file
is deleted and a prompt is given to
load the system disk. Insert the
system disk. Press RETURN to
return to the operating system. Run
the DIR command to verify the
deletion. The command line is DIR
FOR DIR P.

4-39

Command Applications iPDS™ User’s Guide

Text Editing Commands

The operating system provides a text editor to create and modify text files interac-

-tively or through a command file. A text file can be a source program to be used as
input to an assembler or a language translator, or it can be a text document like a
letter or a manual. The text editor supplied with the operating system is:

CREDIT interactively creates and modifies text files. See chapter 6 for a
complete description of the macro editing file CMACRO provided
on the iPDS system diskette. Chapter 6 also explains the primary
differences between text editing with the iPDS system and text
editing on other Intel development systems. See the ISIS
CREDIT™ CRT-Based Text Editor User’s Guide, for complete
details on text editing.

Editing Text Files

In the first series of editing examples, a file created in a previous example is edited
after first being renamed. A source program used in a later example is entered into
this file. There must be space on the disk for two times the size of the file being
edited.

AD>RENAME PROGA.SCR TO PPROGA.SRC
RENAMED PROGA.SRC TO PPROGA.SRC

AD>CREDIT PPROGA.SRC

Key-in Sequence Comments

RENAME PROGA.SRC TO The file named PROGA.SCRC fs
y renamed to PPROGA.SRC This
PPROGA.SRC ||reTurn

file is used in the next set of
examples.

CREDIT PPROGA.SRC FETURN The next set of examples illustrate
some simple editing techniques for
use with the CREDIT text editor.

4-40

iPDS™ User’s Guide

Command Applications

ISIS-II CRT-BASEDEDITORVZ.1
OLD FILE SIZE=133hL CHARACTERS

LOGICAL PHYSICAL]

:CI: sVIz]

:CO: sFO:FILES.TXT]
1

:FO: 0t

:Fl: 3t

Hi-H 21

:F3: EN

|

I
AD>DIR|

ASXREF
ATTACH
COPY

F4: 4
:F5: 5

BUBBLE]
BUBBLE]

DIRECTORY OF :FO:LEARN.PDS?
NAME -EXT
ISIS -MAP

1% % I % I %]

BLKS LENGTH ATTR NAME <EXT BLKS LENGTH ATTR]
L] 512 S AsSnan L0 L4594 1
20 4294 3 ASSIGN it 3073 i
Yy 522 s ATTRIB 2y 4999 1
EL] 83bL S CREDIT 80 19470 @ ‘

Key-in Sequence

CTRL Z

i CTAL Z

Comments

When the CREDIT command line is entered, the screen
is cleared and the data from the file to be edited is
displayed. The file used was created in a previous example
and contains the system output of an ASSIGN command
and a DIR command from that example. The up arrow
character at the end of each line is the end of line
character. '

The CTRL-Z function is used to delete text. The first
CTRL-Z typed causes an @ character to appear in the po-
sition where the cursor was. This @ marks the beginning
of the text to be deleted. ‘

Hold the down arrow key. The first @ remains at the top
of the screen. A second @ appears and moves down the
screen a line each time the down arrow is pressed. Hold
down the — key to move the @ to the right side of the
screen so it lines up over the last up arrow on the the
screen. The second @ marks the end of the text to be
deleted. Press CTRL-Z again and the text appearing on
the screen between the two @ markers is deleted from
the file. The remainder of the file now appears on the
screen taking the place of the deleted text. The vertical
bar at the bottom of the screen is the end of file character.

4-41

Command Applications

4-42

@
CREDIT
DELETE
DIR
HEX0BJ
IXREF
LINK
LOCATE
RENAME
SUBMIT
FILES

«MAC

- TXT

Y ?
20 u4e9d
28 bbas
20 43uy
44 1021k
56 13074
LD 15021
12 2557
20 uL92

y i

N
S
S
S
S
S
S
S
3

1420 FREE 7 2544 TOTAL BLOCKS]

AD>#1
@

Key-in Sequence

I CTARL y4
—
CTRL Z

Comments

DEBUG
DETACH

HELP

IDISK

LIB

LINK

0BJHEX
SERIAL
SYSPDS .LIB

!
L&B1

[22 I 22 T % BN % B 7 I 7 B 70 B 72 I 7 |

iPDS™ User’s Guide

To delete this text, enter a CTRL-Z and use the cursor
control keys to move the second marker to the end of file
character. The cursor keys are the keys labeled with
arrows on the right side of the keyboard. Each key moves
the cursor in the direction of the arrow on the key cap.

Then, type CTRL-Z again to complete the deletion.

ISIS-TICRT-BASED TEXTEDITORVZ.1
OLD FILE SIZE=133k CHARACTERS

3980H]
55H]
6000H]
8OH!

C,VALUE]
H,START{
M,Cl

Hi

AH1
STOP{
LOOP|
PGM|

iPDS™ User’s Guide Command Applications

Key-in Sequence Comments

TAB TAB RETURN The part of screen under the dashed
ORG 3980H U line is called the text area. The the
text area is used to display the con-

TAB TAB tents of the files as text is entered,,

VALUE EQU 55H Only the vertical bar, end of file

character, appears in the text area

’RETURN now. Enter the data as shown. As each

character is typed, the end of file
marker is moved one character to the

START | =e|| EQU | 28|l 6000H right. The TAB key moves the cursor

eight spaces the tight. The following

examples show how to correct errors

RETURN that might occur in typing this data.

STOP | ™&| EQU | ™=|| 80OH

- B
RETURN iRETURN

PGM: ||| M1 [»e] C,VALUE

RETURN

mel| LX1 [me]| H,START [[nerons

LOOP: | ™e|| MOV | ™) M,C

mas|[INX |{Ta8|l H Etunn

TAB MOV me|l AH r;-s'run?

18| CPI |[78|| STOP |{reTurn

TAB JNZ& LOOP }|retuan

Tas|| END || 7a8 pGM RETURN

4-43

Command Applications

4-44

iPDS™ User’s Guide

ISIS-IICRT-BASED TEXTEDITORVE.1
OLD FILE SIZE=133b CHARACTERS

Key-in Sequence

3908H]
55H]
5000H]
8O0H]

Comments

The extra G in ORG was not noticed until several lines
had been typed. Use the cursor control keys to move the
cursor to the extra G.

ISIS-II CRT-BASED TEXTEDITORVZ.1
OLD FILE SIZE=133k CHARACTERS

Key-in Sequence

T

CTRL D

3908H]

55H]
LOOOH]
B0H]

Comments

Enter CTRL-D to delete the extra character. The
CTRL-D function deletes the single character at the posi-
tion of the cursor.

iPDS™ User’s Guide

Command Dictionary

OLD FILE

VALUE
START

ISIS-IIC(RT-BASED TEXTEDITORVE.L
SIZE=133bk CHARACTERS

EQ
EqQu

Key-in Sequence

1

3908H]
55H]

LDOOH]
80H|

Comments

The U on the EQU on the second line was left off. Use
the cursor control keys to move the cursor to the space
following the Q.

ISIS-IICRT-BASED TEXTEDITOR V2.1

OLD FILE SIZE=133k CHARACTERS

Key-in Sequence

CTRL
|

—

lc

U

3908H]

55HY
LOOOHT
A0H]

Comments

To insert a single character, enter CTRL-C and, enter the
character to be inserted.

4-45

Command Applications

ISIS-IICRT-BASED TEXTEDITORVZ.1
OLD FILE SIZE=133kb CHARACTERS

iPDS™ User’s Guide

Key-in Sequence

3908H]
55H{
LOOOH]
BOH]

C-VALUE]
MaCl

H1

AsH]
STOP{
LOOP]
PGM]

Comments

The line LXI H,START was omitted. Use the cursor con-

trol keys to move the cursor to the L of LOOP.

Key-in Sequence

ISIS-IICRT-BASED TEXTEDITOR V2.1
OLD FILE SIZE=133bk CHARACTERS

ORG 3908H{
VALUE EQU 55H]
START EqQU LODOH|
STOP EQU 80H]

PGM: MVI CAVALUE]
LXI H,START|

LOOP MOV MaC]
INX Hi
MoV A-H]
cPI STOP]
INZ -~ LOOPY
END PGM]

Comments

A Enter CTRL-A to begin an inseri of more than one
character. The first CTRL-A causes the screen to

‘ CTRL

clear at the point where the insert is to be made.

mas|| L mns|H,START
/- Xi ’ Type the line that was omitted. It appears on the
~ — screen as it is typed. Enter CTRL-A again to end
RETURN the insert.
T ceii |
CTRi A

4-46

iPDS™ User’s Guide Command Applications

ISIS-IICRT-BASED TEXTEDITORVEZ.) ‘

OLD FILE SIZE=133b CHARACTERS
ORG 3908H|
VALUE EqU 55H]
START EqU LODOH]
STOP EQU B0H|
1 .
PGM: MVI CAVALUE]
LIX HASTART]
LOOP MOV Ma (]
INX HY
MoV A~H]
cPI STOP]
JINZ LOOP]
END PGH]

Key-in Sequence Comments

T Here, LIX was typed instead of LXI. Use the cursor con-
trol keys to move the cursor to the I of LIX.

ISIS-IICRT-BASED TEXTEDITORVZ.1
OLDFILE SIZE=133b CHARACTERS

ORG 3908H]
VALUE EQU 55H]
START EQU LODOH]
STOP EQU A0H]
1
PGM: MVI CVALUE]

LXI HASTART]
LOOP MOV MaCt

INX H1

nov AH]

cPI STOP{

JINZ LOOP]

PGMY

Key-in Sequence Comments

Xl Type X1 to replace the characters I and X.

4-47

Command Applications iPDS™ User’s Guide

3908HT
VALUE * EQU 55H]

Key-in Sequence Comments

HOME Press the HOME key to enter the command line mode of
; - the CREDIT text editor. All the examples until now have
illustrated the screen mode of editing. The screen mode
allows interactive editing of text. The command line
mode allows commands to be entered to modify text. In
command mode, a prompt is displayed at the top of the
screen and commands are entered there. This area of the
screen is called the command area. More details on the
command line mode can be found in Chapter 6 and the
ISIS Credit CRT-Based Text Editor User’s Guide.

EX ||rerurnl The EX command exits from the CREDIT text editor
back to the operating system. The file containing the
edited text is updated to contain the new data.

*EX
EDITED TO PPROGA.SRC

AD>

Comments
This screen shows the results of the EX command. The

screen is cleared and the operating system prompt is
displayed.

4-48

iPDS™ User’s Guide Command Applications

Creating a Source Program

In this example, a new file is created with the editor and text is input.

AD>CREDIT DPROGA.DOC

Key-in Sequence Comments

CREDIT DPROGA.DOC A new file is created named DPROGA.DOC,
and documentation describing the program is
entered.

RETURN

4-49

Command Dictionary iPDS™ User’s Guide

| {ISIS-IICRT-BASED TEXTEDITOR V2.1
| NEWFILE

{ MODULE NAME: PPROGA}
PROGRAMMER: JOHN Q. PROGRAMMER|
DATE: 12/1/821
PURPOSE: WRITES A VALUE TO A BLOCK OF MEMORY
REGISTERS USED:A — MSB OF END ADDRESS OF BLOCK OF MEMORY BEING WRITTEN{
C — VALUE BEING WRITTEN TO MEMORY|
HL— INITIALLY START ADDRESS OF BLOCK OF MEMORY BEINGWRITTEN{

CHANGED DURING MODULE TO CURRENT BYTE OF MEMORYBEING | |
WRITTEN.{ '

Key-in Sequence Comments

MODULE NAME: [ﬂ s

The screen is cleared and the text

S area is blank. The sign-on message
PPROGA |/reTurn appears in the command area.
Enter the data as shown using any

PROGRAMMER: |/ s A8 editing commands necessary to cor-
: . rect errors.

JOHN Q. PROGRAMMER |[[rerurn

DATE: [[ms)| |[[mae]| [[mss] 12/1/82
PURPOSE:E ms|| WRITES A
VALUE TO A BLOCK OF
MEMORY IRE

REGISTERS USED: | ms

A — MSB
OF END ADDRESS OF BLOCK
OF MEMORY BEING WRITTEN

—— ——

RETURN

[e] [] ¢ — vALUE BEING
WRITTEN TO MEMORY

ms|| || Tas||HL— INITIALLY START

4-50

iPDS™ User’s Guide Command Dictionary

Key-in Sequence Comments

ADDRESS OF BLOCK OF
MEMORY BEING WRITTEN

r
RETURN

e\ li™8|| SPACE SPACE SPACE

SPACE SPACE SPACE
CHANGED DURING MODULE

TO CURRENT BYTE OF
MEMORY BEING ||rerurn

e[[as|| WRITTEN. {[reruan]

-

*EX
EDITED TO DPROGA.DOC

AD>DIRFOR ?PROGA.*

DIRECTORY OF :FO:LEARN.PDS

NAME -EXT BLKS LENGTH ATTR NAME -EXT BLKS LENGTH ATTR
DPROGA .DOC Y 370 PROGA .BAK -] 1336
PPROGA .SRC 4 157

e

1428 FREE 7/ 2455 TOTAL BLOCKS
AD>

Key-in Sequence Comments

HoIEI Press the HOME key to enter the command line
mode, and enter the EX command to return to the
EX Haeronn operating system.

DIR FOR ?PROGA.* The DIR command is used to confirm the existence
of the two files just edited. More information on the
use of the CREDIT text editor can be found in the
ISIS-II CREDIT™ CRT-Based Text Editor User’s
Guide, order number 9800902

RETURN

4-51

Command Dictionary ‘ iPDS™ User’s Guide

4-52

Program Development Commands

The two main aspects of developing a computer-based product is the program or
software development and hardware development. The operating system offers a
number of languages for developing programs. In addition to language translators,
the following commands are provided to aid in software development. These com-
mands are described in the manuals indicated.

LIB allows the user to manage a library of MCS-80/85 program
modules. With the LIB command, libraries can be created,
modules can be added or deleted from them, and a list of the
modules in a library can be displayed. MCS™.80/85 Utilities
User’s Guide, order number 121617.

LINK combines a number of object modules into a single object module
in an output file. MCS™-80/85 Utilities User’s Guide, order
number 121617.

LOCATE converts relocatable object programs into absolﬁte object pro-
gramsmPy supplying memory addresses throughout the program.
MCS'™ -80/85 Utilities User’s Guide, order number 121617.

HEXOBJ converts a program from hexadecimal file format to absolute
object format. MCS™ .80/85 Utilities User’s Guide, order number
121617. ‘ ‘

OBJHEX converts a program from absolute object format to hexadecimal
file format. MCS™-80/85 Utilities User’s Guide, order number
121617.

DEBUG provides a minimum set of debugging commands. Chapter 7.

IPPS is used with the PROM Personality Adapters to control the pro-
gramming of EPROMs and E2PROMs. Chapter 10 and the
iUP-200/201 Universal Programmer User’s Guide, order number
162613. '

iPDS™ User’s Guide

Creating an Object File

Command Dictionary

The next two example uses the program entered into the file created previously by

the CREDIT text editor.

AD>

AD>LOCATE PPROGA.OBJ

A0O>DIRFOR ?PPROGA.*

Key-in Sequence

ASM80 PPROGA.SRC

RETURN

LOCATE PPROGA.OBJ

-

RETURN

DIR FOR ?PROGA.*

RETURN

AO0>ASM80 PPROGA.SRC

ISIS-II BIJ&U/BIJ&S MACRO ASSEMBLER. V4.1

ASSEMBLY COMPLETE~ NO ERRORS

ISIS-II OBJECT LOCATER V3.0

DIRECTORY OF :FO:LEARN.PDS

NAME -EXT BLKS LENGTH ATTR NAME «EXT BLKS LENGTH ATTR
DPROGA .DOC Y 37y PPROGA .BAK Y 157
PPROGA .SRC 4 157 PPROGA .0BJ Y bl
PPROGA .LST 8 903 PPROGA Yy 45

28

1412 FREE 7/ 2544 TOTAL BLOCKS
AO>

Comments

The next examples illustrate a simple case of pro-
gram development on the iPDS. Assemble the

previously entered program PPROGA.SRC. The-

program PPROGA filis a block of memory with a
constant. The output file created by the assem-
bler is named PPROGA.OBIJ. This file must be
processed by the LOCATE command before it
can be run. A list file is also created by the assem-
bler under the name PPROGA.LST.

The program does not have any external
references, so it can be located without being
linked first. The LOCATE utility assigns absolute
memory addresses, where needed, in the
program. The program is located in memory
starting at address 3980H as determined by the

ORG statement in the program. The output file

created by the LOCATE utility is a file named
PPROGA with no extension. This file can be
loaded into memory and executed.

The DIR command shows the files created in the
development of the program PPROGA. The file
PPROGA.LST was created by the assembler and
contains a listing of the program. It can be dis-
played with the @ command.

4-53

Command Dictionary iPDS™ User’s Guide
Debugging a Program

In the next series of examplés, the object file created in the previous example is
debugged using the DEBUG command.

A0>DEBUG PPROGA

PDS DEBUGGER V.10
=>3940
.C3980,9
3980 O0ESS MVI C.55
3982 <2100LD LXI H.LOOD

3985 71 MoV Ma.C
398t @23 INX H
3987 7C MoV A-H

3988 FE&O CPI 80
398A (28539 JNZ 3945
398D 38 DB 38
398E 3A8047

-X

A=AAB=BB C=CC D=DD E=EE F=FF H=12 L=34 M=1234 P=3980 S=F1lE&
+N1
3980 OESS MVI (.55

Key-in Sequence Comments

DEBUG PPROGA The DEBUG command loads a program into memory
and allows the program to be run under controlled
RETURN conditions. The program just assembled and located is
run. The DEBUG: program displays a sign on message
and then displays the starting address of the program
being debugged. A DEBUG command can be entered
whenever the DEBUG prompt, the period (.), appears.

C3980,9 The C command disassembles instructions starting at the
address specified for a count of the number of instructions
RETURN specified. Here, the starting address is 3980H and the
number of instructions to be disassembled is 9. The first
column contains the address, the second column shows
the hexadecimal value of the instruction starting at that
address, and third column gives the mnemonic for the in-
struction starting at the address.

X ||RETURN The X command displays the 8085 registers. All values
are hexadecimal. The program counter, P, contains the
address of the first instruction to be executed in the
program.

N1 |j|RETURN The N command executes the specified number of in-
structions starting at the address currently in the program
counter and then halts program execution. The address,
the hexadecimal opcode and operands, and the instruc-
~tion mnemonics are displayed for the instructions
executed. The N command can be used to single step
through a program, executing only one instruction at a
time. This technique for debugging is illustrated here.

4-54

iPDS™ User’s Guide

-X

A=AAB=BB (=55D=DD E=EE F=F? H=L2 L=34 M=1234 P=3982 S=F1EZ
.N1

. 3982 210060 LXI H.kLODD

X
.A=AAB=BB C=55D=DD E=EE F=F? H=LO L=00 M=L000 P=3985 S=F1E2
.N1

3985 71 MOV MaC
.D6000,6000

00 2 3 4 5 & 7?7 8 9 ABCDEF

BODD S5_ _ o o o o o o e e e e e e e e e e - u
-N1

398L 23 INX H
X

A=AAB=BB C=55D=DD E=EE F=D7 H=b0L=01 N=L00L P=3987 S=F1E2
-N1

3987 C MOV AaH

Key-in Sequence Comments

X |ireTurn The value in the C register has changed to 55H, and pro-
gram counter P has changed to 3982H.

N1 {ireturn One more instruction is executed, and the program is
halted. The address 6000H is the start address of the
block of memory to be filled with the constant 55H.

X lnerurm The registers are displayed again.The program counter
contains the value 3985H, the address of the next instruc-
tion in the program.

N1 lireturn One more instruction is executed. The value in the C
register is moved to memory, currently 6000H.

D6000,6000 The D command displays the contents of the memory lo-

cations requested. The underlines appear because only
RETURN one location was requested. They act as placeholders for
the adjacent 15 locations that would appear on the same
line if requested. The right end of the display contains the
ASCII character corresponding to the value in the
memory location. The underline also appears if there is
no displayable ASCII character for the value at the speci-
fied memory location.

N1 |iretunn Another instruction which increments the HL register
pair is executed.

X Insrunu The registers are displayed.

N1 lireTurn This instruction checks the memory address so that the
loop can be ended when the end of the block of memory
being filled is reached.

Command Dictionary

4-55

Command Dictionary ‘ iPDS™ User’s Guide

4-56

-X
A=b0B=BB C=55D=DDE=EE F=D? H=b0 L=01 M=b001 P=3988 S=F1lE2
-N1
3988 FEBO CPI 8D

- X

A=b0B=BB (=55D=DD E=EEF=93 H=L0O L=01 M=6001 P=398A S=F1E2
-N1
398A (28539 JUNZ 3985

X
A=LDB=BB C=55D=DD E=EE F=93 H=b0 L=01 M=kL001 P=3985 S=F1E2
.G3980,-398D
=>398)
X
A=80B=BB (=55D=DD E=EE F=54 H=80L=00 M=8000 P=398D S=F1E2
. D6000,7FFF

Key-in Sequence Comments

X !“ET“R" The registers are displayed showing that the A register
also contains the value 60H.

N1 |/RETURN This instruction compares the value in the A register with
80H. This value is the MSB of the end of the block of
memory being filled. The loop no longer executes when
the program reaches 80H.

X |[RETURN The flag register, shown as F, now contains 93H. The
zero flag is the sixth bit in the register and is set to a value
of 0.

N1 |[reTurn Another instruction, which jumps to address 3985H if
the zero flag is off, is executed. Since the zero flag was
reset in the previous compare instruction, the jump
should take place.

X |{RETURN When the registers are displayed, the program counter
contains the address 3985H for the next instruction to be
executed. This is the address of the beginning of the loop.
The loop is executed again.

G3980,398D The G command executes a program starting at the in-

— struction specified. A breakpoint is set at address 398DH.
RETURNIl The program halts when the entire block of memory is

filled and the loop no longer repeats.

X |{RETURN The registers are displayed showing that register A con-
tains the value 80H, the end value for the loop.

D6000,7FFF The block of memory from 6000H to 7FFFH is displayed.

RETURN

iPDS™ User’s Guide

Command Dictionary

DY 2 3 45 4
5555 555555555555555
55 55 5555 55555555555
5555 555555555555555
5555555555555555555
555555 5555555555555
55 5555 5555555555555

b 7
L00O0 555
k010
k020
k030
6040

k050

7F80
?F90
7FAD
7FBO
7FCO
?FDO
7FED
7FFO

555555 55555555585555
55 555555555555555565
5555555555 555555555
55 555555555555555585
5555 555555555555555
5555555555555555555
555555 5555555555555
55555555 55555555555

Comments

A B CDEF
555555555555
5555555555555
5555555555555
5555555555555
5555555555555
5555555555555

q
5

5555555555555
55555555555 55
5555555555555
5555555555555
5555555555555
5555555555555
5555555555555
5555555555555

uuuuuuuuyuyuuuuu
vuuuuuuuuuuuuuuu
vuuuuuuuuuvuyLUYy
uuuvuuuuuuuuuuuuu
vuuuuuuyuuuuusuy
uuuuuuuyuuuuuuuy

uuuuuuuuuuuuuuuy
uuuuuuuuusuuuuuu
uyuuuuuyuuuuuuuu
uuuuuuuuuuuuuuuy
uuuuuuuuyusuuuuy
uuuvyuuuuuuuuuuuu
uuuuuyuuuuuyuusu
uuuuuuuuuuuuuuUy

The memory contains the value 55H which is the ASCII
code for the character U.

-XP 398D- F1E2-3980
-S3980 OE- 55-AA
«N1

3980 DEAA MVI Ca.AA

-G3980,398D
=>3948D
- D6000,7FFF

Key-in Sequence

XP 3980

g

RETURN

Comments

The X command can also be used to change
the contents of registers. The XP form of the
command displays the current value of the P
register and allows that value to be changed.
It is changed to 3980H, the starting address of
the program. Thus, the next N command exe-
cutes the program from its starting address.

(continued)

4.57

Command Dictionary iPDS™ User’s Guide

Key-in Sequence Comments

S3980 SPACE AA SPACE The constant value that is written to memory
E;;@ is changed from 55H to AAH. This is done

with the S command which substitutes new
values in memory. The memory location con-
taining the constant is the operand of the first
instruction. Since, the opcode is not changed,
press the space bar to increment to the next
address. Enter AA and the value is changed
in memory. The constant is not changed in
the file containing the program.

N1 j{reTunn A single instruction is executed. Notice that
the value moved into the C register is AAH
this time.

—

G3980,398D |{reTurn The G command begins executing the pro-
gram at 3980H with a breakpoint set at 398H
which is the address of the instruction follow-
ing the loop.

—

D6000,7FFF |reTurn The block of memory from 6000H to 8000H
is displayed again. It contains the value AAH.

0L 2 3 456 7 8 9A8BCCT0DIEF
LODD AA AA AAAA AAAA AA AA AA AA AAAA AAAAAAAA
bOLO AA AA AAAA AAAA AA AN AA AA AA AA AA AA AA AA
LO20 AA AA AAAA AAAAAA AAAAAA AAAA AAAAAA AA
L0030 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
LOYD AA AA AA AA AA AAAA AAAAAA AAAA AAAAAAAA
LO5S0 AA AA AAAAAAAA AA AA AA AA AAAA AA AA AA AA
b0LO AA AA AA AA AA AAAA AA AA AA AAAA AAAA AA AA
bO70 AA AA AAAA AA AA AA AA AA AA AA AA AA AA AA AA
LDBD AA AA AAAAAAAAAAAAAAAA AAAAAAAAAAAA
L0990 AA AA AA AA AAAA AA AAAAAAAAAA AA AA AA AA

TECO AA AA AA AA AAAA AA AAAA AA AAAA AA AA AA AA
7FDO AA AA AA AA AA AAAA AAAA AA AAAA AAAA AA AA
TFED AA AA AAAA AA AA AA AA AA AA AA AA AA AA AA AA
TFFO AA AA AAAA AA AAAA AA AA AA AAAA AA AA AA AA

Key-in Sequence Comments

E RETUR:D The E command exits from DEBUG and returns to the
operating system.

4-58

iPDS™ User’s Guide Command Dictionary

Program Execution Commands

Programs can be executed under the control of the operating system in two ways:
® Interactively by typing the command line for each program to be executed

® Automatically (not requiring operator intervention) through the SUBMIT or
JOB capabilities of the operating system

SUBMIT files are implemented with the SUBMIT command and the . command.
The . command differs from the SUBMIT command in that only one line from the
SUBMIT file is read and executed and no intermediate file is created. Parameter
substitution is allowed in both cases.

Jobfiles are implemented with the following features in the operating system: the
JOB command, the ENDJOB command, the ASSIGN command, the / command,
FUNCT-<n>, and the ABOOT.CSD and BBOOT.CSD files. A jobfile differs
from a SUBMIT file in that no intermediate disk file is created and no parameter
substitution is allowed.

The operating system offers the following features, described in Chapter 5, for ex-
ecuting commands.

<filename> loads and executes the object program named <filename>.

SUBMIT reads an input SUBMIT file, creates a command file con-
taining ISIS commands, and executes commands in se-
quence from the file created.

is a fast form of the SUBMIT command. One command line
is read from the SUBMIT file, transformed into an ISIS
command in memory, and executed. No intermediate file
is created.

FUNCT-<n> is also considered a device management command. It reads
command lines from a file named JOB<n>.CSD, where
<n> is a single digit from 0 to 9. Pressing <n> followed
by the RETURN key is the same as pressing FUNCT-
<n>.

ASSIGN is also considered a device management command.
However, a form of ASSIGN can be used to run commands
from afile.

/ reads ISIS commands from a disk file and executes them in
sequence. The / command is also considered a device
management command.

JOB stores a sequence of frequently used ISIS commands in a
file as they are entered from the keyboard without execut-
ing them until the sequence is completely entered. Then,
the commands can be executed in order, or they can be
.saved in the file and executed later with the / command.
Two jobfiles, ABOOT.CSD and BBOOT.CSD, deserve spe-
cial mention. If either of these files is present
(ABOOT.CSD for Processor A and BBOOT.CSD for Pro-
cessor B) when the system is initialized, commands are au-
tomatically executed from the file. This feature can be used
to configure a system. An example is given later in this
chapter.

4-59

Command Dictionary iPDS™ User’s Guide

ENDJOB stops the automatic execution of commands from a JOB file
and returns control to the keyboard. The ENDJOB com-
mand is automatically inserted after a sequence of com-
mands is entered under the control of the JOB command. If
a jobfile is created with the text editor, the user must enter
the ENDJOB command.

ESC edits the previously entered or the current command line
and allows the new command line to be executed.

Using the JOB Command

A jobfile is one form of running programs automatically. In the next example, a
jobfile is created but not executed.

AD>JOBJOB1.CSD
=DIR FOR ?PROGA.*
=DELETE ?PROGA.*

AD>

Key-in Sequence Comments
JOB JOB1.CSD There are several ways to enter commands and run
programs, other than under control of the operating
RETURN system: editing a command line to run a different pro-

gram (shown at the end of Chapter 3), running several
programs with the JOB command and running several
programs with the SUBMIT command. When the
command line is entered the equal sign (=) prompt is
displayed. A file is created with the name specified on
the JOB command line. Here, the name is JOB1.CSD.

DIR FOR ?PROGA.* Enter the command lines shown. These commands

T are not executed. Instead, the JOB prompt is displayed
after each command to allow another command to be
entered. There are three ways to exit from the JOB
DELETE ?PROGA.* :ommand: CTRL-Z, the RETURN key, and the ESC
key. When a CTRL-Z is entered, the JOB is cancelled.
The commands entered are not saved and the job file
H; = is not created. Control is returned to the operating

CTRL

RETURN

RETURN

Z system.

4-60

iPDS™ User’s Guide

Command Dictionary

Automatic Job Execution

This section of examples shows several techniques for running jobfiles.

AD>JOBJOB1.CSD

=DIR

Key-in Sequence

JOB JOB1.CSD
RETUR:
DIR {lrerunn
'RETU";;

Comments

This example shows the second way to exit from the JOB
command. Press the RETURN key at the beginning of a
job line (after the = prompt) and the JOB command
ends. The commands entered are saved in the specified
file and are immediately executed in the sequence in
which they were typed. The JOB command appends an
ENDJOB command line at the end of the file, so that
when all the commands are executed, control is returned
to the operating system. The job file remains on the disk
and can be executed again later. :

AD>J0B JOBL.CSD
DIRECTORY OF :FO:LEARN.PDS
NAME -EXT BLKS LENGTH ATTR NAME -EXT BLKS LENGTH ATTR
ISIS -MAP Y 512 S ASMa0 L0 14594 S
ASXREF 20 4aq4 s ASSIGN 1k 30?3 S
ATTACH 4 522 S ATTRIB 24 4999 S
CoPY 3k 83bk S CREDIT 40 19470 S
CREDIT .MAC L] ? s DEBUG 1 2502 S
DELETE 2D 4699 S DETACH Y4 434 S
DIR aa bk25 S HELP 1k 37?7y S
HEXO0BJ 20 434y S IDISK aa 7035 S
IXREF 44 1021k S LIB 44 L0227 S
LINK 56 13074 § LINK -0VL 20 4578 S
LOCATE L0 15022 S 0BJHEX b 3347 S
RENAME 12 2557 S SERIAL 1lb 3148 S
SUBMIT 20 yede s SYSPDS .LIB 1lb 310 S
JOB1 -CSD R 50

720
1404 FREE 7/ 2544 TOTAL BLOCKS
AD>ENDJOB
AD>

Comments

This screen shows the result of the previous entries. The
third way to end a JOB command is to press the ESC key
at the beginning of a job line. The commands entered are
saved in the specified file, and the ENDJOB command
line is appended to the file. However, the commands are
not immediately executed.

4-61

Command Dictionary iPDS™ User’s Guide

AD>#1
AD>DIR
DIRECTORY OF :FD:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP 4 512 S ASMBO LD 14594 §
ASXREF 20 g9y s ASSIGN 1L 3073 S
ATTACH y 522 S ATTRIB 2y 4999 s
copy : 3L a3kb S CREDIT 80 19470 S
CREDIT .MAC y 7 s DEBUG 12 2502 S
DELETE 20 4L99 S DETACH Y 434 S
DIR 28 bkb25 S HELP 1L 3771 S
HEX0BJ 20 u3yy s IDISK 32 7035 S
IXREF 4y 1021k S LIB 4y 10227 S
LINK 5L 13074 S LINK .0VL 20 4578 S
LOCATE LD 15021 S 0BJHEX 1L 3347 S
RENAME 12 2557 S SERIAL 1L 3148 S
SUBMIT 20 u4k92 S SYSPDS .LIB 1L 3101 S
JOBL .CSD Y 50
720

1404 FREE / 2544 TOTAL BLOCKS
AD>ENDJOB
AD>

Key-in Sequence Comments
euner|[] There are four ways to run the commands in a job file

after exiting the JOB command: use the FUNCT key, use
the / command, use the’r ASSIGN command, and use the
automatic configuration feature of the operating system.
This example illustrates using the FUNCT key. This
method only works if the filename of the job file is in the
form JOB<n>.CSD where <n> is a digit from 0 to 9.
Press FUNCT<n> where <n> is the digit in the file-
name to run the job file.

4-62

iPDS™ User’s Guide

Command Dictionary

AO>DIR

NAME -EXT
ISIS -MAP
ASXREF
ATTACH

COPY

CREDIT .MAC
DELETE

DIR

HEX0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT

JOBL .CSD

AD>ENDJOB
AD>

AD>/JOB1.CSD

DIRECTORY OF :FD:LEARN.PDS

L404 FREE /7 2544 TOTAL BLOCKS

BLKS LENGTH ATTR NAME +EXT BLKS LENGTH ATTR
4 512 S ASnao L0 14594 S
20 4294 s ASSIGN ik p73 s
4 522 § ATTRIB a4 4999 S
ELY 83bb S CREDIT 80 19470 S
Y4 ? s DEBUG Le 2502 s
20 4699 3 DETACH 4 434 S
28 Lb25s S HELP 1b 3771 S
20 434y S IDISK 3a 7035 S
4y 102lb S LIB 4y 10227 S
5b 13074 S LINK -OVL 20 4578 S
LD 1502} S O0BJHEX b 3347 S
12 2557 S SERIAL b L8 S
20 4e92 S SYSPDS .LIB 1k 3101 S
Y 50
720

Key-in Sequence

/JOB1.CSD

RETURN

Comments

The / command is a second method of running the com-
mands in the job file. Type / followed by the filename of
the job file, and the commands are executed. When the
ENDJOB command is reached, control is returned to the
operating system.

4-63

Command Dictionary

4-64

—
RETURN

ASSIGN :Cl: TOJOB1.CSD

iPDS™ User’s Guide
R

AOD>ASSIGN :Cl: TO JOB1.CSD
LOGICAL PHYSICAL

:CI: :FO:J0BL-CSD

:CO: :v0:

:FO D

:F1 1

:Fe: 2

:F3 3

tFy 4 BUBBLE

:F5 5 - BUBBLE 1
AD>DIR
DIRECTORY OF :FO:LEARN.PDS
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .MAP Y 512 S ASMBO bO 14594 S
ASXREF 20 429y s ASSIGN 1k 3073 S
ATTACH Y s22 s ATTRIB 2y 4999 s
coPY E]S 83kb S CREDIT 80 19470 S
CREDIT -MAC y 7 s DEBUG 12 2502 S
DELETE 20 4699 S DETACH y 43y s

Key-in Sequence Comments

A third way to run the commands in a job

file is to assign the system input device to
the job file as shown' in this example. The
operating system reads the job file for com-
mand input until it encounters the
ENDJOB command. At this time, the
system is returned to the keyboard.

iPDS™ User’s Guide Command Dictionary

Configuring a User System Automatically

The next example shows a jobfile being used as a configuration file. A configura-
tion file is run automatically when the system is initialized. For example, the
ASSIGN command could be run to set up the required logical to physical device
mapping for a system. Alternately, the SERIAL command could be used followed
by the ASSIGN command to first configure the serial port and then map the serial
device to the ISIS logical console device. The ATTACH command could be occur
in a configuration file for a system containing multimodules. Finally, the confi-
dence tests could be executed automatically from a configuration file.

A0>RENAME JOB1.CSD TO ABOOT.CSD

RENAMED J0B1.CSD TO ABOOT.CSD
AOD>

Key-in Sequence Comments

RENAME JOB1.CSD TO ABOOT.CSD When there is file named

Sl ABOOT.CSD (BBOOT.CSD

RETURN for the optional processor) on

the system disk used to initial-

neser ize the system, this file is au-

y tomatically run as a job file
when the system is reset.
Rename the job file contain-
ing the DIR command to
ABOOT.CSD. Then, press
the RESET key. As soon as
the system is initialized, this
file is read and executed as a
jobfile.

4-65

Command Dictionary

4-66

”ISIS-PDS. V1.0

AO>DIR

iPDS™ User’s Guide

DIRECTORY OF :FO:LEARN.PDS

NAME EXT
ISIS +MAP
ASXREF
ATTACH

COPY

CREDIT
DELETE

DIR

HEXO0BJ
IXREF

LINK

LOCATE
RENAME
SUBMIT
ABOOT . CSD

BLKS LENGTH

NAME . LENGTH
ASM&0 L459Yy
ASSIGN 3073
ATTRIB 4999
CREDIT . 19470
DEBUG 2502
DETACH 43y
HELP 3771
IDISK 7035
LIB Lpeav
LINK . 4578
OBJHEX 3347
SERIAL 3148
SYSPDS . 3101

Y 512
20 429y

y 522
3k B3kbL

Y ?
20 u4LA9
28 bLbkas
20 u3uy
4y 1021k
56 13074
kO 15021
12 2557
20 u4kL92

Y 50

[e I e B e I e B e B e B % B 7 I % I 7 I 7% B
[N N N N N R N2 N2 N2 %]

1404 FREE 7/ 2544 TOTAL BLOCKS

AD>ENDJOB
AD>

Key-in Sequence

FUNCT T

vt LL

Comments

This screen shows the result of entering the previous
command. A good application for an automatic configura-
tion file is in a dual processor system with a terminal con-
nected to 'the serial port as the base processor’s console
device. The first command in the file could be the
SERIAL command required to configure the terminal.
This could be followed by the ASSIGN commands neces-
sary to assign the system input and output (:CI: and :CO:)
to the terminal. Another good application is in'a system
using a multimodule. The configuration file could contain
the ASSIGN and ATTACH commands and the other
commands necessary to load the I/O driver for the
multimodule.

Using the SUBMIT Command

In the next series of examples, the SUBMIT command is illustrated. Notice the
differences between SUBMIT files and jobfiles as this example is presented.

AD>CREDIT BCKUP1.CSD

Key-in Sequence

Comments

CREDIT BCKUP1.CSD 1 addition to entering operating system com-

mands a single command line at a time and enter-

RETURNI| ing them through a job file, SUBMIT files can also

be used. A SUBMIT files is a text file containing
operating system commands and created with an
editor. Here, CREDIT is used to create a
SUBMIT file.

iPDS™ User’s Guide

Command Dictionary

NEW FILE

ATTRIB %0to J1}

1
|

Key-in Sequence

ATTRIB %0 J1
’ COPY %0 to %1 J %2

COPY %0 TO %1 J %21

ISIS-IICRT-BASED TEXTEDITOR V2.1

RETURN

RETURN

CTRL

E

— —

RETURN

|~

Comments

Enter the commands shown. The dif-

ferences between a SUBMIT file and a

job file are as follows:
Parameters can be passed to a
SUBMIT file. The %0, %1, and
%2 in the file act as placeholders
and can be assigned different
values each time the SUBMIT
file is run. SUBMIT files can be
interrupted to allow interactive
input. The CTRL-E in the file
shown illustrates this feature. As
soon as the line with CTRL-E is
run, the submit file halts.and
allows input from the keyboard.
The next CTRL-E returns to the
correct place in the SUBMIT file
for further input. SUBMIT files
can be nested. Thus, the
SUBMIT command can appear
in a SUBMIT file. There is no
ENDJOB command at the end of
a SUBMIT file. Therefore, two
SUBMIT files can be appended
to create one larger SUBMIT file.

A job file can be edited to delete the
ENDJOB command. Then, it can be
run as a SUBMIT file. A SUBMIT file
with no nesting, no interactive input,
and no parameters can be edited to
add an ENDJOB command. Then, it
can be run as a job file.

4-67

Command Dictionary iPDS™ User’s Guide

- ATTRIB %0 to J1t

COPY %D TO %1 J %21
1

Key-in Sequence Comments

Press the HOME key and exit from CREDIT.

EX RETURN

*EX
EDITED TO BCKUPL.CSD
AD>CREDIT BCKUP2.CSD

Key-in Sequence Comments
CREDIT BCKUP2.CSD RETURN Create a second SUBMIT file called
BCKUP2.CSD.

ISIS-IICRT-BASED TEXTEDITORVE.)
NEW FILE

DELETE %0 Q1

1

DIR FOR %01
|

Key-in Sequence Comments

DELETE %0 Q ||ReTusn Enter the commands shown.

craL | E RETURN

DIR FOR %0 |{revunn

4-68

iPDS™ User’s Guide Command Dictionary

2\

DELETE %0 @]
]

DIR FOR %0]
|

Key-in Sequence Comments

Exit from CREDIT. There are two ways these two

HOME SUBMIT files can be run together: BCKUP1.CSD can be

: edited to add a SUBMIT command at the end to SUBMIT

EX ||reTuRN BCKUP2.CSD, or the two files can be appended as
shown in the next example.

*EX

EDITED TO BCKUP2.CSD

A0>COPY BCKUP1.CSD, BCKUP2.CSD TO BACKUP.CSD
APPENDED :FD:BCKUPY.CSD TO :FO:BACKUP.CSD
APPENDED :FO:BCKUPZ2.CSD TP :FO:BACKUP.CSD
AD>

Key-in Sequence Comments
COPY BCKUP1.CSD, BCKUP2.CSD This command appends the two
TO BACKUP.CSD SUBMIT files to create a single
7 |RETURN SUBMIT file named BACKUP.-
CSD.

4-69

Command Dictionary iPDS™ User’s Guide

Running the SUBMIT File

In this example, the same SUBMIT file that was just entered is run first on a single
drive system and then on a multiple drive system.

AO0>SUBMIT BACKUP(?PROGA.*,?PROGA.*,P)
AD>ATTRIB ?PROGA. * J1
FILE CURRENT ATTRIBUTES

:FO:DPROGA.DOC J

:FO:PPROGA.BAK

:FO:PPROGA.SRC

:FO:PPROGA.0BY

:FO:PPROGA.LST

:FO:PPROGA
AD>COPY ?PROGA.-* TO ?PROGA. % J P
LOAD SOURCE DISKETTE~ THEN TYPE (CR)uaE
LOAD OUTPUT DISKETTE THEN TYPE (CR)
COPIED :FO:DPROGA.DOC TO :FO:DPROGA.DOC
COPIED :FO:PPROGA.BAK TO :FO:PPROGA.BAK
COPIED :FO:PPROGA.SRC TO :FO:PPROGA.SRC
COPIED :FO:PPROGA.0BJ TO :FO:PPROGA. 0B
COPIED :FO:PPROGA.LST TO :FO:PPROGA.LST
COPIED :FO:PPROGA TO :FO:PPROGA
LOAD SYSTEM DISKETTE~ THEN TYPE (CR)
AD>{E

Key-in Sequence Comments
SUBMIT BACKUP.CSD (?PROGA.*, This example shows how to run
?PROGA.*,P) the SUBMIT file just created.
RETURN The file has three parameters.

All three parameters are
specified. Wildcard filenames
are given for the first two
parameters (%0 and %1) and
the P option is specified for the
third parameter. The P option is
appended to the COPY com-
mand line causing a copy for a
single drive system to take place.
The E is the display given when
the CTRL-E is read from the
file. The SUBMIT command
stops reading from the submit
file and takes input from the
keyboard.

RETURN The files to be copied are on
disk currently in the drive.
Press the RETURN key and
COPY command begins. When
the files have been read, the
prompt to load the output dis-
kette appears. Remember, the
system is still accepting input
from the keyboard.

4-70

iPDS™ User’s Guide

Key-in Sequence

:FO:PPROGA

:FO:PPROGA.

:FO:PPROGA

Command Dictionary

Comments

Remove the system diskette
and insert another diskette. Use
the non-system diskette created
in a previous example. Press
RETURN. The files are copied
with a message displayed for
each file. When the last copy is
complete, the system prompts
to load the system diskette. The
system is still accepting input
from the keyboard.

RETURN

RETURN Remove the non-system dis-
_ kette and insert the system
CTRL { E diskette. Press RETURN. Enter

a CTRL-E to return to the cor-
rect place in the SUBMIT file
now that the interactive input is
ended.

AD>DELETE ?PROGA.-Xx Q
:FO:DPROGA-
:FO:DPROGA.
:FO:PPROGA.
:FO:PPROGA.
:FO:PPROGA.
.0BJ. DELETE?Y

DOC- DELETE? Y
DOC. DELETED
BAK. DELETE?Y
BAK. DELETED
SRC- DELETE? N

0BJ- DELETED

+LST- DELETE?Y
:FO:PPROGA.

LST~ DELETED

:FO:PPROGA~ DELETE? Y
:FD:PPROGA DELETED
AD>{E

Key-in Sequence

Y

S —

RETURN

RETURN

RETURm

RETURN

‘lRETURN

Y

[N]

Ty
Y
Y

I;ETURN

CTR

R

Comments

The next command that runs from the SUBMIT file is
the DELETE command. The {E is displayed as soon as
the CTRL-E from the file is read. The system halts to
allow interactive input from the keyboard in response to
each prompt. PPROGA.SRC is not deleted, while all the
other files are. The files may not be deleted in the order
shown. The actual order depends on previous examples.

As soon as the CTRL-E is entered at the keyboard, the
system returns to the correct place in the SUBMIT file.

4-71

Command Dictionary

:FD:PPROGA+ DELETE? ¥

:FO:PPROGA DELETED
AD>(E
AD>DIRFOR ?PROGA . *
DIRECTORY OF :FO:LEARN.PDS
NAME JEXT BLKS LENGTH ATTR NAME
PPROGA .SRC y 157

y

1412 FREE / 2544 TOTAL BLOCKS

AD>:FO:SUBMITRESTORE :FO:BACKUP.CS(:VI:)

AD>

Comments

iPDS™ User’s Guide

BLKS LENGTH ATTR

The rest of the SUBMIT file is run without interruption.
The final command line run before returning to the
operating system is a special form of the SUBMIT com-
mand generated by the SUBMIT command when the end
of the SUBMIT file is reached. It restores the keyboard as

the system input device.

AD>SUBMIT BACKUP (?PROGA.*,:F1:?PROGA.*,,

4-72

AO>ATTRIB ?PROGA.* J1

FILE CURRENT ATTRIBUTES

:FO:DPROGA.DOC J
:FO:PPROGA.BAK
:+FO:PPROGA.SRC
:FO:PPROGA.OBJ
:FO:PPROGA.LST
:FO:PPROGA J

AO>COPY ?PROGA-*TO :F1:?PROGA.x J

COPIED :FO:DPROGA.DOCTO :FO:DPROGA.
COPIED :FD:PPROGA.BAK TO :FO:PPROGA.
COPIED :FD:PPROGA.SRCTO :FO:PPROGA.
COPIED :FO:PPROGA.OBJ TO :FD:PPROGA.
COPIED :FD:PPROGA.LSTTO :FD:PPROGA.

COPIED :FO:PPROGA TO :FO:PPROGA
AD>1E(E

Key-in Sequence
SUBMIT BACKUP (?PROGA.*,
:F1:?PROGA.*,,) |[RETurn

cTRL E

Comments

The same SUBMIT file is run for multi-
ple drive systems. Insert the non-
system diskette created in a previous
example in drive 1. Enter the SUBMIT
command as shown. Notice the second
parameter contains a drive specifica-
tion. The third parameter is not given.
The COPY command is run without
the P option.

The SUBMIT file is run until the
CTRL-E is read. Since no keyboard
input is required at this point in the
example, enter a CTRL-E from the
keyboard to immediately switch back
to the file.

iPDS™ User’s Guide Command Dictionary

AD>DELETE ?PROGA.x @
«FO:DPROGA.DOC~ DELETE? Y
:FO:DPROGA.DOC. DELETED
:FO:PPROGA.BAK+ DELETE? Y
:FO:PPROGA.BAK+ DELETED
:FO:PPROGA.SRC+ DELETE? N
:FO:PPROGA.0BJ DELETE?Y
:FO:PPROGA.0BJ+ DELETED
:FO:PPROGA.LST~ DELETE?Y
:FO:PPROGA.LST+ DELETED
sFO:PPROGA+ DELETE?Y
:FO:PPROGA~ DELETED

i AD>{E

Key-in Sequence Comments

— o —

Y RETURN The system returns to the SUBMIT file and runs the next
command. The second CTRL-E is read from the file and
the system halts again allowing keyboard input. Enter the
Y RETURN responses to the prompts as shown. The order of the files
to be deleted may vary depending on the previous exam-
ples run. Enter a CTRL-E to switch back to the SUBMIT
N RETURN file.

Y RETURN
Y RETURN
e || [E

:FO:PPROGA~ DELETE? Y
:FO:PPROGA+ DELETED
AD>E
AD>DIR FOR ?PROGA .
DIRECTORY OF :FO:LEARN.PDS

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
PPROGA .SRC 4 157

y

1418 FREE / 2544 TOTAL BLOCKS
AD>:FO:SUBMITRESTORE :FO:BACKUP.CS(:VI:)
AD>

Comments

The SUBMIT file is completed without further
interruption. Further information on SUBMIT can be
found in Chapter 5.

4-73/4-74

CHAPTER 5
COMMAND DICTIONARY

Notational Conventions

Because of the many different ways that a single command can be entered, it is not
possible or desirable to list every correct entry. Instead, the general format of the
command is described using special symbols or notational conventions.

Notational conventions are symbols that have been adopted to help describe
operating system commands. These symbols are not part of the command itself
but are used to precisely describe the format of the command.

The special characters used in these conventions have no significance to the
operating system and are only meaningful in describing a class of correct command
entries. For example, items enclosed in brackets are optional parts of a command.
The brackets themselves would never be entered on a command line, but the item
within the brackets could optionally be included.

UPPERCASE Characters shown in upper case must be entered exactly
as shown. Uppercase is used to denote command key-
words as shown in the following example:.

RENAME <filename 1> TO <filename 2>

<class name> Angle brackets denote general terms that must be re-
placed by a specific member of the class referenced. For
example, <filename> would be replaced by a valid ISIS-
PDS filename and <address> would be replaced by a
valid address. The commonly used general terms are dis-
cussed below. Often, a numeric suffix is added to distin-
guish different items of the same class. For example,
<filename 1> and <filename 2> refer to two different
filenames.

[<option>] Brackets enclose optional material that may or may not
be included on the command line. For example,
[<switch>] is an optional item that may be appended to
the COPY command if certain actions are desired.

Ellipses indicate that the preceding item can be repeated.

Braces indicate that one and only one of the enclosed en-

{<item>} tries must be selected. If the items are also enclosed by
<item> brackets, they are optional and no choice is required. For
example,

Y .

N
indicates a choice must be made to enter either Y or N.
The enclosed choices are printed in a vertical column.

5-1

Command Dictionary

Braces followed by ellipses indicate that at least one of the
{<!tem >} enclosed items must be selected. If the items are also en-
<item> closed by brackets, they are optional and no choice is
required. The items may be used in any order unless oth-

erwise specified. For example,

A
B
C
D

indicates that a choice must be made to include one or
more of the items A, B, C, or D.

punctuation Punctuation other than ellipses, braces, and brackets

must be entered as shown. For example, the commas and
parentheses in the following command must be entered:

SUBMIT <command name> (<parm1>,<parm2>,<parm3>)

Special Command Format Terms

In addition to notational conventions, the command format descriptions in this
manual contain the following general terms that are common to many commands:

<device name> -<source> <jobfile>
<filename> <destination >
<extension> <n>

<pathname> <a>

These terms are described in detail in the following sections before they are used
in command descriptions. ‘

Device Names

Device names are system-assigned names in the form:
:<device name>:
<digit>

The :<device name>: form is one form recognized by ISIS commands. Device
names are recognized for physical devices and logical devices. Physical device
names can be assigned to system-defined devices or to user-defined devices. Logi-
cal device names are system defined.

Physical Devices

Physical devices are hardware units that are separate from the processor itself and
are used for input and output of data for the processor. The operating system
recognizes and handles a wide range of devices, such as disk drives, bubble
memory devices, a printer, a keyboard, and a CRT display screen.

Some of these devices, called system-defined devices, have I/0 drivers included
in the operating system. Other devices, called user-defined devices, can be defined
by the user, and the user-written I/O driver can be added to the operating system.

iPDS™ User’s Guide

iPDS™ User’s Guide Command Dictionary

System-Defined Devices. System-defined devices are devices which can be ac-
cessed without modifying the operating system. That is, system-defined devices
are predefined; 1/0 driver routines are provided by ISIS-PDS for accessing them.
The names assigned for system-defined devices are:

:VI: Video terminal keyboard (input only)

:VO: Video terminal screen (output only)

:Sl: Device connected to Serial port (input only)

:S0: Device connected to Serial port (output only)

:LP: Device connected to Line Printer port (output only)

:TR: Teletype Paper Tape Reader connected to Serial port (input only)
:TP: Teletype Paper Tape Punch connected to Serial port (output only)
‘HR: High Speed Paper Tape Reader connected to Serial port (input only)
:HP: High Speed Paper Tape Punch connected to Serial port (output only)

The TR, TP, HR, and HP devices are the same as the SI and SO devices. These
device names were added to maintain compatibility with previous versions of the
ISIS operating system.

The operating system also provides I/O support for six disk devices: four disk
drives and two bubble memory multimodules. However, the names assigned to
these physical devices vary from the form of the preceding physical device names.
The physical disk devices are named as follows:

Physical disk drive 0 (input and output)
Physical disk drive 1 (input and output)
Physical disk drive 2 (input and output)
Physical disk drive 3 (input and output)
Bubble memory multimodule 1 (input and output)
Bubble memory multimodule 2 (input and output)

ahbhwWN-=LO

Disk drive 0 is the internal disk drive, and drives 1 through 3 are external drives in
the order in which they are connected to the system. Bubble memory multimodule
1 is the bubble memory device installed in connector J1 and bubble memory multi-
module 2 is the bubble memory device installed in connector J3. See Appendix A
for installation instructions.

User-Defined Devices. User-defined devices are devices for which the user must
provide customized I/0 routines. The system recognizes the following names for
user-defined devices:

:L1: User list device

:11: User console input device
:01: User console output device
:R1: User reader input device 1
:P1: User punch output device 1
:R2: User reader input device 2
:P2: User punch output device 2

The R1, P1, R2, and P2 devices were incorporated to maintain compatibility with
previous versions of ISIS. Refer to Chapter 8 for further information on generating
custom I/O drivers for user-defined devices and on adding these drivers to the
operating system.

Command Dictionary

5-4

Logical Devices

Logical devices do not exist physically as a printer or disk drive physically exists.
They are symbolic device names that the operating system recognizes to provide
flexibility for input or output of data. These devices are assigned by the ASSIGN
command to one of the physical devices described above. Logical devices recog-
nized by the operating system are the logical disk devices, the console input
device, the console output device, and the byte bucket.

The logical disk devices can be assigned to one of the physical disk drives or to one
of the bubble memory multimodules or to the byte bucket. They are named as
follows:

:FO: Logical disk device 0
:F1: Logical disk device 1
:F2: Logical disk device 2
:F3: Logical disk device 3
:F4: Logical disk device 4
:F5: Logical disk device 5

Logical disk device 0 (:FO0:) is always the system default disk device, meaning that,
if no disk device is specified, the system assumes the device :F0:. :F0: is initially as-
signed to the boot device, drive 0 or bubble memory 4. By ASSIGNing :F0: to
some other disk device, any physical disk drive or bubble memory multimodule
can become the system default disk device.

The console provides interactive control over the system. It is the device from
which commands are entered and to which system messages are sent. The logical
console device names are as follows:

:Cl: Console input
:CO: Console output

The ASSIGN command can be used to assign any physical input device (including
a disk file) as the console input and any physical output device (including a disk
file) as the console output.

:CI: is always a line edited file; :CO: is its associated echo file. A line edited fileisa
temporary buffer in memory that contains the command line characters as they are
keyed in at the keyboard. These characters can be edited using the editing control
characters described in Chapter 3. An echo file is a file containing the echoed char-
acters from the line edited file. As data is input to :CIL:, it is echoed on :CO:. Both
files are always open, i.e., accessible at all times.

The keyboard (:VI:) and screen (:VO:) are initially the :CI: and :CO: respectively.
As characters are typed at the keyboard, they are echoed on the screen. However,
some other physical device, such as a disk file or a user-defined device, may be as-
signed as the console I/0. A printer can also be assigned as the console output.
Whenever an end of file, generated by the ENDJOB command, is encountered on
the :CI: device, :CI: is automatically changed back to the keyboard (:VIL).

The byte bucket is a logical I/O device which acts as an infinite sink for bytes when
written to and a file of zero length when read from. It is used for data that is not to
be saved or displayed. In software development, a write only device can be useful
in simulating I/0 and also in isolating a bad file without creating more bad data by
copying the suspected file to the write only device. The system name assigned to
the byte bucket is:

:BB: Byte bucket

iPDS™ User’s Guide

iPDS™ User’s Guide Command Dictionary

Filenames

A major purpose of the operating system is to ease the programming task of imple-
menting files on disk devices. Many programs operate on files or produce files as
their output. Programs themselves are contained in files and are executed under
the operating system by entering the name of the file.

A file is a sequence of 8-bit bytes. Programs receive information by reading from
files and transmit information by writing to files. Each file must be fully contained
on one physical device. Usually, files are thought of as disk files or bubble memory
files. However, non-disk devices can also be thought of as single file devices that
can be opened, written, and read.

Filenames provide a standard way of identifying and accessing files. All system
files come with system assigned names. The user assigns names to files created
with commands such as CREDIT or COPY. The filename for a file on a non-disk
device is blank.

The term filename refers to both the name of the file and its extension, if any.
Each file on a disk must have a unique filename. The general format for a filename
is:

<name>.<extension>
where

<name> is a one to six character name assigned to a file. The char-
acters may be alphabetic or numeric.

<extension> is a one to three character modifier created for a name.
An <extension> is optional when the file is created, but
if .<extension> is specified, it must always be used
when referencing the file.

Examples of valid filenames are:

REPORT.TXT PROG.OBJ P3987.Vv1 DIR
SYMBOL.SRC A.B COPY RENAME

Default extensions are predefined extensions that certain programs assume when
no extension is provided. Default extensions are designed to save the time when
entering commands. .

Examples of default extensions are:

.OBJ Output from translator program

.CS Output from SUBMIT program

.BAK Output from CREDIT program

.TMA Temporary output from PLM80, ASM80, and CREDIT program on
Processor A

.TMB Temporary output from PLM80, ASM80, and CREDIT program on
Processor B

Default extensions are explained further under the individual commands which
assign and use them. It is recommended that such extensions not be assigned to
user created files. The extension .TMP cannot be used under ISIS-PDS. If TMP is
assigned to a file by the user, it is automatically converted to .TMA, and it may
then conflict with one of the defaults.

5-5

Command Dictionary iPDS™ User’s Guide

Wildcard Filenames

A wildcard filename uses wildcard characters to specify multiple files which share
characters in their filenames. Several operating system commands allow the wild-
card characters to replace the standard characters in a filename or extension.
Entering a command with a wildcard filename has the same effect as entering the
command more than once with a single filename each time.

The two wildcard characters are:

* Asterisk specifies a match to any number of characters.
? Question mark specifies a match to a single character. It does not match a
blank character.

For example, the asterisk can be used to match any name or any extension in the
disk directory:

ABC.* matches any filename with the name ABC and any or no extension.
* PLM matches any filename with the extension .PLM, such as
MYPROG.PLM.

The asterisk can also be used to match the names or extensions with the same first
characters:

AB*.HEX matches any filename with AB as the first two characters of the
name and HEX as the extension. This example would match
ABC.HEX, ABXYZ.HEX, or AB.HEX.

An asterisk preceding the initial character in a name or extension is not valid, for
example, *B.HEX and *.*B are not a valid wildcard filenames. However, *.* is a
valid wildcard filename.

Each question mark substitutes for a single character that can be a wildcard match.
For example, :

A?B.HEX matches any filename beginning with A and with B as the third
character and with an extension of . HEX.

A??.* matches any filename with a three character name beginning with
A and with an extension of any length.

Pathnames

A pathname uniquely specifies a file to be used in an operating system command.
It consists of the device name directly followed by the filename (if there is a
filename) without separating spaces. Single file devices, such as the line printer,
do not have filenames. Pathname is sometimes abbreviated <pn> in command
descriptions. The format for a disk file pathname is:

[:F<n>:]<filename>
where
<n> is the logical disk drive number from 0 to 5 as described
previously. If no device is specified, the default disk device

(:F0:) is assumed.

<filename> follows :F<n>: with no intervening space and consists of
two parts: a <name > followed by an <extension>.

iPDS™ User’s Guide ‘ ‘ Command Dictionary

The format for non-disk files is:

:<device name>:
where

<device name> is any valid non-disk device name as described

previously.

The following examples illustrate actual pathnames of disk files as well as a
common use of extensions.

:F1:PROGA.SRC for the source code for a program

:F1:PROGA.LST for the listing from the translator

:F1:PROGA.OBJ for the object code

:F1:PROGA.LNK for the linked object code

:F1:PROGA for the code located at absolute addresses
Note that all these files have the same name and are distinguished only by their
extensions. Extensions allow the different file types associated with a given pro-
gram to be distinguished.

The following examples show the pathnames for some of the single file devices in
the system:

:CO: for the current console output file

:VI: for the keyboard file
:Sl: for the serial input file

Source

The term <source> in a command line refers to the input to the command. The
<source pn>> is the input file.

Destination

The term <destination> in a command line refers to the output for the
command. The <destination pn> is the output file.

N and A

The lower case letter <n> refers to a number usually used as a suffix for some
other part of the command.

w<n>

means W followed by a number. The range of values that <n> can take on is
specified in the command where it is used.

The letter <a> refers to an alphanumeric string of characters. The range of values
that <a> can take on is defined in the command where it is used.

5-7

Command Dictionary iPDS™ User’s Guide

Jobfile

The term <jobfile> refers to a file which contains operating system command
lines and which is processed by commands such as JOB to execute a series of pro-
grams in batch mode.

Command Description Formats

In addition to the conventions described above, a standard form is used in this
chapter to describe each command. This helps to access the reference information
at a glance.

The operating system commands appear in alphabetical order as a reference guide
for the experienced user. Each command begins on a new page with the command
keyword at the top outside margin on the page; the syntax is followed by a brief de-
scription of the items required in the command; and short examples are given as
illustrations of the command in use. This format is shown in figure 5-1.

Some of the examples use the logical drives :F1:, :F2:, and :F3:. These examples
can usually be run on a single drive system by assigning all logical drives to drive 0.

COMMAND KEYWORD

brief phrase
describing command.

COMMAND FORMAT

KEYWORD <parameter 1 through parameter n>

{parameter 1> = cieicienasscssaccsecseseneonacans
......... Description «ceeevecess
<parameter N> = .c.iiecetscssssecsesesvesesccnns B
......... Description «.ceesceve
COMMENTS

Comments related to operating the command.

EXAMPLES

A few brief illustrations of the command line.

0161

Figure 5-1. Format of Command Descriptions

iPDS™ User’s Guide : Command Dictionary

Functional Summary of Commands

The command categories discussed in Chapter 4 are repeated below for reference.
Only categories and commands described in this chapter are listed.

The System Management Group
HELP
?

The File Management Group

ATTRIB DIR
COPY RENAME
DELETE @

The Device Management Group

ASSIGN
ATTACH
DETACH
IDISK
SERIAL

#

/

FUNCT <n>

The Program Execution Group

ASSIGN
ENDJOB
JOB
SUBMIT

/

ESC
FUNCT <n>

5-9

Command Dictionary

ASSIGN

Maps logical devices
to physical devices

Command Format

iPDS™ User’s Guide

:Cl: TO <console inputdevice>
ASSIGN) :CO: TO <consoleoutputdevice>
<logical disk device> TO <physical disk device>
where

<consoleinputdevice> specifies a physical device to be used for

console input. Valid devices are :VI:, :SI:, :I1:,
:BB:, or the pathname of a disk file.

<console output device> specifies a physical device to be used for

<logical disk device >

<physical disk device >

Comments

console output. Valid devices are :VO:, :SO:,
:01:, :BB:, or the pathname of a disk file.

specifies one of the ISIS-PDS logical disk
device names. Valid names are :FO0:, :F1;, :F2:,
:F3:, :F4:, and :F5:.

specifies one of the ISIS-PDS physical disk
device names. Valid namesare 0, 1, 2, 3, 4, or 5.

The ASSIGN command is used to change the assignment of logical devices to
physical devices. It also displays the new assignment after the change is made.
Entering the ASSIGN command without any parameters displays a listing of the

current device assignments.

After initializing the system from drive 0, the assignments are as follows:

LOGICAL

:Cl:
:CO:

:FO:
:F1:
:F2:
:F3:
‘F4:
:F5:

5-10

VI
'VO:

ObhWN-—LO

PHYSICAL

BUBBLE
BUBBLE

iPDS™ User’s Guide Command Dictionary

The logical devices that can be assigned are shown in the left column and the
physical devices to which they are currently assigned are shown in the right
column. The console input and console output are initially assigned to the key-
board and CRT display respectively. The logical disks :FFO: through :F3: are initially
assigned to the four disk drives, 0 through 3, respectively; and logical disks :F4:
and :F5: are initially assigned to the two bubble memories, 4 and 5, respectively.

After initializing the system from the bubble memory multimodule, the assign-
ments are as follows:

LOGICAL PHYSICAL

:Cl: VI:

:CO: :VO:

:FO: 4 BUBBLE
:F1: 0

:F2: 1

:F3: 2

:F4: 3

:F5: 5 BUBBLE

The only difference is with the disk drive assignment. The disk :FO0: is assigned to
bubble memory 4, :F1: is assigned to disk drive 0, :F2: to disk drive 1, :F3: to disk
drive 2, and :F4: to disk drive 3.

Disk drive 0 is the internal drive and disk drives 1, 2, and 3 are the optional exter-
nal drives. Bubble memory 4 is the bubble memory multimodule installed at
connector J1 of the multimodule adapter board and bubble memory 5 is the
bubble memory multimodule installed at connector J3 of the multimodule
adapter. See Appendix A for installation instructions for these devices.

The system default disk device is always :FO:. If no disk device is specified in a
pathname, the drive to which :F0: is currently assigned is used. The ISIS-PDS
system prompt in the form Ad> (or Bd> for the optional processor) shows the
number of the physical drive, d, to which :F0: is currently assigned.

Since :FO0: is the system default device, it must always be assigned to a physical
device that contains a system disk with all the commands needed, or the system
does not operate correctly. For example, assume that :F0: is assigned to drive 0
and :F3: is assigned to drive 3 and that the two drive assignments are to be
switched. If :FO: is re-assigned first to drive 3, drive 3 must contain an ISIS-PDS
system disk. Otherwise, the second ASSIGN command can never be made.

Examples
The commands

ASSIGN :F3:TOO
ASSIGN :FO: TO 3

switch the assignment for :F0: and :F3:.
The commands

ASSIGN :CO: TO :SO:
ASSIGN :Cl: TO :Sl:

change the console input and output devices to the device connected to the serial
port. These two commands allow a terminal connected to the serial port to provide

5-11

Command Dictionary iPDS™ User’s Guide

interactive control over the system. The primitive calls :CI: and :CO: still go to the
iPDS keyboard. See the “A Command” in chapter 8.

The command
ASSIGN :Cl: TO :F1:CMDFIL.TXT

changes the console input assignment to the file, :F1:CMDFIL.TXT. The system
immediately begins reading this file and executing commands from it. The last
command in the file must be an ENDJOB command to return control to the
keyboard, :VI:, at the end of the file.

The command
ASSIGN :CO: TO :F1:LOGFIL.TXT

changes the console output assignment to the file, :F1:LOGFIL.TXT. The system
immediately stops echoing user input and command output messages on the CRT
display and begins saving them in the file. The first text in the file is the output
from the ASSIGN command:

LOGICAL PHYSICAL

:Cl: VI:
:CO: :F1:LOGFIL.TXT

:FO: 0
:F1: 1
:F2: 2
:F3: 3
:F4. 4
:F5: 5

BUBBLE
BUBBLE

After this command, anything typed at the keyboard would have to be typed blind
since the characters are no longer echoed on the CRT screen. This command
would be useful as the first command in a jobfile. Commands would be executed
automatically from the jobfile and a record of the output would be saved in the log-
file for later examination.

5-12

iPDS™ User’s Guide Command Dictionary

ATTACH

Assigns multimodule
row to a processor

Command Format
ATTACH <multimodule row >
where

<multimodule row> specifies which multimodule row to attach: 0 to
attach the first row and 1 to attach the second row.

Comments

The ATTACH command only applies to systems with the optional iSBX Multi-
module Adapter board. The adapter board has four connectors for up to four multi-
module boards: two in row 0 which correspond to multimodule connectors J1 and
12 and two in row 1 which correspond to multimodule connectors J3 and J4. See
Appendix A for a figure showing the location of these connectors.

To use non-bubble multimodules, the multimodule row that contains the device
must be attached to the processor. Once the row has been attached to a processor,
that processor can access either multimodule on the row. On systems with a single
processor, the ATTACH command assigns the specified row to the processor. See
Chapter 9 for information on running commands on the optional processor.

Some multimodules use one multimodule connector and cover the other connec-
tor in the same row. In this case, attaching a row only makes one multimodule
device available to the processor.

The operating system considers the bubble multimodule to be a sharable device
like a disk drive. Bubble multimodules need not be ATTACHed to a processor
before accessing them through the operating system. Attempting to ATTACH a
multimodule row that contains bubble memory results in an error. The error
message displayed in this case is:

61 MODULE ALREADY ASSIGNED TO BUBBLE

If a multimodule pair is already attached to a processor and the ATTACH com-
mand is run again, the following message is displayed:

60 MODULE ALREADY ASSIGNED
See Chapter 8 for information on using multimodvules.
Examples
The command
ATTACH 1
attaches the multimodules in Row 1 (J3 and J4) to the processor.
ATTACHO

attaches the multimodules in Row 0 (J1 and J2).

5-13

Command Dictionary

ATTRIB

Displays and modifies
attributes of disk files

5-14

Command Format

iPDS™ User’s Guide

w<n>
I<n>
S<n>

ATTRIB <pathname>|{ F<n> { .. | [Ql]

where

<pathname>

<n>

p——
X
e

J<n>
K<n>
L<n>

specifies the file whose attributes are being displayed or
modified. Wildcard characters are valid.

is a numeric suffix following the particular attribute that
specifies whether that attribute is set or reset. If <n> is 0,
the attribute in question is reset, i.e., turned off. If <n>
is 1, the attribute is set.

is the write protect attribute. A file cannot be written to
with this attribute set.

is the invisible attribute. An invisible file is not displayed
in the normal listing of files on the disk. See the DIR
command.

is the system attribute. A file with this attribute is an inte-
gral part of the operating system and should be present on
any System Disk.

is the format attribute. This attribute is used by the ISIS-
PDS operating system and the IDISK command.
Normally, the user should not assign or remove this attri-
bute from a file.

are user defined attributes. They can represent any type of
file the user wishes.

is the Query option which causes the ATTRIB command
to prompt before actually changing or displaying the
attributes.

<pathname>, MODIFY ATTRIBUTES?

The Q option is used if a wildcard filename is entered on
the command line. This option causes ATTRIB to prompt
for each specific pathname. Answering Y or y displays and
changes the attributes. Any other response leaves that
file’s attributes unmodified and continues processing.

iPDS™ User’s Guide Command Dictionary

Comments

The command may be entered with a pathname containing wildcard characters so
that attributes can be displayed or modified for a family of files at one time.

If no attributes are entered, the current settings are displayed for all the attributes.
If attributes are changed, the new settings for all attributes are displayed after the
change is made.

Any combination of attributes can be specified on a single command. If the same
attribute is specified more than one time, the last occurrence of that attribute is
the one used by the command. All other occurrences of the same attribute are
ignored.

An error occurs when the pathname does not specify a disk file or when the disk
file specified does not exist.

The ATTRIB command cannot be used in a single drive system to change the attri-
butes of a file that is not on the system disk currently in the drive.
Examples
The command

ATTRIB :F1:MYFILE.TXTWO0I10S0J1 K1 L1
sets the J, K, and L attributes while turning off the W, I, and S attributes for
MYFILE.TXT on the physical drive to which :F1: is assigned. The new attributes
are displayed for the file.

ATTRIB :F1:*.* W0 10 SO JOKO LO

turns off the W, 1, S, J, K, and L attributes for all files on the drive to which :F1: is
currently assigned. The new attributes are displayed. '

The command
ATTRIB :F4:PROG.SRCW111S1JOKOLOQ

prompts as follows before setting the W, I, and S attributes and turning off J, K,
and L.

:F4:PROG.SRC, MODIFY ATTRIBUTES? Y

Typing Y causes the attributes to be modified. The new attributes are displayed for
the file.

5-15

Command Dictionary ‘ iPDS™ User’s Guide

COPY

Transfers
files

Command Format

S B c
COPY <source pn> TO <destpn> { } { } Pt ..
N U Q

e —
rxc
[

where

<sourcepn> is the pathname of the input file, the file being copied.
Wildcard characters are allowed.

TO <destpn> is the pathname of the output file. If wildcard characters
are used in the source pathname, they must also be used
in the destination pathname. The destination filename
and extension default to the source filename and
extension. However, if allowed to default, the destination
device name must be different from the source device.
Otherwise, the P option is assumed and a single drive
copy sequence is run. See P below.

S specifies that only files with the S attribute set and the F
attribute not set is included in the COPY. This option is
used to copy system files after a system disk has been
initialized. See the ATTRIB command for further infor-
mation on attributes.

N specifies that only files with the S and F attribute not set
is included in the COPY. Only non-system and non-
format files will be copied. See the ATTRIB command for
further information on attributes.

B suppresses the prompt that is normally displayed if the
destination file exists.

<destpn> ALREADY EXISTS, DELETE?

The existing destination file is deleted and a new destina-
tion file is created with a copy of the source file.

U : is the same as B (the prompt is suppressed) except that
the existing file is not deleted first. The new destination
file is copied over the existing destination file.

o] copies the attributes (except for the F attribute) that are
set for the source file. If the destination file already exists
and has any attributes set, they are retained in addition to
the source file attributes. Without the C option, the desti-
nation file only has attributes that are retained from the
existing destination file if there are any. The F attribute is

. not copied even with the C option.

5-16

iPDS™ User’s Guide

P is used on single drive systems to copy a file from one
disk to another disk using the same drive. The program
halts and prompts

LOAD SOURCE DISKETTE, THEN TYPE (CR)

Load the disk containing the file to be copied and press
the RETURN key. When it is necessary to switch disks,
the system halts and prompts

LOAD OUTPUT DISKETTE, THEN TYPE (CR)

The two prompts alternate until the file is copied. Then,
the program halts and prompts

LOAD SYSTEM DISKETTE, THEN TYPE (CR)

to terminate the COPY and return to the operating
system. P is automatically assumed as a default and need
not be specified if the source name and the destination
name are the same, including the device specification.

Q causes the program to display the prompt:

COPY <source pn> TO <destination pn>?
A response of “Y” or “y” causes the copy to take place.
Otherwise, no copy is made for the specific file displayed.
Q is used on wildcard copies to allow a decision on a file
by file basis whether or not to perform the copy.

included in the COPY. If J, K, and L are combined, they
are ANDed to determine which files are copied. For
example, if J and K are both specified, only files with
both J and K set are copied. If J, K, and L are specified,
only files with all three attributes set are copied. See the
ATTRIB command for more information on these
attributes.

] specifies that only files with the J, K, or L attribute set are

r———
mAC

Comments

This form of the COPY command copies one file to another. See the following
command description for another form of the COPY command that appends a
series of source files.

If the source file is specified with wildcard characters, there are only two ways to

specify the destination file. In the first way, the destination filename and extension

is the same as the source filename and extension. Only the device is specified.
COPY :F1:*.TXT TO :F3:

is the same as:

COPY :F1:*TXT TO :F3:*.TXT

The second way of specifying the destination name when the source contains wild-
card characters allows the files to be renamed while they are being copied. The

Command Dictionary

5-17

Command Dictionary

5-18

destination file is specified with the same mask as the source file. There are three
rules that determine if the source and destination names have the same mask.

1. For every position in the source wildcard name which contains an *, the cor-
responding position in the destination wildcard name must contain an * also.

2. For every position in the source wildcard name which contains a ?, the corre-
sponding position in the destination wildcard name must contain elther an*
or a ? wildcard character.

3. For every position in the source wildcard name which contains no wildcard
character, the corresponding position in the destination wildcard name must
contain no wildcard character.

In following these rules, the command
COPY :F2:P?07?1.* TO :F4:A?07?1.*
is valid while the command

COPY :F2:P?707?1.* TO :F4:SKILL

is not valid. To summarize, the parts of the source and destination names that are
explicitly entered must be the same length, and wildcard tokens used in the source
name must be used in the same position in the destination name.

The N and S options only affect wildcard copies. They have no effect if non-
wildcard filenames are used. The J, K, and L options affect both wildcard and non-
wildcard copies.

On a single drive copy sequence (using the P option), after the source diskette has
been inserted one time, the system remembers its identification. If the wrong
source is inserted after subsequent LOAD SOURCE DISKETTE prompts, an
error message is given and the user can insert the correct diskette.

WRONG DISKETTE IN DRIVE <n>
LOAD SOURCE DISKETTE, THEN TYPE (CR)

The default for the COPY command with wildcard characters is to copy only non-
format files, that is, files without the F attribute set. The S, N, J, K, and L options
define a different scope to limit the files copied.

The message
COPIED <source pn> TO <destination pn>
is displayed as each file is copied.
A COPY from the console input (:CI:) to a port or a file requires special
consideration. This copy command is not terminated until the buffer space (40

Kbytes) is exceeded, or an end-of-file character (CTRL-Z) is detected. Be sure to
terminate COPY commands in this category with CTRL-Z.

iPDS™ User’s Guide

iPDS™ User’s Guide Command Dictionary

Examples

The command

COPY :Cl: TO :SO: <cr>
Any text
CTRL-Z

copies the console input (Any text <cr>) to the serial output port. This command
is not completed until the end-of-file character (CTRL-Z) is sent.

The command
COPY MYFILE.TXT TO :F2:0LD.TXT
copies the file MUFILE.TXT from :FO: to :F2: and renames it to OLD.TXT.
The command |
COPY :F3:*.* TO :F2:
copies all non-format files from :F3: to :F2:. None of the files are renamed.
COPY :F3:*.* TO :F2: NCQ

copies only non-system, non-format files (files without the F or S attribute set)
from :F3: to :F2:. This command copies the files as well as any attributes for those
files and prompts before each copy so specific files can be skipped and not copied.
Notice the space between :F2: and the options NCQ. Without this space, the
system would interpret NCQ as the destination filename.

COPY

Appends
files

Command Format

COPY <source pn 1>, <source pn 2>[, <source pn 3>,...,<source pn n>]

TO <destination pn >[{8}] [P]

where

<sourcepn1> specifies the first input file and cannot contain
any wildcard characters.

<sourcepn2> specifies the second input file to be appended to
the first and cannot contain any wildcard
- characters. ‘

<source pn 3> specifies the third input file to be appended to the
second and cannot contain any wildcard
characters.

<sourcepnn> specifies the last input file to be appended and
cannot contain any wildcard characters.

5-19

Command Dictionary iPDS™ User’s Guide

TO <destinationpn> specifies the output file that contains all the
inputs in the order they are entered. The <desti-
nation pn> must not be the same as any of the
sources. It cannot contain any wildcard
characters.

B suppresses the prompt that is normally displayed
when the destination file already exists.

<destination pn> ALREADY EXISTS,
DELETE?

The existing destination file is deleted and a new
destination file is created copied from the source
file.

U is the same as B (the prompt is suppressed)
except that the existing file is not deleted first.
The source file is copied over the existing desti-
nation file without deleting the file first.

P is used on single drive systems to copy a file from
one disk to another disk using the same drive.
The program halts and prompts

LOAD SOURCE DISKETTE, THEN TYPE (CR)

The disk containing the file to be copied is then
loaded the and the RETURN key pressed . When
it is necessary to switch disks, the system halts
and prompts

LOAD OUTPUT DISKETTE, THEN TYPE (CR)

The two prompts alternate until the file is copied.
Then, the program halts and prompts

LOAD SYSTEM DISKETTE, THEN TYPE (CR)

to terminate the COPY and return to the operat-
ing system. P is assumed as a default and need
not be specified if the source name and the desti-
nation name are the same, including the device
specification.

Comments

This form of the COPY command appends each source file to the previous source
file instead of making a copy of a single file as with the previous form of the COPY
command.

If a comma (,) appears in the source pathname for the COPY command, it is as-
sumed that the source files is appended to one another in the order in which they
are entered.

None of the pathnames can contain wildcard characters. The destination pathname
must be different from any of the source files.

The command terminates and returns to the operating system if any source file is
missing. ;

The message
APPENDED (source pathname > TO (destination pathname >

is displayed on the console output device after the copy is complete for each
source file. ' :

5-20

iPDS™ User’s Guide Command Dictionary

Examples

The command
COPY FILE1,FILE2,FILE3 TO FILE4

first copies FILE1 to FILE4 and then appends FILE2 and FILE3 to the output in
FILE4. All files have a blank extension and are on the physical drive to which :FO0:
is assigned.

COPY :F2:FILE1,:F4:FILE2,:F3:FILE3 TO :FO:FILE4

performs the same action except that the input files are located on different logical
drives.

DELETE

Removes files
from the disk

Command Format

DELETE <pathname 1> [pathname 2>,..., <pathname n>] l:{g} j|
where

<pathname 1> thru specifies the file or files to be removed from the

<pathname n> disk. These specifications can contain wildcard
characters.
Q causes the program to display the prompt

<pathname>, DELETE?

for each file before the file is deleted. A response of
“Y” or “y” causes the file to be deleted.
Otherwise, the file is not deleted and processing
continues. Q is used on wildcard deletes to allow a
decision on a file by file basis whether or not to
delete the file. It can also be used on single file
deletes. If a sequence of files is specified, the
prompt is only for the last file specification.

P is used on single drive systems to delete a file from
a disk other than the system disk using one drive.
The program halts and prompts

LOAD SOURCE DISK, THEN TYPE (CR)

The the disk containing the file to be deleted is
then loaded and the RETURN key is pressed .
When the delete is done, the program stops and
prompts

LOAD SYSTEM DISK, THEN TYPE (CR)

to terminate the delete and return to the operating
system.

5-21

Command Dictionary iPDS™ User’s Guide

Comments

As each file is deleted, the message
<pathname>, DELETED

is displayed on the console output device.

If the pathname does not specify a disk file or if the disk file specified does not
exist, an error message is displayed on the console output device.

Examples
The command
DELETE FILE1.TXT
removes FILE1.TXT from the drive to which :FO0: is currently assigned.

DELETE :F4:PROG?.SRC Q

removes all files from :F4: with an extension of .SRC and a filename beginning
with the letters PROG and with any character in the fifth position. This command
also prompts before deleting any files. Specific files that should not be deleted can
be skipped.

For example,

:F4:PROGA.SRC, DELETE? Y
:F4:PROGA.SRC, DELETED
:F4:PROGB.SRC, DELETE? Y
:F4:PROGB.SRC, DELETED
:F4:PROGZ.SRC, DELETE? N

By responding with a Y to the first two prompts and an N to the third prompt, the
first two files are deleted and the third file remains on the disk.

The command
DELETE :F4:*.CSD, :F4:*.BAKQ

prompts for the :F4:* BAK files but does not prompt for the :F4:*.CSD files.

5-22

iPDS™ User’s Guide Command Dictionary

DETACH

Releases multimodule
row from processor

Command Format
DETACH <multimodule row >
where

<multimodule row> is 0 to detach the first row of multimodules and 1 to
detach the second row of multimodules.

Comments

This command only applies to systems with the optional Multimodule Adapter
board. The adapter board has four connectors for up to four multimodule boards:
two in row 0 which correspond to multimodule connectors J1 and J2 and two in
row 1 which correspond to multimodule connectors J3 and J4. See Appendix A for
the location of these connectors. Once the row has been attached to a processor,
that processor can access either multimodule on the row.

The DETACH command releases the specified row from the processor on which
the command runs. See Chapter 9 for information on running commands on the
optional processor.

The operating system considers the bubble multimodule as a sharable device like a
disk drive. Bubble multimodules need not be attached to or detached from a
processor. Attempting to DETACH a multimodule row that contains bubble
memory results the following error message being displayed:

61 MODULE ALREADY ASSIGNED TO BUBBLE

Examples
The command
DETACH O

detaches the multimodules in Row 0 (J1 and J2) from the processor executing the
command. See Chapter 9 for more information on dual processing.

5-23

Command Dictionary iPDS™ User’s Guide

DIR

Displays index
of disk files

COMMAND FORMAT

X«

DIR[TO <pn>][FOR <pn>1{<n>1Il] H

TO <pn> specifies the device or file pathname to receive the output of
the directory listing. The default is the current console
device (:CO:). The TO clause may only appear once.

NDTO™

where

FOR <pn> ' displays the directory listing only for the file or files
specified. The <pn> may contain wildcard characters,
thereby specifying more than one file. The <pn> must
specify a complete filename; a logical drive specification is
not allowed. See the <n> option below for specifying a logi-
cal drive. The FOR clause may only appear once.

<n> is a digit from 0 to 5 which specifies the logical disk device
being indexed. The default for <n> is 0 for :F0:. Only one
drive can be specified. If more than one <n> is entered on
the command line, the last one entered is used and the
others are ignored. If <n> is specified and the FOR clause
also gives a device name, <n> overrides the device given
in the FOR clause.

| specifies that files with the Invisible attribute set are to be
included in the list with the other files.

bute are to be listed. If J, K, and L are combined, they are
ANDed to determine which files are displayed. For
example, if J and K are specified, only files with both J and
K attributes set are included in the directory listing. See the
ATTRIB command for more information on these
attributes.

I specifies that oﬁly files with the user-defined J , K, or L attri-

p——
[

F specifies a Fast listing. Only the filenames, extensions, and
the summary line are given.

O * specifies a single column listing of files. Otherwise, the
output is double column.

P is used on single drive systems to stop the program after it is
loaded into memory, allowing another disk to be inserted.
The prompt ;
LOAD SOURCE DISK, THEN TYPE (CR)
is issued. The the disk requiring a directory listing is then

loaded and the RETURN key is pressed. When the directory
is finished, the system prompts

5-24

iPDS™ User’s Guide Command Dictionary

LOAD SYSTEM DISK, THEN TYPE (CR)

Remove the source disk, insert the system disk, and press
the RETURN key.

Z specifies a listing of only the summary line. The information
on files is omitted. The Z option overrides other options
given.

Comments
The DIR command lists information about the files on a disk to the output device
specified in the TO clause. If no device is specified, the current console device
(:CO:) is assumed.
Each entry in the directory listing contains the following information:

® Filename and extension

® Number of bytes in the file

® Number of disk blocks allocated to the file

® Attributes currently set for the file
The last line is a summary containing the number of blocks available on the disk

and the total number of blocks available on the disk. A directory listing is illustrat-
ed in Chapter 4.

Examples

The command

DIR1

displays a listing of the files on logical disk :F1: except files with the I attribute set.
The command

DIR1I

performs the same action except that files with the I attribute set are also displayed
resulting in a listing of all files, i.e., all files are displayed from the disk.

DIRTO :LP:
lists the files currently on :FO: on the line printer.
| DIR FOR :FO:PROG?.SRC JKL
displays a list of files on :FO: which meet the following criteria:
® Havethe], K, and L attributes set
® Have an extension of .SRC

® Have a filename beginning with PROG and with any character as the fifth
letter.

5-25

Command Dictionary iPDS™ User’s Guide

The command
DIRZ

displays only the summary line for :F0O: showing the number of blocks in use on
the disk.

DIRO OF

lists only the filenames and extensions in single column format for files on :FO:.

ENDJOB

Terminates a file
used as console input

Command Format

ENDJOB [<comment>]

where
(comment) is user defined. For example, the comment can contain the
job name.
Comments

The ENDJOB command is used to terminate a file currently being used as console
input, so that an end of file error (See ISIS error 29 in Appendix B.) does not
occur. An end of file error causes a software reset and the operating system is
reloaded.

ENDIJOB is automatically appended to the end of the file created by the JOB
command. It should also be added as the last command of any job file not created
by the JOB command. For example, if the user creates a file with the CREDIT text
editor to be run by the / command, ENDJOB should be the last command in the
file.

The ENDJOB command is an example of an ISIS-PDS command that is always

resident in memory. There is no file that corresponds to this command, so it need
not be loaded into memory to be run.

Examples

The command
ENDJOB JOBS

terminates the JOB file with the comment showing that the file terminated is JOB9.
ENDJOB

appears as the last command in a JOB file to terminate that file.

5-26

iPDS™ User’s Guide Command Dictionary

HELP

Displays help
information for ISIS-PDS

Command Format

<n>
HELP|{ <command name>
<topic>

where

<n> is the number, up to three digits, of an ISIS error
message.

<command name> is the name of a valid ISIS command.

<topic> is a term for which help is available.

Comments

Entering the HELP command without specifying any parameters causes every
ISIS-PDS command and topic for which help is available to be displayed.

Entering the command with a valid error number causes the error message to be
displayed on the screen.

Entering the command with a valid ISIS command name causes the command
format and related information to be displayed on the screen.

Entering the command with a valid topic term causes information about that topic
to be displayed on the screen.

Examples

The command
HELP COPY

displays the formatand a description of the COPY command.
HELP 29

displays the tefct of error message 29.
HELP

displays a list of all topics and commands for which help is available.

An example showing the output of the HELP command is given in Chapter 4.

5-27

Command Dictionary iPDS™ User’s Guide

IDISK

Initializes a disk
for ISIS-PDS use

5-28

Command Format

IDISK :F<n>:<volume id>[.<vol ext>][{g} :|

where
F<n>: specifies the logical disk to be initialized.

<volumeid>.<volext> specifies the volume name to be assigned to
the disk being initialized as a one- to six- char-
acter name. The extension (one- to three-
characters) is not required. No blank spaces
are allowed between the device name and the
filename.

P is the pause option for initializing a disk on a
single drive system. The following prompt is
displayed

LOAD OUTPUT DISKETTE, THEN TYPE
(CR)

After inserting the disk to be initialized, press
the RETURN key. When required, the prompt

LOAD SYSTEM DISKETTE, THEN TYPE
(CR)

is displayed. Place the system disk back in the
drive and press the RETURN key to return to
the operating system.

S causes a system disk to be created. The files
ISIS.LAB, ISIS.FRE, ISIS.DIR, ISIS.TO,
ISIS.PDS, and ISIS.CLI are put on a system
disk. Otherwise, a non-system disk is created.
When a non-system disk is initialized,
ISIS.PDS and ISIS.CLI are omitted.

Comments

Single drive mode is specified by the P option, but is also assumed if :FO: is
specified.

A non-system disk can be made into a system disk without reinitializing it by using
the COPY command with the C option to copy ISIS.PDS and ISIS.CLI from a
system disk. The C option does not copy the F attribute for these two files. The
ATTRIB command should be used to assign the F attribute to the files.

To IDISK from a drive other than physical drive 0, first use the ASSIGN command
to change the assignment of :FO: to the physical drive desired as the IDISK input.
Then, the IDISK command uses the alternate physical drive as the input for files
required.

iPDS™ User’s Guide ’ Command Dictionary

Examples

The command

IDISK :F3:NEWVOL S
SYSTEM DISKETTE

initializes a system disk on :F3: named NEWVOL. The message SYSTEM DIS-
KETTE indicates that the S option was used.

IDISK :F2:VOL2
NON-SYSTEM DISKETTE

initializes a disk on :F2: called VOL?2 as a non-system disk.

The command

IDISK :FO:VOL3
SYSTEM DISKETTE

initializes a disk on the logical disk device :FO: assuming the P option. The follow-
ing message is displayed:

LOAD OUTPUT DISKETTE, THEN TYPE (CR)
At the end of the initialization, the following message is displayed:
LOAD SYSTEM DISKETTE, THEN TYPE (CR)

Remove the new system disk and insert the old system disk and press RETURN
or simply press RETURN since the newly created disk is also a system disk.

5-29

Command Dictionary iPDS™ User’s Guide

JOB

Batches commands and
executes from a file

Command Format
JOB [<jobfile >]
where

<jobfile> is the pathname of the file that contains the commands speci-
fied by the wuser. If no pathname is specified,
:F0:JOB<a>.CSD is the default where <a> is A for Proces-
sor A and B for Processor B.

Comments

After entering the JOB command, the equal sign prompt (=) appears. Commands
can be entered as usual; however, they are saved in memory and are not executed
immediately.

There are three ways to end this mode of entering commands that are saved in
memory:

® Press the RETURN key two times in a row to save the commands in the file
specified by <jobfile>. An ENDJOB command is appended to the last com-
mand entered, and the commands are executed from <jobfile> in the order
in which they were entered.

® Press CTRL-Z to return to standard input mode and delete any commands al-
ready entered. No job file is created.

® Press the ESC key to save the commands previously entered in the file speci-
fied by <jobfile>. An ENDJOB command is appended to the last command
entered, but the file is not executed. The user is returned to the standard
input mode.

If a job file is created, it can be executed later with the ASSIGN command or the /
command, or it can be edited first and then executed. If the file is named in the
form

JOB<n>.CSD

where <n> is a digit from 0 to 9, the file can be executed as a user defined
function. See FUNCT <n>.

If the commands entered overflow the available memory, the effect is the same as
if ESC had been typed. The commands are saved in the file specified by <jobfile >
with the ENDJOB command appended to the end of the file, and the system is re-
turned to the standard input mode.

The JOB command is ignored if it appears in a command file, i.e., nesting of JOB
commands is not allowed. Note that the SUBMIT command allows nesting.

5-30

iPDS™ User’s Guide Command Dictionary

An error occurs if the system cannot open the file after the RETURN or ESC key
is pressed and the user is prompted to enter a new filename.

The JOB command is another command that is always in memory. It does not
have to be loaded from a disk file to be run.
Examples
The command
JOB :F1:J0B1.CSD

accepts keyboard input in batch mode to be saved in a file on :Fl: named
JOB1.CSD.

JOB

accepts keyboard input in batch mode to be saved in a file on :FO: named
JOBA.CSD if run on Processor A and JOBB.CSD if run on Processor B. Processor
A is the processor that comes with the system, and Processor B is the optional pro-
cessor that can be added. See Chapter 9 for more information on dual processing.
If the same command is run again, it overwrites the existing JOBA.CSD.

JOB JOB9.JOB

accepts keyboard input in batch mode to be saved in a file on :FO: named
JOB9.JOB.

JOB :F4:40B2

accepts keyboard input in batch mode to be saved in a file on :F4: named JOB2
with a blank extension. .

The command

JOB ABOOT.CSD
creates a jobfile on :FO: that is executed every time that Processor A is initialized.
A jobfile named BBOOT.CSD is executed every time Processor B is initialized.

ABOOT.CSD and BBOOT.CSD must contain an ENDJOB command so that con-
trol isreturned to the keyboard after the configuration jobfile is run.

5-31

Command Dictionary iPDS™ User’s Guide

RENAME

Changes the filename or
extension of a disk file

Command Format
RENAME <old pathname> TO <new pathname>

where-

<old pathname> specifies the old name of the file to be changed. Wild-
card characters are not allowed. The file being
renamed must not be write protected. Use the
ATTRIB command to remove write protection.

<new pathname> specifies the new name for the file. The <new path-
name> must specify the same physical device as the
source. Wildcard characters are not allowed.

Comments

The two pathnames must specify the same physical disk device; however, the logi-
cal disk device can differ. For example, :F1: can be used for the old pathname and
:F2: for the new pathname as long as :F1: and :F2: are assigned to the same physical
device. If the new pathname specifies an existing file (new pathname already
exists), the program prompt:

<new pathname> ALREADY EXISTS, DELETE?

Type “Y” or “y” to delete the existing file. Otherwise, the program terminates, re-
turning the system prompt.

The RENAME command cannot be used on a non-system disk in single drive
systems. To rename a file on a non-system disk in a single drive system, use the
COPY command with the P option. Then, use the DELETE command with the P

option to remove the original file. An example is given in Chapter 4 for this
procedure.

The message
RENAME <old filename > TO <new filename >

is displayed when each file is renamed.

Examples

The command

RENAME PROGA.SRC TO PROGB.SRC
RENAMED PROGA.SRC TO PROGB.SRC

renames the file PROGA.SRC to PROGB.SRC on :FO:.

RENAME :F3:NEWDOC.TXT TO :F3:OLDDOC.TXT
RENAMED :F3:NEWDOC.TXT TO :F3:0LDDOC.TXT

renames the file NEWDOC.TXT to OLDDOC.TXT on :F3:.

5-32

iPDS™ User’s Guide

Command Dictionary

SERIAL

Configures the 8251 USART and the 8253
Timer for the serial output port

Command Format

There are two formats for the SERIAL command: one for synchronous mode and
one for asynchronous mode. For synchronous mode, the format is:

SERIALS [P=<a>W=<n1>E=0C=<n3> |=<n4>]

where
S
P=<a>
W=<nt1>
E=0
C=<n3>

I=<n4>

specifies the synchronous mode of data transfer. P, W, E, C,
and I are the only valid parameters in synchronous mode.

specifies the parity. The value of <a> can be

E for even parity
O for odd parity
N for no parity

The defaultis P=N.

specifies the word size. The value of <nl > can be

S for a 5-bit word size
6 for a 6-bit word size
7 for a 7-bit word size
8 for an 8-bit (one byte) word size

The defaultis W=38.

specifies the source of the synchronization character. The
value of 0 is for internal synchronization. The iPDS system
does not support external synchronization.

specifies the use of a synchronization character. The value
of <n33> can be

0 for double synchronization character
1 for single synchronization character

The default is C=0, and the two default synchronization
characters are both SOH. The command prompts for the
value of the character or characters to be used for
synchronization.

specifies an 8251 USART command as a numeric value. If
no value is specified, the default command is 37H. See the
Component Data Catalog for a description of the commands.

5-33

Command Dictionary iPDS™ User’s Guide

For asynchronous mode, the format is:

SERIALA[P=<a>S=<n1>B=<n2>W=<n3> |=<n4>]

where
A specifies the asynchronous mode of data transfer. P, S, W,
and B are the only valid parameters in asynchronous mode.
P=<a> specifies the parity. The value of <a> can be;:

E for even parity
O for odd parity
N for no parity

The default isP=N.

S=<n1> specifies the number of stop bits. The value of <nl> can
be:

1 for one stop bit -
1.5 for one and a half stop bits
2 for two stop bits

The default is S=2.

B=<n2> specifies the baud rate. The value of <n23> can be:

110fora 110 baud rate
150 fora 150 baud rate
300 fora 300 baudrate
600 fora 600 baud rate
1200 fora 1200 baud rate
2400 fora 2400 baud rate
4800 for a 4800 baud rate
9600 for a 9600 baud rate
19200 for a 19200 baud rate

The defauit is B=9600.

W=<n3> specifies the word size. The value can be:

5 for a 5-bit word size
6 for a 6-bit word size
7 for a 7-bit word size
8 for an 8-bit (one byte) word size

The default is W=S8.

I=<n4> specifies an 8251 USART command as a hexadecimal value.
If no value is specified, the default command is 37H. See the
Component Data Catalog for a description of the commands.

5-34

iPDS™ User’s Guide ' Command Dictionary

Comments

The SERIAL command programs the 8251 USART and the 8253 Timer chips for
synchronous or asynchronous transmission or reception of data. The user should
understand the 8251 and the 8253 before using this command. Refer to the current
edition of the Intel Component Data Catalog for further information on the 8251
and the 8253.

In some applications, the SERIAL command could be in the ABOOT.CSD file so
that the USART is automatically configured whenever the system is initialized.
Two ASSIGN commands could also appear to assign the ISIS-PDS console device
(:CO: and :CI:) t0:SO: and :SI..

Any parameters that are left off the command line take on the default values as in-
dicated previously. :

Numeric values for the B and I parameters and for synchronization characters can
be entered in any number base: binary (B), octal (O or Q), decimal (D), or hexa-
decimal (H) by appending the base suffix shown in parentheses to the numeric
value. Hexadecimal values beginning with the digits A to F should be entered with
leading zeroes. The default base, if no suffix is appended, is decimal.

Examples

The command

SERIALSP=EW=5E=0C=0
configures the serial port to synchronous mode with even parity, a word length of
5 bits, external synchronization on output, and two bytes used for synchroniza-

tion. The command prompts twice for the two synchronization characters to use. If
C=1 were specified, only one prompt would be given.

INPUT SYNC CHAR (NUMERICAL VALUE) => 20H
INPUT SYNC CHAR (NUMERICAL VALUE) => 20H

The ASCII code for the space character (20H) is entered for both characters.
The command
SERIALAP=NS=2W=8B=1200

configures the port for asynchronous mode, with no parity, 2 stop bits, a word
length of 8 bits, and a baud rate of 1200.

5-35

Command Dictionary iPDS™ User’s Guide

SUBMIT

Executes commands
from a disk file

Command Format
SUBMIT <pn> [(<parameter 0>, <parameter 1>,..., <parameter 9>)]
where

<pn> is the pathname of the file containing the command
lines to be executed automatically. If no extension
is supplied, SUBMIT assumes an extension of
.CSD. A file with a blank extension can be used by
typing the filename followed by a period (.). More
details on the content of this file follow.

<parameter 0> are the values (up to 31 characters) assigned to

thru <parameter 9> formal parameters in the command file. Parameters
are discussed in more detail in the following
section.

Comments

To run the SUBMIT command in the most straightforward way:

1. First, use CREDIT to create a text file containing an operating system com-
mand on each text line. The command should be typed exactly as it would
normally be entered from the keyboard including the RETURN key at the
end of the line. If any keyboard responses are expected by the command,
these should also be entered in the order they would normally occur.

2. Type the SUBMIT command line with the pathname of the text file contain-
ing the commands. The commands in the text file are run in the order in
which they appear in the file.

The following sections describe the operation of the SUBMIT command in more
detail.

Chapter 4 contains an example of the SUBMIT command and the JOB command
where both are compared.

The Input File

The input file specified in the SUBMIT command line defines the sequence of
ISIS-PDS commands to be executed. It is referred to as the Command Sequence
Definition file and has a default extension of .CSD. Some ISIS commands have re-
strictions when used in a .CSD file. For example, the DEBUG command cannot
be run under SUBMIT.

The .CSD file must contain commands in the exact sequence they are to run. The
commands cannot be out of order. Also, any keyboard responses required by a
specific command must follow that command line and must be in the order expect-
ed by that command.

5-36

iPDS™ User’s Guide Command Dictionary

The commands in the .CSD file may contain placeholders which name constant or
variable values, i.e., formal parameters.

The SUBMIT command reads the .CSD file specified in the command line and
copies it to a temporary file substituting the actual values of parameters. This file is
referred to as the Command Sequence file and has the same filename as the .CSD
file with an extension of .CS. The .CS file is deleted when the SUBMIT command
is finished.

Parameters

The SUBMIT command allows up to 10 formal parameters to appear in the .CSD
file. Each formal parameter appears in place of an actual value of the form:

%<n>
where <n> isadigit 0 to 9 and no spaces separate the % and the digit.
The actual parameters (the values for the formal parameters) are specified in the
SUBMIT command line as <parameter 0> through <parameter 9>. Each actual

parameter can be up to 31 characters. The actual parameters are enclosed in paren-
theses and are separated from one another by a comma.

To use a comma, a space, or a parentheses in a parameter, enclose the parameter
in single quotes. For example,

(‘'DATE: May 15, 1981’,'TIME: 10:00’)

The two spaces after DATE:, the space after MAY, the comma and space after 15
are treated as part of the parameter while the comma after 1981’ is a delimiter and
separates the first parameter from the second. The value that appears in the .CS
file for the first formal parameter is:

DATE: May 15, 1981

The value that appears in the .CS file for the second formal parameter is:

TIME: 10:00

To use quotes in a parameter, type a pair of extra single quotes. One single quote
appears as part of the parameter.

For example, the parameter:
‘TIME’

should be entered as:
“TIME’

To skip one of the formal parameters and supply no actual value for it, type two
adjacent commas in the parameter list on the SUBMIT command line.

5-37

Command Dictionary iPDS™ User’s Guide

For example, assume that the file COPY.CSD, the input to the SUBMIT
command, contains the following:

ATTRIB :F1:%0 WO
DELETE :F1:%0
COPY %0 TO :F1:%0
ATTRIB :F1:%0 W1

This example assumes that :FO: and :F1: are assigned to different physical drives.
A SUBMIT command line to execute this file is:

SUBMIT COPY(PROGA)
The file COPY.CS, created by the SUBMIT program, would then contain:

ATTRIB :F1:PROGA WO

DELETE :F1:PROGA

COPY PROGA TO :F1:PROGA

ATTRIB :F1:PROGA W1

:FO:SUBMIT RESTORE :FO:COPY.CS (:VI:)

The last command in the sequence, inserted by SUBMIT at run time, terminates
the SUBMIT command and returns to keyboard input mode. It is discussed in fol-
lowing sections.

Interactive Usage

If CTRL-E appears in a .CSD file, the current console input device (the .CSD file)
is changed to the keyboard. Then, the user may enter input from the keyboard.
Typing CTRL-E at the keyboard restarts the SUBMIT command sequence.

To enter CTRL-E in the .CSD file, either the literalizing feature or the hexadeci-
mal entry feature of the CREDIT text editor must be used. See the ISIS CREDIT™
CRT-Based Text Editor User’s Guide for instructions on entering characters literally
or entering hexadecimal values. The hexadecimal value for CTRL-E is 05H.

Do not edit the .CSD file when entering data at the keyboard during a CTRL-E
portion of SUBMIT.

Example

Assume that the input file to SUBMIT contains the following command lines:

CREDIT :F3:PROGA.SRC
CTRL-E

ASMBS80 :F3:PROGA.SRC
LOCATE :F3:PROGA.OBJ
:F3:PROGA

The SUBMIT command begins executing commands read from the file. When the
CTRL-E is read, the SUBMIT program stops reading the file for input and
switches to keyboard input. The user can interactively edit the source program
text file at this time. Only command line editing is allowed when the CREDIT text
editor is run under SUBMIT. After the editing session is ended, the user enters
CTRL-E at the keyboard to switch back to reading the file for operating system
input. SUBMIT resumes reading at the third line and assembles, locates, and runs
the program.

5-38

iPDS™ User’s Guide Command Dictionary

Advanced Usage

This section describes how SUBMIT processes the input .CSD file. Because of the
way that SUBMIT processes the command file, SUBMIT commands can be nested
to any level in the .CSD file. Processing of a nested .CSD file is illustrated in the
example.

In general, the steps in executing a .CSD file are:

1. SUBMIT creates a .CS file and copies the .CSD file to it, substituting actual
values for formal parameters.

2. SUBMIT generates a special command (a RESTORE form of the SUBMIT
command) for the end of the .CS file that points to the most previous
console input device. Thus, when SUBMIT finishes processing the .CS file,
it can return either to the keyboard or to the correct line of the next higher
nested SUBMIT file.

These two steps are described in detail in the rest of this section.

When SUBMIT first begins, it copies the .CSD file, the input file created by the
user, to the .CS file substituting actual parameters for formal parameters. Also,
when creating the .CS file, SUBMIT attaches a command at the end of the file of
the form:

SUBMIT RESTORE <pn) (<previous input>[, <block >, <byte)])

where

<pn> is the pathname of the current console input device,
i.e., the name of the current .CS file.

(<previousinput>) is the pathname of the previous console input
device enclosed in parentheses. If SUBMIT was run
from the keyboard, this would be :VI: to return to
the keyboard for further input. If SUBMIT was
nested (run from another .CS file), the previous
input would be the pathname of the .CS file that in-
voked SUBMIT.

,<block > is only specified if the previous input is a .CS file.
The <block) identifies the block in the previous
.CS file where SUBMIT left off. Thus, SUBMIT can
return to the command following the nested
SUBMIT command. Blocks are 128 bytes each start-
ing at block 0.

,<byte> is only specified if the previous input is a .CS file.
The <byte3> identifies the byte within the block
specified where SUBMIT left off. Thus, SUBMIT
can return to the command following the nested
SUBMIT command. The byte count starts at byte 0
to byte 127 for each block.

When the RESTORE version of the SUBMIT command is executed from a .CS
file, that .CS file is deleted, and control returns to the previous console input
device.

5-39

Command Dictionary iPDS™ User’s Guide

The execution sequence of nested SUBMIT files is summarized as follows:
1. Readthe SUBMIT command line nested in the current .CS file.

2. Create the .CS file for the nested SUBMIT .CSD file substituting actual
values for formal parameters.

3. Place the RESTORE version of the SUBMIT command at the end of the new
.CS file to return to the command after the nested SUBMIT.

4. Change the console input to the-new .CS file.

5. Execute the new .CS file until the RESTORE version of the SUBMIT com-
mand is run.

6. Delete the new .CS file and return to the old .CS file to finish execution.

The highest level of the .CS file returns control to the keyboard by running the RE-
STORE version of SUBMIT with :VI: as the previous input.

Normally, the RESTORE version is generated by the SUBMIT command and is
never entered by the user. However, if a SUBMIT command is terminated early
because of an error, it can be restarted after the error is corrected by entering the
RESTORE version of the command from the keyboard. The user must calculate
the correct block and byte of the .CS file to continue executing in the correct place.

For example, if the SUBMIT command terminates because the drive specified for
a file to be copied is offline, the command can be restarted at the COPY command
after the drive is made available.

The following is an example of processing a nested SUBMIT command. For this
example, the file COPY.CSD from the example in the section “Parameters” is
used. This example assumes that :FO: and :F1: are ASSIGNed to different physical
devices. It contains the following text:

ATTRIB :F1:%0 WO
DELETE :F1:%0
COPY %0 TO :F1:%0
ATTRIB :F1:%0 W1

To execute this .CSD file, a SUBMIT command must be issued passing the actual
value of the formal parameter %0. For this purpose, the file BACKUP.CSD is
created containing the following two SUBMIT commands:

SUBMIT COPY(PROGA)
SUBMIT COPY (PROGB)

The SUBMIT command to start execution is:
SUBMIT BACKUP

The .CSD extension is assumed in this command line. The SUBMIT command
creates the file BACKUP.CS containing the following text:

SUBMIT COPY(PROGA)

SUBMIT COPY(PROGB)
:FO:SUBMIT RESTORE :FO:BACKUP.CS(:VI:)

5-40

iPDS™ User’s Guide Command Dictionary

The first SUBMIT command is run creating the file COPY.CS as follows:

ATTRIB :F1:PROGA WO

DELETE :F1:PROGA

COPY PROGA TO :F1:PROGA

ATTRIB :F1:PROGA W1

:FO:SUBMIT RESTORE :FO:COPY.CS(:FO:BACKUP.CS,0,19)

When the last command in this file (the RESTORE version of SUBMIT) is run,
COPY.CS is deleted and control returns to the 19th byte in block 0 of the file
BACKUP.CS, i.e., the second SUBMIT command in the file BACKUP.CS.
SUBMIT calculates the correct byte and block for return and generates the RE-
STORE version of the SUBMIT command.

The second SUBMIT command creates a second COPY.CS file as follows:

ATTRIB :F1:PROGB WO

DELETE :F1:PROGB

COPY PROGB TO :F1:PROGB

ATTRIB :F1:PROGB W1

:FO:SUBMIT RESTORE :FO:COPY.CS(:FO:BACKUP.CS,0,39)

When the last command in this file is run, COPY.CS is deleted again and control
returns to the 39th byte in block 0 of the file BACKUP.CS, i.e., the third command
line in the file BACKUP.CS:

:FO:SUBMIT RESTORE :FO:BACKUP.CS(:VI:)

The third command is the RESTORE version of SUBMIT for the highest level of
nesting. It returns control to the keyboard, :VI:.

Technical Information

Any program running under the ISIS-PDS operating system and receiving its
input from the :CI: device can be run by SUBMIT, if there is sufficient buffer
space for all the open files.

The ISIS-PDS operating system allows six disk files to be open at a time. Each
open file requires two to three 128-byte buffers from the user’s memory addresses
3180H to 3980H. See Chapter 8 for a detailed discussion of buffer space
requirements.

Regardless of the number of nested SUBMITs, the SUBMIT command itself re-
quires only one open file at a time and, thus, 128 bytes from the user’s buffer
space. However, some programs such as CREDIT or IPPS can open additional
files. When running these programs under SUBMIT, the six open file limit can be
exceeded creating an error.

Error Messages

The SUBMIT command produces three error messages in addition to those pro-
duced by the ISIS-PDS operating system. All three are fatal errors.

ILLEGAL SUBMIT PARAMETER occurs when the parameter contains
illegal characters. For example, parame-
ters are not enclosed in single quotes
when the quotes are required.

5-41

Command Dictionary , iPDS™ User’s Guide

ARGUMENT TOO LONG occurs when the parameter on the com-
mand line is longer than 31 characters.

TOO MANY PARAMETERS occurs when more than 10 values are
specified on the command line.

In addition, the use of the pause option (P) for the COPY, DIR,
and DELETE commands is prohibited when these commands are
run from a SUBMIT file. No error or warning message is issued;

however, use of the option can destroy files on one or more of the
disks.

Examples

The command
SUBMIT SRCOBJ(PROGA)

runs the commands in file SRCOBJ.CSD on :F0:. The first parameter in this file
takes on the value PROGA.

See Chapter 4 for an example of developing and creating a SUBMIT file.

?

Displays the version
of the command line interpreter

Format
?

Comments

The ? command displays the version number of the Command Line Interpreter
(CLI). The display is of the form:

CLIVn.m

where n.m is replaced by the actual version number.

The ? command is always present in memory. It does not correspond to a disk file
containing the ? program like the COPY command.

The ? command must be followed by the RETURN key.

Examples

If the 1.0 version of the CLI is running the display is:

?
CLIV1.0

5-42

iPDS™ User’s Guide Command Dictionary

@

Displays the contents
of afile on the screen
Command Format
@ <pathname> [4]
where
<pathname> specifies a file to be displayed on the screen.

4 specifies that tabs in the text file is displayed as 4 spaces in-
stead of 8.

Comments

After entering the command, the first 19 lines of the file are output to the screen
and a pause occurs. Any of the following characters can then be entered at the

keyboard:

P switches to page mode and continues. The file is displayed 21
lines at a time. Pressing any character causes the next 21 lines to
be displayed and then halt.

S switches to slow scroll mode and continues. The file is displayed
continuously scrolling at a slow speed.

F switches to fast scroll mode and continues. The file is displayed
continuously scrolling at a fast speed.

E exits back to the operating system.

L switches to line-by-line mode and continues. The file is displayed
a line at a time, pausing after each line. Press any character to
continue.

B backs up 1024 characters and continues. The B command can be
pressed repetitively to return to the beginning of the file.

Z prints the last 1K bytes of the file, sets the mode to F, and halts.

CTRL-S pauses the display. Press any character to continue.

<a> any other character continues the display after a halt from a
CTRL-S, the end of a page on Page mode, or the end of a line on
Line mode.

Any commands can be entered at any time, even during a paused display.

When the end of the file is reached, the E command must be entered to exit back
to the operating system.

Lines longer than 77 characters automatically wrap around to the next physical
line on the console output device.

5-43

Command Dictionary iPDS™ User’s Guide

The @ command is an example of a command that is always present in memory.
There is no corresponding file containing the @ program that must be loaded into
memory to run the @ command.

Examples

The command
@MYDOC.TXT

displays the contents of the file MYDOC.TXT.
@PROG.SCR 4

displays the contents of PROG.SRC with any tabs in the file displayed as 4 spaces.

/

Assigns a file as the
console input device

Command Format

/ <pathname>

where

<pathname> is the pathname of a jobfile or device to be used as console
input device. If no extension is specified, .CSD is
assumed. If <filename> is followed by a dot (.) but no
extension follows, the dot is ignored and <filename>
with a blank extension is used.

Comments

The / command is a shorthand form of the ASSIGN :CI: TO <pathname>
command. It can be used to change the assignment of the console input device to a
jobfile or to a device. The jobfile can be a command file created with the JOB com-
mand or with the CREDIT text editor and with the ENDJOB command at the end.
The / command is always present in memory. There is no corresponding / file to
be loaded to run the / command.

The last command in the jobfile should be the ENDJOB command. Otherwise, an
ISIS error 29 is generated and the system is reinitialized.

The / command can appear in a SUBMIT file or a JOB file, but, after the / com-
mand is complete, the SUBMIT or JOB command is not resumed.

If a CTRL-E appears in the command file, input switches to the keyboard. Type
CTRL-E to resume input from the file.

The / command is faster than SUBMIT because it does not have to create an inter-

mediate file as SUBMIT does. An intermediate file is not required because
parameters cannot be passed.

5-44

"~ iPDS™ User’s Guide ’ Command Dictionary

Examples
The command
/:F1:CMDFIL

takes the console input from the file CMDFIL.CSD on :F1: instead of from the
keyboard.

The command
/:F3:CMDFIL.

takes the input from the file on :F3: with the name CMDFIL and with a blank
extension.

The command
/:Sl:
switches the input to the serial input device.

See Chapter 4 for examples of the SUBMIT command, the JOB command, and the
/ command.

#

Re-assigns console output
to the CRT screen

Command Format

#

Comments

The # command is a shorthand form of the ASSIGN :CO: TO :VO: command. It
restores the console output device to :VO: which is the CRT display screen. This
command is used after the ASSIGN command has assigned the console output to
some other physical device. The # command is always present in memory and
does not correspond to a file that must be loaded to run the command.

The # command must be followed by a RETURN.

Examples
The command
#
switches the console output from a file, the printer, or some other output device

back to the CRT screen.

5-45

Command Dictionary iPDS™ User’s Guide

Fast single line
SUBMIT command

Command Format

. <pathname> [(<parameter 0>, <parameter 1>,. . ., <parameter
9>)]

where
<pathname> is the pathname of a jobfile containing a single com-

mand line. The default extension is .CSD. If a file-
name is followed by a dot (.) but no extension is
specified, the filename with a blank extension is
used. More details on the content of this file are de-
scribed in the SUBMIT command.

<parameter 0> are the values (up to 31 characters) assigned to
thru <parameter 9> formal parameters in the .CSD file.

Comments

The . command reads a single line from the .CSD file, substitutes actual values for
any formal parameters in the file, and executes the resulting command. Only 122
characters for the command line are allowed after all substitutions are made. The .
command operates the same as SUBMIT except that no intermediate file (.CS file)
is created, only one command is read and executed, and the command file may
contain a blank extension. All substitutions for formal parameters are made in
memory. Thus, the . command is faster than SUBMIT for a single command line.
Nesting of . commands is not allowed.

See the SUBMIT command for further details on parameters.

Examples
The command

.:F1:CMDFIL (15,25)
performs the SUBMIT command with CMDFIL.CSD on :F1: as the job file. The
value 15 is substituted for any %0 formal parameters, and 25 is substituted for any
%1 formal parameters.

.:F1:CMDFIL. (:F2:CMD.FIL)

performs the SUBMIT command with the file CMDFIL on :F1: as the job file, sub-
stituting the value :F2:CMD.FIL for all occurrences of the formal parameter %0.

5-46

iPDS™ User’s Guide Command Dictionary

FUNCT <n>

Assigns the file JOB<n>.CSD
as the console input device
Command Format
FUNCT-<n>
where

<n> is a digit from 0 to 9. The digit specifies the JOB file to be used as
console input.

Comments

FUNCT 0 through FUNCT 9 are user defined function keys. Typing a digit from 0
to 9 while holding down the FUNCT key causes the file named JOB<n>.CSD to
be used as the console input. The file should contain operating system commands.
The operation of the function keys is similar to the operation of the / command
except that a default pathname is used for the input file and it need not be
specified.

Pressing the number <n> followed by the RETURN key is the same as pressing
FUNCT <n>.

The job file must have been previously created with CREDIT or with the JOB
command. If CREDIT is used to create the file, the last command in the file must
be ENDJOB. If the JOB command is used to create the file, the ENDJOB com-
mand is automatically appended to the file by the JOB command.

See the JOB command for further information on creating job files.

Examples
The command
FUNCTO

switches the console input to the file JOBO.CSD on :F0:. The number sign and
digit 0 are displayed on the screen (#0).

FUNCT 1

switches the console input to the file JOB1.CSD on :FO:, the system default logical
disk. The number sign and the digit 1 are displayed on the screen (#1).

5-47

Command Dictionary iPDS™ User’s Guide

ESC

Re-edits and re-executes
the most previous command line

Command Format

ESC

Comments

Instead of entering a command line at the operating system prompt, the ESC key
can be pressed to edit the most recent command line. The ESC key can also be
pressed during a command line entry to edit the command line entered so far.
Then, the entire command line is displayed as it is stored in the command line in-
terpreter line editing buffer. The following keys can be used to modify and re-
execute the command line.

CTRL-A CTRL-A inserts any number of characters before the current
cursor position. Pressing CTRL-A the first time enters insert
mode. Then, any characters typed are inserted before the
cursor. Pressing CTRL-A a second time ends the insert.

CTRL-B CTRL-B moves the cursor to the beginning of the line.

CTRL-D CTRL-D deletes the character at the current cursor position
unless the cursor is at the end of the line. Then, the character
preceding the end of the line is deleted.

CTRL-L CTRL-L moves the cursor to the end of the line.

CTRL-X CTRL-X terminates the re-edit without executing the command
line and returns to ISIS for another command.

ESC Press ESC a second time to execute the entire command line.

RETURN Press RETURN to execute the command line up to the current
cursor position.

RUBOUT Pressing the RUBOUT key is the same as pressing CTRL-D.
< - The left arrow, cursor control key moves the cursor to the left.

-> The right arrow, cursor control key moves the cursor to the
right.

Only command lines of six or more characters, including spaces, are saved for re-
editing.

The ESC key can also be used to repeatedly execute a command.

5-48

iPDS™ User’s Guide

Examples

Entering the command line:

RENAME MYFILE.TXT TO OLDFIL.TXT

After this command has run, typing the ESC key causes the command line to be
displayed for editing and re-execution.

ESC
RENAME MYFILE.TXT TO OLDFIL.TXT

Then, the following editing steps can be taken to change the command and re-

execute it. ‘
1. Use the left arrow to move the cursor to the M of MYFILE. TXT.
2. Press CTRL-A and type:
:F1:
3. Press CTRL-A to complete the insert.
4. Use the right arrow to move the cursor to the O of OLDFIL.TXT.
5. Press CTRL-A and type:
:F1:
6. Press CTRL-A to complete the insert.
7. Press CTRL-D three times to delete the OLD of OLDFIL.TXT.
8. Press CTRL-L to move the cursor to the end of the line.
9. Press the ESC or RETURN key to execute the entire command line. If step 8

were not done, the ESC key would execute the entire command line and the
RETURN key would execute the command line down to the :F1: of the desti-
nation file resulting in an invalid command.

Command Dictionary

5-49/5-50

© CHAPTER 6
TEXT EDITING

Introduction

A text editor is a program that aids in creating and modifying text files. Text files
are files containing alphanumeric characters, i.e., each byte in the file is interpreted
as a character according to the ASCII code. The byte values and corresponding
characters for ASCII codes are in Appendix C.

With the CREDIT text editor, text is entered by typing characters at the keyboard.
The text is stored in a file that can later be modified by CREDIT editing commands
or can be processed by other commands. For example, when the text file contains
the source code for a program, a language translator can process it to create ma-
chine code.

A tutorial session illustrating the use of text editing is given in Chapter 4.

Getting Started with the CREDIT™ Text Editor

This chapter includes information, specific to the iPDS system, for using the
CREDIT editor. The ISIS CREDIT™ CRT-Based Text Editor User’s Guide, order
number 9800902 describes the simplified, intermediate, general, and advanced
command formats. Screen mode and command mode editing functions, CREDIT
text editor features, and screen and command line mode editing commands are
covered. Included in the CREDIT manual is, creating macros with macro
commands, entering and correcting editing commands, using delimiters, and tuto-
rial sessions illustrating all aspects of editing using the CREDIT text editor,

Screen Mode Features

The CREDIT™ Display

The iPDS screen displays 24 lines. When the command line has been entered, the
screen clears and divides it into two parts as illustrated in figure 6-1. In screen
mode, the bottom 20 lines, called the text area, display text from the file. In the re-
maining lines at the top, the sign-on message, error messages, and status
messages are displayed. In screen mode, all operations are performed in the text
area, and the message area at the top of the screen not accessible to the user. The
text area and message area are separated by a line of five dashes.

In the screen mode, any ASCII code with an associated character is displayed on
the screen as that character. A code with no associated character is displayed as an
up arrow (). Codes displayed as an up arrow can be pointed to with the cursor and
replaced or deleted like any other character.

The end of the file is displayed as a vertical bar (1).

Text Editing ‘ iPDS™ User’s Guide

)

ISIS-IICRT-BASEDEDITORVE.1

COMMAND
AREA
OLD FILE SIZE = 52 CHARACTERS

Q1]
JANUARY?]
FEBRUARY]
MARCH]
Q2]
APRIL]
MAY]

- JUNE?

TEXT
AREA

\s J

0204

Figure 6-1 The CREDIT™ Display

The Keyboard

All characters typed at the keyboard are read by the editor. However, some of
these characters have a special meaning. They do not simply represent text data,
and are not written to the text file. When editing in screen mode, text is entered
through the development system keyboard to be saved in a disk file. Commands
are also entered through the keyboard, but are not saved in the file.

Figure 6-2 shows the keyboard. Character codes generated by the keys are inter-
preted as ASCII codes by the editor. The keys that perform special functions and
are not normally entered as data into the file are listed below.

The CTRL key is used for entering control characters. Control
characters are entered by pressing a character while holding down
the CTRL key similar to the way SHIFTed characters are entered.
Many screen mode functions are entered as control characters.
For example, in screen mode, the insert text command is CTRL-
A.

CTRL

;@l The HOME key switches to command mode from screen mode.

T In screen mode, the cursor control keys (+—1— |) move the

: cursor in the direction indicated by the arrow. See the section

— H: later in this chapter for complete description of cursor
movements.

—=—

6-2

iPDS™ User’

s Guide

ESC

| TAB

In either screen or command mode, the ESC key terminates
commands. When ESC is pressed, <BREAK?> is displayed in
the message area of the screen.

The RUBOUT key deletes the previously entered character when
inserting text in screen mode. Otherwise, the RUBOUT key
moves the cursor one position to the left without deleting the
character.

The TAB key positions the cursor to the next tab set on the line.
Its operation is similar to a typewriter tab. The default for tab set-
tings is every 8 characters. Tab settings can be changed using the
Alter command described in the sectlon “Advanced Editing Tech-
niques” in the ISIS CREDIT™ CRT-Based Text Editor User’s
Guide.

The backslash (\) is the default literalizing character. It allows
characters that normally perform some function to be entered
into the file as data (literalized) instead. The character following
the backslash is taken as data. The backslash itself can be entered
as data in a file by typing two backslashes in a row. The second
one is literalized and is entered as data in the file. The literalizing
character can be changed from the backslash to any other charac-
ter by usmg the Alter command See the section on “Alter Com-
mands” in the ISIS CREDIT™ CRT-Based Text Editor User’s
Guide.

Text Editing

AMPERSAND
@
[\
=
()
RESET
s el B HHHSA N HBE AR i
TAB kuuc'a allwlel|RTlY[ulltfofp]sl 2| fr/‘H‘Sgﬁiﬁ'SL
Lo Lo s D[] (el &

CONTROL —tm

(CTRL)

l SHIFT

?2 || swer

L

2] xJefvie]nju]:]"
L |

it |

0205

Figure 6-2 The Keyboard

All other characters are accepted as data and are entered in the text file, or they are
invalid. Any invalid character causes a warning beeper to sound and no action to
occur. An example of an invalid character is a command character entered in the
middle of an insert or delete command.

Text Editing iPDS™ User’s Guide

The RETURN key is accepted as data and is entered into the file as a pair of
characters, and it also acts as a line terminator. A line of text consists of a character
string terminated by a carriage return-linefeed. This pair of characters, called the
line terminator, is entered in the file as a 0DH and 0AH when the RETURN key is
pressed. Lines are not limited to 80 characters (the width of the display), but it is
generally easier to work with a file when each text line fits on a display line.

The line terminator is displayed as one character on the screen, the up arrow (}).
Most screen editing functions treat the terminator as one character.

The Cursor

The CREDIT editor maintains a pointer that marks a character in the text file.
Changes are made relative to this pointer. For example, deleting a character erases
the character designated by the pointer. Insertions are made immediately preced-
ing the pointer.

In the screen editing mode, the cursor, the reverse video block, reflects the cur-
rent position of the pointer.

In screen mode, when the cursor is pointing to an area of the screen that does not
contain any characters, no edit commands are accepted. The warning beeper
sounds when an attempt is made to enter commands with the cursor pointing to an
area containing no characters. However, the CTRL-Z command to delete charac-
ters can be completed with the cursor pointing to an area containing no characters.

There are no characters between the line terminator and the next line or beyond
the end of file marker.

Command Mode Features

The CREDIT™ Display

When the command line is first entered under the ISIS-PDS operating system, the
CREDIT text editor clears the screen and divides it into two parts as shown pre-
viously in figure 6-1. The CREDIT editor initially enters screen mode. Pressing
the HOME key switches to command line mode.

In command line mode, the top area of the screen, called the command area, is the
only area accessed by the user. In fact, the text area is erased as commands are
entered. The asterisk prompt displayed in the command area indicates that a com-
mand can be entered.

When the command line mode is first entered, the text area contains the residual
display of the file left over from previous screen editing operations. As commands
are entered at the keyboard, they are displayed in the command area. As soon as
the command area exceeds the top three lines, the entire text area is erased allow-
ing commands to fill the screen. Once the screen is full of commands, it scrolls up
one line at a time as new commands are entered.

In the command line mode, ASCII codes with an associatedgraphics character are
displayed as an up arrow (1). The up arrow character is displayed as two up arrows
(11) to distinguish it from codes with no associated graphics character.

The text area is not used in command line mode.

6-4

iPDS™ User’s Guide

The Keyboard

When editing in command line mode, commands are entered at the development
system keyboard to indirectly modify the text in a file. Data to be added to the text
file is entered as a parameter to a command. Data is not directly entered into the
file as in screen mode.

Figure 6-2 shows the keyboard. Some of the keys perform special functions in the
command line mode of editing as listed below.
" cra || The CTRL key is used for entering control characters. Control
characters are entered by pressing a key while holding down the
CTRL key. Some commands are entered using control keys. For
example, CTRL-V switches from command line editing to screen
editing.

—

In either mode, the ESC key aborts commands. When ESC is
pressed, <BREAK> is displayed in the command area of the
screen.

The RUBOUT key deletes the previous character when in com-
mand line mode.

H@I
=13 |

Many of the commands in command line mode require a string of
characters as a parameter. The string of characters must be
delimited by a valid delimiter character. CTRL-B is a special
delimiter character that causes the string to be interpreted as
hexadecimal values rather than as ASCII codes. This character is
discussed in the ISIS CREDIT™ CRT-Based Text Editor User’s
Guide.

-

I CTRL

The ampersand is used as a continuation character for cohxlnmand
lines. This character is discussed in the ISIS CREDIT™ CRT-
Based Text Editor User’s Guide.

. The semicolon is used to separate multiple commands entered on
' || a single command line. This character is discussed in the ISIS
CREDIT™ CRT-Based Text Editor User’s Guide.

The HOME key, the cursor control keys, the TAB key, and the backslash key do
not perform any special command line editing function.

In command line mode as in the screen mode, the RETURN key is entered as two
characters in the file (carriage return, 0DH, and linefeed, 0AH).

Disk File Use

The CREDIT editor stores text in disk files and loads the text into memory for
editing. Usually, only a part of the file is loaded into memory at a given time, since
the entire file usually does not fit in memory. Often, files in addition to the one
containing the text are needed during an editing session. These files are temporary
files created by the editor, backup files created by the editor, and files used by dif-
ferent CREDIT commands. See figure 6-3

Text Editing

6-5

Text Editing iPDS™ User’s Guide

» FILE. TXT - FILE. BAK
> CREDT 1. TMA
FILE. TXT
r————==- A
I
— ™ CREDT 2. TMA :——
} i
|
r———==—- A
|]
FILE. TXT ——< CREDIT — »|L CREDT3.TMA |
_______ J
[rr
L r——=—---- 1
[I :
——= ceTALcmo |
| | | \
| 1
[
| F-———-=- 1
f L — —>= READ. FIL :
I -
I -------
[r 1|
L——— —>: WRITE. FIL |
e e J

0207

" Figure 6-3 Disk File Use

Temporary Files

In addition to the old edit file containing the source text data, the following tempo-
rary files are created by the text editor during an editing session:

® An output file called CREDT1.TMA contains the modified text data during
the editing session. When the session is ended with the EXIT command,
CREDTI1.TMA is renamed. When no name is supplied on the CREDIT com-
mand line (as part of the TO clause), the old file is renamed with the exten-
sion of .BAK, and CREDT1.TMA is renamed to the old edit file. When the
TO clause is supplied, CREDT1.TMA is renamed to the file specified as part
of the TO clause on the command line. '

® A temporary file called CREDT2.TMA is created only when a part of the file
no longer resident in memory is edited.

° A temporary file called CREDT3.TMA may also be created to store the
modified text data during an editing session.

6-6

iPDS™ User’s Guide

CREDT1.TMA, CREDT2.TMA, and CREDT3.TMA are reserved filenames and
should not be assigned to files. When the TO clause is used on the CREDIT com-
mand line, they are created on the same drive as the file specified in the TO clause.
Otherwise, they are created on the same drive as the old file being edited. None of
the temporary files appear in the directory unless the operating system is reloaded
(for example, when RESET is. pressed) before the editing session is terminated.
However, the temporary files can be viewed in the directory on a dual processing
system by running the DIR command on one processor while an editing session is
in progress on the other processor. See figure 6-3.

Backup Files

When an existing file is edited and no TO clause is specified, it is renamed with the
same filename and an extension of .BAK when the editing session is ended with
the EX command. Thus, after changes are made, the previous version of the file is
still available.

When a backup file already exists from previous editing, it is automatically deleted
and replaced by the version of the file prior to the current editing session. See
figure 6-3.

Several rules must be followed to successfully use the backup feature:
® The .BAK version of the file should not be deleted.
® The .BAK version of the file should not be edited.

e The .BAK version of the file should not be write protected; don’t set the
write attribute to 1.

If the .BAK version is deleted, no backup is available.

If the .BAK version is edited, the changes made are not reflected in the original;
the original version is copied to the backup version, not vice versa. The first time
the original is accessed through the editor, the .BAK version is replaced by the cur-
rent version, wiping out any changes made in the backup file.

If the .BAK version is write protected, the editing session cannot be ended with
the EX command unless a filename other than the source file for the output is
specified. Only EQ or EX with a filename parameter is accepted. When EQ is used,
all changes from the editing session are lost.

Files Used by CREDIT™ Commands

In command line mode, the XC and XM commands use a temporary file named
CREDT3.TMA. Some of the advanced CREDIT commands use additional files.
The section on “Advanced Editing Techniques” in the ISIS CREDIT™ CRT-
Based Text Editor User’s Guide describes file use in more detail. See figure 6-3 for
an illustration of disk file use by the CREDIT editor.

Limits on Disk File Use

The ISIS-PDS operating system allows a maximum of six files to be open at any
one time. This leaves three files.for user applications after allowing for the three
files that the CREDIT editor can open. Normally, this number is not exceeded.
However, the user should exercise judgment in opening files for access. Files
should be closed when not being accessed.

Text Editing

6-7

Text Editing iPDS™ User’s Guide

Editing under the control of the SUBMIT program uses one of the available user
files. SUBMIT file requirements must be considered when using the CREDIT
editor with SUBMIT. When more than six files are opened at a time, a fatal error
occurs, and the iPDS operating system is re-initialized.

Performance and File Size

The size for CREDIT files is limited only by the storage device. There must be
enough space available on the diskette or bubble to hold the file, the backup file,
and the temporary files that the editor uses. The free space on the disk must be
two times as great as the size of the file being edited.

The CREDIT text editor works best when files are restricted to 20K bytes or less
(the size of the text buffer in memory). Files less than 20K bytes can be loaded
into memory, and all editing functions can be performed in memory with a mini-

mum of disk accesses. A file with 20K bytes is about four 8 1/2 x 11 pages of writ-
ten text.

CMACRO.MAC

The CMACRO File

The file named CMACRO.MAC contains several macro definitions provided with
the CREDIT editor to aid in editing text. The macros are described briefly in this
section. Some of the macros are illustrated in the previous editing examples. They
are listed according to the following functional areas:

® Cursor Movement Macros

® Text Control Macros

® Block Transfer Macros

® File Formatting Macros

® Data File Macros
The CMACRO.MAC file can be loaded with the G command or with the MACRO
option on the CREDIT command line. In either case, the macros are available
after they are loaded. The G command to be entered in the command line mode to
load the CM ACRO file is: .

G CMACRO.MAC

The CREDIT command line to use to load the macro definitions when invoking
the editor is: .

- CREDIT <pathname1> [TO <pathname2> MACRO(CMACRO.MAC)]

Cursor Movement Macros

The cursor movement macros provide for fast positioning of the cursor in the text
file. They perform the same function as holding down the cursor control keys. All
the cursor control macros can be invoked in the screen mode of editing by entermg
the control character that is the name of the macro.

6-8

iPDS™ User’s Guide

II CTRL

e |[L
EDI
ES|C

CTRL-B returns the cursor to the first character of the line where
the cursor is located. This first character of a line is the first char-
acter that follows the most recent line terminator.

CTRL-L moves the cursor to the last character of the line where
the cursor is located. The last character of a line is the line ter-
minator character. If the current line does not have a line
terminator, a NOT FOUND message is displayed. If the cursor is
currently at the line terminator, it is moved to the next line
terminator.

CTRL-U moves the cursor to the line terminator of the previous
line.

CTRL-W searches for the next space character in the file.
Usually, the effect is to move the cursor to the next word in the
file. However, there are exceptions. For example, there is usually
no space between the last word on a line and the first word on the
next line. Therefore, CTRL-W at the last word on a line skips the
first word of the next line.

CTRL-H searches for the next period character (.) in the file.
Usually, the effect is to move the cursor to the next sentence in
the file. However, there are exceptions. For example, sentences
that end in a ? or ! are skipped. Also, periods do not indicate the
end of a sentence, e.g., decimal points.

Text Control Macros

The text control macro (c) is invoked in screen editing mode by entering the
macro execution command, CTRL-F, followed by the name of the macro, c.

[

CTRL !

F

The c macro centers any line that is less than 80 characters long
on a single 80 character screen line. The macro should be used at
the end of the file after entering the line to be centered. Position
the cursor at the space following the last character of the line to be
centered. Do not type a RETURN at the end of the line. Invoke
the macro by entering CTRL-F followed by c, the macro name. If
used within the text file instead of at the end of the file, position
the cursor at the space character between the last character on the
line and the line terminator. An extra line terminator is put into
the file and must be deleted.

Block Transfer Macros

The block transfer macros allow block transfers of text within screen mode of
editing. There are four macros that are used to transfer the text. All the macros are
invoked by entering the control character that is the name of the macro.

| CTRL

X

CTRL

[¥]

CTRL-X sets tag 1 at the cursor location. If tag 1 was previously
set, it is reset by this macro. Tag 1 marks the beginning of the text
to be transferred. The character at tag 1 is included in the transfer.

CTRL-Y sets tag 2 at the cursor location. If tag 2 was previously
set, it is reset by this macro. Tag 2 marks the end of the text to be
transferred. The character at tag 2 is not included in the transfer.

Text Editing.

6-9

Text Editing iPDS™ User’s Guide

CTRL . N .
CTRL-Y macros. The text is deleted from its current location and

inserted at the location immediately preceding the cursor. The
cursor is then moved to the first character of the inserted block of
text.

IQ] CTRL-Q moves the block of text defined by the CTRL-X and

pa— R CTRL-R copies the block of text defined by the CTRL-X and

CTRL-Y macros. The text is inserted immediately preceding the
cursor. The cursor is then moved to the first character of the in-
serted block of text. The source block of text is not affected by the

copy.

File Formatting Macros

The file formatting macros are used to reformat files for printing. These macros
are invoked from command line mode by entering the MF command followed by
the name of the macro.

f The f macro formats a file for pagination and printing. It cannot be
used on a file that is already formatted for pagination and printing
(i.e., a file that f has already been run on). The file being format-
ted can contain no tilde characters. Do not interrupt this macro
after it has started processing the text. This macro allows files to
be edited as a single block of text and formatted and paged sepa-
rately for printing when editing is complete. The macro moves
the cursor to the beginning of the file and inserts an initial form
feed character. The macro than advances 58 lines and sets up a
page ending decision by displaying lines 49 through 58, followed
by the page ending prompt (“_____ TOP OF FORM _____"), fol-
lowed by lines 58 through 69. The macro then queries

Do you want to start a new page here?

If the response is no (N), the top of form indicator is moved up
one line and the query

How about here?

is made. Each N response moves the top of form indicator up one -
line. At line 48 or at the first yes (Y) response, the macro inserts a
form feed character in place of the top of form indicator. The
macro then advances another 58 lines and repeats the process.
-This process continues until there are less than 58 characters in
the file. The macro then returns to the start of the file and inserts
two lines after every form feed character. The first of the two in-
serted lines contains the word PAGE and a tilde as a position hold-
ing character for the page number. See the p macro to assign page
numbers. This line is the top line on every page. The second of
the two inserted lines is blank separating the page number from
the text.

r The r macro removes the formatting characters from a file. Do
not interrupt the r macro after it has started processing a file. The
macro jumps to the start of the file and searches for the form feed
characters. When a form feed is found, it deletes three lines to
remove the pagination. Then, the file can be edited without dis-
turbing the formatting. It can be reformatted prior to printing
again.

6-10

iPDS™ User’s Guide

p(<n>) The p(<n>) macro replaces each tilde character inserted by the
format character with the page number specified by <n>. The
macro must be invoked once for each page to be numbered. The
macro jumps to the start of a file ‘and searches for the position
holding character. It substitutes the page number specified for the
position holding character. When no more position holding char-
acters remain, the macro displays the message NOT FOUND on
the command line.

Data File Macros

The data file macros include one macro to read a data file and one macro to write a
data file. These macros are invoked in command line mode with the MF command
followed by the name of the macro. These macros use the OR, OW, R, and W
commands described in the ISIS CREDIT™ CR T-Based Text Editor User’s Guide.

i(<pathname>,<n>)

o(<pathname>,<n>)

The i macro inserts the specified number of lines
<n> from the specified file <pathname> into
the file being edited. All reads start from the first
line of the data file. The number of lines to be
read can exceed the number of lines in the data
file, in which case the entire file is read. The data
is inserted in the file being edited at the character
preceding the cursor. The data file is closed after
it is read. The cursor is moved to the first charac-
ter of the data inserted into the file being edited
unless the insert is made at the beginning of the
file. Then, the cursor is moved to the end of the
block of text inserted.

The o macro writes all or part of the file being
edited to another disk file specified as
<pathname>. The file being written need not
exist. When the file does exist, its contents are
lost. The <n> specifies the number of lines to
write. It can be either positive or negative. If
positive, the macro writes the number of lines
specified from the cursor. If negative, the macro
writes the number of lines specified preceding
the cursor. The number of lines specified can
exceed the number of lines in the file being
edited in which case the entire file from the
cursor is written. The text in the file being edited
is not affected by the write.

NOTE

All further information needed to use the CREDIT text editor is
covered in the ISIS CREDIT™ CRT-Based Text Editor User’s
Guide, included in the iPDS system’s literature kit.

Text Editing

6-11/6-12

CHAPTER 7
DEBUG COMMANDS

Software Debugging and the Development Task

Writing programs is an essential part of the development task for microprocessor-
based products. The software engineer requires tools to help verify program
modules and isolate errors that can occur in software routines: The isolation and
correction of errors in a program is called debugging.

As a minimum aid to debugging software, is stopping program execution at speci-
fied points, called breakpoints, and displaying the status of the machine. By
comparing the actual machine status with the expected status at the breakpoint,
errors in the software can be isolated.

There are a number of tools available that satisfy this minimum requirement. At
one end of the spectrum, emulators provide breakpoint and display commands as
well as a wide range of other features to control and monitor the hardware and soft-
ware of a microprocessor-based product. As a software debugging aid, emulators
are typically powerful enough for debugging complex programs in high level
languages. :

The emulator itself consists of both hardware and software separate from the hard-
ware and software of the user system being debugged and, resulting in no overhead
on the user system. Symbolic debugging (where memory locations are referencéd
as symbols defined by the programmer instead of as addresses), trace data collec-
tion (where sequences of machine states are stored for later examination), and ad-
vanced control structures (to control the operation of the target machine) are only
some of the features found in emulators.

More information on emulation and emulators can be found in Chapter 2 of this
manual and in the manuals on specific emulators.

- While not offering all the features of an emulator, software debugging tools such
as the DEBUG commands are adequate for isolating errors in assembly language
programs running on existing hardware. The DEBUG commands provide
breakpoints, display commands, and other features to aid in debugging software
written for the MCS-85, the iPDS processor.
Debug Features
The DEBUG utility provides the following features:

® Loadsan MCS-85 program into the iPDS memory from a file

e Executes the program with breakpoints

® Steps through the program executing a specified number of instructions at a
time

® Displays and modifies the iPDS memory
¢ Displays and modifies the iPDS I/0 ports

® Displays and modifies the iPDS processor registers

Debug Commands

7-2

® Disassembles instructions from memory
® Configures custom I/0O drivers for the system

With these features, it is possible to monitor the internal state of the processor
during program execution. The programmer can verify that the actual processor
state and memory contents match the expected state and contents at specific
points during the execution of the program. The programmer can also save time
testing possible corrections by modifying program memory from within DEBUG.

Debug Command

This section describes the initial loading and operation of the DEBUG command,
a utility program that runs under the control of the ISIS-PDS operating system.

Since the DEBUG command runs on the same machine as the software to be
debugged, it cannot occupy the same memory space as the software to be
debugged. The DEBUG command uses locations from EE5S0H to F6COH (the top
of user memory). These locations are not available to the user program being
debugged. However, the DEBUG command does modify the value of the top of
user memory returned by the MEMCK system call, so any user routines that use
high memory locations as an offset of the value returned by MEMCK still work
properly. The MEMCK system call returns a value of ECCOH when DEBUG is
present in memory.

Command Format
DEBUG [<command line >]
where
<command line> is an optional parameter. If specified, DEBUG loads an
executable program to be debugged; otherwise, no pro-
gram is loaded. The <command line> is the valid
ISIS-PDS command required to run the executable
program. A <command line> is of the form:
<pathname> [<parameters>]
where <pathname> is a valid ISIS pathname for the
file containing the program to be debugged, and <pa-

rameters> are any parameters required on the com-
mand line by the program.

Comments

As soon as the DEBUG command is entered, it signs on with the message:
iPDS DEBUGGER Vm.n

where m.n is replaced by the actual version number.

iPDS™ User’s Guide

iPDS™ User’s Guide

If an executable 8080/8085 program is specified, the DEBUG command loads that
program, displays the contents of the iPDS CPU program counter preceded by the
character:

=>

and then prompts for a debugging command:

Any debugging command can be entered after the period prompt character
appears. An input line can be terminated without execution by typing the ESC
key. For example, the G command begins execution of the program at the speci-
fied starting address with up to two breakpoints. All the commands are described
in this chapter.

Any time the program halts at a breakpoint, the next entry point is displayed
preceded by the character:

=>

The DEBUG prompt (.) appears on the following line so that any debugging com-
mand can be entered. Other debugging commands display and modify the contents
of iPDS memory or the iPDS CPU registers.

To return to the operating system, do one of the following:
® Enter the debugging command:
E

® Execute an EXIT system call to return to the ISIS-PDS operating system
(See Chapter 8 for an explanation of system calls)

® Press RESET key to reinitialize the system

Examples

In the following example, the DEBUG command loads a program named LIST
with a starting address of 3680H. The file FILE.TXT is a parameter required by the
LIST program. The A0> is the ISIS prompt. The G command executes the LIST
program.

AO0>DEBUG LIST FILE.TXT
iPDS DEBUGGER V1.0
=>3680

.G

The following commands execute the same program setting a breakpoint at ad-
dress 36 AOH and returning to the operating system with the E command as soon
as the breakpoint is reached.

AO>DEBUG LIST FILE. TXT
iPDS DEBUGGER V1.0
=>3680

.G,-36A0

=>36A0

.E

AO>

Debug Commands

7-3

Debug Commands

In the following example, the DEBUG command is invoked without loading a pro-
gram to debug.

AO>DEBUG
iPDS DEBUGGER V1.0

Overview of the Debugging Commands

The debugging commands perform the following functions:
e Configure the I/0 interface to all standard peripheral devices except disks

® Aidin the software development of 8080/8085-based programs

1/0 Interface

A physical device is an actual peripheral device connected to the system, e.g., a
line printer, a terminal, or a modem. The term logical device refers to a symbolic -
device name assigned to a physical device. This name is recognized by the operat-
ing system to provide flexibility for input and output of data.

The DEBUG command recognizes four logical devices: a console device, a reader
device, a punch device, and a list device. However, the 1/0 routines for these
devices are different from the I/0 routines used by the ISIS-PDS operating system
for the console, reader, punch, and list devices.

By assigning a specific physical device to one of the logical devices, the correspond-
ing data stream is routed to the specified peripheral. Debugging commands are
provided to configure a system by assigning physical devices to logical devices.

The DEBUG program does not handle disk I/0.

Software Development

Debugging commands are provided to help debug MCS-80/85-based programs.
These commands allow the user to:

® Display and modify the iPDS memory and iPDS CPU registérs

® Disassemble MCS-80/85 instructions in iPDS memory

e Initiate execution of an MCS-80/85 program on the iPDS CPU

® Insert breakpoints in an MCS-80/85 program before execution

® Step through a program, stopping after a specified number of instructions
® Access user written 1/0 routines

® Directly input and output data to iPDS I/0 ports

iPDS™ User’s Guide

iPDS™ User’s Guide

Entering Debugging Commands

Debugging commands can be entered at the keyboard anytime that the DEBUG
prompt (a period) is displayed at the left side of the screen followed by the cursor.
All commands are single alphabetic characters.

Some of the commands require parameters; for others the parameters are
optional. Parameters can be either alphabetic or numeric as specified for each
command. All numeric parameters are entered as 1 to 4 hexadecimal digits (0-9
and A-F). Do not append the letter H to the numeric value.

Normally, commands are executed after the RETURN key is pressed. Any excep-

tions to this rule are explained in the individual command descriptions. To termi-
nate a command during execution or during command entry, use the ESC key.

Command Format for Debugging Commands
The general format of a debugging command is:
<command>[<parameters>]
where
<command> is the single alphabetic character for the command.
<parameters> are one or more values that vary from command to
command. For example, two addresses are required as
parameters for the D command.
Parameters can be alphabetic or numeric. Numeric parameters can be entered as 1
to 4 hexadecimal digits. If more than 4 digits are entered, only the last 4 digits en-
tered are used by the command. For example, the value 123456 is treated as 3456
in hexadecimal by the command. A comma or a space can be entered in place of a
comma shown in the format for a command. If a comma is not shown in the com-

mand format, do not enter a space or a comma in the command line. For example,
in most cases, a space is not allowed after the command letter.

Entry Errors

The debugging commands check for the following error conditions:
® Invalid characters
® Address value errors

® Parameter errors

Invalid Characters

The DEBUG utility checks the validity of each character entered at the keyboard.
As soon as an invalid character is encountered, a number sign (#) is displayed and
the command is terminated. The DEBUG prompt is displayed on the following
line and another command can be entered. In the following example, 4 is rejected
because it is not a valid command: '

4#

Debug Commands

7-5

Debug Commands

7-6

The first character entered must be a valid command; otherwise, it is rejected. All
addresses must be entered in hexadecimal. Any character other than 0-9 and A-F
is rejected. In the next example, G is not a valid digit.

.D1000,1FFG#

In the following example, the space after the command character X is rejected be-
cause the space is not allowed.

X #

Address Value Errors

Many commands require two addresses where the first address is lower than the
second. If the first address given is higher than the second, the operation is per-
formed on the single address specified first. .

For example, if the following command is entered to fill memory from address
900H to 1000H, the DEBUG utility would place an OFFH in address 1000H and do
nothing else.

.F1000,900,FF

No error message is given to indicate that only a single byte was filled instead of
100H bytes.

The valid range of address is 0000H through OFFFFH. If addresses higher than
OFFFFH are entered, only the last four digits are used by the command. For
example, if 10000H is entered instead of 1000H, the address is evaluated as
0000H. In the following example, the actual command that is executed is
F0000,9000, FF filling 9000H bytes of memory with the constant OFFH.

.F10000,9000,FF

This command erases the memory used by the operating system and by the
DEBUG command. The system must then be reinitialized to run.

Parameter Errors

If the correct number of parameters is not entered, the debugging command re-
places the DEBUG prompt with a number sign (#) and displays the DEBUG
prompt on the following line to accept a new command.

For example, the D command requires two parameters. If only one is given,
DEBUG replaces the prompt on the D command line with a number sign (#) and
returns the DEBUG prompt on the following line.

.DO11
becomes

#DO11

iPDS™ User’s Guide

iPDS™ User’s Guide

Debug Commands

Categories of Debugging Commands

The debugging commands are grouped into the following categories:

Program execution commands

1/0 configuration commands

I/0 control commands

Memory control commands

Register commands

Utility commands

Program Execution Commands

The program execution commands are used to run the program to be debugged.
They provide breakpoints to halt the program at a specified address. Then, other
DEBUG commands can be used to monitor the machine status. For example,
CPU registers, memory locations, and I/0 ports can be checked at a breakpoint to
verify that they contain the expected data. The commands are;

G (Execute) Transfers control to the loaded program and optionally sets

N (Step)

FUNCT-R

one or two breakpoints.

Executes a specified number of instructions starting at the ad-
dress currently in the Program Counter. The disassembled in-
structions are displayed as they are executed.

Manually stops program execution. This function can be used
to interrupt a program that is in an infinite loop.

1/0 Configuration Commands

The DEBUG utility recognizes four logical devices:

Console (CO, CI)

Reader (RI)
Punch (PO)

List (LO)

The terms Reader and Punch were chosen to maintain compatibility with earlier
systems that supported paper tape readers and paper tape punches.

The I/0 configuration commands select the physical device that receives the logi-
cal device data.

The DEBUG commands that control the system I/0 configuration are:

A (Assign) Assigns a physical device to a logical device

Q (Query)

Displays the devices currently assigned

7-7

Debug Commands

7-8

The characteristics of the physical device must match the characteristics of the log-
ical device to which it is assigned. Therefore, only a subset of the available
peripherals can be validly assigned to a given logical device. The characteristics of
the four logical devices are as follows:

® The Console (CO, CD) is an interactive, character-oriented input and output
device.

® The Reader (RI) is a serial input device.
® The Punch (PO) is a serial output device.

@ The List device (LO) is a character-oriented output device that accepts a
character from the calling program and outputs it to an external medium in
alphanumeric characters that can be read by the user.

An I/0 driver routine is required for each physical device before it can be assigned
to a logical device. The DEBUG software provides I/0 driver routines for the fol-
lowing physical devices:

e Internal iPDS video terminal, CRT and keyboard (can be assigned to any log-
ical device)

e Serial device attached to the serial I/O connector and configured with the
SERIAL command (see Chapter 5) (can be assigned to any logical device)

e Line printer attached to the parallel I/0 connector (can be assigned to the
List logical device)

® Batch device where the currently assigned >Reader logical device is also as- ‘
signed as the Console input and the currently assigned List logical device is
also assigned as the Console output (can be assigned to CO and CD

The batch device permits a non-interactive mode where commands are input from
the Reader and executed by the operating system. A file containing ISIS com-
mands must be prepared on the Reader device. In preparing the command file,
enter commands in exactly the same way as if the system were in interactive
mode. Each command should end with a carriage return/linefeed pair of
characters. The prompt character should not appear as part of the command file.
The last command in the file should re-assign the Console to prevent DEBUG
commands from reading off the end of the file.

The user must provide I/0 driver routines for the following physical devices:

e User Defined Device 1 where the user provides the I/0 driver routines for
the device (can be assigned to the Console, Reader, Punch, or List logical
device as long as the characteristics of the physical device match the charac-
teristics of the logical device)

e User Defined Device 2 where the user provides the I/O driver routines for
the device (can be assigned to the Reader or Punch logical device as long as
the characteristics of the physical device match the characteristics of the logi-
cal device)

User defined 170 drivers are accessed by configuring them with the A command.
See the A command for more information. -

iPDS™ User’s Guide

iPDS™ User’s Guide . Debug Commands

1/0 Control Commands

The I/0 control commands allow data to be read from and written to the iPDS I/0
ports one byte at a time. These commands can be used to verify that the I/O ports
contain the correct data at a breakpoint during the execution of a program.

If the port does not contain the expected data or if the part of the program that
writes to I/0 ports is not available yet, the correct data can be written to the port
with these commands, so that debugging can continue on the parts of the program
that are available. There are two commands for accessing the iPDS 1/0 ports:

I (Input) Reads and displays a single byte from the specified input port

O (Output) Writes the specified byte to the specified output port -

Memory Control Commands

There are six commands for accessing the iPDS memory. The commands that read
memory can be used for RAM as well as PROM and ROM. The commands that
write to memory can only be used with RAM but no error is given if writing to
PROM or ROM occurs. All of these commands with the exception of the S com-
mand can be terminated while running by pressing the ESC key.

The memory control commands can be used to verify that a memory location con-
tains the correct data at a breakpoint during the execution of a program.

If the memory location does not contain the expected data or if the part of the pro-
gram that writes to memory is not available yet, the correct data can be written to
the memory location with these commands, so that debugging can continue on the
parts of the program that are available.

These commands can also be used to disassemble program memory and modify
the program in memory (patch the program). The ability to patch a program in
memory allows minor programming errors to be corrected without having to exit
from DEBUG, modify the source program, and retranslate it. The memory control

commands are:
D (Display) Displays a specified range of memory
F (Fill) Fills a specified range of memory with a specified
constant value
M (Move) Copies the contents of a specified range of memory
into another area of memory
S (Substitute) Modifies memory on a byte-by-byte basis

C (Disassemble Code) Displays specified memory range as MCS-85 in-
structions

T (Disassemble Code) Displays the specified number of MCS-85 instruc-
tions starting at the MCS-85 Program Counter (PC)

Register Commands

The register commands can be used to verify that the CPU registers contain the
correct data at a breakpoint during the execution of a program. If a register does

7-9

Debug Commands

not contain the expected data or if the part of the program that writes to the register
is not available yet, the correct data can be written to the register with these
commands, so that debugging can continue on the parts of the program that are
available.

The register commands can also be used to set the program counter, so that the
program being debugged can be run from a controllec " *ar mg location. The regis-
ter commands are: S

X (Display Form) Displays the contents of all registers

X (Modify Form) Changes the contents of a single register

Utility Commands

The utility commands are:
E (Exit) Returns to the ISIS-PDS operating system

H (Hexadecimal) Adds and subtracts two hexadecimal numbers

Sample Debugging Session

The following sample debugging session illustrates most of the debugging
commands.

" However, before this sample can be run, an object program must be created to

debug. The program loaded and run under DEBUG control is the sample program
(PROGA.SRC) entered with the CREDIT text editor in the /SIS CREDIT ™
CRT-Based Text Editor User’s Guide.

The first few examples show how to create an object file that can be loaded and run
under the control of DEBUG.

The source code for the program is given below for convenience. It should be en-
tered under the CREDIT editor with the command line:

CREDIT PROGA.SRC

The source listing for the file that should be entered into PROGA.SRC follows:

iPDS™ User’s Guide

7-10

EXTRN ISIS
EXTRN CO
EXTRN ClI
ORG 4000H
EXIT EQU 9
EBLK: DW ESTAT
ESTAT: DS 2
“START: MVI B,1AH
LOOP: CALL CI
MOV C,A
CALL CO (continued)

iPDS™ User’s Guide

CMP B

JNZ LOOP
MvVI C.EXIT
LXI D,EBLK
CALL ISIS
END START

Debug Commands

AD>ASMB0 PROGA.SRC

AD>LOCATE PROGA.LNK

A0D>DEBUG PROGA

PDS DEBUGGER VX.D
=>4004

Key-in Sequence

ASM80 PROGA.SRC

LINK PROGA.OBJ,SYSPDS.LIB

TO PROGA.LNK

LOCATE PROGA.LNK

DEBUG PROGA

ISIS-II8080/8085MACRO ASSEMBLER. VU4.1
ASSEMBLY COMPLETE~ NO ERRORS
AD>LINKPROGA.OBJ,SYSPDS.LIB TO PROGA.LNK
ISIS-IIOBJECTLINKERV3.D

ISIS-ITIOBJECTLOCATERV3.D

1

RETURN

RETURN

RETURN

!RETURN

Comments
Assemble the program.

Since the program contains external
references to system calls, link it
with the system library as shown in
this command line.

Locate the program to assign
memory locations where needed
before running..

Use the DEBUG command line to
load the program to be debugged.
The program start address is dis-
played below the sign-on message.

7-11

Debug Commands iPDS™ User’s Guide

-.C4004,9
4004 OBbLA
400k CDO3F8
4009 uF
4D0A CDOYF8
400D Ba
400E (20640
4011 O0OED9
4013 110040
40lL Cpu40OD

X

A=AAB=BB C=CC D=DD E=EE F=FF H=12 L=34 N=1234 P=400Y4 S=F1E2
.G,—4009

=>4009

X .
A=4D B=LAC=CCD=DD E=EE F=1OH=12 L=34 M=1234 P=4009 S=F1EZ2
-N1

4009 uF CAA

Key-in Sequence Comments

C4004,9 ||rerunn The C command disassembles the number of instruc-
tions specified. The second, forth, and ninth instruc-
tions are system calls.

X' ||reTunN Display the registers. Notice that the program
counter, P, is set to 4004H, the beginning address of
the program.

G,4009 |return Use the G command to start the program from the ad-
dress specified or from the program counter if no ad-
dress is specified. A breakpoint is set at location

 4009H, the address of the instruction following the
system call.

M| The first system call inputs a character from the
keyboard. Here, the character entered is M. As soon
as the character is entered, the program returns from
the system call to execute the next instruction at ad-
dress 4009H. However, a breakpoint is set here, so
the program halts.

X' ||return|l While the program is halted, any DEBUG command
can be entered. Enter the X command to display
registers. The program counter is pointed at 4009H.
The ASCII code for M, 4DH, is in register A.

N1 |return Execute the number of instructions specified. The N
¥ command also displays the disassembly information
for the instructions. This instruction moves the value
in the A register to the C register.

7-12

iPDS™ User’s Guide

Debug Commands

X

X

4oao»

-X

4ooe

X

4009

.G,
=>4009
-N1

Ba

A=4D B=1A C=4D D=DD E=EE F=14 H=12 L=34 M=1234 P=40OE S=F1E2
N1 :

C20bL40

-4009

4F

A=4DB=1A C=4D D=DD E=EE F=10H=22L=3Y4 M=1234 P=400A S=FLEZ
-G,—400D
M=>400D

A=4D B=1A C=4D D=DD E=EE F=BO H=12 L=34 M=1234 P=400D S=F1EZE
-N1

CMP B

JNZ 400&

-

A=4D B=1A C=4D D=DD E=EE F=00H=12 L=34M=1234 P=400bL S=FLE2
MoV C.A

Key-in Sequence

X

G,400D

N1

N1

G,4009

N1

r— -—

RETURN

I;;TURN

m—:rum

RETURN

RETURN

RETURN

HRETURN

RETURN

D

RETURN

Comments

Display the registers again. This time both the A and C
registers contain 4DH, the ASCII code for M.

Issue the G command is again with a breakpoint set at
400DH. This system call displays the character just
typed at the keyboard. Notice the M displayed on the
screen. Use the G command with a breakpoint set at the
instruction following the system call to DEBUG within
a system call. :

Display the registers. This instruction compares the
value keyed with the value in the B register. If the two

_are the same, the program ends. Otherwise, another
character can be entered and displayed.

The flag register (F) has changed. The sixth bit in the F
register should have been set to zero from the compare
instruction.

Execute a single instruction. The program loops if the
zero flag is zero.

The program counter is set to 4006H to loop through
the program again.

Give the G command with a breakpoint at address
4009H to halt the program on returning from the
system call. Enter the character D while the program
waits for keyboard input.

Single step to execute the instruction to move the value
in the A register to the C register.

Debug Commands

iPDS™ User’s Guide

-T3

400A CDO9F& CALL FaD[
4oop B8 cMP B
400E C20b40 JNZ H4DOB

-XC44-DD-43

-G,400D

D=>400D

-XA44-1A

-N2

400D B8 CMP B
40DE <C20b40 JNZ 4OOB

-X

A=1AB=1AC=44 D=43 E=EE F=54 H=L2 L=34 M=123Y4 P=4011 S=F1EZ

Key-in Sequence

T3 |{reruan
XC SPACE 43 |{retunn
G,400D ﬂ:

XA E

1A |[reruan

N2 [[rerunn

7-14

x RETURN

Comments

The T command disassembles the number of
instructions specified starting with the instruc-
tion at the program counter.

The X command can also be used to change the
registers. First, type XC and press the space
bar. The current value of the C register is
displayed. Type 43 to change this to the ASCII
code for the character C. Now, when the pro-
gram is run the character C is displayed instead
of D.

Issue the G command with a breakpoint at ad-
dress 400DH. The character, C, is displayed by
the system call.

Change the value in the A register to 1AH.
This is the value used to end the program loop.
Step through two instructions with the N
command. The zero flag should be set to one
after the compare and the Jump should not be
made.

Display the registers to verify that the jump is
not taken. Notice the flag register has the value
54H. The sixth bit, the zero flag is set to one.
The program counter has the value 4011H, so
the program will not run through the loop again.

iPDS™ User’s Guide

Comments

. F5000,50FF,58
. D5000,50FF
DL 2 34 5%L?489ABCTDETF

5010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5020 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5030 5B 58 58 58 56 58 58 54 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5040 58 58 58 58 58 58 58 58 58 58 58 58 58 5B 58 58 XXXXXXXXXXXXXXXX
5050 5A 58 54 58 58 58 58 54 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
SOLD 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5070 58 54 58 58 58 58 58 54 54 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5080 58 5A 58 58 58 58 58 58 54 58 58 5A 58 58 58 58 XXXXXXXXXXXXXXXX
5090 58 58 54 58 58 58 58 GA 54 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
5OAD 58 58 58 54 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
50B0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
50C0 5& 5A 54 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
50D0 58 5A 58 58 58 58 58 58 58 54 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
SOED A 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
SOFO 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

Debug Commands

Sometimes it is useful to fill memory with a
constant when debugging. This screen shows
an example of the F command which fills the
block of memory specified with the constant
specified. :

Display a block of memory with the D
command. Here, the block filled with the
constant 58H, the ASCII code for X, is

Key-in Sequence
F5000,50FF,58 ||rerum|
D5000,50FF |[rervm|
-M5000,50FF,6000
.D6000,60FF

displayed.

01 2 3 4 5% 7 8 9 ABCDIETF

L0100 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
L020 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LO30 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LO40 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LD50 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOLD 58 58 58 58 58 58 58 58 58 58 58 58 58 548 58 58 XXXXXXXXXXXXXXXX
L0?0 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
L0080 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
L0990 58 58 58 58 58 58 54 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOAD 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOBO 58 58 58 58 58 58 56 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOCD 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LODD 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOED 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
LOFD 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

Comments

Key-in Sequence

M5000,50FF,6000

D6000,60FF

RETURN

A specified block of memory can also be

moved to a specified destination with
the M command.

RETUH]

Display the destination block to verify

the move.

Debug Commands

iPDS™ User’s Guide

- S400F 06-40 40-06

o2 N
non onn

-Q
C
s
S
C
-AR=C
-Q
C
C
S
C

roan
nowonon

-H5000,6000
BODO FOOO

-E
AD>

Key-in Sequence

S400F SPACE 40 SPACE

o

Q |{reTurN
. AR=C ||RETURN
Q RETﬁ;zm

H5000,6000 |[servms|

E ||RETURN

7-16

Comments

Memory can be interactively changed with
the S command. Type S followed by the ad-
dress of the first byte of memory to be
changed. The content of this location is dis-
played followed by a dash. To change this
byte, type a hexadecimal value. To leave it un-
changed press the space bar. Press the space
bar at any time to continue displaying the next
memory location. Press the RETURN key to
end the interactive memory editing and
return to DEBUG.

The Q command displays the current assign-
ment of physical devices to the DEBUG logi-
cal devices (different from the ISIS logical
devices).

The A command changes the default assign-
ment of devices. A physical device must be
properly connected before the assignment of
the device has any meaning.

It is often useful to compute hexadecimal
values when debugging assembler language
programs. The H command computes the
sum and difference of the two hexadecimal
values specified. The first result displayed is
the sum and second is the difference.

Exit from DEBUG and return to the ISIS
operating system.

iPDS™ User’s Guide Debug Commands

Debugging Commands in Alphabetical Order

The rest of this chapter describes the individual debugging commands in a refer-
ence format using the notational conventions explained in Chapter 5. The com-
mands appear in alphabetical order.

A

Assign logical device
to physical device

Command Format
A<logical device > = <physical device >
where

<logical device > specifies the logical device to which a physical
device is assigned.

<physical device > specifies which physical device is to be assigned.

Comments

The possible values for <logical device> are shown in Table 7-1.

Table 7-1 Possible values for <logical device>.

Single Letter Symbol Device
for <logical device>
C Console
R Reader
P Punch
L List

7-17

Debug Commands

7-18

iPDS™ User’s Guide

Table 7-2 gives the possible values for each <physicél device> and the valid

matches with logical devices.

Table 7-2 Possible values for <physical device >

Logical Device

Single Letter Symbol
for <physical device>

Device

CONSOLE

READER

PUNCH

LIST

N =00 N =00 - moOonm

-rrown

Serial 170 Device
CRT Terminal

Batch Mode Device
User Defined Device 1

Serial I/0 Device
CRT Terminal

User Defined Device 1
User Defined Device 2

Serial 1/0 Device
CRT Terminal

User Defined Device 1
User Defined Device 2

Serial I/0 Device
CRT Terminal

Line Printer

User Defined Device 1

The default assignments are:

c=C
R=8
P=8
L=C

The Batch Device is a non-interactive mode of operation where the currently as-
signed Reader Device is used as the Console input device and the currently as-
signed Punch Device is used as the Console output device.

The User Defined Devices 1 and 2 require a user-written I/O driver program. This
program must be added to the ISIS operating system with the IOSET system call.
See Chapter 8 for instructions on adding a user written I/0 driver to the operating

system.

Examples

To assign a serial I/0 device as the Console:

AC=S

To assign a user defined device as the Reader:

AR=1

To assign a serial I/0 device as the List Device:

AL=S

iPDS™ User’s Guide Debug Commands

Given the previous assignments, the following command assigns the User
Defined Device 1 (the current Reader Device) as the Console input and the Serial
Device (the current List Device) as the Console output:

AC=B

To reassign the Console 1/0 to the CRT Terminal, the following command must
be entered from the current console input, User Defined Device 1:

.AC=C

C

Disassemble code at
specified memory locations

Command Format

C <start address>,<n>

where
<start address > is the beginning of the memory range to be
disassembled. The <start address> must be given in
hexadecimal. Do not append the letter H to the start
address value.
<n> is the hexadecimal number of instructions to be
disassembled.
Comments

Both the <start address> and the <n>> are required. They must be separated by
a space or a comma.

The instructions at the specified addresses are displayed on the current List device
as MCS-80/85 mnemonics.

The display is listed in the format shown in the following example.

Example

To disassemble four instructions starting at memory location 4004H, enter the fol-
lowing command:

.C4004,4

4004 061A MVI B,1A
4006 CDO3F8 CALL F803
4009 4F MOV C.A

400A CDO9F8 CALL F809

7-19

Debug Commands iPDS™ User’s Guide

D

Display specified
memory range

Command Format
D <start address >, <end address>
where

<start address> is the beginning of the memory range to be displayed.
The <start address> must be given in hexadecimal
and must be less than or equal to the <end
address>. Do not append the letter H to the start ad-
dress value. If <start address> is greater than or
equal to <end address>, the single byte located at
the <start address> is displayed.

<end address> is the end of the memory range to be displayed. The

address must be given in hexadecimal. Do not
append the letter H to the hexadecimal value.

Comments

Both the <start address> and the <end address> are required. They must be
separated by a space or a comma.

The contents of the specified addresses are displayed on the current List device in
hexadecimal and ASCII.

The memory display is listed in the format shown in the following example.

® The address at the left of each line is the address of the first byte on that line.

® Sixteen bytes are displayed on each line in hexadecimal, followed by the six-
teen ASCII characters represented by each byte.

® Anunderline appears at any position in the display that is not in the specified
range or for any non-printable ASCII byte. ' :

® If the start address is not on a sixteen byte boundary, the first line contains
underlines from the previous sixteen byte boundary to the first character in
the range specified for display.

A Y
e Ifthe end address is not on a sixteen byte boundary, the last line contains un-
derlines from the last character in the range specified to the next sixteen byte
boundary.

e If the entire range is less than sixteen bytes, the entire range appears on a
single line with underlines in positions not included in the range specified.

7-20

iPDS™ User’s Guide Debug Commands

Examples

To display the contents of memory locations CO9H through C2AH:
01 23 45 67 89 AB CD EF

O0CO09 __ __ __ . o_ - - _. .. 4030CD A42D 2247 - - - - - - - - - @0__-“G
0C10 303E 09CD 802D D21E 0C21 4A30 3637 3A4A0 > _ __-___1J067:J
0C20 2011 4730 CDE3 2CEB 3EO04 __ _...0-GO--"'-2>- #

The value 40H that appears under column 9 is the value at address 0C09. Double
underlines precede this value because the previous addresses are not part of the
range specified. The 16 corresponding ASCII characters follow column OFH. Un-
derlines appear for out of range values and for non-ASCII codes.
To display the contents of the single location 0100H:

.D0100,0100

01 23 45 67 89 AB CD EF
0100 01 _ o o o o o o o o e e e e e e e e e e e

Note that the command:

.D0100
produces an error because the second required parameter is not specified. The
prompt (.) is replaced with the number sign (#), and the DEBUG prompt is dis-
played on the following line so a command can be entered. Both the start and end
address must be specified.

#D0100

E

Exit to the ISIS-PDS
operating system

Command Format

E

Comments

The E command returns controls to the ISIS-PDS operating system as indicated by
the operating system prompt.

Example

To return to the ISIS operating system enter:

E

7-21

Debug Commands

F

Fill memory
with constant

Command Format

iPDS™ User’s Guide

F<start address >, <end address >, <constant>

where

<start address>

<end address>

<constant>

Comments

is the beginning of the memory range to be filled with
the <constant>. The <start address> should be
given in hexadecimal and should be less than or
equal to the <end address>. Do not use the letter H
for hexadecimal values. If <start address> is greater
than or equal to <end address>, the single byte
located at the <start address> is filled with the
<constant>.

is the end of the memory range to be filled with the
<constant>. The address must be given in
hexadecimal.

is the byte to be written to the specified address
range. The <constant> must be given in
hexadecimal.

All three parameters are required. The execution of this command may be ter-
minated by typing the ESC key. This command should not be used to write over lo-
cations below 3BFDH where ISIS routines are located.

Example

To initialize memory locations 4000H through 402FH with OOH, enter the

command:

.F4000,402F,00

FUNCT-R

Return to DEBUG

7-22

Command Format

FUNCT-R

Comments

This function key performs a manual interrupt during the execution of the G
command. This command can be used in case the program being debugged begins

executing an infinite loop.

iPDS™ User’s Guide

Example

Debug Commands

If the G command has been given to run a program, type FUNCT-R

= 2> XXXX

halts the program and returns the DEBUG prompt. The actual address where the

program halts appears in place of xxxXx.

Command Format

G

Execute program
with breakpoints

Gl<start address>][, <breakpoint 1 >[, <breakpoint 2 >1]

where
<start address >

<breakpoint 1 >

<breakpoint 2>

Comments

is an optional parameter that specifies the address to
be placed in the program counter. The program
loaded begins executing at this address. The address
must be entered as a hexadecimal value. If <start ad-
dress> is not specified, the address currently in the
program counter is used.

specifies an instruction address where the program
stops executing and return to the DEBUG prompt.
The address must be entered as a hexadecimal value.
If <breakpoint 1> is not specified, the program does
not halt.

specifies a second instruction address where the pro-
gram stops executing and return to the DEBUG
prompt. The address must be entered as a hexadeci-
mal value. If neither breakpoint is specified, the pro-
gram runs without halting.

A breakpoint is the address of the first byte of an instruction within the program.
When a breakpoint is specified, the first byte of the instruction at the breakpoint is
replaced by the 1-byte software interrupt instruction, RST 1. Then, when the
breakpoint is reached during program execution:

® The program stops executing.

® The single byte RST 1 instruction is replaced by the original instruction at

the breakpoint address.

® DEBUG displays the address of the breakpoint (now containing the original
instruction) as the next program entry point for subsequent execution.

® The Program Counter contains the breakpoint address (now containing the

original instruction).

® The DEBUG prompt is displayed.

Then, debugging commands can be used to check the contents of registers or

memory in the program.

7-23

Debug Commands ’ iPDS™ User’s Guide

When the breakpoint is reached, the instruction at the breakpoint is not executed
before returning to the DEBUG prompt. The address of the breakpoint instruction
becomes the next entry point. This instruction is then executed when the G com-
mand is given again unless the Program Counter is altered before the G command
isgiven.

To specify breakpoints with the G command:

1. Enter G optionally followed by the start address
2. Type acomma or a space

3. The G command displays a dash.

4. Enter the first breakpoint address.

5. If a second breakpoint is not desired, press the RETURN key to execute the
command.

6. To enter a second breakpoint, type a comma or space; the G command dis-
plays a dash; enter the second breakpoint address followed by the RETURN
key.

If the command contains a syntax error, no breakpoints are set. The command
must be re-entered and the breakpoints specified again.

Both breakpoints are eliminated the first time that the system halts. To resume ex-
ecution with one or both of the same breakpoints, re-enter the command with the
breakpoints.

Unpredictable results occur when breakpoints are set within an ISIS-PDS system
call routine. When debugging programs containing ISIS system calls, set the break-
points at the instruction before or after the system call. y

Examples

To begiri executing at the address currently in the program counter:
.G

To execute a program whose entry address is 4000H:

.G4000

To execute a program whose entry address is 4000H and to set a breakpoint at
40CFH:

.G4000,-40CF
=>40CF

The characters = > indicate the next entry point of the program.

To execute a program whose entry point is 4000H and to set two breakpoints at
40CFH and 5000H:

.G4000,-40CF,-5000
= >5000

Here, the instruction at 40CFH was never executed, so when the instruction at ad-
dress S000H was fetched, the program was interrupted. :

7-24

iPDS™ User’s Guide Debug Commands

H

Hexadecimal
add and subtract

Command Format
H<number 1>,<number 2>
where
<number 1> is the first number to be added. The value supplied for
<number 2> is subtracted from this value. The number
must be entered as a hexadecimal value. Do not append the
letter H to this value.
<number 2> is the second number to be added. This value is subtracted
from <number 1>. The number must be entered as a hexa-
decimal value. Do not append the letter H to this value.

Comments

The numbers can contain a maximum of four hexadecimal digits. Negative num-
bers must be entered in twos complemented form.

The command displays two four-digit hexadecimal values as the result. The first is
the sum of the two numbers and the second is the difference between the two
numbers. Negative numbers are displayed in twos complement form.

If more than four digits are entered, the command uses the rightmost four digits.
The leading digits are lost.

Example

To add E49H and 111H and to subtract 111H from E49H:

.HE49,111
OF5A 0OD38

7-25

Debug Commands iPDS™ User's Guide

Input byte
from iPDS port

Command Format
| <port address >
where

<portaddress> is the iPDS port address to be read. The port address
must be given in hexadecimal. Do not append the
letter H to the address. The single byte read at the port
address specified is displayed on the current list device
in hexadecimal.

Comments

The display returned shows the port address followed by the value read at that
port. The MCS-85 port address assignments on the iPDS system are listed in Chap-
ter 8 in the section “I/O Address Space.”

Example

The command

.10CO
Co=>0D

reads the value at the Keyboard/CRT data port (I/O port address 0COH). The
value at this address is the last value typed in at the keyboard, a carriage return.
Thus, the ASCII code for carriage return, 0DH, is displayed.

Move block
of memory

Command Format

M < start address >, <end address >, <destination address >

where

<start address > is the address of the first byte to be moved.
The <start address> must be given in hexa-
decimal and must be less than or equal to the
<end address>. Do not append the letter H
to the address. If <start address> is greater
than or equal to <end address>, the single
byte located at the <start address> is
moved. .

7-26

iPDS™ User’s Guide Debug Commands

<end address > is the address of the last byte of memory to
be moved. The address must be given in
hexadecimal. Do not append the letter H to
the address.

<destination address > is the address to which the first byte is
moved. Each subsequent byte is moved to
the location one higher than the previous
byte.

Comments

The data is moved on a byte-by-byte basis. The first byte is moved, then the
second byte, and so on. The data in the original location is not destroyed. Any data
at the destination address is overlaid.

Because the command works on a byte-by-byte basis, the destination address
should not be within the range of the source addresses. If it is within the range of
the source addresses, the operation is attempted. By the time the command
reaches the end of the block, the source data has been overlaid by the first data
moved. No error indication is given.

The move command can be terminated while in progress with the ESC key.

Examples

To move data currently at address 4000H through 4100H to address S000H
through 5100H:

.M4000,4100,5000

To move the data currently at address 4000H through 4FFFH to address 4800H
through 57FFH:

.M4800,4FFF,5000
.M4000,47FF,4800

If this move were done with a single command, the second 7FFH bytes would be a
copy of the first 7FFH bytes because 4800H through 4FFFH would be overlaid by
the first 7FFH bytes before they could be copied.

1-27

Debug Commands iPDS™ User’s Guide

N

Execute a specified
number of instructions

Command Format
N <step count>
where
<step count> specifies the number of instructions to execute starting at

the program counter. The value is given in hexadecimal.
Do not append the letter H to the value.

Comments

The N command executes the specified number of instructions and then stops.
The disassembly information is displayed for each instruction executed. Unpre-
dictable results occur if the N command is used to execute instructions within an
ISIS system call routine. To debug a program containing ISIS system calls, use the
N command up to the system call; then, use the G command with a breakpoint set
at the instruction following the system call.

The ESC key can be used to return to DEBUG when stepping through the program
with the N command. '

Example

To execute four instructions starting at the address in the program counter of
400DH, enter the following command:

.N4
400D B8 CMPB
400E C20640 JNZ 4006

4011 OE09 MVI C,09
4013 110040 LXI D,4000

o)

Output byte
to 1/0 port

Command Format
O <port address >, <databyte >
where
‘<port address > is the iPDS port address to be written. The port address
must be given in hexadecimal. Do not append the

letter H to the address.

<databyte> specifies the single byte of data in hexadecimal that is
to be written to the I/0 port specified.

7-28

iPDS™ User’s Guide Debug Commands

Comments
The MCS-85 port address assignments on the iPDS system are listed in Chapter 8

in the section “I/O Address Space.” The command displays the byte output fol-
lowed by the port to which it was written.

Example

To output the byte 37H (a command to initialize the 8251 Serial USART chip) to
the 8251 Command/Status Port (91H), enter the following command:

.001,37
37=>91

Q

Query current
devices assigned

Command Format

Q

Comments

The Query command displays the status of the system 1/0 devices. It displays a list
of the logical devices and the physical devices currently assigned to them. No
parameters are allowed with this command.

Table 7-3 shows the four logical devices.

Table 7-3 Logical Devices

Single Letter Symbol Device
for <logical device >
C Console
R Reader
P Punch
L List

7-29

Debug Commands

7-30

Table 7-4 gives the possible values for each physical device assigned.

Table 7-4 Possible Values for Physical Device

. . Single Letter Symbol .
Logical Device for <physical device > Device
CONSOLE S Serial I/0 Device
(] CRT Terminal
B Batch Mode Device
1 User Defined Device 1
READER S Serial I/0 Device
o} CRT Terminal
1 User Defined Device 1
2 User Defined Device 2
PUNCH S Serial I/0 Device
Cc CRT Terminal
1 User Defined Device 1
2 User Defined Device 2
LIST S Serial I/0 Device
C CRT Terminal
L Line Printer
1 User Defined Device 1

The default assignments are:

C=C
R=38
P=8
L=C

The Batch Device is a non-interactive mode of operation where the currently as-
signed Reader Device is used as the Console input device and the currently as-
signed Punch Device is used as the Console output device.

The User Defined Devices 1 and 2 require a user-written 1/0 driver program as do
the High Speed Paper Tape Reader and Punch.

Example
To list the current assignments of physical devices to logical devices, enter:
.Q
The following assignments could be displayed indicating that a CRT terminal is as-

signed as the Console and a user defined device is assigned to the Reader and
Punch while a line printer is assigned as the List Device.

c=cC
R=1
P=2
L=L

iPDS™ User’s Guide

iPDS™ User’s Guide Debug Commands

S

Substitute memory
interactively

Command Format
S <address>,[<databyte >][,[<databyte>] ...
where

<address> specifies an address. This value must be given in
hexadecimal. Do not append the letter H to the value.

<databyte> specifies the single byte of data in hexadecimal that is to re-

place the byte currently at the location specified by
<address>. This parameter is optional. No changes are
made if <databyte> is left off.

Comments

The S command is operated as follows:

1. Enter the command and the address followed by a comma or space.

2. The current contents of the address are displayed followed by a dash.

3. Do one of the following:

® Modify the contents by entering a new byte in hexadecimal.

® [ook at the next sequential byte of data by entering a comma or space.

® End the command without modifying the data by pressing the
RETURN key.

® Repeat any combination of the first two choices ending with the
RETURN key.

Examples

The following command illustrates the byte by byte replacement of data in
memory. The dash character (-) is displayed by the system following the current
content of each sequential location of memory.

.S4000,3A-,56-00,49-
The value 3AH at address 4000H is not changed; the value 56H at address 4001H
is replaced with 00H; the value 49H at address 4002H is not replaced; the
RETURN key is pressed to terminate the command and return to the DEBUG
prompt. The characters typed by the user are:

$4000,,00,

7-31

Debug Commands iPDS™ User’s Guide

T

Disassemble code
relative to Program Counter

Command Format
T<n>
where
<n> is the number of instructions relative to the Program Counter to be
disassembled. It is specified in hexadecimal. Do not append the letter
H to the value.

Comments

Memory is disassembled starting at the location of the Program Counter. The
number of instructions specified are displayed on the current List device as
MCS-80/85 mnemonics. -

The display is listed in the format shown in the following example.

Example

To disassemble the contents of 4 instructions starting at the program counter (in
this example, 4004H), enter the command:

T4

4004 061A MVI B,1A
4006 CDO3F8 CALL F803
4009 4F MOV C,A
400A CDO9F8 CALL F809

7-32

iPDS™ User’s Guide : Debug Commands

X

Display/modify
registers
Command Format
Display Form
X

Modify Form
X <register>,[<data>][, <data>]...
where
<register> is the single character register name.

<data> specifies one or two bytes of data to be placed in the register.
The <data> must be entered in hexadecimal.

Comments

The display form of the command displays the contents of all the registers. The
modify form displays and optionally changes the contents of the registers one at a
time.

The modify form of the command functions the same as the Substitute command.
It operates as follows:

1. Enter the command and a single letter symbol for a register.

2. The contents of the specified register is displayed, followed by a dash.

3. Do one of the following:
e Modify the contents by entering new bytes in hexadecimal. If the regis-
ter is a two byte register, enter two bytes (four digits). For single byte
registers, enter a single byte (two digits).

e Look at the contents of the next sequential register by entering a
comma. See the following list for the sequence of registers.

e End the command without modifying the data by pressing the
RETURN key.

® Repeat any combination of the first two choices ending with the
RETURN key.

Table 7-5 lists the single character symbol for the registers that can be modified in
the sequence in which they are displayed.

7-33

Debug Commands iPDS™ User’s Guide

Table 7-5 Character Symbols for Register Modification

Symbol Register Size of Register
A CPU A Register 1 Byte
B CPU B Register 1 Byte
C CPU C Register 1 Byte
D CPU D Register 1 Byte
E CPU E Register 1 Byte
F CPU Flag Byte 1 Byte
H CPU H Register 1 Byte
L CPU L Register 1 Byte
M CPU H and L Registers Combined 2 Bytes
P CPU Program Counter 2 Bytes
S CPU Stack Pointer 2 Bytes

The Flag Byte is displayed in the following 8-bit format:

7 6 5 4 3 2 1 o

L Carry Flag

-Undefined

Parity Flag
Undefined
Auxiliary Carry Flag
Undefined

Zero Flag

Sign Flag

Examples
The following example shows the use of the display form of the X command:

X :
A=22B=0DC=0DD=D7E=00F=02H=F2L=D7 M=F2D7 P=F2D9 S=F1C6

The flag byte F has the value 02 which is 0000 0010 in binary. Thus, no flags are
set.

In the next example the registers starting with the C register are modified.
.XC oD-,Db7-,00-40,02-,F2-,D7-,F2D7-4CCC,F2D9-420C,F1C6-,
The contents of each register are displayed in sequence starting with the specified

register. To change the register contents, a hexadecimal value is entered. To go to
the next sequential register, a comma or space is entered.

7-34

CHAPTER 8
SYSTEM PROGRAMMER’S REFERENCE

Operating System Considerations

An operating system is a group of programs, or software routines, that provide the
software (as opposed to the hardware) environment in which user programs run.
The ISIS-PDS operating system provides two levels of software environment:
both an operating and a programming environment. See figure 8-1.

The operating environment is the external environment of the iPDS system. It is
the environment with which an operator interacts when running programs on the
system.

SYSTEM

COMMAND

UTILITIES
LINE AND
INTERPRETER

COMMANDS

INTERNAL
ENVIRONMENT

USER
WRITTEN
PROGRAMS

LANGUAGES

EXTERNAL
ENVIRONMENT

0022

Figure 8-1 Internal and External Environment

The external environment is provided by the Command Line Interpreter (CLD).
The CLI interprets command lines entered from the console (usually the
keyboard) and then loads and executes the corresponding program from a disk file.

Chapter 3 describes the characteristics of this environment, i.e., how to enter
commands. Chapters 4-7 and Chapter 10 describe some of the command programs
supplied with the system. Other commands are described in separate manuals.

The programming environment is the internal environment of the iPDS system. It
is the environment in which the programs interact as they run on the system. It is
the environment which a systems programmer sees when writing programs to run
on the system.

8-1

System Programmer’s Reference

The internal environment of the iPDS system is provided by a set of system calls.
The system calls activate routines within the ISIS-PDS internal environment. This
internal environment is described in this chapter.

Needed Functions

Operating systems typically provide features that aid in the software development
task as shown in figure 8-2.

iPDS™ User’s Guide

OPERATING
SYSTEM
¥ Y /
UNIFORMLY PROVIDES
lé%\ggégn HANDLES UNIFORM 10
PROGIS ERROR TO
CONDITIONS PERIPHERALS
y y y y * * Y
COMMAND CRT/ DISK DRIVES/ SERIAL
MEM PROGRAM LINE KEYBOARD PRINTER BUBBLE 110
MANAGEMENT OVERLAYS SCANNING ?Eﬁgﬂlﬁx MEMORY DEVICE

Figure 8-2 Needed Capabilities

0209

8-2

Most operating systems control the execution of programs, such as language
translators, utilities, or application programs. This involves several functions,
such as managing the memory resources of the system, scanning command lines,
and managing overlays.

The typical functions of an operating system also include the management of
peripheral devices attached to the system hardware. Devices supported often in-
clude a console device such as a keyboard and CRT display, a hardcopy output
device such as a line printer, and mass storage devices such as flexible disk drives
or bubble memory.

Many operating systems also provide a uniform method of handling exception and
error conditions detected during the execution of a program.

Features of the IS'IS-PDS Operating System

The ISIS-PDS operating system provides all the features needed in an operating
system through a collection of routines called the KERNEL. These routines,
referred to as system calls, form the internal environment which a programmer
sees when writing software to run on the iPDS system.

iPDS™ User’s Guide

System Calls

This section describes the system calls in detail in terms of their operations and the
parameters required from the user program. First, an overview is given of the
system calls and their functions.

Overview of System Calls

System call routines are part of the ISIS operating system. They can be called by
user-written programs to perform 1/0 and other system services on the Personal
Development System. They free the programmer from rewriting routines, such as
1/0 routines, that are already embedded in the operating system, and they also pro-
vide a standard interface for all modules and systems developed.

Under the ISIS-PDS operating system, a number of MCS-80/85 language transla-
tors can be used to build program modules. The resulting programs then run
under ISIS on the iPDS system. In this environment, the program may call upon
ISIS routines for a variety of services which already exist as part of the operating
system. This frees the programmer from having to code routines that are already
available.

An overview of the steps involved in making a system call from a PL/M module
and from an ASM module is given next. Detailed descriptions of how to make
system calls are provided later in the chapter.

When a system call is used in a PL/M program module, an external procedure is
declared for it. Then, within the PL/M module, a procedure call is made to the ex-
ternally declared procedure. '

In an ASM-80 program, an external symbol is declared for the entry point to the
system call. (In some cases, the external symbol is ISIS; in others, it is the name of
the system call.) Then, in the assembly module a CALL instruction to the external
symbol is given.

In either case, with PL/M-80 or with ASM-80, the relocatable module is linked

with the file SYSPDS.LIB which provides the correct address of the system call
routine.

There are 27 system call routines available. These are grouped into two broad
categories: high level routines and primitive routines. The high level routines per-
form I/0 operations and related maintenance services at the file level; they also
provide program execution services. The ISIS primitive routines perform 1/0 op-
erations and related services at the byte level. The high level system calls are:

e File I/0 operations for disk and other peripherals. OPEN, CLOSE, READ,
WRITE, SEEK, RESCAN, SPATH

e Disk directory maintenance. ATTRIB, DELETE, RENAME

e Console device assignment. CONSOL, WHOCON

o Error message output. ERROR

® Program loading and execution and return to CLI. LOAD, EXIT

® Multimodule Sharing ATTACH, DETACH

System Programmer’s Reference

8-3

System Programmer’s Reference iPDS™ User’s Guide

The primitive routines are:
® Peripheral I/0 routines. Cl, CO, RI, PO, LO
® System status routines. CSTS, IOCHK, IOSET, MEMCK

& Custom I/O driver extension. IODEF

Functional Categories of System Calls

A summary of the high level and primitive system calls organized by function
follows.

High Level System Calls

The high level system calls perform /0 operations at the file level. They also pro-
vide program loading and execution services as well as error handling and console
1/0.

File I/0 Operations. Seven system calls are available for controlling file 1/0 for
disk and other peripherals: OPEN, CLOSE, READ, WRITE, SEEK, RESCAN,
and SPATH. These routines open files for read or write operations, move the
pointer in an open file, and close files when they are finished.

With these calls, a program can transfer variable length blocks of data between
standard peripheral devices and a memory buffer area in the user program. To
clarify the effect of system calls on files, two integer quantities, LENGTH and
MARKER, are associated with each file in this description.

LENGTH is the number of bytes in the file. For some files, such as the keyboard
input, the LENGTH is potentially infinite. For other files, such as the input from a
serial device, the LENGTH is unknown until the file is completely read in. The
LENGTH of a file increases as the file is written.

MARKER is the number of bytes already read from or written to the file. It is only
associated with open files. The range of MARKER is zero to LENGTH.
MARKER is a pointer to the next byte to be read from or written to the file. The
value of MARKER can be changed with the SEEK and RESCAN system calls.

Disk Directory Maintenance. There are three system calls in this group:
ATTRIB, DELETE, and RENAME. They perform maintenance functions on disk
directories. ATTRIB changes the attributes of a file in the directory, DELETE
removes a file from the directory, and RENAME assigns a new name to a file in
the directory.

Console Device Assignment. There are two system calls in this group: CONSOL
and WHOCON. They perform control functions for the logical console device.
CONSOL assigns the console devices to physical devices and WHOCON returns
the name of the current console device.

Error Message Output. The ERROR system call allows a program to send a
message to the console.

8-4

iPDS™ User’s Guide

Program Loading and Execution. The LOAD and EXIT system calls run pro-
grams from disk files and return control to the CLI. The LOAD system call can be
used to transfer control to an overlay and then back to the main program.

I/0 Driver Extensions. Two system calls aid in adding user defined 1/0 drivers
to the system. ATTACH and DETACH are used to assign non-bubble multi-
module devices to one of the processors before the processor can access those
devices.

Primitive System Calls

The ISIS primitives perform I/O operations at the byte level. They also perform
system status checking and provide for adding I/0 drivers to the operating system.
The ISIS-PDS primitive system calls are the equivalent of monitor calis on the
Series II and the Intellec 800 development systems. The calls are used to talk to
the chips that interface to the device driver.

Peripheral 1/0O Routines. The five I/0 routines provide standard I/0 interface to
the console (CI and CO), list device (LO), and a serial device (RI and PO).

System Status Routines. The four system status routines allow the user program
to check the console status (CSTS), to check the assignment of I/0 devices
(IOCHK), and to check the top of user memory (MEMCK). Additionally, the
IOSET routine assigns I/0 devices.

1/0 Driver Extensions. The IODEF system call adds I/0 drivers to the system.

Differences Between High Level and Primitive System Calls

The physical devices used with a high level call are the logical devices for the primi-
tive system call. Bubble memory and disk drives do not have primitive system
calls.

System Call Format and Use

All system calls alter the CPU registers; save any values it needed later. None of
the system calls use the stack.

The ISIS-PDS system routines can be called from programs written in a number of
MCS-80/85 languages. If a system call is made in a program, that program must be
linked with the file SYSPDS.LIB using the LINK program to supply the absolute
addresses of the system routines to the calling program.

Some of the system call primitives are used as functions. In PL/M, they are de-
clared as a typed procedure and can be invoked as part of an expression or a
parameter list rather than being CALLed. The calling sequence given for each
system routine indicates whether it is invoked by a CALL or is used as a function.
In assembly language, the functions return values to a register.

System Programmer’s Reference

8-5

System Programmer’s Reference iPDS™ User’s Guide

PL/M Calls
To use ISIS system calls in a PL/M program:

1. Declare a procedure as an external with the name of the system call desired.
Include the variable declarations for all formal parameters used by the
system call.

2. Before the procedure is called, declare and assign the proper values to the
actual parameters to be passed to the procedure.

3. Invoke the procedure, passing the parameters.

A PL/M program interfaces to ISIS by performing calls to procedures. The PL/M
program must include external procedure declarations so that the proper proce-
dures (declared as public procedures) from SYSPDS.LIB will be included in the
program by LINK. For most system calls, the procedure declaration is untyped;
but some system calls serve as functions and, therefore, are typed as either BYTE
or ADDRESS.

The external procedure declaration must also include variable declarations for the
parameters to be passed to the procedure. The parameters can be of type AD-
DRESS or of type BYTE, depending on the system call.

Each system call description gives the calling sequence and an example.

Assembly Language Calls
To use ISIS system calls in assembly language prograrris:
1. Define the system call entry point as an external.

2. Make any EQUs, DWs, or DSs needed for parameters to be passed to the
routine.

3. Load the value of the parameters to be passed into the proper register or
memory location.

4. Use the assembly language CALL instruction to call the system routine
entry point, previously defined as an external.

The interface between the MCS-80/85 Assembly Language Program and ISIS is
accomplished by declaring an external symbol for the entry point to the system
routine and then using the CALL instruction to that externally defined label. The
symbol to define as an external for each system call is given in the description of
that system call.

Parameters are passed from an assembly language program using the processor
registers and memory as required by the routine. These are specified in the de-
scription of the particular system call. .

Assembly language calls to system calis change the contents of the processor
registers. If the value of a register must be preserved, it should be saved before the
system call.

Each system call description includes the calling sequence and gives an example.

8-6

iPDS™ User’s Guide System Programmer’s Reference

Assembly Language Calls to High Level System Routines. Assembly language
system calls differ from PL/M in several respects. In PL/M, each system routine
has a corresponding procedure that is declared and called. In assembly language,
all the high level system routines are accessed by a CALL to a single entry point
labelled ISIS. (The remaining ISIS primitives use a mnemonic for the routine as
the external label for the entry point. These mnemonics are described in the dis-
cussion of the particular call.)

For all high level system calls, the C register must contain the number of the
system call desired and the DE register pair must contain the address in memory
of a table of parameters required by the system call. The detailed steps follow:

1. Define ISIS as an external label:

EXTRNISIS

2. Use an EQU statement to equate the number of the desired system call with
a symbol according to the following table:

SYSTEM CALL NUMBER

OPEN 0]
CLOSE 1
DELETE 2
READ 3
WRITE 4
SEEK 5
LOAD 6
RENAME 7
CONSOL 8
EXIT 9
ATTRIB 10 .
RESCAN 11
ERROR 12
WHOCON 13
SPATH 14
ATTACH 156
DETACH 16

3. Use DS and DW statements to set up a template for a table to hold the re-
quired parameters.

4. With assembly language instructions, store the appropriate values for the
parameters in the table.

5. Store the number of the system call in the C register.
6. Store the address of the table of parameters in the D and E register pair.
7. Insert the following instruction in the program:

CALLISIS ;Call the operating system.

The file SYSPDS.LIB must be linked to the program and provides the absolute ad-
dress of the ISIS entry point.

_ All the high level system calls require two parameters. The first is a number,
passed in register C, that identifies the system call; the second is an address,
passed in register pair DE, specifying the memory location of the additional
parameters.required by the system call.

8-7

System Programmer’s Reference ' iPDS™ User’s Guide

Usually, the system call numbers are defined in EQU statements before they are
referenced in the program, so that they can be referenced symbolically. The table
shown in step two above lists the high level system calls by number. These equates
are assumed in the assembly language examples given throughout this chapter.
Only the specific calls used in a program need to be defined in that program.

Assembly Language Calls to Primitive System Routines. Calls to ISIS primi-
tives are similar to other system calls. The difference is that each ISIS primitive
has its own mnemonic label for its entry point instead of the single ISIS label.
These labels are defined as externals. The parameters required by ISIS primitives
vary, and they are stored in the processor registers before the call instruction is
given. The CALL is made to the label for the entry point and any values returned
are stored in the processor registers.

The mnemonics used for the entry points are:

For example, the call to output a character to the console is:

EXTRN CO ;ENTRY POINT FOR CO SYSTEM CALL

MOV C,-M ;LOAD CHARACTER TO BE DISPLAYED INTO THE C
REGISTER
CALLCO ;0OUTPUT THE CHARACTER

Error Handling

Most of the high-level system calls return fatal and non-fatal error numbers in a
status byte that can be tested by the calling program.

If a non-fatal error occurs, no action is performed by the system call and control re-
turns to the calling program. The error number is returned as a two-byte value to
the calling program.

If a fatal error occurs, a message containing the error number is displayed on the
CRT screen and the CLI is reloaded.

The error numbers returned by each system routine are listed in the description of
that routine. Error numbers are described in Appendix B.

iPDS™ User’s Guide

System Calls in Alphabetical Order

In this section, each system routine is described. Certain conventions are followed
in the descriptions so the information can be easily accessed. For every
description, notational conventions, general format terms, and a similar format
are used.

Notational Conventions

The notational conventions used here are consistent with the conventions used
throughout the manual as described in Chapter 5.

General Format Terms

The parameters passed to system calls assume certain uses. The name chosen for
each parameter indicates its use. All the general terms used for parameter names
are listed in this section after a brief discussion that highlights some of them.

A name used by every routine, is <status$ptr>. This is the address of a location
which contains a non-zero error code if the system call could not complete its task
normally.

Two other parameter names are <conn> and <conn$ptr>. ISIS maintains a list
of twelve devices or files that a program can access during its execution, i.e., a
table of file access connections.

The connection is a number, named and declared in the user program, that corre-
sponds to a file to be accessed from the program. In other words, it connects the
file to the user program. The user program also supplies the pathname of the
device or file as an ASCII string. The ASCII string must conform to the format
given for pathnames:

:<device name>:<filename>.<extension>

However, it may have leading spaces (ASCII code 20H). The pathname cannot be
terminated by a letter, a digit, a colon (:), or a period (.); but a space may be used.
The OPEN system call maintains this pathname and its connection number as an
entry in a table. Thereafter, the connection specifies the file or device that the user
program can read, write, seek, rescan or close.

This table of connections is also called an Active File Table, and the entries in it
are Active File Table Numbers (AFTNs). Only files with AFTNS, i.e., that are in
the Active File Table, can be used for I/O operations. Reads, writes, opens,.and all
other file operations refer to the connection or AFTN rather than the device and
file name. During execution, the program can access multiple files, but only six
may be open at one time (not counting the console input and console output).
When 1/0 actions for a given file are complete, it can be closed so that another file
can be opened.

Be careful not to confuse the AFTN with the PL/M construction .AFTN. The
period (.) specifies the address of the memory location where the AFTN is stored.

To reduce the potential confusion, the term <conn> is used to refer to the con-
nection number and <conn$ptr> to refer to the address of the connection
number (the pointer to the connection number). The <$ptr> is appended to

another term to indicate a pointer to the other item. In PL/M examples, the dot -

operator (.) precedes names to indicate the address of the name.

System Programmer’s Reference

8-9

System Programmer’s Reference iPDS™ User’s Guide

Similarly, <path$ptr> represents the address of a memory location containing
the pathname string. In PL/M calls to the system routines, simply use the dot oper-
ator (.) to provide the address of the variable declared for use in the system
routine.

In order to READ and WRITE a file, several questions must be answered:
1. How many bytes are to be transferred?

2. To (or from) where?

3. From (or to) what memory locations?

In the system call descriptions, (1) is supplied as the parameter <count>; (2) is
supplied as the parameter <conn> described previously; and (3) is supplied as
the parameter <buffer§ptr>, the address of the locations to be read from or writ-
ten to.

The following chart lists the parameters in alphabetical order and lists the system
calls in which they are used.

Parameter Name Routines Using Parameter and Brief Definition

<access> OPEN
’ 2-byte number telling how the file is to be used, i.e.,
read or write or update.

<actual$ptr> READ .
2-byte pointer to the actual number of bytes suc-
cessfully read.

<atrb> ATTRIB
2-byte number indicating which attribute to change.

<block$ptr> SEEK
2-byte pointer to the block number.

<buf$ptr> READ, WHOCON, WRITE
2-byte pointer to the area declared for reading from
(or writing to) a file; for read and write, it should be
at least COUNT bytes long or undefined results will
occur.

<byteS$ptr> SEEK
2-byte pointer to the byte number.

<char> CO, L0, PO
Byte value output to the console, the serial device,
or the printer.

<ci$path$ptr> CONSOL
2-byte pointer to ASCII string containing the path-
name of the console input device.

8-10

iPDS™ User’s Guide

Parameter Name

<config$byte >

<conn>

<conn$ptr>

<control$sw >

<co$path$ptr>

<count>

<echo>

<entry$point>

<entry$ptr>

<errnum>

<function$code >

<info$ptr>

<load$offset>

<mode >

<mmio$row >

System Programmer’s Reference

Routines Using Parameter and Brief Definition
(continued) :

IOSET
Byte value used to assign I/O devices.

CLOSE, READ, RESCAN, SEEK, WHOCON,
WRITE

2-byte connection number to a file or device.

OPEN
2-byte pointer to the connection number.

LOAD
2-byte value indicating where to transfer control
after the load.

CONSOL
2-byte pointer to ASCII string containing the path-
name of the console output device.

READ, WRITE
2-byte value that specifies the number of bytes to
read from or write to a file.

OPEN
2-byte connection number for the echo file when a
line edited file is opened.

IODEF
2-byte address of the entry point of the user written
[/0 driver.

LOAD
2-byte address of the location to which the loaded
program should return after execution.

ERROR :
2-byte error number to output to the console.

IODEF
Byte value that identifies which 1/0O driver is being
added.

SPATH
2-byte pointer to the memory area containing file
description data.

LOAD
2-byte offset value added to the load address causing
the program to load at the adjusted address.

SEEK
2-byte value representing the direction and type of
the seek operation.

ATTACH, DETACH
2-byte value specifying which multimodule row is
being attached or detached.

8-11

System Programmer’s Reference iPDS™ User’s Guide

8-12

Parameter Name Routines Using Parameter and Brief Definition
(continued)

<newpath$ptr> RENAME
2-byte pointer to the new pathname of the file being
renamed.

<oldpath$ptr> RENAME
2-byte pointer to the old pathname of the file being
renamed.

<onoff> ATTRIB
2-byte number indicating whether the attribute is to
be set or reset.

<path$ptr> ATTRIB, DELETE, LOAD, OPEN, SPATH
2-byte pointer to the pathname of the accessed file.

<status$ptr> All routines but EXIT and the primitives.
2-byte pointer to the error numbers generated
during the system call.

Description Formats

In addition to the conventions just described, each of the system calls is described
using the same format to aid in accessing the needed information at a glance. This
format is shown in figure 8-3. The system calls are described in alphabetical order.
Each description begins on a new page with the system call keyword on the top out-
side margin of the page.

1. First, the purpose of the system call is given.

2. Second, the parameters are described in the order required by the system
call. Two pieces of information are supplied for every parameter.

“Input parameter.” or “Output parameter.” is the first information given for
each parameter. All the parameters listed are supplied by the calling program
to the system call. In this context, output parameter refers to the destination
address of a value returned by the system call.

The second piece of information provided for every parameter is the parame-
ter size. All parameters are either one-byte or two-byte. All high level system
calls use two-byte parameters.

3. Third, the error numbers are listed. These are the ISIS error numbers that
can be returned for that system call. The error numbers are explained in Ap-
pendix B.

4. Fourth, a PL/M section shows the format of the PL/M procedure declaration
and the format of the PL/M procedure call and gives an example.

5. Fifth, an assembly language section shows shows the calling sequence in an
ASM-80 program and gives an example.

NOTE

The examples provided use symbolic names, labels, and variable
names. If several of the example calling sequences are combined
into a single program, the symbols, labels, and variable names
may have to be modified to avoid duplicate symbol errors.

iPDS™ User’s Guide

System Programmer’s Reference

Description

SYSTEM CALL NAME

brief phrase
describing routine

A brief paragraph or two describing use of the system call.

Parameters

Parameter 1

Parameter n

Error Numbers
Fatal:

Non-Fatal:

PL/M Calling Sequence

treceessesaesnasseassaetasansens
..... ++oss Description cceeecenen

I R R R I A I A N}

ssesrecssessecsne ssceencocccs s

P N S A R T I R N R A I I I A A}

nl, n2, n3, . . ., nm

nl, n2, n3, « .+ . , nm

Explanation and example of the calling sequence.

Assembly Language Calling Sequence

Explanation and example of the calling sequence.

Figure 8-3 Format of System Call Descriptions

0224

System Programmer’s Reference ' iPDS™ User’s Guide

ATTACH

Assigns multimodule row
to processor

Description

The ATTACH call assigns a row of multimodules to a processor. The program sup-
plies the multimodule row, and the ATTACH call returns the status. See the
DETACH call. .

Parameters

Two parameters are required by ATTACH in the following order. They can be
passed in a PL/M procedure or through the C register and the DE register pair
from an assembly language program.

<mmio$row> Input parameter. Two byte. Value can be:

0-1/0 Connectors J1 and J2.
1 -1/0 Connectors J3 and J4.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 33.
Non-fatal: 60, 61.

PL/M Calling Sequence
" The form of the declaration of the external procedure is:

ATTACH:
PROCEDURE (<mmio$row >, <status$ptr>) EXTERNAL;
DECLARE (<mmio$row >, <status$ptr>) ADDRESS;
END ATTACH;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE MULTIMODULE ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL ATTACH(MULTIMODULE,.STATUS);
IF STATUS <> OTHEN....

Notice that a variable was declared for the status, and then the dot operator was
used to pass the address of this value as required by the system call.

8-14

iPDS™ User’s Guide

System Programmer’s Reference

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series of DW, DS, and
DB directives. Then, the address of the beginning of the block (labelled ABLK) is

stored in the DE register pair before the CALL instruction.

; ATTACH

,

ATTACH

ABLK:
ATTROW:
ASTAT:

EXTRN
EQU

MVI
LXI
CALL
LDA
ORA
JNZ

DS
DS

ISIS ; LINK TOISIS ENTRY POINT

156 ; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS...

C,ATTACH ; LOAD IDENTIFIER

D,ABLK ; ADDRESS OF PARAMETER BLOCK
ISIS
ASTAT ; TEST ERROR STATUS

A
EXCEPT ;BRANCH TO EXCEPTION ROUTINE
; REST OF PROGRAM
; PARAMETER BLOCK FOR ATTACH
2 ; MULTIMODULE ROW
2 ; ATTACH STATUS

8-15

System Programmer’s Reference iPDS™ User’s Guide

ATTRIB

Change the attributes
of afile

Description

The ATTRIB call allows a program to change an attribute of a disk file. The pro-
gram supplies the name of the file, the attribute to be changed, and its new value.
The ATTRIB call returns a status code.

Parameters

Four parameters are required by ATTRIB in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<path$ptr> Input parameter. Two byte. Pointer to the ASCII string
(maximum of 15 bytes) containing the name of the file.
The ASCII string can contain leading spaces but no em-
bedded spaces. It must be terminated by a character
other than a letter, digit, colon (:), or period (.). A
space can be used.

<atrb> Input parameter. Two byte. Number indicating which at-
tribute is to be changed:

0 - invisible attribute

1 - system attribute

2 - write protect attribute
3 - format attribute

4 - user defined attribute
5 - user defined attribute
6 - user defined attribute

<onoff> Input parameter. Two byte. Value indicating whether at-
tribute is to be set (turned on) or reset (turned off). The
value is stored in the low order bit of the low order byte.
A value of 1 specifies the attribute to be set, and a value
of 0 specifies that it be reset.

<status$ptr> Output parameter. Two byte. Address in memory of the
two-byte error number. If the error number is 0, no
error occurred.

Error Numbers
Fatal: " 4,24,30,33

Non-fatal: 4, 5,13, 23, 26, 28

8-16

iPDS™ User’s Guide System Programmer’s Reference

PL/M Calling Sequence

The form of the declaration of the external procedure is:

ATTRIB:
PROCEDURE (<path$ptr>,<atrb>,<onoff>, <status$ptr>)
EXTERNAL;
DECLARE (<path$ptr>,<atrb>,<onoff>, <status$ptr>)
ADDRESS;
END ATTRIB;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE FILE(15) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing the actual parameters.

CALL ATTRIB(.FILE,2,0,.STATUS);
IF STATUS <>O0THEN...

Notice that a variable was declared for the filename and the status, and then the
dot operator was used to pass the addresses of these values as required by the
system call. This example clears the Write Protect attribute of the file.

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series of DW, DS, and
DB directives. Then, the address of the beginning of the block (labelled ABLK) is
stored in the DE register pair before the CALL instruction.

; ATTRIB
EXTRN ISIS ; LINK TO ISIS ENTRY POINT
ATTRIB EQU 10 ; SYSTEM CALL IDENTIFIER
; SAVE REGISTERS ...
MVI .C,ATTRIB ; LOAD IDENTIFIER
LXI D,ABLK ; ADDRESS OF PARAMETER BLOCK
CALL ISIS
LDA ASTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE
; REST OF PROGRAM
ABLK: ; PARAMETER BLOCK FOR ATTRIB
DW FILE3 ; ADDRESS OF FILENAME
ATRB: DW 0 ; ATTRIBUTE IDENTIFIER
VALUE: DW | ; ATTRIBUTE VALUE
DW ASTAT ; POINTER TO STATUS
ASTAT: DS 2 ; STATUS (RETURNED)
FILE3: DB ‘OPSYS.CLI’

8-17

System Programmer’s Reference iPDS™ User’s Guide

Cl

Input character
from console

Description

The CI call reads a character entered at the system console device and returns it as
a byte variable in PL/M or in the A register in an assembly language program.
Once called, the routine loops until a character is entered. The character entered is
not echoed on the console output device. The actual device from which the charac-
ter is read depends on the value set by the IOSET system call. The CI system call is
notused by the ISIS operating system to read the :CI: device.

Parameters

None.

Error Numbers
Fatal: None.

Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

Cl:
PROCEDURE BYTE EXTERNAL;
END Cl;

Notice that this is a typed procedure or function and can be used in an expression
or parameter list. There are no actual parameters to declare, so the function is
called without any further declarations. Assuming an array has been set up to re-
ceive a sequence of characters, the following program receives those characters
into the array.

DO WHILE BUFFER(INDEX) < > CR;
INDEX = INDEX + 1
BUFFER(INDEX) = CI;

END;

Assembly Language Calling Sequence

From an assembly language program, the label CI is defined externally instead of
the label ISIS, because CI is a primitive ISIS routine. The character is returned in
the A register.

; Cl ‘
EXTRN Cl ;ENTRY POINTFORCIINISIS
CALL CI ; GETCHARACTER
; CHARACTER RETURNED IN “A”
; REGISTER

8-18

iPDS™ User’s Guide System Programmer’s Reference

CLOSE

Terminate I/0 operations
to afile

Description

The CLOSE call removes a file from the Active File Table (AFT) and releases the
buffers allocated for it by the OPEN command. Each file should be closed whenev-
er I/0 processing is complete. The program supplies the connection number of the
file to be closed and the CLOSE call returns an error code. The EXIT system call
also closes all open files except the console.

Parameters

Two parameters are required by CLOSE in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<conn> Input parameter. Two byte. Connection number
(AFTN) returned for a random access file when it was
opened.

<status$ptr> Output parameter. Two byte. Pointer to two-bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers

Fatal: 33

Non-fatal: 2

PL/M Calling Sequence
The form of the declaration of the external procedure is:

CLOSE:
PROCEDURE (<conn>, <status$ptr>) EXTERNAL;
DECLARE (<conn>, <status$ptr>) ADDRESS;
END CLOSE;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE AFTS$IN ADDRESS;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL CLOSE(AFTS$IN,.STATUS);
IF STATUS <> O THEN...

Notice that a variable was declared for the status, and then the dot operator was
used to pass the addresses of this value as required by the system call.

System Programmer’s Reference - iPDS™ User’s Guide

8-20

Assembly Language Calling Sequence

An example that illustrates the calling sequence in assembly language is shown
below. The parameters are set up in the correct order with a series of DW, DS, and
DB directives. Then, the address of the beginning of the block (labelled CBLK) is
stored in the DE register pair before the CALL instruction.

; CLOSE

EXTRNISIS ; LINK TO ISIS ENTRY POINT
CLOSE EQU 1 ; SYSTEM CALL IDENTIFIER

. ; SAVE REGISTERS ...

MVI C,CLOSE ; LOAD IDENTIFIER

LXI D,CBLK ; ADDRESS OF PARAMETER BLOCK

CALL 1ISIS

LDA CSTAT ;TESTERRORSTATUS

ORA A

JNZ EXCEPT ; BRANCH TO EXCEPTION ROUTINE
CBLK: : PARAMETER BLOCK FOR CLOSE
CAFTN: DS 2 ; FILE IDENTIFIER

DW CSTAT ;POINTER TO STATUS
CSTAT: DS 2 : STATUS (RETURNED)

iPDS™ User’s Guide System Programmer’s Reference

CcO

Output character
to console

Description

The CO call sends a single character to the system console device. From PL/M, a
byte variable is used for the character. From an assembly language program, the
character must be in the C register. The actual device to which the character is writ-
ten is determined by the value set by the IOSET system call. The CO system call is
notused by the ISIS-iPDS operating system to write to the :CO: device.

Parameters

The parameter required by CO can be passed in a PL/M procedure call or through
the C register from an assembly language program.

<char> Input parameter. Byte. The character to be output.

Error Numbers

Fatal: None.
Non-fatal: None.

PL/M Calling Sequence

The form of the declaration of the external procedure is:

CO:
PROCEDURE (<char>) EXTERNAL;
DECLARE (<char>) BYTE;
END CO;

The actual parameter must be declared in the program prior to making the call.
DECLARE CHARBYTE;

A value is then assigned to the declared variable which is used as an actual
parameter. Finally, the procedure is called passing the actual parameter.

CALL CO(CHAR);

Assembly Language Calling Sequence

From an assembly language program, the label CO is defined externally instead of
the label ISIS, because CO is a primitive ISIS routine.

; CO
: SAVE REGISTERS
EXTRNCO ;ENTRY POINTFORCOISIS
MOV C,M ; LOAD CHARACTER TO BE OUTPUT INTO “C”
: REGISTER
CALL CO ;OUTPUT THE CHARACTER

8-21

System Programmer’s Reference iPDS™ User’s Guide

CONSOL

Change

console device

8-22

Description

The CONSOL call allows a program to change the console input and output
devices, i.e., reassign the physical device named by :CI: and :CO:. The program
supplies the name of the new console 1/0 device. The CONSOL call returns an
error code.

Parameters

Three parameters are required by CONSOL in the following order. These can be
passed in a PL/M procedure call or stored in a table in memory pointed to by the
DE register pair for an assembly language program.

<ci$path$ptr> Input parameter. Two byte. Pointer to the ASCII string
(15-bytes maximum) containing the name of the file to
be used for console input. The ASCII string can contain
leading spaces but no embedded spaces. It must be ter-
minated by a character other than a letter, digit, colon
(1), or period (). A space can be used. If the specified
file cannot be opened, a fatal error occurs. If :CI: is
specified for the input file, the current input assignment
is not changed.

<co$path$ptr> Input parameter. Two byte. Pointer to the ASCII string
(15-byte maximum) containing the name of the file to
be used for console output. The ASCII string can con-
tain leading spaces but no embedded spaces. It must be
terminated by a character other than a letter, digit,
colon (:), or period (.). A space can be used. If the speci-
fied file cannot be opened, a fatal error occurs. If :CO: is
specified for the output file, the current output assign-
ment is not changed.

<status$ptr> Output parameter. Two byte. Pointer to two bytes in
memory reserved for the error number. If the error
number is 0, no error occurred.

Error Numbers
Fatal: 1,4,5,12,13, 14, 22, 23, 24, 28, 30, 33

Non-fatal: None; all errors are fatal.

iPDS™ User’s Guide System Programmer’s Reference

PL/M Calling Sequence

The form of the declaration of the external procedure is:

CONSOL:
PROCEDURE (<ci$path$ptr>,<co$path$ptr>, <status$ptr>)
EXTERNAL,; ’
DECLARE (<ci$path$ptr>,<co$path$ptr>,<status$ptr>)
ADDRESS;
END CONSOL;

The actual parameters must be declared in the program prior to making the call.
An example of declaring actual parameters follows:

DECLARE INFILE(6) BYTE;
DECLARE OUTFILE(6) BYTE;
DECLARE STATUS ADDRESS;

Values are then assigned to the declared variables which are used as actual
parameters. Finally, the procedure is called passing all the actual parameters.

CALL CONSOL(.INFILE,.OUTFILE,.STATUS);
IF STATUS <> OTHEN...

Notice that variables were declared for the filenames and status, and then the dot
op