

JAMES B. JOHNSON
STEVE KASSEL

he
Multilous
Design
Guidelbook

Structures,
Architectures, and
Applications

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogotd Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris.
S&o Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Johnson, James B.
The multibus design guidebook.

Includes bibliographical references and index.

1. Microcomputers—Buses. 2. Computer architecture.
I. Kassel, Steve. II. Title. : ‘
TK7895.B87]63 1984 621.3819'535 83-16258
ISBN 0-07-032599-5

Copyright © 1984 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

234567890 DOC/DOC 8987654

ISBN 0-07-032599-5

The editors for this book were Roy Mogilanski and Janet B.
Davis, the designer was Riverside Graphics, and the
production supervisor was Thomas G. Kowalczyk. It was set in
Caledonia by University Graphics, Inc.

Printed and bound by R. R. Donnelley & Sons Company.
Multibus is a registered trademark of Intel Corporation.

Photographs, tables, and figures are used courtesy of Intel
Corporation, Santa Clara, California.

This book is dedicated to our parents, who
furnished us guidance and gave us the educational
opportunities to pursue our careers, and to our
wives, Nancy and Nancy, who provided support
and understanding during the development of this

book.

Contents

PART 1

PREFACE
ACKNOWLEDGMENTS

THE MULTIBUS FAMILY OF BUS STRUCTURES

INTRODUCTION

Objectives and Goals of Microprocessor-Based System
Buses, 3

1
1.1

1.2

13

2.1
2.2

23

111

Do You Need a System Bus? 4

Picking Your Multibus Family Structures, 4

1.21
122
1.23
1.2.4
1.25

Support of a Wide Range of System Architectures, 6

A Conceptually Simple Structure, 14

A Structure That Can Incorporate New VLSI Quickly, 18
A Reliable, Cost-Effective Structure, 21

A Well-Defined, Documented, and Controlled Standard, 23

Brief History of the IEEE-796/Multibus and its Extenslions,

24

THE MULTIBUS SYSTEM BUS
Notation, 27
Logical Description of the Multibus System Bus, 28

221

Bus Devices, 29

Bus Signal Definitions and Operation Overview, 33

23.1
2.3.2
233
234
2.3.5
2.3.6
2.3.7

Address, Inhibit, and Data Lines, 33
Control Lines, 38

A Data Read Operation, 43

A Data Write Operation, 44
Interrupt Lines, 46

Bus Arbitration and Exchange, 50
Bus Exchange, 55

Xxv

xvii

27

vil

vill CONTENTS

2.4 Detailed Electrical Description, 56
2.4.1 Logical State and Electrical Level Relations, 57
2.4.2 Signal Line Characteristics, 57
2.4.3 Bus Power Specification, 58
2.44 Temperature and Humidity Limits, 59
2.4.5 Bus Timing, 59
2.4.6 Bus Control Exchange Timing, 66
2.4.7 Receivers, Drivers and Terminations, 71
2.5 Mechanical Considerations, 72
2.5.1 Board-to-Board Relations, 72
2.5.2 Pin Assignments, 73
25.3 Connector-Naming and Pin-Numbering Standards, 73
2.5.4 Standard Outline of the PCB, 75
2.6 Levels of Compllance, 75
2.6.1 Variable Elements of Capability, 76
2.6.2 Masters and Slaves, 77
2.6.3 Compliance-Level Notation, 78

3 MULTICHANNEL BUS
3.1 Why the Multichannel Bus is Required, 80
3.2 Logical Description of the Multichannel Bus, 82
3.2.1 Bus States, 84
3.2.2 Bus Devices, 85
33 Bus Signal Definitions, 86
3.3.1 Address-Data, 86
3.3.2 Control, 87
8.3.3 Bus Interrupt Lines, 90
3.3.4 Parity, 92
3.3.5 Resetx, 92
34 Bus Transfer Operations, 93
3.4.1 Address Cycle, 93
3.4.2 Data Cycles, 95
8.4.3 Transfer Cycle, 97
8.4.4 Control Arbitration and Exchange, 98
3.4.5 Interrupt Handling, 99
3.5 Programming Information, 100
8.5.1 Register Addressing, 100
3.5.2 Multichannel Register Definition, 101
3.5.3 Device Polling, 103
3.5.4 Bus Exchange Programming, 104
3.6 Electrical Specification, 104
8.6.1 Logical State and Electrical Level Relations, 106
3.6.2 Signal Line Characteristics, 106
8.6.3 Bus Power Specification, 108
3.6.4 Environment, 108
8.6.5 Bus Timing, 108
3.6.6 Receivers, Drivers, and Terminations, 115

3.7

3.8

3.9

4.1
4.2

43

4.4

4.5

4.6
4.7

4.8

CONTENTS Ix

Mechanical Considerations, 116
8.7.1 Cable Specification, 116
8.7.2 Connector-Receptacle Specification, 119
8.7.3 Multichannel Bus Pin Assignments, 119
3.7.4 Bus Termination, 120
Levels of Compliance, 120
3.8.1 Variable Elements of Capability, 120
8.8.2 Compliance-Level Notation, 122
Summary, 123

ISBX 1/O BUS 124
Why the ISBX Bus Is Required, 124
Loglcal Description of the ISBX Bus, 125

4.2.1 Bus Devices, 126

4.2.2 8- and 16-Bit Compatibility; Bus Device Notation, 129
Bus Signal Definitions, 129

4.3.1 Address and Chip Select Lines, 129

4.3.2 Data Lines, 138

4.3.3 Control Lines, 134

4.3.4 Direct Memory Access, 137

4.3.5 Miscellaneous Lines, 138
Bus Operation Overview, 139

4.4.1 1/0 Read Operations, 139

44.2 1/0 Write Operations, 141

4.4.3 Direct Memory Access, Operations, 143

4.4.4 Interrupt Operations, 145
Detalled Electrical Description, 146

4.5.1 Logical State and Electrical Level Relations, 146

4.5.2 Signal Line Characteristics, 147

4.5.3 Bus Power Specification, 147

4.5.4 Temperature and Humidity Limits, 148

4.5.5 Storage, 149

4.5.6 Bus Timing, 149

4.5.7 Receivers, Drivers, and DC Specifications, 153
Baseboard Layout Conslderations, 153
Mechanical Considerations, 155

4.7.1 iSBX Connector, 155

4.7.2 Pin Assignments, 156

4.7.8 iSBX Multimodule Board Height Requirements, 156

4.7.4 iSBX Multimodule Board Outlines, 161

4.7.5 iSBX Multimodule Board User I/O Connector Outlines, 161
Levels of Compliance, 162

4.8.1 Variable Elements of Capability, 166

4.8.2 Baseboards and iSBX Multimodule Boards, 167

4.8.3 Compliance-Level Notation, 167

ILBX BUS 169
Why the ILBX Bus Is Required, 169

X CONTENTS

PART 2

5.2

5.3

54

5.5

5.6

5.7

5.8

Logical Description of the ILBX Bus, 171

5.2.1 Bus Devices, 172
Bus Signal Definition, 175

5.3.1 Address Lines, 175

5.3.2 Data Lines, 176

5.8.3 Transfer Parity, 177

5.3.4 Control Status Lines, 177

5.3.5 Command Lines, 178

5.3.6 Bus Access Control Lines, 181
Bus Operation Overview, 184

5.4.1 Write Data Operation, 184

5.4.2 Read Data Operation, 186

5.4.3 Bus Time-Out Operation, 188

5.44 Bus Exchange Operation, 189
Detailled Electrical Description, 190

5.5.1 Logical State and Electrical Level Relations, 190

5.5.2 Signal Characteristics, 191

5.5.3 Bus Power Specification, 192

5.54 Temperature and Humidity Limits, 192

5.5.5 Bus Timing, 192

5.5.6 Receivers, Drivers, and DC Specifications, 197
Mechanical Consliderations, 198

5.6.1 Bus Connector Considerations, 198

5.6.2 Form Factor Considerations, 199
Levels of Compliance, 204

5.7.1 Variable Elements of Compatibility, 206

5.7.2 Compliance-Level Notation, 207
Summary, 208

THE MULTIBUS FAMILY ARCHITECTURES 209

6
6.1

6.2

6.3

6.4

7.1
7.2

SINGLE-BOARD COMPUTERS 211
Definition of a Single-Board Computer, 211
6.1.1 Trends in and Motivations for Using an SBC, 216
6.1.2 SBCs: What Level of Integration Should You Buy? 219
SBC Architectures, 221
6.2.1 First-Generation Architecture, 222
6.2.2 Second-Generation Architecture—Dual-Port Memory, 224
6.2.3 1/0 Expansion, 227
6.2.4 Memory Expansion, 230
A Simple Design Using SBCs, 232
Summary, 235

MULTIPROCESSING WITH MICROPROCESSORS 238
Definition of a Multiple-Processor System, 238
What is a Multiprocessor Computer? 244

73

7.4

75

1.6

7.7

8.1
8.2

8.3

8.4

8.5

CONTENTS xi

Motivation for Multiprocessing, 245
7.3.1 Throughput, 246
7.3.2 Reliability and Availability, 249
7.8.3 Flexibility, 250
7.3.4 VLSI Revolution, 251
7.8.5 Software Is Still a Problem, 251
Multiprocessor Architectures on the Multibus Structure,
251
7.4.1 A Simple Multiprocessor Architecture, 253
7.4.2 A Cached Memory Architecture, 253
7.4.3 A Functional Partitioned Multiprocessor Architecture, 257
System Bus Requirements for Multiprocessor Systems, 261
7.5.1 Shared System Resources, 261
7.5.2 An Interprocessor Signaling Mechanism, 261
7.5.3 An Efficient Bus-Arbitration Scheme, 262
Three Multiprocessor Implementations, 262
7.6.1 Single Time-Sharing Bus System, 263
7.6.2 Single Time-Sharing Bus System with Cache, 266
7.6.3 Functionally Partitioned Single Time-Sharing Bus System,
269
Summary, 271
References, 272

MULTICOMPUTING WITH MICROPROCESSORS
Definition of a Multicomputing System, 273
Motlvation for Multicomputing, 277
8.2.1 Increased Throughput and Reduced Response Time, 278
8.2.2 Module Design and Design Simplicity, 280
8.2.3 Flexibility and Modular Expansion, 282
8.2.4 Incorporating New VLSI Quickly with Standard Interfaces,
282
Multicomputing Architectures with the Multibus Family,
283
8.8.1 How to Use a System Bus in a Multicomputing Architecture,
286
A Simple Multicomputing System Example, 288
8.4.1 Designing the System, 289
8.4.2 Adding High Speed 1/0, 295
Summary, 297
References 298

PART 3 MULTIBUS FAMILY APPLICATIONS

9

9.1

SYSTEM DESIGN GUIDELINES
Building Multibus-Based Systems, 301
9.1.1 Bus Arbitration Techniques, 302
9.1.2 Memory Configuration and Addressing, 309

273

299
301

xli

CONTENTS

9.2

9.3

9.4

9.5

9.6

10
10.1

10.2

10.3

9.1.83 Interrupt Configuration, 313
9.1.4 Time-Out, 314
9.1.5 Bus Clocks, 315
9.1.6 Levels of Compliance, 315
9.1.7 Mechanical Considerations, 316
Bullding Systems with ISBX Multimodules, 319
9.2.1 Addressing, 319
9.2.2 Interrupts, 320
9.2.3 DMA, 320
9.2.4 Levels of Compliance, 320
9.2.5 Mechanical Considerations, 321
Bullding Systems with the Multichannel Bus, 322
9.8.1 Device Considerations, 323
9.3.2 Cable and Termination Considerations, 326
9.3.3 Levels of Compliance, 329
Bullding Systems with the ILBX Bus, 331
9.4.1 Address Space, 332
9.42 Secondary Master, 332
9.43 Acknowledge Timing, 333
9.44 Levels of Compliance, 334
9.4.5 Mechanical Considerations, 335
Reducing Multibus System Nolse, 336
9.5.1 Signal-to-Signal Coupling, 337
9.5.2 Ground Shifts, 339
9.5.3 Signal Ringing, 341
9.5.4 Noise Reduction Summary, 342
System Configuration Example, 343

BOARD DESIGN GUIDELINES

General Design Guidelines, 349

10.1.1 Electrical Considerations, 349

10.1.2 Thermal Considerations, 352

10.1.3 Mechanical Considerations, 353
General Bus Interface Design Guidelines, 356
10.2.1 Multibus Master Interface, 356

10.2.2 Multibus Slave Interface, 364

10.2.3 iSBX Multimodule Interface, 373

10.2.4 iLBX Master Interface, 376

10.2.5 iLBX Slave Interface, 382

10.2.6 Multichannel Master Interface, 385
10.2.7 Multichannel Slave Interface, 390
Special Interface Guidelines, 394

10.3.1 Dual-Port Memory Interface, 395

10.3.2 Interprocessor Communication Port, 398
10.3.3 16M-byte Addressing, 401

10.3.4 Standard 1/O Addresses, 404

349

CONTENTS xIil

10.4 Multibus System Bus Backplane Design, 405
10.4.1 Backplane Layout Considerations, 405
10.4.2 Parallel-Priority Arbitration Examples, 408
10.5 Summary, 414
References, 414

APPENDIX: LIST OF ABBREVIATIONS 415
INDEX 419

Preface

The Multibus/IEEE-796 is a commercial-quality industry-standard bus struc-
ture for use in microprocessor-based systems. Additionally, three separate buses
have been developed to complement and extend the capabilities of the Multibus
structure. Together these four structures form the Multibus family of structures.
The Multibus family consists of the Multibus system bus, which is the center of
all Multibus-based systems; the iSBX bus, a low-cost local (on-board) input-out-
put expansion bus; the Multichannel bus, a very high speed cable bus designed
to move blocks of data between peripherals and intelligent subsystems and Mul-
tibus-based systems; and the iL.BX bus, a high-speed memory execution bus that
allows a microprocessor on a single-board computer to expand its local memory
using multiple boards.

This book provides the reader with a basic understanding of the structures,
architectures, and detailed hardware designs of the various modules that can be
used in association with the Multibus system bus, the iSBX local input-output
bus, the Multichannel high-speed cable bus, and the iLLBX local execution bus.
It describes these various bus structures using simple concepts, and then builds
on them until the reader understands the different architectures that can be
constructed. The book, which is intended for board- and system-level hardware
design and evaluation engineers and their managers, is essential for anyone
involved with Multibus-based products. It provides detailed bus interface infor-
mation and also serves as a quick reference for those designing Multibus-based
systems. The text is supported by a wealth of examples and illustrations.

The book is divided into three parts: (1) structures, in which the electrical
and mechanical specifications of the Multibus family members are described;
(2) architectures, in which the different architectures are described that can be
built on and around the Multibus family members; and (3) applications, in
which hardware design examples are given for interfacing modules to the var-
ious Multibus family members.

xXv

xvi PREFACE

The structures section reviews each of the different Multibus family struc-
tures. First the structures are described conceptually; then the functions and the
electrical and mechanical specifications of the bus are described in detail.

The Multibus family of structures supports a wide spectrum of system archi-
tectures, from simple, low-cost uniprocessing systems to sophisticated, distrib-
uted multiple-processor systems yielding high throughput. The architectures
section considers the benefits and trade-offs of each of these different architec-
tures in detail. Examples of several types of systems, including uniprocessing,
multicomputing, and multiprocessing systems, are used to explain the major
architectural approaches, interconnection schemes, and related hardware and
software trade-offs. Other topics covered include an overview of system design
issues and some discussion of highly reliable computers.

The applications section gives the reader examples of various interface cir-
cuits for the Multibus family structures. Each example provides enough detail
to make it possible to actually implement the module or interface. This section
also provides evaluation criteria for purchasing Multibus-compatible products.

James B. Johnson
Steve Kassel

Acknowledgments

We wish to acknowledge the help of many colleagues at Intel's OEM Micro-
computer Operations group (Hillsboro, Oregon) over the years during which
most of these ideas, specifications, and applications were formulated and
refined. The special efforts of Clark Allsworth, who provided constructive crit-
icism of the early manuscript, have been most helpful. The final manuscript
also has benefited greatly from the careful reading and comments of Craig Kin-
nie and Mary Slamp. The assistance of the engineering staff of Intel Corpora-
tion—especially Phil Drain, Pete MacWilliams, John Deignan, Scott Tetrick,
and Ron Dilbeck—is also acknowledged.

xvil

PART 1

The Multibus
Family of
BUS Structures

|

INnfroduction

This chapter provides a basic framework for evaluating microprocessor system
buses and offers a little history of some of the most popular of such buses: the
Multibus/IEEE-796 system bus and its extensions: the iSBX bus, the iLBX bus,
and the Multichannel bus.! Basic system architectures of the Multibus/IEEE-
796 family will also be defined.

1.1 OBJECTIVES AND GOALS OF MICROPROCESSOR-BASED SYSTEM
BUSES

The system bus is the foundation of any computer system; it will influence the
flexibility, cost, performance, and reliability of the system for its entire operat-
ing life. Advances in very large scale integration (VLSI) technology result in
increased system complexity. The system bus, as a result, is recognized as the
primary architectural resource, and it can frequently be the limiting factor in
performance, reliability, and modularity. The most basic portion of a system
bus is the bus structure, which defines all the signals and how the various system
components interact with each other. These signals run along the backplane,
where they can be supplied to the interface modules. A typical bus structure
defines the word length, data types, and address length, as well as data transfer
protocols such as memory reads, input-output (I/O) writes, and direct memory
accesses (DMA). It will also specify some type of intermodule signaling such as
interrupts, as well as a protocol to exchange control of the bus to various bus
modules.

!Multibus, iSBX, iLBX, and Multichannel are trademarks of Intel Corporation, Santa Clara,
California.

4 THE MULTIBUS FAMILY OF BUS STRUCTURES

1.1.1 Do You Need a System Bus?

Not all users need a bus-oriented system. Such a system is generally more flex-
ible, easier to upgrade, and easier to implement, but it is more expensive, mod-
ule for module, than a specialized system. This expense is due to the greater
component count required to meet the bus interface specification. Typically, a
bus specification requires that each signal line be buffered. That can result in
excess drive capacity, since most system designs use only a small fraction of the
allowable receivers permitted on a signal. The buffers also require additional
area on the board and increase power consumption. The additional parts
increase the component cost, assembly time, and test time, which results in
increased manufacturing cost.

In applications with lesser volume it will generally be found that the added
cost of using standard bus design methodologies will be favorably offset by
lower development costs during the shorter development time. In many
instances, complete systems can be configured with off-the-shelf board-level
products. In applications in which some custom design is required, standard bus
design methodology is still applicable. The system design can be divided into
two parts: the custom boards and the standard boards. The customized portion
of the system can be completed with less expenditure of time and money
because the system bus interface is already designed. The entire system devel-
opment cost is lower because part of the system uses standard products. Bus-
oriented systems also have a greater degree of configuration flexibility because
different modules can be mixed and matched to produce a particular product
or version. Products can easily be configured to meet the exact need of the end
user.

Another important aspect of using standard bus-oriented systems is the abil-
ity to buffer a system design from the rapid technological changes in VLSI com-
ponents. If a design needs more speed, it can be upgraded by plugging in a new
bus-compatible module that uses a faster microprocessor or faster memory.
Even using new technology such as converting a current design which used an
8-bit microprocessor to a 16-bit microprocesor would be permitted if the mod-
ule met the bus interface requirements.

In summary, in applications that have very high volume, such as terminals
or low-cost test equipment, it will be found that the use of a standard bus system
adds undesirable cost to the end product. Systems that are dominated by man-
ufacturing costs and do not need a great deal of configuration flexibility should
use specialized configurations to avoid the costs of unnecessary parts and inter-
connections. On the other hand, systems that are dominated by development
costs or need configuration flexibility should use a system bus scheme.

1.2 PICKING YOUR MULTIBUS FAMILY STRUCTURES

The Multibus system bus is a commercial quality bus for use in microprocessor-
based systems. Some Multibus boards are shown in Fig. 1-1. The Multibus struc-

INTRODUCTION 5§

-

RO '"':-'; fae
tlulng . nkwﬁ;‘d;!:icﬁinmw

FIGURE 1-1 Multibus compatible boards.

ture provides all the necessary signals for easy system expansion with additional
memory, I/O, or microprocessor modules. The Multibus system architecture has
been developed to expand beyond the capabilities of the basic system bus struc-
ture with three new bus structures. They are (1) the iSBX bus, a low-cost local
(on-board) I/O expansion bus, (2) the Multichannel bus, a high-speed path for
block data transfers between a Multibus-based system and peripherals or other
remote computer systems and (3) the iLBX bus, a high-speed memory-only exe-
cution bus that makes it possible to expand the local memory of a microproces-
sor on a single-board computer (SBC) by using multiple boards.

These three extensions—the iSBX bus, the Multichannel bus, and the iLBX
bus—were developed to optimize a particular aspect of the basic Multibus sys-
tem. The Multibus system bus, along with its three extensions, comprises the
Multibus family (Fig. 1-2). The three extensions complement the Multibus sys-
tem bus, which permits a system designer to make the best cost-performance
trade-offs during the system design. The Multibus family provides a complete
set of system building blocks for use in a wide variety of system architectures.

Picking the right system bus for a specific application is a very important
and difficult task. When different system bus structures are evaluated, the fol-
lowing objectives need to be considered:

6 THE MULTIBUS FAMILY OF BUS STRUCTURES

MULTICHANNEL
HIGH-SPEED DISTRIBUTED BUS

MULTIBUS
THE SYSTEM BUS

iLBX
LOCAL MEMORY
BUS

isBX
LOCAL /0 BUS

FIGURE 12 The Multibus family.

o Support of a wide range of system architectures

A conceptually simple structure

e A structure that can quickly incorporate new VLSI

* A reliable, cost-effective structure

o A well-defined, documented, and controlled standard

Each of the above objectives will be discussed to provide a basis for understand-

ing its effect on system design. Then the Multibus family will be examined in
light of all the objectives.

1.2.1 Support of a Wide Range of System Architectures

The bus structures provide the groundwork for the system hardware architec-
ture; they must support many different architectures ranging from simple, sin-
gle-master monolithic designs to complex multiple-processing, locally distrib-
uted designs. These different system architectures are briefly defined, and their

INTRODUCTION 7

effects on the bus structures are explored. (In Chaps. 6 to 8 the different archi-
tectures are explored in more detail.)

SINGLE-PROCESSOR ARCHITECTURE

A system with single-microprocessor architecture can have only one user-repro-
grammable microprocessor. Although the system can have other bus masters
with microprocessors, such as peripheral controllers, on them, these micropro-
cessors are dedicated to particular tasks and cannot be reprogrammed—they
simply replace logic and do it more cost-effectively. Two types of single-micro-
processor architectures will be discussed. The first is a very traditional approach
used by most of the basic minicomputer and microprocessor systems; the second
is an evolution of the first that is driven by the effects of VLSI technology.
The most straightforward microprocessor system bus architecture is a split-
bus or common-bus architecture, in which both the microprocessor and the sys-
tem have equal access to the memory and other system resources. Examination
of Fig. 1-3 reveals four basic blocks: the SBC unit, the global memory unit, the
global I/O unit, and the DMA unit. The microprocessor unit is responsible for

sBC

BUS MASTER BUS SLAVE BUS SLAVE

MICROPROCESSOR LOCAL
170

LOCAL BUS
BUS LocAL GLOBAL GLOBAL
CONTROL I Oy MEMORY 1/0
LOGIC ‘

L BUFFERS
v
< MULTIBUS SYSTEM BUS ?

DMA

BUS MASTER
FIGURE 1-3 Common-bus architecture.

8 THE MULTIBUS FAMILY OF BUS STRUCTURES

all execution of code, all communication in the system, and most of the low-
speed I/O tasks, and it can control the system bus (a bus master). The memory
unit holds or stores all system data and program execution code and can respond’
only to bus commands; it is a bus slave. The I/O unit is responsible for inter-
“facing to all the low-speed 1/O in the system and is a bus slave; it interfaces to
such devices as printers, control lines on machines, and front panels of boxes.
The fourth block is the DMA unit; it handles all high-speed I/O devices such
as disks, graphics stations, and video cameras without the aid of the micropro-
cessor. This block’s main task is to transmit high-speed data between the system
peripherals and the system memory unit. The DMA unit is a bus master and
can control the system bus. The microprocessor unit initializes the DMA unit
for each block of data transfer, and then the DMA unit sustains independent
activity. The microprocessor unit tells the DMA unit the direction of the data
flow and where to put or get the data in system memory. Once the block trans-
fer is complete, the DMA unit notifies the microprocessor unit via an interrupt.

The common-bus approach is very popular in minicomputer designs and
early microprocessor systems. It was used in the first systems based on the Mul-
tibus system bus and in many personal computers such as the Apple I1? and the
TRS:80.% The microprocessor uses the system bus to execute out of the memory
and to perform all I/O operations. In this configuration, the system bus is used
as an execution bus. The advantages of this approach are simplicity and archi-
tectural consistency, which means that all system resources are accessible from
the system bus and are made global; there are no resources in the system that
only one of the bus masters can access. As an example, the microprocessor and
disk controller can access all of the memory; that is, the memory is made global.
System capacity is easily expanded by installing new modules. The limitations
of the common-bus system are (1) the high utilization of the system bus
required by most new microprocessors, which leaves no system bus bandwidth
for other system activities such as DMA, and (2) the slow throughput, which is
due to both arbitration time to gain control of the system bus and the extra
delays of the multiple layers of buffers used to get to and from the system bus.
The addition of another DMA device could slow the system down if the system
bus cannot support all the bus master’s memory bandwidth needs.

SINGLE-BOARD COMPUTERS

The 1970s produced VLSI technology, which increased the performance and
capabilities of silicon devices and at the same time reduced the number of
devices and cost to implement complex functions. It became possible to inte-

2Apple 11 is a trademark of Apple Corporation, Cupertino, California.
3TRS-80 is a trademark of Radio Shack Division of Tandy Corporation, Fort Worth, Texas.

INTRODUCTION 9

grate on a single circuit board all of the basic elements of the common-bus
computer architecture. This resulted in the first SBC. (Figure 1-4 is a block
diagram of an SBC, and Fig. 1-5 shows the implementation.) A typical SBC in
the 1970s consisted of the generation of the system clock, read and write mem-
ory (RAM), real-only memory (ROM), I/O ports and drivers, serial communi-
cations interface, and bus control logic and drivers. The SBC is really a self-
contained computer system which offers an inexpensive, yet expandable, way
to computerize a product with minimal engineering effort.

The key advance that VLSI technology provided was reduction of device
count that in turn reduced the amount of printed-circuit board (PCB) area
required to support system functions. An example is the serial communications
area: the 8251 programmable communications interface chip reduced the serial
communication interface logic from 30 in? (193.56 cm?) to less than 4 in® (25.8
cm?). Similiar VLSI advances in devices that implement other system functions
permitted the first SBC to be built. The trend in Multibus-compatible SBCs is
toward enhancement of existing features as well as the addition of new ones.
These trends can be seen in Heurikon Corporation’s MLZ-91A SBC, which

I

_l____JU L]

DRIVER-TERMINATOR INTERFACE RS232C-422 INTERFACE
PARALLEL TIMER AND SERIAL
MICROPROCESSOR INTERFACE BAUD RATE COMMUNICATION
CONTROLLER CONTROLLER CONTROLLER

3 [< [S <
ON-BOARD (LOCAL) BUS

| 3! I8! .

INTERRUPT MULTIBUS
CONTROLLER INTERFACE

Prttt
1 1 _I

[4 MULTIBUS SYSTEM BUS >

FIGURE 14 Block diagram of a single-board computer.

ROM RAM

410 THE MULTIBUS FAMILY OF BUS STRUCTURES

FIGURE 1-5 Single-board computer.

includes a 4-MHz Z80A* microprocessor, 64K bytes of RAM, DMA controller,
a double-density floppy disk drive controller, hard disk and tape interfaces, and
hardware mathematics support. Another example of the enhancement of fea-
tures on an SBC is Intel Corporation’s iSBC 86/30, which includes an 8-MHz
8086 microprocessor, 128K bytes of dual-ported RAM, four 28-pin sites, 24 par-
allel I/O lines, an RS-232 serial port, two iSBX connectors for inexpensive 1/0
expansion and high-speed mathematics support via an 8087 coprocessor.

The architecture of an SBC is designed to permit access of local resources
(memory and I/O on the SBC) by the local microprocessor without accessing
the system bus. Local resources are accessible only by the local microprocessor;
no other system bus device can access them. The microprocessor operates fastest
when using local resources because it does not have to arbitrate for the system
bus and the design can be optimized for a particular implementation. This is
particularly useful in multiple-processing applications, since all the SBCs can
perform true parallel processing when executing out their local resources. The
potential disadvantage is that system consistency is lost. Another master in the
system, such as a disk controller, cannot access the local resources.

MULTICOMPUTING AND MULTIPROCESSING

The VLSI explosion has continued to reduce the cost of a microprocessor to such
a low level that applying multiple microprocessors to meet system performance
requirements has become an attractive and viable option. Using multiple micro-

4Z80A is a trademark of Zilog Corporation, Cupertino, California.

INTRODUCTION 114

processors in a system design not only enhances system performance and
throughput but also improves system reliability and system real-time response.
Instead of doing one task at a time, a microprocessor-based system can increase
throughput because the work is divided among a number of microprocessors.
Another way of improving performance is by reducing the number of individ-
ual tasks any given microprocessor must handle. The time a new request for
service will wait is thereby reduced, and so is the real-time response of the
system.

A simple definition of multicomputing is the use of multiple microprocessors
that are capable of independent instruction execution and are able to commu-
nicate with each other over some local interconnection mechanism. The system
is statically partitioned in that each microprocessor does a predetermined task.
The processing units can be heterogeneous or homogeneous. A multicomputing
system may have some shared resources, but that is not a requirement. The key
is that the processing units’ tasks are independent and require little interunit
communication. A basic multicomputing configuration is shown in Fig. 1-6.

Using SBCs in a multicomputing system moves the bus activity from the
system bus to the SBCs’ local bus; this reduces the bandwidth needed on the
system bus. The local execution of a program on an SBC becomes very impor-
tant in multicomputing applications, since the different SBCs can execute their
programs without using the Multibus system bus as long as all their code is
located in local memory. Thus, providing true parallel processing with all
microprocessors operating independently is possible with SBCs. The reduced
system bus demand permits additional microprocessors (SBCs) to be added to
the system and thereby increases overall system throughput.

6800 1/0 8086 170 280 170
1 1 —1
MEMORY MEMORY MEMORY
MULTIBUS MULTIBUS MULTIBUS
INTERFACE INTERFACE INTERFACE

y
< MULTIBUS SYSTEM BUS >

FIGURE 1-6 A heterogeneous multicomputing configuration.

42 THE MULTIBUS FAMILY OF BUS STRUCTURES

Similar to multicomputing is multiprocessing, which is defined as the use of
multiple homogeneous microprocessors that are capable of independent instruc-
tion execution, are able to communicate with each other over some intercon-
nection mechanism, and have shared memory and I/0. All the microprocessors
in the system have exactly the same available resources. The coupling between
the processing units is much tighter. The System is dynamically partitioned in
that each microprocessor is assigned a task on a next-available-microprocessor
basis. This must be done in such a way that the process is invisible to the user
code being executed. A basic multiprocessor configuration is shown in Fig. 1-7.

In a common-bus architecture, adding more microprocessors to the system,
as in multiprocessing systems, eventually causes the system bus to become sat-
urated. When microprocessors are added to an already saturated system bus,
each microprocessor must wait longer to gain access to the system bus, so the
performance of each of the modules decreases. The net effect is lower total
system throughput. A well-planned multiple microprocessor system bus struc-
ture will allow new microprocessors to be added to the system in a modular
fashion. When new system functions, such as more peripherals, are added to
the system, more processing power can be applied to handle them without
affecting existing processor performance. This is a result of having extra system
bus bandwidth as in the case of a multiprocessor system (needed to support
another microprocessor executing on the system bus), or, in a multicomputing
system, having enough bandwidth to support the communication and data
transfer needs of the additional microprocessor. In addition, the bus structure
must provide a communication path for microprocessors to signal each other.

Multiprocessing and multicomputing are supported on the Multibus system
bus. Two to sixteen microprocessors (bus masters) are supported on the same
system bus. Each of these microprocessors can be homogeneous or heteroge-
neous: one an 8-bit, another a 16-bit, one running at 1 MHz, and another at 16
MHz. Another aspect of heterogeneity is that the resources available to each
microprocessor are different. The Multibus system bus also provides an arbitra-
tion and bus control exchange method that guarantees that a bus master can
access the system without another master obtaining it, and it provides several
reliable communication methods between bus masters through common
resources such as memory and I/0.

Advances in semiconductor technology have driven the cost of microproces-
sors down to the point at which peripherals are the most expensive resources in
the system. To design for maximum efficiency and economy, the designer must
keep the expensive peripherals highly utilized. It is possible to do so only if
multiple microprocessors are using the peripherals. The point can best be seen
with an example. A system with an 8-in hard disk, a floppy disk, 512K bytes of
RAM, and a single-user operating system running on one central processing unit
(CPU) costs from $5000 to $10,000. The peripherals (the hard and floppy disks)
and the packaging (the box, power supply, and cables) represent over 80 per-
cent of the system cost. Adding a second microprocessor and a multiuser oper-

€

MICROPROCESSOR

LOCAL
170

MICROPROCESSO

LOCAL
R 170

MICROPROCESSOR

LOCAL
170

L

BUS l'_"

BUS
CONTROL CONTROL CONTROL Séﬁﬂﬁh
LoGIC LOGIC LOGIC
LOCAL LOCAL LOCAL
BUFFERS MEMORY BUFFERS MEMORY BUFFERS MEMORY
} L) L)
<: MULTIBUS SYSTEM BUS
;
3
DMA

FIGURE 1-7 A multiprocessor configuration.

44 THE MULTIBUS FAMILY OF BUS STRUCTURES

ating system to the system could roughly result in doubling throughput with
only a 5-percent cost increase.

1.2.2 A Conceptually Simple Structure

A system bus structure must be easy to learn and use, and at the same time it
must be flexible in order to support a wide range of applications. Documenta-
tion is a very important aspect of “easy to use”; it must be well structured to
help the user understand the bus system. It must be broken down to give the
user a step-by-step building-block approach to learning the system bus struc-
ture. Application examples of how to use the bus also are very helpful. They
can give the user practical experience with the bus structure without having to
actually build a prototype. An experienced board designer should be able to
understand a new structure in a few hours and design a simple board within a
few days after reading the bus specifications.

The Multibus system bus is an asynchronous parallel bus which can be
divided into five signal categories: a 24-line address bus, a 16-line bidirectional
data bus, eight multilevel interrupt lines, control and timing lines, and power
distribution lines. The system bus operates on a master-slave principle. Figure
1-8 shows a typical bus master and some typical bus slaves. The bus master
controls the system bus and starts all operations. Bus slaves respond to com-
mands put on the system bus by the bus master. The bus master is interlocked
to the bus slave module in that the bus master first issues a command and then
must wait for an acknowledgment from the receiving bus slave module before
continuing. This interlocking mechanism permits bus slave modules of different
speeds to be on the same system bus, since each individual bus slave controls
the amount of time it waits before responding with the acknowledgment.

The iSBX concept allows the designer to inexpensively customize standard
cost-effective Multibus-compatible boards (or any other board) with particular
I/0O features. This is done with small (2.85 X 8.7 in; 7.24 X 9.4 cm) I/O mod-
ules called iSBX Multimodule boards. They are specialized I/O boards which
plug piggyback style onto a variety of baseboards (Fig. 1-9) and thereby provide
very low cost local I/O functional expansion. The concept is optimized around
VLSI technology and small increments of 1/O expansion. The iSBX boards are
connected to the baseboard’s local bus via the iSBX bus interface, and they con-
vert the iSBX bus signals to a defined I/O function. The iSBX Multimodule
boards enable the user to configure exactly the capabilities required for the sys-
tem, which keeps both system size and cost at minimum levels. Since the 1/0
expansion is local, no system bus bandwidth is required.

By providing a standard high-speed, tightly coupled connection between the
microprocessor and its memory on another board, the iLBX bus permits the
expansion of an SBC’s local memory in a modular manner (without using the
Multibus system bus) beyond what can fit on an SBC. The iLBX bus is opti-

BUS MASTER SBC

MICROPROCESSOR 170

BUS LOGIC MEMORY

BUS SLAVE ROM BOARD

BUS SLAVE RAM BOARD

CONTROL
AND
MULTIBUS
LOGIC

ROM
ARRAY

CONTROL
AND RAM

MULTIBUS ARRAY
LOGIC

BUS SLAVE 1/0 BOARD

PARALLEL
I/0

SERIAL
170

CONTROL AND MULTIBUS LOGIC

g

U

[1

-

]
ADDRESS AND DATA : |

|
|

COMMANDS

P

A

ACKNOWLEDGE

FIGURE 18 Multibus master and slave diagram.

416 THE MULTIBUS FAMILY OF BUS STRUCTURES

iSBX MULTIMODULE BOARD

[

FIGURE 1-9 The iSBX Multimodule board concept.

mized for high-speed memory access. It supports two types of data transfer: a
noninterlocked mode for maximum performance and an interlocked mode to
support slower memory modules. The bus structure is built upon the master-
slave principle, whereby the bus master (the SBC) places address and com-
mands on the bus and the slave board (the memory module) decodes and acts
on the command. This private bus between the microprocessor and the memory
frees the Multibus system bus for DMA or other bus master traffic. Figure 1-10
is a block diagram of an SBC and a memory board connected via the iLBX bus.

The Multichannel bus provides a standard high-speed (8M bytes per second)
block-oriented gateway into and out of a Multibus-based system. By utilizing a
standard interface, the bus allows multiple heterogeneous devices such as dif-
ferent high-speed 1/0 and memory modules to be connected together. Figure
1-11 is a simplified block diagram of a Multichannel system. The bus structure
is an asynchronous parallel bus built upon the master-slave principle with inter-
locked 8- and 16-bit data transfers. The Multichannel bus has the ability to link
together up to 16 devices that are distributed over a distance of up to 50 ft (15
m) via a twisted pair flat ribbon cable. It has addressing capability of up to 16M
bytes of memory and 16M bytes of I/O space on each bus device. Figure 1-12
shows Intel’s iSBC 589, a high-speed intelligent DMA controller, which connects
the Multibus system bus to the Multichannel bus. The 60-pin connector on the
top of the board is the Multichannel bus connector.

Another important feature of both the Multibus structure and the Multi-

INTRODUCTION 17

channel bus is the ability to put multiple master modules on the same bus for
multiprocessing configurations. A method is defined to transfer control of the
bus between master modules, and it guarantees that only one bus master con-
trols the bus at a given time. Both buses also support priority interrupts. This
capability permits bus modules to request interruption of normal activity and
have a special event serviced by the master microprocessor.

SBC MEMORY

DUAL-PORT
MEMORY

MICROPROCESSOR

BUS
EXCHANGE

MEMORY

DUAL-PORT CONTROL LOGIC

—

BUFFERS BUFFERS BUFFERS BUFFERS

iLBX BUS

< MULTIBUS SYSTEM BUS >

FIGURE 1-10 The iLBX memory expansion bus concept.

{3
32
¢

o 11 | THE

CONTROL (s . MULTICHANNEL
“ o 1111 Ml [

ADDRESS/ DATA {16)

INTERRUPTS(Z) PARITY, RESET

g UL

DEVICE DEVICE DEVICE DEVICE
1 2 15 16

FIGURE 1-11 The Multichannel bus block diagram.

418 THE MULTIBUS FAMILY OF BUS STRUCTURES

FIGURE 1-12 Multibus board with a multichannel interface.

1.2.3 A Structure That Can Incorporate New VLS| Quickly

Advances in VLSI technology have resulted in performance and complexity
doubling every 2 to 3 years (Fig. 1-13). As an example, Intel Corporation’s 8008
microprocessor, introduced in 1972, had a 30-us average instruction execution
time and was able to address a maximum of 16K bytes of memory. In 1982,
Intel introduced the iAPX 80286 microprocessor, which has an average instruc-
tion time of less than 1 us and is capable of addressing a maximum of 16M
bytes of memory. This technology explosion presents the system designer with
the opportunity to design systems that have lower cost, higher performance,
increased density, and greater reliability. But it also means quick obsolescence
for systems that are not designed to permit the incorporation of future gener-
ations of VLSI components. The system designer has the challenge of creating
competitive systems that can easily assimilate successive generations of VLSI
technology.

Historically, new VLSI components required new system designs, especially
for new microprocessors. Designers would implement new system boxes each
time a new microprocessor was introduced, which meant completely new mem-
ory, I/0, and microprocessor board designs. The new designs were dedicated
to supporting only a few functions with very basic and limited I/O. There was
very little flexibility in the design to handle future VLSI technology or new
peripherals without a major redesign. It became clear that a universal system
box was needed; it would permit the use of previously designed memory and
peripheral modules. From this exercise came the Multibus system bus, the first

INTRODUCTION 19

standard microprocessor system bus, and its family members: the iSBX bus, the
Multichannel bus, and the iLBX bus.

In this age of rapid technological change, the use of standard system struc-
tures helps designers to quickly incorporate new VLSI technology into both new
and old designs. They do so by tying the new VLSI devices to solid universal
interfaces which are the gateway to all system resources such as memory and
peripherals. The system must be developed in a functionally partitioned man-
ner. Each of the functional units may be designed with the best technology
available for that particular task and to interface to the system bus standard.
When future generations of VLSI devices permit it, a superior replacement
functional unit can be designed provided it meets the interface standard. Since
the interface remains unchanged, the new unit can replace the old one and
minimize the impact it has on the other functional units in the system.

106

l]llll

@286 (64-PIN)
105

68000 (64-PIN) ®

8086 (40-PIN)®

® Z8000 (40- AND 48- PIN)

104

NUMBER OF TRANSISTORS

3] ! 1 ! 1 1 1 L]] I] J
1971 1973 1975 1977 1979 1981 1983 1985

YEAR OF INTRODUCTION
FIGURE 1-13 Chart of VLSI density versus time.

10

20 THE MULTIBUS FAMILY OF BUS STRUCTURES

Success in adapting future VLSI devices to microprocessor-based systems is
measured by the effectiveness of the system’s organization in alleviating the
highly irregular structures of past and present microprocessors. The key lies in
so defining the system bus structure that it is decoupled from any particular
VLSI device. It must be architecture-independent; that is, it must be flexible
enough to support many different families of VLSI devices. It should not have
special signals that only one device supports. However, the interface must be
similar to typical VLSI component interfaces to minimize the extra transistor-
transistor logic (TTL) required to convert the component interface to the uni-
versal interface. The board designer can design the VLSI device to the universal
bus interface provided the new device has the ability to communicate quickly
and easily with the rest of the system.

As an example, let us examine a three-board system: a CPU board based on
a 5-MHz 780,° a memory board, and a disk controller board. Assume that in
the next design, a new CPU board is needed to get higher performance. The
system designer needs to have the freedom to build an 8-MHz 80286-based
CPU board. A properly defined bus structure would permit this new micropro-
cessor board, which operates 10 times faster, to replace the old microprocessor
board without affecting the rest of the system. The memory and disk controller
boards would not have to be modified or replaced.

Another goal of a bus structure must be longevity. One way to achieve lon-
gevity is to support many different types of microprocessors and other VLSI
devices over a 10- to 15-year lifespan. This requires that the bus structure sup-
port generic microprocessor attributes such as memory address space, 1/0O
address space, some form of mutual exclusion, interrupts, different widths of
address and data lines, and multiple-bus master-control capability. The bus
must also be independent of microprocessor, memory, and 1/0 device speed.

The Multibus system bus provides a very basic set of generic functions which
support a wide range of microprocessor families. Two data path widths permit
the use of both 8- and 16-bit microprocessors. That includes a very wide range
of 8-bit microprocessors such as 8080, Z80, 6800, and 8088. In the 16-bit world,
there are Multibus-based SBCs with 8-MHz 802865, 8-MHz 68000s, and 8-MHz
Z8000s. Addressing is flexible; it permits the choice of 64K bytes, 1M byte, or
16M bytes of memory address space. Separate I/O address space, which can be
either a 256K- or a 65K-byte location, is also supported.

In applications in which the microprocessor requires more bandwidth from
the system bus than it can deliver, the iLBX bus provides an alternative. Micro-
processor memory bandwidth needs have increased at a greater rate than mem-
ory subsystems have. The system bus which connects the two modules together
can easily become the bottleneck. One solution is to use two buses in the system:

5780 is a trademark of Zilog Corporation, Cupertino, California.

INTRODUCTION 24

one bus for execution (which must be very tightly coupled to the microproces-
sor-memory subsystem pair) and a second bus for system communication and
data movement. The iLBX bus provides this tightly coupled connection. The
iL.BX bus expands the local memory of the SBC, saving system bus bandwidth
and supporting multicomputing architectures that require multiple SBCs with
more memory than can fit on a single board.

1.2.4 A Reliable, Cost-Effective Structure

The most important aspects of a bus structure’s basic cost are the form factor
and interface costs. The cost of a module is generally proportional to module
area. For a given area of PCB there is a minimum established cost; it is the cost
of a two-layer PCB plus the system bus interface and some minimal circuitry.
The complexity of implementing the system bus interface is proportional to the
board area occupied. Smaller form factors cannot support extensive system bus
features because of the additional circuitry required. The bus interface logic
should occupy only 10 to 20 percent of the PCB area. Thus, in applications with
minimal computer requirements a bus standard with a small board area should
be chosen. Ideally, the form factor would support just enough components to
accomplish the task at hand and future upgrades. The boards should be small
enough for easy and inexpensive replacement in the field. That also makes
repairs simple and fast.

If the form factor is too small, designers may run into problems in imple-
menting reasonable functions in the system on a single board. Often the
designer must resort to numerous board-to-board interconnections. Small board
size may result in a greater than 20 percent board area to implement the bus
interface. That leaves less space to implement the required function. A larger
board has more area for interface logic, which in turn makes room for more
complex functions to be supported. For applications which require a lot of com-
puter power it is necessary to choose a bus standard with a larger form factor.
The upper limit of the board size is typically limited by power-to-ground and
signal-noise considerations. A standard Multibus board can safely handle 30 to
40 W of 5-V power. The limiting factor is the voltage drop across the P1 con-
nection, which becomes too large. It subtracts from the voltage margin of the
components on the board, which reduces the reliability of the board. Other
factors that limit board size are (1) the envelope of the enclosure in which the
board is used and (2) the warpage of the board, which can become severe.

The Multibus system bus provides solutions to a wide range of microproces-
sor-based systems. The form factor is small enough to be cost-effective in low-
density designs and large enough to support a wide range of functions on a
single board. At the low end, the VLSI support has reduced the bus interface
logic to 10 percent of the board area. The Multibus system bus is also modular,
which permits low-end designs to implement only part of the total bus capa-

22 THE MULTIBUS FAMILY OF BUS STRUCTURES

bility and yet still operate with other Multibus boards. This leaves most of the
board area available to accomplish the function of the design on a low-density
two-layer circuit board. At the high end, a single Multibus board can accom-
modate a basic computer system consisting of a 16-bit microprocessor, nine
interrupts, 24 parallel I/O lines, an RS-232 serial channel, 128K bytes of ROM
capacity, and 512K bytes of RAM.

There are three options for I/O expansion: a Multibus module, an iSBX Mul-
timodule board, and a Multichannel module, each with a different cost, perfor-
mance, and capability range (Fig. 1-14). The iSBX Multimodule board provides
the lowest-cost expansion for small increments of local I/O capacity. The iSBX
Multimodule board is small (10.5 in% 26.7 cm?), which keeps costs low. The
interface was so designed that very little or no interface logic is required on the
iSBX Multimodule board, so almost all the PCB area (typically >90 percent)
can be used to implement the desired I/O function. An example of an iSBX
Multimodule board is a serial communication module which has one or two
complete serial channels. A Multibus module provides more flexibility and
capacity, as well as global accessibility, but at a higher cost because of the

3000}

MULTICHANNEL
BOARDS

w

b

< 1000}

] MULTIBUS

8 BOARDS

z

=

w

[«]

o

100 | -
iSBX BOARDS

RANGE OF CAPABILITY AND PERFORMANCE
FIGURE 1-14 Multibus family 1/0 expansion flexibility.

INTRODUCTION 23

greater PCB area (81 in% 522.6 cm®) and the greater bus interface cost of imple-
menting more complex functions. An example of a Multibus I/O board is a
communication module with eight complete serial channels and a micropro-
cessor with memory. The maximum data rates into and out of the board are
limited by the Multibus lines (about 1M bytes per second). If more bandwidth
is required, the Multichannel bus can be used; it provides up to 8M bytes per
second transfer rates.

1.2.5 A Well-Defined, Documented, and Controlled Standard

The bus structure must be very well defined so multiple-board designers can
design boards that will operate together on the system bus. Each signal must be
documented and explained so clearly that there is no room for user misinter-
pretation. This includes signal definition, timing and loading requirements, and
application examples. The signals in the system must cross a multiplicity of
physical interfaces between the microprocessor and memory or I/0, including
the system bus. Careful consideration must be given to these interfaces—solder
connections, wire-wrap connections, and plug-in card connections—if they are
to meet long-term-reliability goals. In addition, there must be limits on the
physical dimensions of the system bus modules to permit construction of eco-
nomical packaging systems to house the modules. All of this must be properly
documented in a publicly available specification.

The specification must be properly controlled by an accepted authority in
the industry. This controlling body has the responsibility to maintain and make
updates and extensions to the bus specification. The changes and extensions
must be so implemented that they support all old designs that met the earlier
specification. The adoption of standards results in connectability, portability,
and interchangeability of the different products designed to meet that standard.
This protects the investment in many of the board designs when the boards are
used in newer and more powerful systems. A custom I/O board can be used in
two or three generations of systems, which saves time and development expense.
This is a very important aspect of the evolution of a system bus to a solid and
reliable foundation for system designs for years to come.

Developed standardized industrial buses used to build a microprocessor-
based system provide a proven, reliable foundation. They are implemented by
experienced designers who take into account very important electrical attri-
butes, such as bus length, ground-plane effects, line reflections, ringing, noise
coupling, signal skew, and connector reliability, that could easily be overlooked
in a new bus design. Also, standardized industrial buses have been thoroughly
tested and have demonstrated long-term reliability in field applications.

The Multibus/IEEE-796 bus set the standard for what a well-defined bus
structure should be. It was first defined by Intel in the Multibus specification
and later refined by the Institute of Electrical and Electronics Engineers (IEEE)

24 THE MULTIBUS FAMILY OF BUS STRUCTURES

Standards Committee in the form of the IEEE-796 bus standard. The iSBX bus
is following a similar path. The initial definition, by Intel, was later updated by
the IEEE Standards Committee in the form of the IEEE-P959 standard. Both
specifications were written to define all operations completely; no user interpre-
tation is required. In 1984, just 9 years after the introduction of the Multibus
system bus, more than 120 different vendors were making more than 2000 com-
patible products. After only 3 years following the introduction of the iSBX bus,
six vendors were making 35 different iSBX-compatible products. This is an indi-
cation of the popularity and quality of the specifications. The IEEE standardi-
zation efforts on both the IEEE-796 and IEEE-P959 will help assure the user
community that the compatibility and high commercial quality of these buses
will be maintained. The result is bus-compatible products from different man-
ufacturers that will operate together reliably. The Multichannel and iLBX buses
also have controlling specifications available to the general public. They were
written with the same basic goals of the Multibus and iSBX specifications and
will most likely follow the same standardization path.

The Multibus system bus and its other family members are very popular,
and buyer’s guides for them are available. The Multibus Buyers Guide is pub-
lished semiannually by Ironoak Company (La Jolla, California). The Buyers
Guide lists all the Multibus-family-compatible board-level products currently
available. This publication provides the system designer, original equipment
manufacturer (OEM) integrators, and manufacturers with a survey of the entire
market.

The Multibus family of structures has been the basis of many designs in
many different applications and environments from controlling bank teller
machines to controlling steel mills. During the first 5 years of Multibus avail-
ability, more than 100,000 systems were shipped. This training ground has
resulted in a proven and reliable bus structure.

4.3 BRIEF HISTORY OF THE IEEE-796/MULTIBUS AND ITS EXTENSIONS

The Multibus system bus was originally developed at Intel Corporation in 1975
by the company’s microprocessor systems group. The first product in which the
new standard system bus was used was the group’s Microcomputer Develop-
ment System, the Intellec 800,° which provided design engineers with the soft-
ware and hardware tools needed to implement microprocessor-based designs.
The system architecture was a simple split-bus approach (Fig. 1-15). In addition
to using the development system to implement their projects, some customers
built custom boards and incorporated all of the boards into their own boxes.
Intel Corporation then distributed the Multibus system bus specification to give

®Intellec is a trademark of Intel Corporation, Santa Clara, California.

INTRODUCTION 25

MICROPROCESSOR MEMORY 170
BUS
CONTROL [—»{ BUFFERS CONTROL AND BUS LOGIC CONTROL AND BUS LOGIC
LOGIC

) 4 [

A
< MULTIBUS SYSTEM BUS >

CONTROL AND BUS LOGIC

PERIPHERAL

DMA CONTROLLER

FIGURE 1-15 Split-bus architecture.

other vendors the basis for building Multibus-compatible products. The original
Multibus structure supported only 8-bit transfers and 16 address lines.

Intel perceived the need for board-level solutions. In 1976 it provided the
first commercially available SBC, the iSBC 80/10, that integrated on a single
PCB a microprocessor, memory, and I/O. This new iSBC product line was
based on the Multibus system bus, and it was the first Multibus-compatible
board with a complete microprocessor system on a single board. The product
line was very successful, and hundreds of competitive and complementary
products followed from Intel Corporation and other vendors. All these products
were compatible with the commercial-quality Multibus because of the effective
documentation of the Multibus specification, which was made available by Intel
Corporation and later by the IEEE Standards Committee with the IEEE-796
bus specification. ,

In 1977 the first silicon support for the bus was developed. Intel’s 8218 and
8219 bipolar Multibus system bus controller for MCS-80 and MCS-85 families
reduced the PCB area required to support the bus exchange logic and command
generation from 5 in? (32.26 cm?) to 1 in® (6.45 cm?), which reduced the dollar
cost of the Multibus interface. These chips contain all the control logic required
by a bus master to interface with other masters on the Multibus system bus and
share memory and [/O. They permit any designer to implement the bus

26 THE MULTIBUS FAMILY OF BUS STRUCTURES

exchange logic and command generation with a proven, reliable method and
thereby reduce the possibility of design errors. The bus structure was extended
in 1978 to dynamically support both 8- and 16-bit devices. The Multibus system
bus became the first microprocessor bus to-permit both 8- and 16-bit devices to
communicate with each other over the system bus. These evolutionary exten-
sions made it possible for the Multibus system bus to support a new generation
of 16-bit microprocessors and increased the useful lifespan of the bus as an
industry standard.

In 1978 the Task 796 Working Group of the IEEE Computer Society’s
Microprocessor Standards Committee was set up to standardize the Multibus
system bus. The 796 bus specification has its roots in Intel’s Multibus system bus.
Intel’s specification was reviewed and refined by representatives from many
different companies throughout the industry. During the standardization task
some minor bus modifications were incorporated and improvements in docu-
mentation were made. One of the modifications was to extend the address bus
to support 16M bytes by providing 24 address lines. The IEEE Standards Com-
mittee serves as a single point of control, which ensures that the specification of
the bus will not change. A solid specification which does not change assures that
products built by different vendors will be compatible. And, finally, the IEEE
Standards Committee puts the specification into the public domain. The stan-
dardization work was completed in December 1982.

The iSBX bus was originally developed at Intel in 1979 by the OEM Micro-
computer Systems Operation (OMO) group in Hillsboro, Oregon, to extend the
SBC architecture with low-cost local 1/O expansion. The concept was accepted
immediately, and multiple vendors started producing iSBX Multimodule-com-
patible boards. In 1982 the IEEE Computer Society’s Microprocessor Standards
Committee was formed to standardize the iSBX bus. The Multichannel and
iLBX buses were developed by Intel Corporation in 1982 by the OMO group.

/

The Mulfibus
System Bus

This chapter provides the basis for a conceptual understanding of the Multibus
system bus. Included in it are the logical description of the functions of the bus
and a detailed look at the electrical and mechanical specifications. The infor-
mation in it was based on the Intel Multibus Specification (9800683-03) dated
April 1981 and the Microcomputer System Bus Standard (796 bus) dated Octo-
ber 1980. It is recommended that anyone designing on the Multibus system bus
obtain the latest versions of those specifications from Intel Corporation.

2.1 NOTATION

In this section, as well as throughout the book, a consistent notation for signals
has been followed, and the memory read command (MRDC) will be used to
explain it. The terms “true-false” and “one-zero” can be ambiguous and will be
avoided. We will use the terms “electrical high (H)” and “low (L).” A slash or
an asterisk following the signal name, as in MRDC#, indicates that the signal is
active-low. For example,

MRDC* = MRDC/ = MRDC— = MRDC = asserted at 0 V

Table 2-1 further explains the notation used in this book.

During the Multibus system bus standardization work by the IEEE Standards
Committee, which produced the IEEE-796 bus specification, two basic notation
standards were used. They differed from those of the original bus specification
by Intel in two ways: (1) the change from the slash (/) to denote an active-low
signal to an asterisk (*) and (2) the use of decimal instead of hexadecimal nota-
tion. For example, in the original Multibus specification DAT0/ to DATF/ rep-
resented the 16 data lines; in the new IEEE-796 specification DATO#* to

28 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 2.1 Notatlon Summary

Signal Definition
name Label Electrical Logical State
IORC H High = 420V 1 True Active, asserted
L Low = +08V 0 False Inactive
IORC+* L Low =< 408V 1 True Active, asserted
. H High = +20V 0 False Inactive

DATI15+ is used to represent them. In the original IEEE-796 specification hexa-
decimal notation was used, and it is to be converted to decimal notation over a
5-year period. By 1987 decimal notation must be used in all IEEE-796-com-
patible documentation. This chapter uses the notation of the IEEE-796 speci-
fication, which is hexadecimal, and an asterisk (*) to indicate an active-low sig-
nal. The other specifications in this book use decimal and asterisk notation.
Readers will encounter the variant forms of notation on some figures and tables,
and should be aware of their meaning and validity.

Also, these numeric conventions will be followed: to indicate decimal nota-
tion, (1) the letter D will follow the number (e.g., 120D) or (2) a number without
any following letter will be assumed to be decimal. Binary numbers will be
followed by the letter B (e.g., 10001110B), and hexadecimal numbers will be
followed by the letter H (e.g., 10BDH).

2.2 LOGICAL DESCRIPTION OF THE MULTIBUS SYSTEM BUS

The Multibus system bus is a commercial-quality bus used in microprocessor-
based systems. The bus supports both 8- and 16-bit data paths in the same sys-
temn, and it can be configured to support up to 16M bytes of memory address
space and 64K bytes of 1/O address space. Multiple masters are supported with
up to 16 bus masters. The basic command protocol of the bus is asynchronous
(the bus masters and bus slaves can operate with independent clocks) and inter-
locked, and all bus cycles require a positive acknowledgment from the bus slave
before the bus master can continue. The maximum bus transfer rate is 5 mega-
words per second.

A Multibus-compatible board measures 6.75 X 12.00 in (17.5 X 30.48 c¢m).
The Multibus interface consists of two edge card connectors, P1 and P2. The
P1 connector has 86 pins and handles the regulated +35-, +12-, and —12-V
power, the 8- and 16-bit data bus, 20 bits of addressing (1M byte), the bus con-
trol lines, and the bus arbitration lines. The P2 connector has 60 pins and is used
for the upper four address lines (16M bytes) and the iLBX bus. The iLBX bus
is a high-speed memory execution bus used to expand the local memory capac-
ity of an SBC without using the Multibus system bus. The iLBX bus is discussed
in more detail in Chap. 5.

THE MULTIBUS SYSTEM BUS 29

2.2.1 Bus Devices
There are three basic types of elements that interface with the Multibus system
bus: bus masters, bus slaves, and bus hybrid modules.

BUS MASTERS

A bus master is any module that can control the bus and initiate data transfers.
The Multibus system bus supports up to 16 bus masters on the same system bus.
Control of the bus is passed from one bus master to another through its bus
exchange logic. Any one of these 16 bus masters can make a data transfer by
(1) requesting control of the bus through its bus exchange logic, (2) aquiring the
bus once it is granted access, and (3) driving the command and address lines to
perform data transfers. Figure 2-1 is a block diagram of a basic bus master,
which consists of a microprocessor, bus exchange logic, and data-address buff-
ers. A more complex master, a typical SBC bus master, is shown in Fig. 2-2.
The SBC also includes its own memory and I/O logic. Typical bus masters are
CPU modules, SBC modules, disk controller modules, and DMA controllers. All
bus masters either process or move data in the system.

BUS SLAVES

A bus slave is any module that can respond to bus commands generated by a
bus master. It can control only three parts of the bus: (1) the interrupt lines
when generating interrupts, (2) the data lines when performing a read com-
mand, and (3) the acknowledge line. Bus slaves simply decode the address and
command information on the system bus and perform the requested operation
and acknowledge the master once the operation is completed. Memory and
I/O expansion modules are examples of typical bus slaves; they are low-cost
vehicles that extend the system capabilities by providing data storage or 1/0
capability to the system. Some bus slaves are shown in Fig. 2-3.

MICROPROCESSOR

BUS)
EXCHANGE

;0 BUFFERS

FIGURE 2-1 Basic Multibus
master.

INITIALIZE
INTERRUPTS
DATA
ADDRESS
ACKNOWLEDGE
COMMANDS

< MULTIBUS SYSTEM BUS)

&7 THE MULTIBUS FAMILY OF BUS STRUCTURES

170
MICROPROCESSOR
— MEMORY
BUS
EXCHANGE

A
I_——b BUFFERS

q MULTIBUS SYSTEM BUS >

FIGURYE 22 Block diagram of a typical SBC bus master.

HYBRID MODULES

A hybrid module has all the attributes of a bus master and most of the attributes
of a bus slave on one module. Like a bus master, it can control the bus, and it
has resources that can be used by other bus masters. The latter make it look like
«t bus slave to the other bus masters. Figure 2-4 shows two hybrid modules. The
first one is an SBC with dual-port memory, which is memory which can be
accessed by the microprocessor on that module, as if it were a private resource,
and by another bus master via the Multibus system bus. The dual-port memory
is both a local resource, which can be accessed by the local microprocessor with-
out using the system bus, and a global resource, which is accessible to all bus
masters, The second hybrid is a simple combination of a memory module and
2 bus master on one board. Each of the functions, however, is logically
independent,

Hybrid modules are an outgrowth of the VLSI explosion; today an entire
svstern can be built on one Multibus board. Some examples of hybrid modules
are intelligent communication boards such as Interphase Corporation’s
§.MC5180 Local Area Network Controller and SBCs such as Intel’s iSBC! 86/
30 hoard and National Semiconductor’s BLC? 80/30 board. These boards are
considered hybrid modules because they have (1) the ability to control the bus
through their bus exchange logic and (2) the RAM that can be accessed from
the system bus through their dual-port control logic.

'iSBC is a trademark of Intel Corporation, Santa Clara, California.

BL.C is a trademark of National Semiconductor Corporation, Santa Clara, California.

e

BUS SLAVE BUS SLAVE BUS SLAVE USER 1/0
BUS MASTER ROM BOARD RAM BOARD 1/0 BOARD \ p
ACKNOWLEDGE
COMMANDS
READ- RANDOM
BUS BUS BUS 1/0
MICROPROCESSOR ONLY ACCESS
LOGIC M. LOGIC MeroRY LOGIC DEVICES
[y
ADDRESS | | baTA ADDRESS DATA ADDRESS DATA ADDRESS DATA
T < d < L <
- DATA T T
> A
<ﬁ T ADDRESS T ro
_ L COMMANDS l L N
ACKNOWLEDGE

FIGURE 2-3 Bus slaves.

MULTIBUS
SYSTEM
BUS

(4

BUS MASTER WITH DUAL-PORT MEMORY

MEMORY

MICROPROCESSOR DUAL-
PORT
CONTROLLER
BUS
EXCHANGE
L | surrers

3

BUS MASTER WITH MULTIBUS MEMORY

MICROPROCESSOR

MEMORY
BUS
EXCHANGE
l——-——. BUFFERS BUFFERS

t

t

MULTIBUS SYSTEM

BUS

C

FIGURE 24 Hybrid Multibus modules.

THE MULTIBUS SYSTEMBUS 33

2.3 BUS SIGNAL DEFINITIONS AND OPERATION OVERVIEW

In this section the signals that make up the bus are described, and basic Multibus
operations are discussed. The Multibus system is composed of 90 signal lines
that can be broken into several classes: address (25 bus lines), inhibit (2), data
(16), control (9), interrupts (9), bus exchange (5), and power (24). The different
classes are explained in the following sections.

2.3.1 Address, Inhibit, and Data Lines

The address, inhibit, and data lines can be broken down into four groups:

Class Signal Function
Address ADRO*-ADR17* Address lines (0-9, A-F, 10—
17) in hexadecimal notation
Byte control BHEN= Byte high enable
Inhibit INH1+-INH2* Inhibit 1 and 2
Data DATO*-DATF#* Data lines 0 to F in

hexadecimal notation

ADDRESS

The 24 address lines ADRO* to ADR17* carry the binary address of the mem-
ory location or I/0 device that the bus master is referencing. ADRO* is the least
significant bit of the address. The bus master indicates to the bus slaves which
type of address (memory or 1/0) is on the address lines by using the appropriate
command line. The IORC* and IOWC#* commands are used for I/O port
accesses, and the MRDC#* and MWTC#* commands are used for memory
accesses. The Multibus system bus supports many address ranges—three for
memory modules and two for I/O modules. The three memory address ranges
are those that address 16M bytes, those that address 1M byte, and those that
address 64K bytes. The I/O address ranges are those that address 256 devices’
addresses and those that address 64 kilodevices’ addresses (see Fig. 2-5). These
various ranges are discussed in Sec. 2.6. Different ranges are needed to support
various microprocessors. The 8080 microprocessor can address only 64K bytes
of memory and 256 I/O devices, whereas Intel’s iAPX 80286 microprocessor
can address 16M bytes of memory and 64K bytes of I/O devices.

All signals on the Multibus system bus are negative true; that is, the active
state is low, and they are terminated with a pull-up resistor. These termination
resistors cause all signals which are not driven to be in the inactive (high) state.
If a bus slave looks at the address bus and no bus master is driving it, the bus
slave reads an address of 000000H. This permits a memory board (a bus slave)
to decode all 24 address bits and still respond to a microprocessor that can gen-
erate only 16 address bits. In this case all the nondriven address lines will be in
the inactive state. (ADRX#* = high, so the upper eight address lines ADR10*

34 THE MULTIBUS FAMILY OF BUS STRUCTURES

1/0 BUS SLAVE

8-BIT 170
DECODE | PORT
_ 12-BIT PORT 170
16-BIT ADDRESS > pEcobe | ® | SELECT PORT
ADRO*- ADRF* oPTION
16-81T | 170
DECODE PORT

BUS
MASTER

MEMORY BUS SLAVE

16-BIT
DECODE
ADRO*-ADR13*
20-BIT MEMORY
24-BIT ADDRESS R CODE o—1 LOCATION |— MEMORY
SELECT
24-BIT
DECODE

FIGURE 2-5 Multibus address line usage.

to ADR17* will be decoded as TTL low.) Thus if an 8080 microprocessor were
to generate a memory read command of location 1000H (hexadecimal), the
address on the system bus as seen by the memory board would be 001000H.
The microprocessor module would drive ADRO* to ADRF*, and the termina-
tion resistor would drive ADR10* to ADR17+,

BYTE HIGH ENABLE

Byte high enable (BHEN*) is used to select the upper byte (DAT8* to DATF*)
of a 16-bit word. BHEN* is used only in 16-bit systems. It is an extension of the
address bus that supports 8-bit-byte operations on 16-bit words.

The Multibus structure supports both byte and word addressing (see Fig. 2-
6). A byte location is the smallest addressable unit of storage. There are two
types of byte address locations: an even-byte address (ADRO#* = high) and an
odd-byte address (ADRO#* = low). Two consecutive byte locations form a word.
The Multibus structure can transfer a word only if the first byte location of the
word is an even address (ADRO* = high). If the first byte location of the word
is an odd address (ADRO* = low), the bus master must perform two byte
accesses and assemble the word.

A bus master accesses a byte on the system bus by placing the binary address
(even or odd) on the address lines and driving BHEN* = high (inactive). Access

THE MULTIBUS SYSTEM BUS 35

to a word location is gained by placing the binary address on the address lines
with ADRO* = high (an even address) and BHEN* = low (active). Again,
word access on odd-address boundaries must be divided into two byte bus
accesses, and the bus master must reassemble the word. This is summarized
below:

BHEN=* = low . BHEN#* = high

ADRO#* = low Reserved Odd-byte access
ADRO# = high Word access Even-byte access
INHIBIT

Inhibit INH1* and INH2* is used by a bus slave to hold off another bus slave’s
bus activity. This permits a bus slave (the inhibiting slave) to turn off another
bus slave (the inhibited slave). The inhibit lines can be used during a memory
read or memory write operation. The inhibit signal is generated by the inhib-
iting bus slave based on the bus address lines. If the address is in its address
range, an inhibit signal is activated. Then the inhibited bus slave will disable all
its drivers from the system bus (data and acknowledge) and may perform the
operation internally (locally to the module). The inhibiting bus slave must not
return its acknowledge until 1.5 ps after the command is generated. This long

MEMORY SPACE

1 00 le——EVEN-BYTE
O ADDRESS 3 2 LoCATION 0
LOCATION 5— S 4
7 3
9 8
TN N 07 «——EVEN-WORD
13 12 ADDRESS
= T LOCATION 10
0DD - WORD
ADDRESS 17 16
LOCATION 19— NS 18
21 20
23 22
25 24
XXX---018 XXX--- 008
XXX- - -11B XXX---108B

FIGURE 2-6 Multibus address memory mapping. (Note: Bus master must break odd-
word address access into two byte accesses and reform the word.)

36 THE MULTIBUS FAMILY OF BUS STRUCTURES

bus cycle is required to give all inhibited bus slaves enough time to return to a
normal state, since an internal operation may have occurred.

Bus slaves that support inhibit operations can be classified as having top, mid-
dle, or bottom inhibit priority. The top inhibit priority module can inhibit all
other memory bus slaves; a middle inhibit priority module can inhibit or can
be inhibited by another bus slave; and a bottom inhibit priority module can be
inhibited by but cannot inhibit another bus slave. The signal INH1#* is used by
a middle inhibit priority slave memory device that wants to prevent another
slave memory device (bottom inhibit priority) at the same address from
responding to the requested bus operation under certain specified conditions.
For example, this permits ROM to overlap RAM when both are assigned the
same address. Effectively, this allows ROM boards, which are typically small or
memory-mapped I/0 devices, to override the RAM in the system which could
occupy the whole memory space. INH2# is used by top-priority modules to
prevent middle-priority modules, such as ROM memory modules, from
responding to the memory command request. Top inhibit priority modules
should also assert INH1* to inhibit bottom inhibit priority modules.

Figure 2-7 demonstrates a bootstrap application which also has diagnostic
software in ROM. There are three modules that can occupy the same memory
location: (1) the bootstrap ROM, which has top inhibit priority, (2) the diag-
nostic ROM, which has middle inhibit priority, and (3) the RAM, which has
bottom inhibit priority. When the system is first turned on, the boot ROM is
enabled. The bus master accesses memory from its reset starting point, where
the RAM is normally located. Since the boot ROM is enabled, it generates the
'INH1# signal which turns off the RAM module, the bottom inhibit priority. It
also enables the INH2#* signal which turns off the diagnostic ROM module, the
middle inhibit priority. Once the bootstrap operation is complete, the bootstrap
module is disabled, which disables its INH1* and INH2#.

TOP INHIBIT MIDDLE INHIBIT BOTTOM INHIBIT
BUS MASTER PRIORITY PRIORITY PRIORITY
cPU :ghonr g:)A;NOSTIC RAM
BOARD MODULE MODULE MODULE
INH2 INH1

INH1

T

+

INH2

-

_

-

MULTIBUS SYSTEM BUS

FIGURE 2-7 Bootstrap inhibit application.

THE MULTIBUS SYSTEM BUS 37

Next the system software will confirm that the system hardware is opera-
tional by executing the diagnostic software installed in the diagnostic ROM
module, which is enabled via an I/O command. Each access to the ROM mod-
ule would cause the INH1* signal to be activated, which would turn off the
RAM module. Once the diagnostic program is complete, the system software
can disable the ROM module. This disables the INH1# signal, and the bus mas-
ter can now access the RAM.

The inhibit lines can be used during both read and write operations. During
read operations the inhibited module will not cause its stored data any adverse
effects. This means that data written into a RAM module and then accessed
after a previously inhibited access will remain valid. During write operations,
the contents of the memory location may or may not be changed. If data is
changed, it will be only the one byte or word that is addressed. No other data
in the inhibited module may be altered. Thus, the inhibit lines cannot be used
to protect memory.

DATA LINES

The 16 data lines DATO0* to DATF* are used to transmit or receive information
to or from a memory location or I/O device. DATO#* is the least significant bit
for both byte and word transfers. The Multibus permits both 8- and 16-bit bus
masters by supporting three types of data transfer (Fig. 2-8): (1) even-byte
transfers on DATO* to DATT7*, (2) odd-byte transfers on DATO* to DAT7+,
and (3) word data transfers on DATO* to DATF*. All byte transfers use data
lines DATO* to DAT7*. DAT8* to DATF* are not defined during byte trans-
fers. All odd-byte transfers, which when local to a 16-bit microprocessor are
transferred on the high-order data byte, are swapped from the local high-order
data byte to the lower-order data byte while on the Multibus system bus. They
are swapped back to the high-order byte once they are back on the local bus of
the 16-bit microprocessor. This is done by using a byte-swapping technique that
permits both 8- and 16-bit bus masters to operate on the same bus because all
byte transfers occur over the lower byte of the data lines.

Two signals control the data flow: byte high enable (BHEN#*) and ADRO«.
(The data flow is summarized in Fig. 2-9.) Even-byte transfers require both
ADRO* and BHEN* = high (inactive). Odd-byte transfers require ADRO* =
low and BHEN#* = high. The data is swapped from the high byte of the word
and sent over the low-byte portion of the data bus. A 16-bit microprocessor
would swap the data back to the odd byte of the word. An 8-bit microprocessor
would simply read the data on its data lines. During word transfers, the address
put on the address lines must be an even address; ADRO* = high and BHEN#*
= low (active). There are two consecutive byte addresses for each word. The
even-byte address (ADRO* = high) corresponds to the word data bits DATO*
to DAT7*. Conversely, the odd-byte address, which is the address on the
address lines plus 1, corresponds to the word data bits DAT8#* to DATF*. Only
word transfers use data lines DAT8* to DATFx.

38 THE MULTIBUS FAMILY OF BUS STRUCTURES

TRANSFER DATA FLOW
TYPE DATA |MASTER —roeaiBus INTERFACE BUFFER ___MULTIBUS
DATO* -DAT?*
EVEN BYTEVEN-BYTE BUFFER)
8-BIT 8-BIT
@ | Even 16-BIT SWAP-BYTE BUFFER
ADDRESS | MIXED
DAT8*-DATF*
oDD BYTES ODD -BYTE BUFFER | ——
DATO*-DAT?*
EVEN BYTES EVEN-BYTE BUFFER [Is
16-BIT | |
® |Even 16 -BIT SWAP -BYTE BUFFER
ADDRESS
DAT8*- DATF*
oDD BYTES ODD-BYTE BUFFER]
DATO*- DAT?*
EVEN BYTES EVEN -BYTE BUFFER 2
8-BIT 8-8IT
@ | oop 16-BIT SWAP-BYTE BUFFER
ADDRESS | MIXED
DAT8*-DATF*
oDD BYTES ODD-BYTE BUFFER |

FIGURE 2-8 Types of data transfers.

2.3.2 Control Lines

The control lines define the data transfer protocol on the system bus. They can
be broken down into four basic groups.

Class Signal Function

Mutual exclusion LOCK* Lock

Utilities CCLK* Constant clock
INIT* Initialize

Commands MRDC#* Memory read command
MWTC* Memory write command
IORC* I/0 read command
IOWC= I/O write command

Acknowledge XACK+# Transfer acknowledge

THE MULTIBUS SYSTEM BUS 39

MUTUAL EXCLUSION

Mutual exclusion (LOCK#*) is used by a bus master to guarantee that no other
bus device or microprocessor can access a resource until that bus master has
finished using it. In systems with multiple microprocessors, there must be an
established method for the microprocessors to communicate with one another.
One very popular method is through the use of shared memory (RAM). It

8-BIT MASTER 16 - BIT MEMORY

DATOQ * -DAT7 * @ @

BYTE
BUFFER

EVEN-BYTE
BUFFER

A SWAP-BYTE |

BUFFER
16-BIT MASTER
EVEN-BYTE
BUFFER 0DD-BYTE
BUFFER
A swap-8YTE |-
BUFFER
ODD-BYTE
BUFFER
TRANSFER| DATA
TYPE TRANSFER BHEN * ADRO *
8-BIT
® EVEN ADDRESS HIGH HIGH
8—BIT
®@ ODD ADDRESS HIGH Low
16-BIT
® EVEN ADDRESS Low HIGH

FIGURE 29 Data flow on Multibus data lines.

40 THE MULTIBUS FAMILY OF BUS STRUCTURES

requires no special mechanisms between the microprocessors—they communi-
cate by passing messages stored in the RAM. The message is guarded by a flag
(a byte in the RAM) which indicates if there is a valid message. When this

LOCAL LOCK
MICROPROCESSOR
< "
BUS BUS | DUAL -
MASTER EXCHANGE PORT
LOGIC CONTROLLER
) ?i
BUS
+| BUFFER Lock | MEMORY
) [}
LOCK*
! 1
{ MULTIBUS SYSTEM BUS >
TIMING

MRDC* | | | I

LOCK* |
LFREEZE LRELEASE
DUAL-PORT CONTROLLER DUAL -PORT CONTROLLER
BUS MASTER DUAL-PORT CONTROLLER

INITIATE FIRST CYCLE

PRESENT ADDRESS
DRIVE READ (l30MMAND LOowW

v
RESPOND TO BUS MASTER

WAIT FOR READ COMMAND LOW

IF ADDRESSED LOCATION IS ON-BOARD
THEN ACCESS DATA

DRIVE TRANSFER ACKNOWLEDGE LOW
IF LOCK LINE LOW, FREEZE DUAL-PORT
To RESPOE‘JD ONLY TO BUS COMMANDS

v
TERMINATE FIRST CYCLE

WAIT FOR RESPONSE (TRANSFER ACKNOWLEDGE LOW)
STORE DATA

RELEASE REAIP COMMAND

FIGURE 2-10 Multibus lock operation.

THE MULTIBUS SYSTEM BUS 44

method is used, there are many cases in which one of the microprocessors must
have exclusive access to the flag. While one of the microprocessors is updating
the flag, another microprocessor must not be permitted to have access to it. A
microprocessor must have the ability to read the flag, test it for validity, and
write back into the flag in order to let other microprocessors know that it now
owns the flag and corresponding message (without another microprocessor
intervening). This operation, called read, modify, and write, provides the
microprocessor with exclusive access to or mutual exclusion of a memory loca-
tion for both the read and the write operations.

The Multibus system bus provides for mutual exclusion between bus masters
simply by holding the bus until the operation is completed. The bus master can
gain control of the system bus, perform a read operation, test the data, and then
perform the write operation. The LOCK* line allows this mutual exclusion to
be extended off the bus. This signal is required only in multiple-port RAM
board designs when the bus master needs to prevent the microprocessor on
another module from getting access to its own multiple dual memory (memory
with multiple paths into it). Figure 2-10 is an example of how LOCK* is used

[}
TERMINATE RESPONSE

WAIT FOR READ COMMAND HIGH
RELEASE DATA AND TRANSFER
ACKNOWLEDGE

CONTINUE TO FREEZE DUAL-PORT

TO RESPOIl‘lD ONLY TO BUS COMMANDS

v
RELEASE ADDRESS
INITIATE SECOND CYCLE

PRESENT ADDRESS
DRIVE READ COMMAND LOW
[—

’
RESPOND TO BUS MASTER

WAIT FOR READ COMMAND LOW

IF ADDRESSED LOCATION IS ON-BOARD
THEN PRESENT DATA

DRIVE TR;‘ANSFER ACKNOWLEDGE LOW

]
TERMINATE BUS CYCLE

WAIT FOR RESPONSE

STORE DATA

RELEASE READ COMMAND AND
LOCK LINE

'
TERMINATE RESPONSE

WAIT FOR READ COMMAND HIGH
RELEASE TRANSFER ACKNOWLEGE
AND DATA LINES

RELEASE DUAL-PORT CONTROLLER TO
RESPON[LITO ON-BOARD REQUESTS

\
RELEASE ADDRESS LINES
INITIATE NEXT CYCLE

FIGURE 2-10 (Continued)

42 THE MULTIBUS FAMILY OF BUS STRUCTURES

in a dual-port design. The bus hybrid locks its dual-port memory to the Multi-
bus system bus when it is addressed and the LOCK* signal is active. The dual-
port logic on the bus module will not permit access to the memory by the local
microprocessor until LOCK* is driven inactive.

CONSTANT CLOCK

Constant clock (CCLK*) is a general-purpose clock used by bus modules. The
frequency is approximately 10 MHz. The most common use of CCLK* is on
bus slave modules for acknowledge generation logic.

INITIALIZE

Initialize (INIT#) is used to put the system in a known state before bus cycles
are started. INIT# is typically used at power-up time in order to guarantee that
the system starts in the same way each time and also when a major error occurs
and the only recovery is a complete system restart. All bus masters should both
receive and drive the INIT* signal. This causes the entire system to start at the
same time, because the INIT#* signal will not become inactive until the slowest
board reset is completed.

COMMAND LINES

The command lines (MWTC#, MRDC*, IOWCx, IORC#) are controlled by the
bus master and are used to request an operation of a bus slave device._There
are four commands: memory read and write and I/O read and write. Each has
a unique signal on the bus. The four commands are used to support two types
of operations: memory and 1/0. Microprocessors such as the 8085 have instruc-
tions dedicated to I/O operations; that is, there are specific output and input
instructions. These instructions initiate special machine cycles which cause
information to flow between the microprocessor and an I/O port location.

An active command indicates to the bus slave that the address lines are valid
and that the bus slave should perform the specified operation. Only one of the
four commands can be active at a time. A read command is used by the bus
master to request that data be sent from the bus slave. Conversely, a write com-
mand is used by the bus master to send data to the bus slave.

TRANSFER ACKNOWLEDGE

Transfer acknowledge (XACK*) is used by the bus slave to inform the current
bus master that the requested operation is complete. For a memory write cycle,
an active XACK* indicates (to the bus master) that the data on the data lines is
now stored in the memory location specified on the address lines. For an I/O
read cycle, it means that the data on the data lines from the addressed I/O
device is valid. This signal permits the bus master to proceed to the completion
of the bus cycle.

THE MULTIBUS SYSTEM BUS 43

The bus master command and bus slave transfer acknowledge relationship
provides the interlocking mechanism which permits modules of different speeds
to be on the system bus. The bus master initiates the bus data transfer and then
waits for the bus slave to inform it when the operation is completed via the
transfer acknowledge (XACK*) signal. Thus, if there are two bus slaves, one
that can transfer data at a 1M byte per second rate and another that can transfer
data at a 2M bytes per second rate, both can operate at maximum rate. This
also permits a module to be replaced with a faster or slower module without
modification of the bus masters.

If a bus slave fails to generate an XACK#, the bus master will not be able to
complete the bus cycle. Since the bus master continues to wait, the system will
stop. This situation will occur only if the bus master tries to access a resource
that was not present on the system bus. One way to prevent the stoppage is to
provide a time-out function which will terminate the bus cycle, after some fixed
period of time, by generating XACK#. This capability is used in systems with
different amounts of RAM when the system software needs to find out how
much memory is available. The software starts at the beginning of RAM and
does a test on that location. If the RAM can be written into and that same data
read back, the location is in the system. The software continues through mem-
ory until it finds a bad location which it interprets as being top of memory. The
time-out function is a separate piece of logic which typically is on all bus
masters.

2.3.3 A Data Read Operation

A memory read cycle is shown in Fig. 2-11; it is assumed that the bus master
has control of the system bus. (Bus exchange techniques are discussed later in
this section.) The data read operation sequence is as follows:

1. The bus master takes the first action by placing the address on the address
lines.

2. Then, after a wait for the address setup time (time for the bus slave modules
to decode the address), the transfer is initiated by activating the read com-
mand (MRDC#) signal. All the bus slaves look at the address and command
information on the bus. The slave with the requested memory location
accesses the data.

3. That bus slave then puts the data on the data lines.
4. In doing so, the bus slave activates the transfer acknowledge (XACK*) line.

5. The bus master strobes in the data and terminates the data transfer cycle by
putting the MRDC# signal in the inactive state.

/

44 THE MULTIBUS FAMILY OF BUS STRUCTURES

* x x
ADDRESS VALID ADDRESS —

— =
CoMMAND* " f
O—

DATA * \ L__X VALID L,X

® ®
ACKNOWLEDGE * k__.%)l k—ul

BUS MASTER BUS SLAVE
INITIATE CYCLE

PRESENT ADDRESS
DRIVE READ lCOMMAND Low

v
RESPOND TO BUS MASTER

WAIT FOR COMMAND DRIVEN LOW
IF ADDRESSED LOCATION IS ON-BOARD
AND CORRECT READ COMMAND IS LOW
THEN PRESENT DATA ON DATA LINES

DRIVE TRlANSFER ACKNOWLEDGE LOW@

Iy
TERMINATE READ CYCLE

WAIT FOR RESPONSE (TRANSFER ACKNOWLEDGE)
STORE DATA
RELEASE REIED COMMAND

K
TERMINATE RESPONSE

WAIT FOR READ COMMAND HIGH
RELEASE DATA AND TRANSFER
ACKNOWLIEDGE LINES@

J ®
RELEASE ADDRESS LINES
INITIATE NEXT BUS CYCLE

FIGURE 2-11 Memory read cycle.

6. This causes the XACK* signal and read data from the bus slave.

7. The address from the bus master then becomes inactive.

An I/O read operation is the same as the memory read operation except the
1/0 read (JORC*) command is used and an I/O port location instead of a mem-

ory location is accessed.

2.3.4 A Data Write Operation

A typical memory write cycle is shown in Fig. 2-12. Again it is assumed that
the bus master has control of the system bus. The data write operation sequence

is as follows:

THE MULTIBUS SYSTEM BUS 45

1. The bus master places the address on the address lines.
2. The bus master also places the data to be written on the data lines.

3. After waiting to meet the address and data setup time (time for the bus slave
modules to decode the address and get the data through its data buffers), the
transfer is initiated by activating the memory write command (MWTCx)
signal. All the bus slaves look at the address and command information on
the system bus; the bus slave with the requested memory location stores the
data on the data bus into that memory location.

4. When the operation is completed, the bus slave activates the transfer
acknowledge (XACKx) line.

ADDRESS *

—\
@

X
®

DATA*

Ype

WRITE
COMMAND * |6
ACKNOWLEDGE * ;—I |

®

BUS MASTER BUS SLAVE
INITIATE CYCLE

PRESENT ADDRESS @ AND DATA@
DRIVE WRITE COMMAND@
—

v
RESPOND TO MASTER

WAIT FOR WRITE COMMAND DRIVEN LOW
IF ADDRESSED LOCATICN 1S ON-BOARD
AND THE CORRECT WRITE COMMAND IS LOW
THEN STORE DATA
DRIVEBANSFER ACKNOWLEDGE LOW

v
TERMINATE CYCLE

WAIT FOR RESPONSE (TRANSFER ACKNOWLEDGE)
RELEASE CO!iﬂMAND@

'
TERMINATE RESPONSE

WAIT FOR WRITE COMMAND HIGH
RELEASE 'I;RANSFER ACKNOWLEDGE

v
RELEASE ADDRESS AND DATA LINES @
INITIATE NEXT BUS CYCLE

FIGURE 2-12 Data write cycle.

46 THE MULTIBUS FAMILY OF BUS STRUCTURES

5. The bus master terminates the data transfer cycle by driving MWTC#
inactive.

6. This, in turn, causes the memory board to drive XACK* inactive.

7. The address and data then become invalid.

An I/O write operation is the same as the memory write operation except that
the I/O write (IOWC*) command is used and the I/O port location instead of
a memory location is accessed.

2.3.5 Interrupt Lines

An interrupt is typically used in a real-time execution-type system in which an
external event must be acted upon with minimal delay. Any system with inter-
rupt capability must have a set of interrupt servicing routines in its executive
software. Each of these interrupt service routines is a task activated by a par-
ticular interrupt level or number; this type of control is well suited to the
machine and process control marketplace. The microprocessor is the destination
of all interrupts. Each of the interrupt sources is assigned an interrupt number
which determines its priority level. When multiple interrupts occur at the same
time, the interrupt with the highest priority is serviced first.

Most microprocessors have a hardware interrupt input pin which, when acti-
vated, causes the program currently being executed to be automatically sus-
pended. Then the state of the machine is saved and the program execution
control is transferred to an interrupt service routine that corresponds to the
device that caused the interrupt. The particular interupt service routine is cho-
sen by the hardware, which tells the microprocessor where to go in the progam
by sending it an interrupt vector address. The interrupt vector address is not
necessarily the exact memory address of the starting location of the service rou-
tine; some microprocessors modify the address before using it. The resultant
address is then used as a lookup vector in a table of jump commands which
points to the various service routines.

The basic structure of the Multibus interrupt system is shown in Fig. 2-13.
The microprocessor in this diagram is controlling some external machine and
processes. The machine will generate interrupts when service is needed. The
microprocessor then stops executing its current progam and starts executing the
interrupt service routine for that device. After it has completed servicing the
machine, the microprocessor signals the I/O device to turn off its interrupt and
then returns to the program it was previously executing,

The interrupt lines can be broken down into two groups:

Interrupt request INTO*-INT7# Interrupt 0-7
Interrupt hold INTA* Interrupt acknowledge

THE MULTIBUS SYSTEM BUS 47

PROCESS
SERVICE
ROUTINE
PROCESS
BEING
CONTROLLED
£
MACHINE 1 ‘? MACHINE 2
Q&
y §
4’)€ ~ <9
’9,9 N
«
S \
MACHINE 1 SYSTEM'S A
SERVICE REAL-TIME MSgS\I/’:IgEZ
ROUTINE SCHEDULER ROUTINE

FIGURE 2-13 Interrupt system structure.

INTERRUPT REQUEST

The interrupt request lines (INTO* to INTT7+*) are used by any bus module to
activate an interrupt service request from the system master. The requesting
device activates the interrupt signal and keeps it active until serviced. INTO* -

has the highest priority.

INTERRUPT ACKNOWLEDGE

Interrupt acknowledge (INTA*) is generated during interrupt cycles on the bus.
It is used to freeze the interrupt status of all the interrupt controllers in the
system and then get the interrupt vector address from another module in the
system. The Multibus supports two types of interrupt implementation schemes:
non-bus-vectored and bus-vectored.

NON-BUS-VECTORED INTERRUPTS

Non-bus-vectored (NBV) interrupts are handled totally on the bus master and
do not require the Multibus interface for the interrupt vector address. The inter-
rupt vector address is generated by the interrupt controller on the bus master
and transferred to the microprocessor over the local bus. The device that gen-
erates the interrupts can reside on the bus master or on a bus slave module. In
the latter case it uses the Multibus interrupt request lines (INTO#* to INT7%*) to

48 THE MULTIBUS FAMILY OF BUS STRUCTURES

generate its interrupt requests to the bus master. In both cases the bus master
performs its own interrupt operation by generating the interrupt vector address
locally and executing the interrupt service routine. This routine will service the
interrupting device and command it to remove the interrupt request. Figure 2-
14 shows two examples of NBV interrupt implementation, one with the inter-
rupting device on the bus master module and one with the device on a bus slave
module.

BUS-VECTORED INTERRUPTS

For bus-vectored (BV) interrupts the bus master requires the aid of the inter-
rupting module. After receiving an interrupt, the bus master requests the inter-
rupting bus module to send the appropriate interrupt vector address. The

BUS MASTER BUS SLAVE
MICROPROCESSOR
e ——
MEMORY
1/0
DEVICE
INTR
1/0
INTERRUPT
CONTROLLER :::::> DEVICE
2 1 0 §§;7
BUFFERS
BUFFERS
INTERRUPT
+5V
INT2* %

[« MULTIBUS >

— - N
- A\

1/0 DEVICE NEEDS MICROPROCESSOR HAS FINISHED
TO BE SERVICED SERVICING 1/0 DEVICE AND
RESETS INTERRUPT REQUEST LINE

FIGURE 2-14 Non-bus-vectored interrupts.

THE MULTIBUS SYSTEM BUS 49

BUS MASTER BUS SLAVE
MASTER CPU g#ﬁ%g?PT
RS
FROM
MASTER RFLOP
(IORC* QR 1OWC*)
DATA « L INTa* AND ADDRESS
BUS INTR
DATO *~DAT7* INT 7 6 5 4 3 2 1 0
DATA
BUFFER PROGRAMMABLE PROGRAMMABLE
DATO*- INTERRUPT CONTROLLER INTERRUPT CONTROLLER
DAT7* *
DATO*-
0-7 INT DAT7*
“INTERRUPT
ACKNOWLEDGE
(INTA¥)

INTERRUPT REQUEST (INTx *)

INTERRUPT CODE (ADR8*-~ ADRA¥*)

INTERRUPT

VECTOR ADDRESS (DATA BUS DATO*-DAT7%)

TIMING

INTR* j__{@ﬁ

INTA* _"_l@

1@

ADR8*-ADRA*

X(® INTR x ApDRESS X

DATO*-DAT7*

REST:ART x

XACK*

BUS LOCK* \

© |

/

FIGURE 2-15 Bus-vecotred interrupts.

interrupt vector address is sent to the bus master over the Multibus data lines
(DATO* to DATT7+) by the interrupting bus slave. The bus master uses the
INTA#* signal to request the interrupt vector address.

Figure 2-15 shows a BV interrupt implementation. When the interrupt is

requested,

1. The slave interrupt controller notifies the master interrupt controller on the
bus master, which causes the microprocessor on the bus master to process the

interrupt.

50 THE MULTIBUS FAMILY OF BUS STRUCTURES

2. The microprocessor then generates an INTA* command on the system bus,
which freezes the state of the priority of the interrupt logic on all bus mod-
ules. Each of the slave interrupt controllers is assigned a unique interrupt
controller address.

3. Next the bus master puts the address of the bus slave’s interrupt controller
on the Multibus address lines (ADR8* to ADRA*) that had the highest-prior-
ity interrupt request.

4. The bus master also generates a second INTA* command.

5. The second INTA* command asks the selected interrupt controller to put its
interrupt vector address on the Multibus data lines (DATO* to DAT8#).

6. The bus slave activates the XACK=* signal when the interrupt vector address
on the data lines is valid.

7. This causes the bus master to terminate the interrupt cycle by removing the
INTA* signal. The microprocessor will then transfer program control to the
appropriate interrupt service routine.

2.3.6 Bus Arbitration and Exchange

As microprocessor costs continue to decrease, it has become economically fea-
sible to use multiple microprocessors to meet system performance requirements.
Multiple microprocessors must be able to share global resources. The Multibus
system bus supports multiple bus masters (microprocessors) with a hardware
arbitration and exchange scheme. Two basic types of bus arbitation methods,
serial and parallel, are supported. One method of bus exchange also is sup-
ported. All bus arbitration and exchanges are made in synchrony with the bus
clock (BCLK*). The bus arbitation and exchange lines can be broken down into
three groups:

Class Signal Function
Control BUSY* Busy
BCLK#* Bus clock
Bus request BREQ# Bus request
CBRQ+* Common bus request
Bus priority BPRN#* Bus priority in
BPRO* Bus priority out
BUS BUSY

Bus busy (BUSY*) indicates the state of the bus; it is supplied to all bus modules.
The inactive state means the bus is not being used. All bus masters monitor and
can drive the BUSY* signal. The controlling bus master uses BUSY * to indicate

THE MULTIBUS SYSTEM BUS 54

to the other bus masters that the bus is in use by driving BUSY* in the active
state. A requesting bus master must wait until it has priority and the bus is not
being used (BUSY* inactive) before it can gain control of the system bus.

BUS CLOCK

Bus clock (BCLK*) is the bus exchange logic master clock; all bus exchanges
are in synchrony with it. BCLK* is bused to all bus modules and can be slowed,
stopped, or single-stepped. Single-stepping is very useful during the debug
phase of a project. The bus clock frequency is very important in determining
the speed of a bus control transfer (bus exchange). The number of masters sup-
ported by the serial-priority arbitration method (discussed later in this section)
is a function of the BCLK* frequency. BCLK * normally operates at about 10
MHz.

BUS PRIORITY IN

Bus priority in (BRPN#) is used to indicate to a particular bus master that, of
all current bus requests, it has the highest-priority request for the system bus.
BPRN* also indicates that the master can take control as soon as the system bus
is not busy. BPRN* is not bused, and its connection is based on the arbitration
method used.

BUS PRIORITY OUT

Bus priority out (BPRO*) is used in a serial or daisy chain bus arbitration
scheme (Fig. 2-16) to pass the bus priority along. It is not bused. The BPRN#*
of the highest-priorty master is always active (low, or tied to ground); its BPRO*
is connected to the BPRN* input of the master with the next-lower priority.
This, in turn, can be repeated. If the highest-priority master does not need the
system bus, it will activate its BPRO* and pass the system bus priority to the
next-lower-priority master. This causes the BPRN* of the next bus master to
become active, which indicates that it now has the highest priority. If it does
not need the system bus, it passes the priority on. A master making a system
bus request simply causes its BPRO#* to become inactive. That, in turn, causes
the next-lower-priority master to lose its bus priority because its BPRN* has
become inactive. It then causes its BPRO* to become inactive because it has
lost its priority.

The biggest advantage of a bus arbitration scheme using a daisy chain system
is its simplicity. Very few control lines are required, and the number of lines is
independent of the number of devices. More devices can be added simply by
connecting them to the system bus, provided the AC timings are met.

The biggest disadvantage of the daisy chain scheme is its susceptibility to
failure. A failure that occurred in the arbitration circuitry of a device could
prevent succeeding devices from ever getting control of the system bus or allow

52 THE MULTIBUS FAMILY OF BUS STRUCTURES

HIGHEST-PRIORITY LOWEST-PRIORITY
MASTER MASTER
MASTER 1 MASTER 2 MASTER 3

_L—O BPRN* BPRO * [O~————C BPRN * BPRO* [O————C| BPRN * BPRO* O——

TIMING

skt [] | | [L L[
TeR {BPRN* L
MASTER 1 BPRO* F@I "
BPRN* 2 .
MASTER 1
’ {BPRO* N :

H
MASTER 3 BPRN* »l | L

FIGURE 2-16 Serial-priority bus arbitration: (D Master 1 done with the bus. &) Master
1 requests the bus.

more than one device to gain control of the system bus. However, the logic
involved is very simple, and a redundant circuit would increase its reliability.
Another disadvantage is that the priority structure is fixed. The devices farthest
from the highest-priority master could be locked out by higher-priority masters
if they had a high demand for the system bus.

The maximum number of bus masters in a system is determined by gate
delays through the daisy chain logic, which must be less than one BCLK*
period. Figure 2-16 also shows the timing associated with a serial arbitration
scheme. A bus arbitration operation can be made each BCLK* cycle (falling
edge to falling edge). This requires that all priorities be passed in one bus clock
period. The maximum number of bus masters is determined by dividing the
amount of time it takes a bus master to pass through the bus priority by the bus
clock period. For example, if the bus clock period is 100 ns and a serial pass
through delay is 30 ns, the number of masters that can be supported by a serial
arbitration method is three (with 10 ns of margin). A more detailed look at
serial-priority bus arbitration is taken in Sec. 2.4.

BUS REQUEST

A bus request (BREQ#) is used by a bus master which does not have control of
the system bus and wants it. The signal is used only in a parallel arbitration

THE MULTIBUS SYSTEM BUS 53

method (Fig. 2-17). Each bus master has a separate pair of bus request (BREQ*)
and bus granted (BPRN*) lines which are used for communicating with the
central parallel bus priority resolution circuitry (CPR). A BREQ* and BPRN*
pair of signals need not be assigned a fixed priority. When a bus master requires
use of the system bus, it sends a request to the CPR circuitry. The circuitry
selects the next bus master to receive the bus grant and notifies the bus master

HIGHEST-PRIORITY
MASTER

T

MASTER 1 MASTER 2 MASTER 3
BPRN* BREQ* BPRN* BREQ* BPRN* BREQ*
@]

I_%_

BREQ*
MASTER 1

BPRN*

BPRN*

BREQ*
MASTER 3
BPRN*

BREQ*
MASTER 2

BREQ*
MASTER 4

BPRN*

FIGURE 2-17 Parallel-priority bus arbitration: @ Master 3 requests the bus.
ter 2 requests bus and takes priority away from master 3.

0 parALLEL © D—J
O—-——

1 PRIORITY 1

2 LOGIC 2 p——

LOWEST-PRIORITY
MASTER

MASTER 4

BPRN* BREQ*
(&) O

3 3

and master 3 regains bus priority.

® Mas-

® Master 2 done with bus

54 THE MULTIBUS FAMILY OF BUS STRUCTURES

by activating the appropriate BPRN* signal. Up to 16 bus masters can be sup-
ported by using this method.

The overhead time required for bus allocation can be shorter than for a daisy
chain scheme, since all the bus requests are presented to the CPR circuitry
simultaneously. The bus priority can also be dynamically assigned by using a
different method such as fixed, adaptive priority, or round robin. The major
disadvantage of the parallel-priority method is the additional circuitry of the
CPR module.

COMMON-BUS REQUEST

A common-bus request (CBRQ#) indicates to the bus master in control that no
other masters are requesting the bus. This allows the bus master to retain control
of the bus without contention during each bus cycle and permits it to execute
faster because the bus exchange overhead for each cycle is eliminated. A request
for control of the bus by another bus master would activate CBRQ*, which
would inform the current master to relinquish control of the bus. '

MASTER 1 MASTER 2 MASTER 3
l MASTER CURRENTLY
MASTER WANTS BUS CONTROLS BUS

DRIVE BPRO* HIGH

MASTER WANTS BUS
DRIVE BPRO* HIGH

1
WAIT FOR BUSY* HIGH WAIT FOR BUSY* HIGH
AND BPRN* LOwW AND BPRN* LOW

BUS CYCLE COMPLETE
RELEASE ALL BUS
LINES

RELEASE BUSY*

A
INITIATE BUS TAKEOVER

DRIVE BUSY* LOW
DRIVE BUS LINES
INITIATE BUS CYCLE

ONCE THE BUS CYCLE IS
COMPLETE

DRIVE BPRO* LOW
RELEASE BUS LINES
RELEASE BUSY*

L

1
INITIATE BUS TAKEOVER

DRIVE BUSY* LOW
DRIVE BUS LINES
INITIATE BUS CYCLE

FIGURE 2-18 Bus exchange flow diagram.

BPRN*
MASTER 1
HIGHEST |
PRIORITY BPRO* __.I
|
|
BPRN* !
MASTER 2
BPRO * e
1
i
BPRN * :I
MASTER 3 :
LOWEST T
PRIORITY | BPRO* !
BUSY *
ADDRESS* VALID ADDRESS
MASTER 3
COMMAND*
ADDRESS*
MASTER 1
COMMAND*

" ARBITRATION
CYCLE

THE MULTIBUS SYSTEM BUS

le—— EXCHANGE
CYCLE

55

!
.'
|
|
q
|
|
|

\

1
|
:
1
|
|

— A |+

X

EiE

__Ff—_ 4
\

THREE STATE ‘<

_

-

THREE STATE%

t

FIGURE 2-19 Bus arbitration and exchange timing diagram.

2.3.7 Bus Exchange

Figures 2-18 and 2-19 illustrate the sequence of events which take place when
bus master 1 (the higher-priority bus master) and bus master 2 request the sys-
tem bus simultaneously and bus master 3 (the lowest-priority bus master) is cur-
rently in control of the system bus. Figure 2-18 is a flow diagram; Fig. 2-19
shows the system bus exchange timing of the event. In this example a serial-
priority method is used to resolve the bus request arbitration, but the flow dia-
gram and system bus exchange timing would be basically the same if a parallel-
priority method were used. All the system bus exchange signals are synchro-
nized to BCLK*. This means that all the output system bus exchange signals

{ X VALID ADDRESS

k—tps—

56 THE MULTIBUS FAMILY OF BUS STRUCTURES

(BPRO*, BREQ#*, BUSY*, and CBRQ*) change state on the falling (high-to-
low transition) edge of BCLK#* and all input system bus exchange signals
(BPRN*, BUSY*, and CBRQ#*) are in valid states before the next falling edge
of BCLK+. In order to gain control of the system bus, three conditions must be
met. First, the bus master must want control of the system bus. Second, the bus
master must have the highest priority, which is indicated by an active BPRN*.
Third, the system bus must be free, which is indicated by an inactive BUSY*
signal.

1. The sequence begins (Fig. 2-18) when bus masters 1 and 2 request the system
bus at the same time, which causes the BPRO* of both to go inactive on the
next falling edge of BCLK*. On the next falling edge of BCLK* both bus
masters sample their BPRN* and BUSY* signals. Bus master 1 detects that
it has the highest bus priority, but the system bus is busy and will wait. Bus
master 2 detects that it does not have bus priority and will wait. Bus master
1 waits until bus master 3 finishes with the system bus by sampling BUSY*
on every falling edge of BCLK#*. When bus master 3 finishes the current bus
cycle, it checks whether it must give up the system bus by looking at its
BPRN* signal.

2. Since BPRN#* is in the inactive state, this causes bus master 3 to initiate
releasing the system bus by driving BUSY* to the inactive state and disabling
all of its system bus drivers. This permits the actual exchange to occur. On
the next falling edge of BCLK*, bus master 1 samples its BPRN* and BUSY*
signals.

3. Since bus master 1 still wants control of the system bus, which is indicated
by the state of its BPRO* (inactive) signal, it takes control of the system bus
by driving BUSY# into the active (low) state and enables its system bus driv-
ers. This action must be taken before the next falling edge of BCLK*. Bus
master 2 will continue to sample its BPRN* and BUSY * signals while waiting
for its turn on the system bus.

It is possible for bus master 3 to retain control of the system bus by activating
an internal (on-board) signal, called override or bus lock, which goes to the bus
master’s bus exchange logic. The internal override signal is used to prevent any
other bus master from gaining control of the system bus even though it has
higher priority. The signal keeps BUSY* active and thereby keeps bus master
3 in control of the bus. This procedure guarantees that bus master 3 can have
consecutive bus cycles for such software functions as semaphores (test and set).

2.4 DETAILED ELECTRICAL DESCRIPTION

In this section all the timing, loading, and drive specifications of the Multibus
system bus are described.

THE MULTIBUS SYSTEM BUS 57

2.4.1 Logical State and Electrical Level Relations

The signal names indicate if the signals are active-high or active-low. If the
signal name is followed by an asterisk, the signal is active-low and has the fol-
lowing logical state and electrical level relations, in which L = low and H =

high:

Logical

state Electrical level At receiver At driver
0 H = TTL high state 525V=H=20V 525 V=H=24V
1 L = TTL low state 08 V=L=—-05V 05V=L=0V

If the signal name is not followed by an asterisk, the signal is active-high and
has the following logical state and electrical level relations:

Logical
state Electrical level At receiver At driver
0 L = TTL low state 08 V=L=—-035V 05V=L=0V
1 H = TTL high state 525V=H= 20V 525V=H=24V

These specifications are based on TTL when the power source is 5 V * 5 per-
cent, referenced to logic ground (GND).

2.4.2 Signal Line Characteristics

The rise and fall times of a signal on the bus must not exceed the following
limits:

Open collector Totem pole Three-state

Rise time, ns —_— 10 10
Fall time, ns 10 10 10

The timing parameter tpp is the maximum signal propagation delay on the bus.
It is measured from the edge of any one board plugged into the backplane to
any other board plugged into any other slot, and can be expressed as

tpD(max) = 3 NS

tpp is very important when timing on the bus is to be determined. The setup,
hold, and any other times are measured at the edge of the board where it is

58 THE MULTIBUS FAMILY OF BUS STRUCTURES

plugged into the bus. This means that all board-internal and bus delays must be
taken into account.

The settling time for all command, acknowledge, clock, and inhibit lines
after a transition is zero. On these lines the ringing cannot go beyond the noise
immunity levels. The control signals are used to determine the state of the bus,
and ringing beyond the noise immunity levels could cause system failures.
Address and data lines can ring beyond the noise immunity levels; the only
requirement is that they be stable for their setup times. The setup, hold, and
command ringing are summarized in Fig. 2-20.

2.4.3 Bus Power Specification

Three voltages (+5, 412, and —12 V) and ground are provided on the Mul-
tibus system bus; eight pins each are assigned to +5 V and ground, and two
pins are assigned to each of the remaining two voltages. All other voltages
should be derived from the three standard voltages. Table 2-2 provides all the
bus power specifications.

COMMAND* HIGHMINIMUM \ 4 7‘ ‘ng, SHMINIMUM
\ GND
SLOWMAXIMUM
RINGING NO "RINGING"
MAXIMUM [SETUP HOLD
L 50 ns MINIMUM 50 ns MINIMUM
HIGH_/‘;\[E ZH'GHleMUM-:f\
ADDRESS T A GND
OR) RINGING 2HIGHMINIMUM
WRITE { MAXIMUM L
DATA 50 ns MiNIMUM
50 ns MINIMUM—] <
Low SLOWMAXIMUM
AN 3 T GND
SLOWMINIMUM 65 ns _PASSIVE (TR IS OFF)

t
CX™ MAXIMUM
<LOWMAXIMUM

J_ /_s'gﬁqcms")
XACK* \ L / ?ZH'GHMINIMUM oo
)

0 ns MINIMUM 0 ns MINIMUM
ns
HIGH -2HIGHMiNIMUM N~
GND
READ
DATA SLOWMAXIMUM
Low
- = GND

FIGURE 2-20 Setup, hold, and ringing summary.

THE MULTIBUS SYSTEM BUS 59

TABLE 2.2 Multibus Power Specification

Ground +5 +12 —12
Mnemonic ' GND +5V +12V —12vV
Bus pins Pl — 1,2, Pl — 3,4, Pl —- 78 Pl — 79,80
11,12, 5,6,
75,76, 81,82,
. 85,86 83,84
Nominal output, V Ref. +5.0 +12.0 —12.0
Tolerance from nominal,® Ref. 49t05.2 11.8 to 12.5 —125to —11.8
Ripple (Pk-Pk),> mV Ref. 50 50 50
Transient response time,® s 500 500 500
Transient deviation,? % 10 110 +10

“Tolerance is worst case, including initial voltage setting, line and load effects of power source, ripple, temper-
ature drift, and any additional steady-state influences.

bAs measured over any bandwidth not to exceed 0 to 5 MHz.

°As measured from the start of a load change to the time an output recovers with +0.1% of final voltage (50%
load change).

9Measured as the peak deviation from the initial voltage.

2.4.4 Temperature and Humidity Limits

All bus parameters and specifications must be met within the following tem-
perature and humidity limits:

Temperature 0 to 55°C (32 to 131°F); free moving air across modules and
bus (200 LFM recommended)

Humidity 90% maximum relative (no condensation)

2.4.5 Bus Timing

In this section all the timing specifications of the Multibus system bus are
described; they are summarized in Table 2-3. The timing diagrams show, for
clarity, only the minimum or maximum value required for each parameter;
Table 2-3 should be referred to for complete minimum or maximum informa-
tion. The timing diagrams show how all the parameters are defined in relation
to the signals involved. All timing is measured at 1.5 V with loading capacitance
C, and the terminations specified in Table 2-4.

READ OPERATIONS (I/O AND MEMORY)

A read operation transfers data from a memory location or an I/O device to
the bus master that is controlling the system bus. Figure 2-21 shows the signals
involved in and the timing specifications for a read operation. The bus master
must drive the address lines with a valid address a minimum of 50 ns (t,s)

TABLE 2.3 Multibus Timing Specification

Parameter Description Minimum Maximum Units
tacy Bus clock period 100 oo (DC) ns
tpw Bus clock width 0'35tBCY 0.65tncy ns
tskEw BCLK* skew tpp ns
eD(yp) Standard bus propagation 3 ns

delay
tas Address setup time (at 50 ns
slave board)
tps Write data setup time 50 ns
tan Address hold time 50 ns
toHw Write data hold time 50 ns
toxL Read data setup time to 0 ns
XACK
tonr Read data hold time 0 65 ns
txan Acknowledge hold time 0 65 ns
tcey C-clock period 100 110 ns
tcw C-ClOCk Wldth 0.35tccy O.65fccy ns
tiNiT INIT* width 5 ms
tiNITS INIT* to MPRO=* setup 100 ns
time
txack Acknowledge time 0 8 us
temp Command pulse width 100 trouT ns
tip Inhibit delay 0 100 (Recommend ns
<100 ns)
ExACKA Acknowledge time of an tiap + 50 ns 1500 ns
inhibited slave
txaCKkB Acknowledge time of an 1.5 8 us
inhibiting slave
tiap Acknowledge disable from 0 100 (Arbitrary) ns
inhibit (an internal
parameter on an inhibited
slave; used to determine
txacka min.)
tINTA INTA* width 250 ns
tesep Command separation 100 ns
taReQL {BCLKx to BREQ low 0 35 ns
delay
tBREQH lBCLK' to BREQ* high 0 35 ns
delay
tBPRNS BPRN=* to JBCLK* setup 22 ns
time
tgusy BUSY* delay from | 0 70 ns
BCLK=*
tgusyYs BUSY#* to {BCLK* setup 25 ns
time
tBPRO {BCLK* to BPRO* (CLK 0 40 ns
to priority out)
tarz Address to inhibit high 0 100 ns

60

THE MULTIBUS SYSTEM BUS 641

TABLE 2.3 Multibus Timing Specification (Continued)

Parameter Description Minimum Maximum Units
tap Address disable 100 ns
tBPRNH BPRN*T to lBCLK' 5 ns
tpPRNO BPRN=* to BPRO#* 0 30 ns
(priority in to out)

tcero |BCLK* to CBRQ#* (CLK 0 60 ns
to common bus request)

tcorQs CBRQ# to | BCLK* setup 35 ns
time

temen XACK| to command? 20 ns
delay

tesyo CBRQ*l or BUSY'l to _ 12 us
BUSY*t delay

tLckH LOCK* hold time from 100 ns
command#}

trcks LOCK=* to command 100 ns
setup time

tLock LOCK=* width 12 us

before the bus master activates the

read command. The bus slave accesses the

addressed data, drives the data lines, and activates XACK* after providing a
minimum of 0 ns (tpxy) setup to XACK#*. txack is defined as the time from

command going active until the bu

s slave activates XACK=*. Next the bus mas-

ter inactivates the command after waiting a minimum of 20 ns (¢cypy) and must
hold the address valid for a minimum of 50 ns (¢,3). The bus slave must return
the data and XACK=* lines to a three-state condition in a minimum of 0 ns and
a maximum of 65 ns ({pyg and fxan). The bus master must guarantee that the
command is active a minimum of 100 ns (¢cup).

1
1

CMD
00 ns

MINIMUM

IORC* OR
MRDC*
MASTER
50 ns MlNlMUM—’l - tAs tAH—» |<—so ns MINIMUM To
SLAVE
ADDRESS
LIES X STABLE ADDRESS X]
0 ns MINIMUM|s— tyack tCMPH I'—fx/m
65 ns 3
XACK* MAXIMUM [PASSIVE
toxL o 65 ns SLAVE
0 ns MINIMUM | tour MAXIMUM TO
MASTER
DATA ><
OAa PASSIVE STABLE DATA XPASSIVE
)
FIGURE 221 Timing for a read operation.

29

TABLE 2.4 Multibus Drivers, Recelvers, and Termination Requirements

Driver®? Receiver’ Termination?
Iy, min, | foy min, | Cy min, Iy max, | Ijy max, | C; max,

Bus signals Location | Type uA pF Location mA A pF Location Type R
DATO+-DATF* | Masters | TRI 16 —2000 300 | Masters and -0.8 125 18 Mother | Pull-up | 2.2kQ
(16 lines) and slaves board

slaves
ADRO+-ADR17#, | Masters | TRI 16 —2000 300 Slaves —0.8 125 18 Mother | Pull-up | 2.2 kQ
BHEN?# (25 lines) board
MRDCs, Masters | TRI 32 —2000 300 | Slaves —2 125 18 Mother | Pullup | 1k
MWTC= (memory; board
memory-
mapped
1/0)
IORCs, IOWC= Masters | TRI 32 —2000 300 Slaves (I/0) -2 125 18 Mother | Pull-up 1 kQ
board
XACK= Slaves TRI 32 —400 800 | Masters -2 125 18 Mother | Pullup | 510Q
board
INH1s, INH2+ Inhibiting} OC 16 — 300 | Inhibited —2 50 18 Mother | Pullup | 1kQ
slaves slaves (RAM, board
PROM,
ROM,
memory-
mapped
1/0)
BCLK=* 1place |[TTL 48 —3000 300 | Master -2 125 18 Mother | To +5V | 220Q
(master) board To GND |330Q
BREQ= Each TTL 10 —200 60 | Central -2 50 18 Central |Pullup |1k
master priority priority
module module
(not
req.)

€9

BPRO#*

BPRN=#

LOCK=*

BUSYs, CBRQ+*
INIT*

CCLK+#

INTA=

INTO*-INT7*
(8 lines)

Each
master

Parallel:

central
priority
module
Serial:
prev
masters
BPRO#*

Master
All
masters
Master

1 place

Masters

Slaves

TTL

TRI

oC

OoC

TRI

oC

4.0

4.0

32

20

32

48

32

16

—200

—2000

—3000

—2000

60

300

300

300

300

300

300

Next master
in serial
priority
chain at its
BPRN/

Master

All

All masters
All

Any

Slaves
(interrupt-
ing I/0)
Masters

—4.0

—4.0

—1.6

100

100

125

50

50

125

125

40

18

18

18

18

18

18

18

18

Not
req.

Not
req.

Mother
board
Mother
board
Mother
board
Mother
board
Mother
board

Mother
board

Pull-up
Pull-up
Pull-up
To+5V

To GND
Pull-up

Pull-up

1kQ
1ke
1 k@
220 Q

330 Q
1kQ

1kQ

“Driver requirements:

Ion = high-output current drive

IoL
Co
TRI

nnn

low-output current drive
capacitance drive capability
three-state drive

OC = open-collector driver
TTL = totem-pole driver

bFor low and high voltages specifications see Sec. 2.4.1.

‘Receiver requirements

Iy
I
C

= high-input current load
= low-input current load

= capacitive load

4+5% %-W resistors.

64 THE MULTIBUS FAMILY OF BUS STRUCTURES

tevo————————*
100 ns MINIMUM N
IOWC* OR
MWTC*
50 ns MINIMUM—s] tas |<— — tan [Rinimom
MASTER
ADDRESS STABLE ADDRESS To
LINES SLAVE
50 ns MINIMUM—>, tps |<— _"'DHWI‘—EAOINT:AUM

DATA STABLE WRITE DATA
LINES
0 ns MINIMUM l‘_'XACK em tXAH
¢ PHI‘-GS ns
MAXIMUM

FIGURE 2-22 Timing for a write operation.

SLAVE
TO

*
XACK MASTER

WRITE OPERATION (I/O AND MEMORY)

A write operation transfers data from the master that is controlling the system
bus to a memory location or I/O device. (The timing for a write operation is
shown in Fig. 2-22.) The bus master must drive the address and data lines with
valid information for a minimum of 50 ns (¢, and #ps) before the bus master
activates the write command. When the bus slave has completed storing the
data in the specified address, it activates XACK*. The time from the command
active to XACK* going active is the module’s acknowledge time (fxack), and it
must be greater than 0 ns. The bus master then removes the command after
waiting 20 ns (¢cypn) and holds the address and data lines valid for a minimum
of 50 ns (tay4 and tpuw). The bus slave must drive XACK* to the inactive state
and put the driver in a three-state condition in less than 65 ns (txay). It is the
responsibility of the bus master to guarantee the command is active a minimum
Of 100 ns (tCMD)-

INHIBIT OPERATION

An inhibit operation may accompany any memory operation. This allows one
bus slave to prevent another bus slave from driving the data and acknowledge
lines. The inhibit signal may also be generated during IORC*, IOWC#*, and
INTA=* operations but should be ignored by all bus slaves, including the module
that should respond to the bus operation. Inhibit timing is shown in Fig. 2-23.
The inhibiting slave must drive its inhibit lines in less than 100 ns (¢;p) after the
bus master has a valid address on the address lines. Any bus slave that can be
inhibited must be able to receive the inhibit signals and turn off its bus driver
before it would normally have (when not inhibited) generated an XACK*. This
implies a minimum access time of 50 ns (f;p — tas) for any inhibited slave
module, because the inhibited slave cannot generate an XACK#* until it can
guarantee that it has control of the bus cycle. The inhibiting bus slave must not

THE MULTIBUS SYSTEM BUS 65

activate XACK#* until a minimum of 1500 ns (¢xscks) from the active com-
mand. The inhibiting slave must remove its inhibit signals (inactive state) in less
than 100 ns after the bus address has changed (t17).

NON-BUS-VECTORED INTERRUPTS

Non-bus-vectored (NBV) interrupts are handled on the bus master and do not
require the Multibus system bus for transferring the interrupt vector address.
There is no timing requirement on the system bus during NBV interrupt
operations.

BUS-VECTORED INTERRUPTS

Bus-vectored (BV) interrupts are handled partly on the bus master and do
require the Multibus system bus for transferring the interrupt vector address
from the bus slave to the bus master. The bus master uses the INTA* command
to request the vector address. The timing for BV interrupts is shown in Fig. 2-
24. The first INTA* bus cycle is initiated by the bus master when the INTA*
~ signal is activated for a minimum of 250 ns (¢;xta). The address and data lines

are not used during the first INTA* cycle and should be ignored. The XACK=*
for the first interrupt cycle is self-generated by the bus master, and this can be
done locally to the bus master (XACK* need not be driven). The INTA* signal

MRDC* OR MWTC* \ /

ADDRESS LINES

et XACKA‘l

‘ XACK* FROM \ /
INHIBITED SLAVE(S)

XACK* FROM
INHIBITING SLAVE(S)

tip taiz
|+100 ns tAD 100 ns
MAXIMUM MAXIMUM
INH1*, OR
INH2*, OR BOTH

FIGURE 223 Inhibit AC timing.

66 THE MULTIBUS FAMILY OF BUS STRUCTURES

— - 1

NTA
250 ns MINIMUM

‘<— 'cssp——~|

<tINTA
100 ns A
MINIMUM
INTA*
MASTER
50 ns MINIMUM-—>|'AS — AH|-—M(,’N'};|UM T0
ADDRESS SLAVE
LINES (USE STABLE STABLE (ONLY, ADRA*,
ONLY ADRAY, (NOT USED), ADR9*, AND ADR8 * USED)
ADR9*, ADR8¥) 1 ~
XAH*[*+65 ns
0 ns MINIMUM —*f txack |<— NI
N \ /NoNE REQUIRED (MASTER
XACK _/ MUST CREATE OWN
—/ INTERNAL XACK*) = 65 ns SLAVE
tpxL 0ns MINIMUM—+| l DHR MAXIMUM) TO
DATA LINES \/\/ 7
(USE ONLY X X
DAT7*-DATO®) AN \

FIGURE 2-24 Timing for bus-vectored interrupts.

is driven inactive by the bus master for a minimum of 100 ns (fcsgp). The bus
master must maintain control of the system bus in order to guarantee that there
are no intervening bus cycles.

Next, the slave interrupt controller address is put on address lines ADR8* to
ADRA* (ADRS8+ is the least significant bit of slave interrupt controller address)
by the bus master. After the address is valid for a minimum of 50 ns (2,g), the
second INTA* command is generated. The responding module drives the data
lines (DATO* to DAT7#) with the interrupt vector address. The least significant
bit of the vector address is driven onto DATO*. The responding module acti-
vates XACK* after the data lines have been valid for a minimum of 0 ns (¢pxy).
The bus master then removes INTA* and holds the slave interrupt controller
address a minimum of 50 ns (¢ ,y). The responding module must return the data
lines and XACK* to an inactive state and put them in a three-state condition
in less than 65 ns (¢pyg and #xap). The bus master will then execute the interrupt
service routine.

2.4.6 Bus Control Exchange Timing

In this section the timing specifications for the signals required for bus control
to be transferred from one bus master to another are described. The bus
exchange timing is shown in Fig. 2-25.

Note that, before release of the bus (i.e., BUSY* = high), all timing require-
ments of any ending cycle, such as the hold times, must be met according to
the Multibus specification. The same is true of taking control of the bus (i.e.,
driving BUSY* low). All setup and other timing parameters must be met.

L9

tecy
100 ns MINIMUM

o 5 tgcy NOMINAL

~ TN TN TN T T

35ns MAXIMUM tBREQL

tBPRNS

22 ns MINIMUM

35ns
tBREQH—] MAXIMUM

/

BUS IS
T
E ~

<
~

33
¢

[*—22 ns MINIMUM

t :l t
BUSYS | BPRNS
MHMMUM 1
PRIORITY GIVEN TO tBUSY
BPRN* X NEW MASTER ———— 70 ns MAXIMUM
'BPR g MA‘ -’l 25 ns MINIMUM le—1t
30 ns 0 ns MAXIMUM—tggy [+ n BUSYS
MAXIMUM RELEASED BY NEW MASTER
. NEW MASTE
BUSY MASTER
PREVIOUSLY 1

K43

tBPRO

40 ns MAXIMUM
—

¢

IN CONTROL

tgusy
™ !‘—zo ns MAXIMUM

RELEASED BY
NEW MASTER

8P
40 ns

RO —-| PRNO
MAXIMUM 30 ns MAXIMUM

BPRO*

=BPRN*

/]

FIGURE 2-25 Bus exchange AC timing. (Note: Use tpp, bus propagation delay, in all system calculations.)

tpp + t'BRPNS

(= tpp + 22 ns)
le—IF USED BY NEXT
MASTER IN PRIORITY
CHAIN)

68 THE MULTIBUS FAMILY OF BUS STRUCTURES

e LA T

<—eo RO MAXIMUM l/]<——so O MAXIMUM

CBRQ*

BUSY* \
12 us MAXIMUM —-' 'aYso MAXIMUM WAIT TIME FOR BUS CONTROL

FIGURE 226 CBRQs# AC timing. (Note: Use fpp, bus propagation delay, in all system
calculations.)

COMMON-BUS REQUEST

Use of CBRQ#* is optional. A requesting bus master uses CBRQ#* to tell the
controlling bus master that another bus master needs the bus. The timing for
CBRQ* is shown in Fig. 2-26. CBRQ#* is in synchrony with the falling edge of
BCLK#*; it can change state from 0 to 60 ns after a falling edge of BCLK*
(tcerg)- Once CBRQ* is active, the bus master currently controlling the bus
must give the bus up (drive BUSY* inactive) within a maximum of 12 us (¢gyso)
unless it is a higher priority.

SERIAL-PRIORITY ARBITRATION

The timing specifications for serial-priority arbitration are shown in Fig. 2-27.
All serial-priority arbitration signals are in synchrony with the falling edge of
BCLK*.

tppro is the maximum delay time permitted (1) from the falling edge of
BCLK* to BPRO* valid or (2) from BPRN* changing state to BPRO* valid.

tpp is the delay time from one bus master’s BPRO* changing to the next
master’s BPRN* changing.

tpprus is the setup time (22 ns maximum), the time the signal must be valid
before the next falling edge of BCLK*,

The maximum number of bus masters in a system can be determined as
follows. All arbitrations must occur within one BCLK* period.

tecy > tppro + n(fep + tmeRNO) + fBPRNS
where the number of bus masters in the system can be n + 2. As an example.
tBCY = 100 ns

tBPRNO = 30 ns

THE MULTIBUS SYSTEM BUS 69

tPD = 3 ns
_ tgprns = 22 ns
100 ns > 30 ns + n(3 + 30) + 22
100 — 30 — 22
n<—=
33
<14

Maximum number of masters is n + 2 = 3 if BCLK* = 10 MHz.

PARALLEL-PRIORITY ARBITRATION

Figure 2-28 shows the timing specifications for parallel-priority arbitration. All
parallel-priority arbitration signals are in synchrony with the falling edge of
BCLK*. After each falling edge, a bus master has up to 35 ns to activate BREQ#
(treqr). The parallel bus arbitration logic must generate valid BPRN*’s at least

tsey

BCLK* T-\||)/ _: __IL_

MASTERS®
PRIORITIES

BPRN*= LOW LEVEL
HIGHEST - |—tgpRo

BPRO* /
—’, f-trp
BPRN* /
SECOND "l [*-tBPRNO
{BPRO* /
—’l [*tPD
BPRN * /
THIRD {*-tBPRNO
{BPRO* -/

~f e
BPRN* _J.!
NEXT TO{ l~1BPRNO

LOWEST
BPRO* _{]
*~tFD

BPRN* /
LOWEST tBPRNS ™

BPRO* wpoN'T CARE" /

FIGURE 227 Serial-priority AC timing.

70 THE MULTIBUS FAMILY OF BUS STRUCTURES

tecy ‘i

BCLK* ; 5 f ; ; 5
tskew ™ I*

2,

BREQ* AT
EACH MASTER
tBREQL tep
BREQ*
AT CPM
tcem tep

BPRN * ’
FROM CPM
BPRN* AT
EACH MASTER

'cPM(max) S TBCYyyn ~'BREQ yax =2 PDyax ~ TBPRNS yax ~1SKEWMAx
FIGURE 2-28 Parallel-priority AC timing.

35 ns before the next falling edge of BCLK* (tgpgns). The time the parallel bus
arbitration (¢cyp) logic has is calculated as follows:

tome < ey — tereQ — 2fpp — fBPRNs — fskEW
<100—3—2%2—22—2

where tgcy = 100 ns
tCMP < 87ns

MISCELLANEOUS TIMING

The'following diagrams show the timing of constant clock: (CCLK#), Fig. 2-29;
command separation (tcsep), Fig. 2-30; initialize (¢nir), Fig. 2-81; and lock
(LOCK*), Fig. 2-32.

' 110 ns MAXIMUM
I‘; CCY 100 ns MINIMUM
CLK™ \ / \
I*"cw—‘l

-+ 0.65tccy MAXIMUM
0.35tccy MINIMUM

FIGURE 2-29 CCLK= AC timing.

THE MULTIBUS SYSTEM BUS 74

tcmp tcsEP
100 ns 100 ns
© MINIMUM MINIMUM
ANYCOMMAND \ COMMAND / \ ANY OTHER commanD /
MRDC*, 10RD*,

MWTC*, IOWC*,
INTA*

FIGURE 2-30 Command separation AC timing.

pc suppLIEs 5%
YT 5 ms hNiT 5 ms
>0 MINIMUM MINIMUM
INIT* \ \ /
| VPR
DUE TO DUE TO RESET
POWER UP OR OTHER CONTROL

FIGURE 2-31 Initialize AC timing,

T C— e G—

t
LOCK* \ LoCK 7

FIGURE 2-32 LOCK+* AC timing.

2.4.7 Recelvers, Drivers, and Terminations

In this section the driver type (TTL totem pole, open collector, and three-state),
the receiver loading, and the value of the signal termination are specified. All
of these specifications are listed in Table 2-4.

72 THE MULTIBUS FAMILY OF BUS STRUCTURES

(f—_ COMPONENT

=)

|t [PC BOARD]
0 1]
L 0003 in maxiMuM
Lc=06in
lLT r_ COMPONENT L_] c
[PC BOARD |
Y coszintveicar © H Lo
COMPONENT _\ (Ly<le-L7-Lg) :
[PC BOARD | ¢
1] U

FIGURE 2-33 Board-to-board relations.

2.5 MECHANICAL CONSIDERATIONS

The Multibus specification provides all the physical and mechanical informa-
tion needed in the design of Multibus-compatible modules and backplanes.

2.5.1 Board-to-Board Relations

The PCB specifications must be followed when Multibus-compatible boards are
designed. Refer to Fig. 2-33 to better understand the following exercise.

1. Board-to-board spacing L. This is the center-to-center spacing of the boards
when plugged into the backplane. The minimum specification is 0.6 + 0.2
in (1.52 & 0.05 cm). The maximum specification is limited to 18 in (45.7
cm), which is the maximum length of the backplane traces.

2. Board thickness Ly. The board thickness must be 0.062 * 0.005 in (1.57
0.13 mm).

3. Component lead length L;. The length of the component leads below the
PCB must be less than or equal to 0.093 in (2.36 mm).

4, Component height Ly. The maximum height of the components above the
PCB is a function of the board-to-board spacing L¢. In order to be plug-
compatible with all designs, Lc = 0.60 — 0.02 = 0.58 in (1.47 cm). The
following equation is used to determine Ly:

Ly<Lc—Ly— L
< 0.58 in — 0.067 in — 0.093 in
< 0.420 in (1.06 cm) (including board warpage)

THE MULTIBUS SYSTEMBUS 73

Electrically conductive components require Ly to be decreased by 0.020 to
0.040 in (0.5 to 1 mm).

2.5.2 Pin Assignments

Two connectors are required to interface to the Multibus; they plug in the back-
plane. They are labeled P1 (primary) and P2 (auxiliary) and have the specific
signal pin assignments given in Tables 2-5 and 2-6. The P2 connector signal pin
assignments are in two groups: assigned and bused. The assigned lines are as
follows: ADR14#, pin 57; ADR15*, pin 58; ADR16+#, pin 55; and ADR17#, pin
56. The rest of the signals are bused and used by the iLBX bus specification (see
Chap. 5).

2.5.3 Connector-Naming and Pin-Numbering Standards
The connectors on the PCBs must adhere to the following standards (Fig. 2-34):

1. The connectors on the bus side of the boards will be called P1 and P2. P1 is
the 86-pin main connector, and P2 is the 60-pin auxiliary connector.

2. Pins should be numbered with odd-numbered pins on the component side
of the board and in ascending order when going counterclockwise around
the board as shown in Fig. 2-34.

SOLDER SIDE

o
50 2

/_U«zs 1| |49 1| las 1| I \
Ja 2 J3

(OPTIONAL CONNECTOR CONFIGURATION)

COMPONENT SIDE

P1 P2
—Il asl |1 59|

2 86 ‘ 2 60
-/

AN

SOLDER SIDE SOLDER SIDE
FIGURE 2-34 Connector and pin numbering.

TABLE 2.5 Multibus Pin Assignments of Bus Signals on P1 Connector

Component side

Circuit side

Pin

Mnemonic Description

Pin

Mnemonic Description

Power supplies

Bus controls

Bus controls
and address

Interrupts

Address

Data

Power supplies

GND Signal GND
+5V +5VDC
+5V + 5V DC
+12V +12V DC
Reserved, bused
GND Signal GND

BCLK* Bus clock
BPRN=* Bus pri. in
BUSY+* Bus busy
MRDC* Mem read ecmd
IORC* 1/0 read emd
XACK=* XFER

acknowledge
LOCK* Lock
BHEN=* Byte high

enable
CBRQ* Common bus

request

CCLK#* Constant clk
INTA=* Interrupt
acknowledge

INT6# Parallel
INT4* interrupt
INT2* requests
INTO*

ADRE* Address bus
ADRC+*
ADRA#*
ADRS8=*
ADRG6#*
ADR4#
ADR2x
ADRO=*

DATEs* Data bus
DATC=*
DATAx=
DATS8»
DATG6+*
DAT4x
DAT2+#
DATO=*

GND Signal GND
Reserved, bused
-2V —12V DC
+5V +5V DC
+5V +5V DC
GND Signal GND

GND Signal GND
+5V +5V DC
+5V +5V DC
+12V +12 VDC
Reserved, bused
GND Signal GND

INIT* Initialize

BPRO+* Bus pri. out

BREQ+* Bus request

MWTCx Mem write cmd
IOWCx 1/0 write cmd
INHI1= Inhibit 1 disable RAM

INH2#* Inhibit 2 disable ROM
ADI10=

AD11=*

AD12#
AD13#

INT7+ Parallel
INTS#* interrupt
INT3=* requests
INT1+

ADRF=* Address bus
ADRD=*
ADRB#*
ADR9#*
ADR7=*
ADRS*
ADRS3#*
ADR1=*

DATF=*
DATD+=
DATB«*
DAT9*
DAT7*
DATS*
DAT3+
DATI=*

GND Signal GND
Reserved, bused
—-12V —-12V DC
+5V +5V DC
+5V +5V DC
GND Signal GND

74

TABLE 2.6 Pin Assignments on Multibus P2 Connector

THE MULTIBUS SYSTEM BUS 75

Component side

Circuit side

Pin Mnemonic Description Pin Mnemonic Description
1 Reserved 2 Reserved
3 Reserved 4 Reserved
5 Reserved 6 Reserved
7 Reserved 8 Reserved
9 Reserved 10 Reserved

11 Reserved 12 Reserved
13 Reserved 14 Reserved
15 Reserved 16 Reserved
17 Reserved 18 Reserved
19 Reserved 20 Reserved
21 Reserved 22 Reserved
23 Reserved 24 Reserved
25 Reserved 26 Reserved
27 Reserved 28 Reserved
29 Reserved 30 Reserved
31 Reserved 32 Reserved
33 Reserved 34 Reserved
35 Reserved 36 Reserved
37 Reserved 38 Reserved
39 Reserved 40 Reserved
41 Reserved 42 Reserved
43 Reserved 44 Reserved
45 Reserved 46 Reserved
47 Reserved 48 Reserved
49 Reserved 50 Reserved
51 Reserved 52 Reserved
53 Reserved 54 Reserved
Address 55 ADRI16#* Address bus 56 ADR17* Address bus

57 ADR14x% 58 ADRI15#

59 Reserved 60 Reserved

Note: Refer to the iLBX bus specification for the definition of the reserved bus lines.

3. The connectors on the non-Multibus system bus side of the board will be
called J1, J2, J8, etc. An attempt should be made to number these connectors
in ascending order when going clockwise around the boad as viewed from
the component side.

2.5.4 Standard Outline of the PCB

Figure 2-35 is the standard outline for any Multibus-compatible board. The
connectors on the non-bus edge of the PCB are not restricted as long as the
dimensions of the board still meet the outline in Fig. 2-35.

2.6 LEVELS OF COMPLIANCE

The Multibus system bus supports various levels of compliance of the full spec-
ification. In this section we will discuss the variable elements of capability, the

76 THE MULTIBUS FAMILY OF BUS STRUCTURES

g g
co =
0.25 X 0.25 TYPICAL EJECTOR HOLE 0.109
\ 2 PLACES 2 PLACES \
6.20—
5.950 ——)
COMPONENT SIDE
£ OF CONTACT € OF CONTACT
] P1 P2
0.250— Ly 43 PINS ; 30 PINS —0
NIRRT IR s na i asny yusnnd
0.550 LU i
| A B C
0.04 X 0.04 0.06 R !
|| apLACES 10 PLACES [
oow ot o o O
N (¥] -~ 0
g.u: [} <o N
o @ @ -
N
o
DETAIL A DETAIL B DETAIL C
-‘ ,‘-0.156 -| ro.loo RADIUS PERMISSIBLE
Vand -~
. '\ ‘F | '\ \151]\7‘\
m m 0.300 TYPICAL 0300 TYPICAL 0.30
{ 3

-’l L—0.063 TYPICAL —'I L—0.0SO TYPICAL -’IL-04045

FIGURE 2-35 Standard outline of the PCB.

compliance relationship for masters and slaves, and the notation used to
describe the level of compliance with the Multibus system bus.

2.6.1 Variable Elements of Capability

The Multibus system bus has flexibility built into its structure in order to permit
the system designer to build different systems with boards of varying capabili-
ties. Variations are permitted in the following areas:

1. Data path width

2. 1/0 address width

3. Interrupt attributes

THE MULTIBUS SYSTEMBUS 77

DATA PATH

Both 8- and 16-bit data path products can operate on the Multibus system bus.
All byte operations occur on the lower byte of the data path, thus allowing the
8- and 16-bit products to work together.

MEMORY ADDRESS PATH

The Multibus standard requires a 24-bit address path. In many systems a 16- or
20-bit address path may be required.

INTERRUPT ATTRIBUTES

The Multibus system bus supports various interrupt attributes. A product may
support no interrupts, NBV interrupts, or BV interrupts. There are two methods
of interrupt sensing: preferred level-triggered and, for historical compatibility
only, edge-level-triggered.

LEVEL-TRIGGERED INTERRUPTS

The active level of the interrupt request line (INTX#*) indicates an active
request. Since no edge is required, several sources can be attached to a single
request line. Each source must have a means of reading the interrupt request
status of each of the possible interrupt sources and a programmatic means of
clearing the request.

EDGE-LEVEL-TRIGGERED INTERRUPTS

The transition from the inactive (high) to the active (low) level indicates an
active request if, and only if, the active level is maintained at least until it has
been recognized by the bus master. This method does not support multiple
sources on the same request line. Edge-level-triggered interrupts are supported
for historical compatibility only and no new designs shall use it.

A bus master may support both methods or the level-triggered method. It is
necessary to configure interrupt sources such that the interrupt request method
corresponds to the interrupt-sensing method of the bus master. Note that a
source which is compatible with level triggering is also compatible with the
edge-level triggering,

2.6.2 Masters and Slaves

When constructing Multibus systems, it is not necessary that all modules have
identical capabilities. One bus master may generate only 20 bits of addresses,
and a slave may decode 24 bits of address. The system is functional and reliable.
The only restriction is that one bus master is limited to 1M byte (20 address bits)
of address space.

The system designer must evaluate the required capabilities in terms of sup-
plied capabilities; each product will provide some set of capabilities. A trans-

78 THE MULTIBUS FAMILY OF BUS STRUCTURES

action between two products will be restricted to use the capabilities that are
supported by both products. It is the responsibility of the system designer to
assure the viability of these transactions.

2.6.3 Compliance-Level Notation

The following notation allows a vendor to specify accurately a product’s level
of compliance with the Multibus/IEEE-796 standard. For hybrid boards, com-
pliance levels of both the master and slave interfaces must be specified. Increas-
ing levels of compliance imply lesser levels for data path width, memory
address path width, and I/O address path width. Interrupt attributes are listed
separately, because they are independent of one another. The lack of an ele-
ment specification implies no capability for that element.

DATA PATH

D8 8-bit data path

D16 8- and 16-bit data path

MEMORY ADDRESS PATH

M16 16-bit memory path

M20 20-bit memory path

M24 24-bit memory path
. 1/O ADDRESS PATH

I8 8-bit I/O address path

I16 8- or 16-bit I/O address path
INTERRUPT ATTRIBUTES

VO NBYV interrupt requests

\'§) Two-cycle BV interrupt requests

V3 Three-cycle BV interrupt requests

E Edge-level triggering only

L Level triggering

EL Level or edge-level triggering

COMPLIANCE-LEVEL MARKING

The compliance levels of a module shall be clearly marked on the PCB as well
as included in the module specification.

THE MULTIBUS SYSTEM BUS 79

EXAMPLES

A bus master which supported an 8- and 16-bit data path, 24 bits of memory
address, 8- or 16-bit I/O address, BV (two-cycle), and NBV interrupts would
be specified as follows:

Multibus compliance: Master D16 M24 116 V02 L

A bus slave with both I/0O and memory which supported an 8- and 16-bit data
path, 20 bits of memory address, 8- or 16-bit I/O address, and NBV interrupts
would be specified as follows:

Multibus compliance: Slave D16 M20 116 VO L

3

Multichannel Bus

This chapter provides the basis for a conceptual understanding of the Multi-
channel bus and how it extends the architecture of the Multibus system bus.
Included are the logical and physical descriptions of the bus, the devices that
connect to the bus, and bus-programming information. The notation used
throughout this book is the same as that defined for the Multibus system bus in
Sec. 2.1. The information in this chapter is based on the Intel Multichannel Bus
specification (142804 Rev C). It is recomended that anyone designing on the
Multichannel bus obtain the latest version from Intel Corporation.

3.1 WHY THE MULTICHANNEL BUS IS REQUIRED

As a system bus is required to perform data movement as well as processor
communication or execution, or both, its overall performance decreases. In
many disk-based systems there is often a large amount of data movement on
the bus or there are other applications in which high-speed I/O into or out of
the system is required. Often a system bus is unable to provide the necessary
bandwidth for nonbuffered I/O transfers. In some cases a system bus may be
capable of handling the high-speed 1/O transfers while sacrificing the band-
width required for communication or execution. This can result in overall deg-
radation of system performance.

One way to increase the bandwidth of the system bus is to remove the high-
speed real-time I/O that tends to saturate it. A typical solution is to provide a
buffered DMA controller for the system as shown in Fig. 3-1. This approach
creates two problems. First, a buffered DMA controller has a specialized inter-
face for the peripheral that attaches to it. As other DMA devices are required,
additional controllers must be added to the system bus. Another problem is that

MULTICHANNEL BUS 84

GRAPHICS
DISPLAY

VIDEO
‘ HARD DISK ‘) CAMERA

I T

SPECIALIZED SPECIALIZED SPECIALIZED
INTERFACE INTERFACE INTERFACE
HARD VIDEO GRAPHICS
SBC DISK CAMERA DISPLAY
CONTROLLER CONTROLLER CONTROLLER
DATA DATA DATA
BUFFER BUFFER BUFFER

< MULTIBUS SYSTEM BUS >
Y

SBC SBC MEMORY f-—-H MEMORY

FIGURE 3-1 Typical DMA controller solution.

buffered controllers have a fixed on-board buffer size. If the buffer size require-
ments change, the controller also must change. Both problems affect hardware
and may affect the system software as well.

The Multichannel bus provides a standard high-speed I/O gateway to the
Multibus system bus without saturating the Multibus system with real-time
burst DMA transfers. When a standard interface is used, the Multichannel bus
shares many of the attributes of a standard system bus discussed in Chap. 1.
This bus allows multiple heterogeneous devices to be connected to it while
maintaining a standard interface. Memory as well as 1/O can be connected to
allow buffers of various sizes for the DMA operations. Figure 3-2 is an example
of a Multichannel-based system. In this figure the hard disk controller, video
camera, and graphics display controller of Fig. 3-1 are combined on the Mul-
tichannel bus with the buffers. If more or different DMA devices are required,
they can be added to the Multichannel bus without affecting the system bus.
Additional memory can be added if the buffer requirements change. In both
cases the connection to the system bus remains unchanged. As with the system
bus, new VLSI can be incorporated quickly; therefore, advantage of new tech-

82 THE MULTIBUS FAMILY OF BUS STRUCTURES

‘ HARD DISK ‘ '

VIDEO
CAMERA

GRAPHICS
DISPLAY

MULTICHANNEL
INTERFACE

MULTICHANNEL
INTERFACE

MULTICHANNEL
INTERFACE

[1\ [

[MULTICHANNEL 4 >
BUS

Y 4

MULTICHANNEL MULTICHANNEL
INTERFACE

INTERFACE
SBC SBC MEMORY - —==- MEMORY

MULTICHANNE L
INTERFACE

MULTICHANNEL
INTERFACE

y
< MULTIBUS SYSTEM BUS >
‘ v

SBC SBC

FIGURE 32 Multibus system bus with Multichannel bus extension.

nologies can be taken. The standard interface allows the system designer to take
advantage of VLSI interfacing integrated circuits.

A common problem in many system applications is that the 1/O devices are
physically separated from the processor’s system bus by relatively large dis-
tances. Normally this requires a specialized bus to be developed to communi-
cate with these devices. The Multichannel bus has the added ability to link
together 1/0 devices that are distributed over a. distance of 50 ft (15 m) from
the system bus.

3.2 LOGICAL DESCRIPTION OF THE MULTICHANNEL BUS

The Multichannel bus is a block-oriented DMA bus which, when used with the
Multibus system bus, provides an architectural extension to the Multibus system

MULTICHANNEL BUS 83

bus. Figure 3-2 is a diagram of a typical Multibus system utilizing the Multi-
channel bus. The key features of the Multichannel bus are:

« Standardized controlled interface
« High bandwidth
o Distributed device support over relatively long distances

e Simple data transfer technique

The bus is capable of transferring data at a maximum rate of 8M bytes per
second over 50 ft (15 m) of twisted pair flat ribbon cable. The Multichannel bus
can support 16 devices with 16M bytes of memory space and 16M bytes of
I/0 space. Data widths for the devices can be 8- and 16-bit.

The data is transferred via an asynchronous handshake between devices.
Asynchronous transfers were chosen for the bus to allow communication among
devices that vary in speed and distance from one another. Figure 3-3 shows an
example of the Multichannel bus with several devices attached to it. In the illus-
tration, device 1 is writing data to device 2. Device 1 signals to device 2 that
data is valid after device 1 places data on the bus. Device 2 ensures that device
1 will hold the data valid until it has read the data. Once device 2 has accepted
the data, it signals device 1 that it has done so. The importance of this hand-
shake can be seen if device 1 can transfer data at 2M bytes per second and
device 2 can accept data only at 1M byte per second. This interlocked hand-
shake ensures that device 2 will receive all the data while not constraining
device 1 to transfer data at that rate. If device 3 in Fig. 3-8 is capable of receiv-

DATA/ADDRESS : > ADO-ADI5*
- CONTROL > R/W,A/D
. DATA /ADDRESS VALID : » DROY*
: DATA ACCEPTED > oacC?
—ADDRESS ACCEPTED s Aacc
. INTERRUPT —+ 5T0® sRa¥
_BUS EXCHANGE s
SA
\ 4 ? A IYYY
DEVICE 1 DEVICE 2 DEVICE 3
SUPERVISOR INTELLIGENT CONTROLLER BASIC TALKER/LISTENER

FIGURE 3-3 Block diagram of bus with supervisor, controller and basic devices attached.

84 THE MULTIBUS FAMILY OF BUS STRUCTURES

ing data at a 2M bytes per second rate, device 1 could transfer at the higher
rate when communicating with device 3.

3.2.1 Bus States

In order to understand the bus operation, one must first understand the device
states: the mode and activity level of a device at any given time during bus
operation. The bus is based on a master-slave relationship in that a master ini-
tiates the data transfer by some action on the control lines and a slave responds
to this action. Referring back to Fig. 3-8, device 1 is the master and device 2 is
the slave. In this example device 1 informs device 2 what type of data will be
transferred and in which direction. Device 2 looks at these signal lines and
decides whether it should receive or send data and when the transfer is to begin.

A master-slave approach was chosen to allow communication between
devices that vary in speed and distance from one another. This approach
requires a positive acknowledge interlocked transfer between devices. Its draw-
back is that a device must synchronize to the acknowledge.

MASTER STATE

A device is in the master state whenever it is controlling the command-action
lines on the bus. The master is responsible for addressing devices and determin-
ing the length of the transfer. The Multichannel bus allows the bus mastership
to be passed among the attached devices. However, only one master can be
active at a time. In Fig. 3-3, device 1, the master, is responsible for addressing
device 2 or 8 and controlling the data transfer. If device 2 or 3 is capable of bus
mastership, device 1 may choose to move the mastership to either of the other
devices.

SLAVE STATE

A device is in the slave state whenever it is monitoring the bus command-action
lines. The slave is responsible for monitoring the bus for its device address. No
action can be performed on the bus by a slave without direction from the mas-
ter. A system can contain multiple slaves, each monitoring the bus for its
address. However, only one slave can be actively transferring data on the bus
at a time. In Fig. 8-3, devices 2 and 3 are the bus slaves. Each device will mon-
itor the bus for its address being sent by device 1, the bus master. Once device
2 has been addressed for a data transfer, it will wait for the signal from device
1 to start the transfer.

ACTIVE STATE

A slave device is in the active state whenever it has been addressed for a transfer
by a master. Only one slave may be active on the bus at a time. Bus masters
are always active on the bus. In Fig. 3-3, device 1 is the master; therefore, it is

MULTICHANNEL BUS 85

active. Device 2, the slave,will be inactive until device 1 addresses it for a trans-
fer operation. Once addressed, device 2 will be in the active state.

TALKER STATE

A talker is any device which is writing data to the bus and signaling that its
data on the bus is valid. Both masters and slaves can be talkers. Referring to
Fig. 3-8, the master, device 1, will be the talker during the address cycle, since
only the master can write addresses on the bus. However, if the slave, device 2,
is addressed to write data to the bus during a data cycle, it will become the
talker. The master also can be a talker during data write transfers.

LISTENER STATE

A listener is any device that is reading data from the bus and signals that the
data has been accepted. Both masters and slaves can be listeners. Referring to
Fig. 3-8, the slave, device 2, will be the listener during the address transfer from
the master, device 1. When device 2 is addressed to write data to the bus, device
2 becomes the listener. When the slave is writing data to the bus, the master is
the listener. When the master is writing data to the bus, the slave is the listener.

3.2.2 Btjs Devices

The Multichannel bus supports three classes of devices. Each device has a dif-
ferent function or responsibility on the bus. At 2 minimum the bus requires a
supervisor type of device to control the bus and an additional device for the
supervisory device to communicate with.

BASIC TALKER-LISTENER

A basic talker-listener device can write or read data to the bus but has no bus
control capability. The basic devices in a system can be any combination of
talker only, listener only, or talker and listener device. A basic device is a slave;
therefore, its data flow is directed by a bus master. Basic talkers-listeners are
addressed by a bus master, and the amount of data is controlled by a bus master.
Typical basic devices are memory cards and simple I/O devices. Device 2 is
the basic talker-listener for the implementation of the bus shown in Fig. 3-3.
Device 2 must wait for its address from the master, device 1, and must be told
whether to read or write data. In this example device 2 has no bus control capa-
bility; therefore, it will only receive the control signals.

BUS CONTROLLER

A bus controller, like the basic talker-listener, can read and write data to the
Multichannel bus and is also capable of controlling the transfer signals and pro-
gramming other devices on the bus. The bus controller appears as a slave on the
bus until it is directed by the bus supervisor to assume mastership of the bus.

86 THE MULTIBUS FAMILY OF BUS STRUCTURES

Normally, a bus controller is used in a system in which the supervisor cannot
keep up with the data transfer rate or the system performance dictates that data
be moved only once. Typical bus controllers are disk systems and high-speed
I/O devices. Device 3 in Fig. 3-3 is the bus controller. When programmed by
the supervisory device, device 3 appears as a slave on the bus; in this example,
it is instructed to perform a transfer with the basic talker-listener device 2.
When instructed, it leaves its slave status and assumes mastership of the bus.
The transfer is then between devices 2 and 3.

BUS SUPERVISOR

A bus supervisor has all the properties of the bus controller and basic talker-
listener. In addition, it has ultimate control of all data movement over the bus.
A supervisor is always the bus master unless it passes control to a bus controller.
On the Multichannel bus the supervisor is responsible for scheduling all data
transfers, resolving and granting bus priority, monitoring bus status, and han-
dling all bus interrupts. In a given Multichannel bus system there can be only
one supervisor. In Fig, 3-3 the bus supervisor is device 1. In this example device
1 has control of all transfers on the bus. If device 1 requires the bus controller,
device 3, to take mastership of the bus, the exchange will be under the control
of device 1. Device 1 may regain bus control at any time.

At a minimum level a system would contain a supervisor, which would be
the system master, and a basic talker-listener, which would be the system slave.
In Fig. 3-8 the minimum system would contain the supervisor, device 1, and
the basic talker-listener, device 2, which is a slave.

3.3 BUS SIGNAL DEFINITIONS

This section deals with the signals that make up the bus structure and how they
are used in various bus operations.

The Multichannel bus is composed of 60 signal lines that can be broken into
five classes: addresses and data, control, interrupt, data integrity, and reset. The
bus does not support any power lines. Power for the devices must be supplied
at the device location. There are 22 ground lines, which are used for signal
return, and 8 lines that are reserved for future expansion.

3.3.1 Address-Data

The address-data (AD) group (ADO* to AD15#) consists of 16 bidirectional lines
on which all address and data transfers take place. A 16-bit transfer uses all 16
lines; an 8-bit transfer uses only ADO* to ADT*. Since the bus is block-oriented,
the address information is sent once for every block of data. A block of data is
defined as a minimum of 1 byte to a maximum of 16M bytes. In most appli-
* cations data length will be greater than 1 byte. Block data provides an increase
in peformance by not wasting bus bandwidth with address information on each

MULTICHANNEL BUS 87

transfer. The multiplexed lines allow effective sharing of the same lines for
address and data. This simplifies the driver, receiver, and termination of each
device and reduces the width of the interconnecting cable. The control line
A/D determines whether the information on the address-data lines is address
or data.

3.3.2 Control

The control group is composed of five signals. Two signals, data ready (DRDY*)
and data accept (DACC*), are data transfer handshake signals. One signal,
address accept (AACC), is an address transfer handshake signal. Two signals,
read-write (R/W) and address-data mode (A/D), are transfer control signals.
The last of this group, supervisor active (SA*), is a bus control signal. In the
following section these signals will be described and how they work with the
bus will be explained.

ADDRESS DATA

The A/D line is driven by the current bus master to inform the slave devices
whether the information on the AD lines is address or data. This line is moni-
tored by each slave so it can actively monitor the bus for its address. When the
A/D line is high, address information is placed on the bus by the master. When
the A/D line goes low, this informs the addressed (active) slave that the infor-
mation sent is data. When the bus is in data mode, the active slave continues to
talk or listen until the A/D line goes back into the address mode. The inactive
devices also must continue to monitor this line during data cycles so they can
be ready for the next address cycle.

READ-WRITE

The read-write (R/W) line is driven by the current bus master to inform the
slave devices the direction in which the data is flowing. The direction is always
referenced to the bus master. When the R/W line is high, the master reads data
from the bus as a listener and the active slave writes data as a talker. Conversely,
when the R/W line is low, the master writes data to the bus as a talker and the
active slave reads data as a listener. During address cycles the master places the
R/W line low to inform the slaves that it is writing an address to the bus.

DATA READY

Data ready (DRDY*) is an active-low line driven by the current talking device
that informs the listening device that data is valid on the AD lines. The data on
the bus can be address or data, which is determined by the state of the
A/D control line. It is important to note that DRDY* is used to signal that
address or data is valid. Only masters drive DRDY* during address cycles,
whereas any talking device drives DRDY#* during data cycles. The DRDY*
signal must remain active until an accept signal is received from the listening
device.

88 THE MULTIBUS FAMILY OF BUS STRUCTURES

ADDRESS ACCEPT

Address accept (AACC) is an active-high line driven by all slaves on the bus to
inform the bus master that the address information is accepted. The AACC
signal is sent by all slaves connected to the bus in response to a DRDY* when
the bus is in the address mode. AACC is open collector, which allows all slaves
to actively drive this line. This allows slaves of varying speeds and distances
from the master to accept and assimilate the address information correctly. The
disadvantage is that the address information will be accepted at the rate deter-
mined by the slowest device on the bus. This signal goes active only after the
slowest device has accepted the address data.
Figure 3-4 shows an example of a Multichannel bus address cycle.

1. The master places the A/D and R/W control lines in the state signifying an
address write cycle (A/D = high, R/W = low).

2. The master then places valid address information on ADO* to AD15%.

ADO *-AD15* }(\ ADDRESS INFORMATION >

P S

™
A/D)
OO
R/W
DRDY* @ — @

T e

FIGURE 3-4 Multichannel bus address cycle.

MULTICHANNEL BUS 89

3. Once this data has been allowed to propagate, the master drives DRDY*
active.

4. The slave responds after receiving and decoding the information by driving
AACC active.

5. The master continues to hold the DRDY * signal active and the address infor-
mation valid until it receives the AACC signal. At that time it removes the
DRDY * signal.

6. The slave, upon receiving DRDY* inactive, removes the AACC signal.

In Fig. 3-3, there are two slaves which will be driving the AACC signal. For
this example assume that device 2 is faster in response than device 3; in this
case device 2 drives the AACC signal first. Since the AACC is an open collector
device, the line remains inactive until device 3 has accepted and decoded the
information. This ensures that the address information remains valid for
device 3.

DATA ACCEPT

Data accept (DACC#) is an active-low signal driven by the active listening
device informing the talking device that it has accepted data. The DACC# sig-
nal is sent by the listening device in response to a DRDY#* when the bus is in
the data mode. Only an active listening device may drive DACC*. The action
of DACC#* is similar to that of AACC. The difference is that AACC is used in
address transfers and DACC is used in data transfers.

Figure 3-5 shows an example of a Multichannel bus data cycle.

1. The bus is placed in the data mode by the master driving the A/D line low.
The data flow, as determined by the R/W line, also is set by the master.

2. The talking device places data on ADO* to AD15%.

3. After meeting the data setup time, the talking device drives DRDY* active.

4. After the listening device receives DRDY#* active and reads the data, it
drives DACC# active.

5. The data and DRDY* remain valid until the talking device receives the
DACCH* signal. At that time it removes the DRDY* signal.

6. After the listening device receives DRDY* inactive, it removes the DACC#
signal.

SUPERVISOR ACTIVE

Supervisor active (SA*) is an active-low signal driven by the supervisor inform-
ing all devices when it has control of the bus. The signal relations for SA* are

90 THE MULTIBUS FAMILY OF BUS STRUCTURES

ADO*-AD15* >< DATA X

A/D

I
|
* l §®
DRDY | ‘ r—’ @

DACC* | ® @

FIGURE 3-5 Multichannel bus data cycle.

shown in Fig. 3-6. A bus controller, which is programmed to be a master, must
monitor this signal to know when it may take control of the bus. Once it has
assumed bus mastership, it must continue to monitor this signal while it is per-
forming a bus transaction. Under normal conditions a supervisor will allow a
bus controller master to finish its transaction before regaining control of the bus.
If an error occurs or a higher-priority transfer needs to take place, the supervisor
can assert SA* prior to the transfer completion to take control of the bus. Once
SA* has been asserted, the bus controller must turn off its bus drivers within a
specified amount of time.

In Fig. 8-3, device 1, the bus supervisor, has programmed device 3 to take
over the bus. Device 3 must monitor the SA* line to ensure the supervisor is no
longer on the bus. If device 1 wants to regain the bus, it may assert the SA*
line. It is the responsibility of device 3 to remove itself from the bus.

3.3.3 Bus Interrupt Lines

The Multichannel bus supports two bus interrupts: supervisor take over (STO*)
and service request (SRQ*). Both lines are received exclusively by the supervisor
and are driven by bus controllers and basic devices.

MULTICHANNEL BUS 91

SUPERVISOR TAKE OVER

Supervisor take over (STO*) is an active-low signal driven by basic devices and
bus controllers to inform the supervisor of two possible conditions: task comple-
tion and bus error. A bus controller which has mastership of the bus uses STO*
to inform the supervisor that it has completed its current task. The STO* signal
is also used whenever a bus error occurs. A bus error is defined as a device
hardware failure (memory, disk, etc.) or a bus parity error. A device that has
either of these failures asserts the STO* signal. On receipt of the STO* the
supervisor will, at some time, poll and service the requesting device(s) on the
bus until the STO* signal has been removed. Only the bus supervisor may act
upon an STO*.

SERVICE REQUEST

Service request (SRQ#) is an active-low signal driven by a basic device or bus
controller to inform the supervisor that it needs service. A supervisor may pro-
gram a device to perform a task off line (e.g., a seek on a disk). The device will
signal the supervisor that it is ready by asserting the SRQ# line. The service
request should be used whenever service is required by a device. One desig-
nated use for the SRQ« line is a power-up configuration signal to the bus super-

ADO*-AD15%)/)_()\F

A/D
_—d
—==

- T T T
Y |

SA*
SUPERVISOR SUPERVISOR OFF BUS,
ADDRESS / INTELLIGENT
PROGRAMS INTELLIGENT CONTROLLER ADDRESSING
CONTROLLER DEVICE

FIGURE 3-6 Signal relations for SA=*.

92 THE MULTIBUS FAMILY OF BUS STRUCTURES

visor. The use of this signal is covered in Sec. 3-5, “Programming Information.”
The supervisor has the option to mask this signal until it is ready to accept the
signal. As with the STO* signal, the supervisor polls and services the requesting
device(s) on the bus until the SRQ#* signal has been removed.

3.3.4 Parity

The parity signal (PB#*) is used to qualify the data integrity of the transfer and
should be sampled by the listening device when DRDY#* goes active. Parity is
an active-low signal defined as follows:

1. When an odd number of AD lines are high during an address or data trans-
fer, the parity line will be active (low).

2. When an even number of AD lines are high during an address or data trans-
fer, the parity line will be inactive (high).

The parity signal is generated by the master for all addresses and by the
talking device for all data transfers over the bus. When a listener detects a parity
error, it must assert the STO* signal to the supervisor. The only exception to
this rule occurs when the listener is the supervisor, in which case it will already
be informed of the error.

The Multichannel bus allows certain subsets to the parity mode. The first
subset is a no-parity mode. If the no-parity mode is selected, slaves must not
sample parity during address transfers and listeners must not sample parity dur-
ing data transfers. When a parity mode is selected, masters must generate parity
during address transfers and talkers must generate parity during data tra}lsfers.
Another subset is for 8-bit devices. When they are used in an 8-bit-only system,
only 8-bit parity needs to be sent and received. If, however, 8- and 16-bit
devices are on the same bus, the 8-bit slave must check 16-bit parity for address
transfers. The 8-bit slave is only required to send and receive 8-bit parity for
data transfers.

3.3.5 Reset*

The Multichannel bus supports a Reset* signal to bring the bus to a known state.
The supervisor is the only device that drives Reset*, but all other devices con-
nected to the bus receive it. After power-up, the supervisor will hold this signal
low for a minimum of 5 ms. This will guarantee that all devices are in a known
state and ready for the supervisor’s commands. If the supervisor needs to regain
control of the bus rapidly during a transfer cycle, it may choose to assert Reset*
on the bus. This action will immediately stop any transaction on the bus. Cur-
rent transfer and bus status data are lost when Reset* is used in this manner.

MULTICHANNEL BUS 93

3.4 BUS TRANSFER OPERATIONS

Now that the signal lines have been defined, a functional description of each
Multichannel operation is possible. The Multichannel bus supports four basic
cyles: address, data, interrupt, and bus exchange. All four cycles use the basic
transfer techniques shown in Figs. 3-4 and 3-5 and will be described in the
following sections.

3.4.1 Address Cycle

The address cycle allows a master to activate the slave that has the resource that
the master requires. There must always be an address cycle before a data cycle
can start. There are two forms of addressing: the select and the deselect cycles.
The select cycle tells a slave the 24-bit starting address of the data transfer, the
direction of the data transfer, and the type of data transfer. The deselect cycle
informs the selected slave that the data transfer cycle is completed. All addresses
are transferred in two bus cycles in that two words are transferred for 16-bit
devices and two bytes are transferred for 8-bit devices.
Figure 3-7 shows the signal relations for one complete address cycle.

ADO*-AD15* X@T) J

—_— e
| r——=
R/W W /

DRDY * | \@ @’ \ ’ \
—d -
AACC —--“\‘ 9/—_—\@

. I MASTER WRITING MASTER WRITING DATA OR
DACC ! FIRST ADDRESS SECOND ADDRESS ADDRESS

FIGURE 3-7 Signal relations for one address cycle.

94 THE MULTIBUS FAMILY OF BUS STRUCTURES

1. The master places the A/D line high (address mode) and the R/W line low
(write mode).

. The master then places the first part of the address on ADO* to AD15x.
. After the address is valid, the master drives DRDY* active.
. After all the slaves accept the address, AACC goes active.

YU & W

. When the master receives AACC active, it knows that all slaves have read
the address; therefore, the master removes DRDY*.

6. When the slaves receive DRDY* inactive, they remove AACC.

The second bus cycle of the address cycle occurs in the same manner as the
first cycle. An address cycle is completed only after both transfers have been
completed. During address cycles all slaves accept the address and drive AACC.
Only after the slowest device on the bus drives AACC will the master see the
signal active. This ensures proper synchronization for slow and fast devices on
the bus.

The format of the address (Fig. 3-8) supports both 8- and 16-bit devices. In
Fig. 3-8, the address (bits 16 to 23) = most significant byte of 24-bit memory
or register address; device number = a number from 0 to 15; RES = reserved
bit; M/R = memory-register address bit; R/W = read-write bit; address (bits
8 to 15) = middle byte of 24-bit memory or register address; and address (bits
0 to 7) = last significant byte of 24-bit memory or register address. The first
word is composed of the high-order starting address bits (16 to 23), the device
number, the memory-register (M/R) bit, and the R/W bit. The device number
is the physical number that selects the slave; it is composed of 4 bits, allowing
a range of device numbers between 0 and 15. Device number 15 is a special
case and will be discussed in connection with the deselect cycle. The M/R bit
informs the slave whether the data transfer operation will be for memory or
I/O. When this bit is low, the transfer will be for memory; when it is high, the
transfer will be for I/O. The R/W bit provides eatly status information on the
direction of the data flow. A slave can decode it for advanced information on

WORD 1
ADDRESS (BITS 16-23)t DEVICE NUMBER RES RES M/R R/W
15 8 7 4 3 2 1 0
WORD 2
ADDRESS (BITS 8~15)1 ADDRESS (BITS 0-7)
15 8 7 0

FIGURE 3-8 Address format. (Note: Bits marked { are undefined when 8-bit addressing
is used.)

MULTICHANNEL BUS 95

the direction of the data flow when the bus is placed into the data mode. When
it is low, the data flow will be to the slave; when it is high, the data flow will be
from the slave. The high-order address bits 16 to 23, in conjunction with word
2 address bits 0 to 15, give a 24-bit starting address.

Eight-bit devices can support either word or byte address cycles. If the
device supports only byte address cycles, the starting address can only be in the
range of 0 to 255 (bits 0 to 7) for both memory and 1/0. An 8-bit device can
support word address cycles if it requires a larger resource space while only
supporting byte data transfers. In a system that supports both 8- and 16-bit
devices, the 8-bit slave must check 16 bits of parity during an address cycle
whether or not it supports the word address cycle.

The deselect address cycle operation follows the same sequence as the select
cycle. The difference between the two is in the makeup of the address words.
In the deselect cycle the device number is 15 (bits 4 to 7 of word 1 high). All
other bits of the address words are zero. The deselect cycle informs all slaves
that the transfer is completed. This allows inactive slaves to synchronize for the
next select cycle.

3.4.2 Data Cycles

Data cycles are the transfer cycles in which data is passed between the master
and the slave. The basic handshake transfer sequence is similar to that of address
cycles. Data cycles differ from address cycles in that a data cycle can be com-
posed of 1-byte to 16M-byte transfer cycles. The number of transfer cycles is
determined by the master. Another difference between data and address cycles
is that only the active slave is responding to the master during data cycles.

In Fig. 3-9 the bus is shown in write mode in that the master (talker) is
writing data to the slave (listener).

1. The master drives the R/W line low (write mode) and the A/D line low
(data mode).

2. After the bus control lines have been set, the master places the data on AD0#*
to AD15+*.

3. Once the specified data setup time has been met, the master drives DRDY#
active to inform the slave that data is valid on the bus.

4. After the slave receives DRDY* active and has read the data, the slave drives
DACC* active to inform the master that it has accepted the data.

5. The master, upon receiving DACC# active, removes DRDY* and the data
on ADO* to AD15%.

6. The slave, upon receiving DRDY* inactive, removes DACC#.

96 THE MULTIBUS FAMILY OF BUS STRUCTURES

ADO*-AD1S* ® % j(

T e /LT
DRDY __/ ® ® __-

AACC ‘\
\

!
*
bace* \@ /("D
SECOND DATA WORD

FIRST DATA WORD
FIGURE 39 Bus write data cycle.

N-TH DATA WORD

The cycle continues until the master places the bus in address mode (A/D
high). The slave, upon receiving the address mode signal, stops its cycle and
waits for instructions from the master.

Figure 3-10 shows a bus read sequence in that the master is reading data
from the slave. This transfer sequence is similar to the bus write sequence
except that now the slave is the talker and is writing data to the master, which
is now the listener.

1. After the master has completed the address cycle, it places the R/W line
high (read mode) and the A/D line low (data mode).

2. The slave, upon receiving the A/D line in data mode, places the data on
ADO* to AD15+.

3. Once the data has met the specified setup time, the slave drives DRDY*
active to inform the master that data on the bus is valid.

4. The master, upon receiving DRDY*, reads the data and drives DACC* to
inform the slave that data has been accepted.

5. The slave, upon receiving DACC#, removes DRDY#* and the data.

6. The master, upon receiving DRDY* inactive, removes DACC*.

MULTICHANNEL BUS 97

The cycle continues until the master places the bus in address mode (A/D
high). The slave, upon receiving the address mode signal, stops its cycle and
waits for instructions from the master.

Once the bus is in data mode, the transfer sequence between the master and
the slave is the same. The only difference between read and write mode is the
direction of the data flow. While in data mode, all talking devices (master or
slave) place data on the bus and drive DRDY*. In a similar manner, all listening
devices (master or slave) read data from the bus and drive DACC#*. The master
has the responsibility for monitoring the number of cycles, and the slave has the
responsibility for monitoring the A/D line for end of transfer.

The 8-bit data transfers are similar to the 16-bit data transfers except that
the data is placed on ADO* to AD7# only. It is always the responsibility of the
master to match the data width of the slave with which it is transferring data.
If a 16-bit master wants to transfer data with a 8-bit slave, it must send and
receive the data on ADO* to AD7* only. Also, the master must generate and
check parity only for those lines. The 8-bit slave is required to generate or check
parity only for ADO* to AD7+* in the data mode.

3.4.3 Transfer Cycle

The basic transfer cycle is used for data transfers, bus control exchange, and
interrupt handling. The transfer cycle is composed of a select address cycle, a

S IR Y

-1 ————

| —

! 1
DROY* | \
] \@ /@ \ ’ -
M
AACC \
1
* [
DACC] @ 6
~d
FIRST DATA WORD SECOND DATA WORD N-TH DATA WORD

FIGURE 3-10 Bus read data cycle.

98 THE MULTIBUS FAMILY OF BUS STRUCTURES

ADO* - AD15 * [ADDRESS x ADDRESS | DATA Xﬂ" DATA (ADDREssx ADDRESSJ(
A/D
:L
R/W -

oror * T U I VY A W [Y A Y
AACC r—\ ‘ N /-—\

DACC * U

DEVICE BEING DATA TRANSFER DEVICE BEING
SELECTED DESELECTED

FIGURE 3-11 Complete bus transfer cycle.

data cycle of 1 byte to 16M bytes, and a deselect address cycle. Figure 3-11
shows the timing relations for one complete transfer cycle. During the select
address cycle the master places the bus in the address write mode (A/D = high,
R/W = low) and places the address information on the bus. After both address
words have been accepted, the master places the bus in data mode (A/D =
low). Depending on the data flow direction, the master will set the bus in either
read or write mode. When all data has been transferred, the master will place
the bus back in the address write mode. The slave, upon receiving the address
mode signal, stops all current bus activity. The master completes the transfer
cycle by performing the deselect address sequence.

3.4.4 Control Arbitration and Exchange

Bus control exchanging allows a supervisor to pass the bus mastership to a bus
controller. Passing the control normally occurs when the supervisor cannot meet
the data transfer requirements or when system performance requirements dic-
tate that the data be moved directly to another Multichannel device without
going through the supervisor. In the latter case the bus controller can access
buffer memory directly and not have to move the data twice (controller to
supervisor, supervisor to buffer). Control arbitration is handled by the supervisor
via a system-dictated priority scheme. When a device requires service or the
bus, the supervisor will grant the bus on the basis of the device’s priority. This
centralized method of arbitration is simple to understand and implement. Its
drawback is that it is slower and less efficient than the distributed arbitration
method used on the Multibus system bus. Since the Multichannel bus is pri-

MULTICHANNEL BUS 99

marily a data movement bus, and secondarily a multimaster bus, the centralized
control was chosen.

Control exchange is handled by the SA* line and is demonstrated in Fig. 3-
12. Whenever the supervisor is on the bus, it will drive SA#* active. A supervisor
that wishes to release the bus will program the bus controller with the required
information. The bus controller must monitor the SA* line to detect when the
supervisor is off the bus. Once the supervisor is off the bus, the bus controller
can drive the A/D and R/W lines. The controller can now transfer with other
slaves on the bus. It is the responsibility of the controller to continue to monitor
the SA* line. Under normal circumstances the controller will complete its trans-
fer cycle and inform the supervisor by driving the STO* signal active. If, how-
ever, the supervisor requires the bus prior to the transfer completion, it will
drive SA* active. Upon receiving the SA* signal, the controller must relinquish

the bus.

3.4.5 Interrupt Handling

STO* and SRQ#* are the Multichannel bus interrupts used for signaling the bus
supervisor. These signals have similar timing but their use in the system is dif-
ferent. Figure 3-13 shows the timing relations for STO* and SRQ=*. A device
that requires the attention of the bus supervisor drives either STO* or SRQ*
active. Upon receiving the interrupt signal, the supervisor performs a deselect

. > < CONTROLLER SUPERVISOR /
ADOT-AD15 ADDRESS /DATA ADDRESS /DATA

sa* —J \

SUPERVISOR OFF THE BUS SUPERVISOR ON THE BUS
FIGURE 3-12 Bus control exchange cycle.

400 THE MULTIBUS FAMILY OF BUS STRUCTURES

DRDY* \

sTO*

INTERRUPT INTERRUPT
GENERATION CLEARED

FIGURE 3-13 Bus interrupt cycle.

address cycle and begins polling the devices on the bus. When a supervisor polls,
it selects each device and reads the device’s appropriate interrupt register. The
value in the register informs the supervisor if the device interrupted and the
reason for the interrupt. Section 3.5 has detailed information on Multichannel
registers and their programming. After reading the interrupt register, the super-
visor deselects the device and performs some action if the device it polled gen-
erated the interrupt. The supervisor continues to poll the remaining devices
until the interrupt signal has been removed from the bus. Polling priority and
the supervisor’s interrupt latency are dependent on system requirements and
supervisor programming.

3.5 PROGRAMMING INFORMATION

The Multichannel bus contains 16M bytes of register space. The first 16 register
locations (0 to 15) have been defined for Multichannel bus system usage. The
remaining registers are available for user definition. In this section bus register
programming, register use in device polling, bus exchanges, and interrupt han-
dling are described.

3.5.1 Register Addressing

Multichanel register addressing is similar to Multichannel memory addressing,
Referring back to Fig. 3-8, the format of the Multichannel register address is
equivalent to a memory address except that M/R bit (bit 1 of word 1) is high,

MULTICHANNEL BUS 104

which indicates that the remaining 24 bits of the address cycle are a register
address. A register transfer cycle follows the same flow as a transfer cycle men-
tioned in Sec. 3.3. Registers can be 8- or 16-bit. A 16-bit device normally has
16-bit registers, and an 8-bit device has 8-bit registers.

3.5.2 Multichannel Register Detinition

To allow for system uniformity, Multichannel registers 0 to 15 are designated
for system use. The system registers can be 8- or 16-bit. It is up to the program-
ming device to know the register size. As a rule 8-bit devices do not have the
functionality or flexibility of their 16-bit counterparts. The Multichannel bus
registers are listed in Table 3-1. Their definitions and uses are detailed below.

STO STATUS REGISTER

The STO register is supported by all bus controllers and basic devices, and its
value indicates the status of the STO# signal. The STO* signal indicates to the
supervisor that a device requires assistance, and the STO register provides fur-
ther definition. When a device asserts STO*, it places a nonzero value in its
STO register. All other devices maintain zero values in this register space. When
the supervisor reads the register on each device, it can ascertain that the device
asserted STO* by a nonzero value in the register. There are two main categories
for the STO register value: device error (bit 7 = high) and bus controller status
(bit 7 = low). The value that can be placed in a device register may be further
expanded by the user for device-specific error reporting and status reporting.

TABLE 3-4 Multichannel Bus Registers

Register number Definition Mode Width
0 STO, flag, status Read only 8 bit ,
1 SRQ, flag, status Read only 8 bit
2 SRQ, mask Write only 8 bit
3 Device command Write only 8 bit
4 Device parameter Write only 8 or 16 bit
5 Data address 1 Read or write 8 or 16 bit
6 Data address 2 Read or write 8 or 16 bit
7 Block length 1 Read or write 8 or 16 bit
8 Block length 2 Read or write 8 or 16 bit
9 Error address 1 Read only 8 or 16 bit
10 Error address 2 Read only 8 or 16 bit
11 Address extension Write only 8 or 16 bit
12-15 Reserved

16-16M bytes User defined Read or write 8 or 16 bit

4102 THE MULTIBUS FAMILY OF BUS STRUCTURES

SRQ STATUS REGISTER

The SRQ register is supported by all bus controllers and basic devices and its
value indicates the status of the SRQ* signal. The SRQ#* signal indicates to the
supervisor that a device requires service, and the SRQ register further defines
the type of service a device requires. When a device asserts SRQ+, it will place
a nonzero value in its SRQ register. All other devices maintain zero values in
this register space. When the supervisor reads the register on each device, it can
ascertain that the device asserted the SRQ#* signal by a nonzero value in the
register and act upon the information provided. The Multichannel bus defines
certain values for system use; it is described in Fig. 9-5.

The bus defines a power-up autoconfiguration in which the SRQ* signal and
register are used. When a device is turned on, it can assert its SRQ* signal.
Referring to Fig. 9-5, when bit 7 of the SRQ register value is high, the super-
visor is informed that the register contains configuration information. Bits 0
and 1 further define the type of device; bit 2 defines the width of the device;
and bit 3 determines whether the register contains power-up or power-down
information. If bit 3 is high, the device is in power-up mode, if it is low, the
device is informing the supervisor that it will be going off line. Bits 4 to 6 are
always 0.

When bit 7 is low, the SRQ register contains information other than power-
up configuration. The value that can be placed in the SRQ register may be
futher expanded by the user for specific device requirements when bit 7 is
low.

SRQ MASK REGISTER

The SRQ mask register is supported by all bus controllers and basic devices; it
allows a supervisor to disable the SRQ#* signal at the source device. Masking at
the device allows a supervisor to set device priority in having an SRQ* service.
In a system a supervisor may also elect to mask the SRQ* signal at its level and
disallow any SRQ* signal from being received. Masking at the supervisor is
normally performed during crucial transfer periods. To mask the SRQ* signal
at a device, the supervisor writes a 1 to the device’s SRQ mask register. To
unmask the SRQ* signal, the supervisor writes a 0 to the SRQ mask register.

DEVICE COMMAND REGISTER

The device command register allows a supervisor to pass device specific com-
mands to a bus controller. The value written is user-definable and may be cho-
sen to meet system requirements. One example of device command register use
is a bus takeover command. The supervisor can tell the bus controller that its
registers are set and that it can take over the bus once the supervisor is off the
bus. Another example is a command to an intelligent disk controller to perform

MULTICHANNEL BUS 103

an off-line buffered sector read and to signal the supervisor via the SRQ#* line
when the task has been completed.

DEVICE PARAMETER REGISTER

The device parameter register is used by the supervisor to pass the device num-
ber, data direction, and transfer type information to a bus controller prior to a
bus takeover by the controller. The format of this register is equivalent to the
first byte of the first word in the address cycle (see Fig. 3-8).

DATA ADDRESS REGISTERS

The data address register pair informs a bus controller of the starting address
of the block transfer. This register pair is normally programmed by the super-
visor prior to a bus takeover by the controller. The data address is composed of
two 16-bit registers if on a 16-bit device yielding 32 bits of real address. For 8-
bit devices the data address is composed of two 8-bit registers yielding 16 bits
of real address. Data address register 1 is the most significant.

BLOCK LENGTH REGISTERS

The block length register pair informs a bus controller of the data transfer block
size. This register pair is normally programmed by the supervisor prior to a bus
takeover by the controller. The block length is composed of two 16-bit registers
if on a 16-bit device yielding a maximum 32-bit block size. For 8-bit devices
the block length is composed of two 8-bit registers yielding a maximum 16-bit
block size. Block length register 1 is most significant.

ERROR ADDRESS REGISTERS

The error address register pair is read by a supervisor for the location of an
error on a device. When a device generates an STO* due to an error, it will
load these registers with the error address value. After the supervisor reads the
STO status register, it may read the error register depending on the status reg-
ister value. The error address is composed of two 16-bit registers if on a 16-bit
device yielding a maximum 32-bit real error address. For 8-bit devices the error
address is composed of two 8-bit registers yielding a maximum 16-bit error
address. Error address register 1 is most significant.

3.5.3 Device Polling

Device polling is the method used by the supervisor to query the devices for
interrupt origin. SRQ* and STO* are the two interrupts which can cause a
device poll. A poll of the device occurs when the supervisor reads the SRQ status

404 THE MULTIBUS FAMILY OF BUS STRUCTURES

register or STO status register of the device. The timing relations shown in Fig.
3-13 are for one device. Figure 3-14 is the flow diagram of a complete bus poll.
After the supervisor receives an interrupt (SRQ* or STO#*), it will complete the
current bus cycle and deselect the active device. The supervisor will then
address and read the interrupt register of the highest-priority device. After the
status register has been read by the supervisor, the device has the responsibility
for removing the interrupt signal and setting its status register to zero. If the
status is nonzero, the supervisor will perform some action with that device. After
the action has been completed, the supervisor will test to find out whether the
interrupt has been removed. If the interrupt has been removed, the poll is com-
pleted. Otherwise, the supervisor addresses and reads the interrupt status reg-
ister of the next-lower-priority device. In a similar fashion, if a zero value is
read and the interrupt signal is still active, the supervisor moves on to the next-
lower-priority device. This cycle continues until the interrupt signal has been
removed. A bus error occurs when the supervisor receives an interrupt but can- -
not locate the source with a poll. The handling of this class of error is system-
dependent.

3.5.4 Bus Exchange Programming

Bus exchange programming occurs when the supervisor loads the bus control-
ler’s system registers for an exchange of bus mastership to the bus controller.
The supervisor will load the block length registers, data address registers, device
parameter register, and the device command register. When the device com-
mand register is loaded, this action informs the bus controller that all registers
are loaded and the supervisor is ready to get off the bus. At this point the bus
controller will monitor the SA* line for bus availability as shown in Fig. 3-12.
A bus controller may be preprogrammed with the data address information,
block length information, and the device parameter information. Therefore,
loading of these registers may not be required. At a minimum level the device
command register must be supported by the controller and loaded by the super-
visor to allow for proper system synchronization.

After the controller has the bus, it will take the information (preprogrammed
or loaded) and perform a transfer cycle with the directed device. On comple-
tion of the transfer, the controller will signal the supervisor via the STO* line.
The value placed in the STO status register by the controller will indicate to the
supervisor that the task has been completed and the bus has been released.

3.6 ELECTRICAL SPECIFICATION

In this section all the timing and loading and drive characteristics of the Mul-
tichannel bus are described.

sob

ADO*-AD15*

DRDY*

DACC*

AACC

R/W

STO* SRQ*

3

. DEVICE REGISTER
DATA DESELECT ADDRESS REGISTER ADDRESS
(2 ADDRESS WORDS) \ (2 ADDRESS WORDS) DATA
2 R
STO*, SRQ* SUPERVISOR SUPERVISOR SUPERVISOR READS
ASSERTED CLEARS BUS ADDRESSES DEVICE DEVICE REGISTERS

REGISTER

FIGURE 3-14 Supervisor bus polling sequence.

406 THE MULTIBUS FAMILY OF BUS STRUCTURES

3.6.1 Llogical State and Electrical Level Relations

The signal names indicate if the signals are active-high or active-low. If the
signal name ends with an asterisk, the signal is active-low and has the following
logical state and electrical level relations in which L = low and H = high:

Logical state Electrical level At receiver At driver
0 H =TTLhigh 525V=H=20V 525V=H=24V
1 L = TTL low 08V=L=-05V 05V=L=0V

If the signal name has no asterisk, the signal is active-high and has the fol-
lowing logical state and electrical level relations:

Logical state Electrical level At receiver At driver
0 L=TILlow 08V=L= —05V 05V=L=0V
1 H = TTL high 525V=H =20V 525V=H=24V

These specifications are based on TTL when the power source is 5 V + 5 per-
cent as referenced to logic GND.

3.6.2 Signal Line Characteristics

The Multichannel bus transmission medium is twisted pair flat ribbon cable
which has a maximum length of 50 ft (15 m). The timing parameter tp, is the
signal propagation delay per foot of flat cable. This parameter can affect the
maximum transfer rate expected on the bus because of the distance between
devices, and

tp max = 2 ns/ft (6.5 ns/m)

Therefore, 50 ft (15 m) of cable will cause a signal delay of 100 ns and one data
transfer cycle will require a minimum of 200 ns to complete the handshake
operation.

Each class of signals has a particular waveshape associated with its driver-
receiver characteristics. Figure 3-15 provides the signal summary for the AD,
control, and support lines of the Multichannel bus.

The AD lines (ADO* to AD15%) can be at one of three levels depending on
the state of the Multichannel device. When a device is driving the AD lines
high, the signals are at level 1. When the bus is tri-stated with no device driving
the AD lines, the signals are at level 2. When a device drives the address lines
low, the signals are at level 3.

MULTICHANNEL BUS 407

VOLTS
Omp wan

VOLTS
O PW & O

VOLTS
O-=PwWbeE O,

VOLTS
oOm~rnwawm

VOLTS
(=2l I URR)

FIGURE 3-15 Setup, hold, and ringing summary: (a) AD15+-AD0%; (b)
AACG; (c) DACCs, SRQ#, STO#, RESET, SA+; (d) DRDY+, R/W, A/D, PAR-
ITY NONINVERTING; (e) DRDY#*, R/W, A/D, PARITY INVERTING. (Note
(D Driver on, driving high. @) Driver off. (@) Driver on, driving low.)

408 THE MULTIBUS FAMILY OF BUS STRUCTURES

The signal line address accept (AACC) is an open collector driver with the
typical waveform shown in Fig. 3-15. The actual pulse width for a given imple-
mentation will vary with the voltage level at which a master sees AACC active
and the master’s AACC active-to-DRDY* inactive time (t¢). Figure 3-15 shows
the typical time to a TTL input threshold and the maximum voltage the signal
can obtain. .

The remaining open collector signal lines (DACC*, SRQ#*, STO#*, RESET*
and SA*) have the typical waveforms given in Fig. 3-15. The signals have a
maximum high level of 3.5 V and a minimum low level of 0.0 V. The maximum
overshoot when the signal goes from a high to a low level is 0.5 V.

The differential lines (DRDY*, R/W, A/D, PARITY) have the inverting and
noninverting signal waveforms shown in Fig. 3-15. The resultant signal is the
difference between the two signal levels. The separation between the two signals
should be no less than 1.8 V. When the drivers are off (level 2), the signal sep-
aration guarantees the level of the resultant control signal. When the nonin-
verting signal is at level 1, the inverting signal is at level 3. Conversely, when
the noninverting signal is at level 3, the inverting signal is at level 1.

3.6.3 Bus Power Specification

The Multichannel bus does not supply any power lines; therefore, every device
that connects to the bus must supply its own power. The bus does supply 22
signal return grounds for all devices to use.

3.6.4 Environment
All bus specifications must be met while the environment is within the following
limits:
Temperature 0 to 55°C (32° to 131°F); free moving air across the modules
(200 LFM is recommended)
Humidity 90% max relative (noncondensing)

Shock 30g of force 11 ms in duration three times in three planes

Vibration Sweeping from 10 to 55 Hz and back to 10 Hz at a distance
of 0.01 in (0.25 mm) peak to peak lasting 3 min in each of
three planes

3.6.5 Bus Timing

All the timing specifications of the Multichannel bus are described in this sec-
tion; they are summarized in Table 3-2. Timing diagrams have been included
to show the signal timing relations.

TABLE 3.2 Multichannel Bus Timing Speclfications

Timing

Ref Parameter description min max Source Note

t) A/D line setup to leading edge of 60 T
DRDY=*

2 A/D line hold after leading edge of 40 T
AACC or DACC+

ta Data mode (A/D low) and R/W 60 M
setup to leading edge of DRDY*

t4 A/D hold after trailing edge of 50 M 1
DRDY*

ts Leading edge of DRDY# to leading 0 L 2
edge of AACC or DACCx

tg Leading edge of AACC or DACC* 0 T 2
to trailing edge of DRDY=

t7 Trailing edge of DRDY= to trailing 0 L 2
edge of DACC#

tg Trailing edge of DRDY* to trailing 0 75 L 2
edge of AACC

to Address mode (A/D high) to 200 M
leading edge of DRDY*

tio AD15#-AD0x, DRDY# in high- 0 M 3
impedance state to A/D low

t A/D high to AD15+-ADOx, 150 M 3
DRDY# out of high-impedance
state

tie Trailing edge of DRDY* to leading 250 M
edge of DRDY# (A/D high)

tis AD15%-ADOx, DRDY#* in high- 0 SU
impedance state to SA* high

ts Trailing edge of DRDY# to leading 100 T
edge of DRDY# (A/D low)

tis SAx low to AD15s-ADO0*, DRDY* 175 SU
out of high-impedance state

t16 Leading edge of DRDY« to leading 0 L 4
edge of STO*

tyr Leading edge of AACC or DACC# 0 L 4
to leading edge of STO*

tis Address mode (A/D high) to 0 SL 5
trailing edge of STO* or SRQ*

tie Trailing edge of STO#* or SRQ+* to 0 SL 5
trailing edge of DRDY*

t20 Reset pulse width RP SU 6

ta A/D high to AD15+-ADO, 75 SL 3
DRDY# in high-impedance state

to A/D low to AD15#~ADOx, 0 M 3
DRDY# out of high-impedance
state

to3 SA* high to AD15%~ADOx, 0 SU

DRDY* out of high-impedance state

109

4110 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 3.2 Multichannel Bus TImIng» Specifications (Continued)

Timing
Ref Parameter description min max Source Note
taq SA* low to AD15%~ADO#*, DRDY* 75 SU

in high-impedance state

o All times listed are nanoseconds unless otherwise noted.

o All signals are shown as TTL-type waveforms. (For differential line pairs, the waveform
applies to the TTL driver input or receiver output.)

o T refers to the selected talker for a bus cycle.

o L refers to the, or a, selected listener for a bus cycle.

® M refers to the selected master for a bus cycle.

@ SL refers to the, or a, selected slave for a bus cycle.

o SU refers to the system supervisor.

1. This timing parameter applies only when there is a message niode transition from address to
data mode or from data to address mode. When the mode does not change, the ““address not
data” line should be held at a constant level.

2. The signals specify the basic bus cycle transfer handshake. Though specified at 0 ns mini-
mum, there is a minimum propagation delay for each parameter relative to the cable length
between the talker and the listener. This propagation delay is approximately 2 ns/ft. Because
the handshake requires a three-step interlock, the minimum propagation delay is multiplied by
3 to determine the total propagation delay. Thus a talker and listener with a short cable run
between them would experience very little propagation delay. However, a talker and listener
separated by the maximum length of Multichannel bus cable (50 ft) would experience a total
propagation delay of at least 300 ns.

3. These parameters apply in messages where the master is the listener for the data mode por-
tion of the message. '

4. These parameters apply when a parity error is detected by a listener during a bus cycle. All
other assertions of the interrupt lines can be asynchronous to the bus operation.

5. These parameters apply during the bus cycle when the STO or SRQ status register of the
device asserting the interrupt line is read during an STO or SRQ poll.

6. The minimum Reset pulse width is 5 ms.

ADDRESS OPERATION

An address operation is generated by the bus master and received by the bus
slaves. The lines involved and the timing relations are shown in Fig, 3-16. The
master places address information on the bus a minimum of 60 ns (¢,) prior to
DRDY* active and sets the A/D line high (address) 200 ns (t5) and the R/W
line low (write) a minimum of 60 ns (¢3) prior to DRDY*. After the setup
requirements have been met, the master drives DRDY* active. All slaves on the
bus respond to the DRDY* by driving AACC active a minimum of 0 ns (¢5)
after receiving DRDY*. Upon receiving AACC active (all slaves have accepted
the address), the master removes DRDY* a minimum of 0 ns (¢¢) and holds the
address 40 ns (t5) after receiving AACC. The slaves then remove the AACC
signal a minimum of 0 ns (¢g) to a maximum of 75 ns (¢g) from DRDY* inactive.
The next address sent by the master must not occur until a minimum of 250 ns
(t12)- The address cycle time t), and the AACC maximum inactive time tg
ensure that the AACC line has settled before the next address is sent.

MULTICHANNEL BUS 114

DATA READ OPERATION

A data read operation transfers data from the slave to the bus master controlling
the bus. The lines involved and the timing relations are shown in Fig. 3-17.
Once the master has completed the address cycle, it guarantees that its A/D
driver is turned off a maximum of 0 ns (¢)0) prior to setting the R/W line to
read mode (R/W = high) and the A/D line to data mode (A/D = low). The
selected slave, which is now the talker, may begin to drive the bus a minimum
of 0 ns (ty,) after the bus is placed in the read data mode. The slave places data
information on the bus a minimum of 60 ns (¢,) prior to DRDY* active. After
the setup requirements have been met, the slave drives DRDY# active. The
master responds to the DRDY* by accepting the data and driving DACC*
active a minimum of 0 ns (#5) after receiving DRDY*. Upon receiving DACC#*
active, the slave removes DRDY* a minimum of 0 ns (¢;) and holds the data 40
ns (t,) after receiving DACC*. The master then removes the DACC* signal a
minimum of 0 ns (¢;) from DRDY#* inactive. The next data cycle can occur
immediately after DACC# is removed. The minimum cycle time is 100 ns (¢,4),
which is the minimum setup and hold time for a data cycle (¢, + t5).

] e |
|
AD1S*-ADO*
PR* DATA ADDRESS x ADDRESS
t2 > ™
—’| s - h Hh —* t2
DRDY* 1 r \
1 -
77 s tg - ts te —* 18
AACC t3

|
|
1
|
|
|
|
|
|
|
i
}
|
|
I
|
l
l
|
|
|
|

1

FIGURE 3-16 Address cycle timing. (Note: For differential line pairs, level denotes posi-
tive portion of differential pair.)

.112 THE MULTIBUS FAMILY OF BUS STRUCTURES

t10—»| |e |

*_ * F
ADIST-ADOL ADDRESS DATA J DATA
1 n—>
-, —| 2 1
1 1 i
DRDY *
—»lt, |e—

8 ~—t3 15 tg—=ty l"
DACC* 4
AACC

/W —/

FIGURE 3-17 Data read cycle timing. (Note: For differential line pairs, level denotes pos-
itive portion of differential pair.)

DATA WRITE OPERATION

A data write operation transfers data from the bus master controlling the bus
to the addressed slave. The lines involved and the timing relations are shown in
Fig. 3-18. Once the master has completed the address cycle, it sets the R/W
line to write mode (R/W = low) and the A/D line to data mode (A/D = low)
a minimum of 60 ns (¢3) before driving DRDY# active. The master, which is
now the talker, places data information on the bus a minimum of 60 ns (¢,)
prior to DRDY* active. After the setup requirements have been met, the master
drives DRDY* active. The selected slave responds to the DRDY* by accepting
the data and driving DACC* active a minimum of 0 ns (I5) after receiving
DRDY=*. Upon receiving DACC* active, the master removes DRDY* a mini-
mum of 0 ns (¢s) and holds the data 40 ns (t,) after receiving DACC*. The
selected slave then removes the DACC* signal a minimum of 0 ns (¢;) from
DRDY#* inactive. The next data cycle can occur immediately after DACC# is
removed. The minimum cycle time is 100 ns (¢14), which is the minimum setup
and hold time for a data cycle (¢; + o).

MULTICHANNEL BUS 443

BUS EXCHANGE OPERATION

The bus exchange operation occurs when the supervisor passes bus control over
to a bus controller and again when it regains control. The lines involved and
the timing relations are shown in Fig. 3-19. When ready to release the bus, the
supervisor guarantees that its A/D and control drivers are turned off a maxi-
mum of 0 ns (¢,3) prior to releasing SA*. The selected master may begin to drive
the bus a minimum of 0 ns (t,3) after receiving SA* inactive. When the super-
visor is ready to regain control of the bus, it will drive SA* active. The super-
visor must also guarantee that it will not drive the A/D and control lines a
minimum of 175 ns (¢,5) after it drives SA* active. The selected master must be
off the bus a maximum of 60 ns (¢,4) after receiving SA* active.

INTERRUPT OPERATION

Interrupt operations include both STO* and SRQ* timing. Since STO* is used
to indicate bus errors as well as device status, additional timing constraints are
placed on STO* for transfer error reporting, Figure 3-20 shows the timing rela-

— 4—122
110——> - |
I
AD15*-ADO*
PB*
1 —t t2 ~—
14
DRDY* / : _
‘—'8 ‘—13 T 15 16 -ty
DACC*

AACC

i\

ADDRESS DATA X DATA
i
f
|
I
I
|
!
!
I
I
!
I
I
|
|
R/W IR |
] |

FIGURE 3-18 Data write cycle timing. (Note: For differential line pairs, level denotes pos-
itive portion of differential pair.) .

444 THE MULTIBUS FAMILY OF BUS STRUCTURES

\
ADI1S*-Ap0* SUPERVISOR MASTER SUPERVISOR >

DRIVERS DRIVERS DRIVERS
_/

DRDY * \ /

pacc*

L
I\

SA*

|
.
o
/i

] i3

FIGURE 3-19 Bus exchange timing. (Note: For differential line pairs, level denotes pos-
itive portion of differential pair.)

tions for STO* as a transfer error signal. In the diagram the current data cycle
is the cycle that error occurred in. The device that detects the transfer error
asserts STO* a minimum of 0 ns (¢,6) after receiving DRDY* active. AACC or
DACCH is driven active a minimum of 0 ns (¢;;) after STO* is asserted. The
SRQ+ signal is removed by reading the device’s SRQ register. The SRQ* signal
may be removed a minimum of 0 ns (#;5) after the device is selected and the
bus is placed in data mode, but it must be removed a maximum of 0 ns (t,9)
prior to the register read DRDY* going inactive. Figure 3-21 shows the timing
relations of STO* and SRQ* when used other than parity error. In this case a
device may place STO* or SRQ* active anytime on the bus. The SRQ* and
STO#* signals are removed by reading the device's interrupt register. The signals
may be removed a minimum of 0 ns (¢,5) after the device is selected and the
bus is placed in data mode, but they they must be removed a maximum of
0 ns (t,9) prior to the register read DRDY* going inactive.

MULTICHANNEL BUS 445

3.6.6 Recelvers, Drivers, and Terminations

In this section the driver type, the receiver loading, and the signal termination
requirements are defined. The driver-receiver direct-current (DC) specifica-
tions are listed in Table 3-3. Figure 3-22 is a diagram of the three bus driver-
receiver configurations supported on the bus. It should be noted that all open
collector lines should be received by hysteresis—Schmitt trigger devices, such as

R/W |
___________ -
___________ —_
A/D \
-t [—
16 — & [+ t19*,
DRDY* / \
—_ t18
sTo*

LY e S
e U

FIGURE 3-20 Transfer error interrupt timing. (Note: For differential line pairs, level
denotes positive portion of differential pair.)

R/W /
___________ J
Tt === -
A/D \

< ¢ 4—119-»
DRDY*
t
18 — e
STO*
SRQ¥*

FIGURE 321 Status interrupt timing. (Note: For differential line pairs, level denotes
positive portion of differential pair.)

446 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 3.3 Multichannel Bus DC Specilfication

Minimum driver Maximum receiver
requirements, mA requirements, mA
Signal Driver | Termination® Load cap, Load cap,
name type Q High|Low pF High [Low pF
AD15-0% | Tristate 110 —5 | 48 300 02 |08 15
SAs Open coll 110/220 (N.A.P| 48 300 0.4 |06 15
Reset* | Open coll 110/220 N.A. | 48 300 0.4 | 06 15
AACC | Open coll 1000/2000 | N.A.| 48 300 04 | 06 15
DACC+ | Open coll 110/220 N.A. | 48 300 0.4 (06 15
SRQ+* Open coll 110/220 N.A. | 48 300 0.4 | 06 15
STO* | Open coll 110/220 N.A. | 48 300 0.4 | 06 15
R/W Dif, noninv | 220/470 —20| 40 300 05 | 05 15
R/W/ |Dif, inv 470/220 —201| 40 300 0.5 | 05 15
A/D Dif, noninv | 220/470 —20]| 40 300 05 | 05 15
A/D/ |Dif, inv 470/220 -~20| 40 300 05 | 05 15
PB* Dif, noninv | 220/470 —201| 40 N.A. 0.5 | 05 N.A.
PBs/ Dif, inv 470/220 —20| 40 N.A. 05 [05 N.A.
DRDY#* |Dif, noninv | 220/470 —20 | 40 N.A. 05 [05 N.A.
DRDY#/ |Dif, inv 470/220 —20| 40 N.A. 0.5 |05 N.A.

“Termination provided only at the physical ends of the interconnect cable. Where the positive termination
(pull-up) resistance is different from the negative termination (pull-down) resistance, the positive termination
resistance is listed first.

bN.A. = not applicable.

the 74L.S14, that have a minimum Vi, — Vi_ of 0.4 V. Figure 3-23 is the bus
termination schematic diagram for both ends of the cable. This is the only ter-
mination on the cable, and it can be supplied by the devices or by special ter-
mination modules. '

3.7 MECHANICAL CONSIDERATIONS

In this section all the physical and mechanical considerations that a designer
requires for proper Multichannel bus implementation are defined. In the fol-
lowing sections the Multichannel bus mechanical requirments are set forth.

3.7.1 Cable Specification

A 60-conductor flat ribbon cable is the recommended bus data transmission
medium. The cable has the following chracteristics:

Impedance 95 to 105 nominal
Capacitance 22 pF/ft (72.18 pF/m) nominal

MULTICHANNEL BUS 147

Propagation delay 1.7 ns/ft (5.58 ns/m) nominal
Length 50 ft (15 m) max

Multichannel implementation recommends twisted and flat cable over distances
greater than 5 ft (1.5 m) or in noisy environments. For extremely noisy or harsh

environments, jacketed and shielded flat ribbon cables are recommended. Table
38-4 supplies the complete bus cable specification and vendor listing.

5}'\—/——]5 m MAXIMUM ————|
+

110 &
10 Q
8303 OR = s
EQUIVALENT L
8303 OR
CONFIGURATION A EQUIVALENT

+5V

3487 OR
EQUIVALENT

3486 OR
CONFIGURATION B EQUIVALENT

220 @

74LS14 OR
EQUIVALENT

7438 OR EQUIVALENT

CONFIGURATION C
FIGURE 322 Bus driver-receiver configurations.

418 THE MULTIBUS FAMILY OF BUS STRUCTURES

PULL UP TERMINATION TERMINATION
+5V MODULE
10
ADO* l 2 2 - 2 I
l iy : | S1n0Q
{ (16 PLACES) o 3
: 10 i EVEN PINS : |
ADF * ' o 32 . 2 ||
108
SIGNAL RETURN 1-43 ODD (21 PLACES) ., 1-43 ODD =
+5V =
1k
AACC 36 N 36
iy 320
10 &
RESET™ — 3.4 ' 2 34
SRQ : :
sro: : +5V : 3: 00
SA : :
pacc* | 10 @ ;
I 44 . 44
+5V $2209
1’
220 2
DRDY: > fs 2 — 4.6
PARI;IW } +5V 24708
A/B : (4 PLACES) i 3
| 220 0 i EVENPINS
| 52 . A
Ky %; 4709
%470 Q
45 s 45
oroY*a | : :
*xa +5V H i :
PARIHW“ l : (4 PLACES) ; 32208
A/D® | 470 O i ODD PINS i
' 51 . 6
:: 2208

FIGURE 3-23 Bus termination configuration. (Note: °Inverted output differential
driver.)

MULTICHANNEL BUS 149

TABLE 3.4 Cable Specification and Vendor Listing

Physical properties
Conductors 28 AWG, 7/36 strand, tinned copper
Conductor insulation 0.010-in wall, nominal
Conductor spacing, twisted pair 0.10 in, nominal
Conductor spacing, flat 0.050 in, £10%
Cable thickness, flat 0.042 in, nominal
Temperature rating 80°C

Electrical properties
Impedance (nominal) 105 Q * 10%
Propagation velocity (nominal) 1.7 ns/ft
Capacitance (nominal) 22 pF/ft

Insulation requirements
Voltage rating (minimum) 100 VDC
Insulation resistance (minimum) 1 X 10'°Q

MULTICHANNEL-BUS-COMPATIBLE CABLE

Vendor Type Vendor number Conductors
Belden Plain flat ribbon 91.28060 60
Belden Twisted pair ribbon 9V28060 60
Belden Insulated flat ribbon 91.28260 60
Spectrastrip Plain flat ribbon 455-240-60 60
Spectrastrip Twisted pair ribbon 455-248-60 60
Spectrastrip Insulated flat ribbon 151-2830-060 60

MULTICHANNEL-BUS-COMPATIBLE CONNECTORS

Vendor Type Vendor number Pins
Berg Male, header 65823-103 60
Berg Female, mass-terminated 65949-960 60
M Male, header 3372-1302 60

3M Female, mass-terminated 3334-6000 60

3.7.2 Connector-Receptacle Specification

A 60-pin connector (3M part number 3372-1302 or equivalent) is used on all
devices that connect to the Multichannel bus. The mating receptacle (3M part
number 3334-6000 or equivalent) is mass-terminated on the flat ribbon cable.
Figure 3-24 is an outline drawing of the connector and the pin-numbering con-
vention. A list of compatible connectors is given in Table 3-4.

3.7.3 Multichannel Bus Pin Assignments
The pin assignments for the Multichannel bus are listed in Table 3-5.

420 THE MULTIBUS FAMILY OF BUS STRUCTURES

RIGHT-ANGLE
/ CONNECTOR

BOARD SURFACE
59— —= .;._)_1 - (COMPONENT SIDE)
60 ————O 2
59
[3 ° |_| N\ COMPONENT SIDE
60 ‘ (TOP-EDGE VIEW)

FIGURE 3-24 Connector outline and pin numbenng convention.

3.74 Bus Termination

The terminating resistors required for the Multichannel bus can be placed on
the devices or handled by special terminating modules. The bus specification
does not place any restriction on the method of cable termination. The only
requirement is that the bus be terminated by the pull-up resistors at one end of
the cable, pull-down resistors at the other end of the cable, and no other ter-
mination resistors.

3.8 LEVELS OF COMPLIANCE

The Multichannel bus supports various levels of compliance of the full specifi-
cation. In this section the variable elements of capability and the notation used
to describe the level of compliance are discussed.

3.8.1 Varlable Elements of Capabllity
The Multichannel bus has, built into its structure, flexibility which allows the

system designer to build different systems with boards of varying capabilities.
Variation in the following areas is permitted:

¢ Data path width

o Address path width

o Parity support

o Interrupt register support

DATA PATH

Both 8- and 16-bit data path products can operate on the Multichannel bus. All
byte operations occur on the lower byte of the A/D bus (ADO* to AD7+), which
allows 8- and 16-bit products to work together.

ADDRESS PATH

MULTICHANNEL BUS 124

Both 8- and 16-bit address path products can operate on the Multichannel bus.
For the 8-bit address path both address words are transferred on the lower byte
of the A/D bus (ADO* to AD7%). The 8-bit address path devices support only
8 bits of memory and I/O address. The 16-bit address path devices support 24
bits of memory and I/O address.

PARITY

The Multichannel bus supports both a parity mode and a no-parity mode. If a
parity mode is selected, then, at a minimum, all talkers must generate parity.

TABLE 3.5 Multichannel Bus Pin Assignments

Lower row Upper row
Pin Mnemonic Signal name Pin Mnemonic Signal name
1 GND Ground 2 ADO= A/D line 0
3 GND Ground 4 ADIlx A/D line 1
5 GND Ground 6 AD2x A/D line 2
7 GND Ground 8 AD3# A/D line 3
9 GND Ground 10 AD4x A/D line 4
11 GND Ground 12 AD5» A/D line 5
13 GND Ground 14 AD6# A/D line 6
15 GND Ground 16 ADT7» A/D line 7
17 GND Ground 18 AD8x A/D line 8
19 GND Ground 20 AD9* A/D line 9
21 GND Ground 22 AD10x A/D line 10
23 GND Ground 24 ADI11x A/D line 11
25 GND Ground 26 ADI12x A/D line 12
27 GND Ground 28 AD13# A/D line 13
29 GND Ground 30 ADl14=* A/D line 14
31 GND Ground 32 AD15# A/D line 15
33 GND Ground 34 RESET* Reset
35 GND Ground 36 AACC Address mode accept
37 GND Ground 38 SRQ=* Service request
39 GND Ground 40 STO+= Supervisor take over
41 GND Ground 42 DACCx Data mode accept
43 GND Ground 44 SA* Supervisor active
45 PB+/ Parity bit (inv.) 46 PB= Parity bit
47 R/W/ Read not write (inv.) 48 R/W Read not write
49 A/D/ Address not data (inv.) 50 A/D Address not data
51 DRDY*/ Data ready (inv.) 52 DRDY* Data ready
53 RES Reserved 54 RES Reserved
55 RES Reserved 56 RES Reserved
57 RES Reserved 58 RES Reserved
59 RES Reserved 60 RES Reserved

422 THE MULTIBUS FAMILY OF BUS STRUCTURES

When the no-parity mode is selected, then, at a minimum, all listeners on the
bus must not check parity. When parity mode is selected, an 8-bit device in a
8- and 16-bit system must check parity for all 16 bits.

INTERRUPT REGISTER

Whenever a device supports the interrupts SRQ* and STO#, it must also sup-
port the associated registers. A device may support one, both, or neither of these
registers.

3.8.2 Compliance-Level Notation

The following notation allows a vendor to succinctly and accurately specify a
product’s level of compliance with the Multichannel bus standard. The omission
of an element specification implies no capability for that element.

DEVICE TYPE
SUP Supervisor
CON Controller
BD Basic device
DATA PATH
D8 8-bit data path
D16 8- and 16-bit data path
ADDRESS PATH
A8 8-bit address path
Al6 16-bit address path
PARITY
P8 8-bit parity generated and checked
P16 16-bit parity generated and checked
INTERRUPT SUPPORT
SRQ SRQ interrupt, register-supported
STO STO interrupt, register-supported

COMPLIANCE-LEVEL MARKING

The compliance level of a module must be clearly stated in the module speci-
fication and may be marked on the PCB.

MULTICHANNEL BUS 423

EXAMPLES

A basic device with 8-bit data and address that supports 16-bit parity and the
STO interrupt would be specified as follows:

Multichannel bus compliance BD D8 A8 P16 STO

An intelligent controller with 16-bit address and data width which supports
SRQ and STO interrupts but does not support parity would be specified as
follows:

Multichannel bus compliance CON D16 A16 STO SRQ

3.9 SUMMARY

Since the Multichannel bus is an integral part of the Multibus family, it can
architecturally enhance any Multibus system design. It can extend the range of
the Multibus system bus in terms of performance and physical distribution. It
has the bandwidth to handle most high-speed data movement applications
while providing a straightforward interface. If the user has partitioned the sys-
tem so that the high-speed data requirements can be moved to the Multichannel
bus, the design can take full advantage of the Multibus family.

4

iSBX 1/O Bus

This chapter provides the basis for a conceptual understanding of the iSBX/
IEEE-P595 bus and describes how the bus extends the architecture of the Mul-
tibus system bus. Included are the logical and physical descriptions of the bus
and the devices that connect to the bus. Also, a detailed look is taken at the
electrical and mechanical specifications. The notation used throughout this book
is the same as that defined in the Multibus/IEEE-796 functional description in
Sec. 2-1. The information in this chapter was based on the Intel iSBX Bus Spec-
ification (14686-002) dated March 1981 and the Proposed IEEE Standard Spec-
ification IEEE P595 1/O Expansion Bus. It is recommended that anyone design-
ing with the iSBX bus obtain the latest versions of these specifications from Intel
Corporation.

4.1 WHY THE iSBX BUS IS REQUIRED

Engineers designing systems around board-level computers historically have
chosen between large and small boards. Large boards, such as the Multibus
boards, reduce the space and also the number of boards required for a complete
system. But the addition of small amounts of capability, such as a few /O lines,
to the system necessitates another large board, which might be overkill for the
application. Smaller boards provide greater flexibility in customizing a system,
but their disadvantage is that even a simple system requires several boards and
connectors, which add unnecessarily to the cost of the system.

Advances in semiconductor technology also favor a smaller-board approach.
The ever-increasing circuit densities of new integrated circuits (ICs) mean that
more capabilities can be provided on a single computer board. This increased
computing power opens up new applications which may require different 1/0

iSBX I/OBUS 125

capabilities, specialized processing, or customized 1/O devices. The board-level
designer needs the flexibility to customize a system without using large boards.

The iSBX concept, together with Multibus-compatible boards, provides the
advantages of boards of both sizes. A combination of the two sizes permits the
system designer to configure precisely the single-board computers (SBC) for
individual applications at a lower cost. Given the larger size, the SBC can sup-
port the microprocessor, the memory, some general-purpose I/0, and the iSBX
Multimodule! board. The iSBX Multimodule board is a small 1/O expansion
board that provides the SBC with application-specific I/0O, such as an IEEE-
488 controller or analog input or output channels. These small Multimodule
boards enable the users to buy the exact I/O capabilities required for their sys-
tems. System size and cost are thereby kept at a minimum.

The iSBX concept provides the following benefits to the system designer:

1. Low cost. The ability to expand the I/0 capability of an SBC incrementally
lets the user add only the function the application requires. This lowers the
cost of functional expansion.

2. Simple upgradability. The on-board addition of totally new capabilities to
SBCs may be done discretely. This increases the SBC functional capability
and permits new iSBX Multimodules designed with state-of-the-art VLSI to
be used on previously designed SBCs.

3. Increased performance. The iSBX Multimodule board, like other local on-
board components, communicates directly with the host board microproces-
sor and provides maximum performance. This on-board expansion can also
increase system performance. The available Multibus bandwidth is increased
by reducing system bus traffic to standard Multibus-compatible expansion
boards that have been replaced.

4. Compatibility. All future 8- and 16-bit SBCs with the iSBX interface can use
iSBX Multimodules designed previously or in the future.

5. Low power. The smaller boards require minimal power, which generates less
heat than Multibus-size boards. This also reduces the system power supply
needs, which lowers the total system cost.

6. Dedicated connector. The iSBX connector is a highly reliable connector spe-
cifically designed for this application.

4.2 LOGICAL DESCRIPTION OF THE iSBX BUS

The iSBX concept provides 8- and 16-bit I/O flexibility to any SBC or board-
product line. It does so by providing a universal I/O interface on the baseboard

'Multimodule is a trademark of Intel Corporation, Santa Clara, California.

426 THE MULTIBUS FAMILY OF BUS STRUCTURES

iSBX BOARD
USER CONNECTOR——a

iSBX
CONNECTOR

MOUNTING
HOLE

\\‘—MULTIBUS BOARD
BASEBOARD

FIGURE 4-1 iSBX Multimodule board concept.

as shown in Fig. 4-1. This universal interface is a general-purpose I/O expansion
bus, called the iSBX bus, and it is used to connect the baseboard to small boards.
These small boards are called iSBX Multimodule boards or Multimodule boards
(Fig. 4-2). Their function is to convert the iSBX bus into a customized I/O inter-
face. A diagram of a typical SBC which utilizes the iSBX interface is shown in
Fig. 4-3.

The primary function of the iSBX bus is to provide a path for I/O mapped
data between the host board and the Multimodule board. The key features of
the iSBX bus are summarized below.

o Low-cost I/O expansion.
» A standardized controlled local I/O expansion interface.
o Low overhead cost on baseboard.

¢ Both 8- and 16-bit data transfers are sdpported.

« Both interlocked and noninterlocked transfers are supported.

4.2.1 Bus Devices

The basic elements in an iSBX system are the baseboard and the iSBX Multi-
module boards (Fig. 4-1). Figure 4-4 shows an SBC with iSBX bus support.

FIGURE 4-2 Multibus-compatible boards with iSBX bus sup-
port and iSBX Multimodule boards.

ISBX 1/O BUS

FIGURE 4-3 iSBX Multimodule board.

127

4128 THE MULTIBUS FAMILY OF BUS STRUCTURES

SBC b iSBX BUS)
(4]
& a
MICROPROCESSOR 170 'j 1SBX INTERFACE L 2 2 2
w
@ =
SEHEEE
ol Zlal «f 3| 0
| A v A
MULTIBUS
INTERFACE ROM RAM
iSBX MULTIMODULE
BOARD

FIGURE 44 Block diagram of SBC with iSBX bus support.

BASEBOARD

The baseboard provides an electrical and mechanical interface for the iSBX
Multimodule boards. The electrical interface provides the communication link
between the two elements. The baseboard is the master of that link; it controls
the address, chip selects, and command signals. The baseboard also provides the
mechanical interface for Multimodule boards. The single-wide Multimodule
board is mounted to the baseboard in two locations (Fig. 4-2): at the top of the
Multimodule board by a nylon screw and spacer assembly and at the bottom of
the board by the iSBX connector, which was designed specifically for this
application,

There are two classes of baseboards: those with direct memory access (DMA)
support and those without. Baseboards designed with DMA controllers can sup-
port the DMA aspects of the iSBX bus interface. These boards, in conjunction
with an iSBX Multimodule board, can perform direct I/O-to-memory or
memory-to-1/0 operations. Baseboards without DMA support use a subset of
the bus specification and do not use that aspect of the Multimodule board’s
capabilities.

iSBX MULTIMODULE BOARDS

iSBX Multimodule boards are small, specialized 1/O boards which plug into the
iSBX interface on the baseboard (Fig. 4-2). These modules convert the iSBX bus
interface to a defined specialized I/O interface. The iSBX bus specification
defines two standard PCB form factors: single-wide (2.5 X 3.7 in; 6.35 X 9.4
cm) and double-wide (2.5 X 7.5 in; 6.35 X 18.8 cm). These two form factors
allow for a broad range in circuit complexity. A typical single-wide iSBX Mul-
timodule board requires less than 10 percent of the PCB area (the iSBX con-
nector and one mounting hole) to support the interface; the rest of the space is
available for application circuitry. An example of an iSBX Multimodule is a
serial channel controller (Fig. 4-3). This Multimodule board converts the iSBX
bus interface into an RS-232 or RS-422 serial communication channel.

JISBX 1/OBUS 429

:

4.2.2 8- and 16-Bit Compatibility; Bus Device Notation

The iSBX bus specification supports both 8- and 16-bit data transfers. Base-
boards with 8-bit data paths can support only 8-bit iSBX Multimodule boards.
All 8-bit baseboards support the 8/8 bit mode (the baseboard is an 8-bit system,
the first 8 in the 8/8 bit mode, and the baseboard can support 8-bit iSBX Mul-
timodule boards, the second 8 in the 8/8 bit mode) of the iSBX specification.
Baseboards with 16-bit data paths can be designed to support only 8-bit iSBX
Multimodule boards or both 8- and 16-bit iSBX Multimodule boards. A 16-bit
baseboard designed to accommodate only 8-bit iSBX Multimodule boards sup-
ports the 16/8 bit mode of the bus specification. A 16-bit baseboard designed
to accommodate 16-bit iSBX Multimodules supports the 16/16 bit mode. A
baseboard that supports the 16/16 bit mode must also support the 16/8 bit
mode; that is, it supports both 8- and 16-bit iSBX Multimodule boards. The
different modes for iSBX-compatible systems are summarized in the following

table.

Mode Description
8/8 An 8-bit baseboard that supports 8-bit
iSBX Multimodule boards
16/8 A 16-bit baseboard that supports 8-bit
iSBX Multimodule boards
16/16 A 16-bit baseboard that supports 8- and

16-bit iSBX Multimodule boards

4.3 BUS SIGNAL DEFINITIONS

In this section the iSBX bus signals are described. Also described is how the basic
operations occur over the iSBX bus. The iSBX bus is composed of 44 signal lines
for the 16/16 bit mode and 36 signal lines for the 8/8 and 16/8 bit modes. These
lines can be broken into several classes: address and chip select (five signal lines),
data (eight signal lines for the 8/8 and 16/8 bit modes and 16 signal lines for
the 16/16 bit mode), control (9), interrupts (2), option (2), and power (8). The

different classes are explained in the following sections. '

4.3.1 Address and Chip Select Lines

The address and chip select lines can be divided into two groups:

Class Signal Function
Address MA2-MAO Address lines (2-0)
Chip selects MCS1s, MCSO* Chip select lines (1-0)

The baseboard provides the decode logic for the iSBX interface. The logic
generates the chip selects for the iISBX Multimodule boards and passes on the

430 THE MULTIBUS FAMILY OF BUS STRUCTURES

least significant portion of the I/O address to the Multimodule board. The board
decodes all but the lower-order bits of the I/O address in generating the two
iSBX Multimodule board chip selects (MCS1* and MCS0%). In 8-bit baseboard
systems supporting the 8/8 bit mode of the bus specification, the baseboard
assigns two blocks of eight I/O port addresses for each iSBX interface it pro-
vides. In 16-bit baseboard systems supporting the 16/8 or 16/16 bit mode, the
baseboard assigns two blocks of 16 1/O port addresses for each of its iSBX inter-
faces. The I/0O addresses reserved by the baseboard for each iSBX interface it
provides are summarized in Table 4-1. Note that the 8-bit and 16-bit baseboard
systems reserve different addresses and that the address assignments are
required by Intel’s iSBX Bus Specification. The IEEE-P595 Bus Specification
only recommends these addresses.

ADDRESS

The three address lines MA2 to MAO carry the least significant portion of the
binary address of the I/O device location that the baseboard is referencing;
MADO is the least significant bit of the address. The address lines are positive true
input lines to the Multimodule board. In 8-bit baseboard systems the MA2 to
MAO are mapped directly to the three least significant address bits of the micro-
processor. In 16-bit baseboard systems (e.g., one based on an 8086 microproces-
sor), MA2 to MAOQ are mapped to address bit 3 through address bit 1 on the
baseboard, since address bit 0 is used in the chip select generation.

The iSBX bus supports both byte and word addressing (Fig. 4-5). A byte (8
bits) location is the smallest addressable unit of storage. There are two types of
byte address locations, an even-byte address (address 0 of the baseboard is inac-
tive) and an odd-byte address (address 0 of the baseboard is active). Two con-
secutive byte locations form a word. The iSBX bus in 16/16 bit mode can trans-
fer a word if the first byte location of the word is an even-byte address (an even-
word address). If the first byte location of the word is an odd-byte address (an
odd-word address), the baseboard must perform two byte accesses and assemble
the word.

TABLE 4.1 Baseboard I/O Addressing Assignments for ISBX Bus (Hexadecimal
Notation)

8-bit baseboard 16-bit baseboard 16-bit baseboard
iSBX Multimodule Chip address (8/8 bit address (16/8 bit address (16/16

connector no. select mode) mode) bit mode)
iSBX 1 MCS0# FO-F7 0A0-0AF 0A0,2,4,6,8,A,C.E
MCS1# F8-FF 0B0-0BF 0A1,3,5,7,9,B,D,F
iSBX 2 MCS0x* Co-C7 080-08F 0A0,2,4,6,8,A,C.E
MCS1* C8-CF 090-09F 081,3,5,7,9,B,D,F
iSBX 3 MCS0* BO-B7 060-06F 060,2,4,6,8,A,C.E

MCS1* B8-BF 070-07F 061,3,5,7,9,B,D,F

iSBX 1/O BUS 134

1/0 OR MEMORY SPACE

1 0 -
0DD-BYTE AN /*“%%';ESBS”E
2
ADDRESS 3 LOCATION O
LOCATION S——»V" 7/ 5/ /'~ 4
7 3
9 8
NN N0)4 ——EVEN -WORD
3 iz ADDRESS
- = 7 LOCATION 10
ADDRESS 17 16
LOCATION 19— e 18
21 R0
23 22
25 24
XXX- --01B XXX---008B
XXX- - -11B XXX-- 108

FIGURE 4-5 Memory and I/O Address Mapping. (Note: Bus master must break odd-word
address access into two byte accesses and reform the word.)

CHIP SELECT LINES

In 8-bit systems, the negative true input lines MCS1* and MCSO0%* to the iSBX
Multimodule board are the result of the baseboard decode logic. This logic
decodes the appropriate local bus address bits into the iSBX Multimodule chip
select lines, as defined in Fig. 4-6. The chip select signals, along with the 1/0
command signals, enable communication with the iSBX Multimodule boards.

In 16-bit systems, the chip select signals optionally have two definitions: one
for the 16/8 bit mode and one for the 16/16 bit mode. These options are select-
able by the user for each interface provided on the baseboard, depending on
the data path width of the iSBX board that is installed.

The 16/8 bit mode is used when a 16-bit baseboard must interface with an
8-bit iSBX board. The chip select lines serve the same function as in an 8-bit
baseboard with different 1/O address assignments. The 16-bit baseboard uses
the lower data byte (MD7 to MDO) of the 16-bit word to communicate with the
Multimodule board. The upper data byte (MD15 to MDS8) is not defined and
should not be used. Only even I/O port addresses are used (Table 4-1). This
requires the baseboard to reserve 32 1/O port addresses. The 16 even ports are
used, leaving the 16 odd ports unused.

The 16/16 bit mode is used when a 16-bit baseboard must interface with a
16-bit iSBX Multimodule board. The baseboard uses all 16 data lines to com-
municate with the iSBX Multimodule board. In this mode, the chip select terms
are also used to control low-byte, high-byte, and word transfers as well as
address decoding. The MCS0#* is used for low-byte (even-byte) transfers;

432 THE MULTIBUS FAMILY OF BUS STRUCTURES

NOT
USED
e
~
15 31 |30 w
14 29 | 28
13 27 | 26
12 25 | 24
MCcS1* MCS1*
11 23 | 22
10 21 |20 MCS1*
19 |18 [——Mcso*
8) 17 |16) A
7) 15 (14 |) 15 | 14
6 13 |12 13 | 12
5 11 |10 1 | 10
a 9| 8 9| 8
MCSO0* MCSO*
3 716 7|6
2 5| 4 5 | 4
1 3|2 3 2
0 1|0 J 110
BASE < BASE— BASE—»
8-BIT BASEBOARD 16-BIT BASEBOARD 16-BIT BASEBOARD
8-BIT EXPANSION MODULE 16-BIT EXPANSION MODULE
(8/8 -BIT MODE) (16/8-BIT MODE) (16/16 -BIT MODE)

FIGURE 4-6 iSBX baseboard chip select assignments.

MCSL1#* is used for high-byte (odd-byte) transfers; and both MCS0#* and MCS1*
are used for even word data transfers.

Figure 4-7 shows a portion of the logic equations and possible circuit for part
of MCS1#* and MCS0* generation in a 16-bit baseboard system. In this example,
the baseboard has Intel’s iAPX? 80286 16-bit advanced microprocessor. The
baseboard logic generates four signals which are used to generate the two iSBX
chip selects. The chip select 1* and chip select 2# signals indicate that the base-
board is addressing an I/O address in the range of 0COH to OCFH (hexadeci-
mal) and OBOH to OBFH, respectively. Address 0* is the least significant address
bit. When active, it indicates that an even-byte transfer is requested. An active
BHEN#* (byte high enable) indicates an odd-byte transfer is being requested.
In the 16/8 bit mode the MCS1* and MCS2%* terms are simply the chip select
1* and chip select 2+ terms, respectively, without modification and have no data
flow control terms in them. In the 16/16 bit mode the MCS1#* and MCS2#* terms
include data flow control. The MCS0# term includes the address 0 term which
controls the lower byte (the even byte). Thus, chip select 0% is logically ANDed

%APX is a trademark of Intel Corporation, Santa Clara, California.

result in an active MCS1

4.3.2 Datalines

*,

iSBX1/OBUS 133

with address 0* to produce MCSO*. The MCS1* term includes the high-byte
control (odd-byte) term BHEN#*. Thus, chip select 0# is logically ANDed with
BHEN=* to produce MCS1+, If the baseboard addresses I/O address 0C3H, then
chip select 0* will be active and the address odd (address 0# is active). This will

The data lines MD15 to MDO are used to transmit information to or receive it
from the iSBX ports on the iSBX Multimodule board. There are 16 bidirectional

CHIP SELECT 1*

E2
E3
CHIP SELECT 0* —8—Q El
7432
ADDRESS 0* ——0

L.

E9 0—————MCS1*

—q
7432 E7
—<

BHEN *
Mcso*
MODE JUMPER MCSO0* MCS1*
16/8 £2-ts 0C0-OCF | 0BO-0BF
E1-E 0C0,2,4,6 | 0C1, 3,57
16/16 E7-E 8 A C.E | 98
| L
2 NS
Ly
OOQ R AN
(xY <6‘ é\C‘
IANSS
O \ O« G
o 1 0o 1
of o |2 of o f 1l .0y
1| 1 1 1] 1 1 008V
‘ MCSO* MCS1*

CHIP SELECT 0* = 0C0-0CF (HEX)
CHIP SELECT 1*= 0BO - 0BF (HEX)

\ FIGURE 4-7 iSBX baseboard clip select logic (hexadecimal notation used).

434 THE MULTIBUS FAMILY OF BUS STRUCTURES

positive true data lines MD15 to MDO. MDO is the least significant bit for all
data transfers except odd-byte transfers in the 16/16 bit mode, in which case
MDS is the least significant bit of the byte. Eight-bit baseboards permit only 8-
bit data transfers and therefore can support only 8-bit iSBX boards. Sixteen-bit
baseboards can support both 8- and 16-bit data transfers and therefore can sup-
port both 8- and 16-bit iSBX Multimodule boards. All of the data transfer types
are shown in Fig. 4-8 and are labeled 1 to 5. 16/16 bit mode baseboards support
three types of data transfer: (1) even-byte transfers on MD7 to MDO, (2) odd-
byte transfers on MD15 to MDS8, and (3) word-data transfers on MD15 to MDO.
16/8 bit mode baseboards support only one type of data transfer, the (1) even-
byte transfers on MD7 to MDO. An 8/8 bit mode baseboard can support both
(4) even-byte transfers and (5) odd-byte transfers on MD7 to MDO.

In 16/16 bit mode systems, the two chip select lines also control the data
flow. The data flow is summarized in Fig. 4-9. Even-byte transfers require an
active MCSO0* (low); odd-byte transfers require an active MCS1* (low); word
transfers require that both MCS0* and MCS1* be active (low). An even-word
transfer is, in effect, an even-byte and an odd-byte transfer at the same time.
There are two consecutive byte addresses for each word; the even-byte address
(MCS0* = low) corresponds to the word data bits MD7 to MDO. Conversely,
the odd-byte address, which is the word address + 1 (MCS1* = low), corre-
sponds to the word data bits MD15 to MDS8.

4.3.3 Control Lines

The control lines define the data transfer protocol on the iSBX bus. The control
lines can be broken down into four basic groups.

Class Signal Function

Commands IORDs* 1/0 read command
IOWRT+* 1/O write command

System control MWAIT* Extend command until done
MPST#* iSBX board present

DMA MDRQT DMA request
MDACK=* DMA acknowledge
TDMA Terminate DMA

Utilities MCLK iSBX clock
RESET Initialize

COMMAND LINES

The command lines IORD* and IOWRT#* are negative true signals controlled
by the baseboard and are inputs used to request an operation of an iSBX Mul-

SEl

DATA FLOW
IsgNSFER DATA BASEBOARD MULTIMODULE
E LOCAL DATA BUS ON-BOARD BUFFERS iSBX BUS
EVEN BYTES EVEN-BYTE BUFFER MD7 -MDO 8-BIT
OR
8-BIT
® EVEN ADDRESS 16-BIT 16-BIT
| 0DD BYTES | | oop-BYTE BUFFER |) MD15-MD8
l EVEN BYTES [| EVEN-BYTE BUFFER |) MD? -MDO
8-BIT
® ODD ADDRESS 16-8IT 16-8IT
I oDD BYTES ODD-BYTE BUFFER MD15-MD8
EVEN BYTES EVEN-BYTE BUFFER MD7-MDO
16-BIT
® EVEN ADDRESS | 16-BIT 16-81T
| 00D BYTES 0DD-BYTE BUFFER MD15-MD8
EVEN BYTES |
® 8-BIT BUFFER MD7 -MDO 8-BIT
EVEN ADDRESS 8-BIT
0DD BYTES
EVEN BYTES
® 8-BIT BUFFER MD7-MDO 8-BIT
0DD ADDRESS 8-BIT
| 00D BYTES |

FIGURE 48

Data transfer types.

436 THE MULTIBUS FAMILY OF BUS STRUCTURES

EVEN- A D) EVEN-
BYTE K MD7-MDO BYTE
BUFFER [¥™] v| porT
ooD- |a | -ooD-
BYTE MD15-MD8) BYTE
BUFFER | oro) el
iSBX
16-BIT MULTIMODULE
BASEBOARD BOARD

TRANSFER TYPE| DATA TRANSFER | MCSO* | MCSI*
® g;EBr!lTADDRESS Low HIGH
® gaglxookess HIGH | Low
® é?/;:?l'TADDRESS Low Low

FIGURE 49 iSBX bus data flow control (16/16 and
16/8 bit modes).

timodule board. There are two commands, each with its unique signal on the
bus. An active command indicates to the iSBX board that the address and chip
select lines are valid and that the selected (MCS#* active) iSBX Multimodule
board should perform the specified operation. The I/O read command is used
by the baseboard to request that data be sent from the iSBX Multimodule 1/0O
port to the baseboard. Conversely, an I/O write command is used by the base-
board to send data from the baseboard to the iSBX Multimodule I/O port.

MULTIMODULE WAIT

Multimodule wait (MWAIT#*) is a negative true signal used by the iSBX Mul-
timodule board to extend the current data transfer cycle. The extension is
accomplished by putting the microprocessor on the baseboard in a wait state
and thereby providing additional time for the iSBX Multimodule board to per-
form the requested operation. The MWAIT#* signal is generated by the iSBX
Multimodule board from address and chip select information only. When the
iSBX Multimodule has completed the requested operation, it drives MWAIT#*
inactive. This permits the microprocessor on the baseboard to continue. The
interlocking mechanism permits iSBX Multimodule boards of different speeds
to be on the bus. The interlocked command protocol can be summarized as
follows: First the baseboard generates valid address and chip select(s); then the
iSBX Multimodule board can cause the baseboard to wait—extend its current

ISBX /O BUS 137

data cycle by activating MWAIT#. The iSBX Multimodule board controls the
amount of time that it needs to wait. After it has waited long enough to perform
the requested operation, it responds with an inactive MWAIT#*, which permits
the baseboard to continue.

The iSBX bus uses a negative type of acknowledgment method. It assumes
that all operations will occur at the baseboard’s maximum speed unless told to
wait. The baseboard starts an operation, and it is the responsibility of the iSBX
Multimodule board to tell the baseboard to wait if more time is needed to per-
form the operation. The MWAIT#* signal is normally in the no-wait condition,
which permits the baseboard to continue at maximum speed. The advantages
of a negative type of acknowledgment method are low overhead and no special
circuitry for time-out (the state when a nonexistent location is accessed). A pos-
itive acknowledgment method, which is used on Multibus systems, requires the
bus slave module to generate a response before continuing. The advantages of
a positive acknowledgment method are the independent timings of the master
and the slave of two communicating units. The slave unit is not required to
generate a wait signal in a fixed amount of time, and future baseboards with
faster microprocessors will not need added extra circuitry to guarantee the wait
timing,.

MULTIMODULE PRESENT

Multimodule present (MPST#*) is a negative true signal driven low by an iSBX
Multimodule board to inform the baseboard that an iSBX board is installed. This
interface signal goes to the baseboard decode logic. If the Multimodule is not
installed, the address space normally reserved for the Multimodule board I/O
ports can be used on system bus slave boards. This is important when designing
a new board with the iSBX interface that also has to be backward-compatible
with an older product. When the MPST* signal is in the inactive state, the iSBX -
I/O port locations will be decoded to be off board (not present on the board)
and the SBC will go to the system bus to find them,; it will appear as if there
were no iSBX interface on the SBC. If the Multimodule is installed, then the
I/0 decode logic is activated to respond to the iSBX I/O port addresses as on-
board resources and route the requests to the Multimodule I/O port. This signal
is not needed for new products, since the iSBX addresses will be reserved for
future expansion anyway.

4.3.4 Direct Memory Access

The DMA lines control the communication link between the DMA controller
on the baseboard and the iSBX Multimodule board. Use of the DMA lines is
optional, because not all baseboards provide DMA channels and not all iSBX
Multimodule boards are capable of supporting a DMA transfer.

438 THE MULTIBUS FAMILY OF BUS STRUCTURES

MULTIMODULE DMA REQUEST

Multimodule DMA request (MDRQT) is an active-high output signal from the
iSBX Multimodule board to the baseboard’s DMA controller. MDRQT is
asserted when a request that a DMA cycle be initiated is made.

MULTIMODULE DMA ACKNOWLEDGE

Multimodule DMA acknowledge (MDACK#) is an active-low input signal to
the iSBX Multimodule board from the baseboard DMA controller. MDACK*
acknowledges that the requested DMA cycle has been granted.

TERMINATE DMA

Terminate DMA (TDMA) is a static bidirectional line. The direction is deter-
mined by configuration. Once configured, TDMA can operate in only one
direction. In the output mode TDMA is used by the iSBX Multimodule board
to terminate DMA activity of the DMA controller. In the input mode TDMA
is used by the DMA controller to terminate requests from the iSBX Multi-
module board.

4.3.5 Miscellaneous Signals

INITIALIZE LINE

The initialize line (RESET) is an active-high input line to the iSBX Multimodule
board generated by the baseboard to put the iSBX Multimodule board into a
known internal state.

MULTIMODULE CLOCK LINE

The Multimodule clock line (MCLK) is an input line to the iSBX Multimodule
board. It is a timing signal. The 10-MHz (40, —10 percent) frequency can
vary from baseboard to baseboard. The clock is asynchronous with all other
iSBX Multimodule bus signals. The MCLK requirements are the same as the
constant clock (CCLK*) requirements of the Multibus specification.

MULTIMODULE INTERRUPT REQUEST LINES

The Multimodule interrupt request lines (MINTRO and MINTR1) are active-
high output lines from the iSBX Multimodule board; they are used to inform
the baseboard that it needs service. This permits the baseboard to initiate a fune-
tion on an iSBX Multimodule and start executing another task while it is waiting
for the iSBX Multimodule to complete its task. Once it has completed the task,
it will notify the baseboard by requesting a service interrupt.

iSBX 1/OBUS 439

OPTION LINES

The option lines are user-defined signals. They are connected to wire-wrap posts
on the baseboards. They can be used, as an example, as extra interrupt request
lines or custom signals to pass information between the baseboard and the iSBX
Multimodule board.

POWER LINES

Three voltages and a ground are provided on the iSBX bus. The three voltages
are +5, +12, and —12 V. There are three pins each for the +5 V and ground,
and there is one pin each for +12 and —12 V.

4.4 BUS OPERATION OVERVIEW

Now that the definitions of the signal lines are understood, a functional descrip-
tion of each iSBX bus operation can be undertaken. The iSBX bus supports
I/O read, I/0O write, DMA, and interrupt operations.

4.4.1 1/0O Read Operations

There are two types of I/O read operations that a baseboard and an iSBX Mul-
timodule board can perform: a full-speed I/O read and an interlocked I/O
read. Once the baseboard initiates the read operation, the iSBX Multimodule
board determines which of the two read operations is performed.

FULL-SPEED 1/O READ OPERATION

The full-speed 1/0 read operation is a noninterlocked data transfer, and it has
strict timing requirements. The Multimodule board is not required to generate
any acknowledgment indicating that the requested operation is completed. Fig-
ure 4-10 is a timing diagram of a full-speed I/O read operation. The following
sequence is shown in Fig, 4-10:

1. The baseboard places the address on the address lines and generates a valid
chip select for the iSBX Multimodule board. It waits until the address and
chip select setup times (the time for the iSBX Multimodule board to decode
the information) are met.

2. The transfer is initiated by activating the I/O read command (IORD#) sig-
nal. The iSBX Multimodule board must generate valid data on the data lines
from the addressed I/O port in less than 250 ns.

3. The baseboard then strobes in the data and terminates the read cycle by
deactivating the I/O read command.

140 THE MULTIBUS FAMILY OF BUS STRUCTURES

SOURCE SIGNAL

BASEBOARD MA2-MAO 3(VALID ADDRESS ><
® 7

BASEBOARD MCS* /—’ |_

BASEBOARD I0RD* ., (—’

. VALID >
iSBX BOARD MD15-MDO \ X DATA

—

FIGURE 4-10 Fast iSBX bus read operation.

SOURCE SIGNAL

BASEBOARD MA2-MAO X VALID ADDRESS X
©)

BASEBOARD MCSs* "
iSBX BOARD MWAIT * \4_.

27 1t
T, o

X VALID >
DATA
FIGURE 4-11 Interlocked iSBX read operation.

BASEBOARD IORD

iSBX BOARD MD15-MDO

4. After a small delay, the address lines may become invalid and the chip select
lines may be driven inactive.

INTERLOCKED |/O READ OPERATION

The second type of I/0 read operation is an interlocked operation. The Multi-
module wait (MWAIT*) is used by the iSBX Multimodule board to extend the
read cycle. This permits the iSBX Multimodule board to control the access time.
Figure 4-11 is a timing diagram of an interlocked 1/0 read operation. The fol-
lowing sequence is shown:

iSBX'1/O BUS 1441

1. The baseboard places the address on the address lines and generates a valid
chip select for the iSBX Multimodule board, just as in a full-speed 1/0 read
operation.

2. The iSBX Multimodule board then activates the MWAIT* signal, which in
turn removes the ready input to the microprocessor on the baseboard, and
causes it to go into a wait state.

3. Before going into its wait state, the microprocessor on the baseboard provides
the address and chip select setup times and initiates the transfer by activating
the I/O read command (IORD#).

4, The iSBX Multimodule board will drive the MWAIT# signal inactive when
valid read data is on the data bus. This in turn takes the microprocessor out
of its wait state and permits the operation to continue.

5. The baseboard strobes in the data and terminates the data transfer cycle by
putting the IORD#* signal in the inactive state.

6. After a small delay, the address lines can go invalid and the chip select lines
may be driven inactive.

4.4.2 1/0 Write Operations

There are two types of write operations that a baseboard and iSBX Multimodule
board can perform: a full-speed 1/O write and an interlocked 1/0O write. Once
the baseboard initiates the write operation, the iSBX Multimodule board deter-
mines which of the two types of I/O write operations is to be performed.

FULL-SPEED 1/O WRITE OPERATION

The full-speed I/O write is a noninterlocked operation. No acknowledgment is
required. Figure 4-12 is a timing diagram of a full-speed I/O write operation.
The following sequence is shown:

SOURCE SIGNAL
BASEBOARD ~ MA2-MA0 X VALID ADDRESS X
©) / ®
BASEBOARD MCs* | [~
BASEBOARD IOWRT* —] —]

BASEBOARD MD15-MD0 —— X VALID DATA >
FIGURE 4-12 Fast iSBX bus write operation,

442 THE MULTIBUS FAMILY OF BUS STRUCTURES

1. The baseboard places the address on the address lines and generates a valid

chip select for the iISBX Multimodule board.

. The baseboard waits until the address and chip select setup times are met,

and then the transfer is initiated by activating the 1/O write command
(IOWRT*) signal.

. The iSBX Multimodule board must store the data on the data lines into the

addressed 1/O port in less than 300 ns, of which the data will be valid a
minimum of 250 ns. This means that the data can be invalid at the beginning
of the write cycle.

. When the operation is completed, the baseboard terminates the data transfer

cycle by driving IOWRT* inactive.

. After a small delay, the address and data lines may become invalid and the

chip select lines may be driven inactive.

INTERLOCKED 1/O WRITE OPERATION

The second I/O write operation is an interlocked operation. The MWAIT* is
used by the iSBX Multimodule board to control its own access time. Figure 4-
18 is a timing diagram of an interlocked I/O write operation. The following
sequence is shown:

1.

The baseboard piaces the address on the address lines and generates a valid
chip select for the iSBX Multimodule board, just as in a full-speed I/O write
operation.

The iSBX Multimodule board then activates the MWAIT* signal, which in
turn removes the ready input to the microprocessor on the baseboard and
causes it to go into a wait state.

SOURCE SIGNAL
BASEBOARD MA2-MAO X VALID ADDRESS X
® /@
BASEBOARD MCS* |

]
] ©)
iSBX BOARD MWAIT * ~—|

BASEBOARD IOWRT*

1

® O

BASEBOARD MD15-MDO 4 X VALID DATA

@

FIGURE 4-13 Interlocked iSBX bus write operation.

ISBX 1I/OBUS 143

3. Before going into its wait state, the microprocessor on the baseboard provides
the address and chip select times and initiates the transfer by activating
IOWRT*.

4. The data lines will then become valid.

5. The microprocessor stays in a wait condition until the data is stored in the
addressed I/O port location. The iSBX Multimodule board then drives the
MWAIT* signal inactive and the microprocessor exits its wait state and con-
tinues executing its code.

6. The baseboard then terminates the data transfer cycle by putting the
IOWRT* signal in the inactive state.

7. After a small delay, the address and data lines can go invalid and the chip
select lines may be driven inactive.

4.4.3 Direct Memory Access Operations

Direct memory access is a means of exchanging blocks of data between an iSBX
Multimodule port and system memory. The block of data typically is a series
of consecutive memory locations. The process is initiated by executing software
that sets up the DMA controller and iSBX Multimodule board. The software
determines the direction of the data movement (memory to iSBX Multimodule
board or vice versa), the starting address of the memory block (where the data
is or where it is to be put), and the length of the block of data. Once started,
the data transfers are made automatically under the control of the hardware
DMA controller as demanded by the iSBX Multimodule board. The DMA pro-
cess can transfer data in one of two ways: single data transfers done one at a
time on a cycle-steal basis or strings of single data transfers done consecutively
in a burst mode.

An iSBX Multimodule system can support DMA operations when the base-
board has a DMA controller and the iSBX Multimodule board can support a
DMA mode. Figure 4-14 is a block diagram of an SBC with a DMA controller
and iSBX bus support. The DMA controller is on the same local bus as the
microprocessor. The local bus can be controlled by only one device at a time;
most of the time, it is controlled by the microprocessor. When DMA activity is
requested, the DMA controller requests control of the local bus. The control,
once granted, will result in a temporary halt of all other activities on the local
buses for the duration of the iSBX Multimodule board’s request for DMA ser-
vice. This is known as cycle stealing, Except for theft of the local bus, the DMA
activity should not interfere with normal microprocessor operation. This can
cause the interrupt latency time (the time from receiving an interrupt to the
time the service routine begins to be executed) to increase, because the micro-
processor must wait until it can regain control of the local bus.

444 THE MULTIBUS FAMILY OF BUS STRUCTURES

Figure 4-15 is a timing diagram of a DMA read operation. Data is trans-

ferred from the iSBX Multimodule port to system memory. The following
sequence is shown in Fig, 4-15. (The software has already set up the hardware
for the DMA transfer.)

1.

»

[1

The DMA read cycle is initiated when the iSBX Multimodule board activates
its Multimodule DMA request (MDRQT) signal. The baseboard uses
MDRQT to activate the DMA controller, which requests control of the local
and iSBX buses from the microprocessor.

Once the DMA controller gains control of the local buses, it notifies the
requesting iSBX Multimodule board by activating the Multimodule DMA
acknowledge (MDACK=*) signal. The iSBX Multimodule board uses
MDACK* as its chip select. The address (MA2 to MAO) signals are ignored,
and chip select (MCS1* to MCS0%) signals must be high.

. The DMA controller then initiates the transfer by activating the IORD#* sig-

nal. At this point, the iSBX Multimodule board can perform a full-speed
I/0 read or an interlocked I/O read operation. Figure 4-15 shows a full-
speed operation.

. If the iSBX Multimodule board is not ready for the next DMA cycle, it must

drive MDRQT inactive and thereby notify the DMA controller to wait for
the next DMA cycle.

1

— o2z o L1
{TsE% ! PARALLEL SERIAL
MICROPROCESSOR INTERFACE 170 170
<
0 v /\' >
i 1
[%2]
K
x| g
Ol
ol g LOCAL BUS
®| o
-]
3| 8
ol ©
-]
s 8!
DMA MULTIBUS
CONTROLLER INTERFACE ROM RAM
Pl P2

FIGURE 4-14 Block diagram of an SBC with a DMA controller.

iSBX /O BUS 145

SOURCE SIGNAL
iSBX BOARD MDRQT | e

1
—2 ®
BASEBOARD MDACK* ’_I W

BASEBOARD IORD* i —— |) —
| & 5% 5

iSBX BOARD MD15-MDO 2 KALID D@——

FIGURE 4-15 iSBX bus DMA full-speed read operation.

5. The iSBX Multimodule board must generate valid data on the data lines
from its DMA port in less than 250 ns after the falling (high to low) edge of
IORD+.

6. The DMA controller saves the data, or the data is stored in a memory loca-
tion directly, and it then terminates the current DMA read cycle by driving
the IORD* signal inactive.

7. After a small delay, the MDACK* signal may be driven inactive. The
DMA controller would then release the baseboard buses back to the micro-
Processor.

In cycle stealing, the iSBX Multimodule board ceases to request DMA service
after each data transfer and requests service again when ready. The terminate
DMA (TDMA) signal can be used by the baseboard to notify the iSBX Multi-
module board, or vice versa, to stop the DMA transfers in the event of an error
condition.

If the MDRQT signal is not driven inactive, the DMA controller will con-
tinue to perform another DMA read cycle. This series of high-speed continuous
DMA data transfers, called burst mode, is used when data must be moved as
quickly as possible. Burst mode is faster because the DMA controller does not
arbitrate for the local buses for each data transfer cycle. It arbitrates once for
the first data transfer cycle and does not release the local buses until the block
of data has been transferred.

4.4.4 Interrupt Operations

Figure 4-16 is a timing diagram of an interrupt operation. The following
sequence is shown:

1. The iSBX Multimodule board initiates an interrupt operation by activating
one of the Multimodule interrupt request (MINTRO and MINTR1) signals.

446 THE MULTIBUS FAMILY OF BUS STRUCTURES

SOURCE SIGNAL
iSBX BOARD MINTR |" —_
BASEBOARD MA2-MAO D(X X
BASEBOARD MCS* i< M f

BASEBOARD IORD* !_Zl I | j
® ®

iSBX BOARD MD15-MD0 — 30— X "X >—

I READ iSBX PORT ,TURN OFF INTERRUPTI

FIGURE 4-16 iSBX bus interrupt operation,

This signal is routed to the interrupt controller on the baseboard. When the
interrupt controller detects an active interrupt request, it notifies the micro-
processor, which causes the program currently being executed to be auto-
matically suspended. The state of the microprocessor is saved, and the pro-
gram execution control is transferred to the Multimodule board interrupt
service routine.

2. The service routine will perform the required operations, such as an I/O
read operation, to the iSBX Multimodule board.

3. The service routine must also cause the MINTR1 or MINTRO signal to be
driven inactive.

In summary, from its point of view, the iSBX Multimodule board initiates
an interrupt operation by activating an interrupt request signal (MINTRI or
MINTRO) and removes the interrupt when the baseboard notifies it to do so.

4.5 DETAILED ELECTRICAL DESCRIPTION

In this section all the timing and loading and drive specifications of the iSBX
bus are described.

4.5.1 Logical State and Electrical Level Relations

Signal names indicate whether the signals are active-high or active-low. If the
signal name is followed by an asterisk, the signal is active-low and has the fol-
lowing logical state and electrical level relations, in which H = high and L =
low:

iSBX1/OBUS 147

Logical

state Electrical level At receiver At driver
0 H = TTL highstate 525V=H =20V 525V=H=24V
1 L = TTL low state 08V=L=—-05V 05V=L=0V

If the signal name is not followed by an asterisk, the signal is active-high and
has the following logical level and electrical state relations:

Logical
state Electrical level At receiver At driver

0 L = TTLlowstate 08V=L=—-05V 05V=L=0V
1 H = TTL highstate 525V=H =20V 525V=H =24V

These specifications are based on TTL when the power source is 5 V & 5 per-
cent referenced to GND.

4.5.2 Signal Line Characteristics

The rise and fall times of all signals on the bus must not exceed the following
limits. (This is not part of the specification but is a good practice to follow.)

Totem pole Three-state

Rise time, ns 10 10
Fall time, ns 10 10

The settling time for all commands, Multimodule clock and interrupt request
lines after a transition, is zero. The ringing on these lines cannot go beyond the
noise immunity levels. These control signals are used to determine the state of
the bus, and ringing beyond the noise immunity levels could cause system fail-
ures. Address, chip select, MWAIT#*, and data lines can ring beyond the noise
immunity levels; the only requirement is that they be stable for their setup
times. The setup, hold, and signal ringing are summarized in Fig. 4-17.

4.5.3 Bus Power Specification ,
All power supply voltages are 5 percent at the iSBX bus interface.

148 THE MULTIBUS FAMILY OF BUS STRUCTURES

Maximum
Minimum Nominal Maximum current,
voltage, V voltage, V voltage, V
+4.75 +5.0 +5.25 3.0
+114 +12.0 +12.6 1.0
—12.6 —~12.0 —11.4 1.0
— GND —_ 6.0

Note: Per iSBX bus interface on the baseboard.

4.5.4 Temperature and Humidity Limits

All bus parameters and specifications must be met within the following tem-
perature and humidity limits:

Temperature 0 to 55°C (32 to 131°F); free moving air across iSBX Multi-

modules and baseboard (200 LFM recommended)

Humidity

(77 to 104°F)

COMMAND *

L~

$2HIGHM,N

RINGING
MAXIMUM 1

Lie

=

SLOWpaxX

SETUP

NO "RINGING"

HOLD

HIGH

50 ns MINIMUM

30 ns MINIMUM

YN\

o

IGHMIN

ZHIGHWN_?\
P NWAY

ADDRESS / RINGING
DATA

MAXIMUM 1

—50 ns MINIMUM
30 ns MINIMUM—

oo~

¥ SLOWmax

A4

Lsx.owM|N

<LOWpyax

MWAIT*

$

NO "RINGING™

__]%Z!P;;HMW

0 ns MINIMUM

HIGH

o

0 ns MINIMUM

2HIGH M N

\/'\/h

READ
DATA

Low

SLOWMAX

A
*

FIGURE 4-17 Setup, hold, and ringing summary.

0 to 90% maximum relative (no condensation); 25 to 40°C

GND

GND

GND

GND

GND

GND

iSBX /O BUS 149

Shock® 30g of force 11 ms in duration three times in three different
planes (recommendation only)

Vibration® Sweeping from 10 to 50 Hz and back to 10 Hz at a distance
of 0.010 in (0.025 mm) peak-to-peak lasting 15 min in each
plane.

4.5.5 Storage

Temperature —40 to 70°C (—48 to 158°F)
Humidity 5 to 95% maximum relative (no condensation)
Shock® 30g (recommendation only)

Vibration® 1.0g

4.5.6 Bus Timing

In this section all the detailed timing specifications on the iSBX bus are
described; they are summarized in Table 4-2. For clarity, the timing diagrams
in this section show only minimum or maximum values required for each
parameter. The bus timing specification summary table should be referred to
for complete minimum and maximum information. The timing diagrams show
how all of the parameters are defined in relation to the signals involved. All
timing is measured at 0.8 V for a low and 2.0 V for a high with full loading
capacitance Cy.

READ OPERATION

A read operation transfers data from the iSBX Multimodule port to the micro-
processor on the baseboard. The lines involved and the timing specifications are
shown in Fig. 4-18. The baseboard must first drive the address lines, MA2 to
MAGO, with a valid address in a minimum of 50 ns (¢,) and a valid chip select,
MCS1#* or MCSO0*, in a minimum of 25 ns (#;) before the IORD* signal goes
active.

If the read cycle is a full-speed (noninterlocked) type of data transfer, the
iSBX Multimodule board must access the addressed port data and drive the data
lines with valid data in less than 250 ns (t4). The I/O read command must be
active in a minimum of 300 ns ().

If the read cycle is an interlocked type of data transfer, the iSBX Multimode
has a maximum of 75 ns (¢,9) to drive MWAIT* low. The iSBX Multimodule
board must complete the operation by driving the data lines with the accessed
port data in a maximum of 4 ms (£}7). There must be a setup time of at least 0
ns (ty4) of valid data before MWAIT* can be driven high.

3Intel iSBX specification only

150 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 4.2 [SBX Bus Timing Specification Summary

Symbol Parameter Minimum Maximum
t Address stable before read 50 ns —
ts Address table after read 30 ns —
ts Read pulse width 300 ns —
td Data valid from read 0 250 ns
ts Data float after read 0 150 ns
ts Time between read and/or write — ¢
t CS stable before CMD 25 ns —
tg CS stable after CMD 30 ns —
tg Power-up reset pulse width 50 ms —
tio Address stable before write 50 ns —
tn Address stable after write 30 ns —
137} Write pulse width 300 ns —_
tia® Data valid to write 250 ns —
tig Data valid after write 30 ns —_
tis MCLK cycle 100 ns 110 ns
tis MCLK width 35 ns 65 ns
t° MWAIT#* pulse width 0 4 ms
tis Power-on reset pulse width 50 us —
tie MCS* to MWAIT* valid 0 75
t2o MDACK = set up to I/O CMD 25 —
ta) MDACK =hold after CMD 30 —
too? CMD or TDMA to MDRQT —_ 150 ns

removed
21 TDMA pulse width 300 ns —
tos” MWAIT* to valid read data — 0
to5° MWAIT=* to WRT CMD 0 —
Lo MDRQT inactive to TDMA 0 —

“Required only if WAIT=* is activated.
b1f MWAIT is not activated.
°To be specified by each iSBX Multimodule board.

9Required in cycle-steal mode and for last operation in burst mode.

In both read operations, the data is strobed in by the baseboard and the com-
mand is driven high. The iSBX Multimodule board must put the data lines in
a three-state condition (the lines are floating with no devices driving them) in
less than 150 ns (t5). The baseboard must hold the chip select line active for a
minimum of 25 ns (tg) and the address line a minimum of 30 ns (t,).

WRITE OPERATION

A write operation transfers data from the baseboard to the iSBX Multimodule
port. Timing for a write operation is shown in Fig. 4-19. The baseboard initiates
the write operation by driving the address lines with a valid address in a min-

MA2-MAO

4—'2-—
MCS(N)* \
g
O-fls
MWAIT *
-
13
IORD* \ /
[t —-tg5
—1 ta
MD15-MDO <

FIGURE 4-18 Read data transfer cycle timing.

MA2-MAO

MCS(N)*

MWAIT*

IOWRT*

MD15-MDO

FIGURE 4-19 Write data transfer cycle timing.

v—-tllﬂ—

tio

t14 %

151

452 THE MULTIBUS FAMILY OF BUS STRUCTURES

imum of 50 ns (¢19) and activates a chip select line (MCS1* or MCS0#) in a
minimum of 25 ns (¢;) before the IORD# signal is driven active.

If the write operation is a full-speed type of data transfer (noninterlocked),
the command will remain active a minimum of 300 ns (¢,5) and the data will
be valid a minimum of 250 ns (t,3) before the IORD* is driven inactive. The
iSBX Multimodule must store the data in the addressed port during this time.

If the write operation is an interlocked type of data transfer, the iSBX Mul-
timodule must drive MWAIT* active (low) in less than 75 ns (t,9). The iSBX
Multimodule board must complete the write operation in less than 4 ms (¢;7).
Once the data is stored in the addressed port, the MWAIT* signal is driven
inactive (high). The baseboard can drive IORD# inactive (high) in a minimum
of 0 ns (£y5). ‘

In both cases, once the IORD* signal is driven inactive, the baseboard must
hold the data valid for a minimum of 30 ns (,4), the address for a minimum of
30 ns (1,), and the chip select line for a minimum of 30 ns (t).

DIRECT MEMORY ACCESS OPERATION

Timing for a DMA operation is shown in Fig. 4-20. An iSBX Multimodule ini-
* tiates a DMA cycle by activating its MDRQT signal. Once the DMA controller
on the baseboard gains control of the baseboard’s local bus, it activates
MDACK*. The DMA controller must wait a minimum of 25 ns (£5) before the
iSBX bus command goes active. The iSBX Multimodule board must remove
MDRQT (go inactive) in a maximum of 150 ns (Z) to guarantee the DMA
controller will not go into burst mode. The Multimodule board can perform an
interlocked or noninterlocked type of data transfer. Once the data operation is
complete and the command is driven inactive, the MDACK# signal must be
held a minimum of 25 ns (¢5). If the TDMA signal is used, it must be held
active a minimum of 300 ns (£s3).

MDRQT /) \
r—fzz*'—'ze—‘
_—
MDACK * t t
. 120~ 121
10 CMD* - ‘
N
TDMA FROM
MULTIMODULE L /|
[t 22— 4—123
TDMA FROM 4
BASEBOARD . /|
b t23 —*

FIGURE 420 DMA data transfer cycle timing,

iSBX /O BUS 153

. t1s tie
MCLK ‘ \ \/

FIGURE 421 iSBX bus Multimodule clock timing,

475 V
ov
le— >0 ns

[¢——————t)g OR tg ——————+|

—————

/ /
RESET ———Ateooo \

FIGURE 4-22 Reset timing.

MISCELLANEOUS TIMING

Figure 4-21 is a diagram of the timing of the Multimodule clock (MCLX), and
Fig. 4-22 is a timing diagram of initialization (RESET).

4.5.7 Recelvers, Drivers, and DC Specifications

In this section the driver type (TTL totem pole or three-state), the receiver load-
ing, and the driver capabilities are specified. All these specifications are listed
in Table 4-3.

4.6 BASEBOARD LAYOUT CONSIDERATIONS

The placement of the baseboard iSBX connector is user-defined. The only
requirement is the placement of the mounting holes relative to the iSBX con-
nector as shown in Fig. 4-23. However, it is recommended that the connector
instead be placed as shown in Fig. 4-24, which puts the iSBX Multimodule
board user I/O connector (top of the iSBX Multimodule board) at the same
height as the baseboard I/O connector. It also provides enough room for install-
ing three single-wide or one single- and one double-wide Multimodule boards.
In addition, it should be noted that an iSBX Multimodule board should not be
placed over a microprocessor-type chip, because that would prevent the use of
any in-circuit emulator (ICE*) modules. Placement over ROMs and other sock-
eted parts also should be avoided.

“ICE is a trademark of the Intel Corporation, Santa Clara, California.

TABLE 4-3 ISBX Bus Input and Output Specification Summary

IoL min,| At Vg, | Iog min,| At Voi | Co min,
Bus signal name Type® drive mA | max, V pA |min, V| pF
OUTPUT®
MD0-MD15 TRI 1.6 05 | —300 | 24 130
MINTRO-1 TTL 2.0 0.5 —100 2.4 40
MDRQT TTL 1.6 0.5 — 50 2.4 40
MWAIT* TTL 1.6 0.5 — 50 2.4 40
OPT1-2¢ TTL 2.0 0.5 — 50 2.4 40
TDMA TTL 1.6 0.5 — 50 2.4 40
MPST= TTL 2.0 0.5 —100 2.4 40
At VN At Viy
Iy, max,| max,d | Iy max,| max,d | C, max,
Bus signal name Type® receiver mA A\ HA v pF
INPUT®*

MDO-MD15 TRI -0.45 0.4 70 2.4 40
MAO-MA2 TTL -0.5 0.4 70 2.4 40
MCS0+-MCS1=* TTL —4.0 0.4 100 | - 24 40
RESET TTL -21 0.4 100 2.4 40
MDACK=* TTL -1.0 0.4 100 2.4 40
IORD=-

IOWRT* TTL —1.0 0.4 100 24 40
MCLK TTL —24 0.4 100 2.4 40
TDMA TTL —1.0 04 100 2.4 40
OPT1-0OPT2°¢ TTL —-2.0 04 100 2.4 40

STTL = standard totem pole output. TRI = three-state.
bper iSBX Multimodule 1/0 board.

°These are recommended specifications. These lines are user-defined, so it is the responsibility of the user to
ensure adequate drive.

9Test conditions.
¢All inputs: Vi, max == 0.8 V; Vg min = 2.0 V.

0
i 2.200 3.00
/—BASEBOARD HEIGHT
RESTRICTION 0.320 MAXIMUM
1.00
—s 13000 |e—REQUIRED FOR
1) 4 L DOUBLE-WIDTH
= . iSBX BOARDS
0.150 _ AR fran\ E
¥ s N
0.156 £0.003
HOLE DIAMETER . 3.800 R
3 PLACES 5.1000
| 200 1.300
|
| J
f Ry
:gggggggg:gggggg:g"\-pm 1
— 0.300 .
0.038 +0.003

HOLE DIAMETER
FIGURE 4-23 Baseboard mechanical mounting hole requirements.

154

iSBX 1/OBUS 155

0

9.15
L 5.35
1.56—» e-0.250
e L_J I) B SR
'—"(,I?) ‘\Ti\‘ \|:‘ T
235
l 245
— . b ;
’/_’L t fl ST —l"l H T ._..—1.;' H -
iSBX iSBX iSBX
CONNECTOR 2 CONNECTOR 1 CONNECTOR 3

MULTIBUS BOARD

) P1) P2 —
FIGURE 424 Baseboard layout considerations.

The length of the traces that go to the iSBX interface should be kept as short
as possible to minimize the ringing and cross-talk effects. The power distribution
to the iSBX interface also is very important. The power and ground traces
should be as wide as possible and have on them as much copper as can be
obtained, and the path from the power pins on the Multibus P1 connectors to
the iSBX connector should be as short as possible. There should also be 0.1-uF
capacitors on all power lines as close to the interface as possible.

4.7 MECHANICAL CONSIDERATIONS

The iSBX bus specification sets forth all the physical and mechanical consider-
ations involved in the design of iSBX bus-compatible modules and baseboard
interfaces.

4.7.1 ISBX Connector

The mechanical goals of the iSBX connector are to:

e Provide a very reliable electrical interconnection

o Remain operational during worst-case environmental conditions (tempera-
ture, shock, and vibration)

o Provide a reliable mechanical interface

« Support both 8- and 16-bit baseboards

456 THE MULTIBUS FAMILY OF BUS STRUCTURES

In order to meet the above goals, the unique iSBX connector was created.
Reliability was a major design requirement; each electrical and mechanical
specification has a built-in safety margin. The connector has specially designed
features that assure high quality. An example is protection of all the pins so that
handling the connector during manufacturing or use will not damage the pins.
The connector has a closed and sealed self-aligning design, which protects the
interconnection and lessens the possibility of corrosion in harsh environments.
The pins are made of a high-grade copper alloy and are gold-plated. They pro-
vide a very reliable low-resistance connection (0.01 © max at 3 A) for over 200
insertions. The connectors are also keyed to ensure that the iSBX Multimodule
boards are installed properly, thereby avoiding damage due to installation
errors. Screwdriver slots are designed in to aid in unmating the connector pair
safely.

The iSBX connector body is made of a glass-reinforced nylon (or equivalent)
material which was specifically chosen to guarantee a minimum of 200 cycles
of mating and unmating. The maximum mating force is 20 Ib (44 kg), and the
unmating force is between 5 and 30 1b (11 and 66 kg). The connector functions
under severe shock and vibration stresses: it can withstand a 50g shock for 11
ms and a 50g vibration from 1 to 65 Hz with +0.04-in (1-mm) vibration
displacement.

There are two types of iSBX connectors: a 36- and a 44-pin version. The 36-
pin connector is used for 8-bit iSBX Multimodule boards (Fig. 4-25), and the
44-pin connector is used for 16-bit iSBX Multimodule boards (Fig. 4-26). Com-
patibility of 8- and 16-bit systems was achieved with a unique mechanical
design. The 16/16 bit mode of the bus specification requires the addition of
eight lines. These eight interconnections were added, but with a 0.2-in (5-mm)
gap between pins 38 and 39. The gap permits the shorter 8-bit connector to fit
on the longer 16-bit connector (Fig. 4-27).

4.7.2 Pin Assignments

The signal pin assignments for both 36- and 44-pin connectors of the iSBX bus
are shown in Table 4-4. As can be seen in the table, 36 lines are used for the
8/8 and 16/8 bit modes and an extra 8 lines are added for interfacing to the
16/16 bit mode. Figure 4-28 shows the pin-numbering method used on the
iSBX connector.

4.7.3 iSBX Multimodule Board Height Requirements

Figure 4-29 shows the iSBX Multimodule board height requirements. The total
board height, in inches (millimeters), minus the iSBX connector is:

ISBXI/OBUS 457

TABLE 4.4 Pin Assignments of Bus Signals on the ISBX/IEEE-P959 Connector

Pin® Mnemonic Description Pin® Mnemonic Description
43 MD8 MDATA bit 8 44 MD9 MDATA bit 9
41 MD10 MDATA bit 10 42 MD11 MDATA bit 11
39 MD12 MDATA bit 12 40 MD13 MDATA bit 13
37 MD14 MDATA bit 14 38 MD15 MDATA bit 15
35 GND Signal ground 36 +5V +5V
33 MDO MDATA bit 0 34 MDRQT M DMA request
31 MD1 MDATA bitl 32 MDACK=* M DMA acknowledge
29 MD2 MDATA bit 2 30 OPTO Option 0
27 MD3 MDATA bit 3 28 OPT1 Option 1
25 MD4 MDATA bit 4 26 TDMA Terminate DMA
23 MD5 MDATA bit 5 24 Reserved®
21 MD6 MDATA bit 6 22 MCS0* M chip select 0
19 MD7 MDATA bit 7 20 MCS1# M chip select 1
17 GND Signal ground 18 +5V +5V
15 IORD+* I/0 read cmd 16 MWAIT=* M wait
13 IOWRT=* 1/O write cmd 14 MINTRO M interrupt 0
11 MAO M address 0 12 MINTR1 M interrupt 1
MAl M address 1 10 Reserved®
7 MA2 M address 2 8 MPST* iSBX multimodule
board present
5 RESET Reset 6 MCLK M clock
GND Signal ground 4 +5V +5V
1 +12V +12V 2 —12V —12V

*Pins 37 to 44 are used only on 16/16-bit mode systems.

bAll undefined pins are reserved for future use.

Maximum component height 0.400 (10.16)
Maximum PCB thickness 0.070 (1.78)
Maximum component lead length 0.080 (2.03)

0.550 (18.97)

The total board height, in inches (millimeters), with the iSBX connector is:

Maximum component height 0.400 (10.16)
Maximum PCB thickness 0.070 (1.78)

Maximum male iSBX connector height 0.357 (9.07)
0.827 (21.01)

458 THE MULTIBUS FAMILY OF BUS STRUCTURES

0.035 +0.010
J:s PLACES
—s]le—0.025 £0.001
2z le——1.297 £0.015 ——| R
F—p f 36 PLACES 0.697 A
0.145 REF 0.015 P 5 4
.L. ™ H)
{ oo Lae Ul
Nl oo U:U n
L] v
L 0177 reF LB
0.018 £0.001 —»{fe— 0085
36 PLACES
0.125 +0.015
36 PLACES
SECTION 2.025
le——— 1.700 asc———ul
[=] xJo.006 I
o 00 - n pa=I—4
ootzo
¥ 0177 "
o.]oo-l e T T 0.337-
" " 0.045
¢
0.030
[to.om
0.040 —+ 1.875 0006 | ————+
F REF
0038 - 0100 REF [T =
l‘:‘ T 17 PLACES [£10.006
0.296 — F 3 e = I
REF =] 1Y [1.006] 0.296 0.100H] 0o 0226
r ¢) ']
SECTION L0.183
B-8 0035 [e—————1.955 x4 \
EF

(a)

FIGURE 425 36-pin iSBX connector dimensions: (a) 36-pin male connector; (b) 36-pin
female connector. (Note: All dimensions are in inches, and unless otherwise specified toler-

ances are 0.xxp01,

0.xxxp005.)

Figure 4-30 shows all component height requirements associated with the
iSBX system. The total height in inches (millimeters) of a baseboard and iSBX
Multimodule board is:

Maximum component lead length

Baseboard PCB thickness

iSBX connector pair height

0.090 (2.28)
0.070 (1.78)
0.540 (13.72)

iSBX I/O BUS 159

2.025 ol
°°“"\ | 1.943 'I
0.215 0_1'71_3:5= =33 — '3l|’E__L
¥ 34 s @2
- — — T [o.oso
1.861
0.037 1.980
M lg|
‘ _4
L Jo.lss TL — J —, 0.315
ﬁJ I.? -t {} 4} {H} 0.015 0.125
1
o .]
0100+l e 1_2‘33?5
¥y
0.296 0.136 W 4 _F_T%o
T I

FIGURE 425 (Continued)

(b)

iSBX Multimodule board PCB thickness

iSBX Multimodule component height

0.070 (1.78)

0.400 (10.16)
1.170 (29.72)

Because iSBX Multimodule board component leads protrude 0.090 in (2.28
mm) max from the solder side, the baseboard must not have any components
higher than 0.400 in (10.16 mm) max under the iSBX Multimodule board.

j¢—————— 1,997 £0.010 ————»

oose le—1.297 £0.010
B
" 0.597 £0.010 [+-0035 +0.010
5 PLACES ? ~C g
0ooo pe i_u___ _j
ooo i _ 1] o
I
A ' 0300 1.700 BSC ————|
Y EF
J 0,038 00300010
M ————
0032
0.296—#]
REF
SECTION
c~¢C 2.625
¢ 2.300 BSC [=]x]0.006]
+ 0100 REF 0100 REF
0100 0125 20015 I r—s PLACES 17 PLACE “’
0.020 L " (!
0337 j 1 4
0177 ¥__| Y I N1 o7

ez

J

4 PLACES

2.475 (=] xJ0.006] ————»
le-0.100 TYPICAL [€]0.006

~

0040 REF-»]
SQUARE [=[¥o006 e
fe-0.025+0001
4 44 PLACES O S o e
- 0.296 0100
ae [l] -
- L1 o045
% REF 0035 R
¥
“ 1 0177
REF

_’“‘2.018 ? f

+0001
36 PLACES
SECTION
B-8

EF-"“‘————— 2.565 [=X7]

0183
[———

(a)

FIGURE 426 44-pin iSBX connector dimensions: (a) 44-pin male connector; (b) 44-pin
female connector. (Note: All dimensions are in inches, and unless otherwise specified toler-

ances are 0.xxp01, 0.xxxp005.)

160

le

ISBX1/OBUS 461

R —

2.625

oafs (2EEEI{=ED: E3E’ —
: 500G O ga+ 0B ¥
. -. -.—-. g ALL —T — 1) 0050
1.980
!
2581 0022 R
—o |e-0077 0.019 REF—-G—/
‘” ﬁ__I__I_ ¥ £ 005 1
L] | - | IO 0.315
r —r ___;:%:_i_
{f __{} 0015
0.100 REF le—
0.125,
17 PLACES
| 1700 BSC 44 PLACES
fe 2.300 8SC
r0.296 0-050 -z- 0.006
-
oizs -§— 2800 E——El - ¢_ ! i omo
B - m n

FIGURE 4-26 (Continued)

4.7.4

0100

(b)

iSBX Multimodule Board Outlines

The iSBX Multimodule board has two standard board outlines and one varia-
tion, as shown in Figs. 4-31 to 4-33.

4.7.5

iSBX Multimodule Board User I/0O Connector Outlines

The top edge of the iSBX Multimodule board can be defined by the designer.
Figures 4-34 to 4-36 show the suggested top edge connector dimensions for the

most common designs.

N,

462 THE MULTIBUS FAMILY OF BUS STRUCTURES
AT S Y
16-BIT
iSBX BOARD
CONNECTOR L’l ”
(MALE, 44 PINS)

8-BIT ﬂ

iSBX BOARD
CONNECTOR
(MALE, 36 PINS)

16-BIT J H L_J ;_/_—ﬁ
HOST-BOARD
CONNECTOR {} {} el il B {}
(FEMALE, 44 SOCKETS)

FIGURE 4-27 8- and 16-Bit iSBX connector compatibility.

PIN 35 PIN 1
1 1 1 1 1 !
od--——— ——_—— o:On
0 ——— e 0¢ 02
) I | 1 | —_— Jul }

PIN 36 PIN 2

FEMALE CONNECTOR, 36-PIN, TOP VIEW

PIN 43 PIT 35 PIN 1
I P Y —— oG
000-—0Q00————————————————— 0
EELES: ?
PIN 44 PIN 36 PIN 2

FEMALE CONNECTOR, 44-PIN, BOTTOM VIEW
FIGURE 4-28 iSBX pin connector numbering.

4.8 LEVELS OF COMPLIANCE

The iSBX bus supports various levels of compliance with the full specification.
In this section we discuss the variable elements of capability, the compliance
relations for baseboards and iSBX Multimodule boards, and the notation used
to describe the level of compliance with the iSBX bus.

P

0.400 MAXIMUM

— >
—

SOCKET 0.530

0.827
0.070

iSBX MULTIMODULE BOARD ‘ g

0.357 MAXIMUM

[e — —— ———

—— ——]

I

isBX —
CONNECTOR |

{MALE)

FIGURE 4-29 Multimodule board height requirements.

[
Ic
0.400
0.550
MAXIMUM MAXIMUM
SOCKET
0.070 l MULTIMODULE BOARD <
1.170
MAXIMUM
0.357 iSBX BUS
MINIMUM CONNECTOR Ic
(MALE)
0.540
0.400
MA?MUM MAXIMUM
0.490) SOCKET
iSBX BUS
MINIMUM CONNECTOR
l (FEMALE)
0.070 MICROCOMPUTER BOARD
¥ _ _
0.090
¥

FIGURE 4-30 Baseboard and Multimodule board height requirements. {See Fig. 4-23 for

additional restrictions.

163

3.70
0.156
0.06 R DIAMETER e 150—= 4,00
4 PLACES~! 1PLACE i)
\‘r\
TN
2.050
2.50 REF
COMPONENT
SIDE ‘
|

PIN 1 LOCATION

el
——I L—0.300 REF

FIGURE 4-31 Single-wide iSBX Multimodule board
dimensions. (Note: All dimensions are in inches, and
unless otherwise specified tolerances are 0.xxp01, 0.xxxp

005.)
3.70
0.156
0.06 R DIAMETER 1.50
4 PLACESy 1PLACE—
}
0.550
)______-
2.85 2050
REF
COMPONENT
SIDE :
_ ;
/'l)
PIN 1 LOCATION . L—o 300 REF

FIGURE 4-32 Single-wide (variation) board dimen-
sions. (Note: All dimensions are in inches, and unless
otherwise specified tolerances are 0.xxp01, 0.xxxp005.)

7.50
5.100
0.550! o.io 2.20 3.800
- 0} - e
t Y f
250 130
COMPONENT
2.851 gé’f_&"" SIDE
ot —
PIN 1 LOCATION—/—. l._0.300 0.156 DIAMETER

REF

3 PLACES

FIGURE 4-33 Double-widé iSBX Multimodule board dimensions. (Note: All dimen-

sions are in inches, and unless otherwise specified tolerances are 0.xxp01, 0.xxxp005.)
{Double-wide (variation) board dimensions.

164

3.70

0.04 X 45° 1330
2 PLACES—| —|[-0050 ——0.156
0.06 R 0.095 i Y PeACE
P PLACESX R.EF __,ﬂ 1 PLACE
; 0.200
0.550 \«N U-IL
¥ . df
2.85 gé)Fso
COMPONENT

SIDE

|l—+ —

e

PIN 1 LOCATION

— LO.300 REF

je——1.50 ——»

FIGURE 4-34 iSBX Multimodule board with 13/26-pin connec-
tor dimensions. (Note: All dimensions are in inches, and unless
otherwise specified tolerances are 0.xxp01, 0.xxxp005.)

3.70
2.590
0.04 X 45°
2 PLACES 0.156 f—1.250
DIAMETER
0.06 R 1PLACE— |
6 PLACES ~ ‘\ —+{ [+—0.095 REF
I i 0.200
o N T
£ -
N
2.85 2.050
REF

COMPONENT

SIDE

l
=

J

PIN 1 LOCATION——/

— L-0.300 REF
1.50

FIGURE 4-35 iSBX Multimodule board with 25/50-pin connec-
tor dimensions. (Note: All dimensions are in inches, and unless
otherwise specified tolerances are 0.xxp01, 0.xxx0005.)

165

166 THE MULTIBUS FAMILY OF BUS STRUCTURES

3.70

2.090
0.04 x 45° 1.700 ——+]
4 PLACES —| 1.390 —!

1
0.06 R \J ’ 1.270—
8 PLACES_\ ‘ ~+| [+-—0.095 REF
: 0.200

o.5§o N
L) ¢

0.156)
DIAMETER
1 PLACE

COMPONENT
SIDE

\s

REF

ol
=1 i

.

PIN 1 LOCATION — L—O.300 REF
1.50

FIGURE 4-36 iSBX Multimodule board with 13/26- and 20/40-pin
connector dimensions. (Note: All dimensions are in inches, and unless
otherwise specified tolerances are 0.xxp01, 0.xxxp005.)

4.8.1 Variable Elements of Capability

The iSBX bus has flexibility built into its structure to permit the board designer
to build different systems with modules of varying capabilities. It permits vari-
ations in the following areas:

1. Data path width
2. DMA support
3. Asynchronous transfer control (no MWAIT#*)

DATA PATH

Both 8- and 16-bit data path products can operate on the iSBX bus. Baseboards
with 16-bit data paths can support 8-bit only or both 8- and 16-bit iSBX Mul-
timodule boards. 8-bit baseboards can support only 8-bit iSBX Multimodules.

DMA SUPPORT

DMA support is optional on both baseboards and iSBX Multimodule boards.
Both elements must support DMA in order to perform DMA activity.

INTERLOCKED OPERATION

The support of MWAIT* is optional on both the baseboards and iSBX Multi-
module boards. Both elements must support MWAIT#* in order to perform
asynchronous data transfers. Typically, baseboards will almost always support

iSBX I/O BUS 167

the interlocked operation, and some iSBX Multimodules do not require
MWAIT=*. This option allows the use of low-cost single-chip microcontroller
devices that do not support a ready function.

4.8.2 Baseboards and iSBX Multimodule Boards

In the construction of systems with iSBX Multimodules, it is not necessary for
all iSBX bus modules to have identical capabilities. For example, a baseboard
which does not support DMA can be combined with an iSBX Multimodule
board that does support DMA. The system is functional and reliable, and the
only restriction is that no DMA operations can occur. It does only standard read
and write operations.

The system designer must evaluate the required capabilities of the system
and compare them with the capabilities of the particular products selected.
Each product will provide some set of capabilities. A transaction between a
baseboard and an iSBX Multimodule board must be restricted to use the capa-
bility which both products support. It is the responsibility of the system designer
to assure the viability of the operations.

4.8.3 Compliance-Level Notation

The following notation allows a vendor to succinctly and accurately specify a
product’s level of compliance with the iSBX bus specification. Increasing the
levels of compliance subsumes the lesser levels for data path. The lack of an
element specification implies no capability for that element.

DATA PATH

D8 8-bit iSBX Multimodule board.
D16 16-bit iSBX Multimodule board.

D8/8 8-bit baseboard that can support an 8-bit iSBX Multimodule
board.

D16/8 16-bit baseboard that can support only an 8-bit iSBX Multimodule
board.

D16/16 16-bit baseboard than can support both 8- and 16-bit iSBX Mul-
timodule boards.

DMA SUPPORT

DMA Baseboard or iSBX Multimodule board that can support DMA
operations.

168 THE MULTIBUS FAMILY OF BUS STRUCTURES

INTERLOCKED OPERATION

F Baseboard that does not support interlocked operations. This requires all
operations to be full speed.

I Expansion module that requires interlocked operations. This requires the
baseboard to support operations that use MWAIT+*.

COMPLIANCE-LEVEL MARKING

The compliance levels of a module shall be documented in all product specifi;
cations and optionally marked on the PCB.

EXAMPLES

A 16-bit baseboard that supports both 8- and 16-bit iSBX Multimodule boards,
has DMA capabilities, and provides interlocked operations would be specified
as follows:

iSBX bus baseboard D16/16 I DMA

An 8-bit baseboard that supports interlocked operations but does not support
DMA would be specified as follows:

iSBX bus baseboard D8 I

O

LBX Bus

This chapter provides the basis for a conceptual understanding of the iLBX bus
and how it serves as an execution extension of the Multibus system bus. Included
are the logical and physical descriptions of the iLBX bus and the devices that
connect to the bus. The notation throughout this book is the same as that defined
for the Multibus system bus in Sec. 2.1. The information in this chapter is based
on the Intel iLBX Bus Specification (145695 Rev. A). It is recommended that
anyone designing on the iLBX bus obtain the latest version of the specification
from Intel Corporation.

5.1 WHY THE iLBX BUS IS REQUIRED

When the system bus supports more than one microprocessor, the available
bandwidth for each microprocessor decreases as additional microprocessors are
added to the bus. There are two basic methods of handling the bandwidth
reduction. The typical approach is to ensure that the bandwidth of the bus is
sufficient to handle all the microprocessors and peripherals expected to be
attached to the bus. The single-bus approach is demonstrated in Fig. 5-1. The
problem with this approach is that the bus will not allow the system to migrate
when faster microprocessor and/or peripheral technologies are available or
when additional microprocessors are added to the system. As microprocessors
are added, each must arbitrate for the bus to get at its resources. The overall
effect is a relative degradation of the system performance. Therefore, the bus
becomes obsolete very quickly. This can be clearly demonstrated on the Mul-
tibus system bus. An 8-MHz central processing unit (CPU) executing and mov-
ing data on the Multibus system bus utilizes almost the entire bandwidth of the
bus. If a second CPU is added, only 20 percent increase in overall system per-
formance is realized, because a large amount of CPU time is wasted while the

170 THE MULTIBUS FAMILY OF BUS STRUCTURES

second CPU waits to acquire the bus. If a third CPU is added, virtually no
additional system performance is obtained, because the third CPU wastes all of
its time arbitrating for the system bus and never reaches its resources.

The second method of increasing bus bandwidth is to remove the heavy data
traffic from the system bus. Data movement from or to high-speed I/O devices
and code execution are the two major sources that saturate the system bus. The
Multichannel bus (discussed in Chap. 3) can remove the high-speed I/0
requirements from the system bus. The iLBX can remove the execution
requirements for each microprocessor from the system bus when the on-board
memory resources are insufficient.

The iLBX bus provides a standard memory extension bus for each Multibus
system bus SBC. The iLBX bus helps prevent saturation of the system bus by
removing all or most execution requirements from the system bus. This is done
by allowing each SBC to extend its memory resources and thereby create a
virtual single-board computer, which reduces the requirement to use global
memory resources on the system bus. Figure 5-2 shows a typical Multibus sys-
tem utilizing the iLBX bus. In this illustration SBC 1 is executing code on its
iLBX bus and SBC 2 also is executing code on its iLBX bus. The global memory
on the system bus is used for data passing and interprocessor communication.

SBC1 . MEMORY MEMORY

y y
< MULTIBUS SYSTEM BUS >

3 Y

SBC 2 MEMORY 1/70

FIGURE 5-1 Single-bus system architecture.

iLBX BUS 171

r——————————— — — —
| VIRTUAL SBC I
I |
| I
I SBC1 MEMORY l MEMORY
I I
I |
|
I I i I
iLBX BUS
- T —_
y 1 L
< MULTIBUS SYSTEM BUS >
e W — [
e =
| \ l iLBX BUS ‘ v :
I |
| |
| sSBC 2 MEMORY I 170
| |
| I
| |
I .
VIRTUAL SBC
- J

FIGURE 52 iLBX bus system architecture,

The iLBX bus allows connection of up to four memory boards, yielding a
total local expansion address space to 16M bytes. The iLBX bus is unique in that
it allows a tighter timing exchange between the SBC and the memory resources

while maintaining a standard interface.

5.2 LOGICAL DESCRIPTION OF THE iLBX BUS

The iLLBX bus is a standardized execution bus which, when used with the Mul-
tibus system bus, provides an architectural extension of the Multibus system bus.
A diagram of a typical Multibus bus system utilizing the iL.BX bus is shown in

Fig. 5-2. The key features of the iLBX bus are:

« Standardized controlled interface
o 16M-byte local memory expansion

o 8- or 16-bit data transfers

472 THE MULTIBUS FAMILY OF BUS STRUCTURES

e Primary and secondary master support

¢ Mechanical fit with existing Multibus system bus chassis and backplanes

The maximum transfer rate for the bus is 9.5M bytes per second for 8-bit
data transfers and 19M bytes per second for 16-bit data transfers. The bus sup-
ports two to five devices and has a total address space of 16M bytes.

The bus uses a master-slave data transfer approach in that the master initiates
address and command information for the data transfer and the slave responds
to this information. One of the five devices that the bus supports must be the
master. One to four slaves can be added to the bus depending on system mem-
ory requirements. Figure 5-3 shows an example of the iLBX bus with several
slave memory devices attached to it.

The master initiates the transfer by placing address-status information on the
bus and generating an address valid signal. If the master is writing data, it will
then place data on the bus and generate a data valid signal. The addressed slave
responds to the data valid signal by generating an acknowledge signal (to the
master) after it has received the data. If the master was reading data from the
slave, the addressed slave will generate the acknowledge after it has placed valid
data on the bus. This is the same type of asynchronous interlocked transfer
scheme that is used by the Multibus system bus and the Multichannel bus. The
asynchronous handshake between the master and the slave allows devices of
varying speeds to coexist on the same bus. Slave memory device 1 in Fig. 5-3
can have a slower or faster access time with respect to slave memory device 2
and still accurately transfer data with the master.

5.2.1 Bus Devices

The bus supports three device categories as follows:

¢ Primary master
e Secondary master
e Slave

In the following section the requirements and attributes of each device are
explained. The system requirements of these devices also will be explored.

PRIMARY MASTER

The primary master is responsible for controlling all transfers over the iLBX
bus and controlling the secondary master’s access to the bus. The iLBX bus must
contain one and only one primary master. In Fig, 5-3 the primary master is
shown driving the address, status, and control lines to the slave devices. During

ADDRESS (ABO-AB23)
)
DATA (DBO-DB15)
} CONTROL
STATUS (BHEN, LOCK*,R/W)
)]
COMMAND (ASTB*, DSTB*)
[TRANSFER
ACKNOWLEDGE (ACK*)
4
BUS REQUEST (SMRQ *)
BUS
ACKNOWLEDGE (SMACK *)
s
1)] 1
PRIMARY MASTER SECONDARY MASTER SLAVE 1 SLAVE 2

FIGURE 5-3 iLBX bus system implementation.

€Lb

474 THE MULTIBUS FAMILY OF BUS STRUCTURES

a read data transfer the slaves are driving the data lines, and during a write
data transfer the primary master is driving the data lines.

The primary master drives all address, status, and command lines for iLBX
bus data transfers. The bus supports a simple bus exchange mechanism for one
additional master called a secondary master. To support this simple bus
exchange capability, the primary master must monitor the bus request signal
from a secondary master and drive the bus grant acknowledge signal when it
is ready to give up the bus. The primary master must also supply the termina-
tion for the required iLBX bus signal lines. A typical primary master is a Mul-
tibus system bus iSBC that also contains an iLBX bus interface.

An allowed subset of the bus is a primary master that does not support a
secondary master. In this case the master is called a limited primary master.
Normally a limited primary master is chosen for a system to lower the cost. By
not supporting a secondary master, the limited primary master can replace
three-state drivers with normal TTL and also simplify its control logic. The
limited primary master does not monitor the bus request signals, nor does it
drive the bus grant acknowledge signal.

SECONDARY MASTER

In many applications the primary master cannot supply all the functions or the
data movement bandwidth required. For these applications a secondary master
is used. An example of a secondary master is a hard disk controller that is
allowed access to the memory resources on the iLBX bus. The secondary master
has the same control features as a primary master but cannot access the bus
until the primary master gives it the bus. The secondary master’s purpose is to
provide alternate access to the iLBX bus. As its name implies, the secondary
master must totally rely on the primary master for bus access. The primary
master is not required to give up the bus until all its requirements have been
met. A drawback to the secondary master is that it prevents the primary master
from using the bus once it is given control of the bus. If a secondary master has
a high utilization of the iLBX bus, it may prevent the bus from meeting its
primary requirement, which is high bandwidth execution.

The iLBX bus specification limits the bus to one optional secondary master.
The limit of two masters simplifies the bus arbitration to a basic centralized
request-grant scheme. When the secondary master requires the bus (Fig. 5-3),
it asserts the bus request line. When the primary master is ready to give up the
bus, it asserts the bus grant acknowledge signal. The secondary master may keep
the bus while it continues to assert the bus request signal. Once it removes the
bus request signal, it must turn off all bus drivers. When the secondary master
controls the bus, it must actively drive all the signal lines (except the data lines
on a data read and the bus grant acknowledge line) until it releases the bus to
the primary master. The secondary master must not provide any termination
to the iLBX bus lines.

iLBXBUS 475

SLAVE

Slave devices have the memory resources that the primary and secondary mas-
ter require. The iLBX bus supports a maximum of four slave devices with a
combined addressable space of 16M bytes.

The slave monitors the address lines for a valid address and, depending on
the control lines, will either read data from the bus and place the data in the
addressed memory location or write data to the bus from the addressed memory
location. The bus utilizes a positive acknowledge interlocked handshake
between the master and the slave. When the master is performing a data read
operation, the slave will drive the acknowledge line when it places valid data
on the bus, thereby permitting it to control the access time. That is, when the
master is performing a write operation, the slave will drive the acknowledge
line when it has placed the data into its memory. A typical slave implementa-
tion is shown in Fig. 5-3. The slave is responsible for driving the acknowledge
line for each accessed data operation and driving the data lines during an
accessed read operation.

5.3 BUS SIGNAL DEFINITION

In this section the signals that make up the iLBX bus structure and how they
are used to perform the various data transfer operations are described.

There are 56 signal lines for the 8- and 16-bit data operations. They can be
broken down into five classes: address, data, control, command, and bus access.
The bus does not supply any power lines. Power for the devices must come from
the Multibus system bus. There are seven signal return ground lines. The bus
also has one reserve line for 8- and 16-bit data interfaces. All of the iLBX bus
signals are listed in Table 5-6.

5.3.1 Address Lines

The bus contains 24 positive-true address lines, AB23 to ABO, which allow a
maximum address space to 16M bytes. All 24 lines must be driven by the active
master in some manner during a transfer cycle. The lines are decoded by each
of the slave devices to determine if the requested resource is in its area, and
they provide the address to access a unique location on the slave.

Figure 5-4 shows a basic data transfer cycle, which begins when the master
places the address on the bus. After the address is valid, the master informs the
slaves of the valid address by driving the address strobe signal.

Since the address information does not remain valid during the entire trans-
fer cycle, the slave should latch the address with the falling edge of the address
strobe signal. Allowing the master the capability of removing the address prior

476 THE MULTIBUS FAMILY OF BUS STRUCTURES

|
AB23-ABO ZDI(T

BHEN

ﬂ
| K
ofcgs]

-/—_—_—*._ —_———-— ==} -

R/W .\

ASTB*

DB15-DBO

DSTB*

ACK*

FIGURE 54 Write data transfer cycle.

to cycle completion provides the means for address pipelining. The master may
place the address of the next cycle on the bus during the current cycle to allow
the slave additional time to decode the address information.

5.3.2 Data lines

The iLBX data lines, DB15 to DBO, provide a positive-true data path between
the master and the addressed slave. All 8- and 16-bit data transfers between the
master and the slave use only the data lines DB15 to DBO for the data transfer.
The 16-bit-width iLLBX interfaces use all 16 lines, and 8-bit-width iLLBX inter-
faces use only DB7 to DB0. During a write operation the master is driving the
data lines and the slave is receiving the data lines. During a read operation the
slave is driving the data lines and the master is receiving the data lines. The
timing relations for 8- and 16-bit data transfers are shown in Fig. 5-4.

It is important to note that, in contrast to the Multibus system bus, the iLBX
bus cannot simultaneously support different interface widths. As discussed in
Chap. 2, the Multibus system bus has a swap byte interface. The swap byte
interface allows 8-bit-width interfaces to transfer data with 16-bit-width inter-
faces. With the swap byte the data is always placed on the low-order data byte
by the 8-bit CPU. The iLBX bus can support 8- or 16-bit-width interfaces only.
This implies that if an 8-bit CPU, such as an 8088, is required to transfer data
with a 16-bit-width interface device, the 8-bit CPU must simulate the 16-bit
interface. The 8-bit CPU would be required to transfer data on the high byte
(DB15 to DBS8) for odd addresses and the low byte (DB7 to DBO) for even
addresses. As will be seen in later sections, signal lines are available to make this
type of transfer possible. Chapter 10 offers guidelines for designing mixed-
device interfaces.

iLBX BUS 477

56.3.3 Transfer Parity

Transfer parity (TPAR*) provides a means of detecting transfer integrity vio-
lations. The support of this signal is optional. When it is used, it operates as an
additional data line with the same timing requirements as the data lines. The
iLBX bus uses odd parity defined as follows: When there is an even number of
1 bits in the transfer data, the transmitting device drives the TPAR* signal low.

The decision to use parity in a system depends on the cost versus the appli-
cation requirements. If the parity option is selected, then all boards in the sys-
tem must support parity. Parity support adds cost and performance overhead
to the iLBX interface.

5.3.4 Control Status Lines

The iLBX bus has three control status lines that are driven by the master to
support the data transfer. The read-write (R/W) line informs the slave of the
direction of the data flow. The byte high enable line (BHEN) is used to inform
the slave on which part of the data bus the data will be transferred and the
length of the transfer. In the following sections the uses of these signals are

described.

READ-WRITE

The bus master performing the data transfer controls the direction of the data
flow with the R/W signal. When the master is writing data to the bus and the
slave is receiving data, the master will drive the R/W line low. When the master
drives the R/W line high, the master will be reading the data lines and the slave
will be driving data on the data lines. :
Timing for the R/W line and the address lines is similar in that the signal
does not remain valid throughout the transfer cycle. Figure 5-4 shows the rela-
tions of R/W to the other bus signals. After driving the address and control lines
valid, the master will generate the address strobe signal. The slaves should latch
the state of R/W with the falling edge of the address strobe.

BYTE HIGH ENABLE

The byte high enable (BHEN) signal is an active-high line driven by the master
and used on 16-bit interfaces for data transfer size control and alignment. For
8-bit interfaces the BHEN signal is not used, and all data is transferred on DB7
to DBO. Table 5-1 shows the byte and word alignments used on the iLBX bus.
When active, the BHEN signal informs the slave to send or receive data on the
high-order data byte (DB15 to DBS).

Table 5-2 is a list of the 16-bit interface data transfer combinations. For the
16-bit interface, the BHEN line is decoded with the address line ABO informing
the slave whether the data transfer will be on the low byte (DB7 to DB0), high
byte (DBI15 to DB8), or word transfer (DB15 to DB0). BHEN must be latched

478 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 5.1 Byte, Word, and Double-
Boundary Definition; 16-Bit Data Frame

Boundaries Element identifier

Bit 15t0 8 Tto0
Byte Byte 1 Byte 0
16-bit word Word

TABLE 5-:2 Boundary Selection

Signal and level

Segment BHEN ABO
Byte 1 High High
Byte 0 Low Low
Reserved Low High
Word High Low

with the address strobe in the same manner as the R/W line. It is important to
note that the iLBX bus does not support a swap byte, such as the Multibus
system swap byte. The effect of a “no swap byte” transfer mode forces all inter-
face widths to be the same. The interface widths for all the bus modules must
be either 8 or 16 bits.

The BHEN does not remain valid for the entire transfer cycle and therefore
must be latched with address strobe by the slave in the same manner as the
R/W line. Figure 5-4 shows the timing relations of these signals to address
strobe.

5.3.5 Command Lines

The iLBX bus has three command lines to control the transfer data cycle. Two
signals, address strobe and data strobe, are driven by the master to initiate and
control the cycle. Acknowledge, which is driven by the slave, acknowledges and
terminates the cycle. These signals are defined in the following section.

ADDRESS STROBE

Address strobe (ASTB#) is an active-low signal driven by the master to initiate
a transfer cycle and to inform the slave that valid address and control status are
on the bus lines. Since address and status do not remain valid for the entire
transfer cycle, the slaves also use the falling edge of ASTB* to latch the address
and control status information.

Figure 5-4 shows the timing relations for an iLBX bus transfer cycle.

iLBXBUS 479

1. The master places the address and control status on the bus.

2. After meeting the specified setup time for address and control status, the
master drives the ASTB* signal low. Upon receiving the active ASTB#* signal,
the slave, if it is the selected slave, latches the information and begins the
cycle. If a slave is not selected, it will wait for the next ASTB*, which signals
the start of a new cycle.

DATA STROBE

Data strobe (DSTB#*) is an active-low line driven by the master to set up the
actual transfer of data. The signal is also used by the master to indicate the end
of the transfer cycle. The DSTB# signal, when used in conjunction with the
R/W signal, indicates the direction of data flow to the slave. The definition of
DSTB* varies slightly depending on the direction of the data transfer from mas-
ter to slave (write) or from slave to master (read).

During a write operation the master informs the slave that valid data will be
on the bus by driving the DSTB#* signal low. Figure 5-4 is an example of a write
operation. In this figure the active bus master places address and control status
information on the bus in the manner described for the address strobe operation
above.

3. To inform the slave that the cycle is a write cycle, the master places the
R/W control status line into the write mode prior to issuing the ASTB*
signal.

4. After meeting the required setup and hold times for the address, the active
master indicates that valid data will be on the bus by driving the DSTB*
line low.

5. The master then drives valid data on the data lines a specified time after it
drives DSTB* low. The selected slave samples the data after detecting the
falling edge of the DSTB* signal and waiting the specified setup time.

During the read operation the master informs the slave that it can place data
on the data bus by driving the DSTB#* signal low. A read operation is shown in
Fig. 5-5. In a read operation the master places address and control status on the
bus in a manner similar to that of the write operation. The main difference is
that the R/W status signal now indicates a read cycle to the slave.

3. To inform the slave that the cycle is a read cycle, the master places the
R/W control status line into the read mode prior to issuing the ASTB#* signal.

4. After the master has met the specified setup and hold times, the master
drives the DSTB# signal low.

5. The slave then drives the bus with its data.

480 THE MULTIBUS FAMILY OF BUS STRUCTURES

! :
aB23-aB0 777X S !
| @ T
Y
BHEN |
1T
_ L :
R/W
/ oY
|

ASTB* @
S

i

|

DSTB*

|

I

|

|

l
ACK* \l\

FIGURE 5-5 Read data transfer cycle.

ACKNOWLEDGE

The selected slave drives the acknowledge (ACK#) signal to inform the master
that the current cycle can be completed. The ACK* signal timing requirements
can vary with different master-slave combinations.

There are three basic acknowledge types: (1) acknowledge before data
strobe, (2) acknowledge after data strobe, but prior to data valid or accepted,
and (3) acknowledge after data strobe and when data is valid or accepted.
Acknowledge types 1 and 2 are called advanced acknowledge in that the slave
issues the ACK* signal before the slave accepts data or places valid data on the
bus. This type of acknowledge takes advantage of a microprocessor’s delay from
the time of receiving acknowledge to the time of sampling or removing data.
The first type of acknowledge requires a very tight timing relationship between
the master and the slave. The second type of acknowledge relaxes some of the
restrictions placed on the first type. The third type of acknowledge does not
place any special timing restrictions on the master or the slave. The third type
of acknowledge is equivalent to the Multibus system bus XACK* signal.

Since the iLBX bus is an execution bus, it allows for flexible acknowledge
timing to gain increases in performance. Although the restrictions decrease
through the three types of acknowledge, so does the performance. Type 1
acknowledge offers the best and type 3 the lowest system performance. A type
1 acknowledge requires a trade-off of a narrow range of compatible boards and
a more difficult design for increased performance. The type 1 acknowledge is
inflexible with regard to slaves with varying memory speeds or changes in
microprocessor clock frequency. The type 3 acknowledge provides the full
range of board compatibility for simple system upgrade and a simple design
with relaxed timing constraints, rather than optimum performance.

Figures 5-4 and 5-5 show basic acknowledge sequences for write and read

iLBX BUS 181

operations, respectively. In these figures the slave is using the type 2
acknowledge.

4. After the master has completed the address portion of the transfer cycle, it
issues a DSTB* to the bus.

5. In doing so, it drives data on the data lines.

6. The slave, upon receiving the DSTB«* signal, generates the ACK# signal to
the master.

7. After receiving the ACK* signal, the master removes the data and the
DSTB* signal, which signals the end of the cycle.

Since this is a type 2 acknowledge, the slave must ensure that its acknowledge
timing relative to the DSTB#* strobe meets the timing requirements of the mas-
ter. Specifically, the slave must ensure that, when it issues the ACK+* signal, the
master will continue to hold data valid on a write so that the slave can complete
the cycle. During a read cycle the slave’s acknowledge timing must meet the
master’s timing requirement for input data. If the acknowledge sequence were
a type 3, the slave would assert the ACK* signal only when data was valid on
a read cycle and was accepted on a write cycle. Early type 1 and 2 acknowl-
edges allow for overlap in the data synchronization times of master and slaves.
The penalty for the early acknowledge is the requirement that a user, during
system design and integration, understand and modify the master-slave timing
relationship.

To optimize system performance, a slave device should provide a means of
varying its acknowledge timing to match the master timing. In a primary- and
secondary-master system the type 1 and type 2 advanced acknowledge timing
must satisfy both master timing requirements. Acknowledge timing during read
and write cycles with multiple masters is covered in Chap. 9.

5.3.6 Bus Access Control Lines

The iLBX bus provides two signals to allow a secondary master access to the
bus. Secondary-master request is driven by the secondary master when it
requires access to the bus. Secondary-master acknowledge is driven by the pri-
mary master to grant the bus to the secondary master. Lock, the third control
signal, allows a primary and secondary master on the iLBX bus to restrict Mul-
tibus system bus access to a slave board with dual-port memory.

LOCK

Lock (LOCK#) is a signal that is driven by the active master to restrict access
to a dual-ported RAM that is connected to the iLBX bus and the Multibus sys-
tem bus. The master ensures the memory port direction is toward the iLBX bus

182 THE MULTIBUS FAMILY OF BUS STRUCTURES

LOCK *

DSTB* \

FIGURE 5-6 Lock transfer cycle.

SETUP ('SU) HOLD “HD)

by driving the lock signal low. By locking the memory port to the iLBX side,
the master ensures that common data will not be disturbed between accesses,
which is important when semaphore exchanges are performed in a multiple
microprocessor system. By locking the bus, the master prevents the dual-ported
memory from being busy. This guarantees access time to the slave memory,
which can be important in the support of real-time burst transfers.

The timing relations for the lock signal are shown in Fig. 5-6. The master
begins a transfer cycle in a normal manner. If the master desires to lock sub-
sequent data cycles to the given data cycle, it must drive LOCK active prior to
the removal of DSTB#. This ensures that the following data cycle will be locked.
The slave will remain locked while the master continues to drive the lock signal
low. To ensure the next cycle will not be locked, the master must remove the
lock signal after ASTB#* active and prior to DSTB#* inactive in the last locked
cycle.

Care should be taken when implementing lock on both the iLLBX bus and
the Multibus system bus, because a deadlock situation can occur. The problem
arises when a locked transfer crosses physical memory boundaries on both buses.
The sequence is as follows: A Multibus bus master is performing a locked trans-
fer that crosses the boundary into a dual-port memory that is currently locked
by the iLBX bus master. Simultaneously, the iLBX bus master is performing a
locked transfer which crosses the boundary into the dual-port memory that is
occupied by the Multibus bus master. When this situation occurs, neither master
can get to its resource and a deadlock follows. One way to avoid the deadlock
is to allow the slave memory to unlock when a physical boundary is left. This
can cause the corruption of data on the slave memory. Slaves can be designed
to optionally select either lock mode and thereby allow the system environment
to dictate which form of lock recognition to use. In either case software may be
required to prevent system failure.

SECONDARY-MASTER REQUEST

The secondary master uses the secondary-master request (SMRQ#*) line to
request the bus from the primary master. The primary master grants control of
the bus by sending a secondary-master acknowledge (SMACK*) signal to the

iLBX BUS 183

secondary master. Once the secondary master has control of the bus, it can
maintain control by continuing to drive the SMRQ* signal. Once the secondary
master completes its bus operation, it removes the SMRQ#* signal. At this point
the primary master can regain control of the bus.

SECONDARY-MASTER ACKNOWLEDGE

The primary master informs the secondary master that the bus can be used by
driving the SMACK#* signal low. The master uses this signal in response to a
secondary-master request. The master is responsible for keeping SMACK*
active while the secondary master continues to drive SMRQ#* active. Once the
secondary master removes the SMRQ#* signal, the master can remove the
SMACK#* signal.

Figure 5-7 shows the timing relations of these two signals.

1. When the primary master receives the SMRQ* signal, it continues to per-
form its operation until it is ready to release the bus.

2. When the primary master is ready to release the bus, it drives SMACK * low.
The master must ensure that its drivers are three-stated a maximum time

after driving SMACK*.

3. The secondary master, after receiving the SMACK* signal, drives the bus
address data and control lines after a specified minimum time.

4, Once the secondary master has the bus, it can retain control until it removes
the SMRQ#* signal. The secondary master must ensure that its address, data,
and control lines are three-stated when it releases the SMRQ* signal.

5. The primary master responds by removing the SMACK* signal and driving
the bus address, data, and control lines.

MULTIBUS INIT* J
7—* |
SMACK* &;7 'y
*
SMRQ f_P
THREE-STATE DRIVERS

SECONDARY MASTER @\‘

THREE-STATE DRIVERS

-
|

FIGURE 5-7 Bus exchange cycle.

484 THE MULTIBUS FAMILY OF BUS STRUCTURES

5.4 BUS OPERATION OVERVIEW

The operation protocol for the iLBX bus has four main parts:

o Write data operation
 Read data operation
» Bus time-out operation

e Bus transfer operation

Each primary master, secondary master, and slave uses or participates in one
or more of these operations. In the following section these operations and the
device participation in each operation are described.

5.4.1. Wirite Data Operation

The active master (either primary or secondary) is responsible for initiating the
write cycle. The cycle is initiated when the master places the address of the
location to which it wishes to write data on address lines AB23 to AB0 and drives
ASTB#* active. The master must meet the minimum address setup time prior to
driving ASTB*. Upon receiving the ASTB* signal, the selected slave latches the
address information. The master also places the R/W signal into the write mode
(R/W = low) prior to ASTB*.

At this point the slave can react to the cycle in one of three different ways.
Figure 5-8a to ¢ shows the three timing relations for the slave’s ACK* response.
Figure 5-8c¢ is the timing relation for when the slave generates the ACK* (type
8 acknowledge) signal after it places the data into the memory location. In this
case the master initiates the cycle as described above. When the master is ready
to transfer data, it drives the DSTB* signal active. The master must then ensure
that data will be valid on the data lines, DB15 to DB0, a maximum of 35 ns
after DSTB#*. The slave in Fig. 5-8c will not drive ACK#* until it has accepted
the data. Once the master receives ACK#, it will remove the DSTB# signal and
thereby inform the slave that the cycle has ended.

Figure 5-8b is the timing relation when the slave acknowledges the write
cycle prior to placing the data into its memory (type 2 acknowledge). The cycle
is similar to the normal acknowledge described above up to the generation of
the DSTB* signal. When the slave receives the DSTB#* signal, it generates the
ACXK+ signal prior to completing the write cycle on board. This type of cycle
must be statically configured between the master and the slave, and the point
at which the ACK* signal is sent will vary with the master-slave combination.
For this cycle to occur, the slave must ensure that, after sending ACK*, the
master will keep data and DSTB#* valid for the minimum time required for the

iLBXBUS 185

AB23-ABO

X777 X
X

|

|
BHEN /X

1

R/W

ASTB*

DB15-DBO

DSTB*

ACK*

ASTB*

DB15-DBO

DSTB *

ACK*

ASTB*

DB15-DBO

DSTB*

ACK*

FIGURE 58 Write cycles with acknowledge: (a) type 1; (b) type 2; (c) type 3.

slave to complete the cycle successfully. To configure this system, the user must
have a good understanding of the master-slave timing relationship of the
system.

Figure 5-8a is the timing relation when the slave acknowledges prior to the
master issuing the DSTB* signal (type 1 acknowledge). This cycle is initiated
in a manner similar to that of the cycles described above. After ASTB# is sent
by the master, this cycle differs from the cycles described above. In this cycle
the slave may generate the ACK+* signal any time after receiving the ASTB#*
signal. To use this early acknowledge cycle, the master must guarantee that data

486 THE MULTIBUS FAMILY OF BUS STRUCTURES

and DSTB# are valid some time after ASTB#. The slave must guarantee that it
can complete the write cycle with the data hold times of an early acknowledge
cycle. This early acknowledge cycle requires an extremely tight relationship
between master and slave. It also provides the best performance of the three
cycles. Configuring a system of this type must be done with extreme care. The
user must closely examine the master and slave timing requirements before con-
figuring the system.

When early acknowledge systems with both primary and secondary masters
are configured, both timings must be taken into consideration. As a rule, the
early ACK* signal from the slave must meet the timing requirements of the
fastest master. The requirements for the iLBX system configurations with pri-
mary and secondary masters and with advanced acknowledge are covered in
Chap. 9.

5.4.2 Read Data Operation

The read cycle is very similar to the write cycle except that the master is now
reading (receiving) data from the memory resource. The active master (either
primary or secondary) is responsible for initiating the read cycle. The cycle is
initiated when the master places the address of the location from which it
wishes to read data on address lines AB23 to ABO and drives ASTB* active. The
master must meet the minimum address setup time prior to driving ASTB*.
Upon receiving the ASTB#* signal, the selected slave latches the address infor-
mation. The master also places the R/W signal into the read mode (R/W =
high) prior to ASTB+.

In a manner similar to that of the write cycle, the slave can react to the read
cycle in one of three different ways. Figure 5-9a to ¢ shows the three timing
relations for the slave’s ACK* response. Figure 5-9c is the timing relation when
the slave generates the ACK#* signal after it places valid data on the data bus
(type 3 acknowledge). The master initiates the cycle as described above. When
the master is ready to receive data, it drives the DSTB#* signal active. Upon
receiving DSTB#, the active slave may turn on its data buffers to the bus. The
slave in Fig. 5-9¢ will not drive ACK* until it has placed valid data on the bus.
Once the master receives ACK*, it will remove the DSTB#* signal and thereby
inform the slave that it has accepted the data and that the cycle has ended.

Figure 5-9b is the timing relation when the slave acknowledges the read -
cycle prior to placing the data on the data bus (type 2 acknowledge). The cycle
is similar to that of the normal acknowledge described above up to the gener-
ation of the DSTB* signal. Once the slave receives the DSTB#* signal, it can
generate the ACK# signal prior to data valid on the data bus. This type of cycle
must be statically configured between the master and the slave, and the point
at which the ACK* signal is sent will vary with the master-slave combination.
For this cycle to occur, the slave must ensure that, after sending ACK#, the

iLBX BUS 487

AB23-ABO

BHEN

R/W

ASTB*

DB15-DBO

DSTB*

ACK*

—
ASTB : i ' & |
oB15-080 7777777777777 ~—T—& ___Xoama)—)—)ﬁ:'
|
1 |
|

DSTB*

ACK*

] [}
) | '
ASTB* yé
I ! ‘ :
1 |
| | |
DSTB* : | |
‘ Yo '
| L]
ACK*] '
1

(c)
FIGURE 59 Read cycles with acknowledge: (a) type 1; (b) type 2; (c) type 3.

master will not require the data until the slave’s data is valid. Normally the
master’s hardware reference manual will specify the time required for data
valid from its DSTB#* signal. Once data has been accepted by the master, the
cycle ends in the same manner as the normal acknowledge read cycle. To con-
figure this system, the user must have a good understanding of the master-slave
timing relationship of the system.

Figure 5-9a is the timing relation when the slave acknowledges before the
master issues the DSTB* signal (type 1 acknowledge). This cycle is initiated in
a manner similar to that of the cycles described above. After ASTB* is sent by

4188 THE MULTIBUS FAMILY OF BUS STRUCTURES

the master, this cycle varies from the others. In this cycle the slave may generate
the ACK* signal any time after receiving the ASTB#* signal. To use this early
acknowledge cycle, the master must guarantee that DSTB#* is valid some max-
imum time after ASTB*. The slave must guarantee that the master will not
require the data until its data is valid. As in the other cycles, the slave can not
place data on the data bus until it receives DSTB#. This early acknowledge
cycle requires an extremely tight relationship between the master and the slave.
It also provides the best performance of the three cycles. This type of system
must be configured with extreme care. The user must closely examine the mas-
ter and slave timing requirements before configuring the system.

When early acknowledge systems with both primary and secondary masters
are configured, both timings must be taken into consideration. As a rule, the
early ACK«* signal from the slave must meet the timing requirements of the
fastest master. The requirements for the iLBX system configurations with pri-
mary and secondary masters and with advanced acknowledge are covered in
Chap. 9.

5.4.3 Bus Time-Out Operation

An iLBX bus time-out allows a read or write cycle to terminate without receiv-
ing an acknowledge from a slave device. Bus time-out is used to prevent the
bus from locking up whenever a resource does not respond to the address the
master places on the bus. Generation of the time-out is the responsibility of
the active bus master. The time-out duration is a minimum of 1 ms from ASTB*
going active. This cycle is demonstrated in Fig. 5-10. After the master generates
the address and the ASTB* signal, it generates the DSTB* as in a normal cycle.
After waiting a minimum of 1 ms from the ASTB# signal for the acknowledge,
the master terminates the cycle by removing the DSTB* signal.

Normally a time-out is generated either when there is no resource at the
address the master placed on the bus or when the resource is unable to respond
before the master generates the time-out. A dual-port memory slave that is

ASTB*

I 21lms |
DSTB* \ ~

¥,
ACK* /

FIGURE 5-10 Bus time-out cycle.

L
~

iLBX BUS 4189

MULTIBUS INIT* J

sMack* | % /lﬂ i,
|
SMRQ* ! (7715

|

PRIMARY MASTER I(:
TRI-STATE DRIVERS >| |
\I |
SECONDARY MASTER N

TRI-STATE DRIVERS Ne——
FIGURE 5-11 SMRQ# and SMACKs# timing relations.

locked to the Multibus system bus may prevent the slave from responding
before time-out occurs. In either case it is up to the master to ascertain if a time-
out has occurred and, if so, the manner in which it was handled. The slave must
be able to handle a premature end of cycle if it could not respond prior to the
master generating the time-out.

5.4.4 Bus Exchange Operation

A bus exchange allows a secondary master to request and take over the bus from
a primary master. A maximum of two masters (one primary and one secondary)
may share the iLBX bus. The iLBX bus uses an asynchronous request-acknowl-
edge process to pass control between the two masters. The control signal lines
for the bus arbitration are SMRQ* and SMACK*.

The primary master is responsible for controlling the secondary-master bus
access. The primary master monitors the SMRQ#* line and generates the
SMACK=* when it is ready to give up the bus. The secondary master drives the
SMRQ#* signal when it wants the bus and receives the SMACK* signal from the
master. After power-up initialization, the master has control of the bus. Figure
5-11 shows the timing relations for a bus exchange.

In Fig. 5-11, the secondary master requests the bus by driving the SMRQ*
signal low. The SMRQ#* signal is asynchronous to the read or write cycles; there-
fore, it can go low whenever a secondary master requires the bus. After the
primary master receives the SMRQ# signal, it can release the bus at any time.
The decision of when to release the bus rests solely with the primary master,
and there is no maximum time limit on the primary master. When the primary
master is ready to release the bus, it drives SMACK# low. This indicates to the
secondary master that the primary master will be off the bus some maximum
time after it generated SMACK *.

4190 THE MULTIBUS FAMILY OF BUS STRUCTURES

Once the secondary master has waited the maximum time, it may take con-
trol of the bus. The secondary master performs transfer cycles in the same man-
ner as a primary master. The secondary master may retain bus control for one
or more cycles. Control is retained as long as the secondary master continues to
drive SMRQ*. This allows the secondary master to perform multiple data trans-
fers without returning bus control to the primary master. After the secondary
master completes its data transfer(s), it returns the bus to the primary master
by removing the SMRQ* signal. The secondary master must ensure that all of
its bus drivers are three-stated prior to removing the SMRQ#* signal. Once the
master detects the removal of the SMRQ#* signal, it removes the SMACK * signal
and begins to drive the bus. After releasing control of the iLBX bus, the sec-
ondary master must detect the SMACK=* signal going inactive before it can
request the bus again by issuing another SMRQ#* signal.

Since there can be only two masters on a bus, the arbitration circuitry is very
simple. In many applications a microprocessor's HOLD/HOLDA lines can pro-
vide the arbitration with minimal overhead. Additional circuits can be added
to provide more flexibility and performance. Board-level designs and trade-offs
are covered in Chap. 10.

5.5 DETAILED ELECTRICAL DESCRIPTION

5.5.1 Logical State and Electrical Level Relations

' The signal names indicate whether the signals are active-high or active-low. If
the signal name ends with a asterisk, the signal is active-low, and has the fol-
lowing logical state and electrical level relations, in which H = high and L =
low:

Logical state Electrical level At receiver At driver
0 H = TTL high 525V=H=20V 525V=H=24V
1 L = TTL low 08V=L=—-05V 05V=L=0V

If the signal name has no asterisk, the signal is active-high and has the fol-
lowing logical state and electrical level relations:

Logical state Electrical level At receiver At driver
0 L = TTL low 08V=L=—-05V 05V=L=0V
1 H = TTL high 525V=H=20V 525 V=H=24V

These specifications are based on TTL when the power source is 5 V + 5 per-
cent as referenced to logic ground.

iLBX BUS 191

5.5.2 Signal Characteristics

The iLBX bus transmission medium is 60-conductor flat ribbon cable with a
maximum length of 4 in (10.16 cm). Because of the short length of the bus,
signal termination other than signal pull-up resistors is not required. To meet
the low bus noise requirements, the rise and fall times of all signals on the bus
must not exceed the following requirements:

Totem pole Three-state

Rise time, ns 10 10
Fall time, ns 10 10

The settling time for all command and bus control signals after a transition
is zero. On these lines the ringing cannot go beyond the noise immunity levels.
These signals are used to determine the state of the bus, and ringing beyond the
noise immunity levels can cause system failures. Address, data, and status may
ring beyond the noise immunity levels provided they settle out below the noise
level to meet the specified signal setup time. Setup, hold, and ringing are sum-
marized in Fig. 5-12.

<545 V
220V
__S08V
I\
GND
\/
S1vV
(a)
b—_—
W GND
\ £5.45 V
% —-/V HIGH LEVEL
N"""320v
0.8V

\~ 1v[\ LOW LEVEL GND
SN
(b}

FIGURE 5-12 Setup, hold, and ringing summary: (a) Ringing due to line reflection;
(b) line-to-line coupling.

492 THE MULTIBUS FAMILY OF BUS STRUCTURES

The high-impedance termination of the iLBX bus reduces the need for high-
current drivers such as 745240s and 74538s. Care should be taken when select-
ing the bus interface drivers for a design. Excessive current from the Schottky-
type drivers can create unwanted system noise which may result in system fail-
ures. The basic rule is to use LS drivers for the bus unless signal delays require
the use of S drivers. Also, to keep system noise to a minimum, the signal stub
lengths on the boards should be as short as possible and not exceed 2 in (5.08
cm) in length.

5.5.3 Bus Power Specification

The iLBX bus interface does not support power signals. Power for the bus inter-
face circuitry must come from the Multibus system bus power signals.

5.5.4 Temperature and Humidity Limits

All bus parameters and specifications must be met within the following envi-
ronmental limits:

Temperature 0 to 55°C (32 to 131°F); free moving air across the
iSBC board (200 LFM recommended)

Humidity 5% to 90% maximum relative (noncondensing); 25 to
40°C (77 to 104°F)

Shock 30g force for 11 ms duration three times in three dif-
ferent planes.

Vibration Sweeping from 10 to 50 Hz and back to 10 Hz at a
distance of 0.010 in (0.025 mm) peak-to-peak lasting
15 min in each plane.

Storage temperature 40 to 70°C (—40 to 104°F)

5.5.5 BusTiming

In this section all the detailed timing specifications for the iLBX bus are
described. They are summarized in Table 5-3. The timing diagrams show only
the minimum or maximum values required for each parameter; they define the
parameters in relation to the signals involved. All timing is measured at 0.8 V
for low and 2.0 V for high with a specified loading capacitance Ci.

READ OPERATION

A read operation transfers data from a slave to a primary or secondary master.
The signal lines involved and the timing specifications are shown in Fig. 5-183.

TABLES5.3 AC Timing Summary?

Timing
Ref Parameter description Minimum Maximum Source Note
t; ASTB= duration (width) 25 M
t; Address setup to leading edge of 40
ASTB»
t3 Address hold after leading edge of 40 M
ASTB=
t, BHEN setup to leading edge of 30 M
ASTB=*
ts BHEN hold after leading edge of 30 M
ASTB=
te R/W setup to leading edge of ASTB* 20 M
t; R/W hold after leading edge of 25 M
ASTB=
ts Trailing edge of ASTB# to trailing 10 M
edge of DSTB*
to Trailing edge of DSTB# to leading 25 M
edge of ASTB*
tijo0 DSTB=* duration (width) 50 M
t;) Leading edge of ASTB= to leading 0 95 M 1
edge of DSTB*
t12 ACK# hold after trailing edge of 0 45 S 2
DSTBs=
t;3 Leading edge of ACK=to read data 0 tece S 3
valid
t14 Read data hold time after trailing 0 45 S
edge of DSTB+
t15 Leading edge of ACK# to trailing 80 M
edge of DSTB*
t;s Leading edge of DSTB# to read data 0 S
valid
t17 Leading edge of ASTB* to write data 80 M 1
alid
t;3 Leading edge of DSTB# to write data 45 M
valid
ti9 Write data hold time after trailing 20 M
edge of DSTB+
s Leading edge of ASTB= to first 45—ty M 6
sample of ACK# line
tsy LOCKs# setup to trailing edge of 15 M
DSTB=*
t2 LOCK# Hold after trailing edge of 15 M
DSTB=
tss SMACK#* low to three-state drivers in 35 PM
high-impedance state
tas SMACK=* low to three-state drivers out 35 SM
of high-impedance state
ts SMRQ= high to three-state drivers in 0 M

high-impedance state
193

TABLE 5.3 (Confinued)

Timing

Ref Parameter description Minimum Maximum Source Note

tss SMRQ= high to three-state drivers out 0 PM 5
of high-impedance state

tz7 SMRQs high to SMACK~ high 0 PM

tss SMRQ#* low to SMACK* low 0 PM

tss SMACKs high to SMRQ# low 0 M

tszo Leading edge of ASTB# to trailing 1 ms M 7
edge of DSTB# (abort)

ts; Write data active after trailing edge 45 M 4
of DSTB*

o All times listed are nanoseconds unless otherwise noted.
e TPAR= timing is the same as DB15 to DBO.

e M refers to the currently active bus master.

o S refers to the currently selected slave device.

e PM refers to the primary master.

o SM refers to the secondary master.

1. Board designs can implement either of two transfer rates, optimized and nonoptimized,
based on the degree of close coupling desired between the master and slave devices. Two factors
determine the coupling and the degree of optimization realized when the iLBX bus is imple-
mented: the acknowledge acceptance time of the master device and the range of variability in
the slave device to preacknowledge the data transfer. A master device designed for optimized
operations must meet both the t;; and #,7 maximum times for the write operations and the t;;
maximum time for the read operations. When the master devices meet the required times, the
slave device is allowed to drive the acknowledge line low any time after the leading edge of
the address strobe. A master device that does not meet the maximum write time requirements,
by default, transfers data by using the nonoptimized timing, and the slave device must wait for
the leading edge of the data strobe before driving the acknowledge line low. See note 3 for the
slave device timing restrictions.

2. The selected slave device must stop driving the acknowledge line low immediately upon
detection of the trailing edge of the data strobe. The 45-ns maximum holdover time listed for
the acknowledge signal allows for the assumed input-to-output delay for the acknowledge
driver of 15 ns and the typical pull-up charge time through a 330-Q resistor required to bring
the acknowledge signal from 0.2 to 2.4 V DC, assuming a worst-case capacitive load of 5 pF.

3. The slave device should be provided with variable timing capabilities for driving the
acknowledge line low. For write operations, the slave device can drive the acknowledge line
low anytime after the leading edge of the address strobe signal subject to the limitations listed
in note 1. For read operations, the slave device can preacknowledge the data transfer by driving
the acknowledge line low before it provides valid data on the data lines. Preacknowledgement
is subject ot the limitations listed in note 1. The amount of variability provided should range
from 0.0 ns (data valid when the slave drives the acknowledge line low) to the maximum access
time of the slave’s memory resources (¢,cc). If the board designer chooses not to provide variable
timing, the slave device must have data valid at the time it drives the acknowledge line low.

4. The minimum tg3; guarantees that a master does not start to drive the data bus (write cycle)
until the slave has stopped driving the data bus (preceding read cycle).

5. The to6 timing does not apply during system initialization (for example, when the primary
master receives the Multibus interface initialization.

6. The tg time used for computing tg is the actual tg time of the master. The ¢ time can range
from 0 to 20 ns.

7. The minimum operation abort time is 1 ms.

194

iLBX BUS 195

ba—1p —op+—eitg
AB23-ABO X X
la— 1y —>re—eitg
BHEN X X
fe—tg—e—sity
R/W X X
~—1 } 1g tg—=
ASTB* | |
1 Y16
psTB*
t10 =t12
ACK* | |
120 i s l
DB15-DBO
(READ) X X
fe—1t13 | ‘—‘{'14
DB15-DBO
(WRITE) X| X
7 | ‘—" 19
| ——e] 118
LOCK * N\ /
121l<—><—>| 122
t30

FIGURE 5-13 Read, write, and lock AC timing.

The master places valid address a minimum of 40 ns (¢;), BHEN a minimum
of 30 ns (t,), and R/W status a minimum of 20 ns (¢ ¢) prior to the falling edge
of ASTB#. After the falling edge of ASTB#* the master must maintain the
address information a minimum of 40 ns (t3), the BHEN signal 40 ns (t5), and
the R/W signal 25 ns (¢;). The master must also guarantee that ASTB#* remain
low a minimum of 25 ns (t,).

Once the address portion of the cycle has been completed, the slave may
drive the ACK* line active prior to receiving the DSTB* signal active if early
acknowledge is used or drive ACK#* when DSTB#* is driven by the master. If
the early acknowledge is used, the master must guarantee that DSTB* will go
low a maximum of 95 ns (¢;;) from ASTB#* falling edge. This will ensure that
the access time will include all the slave’s buffer delays. In either case the slave
may not drive the data bus until 0 ns (¢,5) after DSTB#* active. The slave’s data
must be valid on the bus for a minimum of 0 ns to a maximum of ¢, after
acknowledge (#,3). The 0-ns minimum implies that data is valid when ACK* is

4196 THE MULTIBUS FAMILY OF BUS STRUCTURES

generated, while the t,., maximum is the earliest acknowledg allowed (that is,
the maximum access time of the slave board from ASTB#).

After an active ACK* is received, the master must keep DSTB#* active for a
minimum of 80 ns (¢;5). Once the master removes the DSTB#* signal, the slave
must hold the data valid a minimum of 0 ns to a maximum of 45 ns (¢,4) from
DSTB# inactive. In a similar fashion the slave must remove the ACK#* signal
after DSTB* goes inactive a minimum of 0 ns to a maximum of 45 ns (¢,2). The
times ¢, and ¢, prevent buffer fights or a false acknowledge on the following
cycle.

WRITE OPERATION

A write operation transfers data from a primary or secondary master to a slave.
The signal lines involved and the timing specifications are shown in Fig. 5-13.
The address portion of a write cycle is equivalent to a read cycle. The master
places valid address a minimum of 40 ns (¢;), BHEN a minimum of 30 ns (t,),
and R/W status a minimum of 20 ns (#¢) prior to the falling edge of ASTB+*.
After the falling edge of ASTB#* the master must maintain the address infor-
mation a minimum of 40 ns (f3), the BHEN signal 30 ns (t5), and the R/W
signal 25 ns (¢7). The master must also guarantee that ASTB* will remain low
a minimum of 25 ns (¢,).

Once the address portion of the cycle has been completed, the slave may
drive the ACK* line active prior to the DSTB#* going active if a type 1 acknowl-
edge is used or drive ACK* active when DSTB# is driven active by the master
for a type 2 or 3 acknowledge. If the early acknowledge is used, the master
must guarantee that DSTB#* will go low a maximum of 95 ns (t,;) from ASTB*
falling edge and that data will be valid a maximum of 80 ns (¢,7) after ASTB*
active. In a normal or advanced acknowledge cycle the master must guarantee
that data is valid 45 ns (¢,5) after DSTB# active.

After an active ACK#* is received, the master must keep DSTB* active for a
minimum of 80 ns (¢)5). Once the master removes the DSTB# signal, it must
hold the data valid a minimum of 20 ns (¢,9) from DSTB# inactive. In a similar
fashion the slave must remove the ACK#* signal after DSTB* goes inactive a
minimum of 0 ns to a maximum of 45 ns (¢,5). The time ¢, prevents a false
acknowledge on the following cycle.

LOCK OPERATION

The lock cycle, which is used to prevent dual-port access from the Multibus
system bus side, can be used on either the read or the write cycle. The signal
lines involved and the timing specifications are shown in Fig. 5-13. A master
starts a read or write cycle in a normal manner as described above. If the master
desires to lock the next access to a slave resource, it must drive the lock signal
active 15 ns (¢y) prior to DSTB#* going inactive. The master may keep lock
active for as many cycles as necessary, but it must hold the lock signal active a

iLBX BUS 197

minimum of 15 ns (y,) after DSTB# goes inactive. To guarantee that a cycle
will not be locked, the master must remove lock 15 ns (£y) prior to DSTB#* going
inactive and hold the lock signal inactive 15 ns (t5,) after DSTB* goes inactive.

BUS EXCHANGE OPERATION

A bus exchange operation allows a secondary master to request and obtain the
bus from the primary master. The signal lines involved and the timing specifi-
cations are shown in Fig. 5-14. The request is initiated by the secondary master
driving the SMRQ* signal active. The request is made asynchronously to any
data transfers occurring on the bus. The primary master responds by driving
SMACK* active a minimum of 0 ns (¢56) after receiving SMRQ#*. The primary
master must be off the bus a maximum of 35 ns (tg) after driving SMACK *
low. The secondary master must wait a minimum of 35 ns (£,4) after receiving
SMACK* low before it can drive the bus. Once the secondary master has the
bus, it may continue to keep the bus provided that SMRQ* remains active.
When the secondary master has completed its transfer(s), it must ensure that
the bus drivers are off a maximum of 0 ns (#35) from driving SMRQ#* inactive.
The primary master may remove the SMACK* signal 0 ns (£57) and drive the
bus a minimum of 0 ns (ty) from receiving SMRQ#* inactive. The secondary
master may request the bus again a minimum of 0 ns (¢5) after SMACK* goes
inactive.

5.5.6 Receivers, Drivers, and DC Specifications

In this section the driver type (TTL totem pole, three-state, or open collector),
the receiver loading, and the driver capabilities are specified. The specifications
are listed in Table 5-4.

MULTIBUS INIT* —L“_I l
—*| tyg I
SMACK* T \I zl’// ///

l‘—'29 : e 127_’:
|
t
SMRQ* ? } | / \ 28

| | |

| t23 | | t2g
PRIMARY MASTER I |
TRI-STATE DRIVERS | | |
| |

SECONDARY MASTER ! T\ tes
TRI-STATE DRIVERS | N "

[——tyg—~

FIGURE 5-14 Primary and secondary master bus exchange AC timing.

198 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 5.4 DC Loading Summary

DC Minimpm driver Maximl.xm receiver
termination® requirements requirements
Signal (to +5V | High,| Low, |Load cap, | High,| Low, |Load cap,
name Driver type DC) mA | mA pF mA [mA pF
DB15-0 Three-state 10 k@ 0.6 9 75 0.15 2 18
TPAR=* Three-state 10 k@ 0.6 9 75 0.15 2 18
AB23-0 Three-state None 0.4 20 120 0.10 5 30
R/W Three-state None 0.2 8 75 0.05 2 18
BHEN Three-state None 0.2 8 75 0.05 2 18
LOCK=* Three-state None 0.2 8 75 0.05 2 18
SMRQ=* TTL 10 kQ 0.05 2 20 0.05 2 18
SMACK* TTL None 0.05 2 20 0.05 2 18
ASTB+* Threestate | 10kQ® |02 9 75 0.05 2 18
DSTB+ Three-state | 10kQ? |02 9 75 0.05 2 18
ACK=* Open coll. 330 Q NA. | 20 45 0.05 2 18

“All terminators are located on the primary master unless otherwise noted.

badditional AC terminations for ASTBs and DSTBs lines are required on each slave device. Each terminator
is a series RC (100-Q, 10-pF) network between the signal line and ground. The location of the termination
network should be as close as possible to the receiver component input.

5.6 MECHANICAL CONSIDERATIONS

The Intel iLBX Bus Specification defines all the physical and mechanical con-
siderations required to design iLLBX-compatible boards or implement the iLLBX
bus in a system. In the following sections such requirements as form factor,
connectors, and pin-numbering conventions are described.

5.6.1 Bus Connector Considerations

The bus signals are available at the P2 edge connector of the Multibus system
bus form factor. The iLBX bus uses a mass-terminated flat ribbon cable as the
- interconnect medium between boards. The medium was chosen to provide a
flexible and low-cost backplane that can be easily retrofitted into existing system
designs. The flat ribbon allows variable spacing between boards that connect to
the iLBX bus. Since there are many Multibus bus-compatible backplanes with
board-to-board spacing ranging from 0.6 to 1 in (1.52 to 2.54 cm), the flat cable
lessens the need for multiple PCB backplane solutions. Vendors that produce
iLBX-compatible cable and connectors are listed in Table 5-5.

BUS CABLE

The bus interconnect cable uses 28-AWG, 60-conductor, flat ribbon cable for
both 8- and 16-bit interfaces. The maximum length for the 60-conductor cable
is 4 in (10.16 cm). The following are the general cable specifications:

iLBX BUS 199

TABLE 5.5 ILBX-Compatible Cable and Connector Vendor List

Vendor Vendor part no. Conductors or pins

iLBX BUS-COMPATIBLE CABLE

T & B Ansley 171-60 60
T & B Ansley 173-60 60
M 3365/60 60
3M 3306/60 60
Berg 76164-060 60
Belden 9128060 60
Spectrastrip 455-240-60 60

iLBX BUS-COMPATIBLE RECEPTACLES

Kelam RF30-2803-5 60
T & B Ansley A3020 (609-6026 modified) 60
Impedance 100 @ +10%
Propagation velocity 2.0 ns/ft (6.56 ns/m) max
Capacitance 15 pF/ft (49.2 pF/m) max
Voltage rating 100 V DC min

Insulation resistance 1 X 10" Q min

BUS CONNECTORS

The bus interconnect uses 60-pin mass-terminating female receptacles for 8-
and 16-bit iLBX bus interfaces. The female receptacle must have a key block
compatible with the keyslot specification for the iLBX bus P2 connector.

BUS CABLE ASSEMBLY

The cable assembly can have two to five female edge receptables mass-termi-
nated at the flat ribbon cable. The receptable spacing may vary with the num-
ber of boards and the board-to-board spacing. The only restriction on it is that
the length of the cable assembly cannot exceed 4 in (10.16 cm). Figure 5-15
shows an example of an iLBX bus interface cable assembly. For mechanical
reliability and system integrity the connectors must be fastened to the card
cage-backplane assembly.

5.6.2 Form Factor Considerations

Since the iLBX bus normally coexists on a Multibus system bus board, many of
the mechanical requirements of the Multibus system bus apply to the iLBX bus.

200 THE MULTIBUS FAMILY OF BUS STRUCTURES

The board-to-board spacing, board thickness, component lead length, and com-
ponent height are equivalent to the Multibus system bus specification. Refer to
the Intel Multibus ~Specification or Chap. 2 for general mechanical
specifications.

CONNECTOR LOCATION AND BOARD OUTLINE

The 8- or 16-bit iLBX bus interface resides on the Multibus system bus form
factor P2 connector. The bus signals on the P2 connector are in compliance with
the IEEE 796 specification and supersede the Multibus system bus P2 definition.
The four high-order address bits (ADR14# to ADR17#) of the Multibus speci-
fication are retained on P2. The battery backup and front-panel control signals
have been moved to an auxiliary connector, P3. The auxiliary connector defi-
nition is covered in the following section. The Multibus system bus P1 connector
definition is unchanged and is not affected by the iLBX bus definition. Figure
5-16 illustrates the standard board outline, as defined by the Multibus bus spec-
ification, modified for the iLBX bus. The 8- and 16-bit iLBX bus implementa-
tions use the standard P2 connector as defined by the Multibus system bus
specification.

B e e e e

o e oo R kst tocte ok Kok Radhe o Roke b ke R s e R

T Y e]

R R e R koot o NakaRodte ot Rerle T he oo Rnechodbodon

R Y

(a)
FIGURE 5-15 iLBX bus interface cable assembly.

iLBX BUS 201

PIN-NUMBERING CONVENTION

The iLBX bus pin-numbering convention is the same as the Multibus system
bus pin-numbering convention. Figure 5-17 illustrates the iLBX bus P2 pin-
numbering convention. It should be noted that the iLBX bus address and data
lines are in decimal. The four high-order Multibus address lines that reside on
the P2 connector retain the hexidecimal numbering,

4-~40 HEX NUT
;‘ 4-40 TOOTH
LOCK WASHER

1/8-in
4-40 SPACER

N 4-40 SCREW,
PHILLIPS DRIVE,
ROUND HEAD

FIGURE 5-15 (Continued)

202 THE MULTIBUS FAMILY OF BUS STRUCTURES

o
o o
v [
~ -
OO -
] ——0.25 X 0.25 TYPICAL EJECTOR HOLE 0.109
| 2 PLACES 2 PLACES
6.20 "
5.950
8/16-BIT
COMPONENT SIDE
¢ OF CONTACT § OF CONTACT
P1 { P2
Q— —0
0'250__'L| 43 PINS 30 PINS —
0.550 li |§
&—0.04 x 0.04 !
([4 PLACES % PLACES P
o ol o o O
Nw ™ W —
—o ox -~
°o ®o ==
(\! l-!
o ©
DETAIL A DETAIL B
——‘ l‘—moo RADIUS PERMISSIBLE
'y
0.300 TYPICAL ﬂ ; 0.30
+

—’I L—0.0SO TYPICAL —’I L—o.oas

FIGURE 5-16 Standard board outline.

PIN ASSIGNMENTS

The 8- or 16-bit configuration uses the standard form factor 60-pin P2 edge
connector and occupies 56 of the 60 signals. The iLBX pin assignments for both
8- and 16-bit interfaces are listed in Table 5-6. The four Multibus system bus

high-order address lines (pins 55 to 58) retain the standard Multibus system bus
function and location.

CONNECTOR KEYSLOT

The iLBX bus specification contains a keyslot to prevent plugging iLBX bus-
compatible boards into P2 connectors with Multibus system bus battery backup

iLBX BUS 203

and front-panel control signals. All iLBX-compatible boards must utilize this
keyslot, which is located between P2 pins 41 and 43. Figure 5-16 shows the
location and dimensional specification of the P2 iLBX keyslot.

BATTERY BACKUP AND FRONT-PANEL CONNECTOR

In order to provide room for the iLBX bus on P2, the Multibus system bus
battery backup and front-panel control signals were moved to an auxiliary con-
nector. The auxiliary connector (P3) is a right-angle pin connector which
mounts at the top of the board. The 14 signals assigned to the P3 connector are
divided into two groups: battery backup (pins 1 to 6) and front-panel control
(pins 7 to 14). The subset of the P3 connector allows iLBX boards to implement
either subset or the entire connector. For example, a primary master iSBC board
with no battery backup requirements may only use the front-panel control por-
tion, whereas a slave memory device needs only to implement the battery
backup portion.

Figure 5-18 illustrates the allowed area for P3 placement on a Multibus bus
form factor. The P3 connector must be located within the specified area to keep
the interconnecting cable lengths to a minimum. Figure 5-19 illustrates the P3
connector height, spacing, and pin location requirements. The P3 pin assign-
ments are listed in Table 5-7. The signal lines on the P3 connector are standard
Multibus system bus signals; they are fully defined in the Intel Multibus
specification.

8/16-BIT
COMPONENT SIDE

P1 P2
1 esl |1 59|

NG 86/ 2 60

SOLDER SIDE SOLDER SIDE
FIGURE 5-17 P2 connector pin-numbering convention.

. 204 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 5-6 ILBX P2 Pin Assignments (Decimal Notation except
Multibus Address)

Component side Solder side
Pin Signal Signal name Pin Signal Signal name
1 DBO Data line 0 2 DBI1 Data line 1
3 DB2 . Data line 2 4 DB3 Data line 3
5 DB4 Data line 4 6 DB5 Data line 5
7 DB6 Data Line 6 8 DB7 Data line 7
9 GND Ground 10 DB8 Data line 8
11 DB9 Data line 9 12 DBI10 Data line 10
13 DB11 Data line 11 14 DBI12 Data line 12
15 DB13 Data line 13 16 DBl4 Data line 14
17 DB15 Data line 15 18 GND Ground
19 ABO Address line 0 20 ABIl Address line 1
21 AB2 Address line 2 22 AB3 Address line 3
23 AB4 Address line 4 24 AB5 Address line 5
25 AB6 Address line 6 26 AB7 Address line 7
27 GND Ground 28 ABS Address line 8
29 AB9 Address line 9 30 ABI0O Address line 10
31 AB11 Address line 11 32 AB12 Address line 12
33 ABI13 Address line 13 34 ABl4 Address line 14
35 AB15 Address line 15 86 GND Ground
37 AB16 Address line 16 38 AB17 Address line 17
39 ABI18 Address line 18 40 ABI19 Address line 19
41 AB20 Address line 20 42 AB21 Address line 21
43 AB22 Address line 22 44 AB23 Address line 23
45 GND - Ground 46 ACK= Slave
acknowledge
47 BHEN Byte high enable | 48 R/W Read not write
49 ASTB» Address strobe 50 DSTB= Data strobe
51 SMRQ* Secondary master | 52 SMACK#* Secondary master
request acknowledge
53 LOCK=* Access lock 54 GND Ground
55 ADRI16# Multibus address 56 ADR17+ Multibus address
extension line 22 extension line 23
57 ADR14# Mutlibus address 58 ADRI15* Multibus address
extension line 20 extension line 21
59 Reserved 60 TPAR=# Transfer parity

5.7 LEVELS OF COMPLIANCE

The iLBX bus supports various levels of compliance of the full specification. In
this section we will discuss the variable elements of compatibility, the compli-
ance relations for interfaces, and the notation used to describe the level of com-
pliance of the iLBX bus-compatible board.

i 40in

COMPONENT SIDE

1 - I

FIGURE 5-18 P3 connector placement area.

6-PIN 0.29
le——8-PIN 0.39 —
14-PIN 0.69
6-PIN 0.20
8-PIN 030 le— 0.050 MAXIMUM
14-PIN 060 2 PLACES
0.025 +0.001
0100 £0.005 SQUARE POSTS
TYPICAL

] T 007
i odoo o022 +001
+0. 0.19 _-1_4:_
JUU U7 |
0110 |
0.085

0.100
0.140 +0.005

025 rypicaL

0105+0.015

FIGURE 5-19 P3 connector dimensions. Materials and finishes: Insulator—glass-
filled polyester or equivalent; Contact—phosphor bronze; Finish—0.000020-in mini-
mum gold over 0.000050-in minimum nickel plate.

205

206 THE MULTIBUS FAMILY OF BUS STRUCTURES

TABLE 5:7 ILBX P3 Pin Assignments

Lower Row Upper Row
Pin Mnemonic Signal name Pin Mnemonic Signal name
1 +5 +5 V DC battery 2 GND Ground
3 +5 +5 V DC battery 4 GND Ground
5 MPRO# Memory protect 6 NVEs# Non-volatile enable
7 ALE Adderess latch enable 8 GND Ground
9 ARES* Reset switch 10 GND Ground
11 INT Front-panel INT 12 RE Reserved
13 PFSN# Power fail sense 14 PFIN= Power fail interrupt

5.7.1 Variable Elements of Compatibility

The iLBX bus has, built into its structure, flexibility that permits the board
designer to build different systems with modules of varying capability. It per-
mits variations in the following areas:

1. Device type
2. Data path width
3. Parity support

DEVICE TYPE

The iLBX bus supports four device types that have varying degrees of capabil-
ity. Primary masters, secondary masters, limited primary masters, and slaves
can coexist on a bus implementation. Also, some iLBX bus—compatible devices
may support multiple-device implementations.

DATA PATH WIDTH

The iLBX bus supports devices with 8- and 16-bit data widths. The bus requires
that an implementation contain homogeneous device widths. Therefore, an 8-
bit device may communicate only with other 8-bit devices. If an 8-bit CPU
wishes to communicate with a 16-bit iLBX bus interface, it must emulate a 16-
bit interface. A single device may support multiple data width interfaces.

PARITY SUPPORT

Parity support is optional for primary masters, secondary masters, and slave
devices. If the parity option is chosen, then all transmitting devices must support

iLBX BUS 207

parity. Similarly, if the parity option is not chosen, the receiving devices must
not check parity.

5.7.2 Compliance-Level Notation

The following notation allows a vendor to specify a product’s level of compli-
ance succinctly and accurately with the iLBX bus specification. Increasing the
levels of compliance subsumes the lesser levels for data path. The lack of an
element specification implies no capability for that element.

DEVICE TYPE

PM Primary master

SM Secondary master

LPM Limited primary master
SL Slave

DATA WIDTH

D8 8-bit interface width
D16 16-bit interface width

PARITY
P Parity supported by device

COMPLIANCE LEVEL MARKING

The compliance level of a module must be clearly documented in the module
specification and may be clearly marked on the PCB.

EXAMPLES

A primary master that can communicate with 8- or 16-bit interface widths will
be marked as follows:

iLBX bus PM D8 D16
A 16-bit interface width slave that supports parity will be marked as follows:
iLBX bus SL D16 P

A 16-bit interface width primary master that can also operate as a secondary
master will be marked as follows:

iLBX bus PM SM D16

208 THE MULTIBUS FAMILY OF BUS STRUCTURES

5.8 SUMMARY

As an integral part of the Multibus family, the iLBX bus provides another archi-
tectural enhancement to a Multibus system design. When a system is properly
partitioned, the iLBX bus can extend and increase the system performance by
removing the microprocessor execution requirements from the Multibus system
bus.

PART 2

The Multious
~amily
Architectures

O

Single-Board
Computers

This chapter provides the basis for a conceptual understanding of single-board
computers (SBCs) and the motivations for using them. The effects of SBCs on
the system structure, as well as the performance effects of SBCs, are examined.
Included is an example of designing a system on the Multibus system bus by
using SBCs.

6.1 DEFINITION OF A SINGLE-BOARD COMPUTER

Simply stated, an SBC is a basic computer system that is totally self-contained
on a single-printed-circuit board (PCB) which takes full advantage of very large
scale integration (VLSI) technology. A typical SBC consists of a microprocessor,
read-only memory (ROM) sockets, random-access memory (RAM), a parallel
input/output (I/O) interface, a serial communication interface, priority inter-
rupt logic, and programmable timers. A standard system bus interface is usually
included to offer compatibility with expansion memory boards, digital and ana-
log 1/O expansion boards, peripheral controllers, and other SBCs.

The concept of an SBC came about because of the advances in the semicon-
ductor industry which provided increasing capabilities in lower chip count and
at lower costs. The evolution of the electronics used to build computer systems
has also had a major impact on the design methodology used to implement the
systems. In the 1950s diode-transistor logic (DTL) and resistor-transistor logic
(RTL) were the current technologies. In a typical design methodology during
that period the system design task was divided into four subtasks or phases:
circuit design, functional unit design, subsystem design, and system integration
as shown in Fig. 6-1. If a new computer system was desired, the system designer
would start with the system requirements and divide them into their smallest
pieces. Each of the pieces would be designed by first building the circuitry

242 THE MULTIBUS FAMILY ARCHITECTURES

blocks, such as counters, adders, and multiplexers, from basic DTL and RTL
elements such as AND and NAND gates. That was the circuit design phase.
Then the circuitry blocks were used to create functional units, such as a memory
controller, an interrupt controller, and an accumulator logic unit. That was the
functional unit design phase. The functional units typically required that mul-
tiple boards be implemented. Each board was a custom design and could be
used only in that computer system. The functional modules were then incor-
porated into a subsystem, such as a CPU or memory subsystem, during the sub-
system design phase. The subsystems were racks of boards and, in some cases,
different boxes. The final step in the design methodology was the system inte-
gration phase, in which all of the subsystems were integrated into a single prod-
uct: a complete computer system.,

The use of a computer in a product was very expensive. Large design engi-
neering staffs and complex manufacturing areas were needed to assemble, test,
and integrate the final product. The heavy expense in personnel, capital, and
product cost greatly limited the scope of problems that could be economically
addressed by using computers. However, the product lifespan was long because
the computer technology used to implement the system was advancing slowly.
Lifespans of 5 to 10 years were long enough to get an acceptable return on
investment. The large investment of engineering and manufacturing time and
capital resulted in large profits with minimal maintenance costs.

The integrated circuits introduced in the 1960s saved the designer a great
deal of time and effort in the area of circuit design; they almost eliminated the
circuit design phase of the methodology (Fig. 6-1). Subsystems that had previ-
ously required three or four boards could be redesigned on one or two boards.
Circuitry such as an up and down synchronous counter, which had required
five or six small-scale integration (SSI) transistor-transistor logic (TTL) devices
to implement it, could be replaced with one medium-scale integration (MSI)
TTL device. This made the designer’s task simpler, which in turn reduced the
design and debug time. Incorporating a computer into a product was now less
costly. The use of in-house-designed computers in a product required a com-
puter design engineering staff to design the functional units, a manufacturing
area with the ability to build many complex—at least in those days—boards,

1950s RTL BUILD BUILD BUILD INTEGRATE
CIRCUITS CPU SUBSYSTEM SYSTEM

1960s 1C - BUILD BUILD INTEGRATE
CPU SUBSYSTEM SYSTEM

1970s " MICROPROCESSOR - - BUILD INTEGRATE
SUBSYSTEM SYSTEM

1980s SBC - - - INTEGRATE
SYSTEM

FIGURE 6-1 Evolution of design methodology.

SINGLE-BOARD COMPUTERS 243

CENTRAL SERIAL 1/0 PARALLEL

PROCESSOR CHANNEL 1/0 LINES
) Y
PROGRAM DATA

MEMORY MEMORY EXPANSION

FIGURE 62 Traditional common-bus computer architecture.

and, finally, the ability to integrate and test the units as a system. These com-
puter systems were very general machines, and they were customized by pro-
gramming them to perform a particular task. The programming had to be in
machine language. The cost of incorporating a computer system in a product
was declining;: the design time was shorter, and the cost of the computer itself
was lower because of the lower component count and lower costs. The decline
in cost of using a computer system in the end product increased the number of
ways in which computers could be economically used.

The most popular system bus architecture was the common- or shared-bus
approach (Fig. 6-2). The common-bus architecture provided modular memory
and I/O expansion in support of a single central processing unit (CPU). The
CPU on the common bus was treated like any other subsystem, but the bus was
designed to support a particular CPU subsystem. The CPU was the central ele-
ment in the system, since every CPU operation required access to other subsys-
tems through the common bus. An I/O instruction, as an example, required the
CPU to use the system bus twice to fetch the instruction and operand from
memory, and then a third system bus cycle was used to transmit the data to the
I/O port. The system bus was in constant use by the CPU and therefore the
overall system performance was critically dependent on the system bus respon-
siveness. The timing and control lines of the common bus had to be tailored to
the signals and timing of a specific CPU or family of CPUs. The system bus
architecture was almost an extension of the CPU itself.

In the 1970s the first microprocessor, Intel Corporation’s 4-bit 4004, became
available. Many 8-bit microprocessors, such as Intel’s 8008, 8080, and 8085,
Motorola’s 6800, and Zilog’s Z80, followed. They made it possible to avoid the
issue of the CPU design altogether. As component technologies matured, indus-

2414 THE MULTIBUS FAMILY ARCHITECTURES

try standards were created. These standards started with the dual in-line pack-
aging and logic design families such as TTL. Then standard pin-out configu-
rations for commonly used components were established. Higher-level
standards, such as signal levels and protocols for communications, also were
developed. The 8080, 8085, and Z80 microprocessors became industry standards
because of their wide use in providing standard bus interfaces for peripheral
devices and standard microprocessor instruction sets. High-level languages for
microprocessors such as PL/M and BASIC were provided on the 8080, 8085,
and Z80 instruction set. The system designer now concentrated on building sub-
systems and then integrating them. The software had grown in importance, in
terms of investment of time and energy and value added by the company, to
the point of equaling the hardware investment. ,

Now, in order to incorporate a microcomputer in a product, a design engi-
neer with microprocessor experience was needed. There was still the require-
ment to manufacture circuit boards, though of lesser complexity, and to inte-
grate them into an end product and test them. Both the circuit design and
functional unit design phases could be almost eliminated (Fig. 6-1). The stan-
dardization of the microprocessors supported the production of very friendly
assembly languages and a few high-level languages which made the software
task easier. But at the same time, the IMicroprocessors became more and more
powerful. This made possible the solution of very complex problems. But, in
turn, solving complex problems required that the software programs become
more complex in scope, and bigger. The common-bus architecture was still the
most commonly used approach to designing systems because the system bus was
again an extension of the CPU bus, which now was a microprocessor.

The 1970s and early 1980s saw the production of large-scale integrated (LSI)
and very large scale integrated (VLSI) components such as 8- and 16-bit
microprocessors, universal synchronous-asynchronous receiver-transmitters
(USARTS), parallel I/O ports, and memories. These semiconductor technology
advances made it possible to increase the functional density of the microcom-
puter subassemblies and to drastically reduce their cost and at the same time
increase their reliability. It became possible to integrate on a single circuit board
all of the basic elements of the common-bus computer architecture (Fig. 6-3).
This resulted in the first SBC architecture. Instead of a box containing a mini-
mum configuration of a CPU board, memory boards, and 1/O boards, there are
families of SBCs that provide the same capabilities. Two examples of commer-
cially available SBCs are Intel’s iSBC 86/30 board, which provides a high-per-
formance 16-bit microprocessor, an RS-232-compatible serial channel, three 8-
bit parallel I/O ports, 128K bytes of RAM and sockets for up to 64K bytes of
erasable programmable read-only memory (EPROM), and National Semicon-
ductor’s BLC 80/316 board, which has a Z80A microprocessor, 64K bytes of
RAM, three 8-bit parallel I/O ports, an RS-232-compatible serial channel, and
up to 8K bytes of EPROM.

SINGLE-BOARD COMPUTERS 215

cPU 170 170
] | L | L
SHARED BUS
| 1]] [
MEMORY MEMORY FNXTPEAl?FsAlgg

~
~N
N
N
~N
N
~N
~N
AN
N
~
N

(000 coooo Dopoooooo
oo = = DEDD

00000 — ==
000000 == 0000000
0000000060 | oopooon

=00

SINGLE-BOARD COMPUTER

FIGURE 6-3 The SBC evolution—a first-generation architecture. LSI technology made it
possible to pack the basic elements of a computer onto a single PC board.

The mid-1980s produced even more complex VLSI configurations. Devices
with over 200,000 transistors are available; they allow almost a complete com-
puter to be designed on a single chip. There are highly integrated micropro-
cessors with a faster and more powerful CPU, a clock