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Preface 

The Multibus/IEEE-796 is a commercial-quality industry-standard bus struc­
ture for use in microprocessor-based systems. Additionally, three separate buses 
have been developed to complement and extend the capabilities of the Multibus 
structure. Together these four structures form the Multibus family of structures. 
The Multibus family consists of the Multibus system bus, which is the center of 
all Multibus-based systems; the iSBX bus, a low-cost local (on-board) input-out­
put expansion bus; the Multichannel bus, a very high speed cable bus designed 
to move blocks of data between peripherals and intelligent subsystems and Mul­
tibus-based systems; and the iLBX bus, a high-speed memory execution bus that 
allows a microprocessor on a single-board computer to expand its local memory 
using multiple boards. 

This book provides the reader with a basic understanding of the structures, 
architectures, and detailed hardware designs of the various modules that can be 
used in association with the Multibus system bus, the iSBX local input-output 
bus, the Multichannel high-speed cable bus, and the iLBX local execution bus. 
It describes these various bus structures using simple concepts, and then builds 
on them until the reader understands the different architectures that can be 
constructed. The book, which is intended for board- and system-level hardware 
design and evaluation engineers and their managers, is essential for anyone 
involved with Multibus-based products. It provides detailed bus interface infor­
mation and also serves as a quick reference for those designing Multibus-based 
systems. The text is supported by a wealth of examples and illustrations. 

The book is divided into three parts: (1) structures, in which the electrical 
and mechanical specifications of the Multibus family members are described; 
(2) architectures, in which the different architectures are described that can be 
built on and around the Multibus family members; and (3) applications, in 
which hardware design examples are given for interfacing modules to the var­
ious Multibus family members. 

xv 



xvi PREFACE 

The structures section reviews each of the different Multibus family struc­
tures. First the structures are described conceptually; then the functions and the 
electrical and mechanical specifications of the bus are described in detail. 

The Multibus family of structures supports a wide spectrum of system archi­
tectures, from simple, low-cost uniprocessing systems to sophisticated, distrib­
uted multiple-processor systems yielding high throughput. The architectures 
section considers the benefits and trade-offs of each of these different architec­
tures in detail. Examples of several types of systems, including uniprocessing, 
multicomputing, and multiprocessing systems, are used to explain the major 
architectural approaches, interconnection schemes, and related hardware and 
software trade-offs. Other topics covered include an overview of system design 
issues and some discussion of highly reliable computers. 

The applications section gives the reader examples of various interface cir­
cuits for the Multibus family structures. Each example provides enough detail 
to make it possible to actually implement the module or interface. This section 
also provides evaluation criteria for purchasing Multibus-compatible products. 

James B. Johnson 

Steve Kassel 
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Introduction 

This chapter provides a basic framework for evaluating microprocessor system 
buses and offers a little history of some of the most popular of such buses: the 
Multibus/IEEE-796 system bus and its extensions: the iSBX bus, the iLBX bus, 
and the Multichannel bus. l Basic system architectures of the Muitibus/IEEE-
796 family will also be defined. 

1.1 OBJECTIVES AND GOALS OF MICROPROCESSOR-BASED SYSTEM 
BUSES 

The system bus is the foundation of any computer system; it will influence the 
flexibility, cost, performance, and reliability of the system for its entire operat­
ing life. Advances in very large scale integration (VLSI) technology result in 
increased system complexity. The system bus, as a result, is recognized as the , 
primary architectural resource, and it can frequently be the limiting factor in 
performance, reliability, and modularity. The most basic portion of a system 
bus is the bus structure, which defines all the signals and how the various system 
components interact with each other. These signals run along the backplane, 
where they can be supplied to the interface modules. A typical bus structure 
defines the word length, data types, and address length, as well as data transfer 
protocols such as memory reads, input-output (I/O) writes, and direct memory 
accesses (DMA). It will also speCify some type of intermodule signaling such as 
interrupts, as well as a protocol to exchange control of the bus to various bus 
modules. 

IMultibus, iSBX, iLBX, and Multichannel are trademarks of Intel Corporation, Santa Clara, 
California. 



4 THE MUL TIBUS FAMILY OF BUS STRUCTURES 

1.1.1 Do You Need a System Bus? 

Not all users need a bus-oriented system. Such a system is generally more flex­
ible, easier to upgrade, and easier to implement, but it is more expensive, mod­
ule for module, than a specialized system. This expense is due to the greater 
component count required to meet the bus interface specification. Typically, a 
bus specification requires that each signal line be buffered. That can result in 
excess drive capacity, since most system designs use only a small fraction of the 
allowable receivers permitted on a signal. The buffers also require additional 
area on the board and increase power consumption. The additional parts 
increase the component cost, assembly time, and test time, which results in 
increased manufacturing cost. 

In applications with lesser volume it will generally be found that the added 
cost of using standard bus design methodologies will be favorably offset by 
lower development costs during the shorter development time. In many 
instances, complete systems can be configured with off-the-shelf board-level 
products. In applications in which some custom design is required, standard bus 
design methodology is still applicable. The system design can be divided into 
two parts: the custom boards and the standard boards. The customized portion 
of the system can be completed with less expenditure of time and money 
because the system bus interface is already designed. The entire system devel­
opment cost is lower because part of the system uses standard products. Bus­
oriented systems also have a greater degree of configuration flexibility because 
different modules can be mixed and matched to produce a particular product 
or version. Products can easily be configured to meet the exact need of the end 
user. 

Another important aspect of using standard bus-oriented systems is the abil­
ity to buffer a system design from the rapid technological changes in VLSI com­
ponents. If a design needs more speed, it can be upgraded by plugging in a new 
bus-compatible module that uses a faster microprocessor or faster memory. 
Even using new technology such as converting a current design which used an 
8-bit microprocessor to a 16-bit microprocesor would be permitted if the mod­
ule met the bus interface requirements. 

In summary, in applications that have very high volume, such as terminals 
or low-cost test equipment, it will be found that the use of a standard bus system 
adds undesirable cost to the end product. Systems that are dominated by man­
ufacturing costs and do not need a great deal of configuration flexibility should 
use specialized configurations to avoid the costs of unnecessary parts and inter­
connections. On the other hand, systems that are dominated by development 
costs or need configuration flexibility should use a system bus scheme. 

1.2 PICKING YOUR MULTIBUS FAMILY STRUCTURES 

The Multibus system bus is a commercial quality bus for use in microprocessor­
based systems. Some Multibus boards are shown in Fig. 1-1. The Multibus struc-
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FIGURE 1-1 Multibus compatible boards. 

ture provides all the necessary signals for easy system expansion with additional 
memory, I/O, or microprocessor modules. The Multibus system architecture has 
been developed to expand beyond the capabilities of the basic system bus struc­
ture with three new bus structures. They are (1) the iSBX bus, a low-cost local 
(on-board) I/O expansion bus, (2) the Multichannel bus, a high-speed path for 
block data transfers between a Multibus-based system and peripherals or other 
remote computer systems and (3) the iLBX bus, a high-speed memory-only exe­
cution bus that makes it possible to expand the local memory of a microproces­
sor on a single-board computer (SBC) by using multiple boards. 

These three extensions-the iSBX bus, the Multichannel bus, and the iLBX 
bus-were developed to optimize a particular aspect of the basic Multibus sys­
tem. The Multibus system bus, along with its three extensions, comprises the 
Multibus family (Fig. 1-2). The three extensions complement the Multibus sys­
tem bus, which permits a system designer to make the best cost-performance 
trade-offs during the system design. The Multibus family provides a complete 
set of system building blocks for use in a wide variety of system architectures. 

Picking the right system bus for a specific application is a very important 
and difficult task. When different system bus structures are evaluated, the fol­
lowing objectives need to be considered: 
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MULTIBUS 
THE SYSTEM BUS 

FIGURE 1-2 The Multibus family, 

• Support of a wide range of system architectures 

• A conceptually simple structure 

• A structure that can quickly incorporate new VLSI 

• A reliable, cost-effective structure 

• A well-defined, documented, and controlled standard 

Each of the above objectives will be discussed to provide a basis for understand­
ing its effect on system design. Then the Multibus family will be examined in 
light of all the objectives. 

1.2. 1 Support of a Wide Range of System Architectures 

The bus str~ctures provide the groundwork for the system hardware architec­
ture; they Ip.ust support many different architectures ranging from simple, sin­
gle-master monolithic designs to complex multiple-processing, locally distrib­
uted designs. These different system architectures are briefly defined, and their 



INTRODUCTION 7 

effects on the bus structures are explored. (In Chaps. 6 to 8 the different archi­
tectures are explored in more detail.) 

SINGLE-PROCESSOR ARCHITECTURE 
A system with single-microprocessor architecture can have only one user-repro­
grammable microprocessor. Although the system can have other bus masters 
with microprocessors, such as peripheral controllers, on them, these micropro­
cessors are dedicated to particular tasks and cannot be reprogrammed-they 
simply replace logic and do it more cost-effectively. Two types of single-micro­
processor architectures will be discussed. The first is a very traditional approach 
used by most of the basic minicomputer and microprocessor systems; the second 
is an evolution of the first that is driven by the effects of VLSI technology. 

The most straightforward microprocessor system bus architecture is a split­
bus or common-bus architecture, in which both the microprocessor and the sys­
tem have equal access to the memory and other system resources. Examination 
of Fig. 1-3 reveals four basic blocks: the SBC unit, the global memory unit, the 
global I/O unit, and the DMA unit. The microprocessor unit is responsible for 

SBC 
BUS MASTER 

BUFFERS 

MULTIBUS SYSTEM BUS 

DMA 

BUS MASTER 

FIGURE 1-3 Common-bus architecture. 

BUS SLAVE 

GLOBAL 
MEMORY 

BUS SLAVE 

GLOBAL 
I/O 
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all execution of code, all communication in the system, and most of the low­
speed I/O tasks, and it can control the system bus (a bus master). The memory 
unit holds or stores all system data and program execution code and can respond' 
only to bus commands; it is a bus slave. The I/O unit is responsible for inter-

'facing to all the low-speed I/O in the system and is a bus slave; it interfaces to 
such devices as printers, control lines on machines, and front panels of boxes. 
The fourth block is the DMA unit; it handles all high-speed I/O devices such 
as disks, graphics stations, and video cameras without the aid of the micropro­
cessor. This block's main task is to transmit high-speed data between the system 
peripherals and the system memory unit. The DMA unit is a bus master and 
can control the system bus. The microprocessor unit initializes the DMA unit 
for each block of data transfer, and then the DMA unit sustains independent 
activity. The microprocessor unit tells the DMA unit the direction of the data 
flow and where to put or get the data in system memory. Once the block trans­
fer is complete, the DMA unit notifies the microprocessor unit via an interrupt. 

The common-bus approach is very popular in minicomputer designs and 
early microprocessor systems. It was used in the first systems based on the Mul­
tibus system bus and in many personal computers such as the Apple 112 and the 
TRS':80.3 The microprocessor uses the system bus to execute out of the memory 
and to perform all I/O operations. In this configuration, the system bus is used 
as an execution bus. The advantages of this approach are simplicity and archi­
tectural consistency, which means that all system resources are accessible from 
the system bus and are made global; there are no resources in the system that 
only one of the bus masters can access. As an example, the microprocessor and 
disk controller can access all of the memory; that is, the memory is made global. 
System capacity is easily expanded by installing new modules. The limitations 
of the common-bus system are (1) the high utilization of the system bus 
required by most new microprocessors, which leaves no system bus bandwidth 
for other system activities such as DMA, and (2) the slow throughput, which is 
due to both arbitration time to gain control of the system bus and the extra 
delays of the multiple layers of buffers used to get to and from the system bus. 
The addition of another DMA device could slow the system down if the system 
hus cannot support all the bus master's memory bandwidth needs. 

SINGLE-BOARD COMPUTERS 

The 1970s produced VLSI technology, which increased the performance and 
capabilities of silicon devices and at the same time reduced the number of 
devices and cost to implement complex functions. It became possible to inte-

2Apple II is a trademark of Apple Corporation, Cupertino, California. 

3TRS-80 is a trademark of Radio Shack Division of Tandy Corporation, Fort Worth, Texas. 
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grate on a single circuit board all of the basic elements of the common-bus 
computer architecture. This resulted in the first SBC. (Figure 1-4 is a block 
diagram of an SBC, and Fig. 1-5 shows the implementation.) A typical SBC in 
the 1970s consisted of the generation of the system clock, read and write mem­
ory (RAM), real-only memory (ROM), I/O ports and drivers, serial communi­
cations interface, and bus control logic and drivers. The SBC is really a self­
contained computer system which offers an inexpensive, yet expandable, way 
to computerize a product with minimal engineering effort. 

The key advance that VLSI technology provided was reduction of device 
count that in turn reduced the amount of printed-circuit board (PCB) area 
required to support system functions. An example is the serial communications 
area: the 8251 programmable communications interface chip reduced the serial 
communication interface logic from 30 in2 (193.56 cm2

) to less than 4 in2 (25.8 
cm2

). Similiar VLSI advances in devices that implement other system functions 
permitted the first SBC to be built. The trend in Multibus-compatible SBCs is 
toward enhancement of existing features as well as the addition of new ones. 
These trends can be seen in Heurikon Corporation's MLZ-91A SBC, which 

MUL TIBUS SYSTEM BUS 

FIGURE 1-4 Block diagram of a single-board computer. 
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FIGURE 1-5 Single-board computer. 

includes a 4-MHz Z80A 4 microprocessor, 64K bytes of RAM, DMA controller, 
a double-density floppy disk drive controller, hard disk and tape interfaces, and 
hardware mathematics support. Another example of the enhancement of fea­
tures on an SBC is Intel Corporation's iSBC 86/30, which includes an 8-MHz 
8086 microprocessor, 128K bytes of dual-ported RAM, four 28-pin sites, 24 par­
allel I/O lines, an RS-232 serial port, two iSBX connectors for inexpensive I/O 
expansion and high-speed mathematics support via an 8087 coprocessor. 

The architecture of an SBC is designed to permit access of local resources 
(memory and I/O on the SBC) by the local microprocessor without accessing 
the system bus. Local resources are accessible only by the local microprocessor; 
no other system bus device can access them. The microprocessor operates fastest 
when using local resources because it does not have to arbitrate for the system 
bus and the design can be optimized for a particular implementation. This is 
particularly useful in multiple-processing applications, since all the SBCs can 
perform true parallel processing when executing out their local resources. The 
potential disadvantage is that system consistency is lost. Another master in the 
system, such as a disk controller, cannot access the local resources. 

MUL TICOMPUTING AND MULTIPROCESSING 

The VLSI explosion has continued to reduce the cost of a microprocessor to such 
a low level that applying multiple microprocessors to meet system performance 
requirements has become an attractive and viable option. Using multiple micro-

4Z80A is a trademark of Zilog Corporation, Cupertino, California: 
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processors in a system design not only enhances system performance and 
throughput but also improves system reliability and system real-time response. 
Instead of doing one task at a time, a microprocessor-based system can increase 
throughput because the work is divided among a number of microprocessors. 
Another way of improving performance is by reducing the number of individ­
ual tasks any given microprocessor must handle. The time a new request for 
service will wait is thereby reduced, and so is the real-time response of the 
system. 

A simple definition of multicomputing is the use of multiple microprocessors 
that are capable of independent instruction execution and are able to commu­
nicate with each other over some local interconnection mechanism. The system 
is statically partitioned in that each microprocessor does a predetermined task. 
The processing units can be heterogeneous or homogeneous. A multicomputing 
system may have some shared resources, but that is not a requirement. The key 
is that the processing units' tasks are independent and require little interunit 
communication. A basic multi computing configuration is shown in Fig. 1-6. 

Using SBCs in a multicomputing system moves the bus activity from the 
system bus to the SBCs' local bus; this reduces the bandwidth needed on the 
system bus. The local execution of a program on an SBC becomes very impor­
tant in multicomputing applications, since the different SBCs can execute their 
programs without using the Multibus system bus as long as all their code is 
located in local memory. Thus, providing true parallel processing with all 
microprocessors operating independently is possible with SBCs. The reduced 
system bus demand permits additional microprocessors (SBCs) to be added to 
the system and thereby increases overall system throughput. 

MULTI BUS SYSTEM BUS 

FIGURE 1-6 A heterogeneous multi computing configuration. 
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Similar to multicomputing is multiprocessing, which is defined as the use of 
multiple homogeneous microprocessors that are capable of independent instruc­
tion execution, are able to communicate with each other over some intercon­
nection mechanism, and have shared memory and I/O. All the microprocessors 
in the system have exactly the same available resources. The coupling between 
the processing units is much tighter. The System is dynamically partitioned in 
that each microprocessor is assigned a task on a next-available-microprocessor 
basis. This must be done in such a way that the process is invisible to the user 
code being executed. A basic multiprocessor configuration is shown in Fig. 1-7. 

In a common-bus architecture, adding more microprocessors to the system, 
as in multiprocessing systems, eventually causes the system bus to become sat­
urated. When microprocessors are added to an already saturated system bus, 
each microprocessor must wait longer to gain access to the system bus, so the 
performance of each of the modules decreases. The net effect is lower total 
system throughput. A well-planned multiple microprocessor system bus struc­
ture will allow new microprocessors to be added to the system in a modular 
fashion. When new system functions, such as more peripherals, are added to 
the system, more processing power can be applied to handle them without 
affecting existing processor performance. This is a result of having extra system 
bus bandwidth as in the case of a multiprocessor system (needed to support 
another microprocessor executing on the system bus), or, in a multicomputing 
system, having enough bandwidth to support the communication and data 
transfer needs of the additional microprocessor. In addition, the bus structure 
must provide a communication path for microprocessors to signal each other. 

Multiprocessing and multicomputing are supported on the Multibus system 
bus. Two to sixteen microprocessors (bus masters) are supported on the same 
system bus. Each of these microprocessors can be homogeneous or heteroge­
neous: one an 8-bit, another a 16-bit, one running at 1 MHz, and another at 16 
MHz. Another aspect of heterogeneity is that the resources available to each 
microprocessor are different. The Multibus system bus also provides an arbitra­
tion and bus control exchange method that guarantees that a bus master can 
access the system without another master obtaining it, and it provides several 
reliable communication methods between bus masters through common 
resources such as memory and I/O. 

Advances in semiconductor technology have driven the cost of microproces­
sors down to the point at which peripherals are the most expensive resources in 
the system. To design for maximum efficiency and economy, the designer must 
keep the expensive peripherals highly utilized. It is possible to do so only if 
multiple microprocessors are using the peripherals. The point can best be seen 
with an example. A system with an 8-in hard disk, a floppy disk, 512K bytes of 
RAM, and a single-user operating system running on one central processing unit 
(CPU) costs from $5000 to $10,000. The peripherals (the hard and floppy disks) 
and the packaging (the box, power supply, and cables) represent over 80 per­
cent of the system cost. Adding a second microprocessor and a multiuser oper-
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ating system to the system could roughly result in doubling throughput with 
only a 5-percent cost increase. 

1.2.2 A Conceptually Simple Structure 

A system bus structure must be easy to learn and use, and at the same time it 
must be flexible in order to support a wide range of applications. Documenta­
tion is a very important aspect of "easy to use"; it must be well structured to 
help the user understand the bus system. It must be broken down to give the 
user a step-by-step building-block approach to learning the system bus struc­
ture. Application examples of how to use the bus also are very helpful. They 
can give the user practical experience with the bus structure without having to 
actually build a prototype. An experienced board designer should be able to 
understand a new structure in a few hours and design a simple board within a 
few days after reading the bus specifications. 

The Multibus system bus is an asynchronous parallel bus which can be 
divided into five signal categories: a 24-line address bus, a 16-line bidirectional 
data bus, eight multilevel interrupt lines, control and timing lines, and power 
distribution lines. The system bus operates on a master-slave principle. Figure 
1-8 shows a typical bus master and some typical bus slaves. The bus master 
controls the system bus and starts all operations. Bus slaves respond to com­
mands put on the system bus by the bus master. The bus master is interlocked 
to the bus slave module in that the bus master first issues a command and then 
must wait for an acknowledgment from the receiving bus slave module before 
continuing. This interlocking mechanism permits bus slave modules of different 
speeds· to be on the same system bus, since each individual bus slave controls 
the amount of time it waits before responding with the acknowledgment. 

The iSBX concept allows the designer to inexpensively customize standard 
cost-effective Multibus-compatible boards (or any other board) with particular 
I/O features. This is done with small (2.85 X 3.7 in; 7.24 X 9.4 cm) I/O mod­
ules called iSBX Multimodule boards. They are specialized I/O boards which 
plug piggyback style onto a variety of baseboards (Fig. 1-9) and thereby provide 
very low cost local I/O functional expansion. The concept is optimized around 
VLSI technology and small increments of I/O expansion. The iSBX boards are 
connected to the baseboard's local bus via the iSBX bus interface, and they con­
vert the iSBX bus signals to a defined I/O function. The iSBX Multimodule 
boards enable the user to configure exactly the capabilities required for the sys­
tem, which keeps both system size and cost at minimum levels. Since the I/O 
expansion is local, no system bus bandwidth is required. 

By providing a standard high-speed, tightly coupled connection between the 
microprocessor and its memory on another board, the iLBX bus permits the 
expansion of an SBC's local memory in a modular manner (without using the 
Multibus system bus) beyond what can fit on an SBC. The iLBX bus is opti-
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FIGURE 1-8 Multibus master and slave diagram. 
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FIGURE 1-9 The iSBX Multimodule board concept. 

mized for high-speed memory access. It supports two types of data transfer: a 
noninterlocked mode for maximum performance and an interlocked mode to 
support slower memory modules. The bus structure is built upon the master­
slave principle, whereby the bus master (the SBC) places address and com­
mands on the bus and the slave board (the memory module) decodes and acts 
on the command. This private bus between the microprocessor and the memory 
frees the Multibus system bus for DMA or other bus master traffic. Figure 1-10 
is a block diagram of an SBC and a memory board connected via the iLBX bus. 

The Multichannel bus provides a standard high-speed (8M bytes per second) 
block-oriented gateway into and out of a Multibus-based system. By utilizing a 
standard interface, the bus allows multiple heterogeneous devices such as dif­
ferent high-speed I/O and memory modules to be connected together. Figure 
1-11 is a simplified block diagram of a Multichannel system. The bus structure 
is an asynchronous parallel bus built upon the master-slave principle with inter­
locked 8- and 16-bit data transfers. The Multichannel bus has the ability to link 
together up to 16 devices that are distributed over a distance of up to 50 ft (15 
m) via a twisted pair flat ribbon cable. It has addressing capability of up to 16M 
bytes of memory and 16M bytes of I/O space on each bus device. Figure 1-12 
shows Inters iSBC 589, a high-speed intelligent DMA controller, which connects 
the Multibus system bus to the Multichannel bus. The 60-pin connector on the 
top of the board is the Multichannel bus connector. 

Another important feature of both the Multibus structure and the Multi-
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channel bus is the ability to put multiple master modules on the same bus for 
multiprocessing configurations. A method is defined to transfer control of the 
bus between master modules, and it guarantees that only one bus master con­
trols the bus at a given time. Both buses also support priority interrupts. This 
capability permits bus modules to request interruption of normal activity and 
have a special event serviced by the master microprocessor. 

SBC 

MULTIBUS SYSTEM BUS 

FIGURE 1-10 The iLBX memory expansion bus concept . 
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FIGURE 1-12 Multibus board with a multichannel interface. 

1.2.3 A Structure That Can Incorporate New VLSI Quickly 

Advances in VLSI technology have resulted in performance and complexity 
doubling every 2 to 3 years (Fig. 1-13). As an example, Intel Corporation's 8008 
microprocessor, introduced in 1972, had a 30-lts average instruction execution 
time and was able to address a maximum of 16K bytes of memory. In 1982, 
Intel introduced the iAPX 80286 microprocessor, which has an average instruc­
tion time of less than 1 itS and is capable of addressing a maximum of 16M 
bytes of memory. This technology explosion presents the system designer with 
the opportunity to design systems that have lower cost, higher performance, 
increased density, and greater reliability. But it also means quick obsolescence 
for systems that are not designed to permit the incorporation of future gener­
ations of VLSI components. The system designer has the challenge of creating 
competitive systems that can easily assimilate successive generations of VLSI 
technology. 

Historically, new VLSI components required new system designs, especially 
for new microprocessors. Designers would implement new system boxes each 
time a new microprocessor was introduced, which meant completely new mem­
ory, I/O, and microprocessor board designs. The new designs were dedicated 
to supporting only a few functions with very basic and limited I/O. There was 
very little flexibility in the design to handle future VLSI technology or new 
peripherals without a major redesign. It became clear that a universal system 
box was needed; it would permit the use of previously designed memory and 
peripheral modules. From this exercise came the Multibus system bus, the first 
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standard microprocessor system bus, and its family members: the iSBX bus, the 
Multichannel bus, and the iLBX bus. 

In this age of rapid technological change, the use of standard system struc­
tures helps designers to quickly incorporate new VLSI technology into both new 
and old designs. They do so by tying the new VLSI devices to solid universal 
interfaces which are the gateway to all system resources such as memory and 
peripherals. The system must be developed in a functionally partitioned man­
ner. Each of the functional units may be designed with the best technology 
available for that particular task and to interface to the system bus standard. 
When future generations of VLSI devices permit it, a superior replacement 
functional unit can be designed provided it meets the interface standard. Since 
the interface remains unchanged, the new unit can replace the old one and 
minimize the impact it has on the other functional units in the system. 
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Success in adapting future VLSI devices to microprocessor-based systems is 
measured by the effectiveness of the system's organization in alleviating the 
highly irregular structures of past and present microprocessors. The key lies in 
so defining the system bus structure that it is decoupled from any particular 
VLSI device. It must be architecture-independent; that is, it must be flexible 
enough to support many different families of VLSI devices. It should not have 
special signals that only one device supports. However, the interface must be 
similar to typical VLSI component interfaces to minimize the extra transistor­
transistor logic (TTL) required to convert the component interface to the uni­
versal interface. The board designer can design the VLSI device to the universal 
bus interface provided the new device has the ability to communicate quickly 
and easily with the rest of the system. 

As an example, let us examine a three-board system: a CPU board based on 
a 5-MHz Z80,5 a memory board, and a disk controller board. Assume that in 
the next design, a new CPU board is needed to get higher performance. The 
system designer needs to have the freedom to build an 8-MHz 80286-based 
CPU board. A properly defined bus structure would permit this new micropro­
cessor board, which operates 10 times faster, to replace the old microprocessor 
board without affecting the rest of the system. The memory and disk controller 
boards would not have to be modified or replaced. 

Another goal of a bus structure must be longevity. One way to achieve lon­
gevity is to support many different types of microprocessors and other VLSI 
devices over a 10- to 15-year lifespan. This requires that the bus structure sup­
port generic microprocessor attributes such as memory address space, I/O 
address space, some form of mutual exclusion, interrupts, different widths of 
address and data lines, and multiple-bus master-control capability. The bus 
must also be independent of microprocessor, memory, and I/O device speed. 

The Multibus system bus provides a very basic set of generic functions which 
support a wide range of microprocessor families. Two data path widths permit 
the use of both 8- and 16-bit microprocessors. That includes a very wide range 
of 8-bit microprocessors such as 8080, Z80, 6800, and 8088. In the 16-bit world, 
there are Multibus-based SBCs with 8-MHz 80286s, 8-MHz 68000s, and 8-MHz 
Z8000s. Addressing is flexible; it permits the choice of 64K bytes, 1M byte, or 
16M bytes of memory address space. Separate I/O address space, which can be 
either a 256K- or a 65K-byte location, is also supported. 

In applications in which the microprocessor requires more bandwidth from 
the system bus than it can deliver, the iLBX bus provides an alternative. Micro­
processor memory bandwidth needs have increased at a greater rate than mem­
ory subsystems have. The system bus which connects the two modules together 
can easily become the bottleneck. One solution is to use two buses in the system: 

SZ80 is a trademark of Zilog Corporation, Cupertino, California. 
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one bus for execution (which must be very tightly coupled to the microproces­
sor-memory subsystem pair) and a second bus for system communication and 
data movement. The iLBX bus provides this tightly coupled connection. The 
iLBX bus expands the local memory of the SBC, saving system bus bandwidth 
and supporting multicomputing architectures that require multiple SBCs with 
more memory than can fit on a single board. 

1.2.4 A Reliable, Cost-Effective Structure 

The most important aspects of a bus structure's basic ,cost are the form factor 
and interface costs. The cost of a module is generally proportional to module 
area. For a given area of PCB there is a minimum established cost; it is the cost 
of a two-layer PCB plus the system bus interface and some minimal circuitry. 
The complexity of implementing the system bus interface is proportional to the 
board area occupied. Smaller form factors cannot support extensive system bus 
features because of the additional circuitry required. The bus interface logic 
should occupy only 10 to 20 percent of the PCB area. Thus, in applications with 
minimal computer requirements a bus standard with a small board area should 
be chosen. Ideally, the form factor would support just enough components to 
accomplish the task at hand and future upgrades. The boards should be small 
enough for easy and inexpensive replacement in the field. That also makes 
repairs simple and fast. 

If the form factor is too small, designers may run into problems in imple­
menting reasonable functions in the system on a single board. Often the 
designer must resort to numerous board-to-board interconnections. Small board 
size may result in a greater than 20 percent board area to implement the bus 
interface. That leaves less space to implement the required function. A larger 
board has more area for interface logic, which in turn makes room for more 
complex functions to be supported. For applications which require a lot of com­
puter power it is necessary to choose a bus standard with a larger form factor. 
The upper limit of the board size is typically limited by power-to-ground and 
signal-noise considerations. A standard Multibus board can safely handle 30 to 
40 W of 5-V power. The limiting factor is the voltage drop across the PI con­
nection, which becomes too large. It subtracts from the voltage margin of the 
components on the board, which reduces the reliability of the board. Other 
factors that limit board size are (1) the envelope of the enclosure in which the 
board is used and (2) the warpage of the board, which can become severe. 

The Multibus system bus provides solutions to a wide range of microproces­
sor-based systems. The form factor is small enough to be cost-effective in low­
density designs and large enough to support a wide range of functions on a 
single board. At the low end, the VLSI support has reduced the bus interface 
logic to 10 percent of the board area. The Multibus system bus is also modular, 
which permits low-end designs to implement only part of the total bus capa- . 
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bility and yet still operate with other Multibus boards. This leaves most of the 
board area available to accomplish the function of the design on a low-density 
two-layer circuit board. At the high end, a single Multibus board can accom­
modate a basic computer system consisting of a 16-bit microprocessor, nine 
interrupts, 24 parallel I/O lines, an RS-232 serial channel, 128K bytes of ROM 
capacity, and 512K bytes of RAM. 

There are three options for I/O expansion: a Multibus module, an iSBX Mul­
timodule board, and a Multichannel module, each with a different cost, perfor­
mance, and capability range (Fig. 1-14). The iSBX Multimodule board provides 
the lowest-cost expansion for small increments of local I/O capacity. The iSBX 
Multimodule board is small (10.5 in2

; 26.7 cm2
), which keeps costs low. The 

interface was so designed that very little or no interface logic is required on the 
iSBX Multimodule board, so almost all the PCB area (typically >90 percent) 
can be used to implement the desired I/O function. An example of an iSBX 
Multimodule board is a serial communication module which has one or two 
complete serial channels. A Multibus module provides more flexibility and 
capacity, as well as global accessibility, but at a higher cost because of the 
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FIGURE 1-14 Multibus family I/O expansion flexibility. 
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greater PCB area (81 in2
; 522.6 cm2

) and the greater bus interface cost of imple­
menting more complex functions. An example of a Multibus I/O board is a 
communication module with eight complete serial channels and a micropro­
cessor with memory. The maximum data rates into and out of the board are 
limited by the Multibus lines (about 1M bytes per second). If more bandwidth 
is required, the Multichannel bus can be used; it provides up to 8M bytes per 
second transfer rates. 

1 ~2.5 A Well-Defined, Documented, and Controlled Standard 

The bus structure must be very well defined so multiple-board designers can 
design boards that will operate together on the system bus. Each signal must be 
documented and explained so clearly that there is no room for user misinter­
pretation. This includes signal definition, timing and loading requirements, and 
application examples. The signals in the system must cross a multiplicity of 
physical interfaces between the microprocessor and memory or I/O, including 
the system bus. Careful consideration must be given to these interfaces-solder 
connections, wire-wrap connections, and plug-in card connections-if they are 
to meet long-term-reliability goals. In addition, there must be limits on the 
physical dimensions of the system bus modules to permit construction of eco­
nomical packaging systems to house the modules. All of this must be properly 
documented in a publicly available specification. 

The specification must be properly controlled by an accepted authority in 
the industry. This controlling body has the responsibility to maintain and make 
updates and extensions to the bus specification. The changes and extensions 
must be so implemented that they support all old designs that met the earlier 
specification. The adoption of standards results in connectability, portability, 
and interchangeability of the different products designed to meet that standard. 
This protects the investment in many of the board designs when the boards are 
used in newer and more powerful systems. A custom I/O board can be used in 
two or three generations of systems, which saves time and development expense. 
This is a very important aspect of the evolution of a system bus to a solid and 
reliable foundation for system designs for years to come. 

Developed standardized industrial buses used to build a microprocessor­
based system provide a proven, reliable foundation. They are implemented by 
experienced designers who take into account very important electrical at1tri­
butes, such as bus length, ground-plane effects, line reflections, ringing, noise 
coupling, signal skew, and connector reliability, that could easily be overlooked 
in a new bus design. Also, standardized industrial buses have been thoroughly 
tested and have demonstrated long-term reliability in field applications. 

The Multibus/IEEE-796 bus set the standard for what a well-defined bus 
structure should be. It was first defined by Intel in the Multibus specification 
and later refined by the Institute of Electrical and Electronics Engineers (IEEE) I 
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Standards Committee in the form of the IEEE-796 bus standard. The iSBX bus 
is following a similar path. The initial definition, by Intel, was later updated by 
the IEEE Standards Committee in the form of the IEEE-P959 standard. Both 
specifications were written to define all operations completely; no user interpre­
tation is required. In 1984, just 9 years after the introduction of the Multibus 
system bus, more than 120 different vendors were making more than 2000 com­
patible products. After only 3 years following the introduction of the iSBX bus, 
six vendors were making 35 different iSBX-compatible products. This is an indi­
cation of the popularity and quality of the specifications. The IEEE standardi­
zation efforts on both the IEEE-796 and IEEE-P959 will help assure the user 
community that the compatibility and high commercial quality of these buses 
will be maintained. The result is bus-compatible products from different man­
ufacturers that will operate together reliably. The Multichannel and iLBX buses 
also have controlling specifications available to the general public. They were 
written with the same basic goals of the Multibus and iSBX specifications and 
will most likely follow the same standardization path. 

The Multibus system bus and its other family members are very popular, 
and buyer's guides for them are available. The Multibus Buyers Guide is pub­
lished semiannually by Ironoak Company (La Jolla, California). The Buyers 
Guide lists all the Multibus-family-compatible board-level products currently· 
available. This publication provides the system designer, original equipment 
manufacturer (OEM) integrators, and manufacturers with a survey of the entire 
market. 

The Multibus family of structures has been the basis of many designs in 
many different applications and environments from controlling bank teller 
machines to controlling steel mills. During the first 5 years of Multibus avail­
ability, more than 100,000 systems were shipped. This training ground has 
resulted in a proven and reliable bus structure. 

1.3 BRIEF HISTORY OF THE IEEE-796/MULTIBUS AND ~TS EXTENSIONS 

The Multibus system bus was originally developed at Intel Corporation in 1975 
by the company's microprocessor systems group. The first product in which the 
new standard system bus was used was the group's Microcomputer Develop­
ment System, the Intellec 800,6 which provided design engineers with the soft­
ware and hardware tools needed to implement microprocessor-based designs. 
The system architecture was a simple split-bus approach (Fig. 1-15). In addition 
to using the development system to implement their projects, some customers 
built custom boards and incorporated all of the boards into their own boxes. 
Intel Corporation then distributed the Multibus system bus specification to give 

6Intellec is a trademark of Intel Corporation, Santa Clara, California. 
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other vendors the basis for building Multibus-compatible products. The original 
Multibus structure supported only 8-bit transfers and 16 address lines. 

Intel perceived the need for board-level solutions. In 1976 it provided the 
first commercially available SBC, the iSBC 80/10, that integrated on a single 
PCB a microprocessor, memory, and I/O. This new iSBC product line was 
based on the Multibus system bus, and it was the first Multibus-compatible 
board with a complete microprocessor system on a single board. The product 
line was very successful, and hundreds of competitive and complementary 
products followed from Intel Corporation and other vendors. All these products 
were compatible with the commercial-quality Multibus because of the effective 
documentation of the Multibus specification, which was made available by Intel 
Corporation and later by the IEEE Standards Committee with the IEEE-796 
bus specification. 

In 1977 the first silicon support for the bus was developed. Inters 8218 and 
8219 bipolar Multibus system bus controller for MCS-80 and MCS-85 families 
reduced the PCB area required to support the bus exchange logic and command 
generation from 5 in2 (32.26 cm2

) to 1 in2 (6.45 cm2
), which reduced the dollar 

cost of the Multibus interface. These chips contain all the control logic required 
by a bus master to interface with other !llasters on the Multibus system bus and 
share memory and I/O. They permit any designer to implement the bus 
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exchange logic and command generation with a proven, reliable method and 
thereby reduce the possibility of design errors. The bus structure was extended 
in 1978 to dynamically support both 8- and 16-bit devices. The Multibus system 
bus became the first microprocessor bus to·permit both 8- and 16-bit devices to 
communicate with each other over the system bus. These evolutionary exten­
sions made it possible for the Multibus system bus to support a new generation 
of 16-bit microprocessors and increased the useful lifespan of the bus as an 
industry standard. 

In 1978 the Task 796 Working Group of the IEEE Computer Society's 
Microprocessor Standards Committee was set up to standardize the Multibus 
system bus. The 796 bus specification has its roots in Intel's Multibus system bus. 
Intel's specification was reviewed and refined by representatives from many 
different companies throughout the industry. During the standardization task 
some minor bus modifications were incorporated and improvements in docu­
mentation were made. One of the modifications was to extend the address bus 
to support 16M bytes by providing 24 address lines. The IEEE Standards Com­
mittee serves as a single point of control, which ensures that the specification of 
the bus will not change. A solid specification which does not change assures that 
products built by different vendors will be compatible. And, finally, the IEEE 
Standards Committee puts the specification into the public domain. The stan­
dardization work was completed in December 1982. 

The iSBX bus was originally developed at Intel in 1979 by the OEM Micro­
computer Systems Operation (OMO) group in Hillsboro, Oregon, to extend the 
SBC architecture with low-cost local I/O expansion. The concept was accepted 
immediately, and multiple vendors started producing iSBX Multimodule-com­
patible boards. In 1982 the IEEE Computer Society's Microprocessor Standards 
Committee was formed to standardize the iSBX bus. The Multichannel and 
iLBX buses were developed by Intel Corporation in 1982 by the OMO group. 



2 
The Multibus 
System Bus 

This chapter provides the basis for a conceptual understanding of the Multibus 
system bus. Included in it are the logical description of the functions of the bus 
and a detailed look at the electrical and mechanical specifications. The infor­
mation in it was based on the Intel Multibus Specification (9800683-03) dated 
April 1981 and the Microcomputer System Bus Standard (796 bus) dated Octo­
ber 1980. It is recommended that anyone designing on the Multibus system bus 
obtain the latest versions of those specifications from Intel Corporation. 

2.1 NOTA liON 

In this section, as well as throughout the book, a consistent notation for signals 
has been followed, and the memory read command (MRDC) will be used to 
explain it. The terms "true-false" and "one-zero" can be ambiguous and will be 
avoided. We will use the terms "electrical high (H)" and "low (L)." A slash or 
an asterisk following the signal name, as in MRDC*, indicates that the signal is 
active-low. For example, 

MRDC* = MRDCI = MRDC- = MRDC = asserted at 0 V 

Table 2-1 further explains the notation used in this book. 
During the Multibus system bus standardization work by the IEEE Standards 

Committee, which produced the IEEE-796 bus specification, two basic notation 
standards were used. They differed from those of the original bus specification 
by Intel in two ways: (1) the change from the slash (/) to denote an active-low 
signal to an asterisk (*) and (2) the use of decimal instead of hexadecimal nota­
tion. For example, in the original Multibus specification DATOI to DATF I rep­
resented the 16 data lines; in the new IEEE-796 specification DA TO* to 
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TABLE 2·1 Notation Summary 

Signal Definition 

name Label Electrical Logical State 

IORC H High ~ +2.0 V 1 True Active, asserted 
L Low .:::5 +0.8 V 0 False Inactive 

IORC. L Low .:::5 +0.8 V 1 True Active, asserted 
.H High ~ +2.0 V 0 False Inactive 

DA T15* is used to represent them. In the original IEEE-796 specification hexa­
decimal notation was used, and it is to be converted to decimal notation over a 
5-year period. By 1987 decimal notation must be used in all IEEE-796-com­
patible documentation .. This chapter uses the notation of the IEEE-796 speci­
fication, which is hexadecimal, and an asterisk (*) to indicate an active-low sig­
nal. The other specifications in this book use decimal and asterisk notation. 
Readers will encounter the variant forms of notation on some figures and tables, 
and should be aware of their meaning and validity. 

Also, these numeric conventions will be followed: to indicate decimal nota­
tion, (1) the letter D will follow the number (e.g., 120D) or (2) a number without 
any following letter will be assumed to be decimal. Binary numbers will be 
followed by the letter B (e.g., 10001110B), and hexadecimal numbers will be 
followed by the letter H (e.g., 10BDH). 

2.2 LOGICAL DESCRIPTION OF THE MULTIBUS SYSTEM BUS 

The Multibus system bus is a commercial-quality bus used in microprocessor­
based systems. The bus supports both 8- and 16-bit data paths in the same sys­
tem, and it can be configured to support up to 16M bytes of memory address 
space and 64K bytes of I/O address space. Multiple masters are supported with 
up to 16 bus masters. The basic command protocol of the bus is asynchronous 
(the bus masters and bus slaves can operate with independent clocks) and inter­
locked, and all bus cycles require a positive acknowledgment from the bus slave 
before the bus master can continue. The maximum bus transfer rate is 5 mega­
words per second. 

A Multibus-compatible board measures 6.75 X 12.00 in (17.5 X 30.48 cm). 
The Multibus interface consists of two edge card connectors, PI and P2. The 
PI connector has 86 pins and handles the regulated +5-, + 12-, and -12-V 
power, the 8- and 16-bit data bus, 20 bits of addressing (1M byte), the bus con­
trollines, and the bus arbitration lines. The P2 connector has 60 pins and is used 
for the upper four address lines (16M bytes) and the iLBX bus. The iLBX bus 
is a high-speed memory execution bus used to expand the local memory capac­
ity of an SBC without using the Multibus system bus. The iLBX bus is discussed 
in more detail in Chap. 5. 
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2.2. 1 Bus Devices 
There are three basic types of elements that interface with the Multibus system 
bus: bus masters, bus slaves, and bus hybrid modules. 

BUS MASTERS 

A bus master is any module that can control the bus and initiate data transfers. 
The Multibus system bus supports up to 16 bus masters on the same system bus. 
Control of the bus is passed from one bus master to another through its bus 
exchange logic. Anyone of these 16 bus masters can make a data transfer by 
(1) requesting control of the bus through its bus exchange logic, (2) aquiring the 
bus once it is granted access, and (3) driving the command and address lines to 
perform data transfers. Figure 2-1 is a block diagram of a basic bus master, 
which consists of a microprocessor, bus exchange logic, and data-address buff­
ers. A more complex master, a typical SBC bus master, is shown in Fig. 2-2. 
The SBC also includes its own memory and I/O logic. Typical bus masters are 
CPU modules, SBC modules, disk controller modules, and DMA controllers. All 
bus masters either process or move data in the system. 

BUS SLAVES 

A bus slave is any module that can respond to bus commands generated by a 
bus master. It can control only three parts of the bus: (1) the inte~rupt lines 
when generating interrupts, (2) the data lines when performing a read com­
mand, and (3) the acknowledge line. Bus slaves simply decode the address and 
command information on the system bus and perform the requested operation 
and acknowledge the master once the operation is completed. Memory and 
I/O expansion modules are examples of typical bus slaves; they are low-cost 
vehicles that extend the system capabilities by providing data storage or I/O 
capability to the system. Some bus slaves are shown in Fig. 2-3. 

w 
CIl (!) 

W I-- 0 CIl 
N a. w 0 

=> CIl ...J Z CIl ~ ...J a: w <[ FIGURE 2-1 Basic Multibus ~ a: 0 :::E w <[ a: z 
~ I-- I-- 0 ~ :::E master. <[ 0 <..> 0 
~ ~ 0 <[ <[ <..> 
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MICROPROCESSOR I+------"~ 

MULTIBUS SYSTEM BUS 

FKGUnE 2·2 Dlock diagram of a typical SBC bus master. 

HYBRID MODULES 

A hybrid module has all the attributes of a bus master and most of the attributes 
of a bus slave on one module. Like a bus master, it can control the bus, and it 
has resourccs that can be used by other bus masters. The latter make it look like 
a hus s]av~ to the other bus masters. Figure 2-4 shows two hybrid modules. The 
first one is an SBC with dual-port memory, which is memory which can be 
accessed by the microprocessor on that module, as if it were a private resource, 
ilnd by another bus master via the Multibus system bus. The dual-port memory 
is both a local resource, which can be accessed by the local microprocessor with­
out lIsing the system bus, and a global resource, which is accessible to all bus 
l!lasters. The second hybrid is a simple combination of a memory module and 
a bus master on one board. Each of the fuhctions, however, is logically 
independent. 

Hyhrid modules are an outgrowth of the VLSI explosion; today an entire 
"ystem can be built on one Multibus board. Some examples of hybrid modules 
are intelligent communication boards such as Interphase Corporation's 
I J\JC.rjH30 Local Area Network Controller and SBes such as Intel's iSBeI 86/ 
:")0 hoard and National Semiconductor's BLC2 80/30 board. These b~ards are 
considered hybrid modules because they have (1) the ability to control the bus 
l "rough their bus exchange logic and (2) the RAM that can be accessed from 
t he system bus through their dual-port control logic. 

I j'-;m; ir, a tmdcmark of Intel Corporation, Santa Clara, California. 

'IILC is a trndcmnrk of National Semiconductor Corporation, Santa Clara, California. 
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2.3 BUS SIGNAL DEFINITIONS AND OPERATION OVERVIEW 

In this section the signals that make up the bus are described, and basic Multibus 
operations are discussed. The Multibus system is composed of 90 signal lines 
that can be broken into several classes: address (25 bus lines), inhibit (2), data 
(16), control (9), interrupts (9), bus exchange (5), and power (24). The different 
classes are explained in the following sections. 

2.3.1 Address. Inhibit. and Data Lines 

The address, inhibit, and data lines can be broken down into four groups: 

Class Signal Function 

Address ADRO.-ADRI7. Address lines (0-9, A-F, 10-
17) in hexadecimal notation 

Byte control BHEN. Byte high enable 
Inhibit INHh-INH2. Inhibit 1 and 2 
Data DATO.-DATF. Data lines 0 to F in 

hexadecimal notation 

ADDRESS 
The 24 address lines ADRO* to ADR17* carry the binary address of the mem­
ory location or I/O device that the bus master is referencing. ADRO* is the least 
significant bit of the address. The bus master indicates to the bus slaves which 
type of address (memory or I/O) is on the address lines by using the appropriate 
command line. The 10RC* and 10WC* commands are used for I/O port 
accesses, and the MRDC* and MWTC* commands are used for memory 
accesses. The Multibus system bus supports many address ranges-three for 
memory modules and two for I/O modules. The three memory address ranges 
are those that address 16M bytes, those that address 1M byte, and those that 
address 64K bytes. The I/O address ranges are those that address 256 devices' 
addresses and those that address 64 kilodevices' addresses (see Fig. 2-5). These 
various ranges are discussed in Sec. 2.6. Different ranges are needed to support 
various microprocessors. The 8080 microprocessor can address only 64K bytes 
of memory and 256 I/O devices, whereas Inters iAPX 80286 microprocessor 
can address 16M bytes of memory and 64K bytes of I/O devices. 

All signals on the Multibus system bus are negative true; that is, the active 
state is low, and they are terminated with a pull-up resistor. These termination 
resistors cause all signals which are not driven to be in the inactive (high) state. 
If a bus slave looks at the address bus and no bus master is driving it, the bus 
slave reads an address of OOOOOOH. This permits a memory board (a bus slave) 
to decode all 24 address bits and still respond to a microprocessor that can gen­
erate only 16 address bits. In this case all the nondriven address lines will be in 
the inactive state. (ADRX* = high, so the upper eight address lines ADR10* 
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BUS 
MASTER 

I6-BIT ADDRESS 

ADRO*- ADRF* 

ADRO*-ADRI3* 

24-BIT ADDRESS 

FIGURE 2-5 Multibus address line usage. 

1/0 BUS SLAVE 

MEMORY BUS SLAVE 

to ADRI7* will be decoded as TTL low.) Thus if an 8080 microprocessor were 
to generate a memory read command of location 1000H (hexadecimal), the 
address on the system bus as seen by the memory board would be OOIOOOH. 
The microprocessor module would drive ADRO* to ADRF*, and the termina­
tion resistor would drive ADRIO* to ADRI7*. 

BYTE HIGH ENABLE 

Byte high enable (BHEN*) is used to select the upper byte (DAT8* to DATF*) 
of a 16-bit word. BHEN* is used only in 16-bit systems. It is an extension of the 
address bus that supports 8-bit-byte operations on 16-bit words. 

The Multibus structure supports both byte and word addressing (see Fig. 2-
6). A byte location is the smallest addressable unit of storage. There are two 
types of byte address locations: an even-byte address (ADRO* = high) and an 
odd-byte address (ADRO* = low). Two consecutive byte locations form a word. 
The Multibus structure can transfer a word only if the first byte location of the 
word is an even address (ADRO* = high). If the first byte location of the word 
is an odd address (ADRO* = low), the bus master must perform two byte 
accesses and assemble the word. 

A bus master accesses a byte on the system bus by placing the binary address 
(even or odd) on the address lines and driving BHEN* = high (inactive). Access 
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to a word location is gained by placing the binary address on the address lines 
with ADRO* = high (an even address) and BHEN* = low (active). Again, 
word access on odd-address boundaries must be divided into two byte bus 
accesses, and the bus master must reassemble the word. This is summarized 
below: 

ADRO* = low 
ADRO* = high 

INHIBIT 

BHEN * = low . BHEN * = high 

Reserved 
Word access 

Odd-byte access 
Even-byte access 

Inhibit INHl* and INH2* is used by a bus slave to hold off another bus slave's 
bus activity. This permits a bus slave (the inhibiting slave) to turn off another 
bus slave (the inhibited slave). The inhibit lines can be used during a memory 
read or memory write operation. The inhibit signal is generated by the inhib­
iting bus slave based on the bus address lines. If the address is in its address 
range, an inhibit signal is activated. Then the inhibited bus slave will disable all 
its drivers from the system bus (data and acknowledge) and may perform the 
operation internally (locally to the module). The inhibiting bus slave must not 
return its acknowledge until 1.5 JLS after the command is generated. This long 
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FIGURE 2-6 Multibus address memory mapping. (Note: Bus master must break odd­
word address access into two byte accesses and reform the word.) 
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bus cycle is required to give all inhibited bus slaves enough time to return to a 
normal state, since an internal operation may have occurred. 

Bus slaves that support inhibit operations can be classified as having top, mid­
dle, or bottom inhibit priority. The top inhibit priority module can inhibit all 
other memory bus slaves; a middle inhibit priority module can inhibit or can 
be inhibited by another bus slave; and a bottom inhibit priority module can be 
inhibited by but cannot inhibit another bus slave. The signal INH1 * is used by 
a middle inhibit priority slave memory device that wants to prevent another 
slave memory device (bottom inhibit priority) at the same address from 
responding to the requested bus operation under certain specified conditions. 
For example, this permits ROM to overlap RAM when both are assigned the 
same address. Effectively, this allows ROM boards, which are typically small or 
memory-mapped I/O devices, to override the RAM in the system which could 
occupy the whole memory space. INH2* is used by top-priority modules to 
prevent middle-priority modules, such as ROM memory modules, from 
responding to the memory command request. Top inhibit priority modules 
should also assert INH1 * to inhibit bottom inhibit priority modules. 

Figure 2-7 demonstrates a bootstrap application which also has. diagnostic 
software in ROM. There are three modules that can occupy the same memory 
location: (1) the bootstrap ROM, which has top inhibit priority, (2) the diag­
nostic ROM, which has middle inhibit priority, and (3) the RAM, which has 
bottom inhibit priority. When the system is first turned on, the boot ROM is 
enabled. The bus master accesses memory from its reset starting point, where 
the RAM is normally located. Since the boot ROM is enabled, it generates the 
INRI * signal which turns off the RAM module, the bottom inhibit priority. It 
also enables the INH2* signal which turns off the diagnostic ROM module, the 
middle inhibit priority. Once the bootstrap operation is complete, the bootstrap 
module is disabled, which disables its INH1 * and INH2*. 
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FIGURE 2-7 Bootstrap inhibit application. 
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Next the system software will confirm that the system hardware is opera­
tional by executing the diagnostic software installed in the diagnostic ROM 
module, which is enabled via an I/O command. Each access to the ROM mod­
ule would cause the INHI * signal to be activated, which would turn off the 
RAM module. Once the diagnostic program is complete, the system software 
can disable the ROM module. This disables the INHI * signal, and the bus mas­
ter can now access the RAM. 

The inhibit lines can be used during both read and write operations. During 
read operations the inhibited module will not cause its stored data any adverse 
effects. This means that data written into a RAM module and then accessed 
after a previously inhibited access will remain valid. During write operations, 
the contents of the memory location mayor may not be changed. If data is 
changed, it will be only the one byte or word that is addressed. No other data 
in the inhibited module may be altered. Thus, the inhibit lines cannot be used 
to protect memory. 

DATA LINES 

The 16 data lines DATO* to DATF* are used to transmit or receive information 
to or from a memory location or I/O device. DATO* is the least significant bit 
for both byte and word transfers. The Multibus permits both 8- and I6-bit bus 
masters by supporting three types of data transfer (Fig. 2-8): (1) even-byte 
transfers on DATO* to DAT7*, (2) odd-byte transfers on DATO* to DAT7*, 
and (3) word data transfers on DATO* to DATF*. All byte transfers use data 
lines DATO* to DAT7*. DAT8* to DATF* are not defined during byte trans­
fers. All odd-byte transfers, which when local to a I6-bit microprocessor are 
transferred on the high-order data byte, are swapped from the local high-order 
data byte to the lower-order data byte while on the Multibus system bus. They 
are swapped back to the high-order byte once they are back on the local bus of 
the I6-bit microprocessor. This is done by using a byte-swapping technique that 
permits both 8- and I6-bit bus masters to operate on the same bus because all 
byte transfers occur over the lower byte of the data lines. 

Two signals control the data flow: byte high enable (BHEN *) and ADRO*. 
(The data flow is summarized in Fig. 2-9.) Even-byte transfers require both 
ADRO* and BHEN* = high (inactive). Odd-byte transfers require ADRO* = 
low and BHEN * = high. The data is swapped from the high byte of the word 
and sent over the low-byte portion of the data bus. A I6-bit microprocessor 
would swap the data back to the odd byte of the word. An 8-bit microprocessor 
would simply read the data on its data lines. During word transfers, the address 
put on the address lines must be an even address; ADRO* = high and BHEN * 
= low (active). There are two consecutive byte addresses for each word. The 
even-byte address (ADRO* = high) corresponds to the word data bits DATO* 
to DAT7*. Conversely, the odd-byte address, which is the address on the 
address lines plus 1, corresponds to the word data bits DAT8* to DATF*. Only 
word transfers use data lines DAT8* to DATF*. 
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FIGURE 2-8 Types of data transfers. 

2.3.2 Control Lines 

The control lines define the data transfer protocol on the system bus. They can 
be broken down into four basic groups. 

Class 

Mutual exclusion 
Utilities 

Commands 
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Signal 
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INIT. 
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Function 

Lock 
Constant clock 
Initialize 
Memory read command 
Memory write command 
I/O read command 
I/O write command 
Transfer acknowledge 
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MUTUAL EXCLUSION 

Mutual exclusion (LOCK *) is used by a bus master to guarantee that no other 
bus device or microprocessor can access a resource until that bus master has 
finished using it. In systems with multiple microprocessors, there must be an 
established method for the microprocessors to communicate with one another. 
One very popular method is through the use of shared memory (RAM). It 
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FIGURE 2-9 Data flow on MuItibus data lines. 
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requires no special mechanisms between the microprocessors-they communi­
cate by passing messages stored in the RAM. The message is guarded by a flag 
(a byte in the RAM) which indicates if there is a valid message. When this 
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FIGURE 2-10 Multibus lock operation. 
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method is used, there are many cases in which one of the microprocessors must 
have exclusive access to the flag. While one of the microprocessors is updating 
the flag, another microprocessor must not be permitted to have access to it. A 
microprocessor must have the ability to read the flag, test it for validity, and 
write back into the flag in order to let other microprocessors know that it now 
owns the flag and corresponding message (without another microprocessor 
intervening). This operation, called read, modify, and write, provides the 
microprocessor with exclusive access to or mutual exclusion of a memory loca­
tion for both the read and the write operations. 

The Multibus system bus provides for mutual exclusion between bus masters 
simply by holding the bus until the operation is completed. The bus master can 
gain control of the system bus, perform a read operation, test the data, and then 
perform the write operation. The LOCK * line allows this mutual exclusion to 
be extended off the bus. This signal is required only in multiple-port RAM 
board designs when the bus master needs to prevent the microprocessor on 
another module from getting access to its own multiple dual memory (memory 
with multiple paths into it). Figure 2-10 is an example of how LOCK* is used 
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in a dual-port design. The bus hybrid locks its dual-port memory to the Multi­
bus system bus when it is addressed and the LOCK* signal is active. The dual­
port logic on the bus module will not permit access to the memory by the local 
microprocessor until LOCK * is driven inactive. 

CONST ANT CLOCK 

Constant clock (CCLK*) is a general-purpose clock used by bus modules. The 
frequency is approximately 10 MHz. The most common use of CCLK* is on 
bus slave modules for acknowledge generation logic. 

INITIALIZE 

Initialize (INIT*) is used to put the system in a known state before bus cycles 
are started. INIT* is typically used at power-up time in order to guarantee that 
the system starts in the same way each time and also when a major error occurs 
and the only recovery is a complete system restart. All bus masters should both 
receive and drive the INIT* signal. This causes the entire system to start at the 
same time, because the INIT* signal will not become inactive until the slowest 
board reset is completed. 

COMMAND LINES 

The command lines (MWTC*, MRDC*, 10WC*, 10RC*) are controlled by the 
bus master and are used to request an operation of a bus slave device. _There 
are four commands: memory read and write and I/O read and write. Each has 
a unique signal on the bus. The four commands are used to support two types 
of operations: memory and I/O. Microprocessors such as the 8085 have instruc­
tions dedicated to I/O operations; that is, there are specific output and input 
instructions. These instructions initiate special machine cycles which cause 
information to flow between the microprocessor and an I/O port location. 

An active command indicates to the bus slave that the address lines are valid 
and that the bus slave should perform the specified operation. Only one of the 
four commands can be active at a time. A read command is used by the bus 
master to request that data be sent from the bus slav,~. Conversely, a write com­
mand is used by the bus master to send data to the bus slave. 

TRANSFER ACKNOWLEDGE 

Transfer acknowledge (XACK*) is used by the bus slave to inform the current 
bus master that the requested operation is complete. For a memory write cycle, 
an active XACK * indicates (to the bus master) that the data on the data lines is 
now stored in the memory location specified on the address lines. For an I/O 
read cycle, it means that the data on the data lines from the addressed I/O 
device is valid. This signal permits the bus master to proceed to the completion 
of the bus cycle. 
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The bus master command and bus slave transfer acknowledge relationship 
provides the interlocking mechanism which permits modules of different speeds 
to be on the system bus. The bus master initiates the bus data transfer and then 
waits for the bus slave to inform it when the operation is completed via the 
transfer acknowledge (XACK*) signal. Thus, if there are two bus slaves, one 
that can transfer data at a 1M byte per second rate and another that can transfer 
data at a 2M bytes per second rate, both can operate at maximum rate. This 
also permits a module to be replaced with a faster or slower module without 
modification of the bus masters. 

If a bus slave fails to generate an XACK*, the bus master will not be able to 
complete the bus cycle. Since the bus master continues to wait, the system will 
stop. This situation will occur only if the bus master tries to access a resource 
that was not present on the system bus. One way to prevent the stoppage is to 
provide a time-out function which will terminate the bus cycle, after some fixed 
period of time, by generating XACK*. This capability is used in systems with 
different amounts of RAM when the system software needs to find out how 
much memory is available. The software starts at the beginning of RAM and 
does a test on that location. If the RAM can be written into and that same data 
read back, the location is in the system. The software continues through mem­
ory until it finds a bad location which it interprets as being top of memory. The 
time-out function is a separate piece of logic which typically is on all bus 
masters. 

2.3.3 A Data Read Operation 

A memory read cycle is shown in Fig. 2-11; it is assumed that the bus master 
has control of the system bus. (Bus exchange techniques are discussed later in 
this section.) The data read operation sequence is as follows: 

1. The bus master takes the first action by placing the address on the address 
lines. 

2. Then, after a wait for the address setup time (time for the bus slave modules 
to decode the address), the transfer is initiated by activating the read com­
mand (MRDC*) signal. All the bus slaves look at the address and command 
information on the bus. The slave with the requested memory location 
accesses the data. 

3. That bus slave then puts the data on the data lines. 

4. In doing so, the bus slave activates the transfer acknowledge (XACK*) line. 

5. The bus master strobes in the data and terminates the data transfer cycle by 
putting the MRDC* signal in the inactive state. 
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FIGURE 2-11 Memory read cycle. 

6. This causes the XACK* signal and read data from the bus slave. 

7. The address from the bus master then becomes inactive. 
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An I/O read operation is the same as the memory read operation except the 
I/O read (IORC*) command is used and an I/O port location instead of a mem­
ory location is accessed. 

2.3.4 A Data Write Operation 
A typical memory write cycle is shown in Fig. 2-12. Again it is assumed that 
the bus master has control of the system bus. The data write operation sequence 
is as follows: 
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1. The bus master places the address on the address lines. 

2. The bus master also places the data to be written on the data lines. 

3. After waiting to meet the address and data setup time (time for the bus slave 
modules to decode the address and get the data through its data buffers), the 
transfer is initiated by activating the memory write command (MWTC*) 
signal. All the bus slaves look at the address and command information on 
the system bus; the bus slave with the requested memory location stores the 
data on the data bus into that memory location. 

4. When the operation is completed, the bus slave activates the transfer 
acknowledge (XACK *) line. 
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FIGURE 2-12 Data write cycle. 
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5. The bus master terminates the data transfer cycle by driving MWTC* 
inactive. 

6. This, in turn, causes the memory board to drive XACK* inactive. 

7. The address and data then become invalid. 

An I/O write operation is the same as the memory write operation except that 
the I/O write (IOWC*) command is used and the I/O port location instead of 
a memory location is accessed. 

2.3.5 Interrupt Lines 

An interrupt is typically used in a real-time execution-type system in which an 
external event must be acted upon with minimal delay. Any system with inter­
rupt capability must have a set of interrupt servicing routines in its executive 
software. Each of these interrupt service routines is a task activated by a par­
ticular interrupt level or number; this type of control is well suited to the 
machine and process control marketplace. The microprocessor is the destination 
of all interrupts. Each of the interrupt sources is assigned an interrupt number 
which determines its priority level. When multiple interrupts occur at the same 
time, the interrupt with the highest priority is serviced first. 

Most microprocessors have a hardware interrupt input pin which, when acti­
vated, causes the program currently being executed to be automatically sus­
pended. Then the state of the machine is saved and the program ~xecution 
control is transferred to an interrupt service routine that corresponds to the 
device that caused the interrupt. The particular interupt service routine is cho­
sen by the hardware, which tells the microprocessor where to go in the progam 
by sending it an interrupt vector address. The interrupt vector address is not 
necessarily the exact memory address of the starting location of the service rou­
tine; some microprocessors modify the address before using it. The resultant 
address is then used as a lookup vector in a table of jump commands which 
points to the various service routines. 

The basic structure of the Multibus interrupt system is shown in Fig. 2-13. 
The microprocessor in this diagram is controlling some external machine and 
processes. The machine will generate interrupts when service is needed. The 
microprocessor then stops executing its current progam and starts executing the 
interrupt service routine for that device. After it has completed servicing the 
machine, the microprocessor signals the I/O device to turn off its interrupt and 
then returns to the program it was previously executing. 

The interrupt lines can be broken down into two groups: 

Interrupt request INTO*-INT7* Interrupt 0-7 

Interrupt hold INTA* Interrupt acknowledge 
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The interrupt request lines (INTO* to INT7*) are used by any bus module to 
activate an interrupt service request from the system master. The requesting 
device activates the interrupt signal and keeps it active until serviced. INTO* . 
has the highest priority. 

INTERRUPT ACKNOWLEDGE 

Interrupt acknowledge (INT A *) is generated during interrupt cycles on the bus. 
It is used to freeze the interrupt status of all the interrupt controllers in the 
system and then get the interrupt vector address from another module in the 
system. The Multibus supports two types of interrupt implementation schemes: 
non-bus-vectored and bus-vectored. 

NON-BUS-VECTORED INTERRUPTS 

Non-bus-vectored (NBV) interrupts are handled totally on the bus master and 
do not require the Multibus interface for the interrupt vector address. The inter­
rupt vector address is generated by the interrupt controller on the bus master 
and transferred to the microprocessor over the local bus. The device that gen­
erates the interrupts can reside on the bus master or on a bus slave module. In 
the 'latter case it uses the Multibus interrupt request lines (INTO* to INT7*) to 
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generate its interrupt requests to the bus master. In both cases the bus master 
performs its own interrupt operation by generating the interrupt vector address 
locally and executing the interrupt service routine. This routine will service the 
interrupting device and command it to remove the interrupt request. Figure 2-
14 shows two examples of NBV interrupt implementation, one with the inter­
rupting device on the bus master module and one with the device on a bus slave 
module. 

BUS-VECTORED INTERRUPTS 

For bus-vectored (BV) interrupts the bus master requires the aid of the inter­
rupting module. After receiving an interrupt, the bus master requests the inter­
rupting bus module to send the appropriate interrupt vector address. The 
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FIGURE 2-14 Non-bus-vectored interrupts. 
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FIGURE 2-15 Bus-vecotred interrupts. 

interrupt vector address is sent to the bus master over the Multibus data lines 
(DATO* to DAT7*) by the interrupting bus slave. The bus master uses the 
INT A * signal to request the interrupt vector address. 

Figure 2-15 shows a BV interrupt implementation. When the interrupt is 
requested, 

1. The slave interrupt controller notifies the master interrupt controller on the 
bus master, which causes the microprocessor on the bus master to process the 
interrupt. 
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2. The microprocessor then generates an INT A * command on the system bus, 
which freezes the state of the priority of the interrupt logic on all bus mod­
ules. Each of the slave interrupt controllers is assigned a unique interrupt 
controller address. 

3. Next the bus master puts the address of the bus slave's interrupt controller 
on the Multibus address lines (ADR8* to ADRA*) that had the highest-prior­
ity interrupt request. 

4. The bus master also generates a second INT A * command. 

5. The second INT A * command asks the selected interrupt controller to put its 
interrupt vector address on the Multibus data lines (DATO* to DAT8*). 

6. The bus slave activates the XACK* signal when the interrupt vector address 
on the data lines is valid. 

7. This causes the bus master to terminate the interrupt cycle by removing the 
INT A * signal. The microprocessor will then transfer program control to the 
appropriate interrupt service routine. 

2.3.6 Bus Arbitration and Exchange 

As microprocessor costs continue to decrease, it has become economically fea­
sible to use multiple microprocessors to meet system performance requirements. 
Multiple microprocessors must be able to share global resources. The Multibus 
system bus supports multiple bus masters (microprocessors) with a hardware 
arbitration and exchange scheme. Two basic types of bus arbitation methods, 
serial and parallel, are supported. One method of bus exchange also is sup­
ported. All bus arbitration and exchanges are made in synchrony with the bus 
clock (BCLK *). The bus arbitation and exchange lines can be broken down into 
three groups: 

Class Signal Function 

Control BUSY* Busy 
BCLK* Bus clock 

Bus request BREQ* Bus request 
CBRQ* Common bus request 

Bus priority BPRN* Bus priority in 
BPRO* Bus priority out 

BUS BUSY 

Bus busy (BUSY *) indicates the state of the. bus; it is supplied to all bus modules. 
The inactive state means the bus is not being used. All bus masters monitor and 
can drive the BUSY * signal. The controlling bus master uses BUSY * to indicate 
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to the other bus masters that the bus is in use by driving BUSY * in the active 
state. A requesting bus master must wait until it has priority and the bus is not 
being used (BUSY* inactive) before it can gain control of the system bus. 

BUS CLOCK 

Bus clock (BCLK *) is the bus exchange logic master clock; all bus exchanges 
are in synchrony with it. BCLK* is bused to all bus modules and can be slowed, 
stopped, or single-stepped. Single-stepping is very useful during the debug 
phase of a project. The bus clock frequency is very important in determining 
the speed of a bus control transfer (bus exchange). The number of masters sup­
ported by the serial-priority arbitration method (discussed later in this section) 
is a function of the BCLK* frequency. BCLK* normally operates at about 10 
MHz. 

BUS PRIORITY IN 

Bus priority in (BRPN *) is used to indicate to a particular bus master that, of 
all current bus requests, it has the highest-priority request for the system bus. 
BPRN * also indicates that the master can take control as soon as the system bus 
is not busy. BPRN* is not bused, and its connection is based on the arbitration 
method used. 

BUS PRIORITY OUT 
Bus priority out (BPRO*) is used in a serial or daisy chain bus arbitration 
scheme (Fig. 2-16) to pass the bus priority along. It is not bused. The BPRN* 
of the highest-priorty master is always active (low, or tied to ground); its BPRO* 
is connected to the BPRN* input of the master with the next-lower priority. 
This, in turn, can be repeated. If the highest-priority master does not need the 
system bus, it will activate its BPRO* and pass the system bus priority to the 
next-lower-priority master. This causes the BPRN* of the next bus master to 
become active, which indicates that it now has the highest priority. If it does 
not need the system bus, it passes the priority on. A master making a system 
bus request simply causes its BPRO* to become inactive. That, in turn, causes 
the next-lower-priority master to lose its bus priority because its l3PRN* has 
become inactive. It then causes its BPRO* to become inactive because it has 
lost its priority. 

The biggest advantage of a bus arbitration scheme using a daisy chain system 
is its simplicity. Very few control lines are required, and the number of lines is 
independent of the number of devices. More devices can be added simply by 
connecting them to the system bus, provided the AC timings are met. 

The biggest disadvantage of the daisy chain scheme is its susceptibility to 
failure. A failure that occurred in the arbitration circuitry of a device could 
prevent succeeding devices from ever getting control of the system bus or allow 
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more than one device to gain control of the system bus. However, the logic 
involved is very simple, and a redundant circuit would increase its reliability. 
Another disadvantage is that the priority structure is fixed. The devices farthest 
from the highest-priority master could be locked out by higher-priority masters 
if they had a high demand for the system bus. 

The maximum number of bus masters in a system is determined by gate 
delays through the daisy chain logic, which must be less than one BCLK* 
period. Figure 2-16 also shows the timing associated with a serial arbitration 
scheme. A bus arbitration operation can be made each BCLK * cycle (falling 
edge to falling edge). This requires that all priorities be passed in one bus clock 
period. The maximum number of bus masters is determined by dividing the 
amount of time it takes a bus master to pass through the bus priority by the bus 
clock period. For example, if the bus clock period is 100 ns and a serial pass 
through delay is 30 ns, the number of masters that can be supported by a serial 
arbitration method is three (with 10 ns of margin). A more detailed look at 
serial-priority bus arbitration is taken in Sec. 2.4. 

BUS REQUEST 

A bus request (BREQ*) is used by a bus master which does not have control of 
the system bus and wants it. The signal is used only in a parallel arbitration 
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method (Fig. 2-17). Each bus master has a separate pair of bus request (BREQ*) 
and bus granted (BPRN *) lines which are used for communicating with the 
central parallel bus priority resolution circuitry (CPR). A BREQ* and BPRN* 
pair of signals need not be assigned a fixed priority. When a bus master requires 
use of the system bus, it sends a request to the CPR circuitry. The circuitry 
selects the next bus master to receive the bus grant and notifies the bus master 
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FIGURE 2-17 Parallel-priority bus arbitration: <D Master 3 requests the bus. ® Mas­
ter 2 requests bus and takes priority away from master 3. ® Master 2 done with bus 
and master 3 regains bus priority. 
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by activating the appropriate BPRN* signal. Up to 16 bus masters can be sup­
ported by using this method. 

The overhead time required for bus allocation can be shorter than for a daisy 
chain scheme, since all the bus requests are presented to the CPR circuitry 
simultaneously. The bus priority can also be dynamically assigned by using a 
different method such as fixed, adaptive priority, or round robin. The major 
disadvantage of the parallel-priority method is the additional circuitry of the 
CPR module. 

COMMON-BUS REQUEST 

A common-bus request (CBRQ*) indicates to the bus master in control that no 
other masters are requesting the bus. This allows the bus master to retain control 
of the bus without contention during each bus cycle and permits it to execute 
faster because the bus exchange overhead for each cycle is eliminated. A request 
for control of the bus by another bus master would activate CBRQ*, which 
would inform the current master to relinquish control of the bus. 
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FIGURE 2-19 Bus arbitration and exchange timing diagram. 

2.3.7 Bus Exchange 

Figures 2-18 and 2-19 illustrate the sequence of events which take place when 
bus master 1 (the higher-priority bus master) and bus master 2 request the sys­
tem bus simultaneously and bus master 3 (the lowest-priority bus master) is cur­
rently in control of the system bus. Figure 2-18 is a flow diagram; Fig. 2-19 
shows the system bus exchange timing of the event. In this example a serial­
priority method is used to resolve the bus request arbitration, but the flow dia­
gram and system bus exchange timing would be basically the same if a parallel­
priority method were used. All the system bus exchange signals are synchro­
nized to BCLK*. This means that all the output system bus exchange signals 
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(BPRO*, BREQ*, BUSY*, and CBRQ*) change state on the falling (high-to­
low transition) edge of BCLK* and all input system bus exchange signals 
(BPRN*, BUSY*, and CBRQ*) are in valid states before the next falling edge 
of BCLK*. In order to gain control of the system bus, three conditions must be 
met. First, the bus master must want control of the system bus. Second, the bus 
master must have the highest priority, which is indicated by an active BPRN*. 
Third, the system bus must be free, which is indicated by an inactive BUSY * 
signal. 

1. The sequence begins (Fig. 2-18) when bus masters 1 and 2 request the system 
bus at the same time, which causes the BPRO* of both to go inactive on the 
next falling edge of BCLK*. On the next falling edge of BCLK* both bus 
masters sample their BPRN * and BUSY * signals. Bus master 1 detects that 
it has the highest bus priority, but the system bus is busy and will wait. Bus 
master 2 detects that it does not have bus priority and will wait. Bus master 
1 waits until bus master 3 finishes with the system bus by sampling BUSY* 
on every falling edge of BCLK*. When bus master 3 finishes the current bus 
cycle, it checks whether it must give up the system bus by looking at its 
BPRN * signal. 

2. Since BPRN * is in the inactive state, this causes bus master 3 to initiate 
releasing the system bus by driving BUSY* to the inactive state and disabling 
all of its system bus drivers. This permits the actual exchange to occur. On 
the next falling edge of BCLK *, bus master 1 samples its BPRN * and BUSY * 
signals. 

3. Since bus master 1 still wants control of the system bus, which is indicated 
by the state of its BPRO* (inactive) signal, it takes control of the system bus 
by driving BUSY* into the active (low) state and enables its system bus driv­
ers. This action must be taken before the next falling edge of BCLK*. Bus 
master 2 will continue to sample its BPRN * and BUSY * signals while waiting 
for its turn on the system bus. 

It is possible for bus master 3 to retain control of the system bus by activating 
an internal (on-board) signal, called override or bus lock, which goes to the bus 
master's bus exchange logic. The internal override signal is used to prevent any 
other bus master from gaining control of the system bus even though it has 
higher priority. The signal keeps BUSY* active and thereby keeps bus master 
3 in control of the bus. This procedure guarantees that bus master 3 can have 
consecutive bus cycles for such software functions as semaphores (test and set). 

2.4 DETAILED ELECTRICAL DESCRIPTION 

In this section all the timing, loading, and drive specifications of the Multibus 
system bus are described. 
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2.4.1 Logical state and Electrical Level Relations 

The signal names indicate if the signals are active-high or active-low. If the 
signal name is followed by an asterisk, the signal is active-low and has the fol­
lowing logical state and electrical level relations, in which L = low and H = 
high: 

Logical 
state 

o 
Electrical level 

H = TTL high state 
L = TTL low state 

At receiver 

5.25 V ~ H ~ 2.0 V 
0.8 V ~ L ~ -0.5 V 

At driver 

5.25 V ~ H ~ 2.4 V 
0.5 V ~ L ~ 0 V 

If the signal name is not followed by an asterisk, the signal is active-high and 
has the following logical state and electrical level relations: 

Logical 
state 

o 
Electrical level 

L = TTL low state 
H = TTL high state 

At receiver 

0.8 V ~ L ~ -0.5 V 
5.25 V ~ H ~ 2.0 V 

At driver 

0.5 V ~ L ~ OV 
5.25 V ~ H ~ 2.4 V 

These specifications are based on TTL when the power source is 5 V ± 5 per­
cent, referenced to logic ground (GND). 

2.4.2 Signal Line Characteristics 

The rise and fall times of a signal on the bus must not exceed the following 
limits: 

Rise time, ns 
Fall time, ns 

Open collector Totem pole Three-state 

10 
10 
10 

10 
10 

The timing parameter t pD is the maximum signal propagation delay on the bus. 
It is measured from the edge of anyone board plugged into the backplane to 
any other board plugged into any other slot, and can be expressed as 

tPD(max) = 3 ns 

tpD is very important when timing on the bus is to be determined. The setup, 
hold, and any other times are measured at the edge of the board where it is 
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plugged into the bus. This means that all board-internal and bus delays must be 
taken into account. 

The settling time for all command, acknowledge, clock, and inhibit lines 
after a transition is zero. On these lines the ringing cannot go beyond the noise 
immunity levels. The control signals are used to determine the state of the bus, 
and ringing beyond the noise immunity levels could cause system failures. 
Address and data lines can ring beyond the noise immunity levels; the only 
requirement is that they be stable for their setup times. The setup, hold, and 
command ringing are summarized in Fig. 2-20. 

2.4.3 Bus Power Specification 

Three voltages (+5, + 12, and -12 V) and ground are provided on the Mul­
tibus system bus; eight pins each are assigned to + 5 V and ground, and two 
pins are assigned to each of the remaining two voltages. All other voltages 
should be derived from the three standard voltages. Table 2-2 provides all the 
bus power specifications. 

COMMAND * HIGH MINIMUM >HIGH 
------tlc::~~==:::::::::~-~'L--I MINIMUM 

ADDRESS 
OR 

WRITE 
DATA 

XACK* 

GND 

'-- NO "RINGING" 

~~.-+t-50 ns MINIMUM 

HIGH 

-~~-~+-~-----~-~~~~~---------GND 

50 ns MINIMUM 

50 ns MINIMUM---otl ~ LOWMAXIMUM LOW 
~-~~~~~======~==~~-------------GND 

S LOWMINIMUM PASSIVE (TRI IS OFF) -------

----------~~~~====~~L--~~~~----GND 
o ns MINIMUM 

READ[_HI_G~H==========~~=-~~~~ __ ~~~===~ ________ GND 

DATA 
-----"""'-1 

~LO~W~ ____ ~~~~======~~---------GND 

FIGURE 2-20 Setup, hold, and ringing summary. 



TABLE 2·2 Multlbu5 Power SpecIfication 

Ground +5 

Mnemonic GND +5V 
Bus pins PI - 1,2, PI - 3,4, 

11,12, 5,6, 
75,76, 81,82, 
85,86 83,84 

Nominal output, V Ref. +5.0 
Tolerance from nominal,a Ref. 4.9 to 5.2 
Ripple (Pk_Pk),b mV Ref. 50 
Transient response time, C J,LS 500 
Transient deviation,d % ±10 
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+12 

+12 V 
PI - 7,8 

+12.0 
11.8 to 12.5 
.50 

500 

±lO 

-12 

-12 V 

PI - 79,80 

-12.0 
-12.5 to -11.8 

50 
500 

±lO 

"Tolerance is worst case, including initial voltage setting, line and load effects of power source, ripple, temper­
ature drift, and any additional steady-state influences. 

bAs measured over any bandwidth not to exceed 0 to 5 MHz. 

cAs measured from the start of a load change to the time an output recovers with ±O.l% of final voltage (50% 
load change). 

dMeasured as the peak deviation from the initial voltage. 

2.4.4 Temperature and Humidity Limits 

All bus parameters and specifications must be met within the following tem­
perature and humidity limits: 

Temperature 0 to 55°C (32 to 131°F); free moving air across modules and 
bus (200 LFM recommended) 

Humidity 90% maximum relative (no condensation) 

2.4.5 Bus Timing 

In this section all the timing specifications of the Multibus system bus are 
described; they are summarized in Table 2-3. The timing diagrams show, for 
clarity, only the minimum or maximum value required for each parameter; 
Table 2-3 should be referred to for complete minimum or maximum informa­
tion. The timing diagrams show how all the parameters are defined in relation 
to the signals involved. All timing is measured at 1.5 V with loading capacitance 
Co and the terminations specified in Table 2-4. 

READ OPERATIONS (I/O AND MEMORY) 

A read operation transfers data from a memory location or an I/O device to 
the bus master that is controlling the system bus. Figure 2-21 shows the signals 
involved in and the timing specifications for a read operation. The bus master 
must drive the address lines with a valid address a minimum of 50 ns (tAS) 



TABLE 2·3 Multlbus Timing Specification 

Parameter Description Minimum Maximum Units 

tBCY Bus clock period 100 00 (DC) ns 

tBw Bus clock width 0.35tBCY 0.65tBCY ns 

tSKEW BCLK. skew tpo ns 

tPO(typ) Standard bus propagation 3 ns 
delay 

tAS Address setup time (at 50 ns 
slave board) 

tos Write data setup time 50 ns 

tAH Address hold time 50 ns 

tOHw Write data hold time 50 ns 

tOXL Read data setup time to 0 ns 
XACK 

tmlR Read data hold time 0 65 ns 

tXAH Acknowledge hold time 0 65 ns 

tCCY C-clock period 100 110 ns 

tcw C-clock width 0.35tccY 0.65tccY ns 

tINIT INIT. width 5 ms 

tINITS INIT. to MPRO. setup 100 ns 
time 

tXACK Acknowledge time 0 8 ILS 

tCMO Command pulse width 100 tTOUT ns 

tID Inhibit delay 0 100 (Recommend ns 
<100 ns) 

tXACKA Acknowledge time of an tlAO + 50 ns 1500 ns 
inhibited slave 

tXACKB Acknowledge time of an 1.5 8 ILS 
inhibiting slave 

tIAO Acknowledge disable from 0 100 (Arbitrary) ns 
inhibit (an internal 
parameter on an inhibited 
slave; used to determine 
tXACKA min.) 

tINTA INTA. width 250 ns 

tCSEP Command separation 100 ns 

tBREQL ~BCLK. to BREQ.low 0 35 ns 
delay 

tBREQH ~BCLK. to BREQ. high 0 35 ns 
delay 

tBPRNS BPRN. to ~BCLK. setup 22 ns 
time 

tBUSY BUSY. delay from ~ 0 70 ns 
BCLK. 

tBUsys BUSY. to ~BCLK. setup 25 ns 
time 

tBPRO ~BCLK. to BPRO. (CLK 0 40 ns 
to priority out) 

tAIZ Address to inhibit high 0 100 ns 

60 



THE MUL TIBUS SYSTEM BUS 61 

TABLE 2·3 Multlbus TIming Specification (Continued) 

Parameter Description Minimum Maximum Units 

tAD Address disable 100 ns 

tBPRNH BPRN*t to !BCLK* 5 ns 

tBPRNO BPRN * to BPRO* 0 30 ns 
(priority in to out) 

tCBRO !BCLK* to CBRQ* (CLK 0 60 ns 
to common bus request) 

tCBRQS CBRQ* to !BCLK* setup 35 ns 
time 

t CMPH XACK! to commandt 20 ns 
delay 

t BSyO CBRQ*! or BUSY*! to 12 ILS 

BUSy*t delay 

tLCKH LOCK* hold time from 100 ns 
command*! 

tLCKS LOCK* to command 100 ns 
setup time 

tLQCK LOCK* width 12 J.LS 

before the bus master activates the read command. The bus slave accesses the 
addressed data, drives the data lines, and activates XACK* after providing a 
minimum of 0 ns (tDxd setup to XACK*. tXACK is defined as the time from 
command going active until the bus slave activates XACK*. Next the bus mas­
ter inactivates the command after waiting a minimum of 20 ns (tCMPH) and must 
hold the address valid for a minimum of 50 ns (tAH)' The bus slave must return 
the data and XACK * lines to a three-state condition in a minimum of 0 ns and 
a maximum of 65 ns (tDHR and tXAH)' The bus master must guarantee that the 
command is active a minimum of 100 ns (tCMD)' 

IORC* OR 
MRDC* 

tCMD 

50 ns MINIMUM-I - tAS tAH_ '-50 ns MINIMUM ~~STER 

100 ns MINIMUM } 

,..-_________ ""'1 .... _______ SLAVE 

AD~~~~~ _____ ...;X STABLE ADDRESS X 
o ns MINIMUM I- tXACK 

PASSIVE 

-I tDHR r-~~~~MUM }LAVE TO X PASSIVE 

MASTER 

STABLE DATA 

XACK* 

t DXL 
o ns MINIMUM--l 

8~~~ PASSIVE Xr------~ 

FIGURE 2·21 Timing for a read operation. 



t TABLE 2·4 Multlbus Drivers, Receivers, and Termination Requirements 

Driverl1
•
b Receive~'c Terminationd 

IOL min, lou min, Co min, IlL max, 1m max, CI max, 
Bus signals Location Type rnA IlA pF Location rnA IlA pF Location Type R 

DATO.-DATF. Masters TRI 16 -2000 300 Masters and -0.8 125 18 Mother Pull-up 2.2 kn 
(16 lines) and slaves board 

slaves 
ADRO.-ADRI7., Masters TRI 16 -2000 300 Slaves -0.8 125 18 Mother Pull-up 2.2 kn 
BHEN. (25 lines) board 
MRDC., Masters TRI 32 -2000 300 Slaves -2 125 18 Mother Pull-up 1 kn 
MWTC. (memory; board 

memory-
mapped 
I/O) 

10RC., 10WC. Masters TRI 32 -2000 300 Slaves (I/O) -2 125 18 Mother Pull-up 1 kn 
board 

XACK. Slaves TRI 32 -400 300 Masters -2 125 18 Mother Pull-up 510n 
board 

INHh,INH2. Inhibiting OC 16 - 300 Inhibited -2 50 18 Mother Pull-up 1 kn 
slaves ., slaves (RAM, board 

PROM, 
ROM, 
memory-
mapped 
I/O) 

BCLK. 1 place TTL 48 -3000 300 Master -2 125 18 Mother To +5V 220n 
(master) board ToGND 330n 

BREQ. Each TTL 10 -200 60 Central -2 50 18 Central Pull-up 1 kn 
master priority priority 

module module 
(not 
req.) 



0-w 

BPRO. Each 
master 

BPRN. Parallel: 
central 
priority 
module 
Serial: 
prev 
masters 
BPRO. 

LOCK. Master 

BUSY., CBRQ. All 
masters 

INIT. Master 

CCLK. 1 place 

INTA. Masters 

INTO.~INT7 • Slaves 
(8 lines) 

dDriver requirements: 
IOH = high-output current drive 
IOL = low-output current drive 

TTL 

TTL 

TRI 

OC 

OC 

TTL 

TRI 

OC 

Co = capacitance drive capability 
TRI = three-state drive 
OC = open-collector driver 
TTL = totem-pole driver 

4.0 -200 60 Next master 
in serial 
priority 
chain at its 
BPRN/ 

4.0 -200 60 Master 

32 -2000 300 All 

20 - 300 All masters 

32 - 300 All 

48 -3000 300 Any 

32 -2000 300 Slaves 
(interrupt-
ing I/O) 

16 - 300 Masters 

"For low and high voltages specifications see Sec. 2.4.1. 

9leceiver requirements 
IIH = high-input current load 
IlL = low-input current load 
CI = capacitive load 

d ± 5% v.-W resistors. 

-4.0 100 18 Not 
req. 

-4.0 100 18 Not 
req. 

-2 125 18 Mother Pull-up lkf! 
board 

-2 50 18 Mother Pull-up 1 kf! 
board 

-2 50 18 Mother Pull-up 1 kf! 
board 

-2 125 18 Mother To +5V 220 f! 
board ToGND 330 f! 

-2 125 18 Mother Pull-up 1 kf! 
board 

-1.6 40 18 Mother Pull-up 1 kf! 
board 
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IOWC* OR 
MWTC* 

r:g~~, MINIMUM 

~\..--_----JV 
~I I --.l L50 ns 50 ns MINIMUM i tAS - ~ tAH ,MINIMUM 

AOO~~~~ ________ -JX~ __ ~_ST_A_BL_E __ AO_O_R_ES_S ______ --JX~ ______ _ 
50 ns MINIMUM-I tos 1- -l tOHW I-~~N~~UM 

L~~~~ __________ X STABLE WRITE DATA X~ ______ _ 
o ns MINIMUM 

MASTER 
TO 
SLAVE 

l-txAcK~ tCMPH !-tXAH ____________ -.,;..._____ 65 ns } V 
MAXIMUM PASSIVE TSOLA E 

XACK* 
'--__________ ..J MASTER 

FIGURE 2-22 Timing for a write operation. 

WRITE OPERATION (I/O AND MEMORY) 

A write operation transfers data from the master that is controlling the system 
bus to a memory location or I/O device. (The timing for a write operation is 
shown in Fig. 2-22.) The bus master must drive the address and data lines with 
valid information for a minimum of 50 ns (tAs and tos) before the bus master 
activates the write command. When the bus slave has completed storing the 
data in the specified address, it activates XACK*. The time from the command 
active to XACK* going active is the module's acknowledge time (tXACK), and it 
must be greater than 0 ns. The bus master then removes the command after 
waiting 20 ns (tCMPH) and holds the address and data lines valid for a minimum 
of 50 ns (tAH and tOHW)' The bus slave must drive XACK* to the inactive state 
and put the driver in a three-state condition in less than 65 ns (tXAH). It is the 
responsibility of the bus master to guarantee the command is active a minimum 
of 100 ns (tCMO). 

INHIBIT OPERATION 
An inhibit operation may accompany any memory operation. This allows one 
bus slave to prevent another bus slave from driving the data and acknowledge 
lines. The inhibit signal may also be generated during 10RC*, 10WC*, and 
INT A * operations but should be ignored by all bus slaves, including the module 
that should respond to the bus operation. Inhibit timing is shown in Fig. 2-23. 
The inhibiting slave must drive its inhibit lines in less than 100 ns (tID) after the 
bus master has a valid address on the address lines. Any bus slave that can be 
inhibited must be able to receive the inhibit signals and turn off its bus driver 
before it would normally have (when not inhibited) generated an XACK*. This 
implies a minimum access time of 50 ns (tID - tAS) for any inhibited slave 
module, because the inhibited slave cannot generate an XACK* until it can 
guarantee that it has control of the bus cycle. The inhibiting bus slave must not 
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activate XACK* until a minimum of 1500 ns (tXACKA) from the active com­
mand. The inhibiting slave must remove its inhibit signals (inactive state) in less 
than 100 ns after the bus address has changed (tAIZ)' 

NON-BUS-VECTORED INTERRUPTS 

Non-bus-vectored (NBV) interrupts are handled on the bus master and do not 
require the Multibus system bus for transferring the interrupt vector address. 
There is no timing requirement on the system bus during NBV interrupt 
operations. 

BUS-VECTORED INTERRUPTS 
Bus-vectored (BV) interrupts are handled partly on the bus master and do 
require the Multibus system bus for transferring the interrupt vector address 
from the bus slave to the bus master. The bus master uses the INTA* command 
to request the vector address. The timing for BV interrupts is shown in Fig. 2-
24. The first INTA* bus cycle is initiated by the bus master when the INTA* 
signal is activated for a minimum of 250 ns (tINTA)' The address and data lines 
are not used during the first INTA* cycle and should be ignored. The XACK* 
for the first interrupt cycle is self-generated by the bus master, and this can be 
done locally to the bus master (XACK* need not be driven). The INTA* signal 

MRDC* OR MWTC* \""--__ -----J/ 

I 
ADDRESS LINES ~'--____________ -JX,-____ _ 

XACK* FROM 
INHIBITED SLAVE(S) 

XACK* FROM 
INHIBITING SLAVE(S) 

INHl*. OR 
INH2*. OR BOTH 

I ~IXACKA1 I 

~ ~ 
V 

~b~ ns~-tAD 
MAXIMUMT HtAIZ 

100 ns 
MAXIMUM 

\""---------'/ 
FIGURE 2-23 Inhibit AC timing. 
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_ _tINTA 
250 ns MINIMUM 

r--tCSEP-j l-tINTA~ 

INTA" ~y N ~~~I;:UM~ I 

I
t I t 1.-50 ns 50 ns MINIMUM- AS - AH

1
· MINIMUM 

ADDRESS r-----
LINES (USE STABLE (ONLY, ADRA*, 

ONLY ADRA*, ADR9*, AND ADRS * USED) 
ADR9*, ADRS*) 

o ns MINIMUM --l tXACK 1-
XACK * \ I NONE REQUIRED (MASTER I 

MUST CREATE OWN 
\_1 INTERNAL XACK*) '--___ oJ 

t DXL 0 ns MINIMUM--j -

DA4~~~D~T~0~~-==X=X ( X;...-----..... X'-__ _ 
FIGURE 2-24 Timing for bus-vectored interrupts, 

MASTER 
TO 
SLAVE 

SLAVE 
TO 
MASTER 

is driven inactive by the bus master for a minimum of 100 ns (tCSEP)' The bus 
master must maintain control of the system bus in order to guarantee that there 
are no intervening bus cycles. 

Next, the slave interrupt controller address is put on address lines ADR8* to 
ADRA* (ADR8* is the least significant bit of slave interrupt controller address) 
by the bus master. After the address is valid for a minimum of 50 ns (tAS), the 
second INT A * command is generated. The responding module drives the data 
lines (D A TO* to D A T7 *) with the interrupt vector address. The least significant 
bit of the vector address is driven onto DATO*. The responding module acti­
vates XACK* after the data lines have been valid for a minimum of 0 ns (tDxd. 
The bus master then removes INTA* and holds the slave interrupt controller 
address a minimum of 50 ns (t AH)' The responding module must return the data 
lines and XACK* to an inactive state and put them in a three-state condition 
in less than 65 ns (tDHR and tXAH )' The bus master will then execute the interrupt 
service routine. 

2.4.6 Bus Control Exchange Timing 

In this section the timing specifications for the signals required for bus control 
to be transferred from one bus master to another are described. The bus 
exchange timing is shown in Fig. 2-25. 

Note that, before release of the bus (Le., BUSY* = high), all timing require­
ments of any ending cycle, such as the hold times, must be met according to 
the Multibus specification. The same is true of taking control of the bus (Le., 
driving BUSY * low). All setup and other timing parameters must be met. 



0-.... 

tBCY -+l --l I-r lOO ns MINIMUM I I tBW I 0.5 tBCY NOMINAL 

BClK" ~'I\.~ / \ r~ 
35 ns MAXIMUM ---l rtBREQL tBREQHI 1-~5A~SIMUM , 

BUS IS I tBPRNS / ~ BREQ * REQUESTED BY 1 22 ns MINIMU~ 
NEW MASTER~ l---;--H, lZ . 

2L I ~
tBUSYs--l~~NI~UMC:' -=j tBPRNS 22 ns MINIMUM 

PRIORITY GIVEN TO tBUSY----! r I ~ l BPRN* Y NEW MASTER~ 70 ns MAXIMUM II 
------------f( l - tBUSY 
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- CHAIN) 

FIGURE 2-25 Bus exchange AC timing. (Note: Use tpD, bus propagation delay, in all system calculations.) 



68 THE MUL TIBUS FAMILY OF BUS STRUCTURES 

BCLK· 

_~~%B:'Ql-M_A_XI_MU_M __ ----,~ ~ _______ _ 
CBRa· 

BUSY· 

12 P.s MAXIMUM---1 MAXIMUM WAIT TIME FOR BUS CONTROL 

FIGURE 2-26 CBRQ. AC timing. (Note: Use tpD, bus propagation delay, in all system 
calculations.) 

COMMON-BUS REQUEST 

Use of CBRQ* is optional. A requesting bus master uses CBRQ* to tell the 
controlling bus master that another bus master needs the bus. The timing for 
CBRQ* is shown in Fig. 2-26. CBRQ* is in synchrony with the falling edge of 
BCLK*; it can change state from 0 to 60 ns after a falling edge of BCLK* 
(tCBRQ)' Once CBRQ* is active, the bus master currently controlling the bus 
must give the bus up (drive BUSY* inactive) within a maximum of 12 J-LS (tByso) 

unless it is a higher priority. 

SERIAL-PRIORITY ARBITRATION 

The timing specifications for serial-priority arbitration are shown in Fig. 2-27. 
All serial-priority arbitration signals are in synchrony with the falling edge of 
BCLK*. 

t BPRO is the maximum delay time permitted (1) from the falling edge of 
BCLK* to BPRO* valid or (2) from BPRN* changing state to BPRO* valid. 

tpD is the delay time from one bus master's BPRO* changing to the next 
master's BPRN* changing. 

tBPRNS is the setup time (22 ns maximum), the time the signal must be valid 
before the next falling edge of BCLK*. 

The maximum number of bus masters in a system can be determined as 
follows. All arbitrations must occur within one BCLK * period. 

tBCY > t BPRO + n(tpD + tBPRNO) + tBPRNS 

where the number of bus masters in the system can be n + 2. As an example. 

tBCY = 100 ns 

tBPRNO = 30 ns 



tpD = 3 ns 

tBPRNS = 22 ns 
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100 ns > 30 ns + n(3 + 30) + 22 

100 - 30 - 22 n<------
33 

< 1.4 

Maximum number of masters is n + 2 = 3 if BCLK* = 10 MHz. 

PARALLEL-PRIORITY ARBITRATION 

Figure 2-28 shows the timing specifications for parallel-priority arbitration. All 
parallel-priority arbitration signals are in synchrony with the falling edge of 
BCLK*. After each falling edge, a bus master has up to 35 ns to activate BREQ* 
(tBREQd. The parallel bus arbitration logic must generate valid BPRN*'s at least 

tBCY 

1

1+-------100 ns MINIMUM -----\-~~·I 

BCLK* u / / . J 
MASTERS' '--~I--------'-~ -1':---"-----
PRIORITIES t SKEW I.-

{

BPRN * = LOW LEVEL 

HIGHEST -I I- t BPRO I 
BPRO* /;--'..;.;.........~-----------:-I---

SECOND 

THIRD 

NEXT TO 
LOWEST 

{

BPRN* 

BPRO* 

{

BPRN* 

BPRO* 

{

BPRN* 

BPRO* 

=.j I-tpD 

-_/I I ~ j-tBPRNO 

-_/I I =+I j+-t PO 

-----J I-tBPRNO I 
_______ ~/r-----------------~-----

--l j-tPD 

-------------/l~----------~---
::..j I-tBPRNO 

----~ 
LOWEST ------------' /+-tBPRNS----l 

{

BPRN* II I 

----------------~/~----------------BPRO* "DON'T CARE" . 

FIGURE 2-27 Serial-priority AC timing. 
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SCLK* 

SREa* AT 
EACH MASTER 

SREa* 
AT CPM 

SPRN * 
FROM CPM 

SPRN* AT 
EACH MASTER 

~I 
1 

l/y--\L 
'SKEW 1 ~ 

'BREQL~'PD 
\'------

tCPM~tPD 
-------~\~I __ 1---------

~'BPRNS 

\~--
tCPM(MAX) ~ tSCYMIN -tSREQ MAX -2t PDMAX - tSPRNSMAX -tSKEWMAX 

FIGURE 2·28 Parallel.priority AC timing. 

35 ns before the next falling edge of BCLK * (tBPRNS). The time the parallel bus 
arbitration (tCMP) logic has is calculated as follows: 

tCMP < tBCY - tBREQ - 2tpD - tBPRNS - tSKEW 

< 100 - 35 - 2 * 2 - 22 - 2 

where tBCY = 100 ns 

tCMP < 37 ns 

MISCELLANEOUS TIMING 
The following diagrams show the timing of constant clock: (CCLK*), Fig. 2-29; 
command separation (tCSEP), Fig. 2-30; initialize (tINIT), Fig. 2-31; and lock 
(LOCK *), Fig. 2-32. 

CLK· r- tcCY 110 ns MAXIMUM =;J 
100 ns MINIMUM 

~,----/iL N,----
tCW--../ 

0.65tCCY MAXIMUM 
0.35tCCY MINIMUM 

FIGURE 2-29 CCLK. AC timing. 



tCMP 
j-100 ns 

tCSEP 
.f.-100 ns--l 
I MINIMUM I I . MINIMUM 

------.: 
ANYCOMMAND \ .... __ C_O_M_M_A_N_D __ -JI \ 
MRDC*. IORD*. . . . 
MWTC*.IOWC*. 
INTA* 

FIGURE 2-30 Command separation AC timing. 

DC SUPPLIES 

INIT* 

DUE TO 
POWER UP 

FIGURE 2-31 Initialize AC timing. 

BUSY* \ 
I-tLCKS -1 

LOCK· \ 
FIGURE 2-32 LOCK* AC timing. 
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ANY OTHER COMMAND / 

DUE TO RESET 
OR OTHER CONTROL 

I 
\-tLCKH -1 

1 

2.4.7 Receivers, Drivers, and Terminations 

In this section the driver type (TTL totem pole, open collector, and three-state), 
the receiver loading, and the value of the signal termination are specified. All 
of these specifications are listed in Table 2-4. 
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L O.093 in MAXIMUM -r 
...L+_LT ____ r-__ ..ll--========-.lL __ --, LO T6I

" 

L 0.062 in TYPICAL 

~----~--------~~----~ 
-t 

FIGURE 2-33 Board-ta-board relations. 

2.5 MECHANICAL CONSIDERATIONS 

The Multibus specification provides all the physical and mechanical informa­
tion needed in the design of Multibus-compatible modules and backplanes. 

2.5. 1 Board-to-Board Relations 

The PCB specifications must be followed when Multibus-compatible boards are 
designed. Refer to Fig. 2-33 to better understand the following exercise. 

i. Board-to-board spacing Le. This is the center-to-center spacing of the boards 
when plugged into the backplane. The minimum specification is 0.6 ± 0.2 
in (1.52 ± 0.05 cm). The maximum specification is limited to 18 in (45.7 
cm), which is the maximum length of the backp~ane traces. 

2. Board thickness LT. The board thickness must be 0.062 ± 0.005 in (1.57 ± 
0.13 mm). 

3. Component lead length LL. The length of the component leads below the 
PCB must be less than or equal to 0.093 in (2.36 mm). 

4. Component height LH• The maximum height of the components above the 
PCB is a function of the board-to-board spacing Le. In order to be plug­
compatible with all designs, Le = 0.60 - 0.02 = 0.58 in (1.47 cm). The 
following equation is used to determine LL: 

LH < Le - LT - LL 

< 0.58 in - 0.067 in - 0.093 in 

< 0.420 in (1.06 cm) (including board warpage) 
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Electrically conductive components require LH to be decreased by 0.020 to 
0.040 in (0.5 to I mm). 

2.5.2 Pin Assignments 

Two connectors are required to interface to the Multibus; they plug in the back­
plane. They are labeled PI (primary) and P2 (auxiliary) and have the specific 
signal pin assignments given in Tables 2-5 and 2-6. The P2 connector signal pin 
assignments are in two groups: assigned and bused. The assigned lines are as 
follows: ADRI4*, pin 57; ADRI5*, pin 58; ADRI6*, pin 55; and ADRI7*, pin 
56. The rest of the signals are bused and used by the iLBX bus specification (see 
Chap. 5). 

2.5.3 Connector-Naming and Pin-Numbering Standards 

The connectors on the PCBs must adhere to the following standards (Fig. 2-34): 

1. The connectors on the bus side of the boards will be called PI and P2. PI is 
the 86-pin main connector, and P2 is the 60-pin auxiliary connector. 

2. Pins should be numbered with odd-numbered pins on the component side 
of the board and in ascending order when going counterclockwise around 
the board as shown in Fig. 2-34. 

SOLDER SIDE 

~ 

(OPTIONAL CONNECTOR CONFIGURATION) 

COMPONENT SIDE 

P2 

SOLDER SIDE SOLDER SIDE 

FIGURE 2-34 Connector and pin numbering. 
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TABLE 2·5 Multlbus Pin Assignments of Bus Signals on P 1 Connector 

Component side Circuit side 
Pin Mnemonic Description Pin Mnemonic Description 

Power supplies 1 GND Signal GND 2 GND Signal GND 
3 +5V +5VDC 4 +5V +5VDC 
5 +5V + 5VDC 6 +5V +5VDC 
7 +12 V +12 V DC 8 +12 V +12 V DC 
9 Reserved, bused 10 Reserved, bused 

11 GND Signal GND 12 GND Signal GND 
Bus controls 13 BCLK* Bus clock 14 INIT* Initialize 

15 BPRN* Bus pri. in 16 BPRO* Bus pri. out 
17 BUSY* Bus busy 18 BREQ* Bus request 
19 MRDC* Mem read cmd 20 MWTC* Mem write cmd 
21 10RC* I/O read cmd 22 10WC* I/O write cmd 
23 XACK* XFER 24 INHh Inhibit 1 disable RAM 

acknowledge 
Bus controls 25 LOCK* Lock 26 INH2* Inhibit 2 disable ROM 
and address 27 BHEN* Byte high 28 ADI0* 

enable 
29 CBRQ* Common bus 30 ADlh 

request 
31 CCLK* Constant c1k 32 ADI2* 
33 INTA* Interrupt 34 ADI3* 

acknowledge 

Interrupts 35 INT6* Parallel 36 INT7* Parallel 
37 INT4* interrupt 38 INT5* interrupt 
39 INT2* requests 40 INT3* requests 
41 INTO* 42 INTh 

Address 43 ADRE* Address bus 44 ADRF* Address bus 
45 ADRC* 46 ADRD* 
47 ADRA* 48 ADRB* 
49 ADR8* 50 ADR9* 
51 ADR6* 52 ADR7* 
53 ADR4* 54 ADR5* 
55 ADR2* 56 ADR3* 
57 ADRO* 58 ADRh 

Data 59 DATE* Data bus 60 DATF* 
61 DATC* 62 DATD* 
63 DATA* 64 DATB* 
65 DAT8* 66 DAT9* 
67 DAT6* 68 DAT7* 
69 DAT4* 70 DAT5* 
71 DAT2* 72 DAT3* 
73 DATO* 74 DATh 

Power supplies 75 GND Signal GND 76 GND Signal GND 
77 Reserved, bused 78 Reserved, bused 
79 -12 V -12 V DC 80 -12 V -12 V DC 
81 +5V +5VDC 82 +5V +5VDC 
83 +5V +5VDC 84 +5V +5VDC 
85 GND Signal GND 86 GND Signal GND 

74 
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TABLE 2·6 Pin Assignments on Multlbus P2 Connector 

Component side Circuit side 

Pin Mnemonic Description Pin Mnemonic Description 

1 Reserved 2 Reserved 
3 Reserved 4 Reserved 
5 Reserved 6 Reserved 
7 Reserved 8 Reserved 
9 Reserved 10 Reserved 

11 Reserved 12 Reserved 
13 Reserved 14 Reserved 
15 Reserved 16 Reserved 
17 Reserved 18 Reserved 
19 Reserved 20 Reserved 
21 Reserved 22 Reserved 
23 Reserved 24 Reserved 
25 Reserved 26 Reserved 
27 Reserved 28 Reserved 
29 Reserved 30 Reserved 
31 Reserved 32 Reserved 
33 Reserved 34 Reserved 
35 Reserved 36 Reserved 
37 Reserved 38 Reserved 
39 Reserved 40 Reserved 
41 Reserved 42 Reserved 
43 Reserved 44 Reserved 
45 Reserved 46 Reserved 
47 Reserved 48 Reserved 
49 Reserved 50 Reserved 
51 Reserved 52 Reserved 
53 Reserved 54 Reserved 

Address 55 ADRI6* Address bus 56 ADRI7* Address bus 
57 ADRI4* 58 ADRI5* 

59 Reserved 60 Reserved 

Note: Refer to the iLBX bus specification for the definition of the reserved bus lines. 

3. The connectors on the non-Multibus system bus side of the board will be 
called Jl, J2, J3, etc. An attempt should be made to number these connectors 
in ascending order when going clockwise around the boad as viewed from 
the component side. 

2.5.4 Standard Outline of the PCB 

Figure 2-35 is the standard outline for any Multibus-compatible board. The 
connectors on the non-bus edge of the PCB are not restricted as long as the 
dimensions of the board still meet the outline in Fig. 2-35. 

2.6 LEVELS OF COMPLIANCE 

The Multibus system bus supports various levels of compliance of the full spec­
ification. In this section we will discuss the variable elements of capability, the 
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compliance relationship for masters and slaves, and the notation used to 
describe the level of compliance with the Multibus system bus. 

2.6.1 Variable Elements of Capability 

The Multibus system bus has flexibility built into its structure in order to permit 
the system designer to build different systems with boards of varying capabili­
ties. Variations are permitted in the following areas: 

1. Data path width 

2. I/O address width 

3. Interrupt attributes 
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DATA PATH 

Both 8- and 16-bit data path products can operate on the Multibus system bus. 
All byte operations occur on the lower byte of the data path, thus allowing the 
8- and 16-bit products to work together. 

MEMORY ADDRESS PATH 

The Multibus standard requires a 24-bit address path. In many systems a 16- or 
20-bit address path may be required. 

INTERRUPT ATTRIBUTES 

The Multibus system bus supports various interrupt attributes. A product may 
support no interrupts, NBV interrupts, or BV interrupts. There are two methods 
of interrupt sensing: preferred level-triggered and, for historical compatibility 
only, edge-level-triggered. 

LEVEL-TRIGGERED INTERRUPTS 

The active level of the interrupt request line (INTX*) indicates an active 
request. Since no edge is required, several sources can be attached to a single 
request line. Each source must have a means of reading the interrupt request 
status of each of the possible interrupt sources and a programmatic means of 
clearing the request. 

EDGE-LEVEL-TRIGGERED INTERRUPTS 

The transition from the inactive (high) to the active (low) level indicates an 
active request if, and only if, the active level is maintained at least until it has 
been recognized by the bus master. This method does not support multiple 
sources on the same request line. Edge-level-triggered interrupts are supported 
for historical compatibility only and no new designs shall use it. 

A bus master may support both methods or the level-triggered method. It is 
necessary to configure interrupt sources such that the interrupt request method 
corresponds to the interrupt-sensing method of the bus master. Note that a 
source which is compatible with level triggering is also compatible with the 
edge-level triggering. 

2.6.2 Masters and Slaves 

When constructing Multibtis systems, it is not necessary that all modules have 
identical capabilities. One bus master may generate only 20 bits of addresses, 
and a slave may decode 24 bits of address. The system is functional and reliable. 
The only restriction is that one bus master is limited to 1M byte (20 address bits) 
of address space. 

The system designer must evaluate the required capabilities in terms of sup­
plied capabilities; each product will provide some set of capabilities. A trans-
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action between two products will be restricted to use the capabilities that are 
supported by both products. It is the responsibility of the system designer to 
assure the viability of these transactions. 

2.6.3 Compliance-Level Notation 

The following notation allows a vendor to specify accurately a product's level 
of compliance with the Multibus/IEEE-796 standard. For hybrid boards, com­
pliance levels of both the master and slave interfaces must be specified. Increas­
ing levels of compliance imply lesser levels for data path width, memory 
address path width, and I/O address path width. Interrupt attributes are listed 
separately, because they are independent of one another. The lack of an ele­
ment specification implies no capability for that element. 

DATA PATH 

D8 8~bit data path 

D16 8- and 16-bit data path 

MEMORY ADDRESS PATH 

M16 16-bit memory path 

M20 20-bit memory path 

M24 24-bit memory path 

I/O ADDRESS PATH 
18 8-bit I/O address path 

116 8- or 16-bit I/O address path 

INTERRUPT ATTRIBUTES 

VO NBV interrupt requests 

V2 Two-cycle BV interrupt requests 

V3 Three-cycle BV interrupt requests 

E Edge-level triggering only 

L Level triggering 

EL Level or edge-level triggering 

COMPLIANCE-LEVEL MARKING 
The compliance levels of a module shall be clearly marked on the PCB as well 
as included in the module specification. 
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EXAMPLES 
A bus master which supported an 8- and 16-bit data path, 24 bits of memory 
address, 8- or 16-bit I/O address, BV (two-cycle), and NBV interrupts would 
be specified as follows: 

Multibus compliance: Master D16 M24 116 V02 L 

A bus slave with both I/O and memory which supported an 8- and 16-bit data 
path, 20 bits of memory address, 8- or 16-bit I/O address, and NBV interrupts 
would be specified as follows: 

Multibus compliance: Slave D16 M20 116 VO L 



3 
Multichannel Bus 

This chapter provides the basis for a conceptual understanding of the Multi­
channel bus and how it extends the architecture of the Multibus system bus. 
Included are the logical and physical descriptions of the bus, the devices that 
connect to the bus, and bus-programming information. The notation used 
throughout this book is the same as that defined for the Multibus system bus in 
Sec. 2.1. The information in this chapter is based on the Intel Multichannel Bus 
specification (142804 Rev C). It is recomended that anyone designing on the 
Multichannel bus obtain the latest version from Intel Corporation. 

3.1 WHY THE MULTICHANNEL BUS IS REQUIRED 

As a system bus is required to perform data movement as well as processor 
communication or execution, or both, its overall performance decreases. In 
many disk-based systems there is often a large amount of data movement on 
the bus or there are other applications in which high-speed I/O into or out of 
the system is required. Often a system bus is unable to provide the necessary 
bandwidth for nonbuffered I/O transfers. In some cases a system bus may be 
capable of handling the high-speed I/O transfers while sacrificing the band­
width required for communication or execution. This can result in overall deg­
radation of system performance. 

One way to increase the bandwidth of the system bus is to remove the high­
speed real-time I/O that tends to saturate it. A typical solution is to provide a 
buffered DMA controller for the system as shown in Fig. 3-1. This approach 
creates two problems. First, a buffered DMA controller has a specialized inter­
face for the peripheral that attaches to it. As other DMA devices are required, 
additional controllers must be added to the system bus. Another problem is that 



SSC 
HARD 
DISK 
CONTROLLER 

DATA 
SUFFER 

VIDEO 
CAMERA 
CONTROLLER 

DATA 
SUFFER 

MULTISUS SYSTEM SUS 

SSC SSC MEMORY 

FIGURE 3-1 Typical DMA controller solution. 

MULTICHANNEL BUS 81 

GRAPHICS 
DISPLAY 

o 
GRAPHICS 
DISPLAY 
CONTROLLER 

MEMORY 

buffered controllers have a fixed on-board buffer size. If the buffer size require­
ments change, the controller also must change. Both problems affect hardware 
and may affect the system software as well. 

The Multichannel bus provides a standard high-speed I/O gateway to the 
Multibus system bus without saturating the Multibus system with real-time 
burst DMA transfers. When a standard interface is used, the Multichannel bus 
shares many of. the attributes of a standard system bus discussed in Chap. 1. 
This bus allows multiple heterogeneous devices to be connected to it while 
maintaining a standard interface. Memory as well as I/O can be connected to 
allow buffers of various sizes for the DMA operations. Figure 3-2 is an example 
of a Multichannel-based system. In this figure the hard disk controller, video 
camera, and graphics display controller of Fig. 3-1 are combined on the Mul­
tichannel bus with the buffers. If more or different DMA devices are required, 
they can be added to the Multichannel bus without affecting the system bus. 
Additional memory can be added if the buffer requirements change. In both 
cases the connection to the system bus remains unchanged. As with the system 
bus, new VLSI can be incorporated quickly; therefore, advantage of new tech-
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FIGURE 3-2 Multibus system bus with Multichannel bus extension. 

nologies can be taken. The standard interface allows the system designer to take 
advantage of VLSI interfacing integrated circuits. 

A common problem in many system applications is that the I/O devices are 
physically separated from the processor's system bus by relatively large dis­
tances. Normally this requires a specialized bus to be developed to communi­
cate with these devices. The Multichannel bus has the added ability to link 
together I/O devices that are distributed over a distance of 50 ft (15 m) from 
the system bus. 

3.2 LOGICAL DESCRIPTION OF THE MULTICHANNEL BUS 

The Multichannel bus is a block-oriented DMA bus which, when used with the 
Multibus system bus, provides an architectural extension to the Multibus system 
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bus. Figure 3-2 is a diagram of a typical Multibus system utilizing the Multi­
channel bus. The key features of the Multichannel bus are: 

• Standardized controlled interface 

• High bandwidth 

• Distributed device support over relatively long distances 

• Simple data transfer technique 

The bus is capable of transferring data at a maximum rate of 8M bytes per 
second over 50 ft (15 m) of twisted pair flat ribbon cable. The Multichannel bus 
can support 16 devices with 16M bytes of memory space and 16M bytes of 
I/O space. Data widths for the devices can be 8- and 16-bit. 

The data is transferred via an asynchronous handshake between devices. 
Asynchronous transfers were chosen for the bus to allow communication among 
devices that vary in speed and distance from one another. Figure 3-3 shows an 
example of the Multichannel bus with several devices attached to it. In the illus­
tration, device 1 is writing data to device 2. Device 1 signals to device 2 that 
data is valid after device 1 places data on the bus. Device 2 ensures that device 
1 will hold the data valid until it has read the data. Once device 2 has accepted 
the data, it signals device 1 that it has done so. The importance of this hand­
shake can be seen if device 1 can transfer data at 2M bytes per second and 
device 2 can accept data only at 1M byte per second. This interlocked hand­
shake ensures that device 2 will receive all the data while not constraining 
device 1 to transfer data at that rate. If device 3 in Fig. 3-3 is capable of receiv-
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FIGURE 3-3 Block diagram of bus with supervisor, controller and basic devices attached. 
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ing data at a 2M bytes per second rate, device 1 could transfer at the higher 
rate when communicating with device 3. 

3.2. 1 Bus States 

In order to understand the bus operation, one must first understand the device 
states: the mode and activity level of a device at any given time during bus 
operation. The bus is based on a master-slave relationship in that a master ini­
tiates the data transfer by some action on the control lines and a slave responds 
to this action. Referring back to Fig. 3-3, device 1 is the master and device 2 is 
the slave. In this example device 1 informs device 2 what type of data will be 
transferred and in which direction. Device 2 looks at these signal lines and 
decides whether it should receive or send data and when the transfer is to begin. 

A master-slave approach was chosen to allow communication between 
devices that vary in speed and distance from one another. This approach 
requires a positive acknowledge interlocked transfer between devices. Its draw­
back is that a device must synchronize to the acknowledge. 

MASTER STATE 
A device is in the master state whenever it is controlling the command-action 
lines on the bus. The master is responsible for addressing devices and determin­
ing the length of the transfer. The Multichannel bus allows the bus mastership 
to be passed among the attached devices. However, only one master can be 
active at a time. In Fig. 3-3, device 1, the master, is responsible for addressing 
device 2 or 3 and controlling the data transfer. If device 2 or 3 is capable of bus 
mastership, device 1 may choose to move the mastership to either of the other 
devices. 

SLAVE STATE 
A device is in the slave state whenever it is monitoring the bus command-action 
lines. The slave is responsible for monitoring the bus for its device address. No 
action can be performed on the bus by a slave without direction from the mas­
ter. A system can contain multiple slaves, each monitoring the bus for its 
address. However, only one slave can be actively transferring data on the bus 
at a time. In Fig. 3-3, devices 2 and 3 are the bus slaves. Each device will mon­
itor the bus for its address being sent by device 1, the bus master. Once device 
2 has been addressed for a data transfer, it will wait for the signal from device 
1 to start the transfer. 

ACTIVE STATE 
A slave device is in the active state whenever it has been addressed for a transfer 
by a master. Only one slave may be active on the bus at a time. Bus masters 
are always active on the bus. In Fig. 3-3, device 1 is the master; therefore, it is 
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active. Device 2, the slave, will be inactive until device 1 addresses it for a trans­
fer operation. Once addressed, device 2 will be in the active state. 

TALKER ST ATE 
A talker is any device which is writing data to the bus and signaling that its 
data on the bus is valid. Both masters and slaves can be talkers. Referring to 
Fig. 3-3, the master, device 1, will be the talker during the address cycle, since 
only the master can write addresses on the bus. However, if the slave, device 2, 
is addressed to write data to the bus during a data cycle, it will become the 
talker. The master also can be a talker during data write transfers. 

LISTENER ST ATE 
A listener is any device that is reading data from the bus and signals that the 
data has been accepted. Both masters and slaves can be listeners. Referring to 
Fig. 3-3, the slave, device 2, will be the listener during the address transfer from 
the master, device 1. When device 2 is addressed to write data to the bus, device 
2 becomes the listener. When the slave is writing data to the bus, the master is 
the listener. When the master is writing data to the bus, the slave is the listener. 

3.2.2 Bus Devices 

The Multichannel bus supports three classes of devices. Each device has a dif­
ferent function or responsibility on the bus. At a minimum the bus requires a 
supervisor type of device to control the bus and an additional device for the 
supervisory device to communicate with. 

BASIC TALKER-LISTENER 

A basic talker-listener device can write or read data to the bus but has no bus 
control capability. The basic devices in a system can be any combination of 
talker only, listener only, or talker and listener device. A basic device is a slave; 
therefore, its data flow is directed by a bus master. Basic talkers-listeners are 
addressed by a bus master, and the amount of data is controlled by a bus master. 
Typical basic devices are memory cards and simple I/O devices. Device 2 is 
the basic talker-listener for the implementation of the bus shown in Fig. 3-3. 
Device 2 must wait for its address from the master, device 1, and must be told 
whether to read or write data. In this example device 2 has no bus control capa­
bility; therefore, it will only receive the control signals. 

BUS CONTROLLER 

A bus controller, like the basic talker-listener, can read and write data to the 
Multichannel bus and is also capable of controlling the transfer signals and pro­
gramming other devices on the bus. The bus controller appears as a slave on the 
bus until it is directed by the bus supervisor to assume mastership of the bus. 
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Normally, a bus controller is used in a system in which the supervisor cannot 
keep up with the data transfer rate or the system performance dictates that data 
be moved only once. Typical bus controllers are disk systems and high-speed 
I/O devices. Device 3 in Fig. 3-3 is the bus controller. When programmed by 
the supervisory device, device 3 appears as a slave on the bus; in this example, 
it is instructed to perform a transfer with the basic talker-listener device 2. 
When instructed, it leaves its slave status and assumes mastership of the bus. 
The transfer is then between devices 2 and 3. 

BUS SUPERVISOR 

A bus supervisor has all the properties of the bus controller and basic talker­
listener. In addition, it has ultimate control of all data movement over the bus. 
A supervisor is always the bus master unless it passes control to a bus controller. 
On the Multichannel bus the supervisor is responsible for scheduling all data 
transfers, resolving and granting bus priority, monitoring bus status, and han­
dling all bus interrupts. In a given Multichannel bus system there can be only 
one supervisor. In Fig. 3-3 the bus supervisor is device 1. In this example device 
1 has control of all transfers on the bus. If device 1 requires the bus controller, 
device 3, to take mastership of the bus, the exchange will be under the control 
of device 1. Device 1 may regain bus control at any time. 

At a minimum level a system would contain a supervisor, which would be 
the system master, and a basic talker-listener, which would be the system slave. 
In Fig. 3-3 the minimum system would contain the supervisor, device 1, and 
the basic talker-listener, device 2, which is a slave. 

3.3 BUS SIGNAL DEFINITIONS 

This section deals with the signals that make up the bus structure and how they 
are used in various bus operations. 

The Multichannel bus is composed of 60 signal lines that can be broken into 
five classes: addresses and data, control, interrupt, data integrity, and reset. The 
bus does not support any power lines. Power for the devices must be supplied 
at the device location. There are 22 ground lines, which are used for signal 
return, and 8 lines that are reserved for future expansion. 

3.3. 1 Address-Data 

The address-data (AD) group (ADO* to AD15*) consists of 16 bidirectional lines 
on which all address and data transfers take place. A 16-bit transfer uses all 16 
lines; an 8-bit transfer uses only ADO* to AD7*. Since the bus is block-oriented, 
the address information is sent once for every block of data. A block of data is 
defined as a minimum of 1 byte to a maximum of 16M bytes. In most appli-

. cations data length will be greater than 1 byte. Block data provides an increase 
in peformance by not wasting bus bandwidth with address information on each 
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transfer. The multiplexed lines allow effective sharing of the same lines for 
address and data. This simplifies the driver, receiver, and termination of each 
device and reduces the width of the interconnecting cable. The control line 
A/D determines whether the information on the address-data lines is address 
or data. 

3.3.2 Control 
The control group is composed of five signals. Two signals, data ready (DRDY*) 
and data accept (DACC*), are data transfer handshake signals. One signal, 
address accept (AACC), is an address transfer handshake signal. Two signals, 
read-write (R/W) and address-data mode (A/D), are transfer control signals. 
The last of this group, supervisor active (SA *), is a bus control signal. In the 
following section these signals will be described and how they work with the 
bus will be explained. 

ADDRESS DATA 
The A/D line is driven by the current bus master to inform the slave devices 
whether the information on the AD lines is address or data. This line is moni­
tored by each slave so it can actively monitor the bus for its address. When the 
A/D line is high, address information is placed on the bus by the master. When 
the A/D line goes low, this informs the addressed (active) slave that the infor­
mation sent is data. When the bus is in data mode, the active slave continues to 
talk or listen until the A/D line goes back into the address mode. The inactive 
devices also must continue to monitor this line during data cycles so they can 
be ready for the next address cycle. 

READ-WRITE 
The read-write (R/W) line is driven by the current bus master to inform the 
slave devices the direction in which the data is flowing. The direction is always 
referenced to the bus master. When the R/W line is high, the master reads data 
from the bus as a listener and the active slave writes data as a talker. Conversely, 
when the R/W line is low, the master writes data to the bus as a talker and the 
active slave reads data as a listener. During address cycles the master places the 
R/W line low to inform the slaves that it is writing an address to the bus. 

DATA READY 
Data ready (DRDY*) is an active-low line driven by the current talking device 
that informs the listening device that data is valid on the AD lines. The data on 
the bus can be address or data, which is determined by the state of the 
A/D control line. It is important to note that DRDY * is used to signal that 
address or data is valid. Only masters drive DRDY* during address cycles, 
whereas any talking device drives DRDY* during data cycles. The DRDY* 
signal must remain active until an accept signal is received from the listening 
device. 
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ADDRESS ACCEPT 
Address accept (AACC) is an active-high line driven by all slaves on the bus to 
inform the bus master that the address information is accepted. The AACC 
signal is sent by all slaves connected to the bus in response to a DRDY* when 
the bus is in the address mode. AACC is open collector, which allows all slaves 
to actively drive this line. This allows slaves of varying speeds and distances 
from the master to accept and assimilate the address information correctly. The 
disadvantage is that the address information will be accepted at the rate deter­
mined by the slowest device on the bus. This signal goes active only after the 
slowest device has accepted the address data. 

Figure 3-4 shows an example of a Multichannel bus address cycle. 

1. The master places the A/D and R/W control lines in the state signifying an 
address write cycle (A/D = high, R/W = low). 

2. The master then places valid address information on ADO* to AD15*. 

ADO*-ADlS* ADDRESS INFORMATION 

AID 

CD® 

R/W 

DRDY* CD 

AACC 

FIGURE 3-4 Multichannel bus address cycle. 
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3. Once this data has been allowed to propagate, the master drives DRDY* 
active. 

4. The slave responds after receiving and decoding the information by driving 
AACC active. 

5. The master continues to hold the DRDY* signal active and the address infor­
mation valid until it receives the AACC signal. At that time it removes the 
DRDY* signal. 

6. The slave, upon receiving DRDY* inactive, removes the AACC signal. 

In Fig. 3-3, there are two slaves which will be driving the AACC signal. For 
this example assume that device 2 is faster in response than device 3; in this 
case device 2 drives the AACC signal first. Since the AACC is an open collector 
device, the line remains inactive until device 3 has accepted and decoded the 
information. This ensures that the address information remains valid for 
device 3. 

DATA ACCEPT 

Data accept (DACC*) is an active-low signal driven by the active listening 
device informing the talking device that it has accepted data. The DACC* sig­
nal is sent by the listening device in response to a DRDY * when the bus is in 
the data mode. Only an active listening device may drive DACC*. The action 
of DACC* is similar to that of AACC. The difference is that AACC is used in 
address transfers and DACC is used in data transfers. 

Figure 3-5 shows an example of a Multichannel bus data cycle. 

1. The bus is placed in the data mode by the master driving the A/D line low. 
The data flow, as determined by the R/W line, also is set by the master. 

2. The talking device places data on ADO* to AD15*. 

3. After meeting the data setup time, the talking device drives DRDY* active. 

4. After the listening device receives DRDY* active and reads the data, it 
drives DACC* active. 

5. The data and DRDY * remain valid until the talking device receives the 
DACC* signal. At that time it removes the DRDY* signal. 

6. After the listening device receives DRDY* inactive, it removes the DACC* 
signal. 

SUPERVISOR ACTIVE 

Supervisor active (SA*) is an active-low signal driven by the supervisor inform­
ing all devices when it has control of the bus. The signal relations for SA * are 
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FIGURE 3-5 Multichannel bus data cycle. 

shown in Fig. 3-6. A bus controller, which is programmed to be a master, must 
monitor this signal to know when it may take control of the bus. Once it has 
assumed bus mastership, it must continue to monitor this signal while it is per­
forming a bus transaction. Under normal conditions a supervisor will allow a 
bus controller master to finish its transaction before regaining control of the bus. 
If an error occurs or a higher-priority transfer needs to take place, the supervisor 
can assert SA * prior to the transfer completion to take control of the bus. Once 
SA* has been asserted, the bus controller must turn off its bus drivers within a 
specified amount of time. 

In Fig. 3-3, device 1, the bus supervisor, has programmed device 3 to take 
over the bus. Device 3 must monitor the SA * line to ensure the supervisor is no 
longer on the bus. If device 1 wants to regain the bus, it may assert the SA* 
line. It is the responsibility of device 3 to remove itself from the bus. 

3.3.3 Bus Interrupt Lines 

The Multichannel bus supports two bus interrupts: supervisor take over (STO*) 
and service request (SRQ*). Both lines areJeceived exclusively by the supervisor 
and are driven by bus controllers and basic devices. 
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SUPERVISOR TAKE OVER 

Supervisor take over (STO*) is an active-low signal driven by basic devices and 
bus controllers to inform the supervisor of two possible conditions: task comple­
tion and bus error. A bus controller which has mastership of the bus uses STO* 
to inform the supervisor that it has completed its current task. The STO* signal 
is also used whenever a bus error occurs. A bus error is defined as a device 
hardware failure (memory, disk, etc.) or a bus parity error. A device that has 
either of these failures asserts the STO* signal. On receipt of the STO* the 
supervisor will, at some time, poll and service the requesting device(s) on the 
bus until the STO* signal has been removed. Only the bus supervisor may act 
upon an STO*. 

SERVICE REQUEST 

Service request (SRQ*) is an active-low signal driven by a basic device or bus 
controller to inform the supervisor that it needs service. A supervisor may pro­
gram a device to perform a task off line (e.g., a seek on a disk). The device will 
signal the supervisor that it is ready by asserting the SRQ* line. The service 
request should be used whenever service is required by a device. One desig­
nated use for the SRQ* line is a power-up configuration signal to the bus super-
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FIGURE 3-6 Signal relations for SA*. 
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visor. The use of this signal is covered in Sec. 3-5, "Programming Information." 
The supervisor has the option to mask this signal until it is ready to accept the 
signal. As with the STO* signal, the supervisor polls and services the requesting 
device(s) on the bus until the SRQ* signal has been removed. 

3.3.4 Parity 

The parity signal (PB*) is used to qualify the data integrity of the transfer and 
should be sampled by the listening device when DRDY* goes active. Parity is 
an active-low signal defined as follows: 

1. When an odd number of AD lines are high during an address or data trans­
fer, the parity line will be active (low). 

2. When an even number of AD lines are high during an address or data trans­
fer, the parity line will be inactive (high). 

The parity signal is generated by the master for all addresses and by the 
talking device for all data transfers over the bus. When a listener detects a parity 
error, it must assert the STO* signal to the supervisor. The only exception to 
this rule occurs when the listener is the supervisor, in which case it will already 
be informed of the error. 

The Multichannel bus allows certain subsets to the parity mode. The first 
subset is a no-parity mode. If the no-parity mode is selected, slaves must not 
sample parity during address transfers and listeners must not sample parity dur­
ing data transfers. When a parity mode is selected, masters must generate parity 
during address transfers and talkers must generate parity during data tr~sfers. 
Another subset is for 8-bit devices. When they are used in an 8-bit-only system, 
only 8-bit parity needs to be sent and received. If, however, 8- and 16-bit 
devices are on the same bus, the 8-bit slave must check 16-bit parity for address 
transfers. The 8-bit slave is only required to send and receive 8-bit parity for 
data transfers. 

3.3.5 Reset* 

The Multichannel bus supports a Reset* signal to bring the bus to a known state. 
The supervisor is the only device that drives Reset*, but all other devices con­
nected to the bus receive it. After power-up, the supervisor will hold this signal 
low for a minimum of 5 ms. This will guarantee that all devices are in a known 
state and ready for the supervisor's commands. If the supervisor needs to regain 
control of the bus rapidly during a transfer cycle, it may choose to assert Reset* 
on the bus. This action will immediately stop any transaction on the bus. Cur­
rent transfer and bus status data are lost when Reset* is used in this manner. 
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3.4 BUS TRANSFER OPERATIONS 

Now that the signal lines have been defined, a functional description of each 
Multichannel operation is possible. The Multichannel bus supports four basic 
cyles: address, data, interrupt, and bus exchange. All four cycles use the basic 
transfer techniques shown in Figs. 3-4 and 3-5 and will be described in the 
following sections. 

3.4.1 Address Cycle 

The address cycle allows a master to activate the slave that has the resource that 
the master requires. There must always be an address cycle before a data cycle 
can start. There are two forms of addressing: the select and the deselect cycles. 
The select cycle tells a slave the 24-bit starting address of the data transfer, the 
direction of the data transfer, and the type of data transfer. The deselect cycle 
informs the selected slave that the data transfer cycle is completed. All addresses 
are transferred in two bus cycles in that two words are transferred for 16-bit 
devices and two bytes are transferred for 8-bit devices. 

Figure 3-7 shows the signal relations for one complete address cycle. 
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FIGURE 3-7 Signal relations for one address cycle. 
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1. The master places the A/D line high (address mode) and the R/W line low 
(write mode). 

2. The master then places the first part of the address on ADO* to AD15*. 

3. After the address is valid, the master drives DRDY* active. 

4. After all the slaves accept the address, AACC goes active. 

5. When the master receives AACC active, it knows that all slaves have read 
the address; therefore, the master removes DRDY*. 

6. When the slaves receive DRDY* inactive, they remove AACC. 

The second bus cycle of the address cycle occurs in the same manner as the 
first cycle. An address cycle is completed only after both transfers have been 
completed. During address cycles all slaves accept the address and drive AACC. 
Only after the slowest device on the bus drives AACC will the master see the 
signal active. This ensures proper synchronization for slow and fast devices on 
the bus. 

The format of the address (Fig. 3-8) supports both 8- and 16-bit devices. In 
Fig. 3-8, the address (bits 16 to 23) = most significant byte of 24-bit memory 
or register address; device number = a number from 0 to 15; RES = reserved 
bit; M/R = memory-register address bit; R/W = read-write bit; address (bits 
8 to 15) = middle byte of 24-bit memory or register address; and address (bits 
o to 7) = last significant byte of 24-bit memory or register address. The first 
word is composed of the high-order starting address bits (16 to 23), the device 
number, the memory-register (M/R) bit, and the R/W bit. The device number 
is the physical number that selects the slave; it is composed of 4 bits, allowing 
a range of device numbers between 0 and 15. Device number 15 is a special 
case and will be discussed in connection with the deselect cycle. The M/R bit 
informs the slave whether the data transfer operation will be for memory or 
I/O. When this bit is low, the transfer will be for memory; when it is high, the 
transfer will be for I/O. The R/W bit provides early status information on the 
direction of the data flow. A slave can decode it for advanced information on 

WORD 1 

ADDRESS (BITS 16-23)t DEVICE NUMBER RES RES M/R R/W 

15 8 4 3 o 

WORD 2 

I ADDRESS (BITS 8-15)t ADDRESS (BITS 0-7) 

15 8 0 

FIGURE 3-8 Address format. (Note: Bits marked t are undefined when 8-bit addressing 
is used.) 
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the direction of the data flow when the bus is placed into the data mode. When 
it is low, the data flow will be to the slave; when it is high, the data flow will be 
from the slave. The high-order address bits 16 to 23, in conjunction with word 
2 address bits 0 to 15, give a 24-bit starting address. 

Eight-bit devices can support either word or byte address cycles. If the 
device supports only byte address cycles, the starting address can only be in the 
range of 0 to 255 (bits 0 to 7) for both memory and I/O. An 8-bit device can 
support word address cycles if it requires a larger resource space while only 
supporting byte data transfers. In a system that supports both 8- and 16-bit 
devices, the 8-bit slave must check 16 bits of parity during an address cycle 
whether or not it supports the word address cycle. 

The deselect address cycle operation follows the same sequence as the select 
cycle. The difference between the two is in the makeup of the address words. 
In the deselect cycle the device number is 15 (bits 4 to 7 of word 1 high). All 
other bits of the address words are zero. The deselect cycle informs all 'slaves 
that the transfer is completed. This allows inactive slaves to synchronize for the 
next select cycle. 

3.4.2 Data Cycles 

Data cycles are the transfer cycles in which data is passed between the master 
and the slave. The basic handshake transfer sequence is similar to that of address 
cycles. Data cycles differ from address cycles in that a data cycle can be com­
posed of I-byte to 16M-byte transfer cycles. The number of transfer cycles is 
determined by the master. Another difference between data and address cycles 
is that only the active slave is responding to the master during data cycles. 

In Fig. 3-9 the bus is shown in write mode in that the master (talker) is 
writing data to the slave (listener). 

1. The master drives the R/W line low (write mode) and the A/D line low 
(data mode). 

2. After the bus control lines have been set, the master places the data on ADO* 
to AD15*. 

3. Once the specified data setup time has been met, the master drives DRDY* 
active to inform the slave that data is valid on the bus. 

4. After the slave receives DRDY * active and has read the data, the slave drives 
DACC* active to inform the master that it has accepted the data. 

5. The master, upon receiving DACC* active, removes DRDY* and the data 
on ADO* to ADI5*. 

6. The slave, upon receiving DRDY* inactive, removes DACC*. 
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The cycle continues until the master places the bus in address mode (AID 
high). The slave, upon receiving the address mode signal, stops its cycle and 
waits for instructions from the master. 

Figure 3-10 shows a bus read sequence in that the master is reading data 
from the slave. This transfer sequence is similar to the bus write sequence 
except that now the slave is the talker and is writing data to the master, which 
is now the listener. 

1. After the master has completed the address cycle, it places the R/W line 
high (read mode) and the AID line low (data mode). 

2. The slave, upon receiving the AID line in data mode, places the data on 
ADO* to AD15*. 

3. Once the data has met the specified setup time, the slave drives DRDY* 
active to inform the master that data on the bus is valid. 

4. The master, upon receiving DRDY*, reads the data and drives DACC* to 
inform the slave that data has been accepted. 

5. The slave, upon receiving DACC*, removes DRDY* and the data. 

6. The master, upon receiving DRDY* inactive, removes DACC*. 
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The cycle continues until the master places the bus in address mode (AID 
high). The slave, upon receiving the address mode signal, stops its cycle and 
waits for instructions from the master. 

Once the bus is in data mode, the transfer sequence between the master and 
the slave is the same. The only difference between read and write mode is the 
direction of the data flow. While in data mode, all talking devices (master or 
slave) place data on the bus and drive DRDY*. In a similar manner, all listening 
devices (master or slave) read data from the bus and drive DACC*. The master 
has the responsibility for monitoring the number of cycles, and the slave has the 
responsibility for monitoring the AID line for end of transfer. 

The 8-bit data transfers are similar to the I6-bit data transfers except that 
the data is placed on ADO* to AD7* only. It is always the responsibility of the 
master to match the data width of the slave with which it is transferring data. 
If a I6-bit master wants to transfer data with a 8-bit slave, it must send and 
receive the data on ADO* to AD7* only. Also, the master must generate and 
check parity only for those lines. The 8-bit slave is required to generate or check 
parity only for ADO* to AD7 * in the data mode. 

3.4.3 Transfer Cycle 

The basic transfer cycle is used for data transfers, bus control exchange, and 
interrupt handling. The transfer cycle is composed of a select address cycle, a 
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FIGURE 3-11 Complete bus transfer cycle. 

data cycle of 1 byte to 16M bytes, and a deselect address cycle. Figure 3-11 
shows the timing relations for one complete transfer cycle. During the select 
address cycle the master places the bus in the address write mode (AID = high, 
R/W = low) and places the address information on the bus. After both address 
words have been accepted, the master places the bus in data mode (AID = 
low). Depending on the data flow direction, the master will set the bus in either 
read or write mode. When all data has been transferred, the master will place 
the bus back in the address write mode. The slave, upon receiving the address 
mode signal, stops all current bus activity. The master completes the transfer 
cycle by performing the deselect address sequence. 

3.4.4 Control Arbitration and Exchange 

Bus control exchanging allows a supervisor to pass the bus mastership to a bus 
controller. Passing the control normally occurs when the supervisor cannot meet 
the data transfer requirements or when system performance requirements dic­
tate that the data be moved directly to another Multichannel device without 
going through the supervisor. In the latter case the bus controller can access 
buffer memory directly and not have to move the data twice (controller to 
supervisor, supervisor to buffer). Control arbitration is handled by the supervisor 
via a system-dictated priority scheme. When a device requires service or the 
bus, the supervisor will grant the bus on the basis of the device's priority. This 
centralized method of arbitration is simple to understand and implement. Its 
drawback is that it is slower and less efficient than the distributed arbitration 
method used on the Multibus system bus. Since the Multichannel bus is pri-
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marily a data movement bus, and secondarily a multimaster bus, the centralized 
control was chosen. 

Control exchange is handled by the SA * line and is demonstrated in Fig. 3-
12. Whenever the supervisor is on the bus, it will drive SA* active. A supervisor 
that wishes to release the bus will program the bus controller with the required 
information. The bus controller must monitor the SA* line to detect when the 
supervisor is off the bus. Once the supervisor is off the bus, the bus controller 
can drive the AID and R/W lines. The controller can now transfer with other 
slaves on the bus. It is the responsibility of the controller to continue to monitor 
the SA* line. Under normal circumstances the controller will complete its trans­
fer cycle and inform the supervisor by driving the STO* signal active. If, how­
ever, the supervisor requires the bus prior to the transfer completion, it will 
drive SA* active. Upon receiving the SA* signal, the controller must relinquish 
the bus. 

3.4.5 Interrupt Handling 

STO* and SRQ* are the Multichannel bus interrupts used for signaling the bus 
supervisor. These signals have similar timing but their use in the system is dif­
ferent. Figure 3-13 shows the timing relations for STO* and SRQ*. A device 
that requires the. attention of the bus supervisor drives either STO* or SRQ* 
active. Upon receiving the interrupt signal, the supervisor performs a deselect 
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address cycle and begins polling the devices on the bus. When a supervisor polls, 
it selects each device and reads the device's appropriate interrupt register. The 
value in the register informs the supervisor if the device interrupted and the 
reason for the interrupt. Section 3.5 has detailed information on Multichannel 
registers and their programming. After reading the interrupt register, the super­
visor deselects the device and performs some action if the device it polled gen­
erated the interrupt. The supervisor continues to poll the remaining devices 
until the interrupt signal has been removed from the bus. Polling priority and 
the supervisor's interrupt latency are dependent on system requirements and 
supervisor programming. 

3.5 PROGRAMMING INFORMATION 

The Multichannel bus contains 16M bytes of register space. The first 16 register 
locations (0 to 15) have been defined for Multichannel bus system usage. The 
remaining registers are available for user definition. In this section bus register 
programming, register use in deyice polling, bus exchanges, and interrupt han­
dling are described. 

3.5. 1 Register Addressing 

Multichanel register addressing is similar to Multichannel memory addressing. 
Referring back to Fig. 3-8, the format of the Multichannel register address is 
equivalent to a memory address except that MjR bit (bit 1 of word 1) is high, 
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which indicates that the remaining 24 bits of the address cycle are a register 
address. A register transfer cycle follows the same flow as a transfer cycle men­
tioned in Sec. 3.3. Registers can be 8- or 16-bit. A 16-bit device normally has 
16-bit registers, and an 8-bit device has 8-bit registers. 

3.5.2 Multichannel Register Definition 

To allow for system uniformity, Multichannel registers 0 to 15 are designated 
for system use. The system registers can be 8- or 16-bit. It is up to the program­
ming device to know the register size. As a rule 8-bit devices do not have the 
functionality or flexibility of their 16-bit counterparts. The Multichannel bus 
registers are listed in Table 3-1. Their definitions and uses are detailed below. 

STO STATUS REGISTER 

The STO register is supported by all bus controllers and basic devices, and its 
value indicates the status of the STO* signal. The STO* signal indicates to the 
supervisor that a device requires assistance, and the STO register provides fur­
ther definition. When a device asserts STO*, it places a nonzero value in its 
STO register. All other devices maintain zero values in this register space. When 
the supervisor reads the register on each device, it can ascertain that the device 
asserted STO* by a nonzero value in the register. There are two main categories 
for the STO register value: device error (bit 7 = high) and bus controller status 
(bit 7 = low). The value that can be placed in a device register may be further 
expanded by the user for device-specific error reporting and status reporting. 

TABLE 3·1 Multichannel Bus Registers 

Register number Definition Mode Width 

0 STO, flag, status Read only 8 bit 
SRQ, flag, status Read only 8 bit 

2 SRQ, mask Write only 8 bit 
3 Device command Write only 8 bit 
4 Device parameter Write only 8 or 16 bit 
5 Data address 1 Read or write 8 or 16 bit 
6 Data address 2 Read or write 8 or 16 bit 
7 Block length 1 Read or write 8 or 16 bit 
8 Block length 2 Read or write 8 or 16 bit 
9 Error address 1 Read only 8 or 16 bit 

10 Error address 2 Read only 8 or 16 bit 
11 Address extension Write only 8 or 16 bit 
12-15 Reserved 
16-16M bytes User defined Read or write 8 or 16 bit 
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SRQ STATUS REGISTER 

The SRQ register is supported by all bus controllers and basic devices and its 
value indicates the status of the SRQ* signal. The SRQ* signal indicates to the 
supervisor that a device requires service, and the SRQ register further defines 
the type of service a device requires. When a device asserts SRQ*, it will place 
a nonzero value in its SRQ register. All other devices maintain zero values in 
this register space. When the supervisor reads the register on each device, it can 
ascertain that the device asserted the SRQ* signal by a nonzero value in the 
register and act upon the information provided. The Multichannel bus defines 
certain values for system use; it is described in Fig. 9-5. 

The bus defines a power-up autoconfiguration in which the SRQ* signal and 
register are used. When a device is turned on, it can assert its SRQ* signal. 
Referring to Fig. 9-5, when bit 7 of the SRQ register value is high, the super­
visor is informed that the register contains configuration information. Bits 0 
and 1 further define the type of device; bit 2 defines the width of the device; 
and bit 3 determines whether the register contains power-up or power-down 
information. If bit 3 is high, the device is in power-up mode, if it is low, the 
device is informing the supervisor that it will be going off line. Bits 4 to 6 are 
always O. 

When bit 7 is low, the SRQ register contains information other than power­
up configuration. The value that can be placed in the SRQ register may be 
futher expanded by the user for specific device requirements when bit 7 is 
low. 

SRQ MASK REGISTER 

The SRQ mask register is supported by all bus controllers and basic devices; it 
allows a supervisor to disable the SRQ* signal at the source device. Masking at 
the device allows a supervisor to set device priority in having an SRQ* service. 
In a system a supervisor may also elect to mask the SRQ* signal at its level and 
disallow any SRQ* signal from being received. Masking at the supervisor is 
normally performed during crucial transfer periods. To mask the SRQ* signal 
at a device, the supervisor writes a 1 to the device's SRQ mask register. To 
unmask the SRQ* signal, the supervisor writes a 0 to the SRQ mask register. 

DEVICE COMMAND REGISTER 
The device command register allows a supervisor to pass device specific com­
mands to a bus controller. The value written is user-definable and may be cho­
sen to meet system requirements. One example of device command register use 
is a bus takeover command. The supervisor can tell the bus controller that its 
registers are set and that it can take over the bus once the supervisor is off the 
bus. Another example is a command to an intelligent disk controller to perform 
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an off-line buffered sector read and to signal the supervisor via the SRQ* line 
when the task has been completed. 

DEVICE PARAMETER REGISTER 

The device parameter register is used by the supervisor to pass the device num­
ber, data direction, and transfer type information to a bus controller prior to a 
bus takeover by the controller. The format of this register is equivalent to the 
first byte of the first word in the address cycle (see Fig. 3-8). 

DA T A ADDRESS REGISTERS 

The data address register pair informs a bus controller of the starting address 
of the block transfer. This register pair is normally programmed by the super­
visor prior to a bus takeover by the controller. The data address is composed of 
two 16-bit registers if on a 16-bit device yielding 32 bits of real address. For 8-
bit devices the data address is composed of two 8-bit registers yielding 16 bits 
of real address. Data address register 1 is the most significant. 

BLOCK LENGTH REGISTERS 

The block length register pair informs a bus controller of the data transfer block 
size. This register pair is normally programmed by the supervisor prior to a bus 
takeover by the controller. The block length is composed of two 16-bit registers 
if on a 16-bit device yielding a maximum 32-bit block size. For 8-bit devices 
the block length is composed of two 8-bit registers yielding a maximum 16-bit 
block size. Block length register 1 is most significant. 

ERROR ADDRESS REGISTERS 

The error address register pair is read by a supervisor for the location of an 
error on a device. When a device generates an STO* due to an error, it will 
load these registers with the error address value. After the supervisor reads the 
STO status register, it may read the error register depending on the status reg­
ister value. The error address is composed of two 16-bit registers if on a 16-bit 
device yielding a maximum 32-bit real error address. For 8-bit devices the error 
address is composed of two 8-bit registers yielding a maximum 16-bit error 
address. Error address register 1 is most significant. 

3.5.3 Device Polling 

Device polling is the method used by the supervisor to query the devices for 
interrupt origin. SRQ* and STO* are the two interrupts which can cause a 
device poll. A poll of the device occurs when the supervisor reads the SRQ status 
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register or STO status register of the device. The timing relations shown in Fig. 
3-13 are for one device. Figure 3-14 is the flow diagram of a complete bus poll. 
After the supervisor receives an interrupt (SRQ* or STO*), it will complete the 
current bus cycle and deselect the active device. The supervisor will then 
address and read the interrupt register of the highest-priority device. After the 
status register has been read by the supervisor, the device has the responsibility 
for removing the interrupt signal and setting its status register to zero. If the 
status is nonzero, the supervisor will perform some action with that device. After 
the action has been completed, the supervisor will test to find out whether the 
interrupt has been removed. If the interrupt has been removed, the poll is com­
pleted. Otherwise, the supervisor addresses and reads the interrupt status reg­
ister of the next-lower-priority device. In a similar fashion, if a zero value is 
read and the interrupt signal is still active, the supervisor moves on to the next­
lower-priority device. This cycle continues until the interrupt signal has been 
removed. A bus error occurs when the supervisor receives an interrupt but can- . 
not locate the source with a poll. The handling of this class of error is system­
dependent. 

3.5.4 Bus Exchange Programming 

Bus exchange programming occurs when the supervisor loads the bus control­
ler's system registers for an exchange of bus mastership to the bus controller. 
The supervisor will load the block length registers, data address registers, device 
parameter register, and the device command register. When the device com­
mand register is loaded, this action informs the bus controller that all registers 
are loaded and the supervisor is ready to get off the bus. At this point the bus 
controller will monitor the SA* line for bus availability as shown in Fig. 3-12. 
A bus controller may be preprogrammed with the data address information, 
block length information, and the device parameter information. Therefore, 
loading of these registers may not be required. At a minimum level the device 
command register must be supported by the controller and loaded by the super­
visor to allow for proper system synchronization. 

After the controller has the bus, it will take the information (preprogrammed 
or loaded) and perform a transfer cycle with the directed device. On comple­
tion of the transfer, the controller will signal the supervisor via the STO* line. 
The value placed in the STO status register by the controller will indicate to the 
supervisor that the task has been completed and the bus has been released. 

3.6 ELECTRICAL SPECIFICATION 

In this section all the timing and loading and drive characteristics of the Mul­
tichannel bus are described. 
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3.6.1 Logical State and Electrical Level Relations 

The signal names indicate if the signals are active-high or active-low. If the 
signal name ends with an asterisk, the signal is active-low and has the following 
logical state and electrical level relations in which L = low and H = high: 

Logical state Electrical level At receiver At driver 

o H = TTL high 5.25 V ;;::: H ;;::: 2.0 V 5.25 V ;;::: H ;;::: 2.4 V 
L = TTL low 0.8 V ;;::: L ;;::: -0.5 V 0.5 V ;;::: L ;;::: 0 V 

If the signal name has no asterisk, the signal is active-high and has the fol­
lowing logical state and electrical level relations: 

Logical state Electrical level At receiver At driver 

o L = TTL low 0.8 V;;::: L;;::: -0.5V 0.5 V;;::: L ;;::: 0 V 

H = TTL high 5.25 V ;;::: H ;;::: 2.0 V 5.25 V ;;::: H ;;::: 2.4 V 

These specifications are based on TTL when the power source is 5 V ± 5 per­
cent as referenced to logic GND. 

3.6.2 Signal Line Characteristics 

The Multichannel bus transmission medium is twisted pair flat ribbon cable 
which has a maximum length of 50 ft (15 m). The timing parameter tv is the 
signal propagation delay per foot of flat cable. This parameter can affect the 
maximum transfer rate expected on the bus because of the distance between 
devices, and 

tv max = 2 ns/ft (6.5 ns/m) 

Therefore, 50 ft (15 m) of cable will cause a signal delay of 100 ns and one data 
transfer cycle will require a minimum of 200 ns to complete the handshake 
operation. 

Each class of signals has a particular waveshape associated with its driver­
receiver characteristics. Figure 3-15 provides the signal summary for the AD, 
control, and support lines of the Multichannel bus. 

The AD lines (ADO* to ADI5*) can be at one of three levels depending on 
the state of the Multichannel device. When a device is driving the AD lines 
high, the signals are at levell. When the bus is tri-stated with no device driving 
the AD lines, the signals are at level 2. When a device drives the address lines 
low, the signals are at level 3. 
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The signal line address accept (AACC) is an open collector driver with the 
typical waveform shown in Fig. 3-15. The actual pulse width for a given imple­
mentation will vary with the voltage level at which a master sees AACC active 
and the master's AACC active-to-DRDY* inactive time (t6)' Figure 3-15 shows 
the typical time to a TTL input threshold and the maximum voltage the signal 
can obtain. 

The remaining open collector signal lines (DACC*, SRQ*, STO*, RESET* 
and SA*) have the typical waveforms given in Fig. 3-15. The signals have a 
maximum high level of 3.5 V and a minimum low level of 0.0 V. The maximum 
overshoot when the signal goes from a high to a low level is 0.5 V. 

The differential lines (DRDY*, R/W, A/D, PARITY) have the inverting and 
non inverting signal waveforms shown in Fig. 3-15. The resultant signal is the 
difference between the two signal levels. The separation between the two signals 
should be no less than 1.8 V. When the drivers are off (level 2), the signal sep­
aration guarantees the level of the resultant control signal. When the nonin­
verting signal is at levell, the inverting signal is at level 3. Conversely, when 
the noninverting signal is at level 3, the inverting signal is at level 1. 

3.6.3 Bus Power Specification 

The Multichannel bus does not supply any power lines; therefore, every device 
that connects to the bus must supply its own power. The bus does supply 22 
signal return grounds for all devices to use. 

3.6.4 Environment 

All bus specifications must be met while the environment is within the following 
limits: 

Temperature 0 to 55°C (32° to 131°F); free moving air across the modules 
(200 LFM is recommended) 

Humidity 

Shock 

Vibration 

90% max relative (noncondensing) 

30g of force 11 ms in duration three times in three planes 

Sweeping from 10 to 55 Hz and back to 10 Hz at a distance 
of 0.01 in (0.25 mm) peak to peak lasting 3 min in each of 
three planes 

3.6.5 Bus Timing 

All the timing specifications of the Multichannel bus are described in this sec­
tion; they are summarized in Table 3-2. Timing diagrams have been included 
to show the signal timing relations. 



TABLE 3·2 Multichannel Bus Timing Specifications 

Timing 
Ref Parameter description min max Source Note 

tl AID line setup to leading edge of 60 T 
DRDY. 

t2 AID line hold after leading edge of 40 T 
AACC or DACC. 

t3 Data mode (A/Dlow) and R/W 60 M 
setup to leading edge of DRDY. 

t4 A/5 hold after trailing edge of so M 
DRDY. 

ts Leading edge of DRDY. to leading 0 L 2 
edge of AACC or DACC. 

t6 Leading edge of AACC or DACC. 0 T 2 
to trailing edge of DRDY. 

t7 Trailing edge of DRDY. to trailing 0 L 2 
edge of DACC. 

ts Trailing edge of DRDY. to trailing 0 7S L 2 
edge of AACC 

t9 Address mode (AID high) to 200 M 
leading edge of DRDY. 

tlO ADlS.-ADO., DRDY. in high-
impedance state to A/5 low 

0 M 3 

tll AID high to ADlS.-ADO., ISO M 3 
DRDY. out of high-impedance 
state 

tl2 Trailing edge of DRDY. to leading 
edge of DRDY. (AID high) 

2S0 M 

t l3 ADlS.-ADO., DRDY. in high- 0 SU 
impedance state to SA. high 

tl4 Trailing edge of DRDY. to leading 
edge of DRDY. (AID low) 

100 T 

tIS SA. low to ADlS.-ADO., DRDY. 17S SU 
out of high-impedance state 

t l6 Leading edge of DRDY. to leading 0 L 4 
edge of STO. 

tl7 Leading edge of AACC or DACC. 0 L 4 
to leading edge of STO. 

tIS Address mode (AID high) to 0 SL S 
trailing edge of STO. or SRQ. 

t19 Trailing edge of STO. or SRQ. to 0 SL S 
trailing edge of DRDY. 

t 20 Reset pulse width RP SU 6 
t21 AID high to ADlS.-ADO., 7S SL 3 

DRDY. in high-impedance state 

t22 AID low to ADlS.-ADO., 0 M 3 
DRDY. out of high-impedance 
state 

t23 SA. high to ADlS.-ADO., 0 SU 
DRDY. out of high-impedance state 

109 
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TABLE 3·2 Mulllchannel Bus Timing Speclflcatlons (Conllnued) 

Ref Parameter description 

SA* low to AD15*-ADO*, DRDY* 
in high-impedance state 

• All times listed are nanoseconds unless otherwise noted. 

Timing 
min max Source Note 

75 SU 

• All signals are shown as TTL-type waveforms. (For differential line pairs, the waveform 
applies to the TTL driver input or receiver output.) 

• T refers to the selected talker for a bus cycle. 
• L refers to the, or a, selected listener for a bus cycle. 
• M refers to the selected master for a bus cycle. 
• SL refers to the, or a, selected slave for a bus cycle. 
• SU refers to the system supervisor. 

1. This timing parameter applies only when there is a message mode transition from address to 
data mode or from data to address mode. When the mode does not change, the "address not 
data" line should be held at a constant level. 

2. The signals specify the basic bus cycle transfer handshake. Though speCified at 0 ns mini­
mum, there is a minimum propagation delay for each parameter relative to the cable length 
between the talker and the listener. This propagation delay is approximately 2 ns/ft. Because 
the handshake requires a three-step interlock, the minimum propagation delay is multiplied by 
3 to determine the total propagation delay. Thus a talker and listener with a short cable run 
between them would experience very little propagation delay. However, a talker and listener 
separated by the maximum length of Multichannel bus cable (50 ft) would experience a total 
propagation delay of at least 300 ns. 

3. These parameters apply in messages where the master is the listener for the data mode por­
tion of the message. 

4. These parameters apply when a parity error is detected by a listener during a bus cycle. All 
other assertions of the interrupt lines can be asynchronous to the bus operation. 

5. These parameters apply during the bus cycle when the STO or SRQ status register of the 
device asserting the interrupt line is read during an STO or SRQ poll. 

6. The minimum Reset pulse width is 5 ms. 

ADDRESS OPERA liON 

An address operation is generated by the bus master and received by the bus 
slaves. The lines involved and the timing relations are shown in Fig. 3-16. The 
master places address information on the bus a minimum of 60 ns (tl) prior to 
DRDY* active and sets the A/D line high (address) 200 ns (tg) and the R/W 
line low (write) a minimum of 60 ns (t3) prior to DRDY*. After the setup 
requirements have been met, the master drives DRDY * active. All slaves on the 
bus respond to the DRDY* by driving AACC active a minimum of 0 ns (t5) 

after receiving DRDY*. Upon receiving AACC active (all slaves have accepted 
the address), the master removes DRDY* a minimum of 0 ns (t6 ) and holds the 
address 40 ns (t2) after receiving AACC. The slaves then remove the AACC 
signal a minimum of 0 ns (ts) to a maximum of 75 ns (ts) from DRDY* inactive. 
The next address sent by the master must not occur until a minimum of 250 ns 
(t12). The address cycle time t12 and the AACC maximum inactive time ts 
ensure that the AACC line has settled before the next address is sent. 
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DATA READ OPERATION 

A data read operation transfers data from the slave to the bus master controlling 
the bus. The lines involved and the timing relations are shown in Fig. 3-17. 
Once the master has completed the address cycle, it guarantees that its AID 
driver is turned off a maximum of 0 ns (tlO) prior to setting the R/W line to 
read mode (R/W = high) and the AID line to data mode (AID = low). The 
selected slave, which is now the talker, may begin to drive the bus a minimum 
of 0 ns (t22) after the bus is placed in the read data mode. The slave places data 
information on the bus a minimum of 60 ns (t l ) prior to DRDY* active. After 
the setup requirements have been met, the slave drives DRDY* active. The 
master responds to the DRDY* by accepting the data and driving DACC* 
active a minimum of 0 ns (t5) after receiving DRDY*. Upon receiving DACC* 
active, the slave removes DRDY* a minimum of 0 ns (t6) and holds the data 40 
ns (t2) after receiving DACC*. The master then removes the DACC* signal a 
minimum of 0 ns (t7) from DRDY* inactive. The next data cycle can occur 
immediately after DACC* is removed. The minimum cycle time is 100 ns (t l4 ), 

which is the minimum setup and hold time for a data cycle (t l + t2). 
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FIGURE 3-16 Address cycle timing. (Note: For differential line paIrS, level denotes posi­
tive portion of differential pair.) 
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FIGURE 3-17 Data read cycle timing. (Note: For differential line pairs, level denotes pos­
itive portion of differential pair.) 

DATA WRITE OPERATION 

A data write operation transfers data from the bus master controlling the bus 
to the addressed slave. The lines involved and the timing relations are shown in 
Fig. 3-18. Once the master has completed the address cycle, it sets the R/W 
line to write mode (R/W = low) and the A/D line to data mode (A/D = low) 
a minimum of 60 ns (ts) before driving DRDY* active. The master, which is 
now the talker, places data information on the bus a minimum of 60 ns (t l ) 

prior to DRDY* active. After the setup requirements have been met, the master 
drives DRDY* active. The selected slave responds to the DRDY* by accepting 
the data and driving DACC* active a minimum of 0 ns (t5) after receiving 
DRDY*. Upon receiving DACC* active, the master removes DRDY* a mini­
mum of 0 ns (t6) and holds the data 40 ns (t2) after receiving DACC*. The 
selected slave then removes the DACC* signal a minimum of 0 ns (t7) from 
DRDY* inactive. The next data cycle can occur immediately after DACC* is 
removed. The minimum cycle time is 100 ns (t 14 ), which is the minimum setup 
and hold time for a data cycle (tl + t2)' 
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BUS EXCHANGE OPERATION 

The bus exchange operation occurs when the supervisor passes bus control over 
to a bus controller and again when it regains control. The lines involved and 
the timing relations are shown in Fig. 3-19. When ready to release the bus, the 
supervisor guarantees that its AID and control drivers are turned off a maxi­
mum of 0 ns (t I3) prior to releaSing SA*. The selected master may begin to drive 
the bus a minimum of 0 ns (t23) after receiving SA* inactive. When the super­
visor is ready to regain control of the bus, it will drive SA* active. The super­
visor must also guarantee that it will not drive the AID and control lines a 
minimum of 175 ns (t I5) after it drives SA* active. The selected master must be 
off the bus a maximum of 60 ns (tZ4 ) after receiving SA* active. 

INTERRUPT OPERATION 

Interrupt operations include both STO* and SRQ* timing. Since STO* is used 
to indicate bus errors as well as device status, additional timing constraints are 
placed on STO* for transfer error reporting. Figure 3-20 shows the timing rela-
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FIGURE 3-18 Data write cycle timing. (Note: For differential line pairs, level denotes pos­
itive portion of differential pair.) 
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FIGURE 3-19 Bus exchange timing. (Note: For differential line pairs, level denotes pos­
itive portion of differential pair.) 

tions for STO* as a transfer error signal. In the diagram the current data cycle 
is the cycle that error occurred in. The device that detects the transfer error 
asserts STO* a minimum of 0 ns (t I6) after receiving DRDY* active. AACC or 
DACC* is driven active a minimum of 0 ns (tl7) after STO* is asserted. The 
SRQ* signal is removed by reading the device's SRQ register. The SRQ* signal 
may be removed a minimum of 0 ns (tIS) after the device is selected and the 
bus is placed in data mode, but it must be removed a maximum of 0 ns (t I9) 

prior to the register read DRDY* going inactive. Figure 3-21 shows the timing 
relations of STO* and SRQ* when used other than parity error. In this case a 
device may place STO* or SRQ* active anytime on the bus. The SRQ* and 
STO* signals are removed by reading the device's interrupt register. The signals 
may be removed a minimum of 0 ns (tIS) after the device is selected and the 
bus is placed in data mode, but they they must be removed a maximum of 
o ns (t19) prior to the register read DRDY* going inactive. 
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3.6.6 Receivers. Drivers. and Terminations 

In this section the driver type, the receiver loading, and the signal termination 
requirements are defined. The driver-receiver direct-current (DC) specifica­
tions are listed in Table 3-3. Figure 3-22 is a diagram of the three bus driver­
receiver configurations supported on the bus. It should be noted that all open 
collector lines should be received by hysteresis-Schmitt trigger devices, such as 

Zl I 
R/W I ___________ .J 

------------, 
AID , 

... tI9+·J-------

DRDY· I 
'---tI8 ----~--~-----

STO· I 

DACC· \'-------11 
AACC \'----

FIGURE 3-20 Transfer error interrupt timing. (Note: For differential line pairs, level 
denotes positive portion of differential pair.) 
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\ ,_---Ill--'+------. 4- t I9+ 

DRDY· \'-____ -1 '------1---11 

STO· 
SRO* \\\\\\\\~ 

'-~--tI8---... J---~---

I 
FIGURE 3-21 Status interrupt timing. (Note: For differential line pairs, level denotes 
positive portion of differential pair.) 
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TABLE 3·3 Multichannel Bus DC Speclttcatlon 

Minimum driver Maximum receiver 
requirements, rnA requirements, rnA 

Signal Driver Terminationll Load cap, Load cap, 
name type n High Low pF High Low pF 

ADI5-0* Tristate 110 -5 48 300 0.2 0.8 15 
SA* Open coil 1l0/220 N.A. b 48 300 0.4 0.6 15 

Reset* Open coil 1l0/220 N.A. 48 300 0.4 0.6 15 
AACC Open colI 1000/2000 N.A. 48 300 0.4 0.6 15 

DACC* Open coil 1l0/220 N.A. 48 300 0.4 0.6 15 

SRQ* Open coil 1l0/220 N.A. 48 300 0.4 0.6 15 
STO. Open coil 1l0/220 N.A. 48 300 0.4 0.6 15 
R/W Dif, noninv 220/470 -20 40 300 0.5 0.5 15 

R/W/ Dif, iny 470/220 -20 40 300 0.5 0.5 15 
A/O Dif, noniny 220/470 -20 40 300 0.5 0.5 15 

A/O/ Dif, iny 470/220 -20 40 300 0.5 0.5 15 
PB. Dif, noniny 220/470 -20 40 N.A. 0.5 0.5 N.A. 

PB*/ Dif, iny 470/220 -20 40 N.A. 0.5 0.5 N.A. 
DRDY. Dif, noniny 220/470 -20 40 N.A. 0.5 0.5 N.A. 

DRDY./ Dif, iny 470/220 -20 40 N.A. 0.5 0.5 N.A. 

"Termination provided only at the physical ends of the interconnect cable. Where the positive termination 
(pull-up) resistance is different from the negative termination (pull-down) resistance, the positive termination 
resistance is listed first. 

bN.A. = not applicable. 

the 74LS14, that have a minimum VT+ - VT - of 0.4 V. Figure 3-23 is the bus 
termination schematic diagram for both ends of the cable. This is the only ter­
mination on the cable, and it can be supplied by the devices or by special ter­
mination modules. 

3.7 MECHANICAL CONSIDERATIONS 

In this section all the physical and mechanical considerations that a designer 
requires for proper Multichannel bus implementation are defined. In the fol­
lowing sections the Multichannel bus mechanical requirments are set forth. 

3.7.1 Cable Specification 

A 60-conductor flat ribbon cable is the recommended bus data transmission 
medium. The cable has the following chracteristics: 

Impedance 

Capacitance 

95 to 105 Q nominal 

22 pF 1ft (72.18 pF 1m) nominal 
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Propagation delay 1.7 ns/ft (5.58 ns/m) nominal 

Length 50 ft (15 m) max 

Multichannel implementation recommends twisted and flat cable over distances 
greater than 5 ft (1.5 m) or in noisy environments. For extremely noisy or harsh 
environments, jacketed and shielded flat ribbon cables are recommended. Table 
3-4 supplies the complete bus cable specification and vendor listing. 
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J110.n 
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FIGURE 3-22 Bus driver-receiver configurations. 
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TABLE 3.4 Cable Specification and Vendor Listing 

Physical properties 
Conductors 
Conductor insulation 
Conductor spacing, twisted pair 
Conductor spacing, flat 

28 A WG, 7/36 strand, tinned copper 
O.OlO-in wall, nominal 

Cable thickness, flat 
Temperature rating 

Electrical properties 
Impedance (nominal) 
Propagation velocity (nominal) 
Capacitance (nominal) 

Insulation requirements 
Voltage rating (minimum) 
Insulation resistance (minimum) 

0.10 in, nominal 
0.050 in, ± 10% 
0.042 in, nominal 
80°C 

105 {} ± 10% 
1.7 ns/ft 
22 pF/ft 

100 V DC 
1 X 1010 {} 

MUL TICHANNEL-BUS-COMPATIBLE CABLE 

Vendor Type Vendor number 

Belden Plain flat ribbon 9L28060 
Belden Twisted pair ribbon 9V28060 

Belden Insulated flat ribbon 9L28260 

Spectrastrip Plain flat ribbon 455-240-60 

Spectrastrip Twisted pair ribbon 455-248-60 

Spectrastrip Insulated flat ribbon 151-2830-060 

Conductors 

60 
60 

60 

60 

60 

60 

MUL TICHANNEL-BUS-COMPATIBLE CONNECTORS 

Vendor Type Vendor number Pins 

Berg Male, header 65823-103 60 

Berg Female, mass-terminated 65949-960 60 
3M Male, header 3372-1302 60 

3M Female, mass-terminated 3334-6000 60 

3.7.2 Connector-Receptacle Specification 

A 60-pin connector (3M part number 3372-1302 or equivalent) is used on all 
devices that connect to the Multichannel bus. The mating receptacle (3M part 
number 3334-6000 or equivalent) is mass-terminated on the flat ribbon cable. 
Figure 3-24 is an outline drawing of the connector and the pin-numbering con­
vention. A list of compatible connectors is given in Table 3-4. 

3.7.3 Multichannel Bus Pin Assignments 

The pin assignments for the Multichannel bus are listed in Table 3-5. 
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59 

60 2 
"--COMPONENT SIDE 

(TOP-EDGE VIEW) 

FIGURE 3-24 Connector outline and pin numbering convention. 

3.7.4 Bus Termination 

The terminating resistors required for the Multichannel bus can be placed on 
the devices or handled by special terminating modules. The bus specification 
does not place any restriction on the method of cable termination. The only 
requirement is that the bus be terminated by the pull-up resistors at one end of 
the cable, pull-down resistors at the other end of the cable, and no other ter­
mination resistors. 

3.8 LEVELS OF COMPLIANCE 

The Multichannel bus supports various levels of compliance of the full specifi­
cation. In this section the variable elements of capability and the notation used 
to describe the level of compliance are discussed. 

3.8.1 Variable Elements of Capability 

The Multichannel bus has, built into its structure, flexibility which allows the 
system designer to build different systems with boards of varying capabilities. 
Variation in the following areas is permitted: 

= Data path width 

• Address path width 

• Parity support 

• Interrupt register support 

DATA PATH 
Both 8- and 16-bit data path products can operate on the Multichannel bus. All 
byte operations occur on the lower byte of the AID bus (ADO* to AD7 *), which 
allows 8- and 16-bit products to work together. 
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ADDRESS PATH 

Both 8- and 16-bit address path products can operate on the Multichannel bus. 
For the 8-bit address path both address words are transferred on the lower byte 
of the A/D bus (ADO* to AD7 *). The 8-bit address path devices support only 
8 bits of memory and I/O address. The 16-bit address path devices support 24 
bits of memory and I/O address. 

PARITY 

The Multichannel bus supports both a parity mode and a no-parity mode. If a 
parity mode is selected, then, at a minimum, all talkers must generate parity. 

TABLE 3·5 Multichannel Bus Pin Assignments 

Lower row Upper row 

Pin Mnemonic Signal name Pin Mnemonic Signal name 

1 GND Ground 2 ADO. AID line 0 

3 GND Ground 4 ADh AID line 1 
5 GND Ground 6 AD2. AID line 2 

7 GND Ground 8 AD3. AID line 3 

9 GND Ground 10 AD4. AID line 4 

11 GND Ground 12 AD5. AID line 5 

13 GND Ground 14 AD6. AID line 6 
15 GND Ground 16 AD7. AID line 7 

17 GND Ground 18 AD8. AID line 8 

19 GND Ground 20 AD9. AID line 9 

21 GND Ground 22 ADlO. AID line 10 

23 GND Ground 24 ADlh AID line 11 
25 GND Ground 26 ADI2. AID line 12 

27 GND Ground 28 ADI3. AID line 13 

29 GND Ground 30 ADI4. AID line 14 
31 GND Ground 32 ADI5. AID line 15 

33 GND Ground 34 RESET. Reset 
35 GND Ground 36 AACC Address mode accept 

37 GND Ground 38 SRQ. Service request 

39 GND Ground 40 STO. Supervisor take over 
41 GND Ground 42 DACC. Data mode accept 

43 GND Ground 44 SA. Supervisor active 
45 PB*I Parity hit (inv.) 46 PB* Parity hit 

47 R/WI Read not write (inv.) 48 R/W Read not write 
49 A/OI Address not data (inv.) 50 A/O Address not data 
51 DRDY·I Data ready (inv.) 52 DRDY. Data ready 

53 RES Reserved 54 RES Reserved 
55 RES Reserved 56 RES Reserved 
57 RES Reserved 58 RES Reserved 

59 RES Reserved 60 RES Reserved 
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When the no-parity mode is selected, then, at a minimum, all listeners on the 
bus must not check parity. When parity mode is selected, an 8-bit device in a 
8- and 16-bit system must check parity for all 16 bits. 

INTERRUPT REGISTER 
Whenever a device supports the interrupts SRQ* and STO*, it must also sup­
port the associated registers. A device may support one, both, or neither of these 
registers. 

3.8.2 Compliance-Level Notation 

The following notation allows a vendor to succinctly and accurately specify a 
product's level of compliance with the Multichannel bus standard. The omission 
of an element specification implies no capability for that element. 

DEVICE TYPE 

SUP Supervisor 

CON Controller 

BD Basic device 

DATA PATH 

D8 8-bit data path 

D16 8- and 16-bit data path 

ADDRESS PATH 

A8 8-bit address path 

A16 16-bit address path 

PARITY 

P8 8-bit parity generated and checked 

P16 16-bit parity generated and checked 

INTERRUPT SUPPORT 
SRQ SRQ interrupt, register-supported 

STO STO interrupt, register-supported 

COMPLIANCE-LEVEL MARKING 
The compliance level of a module must be clearly stated in the module speci­
fication and may be marked on the PCB. 
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EXAMPLES 
A basic device with B-bit data and address that supports 16-bit parity and the 
STO interrupt would be specified as follows: 

Multichannel bus compliance BD DB AB P16 STO 

An intelligent controller with 16-bit address and data width which supports 
SRQ and STO interrupts but does not support parity would be specified as 
follows: 

Multichannel bus compliance CON D16 A16 STO SRQ 

3.9 SUMMARY 

Since the Multichannel bus is an integral part of the Multibus family, it can 
architecturally enhance any Multibus system design. It can extend the range of 
the Multibus system bus in terms of performance and physical distribution. It 
has the bandwidth to handle most high-speed data movement applications 
while providing a straightforward interface. If the user has partitioned the sys­
tem so that the high-speed data requirements can be moved to the Multichannel 
bus, the design can take full advantage of the Multibus family. 



4 
iSBX I/O Bus 

This chapter provides the basis for a conceptual understanding of the iSBX/ 
IEEE-P595 bus and describes how the bus extends the architecture of the Mul­
tibus system bus. Included are the logical and physical descriptions of the bus 
and the devices that connect to the bus. Also, a detailed look is taken at the 
electrical and mechanical specifications. The notation used throughout this book 
is the same as that defined in the Multibus/IEEE-796 functional description in 
Sec. 2-1. The information in this chapter was based on the Intel iSBX Bus Spec­
ification (14686-002) dated March 1981 and the Proposed IEEE Standard Spec­
ification IEEE P595 I/O Expansion Bus. It is recommended that anyone design­
ing with the iSBX bus obtain the latest versions of these specifications from Intel 
Corporation. 

4.1 WHY THE ISBX BUS IS REQUIRED 

Engineers designing systems around board-level computers historically have 
chosen between large and small boards. Large boards, such as the Multibus 
boards, reduce the space and also the number of boards required for a complete 
system. But the addition of small amounts of capability, such as a few I/O lines, 
to the system necessitates another large board, which might be overkill for the 
application. Smaller boards provide greater flexibility in customizing a system, 
but their disadvantage is that even a simple system requires several boards and 
connectors, which add unnecessarily to the cost of the system. 

Advances in semiconductor technology also favor a smaller-board approach. 
The ever-increasing circuit densities of new integrated circuits (ICs) mean that 
more capabilities can be provided on a single computer board. This increased 
computing power opens up new applications which may require different I/O 
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capabilities, specialized processing, or customized I/O devices. The board-level 
designer needs the flexibility to customize a system without using large boards. 

The iSBX concept, together with Multibus-compatible boards, provides the 
advantages of boards of both sizes. A combination of the two sizes permits the 
system designer to configure precisely the single-board computers (SBC) for 
individual applications at a lower cost. Given the larger size, the SBC can sup­
port the microprocessor, the memory, some general-purpose I/O, and the iSBX 
Multimodule1 board. The iSBX Multimodule board is a small I/O expansion 
board that provides the SBC with application-specific I/O, such as an IEEE-
488 controller or analog input or output channels. These small Multimodule 
boards enable the users to buy the exact I/O capabilities required for their sys­
tems. System size and cost are thereby kept at a minimum. 

The iSBX concept provides the following benefits to the system designer: 

1. Low cost. The ability to expand the I/O capability of an SBC incrementally 
lets the user add only the function the application requires. This lowers the 
cost of functional expansion. 

2. Simple upgradability. The on-board addition of totally new capabilities to 
SBCs may be done discretely. This increases the SBC functional capability 
and permits new iSBX Multimodules designed with state-of-the-art VLSI to 
be used on previously designed SBCs. 

3. Increased performance. The iSBX Multimodule board, like other local on­
board components, communicates directly with the host board microproces­
sor and provides maximum performance. This on-board expansion can also 
increase system performance. The available Multibus bandwidth is increased 
by reducing system bus traffic to standard Multibus-compatible expansion 
boards that have been replaced. 

4. Compatibility. All future 8- and 16-bit SBCs with the iSBX interface can use 
iSBX Multimodules designed previously or in the future. 

5. Low power. The smaller boards require minimal power, which generates less 
heat than Multibus-size boards. This also reduces the system power supply 
needs, which lowers the total system cost. 

6. Dedicated connector. The iSBX connector is a highly reliable connector spe­
cifically designed for this application. 

4.2 LOGICAL DESCRIPTION OF THE ISBX BUS 

The iSBX concept provides 8- and 16-bit I/O flexibility to any SBC or board­
product line. It does so by providing a universal I/O interface on the baseboard 

IMultimodule is a trademark of Intel Corporation, Santa Clara, California. 
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iSBX BOARD 
USER CONNECTOR~ 

BASEBOARD 

FIGURE 4-1 iSBX Multimodule board concept. 

as shown in Fig. 4-1. This universal interface is a general-purpose I/O expansion 
bus, called the iSBX bus, and it is used to connect the baseboard to small boards. 
These small boards are called iSBX Multimodule boards or Multimodule boards 
(Fig. 4-2). Their function is to convert the iSBX bus into a customized I/O inter­
face. A diagram of a typical SBC which utilizes the iSBX interface is shown in 
Fig. 4-3. 

The primary function of the iSBX bus is to provide a path for I/O mapped 
data between the host board and the Multimodule board. The key features of 
the iSBX bus are summarized below. 

• Low-cost I/O expansion. 

• A standardized controlled local I/O expansion interface. 

• Low overhead cost on baseboard. 

• Both 8- and 16-bit data transfers are supported. 

• Both interlocked and non interlocked transfers are supported. 

4.2. 1 Bus Devices 

The basic elements in an iSBX system are the baseboard and the iSBX Multi­
module boards (Fig. 4-1). Figure 4-4 shows an SBC with iSBX bus support. 



FIGURE 4-2 Multibus-compatible boards with iSBX bus sup­
port and iSBX Multimodule boards. 

FIGURE 4-3 iSBX Multimodule board. 
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FIGURE 4-4 Block diagram of SBe with iSBX bus support. 

BASEBOARD 

iSBX MULTIMODULE 
BOARD 

The baseboard provides an electrical and mechanical interface for the iSBX 
Multimodule boards. The electrical interface provides the communication link 
between the two elements. The baseboard is the master of that link; it controls 
the address, chip selects, and command signals. The baseboard also provides the 
mechanical interface for Multimodule boards. The single-wide Multimodule 
board is mounted to the baseboard in two locations (Fig. 4-2): at the top of the 
Multimodule board by a nylon screw and spacer assembly and at the bottom of 
the board by the iSBX connector, which was designed specifically for this 
application. 

There are two classes of baseboards: those with direct memory access (DMA) 
support and those without. Baseboards designed with DMA controllers can sup­
port the DMA aspects of the iSBX bus interface. These boards, in conjunction 
with an iSBX Multimodule board, can perform direct I/O-to-memory or 
memory-to-I/O operations. Baseboards without DMA support use a subset of 
the bus specification and do not use that aspect of the Multimodule board's 
capabilities. 

iSBX MUL TIMODULE BOARDS 

iSBX Multimodule boards are small, specialized I/O boards which plug into the 
iSBX interface on the baseboard (Fig. 4-2). These modules convert the iSBX bus 
interface to a defined specialized I/O interface. The iSBX bus specification 
defines two standard PCB form factors: single-wide (2.5 X 3.7 in; 6.35 X 9.4 
cm) and double-wide (2.5 X 7.5 in; 6.35 X 18.8 cm). These two form factors 
allow for a broad range in circuit complexity. A typical single-wide iSBX Mul­
timodule board requires less than 10 percent of the PCB area (the iSBX con­
nector and one mounting hole) to support the interface; the rest of the space is 
available for application circuitry. An example of an iSBX Multimodule is a 
serial channel controller (Fig. 4-3). This Multimodule board converts the iSBX 
bus interface into an RS-232 or RS-422 serial communication channel. 
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4.2.2 8- and 16-Blt Compatibility; Bus Device Notation 

The iSBX bus specification supports both 8- and 16-bit data transfers. Base­
boards with 8-bit data paths can support only 8-bit iSBX Multimodule boards. 
All 8-bit baseboards support the 8/8 bit mode (the baseboard is an 8-bit system, 
the first 8 in the 8/8 bit mode, and the baseboard can support 8-bit iSBX Mul­
timodule boards, the second 8 in the 8/8 bit mode) of the iSBX specification. 
Baseboards with 16-bit data paths can be designed to support only 8-bit iSBX 
Multimodule boards or both 8- and 16-bit iSBX Multimodule boards. A 16-bit 
baseboard designed to accommodate only 8-bit iSBX Multimodule boards sup­
ports the 16/8 bit mode of the bus specification. A 16-bit baseboard designed 
to accommodate 16-bit iSBX Multimodules supports the 16/16 bit mode. A 
baseboard that supports the 16/16 bit mode must also support the 16/8 bit 
mode; that is, it supports both 8- and 16-bit iSBX Multimodule boards. The 
different modes for iSBX-compatible systems are summarized in the following 
table. 

Mode 

8/8 

16/8 

16/16 

Description 

An 8-bit baseboard that supports 8-bit 
iSBX Multimodule boards 
A 16-bit baseboard that supports 8-bit 
iSBX Multimodule boards 
A 16-bit baseboard that supports 8- and 
16-bit iSBX Multimodule boards 

4.3 BUS SIGNAL DEFINITIONS 

In this section the iSBX bus signals are described. Also described is how the basic 
operations occur over the iSBX bus. The iSBX bus is composed of 44 signal lines 
for the 16/16 bit mode and 36 signal lines for the 8/8 and 16/8 bit modes. These 
lines can be broken into several classes: address and chip select (five signal lines), 
data (eight signal lines for the 8/8 and 16/8 bit modes and 16 signal lines for 
the 16/16 bit mode), control (9), interrupts (2), option (2), and power (8). The 
different classes are explained in the following sections. 

4.3.1 Address and Chip Select Lines 

The address and chip select lines can be divided into two groups: 

Class 

Address 
Chip selects 

Signal Function 

MA2-MAO Address lines (2-0) 
MCSh, MCSO. Chip select lines (1-0) 

The baseboard provides the decode logic for the iSBX interface. The logic 
generates the chip selects for the iSBX Multimodule boards and passes on the 
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least significant portio.n of the I/O address to the Multimodule board. The board 
decodes all but the lower-order bits of the I/O address in generating the two 
iSBX Multimodule board chip selects (MCS1 * and MCSO*). In 8-bit baseboard 
systems supporting the 8/8 bit mode of the bus specification, the baseboard 
assigns two blocks of eight I/O port addresses for each iSBX interface it pro­
vides. In 16-bit baseboard systems supporting the 16/8 or 16/16 bit mode, the 
baseboard assigns two blocks of 16 I/O port addresses for each of its iSBX inter­
faces. The I/O addresses reserved by the baseboard for each iSBX interface it 
provides are summarized in Table 4-1. Note that the 8-bit and 16-bit baseboard 
systems reserve different addresses and that the address assignments are 
required by Inters iSBX Bus Specification. The IEEE-P595 Bus Specification 
only recommends these addresses. 

ADDRESS 
The three address lines MA2 to MAO carry the least significant portion of the 
binary address of the I/O device location that the baseboard is referencing; 
MAO is the least significant bit of the address. The address lines are positive true 
input lines to the Multimodule board. In 8-bit baseboard systems the MA2 to 
MAO are mapped directly to the three least significant address bits of the micro­
processor. In 16-bit baseboard systems (e.g., one based on an 8086'microproces­
sor), MA2 to MAO are mapped to address bit 3 through address bit 1 on the 
baseboard, since address bit 0 is used in the chip select generation. 

The iSBX bus supports both byte and word addressing (Fig. 4-5). A byte (8 
bits) location is the smallest addressable unit of storage. There are two types of 
byte address locations, an even-byte address (address 0 of the baseboard is inac­
tive) and an odd-byte address (address 0 of the baseboard is active). Two con­
secutive byte locations form a word. The iSBX bus in 16/16 bit mode can trans­
fer a word if the first byte location of the word is an even-byte address (an even­
word address). If the first byte location of the word is an odd-byte address (an 
odd-word address), the baseboard must perform two byte accesses and assemble 
the word. 

TABLE 4·1 Baseboard I/O Addressing Assignments for ISBX Bus (Hexadecimal 
Notation) 

8·bit baseboard 16-bit baseboard 16-bit baseboard 
iSBX Multimodule Chip address (8/8 bit address (16/8 bit address (16/16 
connector no. select mode) mode) bit mode) 

iSBX 1 MCSO. FO-F7 OAO-OAF OAO,2,4,6,8,A,C,E 
MCSh F8-FF OBO-OBF OAI,3,5,7,9,B,D,F 

iSBX 2 MCSO. CO-C7 080-08F OAO,2,4,6,8,A,C,E 
MCSh C8-CF 090-09F 081,3,5,7,9,B,D,F 

iSBX 3 MCSO. BO-B7 060-06F 060,2,4,6,8,A,C,E 
MCSI. B8-BF 070-07F 061,3,5,7,9,B,D,F 
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FIGURE 4-5 Memory and I/O Address Mapping. (Note: Bus master must break odd-word 
address access into two byte accesses and reform the word.) 

CHIP SELECT LINES 

In 8-bit systems, the negative true input lines MCSI * and MCSO* to the iSBX 
Multimodule board are the result of the baseboard decode logic. This logic 
decodes the appropriate local bus address bits into the iSBX Multimodule chip 
select lines, as defined in Fig. 4-6. The chip select signals, along with the I/O 
command signals, enable communication with the iSBX Multimodule boards. 

In 16-bit systems, the chip select signals optionally have two definitions: one 
for the 16/8 bit mode and one for the 16/16 bit mode. These options are select­
able by the user for each interface provided on the baseboard, depending on 
the data path width of the iSBX board that is installed. 

The 16/8 bit mode is used when a 16-bit baseboard must interface with an 
8-bit iSBX board. The chip select lines serve the same function as in an 8-bit 
baseboard with different I/O address assignments. The 16-bit baseboard uses 
the lower data byte (MD7 to MDO) of the 16-bit word to communicate with the 
Multimodule board. The upper data byte (MD 15 to MD8) is not defined and 
should not be used. Only even I/O port addresses are used (Table 4-1). This 
requires the baseboard to reserve 32 I/O port addresses. The 16 even ports are 
used, leaving the 16 odd ports unused. 

The 16/16 bit mode is used when a 16-bit baseboard must interface with a 
16-bit iSBX Multimodule board. The baseboard uses all 16 data lines to com­
municate with the iSBX Multimodule board. In this mode, the chip select terms 
are also used to control low-byte, high-byte, and word transfers as well as 
address decoding. The MCSO* is used for low-byte (even-byte) transfers; 
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FIGURE 4-6 iSBX baseboard chip select assignments. 
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MCS1* is used for high-byte (odd-byte) transfers; and both MCSO* and MCS1* 
are used for even word data transfers. 

Figure 4-7 shows a portion of the logic equations and possible circuit for part 
of MCS1 * and MCSO* generation in a 16-bit baseboard system. In this example, 
the baseboard has Intel's iAPX2 80286 16-bit advanced microprocessor. The 
baseboard logic generates four signals which are used to generate the two iSBX 
chip selects. The chip select 1 * and chip select 2* signals indicate that the base­
board is addressing an I/O address in the range of OCOH to OCFH (hexadeci­
mal) and OBOH to OBFH, respectively. Address 0* is the least significant address 
bit. When active, it indicates that an even-byte transfer is requested. An active 
BHEN* (byte high enable) indicates an odd-byte transfer is being requested. 
In the 16/8 bit mode the MCS1* and MCS2* terms are simply the chip select 
1 * and chip select 2* terms, respectively, without modification and have no data 
flow control terms in them. In the 16/16 bit mode the MCS1* and MCS2* terms 
include data flow control. The MCSO* term includes the address 0 term which 
controls the lower byte (the even byte). Thus, chip select 0* is logically ANDed 

2iAPX is a trademark of Intel Corporation, Santa Clara, California. 
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with address 0* to produce MCSO*. The MCS1* term includes the high-byte 
control (odd-byte) term BHEN*. Thus, chip select 0* is logically ANDed with 
BHEN* to produce MCS1*. If the baseboard addresses I/O address OC3H, then 
chip select 0* will be active and the address odd (address 0* is active). This will 
result in an active MCS1 *. 

4.3.2 Data Lines 

The data lines MD15 to MDO are used to transmit information to or receive it 
from the iSBX ports on the iSBX Multimodule board. There are 16 bidirectional 
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FIGURE 4-7 iSBX baseboard clip select logic (hexadecimal notation used). 
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positive true data lines MDI5 to MDO. MDO is the least significant bit for all 
data transfers except odd-byte transfers in the 16/16 bit mode, in which case 
MD8 is the least significant bit of the byte. Eight-bit baseboards permit only 8-
bit data transfers and therefore can support only 8-bit iSBX boards. Sixteen-bit 
baseboards can support both 8- and I6-bit data transfers and therefore can sup­
port both 8- and I6-bit iSBX Multimodule boards. All of the data transfer types 
are shown in Fig. 4-8 and are labeled 1 to 5. 16/16 bit mode baseboards support 
three types of data transfer: (1) even-byte transfers on MD7 to MDO, (2) odd­
byte transfers on MDI5 to MD8, and (3) word-data transfers on MDI5 to MDO. 
16/8 bit mode baseboards support only one type of data transfer, the (1) even­
byte transfers on MD7 to MDO. An 8/8 bit mode baseboard can support both 
(4) even-byte transfers and (5) odd-byte transfers on MD7 to MDO. 

In 16/16 bit mode systems, the two chip select lines also control the data 
£low. The data £low is summarized in Fig. 4-9. Even-byte transfers require an 
active MCSO* (low); odd-byte transfers require an active MCSI* (low); word 
transfers require that both MCSO* and MCSI * be active (low). An even-word 
transfer is, in effect, an even-byte and an odd-byte transfer at the same time. 
There are two consecutive byte addresses for each word; the even-byte address 
(MCSO* = low) corresponds to the word data bits MD7 to MDO. Conversely, 
the odd-byte address, which is the word address + 1 (MCSI* = low), corre­
sponds to the word data bits MD 15 to MD8. 

4.3.3 Control Lines 

The control lines define the data transfer protocol on the iSBX bus. The control 
lines can be broken down into four basic groups. 

Class Signal Function 

Commands 10RD* I/O read command 
10WRT* I/O write command 

System control MWAIT* Extend command until done 
MPST* iSBX board present 

DMA MDRQT DMA request 
MDACK* DMA acknowledge 
TDMA Terminate DMA 

Utilities MCLK iSBX clock 
RESET Initialize 

COMMAND LINES 

The command lines IORD* and IOWRT* are negative true signals controlled 
by the baseboard and are inputs used to request an operation of an iSBX Mul-
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FIGURE 4-9 iSBX bus data flow control (16/16 and 
16/8 bit modes). 

timodule board. There are two commands, each with its unique signal on the 
bus. An active command indicates to the iSBX board that the address and chip 
select lines are valid and that the selected (MCS* active) iSBX Multimodule 
board should perform the specified operation. The I/O read command is used 
by the baseboard to request that data be sent from the iSBX Multimodule I/O 
port to the baseboard. Conversely, an I/O write command is used by the base­
board to send data from the baseboard to the iSBX Multimodule I/O port. 

MUL TIMODULE WAIT 
Multimodule wait (MW AlT.) is a negative true signal used by the iSBX Mul­
timodule board to extend the current data transfer cycle. The extension is 
accomplished by putting the microprocessor on the baseboard in a wait state 
and thereby providing additional time for the iSBX Multimodule board to per­
form the requested operation. The MW AlT. signal is generated by the iSBX 
Multimodule board from address and chip select information only. When the 
iSBX Multimodule has completed the requested operation, it drives MW AlT. 
inactive. This permits the microprocessor on the baseboard to continue. The 
interlocking mechanism permits iSBX Multimodule boards of different speeds 
to be on the bus. The interlocked command protocol can be summarized as 
follows: First the baseboard generates valid address and chip select(s); then the 
iSBX Multimodule board can cause the baseboard to wait-extend its current 
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data cycle by activating MW AIT*. The iSBX Multimodule board controls the 
amount of time that it needs to wait. After it has waited long enough to perform 
the requested operation, it responds with an inactive MW AIT*, which permits 
the baseboard to continue. 

The iSBX bus uses a negative type of acknowledgment method. It assumes 
that all operations will occur at the baseboard's maximum speed unless told to 
wait. The baseboard starts an operation, and it is the responsibility of the iSBX 
Multimodule board to tell the baseboard to wait if more time is needed to per­
form the operation. The MW AIT* signal is normally in the no-wait condition, 
which permits the baseboard to continue at maximum speed. The advantages 
of a negative type of acknowledgment method are low overhead and no special 
circuitry for time-out (the state when a nonexistent location is accessed). A pos­
itive acknowledgment method, which is used on Multibus systems, requires the 
bus slave module to generate a response before continuing. The advantages of 
a positive acknowledgment method are the independent timings of the master 
and the slave of two communicating units. The slave unit is not required to 
generate a wait signal in a fixed amount of time, and future baseboards with 
faster microprocessors will not need added extra circuitry to guarantee the wait 
timing. 

MUL TIMODULE PRESENT 

Multimodule present (MPST*) is a negative true signal driven low by an iSBX 
Multimodule board to inform the baseboard that an iSBX board is installed. This 
interface signal goes to the baseboard decode logic. If the Multimodule is not 
installed, the address space normally reserved for the Multimodule board I/O 
ports can be used on system bus slave boards. This is important when designing 
a new board with the iSBX interface that also has to be backward-compatible 
with an older product. When the MPST* signal is in the inactive state, the iSBX 
I/O port locations will be decoded to be off board (not present on the board) 
and the SBC will go to the system bus to find them; it will appear as if there 
were no iSBX interface on the SBG If the Multimodule is installed, then the 
I/O decode logic is activated to respond to the iSBX I/O port addresses as on­
board resources and route the requests to the Multimodule I/O port. This signal 
is not needed for new products, since the iSBX addresses will be reserved for 
future expansion anyway. 

4.3.4 Direct Memory Access 

The DMA lines control the communication link between the DMA controller 
on the baseboard and the iSBX Multimodule board. Use of the DMA lines is 
optional, because not all baseboards provide DMA channels and not all iSBX 
Multimodule boards are capable of supporting a DMA transfer. 
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MUL TIMODULE DMA REQUEST 

Multimodule DMA request (MDRQT) is an active-high output signal from the 
iSBX Multimodule board to the baseboard's DMA controller. MDRQT is 
asserted when a request that a DMA cycle be initiated is made. 

MUL TIMODULE DMA ACKNOWLEDGE 

Multimodule DMA acknowledge (MDACK*) is an active-low input signal to 
the iSBX Multimodule board from the baseboard DMA controller. MDACK* 
acknowledges that the requested DMA cycle has been granted. 

TERMINATE DMA 
Terminate DMA (TDMA) is a static bidirectional line. The direction is deter­
mined by configuration. Once configured, TDMA can operate in only one 
direction. In the output mode TDMA is used by the iSBX Multimodule board 
to terminate DMA activity of the DMA controller. In the input mode TDMA 
is used by the DMA controller to terminate requests from the iSBX Multi­
module board. 

4.3.5 Miscellaneous Signals 

INITIALIZE LINE 

The initialize line (RESET) is an active-high input line to the iSBX Multimodule 
board generated by the baseboard to put the iSBX Multimodule board into a 
known internal state. 

MUL TIMODULE CLOCK LINE 

The Multimodule clock line (MCLK) is an input line to the iSBX Multimodule 
board. It is a timing signal. The 10-MHz (+0, -10 percent) frequency can 
vary from baseboard to baseboard. The clock is asynchronous with all other 
iSBX Multimodule bus signals. The MCLK requirements are the same as the 
constant clock (CCLK*) requirements of the Multibus specification. 

MUL TIMODULE INTERRUPT REQUEST LINES 

The Multimodule interrupt request lines (MINTRO and MINTRl) are active­
high output lines from the iSBX Multimodule board; they are used to inform 
the baseboard that it needs service. This permits the baseboard to initiate a func­
tion on an iSBX Multimodule and start executing another task while it is waiting 
for the iSBX Multimodule to complete its task. Once it has completed the task, 
it will notify the baseboard by requesting a service interrupt. 
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OPTION LINES 

The option lines are user-defined signals. They are connected to wire-wrap posts 
on the baseboards. They can be used, as an example, as extra interrupt request 
lines or custom signals to pass information between the baseboard and the iSBX 
Multimodule board. 

POWER LINES 

Three voltages and a ground are provided on the iSBX bus. The three voltages 
are +5, + 12, and -12 V. There are three pins each for the +5 V and ground, 
and there is one pin each for + 12 and -12 V. 

4.4 BUS OPERATION OVERVIEW 

Now that the definitions of the signal lines are understood, a functional descrip­
tion of each iSBX bus operation can be undertaken. The iSBX bus supports 
I/O read, I/O write, DMA, and interrupt operations. 

4.4. 1 I/O Read Operations 

There are two types of I/O read operations that a baseboard and an iSBX Mul­
timodule board can perform: a full-speed I/O read and an interlocked I/O 
read. Once the baseboard initiates the read operation, the iSBX Multimodule 
board determines which of the two read operations is performed. 

FULL-SPEED I/O READ OPERATION 

The full-speed I/O read operation is a noninterlocked data transfer, and it has 
strict timing requirements. The Multimodule board is not required to generate 
any acknowledgment indicating that the requested operation is completed. Fig­
ure 4-10 is a timing diagram of a full-speed I/O read operation. The following 
seq uence is shown in Fig. 4-10: 

1. The baseboard places the address on the address lines and generates a valid 
chip select for the iSBX Multimodule board. It waits until the address and 
chip select setup times (the time for the iSBX Multimodule board to decode 
the information) are met. 

2. The transfer is initiated by activating the I/O read command (IORD*) sig­
nal. The iSBX Multimodule board must generate valid data on the data lines 
from the addressed I/O port in less than 250 ns. 

3. The baseboard then strobes in the data and terminates the read cycle by 
deactivating the I/O read command. 
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SOURCE SIGNAL 

BASEBOARD MA2-MAO ==><_, ____________ V_A_LI_D_A_D_D_RE_S_S __________ _ 

1 

BASEBOARD MCS* 

BASEBOARD IORD* 

iSBX BOARD MDIS-MDO -------~ 

FIGURE 4-10 Fast iSBX bus read operation. 

SOURCE SIGNAL 

BASEBOARD MA2-MAO VALID ADDRESS 

BASEBOARD MCS* 

iSBX BOARD MWAIT* 

BASEBOARD lORD 

CC 4 

iSBX BOARD MDIS-MDO ----------CX---"'" )------
FIGURE 4-11 Interlocked iSBX read operation. 

4. After a small delay, the address lines may become invalid and the chip select 
lines may be driven inactive. 

INTERLOCKED I/O READ OPERATION 

The second type of I/O read operation is an interlocked operation. The Multi­
module wait (MW AIT*) is used by the iSBX Multimodule board to extend the 
read cycle. This permits the iSBX Multimodule board to control the access time. 
Figure 4-11 is a timing diagram of an interlocked I/O read operation. The fol­
lowing sequence is shown: 
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1. The baseboard places the address on the address lines and generates a valid 
chip select for the iSBX Multimodule board, just as in a full-speed I/O read 
operation. 

2. The iSBX Multimodule board then activates the MWAIT* signal, which in 
turn removes the ready input to the microprocessor on the baseboard, and 
causes it to go into a wait state. 

3. Before going into its wait state, the microprocessor on the baseboard provides 
the address and chip select setup times and initiates the transfer by activating 
the I/O read command (IORD*). 

4. The iSBX Multimodule board will drive the MWAIT* signal inactive when 
valid read data is on the data bus. This in turn takes the microprocessor out 
of its wait state and permits the operation to continue. 

5. The baseboard strobes in the data and terminates the data transfer cycle by 
putting the 10RD* signal in the inactive state. 

6. After a small delay, the address lines can go invalid and the chip select lines 
may be driven inactive. 

4.4.2 I/O Write Operations 

There are two types of write operations that a baseboard and iSBX Multimodule 
board can perform: a full-speed I/O write and an interlocked I/O write. Once 
the baseboard initiates the write operation, the iSBX Multimodule board deter­
mines which of the two types of I/O write operations is to be performed. 

FULL-SPEED I/O WRITE OPERATION 

The full-speed I/O write is a non interlocked operation. No acknowledgment is 
required. Figure 4-12 is a timing diagram of a full-speed I/O write operation. 
The following sequence is shown: 

SOURCE SIGNAL 

BASEBOARD MA2- MAO ==>< ______ V_A_L_ID_A_D_D_RE_S_S _____ -::-

BASEBOARD MCS* 

BASEBOARD IOWRT* 

BASEBOARD MDlS- MOO -----«'-____ X ..... __ ...;..;...;.;;~,;;...-______ >-----
FIGURE 4·12 Fast iSBX bus write operation. 
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1. The baseboard places the address on the address lines and generates a valid 
chip select for the iSBX Multimodule board. 

2. The baseboard waits until the address and chip select setup times are met, 
and then the transfer is initiated by activating the I/O write command 
(IOWRT*) signal. 

3. The iSBX Multimodule board must store the data on the data lines into the 
addressed I/O port in less than 300 ns, of which the data will be valid a 
minimum of 250 ns. This means that the data can be invalid at the beginning 
of the write cycle. 

4. When the operation is completed, the baseboard terminates the data transfer 
cycle by driving 10WRT* inactive. 

5. After a small delay, the address and data lines may become invalid and the 
chip select lines may be driven inactive. 

INTERLOCKED I/O WRITE OPERATION 

The second I/O write operation is an interlocked operation. The MW AIT* is 
used by the iSBX Multimodule board to control its own access time. Figure 4-
13 is a timing diagram of an interlocked I/O write operation. The following 
sequence is shown: 

1. The baseboard places the address on the address lines and generates a valid 
chip select for the iSBX Multimodule board, just as in a full-speed I/O write 
operation. 

2. The iSBX Multimodule board then activates the MWAIT* signal, which in 
turn removes the ready input to the microprocessor on the baseboard and 
causes it to go into a wait state. 

SOURCE 

BASEBOARD 

BASEBOARD MCS* 

iSBX BOARD MWAIT* 

BASEBOARD IOWRT* 

BASEBOARD MDIS-MDO -----

VALID ADDRESS 

FIGURE 4·13 Interlocked iSBX bus write operation. 
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3. Before going into its wait state, the microprocessor on the baseboard provides 
the address and chip select times and initiates the transfer by activating 
IOWRT*. 

4. The data lines will then become valid. 

5. The microprocessor stays in a wait condition until the data is stored in the 
addressed I/O port location. The iSBX Multimodule board then drives the 
MW AIT* signal inactive and the microprocessor exits its wait state and con­
tinues executing its code. 

6. The baseboard then terminates the data transfer cycle by putting the 
IOWRT* signal in the inactive state. 

7. After a small delay, the address and data lines can go invalid and the chip 
select lines may be driven inactive. 

4.4.3 Direct Memory Access Operations 

Direct memory access is a means of exchanging blocks of data between an iSBX 
Multimodule port and system memory. The block of data typically is a series 
of consecutive memory locations. The process is initiated by executing software 
that sets up the DMA controller and iSBX Multimodule board. The software 
determines the direction of the data movement (memory to iSBX Multimodule 
board or vice versa), the starting address of the memory block (where the data 
is or where it is to be put), and the length of the block of data. Once started, 
the data transfers are made automatically under the control of the hardware 
DMA controller as demanded by the iSBX Multimodule board. The DMA pro­
cess can transfer data in one of two ways: single data transfers done one at a 
time on a cycle-steal basis or strings of single data transfers done consecutively 
in a burst mode. 

An iSBX Multimodule system can support DMA operations when the base­
board has a DMA controller and the iSBX Multimodule board can support a 
DMA mode. Figure 4-14 is a block diagram of an SBC with a DMA controller 
and iSBX bus support. The DMA controller is on the same local bus as the 
microprocessor. The local bus can be controlled by only one device at a time; 
most of the time, it is controlled by the microprocessor. When DMA activity is 
requested, the DMA controller requests control of the local bus. The control, 
once granted, will result in a temporary halt of all other activities on the local 
buses for the duration of the iSBX Multimodule board's request for DMA ser­
vice. This is known as cycle stealing. Except for theft of the local bus, the DMA 
activity should not interfere with normal microprocessor operation. This can 
cause the interrupt latency time (the time from receiving an interrupt to the 
time the service routine begins to be executed) to increase, because the micro­
processor must wait until it can regain control of the local bus. 
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Figure 4-15 is a timing diagram of a DMA read operation. Data is trans­
ferred from the iSBX Multimodule port to system memory. The following 
sequence is shown in Fig. 4-15. (The software has already set up the hardware 
for the DMA transfer.) 

1. The DMA read cycle is initiated when the iSBX Multimodule board activates 
its Multimodule DMA request (MDRQT) signal. The baseboard uses 
MDRQT to activate the DMA controller, which requests control of the local 
and iSBX buses from the microprocessor. 

2. Once the DMA controller gains control of the local buses, it notifies the 
requesting iSBX Multimodule board by activating the Multimodule DMA 
acknowledge (MDACK*) signal. The iSBX Multimodule board uses 
MDACK* as its chip select. The address (MA2 to MAO) signals are ignored, 
and chip select (MCS1 * to MCSO*) signals must be high. 

3. The DMA controller then initiates the transfer by activating the 10RD* sig­
nal. At this point, the iSBX Multimodule board can perform a full-speed 
I/O read or an interlocked I/O read operation. Figure 4-15 shows a full­
speed operation. 

4. If the iSBX Multimodule board is not ready for the next DMA cycle, it must 
drive MDRQT inactive and thereby notify the DMA controller to wait for 
the next DMA cycle. 

J2 

MICROPROCESSOR ~ iSBX ~ PARALLEL SERIAL 
INTERFACE I/O I/O 

..... 
..... m 

w z :::> 
<l 0 a: w 
t.!) a: 
m m LOCAL BUS 
:::> :::> 
m m 
..J ..J 
<l <l 
U U 
0 0 
..J ..J 

DMA MULTIBUS ROM RAM 
CONTROLLER INTERFACE 

Pl P2 

FIGURE 4-14 Block diagram of an SBC with a DMA controller. 



SOURCE 
iSBX BOARD 

BASEBOARD 

BASEBOARD 

MDACK* 

IORD* 

~ 
iSBX BOARD MD15- MOO ----Hfl---~<,,---------.. 

FIGURE 4-15 iSBX bus DMA full-speed read operation. 
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5. The iSBX Multimodule board must generate valid data on the data lines 
from its DMA port in less than 250 ns after the falling (high to low) edge of 
IORD*. 

6. The DMA controller saves the data, or the data is stored in a memory loca­
tion directly, and it then terminates the current DMA read cycle by driving 
the IORD* signal inac~ive. 

7. After a small delay, the MDACK* signal may be driven inactive. The 
DMA controller would then release the baseboard buses back to the micro­
processor. 

In cycle stealing, the iSBX Multimodule board ceases to request DMA service 
after each data transfer and requests service again when ready. The terminate 
DMA (TDMA) signal can be used by the baseboard to notify the iSBX Multi­
module board, or vice versa, to stop the DMA transfers in the event of an error 
condition. 

If the MDRQT signal is not driven inactive, the DMA controller will con­
tinue to perform another DMA read cycle. This series of high-speed continuous 
DMA data transfers, called burst mode, is used when data must be moved as 
quickly as possible. Burst mode is faster because the DMA controller does not 
arbitrate for the local buses for each data transfer cycle. It arbitrates once for 
the first data transfer cycle and does not release the local buses until the block 
of data has been transferred. 

4.4.4 Interrupt Operations 

Figure 4-16 is a timing diagram of an interrupt operation. The following 
sequence is shown: 

1. The iSBX Multimodule board initiates an interrupt operation by activating 
one of the Multimodule interrupt request (MINTRO and MINTR1) signals. 
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SOURCE 

iSBX BOARD 

BASEBOARD 

BASEBOARD 

BASEBOARD 

SIGNAL 

MINTR __ ---Jr 
CD 

MA2-MAO __ ~ 

MCS'" 

lORD'" 

iSBX BOARD MDIS-MDO -----l 

I READ iSBX PORT I TURN OFF INTERRUPT I 
FIGURE 4-16 iSBX bus interrupt operation. 

This signal is routed to the interrupt controller on the baseboard. When the 
interrupt controller detects an active interrupt request, it notifies the micro­
processor, which causes the program currently being executed to be auto­
matically suspended. The state of the microprocessor is saved, and the pro­
gram execution control is transferred to the Multimodule board interrupt 
service routine. 

2. The service routine will perform the required operations, such as an I/O 
read operation, to the iSBX Multimodule board. 

3. The service routine must also cause the MINTRI or MINTRO signal to be 
driven inactive. 

In summary, from its point of view, the iSBX Multimodule board initiates 
an interrupt operation by activating an interrupt request signal (MINTRI or 
MINTRO) and removes the interrupt when the baseboard notifies it to do so. 

4.5 DETAILED ELECTRICAL DESCRIPTION 

In this section all the timing and loading and drive specifications of the iSBX 
bus are described. 

4.5.1 Logical State and Electrical Level Relations 

Signal names indicate whether the signals are active-high or active-low. If the 
signal name is followed by an asterisk, the signal is active-low and has the fol­
lowing logical state and electrical level relations, in which H = high and L = 
low: 



Logical 
state Electrical level 

o H = TTL high state 
1 L = TTL low state 

At receiver 

5.25 V ~ H ~ 2.0 V 
0.8 V ~ L ~ -0.5 V 
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At driver 

5.25 V ~ H ~ 2.4 V 
0.5 V ~ L ~ OV 

If the signal name is not followed by an asterisk, the signal is active-high and 
has the following logical level and electrical state relations: 

Logical 
state Electrical level At receiver 

o L = TTL low state 0.8 V ~ L ~ -0.5 V 
H = TTL high state 5.25 V ~ H ~ 2.0 V 

At driver 

0.5 V ~ L ~ OV 
5.25 V ~ H ~ 2.4 V 

These specifications are based on TTL when the power source is 5 V ± 5 per­
cent referenced to GND. 

4.5.2 Signal Line Characteristics 

The rise and fall times of all signals on the bus must not exceed the following 
limits. (This is not part of the specification but is a good practice to follow.) 

Rise time, ns 
Fall time, ns 

Totem pole Three-state 

10 
10 

10 
10 

The settling time for all commands, Multimodule clock and interrupt request 
lines after a transition, is zero. The ringing on these lines cannot go beyond the 
noise immunity levels. These control signals are used to determine the state of 
the bus, and ringing beyond the noise immunity levels could cause system fail­
ures. Address, chip select, MWAIT*, and data lines can ring beyond the noise 
immunity levels; the only requirement is that they be stable for their setup 
times. The setup, hold, and signal ringing are summarized in Fig. 4-17. 

4.5.3 Bus Power Specification 

All power supply voltages are ± 5 percent at the iSBX bus interface. 
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Maximum 
Minimum Nominal Maximum current, 
voltage, V voltage, V voltage, V A 

+4.75 +5.0 +5.25 3.0 
+11.4 +12.0 +12.6 1.0 
-12.6 -12.0 -11.4 1.0 

GND 6.0 

Note: Per iSBX bus interface on the baseboard. 

4.5.4 Temperature and Humidity Limits 

All bus parameters and specifications must be met within the following tem­
perature and humidity limits: 

Temperature 0 to 55°C (32 to 131°F); free moving air across iSBX Multi­
modules and baseboard (200 LFM recommended) 

Humidity 0 to 90% maximum relative (no condensation); 25 to 40°C 
(77 to 104°F) 

COMMAND* HIGHMIN 
GND 

RINGING 
MAXIMUM 1 

HIGH 

GND 
ADDRESS 

DATA 50 ns MINIMUM 

30 ns MINIMUM 
LOW 

GND 

MWAIT* 
-----------------4~~~~====~~----~~-------GND 

o ns MINIMUM 

READ[_HI_G~H==========~~----~~-----+~~~==~----------_GND 
DATA --------.. 

~L\O~W~ ________ ~~~~======~------------------- GND 

FIGURE 4-17 Setup, hold, and ringing summary. 
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30g of force 11 ms in duration three times in three different 
planes (recommendation only) 

Vibration3 

4.5.5 storage 

Sweeping from 10 to 50 Hz and back to 10 Hz at a distance 
of 0.010 in (0.025 mm) peak-to-peak lasting 15 min in each 
plane. 

Temperature -40 to 70°C (-48 to 158°F) 

Humidity 5 to 95% maximum relative (no condensation) 

Shock3 30g (recommendation only) 

Vibration3 l.Og 

4.5.6 Bus Timing 

In this section all the detailed timing specifications on the iSBX bus are 
described; they are summarized in Table 4-2. For clarity, the timing diagrams 
in this section show only minimum or maximum values required for each 
parameter. The bus timing specification summary table should be referred to 
for complete minimum and maximum information. The timing diagrams show 
how all of the parameters are defined in relation to the signals involved. All 
timing is measured at 0.8 V for a low and 2.0 V for a high with full loading 
capacitance CL. 

READ OPERATION 

A read operation transfers data from the iSBX Multimodule port to the micro­
processor on the baseboard. The lines involved and the timing specifications are 
shown in Fig. 4-18. The baseboard must first drive the address lines, MA2 to 
MAO, with a valid address in a minimum of 50 ns (t I ) and a valid chip select, 
MCSl* or MCSO*, in a minimum of 25 ns (t7) before the IORD* signal goes 
active. 

If the read cycle is a full-speed (noninterlocked) type of data transfer, the 
iSBX Multimodule board must access the addressed port data and drive the data 
lines with valid data in less than 250 ns (t4). The I/O read command must be 
active in a minimum of 300 ns (t3)' 

If the read cycle is an interlocked type of data transfer, the iSBX Multimode 
has a maximum of 75 ns (t I9 ) to drive MW AIT* low. The iSBX Multimodule 
board must complete the operation by driving the data lines with the accessed 
port data in a maximum of 4 ms (tl7)' There must be a setup time of at least 0 
ns (t24) of valid data before MWAIT* can be driven high. 

3Intel iSBX specification only 
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TABLE 4·2 ISBX Bus Timing Specification Summary 

Symbol Parameter Minimum 

tl Address stable before read 50 ns 

t2 Address table after read 30 ns 

t3 Read pulse width 300 ns 

tl Data valid from read 0 

ts Data float after read 0 

t6 Time between read and/or write 

t7 CS stable before CMD 25 os 

ts CS stable after CMD 30 ns 

t9 Power-up reset pulse width 50 ms 

tlO Address stable before write 50 ns 

tll Address stable after write 30 ns 

tl2 Write pulse width 300 ns 

til Data valid to write 250 ns 

t14 Data valid after write 30 ns 

tis MCLK cycle 100 ns 

tl6 MCLK width 35 ns 

tl7
a MW AlT. pulse width 0 

tiS Power-on reset pulse width 50 ~s 

tl9 MCS. to MW AlT. valid 0 

t20 MDACK • set up to I/O CMD 25 

t21 MDACK .hold after CMD 30 

t22
d CMD or TDMA to MDRQT 

removed 
t23 TDMA pulse width 300 ns 
t24

a 
MW AlT. to valid read data 

t25
a 

MWAIT. to WRT CMD 0 
t26 MDRQT inactive to TDMA 0 

aRequired only if WAIT. is activated. 

"If MWAIT. is not activated. 

ero be specified by each iSBX Multimodule board. 

dRequired in cycle-steal mode and for last operation in burst mode. 

Maximum 

250 ns 

150 ns 

110 ns 

65 ns 

4 ms 

75 

150 ns 

o 

In both read operations, the data is strobed in by the baseboard and the com­
mand is driven high. The iSBX Multimodule board must put the data lines in 
a three-state condition (the lines are floating with no devices driving them) in 
less than 150 ns (ts). The baseboard must hold the chip select line active for a 
minimum of 25 ns (ts) and the address line a minimum of 30 ns (t2). 

WRITE OPERATION 

A write operation transfers data from the baseboard to the iSBX Multimodule 
port. Timing for a write operation is shown in Fig. 4-19. The baseboard initiates 
the write operation by driving the address lines with a valid address in a min-



MA2-MAO ~ K 
~t2-

MCS(N)* 
~ I 

I---t8 -
.t19 t17-

------------
MWAIT* 

I - t24 14-

t3 

IORO* 
, I 

1\ I 
~t7- :---t5-

t1 t4 

MD15-MOO X \ 
/ 

FIGURE 4-18 Read data transfer cycle timing. 

MA2-MAO 

MCS(N)* 

-+j<If------ t 17 -----.j 

-------------------Ir-----~--------
MWAIT* 

~~-----------t12----------~ 

IOWRT* 

M015-MOO _____________ t_lO ____________ ~~~~.~~~~~~----t1-3~~~~~-----~.-1~._tl_4~~ 
FIGURE 4-19 Write data transfer cycle timing. 
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imum of 50 ns (t1O) and activates a chip select line (MCSI * or MCSO*) in a 
minimum of 25 ns (t7) before the IORD* signal is driven active. 

If the write operation is a full-speed type of data transfer (noninterlocked), 
the command will remain active a minimum of 300 ns (t I2 ) and the data will 
be valid a minimum of 250 ns (tIS) before the IORD* is driven inactive. The 
iSBX Multimodule must store the data in the addressed port during this time. 

If the write operation is an interlocked type of data transfer, the iSBX Mul­
timodule must drive MWAIT* active (low) in less than 75 ns (tI9)' The iSBX 
Multimodule board must complete the write operation in less than 4 ms (tl7). 
Once the data is stored in the addressed port, the MW AIT* signal is driven 
inactive (high). The baseboard can drive IORD* inactive (high) in a minimum 
of 0 ns (t25)' 

In both cases, once the IORD* signal is driven inactive, the baseboard must 
hold the data valid for a minimum of 30 ns (t I4 ), the address for a minimum of 
30 ns (t ll ), and the chip select line for a minimum of 30 ns (t s). 

DIRECT MEMORY ACCESS OPERATION 
Timing for a DMA operation is shown in Fig. 4-20. An iSBX Multimodule ini­
tiates a DMA cycle by activating its MDRQT signal. Once the DMA controller 
on the baseboard gains control of the baseboard's local bus, it activates 
MDACK*. The DMA controller must wait a minimum of 25 ns (t20) before the 
iSBX bus command goes active. The iSBX MUltimodule board must remove 
MDRQT (go inactive) in a maximum of 150 ns (t22) to guarantee the DMA 
controller will not go into burst mode. The Multimodule board can perform an 
interlocked or non interlocked type of data transfer. Once the data operation is 
complete and the command is driven inactive, the MDACK* signal must be 
held a minimum of 25 ns (t2I ). If the TDMA signal is used, it must be held 
active a minimum of 300 ns (t23)' 

MDRQT~ 

MDACK* 

10 CMD* 

TDMA FROM 
MULTI MODULE ------It l-----+----'f----J t23--J '----

TDMA FROM 
BASEBOARD ___ ~: l------ /4---

FIGURE 4-20 DMA data transfer cycle timing. 
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J----t15 ----... ·r;.----t16 --~1 
MCLK '----------"\,---------, -, ____ 

FIGURE 4·21 iSBX bus Multimodule clock timing. 

o V ---'" 
> 0 ns 

,---
RESET __ --L __ ~ 

FIGURE 4·22 Reset timing. 

MISCELLANEOUS TIMING 

Figure 4-21 is a diagram of the timing of the Multimodule clock (MCLK), and 
Fig. 4-22 is a timing diagram of initialization (RESET). 

4.5.7 Receivers, Drivers, and DC Specifications 

In this section the driver type (TTL totem pole or three-state), the receiver load­
ing, and the driver capabilities are specified. All these specifications are listed 
in Table 4-3. 

4.6 BASEBOARD LAYOUT CONSIDERATIONS 

The placement of the baseboard iSBX connector is user-defined. The only 
requirement is the placement of the mounting holes relative to the iSBX con­
nector as shown in Fig. 4-23. However, it is recommended that the connector 
instead be placed as shown in Fig. 4-24, which puts the iSBX Multimodule 
board user I/O connector (top of the iSBX Multimodule board) at the same 
height as the baseboard I/O connector. It also provides enough room for install­
ing three single-wide or one single- and one double-wide Multimodule boards. 
In addition, it should be noted that an iSBX Multimodule board should not be 
placed over a microprocessor-type chip, because that would prevent the use of 
any in-circuit emulator (ICE4

) modules. Placement over ROMs and other sock­
eted parts also should be avoided. 

4ICE is a trademark of the Intel Corporation, Santa Clara, California. 



TABLE .·3 ISBX Bus Input and Output Specification Summary 

Bus signal name Typed drive 

OUTPUTb 

MDO-MD15 TRI 1.6 
MINTRO-l TTL 2.0 

MDRQT TTL 1.6 

MWAIT* TTL 1.6 

OPTl-2c TTL 2.0 

TDMA TTL 1.6 

MPST* TTL 2.0 

IlL max, 
Bus signal name Typed receiver rnA 

INPUTb,e 

MDO-MD15 TRI -0.45 
MAO-MA2 TTL -0.5 

MCSO*-MCS1* TTL -4.0 

RESET TTL -2.1 

MDACK* TTL -1.0 

IORD*-
IOWRT* TTL -1.0 

MCLK TTL -2.4 

TDMA TTL -1.0 

OPT1-0PT2c TTL -2.0 

GTTL = standard totem pole output. TRI = three-state. 

"Per iSBX Multimodule I/O board. 

0.5 -300 
0.5 -100 

0.5 - 50 
0.5 - 50 
0.5 - 50 
0.5 - 50 
0.5 -100 

At VIN 
max,d 1m max, 

V p.A 

0.4 70 
0.4 70 
0.4 100 
0.4 100 
0.4 100 

0.4 100 
0.4 100 
0.4 100 
0.4 100 

2.4 
2.4 
2.4 
2.4 
2.4 
2.4 

2.4 

At VIN 
max,d 

V 

2.4 
2.4 
2.4 
2.4 
2.4 

2.4 
2.4 
2.4 

2.4 

Co min, 
pF 

130 
40 
40 
40 
40 
40 
40 

C1max, 
pF 

40 
40 
40 
40 
40 

40 
40 
40 
40 

~hese are recommended specifications. These lines are user-defined, so it is the responsibility of the user to 
ensure adequate drive. 

dTest conditions. 

eAll inputs: V1L max = 0.8 V; VIH min = 2.0 V. 

o 
1-2.200 ---+-----3.00-----1 
I BASEBOARD HEIGHT r- RESTRICTION 0.320 MAXIMUM 

1.00 

1 ~
1.3000 r-REQUIRED FOR 

~ I DOUBLE-WIDTH 

O.lr _ ( +~n\---.----- \~+;' SliSBX BOARDS 

0.156 ±0.003 /' 1+----+----3.800-----~ 
HOLE DIAMETER--./ 
3 PLACES j4----t-------S.1000-------+t 

2.050 1.300 

: 1 
i .00000000.000000.o.L 

C
.oooooooo.oooooO.O -·----PIN 1 

-I 0.300 

0.038 ± 0.003 
HOLE DIAMETER 

FIGURE 4-23 Baseboard mechanical mounting hole requirements. 
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o 

~9.l5 r~535 t'55~ ~0250 

C'~~~~1-rltT'30 0 Ii T ~r f 
2.35 

U 2
.
45 

Ir I II -'" --::::11 ," ~ II c· ~ 
iSBX iSBX iSBX 
CONNECTOR 2 CONNECTOR 1 CONNECTOR 3 

MULTI BUS BOARD 

PI P2 

FIGURE 4-24 Baseboard layout considerations. 

The length of the traces that go to the iSBX interface should be kept as short 
as possible to minimize the ringing and cross-talk effects. The power distribution 
to the iSBX interface also is very important. The power and ground traces 
should be as wide as possible and have on them as much copper as can be 
obtained, and the path from the power pins on the Multibus PI connectors to 
the iSBX connector should be as short as possible. There should also be O.I-J.LF 
capacitors on all power lines as close to the interface as possible. 

4.7 MECHANICAL CONSIDERATIONS 

The iSBX bus specification sets forth all the physical and mechanical consider­
ations involved in the design of iSBX bus-compatible modules and baseboard 
interfaces. 

4.7.1 ISBX Connector 

The mechanical goals of the iSBX connector are to: 

• Provide a very reliable electrical interconnection 

• Remain operational during worst-case environmental conditions (tempera­
ture, shock, and vibration) 

• Provide a reliable mechanical interface 

• Support both 8- and I6-bit baseboards 
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In order to meet the above goals, the unique iSBX connector was created. 
Reliability was a major design requirement; each electrical and mechanical 
specification has a built-in safety margin. The connector has specially designed 
features that assure high quality. An example is protection of all the pins so that 
handling the connector during manufacturing or use will not damage the pins. 
The connector has a closed and sealed self-aligning design, which protects the 
interconnection and lessens the possibility of corrosion in harsh environments. 
The pins are made of a high-grade copper alloy and are gold-plated. They pro­
vide a very reliable low-resistance connection (0.01 n max at 3 A) for over 200 
insertions. The connectors are also keyed to ensure that the iSBX Multimodule 
boards are installed properly, thereby avoiding damage due to installation 
errors. Screwdriver slots are designed in to aid in unmating the connector pair 
safely. 

The iSBX connector body is made of a glass-reinforced nylon (or equivalent) 
material which was specifically chosen to guarantee a minimum of 200 cycles 
of mating and un mating. The maximum mating force is 20 lb (44 kg), and the 
unmating force is between 5 and 30 lb (11 and 66 kg). The connector functions 
under severe shock and vibration stresses: it can withstand a 50g shock for 11 
ms and a 50g vibration from 1 to 65 Hz with ± 0.04-in (I-mm) vibration 
displacement. 

There are two types of iSBX connectors: a 36- and a 44-pin version. The 36-
pin connector is used for 8-bit iSBX Multimodule boards (Fig. 4-25), and the 
44-pin connector is used for 16-bit iSBX Multimodule boards (Fig. 4-26). Com­
patibility of 8- and 16-bit systems was achieved with a unique mechanical 
design. The 16/16 bit mode of the bus specification requires the addition of 
eight lines. These eight interconnections were added, but with a 0.2-in (5-mm) 
gap between pins 38 and 39. The gap permits the shorter 8-bit connector to fit 
on the longer 16-bit connector (Fig. 4-27). 

4.7.2 Pin Assignments 

The signal pin assignments for both 36- and 44-pin connectors of the iSBX bus 
are shown in Table 4-4. As can be seen in the table, 36 lines are used for the 
8/8 and 16/8 bit modes and an extra 8 lines are added for interfacing to the 
16/16 bit mode. Figure 4-28 shows the pin-numbering method used on the 
iSBX connector. 

4.7.3 ISBX Multlmodule Board Height Requirements 

Figure 4-29 shows the iSBX Multimodule board height requirements. The total 
board height, in inches (millimeters), minus the iSBX connector is: 
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TABLE 4·4 Pin Assignments of Bus Signals on the ISBX/IEEE-P959 Connector 

PinG Mnemonic Description PinG Mnemonic Description 

43 MD8 MDATA bit 8 44 MD9 MDATA bit 9 

41 MDlO MDATA bit 10 42 MDll MDATA bit 11 

39 MD12 MDATA bit 12 40 MD13 MDATA bit 13 
37 MDl4 MDATA bit 14 38 MDIS MDATA bit IS 

3S GND Signal ground 36 +SV +SV 
33 MDO MDATA bit 0 34 MDRQT M DMA request 
31 MDl MDATA bit! 32 MDACK* M DMA acknowledge 
29 MD2 MDATA bit 2 30 OPTO Option 0 
27 MD3 MDATA bit 3 28 OPTI Option 1 
25 MD4 MDATA bit 4 26 TDMA Terminate DMA 
23 MDS MDATA bit 5 24 Reservedb 

21 MD6 MDATA bit 6 22 MCSO* M chip select 0 
19 MD7 MDATA bit 7 20 MCSl* M chip select 1 
17 GND Signal ground 18 +5V +5V 
15 10RD* I/O read cmd 16 MWAIT* M wait 
13 10WRT* I/O write cmd 14 MINTRO M interrupt 0 
11 MAO M address 0 12 MINTRI M interrupt 1 

9 MAl M address 1 10 Reservedb 

7 MA2 M address 2 8 MPST* iSBX multimodule 
board present 

5 RESET Reset 6 MCLK M clock 
3 GND Signal ground 4 +SV +SV 

+12V +12 V 2 -12V -12 V 

·Pins 37 to 44 are used only on 16/16-bit mode systems. 

bAll undefined pins are reserved for future use. 

Maximum component height 0.400 (10.16) 

Maximum PCB thickness 0.070 (1.78) 

Maximum component lead length 0.080 {2.03} 

0.550 (13.97) 

The total board height, in inches (millimeters), with the iSBX connector is: 

Maximum component height 

Maximum PCB thickness 

0.400 (10.16) 

0.070 (1.78) 

Maximum male iSBX connector height 0.357 {9.07} 

0.827 (21.01) 
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SECTION 
A-A 
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FIGURE 4-25 36-pin iSBX connector dimensions: (a) 36-pin male connector; (b) 36-pin 
female connector. (Note: All dimensions are in inches, and unless otherwise specified toler­
ances are O.xxpOI, O.xxxp005.) 

Figure 4-30 shows all component height requirements associated with the 
iSBX system. The total height in inches (millimeters) of a baseboard and iSBX 
Multimodule board is: 

Maximum component lead length 

Baseboard PCB thickness 

iSBX connector pair height 

0.090 (2.28) 

0.070 (1.78) 

0.540 (13.72) 



iSBX I/O BUS 159 

oo41-1"1 .. ·------::::: ------~ 
, • ~~rm:1i!I3'3 : : :'4~:~2':~ 

0.2r ~rliDlm~4 : : :~:U!I~ ~ ~11L0'050 
l.:1=..I 14-1.----- 1. 861 ______ --.j ... 

o ~O3711~ 
1.980 j 

~O.O5 tHl;~ Tfn L-J 
u u '-'-.-:!~ 

-1 f-0.100 
REF I· 1.700 .1 

: : f 
0.296 

* 
(b) 

FIGURE 4·25 (Continued) 

iSBX Multimodule board PCB thickness 0.070 (1.78) 

iSBX Multimodule component height 00400 (10.16) 

1.170 (29.72) 

f 
0.315 

* 0.125 

f 

Because iSBX Multimodule board component leads protrude 0.090 in (2.28 
mm) max from the solder side, the baseboard must not have any components 
higher than 0.400 in (10.16 mm) max under the iSBX Multimodule board. 
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FIGURE 4-26 44-pin iSBX connector dimensions: (a) 44-pin male connector; (b) 44-pin 
female connector, (Note: All dimensions are in inches, and unless otherwise specified toler­
ances are O.xxpOl, O.xxxp005.) 
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FIGURE 4-26 (Continued) 

4.7.4 ISBX Multlmodule Board Outlines 

The iSBX Multimodule board has two standard board outlines and one varia­
tion, as shown in Figs. 4-31 to 4-33. 

4.7.5 ISBX Multlmodule Board User I/O Connector Outlines 

The top edge of the iSBX Multimodule board can be defined by the designer. 
Figures 4-34 to 4-36 show the suggested top edge connector dimensions for the 
most common designs. " 



162 THE MUL TIBUS FAMILY OF BUS STRUCTURES 

8-BIT 
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FIGURE 4-28 iSBX pin connector numbering. 

4.8 LEVELS OF COMPLIANCE 

The iSBX bus supports various levels of compliance with the full specification_ 
In this section we discuss the variable elements of capability, the compliance 
relations for baseboards and iSBX Multimodule boards, and the notation used 
to describe the level of compliance with the iSBX bus_ 
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FIGURE 4-29 Multimodule board height requirements. 
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FIGURE 4-31 Single-wide iSBX Multimodule board 
dimensions. (Note: All dimensions are in inches, and 
unless otherwise specified tolerances are O.xxpOl, O.xxxp 
005.) 
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FIGURE 4-32 Single-wide (variation) board dimen­
sions. (Note: All dimensions are in inches, and unless 
otherwise specified tolerances are O.xxpOl, 0.xxxp005.) 

·1: 
5.100 • 

0.550 t 0.20 2.20 3.800 ·1 re--
I+----r= -7.50------+l'1 

. ~ 
T 

2.50 
COMPONENT 

t 2.050 SIDE r REf I I 
+-

-

2 

PIN 1 LOCATlON~tD.3DD 0.156 OIAMETERd-
REF 3 PLACES 

110 

1 

FIGURE 4-33 Double-wide iSBX Multimodule board dimensions. (Note: All dimen­
sions are in inches, and unless otherwise specified tolerances are O.xxpOl, 0.xxxp005.) 
t Double-wide (variation) board dimensions. 
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FIGURE 4-34 iSBX Multimodule board with 13/26-pin connec­
tor dimensions. (Note: All dimensions are in inches, and unless 
otherwise specified tolerances are O.xxpOl, O.xxxp005.) 
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FIGURE 4-35 iSBX Multimodule board with 25/50-pin connec­
tor dimensions. (Note: All dimensions are in inches, and unless 
otherwise specified tolerances are O.xxpOl, O.xxxp005.) 
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FIGURE 4-36 iSBX Multimodule board with 13/26- and 20/40-pin 
connector dimensions. (Note: All dimensions are in inches, and unless 
otherwise specified tolerances are O.xxpOl, O.xxxp005.) 

4.8.1 Variable Elements of Capability 

The iSBX bus has flexibility built into its structure to permit the board designer 
to build different systems with modules of varying capabilities. It permits vari­
ations in the following areas: 

1. Data path width 

2. DMA support 

3. Asynchronous transfer control (no MW AIT*) 

DATA PATH 

Both 8- and 16-bit data path products can operate on the iSBX bus. Baseboards 
with 16-bit data paths can support 8-bit only or both 8- and 16-bit iSBX Mul­
timodule boards. 8-bit baseboards can support only 8-bit iSBX Multimodules. 

DMA SUPPORT 
DMA support is optional on both baseboards and iSBX Multimodule boards. 
Both elements must support DMA in order to perform DMA activity. 

INTERLOCKED OPERATION 
The support of MW AIT* is optional on both the baseboards and iSBX Multi­
module boards. Both elements must support MW AIT* in order to perform 
asynchronous data transfers. Typically, baseboards will almost always support 
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the interlocked operation, and some iSBX Multimodules do not require 
MWAIT*. This option allows the use of low-cost single-chip microcontroller 
devices that do not support a ready function. 

4.8.2 Baseboards and ISBX Multlmodule Boards 

In the construction of systems with iSBX Multimodules, it is not necessary for 
all iSBX bus modules to have identical capabilities. For example, a baseboard 
which does not support DMA can be combined with an iSBX Multimodule 
board that does support DMA. The system is functional and reliable, and the 
only restriction is that no DMA operations can occur. It does only standard read 
and write operations. 

The system designer must evaluate the required capabilities of the system 
and compare them with the capabilities of the particular products selected. 
Each product will provide some set of capabilities. A transaction between a 
baseboard and an iSBX Multimodule board must be restricted to use the capa­
bility which both products support. It is the responsibility of the system designer 
to assure the viability of the operations. 

4.8.3 Compliance-Level Notation 

The following notation allows a vendor to succinctly and accurately specify a 
product's level of compliance with the iSBX bus specification. Increasing the 
levels of compliance subsumes the lesser levels for data path. The lack of an 
element specification implies no capability for that element. 

DATA PATH 

D8 8-bit iSBX Multimodule board. 

D16 16-bit iSBX Multimodule board. 

D8/8 8-bit baseboard that can support an 8-bit iSBX Multimodule 
board. 

D16/8 16-bit baseboard that can support only an 8-bit iSBX Multimodule 
board. 

D16/16 16-bit baseboard than can support both 8- and 16-bit iSBX Mul­
timodule boards. 

DMA SUPPORT 

DMA Baseboard or iSBX Multimodule board that can support DMA 
operations. 
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INTERLOCKED OPERATION 

F Baseboard that does not support interlocked operations. This requires all 
operations to be full speed. 

I Expansion module that requires interlocked operations. This requires the 
baseboard to support operations that use MW AIT*. 

COMPLIANCE-LEVEL MARKING 

The compliance levels of a module shall be documented in all product specifi­
cations and optionally marked on the PCB. 

EXAMPLES 
A 16-bit baseboard that supports both 8- and 16-bit iSBX Multimodule boards, 
has DMA capabilities, and provides interlocked operations would be specified 
as follows: 

iSBX bus baseboard D16/16 I DMA 

An 8-bit baseboard that supports interlocked operations but does not support 
DMA would be specified as follows: 

iSBX bus baseboard D8 I 



5 

iLBX Bus 

This chapter provides the basis for a conceptual understanding of the iLBX bus 
and how it serves as an execution extension of the Multibus system bus. Included 
are the logical and physical descriptions of the iLBX bus and the devices that 
connect to the bus. The notation throughout this book is the same as that defined 
for the Multibus system bus in Sec. 2.1. The information in this chapter is based 
on the Intel iLBX Bus Specification (145695 Rev. A). It is recommended that 
anyone designing on the iLBX bus obtain the latest version of the specification 
from Intel Corporation. 

5.1 WHY THE ILBX BUS IS REQUIRED 

When the system bus supports more than one microprocessor, the available 
bandwidth for each microprocessor decreases as additional microprocessors are 
added to the bus. There are two basic methods of handling the bandwidth 
reduction. The typical approach is to ensure that the bandwidth of the bus is 
sufficient to handle all the rpicroprocessors and peripherals expected to be 
attached to the bus. The single-bus approach is demonstrated in Fig. 5-1. The 
problem with this approach is that the bus will not allow the system to migrate 
when faster microprocessor and/or peripheral technologies are available or 
when additional microprocessors are added to the system. As microprocessors 
are added, each must arbitrate for the bus to get at its resources. The overall 
effect is a relative degradation of the system performance. Therefore, the bus 
becomes obsolete very quickly. This can be clearly demonstrated on the Mul­
tibus system bus. An 8-MHz central processing unit (CPU) executing and mov­
ing data on the Multibus system bus utilizes almost the entire bandwidth of the 
bus. If a second CPU is added, only 20 percent increase in overall system per­
formance is realized, because a large amount of CPU time is wasted while the 
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second CPU waits to acquire the bus. If a third CPU is added, virtually no 
additional system performance is obtained, because the third CPU wastes all of 
its time arbitrating for the system bus and never reaches its resources. 

The second method of increasing bus bandwidth is to remove the heavy data 
traffic from the system bus. Data movement from or to high-speed I/O devices 
and code execution are the two major sources that saturate the system bus. The 
Multichannel bus (discussed in Chap. 3) can remove the high-speed I/O 
requirements from the system bus. The iLBX can remove the execution 
requirements for each microprocessor from the system bus when the on-board 
memory resources are insufficient. 

The iLBX bus provides a standard memory extension bus for each Multibus 
system bus SBC. The iLBX bus helps prevent saturation of the system bus by 
removing all or most execution requirements from the system bus. This is done 
by allowing each SHC to extend its memory resources and thereby create a 
virtual single-board computer, which reduces the requirement to use global 
memory resources on the system bus. Figure 5-2 shows a typical Multibus sys­
tem utilizing the iLBX bus. In this illustration SBC 1 is executing code on its 
iLBX bus and SBC 2 also is executing code on its iLBX bus. The global memory 
on the system bus is used for data passing and interprocessor communication. 

SBe 1 MEMORY MEMORY 

A 1 1 ! A 

MULTI BUS SYSTEM BUS 

v 

t t ! 
y 

SBe 2 MEMORY I/O 

FIGURE 5-1 Single-bus system architecture. 



iLBX BUS 171 

r--------------I 
I VIRTUAL SBe I 
I I 
I I 
I I 
I SBe 1 MEMORY I MEMORY 

I I 
I I 
I I 

.L __ I ___ t_~~B~_~ __ I-- J 
A I 

MULTI BUS SYSTEM BUS 

v "r --1--~ -:::u~ -~ ---1---I 
I I 
I I 
I I I SBe 2 MEMORY I 
I I 
I I 

1 

1/0 

I . VIRTUAL SBe I L ________________ J 

FIGURE 5-2 iLBX bus system architecture. 

The iLBX bus allows connection of up to four memory boards, yielding a 
total local expansion address space to 16M bytes. The iLBX bus is unique in that 
it allows a tighter timing exchange between the SBC and the memory resources 
while maintaining a standard interface. 

5.2 LOGICAL DESCRIPTION OF THE ILBX BUS 

The iLBX bus is a standardized execution bus which, when used with the Mul­
tibus system bus, provides an architectural extension of the Multibus system bus. 
A diagram of a typical Multibus bus system utilizing the iLBX bus is shown in 
Fig. 5-2. The key features of the iLBX bus are: 

• Standardized controlled interface 

• 16M-byte local memory expansion 

• 8- or 16-bit data transfers 
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• Primary and secondary master support 

• Mechanical fit with existing Multibus system bus chassis and backplanes 

The maximum transfer rate for the bus is 9.5M bytes per second for 8-bit 
data transfers and 19M bytes per second for 16-bit data transfers. The bus sup­
ports two to five devices and has a total address space of 16M bytes. 

The bus uses a master-slave data transfer approach in that the master initiates 
address and command information for the data transfer and the slave responds 
to this information. One of the five devices that the bus supports must be the 
master. One to four slaves can be added to the bus depending on system mem­
ory requirements. Figure 5-3 shows an example of the iLBX bus with several 
slave memory devices attached to it. 

The master initiates the transfer by placing address-status information on the 
bus and generating an address valid signal. If the master is writing data, it will 
then place data on the bus and generate a data valid signal. The addressed slave 
responds to the data valid signal by generating an acknowledge signal (to the 
master) after it has received the data. If the master was reading data from the 
slave, the addressed slave will generate the acknowledge after it has placed valid 
data on the bus. This is the same type of asynchronous interlocked transfer 
scheme that is used by the Multibus system bus and the Multichannel bus. The 
asynchronous handshake between the master and the slave allows devices of 
varying speeds to coexist on the same bus. Slave memory device 1 in Fig. 5-3 
can have a slower or faster access time with respect to slave memory device 2 
and still accurately transfer data with the master. 

5.2. 1 Bus Devices 

The bus supports three device categories as follows: 

• Primary master 

• Secondary master 

• Slave 

In the following section the requirements and attributes of each device are 
explained. The system requirements of these devices also will be explored. 

PRIMARY MASTER 
The primary master is responsible for controlling all transfers over the iLBX 
bus and controlling the secondary master's access to the bus. The iLBX bus must 
contain one and only one primary master. In Fig. 5-3 the primary master is 
shown driving the address, status, and control lines to the slave devices. During 
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a read data transfer the slaves are driving the data lines, and during a write 
data transfer the primary master is driving the data lines. 

The primary master drives all address, status, and command lines for iLBX 
bus data transfers. The bus supports a simple bus exchange mechanism for one 
additional master called a secondary master. To support this simple bus 
exchange capability, the primary master must monitor the bus request signal 
from a secondary master and drive the bus grant acknowledge signal when it 
is ready to give up the bus. The primary master must also supply the termina­
tion for the required iLBX bus signal lines. A typical primary master is a Mul­
tibus system bus iSBC that also contains an iLBX bus interface. 

An allowed subset of the bus is a primary master that does not support a 
secondary master. In this case the master is called a limited primary master. 
Normally a limited primary master is chosen for a system to lower the cost. By 
not supporting a ~econdary master, the limited primary master can replace 
three-state drivers with normal TTL and also simplify its control logic. The 
limited primary master does not monitor the bus request signals, nor does it 
drive the bus grant acknowledge signal. 

SECONDARY MASTER 
In many applications the primary master cannot supply all the functions or the 
data movement bandwidth required. For these applications a secondary master 
is used. An example of a secondary master is a hard disk controller that is 
allowed access to the memory resources on the iLBX bus. The secondary master 
has the same control features as a primary master but cannot access the bus 
until the primary master gives it the bus. The secondary master's purpose is to 
provide alternate access to the iLBX bus. As its name implies, the secondary 
master must totally rely on the primary master for bus access. The primary 
master is not required to give up the bus until all its requirements have been 
met. A drawback to the secondary master is that it prevents the primary master 
from using the bus once it is given control of the bus. If a secondary master has 
a high utilization of the iLBX bus, it may prevent the bus from meeting its 
primary requirement, which is high bandwidth execution. 

The iLBX bus specification limits the bus to one optional secondary master. 
The limit of two masters simplifies the bus arbitration to a basi~ centralized 
request-grant scheme. When the secondary master requires the bus (Fig. 5-3), 
it asserts the bus request line. When the primary master is ready to give up the 
bus, it asserts the bus grant acknowledge signal. The secondary master may keep 
the bus while it continues to assert the bus request signal. Once it removes the 
bus request signal, it must turn off all bus drivers. When the secondary master 
controls the bus, it must actively drive all the signal lines (except the data lines 
on a data read and the bus grant acknowledge line) until it releases the bus to 
the primary master. The secondary master must not provide any termination 
to the iLBX bus lines. 
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SLAVE 

Slave devices have the memory resources that the primary and secondary mas­
ter require. The iLBX bus supports a maximum of four slave devices with a 
combined addressable space of 16M bytes. 

The slave monitors the address lines for a valid address and, depending on 
the control lines, will either read data from the bus and place the data in the 
addressed memory location or write data to the bus from the addressed memory 
location. The bus utilizes a positive acknowledge interlocked handshake 
between the master and the slave. When the master is performing a data read 
operation, the slave will drive the acknowledge line when it places valid data 
on the bus, thereby permitting it to control the access time. That is, when the 
master is performing a write operation, the slave will drive the acknowledge 
line when it has placed the data into its memory. A typical slave implementa­
tion is shown in Fig. 5-3. The slave is responsible for driving the acknowledge 
line for each accessed data operation and driving the data lines during an 
accessed read operation. 

5.3 BUS SIGNAL DEFINITION 

In this section the signals that make up the iLBX bus structure and how they 
are used to perform the various data transfer operations are described. 

There are 56 signal lines for the 8- and 16-bit data operations. They can be 
broken down into five classes: address, data, control, command, and bus access. 
The bus does not supply any power lines. Power for the devices must come from 
the Multibus system bus. There are seven signal return ground lines. The bus 
also has one reserve line for 8- and 16-bit data interfaces. All of the iLBX bus 
signals are listed in Table 5-6. 

5.3.1 Address Lines 

The bus contains 24 positive-true address lines, AB23 to ABO, which allow a 
maximum address space to 16M bytes. All 24 lines must be driven by the active 
master in some manner during a transfer cycle. The lines are decoded by each 
of the slave devices to determine if the requested resource is in its area, and 
they provide the address to access a unique location on the slave. 

Figure 5-4 shows a basic data transfer cycle, which begins when the master 
places the address on the bus. After the address is valid, the master informs the 
slaves of the valid address by driving the address strobe signal. 

Since the address information does not remain valid during the entire trans­
fer cycle, the slave should latch the address with the falling edge of the address 
strobe signal. Allowing the master the capability of removing the address prior 
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FIGURE 5-4 Write data transfer cycle. 

to cycle completion provides the means for address pipelining. The master may 
place the address of the next cycle on the bus during the current cycle to allow 
the slave additional time to decode the address information. 

5.3.2 Data Lines 

The iLBX data lines, DB15 to DBO, provide a positive-true data path between 
the master and the addressed slave. All 8- and 16-bit data transfers between the 
master and the slave use only the data lines DB15 to DBO for the data transfer. 
The 16-bit-width iLBX interfaces use all 16 lines, and 8-bit-width iLBX inter­
faces use only DB7 to DBO. During a write operation the master is driving the 
data lines and the slave is receiving the data lines. During a read operation the 
slave is driving the data lines and the master is receiving the data lines. The 
timing relations for 8- and 16-bit data transfers are shown in Fig. 5-4. 

It is important to note that, in contrast to the Multibus system bus, the iLBX 
bus cannot simultaneously support different interface widths. As discussed in 
Chap. 2, the Multibus system bus has a swap byte interface. The swap byte 
interface allows 8-bit-width interfaces to transfer data with 16-bit-width inter­
faces. With the swap byte the data is always placed on the low-order data byte 
by the 8-bit CPU. The iLBX bus can support 8- or 16-bit-width interfaces only. 
This implies that if an 8-bit CPU, such as an 8088, is required to transfer data 
with a 16-bit-width interface device, the 8-bit CPU must simulate the 16-bit 
interface. The 8-bit CPU would be required to transfer data on the high byte 
(DBI5 to DB8) for odd addresses and the low byte (DB7 to DBO) for even 
addresses. As will be seen in later sections, signal lines are available to make this 
type of transfer possible. Chapter 10 offers guidelines for designing mixed­
device interfaces. 
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5.3.3 Transfer Parity 

Transfer parity (TP AR *) provides a means of detecting transfer integrity vio­
lations. The support of this signal is optional. When it is used, it operates as an 
additional data line with the same timing requirements as the data lines. The 
iLBX bus uses odd parity defined as follows: When there is an even number of 
1 bits in the transfer data, the transmitting device drives the TPAR* signal low. 

The decision to use parity in a system depends on the cost versus the appli­
cation requirements. If the parity option is selected, then all boards in the sys­
tem must support parity. Parity support adds cost and performance overhead 
to the iLBX interface. 

5.3.4 Control Status Lines 

The iLBX bus has three control status lines that are driven by the master to 
support the data transfer. The read-write (RjW) line informs the slave of the 
direction of the data flow. The byte high enable line (BHEN) is used to inform 
the slave on which part of the data bus the data will be transferred and the 
length of the transfer. In the following sections the uses of these signals are 
described. 

READ-WRITE 
The bus master performing the data transfer controls the direction of the data 
flow with the RjW signal. When the master is writing data to the bus and the 
slave is receiving data, the master will drive the RjW line low. When the master 
drives the RjW line high, the master will be reading the data lines and the slave 
will be driving data on the data lines. 

Timing for the RjW line and the address lines is similar in that the signal 
does not remain valid throughout the transfer cycle. Figure 5-4 shows the rela­
tions of RjW to the other bus signals. After driving the address and control lines 
valid, the master will generate the address strobe signal. The slaves should latch 
the state of RjW with the falling edge of the address strobe. 

BYTE HIGH ENABLE 

The byte high enable (BHEN) signal is an active-high line driven by the master 
and used·on 16-bit interfaces for data transfer size control and alignment. For 
8-bit interfaces the BHEN signal is not used, and all data is transferred on DB7 
to DBO. Table 5-1 shows the byte and word alignments used on the iLBX bus. 
When active, the BHEN signal informs the slave to send or receive data on the 
high-order data byte (DB15 to DB8). 

Table 5-2 is a list of the 16-bit interface data transfer combinations. For the 
16-bit interface, the BHEN line is decoded with the address line ABO informing 
the slave whether the data transfer will be on the low byte (DB7 to DBO), high 
byte (DB15 to DB8), or word transfer (DB15 to DBO). BHEN must be latched 
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TABLE 5·1 Bvte, Word, and Double­
Boundary Definition; 16-Blt Data Frame 

Boundaries Element identifier 

Bit 15 to 8 I 7 to 0 
Byte Byte 1 I Byte 0 
16-bit word Word 

TABLE 5·2 Boundary Selection 

Signal and level 
Segment BHEN ABO 

Byte 1 High High 

Byte 0 Low Low 

Reserved Low High 

Word High Low 

with the address strobe in the same manner as the R/W line. It is important to 
note that the iLBX bus does not support a swap byte, such as the Multibus 
system swap byte. The effect of a "no swap byte" transfer mode forces all inter­
face widths to be the same. The interface widths for all the bus modules must 
be either 8 or 16 bits. 

The BHEN does not remain valid for the entire transfer cycle and therefore 
must be latched with address strobe by the slave in the same manner as the 
R/W line. Figure 5-4 shows the timing relations of these signals to address 
strobe. 

5.3.5 Command Lines 

The iLBX bus has three command lines to control the transfer data cycle. Two 
signals, address strobe and data strobe, are driven by the master to initiate and 
control the cycle. Acknowledge, which is driven by the slave, acknowledges and 
terminates the cycle. These signals are defined in the following section. 

ADDRESS STROBE 
Address strobe (ASTB*) is an active-low signal driven by the master to initiate 
a transfer cycle and to inform the slave that valid address and control status are 
on the bus lines. Since address and status do not remain valid for the entire 
transfer cycle, the slaves also use the falling edge of ASTB* to latch the address 
and control status information. 

Figure 5-4 shows the timing relations for an iLBX bus transfer cycle. 
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1. The master places the address and control status on the bus. 

2. After meeting the specified setup time for address and control status, the 
master drives the ASTB* signal low. Upon receiving the active ASTB* signal, 
the slave, if it is the selected slave, latches the information and begins the 
cycle. If a slave is not selected, it will wait for the next ASTB*, which signals 
the start of a new cycle. 

DATA STROBE 
Data strobe (DSTB*) is an active-low line driven by the master to set up the 
actual transfer of data. The signal is also used by the master to indicate the end 
of the transfer cycle. The DSTB* signal, when used in conjunction with the 
R/W signal, indicates the direction of data flow to the slave. The definition of 
DSTB* varies slightly depending on the direction of the data transfer from mas­
ter to slave (write) or from slave to master (read). 

During a write operation the master informs the slave that valid data will be 
on the bus by driving the DSTB* signal low. Figure 5-4 is an example of a write 
operation. In this figure the active bus master places address and control status 
information on the bus in the manner described for the address strobe operation 
above. 

3. To inform the slave that the cycle is a write cycle, the master places the 
R/W control status line into the write mode prior to issuing the ASTB* 
signal. 

4. After meeting the required setup and hold times for the address, the active 
master indicates that valid data will be on the bus by driving the DSTB* 
line low. 

5. The master then drives valid data on the data lines a specified time after it 
drives DSTB* low. The selected slave samples the data after detecting the 
falling edge of the DSTB* signal and waiting the specified setup time. 

During the read operation the master informs the slave that it can place data 
on the data bus by driving the DSTB* signal low. A read operation is shown in 
Fig. 5-5. In a read operation the master places address and control status on the 
bus in a manner similar to that of the write operation. The main difference is 
that the R/W status signal now indicates a read cycle to the slave. 

3. To inform the slave that the cycle is a read cycle, the master places the 
R/W control status line into the read mode prior to issuing the ASTB* signal. 

4. After the master has met the specified setup and hold times, the master 
drives the DSTB* signal low. 

5. The slave then drives the bus with its data. 
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FIGURE 5-5 Read data transfer cycle. 

ACKNOWLEDGE 

The selected slave drives the acknowledge (ACK*) signal to inform the master 
that the current cycle can be completed. The ACK* signal timing requirements 
can vary with different master-slave combinations. 

There are three basic acknowledge types: (1) acknowledge before data 
strobe, (2) acknowledge after data strobe, but prior to data valid or accepted, 
and (3) acknowledge after data strobe and when data is valid or accepted. 
Acknowledge types 1 and 2 are called advanced acknowledge in that the slave 
issues the ACK* signal before the slave accepts data or places valid data on the 
bus. This type of acknowledge takes advantage of a microprocessor's delay from 
the time of receiving acknowledge to the time of sampling or removing data. 
The first type of acknowledge requires a very tight timing relationship between 
the master and the slave. The second type of acknowledge relaxes some of the 
restrictions placed on the first type. The third type of acknowledge does not 
place any special timing restrictions on the master or the slave. The third type 
of acknowledge is equivalent to the Multibus system bus XACK * signal. 

Since the iLBX bus is an execution bus, it allows for flexible acknowledge 
timing to gain increases in performance. Although the restrictions decrease 
through the three types of acknowledge, so does the performance. Type 1 
acknowledge offers the best and type 3 the lowest system performance. A type 
1 'acknowledge requires a trade-off of a narrow range of compatible boards and 
a more difficult design for increased performance. The type 1 acknowledge is 
inflexible with regard to slaves with varying memory speeds or changes in 
microprocessor clock frequency. The type 3 acknowledge provides the full 
range of board compatibility for simple system upgrade and a simple design 
with relaxed timing constraints, rather than optimum performance. 

Figures 5-4 and 5-5 show basic acknowledge sequences for write and read 
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operations, respectively. In these figures the slave is using the type 2 
acknowledge. 

4. After the master has completed the address portion of the transfer cycle, it 
issues a DSTB* to the bus. 

5. In doing so, it drives data on the data lines. 

6. The slave, upon receiving the DSTB* signal, generates the ACK* signal to 
the master. 

7. After receiving the ACK* signal, the master removes the data and the 
DSTB* signal, which signals the end of the cycle. 

Since this is a type 2 acknowledge, the slave must ensure that its acknowledge 
timing relative to the DSTB* strobe meets the timing requirements of the mas­
ter. Specifically, the slave must ensure that, when it issues the ACK* signal, the 
master will continue to hold data valid on a write so that the slave can complete 
the cycle. During a read cycle the slave's acknowledge timing must meet the 
master's timing requirement for input data. If the acknowledge sequence were 
a type 3, the slave would assert the ACK* signal only when data was valid on 
a read cycle and was accepted on a write cycle. Early type 1 and 2 acknowl­
edges allow for overlap in the data synchronization times of master and slaves. 
The penalty for the early acknowledge is the requirement that a user, during 
system design and integration, understand and modify the master-slave timing 
relationship. 

To optimize system performance, a slave device should provide a means of 
varying its acknowledge timing to match the master timing. In a primary- and 
secondary-master system the type 1 and type 2 advanced acknowledge timing 
must satisfy both master timing requirements. Acknowledge timing during read 
and write cycles with multiple masters is covered in Chap. 9. 

5.3.6 Bus Access Control Lines 

The iLBX bus provides two signals to allow a secondary master access to the 
bus. Secondary-master request is driven by the secondary master when it 
requires access to the bus. Secondary-master acknowledge is driven by the pri­
mary master to grant the bus to the secondary master. Lock, the third control 
signal, allows a primary and secondary master on the iLBX bus to restrict Mul­
tibus ~ystem bus access to a slave board with dual-port memory. 

LOCK 

Lock (LOCK *) is a signal that is driven by the active master to restrict access 
to a dual-ported RAM that is connected to the iLBX bus and the Multibus sys­
tem bus. The master ensures the memory port direction is toward the iLBX bus 
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LOCK* 
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FIGURE 5-6 Lock transfer cycle. 

by driving the lock signal low. By locking the memory port to the iLBX side, 
the master ensures that common data will not be disturbed between accesses, 
which is important when semaphore exchanges are performed in a multiple 
microprocessor system. By locking the bus, the master prevents the dual-ported 
memory from being busy. This guarantees access time to the slave memory, 
which can be important in the support of real-time burst transfers. 

The timing relations for the lock signal are shown in Fig. 5-6. The master 
begins a transfer cycle in a normal manner. If the master desires to lock sub­
sequent data cycles to the given data cycle, it must drive LOCK active prior to 
the removal of DSTB*. This ensures that the following data cycle will be locked. 
The slave will remain locked while the master continues to drive the lock signal 
low. To ensure the next cycle will not be locked, the master must remove the 
lock signal after ASTB* active and prior to DSTB* inactive in the last locked 
cycle. 

Care should be taken when implementing lock on both the iLBX bus and 
the Multibus system bus, because a deadlock situation can occur. The problem 
arises when a locked transfer crosses physical memory boundaries on both buses. 
The sequence is as follows: A Multibus bus master is performing a locked trans­
fer that crosses the boundary into a dual-port memory that is currently locked 
by the iLBX bus master. Simultaneously, the iLBX bus master is performing a 
locked transfer which crosses the boundary into the dual-port memory that is 
occupied by the Multibus bus master. When this situation occurs, neither master 
can get to its resource and a deadlock follows. One way to avoid the deadlock 
is to allow the slave memory to unlock when a physical boundary is left. This 
can cause the corruption of data on the slave memory. Slaves can be designed 
to optionally select either lock mode and thereby allow the system environment 
to dictate which form of lock recognition to use. In either case software may be 
required to prevent system failure. 

SECONDARY -MASTER REQUEST 

The secondary master uses the secondary-master request (SMRQ*) line to 
request the bus from the primary master. The primary master grants control of 
the bus by sending a secondary-master acknowledge (SMACK*) signal to the 
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secondary master. Once the secondary master has control of the bus, it can 
maintain control by continuing to drive the SMRQ* signal. Once the secondary 
master completes its bus operation, it removes the SMRQ* signal. At this point 
the primary master can regain control of the bus. 

SECONDARY -MASTER ACKNOWLEDGE 

The primary master informs the secondary master that the bus can be used by 
driving the SMACK* signal low. The master uses this signal in response to a 
secondary-master request. The master is responsible for keeping SMACK* 
active while the secondary master continues to drive SMRQ* active. Once the 
secondary master removes the SMRQ* signal, the master can remove the 
SMACK* signal. 

Figure 5-7 shows the timing relations of these two signals. 

1. When the primary master receives the SMRQ* signal, it continues to per­
form its operation until it is ready to release the bus. 

2. When the primary master is ready to release the bus, it drives SMACK * low. 
The master must ensure that its drivers are three-stated a maximum time 
after driving SMACK*. 

3. The secondary master, after receiving the SMACK* signal, drives the bus 
address data and control lines after a specified minimum time. 

4. Once the secondary master has the bus, it can retain control until it removes 
the SMRQ* signal. The secondary master must ensure that its address, data, 
and control lines are three-stated when it releases the SMRQ* signal. 

5. The primary master responds by removing the SMACK* signal and driving 
the bus address, data, and control lines. 

MULTIBUS INIT* 

SMACK* 

SMRQ* 

PRIMARY MASTER 
THREE-STATE DRIVERS 

SECONDARY MASTER 
THREE-STATE DRIVERS 

FIGURE 5-7 Bus exchange cycle. 
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5.4 BUS OPERA liON OVERVIEW 

The operation protocol for the iLBX bus has four main parts: 

• Write data operation 

• Read data operation 

• Bus time-out operation 

• Bus transfer operation 

Each primary master, secondary master, and slave uses or participates in one 
or more of these operations. In the following section these operations and the 
device participation in each operation are described. 

5.4. 1. Write Data Operation 

The active master (either primary or secondary) is responsible for initiating the 
write cycle. The cycle is initiated when the master places the address of the 
location to which it wishes to write data on address lines AB23 to ABO and drives 
ASTB* active. The master must meet the minimum address setup time prior to 
driving ASTB*. Upon receiving the ASTB* signal, the selected slave latches the 
address information. The master also places the R/W signal into the write mode 
(R/W = low) prior to ASTB*. 

At this point the slave can react to the cycle in one of three different ways. 
Figure 5-8a to c shows the three timing relations for the slave's ACK* response. 
Figure 5-8c is the timing relation for when the slave generates the ACK* (type 
3 acknowledge) signal after it places the data into the memory location. In this 
case the master initiates the cycle as described above. When the master is ready 
to transfer data, it drives the DSTB* signal active. The master must then ensure 
that data will be valid on the data lines, DB15 to DBO, a maximum of 35 ns 
after DSTB*. The slave in Fig. 5-8c will not drive ACK* until it has accepted 
the data. Once the master receives ACK*, it will remove the DSTB* signal and 
thereby inform the slave that the cycle has ended. 

Figure 5-8b is the timing relation when the slave acknowledges the write 
cycle prior to placing the data into its memory (type 2 acknowledge). The cycle 
is similar to the normal acknowledge described above up to the generation of 
the DSTB* signal. When the slave receives the DSTB* signal, it generates the 
ACK* signal prior to completing the write cycle on board. This type of cycle 
must be statically configured between the master and the slave, and the point 
at which the ACK * signal is sent will vary with the master-slave combination. 
For this cycle to occur, the slave must ensure that, after sending ACK*, the 
master will keep data and DSTB* valid for the minimum time required for the 
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FIGURE 5-8 Write cycles with acknowledge: (a) type 1; (b) type 2; (c) type 3. 

slave to complete the cycle successfully. To configure this system, the user must 
have a good understanding of the master-slave timing relationship of the 
system. 

Figure 5-8a is the timing relation when the slave acknowledges prior to the 
master issuing the DSTB* signal (type 1 acknowledge). This cycle is initiated 
in a manner similar to that of the cycles described above. After ASTB* is sent 
by the master, this cycle differs from the cycles described above. In this cycle 
the slave may generate the ACK* signal any time after receiving the ASTB* 
signal. To use this early acknowledge cycle, the master must guarantee that data 
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and DSTB* are valid some time after ASTB*. The slave must guarantee that it 
can complete the write cycle with the data hold times of an early acknowledge 
cycle. This early acknowledge cycle requires an extremely tight relationship 
between master and slave. It also provides the best performance of the three 
cycles. Configuring a system of this type must be done with extreme care. The 
user must closely examine the master and slave timing requirements before con­
figuring the system. 

When early acknowledge systems with both primary and secondary masters 
are configured, both timings must be taken into consideration. As a rule, the 
early ACK* signal from the slave must meet the timing requirements of the 
fastest master. The requirements for the iLBX system configurations with pri­
mary and secondary masters and with advanced acknowledge are covered in 
Chap. 9. 

5.4.2 Read Data Operation 

The read cycle is very similar to the write cycle except that the master is now 
reading (receiving) data from the memory resource. The active master (either 
primary or secondary) is responsible for initiating the read cycle. The cycle is 
initiated when the master places the address of the location from which it 
wishes to read data on address lines AB23 to ABO and drives ASTB* active. The 
master must meet the minimum address setup time prior to driving ASTB*. 
Upon receiving the ASTB* signal, the selected slave latches the address infor­
mation. The master also places the R/W signal into the re~d mode (R/W = 
high) prior to ASTB*. 

In a manner similar to that of the write cycle, the slave can react to the read 
cycle in one of three different ways. Figure 5-9a to c shows the three timing 
relations for the slave's ACK* response. Figure 5-9c is the timing relation when 
the slave generates the ACK * signal after it places valid data on the data bus 
(type 3 acknowledge). The master initiates the cycle as described above. When 
the master is ready to receive data, it drives the DSTB* signal active. Upon 
receiving DSTB*, the active slave may turn on its data buffers to the bus. The 
slave in Fig. 5-9c will not drive ACK * until it has placed valid data on the bus. 
Once the master receives ACK*, it will remove the DSTB* signal and thereby 
inform the slave that it has accepted the data and that the cycle has ended. 

Figure 5-9b is the timing relation when the slave acknowledges the read 
cycle prior to placing the data on the data bus (type 2 acknowledge). The cycle 
is similar to that of the normal acknowledge described above up to the gener­
ation of the DSTB* signal. Once the slave receives the DSTB* signal, it can 
generate the ACK * signal prior to data valid on the data bus. This type of cycle 
must be statically configured between the master and the slave, and the point 
at which the ACK * signal is sent will vary with the master-slave combination. 
For this cycle to occur, the slave must ensure that, after sending ACK*, the 
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FIGURE 5-9 Read cycles with acknowledge: (a) type 1; (b) type 2; (c) type 3. 

master will not require the data until the slave's data is valid. Normally the 
master's hardware reference manual will specify the time required for data 
valid from its DSTB* signal. Once data has been accepted by the master, the 
cycle ends in the same manner as the normal acknowledge read cycle. To con­
figure this system, the user must have a good understanding of the master-slave 
timing relationship of the system. 

Figure 5-9a is the timing relation when the slave acknowledges before the 
master issues the DSTB* signal (type 1 acknowledge). This cycle is initiated in 
a manner similar to that of the cycles described above. After ASTB* is sent by 
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the master, this cycle varies from the others. In this cycle the slave may generate 
the ACK* signal any time after receiving the ASTB* signal. To use this early 
acknowledge cycle, the master must guarantee that DSTB* is valid some max­
imum time after ASTB*. The slave must guarantee that the master will not 
require the data until its data is valid. As in the other cycles, the slave can not 
place data on the data bus until it receives DSTB*. This early acknowledge 
cycle requires an extremely tight relationship between the master and the slave. 
It also provides the best performance of the three cycles. This type of system 
must be configured with extreme care. The user must closely examine the mas­
ter and slave timing requirements before configuring the system. 

When early acknowledge systems with both primary and secondary masters 
are configured, both timings must be taken into consideration. As a rule, the 
early ACK* signal from the slave must meet the timing requirements of the 
fastest master. The requirements for the iLBX system configurations with pri­
mary and secondary masters and with advanced acknowledge are covered in 
Chap. 9. 

5.4.3 Bus Time-Out Operation 

An iLBX bus time-out allows a read or write cycle to terminate without receiv­
ing an acknowledge from a slave device. Bus time-out is used to prevent the 
bus from locking up whenever a resource does not respond to the address the 
master places on the bus. Generation of the time-out is the responsibility of 
the active bus master. The time-out duration is a minimum of 1 ms from ASTB* 
going active. This cycle is demonstrated in Fig. 5-10. After the master generates 
the address and the ASTB* signal, it generates the DSTB* as in a normal cycle. 
After waiting a minimum of 1 ms from the ASTB* signal for the acknowledge, 
the master terminates the cycle by removing the DSTB* signal. 

Normally a time-out is generated either when there is no resource at the 
address the master placed on the bus or when the resource is unable to respond 
before the master generates the time-out. A dual-port memory slave that is 

ASTB* 

DSTB* 

~----------------------------~I~l----------------
ACK* ~ 

FIGURE 5-10 Bus time-out cycle. 
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MULTIBUS INIT* 

SMACK* 
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PRIMARY MASTER 
TRI-STATE DRIVERS ----------i---~ 

SECONDARY MASTER 
TRI-STATE DRIVERS --------------< 

""'---~ 

FIGURE 5-11 SMRQ* and SMACK* timing relations. 

locked to the Multibus system bus may prevent the slave from responding 
before time-out occurs. In either case it is up to the master to ascertain if a time­
out has occurred and, if so, the manner in which it was handled. The slave must 
be able to handle a premature end of cycle if it could not respond prior to the 
master generating the time-out. 

5.4.4 Bus Exchange Operation 

A bus exchange allows a secondary master to request and take over the bus from 
a primary master. A maximum of two masters (one primary and one secondary) 
may share the iLBX bus. The iLBX bus uses an asynchronous request-acknowl­
edge process to pass control between the two masters. The control signal lines 
for the bus arbitration are SMRQ* and SMACK*. 

The primary master is responsible for controlling the secondary-master bus 
access. The primary master monitors the SMRQ* line and generates the 
SMACK* when it is ready to give up the bus. The secondary master drives the 
SMRQ* signal when it wants the bus and receives the SMACK* signal from the 
master. After power-up initialization, the master has control of the bus. Figure 
5-11 shows the timing relations for a bus exchange. 

In Fig. 5-11, the secondary master requests the bus by driving the SMRQ* 
signal low. The SMRQ* signal is asynchronous to the read or write cycles; there­
fore, it can go low whenever a secondary master requires the bus. After the 
primary master receives the SMRQ* signal, it can release the bus at any time. 
The decision of when to release the bus rests solely with the primary master, 
and there is no maximum time limit on the primary master. When the primary 
master is ready to release the bus, it drives SMACK* low. This indicates to the 
secondary master that the primary master will be off the bus some maximum 
time after it generated SMACK*. 
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Once the secondary master has waited the maximum time, it may take con­
trol of the bus. The secondary master performs transfer cycles in the same man­
ner as a primary master. The secondary master may retain bus control for one 
or more cycles. Control is retained as long as the secondary master continues to 
drive SMRQ*. This allows the secondary master to perform multiple data trans­
fers without returning bus control to the primary master. After the secondary 
master completes its data transfer(s), it returns the bus to the primary master 
by removing the SMRQ* signal. The secondary master must ensure that all of 
its bus drivers are three-stated prior to removing the SMRQ* signal. Once the 
master detects the removal of the SMRQ* signal, it removes the SMACK* signal 
and begins to drive the bus. After releasing control of the iLBX bus, the sec­
ondary master must detect the SMACK* signal going inactive before it can 
request the bus again by issuing another SMRQ* signal. 

Since there can be only two masters on a bus, the arbitration circuitry is very 
simple. In many applications a microprocessor's HOLD/HOLDA lines can pro­
vide the arbitration with minimal overhead. Additional circuits can be added 
to provide more flexibility and performance. Board-level designs and trade-offs 
are covered in Chap. 10. 

5.5 DETAILED ELECTRICAL DESCRIPTION 

5.5. 1 Logical State and Electrical Level Relations 

, The signal names indicate whether the signals are active-high or active-low. If 
the signal name ends with a asterisk, the signal is active-low, and has the fol­
lowing logical state and electrical level relations, in which H = high and L = 
low: 

Logical state 

o 
Electrical level 

H = TTL high 
L = TTL low 

At receiver 

5.25 V ~ H ~ 2.0 V 
0.8 V ~ L ~ -0.5 V 

At driver 

5.25 V ~ H ~ 2.4 V 
0.5 V ~ L ~ OV 

If the signal name has no asterisk, the signal is active-high and has the fol­
lowing logical state and electrical level relations: 

Logical state 

o 
Electrical level 

L = TTL low 
H = TTL high 

At receiver 

0.8 V ~ L ~ -0.5 V 

5.25 V ~ H ~ 2.0 V 

At driver 

0.5 V ~ L ~ OV 
5.25 V ~ H ~ 2.4 V 

These specifications are based on TTL when the power source is 5 V ± 5 per­
cent as referenced to logic ground. 
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5.5.2 Signal Characteristics 

The iLBX bus transmission medium is 60-conductor flat ribbon cable with a 
maximum length of 4 in (10.16 cm). Because of the short length of the bus, 
signal termination other than signal pull-up resistors is not required. To meet 
the low bus noise requirements, the rise and fall times of all signals on the bus 
must not exceed the following requirements: 

Rise time, ns 
Fall time, ns 

Totem pole Three-state 

10 
10 

10 
10 

The settling time for all command and bus control signals after a transition 
is zero. On these lines the ringing cannot go beyond the noise immunity levels. 
These signals are used to determine the state of the bus, and ringing beyond the 
noise immunity levels can cause system failures. Address, data, and status may 
ring beyond the noise immunity levels provided they settle out below the noise 
level to meet the specified signal setup time. Setup, hold, and ringing are sum­
marized in Fig. 5-12. 

~5.45 V 

~20V \ ~O.8V 
======~ __________________ ~A~~======~ ___________ GND 

\1 __ _ 
>-1 V 

(0 ) 

------~~~=======t~--------------------------GND 

r-----+-_I"'""------ HIGH LEVEL 
~2.0 V 

~O.8 V 
========~~========~==~~==========~~LO~W~L~EV~E~L~--GND 

>-1 V 

(b) 

FIGURE 5-12 Setup, hold, and ringing summary: (a) Ringing due to line reflection; 
(b) line-to-line coupling. 



192 THE MUL TIBUS FAMILY OF BUS STRUCTURES 

The high-impedance termination of the iLBX bus reduces the need for high­
current drivers such as 74S240s and 74SS8s. Care should be taken when select­
ing the bus interface drivers for a design. Excessive current from the Schottky­
type drivers can create unwanted system noise which may result in system fail­
ures. The basic rule is to use LS drivers for the bus unless signal delays require 
the use of S drivers. Also, to keep system noise to a minimum, the signal stub 
lengths on the boards should be as short as possible and not exceed 2 in (5.08 
cm) in length. 

5.5.3 Bus Power Specification 

The iLBX bus interface does not support power signals. Power for the bus inter­
face circuitry must come from the Multibus system bus power signals. 

5.5.4 Temperature and Humidity Limits 

All bus parameters and specifications must be met within the following envi­
ronmental limits: 

Temperature 0 to 55°C (S2 to lSI OF); free moving air across the 
iSBC board (200 LFM recommended) 

Humidity 5% to 90% maximum relative (noncondensing); 25 to 
40°C (77 to 104°F) 

Shock SOg force for 11 ms duration three times in three dif­
ferent planes. 

Vibration Sweeping from 10 to 50 Hz and back to 10 Hz at a 
distance of 0.010 in (0.025 mm) peak-to-peak lasting 
15 min in each plane. 

Storage temperature 40 to 70°C (-40 to 104°F) 

5.5.5 Bus Timing 

In this section all the detailed timing specifications for the iLBX bus are 
described. They are summarized in Table 5-S. The timing diagrams show only 
the minimum or maximum values required for each parameter; they define the 
parameters in relation to the signals involved. All timing is measured at 0.8 V 
for low and 2.0 V for high with a specified loading capacitance CL • 

READ OPERATION 

A read operation transfers data from a slave to a primary or secondary master. 
The signal lines involved and the timing specifications are shown in Fig. 5-1S. 



TABLE 5·3 AC Timing Summary2 

Timing 
Ref Parameter description Minimum Maximum Source Note 

tl ASTB. duration (width) 25 M 

t2 Address setup to leading edge of 40 M 
ASTB. 

t3 Address hold after leading edge of 40 M 
ASTB. 

t4 BHEN setup to leading edge of 30 M 
ASTB. 

ts BHEN hold after leading edge of 30 M 
ASTB. 

ts R/W setup to leading edge of ASTB. 20 M 

t7 R/W hold after leading edge of 25 M 
ASTB. 

ts Trailing edge of ASTB. to trailing 10 M 
edge of DSTB. 

t9 Trailing edge of DSTB. to leading 25 M 
edge of ASTB. 

tlO DSTB. duration (width) 50 M 

tn Leading edge of ASTB. to leading 0 95 M 
edge of DSTB. 

tl2 ACK. hold after trailing edge of 0 45 S 2 
DSTB. 

tl3 Leading edge of ACK.to read data 0 tacc S 3 
valid 

tl4 Read data hold time after trailing 0 45 S 
edge of DSTB. 

tIS Leading edge of ACK. to trailing 80 M 
edge of DSTB. 

tIS Leading edge of DSTB. to read data 0 S 
valid 

tl7 Leading edge of ASTB. to write data 80 M 
alid 

tIS Leading edge of DSTB. to write data 45 M 
valid 

t19 Write data hold time after trailing 20 M 
edge of DSTB. 

t20 Leading edge of ASTB. to first 45- t 9 M 6 
sample of ACK.line 

t21 LOCK. setup to trailing edge of 15 M 
DSTB. 

t22 LOCK. Hold after trailing edge of 15 M 
DSTB. 

t23 SMACK. low to three-state drivers in 35 PM 
high-impedance state 

t24 SMACK. low to three-state drivers out 35 SM 
of high-impedance state 

t25 SMRQ. high to three-state drivers in 0 SM 
high-impedance state 
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TABLE 5·3 (Conl/nued) 

Timing 
Ref Parameter description Minimum Maximum Source Note 

t26 SMRQ. high to three-state drivers out 0 PM 5 
of high-impedance state 

t27 SMRQ. high to SMACK. high 0 PM 

t28 SMRQ. low to SMACK. low 0 PM 
t 29 SMACK. high to SMRQ.low 0 SM 

too Leading edge of ASTB. to trailing 1 ms M 7 
edge of DSTB. (abort) 

t31 Write data active after trailing edge 45 M 4 
of DSTB. 

• All times listed are nanoseconds unless otherwise noted. 
• TPAR. timing is the same as DB15 to DBO. 
• M refers to the currently active bus master. 
• S refers to the currently selected slave device. 
• PM refers to the primary master. 
• SM refers to the secondary master. 
1. Board designs can implement either of two transfer rates, optimized and nonoptimized, 
based on the degree of close coupling desired between the master and slave devices. Two factors 
determine the coupling and the degree of optimization realized when the iLBX bus is imple­
mented: the acknowledge acceptance time of the master device and the range of variability in 
the slave device to preacknowledge the data transfer. A master device designed for optimized 
operations must meet both the tll and tl7 maximum times for the write operations and the tll 
maximum time for the read operations. When the master devices meet the required times, the 
slave device is allowed to drive the acknowledge line low any time after the leading edge of 
the address strobe. A master device that does not meet the maximum write time requirements, 
by default, transfers data by using the nonoptimized timing, and the slave device must wait for 
the leading edge of the data strobe before driving the acknowledge line low. See note 3 for the 
slave device timing restrictions. 

2. The selected slave device must stop driving the acknowledge line low immediately upon 
detection of the trailing edge of the data strobe. The 45-ns maximum holdover time listed for 
the acknowledge signal allows for the assumed input-to-output delay for the acknowledge 
driver of 15 ns and the typical pull-up charge time through a 330-0 resistor required to bring 
the acknowledge signal from 0.2 to 2.4 V DC, assuming a worst-case capacitive load of 5 pF. 

3. The slave device should be provided with variable timing capabilities for driving the 
acknowledge line low. For write operations, the slave device can drive the acknowledge line 
low anytime after the leading edge of the address strobe signal subject to the limitations listed 
in note 1. For read operations, the slave device can preacknowledge the data transfer by driving 
the acknowledge line low before it provides valid data on the data lines. Preacknowledgement 
is subject ot the limitations listed in note 1. The amount of variability provided should range 
from 0.0 ns (data valid when the slave drives the acknowledge line low) to the maximum access 
time of the slave's memory resources (tacc). If the board designer chooses not to provide variable 
timing, the slave device must have data valid at the time it drives the acknowledge line low. 

4. The minimum t31 guarantees that a master does not start to drive the data bus (write cycle) 
until the slave has stopped driving the data bus (preceding read cycle). 

5. The t26 timing does not apply during system initialization (for example, when the primary 
master receives the Multibus interface initialization. 

6. The t9 time used for computing t20 is the actual t9 time of the master. The t20 time can range 
from 0 to 20 ns. 

7. The minimum operation abort time is 1 ms. 
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FIGURE 5-13 Read, write, and lock AC timing. 
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The master places valid address a minimum of 40 ns (t2), BHEN a minimum 
of 30 ns (t4), and R/W status a minimum of 20 ns (t 6) prior to the falling edge 
of ASTB*. After the falling edge of ASTB* the master must maintain the 
address information a minimum of 40 ns (t3), the BHEN signal 40 ns (ts), and 
the R/W signal 25 ns (t7)' The master must also guarantee that ASTB* remain 
Iowa minimum of 25 ns (tl)' 

Once the address portion of the cycle has been completed, the slave may 
drive the ACK* line active prior to receiving the DSTB* signal active if early 
acknowledge is used or drive ACK* when DSTB* is driven by the master. If 
the early acknowledge is used, the master must guarantee that DSTB* will go 
Iowa maximum of 95 ns (tll) from ASTB* falling edge. This will ensure that 
the access time will include all the slave's buffer delays. In either case the slave 
may not drive the data bus until 0 ns (t I6) after DSTB* active. The slave's data 
must be valid on the bus for a minimum of 0 ns to a maximum of tacc after 
acknowledge (t13)' The O-ns minimum implies that data is valid when ACK* is 
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generated, while the tace maximum is the earliest acknowledg allowed (that is, 
the maximum access time of the slave board from ASTB*). 

After an active ACK* is received, the master must keep DSTB* active for a 
minimum of 80 ns (tIS)' Once the master removes the DSTB* signal, the slave 
must hold the data valid a minimum of 0 ns to a maximum of 45 ns (t I4) from 
DSTB* inactive. In a similar fashion the slave must remove the ACK* signal 
after DSTB* goes inactive a minimum of 0 ns to a maximum of 45 ns (t I2). The 
times tI2 and tI4 prevent buffer fights or a false acknowledge on the following 
cycle. 

WRITE OPERATION 

A write operation transfers data from a primary or secondary master to a slave. 
The signal lines involved and the timing specifications are shown in Fig. 5-13. 
The address portion of a write cycle is equivalent to a read cycle. The master 
places valid address a minimum of 40 ns (t2), BHEN a minimum of 30 ns (t4), 

and R/W status a minimum of 20 ns (ts) prior to the falling edge of ASTB*. 
After the falling edge of ASTB* the master must maintain the address infor­
mation a minimum of 40 ns (t3 ), the BHEN signal 30 ns (ts), and the R/W 
signal 25 ns (t7)' The master must also guarantee that ASTB* will remain low 
a minimum of 25 ns (t I ). 

Once the address portion of the cycle has been completed, the slave may 
drive the ACK* line active prior to the DSTB* going active if a type 1 acknowl­
edge is used or drive ACK* active when DSTB* is driven active by the master 
for a type 2 or 3 acknowledge. If the early acknowledge is used, the master 
must guarantee that DSTB* will go Iowa maximum of 95 ns (tu) from ASTB* 
falling edge and that data will be valid a maximum of 80 ns (t 17) after ASTB* 
active. In a normal or advanced acknowledge cycle the master must guarantee 
that data is valid 45 ns (tIS) after DSTB* active. 

After an active ACK* is received, the master must keep DSTB* active for a 
minimum of 80 ns (tIS)' Once the master removes the DSTB* signal, it must 
hold the data valid a minimum of 20 ns (t I9) from DSTB* inactive. In a similar 
fashion the slave must remove the ACK* signal after DSTB* goes inactive a 
minimum of 0 ns to a maximum of 45 ns (tI2)' The time tI2 prevents a false 
acknowledge on the following cycle. 

LOCK OPERATION 

The lock cycle, which is used to prevent dual-port access from the Multibus 
system bus side, can be used on either the read or the write cycle. The signal 
lines involved and the timing specifications are shown in Fig. 5-13. A master 
starts a read or write cycle in a normal manner as described above. If the master 
desires to lock the next access to a slave resource, it must drive the lock signal 
active 15 ns (t2I ) prior to DSTB* going inactive. The master may keep lock 
active for as many cycles as necessary, but it must hold the lock signal active a 



iLBX BUS 197 

minimum of 15 ns (t22 ) after DSTB* goes inactive. To guarantee that a cycle 
will not be locked, the master must remove lock 15 ns (t 21 ) prior to DSTB* going 
inactive and hold the lock signal inactive 15 ns (t22) after DSTB* goes inactive. 

BUS EXCHANGE OPERATION 

A bus exchange operation allows a secondary master to request and obtain the 
bus from the primary master. The signal lines involved and the timing specifi­
cations are shown in Fig. 5-14. The request is initiated by the secondary master 
driving the SMRQ* signal active. The request is made asynchronously to any 
data transfers occurring on the bus. The primary master responds by driving 
SMACK* active a minimum of 0 ns (t26) after receiving SMRQ*. The primary 
master must be off the bus a maximum of 35 ns (t23) after driving SMACK * 
low. The secondary master must wait a minimum of 35 ns (t24) after receiving 
SMACK* low before it can drive the bus. Once the secondary master has the 
bus, it may continue to keep the bus provided that SMRQ* remains active. 
When the secondary master has completed its transfer(s), it must ensure that 
the bus drivers are off a maximum of 0 ns (t25) from driving SMRQ* inactive. 
The primary master may remove the SMACK* signal 0 ns (t27) and drive the 
bus a minimum of 0 ns (t26) from receiving SMRQ* inactive. The secondary 
master may request the bus again a minimum of 0 ns (t29) after SMACK* goes 
inactive. 

5.5.6 Receivers, Drivers, and DC Specifications 

In this section the driver type (TTL totem pole, three-state, or open collector), 
the receiver loading, and the driver capabilities are specified. The specifications 
are listed in Table 5-4. 
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FIGURE 5-14 Primary and secondary master bus exchange AC timing. 
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TABLE 5·4 DC Loading Summary 

DC Minimum driver Maximum receiver 
terminationll requirements requirements 

Signal (to +5 V High, Low, Load cap, High, Low, Load cap, 
name Driver type DC) rnA rnA pF rnA rnA pF 

DBl5-0 Three-state 10 kO 0.6 9 75 0.15 2 18 

TPAR* Three-state 10 kO 0.6 9 75 0.15 2 18 

AB23-0 Three-state None 0.4 20 120 0.10 5 30 
RjW Three-state None 0.2 8 75 0.05 2 18 

BHEN Three-state None 0.2 8 75 0.05 2 18 

LOCK* Three-state None 0.2 8 75 0.05 2 18 

SMRQ* TTL IOkO 0.05 2 20 0.05 2 18 

SMACK* TTL None 0.05 2 20 0.05 2 18 

ASTB. Three-state 10 kOb 0.2 9 75 0.05 2 18 

DSTB* Three-state 10 kOb 0.2 9 75 0.05 2 18 

ACK* Open coll. 3300 N.A. 20 45 0.05 2 18 

II All terminators are located on the primary master unless otherwise noted. 

bAdditional AC terminations for ASTB. and DSTB. lines are required on each slave device. Each terminator 
is a series RC (100-{}, 10-pF) network between the signal line and ground. The location of the termination 
network should be as close as possible to the receiver component input. 

5.6 MECHANICAL CONSIDERATIONS 

The Intel iLBX Bus Specification defines all the physical and mechanical con­
siderations required to design iLBX-compatible boards or implement the iLBX 
bus in a system. In the following sections such requirements as form factor, 
connectors, and pin-numbering conventions are described. 

5.6.1 Bus Connector Considerations 

The bus signals are available at the P2 edge connector of the Multibus system 
bus form factor. The iLBX bus uses a mass-terminated flat ribbon cable as the 
interconnect medium between boards. The medium was chosen to provide a 
flexible and low-cost backplane that can be easily retrofitted into existing system 
designs. The flat ribbon allows variable spacing between boards that connect to 
the iLBX bus. Since there are many Multibus bus-compatible backplanes with 
board-to-board spacing ranging from 0.6 to 1 in (1.52 to 2.54 cm), the flat cable 
lessens the need for multiple PCB backplane solutions. Vendors that produce 
iLBX-compatible cable and connectors are listed in Table 5-5. 

BUS CABLE 

The bus interconnect cable uses 28-A WG, 60-conductor, flat ribbon cable for 
both 8- and 16-bit interfaces. The maximum length for the 60-conductor cable 
is 4 in (10.16 cm). The following are the general cable specifications: 
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TABLE 5·5 ILBX·Compalible Cable and Connector Vendor List 

Vendor Vendor part no. Conductors or pins 

iLBX BUS-COMPATIBLE CABLE 

T & B Ansley 171-60 

T & B Ansley 173-60 

3M 3365/60 
3M 3306/60 
Berg 76164-060 

Belden 9L28060 
Spectrastrip 455-240-60 

iLBX BUS-COMPATIBLE RECEPTACLES 

Kelam RF30-2803-5 

T & B Ansley A3020 (609-6026 modified) 

Impedance 100 n ±10% 

Propagation velocity 2.0 ns/ft (6.56 ns/m) max 

Capacitance 15 pF/ft (49.2 pF/m) max 

Voltage rating 100 V DC min 

Insulation resistance 1 X 1010 n min 

BUS CONNECTORS 

60 
60 
60 
60 
60 
60 
60 

60 

60 

The bus interconnect uses 60-pin mass-terminating female receptacles for 8-
and 16-bit iLBX bus interfaces. The female receptacle must have a key block 
compatible with the keyslot specification for the iLBX bus P2 connector. 

BUS CABLE ASSEMBLY 
The cable assembly can have two to five female edge receptables mass-termi­
nated at the flat ribbon cable. The receptable spacing may vary with the num­
ber of boards and the board-to-board spacing. The only restriction on it is that 
the length of the cable assembly cannot exceed 4 in (10.16 cm). Figure 5-15 
shows an example of an iLBX bus interface cable assembly. For mechanical 
reliability and system integrity the connectors must be fastened to the card 
cage-backplane assembly. 

5.6.2 Form Factor Considerations 

Since the iLBX bus normally coexists on a Multibus system bus board, many of 
the mechanical requirements of the Multibus system bus apply to the iLBX bus. 



200 THE MUL TIBUS FAMILY OF BUS STRUCTURES 

The board-to-board spacing, board thickness, component lead length, and com­
ponent height are equivalent to the Multibus system bus specification. Refer to 
the Intel Multibus Specification or Chap. 2 for general mechanical 
specifications. 

CONNECTOR LOCATION AND BOARD OUTLINE 

The 8- or 16-bit iLBX bus interface resides on the Multibus system bus form 
factor P2 connector. The bus signals on the P2 connector are in compliance with 
the IEEE 796 specification and supersede the Multibus system bus P2 definition. 
The four high-order address bits (ADRI4* to ADRI7*) of the Multibus speci­
fication are retained on P2. The battery backup and front-panel control signals 
have been moved to an auxiliary connector, P3. The auxiliary connector defi­
nition is covered in the following section. The Multibus system bus PI connector 
definition is unchanged and is not affected by the iLBX bus definition. Figure 
5-16 illustrates the standard board outline, as defined by the Multibus bus spec­
ification, modified for the iLBX bus. The 8- and 16-bit iLBX bus implementa­
tions use the standard P2 connector as defined by the Multibus system bus 
specification. 

(0) 

FIGURE 5-15 iLBX bus interface cable assembly. 
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PIN-NUMBERING CONVENTION 

The iLBX bus pin-numbering convention is the same as the Multibus system 
bus pin-numbering convention. Figure 5-17 illustrates the iLBX bus P2 pin­
numbering convention. It should be noted that the iLBX bus address and data 
lines are in decimal. The four high-order Multibus address lines that reside on 
the P2 connector retain the hexidecimal numbering. 

4-40 HEX NUT 

\ 4-40 TOOTH ,,\ I LOCK WASHER 

@~, 

FIGURE 5-15 (Continued) 
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The 8- or 16-bit configuration uses the standard form factor 60-pin P2 edge 
connector and occupies 56 of the 60 signals. The iLBX pin assignments for both 
8- and 16-bit interfaces are listed in Table 5-6. The four Multibus system bus 
high-order address lines (pins 55 to 58) retain the standard Multibus system bus 
function and location. 

CONNECTOR KEYSLOT 

The iLBX bus specification contains a keyslot to prevent plugging iLBX bus­
compatible boards into P2 connectors with Multibus system bus battery backup 
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and front-panel control signals. All iLBX-compatible boards must utilize this 
keyslot, which is located between P2 pins 41 and 43. Figure 5-16 shows the 
location and dimensional specification of the P2 iLBX keyslot. 

BATTERY BACKUP AND FRONT -PANEL CONNECTOR 

In order to provide room for the iLBX bus on P2, the Multibus system bus 
battery backup and front-panel control signals were moved to an auxiliary con­
nector. The auxiliary connector (P3) is a right-angle pin connector which 
mounts at the top of the board. The 14 signals assigned to the P3 connector are 
divided into two groups: battery backup (pins 1 to 6) and front-panel control 
(pins 7 to 14). The subset of the P3 connector allows iLBX boards to implement 
either subset or the entire connector. For example, a primary master iSBC board 
with no battery backup requirements may only use the front-panel control por­
tion, whereas a slave memory device needs only to implement the battery 
backup portion. 

Figure 5-18 illustrates the allowed area for P3 placement on a Multibus bus 
form factor. The P3 connector must be located within the specified area to keep 
the interconnecting cable lengths to a minimum. Figure 5-19 illustrates the P3 
connector height, spacing, and pin location requirements. The P3 pin assign­
ments are listed in Table 5-7. The signal lines on the P3 connector are standard 
Multibus system bus signals; they are fully defined in the Intel Multibus 
specification. 
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FIGURE 5-17 P2 connector pin-numbering convention. 
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TABLE 5·6 ILBX P2 Pin Assignments (Decimal Notation except 
Multlbus Address) 

Component side Solder side 

Pin Signal Signal name Pin Signal Signal name 

1 DBO Data line 0 2 DBI Data line 1 

3 DB2 Data line 2 4 DB3 Data line 3 

5 DB4 Data line 4 6 DB5 Data line 5 

7 DB6 Data Line 6 8 DB7 Data line 7 

9 GND Ground 10 DB8 Data line 8 

U DB9 Data line 9 12 DBI0 Data line 10 

13 DB 11 Data line 11 14 DB12 Data line 12 
15 DB13 Data line 13 16 DB14 Data line 14 
17 DB15 Data line 15 18 GND Ground 
19 ABO Address line 0 20 ABI Address line 1 
21 AB2 Address line 2 22 AB3 Address line 3 
23 AB4 Address line 4 24 AB5 Address line 5 
25 AB6 Address line 6 26 AB7 Address line 7 
27 GND Ground 28 AB8 Address line 8 
29 AB9 Address line 9 30 ABIO Address line 10 
31 ABU Address line 11 32 AB12 Address line 12 
33 AB13 Address line 13 34 AB14 Address line 14 
35 AB15 Address line 15 36 GND Ground 
37 AB16 Address line 16 38 ABl7 Address line 17 
39 AB18 Address line 18 40 AB19 Address line 19 
41 AB20 Address line 20 42 AB21 Address line 21 
43 AB22 Address line 22 44 AB23 Address line 23 
45 GND Ground 46 ACK* Slave 

acknowledge 
47 BHEN Byte high enable 48 RjW Read not write 
49 ASTB* Address strobe 50 DSTB* Data strobe 
51 SMRQ* Secondary master 52 SMACK* Secondary master 

request acknowledge 
53 LOCK* Access lock 54 GND Ground 
55 ADRI6* Multibus address 56 ADRI7* Multibus address 

extension line 22 extension line 23 
57 ADRI4* Mutlibus address 58 ADRI5* Multibus address 

extension line 20 extension line 21 
59 Reserved 60 TPAR* Transfer parity 

5.7 LEVELS OF COMPLIANCE 

The iLBX bus supports various levels of compliance of the full specification. In 
this section we will discuss the variable elements of compatibility, the compli­
ance relations for interfaces, and the notation used to describe the level of com­
pliance of the iLBX bus-compatible board. 
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TABLE 5·7 ILBX P3 Pin Assignments 

Lower Row Upper Row 
Pin Mnemonic Signal name Pin Mnemonic Signal name 

1 +5 +5 V DC battery 2 GND Ground 

3 +5 +5 V DC battery 4 GND Ground 

5 MPRO* Memory protect 6 NVE* Non-volatile enable 

7 ALE Address latch enable 8 GND Ground 

9 ARES* Reset switch 10 GND Ground 

11 INT Front-panel INT 12 RE Reserved 

13 PFSN* Power fail sense 14 PFIN* Power fail interrupt 

5.7.1 Variable Elements of Compatibility 

The iLBX bus has, built into its structure, flexibility that permits the board 
designer to build different systems with modules of varying capability. It per­
mits variations in the following areas: 

1. Device type 

2. Data path width 

3. Parity support 

DEVICE TYPE 

The iLBX bus supports four device types that have varying degrees of capabil­
ity. Primary masters, secondary masters, limited primary masters, and slaves 
can coexist on a bus implementation. Also, some iLBX bus-compatible devices 
may support multiple-device implementations. 

DATA PATH WIDTH 

The iLBX bus supports devices with 8- and 16-bit data widths. The bus requires 
that an implementation contain homogeneous device widths. Therefore, an 8-
bit device may communicate only with other 8-bit devices. If an 8-bit CPU 
wishes to communicate with a 16-bit iLBX bus interface, it must emulate a 16-
bit interface. A single device may support multiple data width interfaces. 

PARITY SUPPORT 

Parity support is optional for primary masters, secondary masters, and slave 
devices. If the parity option is chosen, then all transmitting devices must support 
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parity. Similarly, if the parity option is not chosen, the receiving devices must 
not check parity. 

5.7.2 Compliance-Level Notation 

The following notation allows a vendor to specify a product's level of compli­
ance succinctly and accurately with the iLBX bus specification. Increasing the 
levels of compliance subsumes the lesser levels for data path. The lack of an 
element specification implies no capability for that element. 

DEVICE TYPE 

PM Primary master 

SM Secondary master 

LPM Limited primary master 

SL Slave 

DATA WIDTH 

D8 8-bit interface width 

D16 16-bit interface width 

PARITY 

P Parity supported by device 

COMPLIANCE LEVEL MARKING 

The compliance level of a module must be clearly documented in the module 
specification and may be clearly marked on the PCB. 

EXAMPLES 

A primary master that can communicate with 8- or 16-bit interface widths will 
be marked as follows: 

iLBX bus PM D8 D16 

A 16-bit interface width slave that supports parity will be marked as follows: 

iLBX bus SL D16 P 

A 16-bit interface width primary master that can also operate as a secondary 
master will be marked as follows: 

iLBX bus PM SM D16 
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5.8 SUMMARY 

As an integral part of the Multibus family, the iLBX bus provides another archi­
tectural enhancement to a Multibus system design. When a system is properly 
partitioned, the iLBX bus can extend and increase the system performance by 
removing the microprocessor execution requirements from the Multibus system 
bus. 
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6 
Single-Board 
Computers 

This chapter provides the basis for a conceptual understanding of single-board 
computers (SBCs) and the motivations for using them. The effects of SBCs on 
the system structure, as well as the performance effects of SBCs, are examined. 
Included is an example of designing a system on the Multibus system bus by 
using SBCs. 

6.1 DEFINITION OF A SINGLE·BOARD COMPUTER 

Simply stated, an SBC is a basic computer system that is totally self-contained 
on a single-printed-circuit board (PCB) which takes full advantage of very large 
scale integration (VLSI) technology. A typical SBC consists of a microprocessor, 
read-only memory (ROM) sockets, random-access memory (RAM), a parallel 
input/output (I/O) interface, a serial communication interface, priority inter­
rupt logic, and programmable timers. A standard system bus interface is usually 
included to offer compatibility with expansion memory boards, digital and ana­
log I/O expansion boards, peripheral controllers, and other SBCs. 

The concept of an SBC came about because of the advances in the semicon- . 
ductor industry which provided increasing capabilities in lower chip count and 
at lower costs. The evolution of the electronics used to build computer systems 
has also had a major impact on the design methodology used to implement the 
systems. In the 1950s diode-transistor logic (DTL) and resistor-transistor logic 
(RTL) were the current technologies. In a typical design methodology during 
that period the system design task was divided into four sub tasks or phases: 
circuit design, functional unit design, subsystem design, and system integration 
as shown in Fig. 6-1. If a new computer system was desired, the system designer 
would start with the system requirements and divide them into their smallest 
pieces. Each of the pieces would be designed by first building the circuitry 
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blocks, such as counters, adders, and multiplexers, from basic DTL and RTL 
elements such as AND and NAND gates. That was the circuit design phase. 
Then the circuitry blocks were used to create functional units, such as a memory 
controller, an interrupt controller, and an accumulator logic unit. That was the 
functional unit design phase. The functional units typically required that mul­
tiple boards be implemented. Each board was a custom design and could be 
used only in that computer system. The functional modules were then incor­
porated into a subsystem, such as a CPU or memory subsystem, during the sub­
system design phase. The subsystems were racks of boards and, in some cases, 
different boxes. The final step in the design methodology was the system inte­
gration phase, in which all of the subsystems were integrated into a single prod­
uct: a complete computer system. 

The use of a computer in a product was very expensive. Large design engi­
neering staffs and complex manufacturing areas were needed to assemble, test, 
and integrate the final product. The heavy expense in personnel, capital, and 
product cost greatly limited the scope of problems that could be economically 
addressed by using computers. However, the product lifespan was long because 
the computer technology used to implement the system was advancing slowly. 
Lifespans of 5 to 10 years were long enough to get an acceptable return on 
investment. The large investment of engineering and manufacturing time and 
capital resulted in large profits with minimal maintenance costs. 

The integrated circuits introduced in the 1960s saved the designer a great 
deal of time and effort in the area of circuit design; they almost eliminated the 
circuit design phase of the methodology (Fig. 6-1). Subsystems that had previ­
ously required three or four boards could be redesigned on one or two boards. 
Circuitry such as an up and down synchronous counter, which had required 
five or six small-scale integration (SSI) transistor-transistor logic (TTL) devices 
to implement it, could be replaced with one medium-scale integration (MSI) 
TTL device. This made the designer's task simpler, which in turn reduced the 
design and debug time. Incorporating a computer into a product was now less 
costly. The use of in-house-designed computers in a product required a com­
puter design engineering staff to design the functional units, a manufacturing 
area with the ability to build many complex-at least in those days-boards, 

19505 RTL BUILD BUILD BUILD INTEGRATE 
CIRCUITS CPU SUBSYSTEM SYSTEM 

19605 IC BUILD BUILD INTEGRATE 
CPU SUBSYSTEM SYSTEM 

19705 MICROPROCESSOR BUILD INTEGRATE 
SUBSYSTEM SYSTEM 

19805 SBC INTEGRATE 
SYSTEM 

FIGURE 6-1 Evolution of design methodology. 
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FIGURE 6-2 Traditional common-bus computer architecture. 

and, finally, the ability to integrate and test the units as a system. These com­
puter systems were very general machines, and they were customized by pro­
gramming them to perform a particular task. The programming had to be in 
machine language. The cost of incorporating a computer system in a product 
was declining: the design time was shorter, and the cost of the computer itself 
was lower because of the lower component count and lower costs. The decline 
in cost of using a computer system in the end product increased the number of 
ways in which computers could be economically used. 

The most popular system bus architecture was the common- or shared-bus 
approach (Fig. 6-2). The common-bus architecture provided modular memory 
and I/O expansion in support of a single central processing unit (CPU). The 
CPU on the common bus was treated like any other subsystem, but the bus was 
designed to support a particular CPU subsystem. The CPU was the central ele­
ment in the system, since every CPU operation required access to other subsys­
tems through the common bus. An I/O instruction, as an example, required the 
CPU to use the system bus twice to fetch the instruction and operand from 
memory, and then a third system bus cycle was used to transmit the data to the 
I/O port. The system bus was in constant use by the CPU and therefore the 
overall system performance was critically dependent on the system bus respon­
siveness. The timing and control lines of the common bus had to be tailored to 
the signals and timing of a specific CPU or family of CPUs. The system bus 
architecture was almost an extension of the CPU itself. 

In the 1970s the first microprocessor, Intel Corporation's 4-bit 4004, became 
available. Many 8-bit microprocessors, such as Intel's 8008, 8080, and 8085, 
Motorola's 6800, and Zilog's Z80, followed. They made it possible to avoid the 
issue of the CPU design altogether. As component technologies matured, indus-
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try standards were created. These standards started with the dual in-line pack­
aging and logic design families such as TTL. Then standard pin-out configu­
rations for commonly used components were established. Higher-level 
standards, such as signal levels and protocols for communications, also were 
developed. The 8080, 8085, and Z80 microprocessors became industry standards 
because of their wide use in providing standard bus interfaces for peripheral 
devices and standard microprocessor instruction sets. High-level languages for 
microprocessors such as PL/M and BASIC were provided on the 8080, 8085, 
and Z80 instruction set. The system designer now concentrated on building sub­
systems and then integrating them. The software had grown in importance, in 
terms of investment of time and energy and value added by the company, to 
the point of equaling the hardware investment. . 

Now, in order to incorporate a microcomputer in a product, a design engi­
neer with microprocessor experience was needed. There was still the require­
ment to manufacture circuit boards, though of lesser complexity, and to inte­
grate them into an end product and test them. Both the circuit design and 
functional unit design phases could be almost eliminated (Fig. 6-1). The stan­
dardization of the microprocessors supported the production of very friendly 
assembly languages and a few high-level languages which made the software 
task easier. But at the same time, the microprocessors became more and more 
powerful. This made possible the solution of very complex problems. But, in 
turn, solving complex problems required that the software programs become 
more complex in scope, and bigger. The common-bus architecture was still the 
most commonly used approach to designing systems because the system bus was 
again an extension of the CPU bus, which now was a microprocessor. 

The 1970s and early 1980s saw the production of large-scale integrated (LSI) 
and very large scale integrated (VLSI) components such as 8- and 16-bit 
microprocessors, universal synchronous-asynchronous receiver-transmitters 
(USARTs), parallel I/O ports, and memories. These semiconductor technology 
advances made it possible to increase the functional density of the microcom­
puter subassemblies and to drastically reduce their cost and at the same time 
increase their reliability. It became possible to integrate on a single circuit board 
all of the basic elements of the common-bus computer architecture (Fig. 6-3). 
This resulted in the first SBC architecture. Instead of a box containing a mini­
mum configuration of a CPU board, memory boards, and I/O boards, there are 
families of SBCs that provide the same capabilities. Two examples of commer­
cially available SBCs are Intel's iSBC 86/30 board, which provides a high-per­
formance 16-bit microprocessor, an RS-232-compatible serial channel, three 8-
bit parallel I/O ports, 128K bytes of RAM and sockets for up to 64K bytes of 
erasable programmable read-only memory (EPROM), and National Semicon­
ductor's BLC 80/316 board, which has a Z80A microprocessor, 64K bytes of 
RAM, three 8-bit parallel I/O ports, an RS-232-compatible serial channel, and 
up to 8K bytes of EPROM. 
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FIGURE 6-3 The SBC evolution-a first-generation architecture. LSI technology made it 
possible to pack the basic elements of a computer onto a single PC board. 

The mid-1980s produced even more complex VLSI configurations. Devices 
with over 200,000 transistors are available; they allow almost a complete com­
puter to be designed on a single chip. There are highly integrated micropro­
cessors with a faster and more powerful CPU, a clock generator, high-speed 
direct memory access (DMA) channels, a programmable interrupt controller, 
three programmable 16-bit timers, programmable memory and peripheral chip 
select logic, a programmable wait state generator, and a local bus controller. 
The designer simply adds the peripherals and memory needed for the partic­
ular application and has a complete computer system. 

The SBC solves the overall computer design problem. By utilizing an SBC, 
it is possible, when designing a computer system by using SBCs, to go directly 
to the integration phase and almost entirely bypass the circuit design, board 
debugging, and subsystem building phases (Fig. 6-1). The requirements of inte­
grating a processor into a product are now very different from those of the 

, 1960s. A design engineer is still required to integrate the system, but the empha­
sis is now in the area of applications engineering. Manufacturing support is no 
longer required for the microcomputer portion of the product; it is needed only 
for system integration and test. Programming support has evolved to provide 
the microprocessor user with high-level languages such as PL/M, FORTRAN, 
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COBOL subsets, C, PASCAL, and BASIC. As technology has progressed, the 
degree of difficulty and the resources required to create a computer-based solu­
tion to solve an application need have changed drastically. The costs have 
declined to the point of opening up many new application areas ranging from 
controlling elevators and building environments to word processing and com­
puter-aided design. 

6.1. 1 Trends In and Motivations for Using an SBC 

The emerging trends in SBCs are in two basic directions. The first is toward 
higher levels of functional density, throughput, and versatility in a single, ready­
to-use unit. Each year sees the introduction of SBCs with greater capability at 
a relatively constant cost. As an example of the trend, an SBC initially intro­
duced with 4K bytes of RAM would be replaced two years later by one with 
16K bytes of RAM and two years after that by one with 64K bytes of RAM. 
Each new generation provided more and more memory on the same PCB area. 
The second trend in SBCs is for a fixed capability to be offered at lower and 
lower costs over time. Each new generation of SBC provides the same capabil­
ities implemented with fewer components and in a more cost-effective manner. 
As an example, the original SBC might be implemented on a four-layer PCB 
and require 100 integrated circuits (ICs), whereas the next generation might be 
implemented on a two-layer PCB and require only 60 ICs and at a lower cost. 

Both trends are illustrated in Fig. 6-4 by three generations of Intel Corpo­
ration SBCs. The first generation is the iSBC 86/12A, an SBC with a 5-MHz 
8086 microprocessor. Two years after its introduction came two new Intel SBCs. 
The iSBC 86/05 provided about the same capabilities as the iSBC 86/12A but 
at a lower cost. The iSBC 86/14, an iSBC 86/12A look-alike, provided increased 
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FIGURE 6-4 SBC cost-versus­
capability evolution. 
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memory capacity and increased throughput. Two years later, Intel introduced 
two new SBCs, the iSBC 186/03 and the iSBC 286/10. The iSBC 186/03 pro­
vided about the same capabilities as the iSBC 86/05 but at a lower cost, and the 
iSBC 286/10 provided greater memory capacity and throughput than the iSBC 
86/14 at about the same cost. After two generations of SBCs, an SBC user could 
purchase the iSBC 286/10, which was 10 times faster, provided greater relia­
bility with memory protection, and had 16 times more address space than the 
iSBC 86/12A, with which it had software compatibility, at about the same cost 
as the iSBC 86/12A at its introduction. An SBC user who does not require more 
capability but does require lower cost could purchase the SBC 186/03 at about 
half the cost of the iSBC 86/ 12A. 

The effect of these trends has been to bring microprocessor power to low­
and medium-volume applications in which microprocessors were not previously 
cost-effective. There are several reasons for the widespread use of microproces­
sors. A general-purpose system component, such as an SBC, has enabled many 
companies to use the same SBC design in several different applications. This has 
the advantage of high-volume usage across product lines, as in the component 
environment, without SBC modification except for new software in the 
EPROMs and the reconfiguration of some SBC hardware options. The flexibility 
derives from the general-purpose nature of the SBC. Another reason for the 
success of SBCs at low to medium volume is sheer cost efficiency, since very 
few development dollars need to be amortized over a small volume of product. 

As SBC technologies matured, industry standards for system components 
were created or have evolved. One of the industrial standards that has evolved 
is the Multibus/IEEE-796 system bus specification. It defines very clearly the 
bus form factor, the signal line definitions, and the electrical specifications and 
gives design examples. Other industry standards that have evolved or are in the 
process of evolving are the iSBX/IEEE-P595 local I/O expansion bus, the iLBX 
local memory expansion bus, and the Multichannel high-speed DMA cable bus. 
Together, these four structures comprise the Multibus family, which provides 
the system designer with maximum flexibility in designing a microcomputer 
system and provides the user with the advantages of standardized interfaces. 
Another advantage of the Multibus family of standards is the growing support 
by multiple vendors that supply compatible board-level products. There are 
over 120 Multibus family vendors and over 2000 Multibus, iSBX, iLBX, and 
Multichannel products. The result is a very competitive market that offers the 
user high-quality products at low prices. Multiple sources of some Multibus 
family products also have appeared in the marketplace, and they have elimi­
nated the need to use and the risk of using sole-source products. 

Multibus-compatible SBCs available today have an impressive range of capa­
bilities and features that reflect their diversity of application. The performance 
and functions of these SBCs are intimately rel~ted to the performance and func­
tions of the components used to build them. The Multibus system bus is micro-
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processor-independent, and most of the industry's microprocessor components 
have been designed to operate on it. There are available SBCs with all of the 
industry standard microprocessors: Intel's 8080, 8085, 8088, 8086, 80186 and 
80286, Motorola's 6800 and 68000; Zilog's Z80, and National Semiconductor's 
800. The growing popularity of the Multibus structure has encouraged the semi­
conductor industry to supply Multibus-compatible VLSI devices, which pro­
longs the lifespan of the Multibus system bus. There are available off-the-shelf 
SBCs ranging from very low cost versions with 8-bit microprocessors, lK byte 
of RAM, four sockets for EPROMs, and some user I/O all the way up to high­
performance SBCs with 16-bit microprocessors with complete operating system 
support and performance comparable with that of minicomputers. 

Intel Corporation introduced the first 8-bit SBC, the iSBC 80/10, on the Mul­
tibus system bus in 1976, and today the 8-bit SBC still dominates the market­
place. SBCs with 8-bit microprocessors are durable, simple, reliable, and very 
economical. A typical 8-bit SBC is half as expensive as its 16-bit SBC counter­
part. Now in their fourth and fifth generations, the 8-bit SBCs are proven, reli­
able designs that permit projects to proceed without delays. In 1982 more than 
forty-five different 8-bit SBCs were offered by more than twenty vendors; they 
spanned a broad range of performance and price. All those SBCs were com­
patible with the industry standard Multibus system bus and supported by an 
extensive array of Multibus-compatible memory, I/O, peripheral, and com­
munication boards. This wide choice of SBCs permitted the system designer to 
select an off-the-shelf SBC with capabilities that very closely fitted the appli­
cation needs. Some 8-bit SBCs were made by multiple vendors. For example, 
National Semiconductor's BLC 80/10 was slot-compatible with Intel's iSBC 80/ 
10. 

The maturity of the 8-bit SBC product line is reflected in the wide range of 
support of proven standard operating systems and application languages. 
Another indication of 8-bit market maturity is the number of application-spe­
cific SBCs available, such as communication controllers, analog I/O controllers, 
and machine controllers. An example of a dedicated 8-bit design is Intel's iSBC 
569 Intelligent Digital Controller board, which provides up to four micropro­
cessors to share the digital I/O signal processing. The central-control micropro­
cessor is an 8085, and the remaining three microprocessors are MCS-8041/ 
8741's Universal Peripheral Interface (UPI-41) devices. This permits the I/O 
processing algorithm to be tailored to application requirements by program­
ming the UPI-41 microprocessors. The devices off-load the 8085 microprocessor 
from time-consuming tasks such as pulse counting, event sensing, and parallel 
or serial digital I/O data formatting. Another example of a dedicated 8-bit SBC 
is Intel's iSBC 88/45 Advanced Data Communications Processor board, which 
provides three HDLC/SDLC half-full duplex communication channels that 
support RS-232C (including modem support), CCITT V.24, or RS-422A/449 
interfaces. The board is powered by an 8-MHz 8088 with 16K bytes of dual-
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ported RAM and up to I28K bytes of EPROM. There is an on-board DMA 
controller that supports up to 800-kBd (kilobaud) operations. Two iSBX bus con­
nectors are included for user I/O expansion. 

The first Multibus-compatible I6-bit SBC, the iSBC 86/12, was introduced 
by Intel Corporation in 1978. SBCs built with I6-bit microprocessors span a 
wide range of price, performance, and memory capacity that is generally above 
that of 8-bit SBCs. The I6-bit SBC is not as mature as the 8-bit SBC, but it is 
maturing rapidly. Today most I6-bit SBCs are second- or third-generation 
designs. After only 4 years from the introduction of the first I6-bit SBC, in 1984 
there were over 40 different commercially available I6-bit SBCs offered by over 
30 vendors. Most of those vendors were offering only one product, which reflects 
the fact that the I6-bit SBC business was still in the early phase of its life cycle. 
In the coming years the I6-bit SBC user will have many vendors with a large 
selection of SBCs and support products to choose from. There are already sec­
ond sources of I6-bit SBCs. National Semiconductor Corporation provided the 
industry with the first second-source I6-bit SBC when it introduced its BLC 86/ 
12, which is equivalent to Intel's iSBC 86/12. Software support also is growing 
rapidly, and very extensive operating systems and application languages are 
available. 

6.1.2 SBCs: What Level of Integration Should You Buy? 

The success of the SBC concept and the Multibus system bus has led to the 
introduction of a very wide range of standard off-the-shelf SBC products. The 
SBC user has a choice of the level of completion or integration that is purchased. 
Should it be at the lowest level, that of components, and leave all of the design 
and manufacturing to be done, or should it be at a higher level? The four levels 
of integration available are components, SBC boards, packaged systems, and 
turnkey systems (Fig. 6-5). Buying at the lowest level reduces the purchase costs 
and maximizes the value added to the product by the company's engineering, 
manufacturing, and marketing groups. It does not, however, necessarily maxi­
mize the return on investment of the project because of the high amortized costs 
of the design and manufacturing start-up expenses. The alternative is to start at 
a higher level of integration and concentrate the value added in the later stages 
of the process. This approach results in larger purchase costs, but the design and 
manufacturing start-up investment and development time are reduced. Some­
where along the continuum of levels of integration, the profits will be maxi­
mized for your application. 

The two major cost elements to consider, in trying to locate the best point on 
the continuum, are in the areas of design and manufacture. The design costs 
include development, evaluation, test, manufacturing, quality, and product 
engineering and documentation and prototype costs-all the costs of converting 
an idea into a set of documents that the manufacturing area can use. The man-
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ufacturing costs include materials, direct and indirect labor, overhead, test, 
scrap and warranty costs-all the costs of taking the engineering documentation 
and converting it into real products. A medium-complexity SBC costs from 
$200,000 to $300,000 to develop. If this total is amortized over 300 boards, the 
cost per board is $670 to $1000. Over 1000 boards it is $200 to $300, and over 
3000 boards it is $70 to $100. A product lifespan of 2 years is not unreasonable 
with VLSI technology moving so rapidly. Therefore, volume is a very important 
parameter in final board costs. 

Some other areas of concern are time-to-market pressures, lack of qualified 
personnel, and capital equipment costs. The urgent need to meet competition 
with a better, more cost-effective product is decreasing the time-to-market win­
dow and increasing pressure on the product development team. This shortened 
design cycle makes luxuries like chip-level designs for low and medium volume 
or individual system implementations impractical. As a result of the increased 
time-to-market pressure, more and more system designers are turning to stan­
dard off-the-shelf boards. In this approach fewer technically trained personnel 
and less capital equipment are needed to develop a product. 

Another important consideration is to understand what the true added value 
is. Traditionally, value added was seen as consisting largely of design and man­
ufacturing skills; the assumption was that microcomputer hardware is the major 
factor in the value added portion of the product. This view supported custom-
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FIGURE 6-6 Board make-versus-buy comparison. (Note: Cost is 
in thousands of dollars for Multibus size boards, and in hundreds 
of dollars for iSBX size boards.) 

ized boards that were optimized for specific products. Major redesigns were 
accepted because of the very high volume and long-life products. However, the 
perspective of value added has changed. Application expertise has grown in 
importance because software has become the major factor in the value added. 
If the success of the project does not require a unique computer design, the use 
of standard off-the-shelf SBCs frees engineering development resources for use 
on other project opportunities. 

At what level of volume does it pay to stop buying finished boards and start 
building them? A typical make-versus-buy comparison graph for a medium­
complexity SBC is shown in Fig. 6-6. The crossover point is a function of the 
cost structure to develop a new board-level product, but typically it is about 
2000 to 3000 units a year. Beyond that point, the fixed-cost overhead tends to 
dominate the material and direct labor costs of a product. Above it the amor­
tized overhead costs become a small percentage of the total product costs. How­
ever, time-to-market pressures may still be an overriding factor in the make­
versus-buy decision. 

6.2 SBC ARCHITECTURES 

The architecture of computer systems has evolved because of the advances of 
VLSI technology and the introduction of SBCs. Integrating the memory and 
I/O onto the CPU board reduces the CPU's dependence on the system bus. The 
Multibus architecture was designed specifically to take advantage of VLSI and 
SBC technology advances. It uses multiple independent buses in one microcom-



222 THE MULTIBUS FAMILY ARCHITECTURES 

puter system. Each SBC has access to a mixture of the basic computer resources 
by using its local or on-board bus. The local bus definition of an" SBC can be 
changed with each generation of microprocessor to provide an optimum oper­
ating environment. 

6.2. 1 First-Generation Architecture 

The architecture of a first-generation SBC is shown in Fig. 6-3. It was used on 
Intel's iSBC 80/10 and iSBC 80/20, National Semiconductor's BLC-80/05, and 
Zendex Corporation's ZX-80/15. The on-board bus connects the microprocessor 
with a limited amount of local memory and I/O. The Multibus system bus is 
used for expansion of memory and I/O. Each SBC retains its own most com­
monly used resources on its own internal bus. Operations on these local 
resources occur totally on the individual board and require no use of the Mul­
tibus system bus. This reduces the number of requests to use the Multibus sys­
tem bus, since the system bus will be used only when a resource that is not on 
the SBC is needed. The local versus global (on-board versus off-board) distinc­
tion rests on the value of the physical address referenced. If the requested 
resource lies within the address range of on-board memory of I/O (a local ref­
erence), no system bus request is made. Only when the address references a 
global or off-board memory or I/O location is a Multibus system bus request 
initiated. 

This type of SBC architecture permits future VLSI to be integrated into the 
system quickly and easily. In a Multibus-based system any of the boards in the 
system can be 1:1pgraded with a new design incorporating the latest VLSI with­
out affecting the other boards in the system. The new design can change the 
local bus to optimize bus performance with each new generation of VLSI, and 
the Multibus system bus interface provides the tie with the other boards in the 
system. 

One potential disadvantage of this type of SBC architecture is that the 
resources on the local bus can be accessed only by the local microprocessor. No 
other Multibus master, such as an SBC, can access a resource that is local to 
another SBG This type of SBC architecture is desired if the system design calls 
for a resource to be protected from any Multibus access, which is the case for 
most I/O devices. However, memory typically doesn't need to be protected in 
this manner. If, for example, a disk controller has been requested to move data 
from a disk file to a local SBC's memory, the disk controller must first move the 
data into global memory and then have the SBC move the data from global 
memory into its local memory. That wastes system bus bandwidth, and moving 
the data twice slows the system down. Further, the approach requires global 
memory in the system which may not have been needed and so adds unneces­
sary expense. 
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First-generation SBC architecture can be modified to avoid this problem as 
shown in Fig. 6-7. The architecture simply merges two independent board 
designs, that of the CPU board and a memory board, onto a single board. The 
two functions are packaged together on one PCB. This architectural modifica­
tion was used on Intel's Model 225 Intellec Series 11/85 Microcomputer Devel­
opment System CPU board and Zendex Corporation's ZX-85 SBC. The memory 
is connected directly to the Multibus system bus, which makes the memory a 
global resource. Since the SBC does not have local RAM, the microprocessor on 
the SBC must use the Multibus system bus to access the RAM. The architecture 
is basically of the common-bus type, and all bus masters must utilize the Mul­
tibus system bus to fetch instructions or data from the memory. Another bus 
master can access the global memory that is physically on the SBC by gaining 
control of the Multibus system bus and performing a memory read or write 
cycle. 

The disadvantage of the modified SBC architecture is the same as that of any 
other common-bus architecture: the common system bus can rapidly become 
the bottleneck of the system and limit the overall system throughput. All the 
microprocessor's activities must use the system bus, which is slower than if the 
resource were local. The system performance is reduced in two ways: (1) Since 
the memory is global, each access must arbitrate for the system bus and go 
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FIGURE 6-7 A modified first-generation SBC architeture. 
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through two sets of buffers. An advanced acknowledge can not be used. The 
result is a 20 to 50 percent reduction in performance. (2) The system bus band­
width is used for execution of the program code. Fast DMA transfers can easily 
approach the full bandwidth of the system bus during block transfers, so that 
all other masters must be idled for extended periods. Such performance con­
straints can severely limit total system performance. Also, this common-bus 
approach requires one additional complete Multibus interface, or 10 percent of 
the PCB area, and the system performance is slower. However, one less board 
is needed in the system. 

6.2.2 Second-Generation Archltecture-Dual-Port Memory 

Dual-port architecture (Fig. 6-8) has the performance advantages of local mem­
ory resources and eliminates the inaccessibility of those resources. Many second­
generation SBCs, such as Intel's iSBC 86/30 and iSBC 286/10 and National 
Semiconductor's BLC-86/12, have been built with this architecture, which is 
organized around a three-bus hierarchy: the on-board bus, where the micropro­
cessor, ROM, and I/O are connected; the dual-port bus, where the RAM is con­
nected; and the Multibus system bus, where the other system global resources 
are connected (Fig. 6-9). Each bus in the hierarchy can communicate only 
between itself and an adjacent bus, and each bus can operate independently of 
the others. The microprocessor can use its local I/O or ROM resources while 
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FIGURE 6-8 A dual-port memory architecture. 



MICROPROCESSOR ~ 

---.---~ I 
RAM I 

I 

ROM 
+ 1/0 

FIGURE 6-9 Dual-port architecture hierarchy. 

SINGLE·BOARD COMPUTERS 225 

another master on the Multibus system bus is accessing RAM that is connected 
to the dual-port bus. The microprocessor on this SBC can also access the RAM 
connected to the dual-port bus while the Multibus system bus is being used by 
another bus master. The SBC can be designed to optimize the microprocessor­
to-RAM interface and operate at maximum speeds as long as the dual-port 
memory is not busy servicing a Multibus request. 

The disadvantage of dual-port architecture is the hardware overhead 
required to implement the dual port, which consists of additional address and 
data buffers and some logic used to control the access of the dual-ported mem­
ory. In a 16-bit SBC design, the dual-port overhead is about 10 percent. The 
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overhead can be reduced to about 5 percent with future VLSI support and even 
more by integrating into one or two VLSI devices the Multibus interface logic 
and the dual-port logic. 

Another approach to implementing a dual-port architecture with multiple 
boards is to design an SBC by using a first-generation architecture (Fig. 6-3) and 
include an iLBX interface. This SBC and a dual-ported memory board together 
form a virtual SBC with dual-ported memory. An example of the configuration 
is shown in Fig. 6-10. The memory on the expansion board appears to the 
microprocessor as if it were a local resource, since the Multibus system bus is 
not used. The system bus bandwidth is preserved, and the memory access is fast 
because the iLBX bus was designed for high-speed memory accesses. The mem­
ory on the expansion board is also a global resource accessible by any Multibus 
master. A board set in which this type of architecture is implemented consists 
of Intel's iSBC 186/03, an SBC with an 8-MHz iAPX 80186 microprocessor, 
and Intel's iSBC 012CX, a 512K-byte dual-ported memory board. By this 
approach a very high degree of modularity of memory size is provided. The 
dual-ported memory board can be as small as 128K bytes of high-speed RAM 
and as large as 2M bytes. The iLBX bus supports up to four expansion memory 
boards that make from 128K bytes to 8M bytes of RAM available to the micro­
processor on the SBC and the Multibus system bus. 

SBe MEMORY EXPANSION 

RAM 

I LBX BUS DUAL-PORT 

tONTROLLER 

MULTI BUS SYSTEM BUS 

FIGURE 6-10 A dual-port SBe architecture using the iLBX memory expansion bus. 
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6.2.3 I/O Expansion 

In the early days, all SBCs had general-purpose I/O capabilities to fit a wide 
range of applications. VLSI technology was in its infancy, and state-of-the art 
components provided the basic computer resources required in most applica­
tions. SBCs were made by various companies, and they differed primarily in 
the quantity of RAM and EPROM. The I/O was fairly consistent: 24 to 48 
parallel I/O lines and one RS-232-compatible serial communication channel. 
Most of the new VLSI devices that were being developed in the semiconductor 
industry were microprocessors, EPROM, RAM, and some very basic I/O 
devices such as interrupt controllers and timers. New SBCs were designed each 
time a memory component or microprocessor was introduced, but not each 
time a new VLSI I/O device was introduced. 

Things have changed significantly since the early days of SBCs. Now SBCs 
provide solutions for a wide range of specialized applications by taking advan­
tage of VLSI technology that puts tremendous capability on a single chip of 
silicon. There is now VLSI to interface to a wide range of peripherals such as 
CRTs, general-purpose interface bus (CPIB) compatible interfaces, floppy disks, 
hard disks, tape drives, and printers. The selection of the I/O portion of the 
SBC makes the task of designing a general-purpose SBC more complicated. An 
SBC user can purchase standard board products that solve a specific I/O appli­
cation. Two such examples are Heurikon Corporation's MLZ-90A, which 
includes as its I/O a floppy disk controller and a hard disk and tape interface, 
and Intel Corporation's iSBC 88/40, which provides 16 differential or 32 single­
ended analog input channels. However, making the I/O portion of an SBC 
application specific has two effects. The specialized I/O permits the SBC to 
solve a specific problem and provides a single-board solution. But the specialized 
I/O also makes the SBC less general-purpose. The SBC can be used in fewer 
applications within a company, with resulting lower volumes and higher costs. 

The iSBX bus was created to provide a general-purpose solution for complex 
application-specific problems, take advantage of new VLSI technology, and use 
general-purpose low-cost SBCs. It permits the addition of specialized VLSI 
capability to a general-purpose SBC while maintaining the SBC's cost-effective­
ness for many types of applications. The SBC can be designed for a wide range 
of applications with general-purpose I/O. The iSBX bus permits specialized 
I/O modules, iSBX Multimodule boards, to be economically added to the base­
board to create an application-specific SBC. The iSBX bus makes it possible to 
apply new VLSI technology to an SBC without the need for redesigning that 
SBC. Both new and old SBCs, which support the iSBX bus interface, can be 
configured with new iSBX Multimodule boards that incorporate the latest VLSI 
device. 

As an example, a general-purpose baseboard can be designed (Fig. 6-11) with 
a high-speed 16-bit microprocessor, a high-speed math coprocessor, two DMA 
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FIGURE 6-11 A block diagram of a general-purpose SBC. 

channels, eight 28-pin sites which support up to 256K bytes of ROM or 128K 
bytes of RAM, some parallel I/O, two serial channels, and three iSBX connec­
tors. Off-board expansion is provided via the Multibus system bus, the iSBX bus, 
and the iLBX bus interfaces. This general-purpose SBC can be customized to 
be a measurement-and-control SBC by installing an off-the-shelf eight-channel 
analog-to-digital converter iSBC Multimodule and a 16-channel analog input 
channel iSBX Multimodule. The number of channels for each application deter­
mines the number and mix of iSBX Multimodules used. The same SBC can be 
configured to be a communication controller by installing a two-channel serial 
I/O iSBX Multimodule board. Up to eight serial channels, two channels from 
the SBC, and six channels from three iSBX Multimodule boards can be 
supported. 

Another advantage that the iSBX concept provides is new economy of design 
for I/O expansion. In the past, a Multibus-compatible board was required for 
any I/O expansion or added capability-a full-size Multibus board which may 
have provided more board area and cost than was necessary. The designer typ­
ically added capability with this extra PCB area, which increased the board 
cost. It is not cost-effective on a full-size Multibus board to provide only 24 
I/O lines because the cost of the board and bus interface logic is greater than 
the cost of the added capability. The iSBX Multimodule board comes in two 
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small sizes (9.25 and 18.75 in2
; 59.70 and 121.0 cm2

). The system designer has 
three form factors to choose from (Fig. 6-12) to get the most cost-effective solu­
tion: a Multibus board, a single-wide iSBX Multimodule board, and a double­
wide iSBX Multimodule board. This provides for incremental I/O expansion to 
meet the cost and capability goals of the project. 

With multiple iSBX connectors on a baseboard, a true SBC solution is pos­
sible. That eliminates the cost of cabling, connectors, chassis, and card cage. 
Removing the extra components also increases the system reliability, since there 
are fewer things to fail. The longevity of the SBC design is extended, because 
new VLSI technology can be quickly and easily added via the iSBX interface. 
There is also a wide range of off-the-shelf iSBX .Multimodule boards from sim­
ply parallel and serial I/O expansion to floppy disk and video display control-
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lers. Some Multimodules are produced by more than one manufacturer, which 
assures availability when the product goes into production. 

For I/O expansion that requires more PCB area than an iSBX Multimodule 
board has, the Multibus system bus provides a standard board size of 81 in2 

(522.6 cm2
). The larger size permits the board designer more flexibility. Some 

typical Multibus I/O expansion boards are 72 parallel I/O lines, 8 serial com­
munication channels, 48 optically isolated I/O lines, and 16 differential noniso­
lated inputs with a 12-bit analog-to-digital converter and two 12-bit digital-to­
analog converters. These I/O expansion boards interface directly with any bus 
master via the Multibus system bus. 

The maximum data rate into and out of these Multibus I/O expansion boards 
is limited by the Multibus structure. The Multibus can support up to 5 mega­
words per second, but the fastest DMA controller on the Multibus today is about 
one megaword per second. If more bandwidth is required, the Multichannel 
bus could be used to connect high-speed I/O devices directly to the system 
memory and support speeds of up to 4 mega words per second. The interface 
costs of the Multichannel are higher than the cost of the Multibus, but the real­
ized performance is higher and the Multichannel bus can extend up to 50 ft (15 
m) versus 18 in (45.7 cm) for the Multibus system bus. 

6.2.4 Memory Expansion 

There are three ways to expand the memory capacity of an SBC. The first is by 
using a memory Multimodule (Fig. 6-13); the second is by using the Multibus 
system bus and a Multibus memory expansion board; and the third is by using 
the iLBX bus and an iLBX memory expansion board. Each of the three meth­
ods provides different amounts of memory, performance, and cost. 

The memory Multimodule board provides simple, low-cost expansion of the 
memory complement available on a particular SBC. Each memory Multi­
module is designed to operate only on specific SBCs. A typical memory Multi­
module consists of only memory devices. The local memory capacity is doubled, 
since the memory devices on the memory Multimodule are exactly the same 
devices as on the baseboard. Examples of different memory Multimodules are 
Intel's i$BC 300A, a 32K-byte RAM Multimodule implemented with sixteen 
16K-byt~ dynamic RAM devices, and the iSBC 304, a 128K-byte RAM Multi­
module implemented with sixteen 64K-byte dynamic RAM devices. 

Any SBC that supports 16K- or 64K-byte dynamic RAM devices can be 
designed to support one of the above memory Multimodules. The baseboard 
provides the address decode logic and chip select signal. The expansion memory 
appears to the local microprocessor as on-board or local memory and therefore 
can be- accessed as quickly as the existing baseboard memory. The memory 
Multimodule is mounted on -the SBC, and pins that extend from the Multi­
module board mate with sockets. The Multimodule is secured with nylon 
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screws, spacers, and nuts to ensure the mechanical security of the assembly. The 
memory Multimodule approach is the least expensive method of memory 
expansion, in terms of material cost, board area, power, and card cage slot 
space, but its capacity is very limited. 

The second method of SBC memory expansion, via the Multibus system bus 
to a memory board, provides the system with global memory and is the least 
expensive method of memory expansion for large (more than I28K bytes) 
amounts of memory. The Multibus memory expansion market is very compet­
itive. Over twenty vendors provide slot-compatible boards, ranging from 32K 
bytes to 5I2K bytes, with parity or ECC options. The disadvantage of this Mul­
tibus memory expansion is that performance with the SBC is two to three times 
slower than with local memory. Intel's iSBC 86/05 can operate out of its local 
memory with no wait states. When accessing memory on the Multibus system 
bus, the microprocessor typically inserts six to seven wait states. This takes a 
four-clock-cycle fetch and makes it a 10- to II-cycle fetch, or two times slower. 

The third method of SBC memory expansion is via the iLBX bus to a mem­
ory board. The memory can be expanded in a very modular manner by using 
up to four memory expansion boards. An SBC can be configured to have any­
where from I28K bytes to 2M bytes of memory by using 64K-byte dynamic 
RAMS, and 8M bytes of memory can be obtained by using 256K-byte dynamic 
RAMS. This approach eliminates the Multibus memory board's performance 
disadvantage. The iLBX bus was specifically designed to provide a very high 
speed path between the microprocessor and the memory. The bus is dedicated 
to one SBC and need not be arbitrated for each time it is used. It also supports 
advanced acknowledges for improved performance. The disadvantage of this 
approach is the extra expense of another interface. 

6.3 A SIMPLE DESIGN USING sacs 
Digital controllers of industrial equipment are rapidly replacing older analog 
technology controllers. The new digital controllers provide more capabilities 
and higher reliability at a lower cost. In this example we will design a digital 
controller of an agitated heating tank as shown in Fig. 6-14. The controller will 
control two functions of the tank: (1) maintain the level in the tank and (2) 
maintain a specified temperature of the liquid. 

The first step in designing the system is to break the problem into logically 
modular subproblems. Each of the subproblems should be as independent of 
the others as possible to minimize communication and interactions. The tank 
controller can be divided into two control loops that must be maintained (Fig. 
6-15). The first control loop maintains the level in the tank, which can be influ­
enced by the temperature of the liquid, the output flow rate, and the input flow 
pressure. The second control loop maintains the temperature of the liquid in 
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the tank, which can be influenced by the input flow temperature, the ambient 
temperature, and the steam temperature. 

A block diagram of the tank controller functions is shown in Fig. 6-16. The 
control algorithm will produce an output signal which is a function of the error 
signal; that is, the lower the level of the tank, the more the input flow control 
valve is turned on. The feedback variables, the ultrasonic level transducer, and 
the temperature sensor are sampled and compared with the set points, the 
desired temperature and level, to obtain the error signal. The output signal is 
used to drive the control elements, the input flow control valve, and the steam 
control valve. The low-pass filters are used to smooth the input and output trans­
actions. The software algorithms will perform as many functions as possible to 
minimize the hardware product cost; they will provide the low-pass filter, the 
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control algorithm, and data logging. The hardware will perform the rest of the 
functions in the block diagram. 

The hardware requirements for the tank controller are analog input channels 
to read the feedback variables, analog output signals to govern the control ele­
ments, a serial communication channel to establish a connection with a system 
or factory controller, some parallel I/O to read manual set points and to control 
some local status indicators. The data log function can be obtained by sending 
the information to the system controller or by storing the information in bubble 
memory. The bubble memory provides mass storage that is nonvolatile and is 
highly reliable under harsh environments that floppy disk storage can not tol­
erate. The microprocessor must also have high-speed-mathematics capabilities 
to execute the control algorithm and low-pass filtering. 

The hardware implementation of the tank controller (Fig. 6-17) is centered 
around the general-purpose SBC (Fig. 6-11) discussed earlier. The SBC base-
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FIGURE 6-15 Two control loops for the tank controller. 
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FIGURE 6-16 Block diagram of the tank controller functions. 

board provides the microprocessor and the high-speed-mathematics coprocessor 
which executes the control algorithms, the low-pass filter, and the data log func­
tions. The EPROM memory on the SBC is used to store the control program, 
and the RAM is used for data storage. The parallel I/O is used to monitor the 
manual set points and control the local display lights, and one of the two serial 
channels connects the tank controller with the system controller. Three iSBC 
Multimodules must be added to complete the required hardware capabilities. 
The first iSBX Multimodule board is an analog input Multimodule used to mon­
itor the ultrasonic-level transducer and the temperature sensor. The second 
iSBX Multimodule board is a digital-to-analog converter Multimodule used to 
operate the input flow and steam control valves. The third iSBX Multimodule 
board is a bubble memory Multimodule used to store the set-point information 
and tank status (data logging). 

6.4 SUMMARY 

A single-board computer (SBC) is a single printed-circuit board with a self-con­
tained basic computer on it. It is an outgrowth of the advance the semiconduc­
tor industry is making in providing complex functions at lower and lower cost 
and chip count. The SBC concept has become very popular, and an array of 
compatible products, all based on the Multibus system bus, have been made 
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available by many different board-level vendors. Both 8- and 16-bit SBCs have 
evolved, and they provide a wide range of price and performance choices. 

The initial SBC architecture was a straightforward extension of the common­
bus architecture used by most minicomputers and first-generation microproces­
sor systems. It defined two buses: the local, or on-board, bus and the system 
expansion, or Multibus system, bus. The local bus connected all of the resources 
on the SBC together. If expansion of those resources was needed, the Multibus 
system bus was used to connect multiple boards together. The local bus was free 
to change from design to design, whereas the Multibus system bus remained 
constant to provide a solid board-level interconnect structure. 

The disadvantage of that architecture was that local resources, and RAM in 
particular, were not accessible from the system bus. That led to the creation of 
a second-generation SBC architecture, that of a three-bus design: the local bus, 
the dual-port memory bus, and the Multibus system bus. The local bus and the 
Multibus system bus are used in the same manner as in the first-generation SBC 
designs. The dual-ported memory provides access to the RAM on the SBC from 
two different sources: the local microprocessor and any Multibus master. The 
RAM appears to be local to the microprocessor in that the access to it is faster 
than to Multibus memory. The dual-ported RAM is also a global resource, since 
other bus masters can access it. The second-generation SBC architecture pro­
vides a single-board solution with performance equal to that of first-generation 
architecture implementation and also provides global RAM access. 

The SBC makes many price-performance expansion options available when 
additional resources are needed. I/O can be expanded with low-cost iSBX Mul­
timodule boards. If more capacity is required, a Multibus-compatible board can 
be used. If more throughput is needed, the Multichannel cable bus can be used. 
There are also many price-performance memory expansion options. The lowest­
cost and lowest-capacity expansion is with memory Multimodule boards, which 
provide memory expansion for dedicated SBC boards. More capacity can be 
obtained with Multibus memory boards, a very complete family which provides 
modular expansion at very competitive prices. The highest-performance mem­
ory expansion is with iLBX bus-compatible memory boards. SBC and memory 
boards that support the iLBX bus provide very high performance modular 
expansion but at a price higher than that of the Multibus expansion option. 



7 
Multiprocessing 
with Microprocessors 

This chapter provides the basis for a conceptual understanding of a multipro­
cessor system and the motivations for using it. The effects of a multiprocessor 
system on the system structure and the performance effects are examined. 
Included is an example of how to design a multiprocessor system on the Mul­
tibus system bus. 

7.1 DEFINITION OF A MULTIPLE-PROCESSOR SYSTEM 

Not all multiple-microprocessor systems are multiprocessor systems. An exam­
ple of a multiple-microprocessor system that is not multiprocessing is a unipro­
cessor system with an intelligent disk controller that uses a microprocessor to 
control and manage the disk. In this example there are two microprocessors: 
one is general-purpose, and the other (the microprocessor on the disk controller) 
is dedicated to a fixed task, basically performing logic replacement, and is not 
available to the system user. There are many similarities between multiple­
microprocessor systems and multiprocessor systems, since both have the same 
basic purpose: the support of simultaneous operation in the system. The distinc­
tions are often not clearly visible, as is illustrated by the frequent misuse of the 
term "multiprocessor." 

Putting together systems with multiple microprocessors can result in a spec­
trum of capabilities which depends upon the system architecture. As can be 
seen in Fig. 7-1, this spectrum starts at one end with nonstop computing, moves 
through multiprocessing and multicomputing, and ends up with locally distrib­
uted processing. There are three important variables that help define the dif­
ferent classes of multiple-microprocessor systems in the spectrum. They are the 
degree of coupling between the microprocessors in the system (the degree to 
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which one microprocessor needs to know about the other microprocessors), the 
method of allocation of tasks, and the characteristics of the system modules. 

Systems which employ nonstop or fault-tolerant technologies provide very 
large mean time between failure (MTBF) of the order of 400 to 500 years. This 
high level of reliability will enable nearly any user to completely eliminate or 
sharply reduce the cost of computer failure due to maintenance and lost busi­
ness resulting from a down computer. A nonstop computer system ensures con­
tinuous and correct operation, even in the event of a hardware failure anywhere 
in the system, without delays and human intervention. Hardware failures are 
automatically detected and diagnosed. Transient errors are corrected and the 
system continues. Hard errors are logged, the system operator is notified, and 
the bad component is disabled. All the microprocessors in the system are tightly 
coupled with highly integrated complex hardware and software. 

To the right on the multiple-microprocessor spectrum is multiprocessing 
(Fig. 7-2). Further to the right on the spectrum are microprocessor systems that 
are less and less integrated: the individual microprocessors in the system require 
less knowledge of the others, and system architecture is more and more visible 
to the user. Another aspect of moving to the right on the spectrum is lower 
system complexity and therefore cost. A multiprocessor system uses a single 
integrated operating system to allocate tasks and system resources dynamically. 
The microprocessors are tightly coupled and homogeneous; they all have 
exactly the same environment and can execute programs equally. Multipro­
cessing is explored in greater detail later in this chapter. 

Next on the spectrum is multicomputing (Fig. 7-3), which provides less cou­
pling between the microprocessors. The microprocessors in a multicomputing 
system can be heterogeneous: they can have different architectures, and the 
resources available to them can be different. An example of a heterogeneous 
system is one built with Intel's iAPX 80286 and National's NCS 16032, which 
together perform a particular task. Multicomputing requires predetermined 
system partitioning and mainly uses dedicated hardware and software. The sys­
tem load must be balanced during the development of the system and therefore 
cannot be dynamically balanced in real time. This isolation of tasks permits 
simplified development and debugging of the specific executives on each of the 
microprocessors. A multicomputing architecture is less complex and has lower 
risk of implementation than a multiprocessing architecture. Multicomputing 
architectures are discussed in more detail in Chap. 8. 

The last element on the multiple-microprocessor spectrum is the locally dis­
tributed processing (LDP) shown in Fig. 7-4. Here the processing elements are 
very loosely coupled and the user is aware of the different elements in the sys­
tem. There is very little program interaction between the processors, although 
the processors may share read/write (R/W) memory to pass information. Sys­
tems consist of numerous independent heterogeneous process modules for spe­
cific application tasks. Each of the microprocessors is able to access its own 
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memory without any contention from the other process modules, which results 
in as much concurrency or parallelism as possible. These modules, however, 
have limited communication capabilities with one another, and the communi­
cation path is typically through shared non memory resources. They may be 
capable of minimal reconfiguration in the event of a microprocessor failure. 

7.2 WHAT IS A MULTIPROCESSOR COMPUTER? 

An important difference between multiple-computer systems and multiproces­
sors is based on the extent to which common resources are 'shared. A multiple­
microprocessor system consists of two or more separate and discrete computers 
that can communicate, whereas a multiprocessor is a single computer with mul­
tiple processing units. The American National Standard Vocabulary for Infor­
mation Processing defines a multiprocessor as "a computer employing two or 
more processing units under integrated control." The "integrated control" part 
of the definition is extremely important, since a multiprocessor must have a 
single integrated operating system. Two additional concepts need to be added 
to the quoted definition. They are sharing and interaction (degree of coupling), 
which are among the basic capabilities a multiprocessor must have. 

From a hardware point of view, a multiprocessor must have the capability 
for direct sharing of all system resources by all processors, including dedicated 
resources such as mathematics, direct memory access (DMA), other special pro­
cessing units, and the sharing of I/O devices with all microprocessor and mem­
ory combinations (Fig. 7-2). Sharing in this context means that the memory or 
I/O device should be addressable (accessible) by all microprocessors or bus mas­
ters; merely linking together a number of microprocessors or computer systems 
does not result in a multiprocessing system. There may be some qualification 
on the sharing of all resources of a particular type. One exception to the sharing 
concept in a multiprocessor system is the idea of special memory. The special 
memory is partitioned to create some private memory for each of the processors 
for initialization and error recovery activity. The basic concept of total sharing 
is still valid in the general sense. 

The degree of interaction (the level at which one microprocessor can act on 
or with another) is a key distinction between a multiple-microprocessor system 
and a multiprocessor system. In multiple-microprocessor systems the physical 
unit of interaction is usually the complete file or data set; in a multiprocessor 
system the level of interaction allowed is more flexible. In fact, any of the micro­
processors in a multiprocessor system must be allowed to access even the small­
est physical unit, such as a byte in memory. Interaction is possible with all forms 
of data: files, data sets, and even data elements. From an operating system point 
of view, interaction must be possible between complete jobs, tasks, and individ­
ual job steps. 
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Another criterion for multiprocessing is that the microprocessors making up 
the system should not be highly specialized. I/O channels, intelligent dedicated 
I/O controllers, and similar specialized processing units often share main mem­
ory with the central microprocessors, but such configurations do not fit within 
the notion of a pure multiprocessing system. Also, a microprocessor should be 
capable of independent processing. 

It is the combination of these concepts of integrated control, sharing, and 
interaction at all levels that completely characterizes the hardware and software 
required to provide a true multiprocessor system. The following is a summary 
of the characteristics of a multiprocessor system: 

• A multiprocessor contains two or more homogeneous processors of compara­
ble capability. 

• All processors share access to global (common) memory. Some private (local) 
memory is allowed. 

• All processors share access to I/O channels, DMA controllers, control units, 
and I/O devices. 

• The entire system is controlled by one integrated operating system that pro­
vides interaction between processors and their programs at the job, task, data 
set, and data element levels. 

• Each of the processors can do significant computation individually and inter­
act with the other processors at all levels for both hardware and software. 

• The processors are not highly specialized. 

7.3 MOTIVATION FOR MULTIPROCESSING 

System designers historically have preferred multiprocessing over uniprocessing 
as a solution to computer system needs when an increase in system performance 
over that which a uniprocessor system could provide was required. As micro­
processor costs continue to fall, the use of microprocessors in many types of 
multiprocessing systems will increase. The characteristics of the system most 
affected by a multiprocessing architecture are: 

• Throughput 

• Reliability 

• Availability 

• Flexibility 

• VLSI revolution 
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7.3.1 Throughput 

Computation speed has increased by orders of magnitude since the early 1970s. 
The major share of the increase in speed has come from the microprocessor 
system silicon. Figure 7-5 demonstrates the effective performance of a few 
industry-standard microprocessors over time. Speed increases in the silicon 
itself, in the future, will become harder to achieve and will have more effect on 
system structure than ever before. The basic speed of the system components 
will not increase at the same rate as in the past. Because of basic physical laws, 
the silicon is qUickly approaching the upper limit of the speed at which a digital 
computer can transfer information. However, system performance require­
ments continue to grow. If increased speed is required, the system architecture 
must be changed to make better use of the system components. 

The multiprocessor architecture is used to achieve high performance in a 
number of ways. All of the ways share the theme of parallelism of computer 
programs which can be exploited by delegating different tasks or functions to 
separate processors. Given a single job which taxes the resources of the fastest 
microcomputers available, it may be possible to split that job up into a number 
of subtasks (or processes), run each on a different processor, and thereby reduce 
the overall execution time. Weather forecasting is a good example of parallelism 
working well, because the forecast algorithms use matrix multiplication which 
can be done simultaneously. Unfortunately, determining which parts of a pro­
gram can be run in parallel is very difficult. Significant advances in the auto­
matic decomposition of sequential programs into parallel executable tasks are 
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needed before the benefits of parallel processing of a single program can stand 
as the primary reason for using multiprocessing systems. 

Another aspect of increased throughput is efficient utilization of the com­
puter system. Given that the fastest microprocessor cannot handle the job 
stream, the multiprocessor architecture seems like a good idea. The classical 
example is a system that needs to process six jobs. Three of the jobs are 1/0-
bound (the jobs are mostly waiting for an I/O operation to be completed), and 
the other three jobs are processor-bound (the microprocessor is running contin­
uously). If these two groups of jobs were put separately on two uniprocessing 
systems, their throughput would not be optimized. However, on a multipro­
cessing system the jobs would get done much better because the microprocessors 
would always be busy starting I/O operations or computing. Using two proces­
sors as a multiprocessor is usually better than configuring the two as uniproces­
sor systems and partitioning the workload between them in a dynamic load 
environment. That is true because in a multiprocessor system the sharing of 
hardware resources and processor time tends to smooth out effects that are due 
to random variations in job characteristics. In the above example, two micro­
processors are used to execute the six jobs; ideally, the system throughput should 
have doubled. However, it is important to note that system performance is not 
a linear function of the number of processors, because there are contention 
problems in both the hardware and software. 

The concurrency concept can be extended to include operating system func­
tions. A uniprocessor must switch operating states to perform operating system 
functions. A system can be partitioned, as an example, in such a way that all 
the peripheral operations are executed on the operating system processing units 
(Fig. 7-6). The concurrent execution of user programs and operating system 
programs can be extended to include the concurrent execution of multiple-user 
programs (multiprogramming). The idea of multiprogramming is to process a 
number of independent jobs on single or multiple microprocessors and control 
a number of I/O devices in an overlapped or concurrent fashion. In the latter 
case, the turnaround time should be considerably lower. An operating system 
supporting multiprogramming permits programs to be developed separately in 
smaller and simpler tasks. There can be no interaction between the different 
software tasks. A multiprogramming system gives the software being executed 
the appearance of many machines but uses just one. A multiprogramming oper­
ating system has to manage the program division by keeping track of the sta~us 
of each program and the requirements of each application and maintaining the 
correct priority. 

Another method of increasing concurrency in the execution of the software 
is multitasking. It is very similar to multiprogramming, but an interaction is 
allowed to take place between the different software tasks. A form of task-to­
task communication is permitted. An executive is written to manage tasks, 
priorities, and intertask communication. The result is sharing of the micropro-
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cessor I/O to increase efficiency and system throughput. Although multipro­
gramming and multitasking can be accomplished in a uniprocessor system, in 
high-performance systems additional main processors are used to enhance the 
capability for true multiprogramming. The multiprocessor configuration shown 
in Fig. 7-6 is not multiprocessing in the purest sense because the operating sys­
tem processors are dedicated to a particular task. However, the implementation 
of this type of system is less difficult and is a good stepping stone to obtaining 
true general-purpose multiprocessing. 

7.3.2 Reliability and Availability 

In many industrial control applications of computer systems a failure can have 
a dramatic effect on the safety of the people working with the computer con­
troller equipment. A failure can damage the equipment or materials being pro­
cessed (which could result in the loss of millions of dollars). If a uniprocessor 
system is used, a failure is catastrophic; whereas if a multiprocessor is used, the 
remaining processors are potentially available and can work undisturbed to 
yield what is called gracefully degraded service. Redundancy is one of the most 
effective tools for improving the realiability of a computer system; multipro­
cessors have been used to create highly reliable systems. Multiprocessor systems 
can provide a wide range of reliability and availability. The reliability of a 
system is the probability that the system will continue to run useful computa­
tions without a failure over a given length of time. The availability of a system 
is the probability that a system will be available to run useful computations. 

The most basic multiprocessor systems have inherent redundancy in the pro­
cessing portion of the design, in that there is more than one processing unit. 
Failure in one of the processor units can be noncritical-the system can con­
tinue processing with the remaining hardware at a reduced rate. The task on 
that processor may be lost, but the rest of the system can continue to operate. 
Some operational capability may be retained, provided the system can first 
detect and then reconfigure itself to operate without the failed unit. This type 
of multiprocessor architecture increases the availability of the system; but since 
a task can be lost, there is no improvement in system reliability. The hardware 
and software can, however, be designed to support restarting the task of a failed 
processor on another processor and continue from a point close to the point at 
which the failure occurred. This method is very software-intensive. 

Another approach to getting better reliability and availability is a dual-pro­
cessor system in which one processor supports the system operations and the 
other is in standby mode. If the primary processor fails, the standby processor 
is called on to take over the processing responsibilities. Typically the standby 
processor will shadow the primary processor by tracking or duplicating the lat-
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ter's operations. The objective is a takeover without loss of information. In this 
context availability is defined to be the ability to provide service; the computer 
system does what it is supposed to do even after a component in the system 
fails. If a system is built with only one dual-processor pair, it would not be a 
multiprocessor system. It would, however, be a multiple-processor system. The 
main difficulty in this scheme is the detection of a failure in the primary 
processor. 

Even higher reliability and availability in system designs can be obtained by 
increasing the number of processors in the system and letting them vote on the 
answers. All the processors perform the same tasks and then compare answers. 
If any differences are found, the answer in the majority is taken as the correct 
one. This approach is used when very high reliability or a very long MTBF is 
required. The method also provides very high availability. The user does not 
see any effect of a failure in the hardware, since the system automatically com­
pensates for the failure. Only if two failures occur can the system completely 
fail. Since a single failure will not interrupt operation, overall reliability depends 
on the speed with which the repairs can be made before another hardware 
failure occurs. 

In fault-tolerant computing, redundancy, voting, and isolation are essential. 
Replicated hardware and software ensure that the redundant modules will con­
tinue to operate correctly if a failure occurs in one module. The outputs of the 
modules are compared simultaneously. If the answers disagree, the majority 
modules will outvote the faulty module to maintain the validity of the output 
data. For working modules to be able to outvote a faulty module, a minimum 
of three modules must perform the same function. Reliability could be 
enhanced by implementing increased redundancy with voting modules addi­
tional to those needed for triple redundancy, but at an increase in system cost. 
Although communication between them is required, replicated modules must 
be isolated so that a mulfunctioning unit will not affect the performance of the 
other modules. 

7.3.3 Flexibility 

Flexibility is a measure of the ease with which a system configuration can be 
altered. Multiprocessor systems are by their nature flexible and expandable; 
additional modules can be added incrementally and conveniently. The systems 
can be customized to specific applications or grow incrementally in the field to 
meet the ever-changing computer demands of a particular customer. Another 
aspect of flexibility is the ability of a system to reconfigure itself either dynam­
ically under the control of the operating system or statically under the control 
of the system operator at initialization time (when the machine is first turned 
on or after a failure has been detected). 
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7.3.4 VLSI Revolution 

With each new generation of microprocessors, using microprocessors in a mul­
tiprocessor configuration provides the potential for better price-performance 
advantages. Multiple microprocessors can provide higher system throughput, 
better system reliability and availability, improved real-time response, and the 
possiblity of modular expansion. Advances in semiconductor technology have 
inverted the cost of the central processor, the system memory, and I/O boards 
with the higher cost of the peripherals, making the computing power relatively 
cheap. Today, to design for maximum efficiency and economy, the system 
designer must keep the expensive peripherals busy. In computation-bound 
applications (in which the microprocessor execution is the limiting factor) the 
least expensive resource in the system is limiting the overall system perfor­
mance. Microprocessors built into multiprocessing systems can serve to answer 
this need. 

7.3.5 Software Is Stili a Problem 

One of the major bottlenecks of decentralized multiprocessors is the lack of suit­
able operating systems. Since several processes must be coordinated, overhead 
grows. This tends to complicate the operating system very much, and it is pos­
sible that the addition of processors may increase instead of decrease the aver­
age time per computation. 

Reliability is not only a hardware issue; it is also a software problem. If the 
operating system works incorrectly, an unreliable computer system results. The 
operating systems should be written in a high-level language instead of in 
assembly language, which is difficult to understand and maintain. Structure pro­
gramming must be used to produce code that is more legible, better docu­
mented, and easier to check out. The operating system should be built on a 
small kernel with multiple layers of extensions on top of it in order to enhance 
reliability. 

7.4 MULTIPROCESSOR ARCHITECTURES ON THE MULTI BUS STRUCTURE 

The Multibus structure provides the simplest and least complex type of multi­
processor interconnection scheme, a time-shared common bus which provides 
common communication paths connecting all of the functional units. This 
arrangement can be used to assemble most basic multiprocessor systems (Fig. 
7-7). The Multibus interconnection system is totally passive; it has no active 
components such as switches or amplifiers. Transfers operations are controlled 
completely by the Multibus interface on the bus master and bus slave units by 
using time-sharing techniques. A bus master initiates a transfer by first deter-
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FIGURE 7-7 Time-shared common bus. 

mining the availability of the bus, gaining control of the bus, initiating the trans­
fer, waiting for the bus slave to respond, and releasing control of the system bus 
once the bus cycle is completed. 

Multiprocessor systems based on the Multibus structure have a high degree 
of modularity. Hardware changes can be made by simply adding or removing 
bus masters or bus slaves. All that is required to modify the system configuration 
is to physically attach or detach the bus unit. The Multibus masters in the system 
are required to know what other modules are present and also their internal 
addresses, but that requirement is basically a software issue. The quantity and 
type of functional modules are transparent to the Multibus interconnection 
scheme. The scheme is very reliable because of its low complexity, and its cost 
is relatively low because each bus module has a single interface point. However, 
it does introduce a single critical component in the system that can cause a 
system failure as a result of a malfunction in any of the bus interface circuits. 

Another aspect of this simple approach to building a multiprocessor system 
is the system software implication. The complexity of system software is most 
likely to be proportional to the complexity of the hardware. As the software 
becomes more complex, it runs slower. The entire difference in performance 
between a high-capacity hardware system with complex system software and a 
simple medium-capacity alternative with a less complex operating system may 
vanish. 

The benefits of simplicity and low cost do not come free. Limitations to over­
all system performance result from having only one path for all transfers. The 
total overall transfer rate within the system is limited by the bandwidth and 
speed of this single path, the Multibus system bus. Interconnection techniques 
that overcome this weakness, such as crossbar buses or multipart memories, add 
to the complexity and cost of the system. This limitation does confine Multibus­
based systems to smaller configurations. 

Another possible limitation to the single time-shared bus is the single critical 
path it provides for all system elements. A failure of any bus interface brings 
the entire system down. This makes the reliability of the bus and its interfaces 
a very important factor in the system design. The Multibus system bus has been 
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designed with reliability in mind, and given suitable choices of interface tech­
nology and careful implementation of the bus interface circuitry, the limitation 
of possible susceptibility to failure can be eliminated~ 

7.4.1 A Simple Multiprocessor Architecture . 
The simplest JIlultiprocessor architecture that can be built on the Multibus struc-
ture is shown in Fig. 7-8. The primary reason for using this hardware configu­
ration is its greater performance than a single processor system can deliver. 
More performance can be obtained by simply adding more microprocessors. 
However, the addition of extra microprocessors (and necessary memory and 
I/O) does not result in a linear increase in performance. Microprocessors tend 
to have a very high bus utilization (the percentage of the instruction cycle that 
the system bus is required to access the instruction from memory divided by 
the time it takes to fetch and execute that instruction) ranging from 50 to 60 
percent on an 8080 to 60 to 70 percent on a 6800. The 16-bit microprocessors 
have even higher burst bus utilization factors; the 80286 and 68000 are in the 
80 to 90 percent range. Because of this high bus utilization, the system bus can 
be saturated very quickly by only a few microprocessors. Adding more micro­
processors would not improve the system performance; it would have the oppo­
site effect of reducing the system performance because of increased contention 
on and latency to the system bus. There are two ways to solve the bus contention 
problem, both of which center around reducing the required bandwidth of each 
of the microprocessors on the system bus. The first is to add a cache memory 
front end, and the second is to partition the system to have processor-memory 
pairs called functional units. The goal of each method is to reduce the demand 
on the system bus. 

7.4.2 A Cached Memory Architecture 

The goal of a cache-based architecture is to provide a microprocessor with the 
effect of having high-speed memory even though the system main memory is 
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FIGURE 7-8 A simple multiprocessor architecture. 
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slow. Figure 7-9 exemplifies a main and cache memory system in which a high­
speed intelligent memory, the cache memory, is between the microprocessor 
and the slower system memory. The microprocessor appear~ to have very fast 
system memory because the purpose of a cache memory is to always have the 
information requested by the microprocessor. At any given time, the cache 
memory contains as many instructions and data words as the microprocessor 
curren'tly needs. New information, as it is needed, is brought from main mem­
ory to the cache memory, where it displaces old information. The cache mem­
ory is transparent to the programmer and can appear between any two levels 
in the memory hierarchy. 

As microprocessors get faster, their bus utilization will continue to increase 
and cycle times will continue to decrease. The result will be a need for faster 
memory systems. A large-capacity memory system which is cheap and reliable 
can best be implemented by using a dynamic RAM memory system with error­
correction code (ECC) or error-correcting circuitry. A memory system with 
ECC provides high reliability through detection and correction of single-bit 
errors. The term ECC refers to a data-encryption scheme that attaches a num­
ber of ECC check bits to every memory location (six for 16-bit words). The 
check bits are used to verify that the data in the memory has not changed since 
it was written. 

In terms of access and cycle times, dynamic memory and its controller tech­
nology will always be slower than the microprocessors. A· cache memory 
between the microprocessor and its dynamic RAM memory system will make 
the cache memory system access time seem fast. The modularity of the memory 
in cache-based systems is excellent. The memory is easily expandable, and the 
expanded memory can be easily shared by all microprocessors in the system, 
since all the main memory can be part of a central pool. 

Cache-based systems work well if (1) executing programs tend to reuse 
instructions and data and (2) programs tend to use instructions and data which 
are stored near recently used instructions and data. The first property, reuse, 
means that once information is fetched from main memory to cache memory, 
subsequent accesses to it are at fast cache-memory speed because the data is 
already in the cache memory. The second property, locality, means that if a 
request to main memory is satisfied by bringing into cache memory a block of 
information larger than is immediately needed, the additional information is 
likely to be needed soon, and its presence in cache will save references to the 
main memory. 

Cache designs in multiprocessor systems can be very complex and have 
many variables which affect the cache architecture performance and therefore 
the system performance. Only a brief overview of cache designs will be given 
here. Special consideration must be given by a designer to solving classical cache 
problems such as data coherence (cache data and main memory data becoming 
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different because another device changes main memory without having all 
caches updated) and locked bus operations (guaranteed exclusive access to a 
memory location). 

Two major parameters in a cache design are cache capacity and the speed 
or rate at which the cache can be filled. The cache capacity is the number of 
memory blocks that can be resident in the cache at any given time. The rate at 
which the cache can be filled is the data transfer rate of the cache-system mem­
ory combination. 

Selection of the appropriate cache system parameters can have a dramatic 
impact on system performance. Performance can be roughly estimated with a 
simple model which predicts the performance of a single microprocessor in the 
system as a function of its effective access time from the memory system. The 
cache hit ratio (CRR) is the probability that an addressed word is in the cache 
memory; actual is the effective microprocessor performance or the total time 
necessary to fetch and execute an instruction from main memory. A micropro­
cessor's actual performance is a function of the wait states, which are governed 
by the effective access time of the memory system. A no-wait-state performance 
results in actual = 1; infinite-wait-state performance results in actual = O. 
Table 7-1 shows the actual-versus-wait states of an 8086 microprocessor. The 
performance of a cache-based microprocessor can be predicted as follows: 

Performance factor = CRR + (1 - CRR)(I/ actual) 

and 

Performance = l/performance factor 

CRR can vary between 0 and 1, where 0 means the cache memory never 
has the data the microprocessor needs and must go to main or system memory 
for each request. Thus, the cache architecture has no effect on system perfor­
mance and the microprocessor will operate at its actual performance level. A 1 
means the cache always has the data the microprocessor needs and is therefore 
running at maximum performance. The effect of the CRR on the performance 
of an 8086-based system, as a function of the wait states required to execute 
from the main memory, is shown in Fig. 7-10. This figure shows that if the CRR 
can be maintained above 0.90, the difference between a one-wait-state and a 
five-wait-state performance is reduced to less than 7 percent, at a CRR of 0.8 
the difference is about 10 percent; and at a CRR of 0 the difference is about 40 
percent. The cache architecture can improve the effective access time of main 
memory by two to three times as long as the CRR can be kept above 0.95. The 
designer must trade off cache memory cost (bigger cache memory sizes produce 
higher CRRs) and system throughput. 

Another measure of performance is the effective access time of the memory 
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FIGURE 7·10 8086 performance in a cached system. 

system as seen by the microprocessor. Effective access time is the average of all 
access times, which can be determined as follows: 

Effective access time = eHR X cache access time 
+(1 - eHR) X main memory access time 

The eHR is a complex function of the cache design parameters and the 
application program behavior. Trade-offs must be based on the cost-perfor­
mance goals of each project. Program behavior is the most difficult data to 
obtain. Historically it has been derived by tracing typical programs and then 
simulating different cache models with the above data and implicitly getting 
eHR. 

7.4.3 A Functional Partitioned Multiprocessor Architecture 

Another approach to reducing the system bus bandwidth requirements is to 
partition the system into functional units (Fig. 7-11). Each functional unit can 
perform any of the system functions or tasks. All of the resourc~s required to 
perform any system task are located on the functional units (such as a math 
coprocessor or a DMA controller) or are shared (such as disk I/O). All of the 
functional units must be homogeneous; that is, they must be identical. The units 
must have the same amounts of ROM, RAM, and local I/O and have equal 
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access to all shared resources so that any functional unit can perform any of the 
tasks the system executes. This reduces the use of the Multibus system bus to 
data movement and signaling between processing elements (interprocessor 
communications). There is a single ready list from which all the functional units 
get their task assignments. 

The type of architecture described above provides very high system through­
put. Performance of each of the individual functional units is basically inde­
pendent of the number of functional units in the system. Once the task is loaded 
into its memory, the functional unit can operate at its maximum rate, since all 
the resources needed are local. The mqst important resource in terms of per­
formance is local memory that the microprocessor can immediately access. The 
local memory eliminates contention in the system and speeds up each memory 
access. Typically in a functional unit architecture, the overall system through­
put will be limited by I/O throughput, not by the microprocessor throughput. 
The goal is to maximize the local or on-board activity and minimize the system 
bus activity. 

Since the goal is to maximize local or on-board resource usage, the role of 
the Multibus system bus changes. In any multiple-microprocessor system, the 
system bus can be used in three different ways: as an execution bus, as a data 
movement bus, and as an interprocessor message-passing bus. For typical pro­
grams the bandwidth required on the system bus, in order of need, is for exe­
cution, data movement, and message passing. The bandwidth requirements for 

. each of the different ways in which the bus can be used are functions of the 
particular environment the system is in. In the simple time-shared common-bus 
architecture, all the microprocessors execute all their code over the system bus. 
In the time-shared common-bus configuration, the Multibus structure is used 
primarily as an execution bus. The system bus is used to move data and pass 
messages, but a high percentage of time the system bus is used as an execution 
bus. In the cache-based architecture the goal is to eliminate execution on the 
system bus and so increase the available bandwidth of the system bus. The Mul­
tibus structure is used primarily to move data and can be called a data move­
ment bus. In a functional unit-based architecture the goal is to eliminate exe­
cution and greatly reduce the data movement in the system, and thereby 
increase the available bandwidth of the system bus. The Multibus structure is 
used primarily to pass messages to the different functional units in the system 
and can be called a message bus. 

System throughput is typically defined as the number of instructions exe­
cuted per second by the system. This number, in a multiprocessor system, is 
usually limited by the throughput or bandwidth of the system bus. The func­
tional unit architecture trades off cost to minimize the required system bus 
bandwidth and maximize performance of each of the functional units. The 
major cost comes in having multiple sets of memory and multiple copies of the 
operating system. The memory in the system cannot be pooled because all of 
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the memory must be local to each functional unit. The system must be statically 
configured in such a way that each functional unit has the worst-case memory 
needs-the configuration of programs that requires the most memory at the 
same time. This type of architecture takes advantage of inexpensive VLSI to 
keep the expensive peripherals busy. 

The functional unit architecture is based on the concept that all the resources 
required by a functional unit can be local or shared. Some of the resources, such 
as memory and mathematics, must be local, which means they must be inte­
grated onto the SBC. The size of the SBC PCB is fixed by the Multibus speci­
fication; the number of devices that fit on a single board is therefore limited. If 
a system needed a functional unit with more memory than could fit on standard 
Multibus-size boards, it could not be implemented. The iLBX bus was designed 
to solve that problem. This bus allows an SBC to expand its local memory with­
out using the Multibus system bus. It provides a tightly coupled, high-band­
width connection between the microprocessor and its memory (Fig. 7-12). Each 
of these units is, in effect, a complete microprocessor system supporting all the 
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memory the microprocessor needs. The iLBX structure permits the architec­
tural benefits of the SBC concept to be preserved. 

The iLBX bus supports up to four memory boards. With 512K-byte ECC 
memory boards, a functional unit can have over 2M bytes of local memory. The 
expansion memory boards can be dual-ported, with one port connected to the 
iLBX bus and the other to the Multibus. An SBC and dual-ported iLBX memory 
board configuration provides all the advantages of having local high-speed 
memory, as well as the advantages of having a shared memory. This type of 
configuration also uncouples the microprocessor design from the memory 
design. When new memory devices become available, a new memory board 
can be designed without affecting the microprocessor board design. 

7.5 SYSTEM BUS REQUIREMENTS FOR MULTIPROCESSOR SYSTEMS 

The structure that connects all the system resources together is the Multibus 
system bus, which is also called the system bus. The basic requirements on the 
structure to support multiprocessing and sharing of resources are to: 

• Share system resources such as memory and I/O 

• Provide an interprocessor signaling mechanism 

• Provide an efficient bus-arbitration scheme 

7.5.1 Shared System Resources 

A shared resource is part of the system which is required by more than one of 
the system bus masters and therefore is a possible source of contention. The 
Multibus structure provides the capacity for any system bus master to (1) control 
and transfer data to and from any memory location, (2) pass bus control or 
ownership to another bus master (such as a microprpcessor, DMA, or I/O chan­
nel controller module), and (3) access any memory location. Typical shared 
resources are the Multibus backplane, memory and I/O, programs, data buffers, 
data files, queues, and run-time variables. 

7.5.2 An Interprocessor Signaling Mechanism 

To ensure the integrity of data that is shared while being accessed by one micro­
processor, there must be a hardware lock that can be used to prevent another 
microprocessor from accessing the data while it is being used. This lock permits 
a microprocessor to perform multiple operations on a memory location and be 
guaranteed that no other processor will be able to access the memory. On top 
of this lock function, semaphores or test-and-set flags can be built in memory. 
Conflicts over shared resources can be resolved via the semaphore procedure. 
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The requesting microprocessor tests the status of the semaphore by reading a 
memory location, which is simply a resource-busy indicator. If busy (the mem­
ory location contents are alIi's), the requester must wait. If not busy (the mem­
ory location contents are all O's), the sempahore is set to busy by writing alli's 
in the memory during the access to the resource and then reset when finished. 
The lock function permits the microprocessor to perform a read-modify-write 
operation as if it were one instruction, even though it is actually two separate 
operations, a read and then a write. 

Another method of interprocessor signaling is the use of interrupts. Each 
microprocessor must have the capability to signal or interrupt another to request 
that a ta* be done or to inform that a task is completed. The Multibus supports 
a limited number of interrupt lines. Each external device is preassigned to indi­
vidual processors via hard-wired interrupt lines. 

7.5.3 An Efficient Bus-Arbitration Scheme 

Arbitration entails the use of the bus control logic to accept requests from bus 
masters, perform the arbitration, and inform the bus masters of its decision. The 
Multibus system bus provides two basic methods of arbitration: serial, which is 
a decentralized arbitration method (the arbitration logic is distributed through­
out the bus masters), and parallel, which is a centralized arbitration method (the 
arbitration logic is a self-contained hardware module). Both are discussed in 
detail in Chap. 2. 

7.6 THREE MULTIPROCESSOR IMPLEMENTATIONS 

In the Multibus environment-a time-shared common bus-there are three 
basic architectures that support multiprocessing: a single time-shared bus, a sin­
gle time-shared bus with a cache front end, and functional units. Each micro­
processor's system bus usage in a multiprocessor system can be broken down 
into three basic areas: the need to execute code, the need to move data, and the 
need to communicate with other processors. The system architecture will deter­
mine what requirements are put on the system bus structure(s). Some common 
attributes of all multiprocessing systems that are built into the Multibus system 
bus are discussed here before we go into the details of some particular multi­
processor architectures. 

Interprocessor communication can be implemented by using global memory 
and interrupts. All interrupts in the system are predetermined. Each interrupt 
level on the Multibus system bus must have only one sender and one receiver. 
There are eight interrupt lines on the Multibus system bus, and therefore only 
eight interrupt sender-receiver pairs can be made. A common I/O device would 
need as many interrupts as there are processor boards. 
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Memory-mapped hardware is used to translate virtual addresses into 
addresses in physical memory. The private memory on each of the processor 
boards is used during initialization to identify itself and set up the translation 
hardware. In a multiprocessing environment, precise memory requirements for 
a group of concurrently executing programs can be difficult to predict. As a 
result, programs and data must be able to move to make more room for addi­
tional programs. The memory map facilitates dynamic variation of physical 
locations during program execution without any need to change the programs 
that are running. The memory map hardware can be external to the micropro­
cessor implemented with TTL, or it can be incorporated in the microprocessor. 
The software, in conjunction with the microprocessor, can perform the mem­
ory-mapping function. To do so, extensive use is made of indirect addressing 
through pointers in the microprocessor registers. Some microprocessors that sup­
port this type of software memory mapping are Zilog's Z80, Signetic's 2650, 
and Intel's 8086, 80186 and 80286. 

We will now discuss the different needs of three Multibus system bus-based 
multiprocessor architectures. 

7.6.1 Single Time-Sharing Bus System 

Figure 7-13 is a block diagram of a multiprocessor system on the Multibus sys­
tem bus. Each processor unit consists of a microprocessor, the bus interface 
logic, some private memory, and an interrupt controller. The main memory is 
accessible by all bus masters and therefore is considered global memory. I/O is 
also considered to be global if it is accessible by all bus masters. 

The performance improvements in the system are the result of the parallel 
execution of the different microprocessors in the system. The fetching of 
instructions and data is sequential because it occurs over the common system 
bus. Therefore, a key to system performance is the microprocessor bus utiliza­
tion and transfer rate versus system bus transfer rate. The system bus can yield, 
at best, 100 percent. Realistically taking into account arbitration and bus trans­
fer times, the number is reduced to 80 to 90 percent. In the case of two 8086 
microprocessors, the bus utilization required to operate both microprocessors at 
full speed would be about 150 percent, which is not possible. As seen in Fig. 7-
14, the addition of a second microprocessor results in a 50 percent overall system 
improvement; the third microprocessor actually provides a negative perfor­
mance increase of 10 percent. The addition of this third microprocessor puts a 
higher demand on the system bus than the system can handle, and so the bus 
becomes saturated in supporting two microprocessors. 

The bus utilization factor is not directly proportional to system performance 
on an 8086 because of the system's unique architectural enhancements. The 
internal functions of the 8086 are divided into two major functional areas: an 
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execution and control unit (EU) and a bus interface unit (BIU), as shown in Fig. 
7-15. The EU performs all the basic processing functions, accepts prefetched 
instructions from the BIU, and returns address requests. The purpose of the BIU 
is to maximize bus bandwidth utilization, which the BIU does by prefetching 
instructions and then queuing them up for the EU to use. Hence the EU need 
not wait for completion of a bus cycle before taking in a new instruction. The 
independent BIU and EU permit the fetch of one instruction to occur at the 
same time a previously fetched instruction is being executed. This parallel 
action has a smoothing effect between bus-bound and execution-bound instruc­
tions. Table 7-1 shows the performance of an 8086 as a function of the number 
of wait states the memory system needs. If the memory system needs one wait 
state, the overall system performance is reduced by only 8 percent even though 
the fetch cycle is 20 percent longer. 
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FIGURE 7-15 Block diagram of an 8086 microprocessor. 

7.6.2 Single Time-Sharing Bus System with Cache 

Figure 7-16 is a high-level block diagram of a processor board with cache mem­
ory located between the processor and the Multibus system bus. The block dia­
gram consists of a microprocessor, a cache memory, a dual-ported cache con­
troller which also fully supports the Multibus interface, some local I/O for 
diagnostics, and some local memory for initialization and diagnostics. The cache 
memory is built with fast static RAM, which can provide a basic capacity rang­
ing from 4K bytes to 64K bytes by using today's static RAM technology. The 
size of the cache memory will depend on tlie environment of the multiprocessor 
system and will require simulations for its determination. It has the biggest 
effect on the CRR; the larger the cache memory, the closer to 1 the CRR gets. 
Cache memory is fast but expensive, so a cost-performance trade-off must be 
made. 

The effective access time from the cache memory must be equal to or better 
than the microprocessor's no-wait state needs in order to get maximum perfor­
mance out of the system. To achieve a high CRR, prefetch techniques must be 
used; when a miss is encountered on an access to the cache memory, an entire 
block will be replenished to it. If increased system confidence is needed, parity 
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can be used in the cache array to provide memory error detection with an inter­
rupt to the operating system if an error should occur. 

The block size is another variable that needs to be customized for a particular 
environment. The larger the block size, the higher the chances that the cache 
memory will have requests already present. But large block transfers use up the 
system bandwidth, which needs to be conserved. Large block sizes can also 
result in moving data which is not needed, and that also is wasteful. 

The cache memory is dual-ported with one port to the microprocessor and 
the other to the Multibus system bus. A synchronous time slice arbitration tech­
nique can be used to guarantee access times to the microprocessor. The memory 
is fast enough to appear to each side of the dual port as a dedicated resource. 
This means that the memory access speed must be better than twice as fast as 
needed to get no-wait performance. If the microprocessor makes a memory 
request just after a Multibus cycle has started, the cache memory can service 
the Multibus cycle, and then the microprocessor request, without slowing up 
the microprocessor. The Multibus side of the dual-port memory must latch up 
the requested information and wait for the Multibus master to complete the 
operation. This permits microprocessor execution at full speed even while the 
cache is being replenished. 

The problem of data coherence must be solved in cache-based multiprocess­
ing systems or in cache-based uniprocessor systems with DMA activities. Unless 
special safeguards are taken, cached copies of main memory data will not 
remain identical either because local write operations to cache memory have 
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not been trasnferred back to main memory or because an update at main mem­
ory has taken place and a new copy of the updated block has not been for­
warded to the cache memory in the system. 

One solution to data coherence is based on a single concept, that of a primary 
copy of data which is always in main memory. The system policy to assure data 
coherence is as follows: Updates (writes) can be made only to a primary copy 
(main memory). The primary copy can be cached for read-only operations, and 
any write operation must cause all cache memories with a copy of that location 
to be invalidated. The microprocessor board performing the write need not 
invalidate its cache but must wait for main memory to be written into before 
continuing. The dual-ported cache controller must monitor Multibus write 
operations in order to invalidate its locally cached copies of recently updated 
central memory blocks. The invalidation process can be merged with the micro­
processors' accesses of the cache memory without reducing performance. All 
write operations by a microprocessor will update both the local cache memory 
and the central memory of the microprocessor. This procedure is known as 
write through. 

Locked bus operations also must be supported. The system policy to solve 
this problem can be as follows: Before any microprocessor can access a memory 
location when its lock signal is active, it must first wait to gain control of the 
Multibus system bus; and when the lock signal on the system bus is active, all 
miCroprocessors in the system may not access any memory. Thus in a read, 
modify, and write operation, the system would be frozen at the start of the read 
and all cache memories would be updated or invalidated during the write por­
tion of the cycle. 

The performance of the system is highly dependent on the rate of cache 
memory replenishment, which needs to be higher than the microprocessor exe­
cution rate. That is, the cache memory must be able to fill faster than the micro­
processor can access it (assuming sequential accesses). Taking into account 
memory system cycle times, Multibus arbitration times, and bus surrender 
delays, a conventional type of transaction (arbitrate; request data from memory; 
wait for an acknowledgment; surrender system bus) could be inadequate. A 
block move of data from the memory system to the cache is what is needed, 
since it requires only one system bus arbitration and one bus surrender cycle 
per block transfer. The Multibus protocols do not define a block move capabil­
ity, so one must be creative in designing the cache controller and memory sys­
tem interface while maintaining Multibus compatibility. 

Since the cache controller will transfer blocks of sequentially addressed infor­
mation, it would be useful for the memory system to have the ability to access 
the next (the current address plus 1) memory location in anticipation of the next 
memory request. If the two addresses match (the next Multibus cycle and the 
preceding memory address plus 1), the memory can acknowledge the transfer 
almost immediately. Memory operations can now be overlapped with data 
delivery time, since the memory knows (or attempts to know) the next address 
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in advance. Resulting transfer rates two to three times higher could be realized. 
This implementation is, in effect, a memory board with a front-end cache mem­
ory of one-word depth. A more general but higher-cost solution would be to 
design a memory board with a cache front end that has a 2K- to 4K-byte cache 
memory. The access time of cache resident data could be less than 100 ns. 

7.6.3 Functionally Partitioned Single Time-Sharing Bus System 

Another approach, the use of functional units, combines the time-sharing bus 
for all shared accesses and dedicated buses (the local on-board bus and the iLBX 
memory expansion bus) for all local accesses. The system (Fig. 7-17) consists of 
multiple functional units that can be divided into two groups based on the types 
of tasks they will perform. Group 1 are application units (AU), which will exe­
cute all the user application code, and group 2 is the system unit (SU), which 
will execute all the operating system I/O code. The system unit provides full 
operating system support for tasks running on it and provides some operating 
system functions for the application units. The application units contain the 
minimum amount of operating system software required to support the appli­
cations it is executing. 

The rest of the system consists of global memory and global I/O-devices 
such as disk drives and tape drives. A closer look at the AU or SU reveals a self­
contained computer system, which has all of the processing power and memory 
required t~ do any of the tasks of the computer system. Each of these functional 
units will be built with the same set of boards: a processor board and up to four 
memory boards. The processor board consists of the microprocessor, an inter­
rupt controller, timers, ROM sockets, a Multibus interface, and an iLBX inter­
face. The memory board is a dual-port design with one port interfacing to the 
Multibus system bus so other bus masters can access the memory. The other 
port interfaces to the iLBX bus, thereby providing a private high-speed access 
path between the micoprocessor and its memory. 

The performance of a functionally partitioned system is approximately pro­
portional to the number of microprocessors in the system. Recall that the num­
ber one architectural goal of the functional unit configuration is to maximize 
on-board execution and to use the Multibus system bus only for data movement 
and interprocessor communication. There are some shared tables in global 
memory for the operating system, which permits the functional units to operate 
almost independently of each other. The only time conflicts occur is when a 
shared resource such as the Multibus or the system unit is used. A system with 
mostly local resources also has an added benefit in that the global I/O will be 
transferred over the Multibus faster, since there will be less contention for the 
system bus. 

The operating system for this type of multiprocessor system will be complex. 
It must manage all the processors in a cooperative manner, since communica­
tion between the processes is taking place. It is apparent that confusion may 
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result if two or more processes attempt to access and update a shared resource 
such as memory or disk storage at the same time. A global mutual exclusion 
scheme is necessary to guarantee that shared resources can be managed prop­
erly. This permits a process to reserve and release common resources without 
confusion. Device drivers must be written to allow multiple processors to access 
the I/O controllers. This requirement has implications for short- and medium­
term scheduling and allocation of the shared resource. 

7.7 SUMMARY 

Multiprocessor systems are being developed because they provide several 
increased system capabilities, which include increases in performance, reliabil­
ity, availability, and flexibility. Performance of single-microprocessor systems 
appears to be approaching limits imposed by the laws of electrical propagation 
delays. An alternative to improving the overall system performance is to use 
new system organizations which take advantage of multiple low-cost micropro­
cessors. The low cost of microprocessors also significantly reduces the incremen­
tal cost/performance ratio of multiprocessor systems. The availability of uni­
processor systems is solely dependent on the availability of the individual 
modules that make up the system. A multiprocessor system can be used to pro­
vide a fail-safe capability to reconfigure itself dynamically in the event of an 
element failure. By design, the system is very flexible; it provides a very effec­
tive way to handle unpredictable loads, because each task can be dynamically 
allocated to any of the N processing modules in the system. 

Three multiprocessor implementations built on top of the Multibus system 
bus have been evaluated: a single time-sharing bus system, a single time-sharing 
bus system with cache, and a functionally partitioned single time-sharing bus 
system. Of the three,· the single time-sharing bus system was found to be the 
least complex to implement but was very limited because of the limited band­
width of the Multibus system bus. With today's 16-bit microprocessors, only two 
microprocessors could be used. One way to reduce the processor modules' bus 
bandwidth demands is to put a cache memory in between the microprocessor 
and the system bus, as was done in the example of the single time-sharing bus 
system with cache. This type of multiprocessing provides more expansion capa­
bility. It supports three or four processor modules, but the implementation cost 
a~d the hardware design complexity are considerably higher. The third alter­
native, a functionally partitioned single time-sharing bus system, takes advan­
tage of VLSI technology and provides dedicated local environments for each of 
the processor modules, called functional modules. A partitioned system permits 
each of the processor modules to operate at maximum speed independently of 
the system work load except when using common resources such as I/O. The 
hardware design complexity is similar to that of the single time-sharing bus 
design and provides better performance than the single time-sharing bus with 
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cache. The major disadvantage of the functionally partitioned approach is that 
the memory usage is higher than in the other two approaches. 
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8 
Multicomputing 
with Microprocessors 

This chapter provides the basis for a conceptual understanding of multicom­
puting architectures· and the motivations for using them. The effects of a mul­
ticomputing system on the system structure and the performance effects are 
examined. Also given in this chapter is an example of how to design a multi­
computing system on the Multibus system bus. 

8.1 DEFINITION OF A MULTICOMPUTING SYSTEM 

As microprocessor costs continue to fall and the design aids to integrate micro­
processors into systems continues to improve, these compact, powerful process­
ing elements are being incorporated into many types of multiple-processor sys­
tems that provide higher system throughput or higher system availability, or 
both. A spectrum of multiple-microprocessor capabilities is described in Sec. 
7.1. One point on that spectrum is multicomputing (Fig. 8.1). A multicomput­
ing architecture is a top-down design philosophy that is based on a functional 
partitioning of the solution of a particular problem into a number of smaller 
and simpler subparts. Each of these subparts is divided into a separate well­
defined functional module. Each of the functional modules performs a dedi­
cated set of functionally bounded tasks, such as control of individual machines 
in automated factory environments and the control of various sensors and actua­
tors in process control environments. The modules have well-defined interfaces 
to the other functional modules. These interfaces should be very solid and 
should become standard within the company or be industry standard. 

Module interfaces are the key to success of a multicomputing design, since 
the designer deals with only the tasks of the functional module and the standard 
interface, and not with the entire problem. The module is designed, tested, and 
verified against the interface standard before it is integrated into the larger sys-
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tem. The interface standard must be very stable and should undergo very little 
change during the development of the project, because changes to the standard 
cause many problems with updating and retesting the modules that interface 
to it. A standard must be designed to absorb new VLSI quickly and easily, be 
technically usable, and be long-lived. If it is to become an industrial standard, 
it must also be adopted by a standards body, such as the Institute of Electrical 
and Electronics Engineers (IEEE), and be supported by multiple vendors. 

Examples of electrical interface standards which were designed for easy 
incorporation of VLSI technology are the Multibus/IEEE-796 system bus, the 
iSBX/IEEE-P959 local I/O expansion bus, and the Multichannel high-speed 
DMA cable bus. Examples of software interface standards designed with VLSI 
technology in mind are the IEEE-P754 floating-point standard and Intel's 
iMMXl 800 Message Exchange Software, which permits two loosely coupled 
processors to communicate with each other. 

A multicomputing system is built by using multiple microprocessors each of 
which has a dedicated task or function. The integration of the software and 
hardware into a single unit is called a functional module. Each of the functional 
modules needs to be as autonomous as possible. It can then be implemented 
independently of the other functional modules and can be optimized for spe­
cific requirements. Communication and sharing among functional modules is 
limited by the independent nature of the modules. Predetermined partitioning 
(static allocation) allows very simple, specialized executives to be developed for 
individual microprocessors. However, it requires that the system load or job 
balancing among the different functional modules be done during the devel­
opment of the system. Therefore, the system can not be dynamically balanced 
in real time as a multiprocessing system can be. The isolation of each of the 
functional module's tasks permits simplified development and debugging of the 
specific executives on each of the microprocessors. These executives also can be 
extremely efficient. Some typical functions that can be partitioned easily into 
functional modules are mass storage, data processing, communications, and 
real-time control of machinery or the I/O portion of an operating system. 

Increased performance of a multicomputing system is based on the concur­
rent execution of unrelated events. In contrast, for performance increases mul­
tiprocessors rely on parallelism, the processing of all bits of a word or multiple 
parts of a single program simultaneously. An example of a multicomputing sys­
tem in the process control area is a testing system. It is divided into two basic 
parts, test and control. Each of the test functional modules is dedicated to testing 
a particular module or assembly. The control functional module is used to coor­
dinate the testing, monitor the test results, and perform data logging as 

liMMX is a trademark of Intel Corporation, Santa Clara, California. 
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required. Each of these modules is independent of the other. If one of the test 
modules failed, it could be taken off-line and the rest of the system would con­
tinue to operate. If the control module failed, each of the test modules could 
become an independent test station. The test monitoring and data logging 
would be lost, but the factory could continue to operate. As capacity in the test 
area increases, more test modules can be added and have a minimal effect on 
the rest of the system. 

From a hardware point of view, a functional module must have the capa­
bility of sharing some but not all of the system resources with the other func­
tional modules, DMA controllers, and special processing units. The shared 
resources are called global resources. Each functional module has a set of 
resources which are local or private to it and can be accessed only by it. A 
typical functional module (Fig. 8-1) consists of a microprocessor, its control cir­
cuitry, RAM, programmable read-only memory (PROM) sockets, some dedi­
cated I/O, and a Multibus interface. The Multibus interface provides the inter­
processor gateway into and out of the functional module. Interprocessor 
communication is typically performed via shared memory. The shared mem­
ory, if it is dual-ported, can be located on the functional module or in global 
memory. 

A very important attribute of multicomputing systems is the ability to sup­
port heterogeneous processing elements effectively. Such elements have dissim­
ilar attributes such as different microprocessor architectures, address spaces, 
available resources, and resource management policies. The wide range of 
VLSls available today allows the designer to specialize a particular function in 
a microcomputer system and pick the best cost and performance trade-offs for 
that function. The multicomputing architecture is the glue that permits all the 
functional modules to be put together to perform the overall system function. 

Multicomputing architectures also buffer the system from a particular type 
of VLSI. The functional modules are as autonomous as possible and are loosely 
coupled in contrast to multiprocessors, which require very tight interaction 
between processing elements. Each functional module sees only the system 
interface of the other modules and not the implementation behind it. One 
implementation can be replaced by another which uses a different micropro­
cessor, and this will have no effect on the rest of the system. The reimplemen­
tation is localized on that functional module. This permits each application to 
successfully use the right microprocessor for a particular task or function, which 
balances the required price-performance trade-offs in a profitable manner. 

In summary, a multicomputing system can be defined as a system which 
efficiently realizes concurrent programming concepts in a multiple-micropro­
cessor machine. The machine is constructed from a federation of self-contained, 
nearly autonomous microprocessor modules, each with its own RAM, PROM, 
and dedicated I/O, that cooperate to achieve the solution of a particular prob-
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lem. The system is based on a distributed control strategy through a high-level 
operating system that unifies and integrates the control of the logically distrib­
uted functional modules. Each of the functional modules has a unique local 
executive or operating system which operates asynchronously with respect to 
the other modules. Communication is effected through shared memory. 

8.2 MOTIVATION FOR MUlTICOMPUTING 

As applications become more complex and more application code is written in 
high-level languages, a much higher demand is placed on the computer system 
to offer ever-increasing price-performance ranges. The design must be upward­
compatible with future VLSIs so there is a clear migration path from today's 
design to tomorrow's higher-performance version. To meet this need, computer 
systems have gone to multiple loosely coupled microprocessors, or what is called 
a multicomputing architecture. Implementing multicomputing systems can be 
very difficult for both hardware and software relative to what a uniprocessing 
system would require, but it is significantly easier than implementing a multi­
processor system. The benefits of multicomputing clearly outweigh the risks in 
most multiple-microprocessor applications. Multicomputing provides most of 
the benefits of multiprocessors but is structured to be easier and less costly to 
implement. The benefits of a multicomputing architecture are: 

• Increased throughput and reduced response time 

• Modular design 

• Design simplicity 

• Extensibility and modular expansion 

• Quick incorporation of new VLSI 

• Standard interfaces 

Of course, not all application problems can be solved by taking advantage 
of multicomputing architectures. A uniprocessor solution should be considered 
first because of its lower cost and less complex design. Careful design practices 
are rquired to realize a given cost and performance specification. The con­
straints of interprocessor synchronization and communication reduce the effec­
tive power of the microprocessors; this overhead can limit the total throughput 
as additional functional modules are created. Selection of the microprocessors, 
the allocation of functions to them, the organization of the data. structures, and 
the system control strategy are important design issues which affect cost and 
performance. 
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Now we will examine the benefits of designing with a multicomputing 
architecture. 

8.2.1 Increased Throughput and Reduced Response Time 

In the past the speed of a computer system has been increased by developing 
faster primitive logic elements and utilizing concurrency, which takes advan­
tage of the fact that many computations can be so configured as to allow several 
parts of the computation to be done at the same time. Faster primitive logic 
elements result in the construction of larger, faster central processors and mem­
ories, which can suffer from problems of cost, complexity, and reliability. The 
continuing decline in microprocessor costs will significantly reduce the incre­
mental cost/performance ratios and make the use of concurrency to increase 
system speed an increasingly attractive alternative over large uniprocessing 
designs. Multicomputing architectures are designed to take advantage of that 
trend. 

Concurrency can be introduced in a computer system at different levels: 
individual bits, single operations, subtasks, or entire tasks. The successive levels 
of concurrency involve higher levels of complexity in the concurrent functions. 
VLSI microprocessors make task-level concurrency increasingly attractive 
because microprocessors are inexpensive and are able to carry out very complex 
functions. This type of concurrency is central to the multi computing approach 
to computation. The approach is best applied to problems that lend themselves 
to decomposition into a set of relatively independent tasks with little need for 
global information or synchronization. If a problem meets these requirements, 
maximum task-level concurrency can be achieved. Individual tasks can be 
assigned to separate functional modules, and the functional modules can exe­
cute the tasks without much intercommunication. 

Each functional module in the multicomputing system can be independently 
upgraded by replacing it with a new functional module which incorporates the 
newest and fastest microprocessors as new technology becomes available and 
the system throughput requirements increase. The semiconductor industry can 
design and fabricate new and faster devices every two to four years. This is 
usually quicker than a new complex multiprocessor system can be built. A mul­
ticomputing architecture supports system upgrades easily and quickly because 
the functional module is partitioned. Therefore, only a subset of the total prob­
lem need be reimplemented, which minimizes the effort. The interface of the 
functional module is well defined, making the reimplementation straightfor­
ward. A functional module can also be reimplemented to lower its cost by using 
new highly integrated VLSI components. New products can get to the market­
place quicker and with less risk. The development time and expenses are min­
imized because the implemented system is a mix of old, proven designs and 
new, higher-performing or lower-cost designs. 
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PERFORMANCE IN REAL-TIME SYSTEMS 

Many real-time control systems have feedback loops between the computer and 
the outside environment. The data is sensed by the computer; some computa­
tions are made; and the results generate some actions which affect the outside 
environment. The new environmental data is fed back to the computer through 
its sensors. Real-time digital control systems are designed to regularly sense con­
ditions of the controlled process and respond with signals to actuators that con­
trol the processes. Also, real-time system designs typically allow static partition­
ing and allocation, which makes real-time control systems a perfect fit for a 
multicomputing architecture. 

Real-time situations often demand a time response from sensing an event to 
taking some action which is very critical. Performance is measured more in 
terms of response time than throughput. Another real-time requirement is the 
ability to handle bursts of events, which may require a large and immediate 
increase in processing throughput over normal conditions. Local intelligence 
usually can meet such response requirements more easily than a centralized 
system can. 

It is very difficult to write an operating system that handles real-time 
requirements and human interface requirements at the same time, since these 
two sets of requirements have opposing effects on the operating system. The 
real-time operating systems must be small and fast and have limited functions, 
more like an executive than a complete operating system. In contrast, the 
human interface is required to be friendly to the user; that is, it must be very 
easy to use and very forgiving of mistakes. The interaction is very flexible, and 
the operating system tells the user what is needed instead of just displaying 
go-no-go status. The friendlier the human interface, the more elaborate the 
code must be and the slower the real-time response of the system will be. 

Many real-time control systems are now being used by operators with little 
or no computer training who demand a friendly, intelligent interface with the 
system. This function can be most economically provided by logically distrib­
uted intelligence dedicated to being friendly. The system can be divided into 
two basic parts: the real-time modules and the human interface modules. The 
real-time modules can be fast and simple and have small executives controlling 
them. The human interface module can have a large quantity of memory and 
a complex operating system that is very friendly ( to the operator). The system 
components can be optimized for both parts of the applications. 

In summary, the basic nature of multicomputing systems is to divide a prob­
lem into a number of subproblems. Each of the subproblems can be attacked 
with its own microprocessor. This dedication of hardware permits the response 
time and throughput of each of the subproblems to be as fast as possible. The 
independence of each of the subproblems permits the easy upgrading of the 
hardware with future VLSI technology of a particular functional module with­
out affecting the other functional modules in the system. 
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8.2.2 Module Design and Design Simplicity 

The multicomputing architecture forces the designer to use modular design 
methods. By partitioning the system in a functional manner and assigning indi­
vidual modules to particular tasks, hardware and software designs of large, com­
plex systems are simplified, productivity is increased, and the debugging phase 
of the project is facilitated. This modular approach can also be used to allow 
system expansibility with little or no cost burden added to a base product. 

The designer starts a typical design by defining the system by its req uire­
ments; the system must be described or represented in terms of its function and 
performance. This ensures that all of the important aspects of the system design 
will be based on the specifications and requirements of the system. Once the 
functions to be performed are defined, the design is partitioned into a set of 
logical blocks each of which is a functional module. Together the functional 
modules have the capability of performing all of the desired system functions. 
Once they have been selected, the interfaces between them must be identified. 
The interfaces define what resources must be shared, if the modules must syn­
chronize information, and what performance is required. A functional simula­
tion can then be carried out to determine if the functional design is capable of 
producing the desired results. Once satisfied that the functional description is 
correct, the designer can develop block diagrams which show how each of the 
various hardware and software modules go together in the system. 

Next, suitable standard interfaces are selected or new interface standards are 
based on the interface requirements previously established. New interfaces 
should be avoided if at all possible because the design will lose all the benefits 
of using industry-standard products that support the standard interface in the 
design. Among those benefits is the use of products of multiple vendors that 
provide connectability and portability between different designs. Development 
time and cost are reduced because the interface is already developed, tested, 
and verified. (This is discussed in more detail in Sec. 1.2.) In the future, when 
upgrades are needed, the system designer will have the option of building a 
new functional module in-house or purchasing a functional module that sup­
ports that standard from an outside vendor. The silicon itself will be evolving 
to connect directly with industry-standard interfaces, which will make the func­
tional modules even less costly. 

Once the system is partitioned and the interfaces are defined, the system 
must be built. The system structure is developed to formally establish the con­
trol relations between the functional modules. The structure can then be bread­
boarded, or a prototype can be designed. This process of decomposing and 
refining the design can be repeated on each of the functional modules. This 
takes the design into smaller and smaller blocks until the entire system is imple­
mented. Each of the functional modules can be individually tested and refined. 
Once the individual modules are complete, they can be merged with other 
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functional modules, where they can be tested and refined. This process is con­
tinued until the entire system is completed. 

The approach used to design multicomputing systems enforces a modular or 
structured design approach to building systems. This approach leads to systems 
that are more comprehensible, easier to debug, more reliable and flexible, and 
quicker to prove correct than large monolithic designs. The modular problem 
decomposition strategy offers greater conceptual clarity from the point of view 
of the system designer. It also enables better evaluation of overall system per­
formance and assesement of the contributions and interactions of the individual 
functional modules. Large uniprocessor systems are typically very difficult to 
debug and prove correct, partly because of a lack of modularity. Also, it is easier 
to incorporate future advances in VLSI and other technologies in these func­
tional modules because of the well-defined interfaces. The designer need only 
design a functional module that meets the hardware and software interface 
standards in order to provide a new, higher-performing system. 

Separating the design into functional modules helps to simplify the entire 
design task. It is easier to solve five small problems than one large one, which 
may be overwhelming. In large monolithic designs, coupling between subsys­
tems is generally much tighter than coupling between functional modules. Any 
change in a subsystem can ripple through the entire system and cause the design 
task to grow exponentially. The structuring of the design to maintain indepen­
dence of the functional modules is the key to success of the multicomputing 
approach. 

A modular extensible structure is extremely appealing in terms of cost for 
today's highly programmable multifunctioned VLSI component technology. A 
single hardware design can support many different interfaces such as Intel's 
8274 Multiprotocol serial controller (MPSC), which supports two complete serial 
channels that can be programmed to operate as an asynchronous, a byte syn­
chronous, or a bit synchronous communication channel. Minimizing the num­
ber of hardware module types and allowing them to be used repetitively results 
in a very attractive cost structure. Each functional module can be customized 
with software and standard add-on modules, such as iSBX Multimodule boards, 
to give it a particular set of capabilities. This approach also minimizes service 
costs, because there are fewer board products to learn and the number of items 
to be put in inventory also is minimized. 

The SBC user can purchase off-the-shelf hardware and software modules 'to 
produce a specific functional module. One example is a serial network archi­
tecture (SNA) network controller which is made by putting Xicom Technologies 
Corporation's SNA MicroNode2 software package on Intel's iSBC 88/45 
Advanced Data Communications Processor board. Together these products 

2MicroNode is a trademark of Xicom Technologies Corporation, Larkspur, California. 
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form an SNA functional module which provides a low-cost, high-performance 
interface to IBM SNA/SDLC communications networks. 

8.2.3 Flexibility and Modular Expansion 

Flexibility is a measure of the ease with which a system configuration can be 
changed. Modular expansion is a measure of the degree of compactness and 
isolation of system elements that can be added to or taken off. A highly flexible 
system is usually highly modular, whereas a highly modular system may not be 
very flexible. Many systems today are capable of modular expansion of most of 
the system hardware, but they lack the software flexibility necessary to incor­
porate additional or new system elements effectively. Multicomputing systems 
can easily provide modular expansion, which permits the tuning of potential 
processing power to meet the demands of a particular task by incremental addi­
tion or deletion of functional modules. Multicomputers permit the design to be 
generic for a set of basic problems; functional and capacity extensions can be 
used to accommodate particular applications without redesigning the basic sys­
tem. This capability allows a smooth transition to be made in the size of the 
computer system when there is a need to handle larger or specialized problems. 
It is also possible to alter the configuration of the functional module task~ in 
response to changing problem demands or requirements. Multicomputers typ­
ically are not capable of real-time (by the operating system) flexibility and mod­
ular expansion, but they are easily modified during a system redesign to provide 
entirely new capabilities. 

8.2.4 Incorporating New VLSI Quickly with Standard Interfaces 

One of the biggest problems that faces a system designer today is keeping up 
with VLSI technology. Each year sees the introduction of new devices that are 
cheaper and faster and have higher reliability than their predecessors. The 
functional density and interface difficulty are increasing at a similar rate. This 
avalanche of technology can strain products and the individual's ability to 
assimilate its effects. The strain can threaten products and entire companies; 
products can become obsolete before they reach the marketplace. 

The multicomputing architecture was designed to handle the rapidly chang­
ing technology. It is based on partitioning a problem among multiple micro­
processor modules. The system designer needs to have a goal of making each of 
the hardware and software interfaces between the modules an industry stan­
dard in order to minimize the design effort and take advantage of a proven 
interface. Each functional module becomes a building block for the system. 
This permits the system, in the future, to take advantage of new products that 
were designed to that interface standard. Take as an example a multicomputing 
system that was designed with one of its functional modules based on Intel's 
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iSBC 86/12A or National Semiconductor's BLC 86/12, an SBC with local 
PROM, I/O, 32K to 64K bytes of dual-ported RAM, and a 5-MHz 8086 micro­
processor. If more performance is needed from it, this functional module can 
be replaced with Intel's iSBC 86/14, a totally compatible upgrade of the iSBC 
86/12A with an 8-MHz 8086. If more performance is needed later, Intel's iSBC 
286/10 can be installed; it is an iSBC 86/12 look-alike which uses an 8-MHz 
iAPX 80286 microprocessor. The iSBC 286/10 provides performance two to 
four times better than that of the iSBC 86/14. Moreover, the performance of 
this functional module can be increased four to eight times over that of the 
original iSBC 86/12 with the iSBC 286/10 without making major changes to 
the overall system. The required changes were localized to one functional mod­
ule, and the other functional modules in the system were not affected. This 
permits the system to be upgraded quickly and easily. That in turn, improves 
the competitive position in the marketplace since, quickly and easily, the prod­
uct can be the first with the newest, highest-performing technology. 

8.3 MULTICOMPUTING ARCHITECTURES WITH THE MULTIBUS FAMILY 

In this section we will see how multicomputing architectures can be used in the 
effective design of systems with the Multibus family of structures. 

The Multibus family supports many levels of hardware system expansion 
capabilities, which provides the system designer with a wide range of cost-per­
formance solutions based on industry-standard interfaces. The interfaces pro­
vide open, flexible, and upgradable designs through: 

• Expansion by adding Multibus/IEEE-796-compatible boards 

• Expansion of on-board memory capability by using the iLBX bus 

• Low-cost, incremental I/O expansion by using iSBX/IEEE-P959 bus-com­
patible boards 

• Expansion of high-speed I/O capabilities by using the Multichannel cable bus 

Recall that the multicomputing architecture is based on a modular partition­
ing of a problem into a set of smaller, more manageable problems. This parti­
tioning requires that the hardware and software also be modular and configur­
able. The Multibus/IEEE-796 system bus is the foundation of the Multibus 
family; it provides a modular system expansion capability that the other family 
members build upon. The system bus supports multiple 8- and 16-bit functional 
modules. The address range supported is up to 16M bytes, and data transfer 
rates of up to 5 mega transfers per second can be obtained. The system bus inter­
connection scheme is transparent to the tasks on and the quantity of the func­
tional modules. The Multibus structure provides a very reliable interconnection 
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scheme owing to its relatively low complexity. Its cost also is relatively low as a 
percent of the total board cost because of the VLSI device support that is avail­
able. The entire Multibus interface portion of the board design can be imple­
mented by using less than 10 percent of the board area, which leaves 90 percent 
of the board for implementing the required board function. 

Multibus-based multi computing systems have a high degree of modularity. 
The hardware configuration can be changed by simply adding or removing 
functional modules. Each functional module must be self-contained; that is, all 
of the memory and local I/O resources required to perform the assigned task 
are local to that functional module and must not use the system bus for expan­
sion of the module's local resources. The iLBX memory expansion bus permits 
the functional module to expand its memory capacity beyond what could be 
physically placed on the board. The memory capacity can be changed by add­
ing memory boards to or removing them from the iLBX bus. This structure 
results in the creation of a logical or virtual SBC; the memory associated with 
that functional module appears as if it were all on-board or local memory (Fig. 
8-2). In a multicomputing system there can be multiple independent iLBX 
buses and each functional module can control its own iLBX bus. 

The functional module's local I/O can also be supplemented simply by using 
low-cost iSBX Multimodule boards. The functional module can be configured 
precisely by choosing the appropriate iSBX Multimodule board to satisfy the 
individual application needs at a lower cost than using a full Multibus expansion 
I/O board. Since the resource is local to the functional module, the Multibus 
interface is available for other system activities such as sending messages and 
data movement. 

Today many applications require the ability to process data at very high 
rates. This means that data must flow into and out of the system at similarly 
high rates, and that necessitates the connection of numerous high-speed I/O 
devices to the system. This real-time activity can saturate the system bus. Even 
if the system bus does not become completely saturated, the bandwidth 
required for other bus functions such as execution and communication will be 
sacrificed and the result will be an overall degradation of system performance. 
One way to avoid this problem is to remove the real-time high-speed I/O from 
the system bus. The Multichannel bus provides a standard high-speed I/O gate­
way which can be connected to the system memory without using the system 
bus. This permits the data to be moved directly between the memory and the 
high-speed I/O device. The Multibus bandwidth thereby saved frees the Mul­
tibus system bus for other activities (Fig. 8-3). 

In summary, high-performance multicomputing systems are based on con­
current execution of events. The Multibus family supports concurrency by per­
mitting multiple operations on multiple functional modules simultaneously. 
Each of the functional modules has its local high-performance bus structures 
that support the independent program execution. For applications that require 
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more memory than can fit on a single SBC, the iLBX bus provides a private 
high-speed microprocessor-to-memory data path to memory expansion mod­
ules. Since the iLBX bus is local to the SBC, there is no contention for the mem­
ory bus, which provides a guaranteed microprocessor-to-memory bandwidth. 
This bandwidth is independent of the number of functional modules in the 
system, since each module has a dedicated iLBX bus. The performance of a 
functional module can be guaranteed independently of the system configura­
tion. The concept of using independent dedicated bus structures to increase sys­
tem performance is available in the I/O portion of an SBC design with the iSBX 
and Multichannel buses. 

8.3. 1 How to Use a System Bus In a Multlcomputlng 
Architecture 

The Multibus system bus can have up to three major functions in a system archi­
tecture. They are (1) interprocessor communication, (2) block data movement, 
and (3) execution of the instructions and operand fetching done by the micro-
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processor. The goal in the multicomputing architecture is to use only the first 
two major functions in order to preserve as much system bandwidth as possible. 

INTER PROCESSOR COMMUNICATION 

In multicomputing systems there is a need for the different functional modules 
to be able to signal each other the occurrences of certain events. This signaling 
requires that, on demand, the microprocessor be preempted from the current 
task, save its internal state, and begin executing a different task. The most com­
monly used way to do that is to use interrupts. 

Interrupts can be sent between functional modules in two ways: directly via 
Multibus interrupt lines or by defining a special memory location that will gen­
erate an interrupt to the local microprocessor when another bus master writes 
data into that memory location. The direct interrupt approach provides a path 
on the Multibus system bus by using dedicated interrupt lines. The source of 
the interrupt consumes a single line. A functional module that resides on the 
system bus can recognize the signal and service the interrupt. Since the source 
is fixed, the servicing module knows from the line level where the request is 
from. This eliminates the need for the requesting module to add an identifica­
tion tag to the service request. The Multibus structure allows up to eight inter­
rupt lines. This limit on the number of interrupt lines can cause difficulty in 
larger systems: it leads to the sharing of interrupt lines, which causes software 
difficulties. There is also a performance impact, since all microprocessors that 
share the interrupt lines are interrupted even if the signal is not destined for 
them. 

Another approach is to design into the hardware a memory or I/O location 
that is uniquely associated with a functional module. The hardware would be 
located on the functional module and would generate an interrupt to the local 
microprocessor each time some data was written into its special memory or 
I/O location. The local microporcessor would then service the request and turn 
off the interrupt. This method permits functional modules to generate and rec­
ognize multiple interrupt addresses. The address recognition is by the hardware, 
which means that each functional module is interrupted only to service requests 
sent to it. Another advantage of this method is that it allows information to be 
passed with the interrupt. This means that interrupt information such as a 
return address or a pointer to a task control block can be passed on the inter­
processor communication mechanism. The major disadvantage to this approach 
is the additional cost of the hardware to provide the address recognition and 
interrupt capabilities. 

BLOCK DATA MOVEMENT 

Block data movement involves moving the contents of continuous memory loca­
tion from one functional module environment to another. One method of per-
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forming block transfers is to use direct memory access (DMA) hardware, which 
is designed to move blocks of data between memory or I/O ports very quickly. 
Some of the newer microprocessors provide DMA integrated into the micro­
processor chip or DMA with very efficient string move instructions. Block move­
ment is particularly applicable to dealing with functional modules that manage 
moderate-size blocks of data such as mass-storage devices, graphics, and voice 
generation. 

EXECUTION OF CODE 

The first application of the Multibus system bus, when it was introduced in 
1975, was to connect an Intel 8080 microprocessor to its memory and I/O 
devices. All of the microprocessor's instructions and operand fetches were per­
formed over the system bus. The Multibus system bus was used primarily as an 
execution bus. The bandwidth or transfer rate of a system bus, generally over 
time, becomes the limiting factor in the overall system performance in systems 
that use the system bus as an execution bus. Of the three major system bus 
functions (interprocessor communication, block data movement, and code exe­
cution), the code execution function is the most demanding of the system bus. 
Every system has a fixed transfer rate that is designed into it. Over time, as 
microprocessors become faster and faster, systems that use the system bus for 
execution will become system bus bandwidth-limited. If a system has a goal to 
use two or three generations of new microprocessors over its life span, its archi­
tecture must not use the system bus for execution. 

In summary, one of the goals of a multicomputing architecture is to partition 
each of the functional modules so that it is an independent microcomputer mini­
system. This results in preserving the system bandwidth. Of the three system 
bus functions listed above, only the first two, interprocessor communication and 
block movement, are required. All execution is local to that functional module 
and does not use the system bus. This minimizes the use of the system bus and 
provides bandwidth headroom growth for future system upgrades. 

8.4 A SIMPLE MULTICOMPUTING SYSTEM EXAMPLE 

A fire and security system is one application area into which a multi computing 
architecture fits nicely. The system monitors multiple sensors for door and win­
dow openings and smoke detectors, and also provides an operator control inter­
face. The fire and security system is a fully distributed multiple processing sys­
tem composed of completely asynchronous, nearly autonomous modules. The 
architecture allows for almost limitless extensibility without special reprogram­
ming of the entire system. This section gives an example of how the fire and 
security system might be implemented by using a multi computing architecture 
and the Multibus family structures. 
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8.4. 1 Designing the System 

The first step in designing the system is to break the problem into logically 
modular subproblems. Each subproblem is a region of highly interactive control 
whose relations with the other subproblems are much less interactive. The archi­
tecture consists of a set of asynchronously communicating subproblems or tasks. 
Figure 8-4 is a functional flow diagram that represents the fire and security 
system. The system can be divided into four functions-monitoring the smoke 
detectors, temperature, and window and door positions throughout the build­
ing-and a supervisor that is in charge of the overall system. Each function is 
nearly independent of the others. The monitor functions must read each of the 
sensors at least once a second and report to the supervisor once a minute that 
the building is in a normal condition. The supervisor function receives status 
information from the monitor functions and displays it to the operator(s). If an 
abnormal condition occurs, the system must alert the operator, update the oper­
ator display, and if a fire is detected, call the fire department. 

The block diagram of the fire and security system is shown in Fig. 8-5. The 
problem can be broken down into two basic functions: (1) the real-time I/O 
module and (2) the human interface module. The real-time I/O module has 
limited intelligence which scans the smoke detectors, the temperature trans­
ductors, and the window and door position indicators. The module has the abil­
ity to enable and disable a sensor line and perform self-test functions. The 
human interface module supports a color graphics operator console and a hard­
copy device and provides the following functions: log events, provide the oper­
ator with a graphic display of building status, generate hard copy of reports of 
system events, and provide an automatic interface to fire department. 

Three of the four functions are real time in nature and can be done by one 
hardware unit, the real-time I/O functional module. Figure 8-6 is a block dia­
gram of the real-time I/O module hardware. Both the smoke detectors and the 
door limit switches are converted to standard TTL signals via the conditioning 
strips. The SBC selected provides 48 TTL I/O lines. Additional I/O can be 
added via an iSBX Multimodule, which provides 24 I/O lines. A baseboard can 
be designed to handle up to three iSBX Multimodule boards. If two iSBX Mul­
timodule boards are used, 48 I/O lines can be added to the baseboard's 48 to 
generate a total of 96. The third iSBX connector is needed to provide eight 
analog inputs for converting the temperature sensors to a digital reading. Addi­
tional analog inputs can be installed via the iSBX Multimodule connectors if 
fewer digital I/O lines are needed. This gives the basic design the flexibility to 
be customized for each of the different building installations with minimal cost 
overhead. 

The last of the four functions, the human interface, can best be handled on 
a separate functional module (Fig. 8-7). The same baseboard can be used as was 
used with the real-time I/O module but with different iSBX Multimodules 
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mounted on it. The disk storage can be handled with a floppy disk Multimodule 
board that can support up to four 8-in floppy disks or four 5X-in floppy disks. 
A color graphic Multimodule can support the visual display and the keyboard. 
The hard-copy printer can be driven with the standard parallel port on the SBG 

The SBC provides up to eight 28-pin sites, which support many different 
types of 28-pin memory devices such as PROMs, ROMs, electrically erasable 
PROMs (EEPROMs), and byte-wide RAMs. This flexibility is made possible by 
the standard pin-out compatibility of the different memory devices. The 28-pin 
sites permit the system designer to install the precise amount of memory as well 
as the required type-PROM, EEPROM, RAM. The same baseboard can be 
used in different applications, and in each application the required type and 
amount of memory can be installed. If the application requires more memory 
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than can be installed on the baseboard, the iLBX interface can be used to 
expand the memory of the SBC to other boards without using the Multibus 
system bus. This permits the human interface module to have large amounts of 
RAM if needed. Operating systems with very friendly interfaces typically 
require large amounts of RAM (more than lOOK bytes) to implement the 
friendliness. 

Once the problem has been partitioned, the requirements for interconnec­
tion of the modules must be identified. How much communication capability 
is necessary depends upon the frequency and speed with which information 
must be exchanged between the individual functional modules. The greater the 
concentration of local function, the lower the demand on the interconnection. 
The message traffic is typically a large number of very small messages that need 
to be processed very quickly. This means that the overhead of sending and 
receiving messages in the hardware and software must be small and fast. 

The software that performs the intermodule communication can be simpli­
fied if the relation between the functional modules can be based on a transac­
tion-processing method. The method requires that the system operate by func­
tions or tasks requesting and receiving actions from the other modules. For 
example, one functional module invokes action on the part of another func­
tional module by sending a command with some data or a message. Command 
and data are placed in a queue in memory. The queues are formed between 
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fIGURE 8·7 Block diagram of the human interface hardware functional module. 
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the functional module's tasks. They facilitate pipelining of commands and 
increase the functional module's independence. Without queues the sender of 
a message would have to wait until the receiver could take the message. If the 
queue becomes full, the sender must wait until the receiver has freed enough 
queue space. The queue size must be so adjusted that a sender rarely waits. 

The recipient functional module must first ask for a message. If a message is 
not present, the functional module waits. If a message is present, the functional 
module services the command and returns a reply describing the results. All of 
the functional modules must be cooperative; that is, all of the functional mod­
ules must work together toward the common end. If one of the modules does 
not follow the communication protocol, the system can not operate correctly. 

The message-passing protocol· must provide a uniform interface for all the 
functional modules independently by the type of microprocessor and the soft­
ware executive that is controlling it. The protocol must also provide a reliable, 
variable-length message transfer mechanism between the functional modules. 
There should be no constraints on the message sizes. The message software 
needs to inform the user task of the status of an attempted message delivery. 
This provides the user with great flexibility to react and guarantee the reliable 
delivery of messages between tasks on different functional modules. This type 
of cooperative intermodule communication fits very well into a multi computing 
system. 

A standard message-passing protocol that meets the above requirements is 
the Multibus interprocessor protocol (MIP) specification, which was developed 
by Intel Corporation. MIP specifies a standard method for processes executing 
on different Multibus-compatible SBCs. The protocol allows both 8- and 16-bit 
microprocessors to communicate by passing data between one another in a reli­
able, controlled manner. Intel has converted the MIP specification into a prod­
uct called iMMX 800, a software implementation of MIP. It provides intertask 
communication through shared memory of different functional modules and 
executes different tasks within different executives. 

In the fire and security system example, the software interface to each of the 
individual functions was so defined that another functional module can simply 
send a formatted command message with a return address to it. The message is 
put in a queue in global memory or in its own dual-ported memory. Each func­
tion waits for messages to arrive, services them, and returns the results. If the 
human interface needs to know the status of the smoke detectors, it sends a 
status type of command message to the real-time module and awaits a reply 
with the smoke detector's status. If the temperature reading goes beyond a set 
limit and the real-time module determines that a fire may have started, it sends 
a command message to the human interface module reporting the condition. 
The human interface module will alert the operator, call the fire department, 
and activate the building alarm system. Then the human interface module 
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sends a message back to the real-time module that appropriate action has been 
taken. The interaction can be made simple and straightforward while main­
taining flexibility. 

Multicomputing architectures are based on having a reliable communication 
mechanism. Otherwise, messages could be lost and the system made unreliable. 
The Multibus structure provides a very reliable communication path. All system 
bus transfers incorporate a handshake methodology which requires both the 
sending module and the receiving module to be actively involved. The sending 
module can not complete the transfer without the receiving module's acknowl­
edging that it received the data. This bus protocol is used for each byte trans­
ferred. Additional details on Multibus bus cycles can be obtained in Chap. 2. 

8.4.2 Adding High-Speed I/O 

An option to the fire and security system is a surveillance camera which can 
display different areas of the building and alert the operator if anything moves 
in a specified area. The surveillance option can be incorporated into a functional 
module and easily added to the system. 

Figure 8-8 is a functional representation of the surveillance option. A frame 
of data is read from a camera and the data is processed. The high-resolution 
graphics display unit is updated, and the frame just processed is compared with 
the preceding frame from the camera. If there is no difference, a frame of data 
is transferred from the next camera and the operation is repeated. If there is a 
difference, the area that is different on the graphics display is marked and the 
operator is alerted. 

Figure 8-9 is a block diagram of the surveillance functional module, which 
consists of three hardware modules: the surveillance controller unit (SCD), the 
video camera reader unit (VCRD), and a large RAM board. The three units are 
connected together via the iLBX bus, which provides a high-speed, private data 
path. The SCD initiates a surveillance operation by requesting the VCRD to 
select a particular camera and transfer one frame of data into the RAM board. 
The VCRD will request the iLBX bus from the SCD. Once the VCRD is granted 
access to the iLBX bus, it will directly access one frame or scan of data that 
represents the image seen by the camera. When the task has been completed, 
the VCRD returns control of the iLBX bus to the seD and notifies it of the 
completion. The SCD then processes the data to correct for minor camera 
movements. The SCD updates the high-resolution graphics display with the cur­
rent frame of data. This frame of data is then compared with the preceding 
frame from the same camera. If there is no difference, the SCD requests the 
VCRD to go on to the next camera. If there is a difference, the SCD will mark 
the area, update the operator display, and send a message to the supervisor to 
alert the operator of the situation. 
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In this example the display requires a high-speed interface between the seu 
and the high-resolution graphics display. One approach to solving this problem 
is with a custom-designed I/O interface and controller,. This approach is often 
expensive and can consume lengthy development time. Another approach to 
solving the problem is to use a standardized general-purpose intelligent con­
troller with a flexible I/O bus architecture that is capable of supporting a wide 
range of device requirements. This approach takes advantage of a proven I/O 
bus structure while minimizing development time and expense by maximizing 
the use of an accepted, industry-standard I/O bus and permitting the use of off­
the-shelf hardware. 

The Multichannel bus was used between the seu and the high-speed graph­
ics display because it provides a very high bandwidth (up to 8M bytes per sec­
ond) and sufficient physical distribution (up to 50 ft, or 15 m). The Multichannel 
bus provides the system with a demonstrated reliable foundation for all of the 
high-speed I/O transfers. The primary goal of the graphics interface is to pro­
vide a flicker-free updating capability. The updating requires a high-perfor­
mance interface with a transfer rate of approximately 1M byte per second, 

FIGURE 8-8 A functional diagram of the surveil­
lance option. 
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which the Multichannel bus can easily handle. The interface must also have the 
capability of tra'nsferring anything from a few bytes up to 64K bytes of data. 
(The Multichannel can transfer up to 16M bytes per device.) Future expansion 
capability is built into the system, since the Multichannel bus can support up to 
14 additional displays. The Multichannel bus also provides physical distribution 
of the displays from the multicomputer system electronics because the Multi­
channel bus signals are transmitted over a 60-wire flat cable. This permits the 
display(s) to be up to 50 ft (15 m) away from the system electronics. 

In this example, it was demonstrated how a problem can be partitioned into 
a set of nearly independent tasks each of which is implemented separately. The 
system is then constructed .by merging the independent tasks, and the result is 
a complete fire and security system. The system is modular in that the number 
of items monitored and controlled is expandable to meet the needs of the indi­
vidual installation. The system can support modular expansion of such new 
capabilities as the surveillance option. 

8.5 SUMMARY 

The multicomputing concept is based on dividing a problem into a set of 
smaller, more comprehensible subproblems. The subproblems can then be 
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solved by using independent hardware and software functional modules which 
in total provide the solution to the system design problems. Modularity results 
in structured designs which increase the comprehensibility of the system, the 
ease of debugging, the reliability and flexibility of the system, and the speed of 
verifying the correctness of the design. 

Each number of the Multibus family, the Multibus system bus, and iLBX 
bus, the iSBX bus, and the Multichannel bus, provides the designer with all the 
basic tools to construct a multicomputing system. The Multibus system bus pro­
vides a reliable communication link between all the functional modules and 
supports a high degree of modularity. The iLBX bus provides for local memory 
expnasion of a functional module without affecting the traffic on the Multibus 
system bus. The iSBX bus permits the functional module's I/O to be customized 
to meet the needs of each application. I/O expansion via the iSBX bus is low in 
cost and can operate at local I/O speeds because the Multibus system bus is not 
required. And the last member of the Multibus family, the Multichannel bus, 
provides a s,tandard, very high speed gateway into and out of the multicom­
puting-based system. 

The Multibus family of buses provides the structures that support concurrent 
execution of tasks by multiple functional modules, which results in very high 
performance systems. Since each functional module operates independently of 
the others, the response time can be optimized for each application and the 
overall system throughout increased. The functional module independence also 
permits upgrades of individual modules without affecting the other modules in 
the system. The upgraded module can incorporate new VLSI technology simply 
by designing the new technology to meet the requirements of the standard 
interface. The other functional modules view this new module as if it were the 
old one, since both old and new support the same standard interface. 
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This chapter provides information on building systems which use the Multibus 
system bus family. Included are guidelines for system integration, the use of the 
various Multibus family structures, levels of compliance, and common system 
design mistakes. The notation throughout this book is the same as that defined 
for the Multibus system bus, covered in Sec. 2.1. 

9.1 BUILDING MULTI BUS-BASED SYSTEMS 

The Multibus system bus is an industry-standard OEM bus. To allow for many 
types of system configurations, the boards, backplanes, and card cages have 
many user-selectable options. Some of the options must be configured when the 
system is built; others may be chosen to fit the application. When building Mul­
tibus systems, the designer must be aware of several specific areas: 

• Multimaster configuration 

• Memory configuration and addressing 

• Interrupt configuration 

• Time-out 

• Bus clocks 

• Levels of compliance 

• Mechanical considerations 

Some general considerations and guidelines in each of these areas are prOVided 
in the following sections. Included in each section are some of the common 
configuration mistakes to avoid. 
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9.1.1 Bus Arbitration Techniques 

There are two basic methods for resolving a master's priority on the Multibus 
system bus: serial and parallel priority. Each has its advantages and disadvan­
tages, and its use is dictated by the application. In the following section we 
explain the system trade-offs and common configurations. 

SERIAL PRIORITY 
The Multibus specification can support a maximum of 16 masters. However, 
the standard hardware shipped with SBC boards allows for only a maximum of 
three masters in a serial-priority configuration. Serial priority is the simplest to 
use and requires no additional hardware. Its disadvantages are the limit of three 
masters and the inability to handle special-priority modes such as rotating prior­
ity. If your application requires three or fewer masters (and is not expected to 
go beyond three masters) and does not require special modes (e.g., rotating 
priority), then serial priority is correct for it. 

When configuring a serial-priority system, the designer must decide which 
master has the highest priority and which the lowest. One criterion for choosing 
priority should be the maximum allowable latency for a particular master to 
get to its Multibus resource. The designer must trade off real-time transfers ver­
sus overall system performance. For example, a system with two processor 
boards and a disk controller requires some consideration. If the disk's real-time 
transfers must guarantee access to the bus the next cycle after its bus request, 
then the disk should be given the highest priority. In many disk applications, 
the disk board tends to saturate the bus and potentially limit the processors 
board's execution bandwidth. Therefore, if the disk board architecture allows 
the disk system to delay its bus access, then the disk should be placed in the 
lowest-priority slot and thereby allow the processor boards to utilize the bus 
bandwidth. This type of configuration can increase system performance if exe­
cution-bound. The application must be reviewed for real-time transfer require­
ments, high bus utilization requirements, and low bus utilization. Priority is nor­
mally configured in the same order for boards with these requirements. 

Once the priority order of the bus masters has been decided, the designer 
must choose the location of the masters with respect to the backplane and con­
figure the serial-priority signals (daisy chain) accordingly. Specifically, the 
BPRO* signal of the higher-priority master must be connected to the BPRN * 
input of the lower-priority master. On most standard Multibus-compatible 
backplanes, all adjacent slots provide the daisy chain connections of BPRO* and 
BPRN*. If adjacent slots are used, only grounding of the highest-priority mas­
ter's BPRN* input is required. (Note: this step is required even if there is only 
one master in the system and that master is required to access the bus.) If adja­
cent slots are not used, the daisy-chained signals must be wire-wrapped on the 
backplane to the appropriate slots. Figure 9-1 shows an example of Intel's iSBC 
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604 backplane serial-priority configuration. In this example there are three mas­
ters that occupy adjacent slots J2 to J4. For this configuration only the highest­
priority master in slot J2 requires its BPRN * input grounded for proper system 
operation. This is accomplished by jumpering stake pins Band N together on 
the backplane. 

PARALLEL PRIORITY 

Parallel priority allows the system bus to be expanded to 16 bus masters. Nor­
mally, parallel priority is chosen by a system designer when more than three 
masters are required for the system or when additional flexibility for priority 
resolving is required. The disadvantage of parallel priority is that additional 
circuitry is required over and above what is on the SBC boards. Various parallel­
arbitration schemes are covered in Chap. 10. 

When designing a system with parallel priority, the system designer must 
choose the parallel-priority method, the number of masters in the system, and 
the relative priority of the system masters. The decision on the latter is similar 
to that of serial priority (Le., low latency, high bus utilization, low bus utiliza­
tion). The use of special parallel-priority modes, such as rotating priority or 
software-selectable priority, are totally dependent on the application. 

To configure the system with parallel priority, the signals BREQ* and 
BPRN* from each bus master must be connected to the priority-resolving cir­
cuitry. Each standard backplane available has different levels of configuration 
capabilities. On Intel's iSBC 604A/614A or equivalent backplanes, no parallel­
priority circuitry capability is available. A system designer using this type of 
backplane must provide a small circuit board with the priority-resolving cir­
cuitry and must bring the BREQ* and BPRN * signals from the stake pins on 
the solder side of the backplane. Intel's iSBC 608/618 or equivalent backplanes 
provide the capability to add a basic parallel-priority circuit directly to the 
backplane. An added feature of these backplanes is that each slot's BREQ* and 
BPRN* signals are routed to the circuitry. Figure 9-2 shows an example of an 
iSBC 608 parallel-priority configuration. In it the four masters are placed in slots 
J8, J7, J2, and }1. Since the parallel-priority circuitry is provided on the iSBC 
608 backplane, only the jumpering of the BREQ* and BPRN * signals for each 
master is required. 

COMMON-BUS REQUEST 
The CBRQ* signal, a bidirectional Multibus interface signal that is used in con­
junction with the serial- and parallel-priority resolution schemes, improves bus 
access time by allowing a bus master to retain control of the Multibus interface 
without arbitrating for the bus on each transfer cycle. A bus master receiving 
the CBRQ* signal gives up the bus when a higher-priority master requests it. 
This occurs because of the removal of the lower-priority master's BPRN* signal. 
Also, depending on the CBRQ* configuration, a master that has lower priority 
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than the master receiving CBRQ* can access to the bus request by driving the 
CBRQ* line active. As an example, Intel's 8289 bus arbiter chip provides many 
options for the various implementations of common-bus request. Table 9-1 is an 
explanation of the CBRQ* modes for the 8289 bus arbiter chip. 

The system designer must decide which boards, if any, will use CBRQ* and 
the relative priority of those boards. Also, the designer must ensure that the 
chosen boards support the CBRQ* signal to meet the design requirements. 
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TABLE 9·1 8289 CBRQ* Modes 

Interface 
state 

1 

2 

3 

CBRQ* 
state 

Low 

High 

Low 

High 

Low 
(ground) 

ANYRQST 
state 

Low 

Low 

High 

High 

High 

Description 

The bus arbiter that is controlling the Multibus 
interface retains control unless a higher­
priority master deactivates BPRN * or the next 
machine cycle does not require the use of the 
Multibus interface. It may then be relinquished 
to a lower-priority device. 
The bus arbiter that has control of the Multibus 
interface retains control until another bus 
arbiter pulls CBRQ* low. When CBRQ* goes 
low, the conditions are as described above. 
The bus arbiter that has control of the Multibus 
interface surrenders control to the bus arbiter 
that is pulling CBRQ* low upon completion of 
the current bus cycle, regardless of the 
requester's priority. 

The bus arbiter that has control of the Multibus 
interface retains control until another bus 
arbiter pulls CBRQ* low. When CBRQ* goes 
low, the conditions are as described above. 
The bus arbiter that has control of the Multibus 
interface surrenders the use of the Multibus 
interface after each transfer cycle. 

When configuring a system, the designer must decide whether to use CBRQ* 
and the proper modes of operation. By not carefully configuring a system using 
the CBRQ* signal, the system designer can inadvertantly lock out one or more 
masters from the bus. 

An example of this situation is a system that contains three masters. The 
highest-priority master supports CBRQ* but arbitrates for the bus in a normal 
manner. The middle-priority master is in common-bus request mode and 
retains the bus after its first access. The lowest-priority master does not support 
the CBRQ* signal and expects to arbitrate for the bus via the BPRN * signal. In 
this case, depending on the middle-master's bus utilization, the lower-priority 
master may never gain access to the bus. The middle-priority master will not 
release the bus unless the highest-priority master requests the bus. The simple 
solution to this problem is to give the master that does not support the CBRQ* 
signal the highest priority. Special care should be taken to ensure that each mas­
ter can properly arbitrate for the bus in a CBRQ*-based system. If CBRQ* is 
desired for the system, the designer must ensure that all masters in the system 
that do not support CBRQ* are given higher priority than the master receiving 
CBRQ*. 

To guarantee that a system will work with masters that contain various levels 
of CBRQ* support and in any priority configuration, each bus master should 
be so configured that it surrenders the bus after each transfer cycle. This mode 
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allows masters that do not support CBRQ* to work with masters that do, but it 
does not provide any performance enhancement. 

The decision to use CBRQ* is based on the application requirement. Nor­
mally, masters that perform sequential access to the system bus can obtain large 
performance increases by using CBRQ*. Typically, masters that are performing 
DMA on the system bus or masters that are executing code on the system bus 
benefit from the CBRQ* configuration. 

9. 1.2 Memory Configuration and Addressing 

When configuring a system, the designer must be aware of the size and type of 
memory in the system. Specifically, the designer must pay close attention to the 
following areas: 

• Address space 

• Data width 

• Access time 

• Dual-port memory 

• Read-only memory 

• Special functions 

These system memory requirements are discussed in the following sections. 

ADDRESS SPACE 
How a memory is mapped in a particular system is application-dependent, but 
there are common configuration requirements that are application-indepen­
dent. The system designer must consider the size of memory on each memory 
board in the system and the proper starting address. Each memory board must 
be configured so that its starting address meets the application requirement. If 
continuous memory is required, the designer must ensure that the starting 
address of a memory card is selected to begin where the address space of the 
preceding card ended. 

If your application requires overlapped memory, i.e., system bus memory 
arrays that share common address space, ensure that your memory cards can 
stipport overlapped memory via the Multibus inhibit signals. Otherwise, avoid 
overlapping the system memory. Also, in many applications the local memory 
of an SBC card may overlap a system memory card's address space. Although 
there is nothing electrically or architecturally wrong with this configuration, the 
system designer must be aware that the portion of system memory which is 
overlapped can never be reached by the SBC board. 
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DATA WIDTH 

Eight-bit memory can pose a problem in a system with I6-bit masters. Specif­
ically, a I6-bit master can communicate with 8-bit memories, but the master 
must be aware of this memory. Many I6-bit microprocessors require a I6-bit­
data-width execution code space; therefore, the I6-bit master cannot execute 
code out of 8-bit system memory. The system designer must carefully review 
the application requirements and select the proper memory width. 

ACCESS TIME 

The Multibus specification ensures that masters and slaves of different speeds 
can transfer data correctly. When reviewing an application, the designer should 
consider the access time of the memory cards in the system. By proper choice 
of the memory access time, the system performance can be increased from 5 to 
25 percent. On the other hand, just choosing faster memory may not increase 
performance at all. The designer should review the access time requirements of 
the masters in the system and then make the memory access time decision. 
Figure 9-3 is a graph showing various Intel SBC masters' wait states perfor­
mance versus system memory access times. As can be seen from the graph, large 
changes in memory access time are required before a master's performance 
increases. This is primarily due to the acknowledge synchronization time 
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required by the master. From the graph, Inters iSBC 86/30 operating at 8 MHz 
can reduce the number of inserted wait states from seven to six by accessing 
system memory with an access time of 417 ns or less. However, the next per­
formance increase does not occur until the memory access time decreases to 292 
ns. Therefore, using memory boards with access times of 350 ns will not 
improve the system performance. Similar plots are shown for Inters iSBC 86/ 
05 and iSBC 86/12. The master's access time requirements must be reviewed 
for the best price-performance trade-off. 

A similar plot should be developed to make an access time determination for 
the system. The specific SBC hardware reference manual should be checked for 
the first XACK* sampling point. To this the microprocessor cycle time for each 
wait state is added. For the iSBC 86/30 example, the XACK* is -208 ns. This 
means that, in order for a "one wait" cycle to occur, XACK* from the memory 
board must come a maximum of 208 ns prior to command. This, in Multibus­
based systems, is illegal. The iSBC 86/30 microprocessor clock cycle time is 125 
ns. The first legal XACK* sample point time is 42 ns, which occurs after three 
wait states. Every wait state boundary is a multiple of 125 ns. The optimum 
memory board access time requirement can now be determined by deciding 
which wait state boundary the access time should fall in. Ideally, the selected 
memory board's access time should be the farthest to the right of the boundary 
step before moving into the next wait state boundary. This yields the best price­
performance trade-off. 

DUAL-PORT MEMORY 

Dual-port memory allows an SBC's on-board memory to be accessed from the 
system bus. This type of memory is beneficial in that data can be moved directly 
into an SBC's memory, but it can also pose a special problem to system designers 
in that it is "special" memory. 

The first area a system designer must be aware of is "aliasing," which occurs 
when a location in dual-port memory has a different address from each port. 
On SBC boards this means that a memory location can have two unique 
addresses: one from the SBC's microprocessor and one from the Multibus system 
bus. The block diagram of Fig. 9-4 demonstrates the problem. In this diagram 
there are two SBC masters with dual-port memory. The first master has the on­
board and system bus address based at OOOOH. Therefore, each memory loca­
tion has the same address from either port. Ideally, the second SBC would like 
to have the on-board and off-board addresses at the same location. Unfor­
tuantely, the system bus side of the dual-port memory would overlap the 
address of the first SBC and cause system failures. 

To overcome this problem, the system bus port is given a different base 
address into the memory. This offset prevents the overlap. For example, mem­
ory location OOOOAH as addressed from the microprocessor has the address 
1000AH when addressed from the system bus side. This problem occurs on most 
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FIGURE 9-4 Multibus dual-port block diagram. 

older SBCs that permanently fix the dual-port memory address from the micro­
processor side at OOOOH. Newer dual-port designs allow the configuration of the 
address from each port. This can prevent the aliasing problem, since the base 
addresses can be configured to be equivalent. However, many microprocessor 
families require RAM or ROM memory to be available for vector and register 
area. Failure to properly provide this area can lead to system problems. The 
designer should take both these situations into account when configuring the 
system and generating application software and firmware for it. 

Another area to be aware of is a communication port located on a few SBCs' 
dual-port memory called the wake-up byte. This special memory location 
allows a Multibus master to interrupt another master by writing a value into it. 
It is primarily used for interprocessor communication. The user must be aware 
of each of these locations in the memory space or disable this feature on the 
SBCs that contain it. This precaution is especially necessary in systems that per­
form power-up memory testing. 

The final area for a system designer to be concerned with is in the use of the 
lock signal. There are two types of lock functions on the Multibus system bus. 
The first allows a bus master to keep the bus and prevent other masters from 
taking the bus away. This type of bus lock is extremely useful in real-time burst 
DMA transfers and semaphore exchange in a shared single-port system mem­
ory. Dual-port memory poses a problem for semaphore exchanges in that the 
bus lock does not keep the on-board microprocessor from getting to its memory; 
the Multibus LOCK* signal is used for that purpose. The Multibus master sim­
ply activates the LOCK * signal during a semaphore exchange and thereby pre­
vents the on-board microprocessor from getting to its memory resource. Unfor-
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tunately, not all master boards or intelligent slaves support the LOCK signal. 
Also, lock is not supported on the early backplanes. The system designer must 
decide if the application requires a dual-port lock function and choose the mas­
ter-intelligent slave combination accordingly. If the boards chosen do not sup­
port the dual-port lock function and a lock feature is required, then the lock 
function must be handled via software means or in global single-port RAM. 

READ-ONLY MEMORY 

Read-only system memory (ROM and PROM memory boards) does not pose 
any major system concerns unless the system performs a power-up memory test 
or the PROM board overlays system RAM memory. If a system performs 
power-up memory testing, then the system software must be aware of the loca­
tion and size of the system PROM memory. When a PROM board overlays 
system RAM memory, the system designer must ensure that 

1. The PROM board selected drives the inhibit signal. 

2; The RAM board selected receives the inhibit signal. 

3. The PROM board is configured to drive inhibit for the area affected by the 
overlay. 

SPECIAL FUNCTIONS 

Special functions include error-correction code (ECC) circuitry and parity­
checking circuitry. ECC memory can be a problem if it is not properly designed 
into the system. Most of the available ECC memory boards do not self-initialize 
memory on power-up. This function is normally left up to the operating system. 
Some of the boards may not work unless they are initialized or the error-report­
ing portion of the ECC function is disabled. 

Most parity and ECC memory boards have status registers which must be 
configured for unique I/O addresses on the system bus. The system designer 
must ensure that each memory register set has a unique address and that the 
operating system is aware of any special memory considerations. The system 
designer should also verify that the operating system can properly handle an 
ECC or parity error report. 

9. 1.3 . Interrupt Configuration 

The Multibus system bus supports interrupts of two types: non-bus-vectored and 
bus-vectored. In non-bus-vectored interrupts the bus vector is generated by the 
master device; in bus-vectored interrupts the vector is generated by the inter­
rupting slave device. 

Non-bus-vectored interrupts are the simplest to use and require no special 
consideration. The system designer must choose the interrupt sources, connect 
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the interrupt sources to the programmable interrupt controller (PIC) properly, 
and initialize the PIC correctly. Non-bus-vectored interrupts are normally used 
when there are few bus interrupt sources or the system performance require­
ments allow the system interrupts to be "OR-tied." (Because of the open collec­
tor drivers, more than one interrupt source uses the same interrupt line.) 

Bus-vectored interrupts have the same requirements as the non-bus-vectored 
ones and the additional requirement that all the slave PICs must be correctly 
initialized. The advantage of bus-vectored interrupts is that a total of 64 system 
interrupt sources can be allowed, each with its own unique vector address. 

All Multibus masters accept non-bus-vectored interrupts, and many masters 
also accept bus-vectored interrupts. System designers should note that a master 
which has bus-vectored capability requires bus priority to service an interrupt 
(bus-vectored or non-bus-vectored, on-board-generated or system-generated). 
Some SBCs allow the bus-vectored capability to be disabled if it is not required 
for the application. Bus priority is not required for these boards to service on­
board interrupts. 

9.1.4 Time-Out 

Time-out is a safety feature, located on most masters, that prevents system lock­
up when the bus acknowledge signal is not generated within a predetermined 
time limit. In normal system configurations the time-out option should be dis­
abled. This ensures that bus operations (memory read, memory write, I/O read, 
I/O write, interrupts) that require longer times than are allowed by the time­
out feature will not be corrupted. Also, the system will halt if nonexistent I/O 
or memory is accessed. This may prevent a "run-away" microprocessor. 

On the other hand, time-out can be used to the advantage of a system. Many 
operating systems (e.g., Intel's iRMXl 86) calculate the size of available RAM 
memory by performing write, read, and verify operations until nonexistent 
memory is found. In this case time-out prevents the system from locking up and 
is required by the operating system. When the operating system is aware of the 
time-out, a controlled time-out operation is performed. Time-out can prevent 
special deadlock conditions such as the lock hang-up discussed in Sec. 5.3.1. The 
deadlock situation occurs when a dual-port RAM board, with one port on the 
Multibus system bus and the other port on the iLBX bus, is simultaneously 
locked from each port. This action can prevent both masters from getting to 
the resource. When boards are locked from their resource in this manner, the 
time-out prevents the system hang-up. For this type of time-out it is imperative 
that the master know a time-out has occurred. 

The system designer must decide whether time-out is required for the system 
and ensure that the time-out option is properly configured for the application. 

liRMX is a trademark of Intel Corporation, Santa Clara, California. 
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It is recommended that the time-out option be disabled for each master in the 
system unless it is required by the operating system or application. 

9.1.5 Bus Clocks 

The two system bus clocks, BCLK* and CCLK*, are required to be enabled or 
disabled for proper system operation. BCLK * is used for bus arbitration and is 
required for the bus masters to arbitrate for the bus. CCLK * is a general-pur­
pose system clock and may be required by some of the slave boards. 

The system designer must configure one and only one board to drive BCLK*, 
and the BCLK* drivers of other boards must be disabled. If the application 
requires CCLK*, the system designer must also configure one and only board 
to drive CCLK * and the CCLK * drivers of all other boards must be disabled. 
It is recommended that the board which drives the clocks be placed in a slot 
that is farthest from the bus backplane termination circuitry. This location 
ensures that the clocks are driving into the termination, which helps reduce 
system noise. The boards that receive the clock signals should be as close to the 
termination circuitry as possible. Board positioning is covered in greater depth 
in Sec. 9.5. 

9. 1.6 Level of Compliance 

Some Multibus-based boards comply to subsets of the full bus specification. 
Although these boards will work properly in many system applications, the sys­
tem designer must be aware to what level each board in the system complies to 
the Multibus specification. Specifically, areas such as bus priority, memory 
address range, data width, interrupts, and lock must be reviewed to ensure 
proper system operation. 

BUS PRIORITY 

For bus priority, the bus master must be checked for full or partial bus master 
capabilities. Intel's iSBC 80/10B and National's BLC 80/10 are examples of 
boards with only partial bus master capability. Also, support of the CBRQ* 
signal must be checked if it is required for a specific application. Some older 
SBC boards either do not support CBRQ* at all or only partially support it. The 
board's hardware reference manual should be checked to verify the level of bus 
priority support. 

MEMORY ADDRESS RANGE 

The memory address range that can be decoded by the system memory must 
be verified to ensure proper addressing operation by the bus master. The basic 
rule is that the system memory should be able to decode the full address range 
of the system bus masters. An exception to the rule occurs when a system mem­
ory board decodes less than the available address range, but the application 
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guarantees that the generated addresses can never go beyond the memory 
address decode range. Another area within memory address compatibility that 
the system designer should check is whether the memory is relocatable or is 
fixed in its decoded range. For example, a 64K-byte memory board may decode 
20 bits (IMbyte) of address space but is fixed on the lowest 64K-byte boundary, 
whereas a different 64K-byte memory board may be locatable on any 64K-byte 
boundary within the 1M-byte range. 

Probably the largest variance in address range is in the generation and 
decoding of the four high-order address bits. Some boards, e.g., Intel's iSBC 
286/10, generate a full 24-bit address. Other boards provide a paging method 
for the high-order address bits, and still other boards do not support these 
addresses at all. There is a similar variation of boards that receive the high-order 
address bits. The designer must be aware of the addressing variation and 
capabilities. 

DATA PATH WIDTH 
Data width compatibility must be checked to ensure that 16-bit boards can 
operate properly in the system. Specifically, 16-bit boards must know about 8-
bit system memory. The system designer must ensure that the 16-bit bus master 
executes only out of 16-bit memory. The . 16-bit bus master must perform byte 
operations when transferring data to 8-bit memory. 

INTERRUPTS 
The level of bus interrupt support for each bus master should be reviewed for 
consistent and reliable operation. A product may support no interrupts, non­
bus-vectored interrupts, or bus-vectored interrupts. Also, the interrupt capabil­
ity can support level interrupts and/or edge-level interrupts. It is necessary to 
so configure interrupt sources that the interrupt request method corresponds to 
the interrupt-sensing of all the bus masters. 

LOCK 

Lock is supported at many different levels by currently available SBCs. The 
level of support ranges from none to the capability to generate and receive lock. 
There are also boards which generate only or receive only. Table 9-2 is a partial 
list of boards and level of lock support. The system designer should review the 
application and decide what level of lock support is required. 

9.1.7 Mechanical Considerations 

In order to design a reliable system, the designer must be concerned with var­
ious mechanical aspects of the design, including such areas as thermal design, 
cabling, Multimodule mounting, and form factor. In the following sections thos~ 
areas are discussed. 



TABLE 9·2 ISBC CPU Boards LOCK. Signal Support 

Neither generate nor receive LOCK. 
iSBC 80/10B4 

BLC 80/lOb 

BLC 80/llA 
iSBC 80/24 
iSBC 80/30 
iSBC 86/12A t 
BLC 86/12Bt 
iSBC 88/25 

Generate LOCK. only 
iSBC 86/05 
BLC 86/05 

Receive LOCK. only 
iSBC 589t 

Generate and receive LOCK. 
iSBC 86/14t 
iSBC 86/30t 
iSBC 88/40t 
iSBC 88/45t 
DBC 86/50c 

iSBC 286/lOt 

Note: Boards marked with a dagger (t) contain dual-port memory. 

6iSBC is a trademark of Intel Corporation, Santa Clara, California. 

SYSTEM DESIGN GUIDELINES 317 

hsLC is a trademark of National Semiconductor Corporation, Santa Clara, 
California. 

cDBC is a trademark of Microbar Corporation, Palo Alto, California. 

THERMAL DESIGN 

Probably one of the most overlooked areas is the proper thermal design of a 
board or a system. Improper thermal design decreases the MTBF of a board, 
which decreases the MTBF of a system. Board-level thermal design guidelines 
are covered in Chap. 10. In this section the guidelines for system-level thermal 
design are covered. 

The area for system thermal design is the air flow through the system for 
board cooling. Most Intel board products require 200 linear feet per minute 
(LFM) of free moving air to operate properly in a 0 to 55°C (32 to 131°F) 
environment. The system designer should verify that the system package allows 
for this cooling over the entire board area. Some basic guidelines for the system 
packaging are as follows: 

1. The boards with the highest power dissipation should be placed closest to the 
fan or the best air circulation. 

2. Neither the I/O cabling nor other portions of the system enclosure should 
obstruct the air flow over the boards. 



318 MULTI BUS FAMILY APPLICATIONS 

3. Board-to-board spacing should be as large as the system's mechanical design 
will allow. 

4. In systems that do not provide adequate forced-air cooling, the boards should 
be oriented vertically so that the hot air between the boards is not trapped, 
and the system operating range should be reduced. 

5. The power supply should have its own fan to ensure proper ventilation. The 
orientation of the supply should direct the supply-generated heat away from 
the boards. 

CABLING 

When a system design is planned, the I/O cable routing must be considered. 
Most I/O connectors on SBC boards are located on the top edge of the board. 
In addition, the I/O cable from SBX multimodules is oriented toward the top 
of the board. Some SBC boards with SBX multimodules can have as many as 
five or six cables coming from the top of the board. The system designer must 
ensure proper routing of cables and also not obstruct the air flow, as mentioned 
in the section on thermal design. The cables must be mechanically secured in 
the system chassis to prevent damage to them or the boards during shipping or 
use. One way to secure cables that do not have locking mechanisms is to lay 
foam rubber sheets between the top of the SBC boards and the chassis cover. 
This method has the advantage of securing the cable connectors to the top of 
the boards and providing a seal for the air flow through the system. 

SHOCK AND VIBRATION 

All of the Multibus SBC products meet strict shock and vibration standards 
(Chap. 2). However, once these boards are placed in a system environment, 
additional precautions are necessary. 

It is highly recommended that all I/O connectors be mechanically secured. 
This will ensure that they will remain attached during shipping and, in some 
applications, use of the system. Some SBC cards and SBX multimodules have a 
locking-pin type of receptacle for mass-terminated cable that provides a 
mechanical lock for the connector. Most SBCs and SBXs use the standard edge 
connector. For this type of connector-receptacle pair a special connector-secur­
ing assembly should be designed for the system chassis. 

In severe shock and vibration environments, SBC boards have a tendency to 
separate from the PI Multibus connector. Card cages have mechanical board­
locking devices that prevent the boards from separating from the PI connector. 
It is highly recommended that these locking devices be used in your system. 
They must be used in any environment in which the boards and card cage in 
the system are mounted upside down. 

BOARD-TO-BOARD SPACING 

When a system uses SBX or SBC multimodules, the system designer must be 
aware of the increased board slot-spacing requirements. 
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In card cages with 0.7 in (17.7 mm) or less connector-to-connector spacing, 
host SBC boards with SBX multimodules require two slots. Host SBC boards 
with SBC multimodules (memory, mathematics, etc.) also require two slots 
unless the SBC board is placed in the end slot of any of the card cage modules. 
In that case the board requires only one slot. In some card cages certain slots 
are designed to accept host SBC boards with SBX multimodules without requir­
ing extra slots. SBC boards with SBC multi modules can use any slot without 
requiring extra slots if the slot-to-slot spacing is greater than 0.8 in (20.3 mm). 

In either card cage, the system designer must be prepared to use multiple 
slots if the boards used in the system design have requirements above what can 
be directly designed in one slot. The slot-board requirement must be reviewed 
early in the design phase to compute the exact size of the card cage assembly. 
Failure to do so could result in a card cage that is larger than is physically 
allowed by the system chassis. 

9.2 BUILDING SYSTEMS WITH ISBX MULTIMODULES 

The iSBX Multimodule approach allows a system designer to simply and 
quickly add extra I/O to the system design. In the following section we provide 
the information necessary to ensure proper iSBX operation in the system. 

9.2. 1 Addressing 

The iSBX Multimodules connect to the I/O bus of a microprocessor and are 
addressed on the local (on-board) bus of the host SBC. Therefore, the addresses 
covered by the iSBX Multimodule, when connected, are not broadcast over the 
Multibus system bus. Most host SBC boards do not go to the system bus for the 
full range of the iSBX addresses even if only one iSBX Multimodule is con­
nected. (Refer to Chap. 4 for the iSBX address ranges.) The system designer 
must be aware of the on-board-off-board address when an iSBX Multimodule 
is connected. Some SBC boards remain on-board for iSBX address only when 
an iSBX Multimodule is connected, but others remain on-board whether or not 
a module is present. This fact is extremely important when adapting a design 
from a system bus slave I/O expansion to an iSBX Multimodule. 

The method by which an iSBX Multimodule is addressed varies with the data 
width of the baseboard. In a 16-bit baseboard, 8-bit iSBX module design, only 
the low-order data byte (DO to D7) is used. This means that all data and status 
registers on the iSBX module are separated by 2-byte address locations. There­
fore, each of these address locations is on an even I/O address boundary. For 
example, the Intel iSBX 351 serial communication module's data and status 
address could be assigned to I/O locations OAOH and OAIH, respectively, on an 
8-bit baseboard. The same module on a 16-bit baseboard would have the same 
registers assigned to OAOH and OA2H, respectively. The hardware reference 
manual for each baseboard and iSBX Multimodule should be referred to prior 
to configuring the system. 
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9.2.2 Interrupts 

The iSBX specification allows for two interrupt source connections to til(' has('­
board. If additional interrupt connections to the baseboard are required, tlJ(' t WII 

option lines can be used. The system designer must plan all interrupt SOIlI"l'(':-' 

and ensure that the iSBX module interrupts are properly COllll('ded Oil tlJ(' 
SBC's interrupt controller. 

9.3.3 DMA 

The main concern to the system designer with regard to DMA is that tlal' lao:-.t 
SBC is responsible for transferring the data to or from the SBX modllle, Till' 
iSBX interface does not allow for an iSBX Multimodule to assume master capa­
bility to perform DMA directly between the module and on-board memory. If 
the host SBC does not have DMA capability, then the data must be transfl'rf('d 
via interrupt signaling from the iSBX Multimodule to the host SHe. In that cas(', 
the designer must ensure that the software overhead to move the data can mt'd 
the transfer requirements of the iSBX Multimodule. For example, thl' iSBX 
2l8A floppy disk Multimodule can not work reliably with double-dt>nsity disk 
drives on the iSBC 80/l0B. The software overhead requirement to move ('acla 
byte of data exceeds the required data transfer rate. However, CPUs with faster 
operation can reliably transfer data. 

Many iSBX Multimodules were not directly designed for DMA operatioll bllt 
may be used in a DMA mode on host SBCs with DMA controllers. In mallY 
cases the interrupt signal can be used as the DMA request signal and th{> host's 
chip select can provide the DMA acknowledge. The advantage of the Dt\JA 
operation over the interrupt operation is that much less processor and local hus 
bandwidth is used to move the data. The designer must ensure that the interrupt 
and chip select signals can meet the DMA timing requirements and that thl' 
host and iSBX Multimodule can be configured to allow this operation. Also, as 
with the interrupts, any additional DMA signal requirements should be handled 
by the iSBX option lines. 

9.2.4 Levels of Compliance 

As with the baseboard SBCs, the iSBX Multimodules support various levels of 
compliance. The system designer must review each area to ensure proper oper­
ation in the system. The following are the compliance-level areas a system 
designer should be aware of: 

1. Data path width 

2. DMA support 

3. MW AIT* support 

Each of these areas is discussed in the following sections. 
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DATA PATH WIDTH 

The system designer must ensure that the chosen iSBX modules support the data 
width requirements of the baseboard. The 16-bit baseboards which support the 
iSBX bus interface also support 8- or 16-bit iSBX Multimodules. For this envi­
ronment, the designer must ensure only that all data transfers to an 8-bit iSBX 
module are on the low-order data byte (DO to D7). 

The 8-bit baseboards can operate only with 8-bit iSBX modules. Although a 
16-bit iSBX module may mechanically attach to the 8-bit baseboard, the 
required data path for the module is not supported. Putting a 16-bit iSBX mod­
ule on an 8-bit baseboard will result in random and incorrect results. 

DMA SUPPORT 

The DMA support compliance level affects both the iSBX module and the base­
board. Baseboards and iSBX modules mayor may not support DMA. The sys­
tem designer should review the level of DMA support required and ascertain 
the compatibility of the modules to the baseboard. Most iSBX modules that sup­
port DMA may also be programmed by conventional means, but that should be 
verified for each module. Also, a module designed for DMA operatiori will nor­
mally transfer data less efficiently when used with conventional data transfer 
means rather than DMA. 

MW AIT * SUPPORT 
As with the DMA support, support of the MW AIT* signal on the baseboards 
and the iSBX modules is optional. The system designer must review the mod­
ule's capabilities and decide if MWAIT* support is required on the baseboard. 
If the baseboard's cycle time is faster than that of the iSBX module that is 
attached to the baseboard, MWAIT* support may be required to allow the base­
board to resynchronize to the module's cycle. Often the baseboard provides a 
jumper option to allow a fixed number of resynchronization cycles for the iSBX 
module. If so, MW AIT* support may not be required. However, if the resyn­
chronization time is variable, then MW AIT* support is required. 

9.2.5 Mechanical Considerations 

The system designer should be aware of the baseboard-to-baseboard spacing, 
mounting considerations, and cable considerations when planning the system 
configuration. 

SPACING CONSIDERATIONS 

Baseboards with iSBX modules will take two slots when designed into back­
planes with less than l.O-in (2.54-cm) center-to-center spacing. Certain back­
planes provide slots that give adequate spacing for baseboards with iSBX mod­
ules. The system designer must adequately plan for the slot requirements when 
iSBX modules are involved. 
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MOUNTING CONSIDERATIONS 
The mounting hardware supplied with the iSBX module should always be used 
to secure the module to the baseboard properly. The iSBX connector alone does 
not provide adequate support for the module, and mechanical or electrical fail­
ure can occur in any normal shock or vibration environment. 

The system designer must also review the number of modules the system 
requires and compare that number with the number of iSBX sockets available 
on the baseboards in the system. In reviewing the modules, the number of dou­
ble-wide iSBX modules must also be considered. Most baseboards support sin­
gle-wide and double-wide modules in some combination. If a baseboard has 
only one iSBX socket, normally it will support a single or double-wide Multi­
module. (A baseboard's double-wide Multimodule support should be verified.) 
Intel's iSBC 80/l0B is an example of a baseboard that supports one single- or 
double-wide Multimodule. 

If a baseboard has two iSBX sockets, normally it will support two single-wide 
Multimodules or one single- and one double-wide Multimodule. Some host SBCs 
do not allow a single- and a double-wide Multimodule to coexist on the host 
board. For those SBCs, two single-wide Multimodules or one double-wide Mul­
timodule can be accommodated. The baseboard should be reviewed for simul­
taneous single- and double-wide Multimodule support if that is a requirement 
for the application. Examples of baseboards that provide single- and double­
wide Multimodule support are Intel's iSBC 80/24 and 86/30, National's BLC-
80/11 and BLC-86/l2B, and Heurikon's HK-68A. 2 

In some cases a baseboard may provide three iSBX sockets. For these base­
boards, three single-wide Multimodules or one single- and one double-wide 
Multimodule can be simultaneously supported. In the latter case one socket can­
not be used. An example of a baseboard with three iSBX sockets is Intel's iSBC 
88/40. 

CABLING 

As iSBX Multimodules are added, more I/O cables must be properly planned 
for the system. In many applications the cable from an iSBX Multimodule will 
directly overlay the cable from the baseboard's I/O connector. The system 
designer must ensure proper routing and guarantee that the cables do not 
obstruct the air flow. 

9.3 BUILDING SYSTEMS WITH THE MULTICHANNEL BUS 

The Multichannel bus provides a high-speed I/O gateway to the Multibus sys­
tem bus. To provide flexibility in many different system environments, the Mul­
tichannel bus makes many configuration options available to the user. The fol­
lowing areas should be considered by the system designer: 

2HK is a trademark of Heurikon Corporation, Madison, Wisconsin. 
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• Device configuration 

• Bus priority 

• Time-out 

• Cable and termination considerations 

• Levels of compliance 

• Mechanical considerations 

9.3.1 Device Considerations 

A slave on the Multichannel bus can be either a basic talker-listener or an intel­
ligent controller. Both types of device have configuration requirements which 
must be considered by the system designer. Specific areas for the designer to be 
aware of are address, data width, parity, and autoconfiguration. In the following 
sections we will explore these areas. 

ADDRESS CONSIDERATIONS 

The Multichannel bus supports 16 devices each of which contains up to 16M 
bytes of unique memory space and up to 16M bytes of unique I/O space. Each 
device that is connected to the Multichannel bus must be configured with a 
unique device number (0 to 15) by the system designer. Care must be taken 
that every device number required by the application is covered and that no 
two devices have the same device number. 

The Multichannel bus is a block transfer bus (Le., one address for one to N 
bytes of data) with the transfer length dynamically set by the master. A slave 
is required to generate the on-board resource addresses for each data transfer. 
A lock-up condition can occur when the slave is reading from its memory and 
writing the data to the Multichannel bus and reads beyond the existing on-board 
memory boundary. Suppose, for example, that an application requires a transfer 
of 16K bytes of memory. The master, as per the bus specification, terminates 
the transfer after reading the last byte from the slave. The slave, which has been 
responding to the master, has exactly 16K bytes of memory (on board or on the 
Multibus system bus). After the master accepts the last byte, the slave's design 
may cause it to prefetch the nonexisting 16K + 1 byte, potentially locking the 
system. To prevent this type of system lock-up, the system designer must ensure 
that the available memory size is one byte or word larger then the application 
requires if the design uses boards that prefetch data. 

DATA WIDTH 

The bus supports 8- and 16-bit devices, and it is up to the master to ensure that 
the data transfer is properly aligned for the slaves. The system designer must 
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ensure that all potential masters have knowledge of a bus that contains both 8-
and 16-bit devices. The data width of each device is predefined at system con­
figuration time, and its capabilities must be reviewed prior to configuring the 
system. The designer must also ensure that the 8-bit slaves have the address 
capability required for the system. Some 8-bit slaves may contain 256 bytes of 
local memory and I/O. This restriction is due to the 8-bit address width of a 
slave implementation. 

PARITY 
When a system is configured, there are two considerations for a designer with 
respect to parity. The first is whether a system requires parity, and the second 
is how the system should react when a parity error occurs. 

The decision to use parity is usually application-dependent. Normally parity 
is used in noisy environments where the cable or boards may pick up electrical 
interference or electrostatic discharge (ESD). Parity should also be used when 
a data error could be extremely costly, as in a machine control environment. 
For most applications, bus parity is highly recommended. The main reason why 
a system designer may choose not to use parity is the overhead for parity check­
ing and generation and the parity drivers and receivers required for each board. 
The system designer should be aware that parity checking over the bus only 
ensures that the bus drivers, receivers, and cable medium are working properly. 
Parity will not help if there are memory or I/O failures. If additional protection 
against failures is required, then block data check sums, error correction, or 
cyclic redundancy checking (CRC) should be used on the devices. 

If parity is chosen for the system, then the system designer must ensure that 
all devices which drive the address-data (AD) lines generate parity and all 
devices that receive AD check parity to ensure system integrity. At a minimum, 
if parity is selected for the system, all devices which drive the bus must generate 
it. Otherwise, the system may generate parity errors even if the data is valid. If 
parity is not chosen for the system the designer must ensure that no devices 
check it on the bus; otherwise, parity errors may occur even if the dat~ is valid. 

The other area to consider is the action of the system when a parity error is 
detected. The action taken is also system application-dependent. In systems that 
buffer the data prior to moving the data to the final destination, the recom­
mended action is to invalidate the data block and perform a retry on the block. 
In systems in which the data is used immediately after receiving each transfer, 
a system halt is required with some type of error status available to the system 
operator. For most applications that use parity, the buffered approach is rec­
ommended. Whatever action is chosen, the system designer must ensure that 
the system software can handle the action and that all devices comply with the 
requirements of the action. 
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AUTOCONFIGURA TION 

The Multichannel bus provides a means for a system to configure itself on 
power-up or when new devices are added after power-up. The system designer 
must decide if autoconfiguration is required for the system and how the auto­
configuration "hooks" provided by the bus specification should be used. 

The autoconfiguration allows a system to be dynamically configured. The 
system software does not need to be updated if devices change or memory size 
changes. The decision to use the auto configuration feature should be based on 
the application and the environment the system is in. If frequent updates are 
expected or the system supports many configurations, the autoconfiguration 
method should be employed. Another application in which autoconfiguration 
support may be beneficial is one in which the system cannot be brought down 
for repair of a device or when a device needs to be updated. Autoconfiguration 
allows devices to be interchanged while the system is running and keeps the 
system supervisor informed of the changes. On the other hand, if a system is 
statically configured and future updates to the configuration are not planned, 
the software overhead for autoconfiguration is not necessary. 

The SRQ signal and register provide the hooks for autoconfiguration. It is up 
to the system designer to place the necessary information into a device's service 
request (SRQ) register for the Multichannel supervisor to interpret and store in 
a look-up table. The Multichannel specification designates one bit in the SRQ 
register for autoconfiguration so that a supervisor can determine whether a nor­
mal SRQ or an autoconfiguration SRQ has occurred. The remaining bits in the 
register can be defined by the user. The only requirement is that a consistent 
definition of the SRQ register bits be used to simplify the system software. The 
information contained in the SRQ register is application-dependent, but there 
is general information that should be provided. The device number and device 
type (talker, listener, talker-listener, or intelligent controller) should be 
included. Other information such as memory size, special functions, and/or 
level of intelligent controller may also be included as the application dictates. 

An example of use of the autoconfiguration option is Intel's iSBC 589 board. 
It is a DMA board that has a Multichannel bus interface, which can be config­
ured as a supervisor, intelligent controller, or basic device. As an intelligent con­
troller or basic device it has a specific format for the SRQ register when used 
in autoconfiguration. Figure 9-5 shows the iSBC 589 SRQ register format when 
used for autoconfiguration. If additional information about a device is required, 
bits 4 to 6 point to other registers on the device which may be user-defined. As 
a supervisor, the iSBC 589 reads the SRQ register information and builds a look­
up table in its memory. This table is then consulted whenever a bus transaction 
takes place. Figure 9-6 is the format used by an iSBC 589 supervisor when 
building a system configuration table. This is only an example; the format can 
be defined by the user. 
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MSB 
BIT 7 6 5 4 3 2 

LSB 
o 

SRQ~I _______ O _____ O ______ O _____ P _____ S _____ T _____ T~ 

BIT 

SRQ I 

TYPE OF DEVICE 
OO=BUS CONTROLLER 
01 =TALKER ONLY 
10 = LISTENER ONLY 
11 = TALKER I LISTENER 

SIZE OF INTERFACE 
0= 8- BIT DEVICE INTERFACE 
1 = 16-BIT DEVICE INTERFACE 

DEVICE PRESENCE 
0= DEVICE NOT PRESENT 
1 = DEVICE PRESENT 

INDICATES THAT THE DATA IN THE SRQ REGISTER IS INFORMATION FOR 
THE DEVICE CONFIGURATION TABLE 

MSB LSB 
7 6 5 4 3 2 0 

0 X X X X X X X 

1 
T 
USER-DEFINED FORMAT 

I NDICATES THAT THE SRQ REGISTER CONTAINS A USER -DEFINED DATA 
BYTE; DATA IS NOT FOR ENTRY INTO THE DEVICE CONFIGURATION 
TABLE 

FIGURE 9-5 iSBC 589 SRQ register definition. 

9.3.2 Cable and Termination Considerations 

The system designer must consider the environment and devices when planning 
the system. The cable type and length, as well as the method of termination, 
are the keys to a reliable implementation. 

CABLE 
The designer has three types of cable to choose from: flat ribbon, twisted pair 
ribbon, and shielded ribbon. The use of these cables depends on the application. 
Flat ribbon cable can be used in a quiet environment and when all the devices 
connected to the cable are within the same system box. Normally, flat cable is 
used when there is close spacing between boards. Twisted pair cable provides 
greater noise immunity over distances, but it is generally more difficult to pro­
vide connector termination for it. One cable, Spectra-Strip's Twist and Flat,3 

3Twist and Flat is a trademark of Spectra-Strip Corporation. 
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provides the advantages of twisted pair cable while providing evenly spaced flat 
sections (approximately every 2 ft or 0.6 m) for mass-terminated connectors. 
Shielded flat ribbon cable is highly recommended when the cable goes inter­
system in noisy environments. This cable provides high noise immunity, but it 
is expensive and more difficult to mass-terminate. 

After the cable type has been selected, the system designer must choose the 
cable length appropriate to the application; it should be the minimum required 
by the physical separation of the devices. Careful planning of the device loca­
tions may lower the cable length requirement and thereby reduce the overall 
system cost and the cable's susceptibility to system noise. The devices that attach 
to the cable should be connected directly to the cable; cable stubs should not be 
used for attaching them. Figure 9-7 shows the correct and incorrect methods of 

7 6 

D D 

5 4 

D D 

3 

P S 

o 

T T 

'---.--J 

• TT = 00 SUPERVISOR OR BUS 
CONTROLLER DEVICE 
(MASTER) 

TT = 01 BASIC DEVICE. TALKER 
ONLY (SLAVE) 
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FIGURE 9-6 iSBC 589 Multichannel bus device configuration: byte format and table 
format. 
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FIGURE 9-7 Multichannel bus cable and device interconnect methods: (a) Cor­
rect method; (b) Incorrect method. 

connecting devices. The stubs cause signal reflections which reduce the relia­
bility of the overall system. 

SIGNAL TERMINATION 

The Multichannel bus requires signal termination at both ends of the cable. The 
termination must be provided by the devices or termination modules. The sys­
tem designer must ensure that the devices chosen provide the termination for 
the bus and that two of them are physically located at each end of the bus. Also, 
the designer must ensure that the termination is properly configured at each 
end of the cable and that no other devices are providing termination. Intel's 
iSBC 589 and iSBC 580 provide the capability to terminate the bus at either 
end of the cable. These products can have the termination removed if they are 
not at the end of the cable. Both products are shipped with the termination in 
place; therefore, the boards not required to provide termination must have the 
termination resistors removed. 

In the event that the devices selected for an application do not have termi­
nation capability, pull-up or pull-down termination modules, or both, must be 
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designed and implemented on the bus. Chapter 3 explains the electrical require­
ments of these modules. Figure 9-8 is the schematic of a pull-down termination 
module, and Fig. 9-9 shows the PCB layout of the module. The system designer 
must choose the appropriate form factor to fit and mount the modules in the 
system chassis. It should be noted that, by careful planning, one module design 
can satisfy the termination requirements for both pull-up and pull-down 
termination. 

9.3.3 Levels of Compliance 

The Multichannel bus supports various levels of compliance for devices that 
attach to it. The system designer must be aware of the device's capability before 
the system can be properly configured. The following areas permit variation: 

• Data path width 

• Address path width 

• Parity support 

• Interrupt register support 

DATA PATH WIDTH 

Data width compatibility must be verified when systems are designed with 8-
and 16-bit data width. The 16-bit devices must be checked to ensure that they 
can transfer data with 8-bit devices. The 8-bit devices are required to receive 
or transmit data only on the low byte of the A/D bus. 

ADDRESS PATH WIDTH 

The Multichannel specification supports both 8- and 16-bit addresses. The 8-bit­
address devices can support up to 256 bytes of memory and 256 bytes of register 
or I/O. The 16-bit-address devices can support 16M bytes of memory and 16M 
bytes of register or I/O. The system designer must verify the address range 
capabilities of each device in the system; otherwise, an address generated may 
go beyond the boundaries of the 8-bit device. In a system that consists of 8- and 
16-bit-address devices, the 8-bit device must check parity for 16 bits of 
addresses if parity is supported in the system. 

PARITY 

If the application requires parity, each device must be checked for parity sup­
port. The system designer must ensure that all talking devices generate parity 
and all listening devices check parity. If parity is not selected, then all listening 
devices must be configured to disable parity. 
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The bus requires consistency in the support of supervisor request (SRQ) and 
supervisor take over (STO) signals and registers. If transfer error reporting or 
autoconfiguration is required for the application, then the devices must support 
these interrupts. The application should be reviewed to ensure the consistency 
of the devices and to verify that the devices are configured properly for the 
application. 

9.4 BUILDING SYSTEMS WITH THE ILBX BUS 

The iLBX bus provides a high-speed memory execution path for Multibus sys­
tem-based iSBC boards. In order to provide flexibility in many different system 
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environments, the iLBX bus makes many configuration options and require­
ments available to the user. The following areas should be considered by the 
system designer: 

• Address space 

• Secondary master 

• Optimized operation 

• Levels of compliance 

• Mechanical considerations 

9.4. 1 Address Space 

When configuring a Multibus system with the iLBX extension, the system 
designer must configure the iSBC board for the added memory on the iLBX 
bus. The design must be carefully partitioned to ensure that the executable code 
remains on the iLBX bus and does not spill over onto the Multibus system bus. 
Executing on the Multibus system bus causes a degradation of SBC execution 
speed and wastes system bus bandwidth for execution. Both actions cause an 
overall degradation of system performance. On the other hand, if the iSBC 
board is so configured that its memory address range is covered totally by the 
on-board memory and the iLBX bus, the processor can never go to global mem­
ory on the system bus. The application requirements and system configuration 
requirements must be closely reviewed prior to physical implementation of the 
system. 

9.4.2 Secondary Master 

A secondary master can greatly increase the performance and flexibility of a 
system. However, if the secondary master is not properly configured or has 
extremely high bandwidth requirements, the overall system performance may 
suffer because the primary master is prevented from executing. If the secondary 
master's bandwidth is high enough to cause performance degradation, then 
alternative architectural methods to handle the secondary master should be 
investigated. 

The decision to use a secondary master rests totally with the application. In 
many applications high-speed mass storage devices can move the data to or 
from an iSBC board directly and not burden the Multibus system bus. In other 
applications the secondary master can extend the functionality of the iSBC 
board. Intel's iSBC 580 can provide a Multichannel bus interface capability to 
an iSBC board via the iLBX bus. 

If secondary-master support is required for an application, the system 
designer must review the performance requirements of the secondary master 
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and the length of time the bus is required by the secondary master. Because a 
secondary master can retain the bus for an indeterminate length of time, the 
secondary master can affect interrupt latency of the master board or the overall 
system performance. Also, the primary master must be verified for secondary­
master support capability to ensure proper operation. 

9.4.3 Acknowledge Timing 

The iLBX bus allows a tight timing relationship between the master and the 
slave devices that greatly improves the memory access time, which directly 
affects the overall system performance. Optimized operation requires the sys­
tem designer to study, understand, and configure the system with regard to 
CPU timing and memory access time. Also, increased overhead on the slave 
devices is necessary to provide the timing flexibility and the tight timing 
required. 

In Sec. 5.3.1, three types of transfer acknowledge were developed. Type 1 
acknowledgment allows a slave to acknowledge a transfer cycle any time after 
the slave receives the ASTB* signal; it provides the "optimized" operation. In 
type 2 acknowledgment the slave acknowledges the transfer cycle any time 
after receiving a DSTB* signal. Type 3 acknowledgment requires the slave to 
acknowledge the transfer cycle only when data is valid or accepted. Type 3 
acknowledgments are considered nonoptimized operations. The main concern 
for a system designer is how to configure the acknowledge time for the slaves 
in the system. The problem becomes more complex if a secondary master also 
is part of the system. The bus allows optimized and nonoptimized slave devices 
to coexist on the same bus. However, if a secondary master is present, then both 
the primary and secondary master must be configured for optimized operation 
if any of the slaves are configured for optimized operation. If neither the pri­
mary nor the secondary master can support the optimized operation, the slaves 
must be configured for nonoptimized operation in order for the system to per­
form correctly. 

For a system to be optimized, the slave must have the capability to vary its 
acknowledge timing with respect to the master. The variable acknowledge tim­
ing allows the slave to drive the acknowledge line active prior to generating or 
accepting valid data. This is known as advance acknowledge, or preacknow­
ledge. The amount of preacknowledge can vary from 0 ns (acknowledge active 
when data is valid) to the maximum access time of the slave device. This vari­
ability allows a slave device to work in many different system configurations. 
For a particular configuration, once the preacknowledge time is set, it remains 
fixed. In general, the amount of preacknowledge time implemented must be 
less than or equal to the acknowledge acceptance overhead of the fastest master. 
Acknowledge acceptance overhead is defined as the difference in time between 
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the master's acceptance of the acknowledge signal and sampling of data. The 
following general steps should be taken when a system is configured for opti­
mized operation: 

1. Check the slave's access time (t 13) and preacknowledge time increments (in 
the specific board hardware reference manual). 

2. Compare the primary master's acknowledge overhead to the secondary mas­
ter's and choose the lowest overhead time (see hardware reference manual). 

3. Configure each slave to preacknowledge a time less than or equal to the 
lowest overhead time. 

As an example, assume a system which consists of a primary master with an 
acknowledge overhead of 100 ns, a secondary master with an acknowledge· 
overhead of 150 ns, slave A with 160 ns access time and preacknowledge incre­
ments of 40 ns, and slave B with 225-ns access time and preacknowledge incre­
ments of 25 ns. Comparing these times to the steps above, we find: 

1. Slave A 150/40, slave B 225/25 

2. System acknowledge overhead = 100 ns 

3. Slave A configured to preacknowledge 80 ns prior to data valid; slave B con­
figured to pre acknowledge 100 ns prior to data valid 

The system acknowledge overhead of 100 ns was chosen because it was the 
lowest overhead time between the primary and secondary master. Slave A 
preacknowledge of 80 ns was chosen because it was the lowest preacknowledge 
time increment available without going over the 100-ns system acknowledge 
overhead. The next increment to the preacknowledge time was 120 ns, which 
exceeds the 100-ns limit. Slave B, with its 25 ns preacknowledge increments, 
can exactly meet the 100-ns system overhead time. 

9.4.4 Levels of Compliance 

The iLBX bus supports various levels of compliance of the devices that attach 
to it. The system designer must be aware of the device's capability before the 
system can be properly configured. The following areas permit variation: 

• Data path width 

• Secondary-master support 

• Parity support 
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DATA PATH WIDTH 

The bus supports 8- or 16-bit interfaces. The system designer must ensure that 
all device bus interfaces are the same width; otherwise, improper transfers will 
occur. Some devices can be configured for 8- or 16-bit operation. The designer 
must ensure that such devices are properly configured to match the other boards 
in the system. 

SECONDARY -MASTER SUPPORT 

The capability of a primary master to support a secondary master must be ver­
ified if secondary-master support is required for an application. Limited pri­
mary masters do not provide secondary-master support. The system require­
ments must be matched to primary-master capability before the primary 
master is selected. 

PARITY SUPPORT 

If the application requires parity, each device must be checked for parity sup­
port. The system designer must ensure that all devices that write data to the bus 
generate parity and that all devices that receive data check parity. If parity is 
not required for an application, then any devices that check parity must be 
configured to disable the parity option. Failure to disable the parity option can 
result in false transfer errors. 

9.4.5 Mechanical Considerations 

Since the iLBX bus uses the Multibus P2 connector, many of the mechanical 
attributes of the Multibus system bus are used. The following areas require spe­
cial consideration by the system designer: 

• Bus interconnect assembly 

• Connector key slot 

• Battery back-up-front-panel interface 

BUS INTERCONNECT ASSEMBLY 

The bus interconnect assembly can be either a mass-terminated cable assembly 
or the dual or tri-auxiliary connectors currently used in many of the Multibus 
board products. Connector assembly mounting and Multibus high-order address 
busing are the two main mechanical concerns of the cable assembly. 

The cable assembly has the advantage of a flexible configuration ability and 
the support of up to five boards. Therefore, the system designer can design the 
cable assembly to meet the application requirements. The only requirement of 
the cable assembly is that its maximum length not exceed 4 in (10.16 cm) in 
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overall length. The cable assembly can be constructed from standard off-the­
shelf flat ribbon cable and mass-terminated connectors. 

The cable assembly must be securely mounted to the backplane by using the 
P2 connector mounting holes provided on the backplane. This prevents undue 
stress to a cable assembly that supports multiple boards when one or more 
boards are removed. Cable failure will result when boards are constantly 
removed if the connector assembly is not properly secured. 

If the high-order Multibus address lines (ADRI4* to ADRI7*, located on the 
P2 connector) are required for an application along with the iLBX bus(es), the 
cable assembly must also support those signals. The problem occurs when the 
Multibus signals must be bused to all boards in the system, while each iLBX bus 
assembly in the system extends across only two to five boards. For this situation 
a special cable assembly must be constructed that allows individual iLBX buses 
while connecting the high-order Multibus address lines to all boards. The system 
designer must recognize the application requirement and fabricate the proper 
cable assembly to match the application requirements. Many of the cable and 
connector vendors will fabricate special cables if the volume warrants outside 
vendor support. 

KEYSLOT 

Every iLBX-compatible board provides a special keyslot for a corresponding 
keyed connector. The use of a keyed connector is highly recommended to pre­
vent mixing boards without iLBX support and battery backup P2 connector 
boards with iLBX connector boards. Placing a board in the wrong connector 
can destroy components on the board. The key and keyslot ensure that only 
iLBX-compatible boards are placed in iLBX connectors and that P2 battery 
backup-compatible boards are placed only in P2 battery backup connectors. 

BATTERY BACKUP-FRONT-PANEL INTERFACE 

Since the iLBX bus uses all of the P2 connector (except the four Multibus high­
order address lines), battery backup support and front-panel interface (reset, 
halt-run, interrupt) are located on the top right of the boards on a connector 
labeled P3. A special cable assembly must be constructed if those features are 
required for the application. Also, special consideration must be given to sys­
tems that contain boards with these support signals on P2 and boards with the 
support signals on P3. The system designer must review the application require­
ments to ensure that the cable assembly matches the requirements. 

9.5 REDUCING MULTIBUS SYSTEM NOISE 

Since the Multibus was first introduced, many advances in VLSI have occurred. 
Faster microprocessors, faster memory, and faster buffers with 1- to 2-ns switch­
ing times and 48 + rnA drive are now available. Heavily loaded systems that 
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use these components may generate or induce enough system noise that the 
reliability of the transfer decreases. Although this chapter and book are based 
on the Multibus system bus, the information presented here pertains to any sys­
tem bus. 

In this section we will discuss three electrical phenomena that can introduce 
noise into the system: 

• Signal-to-signal coupling 

• Ground shifts 

• Signal ringing 

Although the causes of these noise problems differ, the effect on the data and 
the system is virtually the same. It is often difficult to distinguish between noises 
that cause problems in a system, since the effects are similar. The information 
given in the following sections will help in identifying the noise origin as well 
as suggest ways to reduce the noise in the system. In many applications the noise 
generated by the phenomena is substantially within the TTL threshold levels. 
For these applications following the suggestions made in this section will reduce 
the risk of noise-related problems. On the other hand, if the application does 
have noise-related problems, following these recommendations will help reduce 
the noise to an acceptable level. 

9.5.1 Slgnal-to-Slgnal Coupling 

When a signal on one trace affects the signal on an adjacent trace, the phenom­
enon is called signal-to-signal coupling. The signal that is induced on the adja­
cent trace is called coupled noise. 

Problems in a system can occur when the coupled noise is severe enough to 
cause a TTL low logic state, which must be < 0.8 V, to appear as a high logic 
state or when the coupled noise causes a TTL high logic state, which must be 
:> 2.0 V, to appear as a low logic state. Since there is sufficient noise margin in 
the high logic state, the coupled noise usually affects low logic levels. This occurs 
in TTL because a typical high logic level equals 3.5 V, leaving a 1.5-V noise 
margin. On the other hand, a typical low logic level equals 0.4 V, leaving only 
a 0.4-V noise margin. The main cause of coupled noise is inductive coupling, 
which can be expressed as 

di 
V = L-

n dt 

where L = total mutual inductance of parallel current paths 

i = signal current in primary trace 
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t = signal current transition time 

Vn = coupled voltage (noise) in adjacent trace 

CHARACTERISTICS OF SIGNAL-TO-SIGNAL COUPLING 

The mutual inductance L is a function of the length of the parallel paths and 
the cross-sectional area of those paths. The outcome of this statement is that 
backplanes are prime candidates for coupled noise. Boards also can have cou­
pled noise, but normally the noise is insignificant because the trace lengths are 
generally short. However, if the trace lengths are 4 in (10.16 cm) or more and 
the primary signal has fast rise and fall times «2 ns), then the board is a can­
didate for coupled noise. 

To review the formula above, there are three ways to increase the magnitude 
of the coupled noise V n: increase the inductance L, increase the current i, and 
decrease the time t. As the backplane length increases, the magnitude of the 
coupled noise may also increase because the mutual inductance L has increased. 
High-current drivers (such as the BCLK* and CCLK* drivers) may increase or 
cause coupled noise because they affect the current i. Fast-switching devices 
(such as TTL Schottky devices, AS4 devices, F ASr devices) may increase or 
cause coupled noise because they reduce the current transition time t. Also, it 
should be noted that signal-to-signal coupling is additive. This means that 16 
lines simultaneously transitioning in the same direction will cause more coupled 
noise then one signal transition. If two signal transitions simultaneously oppose 
each other, then their coupled noise components cancel each other. 

REDUCING EFFECTS OF SIGNAL-TO-SIGNAL COUPLING 

By following these guidelines, coupled noise can be reduced in most system 
configurations. 

• Do not drive CCLK* on the bus unless it is required for the configuration. 
This eliminates any coupled noise generated by the CCLK * signal transitions. 

• Keep backplane length as short as possible. 

• Use backplanes that interleave ground traces between signal traces. The 
grounds absorb the radiated field from the signal traces. 

• Keep BCLK * and CCLK * signals as short as possible and as close to the ter­
minators as possible. This can be done by grouping the boards that use the 
clocks as close as possible to the termination. 

• Drive BCLK* and CCLK* with masters that drive these signals 1800 out of 
phase. This has a canceling effect on the coupled noise. 

4AS is a trademark of Texas Instuments Corporation, Dallas, Texas. 

SF AST is a trademark of Fairchild Corporation, Santa Clara, California. 
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Fastest 

I 
Slowest 

Advanced Schottky 
Schottky 

Advanced low-power Schottky 

Low-power Schottky 

Standard 

Low-power 
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• Place boards with faster signal transition times closer to the terminators. This 
will reduce the length of the current-carrying path. Table 9-3 is a list of the 
drivers in order of their speed. 

9.5.2 Ground Shifts 

Ground shift is defined as the potential difference between the ground to which 
the receiver signal is referenced and the ground to which the driver signal is 
referenced. If the ground shift of a signal is large enough, it can cause signal 
failure. Figure 9-10 shows a model of ground-shift failure. 

EFFECTS OF GROUND SHIFTS ON A SYSTEM 

In Multibus systems there is a common ground path for all boards. Ground shifts 
have an adverse effect on a system by causing signals that are referenced to the 
ground to be incorrectly read by the receiving devices. For example, using Fig. 
9-10, if the ground on board A is at a higher potential than the ground on board 
B, the potential difference is added to the signal S. If signal S is 0.8 V (TTL low 
logic signal) at driver A output as referenced to ground at board A and ground 
at board B is at + 1.2 V as referenced to ground at board A, the signal at the 
receiver of board B will be 2.0 V (TTL high logic level) as referenced to ground 
at board B. 

Normally, backplane ground shifts alone are insufficient to cause a signal 
error. However, backplane ground shifts coupled with board-level ground shifts 
and voltage drops through board and backplane connectors can cause problems. 
Ground-shift problems are difficult to trace because they occur around the sig­
nal transition time and are not traceable after a signal has reached steady state. 

BOARD A BOARD B 

SIGNAL S 

L,----, 
= 

FIGURE 9-10 Ground-shift failure model. 
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EFFECTS OF GROUND SHIFTS ON MUL TIBUS SIGNALS 

Active-low signals that must be active during address and/or data transitions 
are primary candidates for ground-shift problems. Multibus signals such as 
LOCK*, BUSY*, and commands are most susceptible to ground-shift noise 
problems. A large amount of current is generated when 24 address and 16 data 
lines change state. Since 16-bit systems have eight address and eight data lines 
more than 8-bit systems have, ground-shift problems are more prevalent in 16-
bit systems-there is additional current to transfer. 

A BUSY * failure can occur when two or more masters require the use of the 
bus. If board A in Fig. 9-10 has the bus and is driving the BUSY* signal (signal 
S) and board B requires the bus and is receiving the BUSY * signal, a BUSY * 
failure can occur when board A drives address or data on the bus. In effect, 
there is a simultaneous ground shift between board A and board B bus arbiter 
chips. This is a combined ground shift of backplane, connector, and board 
grounds. When it occurs, board B's bus arbiter sees the bus in a nonbusy state 
and begins to drive the bus. This action results in corrupted data and system 
failure. 

In a manner similar to the BUSY * signal, the LOCK * signal is susceptible to 
ground-shift problems. In this case board A in Fig. 9-10 is driving the LOCK* 
signal (signal S), to lock the dual-port memory of board B. If a combined 
ground shift occurs during board A's transfer cycle, the dual-port memory to 
board B may appear unlocked to board B. This allows board B to get to its 
memory during a message or semaphore exchange by board A and results in 
corrupted data and system failure. 

Memory and I/O commands can cause system failures due to ground shifts. 
If board A in Fig. 9-10 is a master driving a command line (signal S) and board 
B is a slave receiving the command, a combined ground shift may appear as an 
early termination of the command to the slave. This false end of command can 
corrupt the data coming from or going to the slave. In either case the corrupted 
data can cause system failure. 

REDUCING THE EFFECTS OF GROUND-SHIFT NOISE 

Most ground-shift failures are due to the combined ground shift of the back­
plane, board, and connectors. The largest contribution factor in ground-shift 
failures is the backplane. Therefore, the first area to correct is the backplane. 

There are two ways to reduce ground shift on the backplane. The first way 
is to reduce the distance between the boards that are communicating. This 
works because the magnitude of the ground shift is directly proportional to the 
distance a signal must travel. In other words, the backplane length should be 
kept as short as the application will allow and boards that communicate with 
each other should be placed in adjacent slots or as close together as possible. For 
example, if a system has multiple masters that may be susceptible to ground­
shift problems, the masters should be placed in adjacent slots so that the BUSY * 
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signal length is as short as possible. This reduces the chance of the BUSY * failure 
mentioned earlier. 

The second way to reduce ground shift is to reduce the instantaneous current 
that the ground lines must handle. Although simple in theory, this may be dif­
ficult in practice. Most drivers are capable of sinking currents far above their 
specification. The instantaneous discharge of the bus capacitance can double the 
current through a given driver. On the other hand, choosing boards with the 
lower-current drivers may help. 

Connector ground shifts due to voltage drops across the connector contacts 
can be greatly reduced by cleaning or replacing the connectors and boards. If 
an application requires the boards to be removed and reseated often, then a 
preventive maintenance schedule should be performed on the backplane. Con­
sider 24 address lines each sinking 32 rnA and a connector whose normal contact 
resistance of 10 mn is increased by wear and contamination to 600 mn. The 
voltage drop is calculated as follows: 

V drop = ItotalR 

= (24)(32 X 10-3)(600 X 10-3
) 

= 0.46 V 

The effect of increased contact resistance is clearly demonstrated when 0.46 
V is compared to a normal voltage drop of less than 0.01 V for a 10-mn contact. 
Normally the ground return path is divided among multiple contacts, but those 
contacts are also carrying the steady-state DC. This example demonstrates the 
importance of good connector contacts. 

The last area to review for reduction .of ground-shift problems is the board 
itself. Board ground shifts supply the minimum voltage differential of all three 
components. Normally, reducing the distance between boards and redUcing the 
instantaneous current will rid most systems of a ground-shift problem. How­
ever, if a problem still exists, the boards in the system are suspect. The solution 
requires the isolation of the suspect board(s) and the replacement of the boards 
with boards that have an improved grounding network (if they exist). If the 
problem requires the replacement of boards, then the ground-shift component 
due to the backplane and the connector could not be sufficiently reduced. 

9.5.3 Signal Ringing 

Signal ringing is the damped oscillation of a signal when the signal performs a 
state transition. Typically, ringing problems occur when a signal changes state 
from high to low because of the TTL low-level threshold. Figure 9-11 is a 
graphic representation of signal ringing with respect to time. The magnitude of 
the ringing depends upon the signal transition speed and how a signal is ter­
minated. Specifically, signal ringing increases as the signal transition time 
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v 

FIGURE 9-11 Signal ringing with respect to time. 

decreases and the level of termination decreases. Normally, signals that require 
a clean edge transition, such as clocks and command-strobe signals, are affected 
by signal ringing. 

ADVERSE EFFECTS OF SIGNAL RINGING 

On the Multibus system bus ringing affects both BCLK* and CCLK*, since 
those signals normally drive edge-sensitive devices. Excessive ringing could 
inadvertantly clock those devices, which might result in system failure. 

REDUCING THE EFFECTS OF SIGNAL RINGING 

The way to reduce signal ringing on the system clocks is to ensure that the 
master that is driving the clocks is driving into the termination. Also ensure that 
all boards receiving the clocks are positioned on the backplane between the 
master and the termination. This practice ensures that the clocks are terminated 
and reduces the magnitude of the signal ringing in the signal lines. 

9.5.4 Noise Reduction Summary 

The three ways in which noise is generated in a system are signal-to-signal cou­
pling, ground shifts, and signal ringing. Summarized below are the directions 
for keeping noise to a minimum. They should always be followed when build­
ing a system. 

BACKPLANES 

• Use backplanes that have interleaved grounds and/or ground planes. 

• Use the shortest backplane length that an application will allow. 

• Keep connector contacts clean and replace any worn connectors. 
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CLOCKS 

• If CCLK * is not required for an application, do not drive it on the Multibus 
system bus. 

• If your system requires CCLK*, drive it with a master that drives BCLK* 
and CCLK* 1800 out of phase. 

• Place the boards that receive the clocks between the master that drives the 
clocks and the bus termination. 

• Place all boards as close to the termination as an application will allow. 

BOARD PLACEMENT 

• Place boards receiving a signal as close as possible to the board(s) generating 
the signal. 

• Avoid empty slots between boards when possible. 

• If empty slots are required, so configure the system that the empty slots are 
farthest from the termination and the boards are closest to the termination. 

9.6 SYSTEM CONFIGURATION EXAMPLE 

The fire and security system discussed in Chap. 8 will be used here as the system 
configuration example. The following are the board requirements for the 
system: 

• Three masters (two 16-bit masters, one 8-bit master) 

• Four iSBX modules (one double-wide, three single-wide) 

• One memory module (128K bytes) 

• 256K-byte system memory RAM board 

• 64K-byte PROM board 

• Custom Multibus-compatible I/O board 

• Cables for I/O and sensors 

In this system one 16-bit master, an SBC 86/Xl, will be the system super­
visor. The SBC 86/Xl has an 8-MHz 8086 microprocessor, 128K bytes of dual­
port dynamic RAM, four 28-pin sockets to handle 64K bytes of PROM, one 
serial port, 24 lines of parallel I/O, two iSBX sockets, and eight interrupt inputs. 
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The other two masters, an SBC 86/X2 and an SBC 88/XS, perform specific 
system tasks. The SBC 86/X2 also uses an 8-MHz 8086 microprocessor, and it 
has many of the features of the SBC 86/Xl. In place of the dual-port dynamic 
RAM is 8K bytes of single-port high-speed static RAM. The SBC 88/XS is a 
special-function, intelligent analog I/O board that uses a 5-MHz 8088 micro­
processor. The SBC 88/XS contains sockets for PROM expansion and 16K bytes 
of dual-port RAM. A local interrupt controller handles the analog I/O interrupt 
sources. The 256K-byte system memory is for the supervisor and is contiguous 
with its local memory. The PROM card provides a look-up table for the system 
master and is located above the 256K-byte RAM board. Figure 9-12 is the block 
diagram for the system configuration. The memory map for the system is shown 
in Fig. 9-1S. The number of masters is not expected to change, but the custom 
I/O boards can be increased for future expansion. 

Step 1. Choose the bus priority technique. Since there are only three masters 
and the system is not expected to expand beyond that number, serial 
priority is chosen. Although all three masters fully support CBRQ, com­
mon-bus request is not required for the application. 

Step 2. Compute the number of slots required. The locations of the iSBX mod­
ules and memory modules are first decided. The memory module is 
placed on the iSBC 86/Xl. One double-wide and one single-wide iSBX 
Multimodule are placed on the iSBC 86/X2. The remaining two single­
wide iSBX modules are placed on the iSBC 88/XS. A total of six slots 

86/XI 86/X2 88/X3 

DUAL-PORT ~ I SERIAL I I ANALOG I I ANALOG I 
I" """72-;; BYTES -l SBX SBX SBX S BX 
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I 1128K BYTES II B B ~ I RAM EXPANSION I BYTES L _____ ~ 

A t 1 1 A 

MUL TIBUS SYSTEM BUS 

v 

! ! 1 
y 

256K BYTES 64K BYTES CUSTOM I/O 
MEMORY PROM ---BOARD 

FIGURE 9-12 Block diagram for system configuration example. 
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SYSTEM 
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FIGURE 9-13 Memory map for system configuration example. (Note: Where 
local SBC memory overlaps system memory, that system memory is not accessible 
by the SBC board.) 

are required for boards. In addition, two slots may be required for iSBX 
modules and one slot for the memory module. 

Step 3. Choose the card placement. the Following variables are considered for 
board placement: 

a. Termination. The boards should start occupying slots beginning 
with the slot adjacent to the termination. 

h. Interboard Communication. The boards that require the greatest 
amount of communication should be placed in adjacent slots. 
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c. Clocks. The board chosen to drive the system clocks should occupy 
the first empty slot farthest from the termination. 

In this system design, the PROM board is used only for an occasional look­
up value by the iSBC 86 /X1; its system usage is relatively low compared to that 
of the other boards. Therefore, the PROM board is placed in the first slot adja­
cent to the termination. The iSBC 86/X2 communicates directly with and is the 
only board that uses the custom I/O board. Since there is a high utilization by 
the iSBC 86/X2, these boards should occupy adjacent slots. The iSBC 86/X1 
executes code out of the 256K-byte memory board. This requires a high utili­
zation by the iSBC 86/X1; therefore, the iSBC 86/X1 and the memory board 
should occupy adjacent slots. The iSBC 86/X2 and the iSBC 88/X3 exchange 
messages with the iSBC 86/X1 at a fairly regular frequency. The I/O card is 
placed in the slot adjacent to the PROM card. Next to the I/O card is the iSBC 
86/X2. This satisfies the adjacency requirement. 

There are three boards yet to place. The placement of the boards at this point 
is fa~rly arbitrary as long as the board that drives the bus clock(s) occupies the 
last slot and the memory board and the iSBC 86/X1 are adjacent. An additional 
consideration of memory module and iSBX module placement should influence 
the decision. The board with the memory module should be placed in the last 
slot if that is the card cage end slot. If the iSBC 86/X1 is placed there, only one 
slot is used, but if the iSBC 86/X1 is placed in any other slot, two slots are 
required. The iSBC 88/X3 will take two slots no matter where it is placed, 
because of the iSBX modules. Therefore, the iSBC 88/X3 takes the next slot 
available after the iSBC 86/X2. (One slot is skipped for the space taken by the 
iSBX modules on the iSBC 86 /X2.) The memory card is placed next, after skip­
ping a slot taken by the iSBX modules on the iSBC 88/X3. Finally, the iSBC 
86/X1 is placed in the last slot. The iSBC 86/X1 is a good choice for the clock 
drivers because it drives BCLK* and CCLK* 1800 out of phase. Figure 9-14 is 
a diagram of the board placement. 

Step 4. Choose the card cage to fit the application. One iSBC 604A or equiv­
alent termination backplane and one iSBC 614A or equivalent expan­
sion backplane are chosen for the application. With the placement of 
the boards as stated above, only eight slots are required for this appli­
cation. Furthermore, additional expansion backplanes,· four slots at a 
time, can be added to support the additional custom I/O boards as they 
are required. This solution also keeps the number of empty slots to a 
minimum. 

Step 5. Review special system considerations. For any application each board 
should be reviewed for special requirements. In this application 
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FIGURE 9-14 Diagram of final board placement. 

CCLK* is required for the PROM board. The memory board can 
accept all 24 address lines, but the application requires only 20. The 
memory board must pull up the four high-order address lines. The 
iSBC 88/X3 has 8-bit dual-port memory. Any communication between 
the iSBC 86/Xl and the iSBC 88/X3 must be performed in 8-bit 
transfers. 

Step 6. Configure the boards and backplane for the application. 

a. Connect the iSBC 86/Xl BCLK* and CCLK* drivers; disable all 
other masters' clock drivers. 

h. Configure the memory to the memory map diagram; verify that no 
gaps in the memory space are present; check that the iSBC 88/X3 
dual-port memory has been accounted for on the system bus. 

c. Install PROMs where used. 

d. Configure all system interrupts. 

e. Configure parallel and serial ports with jumpers. 

f. To implement the serial-priority bus resolution, ground the iSBC 
86/Xl BPRN* signal on the backplane. Connect the daisy chain for 
the iSBC 86/X2 and iSBC 88/X3 BPRO*/BPRN* signals. 

g. Securely fasten all iSBX and memory modules. 

h. Connect all I/O cables and route in a manner that does not obstruct 
air flow. 
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9.7 SYSTEM CONFIGURATION SUMMARY 

The Multibus family is relatively simple to configure while providing the flex­
ibility and performance to meet most application requirements. The guidelines 
discussed in this chapter will help in simplifying the system configuration and 
increasing the system reliability. The guidelines are not meant to cover every 
situation or configuration. The goal of this chapter is to educate the system 
designer on the key configuration areas of the Multibus family. Anyone building 
systems with standard SBC products should consult and review the hardware 
reference manuals of each board in the system. 



10 
Board Design 
Guidelines 

This chapter provides information on designing boards which use the Multibus 
family of system structures. Included in the chapter are general guidelines for 
electrical, mechanical, and thermal design of Multibus family-compatible 
boards. Also included are design examples for interfacing to the various Multi­
bus family structures and backplane layout considerations. This chapter is not 
intended to furnish an exhaustive list of board-level design rules. It is intended, 
however, to introduce the board-level designer to the concepts of interfacing to 
the Multibus family. The notation throughout this book is the same as that 
defined for the Multibus system bus covered in Sec. 2.1. 

10.1 GENERAL DESIGN GUIDELINES 

This section covers some general guidelines that are common to most board­
level products. The concepts explained here pertain to the circuitry throughout 
the board as well as the bus interfaces. The board-level designer is faced with 
satisfying many areas in the design. The design must be both electrically and 
mechanically sound and provide adequate thermal dissipation while being 
manufacturable, testable, and serviceable. Each of these areas requires careful 
planning and design if all goals are to be achieved. The following sections 
expand upon each of the points. 

10.1.1 Electrical Considerations 

The proper electrical design of a board is more than one that is just "logically" 
correct or meets worst-case timing and loading. There are many considerations, 
such as PCB layout, grounding, driver-receiver selection, and voltage decou­
pling, that a designer should be aware of to ensure a sound, reliable design. 
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PCB LAYOUT CONSIDERATIONS 

The basic rule is to keep stub and trace lengths to a minimum when laying out 
a PCB. Although this rule is extermely simple, many designs have proved to be 
unreliable because they did not follow it. As for the Multibus system bus, the 
rule means that the bus drivers and receivers should be located on the first row 
of ICs above the P2 connector. For the iLBX bus the bus drivers and receivers 
should be located on the first row of ICs above the the P2 connector. The Mul­
tichannel bus drivers and receivers should be located directly below or to the 
side of the Multichannel connector. The goal for all designs should be to keep 
the trace stub length less than 2 in (5 em). If a signal, such as an address, is to 
be received in a number of locations throughout the board, it should be buffered 
by a single receiver close to the bus connector and the output of the buffer 
should be routed to the other locations. Figure 10-1 is diagram of the acceptable 
component-placement areas for the Multibus family boards. 

Normally on intraboard signals, the trace lengths are short, but occasionally 
a signal must be routed throughout the board. The signals that are routed in 
this manner should be carefully reviewed for their effect on the board's oper­
ation. Normally signals with fast rise and fall times cause the problems. A typ­
ical fast edge problem is ringing on clock inputs; it can result in false clocking 
or excessive undershoot below 0.5 V which can extend a PROM's access time 

f-
MULTICHANNEL 
INTERFACE * 

~------------------------------

O!f.~OO 

CONTROL~ ~INTERRUPT 
ARBIT)R /" ~ADDRESS 

( I , ({DATA 

JBIJ1lIDWmlo . 
I 00 0 0 ,0 0 0°1,00 0 OOl~ •••••••••• )0 Q90 0 0 Os 0 0 0 0 0 '90 00 '9~O 

*MUL TICHANNEL CONNECTOR 
NOT SHOWN FOR CLARITY 

MULTIBUS 
INTERFACE 

FIGURE 10-1 Bus interface component placement. 

iLBX 
INTERFACE 



BOARD DESIGN GUIDELINE 351 

beyond specification. Termination may be required at the receiver end to pre­
vent signal ringing and reflections. Also, careful routing of the signal may be 
required to prevent coupling of noise into adjacent signals. Avoid routing a sig­
nal throughout the board unless absolutely necessary. 

DRIVER-RECEIVER SELECTION 

The general rule for selecting a bus driver is to pick a driver that comes closest 
to meeting the minimum bus drive requirements without going below them. 
Basically, LS-type drivers should be used for an interface design unless speed 
or drive requirements prevent their use. These rules help reduce signal-to-signal 
coupling and reduce the instantaneous current demands placed on a board and 
system when the drivers change state. Schottky drivers generate more signal-to­
signal coupling than LS-type drivers because their instantaneous current 
changes with respect to time (di/ dt) are greater. 

Lower-power devices draw less alternating and direct current than standard 
Schottky devices. Besides providing a thermal advantage, the lower sink current 
minimizes the ground-curren't surges which can lead to inductive ringing on the 
board and backplane. Consider a Multibus board that simultaneously enables 
all 24 address lines and 16 data lines, with all outputs at a TTL low. The instan­
taneous current surge is significant. For example, a 74S240 driver can sink 60 
rnA, and a 74LS240 driver can sink 20 rnA. The 74S240 interface would instan­
taneously sink 2.4 A for 40 lines versus 0.8 A for the 74LS240 interface. This 
current surge can create a large ground shift as discussed in Cpap 9. Schottky 
drivers are more capable of generating the current surge and ground-shift 
problems. 

GROUNDING 

Proper board grounding and ground networking help limit the instantaneous 
current surges and help provide signal noise immunity. The main problem, as 
developed in Chap. 9, is ground shifts. The ground-shift noise can cause a gen­
erated TTL low-level signal to be sensed as a TTL high-level signal at the 
receiver because of a potential difference between the device's reference 
grounds. Improper grounds cause a high enough inductive impedance to cause 
the ground shift. Multilayer boards (four or more layers) with a solid ground 
plane usually provide a more than adequate grounding system. Boards with two 
layers or multilayer boards with traces on the ground plane may cause problems 
unless the grounding is adequately distributed. 

In areas where there are bus interfaces, the multilayer board should keep the 
ground plane solid because of the high current demand of bus drivers. For 
example, on the Multibus interface the first row of ICs above the P2 connector 
should have a solid ground below it. The two-layer boards pose a greater prob­
lem. The ground trace that connects the Multibus interface ICs should be a 
minimum of 100 mils (0.025 mm) wide (assuming 2-oz (56.7-g) copper). This 
ground trace should be directly connected to all eight Multibus interface ground 
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pins. Interface drivers that must remain active-low during multiple signal tran­
sitions (i.e., LOCK*, BUSY*) should be located as far to the left on the ground 
strap and as close to the Multibus ground pins as possible. 

Two-layer designs must provide a good ground grid. The grounding grid 
system provides multiple return paths for the device current. This cuts down 
on the inductive impedance between devices. Ideally, the grid should be I-in 
(2.54-cm) squares with a minimum of I2.5-mil-wide (0.32-mm-wide) trace. If 
this cannot be accommodated on the board design, then as much gridding as 
possible should be provided. A good grid system prevents ground differentials 
and on-board coupling. 

DECOUPLING CAPACITORS 
Decoupling capacitors provide a low-impedance path for transient currents to 
ground. A general rule is to provide a O.I-J,LF capacitor for every two ICs. For 
high-current, fast-transition buffers a O.I-J,LF capacitor should be used for each 
buffer. In order to prevent inductive impedance, the capacitor should be located 
as close to the IC power and ground pins as possible. Additional bulk capaci­
tance on any power supply pins also is required, especially if the power supply 
cables extend more than 1 ft (30.48 cm) from the supply. 

10. 1.2 Thermal Considerations 

Proper thermal design can improve the reliability of the board by increasing 
the MTBF of each component. The goal of good thermal design is to limit the 
absolute junction temperature of the component die substrate. It is the job of 
the IC package to remove as much heat as possible from the substrate. Packages 
with low thermal resistance, such as ceramic packages, remove heat more effi­
ciently than plastic packages, which have a higher thermal resistance. The pack­
age's thermal resistance to the ambient air also is important. Low thermal resis­
tance implies that a package can be more efficiently cooled by convection 
(forced-air cooling). 

As stated earlier, reducing the junction temperature is the goal of good ther­
mal design. Absolute junction temperatures are almost always specified for dis­
crete semiconductors by component manufacturers; they are rarely specified for 
microelectronic devices. Normally only typical values of absolute junction tem­
peratures are listed. The device will operate beyond the specified temperature, 
but the chemical reactions that are accelerated will reduce the MTBF of the 
device. A derated junction temperature value used by many designers is 125°C 
(257°F) for all package and device types. 

The first step is to judge whether there are any hot components on the board. 
(A hot component is any component which, in operation, exceeds the manufac­
turer's power dissipation specification.) When there are any, the component's 
junction temperature can exceed the recommended value. Additional cooling 
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techniques may be required for these components, or a package with a lower 
thermal resistance may be needed. The following are some of the key guidelines 
for proper board-level thermal design; 'for specific problems the books listed in 
the reference section should be consulted. 

1. Avoid placing cerdip or ceramic ICs that dissipate more than 1 W below 
SBC Multimodule sites. 

2. Avoid placing plastic ICs that dissipate more than 0.7 W below SBC Multi­
module sites. 

3. Avoid placing single-in-line package (SIP) components directly in front of a 
hot component. SIP components typically block the air flow. 

4. Avoid placing hot components in the l-in2 (6.45-cm2
) area at each corner of 

the SBe. Because of typical card cage construction, these areas usually suffer 
from low-velocity air flow. 

5. Avoid placing hot components near .the PI edge card connector. Because of 
typical card cage construction, these areas usually suffer from low-velocity 
air flow. 

6. A socketed component in free convected air tends to increase in tempera­
ture, but in forced-air systems it tends to be cooler because more of it is 
exposed. 

10. 1.3 Mechanical Considerations 

Careful mechanical design of a board is crucial to ensuring a reliable board and 
system. Specific areas of importance are component placement considerations 
for manufacturing, testing, and Multimodule placement. Other areas of impor­
tance are the component height restrictions for special areas of the board and 
designing a board to meet the shock-vibration specification. In the following 
section we will discuss these areas. 

COMPONENT PLACEMENT CONSIDERATIONS 

If iSBX and iSBC Multimodule boards are planned for a design, their placement 
must be considered in the early component placement phase of the baseboard 
design. With proper planning a board can Simultaneously contain RAM, 
PROM, mathematics, and iSBX Multimodule boards. The key to the layout is 
to ensure that all the baseboard connection sockets are so placed that all the 
Multimodule form factors can fit simultaneously. Figure 10-2 is a layout outline 
of a baseboard and the location of the associated Multimodules. 

Card cage guides place additional constraints on component placement. 
When card guides are used, no components must come within 0.25 in (6.35 
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FIGURE 10-2 iSBC and Multimodule layout outline. 

mm) of the card edges. This ensures that the components will not interfere with 
the card guides. 

Manufacturing considerations also affect component placement on a board. 
Component placement and orientation can have a significant effect on auto­
matic component insertion and board-level testing. A board layout review 
should be conducted early in the design phase by members of the manufactur­
ing and test organizations. 

COMPONENT HEIGHT 

The Multibus specification states that the maximum component height must be 
no greater than 0.4 in (10.16 mm). However, there are additional restrictions if 
iSBC multimodules are used on SBC baseboards. Recall that there are two types 
of Multimodule boards: iSBX and iSBC Multimodules. Each Multimodule fam­
ily has its own mechanical requirements. The iSBX bus mechanical specification 
allows for a maximum component height of 0.4 in (10.16 mm) under the iSBX 
Multimodules, whereas the maximum component height board underneath the 
iSBC multimodule is 0.2 in (5.08 mm). Figure 10-3 is a diagram of the com­
ponent height specification when iSBC Multimodules are used. In addition, the 
overall height of the iSBC Multimodule on a iSBC baseboard must be no greater 
than 0.76 in (19.3 mm). This specification ensures both end and adjacent slot 
compatibility for backplanes with respecitvely less than and more than 0.8 in 
(20.3 mm) slot-to-slot spacing. 

The use of iSBC Multimodules implies that no jumper option stake pins are 
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to be designed in the area beneath the iSBC Multimodule. If this criterion can­
not be met, then special stake pins that have a maximum height of 0.2 in (5.08 
mm) must be used. The board designer must consider proper stake-pin place­
ment early in the design phase. 

SHOCK AND VIBRATION 

Components with fragile leads, such as crystals, transistors, and light-emitting 
diodes (LEDs), should not be placed close to the top edge of the board. In han­
dling the board during insertions and extractions, such components tend to 
break easily. In addition, crystals should be laid down if the board area permits. 
If it does not, the crystal should be supported in the upright position with a 
crystal holder or a wire-wrap post. The crystal should never stand vertically 
without some type of support. In general, for fragile components, the manufac­
turer's recommendations should be followed closely. 

Selection of dual-in-line package (DIP) sockets is important in meeting a 
board's shock and vibration specification. Inexpensive, single side-wipe sockets 
have a tendency to allow the component to walk out in heavy shock and/or 
vibration environments. Their retention force declines rapidly after multiple 
insertions and extractions of components. This is especially true of heavy com­
ponents such as 24-, 28-, and 40-pin ceramic DIP components. Sockets should 
be carefully selected for the environment in which they will be used. 

Cables and cable connectors are another important aspect of proper shock 
and vibration design. The cabling that comes from the I/O edge of SBCs and 
iSBX Multimodule boards can easily vibrate off the edge connector on the board 
when the edge connectors are not mechanically tied down. Specialized strap­
ping for the edge connectors is normally required. The pin connectors, such as 
the 3M 3372 connector header series, have built-in mechanical cable-locking 
devices. The connector mechanically attaches the cable to the board and is 
highly recommended for the board I/O connectors on all new designs. If the 
design cannot accommodate mechanically locking connectors, then it must 
ensure that the system chassis can keep connectors in place. 

1 
0.760 

j 
FIGURE 10-3 iSBC Multimodule component height requirements. 
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10.2 GENERAL BUS INTERFACE DESIGN GUIDELINES 

The following sections provide general design guidelines for interfacing to the 
Multibus system, iSBX, iLBX, and Multichannel buses. Since these buses are 
established, time-proven structures, standard and accepted interface configu­
rations have been developed. In addition, VSLI components have standardized 
much of the interface. The following guidelines, which are provided for direct 
interface application, may be modified for particular applications. 

10.2.1 Multlbus Master Interface 

A basic Multibus master interface block diagram is shown in Fig. 10-4. It can 
be broken down into five elements: 

• Control 

• Bus exchange 

• Address 

• Data 

• Interrupts 

Figures 10-5 through 10-8 are the schematic representations of the interface 
block diagram for the 8086 family of components. In the following sections we 
will explain the implementation of these elements. 

CONTROL 
The control portion of the interface circuit is shown in Fig. 10-5. The bus con­
trol is provided by the 8288 bus controller chip, which runs synchronously with 
the 8086 microprocessor and monitors the 8086 status lines SO to S2. The 8288 
converts the 8086 bus structure to the Multibus system bus structure. When a 
Multibus bus cycle is requested via the status lines, the bus controller provides 
all the bus commands and the board's data buffer control lines: data buffer 
enable and data buffer direction (DT jR). 

The 8288 provides standard Multibus system bus timing and drive capability 
for normal bus cycles. However, there are special timing considerations when 
a master keeps the bus for consecutive cycles (i.e., lock or common-bus request 
cycles). The 8288 does not enable commands on the bus until 105 ns after the 
master has been granted the bus. This ensures that the Multibus timing speci­
fications t AS and tDS of 50 ns are met. When a master retains the bus for con­
secutive cycles, these timing parameters can no longer be guaranteed. There­
fore, an additional logic must be added to ensure compatibility for these 
operations. The flip-flop in Fig. 10-5 disables the AEN* input (AEN* = high) 
at the beginning of every transfer operation. This guarantees that the proper 
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FIGURE 10-4 Multibus master interface block diagram (hexadecimal notation). 

setup time is met for all bus operations. Specific details on the 8288 timing and 
interface requirements can be found on the manufacturer's data sheet. 

BUS ARBITRATION 

The bus arbitration section is shown in Fig. 10-5. The 8289 bus arbiter chip is 
used for the 8086 microprocessor family. As with the 8288, the 8289 converts 
the 8086 bus to the standard Multibus system bus interface. For other micro­
processor families the 8218/19 bus arbiter chips can be utilized for Multibus 
system bus arbitration. 

The 8289 runs synchronously with the 8086 microprocessor and monitors the 
8086 status lines SO to S2. When the microprocessor makes a system bus request, 
the signal line OBey. (on-board cycle) goes inactive. This signal is generated 
by on-board-off-board address decoders which are not shown. The on-board­
off-board· decision is based on address information. The board is configured to 
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respond to a fixed set of on-board addresses. If an address is out of the range of 
the on-board address, the OBCY* signal goes inactive (OBCY* = high). Once 
this signal is received by the 8289, the 8289 begins to arbitrate for the bus by 
driving BREQ* active. Once the bus has been granted (BPRN* = low, BUSY* 
= high), the 8289 generates the control signal AEN. This signal, gated with 
address latch enable (ALE), enables the address buffers and the 8288 bus con­
troller onto the bus. The gating of AEN * with ALE turns off the buffers during 
the ALE active time. Although this is not a requirement of the Multibus spec­
ification, turning off the buffers during ALE active prevents the buffers from 
turning on when the buffer inputs are at an indeterminate state. Otherwise, the 
buffers could generate multiple signal transitions on the bus, which could couple 
into adjacent signals on the bus. The undetermined input state while the buffers 
are enabled occurs when a microprocessor retains the bus for consecutive cycles 
(e.g., lock and CBRQ cycles). 

The 8289 also provides bus lock capability and CBRQ* arbitration modes. 
The lock input, when active, allows a bus master to retain the bus once the bus 
has been granted. The CBRQ* input-output, along with the ANYRQST signal, 
allows a master to operate in common-bus request mode. The circuit shown in 
Fig. 10-5 also allows for the configuration of the different CBRQ* modes dis­
cussed in Chap. 9. Jumper stake pins are provided so that a user can configure 
the interface for the application. Specific details on the 8289 timing and inter­
face requirements can be found in the manufacturer's data sheet. 

ADDRESS INTERFACE 

The address section of the interface is shown in Fig. 10-6. For this implemen­
tation, all 24 address lines are driven. The 8287 buffer is used in a unidirectional 
mode to drive the address lines. The address drivers are enabled by the AEN* 
signal generated by the 8289 bus arbiter chip. This ensures that the address 
drivers will not turn on until the master has control of the bus. The 8287 direc­
tion input, T /R, is set to a logic high by a pull-up resistor. This permanently 
sets the direction of the address drivers to the bus. For non-dual-port designs, 
74LS240s also are a good choice for address drives. 

In dual-port designs, the 8287 address buffers would be used in the bIdirec­
tional mode to allow Multibus system bus access to the dual-port RAM. There­
fore, the direction input and enable input terms are modified to allow address 
signals to be driven on-board from the Multibus system bus. Dual-port designs 
are covered in more detail in Sec. 10.3. 

DAT A INTERFACE 
The data interface implementation for the 8086 family is shown in Fig. 10-6. 
The basic 16-bit interface requires three 8287 buffers: lower data buffer, swap 
data buffer, and upper data buffer. The swap-byte buffer is required for com-
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patibility with 8-bit boards in 8- and 16-bit mixed systems. The swap byte places 
all byte operations on the low-order data bus (DATO* to DAT7*). 

The buffer chip select logic is responsible for turning the appropriate 
buffer(s) on or off depending on the operation. The basic algorithim is an even­
byte operation performed on the lower data buffer, a odd-byte operation per­
formed on the swap-byte buffer, and a word operation performed over the 
lower-byte buffer and the upper-byte buffer. The upper buffer chip select is 
simplified by allowing the upper buffer to turn on during a low-byte operation. 
This has no effect on the data, since the upper byte is ignored during byte oper­
ations. The chip select terms must also include the AEN * signal to ensure that 
the buffers turn on only when the master is granted the bus. The truth tables 
for the buffer chip selects are given in Fig. 10-7. The buffer direction input can 
be driven directly from the 8288 bus controller DT jR output or from other 
available board signals. 

As with the address buffers, the data buffers require additional chip select 
and direction terms if a dual-port interface is used. For this case, the AEN * 
term is logically ORed with the dual-port slave request. The direction term is 
logically ORed with the slave direction term. Dual-port designs are covered in 
more detail in Sec. 10.S. 

INTERRUPTS 

There are two interrupt interface designs: non-bus-vectored (NBV) and bus­
vectored (BV). The non-bus-vectored interface shown in Fig. 10-8 is straight­
forward and does not require any special consideration other than buffering the 
bus interrupt signals as close to the Multibus edge connector as possible. The 
stake pins increase flexibility. 

The bus-vectored interrupt interface is more complex and requires addi­
tional support logic. This type of interrupt interface allows slave programmable 
interrupt controllers (PIC) such as the 8259A to be present on the system bus. 
Anyone who is not familiar with bus-vectored interrupts should review the bus-
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FIGURE 10-7 Multibus master data buffer select truth table (L ::5 0.8 V; H 2:: 2.0 V). 
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vectored interrupt section in Chap. 2. Figure 10-9 is a bus-vectored interrupt 
interface implementation for the 8086 microprocessor family, and Fig. 10-10 is 
the Multibus access timing. The circuit operation is explained in the following 
section. 

When the 8259 receives an interrupt, it generates an INTR signal to the 8086 
processor. The 8086 status lines (SO to S2) inform the 8288 and 8289 that an 
interrupt cycle is occurring. Since, at this time, the 8086 does not know whether 
a BV or NBV interrupt has occurred, the first INT A cycle requests the system 
bus via the 8289. When the 8289 gains control of the bus, it locks the bus to 
guarantee back-to-back INT A * cycles and activates the bus AEN * signal, which 
generates the INT A * signal to the bus via the 8288. The INT A * signal causes 
the slave PICs on different Multibus slave boards to freeze the state of the prior­
ity resolution logic. Locally, on board, the first INTA* cycle requests the 8259 
master PIC to place the highest-priority slave PIC identification on cascade lines 
CASO to CAS2. The three-state buffers for the cascade lines are enabled by the 
8288 master cascade enable (MCE) output. The first INT A cycle also performs 
a "ready" signal to the microprocessor. 

The second interrupt acknowledge bus cycle activates the MCE signal again 
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FIGURE 10-10 Bus-vectored interrupt timing sequence. 

and generates a second INT A * to the Multibus system bus. The slave ID num­
ber on CASO to CAS2 from the master 8259 PIC is placed on the Multibus 
address lines ADR8* to ADRA*. The second INTA* signal causes the slave PIC 
to recognize its slave ID, place the interrupt vector on the Multibus data lines 
DATO* to DAT7*, and generate the XACK* signal. If the interrupt is non-bus­
vectored, the master PIC is responsible for generating its own interrupt vector. 
In this case the 8259 SP lEN signal will be active. This active output provides a 
local ready for the 8086. On the other hand, if the interrupt is bus-vectored, the 
interrupt vector comes from the addressed slave's PIC on the Multibus system 
bus along with its XACK* signal when the vector is valid. In this case the 
XACK* signal provides the 8086 ready. The circuitry also provides for a bus 
DEN* signal to enable the bus data buffers to accept the vector. 

10.2.2 Multlbus Slave Interface 

A basic Multibus slave interface block diagram is shown in Fig. 10-11. The 
interface can be broken down into five elements: 

• Address 

• Address decode 

• Control 



BOARD DESIGN GUIDELINE 365 

• Data 

• Interrupts 

Figures 10-12 through 10-16 are the schematic representations of the interface 
block diagram. 

ADDRESS INTERFACE 

The job of the address interface is to buffer the Multibus address signals that 
are used on-board. The design is very straightforward and does not require any 
special consideration. For the implementation in Fig. 10-12, 74LS240 octal line 
drivers and receivers are used. The receivers are always enabled to monitor 
addresses on the bus. If an address is not used, it need not be buffered. Also, if 
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an address is terminated at an input close to the PI connector, as in the case of 
an address line connected only to a decoder, it may not require a buffer. In the 
latter case, the decoder should be the only input on the board in order to meet 
the design guidelines of Sec. 10.1. 

ADDRESS DECODE 
The address decode circuits decide whether the requested resource is present 
on-board. The circuit shown in Fig. 10-12 takes advantage of programmable 
array logic (PAL) and bipolar PROMs for decode. 

The decode PROM provides the memory decode for the slave board. Two 
functions are performed by the PROM. The first function is to generate the 
signal MPRES* when the requested memory is present on board via the address 
inputs. For this implementation, the memory array is a 64K-byte block that can 
be placed anywhere in the first 1M-byte address space. The four-input NAND 
gate decodes the high-order address ADRI4* to ADRI7* to the first megabyte 
page. If the address is greater than a megabyte, the NAND gate output will be 
high, which will disable the decode PROM. The pull-up resistors on the NAND 
gate inputs allow the slave board to work in IM-byte-only systems, where the 
high-order address lines are not driven. The four jumpers on the decode PROM 
inputs (El to E4) provide the selection of one of sixteen 64K-byte spaces. The 
jumper selection addresses for this implementation are listed in Table 10-1. 

TABLE to·t Multlbus Slave Address 
Decoder Example 

El E2 E3 E4 Starting address (hex) 

0 0 0 0 00000 

0 0 0 I 10000 

0 0 0 20000 

0 0 I I 30000 

0 0 0 40000 

0 0 I 50000 

0 0 60000 

0 I I I 70000 

0 0 0 80000 

0 0 I 90000 

0 I 0 AOOOO 
0 I I BOOOO 

0 0 COOOO 
0 I DOOOO 

0 EOOOO 
FOOOO 

Note: I = jumper in; 0 = jumper out. 
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The second function of the decode PROM is to provide address translation 
for the high-order Multibus address lines ADRD* to ADRF*. This function is 
required in most dual-port designs. As an example, the address translation 
allows the 64K-byte memory array, as seen by the Multibus system bus, to be 
placed on any 16K-byte boundary. This means the decoder must translate the 
high-order addresses to provide the proper mapping into the memory array. 

The PAL provides all the decoding for the slave I/O resources. Its outputs 
generate all of the required chip selects when a valid address is detected. In 
addition, one of the jumper options allows all the on-board I/O to be offset by 
80H. The PAL for this implementation has been socketed. This allows the 
intended users to design their own PAL code and place the I/O at virtually any 
address. The user can replace the PAL and reconfigure the I/O to meet the 
application needs. This implementation decodes all 64K-byte I/O spaces, with 
4K bytes of address space directly input to the PAL. The I/O chip selects can 
decode down to a 16-byte address area. 

CONTROL 

The control section of the slave design provides the conversion and routing of 
Multibus commands (MRDC*, MWTC*, 10RC*, 10WC*) to board-specific 
commands and generates the XACK * signal. Although the control implemen­
tation can be cleanly implemented in a PAL, a discrete implementation (which 
can be set into a PAL) is shown in Fig. 10-13. 

The outputs of the OR gates provide address-qualified commands. These out­
puts are used by the respective I/O and memory devices. These signals also 
provide information for the start of the XACK * generator. The job of the 
XACK* generator is to send an XACK* signal back to the master when the 
slave has completed the requested operation. This is accomplished by counting 
CCLK cycles starting from the time when the bus command is received until 
the slave has completed the operation. The number of clock cycles required 
depends on the access time of the devices on the slave board. The generator 
consists of eight flip-flops wired together to form a shift register. In cases where 
the I/O and memory have different access times, a circuit at the output of the 
XACK* generator can differentiate between memory or I/O access and routes 
the appropriate XACK* signal. For this implementation CCLK* is used to drive 
the XACK* generator, and only memory requests are shown. 

For memory modules, rec~iving the INHI * inhibit signal is required. In this 
implementation, the INRI * signal blocks the board enable signal, which in turn 
prevents any further board activity. Timing of this signal is critical to ensure 
that no buffer fights or false acknowledges occur. The timing parameter tID, 

which is the maximum inhibit delay from the inhibiting slave, must be valid 
less than 100 ns from valid address on the bus. If this parameter is not met, the 
inhibited slave may complete the cycle and place XACK* on the bus or the 
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inhibited slave may go into an unknown state. In a similar manner, the inhibited 
slave must ensure that it can reliably prevent the cycle when the inhibit signal 
is received at the maximum tID specification. 

DATA INTERFACE 

The slave data interface, which is similar to the master data interface, is shown 
in Fig. 10-14. Its implementation supports both 8- and 16-bit masters. The fol­
lowing is a discussion of the key interface features. 

The 8- or 16-bit interface has a swap buffer similar to the master interface 
and follows the same rules as the master interface. An 8-bit-only interface 
would require one buffer for the DATO* to DAT7* lines, with the board select 
term gated directly into the OE input. The key point for slave interfaces is that 
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the buffers must be turned on and off with command. Because of this require­
ment, the designer must be aware of two key design parameters. 

The first parameter is data hold time on a write cycle. If the buffers are gated 
with command (as in this example), the data is removed when command goes 
inactive. If the same write command is used on the slave's LSI devices, there 
can not be any guaranteed hold time for the data. If the devices require data 
hold time, then a special write signal must be generated for the devices. This 
write signal must end before the bus signal while providing the LSI devices with 
the proper data setup. The slave control logic shown in Fig. 10-13 generates a 
WR TEXH * signal. This signal is generated by gating the bus write command 
with an output of the XACK * generator. The output chosen guarantees that the 
data remains valid 20 ns after the internal write signal (WRTEXH*) goes away. 
The cost of this implementation is that XACK* may have to be delayed an 
additional 100 ns to meet the minimum command width. 

The second parameter involves data turn-off on a read cycle. Once the bus 
read command, MRCD* or 10RC*, is removed, the data buffers can remain 
active only 65 ns. For example, if the delay path of the critical ICs is added for 
the control interface shown in Fig. 10-13 and the buffer interface of Fig. 10-
14, the control logic and the data buffer logic delay times are as follows: 

74S32(Ul) + 74S00(U2) + 74S00(U3) + 74S32(U4) + 82870utput disable 

7 ns + 5 ns + 5 ns + 7 ns + 18 ns = 42 ns 

This implementation left a 23-ns margin. However, if LS-type devices had been 
used instead of the 74S32 and one 74S00, the design would have been greater 
than the maximum allowable hold time specification. 

INTERRUPT INTERFACE 

Slaves can support NBV and BV interrupts. If the reader is unfamiliar with 
these types of interrupts, a review of Chap. 2 on Multibus interrupts is 
suggested. 

The NBV interrupt case of the slave is straightforward, and its implemen­
tation is shown in Fig. 10-15. The bus requires the NBV interrupt logic to latch 
and transmit the interrupt to the master and Fig. 10-15 covers these three 
requirements. The interrupt is latched by the 7474 D flip-flop. This signal is 
transmitted to the bus by the 7406 open collector driver. When the master reads 
the status of the interrupt at the correct address, the state of the interrupt flip­
flop is latched into the status flip-flop (7 4S7 4). The command, along with the 
address-generated chip select (CS*), also enables the three-state buffer (8098). 
The output of the 8098 is connected to the user data bus for placement on the 
Multibus system bus. Once the master has read the status, it clears the interrupt 
by writing any value to the same I/O address. 

A basic BV interrupt design is given in Fig. 10-16. This implementation 
works for both 8086 family and 8080/85 families. The responses of the two 
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families to interrupts are different; therefore, the Multibus interface can support 
only one type of BV interrupt on a given system. For this example the 8086 
family response is used. 

When the 8259A receives a user interrupt on IRO to IR7, it passes the inter­
rupt on to the Multibus, buffered by a 7405 open collector driver. The bus mas­
ter responds to the interrupt request by generating two INTA* commands (see 
Sec. 10.2.1). The first INTA* command freezes the internal state of all slave 
8259As on the Multibus system bus. The second INTA* command requests a 
restart address from the interrupting bus slave. Address lines ADR8* to ADRA* 
are driven by the bus master, and the interrupt address code is generated by 
the master 8259A. When the slave 8259A receives the second INT A * command, 
it looks at the address lines ADR8* to ADRA*. If the address lines match the 
slave address, the slave will enable the data interface drivers by driving the EN * 
signal active. The slave 8259A then drives the data lines (DATO* to DAT7*) 
with the vector address. Also, the slave is responsible for generating XACK* 
when the vector address is valid on the system bus. Once the master receives 
the XACK* signal, it goes to the vector address and begins servicing the 
interrupt. 

The circuitry shown in Fig. 10-16 allows the interrupt interface to connect 
to the data interface. One 74S08 ORs the IORC* command with the INTA* 
command to ensure the buffers face in the right direction during read or inter-
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FIGURE 10-16 Multibus slave bus-vectored interrupt circuit. 

rupt acknowledge operations. The second and third 74S08 ensure that the data 
buffers are enabled during a normal data cycle and an interrupt acknowledge 
cycle. 

10.2.3 ISBX Multlmodule Interface 

The iSBX interface is basically an extension of the microprocessor bus, and 
therefore it is relatively simple to interface to. There are, however, certain 
design areas that require further explanation. Implementations in the area of 
MW AIT* handling and generation and chip select decoding are given in Figs. 
10-17 and 10-18. These functions are described in the following sections. 

MWAIT * GENERATION AND HANDLING 

The MWAIT* signal is used by iSBX Multimodules to extend the I/O cycle. 
Normally an iSBX Multimodule generates an MW AIT* signal when it is not 
ready for the transaction with the host SBC. Intel's iSBX 331/332 mathematics 
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FIGURE 10-17 iSBX multimodule MWAIT* signal generation. 

MWAIT* 

Multimodules generate MW AIT* for this purpose. The signal is derived directly 
from the peripheral chip on these Multimodules. Under normal conditions, the 
timing specifications of the iSBX bus are compatible with many peripheral 
chips currently on the market. However, because of some timing considerations, 
an MWAIT* may have to be generated to extend the cycle. The circuit shown 
in Fig. 10-17, when used on an iSBX Multimodule, will generate an MWAIT* 
to the baseboard on every selected cycle. In MW AIT* generation it is important 
that the MW AIT* signal be valid no later than 75 ns after the iSBX bus chip 
select is valid. Otherwise, the cycle may not be extended. 

Baseboards have the responsibility for receiving the MWAIT* signal and 
integrating the signal into its READY circuitry. The circuit illustrated in Fig. 
10-18 accomplishes this task. In this circuit the I/O ready is blocked whenever 
an MW AIT* signal is active. Once MW AIT* goes inactive, the READY is 
passed through to the microprocessor. 

In many cases, the microprocessor can not meet the full AC timing specifi­
cation of the iSBX bus. When it does not, the host SBC must artifically extend 
the I/O cycle. As an example, an 8-MHz 8086 cannot meet some of the AC 
timing specifications without inserting two wait states. The ready circuit in Fig. 
10-18 gates in selectable outputs of a T-state generator (similar to the one shown 
in Fig. 10-21) to ensure that the I/O ready signal to the microprocessor will be 
delayed. 

iSBX MUL TIMODULE CHIP SELECT GENERATION 
The 16-bit SBCs that support 8- and 16-bit iSBX Multimodules need special 
decoding consideration. Table 10-2 gives the address and chip select requir.e-
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TABLE 10·2 ISBX Bus Chip Select Address Space (Hexadecimal Notation) 

110 port 
addresses Device selected Function performed 

80,82,84,86, iSBX connector J4 Read/write low-byte transfer (both 8- and 16-bit 
88,8A,8C,8E boards), or word transfer (16-bit 

boards only). Activates SBXl cso. for 
MuItimodule boards. 

81,83,85,87, iSBX connector J4 Read/write high-byte transfer (16-bit boards only). 
89,8B,8D,8F Activates SBXl CSh for Multimodule 

boards. 
90,92,94,96, iSBX connector J4 Read/write byte transfer (8-bit boards only). 
98,9A,9C,9E Activates SBXl CSh for MuItimodule 

boards. 
AO,A2,A4,A6, iSBX connector J3 Read/write low-byte transfer (both 8- and 16-bit 
A8,AA,AC,AE boards), or word transfer (16-bit 

boards only). Activates SBX2 cso* for 
Multimodule boards. 

Al,A3,A5,A7, iSBX connector J3 Read/write high-byte transfer (16-bit boards only). 
A9,AB,AD,AF Activates SBX2 CSh for Multimodule 

boards. 
BO,B2,B4,B6, iSBX connector J3 Read/write byte transfer (8-bit boards only). 
B8,BA,BC,BE Activates SBX2 CSh for MuItimodule 

boards. 

375 
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TABLE 10·3 ISBX Bus Width Select Implementation 

PAL input 
Pin 9 Pin 8 

Low Low 
High Low 

Low High 

High High 

Interface operation selected 

16-bit operation for both connectors 
8-bit operation for connector J4, 16-bit operation for connector 
J3 
16-bit operation for connector J4, 8-bit operation for connector 
J3 
8-bit operation for both connectors 

ments of a 16-bit host SBC with two iSBX bus connectors (]3 and }4). Since the 
decoding is relatively complex and selectable (8- or 16-bit iSBX Multimodules), 
the method of generating the chip selects is performed via a PAL. 

The PAL in Fig. 10-18 decodes the address lines to provide the I/O chip 
select terms required for the iSBX bus and other on-board I/O components. 
Two inputs of the PAL provide a user-selectable jumper option to indicate 
whether the devices installed on the iSBX interface are 8- or 16-bit devices. The 
functions of the two select signals are listed in Table 10-3. In Table 10-4 are 
listed the four iSBX bus chip select outputs and the conditions required to acti­
vate them. 

10.2.4 ILBX Master Interface 

A basic iLBX master interface implementation is given in Fig. 10-19. The inter­
face can be broken down into five elements: 

• Address space decode 

• Address 

• Data 

• Control 

• Secondary-master support 

Most of the design implementations assume an 80286 microprocessor and 
8086 family signal attributes. Design examples are also given for an 8086 micro­
processor implementation and 8-bit microprocessor implementation. These 
implementations are explained in the following sections. 

ADDRESS SPACE DECODE 
The iLBX bus must be added to the board's on-board-off-board decoding 
scheme. The decoder in this implementation is designed to allow various mem-
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ory sizes on the iLBX bus. The job of the decoder is to decide whether the 
requested resource is on-board, on the Multibus system bus, or on the iLBX bus. 

The memory address space decode is performed by a PAL device (U7). The 
PAL in this implementation has four outputs: Multibus memory access (MBA­
CESS*), on-board RAM access (OBRAM*), on-board ROM access (OBROM*), 
and iLBX memory access (LBXEN *). The PAL inputs include microprocessor 
addresses A14 to A23, MilO, and three select inputs. The addresses allow 
decoding memory blocks down to 16K bytes. The MilO signal limits the decod­
ing to memory space only. The selectable inputs specify the upper boundary of 
memory on the iLBX bus. In this example there are eight selectable upper 
boundaries at 512K-byte increments. The base address for the iLBX bus is fixed 
at address 100000H. Table 10-5 shows the iLBX decoder for this example. 

For example, assume that the SBC contains 256K bytes of RAM with a start­
ing address at OOOOOH and 32K bytes of ROM with the starting address at 
OFF8000H. Also there is 1M byte of RAM on the iLBX bus starting at 100000H. 
The memory map for this example is given in Fig. 10-20. The PAL was chosen 
for the added flexibility it gives to the design. It is socketed, so a different decod­
ing scheme could be implemented by replacing the current PAL with a new 

TABLE 10·4 ISBX Bus Chip Select Generation Example 

Output signal 
name 

SBX1 CSO. 

SBX1 CSh 

SBX2 CSO. 

SBX2 CSI. 

Input signal combination 

A 7 and 1\6 and A5 and A4 and AO 
and 10 ADDR and MPRESh 

A 7 and A6 and AS and A4 and 
i3HE. and 10 ADDR and 
SBXl 8-hit and MPRESh 

A 7 and 1\6 and A5 and A4 and AO 
and I/O AD DR and SBXl 8-bit 
and MPRESI. 

A 7 and 1\6 and A5 and A4 and AO 
and 10 ADDR and MPRES2. 

A 7 and A6 and A5 and A4 and 
i3HE. and 10 ADDR and 
SBX2 8-hit and MPRES2. 

A 7 and 1\6 and A5 and A4 and AO 
and I/O ADDR and SBX2 8-bit 
and MPRES2. 

Output signal functions 

Provides the MCSO. chip select term 
for I/O addresses 80 through 8E 
(even addresses only) to an 8- or 16-
bit iSBX bus device on J4. 
Provides the MCSI. chip select term 
for I/O addresses 81 through 8F 
(odd addresses only) to a 16-bit iSBX 
bus device on J4. 
Provides the MCSI. chip select term 
for I/O addresses 90 through 9E 
(even addresses only) to an 8-bit 
iSBX bus device on J4. 
Provides the MCSO. chip select term 
for I/O addresses AO through AE 
(even addresses only) to an 8- or 16-
bit iSBX bus device on J3. 
Provides the MCSh chip select term 
for I/O addresses Al through AF 
(odd addresses only) to a 16-bit iSBX 
bus device on J3. 
Provides the MCSh chip select term 
for I/O addresses BO through BF 
(even addresses only) to an 8-bit 
iSBX bus device on J3. 
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FIGURE 10-19 iLBX master interface implementation. 

programmed PAL. Virtually any mapping is allowed for 16K-byte blocks of 
memory within 24M bytes of address space. 

ADDRESS INTERFACE 

The addresses are buffered by three 74LS244 octal buffers (Ul to U3). The 
input addresses to the buffers come directly from the microprocessor bus. The 
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buffers are normally enabled to the bus unless the microprocessor HOLDA out­
put goes active, which turns them off. The HOLDA signal is in conjunction with 
the secondary-master request (SMRQ*) signal. This relationship is described 
later in this section. 

DAT A INTERFACE 

The 16-bit data interface is composed of two 74LS245 octal transceivers. The 
transceiver chip select (CS) input is made up of the combination of the decode 
PAL's LBXEN* output and the microprocessor's control data enable (DEN) 

TABLE 10·5 ILBX Bus Address Space Decoder 
Example 

Select jumpers 
iLBX bus upper limit EI-E2 E3-E4 E5-E6 

Reserved In In In 
Reserved In In Out 
17FFFFH In Out In 
IFFFFFH In Out Out 
27FFFFH Out In In 
2FFFFFH Out In Out 
37FFFFH Out Out In 
Disable iLBX access Out Out Out 

OFFFFFFH 

32K BYTES ON-BOARD ROM 
(OBROM* = L) 

OFF8000H 
o FF7FFFH 

SYSTEM BUS ACCESS 
(MBACCESS* = L) 

200000H 
IFFFFFH 

iLBX BUS ACCESS 

1 
(LBXEN* = L) 

I lOOOOOH 
OFFFFFH 

SYSTEM BUS ACCESS FIGURE 10-20 iLBX bus mem-
(MBACCESS* =L) 

. 
40000H 

ory map. 

3FFFFH 

256K BYTES ON-BOARD RAM 
(OBRAM* = L) 

OOOOOH 
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output. The transceiver direction term comes directly from the control DT /R 
output. 

CONTROL 

All of the control outputs are driven by a 74LS240 octal buffer (U6). The 80286 
SBC board's control signals are direct derivatives of the microprocessor's control 
outputs. Since the 80286 ALE output meets the iLBX ASTB* timing, it is used 
to drive the input of the ASTB* buffer. In a similar fashion, BHEN, R/W, and 
LOCK buffer inputs are driven directly from the 80286 bus. The data strobe 
(DSTB*) is an OR condition of the 80286 RD* and WR * commands. As with 
the address buffers, the command buffers typically are enabled unless the pro­
cessor HOLDA signal becomes active. 

SECONDARY -MASTER SUPPORT 

The secondary-master support used in this implementation is straightforward 
and takes advantage of the 80286 internal control. The 80286 HOLD and 
HOLDA are used to provide secondary-master support. The secondary-master 
request (SMRQ*) is buffered and then directly connected to the 80286 HOLD 
input. The 80286 HOLDA output drives the input of the SMACK * buffer. The 
10kn pull-up resistor on the SMRQ* input ensures that the SMRQ* signal will 
be inactive if the system does not contain a secondary master. 

Although this secondary-master implementation is simple to perform in 
hardware, it can be costly in terms of overall system performance. When the 
microprocessor receives an active HOLD signal and the microprocessor gener­
ates a HOLDA, all microprocessor activity is stopped. This occurs even if the 
microprocessor is not using the iLBX bus. An improved implementation would 
allow the microprocessor to turn off its iLBX interface while maintaining the 
ability to execute on-board or on the Multibus system bus. 

ADDRESS STROBE GENERATION 

The address strobe signal can be derived directly from many microprocessors' 
ALE signal. Intel's 80286 microprocessor can directly drive the ASTB* signal 
with its buffered ALE. In 8086 and 8088 implementations, the ALE signal does 
not provide the proper address setup to generate ASTB* directly. Therefore, a 
circuit must be used to generate the proper ASTB* signal. The circuit given in 
Fig. 10-21 does the job with very little overhead. It takes advantage of aT-state 
generator, which is required on most board-level designs. The outputs of the T­
state generator indicate the current 8086/8088 T state. 

The basic T -state circuit operates as follows: The 74S175 is wired to form a 
four-bit shift register. When the 8086 ALE is generated, the shift register is 
cleared. On the first falling 8086 clock edge after ALE is removed, a 1 is clocked 
into the Q 1 bit position. The first falling clock edge after ALE is removed is the 
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FIGURE 10-21 8088 and 8086 T-state generator. 

T2 state of the 8086. Each successive falling clock edge shifts the 1 down a bit 
position. When the Q3 output goes high, the 8086 has entered the T 4 or TW 
(wait state). All outputs will remain high until the next ALE is generated. 

The ASTB* signal is generated by ANDing (74S04) the T2 state with the 
T3* state. This produces an ASTB* signal that starts at the beginning of T2, is 
one clock period in width, and provides the proper address set-up to meet the 
iLBX bus specification. 

AN 8-BIT IMPLEMENTATION 

An 8-bit microprocessor that requires only an 8-bit iLBX interface is virtually 
a subset of the 16-bit interface. Since the 8-bit interface does not use the higher­
order data byte, the 74LS245 transceiver U4 and the byte high enable (BHEN) 
circuitry can be eliminated. The remainder of the interface design is equivalent 
to the 16-bit implementation. 

If the requirement of an 8-bit board is to have the capability of interfacing 
with both 8- and 16-bit iLBX devices, a data interface circuit similar to the one 
shown in Fig. 10-22 should be used. To implement the circuit, both data trans­
ceivers are required. When the device is configured for 16-bit operations (E1 
jumpered to E2), the low-order address line AO is used to differentiate between 
the high and low bites. When AO is low, the data is transmitted on the low-byte 
data transceiver U4 while the high-byte data transceiver U5 is turned off. Sim­
ilarly, when AO is high, the data is transmitted on the high-byte transceiver U5, 
while the low-byte transceiver U4 is turned off. The AO address line is also used 
to generate the BHEN signal. To configure the 8-bit interface, the jumper is 
connected between E2 and E3. When the jumper is placed in the 8-bit mode, 
the high-byte transceiver U5 is permanently disabled and all data transfers 
occur over the low-byte transceiver U4. 
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Much of the slave interface circuitry is similar to the master interface circuitry. 
The key differences are in the address circuitry and the bus acknowledge 
(ACK*) circuitry. The slave interface implementation is given in Fig. 10-23 and 
is explained in the following sections. 

ADDRESS INTERFACE 

Since the address does not remain valid throughout the entire transfer cycle, the 
slave must latch the bus address and control signals. The signals are latched by 
using 74S373 transparent latches. This implementation takes advantage of the 
address setup time (40 ns to ASTB* active) to give additional address decode 
time. 

The circuit operates as follows: The D flip-flop is cleared on a board reset. 
, The Q* output, which is connected to the 74S373 latch enable input, allows the 
address information to pass directly through to the address decoder. When the 
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ASTB* signal goes active, the flip-flop is preset, which in turn latches the 
address. The information remains latched until the trailing edge of DSTB* 
(which signals the end of cycle) clocks the flip-flop and reenables the latches for 
the next cycle. If the address were for a resource on-board, the decoders would 
generate the proper chip selects (CHIP SEL*) and board select (BOARD SEL*). 
If the extra decode time of 40 ns is not required, then a clocked octal flip-flop, 
such as a 74(L)S374, could be used in place of the 74S373 transparent latch. In 
that case the ASTB* signal should be inverted and connected directly to the 
clock input of the flip-flop. 

DATA INTERFACE 

The data interface, which consists of two 74LS245 octal transceivers, allows the 
slave to transmit or receive a 16-bit word or either the high- or low-order data 
byte. The direction term for both buffers is derived from the latched iLBX bus 
R/W* signal. The enable circuit uses two three-input NAND gates to select the 
high or the low byte or both. The LOWEN* signal consists of the board select 
term, address signal ABO, and the DSTB* signal. The board select term ensures 
that the buffer turns on only when the board is selected. The ABO term ensures 
that the buffer turns on only when the low byte is requested (ABO low). This 
address will be low whenever a low byte or word value is requested. The DSTB* 
signal guarantees that the slave buffers turn on only when a valid data strobe is 
issued by the master. To ensure that a buffer fight cannot occur between the 
master and slave, the timing parameter t14 is critical. The slave has 45 ns from 
the trailing edge of DSTB* to turn off its data buffers. The TTL devices used 
in the buffer-enable circuitry must be carefully chosen in order to meet this 
parameter. 

The high-byte enable circuit consists of the same terms as the low-byte 
enable circuit with the exception that the buffered BHEN signal replaces ABO. 
If a high byte or word is requested, the BHEN signal will be high, which will 
enable the buffer. If only the low byte is requested, the BHEN signal will be 
low, which will disable the high-byte buffer. 

ACKNOWLEDGE INTERFACE 

The circuit shown in Fig. 10-23 allows the slave to generate the type 1, type 2, 
or type 3 acknowledge. Basically, for type 1 acknowledges, the slave generates 
the ACK* signal based on address strobe. For type 2 and 3 acknowledges, the 
slave generates the ACK * signal based on data strobe. The interface timing of 
the master(s) determines if a type 1 acknowledge can be used or if a type 2 
acknowledge must be used. 

Connecting a jumper from El to E2 selects the address strobe as the clock 
to set the start cycle flip-flop FF2. The START CYCLE output activates the 
acknowledge timer, which can be implemented via digital delay lines or a shift 
register similar to the Multibus master T-state generator. Immediately following 
the START CYCLE output going active, the delay line outputs a sequence of 
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six signals each delayed by 50 ns from the preceding signal. By connecting the 
output of the desired delay to the input of the ACK* driver, the proper delay 
time for the system configuration can be programmed for the ACK* signal. 

The acknowledge hold time after the trailing edge of DSTB* t12, is a critical 
parameter to be aware of. The iLBX bus specification allows a maximum of 45 
ns to. turn off the ACK* signal. As with the data buffers, care should be taken 
in choosing the TTL devices in the critical path. Failure to comply with this 
timing parameter could result in a false acknowledge on the next transfer cycle. 

If a system is designed for type 1 acknowledges, it is possible for the primary 
master to run synchronously with its slave devices. This virtually means that the 
microprocessor on the master expects data relative to its clock. Although there 
is no requirement to run synchronously in a type 1 acknowledge system, the 
primary master's performance can be improved or the slave device's memory 
access time can be longer when they are synchronous. However, when design­
ing slave boards capable of running synchronously with type 1 acknowledges, 
the designer must be aware of certain conditions that can cause the primary 
master to lose synchronization: dual-port memories and dynamic memories. 
Whenever the memory is being refreshed or the other port is accessed in dual­
port slave designs, the primary master will lose synchronization with the trans­
fer. To overcome this problem, the slave should dynamically change its 
acknowledge to type 3 whenever the memory will not be ready in the normal 
period. This type of implementation has little effect on system performance, 
since refresh and dual-port hits occur only a small percentage of the time. Also, 
it is far more efficient than slowing down all accesses to meet the worst-case 
requirements of the refresh and dual-port delays. 

10.2.6 Multichannel Master Interface 

A basic Multichannel master interface is shown in Fig. 10-24. This type of inter­
face implementation can be used on Multichannel bus supervisors or intelligent 
controllers. The main difference between the supervisor and intelligent con­
troller interface is that the supervisor drives the supervisor active (SA *) signal 
and the intelligent controller receives SA*. The interface can be broken into 
four elements: 

• Address and data 

• Parity 

• Control 

• Interrupts 

Although not a requirement, the implementations discussed in the following 
sections assume an BOB6-family processor design. 
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ADDRESS-DA T A INTERFACE 

The address-data (AID) interface shown in Fig. 10-24 uses the 8303 octal buffer 
transceiver to drive the bus. The buffer input signals come directly from the 
microprocessor AID bus. The buffers are enabled by the chip select MCCSO* 
and the 8288 DEN. The chip select goes active whenever the microprocessor 
addresses its Multichannel interface. The DEN signal goes active whenever a 
data transfer takes place. 

Intelligent controllers must also react to supervisor active (SA *). If an intel­
ligent controller is active on the Multichannel bus, it must release the bus when­
ever the supervisor wants to regain control. When the supervisor asserts SA*, 
the intelligent controller must be off the bus in 75 ns maximum after receiving 
SA* active. The circuit shown in Fig. 10-24 implements this function. The SA* 
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signal is the clock input to the D flip-flop. When SA* goes active, the flip-flop 
is clocked, which drives its Q* output low. The Q* output, which is a term in 
the buffer enable circuit, turns off the A/D buffers. This action also provides an 
interrupt to the microprocessor. When the microprocessor reads the status of 
the interrupt, the flip-flop clears, which allows the interface to be enabled for 
future transfer cycles. 

PARITY INTERFACE 

If parity is chosen for the system, all Multichannel devices that talk on the bus 
are required to generate parity and all devices that listen to the bus are required 
to check parity. The circuit shown in Fig. 10-24 both generates and checks par­
ity. The basic circuit uses two 74LS280 parity generator-checker devices. When 
the master is talking, the microprocessor A/D bus, which is connected to the 
parity circuit inputs, sets the proper parity up on each byte. The outputs of the 
high- and low-byte parity circuit are "exclusive-ORed" to generate the proper 
parity signal. This signal is connected directly to the Multichannel bus parity 
differential driver. The driver is enabled whenever the device is talking on the 
bus. An intelligent controller also gates the enable with the SA * flip-flop as is 
done with the A/D buffers. 

Parity checking uses the same circuits as parity generation, except that the 
data used to generate the parity check bit comes from the Multichannel bus via 
the A/D buffers. When the interface port is accessed by a microprocessor read, 
the A/D buffers are enabled and the data is directed toward the microprocessor 
local A/D bus. After the parity circuits generate it, the parity bit is compared 
with the bus parity bit (PB*) via the EXCLUSIVE-OR gate. When the micro­
processor internally reads the data, the state of the parity check is latched. The 
output of this flip-flop generates a nonmaskable interrupt (NMI) if a parity error 
has occurred. 

This parity implementation also allows parity generation and checking with 
8-bit Multichannel devices. To accomplish this, the high-byte check bit is gated 
with the microprocessor's byte high enable (BHE*) signal. If a byte transfer 
occurs, the high-byte parity circuit is disabled. Therefore, it does not contribute 
to the parity bit on 8-bit reads or writes. 

CONTROL INTERFACE 
The control portion of the Multichannel interface consists of DRDY*, DACC*, 
R/W, and A/D. The control section of the Multichannel interface is given in 
Fig. 10-25. The implementation of each of these signals is explained in the fol­
lowing paragraphs. 

The R/W and A/D signals are directly controlled by the microprocessor. 
The microprocessor sets the state of these lines by writing the appropriate data 
to the control latch under software control. This method, although relatively 
slow, gives the microprocessor full control over the state of the bus. The super­
visor enables the bus control differential drivers by using the SA * signal as the 
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enable. The intelligent controller enables its drivers when SA * goes inactive. 
The intelligent controller also gates the enable with the SELECT signal. This 
signal goes active only when the intelligent controller has been programmed to 
take the bus over when the supervisor goes inactive. This ensures that, in a con­
figuration with more than one intelligent controller, only one will be enabled 
on the bus. 

The DRDY* signal generation is performed via the DRDY flip-flop. When 
the microprocessor writes data to the Multichannel interface, the flip-flop preset 
input goes inactive and the D input goes low. On the next falling edge of the 
microprocessor clock (SYSCLK) after the write command goes active, the 
DRDY* signal is generated. This circuit provides the 60-ns data setup required 
before DRDY* becomes active. The DRDY* signal remains active until the 
DACC* signal is received from the listening device. The DACC* signal clocks 
the "ready" flip-flop, which generates a ready back to the microprocessor. The 
microprocessor completes the cycle by removing the write command, which in 
turn presets the DRDY flip-flop and forces DRDY * inactive. 

The DACC* signal generator allows the microprocessor to read data from 
the Multichannel interface in two ways. In the first way the microprocessor 
reads the interface and waits for data to become valid. In this case the DAce 
flip-flop is held in a preset state by the DRDY* signal being inactive. The micro­
processor reads the interface, which forces the D input to the DACC flip-flop 
to be low. However, the flip-flop does not clock, since it is the rising edge of 
command that clocks the flip-flop. Since data is not available, the ready flip-flop 
provides a not-ready signal to the microprocessor. When data is valid from the 
Multichannel bus, the bus DRDY * signal is generated. That removes the preset 
to the DACC flip-flop and clocks the ready flip-flop, which generates a ready 
signal to the microprocessor. The microprocessor responds by removing the read 
command, which clocks the DACC flip-flop and generates the bus DACC* sig­
nal. The ready signal is cleared once the DACC* signal is generated. The 
DACC flip-flop is preset when the DRDY * signal goes inactive. 

The second way the DACC interface is used is by generating an interrupt to 
the microprocessor when data is available. In this case the ready flip-flop also 
generates an interrupt to the microprocessor when a bus DRDY * signal is 
received. The ready signal does not affect any microprocessor operation cur­
rently in progress, since the ready is gated with the Multichannel interface chip 
select term. When the microprocessor services the interrupt, it reads the Mul­
tichannel interface. Since the ready signal is valid, the cycle continues as pre­
viously described. The interrupt is also cleared when DACC* is generated. 

INTERRUPT INTERFACE 
The bus supervisor is the only device that receives and acts on the bus interrupts 
SRQ and STO. Only intelligent controllers and basic devices may generate those 
signals. Therefore, the interface requirements are different for those devices. 
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For supervisor devices, the circuit given in Fig. 10-25 is used. This circuit 
allows supervisors to accept, read status, and clear the bus interrupts. When a 
bus interrupt is received, the state of the interrupt is latched into the D flip-flop. 
The output of the flip-flop generates an interrupt to the microprocessor. When 
the microprocessor services the interrupt and reads the status, the read opera­
tion also clears the interrupt. 

Intelligent controllers, as well as basic devices, must generate the bus inter­
rupts. Besides the interrupt generation, the devices are responsible for providing 
the interrupt register data on an interrupt poll by the supervisor. The operation 
of these circuits is explained in the next section. 

10.2.7 Multichannel Slave Interface 

In the circuit implementations discussed in this section it is assumed that a 
microprocessor is not an integral element of the interface design. The following 
slave interface characteristics are considered: 

• Device select -deselect 

• Parity generation and checking 

• Transfer handshake 

This section provides basic circuit implementations to illustrate the consid­
erations involved in the various signal line implementations. The circuits shown 
are not optimized or complete. In many cases the tasks performed by the cir­
cuits can be replaced by a microprocessor or microcontroller. In that case the 
circuit designer must decide where the price-performance trade-off is for the 
implementation. 

DEVICE SELECT INTERFACE 
The device select circuit shown in Fig. 10-26 allows ,a slave to scan the Multi­
channel bus for its device number and generate the proper on-board and bus 
control signals. 

The device select circuit compares the device number field of the first word 
of the address transfer to the number selected on the four-bit switch SW1. If 
the numbers match, the flip-flop F2 clocks, thereby setting the internal control 
signal ACTIVE. That this signal is active implies that the device has been 
selected. The address mode synchronizer flip-flop F1 keeps track of the first and 
second address transfer. This flip-flop ensures that flip-flop F1 compares and 
clocks only on the first address transfer. Once the device is selected the switches 
are forced to compare to the deselect value OFH, so that the circuit can be 
deselected by the master when the transfer is complete. 

In this implementation the AACC signal is generated directly from the 
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DRDY* signal. The signal is qualified by the bus AID signal in that it can be 
active only during address transfers. If additional data hold time is needed after 
DRDY* is asserted, a delay must be incorporated before deasserting AACC. 

PARITY INTERFACE 

The basic parity circuit given in Fig. 10-27 is similar in operation to the master 
parity circuit. However, there is additional overhead to provide STO* signal 
generation and STO register support. If a microcontroller were used with this 
interface, the parity generation and check would be performed in hardware as 
shown but the register support would be handled by the microcontroller. 

The parity bit circuit implementation for a slave device is similar to the mas­
ter circuit. For the slave implementation the control signals such as R/W and 
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AID come from the bus rather than being generated by a microprocessor. Slave 
and intelligent controller devices generate an STO interrupt when a parity error 
occurs. In this circuit implementation, when a parity error occurs, flip-flop Fl 
clocks and thereby generates an active STO* signal on the bus. 

A basic slave STO register circuit is shown in Fig. 10-28. When a master 
addresses the slave's STO register and places the bus into the data mode, the 
signal STORD* becomes active. This signal enables the STO* buffer Bl and 
generates the DRDY * signal after the data setup time has been met. If a parity 
error has occurred, the input(s) to the buffer Bl will be high, which will cause 
the STO register data to be nonzero. If no parity error has occurred, the value 
in the STO register will be zero. After the register read cycle is completed, the 
parity error and STO register data are cleared. The nonzero STO register value 
is user-definable. For this example, the value chosen is OFFH. 

TRANSFER HANDSHAKE INTERFACE 

The transfer handshake interface is composed of two circuits: the read hand­
shake circuit and the write handshake circuit. The read handshake circuit, 
which is used by slave devices that talk on the bus, is shown in Fig. 10-29. The 
write handshake circuit, which is used by slave devices that listen on the bus 
(address or data), is shown in Fig. 10-30. 

The read circuit is active whenever the device is a talker in a data transfer. 
In this case the slave device is responsible for asserting DRDY* when data is 
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valid and receiving DACC* to guarantee that data has been accepted. The 
ACTRD signal, which was developed earlier in the parity circuits, is a combi­
nation of the device select and data mode terms. This signal goes active when­
ever the slave device is selected as the bus talker and the bus is placed in data 
mode. Once the on-board data has met the required 40-ns setup, an ORDY 
(output ready) signal is generated. The signal clocks flip-flop Fl and thereby 
asserts DRDY* on the bus. The ORDY signal generation is a function of the 
devices that are on the slave. When the slave receives DACC*, the one-shot 
(OSI) is clocked, thereby generating a pulse that clears the DRDY* flip-flop Fl. 
This pulse can also be used by the slave to advance the on-board circuitry for 
the next cycle. The cycle continues until the master places the bus in the address 
mode (A/D = high), which removes the ACTRD signal. 

The write circuit is active whenever the device is the listener in a data trans­
fer cycle. In that case the slave is responsible for receiving DRDY * and the bus 
data and generating DACC* when it has internally accepted the data. The 
ACTWT (active write) signal generated in the control circuit section is used to 
qualify the write cycle. When the slave receives a DRDY*, flip-flop F2 preset 
input is brought high, which allows the flip-flop to clock once the slave has 
internally accepted the data. The on-board slave circuit generates an IRDY 
(input ready) when it has accepted the data. This signal, qualified by ACTWT, 
generates a DACC* signal back to the master. Once the master removes the 
DRDY* signal, the flip-flop F2 is cleared, thereby removing DACC*. The signal 
WRTCMD (write command) can be used as a write signal by the slave's mem­
ory or I/O devices. The data hold time for these devices should be checked for 
actual signal use and implementation. 

10.3 SPECIAL INTERFACE GUIDELINES 

Special interfaces are specific interface designs that allow for a consistent and 
standard high-level hardware-software interface. The following design imple­
mentations are covered: 
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• Dual-port memory interface 

• Interprocessor communication port 

• 16M-byte addressing 

• Standard I/O addresses 

These design implementations are not part of the Multibus system bus struc­
ture specification, but they do implement a Multibus system architecture phi­
losophy. Their goal is to provide a consistent interface and consistent function­
ality across the board product line. 

10.3.1 Dual-Port Memory Interface 

The dual-port RAM access control logic and buffers, shown in Fig. 10-SI and 
10-S2, allow the RAM on an SBC board to the shared by the local micropro­
cessor and other Multibus masters. When accessing the RAM array, the local 
microprocessor request is given priority over the Multibus master's request. 
When a Multibus access is in progress, the dual-port control logic enters the 
slave mode and any subsequent local microprocessor requests are held off until 
the slave mode is completed. 

The circuit is based on three flip-flop stages: synchronizer (VI), dual-port 
arbiter (V2), and command enable (VS). The synchronizer flip-flop synchro­
nizes the asychronous Multibus RAM array request. The dual-port arbiter pro­
vides the second stage of synchronization and arbitrates between the local 
microprocessor request and the synchronized Multibus request. The command 
enable flip-flop enables the selected interface command to the RAM array. 

When a Multibus request is made to the dual-port RAM, the OFF BD RAM 
REQ* signal goes active. This signal is the combination of the bus address chip 
select and the OR of the memory bus commands. It provides the input term to 
the synchronizer flip-flop VI. On the next rising edge of the dual-port clock 
(DP CLOCK) the signal is latched. The output of VI is connected to the three­
input NAND gate. This gate provides the block term for a local microprocessor 
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access. If there is no pending local request, the synchronizer output goes to the 
dual-port arbiter flip-flop U2. This flip-flop provides the second stage of syn­
chronization and enables the appropriate address buffers on the next rising clock 
edge. 

Slave requests must be double-synchronized to help prevent arbitration fail­
ures. If the slave request does not meet the setup time of Urs D input, the Q 
output may go astable (i.e., walkout). The period of time during which the out­
put remains astable varies with the flip-flop type. The clock period chosen for 
the arbitration circuit must be greater than the astable period to ensure the 
signal will be stable prior to clocking at the next stage. Care should be taken 
when choosing the arbitration flip-flops. Two criteria for choosing them are a 
low setup time requirement and an astable period less then the arbitration clock. 
The 74S74 D flip-flop has been characterized to work well in arbiter circuits 
because of slow set-up time requirements and a short astable period. Each ven­
dor's flip-flop should be characterized carefully for use in arbiter circuits. 

The Q output of U2 is connected to U3, which enables the appropriate com­
mands to the RAM array on the subsequent clock edge. When the Multibus 
access is completed, the master removes the command, which causes the OFF 
BOARD RAM REQ* signal to go inactive. This allows the off-board release flip­
flop (U4) to clock, thereby clearing the dual-port arbiter flip-flop which turns 
the dual;.port RAM back to the local CPU. 

This implementation also contains two lock circuits, one from the Multibus 
system bus side and one from the local CPU side. The bus lock signal, which is 
derived from the Multibus LOCK * signal, will prevent any local CPU access 
once the dual-port memory has been granted to the Multibus port. The BUS 
LOCK* signal prevents flip-flop U4 from clearing, thereby holding the dual­
port arbiter flip-flop in the slave mode. The dual port will remain locked until 
the LOCK* signal is removed. The local CPU lock, ON BOARD LOCK*, pre­
vents any Multibus system bus access to the dual-port RAM. When activated by 
the local CPU, this signal blocks any Multibus system bus request. 

10.3.2 Interprocessor Communication Port 

A common problem that systems with multiple microprocessors must overcome 
is the effective transmission of messages between SBO masters. Although mul­
tiple algorithims and methodologies can be developed to solve the problem, 
rarely is the same method used on each SBC board. The key area that is hin­
dered by nonstandard communication methods is the system software. The soft­
ware must be rewritten for each application; otherwise, it cannot take advan­
tage of the hardware mechanisms provided. 

The block diagram of Fig. 10-33 provides a signaling mechanism that is con­
trolled by the system software. This implementation allows SBC boards to place 
messages in common (global) system memory (dual-port or shared Multibus sys-
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This provides a remote reset for peripheral boards without resetting the entire 
system. Figure 10-35 shows a hardware implementation of the signaling mech­
anism. In this circuit two programmable array logic (PAL) ICs provide the 
entire signaling hardware. PAL Ul provides all the necessary handshake logic, 
and PAL U2 provides the Multibus I/O address decode. 

When a Multibus write to the signal port I/O address occurs, U2 decodes the 
address. If the I/O port address is valid, the MBCS* signal goes active. This 
signal is connected to the U 1 input. The data value comes from the Multibus 
data lines DATO* and DATI *. This selects the proper signal action. When the 
Multibus 10WC* command becomes valid, a signal operation takes place and 
a Multibus XACK* is generated. A similar operation takes place when the I/O 
write occurs from the on-board side. In this case the data comes from the local 
data bus (DO to Dl), the chip select (ON BD FLAG CS*) comes from the on­
board address decoders, and the I/O write command comes from the local 
CPU. The Multibus system bus address decoder provides flexibility for the 
placement of the signal port I/O address. The I/O port can be placed in one of 
eight system bus I/O addresses. This is accomplished by placing the appropirate 
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FIGURE 10·34 Interprocessor flag byte message format. (Note: All other codes are 
reserved and will cause unpredictable results.) 
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FIGURE 10-33 interprocessor message byte block diagram. 

tern memory) and signal the SBC that a message is valid. The procedure is as 
follows: SBC 1 places a message in the SBC 2 dual-port memory. After the 
message has been placed, SBC 1 writes a value into a designated I/O port on 
SBC 2. This action generates an interrupt to the microprocessor on SBC 2. When 
the interrupt is serviced, the local microprocessor reads the message and clears 
the interrupt by writing a value to the I/O port. If more then one master can 
use the communication port from the system bus side, then a semaphore (flag) 
must also be used so that the other masters do not contaminate the data. This 
test-and-set flag must also be placed in global memory. All masters must test, 
and set if open, this flag prior to using the communication port. 

When SBC 2 wants to signal that it has completed the action requested by 
SBC 1, it places a return message into its dual-port memory. After the message 
has been placed, SBC 2 writes a value into its I/O port to interrupt SBC 1. When 
SBC 1 receives the interrupt, it services the interrupt by reading the return 
message and clearing the interrupt by writing a value to the I/O port of 
SBC2. 

Figure 10-34 is the decoding of the data written by the signaling SBCs to the 
communication I/O port. The values are symmetrical, so that the action per­
formed by an SBC is the same for a given data value whether the I/O write is 
local or is from the Multibus system bus. The decoding scheme also allows a 
Multibus master to reset an SBC by writing a specific value into the I/O port. 
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FIGURE 10-35 Interprocessor message byte circuit (hexadecimal notation). 

jumpers between pins E1 and E2, E3 and E4, and E5 and E6. This decoding 
allows a maximum of eight unique signal ports with the same base address to 
coexist on the system bus. It should be noted that if additional I/O ports are 
required, other base addresses can be programmed into the PAL. To allow the 
decoder to work in 8- and 16-bit environments or 16-bit-only environments, a 
jumper select is provided. For the 8- and 16-bit mode, only the first eight 
addresses are decoded (ADRO* to ADR7*). Table 10-6 gives the logic equations 
for the decode and flag byte PAL. The decode implementation accepts 16-bit 
addresses 08A4H to 08A7H and 09A4H and 09A7H. For the 8- and 16-bit mode 
the addresses are OA4H to OA 7H. 

10.3.3 16M-byte Addressing 

With the introduction of microprocessors that have a full 16M-byte address 
range, such as Intel's 80286, SBCs with microprocessors that can address only 



TABLE 10·6 Flag Byte Generator and Address Decode Pal Example 

BFLAGINT 

FLAGINT 

FLAGRES 

FLAGXACK 

I6BSEL 

8BSEL 
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: = BFLAGINT • IDl 
+ BFLAGINT. DO 

FLAG BYTE PAL 

+ BFLAGINT • IOWT 
+ BFLAGINT. FLAGCS 
+ RESET 
+ DATI. DATO • IIOWC • ADR6 • I ADR5 • ADR4 • IMBFLAGSEL 

: = IDA Tl • DATO • IIOWC • ADR6 • I ADR5 • ADR4 • IMBFLAGSEL • IRESET 
+ FLAGINT • Dl • IRESET 
+ FLAGINT • DO • IRESET 
+ FLAGINT • IOWT • IRESET 
-+- FLAGINT • FLAGCS • IRESET 

:= DATI. IDATO. IIOWC. ADR6. IADR5. ADR4 • IMBFLAGSEL 

:= DATI. IDATO. IIOWC. ADR6. IADR5. ADR4. IMBFLAGSEL 
• FLAGRES • IRESET 

DECODE PAL 

= FS2 • FSI • FSO • I AF • I AE • I AD • lAC 
• AB • I AA • I A9 • I A8 • A 7 • I A3 • A2 • Al 

+ FS2. FSI • IFSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • I A8 • A7 • I A3 • A2 • I Al 

• AO + FS2. IFSI • FSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • I A8 • A 7 • I A3 • A2 • Al 

• lAO 
+ FS2. IFSI • IFSO. IAF. IAE. lAD. lAC 

• AB • I AA • I A9 • I A8 • A 7 • I A3 • A2 • Al 

• AO + IFS2. FSI • FSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • A8 • A 7 • I A3 • A.2 • I Al 

• lAO + IFS2. FSI • IFSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • A8 • A 7 • I A3 • A2 • I Al 

• AO + IFS2. IFSI • FSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • A8 • A 7 • I A3 • A2 • Al 

• lAO + IFS2. IFSI • IFSO. IAF. IAE. lAD. lAC 
• AB • I AA • I A9 • A8 • A 7 • I A3 • A2 • Al 

• AO 
= FSI • FSO • A 7 • I A3 • A2 • I Al • lAO 
+ F'SI • IFSO • A 7 • I A3 • A2 • I Al • AO 
+ iFSI • FSO • A 7 • I A3 • A2 • Al • lAO 
+ IFSI. IFSO. A7. IA3. A2. AI. AO 
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1M-byte or less cannot transfer data over the full 16M-byte address range. This 
becomes critical in systems/that contain 16M-byte microprocessors and periph­
eral controllers that can provide addressing only in the first megabyte page. It 
would mean that a disk controller could read or write data only in the first 
megabyte of the 80286 address space. 

To overcome this problem, a standard hardware mechanism has been 
designed to give 1M-byte microprocessors, such as Intel's 8086 and 80186, the 
ability to read or write data anywhere in the 16M-byte address space. The goal 
of this interface is to provide a consistent mechanism that the system software 
can take full advantage of. 

The basic mechanism, given in Fig. 10-36, provides a 256K-byte window 
into the full 16M-byte address range for 1M-byte SBCs. The 1M-byte processor 
provides the window via its on-board address range 80000H to OBFFFFH. The 
actual high-order address signals are generated by the data value written to the 
latch during an on-board I/O write. This value remains intact until overwritten 
by another value. When the decoder detects the 256K-byte memory space 
between 80000H and OBFFFFH (A18 = low, A19 = high), it enables the latch 
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FIGURE 10-36 16M-byte address generation circuit. 

24 
ADDRESS 
LINES 



404 MUL TIBUS FAMIL Y APPLICATIONS 

onto the Multibus system bus. When the 1M-byte reads or writes data in the 
address range of 80000H to OBFFFFH, the Multibus address generated will be 
offset by the value written to the latch. To place the 1M-byte SBC to the normal 
1M-byte address range, the value 08H should be written to the latch. This places 
the actual microprocessor address on the Multibus system bus when the window 
is enabled. 

The 16M-byte window should be used mainly for data movement and not 
for code execution. Care should be taken to ensure that all interrupt service 
routines are local to the SBC and that the service routines are aware of the 
window. 

10.3.4 Standard I/O Addresses 

Most operating systems expect certain I/O addresses to be fixed for proper oper­
ation. A typical SBC has on-board serial I/O, parallel I/O, timer-counter I/O, 
and an interrupt controller. The operating system expects to initialize and com­
municate with these devices at fixed locations. Although many operating sys­
tems can be reconfigured, the process is time-consuming and prone to error. 
Also, not standardizing the system I/O addresses prevents simple migration 
between board products. Another subtle problem occurs when I/O is allowed 
to be randomly placed. Each I/O address that is kept for on-board I/O prevents 
the microprocessor from going to the system bus for that I/O location. If the 
SBCs in a system use a large portion of the I/O space for on-board I/O, global 
system I/O may not have an address range that can be reached by all the SBCs. 
As an example, in a system with two SBCs, one with on-board I/O addresses in 
the range of 0 to 07FH and the other with on-board addresses in the range of 
080H to OFFH, the SBCs use the whole of the first 256-byte I/O address space. 
A global I/O controller that decodes only the first 256 bytes can not be placed 
where both SBCs can access its I/O ports. 

To overcome these problems, a standardization of the on-board I/O 
addresses, with their associated functions, is required. The following rules 
should be followed: 

1. CPU SBCs. Use I/O address space 0060H to OOFFH for on-board I/O 
resources. Table 10-7 is a list of specific I/O function-address requirements. 

2. Peripheral SBCs. Design Multibus system I/O decoders for 16 bits (64K-byte 
address space) of address decode-selection. This ensures compatibility of the 
peripheral board with all CPU SBCs. 

3. Peripheral SBCs (with on-board memory). Design memory address selection 
independently of I/O address selection. This allows the I/O to be mapped 
independently of the memory in the system address space. 



TABLE 10·7 Standard Multlbus System Bus 1/0 
Addresses 

Port address Function 

0-5FH Off-board I/O 
60-7FH Third SBX 
80-9FH Second SBX 
AO-BFH First SBX 
CO-C3H Master-slave pic or mise I/O 
C4-C7H Slave pic or mise I/O 
C8-CEH First parallel port 
00-07H PIT or second serial I/O 
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D8-DEH Serial I/O (8251 uses 08, OA only) 
EO-EFH 80130 
FO-FFH On-board or off-board I/O 

10.4 MULTIBUS SYSTEM BUS BACKPLANE DESIGN 

Proper backplane design is an important aspect of system reliability. Many sys­
tem problems can be traced back to inadequately designed backplanes-a sys­
tem is as reliable as its weakest point. If the boards in the system are designed 
to provide reliable operation but the backplane cannot transfer data between 
the boards reliably, system reliability is lowered to the level of the backplane. 
The following sections provide guidelines for designing reliable backplanes. 
Also included are three implementations for parallel-priority bus arbitration. 

10.4. 1 Backplane Layout Considerations 

The simplest aspect of system design appears to be the backplane. At first glance 
no circuitry is involved and all traces run parallel to each other. The fact that 
the design appears to be simple is the reason for underestimating the impor­
tance of proper backplane design and layout. A number of layout techniques 
can enhance or reduce the reliability of the system. 

The simplest backplane design is one that contains no solid ground plane or 
interleaved ground traces. This design is a two-layer layout with signals on both 
sides of the board. This simple backplane design will be used as a base for com­
parison of the techniques for improving the design. The simple design can cause 
two general problems. The first is that limited ground busing aggravates any 
inductive ground-shift problems. The second is that lack of a ground plane or 
interleaved ground traces can increase susceptibility to signal-to-signal coupling. 

SOLID GROUND PLANE 

A significant enhancement of backplane operation occurs when a layer which 
contains a solid ground plane is added. "Solid," in this sense, means that vir-



406 MULTIBUS FAMILY APPLICATIONS 

tually no signal traces are placed on this layer other than ground. The solid 
ground plane helps reduce bus noise in three areas. First, it exhibits much lower 
inductance than the ground return traces of the simple backplane. This helps 
to limit the problems caused by current surge inductive ringing. Inductive ring­
ing causes a ground shift between devices and is a function of the magnitude 
and frequency of the current spike. This problem is more prevalent in systems 
that contain boards with high-current bus drivers. 

The solid backplane also helps to filter the high-frequency noise components 
of the signals on the backplane and reduce the signal edge transition rates. This 
is due to the distributed capacitance effect between the backplane and the sig­
nal traces. 

The third, and most important, benefit is that the solid ground plane helps 
to reduce inductive coupling by providing the shortest signal ground return 
path for the high-current signals causing the coupling. The solid ground-plane 
implementation exhibits less than half the signal inductive coupling of the sim­
ple backplane discussed earlier. 

INTERLEAVED GROUND TRACES 

The interleaved ground trace implementation virtually means that every signal 
trace on the backplane has, on each side, an adjacent, parallel ground trace for 
the entire length of the backplane. 

This implementation is electrically equivalent to that of the solid ground 
plane in that it exhibits less than half the signal inductive coupling over the 
basic backplane implementation. Also, as with the solid ground plane, it helps 
reduce the ground-shift noise due to the multiple ground return paths. To pro­
vide the most effective noise reduction, the ground traces must be tied to the 
system ground at both ends so they can conduct current.. The advantage of the 
interleaved ground implementation is that the board layout can be in two 
layers. 

There is a trade-off between solid ground-plane designs and interleaved 
ground designs. If a design must be in two layers, a solid ground plane exhibits 
the best electrical characteristics. However, if trace and layout options prevent 
a solid-ground-plane design, the interleaved traces offer greater layout flexibil­
ity because traces can be placed on the second layer. In the interleaved design, 
as much solid ground as possible should be placed on the second layer. The 
optimum design has a solid ground plane and interleaved traces. 

MODULAR BACKPLANES 
Modular backplanes offer the designer flexibility in adding boards to a system. 
An application can grow in size without requiring system backplane redesign. 
Also, the same backplane design can be used in different applications, regardless 
of the number of boards required for each application. Examples of card cages 
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with modular backplanes are Intel's iSBC 604/614 and National's BLC 604/ 
614. 

Although modular backplanes offer system flexibility, they also pose a prob­
lem when an attempt is made to implement any of the noise reduction tech­
niques mentioned. The first consideration is the existence of the current return 
path. If the interconnection between the modular backplanes does not provide 
for interconnection of the ground return lines, then any grounding effect is lost. 
If a design has interleaved ground traces, then the method used must be such 
that the grounds are kept continuous over the length of the backplane. Inters 
iSBC 604/614 card cages have backplanes that allo~ the interleaved ground 
traces to cross the edge connector boundaries. This is made possible by provid­
ing a short flat ribbon interconnect cable and the connectors on each backplane, 
so that the ground traces on each module can be connected. The approach is 
illustrated in Fig. 10-37. Another approach is to provide a single connector­
receptacle on each modular backplane that provides for the signals and inter­
leaved ground traces. An example of this approach can be found in Intel's iSBC 
608/618 card cages. 

The second modular backplane consideration is total length. The Multibus 
specification allows for a maximum of 16 boards and a maximum trace length 
of 18 in (45.7 cm). The length of each module must be considered, so that the 

FIGURE 10-37 iSBC 604/614 backplane example. 
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maximum-length specification is not exceeded when modules are combined or 
added. 

MONOLITHIC BACKPLANES 

Backplanes are monolithic when they offer continuous traces and do not allow 
slot expansion. Although they do not provide the flexibility that modular back­
planes offer, they can be designed to provide the best noise immunity of any 
approach considered thus far. For this implementation, all the requirements of 
each modular backplane (i.e., interleaved ground traces and ground plane) are 
met, and, in addition, the number of slots on the backplane meets the applica­
tion slot requirement. In this case a true solid ground plane and continuous 
interleaved ground return traces are achievable. 

One approach to this type of backplane is to put all signal traces on the inner 
layers with interleaved ground traces. Then two solid ground planes are placed 
on the outer layers to create a four-layer backplane. With this type of layout, 
each signal trace becomes a virtual shielded cable. This implementation has a 
lower characteristic impedance and more inherent capacitance (,....,35 pF /ft) 
than other implementations. Backplanes of this type display significantly less 
coupling than any others. 

10.4.2 Parallel-Priority Arbitration Examples 

Since parallel-priority techniques require a ce:r;ttral arbitration circuit, the cir­
cuitry is ideally placed on the backplane design. The two main problems with 
this approach are that the circuitry takes up backplane area and that the back­
plane contains active components that may require service. One way around 
the problems is to dedicate a slot on the backplane for the parallel arbitration 
circuitry and design a specific arbitration board for the system. 

The following three configurations can be implemented on the backplane or 
on a special module. The first configuration is the standard, fixed parallel arbi­
tration method currently used on Intel's iSBC 608/618 card cages. The other 
tw~ examples are implementations of a rotating-priority algorithim. 

FIXED-PRIORITY IMPLEMENT A TION 

A fixed parallel-priority resolution example is given in Fig. 10-38. The circuit 
uses a 74148 encoder and a 74S138 decoder chip for each eight masters. The 
BREQ* for each master is connected to the 74148. When a BREQ* signal goes 
active, the 74148 output generates an encoded three-bit BREQ* number. The 
74138 decodes the BREQ* number from the 74148 and drives the appropriate 
BPRN * line. The activation of the BPRN * line allows the selected master to 
access the Multibus interface. The priority is fixed by the 74148 encoder. This 
means that if two or more requests occur during the same arbitration cycle, the 
highest-priority request will be given the BPRN* signal. When a BREQ* Signal 
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FIGURE 10-38 Parallel-priority circuit. 

LOWEST 

is attached to input 7 of the 74148, it has the highest priority. The priority 
decreases with each decreasing input number. Therefore, the lowest-priority 
input is O. To connect a second set of eight masters, the circuit is duplicated. 
However, the second 74138 will not be enabled unless all of the high-order 
BREQ* signals (BREQ8* to BREQF*) are inactive. This is accomplished by 
connecting the higher-order 74148 encoder EO output to the enable input of 
the low-order 74S138 decoder. 

The bus resolution timing is synchronous with bus clock and must start on a 
falling edge of bus clock and be completed by the next falling edge of bus clock. 
The following timing must be met for a proper bus exchange to occur. 

BCLK cycle = tBRQ + tbd + tprt + tbd + tsu + BLCK skew 

where tBRQ = bus req~est output delay from BCLK 
tbd = bus signal delay 
tprt = maximum parallel resolution time 
tsu = BPRN* setup time 

100 ns = 35 ns + 2 ns + tprt + 2 ns + 22 ns + 2 ns 
tprt = 37 ns (maximum) 
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As can be seen from the above equations, there is only 37 ns in which to 
resolve the bus priority reliably. Reviewing the circuit of Fig. 10-38, the equa­
tions are 

tprt = t74148 + t74S138 

tprt = 25 ns + 12 ns = 37 ns 

AUTOMATIC ROTATING-PRIORITY. IMPLEMENT A TION 
In many applications all the masters may require equal priority to obtain the 
bus. In the preceding implementation the priority was fixed and could not be 
dynamically changed. Still, some method of arbitration is required when more 
than one master requests the bus during a BCLK cycle. The main problem 
facing a more complex implementation is the time available to resolve the prior­
ity. Reviewing the equations developed for the fixed priority implementation 
shows that a maximum of 37 ns is available to resolve the priority. This does 
not allow a designer too much flexibility in what is done with the time between 
receiving·BREQ* and generating BPRN*. 

The circuit shown in Fig. 10-39 allows for a simple priority rotation mech­
anism for up to eight masters. The rotating algorithim is as follows: A device, 
after being granted the bus, receives the lowest priority. Therefore, a device 
requesting the bus will have to wait, in the worst case, until each of the seven 
devices has been granted and has released the bus at most once. As an example, 
both BREQ3* and BREQ5* are active and BREQ5* has higher priority. The 
following is the setup prior to the rotation; in it 0 = highest priority and 7 = 
lowest priority: 

BREQO. BREQh BREQ2. BREQ3. BREQ4. BREQS. BREQ6. BREQ7. 

Request 1 1 0 0 

Priority 
status 7 6 5 4 13 2 1 0 

After the SBC that generated BREQ5*, is granted the bus, the priority 
rotates. The following is the setup after the ,rotation: 

BREQO. BREQh BREQ2. BREQi· BREQ4. BREQS. BREQ6. BREQ7. 

Request 1 1 1 0 1 1 

Priority 
i status 4 3 2 0 7 6 5 

To implement this algorithim, a bi~olar PROM is used to generate the prior­
ity and the rotation mechanism. To 90ver all of the conditions, a 2K-byte PROM 
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FIGURE 10-39 Automatic rotating-priority circuit. 

is required. Also, the PROM must have an access time less than 38 ns. Because 
of the tight timing constraints, the PROM is directly driven by the Multibus 
BREQ* signals and the PROM directly drives the Multibus BPRN * signals. The 
PROM selected for this implementation is Intel's 3636B-l or AMD's 27S191A 
and 27S291A bipolar PROMs. They are organized in 2K X 8 and have a max­
imum access time of 35 ns. The octal latch in the circuit is used to latch the last 
priority granted. The clock for the latch is generated directly from BUSY * 
going active, which means the requesting master was granted the bus and the 
priorities can change. The 74S74 D flip-flop ensures that the BUSY* signal 

! attains a TTL high level to clock the latch. This is done by turning off the 
PROM decoder synchronously with BeLK. The 74148 priority encoder encodes 
the latched BPRN * signals into a three-bit binary number. The three-bit num­
ber provides the number of the BREQ* signal that will rotate to the lowest 
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TABLE 10·8 Rotating-Priority PROM Example 

BPRNO* = 

BPRNh = 

BPRN2* = 

BPRN3* = 

BPRN4* = 

BPRN5* = 

BPRN6* = 

BPRN7* = 

BREQO*(PO PI P2 + BREQ7(PO* PI P2 + BREQ6(PO Ph P2 + 
BREQ5(PO* Ph P2 + BREQ4(PO PI P2* + BREQ3(PO* PI P2* 
+ BREQ2(PO Ph P2* + BREQI(PO* Ph P2*)))))))) 
BREQh(PO* Ph P2* + BREQO(PO PI P2 + BREQ7(PO* PI P2 
+ BREQ6(PO Ph P2 + BREQ5(PO* Ph P2 + BREQ4(PO PI P2* 
+ BREQ3(PO* PI P2* + BREQ2(PO Ph P2*)))))))) 

BREQ2*(PO Ph P2* + BREQI(PO* PhP2* + BREQO(PO PI P2 
+ BREQ7(PO* PI P2 + BREQ6(PO Ph P2 + BREQ5(PO* Ph P2 
+ BREQ4(PO PI P2* + BREQ3(PO* PI P2*)))))))) 
BREQ3*(PO* PI P2* + BREQ2(PO Ph P2* + BREQI(PO* Ph 
P2* + BREQO(PO PI P2 + BREQ7(PO* PI P2 + BREQ6(PO Ph 
P2 + BREQ5(PO* Ph P2 + BREQ4(PO PI P2*)))))))) 
BREQ4*(PO PI P2* + BREQ3(PO* PI P2* + BREQ2(PO Ph P2* 
+ BREQI(PO* Ph P2. + BREQO(PO PI P2 + BREQ7(PO* PI P2 
+ BREQ6(PO Ph P2 + BREQ5(PO* Ph P2)))))))) 
BREQ5*(PO* Ph P2 + BREQ4(PO PI P2* + BREQ3(PO* PI P2* 
+ BREQ2(PO Ph P2* + BREQI(PO* Ph P2* + BREQO(PO PI 
P2 + BREQ7(PO* PI P2 + BREQ6(PO Ph P2)))))))) 
BREQ6*(PO Ph P2 + BREQ5(PO* Ph P2 + BREQ4(PO pi P2* 
+ BREQ3(PO. PI P2* + BREQ2(PO Ph P2* + BREQI(PO. Ph 
P2* + BREQO(PO PI P2 + BREQ7(PO* PI P2)))))))) 

BREQ7*(PO* PI P2 + BREQ6(PO Ph P2 + BREQ5(PO* Ph P2 
+ BREQ4(PO PI P2* + BREQ3(PO* PI P2* + BREQ2(PO Ph 
P2* + BREQI(PO* Ph P2* + BREQO(PO PI P2)))))))) 

priority, which is the previously granted BREQ*. When BUSY* goes inactive, 
a new BPRN* signal is enabled on the bus if a BREQ* was pending. The trade­
off of this circuit implementation is that a pending bus request may take an 
additional two BCLK cycles over the standard parallel-priority circuit before 
generating the BPRN * signal. 

The core of this circuit is the code programmed into the bipolar PROM. The 
equations for each BPRN* output are given in Table 10-8; they can be modified 
to fit particular applications. 

SPECIFIC ROTATING-PRIORITY IMPLEMENT A TION 

Specific rotating priority allows the user to control the rotation by programming 
the latch, via bus I/O writes, with the lowest-priority BREQ* number. Any 
BREQ* number can be written at any time. Priority selection is application­
dependent. A priority, when set, remains intact until a new value is written into 
the latch. 

The circuit shown in Fig. 10-40 is a specific rotating-priority implementa­
tion. In it the same PROM decoder, latch, and priority encoder that were used 
for the autorotating priority are used. However, in place of advancing the prior­
ity with BUSY*, an I/O write to the latch I/O address changes the priority. 
This is done by decoding an I/O address via a programmable logic array (PAL) 
decoder and gating the chip select output of the PAL with 10WC*. Since this 
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is a bus command, an XACK * signal also must be generated. In addition, the 
PROM must be disabled synchronously with BCLK. This ensures that the new 
BPRN* signal will have the proper setup to BCLK as required by the Multibus 
specification. The synchronization is accomplished by the two 7 4S7 4 D flip­
flops. In order for this circuit to operate properly, the priority circuit I/O port 
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must be a global system resource. The bipolar PROM code from the priority 
algorithim can be altered to fit specific application requirements. 

10.5 SUMMARY 

The design guidelines discussed in this chapter are beneficial to the system 
designer of one custom board or 16 custom boards. The goal was to provide 
standard designs and implementations to simplify the board designer's job. The 
examples are based on many years of design experience and implementations. 
The guidelines, when implemented in the design, will ensure compatibility with 
other Multibus board products and system software. A major advantage of the 
guidelines is that, when they are followed, the reliability of each board, and 
therefore of the overall system, will be increased. 
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Appendix: 
List of Abbreviations 

A list follows of the abbreviations used in this book, together with their 
definitions. 

AC 
A/D 
ALE 
AU 

B 
BD 
BIU 
BV 

CHR 
CON 
CPR 
CPU 
CRe 
CRT 

D 
DC 
DEN 
DIP 
DMA 
DTL 
DT/R 

alternating current 
address-data 
address latch enable 
application unit 

binary 
basic device 
bus interface unit 
bus-vectored 

cache hit ratio 
controller 
central parallel bus priority resolution circuitry 
central processing unit 
cyclic redundancy checking 
cathode ray tube 

decimal 
direct current 
data enable 
dual in-line package 
direct memory access 
diode-transistor logic 
data transmit-receive 
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ECC 
EEPROM 
EPROM 
ESD 
EU 

GND 
GPIB 

H 

IBM 
IC 
ICE 
ID 
IEEE 
I/O 

L 
LDP 
LED 
LFM 
LSI 

MCE 
MIP 
MPSC 
M/R 
MSI 
MTBF 

NBV 
NMI 

OBCY 
OEM 
OMO 

PAL 
PCB 
PIC 
PROM 

error correction code 
electrically erasable programmable read-only memory 
erasable programmable read-only memory 
electrostatic discharge 
execution and control unit 

logic ground 
general-purpose interface bus 

hexadecimal; high 

International Business Machines Corporation 
integrated circuit 
in-circuit emulator 
identification 
Institute of Electrical and Electronics Engineers 
input-output 

low 
locally distributed processing 
light-emitting diode 
linear feet per minute 
large-scale integrated 

master cascade enable 
Multibus interprocessor protocol 
Multiprotocol serial processor 
memory-register 
medium-scale integration 
mean time between failure 

non-bus-vectored 
nonmaskable interrupt 

on-board cycle 
original equipment manufacturer 
OEM Microcomputer Systems Operation 

programmable array logic 
printed circuit board 
programmable interrupt controller 
programmable read-only memory 



RAM 
ROM 
RTL 
R/W 

SBC 
SCU 
SDLC 
SIP 
SNA 
SRQ 
SSI 
STO 
SU 
SUP 

TTL 

USART 

VCRU 
VLSI 

random access memory 
read-only memory 
resistor-transistor logic 
read-write 

single-board computer 
surveillance controller unit 
synchronous data link control 
single-in-line package 
serial network architecture 
service request 
small-scale integration 
superv~rtakeover 
system unit 
supervisor 

transistor-transistor logic 
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universal synchronous-asynchoronous receiver-transmitter 

video-camera reader unit 
very large scale integration 
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AC bus timing specifications: 
iLBX, 192-197 
iSBX, 149-153 
Multibus, 59-71 
Multichannel, 108-114 

AC bus timing specifications tables: 
iLBX, 193-194 
iSBX, 150 
Multibus, 60-61 
Multichannel,109-110 

Active state, 84-85 
Arbitration: 

CBRQ*, 304-309 
iLBX bus, 189-190 
Multibus, 50-54, 302-309, 357-359, 

408-414 
Multichannel bus, 98-99 
parallel-priority, 52-54, 69-70, 304, 

408-414 
serial-priority, 51-52, 68-69, 302-

304 
Availability of a system, 249-250 

Backplane design, 405-408 
ground plane, 405-406 
interleaved ground, 406 
modular backplanes, 406-408 
monolithic backplanes, 408 

Baseboard, iSBX bus, 128, 153, 155 
Basic talker-listener (BTL), 85 

Battery backup, iLBX bus, 203 
Block data movement, 287-288 
Burst mode, 143 
Bus clocks, 315, 338-339, 342, 343 
Bus controller, 85, 90, 98-99 
Bus devices (see iLBX bus devices; iSBX 

bus devices; Multibus devices; Mul­
tichannel bus devices) 

Bus exchange, M ultibus, 50-56, 66-71 
Bus masters, Multibus, 29 
Bus operations (see iLBX bus operations; 

iSBX bus operations; Multibus oper­
ations; Multichannel bus operations) 

Bus slaves, Multibus, 29 
Bus supervisor, 86, 89-90, 98-99 
Bus-vectored (BV) interrupts, 48-50, 65-

66,313-314 

Cabling considerations, 318, 322 
Cached memory architecture, 253-257, 

266-269 
Common-bus architecture, 7-9, 213 
Component considerations: 

height, 354-355 
placement, 350, 353-355 
selection, 337-338, 351 
shock and vibration, 355 
thermal, 352-353 

Concurrency, 278 
Cycle-stealing DMA, 143 

419 
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Daisy chain priority arbitration, 51-52, 
68-69 

DC bus specifications: 
iLBX, 197-198 
iSBX, 153-154 
Multibus, 62-63, 71 
Multichannel, 115-117 

Decoupling capacitors, 352 
Design guidelines, 349-414 

backplane, 405-408 
general, 349-355 
iLBX, 376-385 
iSBX, 373-376 
Multibus, 356-373, 395-405 
Multichannel,405-408 

Direct memory access (DMA), 8, 137-
138, 143 

iSBX bus, 137-138, 143-145, 152-153, 
320 

Multichannel,80-81 
Driver, receiver, and termination specifi-

cation tables: 
iLBX, 198 
iSBX, 154 
Multibus, 62-63 
Multichannel, 116 

Dual-port memory, 224-226, 311-313, 
395-398 

ECC (error correction code), 313 
Electrical level relations, 57 
Electrical specifications: 

iLBX bus, 190-198 
iSBX bus, 146-155 
Multibus, 56-59 
Multichannel bus, 104-116 

Environmental specifications: 
iLBX bus, 192 
iSBX bus, 149 
Multibus,59 
Multichannel bus, 108 

Flexibility of a system, 250, 282 
Form factors, 21-23 

iLBX, 200-203, 336 
iSBX, 164-166 
Multibus, 76 

Functional module, 273 
Functional partitioned multiprocessor, 

257-261,269-271 

Ground shifts, 339-341 
backplanes, 340-341 
boards, 341 
connectors, 341 
effect of, 339-340 

Heterogeneous processing, 12, 239-245, 
276 

Homogeneous processing, 12, 239-245 
Human interface, 279 
Hybrid modules, Multibus, 30 

IEEE (Institute of Electrical and Elec­
tronics Engineers), 23-26 

iLBX bus, 14, 16, 169-208, 331-336 
iLBX bus AC timing specifications, 192-

197 
iLBX bus acknowledge timing, 184-188, 

333-334,384-385 
iLBX bus address considerations, 332 
iLBX bus cable assembly, 198-199,335-

336 
iLBX bus DC specifications, 197-198 
iLBX bus devices, 172-175 

primary master, 172-174,376-381 
secondary master, 74, 332-333 
slave, 175, 382-385 

iLBX bus electrical specifications, 190-
198 

iLBX bus form factors, 200-203, 336 
iLBX bus keys lot, 202-203, 336 
iLBX bus levels of compliance, 204-207, 

334-335 
iLBX bus master interface, 376-381 

8-bit master, 381 
address, 378-379 
address space decode, 376-378 
address stroke, 380-381 
control, 380 
data, 379-380 
secondary master, 380 

iLBX bus operations: 
exchange cycle, 189-190, 197 
lock cycle, 181-182, 196-197 
read data cycle, 186-188, 192-196 
time-out cycle, 188-189 
write data cycle, 184-186, 196 

iLBX bus pin assignments, 202 
iLBX bus signals, 175-183 

ACK*, 180-181 
address lines, 175-177, 193-196 



iIBX bus signals (Cont.): 
ASTB*, 178-181, 193-196 
BHEN, 177-178, 193-196 
data lines, 176, 177, 193-196 
DSTB*, 179-181, 193-196 
LOCK*, 181-182, 196 
~, 177, 179, 193-196 
SMACK*, 182-183, 197 
SMRQ*, 182-183, 197 
TPAR*, 177 

iLBX slave interface, 382-385 
acknowledge, 384-385 
address, 382-384 
data, 384 

Interprocessor communication, 287, 293-
294,312 

Interrupts: 
BV, 48-50, 65-66,313-314 
iSBX bus, 145-146, 320 
Multibus, 313-314, 361-364, 371-373 
Multichannel bus, 99-100, 113-114, 

389-390 
NBV, 47-48, 65, 313-314 

I/O expansion, 227-230 
iSBX bus, 14, 124-168, 228-230 
iSBX bus AC timing specifications, 149-

153 
iSBX bus address ranges, 319 
iSBX bus addressing, 319 
iSBX bus connector, 155-156 
iSBX bus DC specifications, 153-154 
iSBX bus devices: 

baseboard, 128, 153, 155 
Multimodule board, 14, 128, 318-319 

iSBX bus electrical specifications, 146-
155 

iSBX bus form factors, 164-166 
iSBX bus interface, 373-376 

chip select, 374-376 
MVVAIT*, 373-374 

iSBX bus levels of compliance, 162-168, 
320-321 

iSBX bus mechanical considerations, 
156-166,321-322 

cabling, 322 
monitoring, 322 
spacing, 321 

iSBX bus operations: 
DMA, 137-138, 143-145, 152-153,320 
interrupt, 145-146, 326 
I/O read, 139-141, 149-150 
I/O write, 141-143, 150-152 

iSBX bus pin assignments, 156 
iSBX bus signals: 

address lines, 129-130 
chip select lines, 129-133 
data lines, 133-134 
IORD*, 134-136 
IOVVRT*, 134-136 
MCLK, 138 
MCS*, 138 
MDACK*, 138 
MDRQT,138 
MINTR,138 
MPST*, 137 
MVVAIT*, 136-137 
option lines, 139 
power lines, 139 
RESET,138 
TDMA,138 
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Keyslot, iLBX bus, 202-203, 336 

Levels of compliance: 
iLBX bus, 204-207,334-335 
iSBX bus, 162-168, 320-321 
Multibus, 75-79, 315-316 
Multichannel bus, 120-123,329-331 

Listener state, 85 
Local bus, 7-9,222-224 
Local 110, 7-9, 222-224 
Local memory, 7-9, 222-224 
Lock: 

iLBX bus, 181-182, 186-197 
Multibus, 39-42, 316 

Logical state relations, 57 

Make-versus-buy decision, 219-221 
Master-slave principle, 16, 84 
Master state, Multichannel bus, 84 
Mechanical specifications: 

iLBX, 198-204 
iSBX, 156-166 
Multibus, 72-75 
Multichannel, 116-120 

Memory access time, 310-311 
Memory expansion, 230-232 
Memory M ultimodule, 230-232 
Message passing protocol, 294, 398-401 
Multibus AC timing specifications, 59-

71 
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Multibus-based systems, 301 
Multibus DC specifications, 62-63, 71 
Multibus devices: 

bus master, 29 
bus slaves, 29 
hybrid modules, 30 

Multibus electrical specifications, 56-59 
Multibus family, 4-6, 283-285 

history of, 24-26 
Multibus form factors, 76 
Multibus interprocessor protocol (MIP), 

294 
Multibus interrupts, 313-314, 361-364, 

371-373 
Multibus levels of compliance, 75-79, 

315-316 
Multibus master interface, 356-364 

address, 359 
bus arbitration, 357-359, 408-414 
control, 356-357 
data, 354-361 
interrupts, 361-364 

Multibus mechanical considerations, 72-
75,316-319 

board-to-board spacing, 318-319 
cabling, 318 
shock and vibration, 318 
thermal,317-318 

Multibus memory configuration, 309-313 
access time, 310-311 
address space, 309 
data width, 310 
dual-port memory, 311-313 
read-only memory, 313 

Multibus message passing, 398-401 
Multibus operations: 

bus exchange, 55-56,66-71 
bus-vectored interrupts, 48-50, 65-66, 

313-314 
non-bus-vectored interrupts, 47-48, 65, 

313-314 
read,43-44,59-61 
write, 44-46, 64-65 

Multibus pin assignments, 74-75 
Multibus signals, 33-56 

address lines, 33-34 
BCLK*,51 
BHEN*, 34-35 
BPRN*,51 
BPRO*,51 
BREQ*, 52-54 
BUSY*, 50-51 
CBRQ*,54 

Multibus signals (Cont.): 
CCLK*,42 
data lines, 37-38 
inhibit lines, 35-37 
INIT*,42 
INTA*, 46-47 
interrupt lines, 46-47 
IORC*,42 
IOWC*, 42 
LOCK*, 39-42 
MRDC*,42 
MWTC*,42 
XACK*, 42-43 

Multibus 16-Mbyte addressing, 28, 33-
34,200,401-404 

Multibus slave interface, 365-373 
address, 365-367 
control,368-370 
data, 370-371 
device decode, 367-368 
interrupt, 371-373 

Multibus standard 1/0 addresses, 404-
405 

Multibus system bus, 4-6, 27-79, 283-
286 

history of, 24-26 
Multichannel bus, 16-17, 80-123, 322-

331 
Multichannel bus AC timing specifica­

tions, 108-114 
Multichannel bus address consider­

ations, 323 
Multichannel bus autoconfiguration, 91, 

325 
Multichannel bus cable assembly, 116-

120,326-328 
cable specification, 116-117 
connector-receptacle specification, 

119 
pin assignments, 119 
termination, 116, 120 

Multichannel bus DC specifications, 
115-117 

Multichannel bus devices: 
basic talker-listener, 85 
bus controller, 85-86 
bus supervisor, 86 

Multichannel bus electrical specification, 
104-116 

Multichannel bus interrupts, 99-100, 
113-114,389-390 

Multichannel bus levels of compliance, 
120-123,329-331 



Multichannel bus master interface, 385-
390 

address-data, 386-387 
control, 387-389 
interrupt, 389-390 
parity,387 

Multichannel bus operations: 
address cycle, 93-95 
data cycle, 95-97, 111-112 
exchange cycle, 113 
interrupt cycle, 99-100 
transfer cycle, 97-98 

Multichannel bus pin assignments, 119 
Multichannel bus registers, 100-103 

block length, 103 
data address, 103 
device command, 102-103 
device parameter, 103 
error address, 103 
SRQ mask, 102 
SRQ status, 102 
STO status, 101 

Multichannel bus signals, 86-92 
AACC, 88-89 
AlD,86-87 
DACC*,89 
DRDY*,87 
PB*, 92 
Reset*,92 
RIW,87 
SA*, 89-90 
SRQ*, 91-92 
STO*,91 

Multichannel slave interface, 390-394 
control, 393-394 
device select, 390-391 
parity, 391-393 

Multicomputing, 11-12,238-240,273-
277 

Multimodule boards (see iSBX bus de­
vices; SBC multimodule boards) 

Multiple-processor system, 238-244 
Multiprocessing, 12-13,239-240,244-

245 
Multiprogramming, 247-249 
Multitasking, 247, 249 
Mutual exclusion, multibus, 39-40 

Non-bus-vectored (NBV) interrupts, 47-
48,65,313-314 

Nonstop computing, 238-240 
Notation, 27-28 
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Parallel-priority arbitration, 52-54, 69-
70,304,409-414 

automatic rotating priority, 410-412 
fixed priority, 408-414 
specific rotating priority, 412-414 

Parity: 
iLBX bus, 177 
Multichannel bus, 92, 324, 387, 391-

393 
PCB (printed-circuit board), 9 
PCB layout considerations, 350-352 

component height, 354-355 
component placement, 350, 353-355 
grounding, 351 
thermal, 352-353 

PCB outline (see Form factors) 
Pin assignments: 

iLBX bus, 202 
iSBX bus, 156 
Multibus, 74-75 
Multichannel bus, 119 

Power specifications: 
iLBX bus, 192 
iSBX bus, 147-148 
Multibus, 58-59 
Multichannel bus, 108 

Real-time systems, 279 
Reducing system noise, 336-343 
Reliability of a system, 240-250 

SBC (single-board computer), 9, 211, 
221-226 

virtual, 260-261, 284 
SBC architectures, 221-226 
SBC multimodule boards, 230-232, 318-

319,353-355 
SBC trends, 216-219 
Semaphores, 261-262 
Serial-priority arbitration, 51-52, 68-69, 

302-304 
Shared-bus architecture, 213-214, 261 
Shock (see Environmental specifications) 
Shock and vibration considerations, 318, 

355 
Signal ringing, 341-342 

BCLK* and CCLK*, 342 
board placement, 342 
effect of, 342 

Signal-to-signal coupling, 337-339 
bus clocks, 338-339 
effects of, 338 
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Signal-to-signal coupling (Cont.): 
TTL devices, 338, 351 

Simple multiprocessor architecture, 253, 
263-265 

Single-board computer (see SBC) 
Single-processor architecture, 7-10 
Single time-sharing bus, 263-265 
Slave state, Multichannel, 84 
Standards: 

buses, 4, 18-20,23-24 
connector-naming, 73 
pin-numbering, 73 

Structured design, 281 
System architectures, 6-14 
System bus, 3-4 
System noise, reducing, 336-343 

Talker state, Multichannel, 85 
Temperature specification (see Environ­

mental specifications) 

Test-and-set flags, 261-262 
Thermal considerations, 352-353 
Time-out: 

iLBX bus, 188-189 
Multibus, 314-315 

Timing specification (see AC bus timing 
specifications) 

Transaction-processing method, 293-294 
Transistor-transistor logic (TTL) devices, 

212,338,351 
TTL driver-receiver selection, 351 
28-pin sites, 292 

Vibration (see Environmental specifica­
tions; Shock and vibration consider­
ations) 

Virtual SBC, 260-261, 284 
VLSI (very large scale integration) tech­

nology, 18-21, 81 



About the Authors 

James B. Johnson is the manager of Intel's OEM Microcomputer 
Systems Division board design group, and was responsible for the 
current published Multibus specifications which served as the basis 
of the IEEE-796 specifications. He and Mr. Kassel created the iSBX 
specifications, now in the process of getting IEEE approval. Author of 
several technical articles, he is the designer of the boards for seven 
single-board computers, the first three iSBX Multimodule boards, and 
various input-output boards. He obtained his M.S.E.E. from Stanford 
University in 1974. 

Steve Kassel is project manager with Intel's OEM Microcomputer 
Systems Division board design group. Formerly involved with the 
design and deveiopment of a microprocessor-based laboratory con­
troller, he has designed three single-board computers and one iSBX 
board. He was responsible for the definition of the Multichannel bus, 
the iLBX bus, and the iSBX bus along with Mr. Johnson. He obtained 
his M.S.E.E. from Washington State University in 1976. 






