
PL/M-86 COMPILER
OPERATING INSTRUCTIONS

forSOSO/SOS5-Based
Development Systems

Manual Order Number 9800478-04 Rev. D

Copyright © 1978, 1979, 1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restriGtions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

BXP Intellec Multibus
CREDIT iSBC Multimodule
i iSBX PROMPT
ICE Library Manager Prom ware
iCS MCS RMX
Insite Megachassis UPI
Intel Micromap IAScope
Intelevision

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A230/880/5K DD

PREFACE

This manual describes the operation of the PL/M-86 Compiler, Version 2.1. The
compiler accepts PL/M-86 source as input and produces relocatable 8086 object
code as output. The compiler runs under the ISIS-II operating system which sup­
ports relocation and linkage of object code programs. The manual is one of a series
of documents describing this system and its operation.

This manual assumes that the reader is conversant with PL/M-86, is familiar with
the ISIS-II operating system, and knows how to operate the Intellec Microcomputer
Development System hardware. The reader is referred to the following Intel publica­
tions to gain such familiarity:

• PL/M-86 Programming Manual for 8080/8085-Based Development Systems
9800466

• 8086 Family Utilities User's Guide for 8080/8085-Based Development Systems
9800639

• ISIS-II User's Guide 9800306

• Intellec Microcomputer Development System Operator's Manual 9800129

The compiler requires the following software and hardware environments for proper
execution:

Software

For the Compiler

• ISIS-II Operating System

For Object Programs

• LINK86 and LOC86

For Intermodule Cross-Reference Listings

• IXREF Program (if intermodule cross-reference listing is desired)

For Debugging

• An ICE-86 or ICE-88 emulator (if desired)

Hardware

• 8080 Intellec Microcomputer Development System

• 64K bytes of RAM memory (includes space required for ISIS-II)

• An ISIS-supported direct access device and controller (such as diskette drive)

• Console device (TTY or CRT)

• For hardware execution of floating-point operations, an INTEL 8087 chip
(described in the 8087 Supplement to the 8086 Family User's Guide).

iii

· ~ n

CHAPTER 1
HOW TO USE THE PL/M-86
COMPILER

CHAPTER 2

PAGE

COMPILER INVOCATION AND FILE
USAGE
Compiler Invocation 2-1
File Usage 2-2

CHAPTER 3
COMPILER CONTROL LANGUAGE
Introduction to Compiler Controls 3-1
Listing Selection Controls 3-2
Listing Format Controls 3-4
The LEFTMARGIN Control 3-7
Object File Controls 3-7
The WORKFILES Control...... 3-18
Source Inclusion Controls 3-18
RAM/ROM Control 3-19
Program Size Controls 3-19
Conditional Compilation Controls 3-20

CHAPTER 4
OBJECT MODULE SECTIONS
Code Section 4-1
Constant Section 4-1
Data Section 4-1
Stack Section 4-2
Memory Section 4-2

CHAPTER 5
PROGRAM SIZE
8086 Memory Concepts 5-1
The SMALL Case 5-1
The COMP ACT Case 5-3
The MEDIUM Case........................... 5-3
The LARGE Case 5-5

CHAPTER 6
FLOATING-POINT LINKAGE

CHAPTER 7
LISTING FORMATS
Program Listing 7-1
Symbol and Cross-Reference Listing 7-2
Compilation Summary 7-3

iv

CONTENTS

CHAPTER 8
RUN-TIME DATA
REPRESENTATIONS

PAGE

BYTE Values 8-1
WORD Values 8-1
INTEGER Values 8-1
REAL Values 8-1
POINTER Values 8-1
Structures 8-1

CHAPTER 9
RUN-TIME PROCEDURE AND
ASSEMBLY LANGUAGE LINKAGE
Calling Sequence 9-1
Procedure Prologue 9-2
Procedure Epilogue 9-3
Value Returned From Typed Procedure 9-4

CHAPTER 10
RUN-TIME INTERRUPT
PROCESSING
General 10-1
The Interrupt Vector 10-1
Interrupt Procedure Preface 10-2
Writing Interrupt Vectors Separately 10-4

APPENDIX A
THE IXREFPROGRAM

APPENDIXB
PROGRAM CONSTRAINTS

APPENDIXC
ERROR MESSAGES

APPENDIXD
~L/M-86 MODELS OF SEGMENTATION

. INDEX

FIGURE TITLE PAGE

1-1
3-1

3-2

3-3

3-4

3-5

3-6

7-1

TABLE

Interactive Compilation Sequence 1-1
Sample Program Showing the

OPTIMIZE(O) Control 3-13
Sample Program Showing the

OPTIMIZE(1) Control 3-14
Sample Program Showing the

OPTIMIZE(2) Control 3-15
Sample Program Showing the

OPTIMIZE(3) Control 3-16
Sample Program Showing the

SET(DEBUG=) Control 3-21
Sample Program Showing the

NOCOND Control 3-22
Program Listing 7-1

TITLE PAGE

3-1 Compiler Controls 3-2
6-1 Linkage Choices for REAL-Math Usage. 6-1
D-l Models of Segmentation D-l

ILLUSTRATIONS

FIGURE TITLE PAGE

7-2
7-3
9-1

9-2

10-1

10-2

10-3

A-I

Cross-Reference Listing 7-3
Compilation Summary 7-3
Stack Layout During Execution of

Procedure Body 9-2
Stack Layout After Execution of

Procedure Body 9-3
Stack Layout Upon Activation of

Interrupt Procedure 10-2
Stack Layout After Interrupt Procedure

Preface and Before Procedure
Prologue 10-2

Stack Layout During Execution of
Interrupt Procedure Body 10-3

Intermodule Cross-Reference Listing A-3

TABLES

v

I

• ® CHAPTER 1
HOW TO USE

THE PL/M-86 COMPILER
n

This chapter presents all of the information necessary to begin using the PL/M-86
Compiler. It is not necessary to be familiar with all the features described in the rest·
of this manual in order to make effective use of the compiler. If you are a beginning
user you are particularly encouraged to start using the compiler and to gain
experience with PL/M-86 before concerning yourself with special features. The
example included in this chapter can be entered exactly as shown to get a feel for the
procedures involved in using the compiler.

The compiler is supplied on a diskette which does not contain an operating system or
relocation software. It may be desirable to copy the compiler to another disk (such
as a system disk). Section 2.2.4 lists the files that contain the code of the compiler.

The following example illustrates the normal sequence of operations used to compile
a PL/M-86 program from system bootstrap to the end of compilation. The steps
involved are as follows:

I. Power up the Intellec hardware.

2. Insert a system disk into Drive O. In this example, the system disk contains the
compiler.

3. Insert a nonsystem disk into Drive 1. In this example, this disk contains a
PL/M-86 source file to be compiled.

4. Bootstrap the ISIS-II Operating System.

5. Compile the program with the PL/M-86 Compiler. After compilation, the
program may be linked and relocated.

Refer to the ISIS-II Users Guide for detailed instructions for all of these steps with
the exception of compiling your program. This manual describes program
compilation.

In the interactive sequence shown in Figure 1-1, underlined text is output by the
system, all other text is typed by the user. Comments appearing to the right of
semicolons are for clarification, not material entered by the user. This example
shows how to compile a complete program that does not require more than 64K
bytes of storage for the code or more than 64K bytes for data.

ISIS-II V3. 4

~PLMtl6 :Fl:MYPROG.SRG

ISIS-II PL/M-86 COMPILER, Vl.2
PL/M-86 COMPILATION COMPLETE

;the system identifies itself

;the compiler is invoked

o PROGRAM ERROR(S)

;the program may now be linked and relocated

Figure 1-1. Interactive Compilation Sequence

In the normal usage of the PL/M-86 Compiler the compilation listing is written by
default to a disk file on the same disk as the source file. This file has the same name
as the source file, but has the extension LST. Thus, in the example above, the listing
is found in :FI:MYPROG.LST. Similarly, the object code file is on the same disk
and has the same file name, but has the extension OBJ. In the example
:FI :MYPROG.OBJ contains the object code produced by compiling
:FI :MYPROG .SRC.

1-1

How to Use the PL/M-86 Compiler

1-2

A detailed explanation of all of the steps used in the example, with the exception of
the command that invokes the PL/M-86 Compiler, may be found in the ISIS-II
Users Guide. See Chapter 6 of this manual (PL/M-86 Compiler Operating Instruc­
tions) for a discussion of libraries available for linking with your program, e.g., for
performing floating-point arithmetic using software or hardware.

The normal method of invoking the compiler, when no special actions are needed, is
simply to give its name (PLM86) and the name of your source file. The source file
must be on a disk and must contain a PL/M-86 source module. This command has
the form

PLM86 source-file

if the compiler is in Drive O.

The remaining chapters of this manual provide a detailed description of operating
the compiler, including discussions of all available compiler features.

PL/M-86

CHAPTER 2
COMPILER INVOCATION

AND FILE USAGE

Throughout this manual, the following conventions are used in describing the com­
mands and controls associated with the compiler:

• Upper-case letters (and numerals) represent text that must be entered as shown
in the description (however, you may enter these items in lower-case).

• Lower-case letters are used to represent variable parts of the command or
control.

• Square brackets [] are used to enclose parts of the command or control that
may be omitted (the brackets themselves are not part of the command or con­
trol).

The following discussions assume that the ISIS-II system has been bootstrapped. A
disk containing the PL/M-86 Compiler must be mounted in one of the disk drives.
(Note that a system disk must be mounted in Drive 0.)

2.1 Compiler Invocation

The PL/M-86 Compiler is invoked from the ISIS-II console using the standard com­
mand format described in the ISIS-II User's Guide. Continuation lines can be
specified by using the ampersand (&) as a continuation character. The ampersand
can be used any place there is a space or other delimiter.

The invocation command has the general form

[:device:]PLM86 source-file [controls]

where

• device identifies which drive contains the compiler disk. This may be omitted if
the compiler disk is in Drive O.

• source-file is the name of the file containing the PL/M-86 source module.

• controls is an optional sequence of compiler controls. The use of these controls
is described in Chapter 3.

Examples:

1. PLM86 :Fl :PROG I.SRC

The compiler is directed to compile the source module on :Fl :PROG I.SRC.
This file resides on the disk in Drive 1 and has the name PROG I.SRC.

2. :Fl :PLM86 :Fl :MYPROG.SRC PRINT(:LP:) TITLE(,TEST PROGRAM #4')

In this example, the compiler disk is in Drive 1. The compiler is directed to com­
pile the source module on :FI :MYPROG .SRC, directing all printed output to
:LP:, and placing 'TEST PROGRAM #4' in the header on each page of the
listing.

2-1

Compiler Invocation and File Usage

2-2

2.2 File Usage

2.2.1 Input Files

The compiler reads the PL/M-86 source from the source-file specified on the com­
mand line (see previous section) and also from any files specified with INCLUDE
controls (see Section 3.7). These files must be standard ISIS-II disk files. The source
input should contain a PL/M-86 source module.

2.2.2 Output Files

Two output files are produced during each compilation unless specific controls are
used to suppress them. These are the listing and object code files. Each of these may
be explicitly directed to some standard ISIS-II path name (device or file) by using the
PRINT and OBJECT controls respectively. If the user does not control these out­
puts explicitly, the compiler writes them to disk files on the disk containing the input
file. These files have the same file name as the input file, but have the extensions
LST for the listing and OBJ for the object code. For example, if the compiler is
invoked by

PLM86 :F1 :MYPROG.SRC

the listing and all other printed output is written to :F 1 :MYPROG .LST and the
object code to :FI :MYPROG .OBJ. If these files already exist they are overwritten.
If they do not exist the compiler creates them.

The object code file may be used as input to the ISIS-II relocation and linkage
facilities. (See the 8086 Family Utilities User's Guide for 8080/8085-Based Develop­
ment Systems.)

2.2.3 Compiler Work Files

The compiler uses work files during its operation which are deleted at the comple­
tion of compilation. All of these files are on disk drive 1 unless the WORKFILES
control (see Section 3.6) is used to specify another device.

All of the work files have names with the extension TMP. Therefore, you should
avoid naming files with the extension TMP on any device used by the compiler for
work files, as there is a possibility that they will be destroyed by the operation of the
compiler.

2.2.4 Compiler Code Files

The compiler's object code resides in eight disk files. These files must be present for
proper execution of the compiler:

PLM86
PLM86.0VO
PLM86.0V1
PLM86.0V2
PLM86.0V3
PLM86.0V4
PLM86.0V5
PLM86.0V6

The disk containing these files may be mounted in any disk drive-not necessarily
Drive O.

PL/M-86

CHAPTER 3
COMPILER CONTROL LANGUAGE

3.1 Introduction to Compiler Controls

The exact operation of the compiler may be controlled by a number of controls
which specify options such as the type of listing to be produced and the destination
of the object file. Controls may be specified as part of the ISIS-II command invok­
ing the compiler, or as control lines appearing as part of the source input file.

A control line is a source line containing a dollar sign ($) in the left margin. Normal­
ly, the left margin is set at column one, but this may be changed with the
LEFTMARGIN control. Control lines are introduced into the source to allow selec­
tive control over sections of the program. For example, it may be desirable to sup­
press the listing for certain sections of a program, or to cause page ejects at certain
places.

A line is considered a control line by the compiler if there is a dollar sign in the left
margin, even if it appears to be part of a PL/M-86 comment or character string con­
stant.

On a control line, the dollar sign is followed by zero or more blanks and then by a se­
quence of controls. The controls must be separated from each other by one or more
blanks.

Examples of control lines:

$NOCODE
$ EJECT

XREF
CODE

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command or on a control line which precedes the first non­
control line of the source file. Primary cOl1trols may not be changed within a
module. General controls may occur either in the invocation command or on a con­
trol line located anywhere in the source input and may be changed freely within a
module.

There are a large number of available controls, but few will be needed for most com­
pilations as a set of defaults is built into the compiler. The controls are summarized
in Table 3-1.

A control consists of a control-name which, depending on the particular control,
may be followed by a parenthesized control parameter.

Examples of controls:

LIST
NOXREF
OBJECT(PROG2.0BJ)

3-1

Compiler Control Language

3-2

Table 3-1. Compiler Controls

Primary Control Names

PRINT / NOPRINT
OBJECT /NOOBJECT
SYMBOLS/NOSYMBOLS
XREF/NOXREF
IXREF / NOIXREF
PAGING/NOPAGING
DEBUG/NODEBUG
TYPE/NOTYPE
OPTIMIZE
DATE
TITLE
PAGEWIDTH
PAGELENGTH
INTVECTOR/ NOINTVECTOR
WORKFILES
RAM/ROM
SMALLICOMPACT/MEDIUM/LARGE

General Control Names

LIST / NOLIST
CODE/NOCODE
EJECT
INCLUDE
LEFTMARGIN
OVERFLOW / NOOVERFL OW
SET/RESET
IF/ELSEIF /ELSE/ENDIF
SAVE/RESTORE
COND/NOCOND
SUBTITLE

3.2 Listing Selection Controls

Default

PRINT(source-file.LST)
OBJECT(source-file.OBJ)
NOSYMBOLS
NOXREF
NOIXREF
PAGING
NODE BUG
TYPE
OPTIMIZE(1)
no date
module name
PAGEWIDTH(120)
PAGELENGTH(60)
INTVECTOR
WORKFILES(:F1 :,:F1:)
RAM
SMALL

LIST
NOCODE

Default

LEFTMARGIN(1)
NOOVERFLOW

COND
no subtitle

These controls determine what types of listings are to be produced and on which
device they are to appear. The controls are:

PRINT I NOPRINT
LIST I NOLIST
CODE I NOcODE
XREF I NOXREF
IXREF I NOIXREF
SYMBOLS I NOSYMBOLS

3.2.1 PRINT / NOPRINT

These are primary controls. They have the form:

PRINT[(pathname)]

NOPRINT

Default: PRINT(source-file.LST)

The PRINT control specifies that printed output is to be produced. Pathname is a
standard ISIS-II pathname which specifies the file or device to receive the printed
output. Any output-type device, including a disk file, may be given. If the control is
absent, or if a PRINT control appears without a pathname, printed output is
directed to the same device used for source input and the output file has the same
name as the source file but with the extension LST.

PL/M-86

PL/M-86 Compiler Control Language

Example: PRINT(:LP:)

This causes printed output to be directed to the line printer.

The NOPRINT control specifies that no printed output is to be produced, even if
implied by other listing controls such as LIST and CODE.

3.2.2 LIST / NOLIST

These are general controls. They have the form:

LIST

NOLIST

Default: LIST

The LIST control specifies that listing of the source program is to resume with the
next source line read.

The NOLIST control specifies that listing of the source program is to be suppressed
until the next occurrence, if any, of a LIST control.

When LIST is in effect, all input lines (from the source file or from an INCLUDE
file), including control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed.

Note that the LIST control cannot override a NOPRINT control. If NOPRINT is in
effect, no listing whatsoever is produced.

3.2.3 CODE / NOCODE

These are general controls. They have the form:

CODE

NOCODE

Default: NOCODE

The CODE control specifies that listing of the generated object code, in standard
assembly language format is to begin. This listing is interleaved with the program
listing on the listing file.

The NOCODE control specifies that listing of the generated object code is to be sup­
pressed until the next occurrence, if any, of a CODE control.

Note that the CODE control cannot override a NOPRINT control.

3.2.4 XREF / NOXREF

These are primary controls. They have the form:

XREF

NOXREF

Default: NOXREF

3-3

Compiler C(lntrol Language

3-4

The XREF control specifies that a cross-reference listing of source program iden­
tifiers is to be produced on the listing file.

The NOXREF control suppresses the cross-reference listing.

Note that the XREF control cannot override a NOPRINT control.

3.2.5 IXREF / NOIXREF

These are primary controls. They have the form:

IXREF[(pathname)]

NOIXREF

Default: NOIXREF

The IXREF control causes an "intermediate intermodule cross-reference file" to be
produced and written out to the file specified by the pathname. If no path name is
supplied, the file will be written on the same device used for source input and will
have the same name as the source file but with the extension IXI.

The intermediate file contains all PUBLIC and EXTERNAL identifiers declared in
the module being compiled, together with their types, dimensions, and attributes.

After compilation, the IXREF program (which is independent of the compiler) can
be used to merge two or more of these intermediate files to produce an intermodule
cross-reference listing, as explained in Appendix A.

The NOIXREF control suppresses the production of the intermediate file.

3.2.6 SYMBOLS / NOSYMBOLS

These are primary controls. They have the form:

SYMBOLS

NOSYMBOLS

Default: NOSYM BOLS

The SYMBOLS control specifies that a listing of all identifiers in the PL/M-86
source program and their attributes is to be produced on the listing file.

The NOSYMBOLS control suppresses such a listing.

Note that the SYMBOLS control cannot override a NOPRINT control.

3.3 Listing Format Controls
These controls determine the format of the listing output of the compiler. The con­
trols are:

PAGING I NOPAGING
PAGELENGTH
PAGEWIDTH
DATE
TITLE
SUBTITLE
EJECT

PL/M-86

PL/M-86 Compiler Control Language

3.3.1 PAGING / NOPAGING

These are primary controls. They have the form:

PAGING

NOPAGING

Default: PAGING

The PAGING control specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and
possibly a user specified title and/ or date.

The NOP AGING control specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long "page" as
would be suitable for a slow serial output device. If NOPAGING is specified, a page
eject is not generated if an EJECT control is encountered.

3.3.2 PAGELENGTH

This is a primary control. It has the form:

PAGELENGTH(length)

Default: PAGELENGTH(60)

where length is a non-zero, unsigned integer specifying the maximum number of
lines to be printed per page of listing output. This number is taken to include the
page headings appearing on a page.

The minimum value for length is 5.

3.3.3 PAG EWI DTH

This is a primary control. It has the form:

PAGEWIDTH(width)

Default: PAGEWIDTH(120)

where width is a non-zero, unsigned integer specifying the maximum line width, in
characters, to be used for listing output.

The minimum value for width is 60; the maximum value is 132.

3.3.4 DATE

This is a primary control. It has the form:

DATE(date)

Default: no date

where date is any sequence of characters not containing parentheses. The date ap­
pears in the heading of all pages of listing output exactly as given in the DATE con­
trol, except that if more than nine characters are specified, only the first nine
characters are printed.

Example: DA TE(25 NOV 78)

3-5

Compiler Control Language

3-6

3.3.5 TITLE

This is a primary control. It has the form:

TITLE('title')

Default: module name

where title is a sequence of printable ASCII characters which are enclosed in quotes.

The sequence, truncated on the right if necessary to fit, is placed in the title line of
each page of listed output.

The maximum length allowed for title is 60 characters, but a narrow pagewidth may
restrict this number further.

Example: TITLE('TEST PROGRAM 4')

3.3.6 SUBTITLE

This is a general control. It has the form:

SUBTITLE('subtitle')

Default: no subtitle

where subtitle is a sequence of printable ASCII characters which are enclosed in
quotes.

The sequence, truncated on the right if necessary to fit, is placed in the subtitle line
of each page of listed output.

The maximum length allowed for subtitle is 60 characters, but a narrow pagewidth
may restrict this number further.

Example: SUBTlTLE(,TEST PROGRAM 4')

When a SUBTITLE control appears before the first noncontrol line in the source
file, it causes the specified subtitle to appear on the first page and all subsequent
pages until another SUBTITLE control appears.

A subsequent SUBTITLE control causes a page eject, and the new subtitle appears
on the next page and all subsequent pages until the next SUBTITLE control.

3.3.7 EJECT

This is a general control. It has the form:

EJECT

It causes printing of the current page to terminate and a new page to be started. The
control line containing the EJECT control is the first line printed (following the page
heading) on the new page.

If the NOPRINT, NOLIST or NOPAGING controls are in effect, the EJECT con­
trol is ignored.

PL/M-86

PL/M-86 Compiler Control Language

3.4 The LEFTMARGIN Control

This is the only control for specifying the format of the source input. It is a general
control with the form:

LE FTM A RG I N (col u m n)

Default: LEFTMARGIN(1)

where column is a non-zero, unsigned integer specifying the left margin of the source
input. All characters to the left of this position on subsequent input lines are not
processed by the compiler (but do appear on the listing).

The new setting of the left margin takes effect on the next input line. It remains in
effect for all input from the source file and any INCLUDE files until it is reset by
another LEFTMARGIN control.

Note that a control line is one that contains a dollar sign in the column specified by
the most recent LEFTMARGIN control.

3.5 Object File Controls

These controls determine what type of object file is to be produced and on which
device it is to appear. The controls are:

INTVECTOR I NOINTVECTOR
OVERFLOW I NOOVERFLOW
OPTIMIZE
OBJECT I NOOBJECT
DEBUG I NODEBUG
TYPE I NOTYPE

3.5.1 INTVECTOR / NOINTVECTOR

These are primary controls. They have the form:

INTVECTOR

NOINTVECTOR

Default: INTVECTOR

Under the INTVECTOR control, the compiler creates an interrupt vector consisting
of a 4-byte entry for each interrupt procedure in the module. For Interrupt n, the
interrupt vector entry is located at absolute location 4*n. See Chapter 10 for further
discussion.

Alternatively, it may be desirable to create the interrupt vector independently, using
either PL/M-86 or assembly language. In this case, the NOINTVECTOR control is
used and the compiler does not generate any interrupt vector. The implications of
this are discussed in Chapter 10.

3-7

Compiler Control Language

3-8

3.5.2 OVERFLOW I NOOVERFLOW

These are general controls. They have the form:

OVERFLOW

NOOVERFLOW

Default: NOOVERFLOW

These controls specify whether overflow is to be detected in performing signed
(INTEGER) arithmetic. If the NOOVERFLOWcontrol is specified, no overflow
detection is implemented in the compiled module and the results of overflow in
signed arithmetic are undefined. If the OVERFLOW control is specified, overflow
in signed arithmetic results in a nonmaskable Interrupt 4, and it is the programmer's
responsibility to provide an interrupt procedure to handle the interrupt. Failure to
provide such a procedure may result in unpredictable program behavior when
overflow occurs.

Note that the use of the OVERFLOW control results in some expansion of the
object code.

3.5.3 OPTIMIZE

This is a primary control. It has the form:

OPTIMIZE '(n)

Default: OPTIMIZE (1)

where n may be 0, 1, 2, or 3.

This control governs the kinds of optimization to be performed in generating object
code.

OPTIMIZE(O)

OPTIMIZE(O) specifies no extensive optimization beyond "folding" of constant
expressions and short-circuit evaluation of Boolean expressions.

folding means recognizing, duringcompilation,operations that are superfluous or
combinable, and removing or combining them so as to save memory space or execu­
tion time. Examples include addition with a zero operand,multiplication by one,
and logical expressions with "true" or "false" constants. Another example: in the
statement

A=6+3+A

the compiler will add 6 and 3, producing code to add 9 to A.

Optimizing the evaluation of Boolean expressions uses the fact that in certain cases
some of the terms are not needed to determine the value of the expression. For
example, in the expression

(A> B AND I >J)

PLIM.;86

PL/M-86 Compiler Control Language

if the first term (A > B) is false, the entire expression is false, and it is not necessary
to evaluate the second term. The use of PL/M-86 built-in procedures does not
change this optimization. However, if a user-function is part of the expression, this
short evaluation is not done, e.g.,

(A>B AND (UFUN (A) >J»

is evaluated in full.

OPTIMIZE(l)

OPTIMIZE(1) specifies strength reduction plus elimination of common subexpres­
sions, in addition to the above optimizations of level (0).

Strength reduction means substituting quick operations in place of longer opera­
tions, e.g., shifting left by 1 instead of multiplying by 2. This requires less space for
the instruction as well as executing faster. The addition of identical subexpressions
also results in generation of left shift instructions.

Elimination of common sUbexpressions means that if an expression reappears in the
same block, its value is re-used rather than being recomputed. The compiler also
recognizes commutative forms of subexpressions, e.g., A+B and B+A are seen to be
the same. Intermediate results during expression evaluation are saved in registers
and/ or on the stack for later use.

Example: A = B + C*D/3
C = E + D*C/3

The value of C*D/3 will not be recomputed for the second statement.

OPTIMIZE(2)

OPTIMIZE(2) specifies all of the above, plus the following:

• machine code optimizations (e.g., short jumps, moves)

• elimination of superfluous branches

• re-use of duplicate code

• removal of unreachable code and reversal of branch-condition

Optimizing machine code means using shorter forms for identical machine instruc­
tions, to save space. This is possible because the 8086 has mUltiple forms for some of
its instructions. For example:

MOV RESL T1, AX;move accumulator value to location RESL T1

can be generated in 3 bytes as A30800, or in 4 bytes as B9060800. The former choice
saves a byte of storage for the program. Similarly, jumps that the compiler can
recognize as within the same segment or even closer, within 127 bytes, permit the use
of fewer-byte instructions.

Elimination of superfluous branches means optimizing consecutive or multiple
branches into a single branch example. For example:

LAB1:

LAB2:

JZ
JMP

LAB1
LAB2

;Jump on zero to LAB1
;unconditional jump to LAB2

3-9

Compiler Control Language

3-10

will be transformed into

JNZ LAB2 ;Jump on non-zero to LAB2
LAB1:

LAB2:

Similarly, multiple branches like the following are eliminated:

LABO: JMP LAB1

LAB1: JMP LAB2

LAB2:

is transformed into

LABO: JMP LAB2

LAB1: JMP LAB2

LAB2:

Reuse of duplicate code can refer to identical code at the end of two converging
paths. In such a case the code is inserted in only one path, and a jump to that path is
inserted in the other path.

Example: DECLARE A BYTE, SPOT POINTER;

@1:

@2:

DECLARE S BASED SPOT STRUCTURE (B BYTE, C BYTE);
IF A=1 THEN

S.C = INPUT (OF7H) AND 07FH ;
ELSE

S.C = INPUT (OF9H) and 07FH ;

Before

CMP
JZ
JMP
IN
AND
MOV
MOV
JMP
IN
AND
MOV
MOV

A,1H
$+5H
@1
OF7H
AL,7FH
BX,SPOT
S [BX+1 H], AL
@2
OF9H
AL,7FH
BX, SPOT
S [BX +1 H], AL

@1:
@2:

. After

CMP
JNZ

IN
JMP

IN
AND
MOV
MOV

A,1H
@1

OF7H
@2

OF9H
AL,7FH
BX, SPOT
S [BX+1 H], AL

Reuse of duplicate code can also refer to machine instructions immediately
preceding a loop being identical to those ending the loop. A branch can be generated
to re-use the code generated at the beginning of the loop. For example:

PL/M-86

PL/M-86 Compiler Control Language

Before After

ADD AX,BX LABO: ADD AX,BX
MOV ANS, AX MOV ANS, AX

LABO MOV AL, DUM1 MOV AL, DUM1
CMP AL, DUM2 CMP AL, DUM2
JNZ LAB1 JNZ LAB1

ADD AX,BX JMP LABO
MOV ANS, AX LAB1:
JMP LABO

LAB1:

This is safe so long as LABO is not the target of a jump instruction. The compiler
normally handles a whole procedure at a time, and is thus aware of such a condition.
The optimization cannot be safely applied to labels in the outer level of the main
program module. Under these restrictions, then, this optimization does not alter the
resulting operation and results in saving space.

The optimization which removes unreachable code takes a second look at the
generated object code, finding areas which can never be reached due to the control
structures created earlier.

Example: If the following code were generated before optimization

MOV AX,A
RCR AC,1
JB @1
JMP @2

@1: MOV AX,OFFFFH
OUTW OF6H
JMP @2
MOV AX,B
ADD A,AX
JMP @3

@2:

@3:

then the removal of unreachable code would produce

MOV AX,A
RCR AC,1
JB @1
JMP @2

@1: MOV AX,OFFFFH

@2:

@3:

OUTW OF6H
JMP @2

3-11

Compiler Control Language

3-12

This can be further optimized by reversing the branch condition in the third instruc­
tion and removing the unnecessary JMP @2:

MOV AX,A
HCR AL,t
JNB @2

@1: MOV AX, OFFFFH

@2:

@3:

OUTW OF6H

OPTIMIZE.(3)

OPTIMIZE(3) includes all of the above optimizations. It also optimizes indeter­
minate storage operations (e.g;, those using based variables) and pointer com­
parisons. The two assumptions validating these new optimizations are that based
variables are not overlaying user-declared variables, and that segments are not
overlapped.

The benefits of this optimization level include more efficient use of code space
because the user guarantees he has not caused an overlay of needed values. Faster
execution of pointer comparisons is a consequence of the user guaranteeing there are
no overlapped segments.

The first guarantee is a consequence of user caution in variable-declaration and
usage. For example the sequence .

DECLARE (I,J) WORD;
DECLARE THETA (19) AT (@I);
DECLARE A BASED J (10)

STRUCTURE (Fl BYTE,F2 WORD);

J=.l

A(I).Fl = 7;
A(I).F2 = 99;
THETA(l) = 31;

violates this caution and guarantee because it causes the values being used as
pointers and subscripts to be overlaid. Th~ compiler normally takes steps to avoid
the difficulties implied here, but in OPTIMIZE(3) these steps are omitted due to the
implicit user guarantee that such situations have been avoided.

OPTIMIZE(3) also changes the way POINTER values are compared. The normal
case in comparing PTR_l and PTR_2 is this: for each pointer, the segment word
is effectively multiplied by 16 and the offset word is added, giving a full 20-bit
address. The two 20-bit addresses are compared and the correct result is returned.

These manipulations are not needed under this level of optimization due to the
implicit guarantee that no segments overlap. Thus it is sufficient to compare the seg­
ment parts bit for bit in order to determine which is a lower number. Only if the seg­
ment parts are equal is it necessary to compare the offset parts. Pointer comparisons
are therefore faster under this level of optimization.

PL/M-86

PL/M-86 Compiler Control Language

The second guarantee mentioned above required no special action unless the AT
attribute and the segment-locating controls of LINK86 and LOC86 are invoked.
Users exercising these controls must consider carefully their full effects. If segments
are overlapped and pointer comparison is used in the program, this optimization
level must not be used.

Figures 3-1 through 3-4 illustrate the levels of optimization described above.

ISIS-II PL/M-S6 V2.0 COMPILATION OF MODULE EXAMPLES_OF_OPTIIIIZATIONS
OBJECT IIODULE PLACED IN :F7:EXIIPLE.OBJ
COIIPILER INVOKED BY: PL1I86: F7: EXMPLE. SRC NOPAGING COMPACT CODE OPTIMIZE(0)

10

11

12

EXAIIPLES OF OPTIIIIZATIONS: DO;
DECLARE TA,B,c) WORD, D(100) WORD, (PTR l,PTR 2) POINTER,

ABASED BASED PTR 1 (10) WORD; - -
DO WHILE D(A+B) < D(A+B+T);

; STATEMENT #
0004 FA CLI
0005 2ESE160000 MOV SS, CS:@@STACK$FRAME
OOOA BC0200 MOV SP ,@@STACK$OFFSET
OOOD 8BEC MOV BP, SP
OOOF 2E8El E0200 MOV DS, CS:@@DATA$FRAME
0014 FB STI

@3:
0015 8Bl E0200 MOV BX ,B
0019 031 EOOOO ADD BX ,A
001 D Dl E3 SHL BX ,1
001 F 8B360200 MOV SI, B
0023 03360000 ADD 51 ,A
0027 Dl E6 SHL SI,l
0029 8B870600 MOV AX ,DfBX]
002D 3B840S00 CMP AX ,D SI+2H]
0031 7203 JB $+5H
0033 E97700 JMP @4

IF PTR_l PTR_2 THEN DO;
STATEMENT # 4

0036 C406CEOO LES AX,PTR_l
003A 06 PUSH ES ; 1
003B C416D200 LES DX,PTR_2
003F 8CC7 MOV D1,ES
0041 5E POP S1 ; 1
0042 Bl04 MOV CL ,4H
0044 8BD8 MOV BX ,AX
0046 D3EB SHR BX ,CL
0048 03F3 ADD SI,BX
004A 8BDA MOV BX, DX
004C D3EB SHR BX ,CL
004E 03FB ADD D1, BX
0050 3BF7 CMP SI,DI
0052 7507 JNE $+9H
0054 240F AND AL,OFH
0056 80E20F AND DL ,OFH
0059 3AC2 CMP AL,DL
005B 7403 JZ $+5H
005D E94100 JMP @1

A = A*2 ;
STATEMENT # 6

0060 8B060000 MOV AX, A
0064 Dl EO SHL AX,·l
0066 89060000 MOV A, AX

ABASED(A) = ABASED(B);
STATEMENT # 7

006A 8B360200 MOV S1,B
006E Dl E6 SHL S1.,l
0070 8B3EOOOO MOV DI,A
0074 D1 E7 SHL DI,l
0076 C41ECEOO LES BX, PTRl
007A 268BOO MOV AX, ES: TBx) .ABASED[S1]
007D C41 ECEOO LES BX, PTR 1
OOSl 26S901 MOV ES:[BX}.ABASED[DI] ,AX

ABASED(B) = ABASED (C);
; STATEMENT # 8

0084 8B360400 MOV SI,C
0088 Dl E6 SHL SI,l
OOSA SB3E0200 MOV D1,B
OOSE Dl E7 SHL DI,.l
0090 C41 ECEOO LES BX ,PTR 1
0094 268BOO MOV AX, ES: TBx 1. ABASED[SI]
0097 C41ECEOO LES BX, PTR 1
009B 26S901 MOV ES:[BX}. ABASED[D1], AX

END;
; STATEMENT # 9

009E E90900 JMP @2
@1 :

ELSE ·A A+1 ;
STATEMENT # 10

OOA 1 8B060000 MOV AX ,A
00A5 40 INC AX
00A6 89060000 MOV A,AX

@2:
END;

STATEMENT # 11
OOAA E96SFF JMP @3

@4·:
END EXAMPLES_OF_OPTIMIZATIONS;

OOAD FB
OOAE F4

STI
HLT

STATEMENT # 12

MODULE INFORMATION:

CODE AREA SIZE OOAFH 175D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = 00D6H 214D
MAXIMUM STACK SIZE - 0002H 2D
12 LINES READ
o PROGRAII ERROR(S)

END OF PL/M-86 COMPILATION

Figure 3-1. Sample Program Showing the OPTIMIZE(O) Control

3-13

Compiler Control Language

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE PLACED IN :F7:EXMPLE.OBJ
COMPILER INVOKED BY: PLM86 :F7:EXMPLE.SRC NOPAGING COMPACT CODE OPTIMIZE(1)

10

11

12

EXAMPLES OF OPTIMI ZAT IONS: DO;
DECLARE (A,B,C) 1I0RD, D(100) 1I0RD, (PTR 1,PTR 2) POINTER,

ABASED BASED PTR 1 (10) 1I0RD; - -
DO IIHILE D(A+B) < D(A+B+l);

0004
0005
OOOA
OOOD
OOOF
0014

0015
0019
001D
001F
0023
0027
0029

002C
0030
0031
0035
0037
0038
003A
003C
003E
0040
0042
0044
0046
0048
004A
004C
004F
0051
0053

FA
2E8E160000
BC0200
8BEC
2E8El E0200
FB

@3:
8Bl E0200
031 EOOOO
Dl E3
8B870600
3B870800
7203
E96800

IF PTR_1

C406CEOO
06
C416D200
8CC7
5E
Bl04
8BD8
D3EB
03F3
8BDA
D3EB
03FB
3BF7
7507
240F
80E20F
3AC2
7403
E93700

CLI
MOV
MOV
MOV
MOV
STI

MOV
ADD
SHL
MOV
CMP
JB
JMP

PTR_2

A*2;

LES
PUSH
LES
MOV
POP
MOV
MOV
SHR
ADD
MOV
SHR
ADD
CMP
JNE
AND
AND
CMP
JZ
JMP

0056
005A
005C

8B060000 MOV
D1 EO SHL
89060000 MOV

0060
0064
0066
0068
006C
006F
0071

8B360200
Dl E6
D1EO
C41 ECEOO
268B08
89C6
268908

0074 8B360400
0078 Dl E6
007 A 8B3E0200
007E D1 E7
0080 C41 ECEOO
0084 268BOO
0087 268901

008A E90400

ABASED(A)

MOV
SHL
SHL
LES
MOV
MOV
MOV

ABASED(B) =

END;

@1 :

MOV
SHL
MOV
SHL
LES
MOV
MOV

JMP

ELSE A = A+l;

008D FF060000 INC
@2:

END;

0091 E981FF JMP
@4:

; STATEMENT # 3

SS, CS:@@STACK$FRAME
SP,@@STACK$OFFSET
BP, SP
DS, CS:@@DATA$FRAME

BX ,B
BX ,A
BX ,1
AX,D[BX]
AX ,D[BX+2H]
$+5H
@4

THEN DO;
STATEMENT # 4

AX,PTR 1
ES -; 1
DX, PTR 2
DI,ES -
SI ; 1
CL,4H
BX, AX
BX, CL
SI,BX
BX, DX
BX ,CL
DI, BX
SI. DI
$+9H
AL,OFH
DL,OFH
AL. DL
$+5H
@1

AX, A
AX .1
A ,AX

ABASED(B) ;

SI, B
SI,l
AX ,1

STATEMENT # 6

STATEMENT # 7

BX, PTR 1
CX. ES:"[BX]. ABASED[SI]
SI, AX
ES: [BX]. ABASED[SI], CX

ABASED(C) ;

SI, C
SI,l
DI, B
DI,1

; STATEMENT # 8

BX, PTR 1
AX, ES:"[BX]. ABASED[SI]
ES: [BX]. A BASED [DI], AX

STATEMENT # 9
@2

STATEMENT # 10

STATEMENT # 11

END EXAMPLES_OF_OPTIMIZATIONS;
STATEMENT # 12

0094 FB
0095 F4

STI
HLT

MODULE INFORMATION:

CODE AREA SIZE = 0096H 150D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE = 00D6H 214D
MAXIMUM STACK SIZE = 0002H 2D
12 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

Figure 3-2. Sample Program Showing the OPTIMIZE(l) Control

3-14

PL/M-86

PL/M-86

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE PLACED IN : F7: EXMPLE. OBJ
COMPILER INVOKED BY: PLM86 :F7:EXMPLE.SRC NOPAGING COMPACT CODE OPTIMIZE(2)

EXAMPLES OF OPTIMIZATIONS: DO;
DECLARE (A,B,C) 1I0RD, D(100) 1I0RD, (PTR 1 ,PTR 2) POINTER,

ABASED BASED PTR 1 (10) 1I0RD; - -
DO IIHILE D(A+B) < D(A+B+l);

; STATEMENT /I 3
0004 FA CLI
0005 2E8E160000 MOV SS, CS:@@STACK$FRAME
OOOA BC0200 MOV SP,@@STACK$OFFSET
OOOD 8BEC MOV BP,SP
OOOF 2E8El E0200 MOV DS, CS :@@DATA$FRAME
0014 FB STI

@3:
0015 8Bl E0200 MOV BX, B
0019 031 EOOOO ADD BX, A
001D Dl E3 SHL BX,I
001 F 8B870600 MOV AX, D [BX]
0023 3B870800 CMP AX, D BX+2H]
0027 7361 JNB @4

IF PTR_l PTR_2 THEN DO;
STATEMENT /I 4

0029 C406CEOO LES AX,PTR_l
002D 06 PUSH ES ; 1
002E C416D200 LES DX,PTR_2
0032 8CC7 MOV DI, ES
0034 5E POP SI ; 1
0035 Bl04 MOV CL,4H
0037 8BD8 MOV BX ,AX
0039 D3EB SHR BX ,CL
003B 03F3 ADD SI, BX
003D 8BDA MOV BX ,DX
003F D3EB SHR BX ,CL
0041 03FB ADD DI, BX
0043 3BF7 CMP SI,DI
0045 7507 JNE $+9H
0047 240F AND AL,OFH
0049 80E20F AND DL,OFH
004C 3AC2 CMP AL, DL
004E 7534 JNZ @1

A*2;
STATEMENT /I 6

0050 Al0000 MOV AX ,A
0053 Dl EO SHL AX,1
0055 A30000 MOV A ,AX

ABASED (A) = ABASED(B);
STATEMENT /I 7

0058 8B360200 MOV SI,B
005C Dl E6 SHL SI,I
005E Dl EO SHL AX ,I
0060 C41 ECEOO LES BX,PTR 1
0064 268B08 MOV CX, ES :TBx]. ABASED[SI]
0067 89C6 MOV SI,AX
0069 268908 MOV ES:[BX] .ABASED[SI] ,CX

ABASED(B) = ABASED(C) ;
; STATEMENT /I 8

006C 8B360400 MOV SI, C
0070 Dl E6 SHL SI,I
0072 8B3E0200 MOV DI, B
0076 Dl E7 SHL DI,I
0078 C41 ECEOO LES BX,PTR 1
007C 268BOO MOV AX, ES: ~BX]. ABASED~ SI]
007F 268901 MOV ES: [BX • ABASED[DI ,AX

END;
STATEMENT /I 9

0082 EB91 JMP @3
@1 :

10 ELSE A A+1 ;
STATEMENT /I 10

0084 FF060000 INC
11 END;

STATEMENT /I 11
0088 EB8B JMP @3

@4:
12 END EXAMPLES_OF_OPTIMIZATIONS;

STATEMENT /I 12
008A FB STI
008B F4 HLT

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
12 LINES READ
o PROGRAM ERROR (S)

END OF PL/M-86 COMPILATION

008CH
OOOOH
00D6H
0002H

140D
OD

214D
2D

Compiler Control Language

Figure 3-3. Sample Program Showing the OPTIMIZE(2) Control

3-15

Compiler Control Language

ISIS-II PL/M-86 V2.0 COMPILATION OF MODULE EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE P LACED IN : F1: EXMPLE. OBJ
COMPILER INVOKED BY: PLM86 :F7:EXMPLE.SRC NOPAGING COMPACT CODE OPTIMIZE(3)

EXAMPLES OF OPT1MI ZATIONS: DO;
DECLARE (A,B,C) WORD, D(100) WORD, (PTR 1 ,PTR 2) POINTER,

ABASED BASED PTR 1 (10) WORD; - -
DO WHILE D(A+B) < D(A+B+1);

; STATEMENT # 3
0004 FA CLI
0005 2E8E160000 MOV SS, CS:@@STACK$FRAME
OOOA BC0200 MOV SP,@@STACK$OFFSET
OOOD 8BEC MOV BP, SP
OOOF 2E8E1 E0200 MOV DS, CS :@@DATA$FRAME
0014 FB STI

@3:
0015 8B1 E0200 MOV BX, B
0019 031 EOOOO ADD BX, A
001 D D1 E3 SHL BX ,1
001 F 8B810600 MOV AX,DtBX]
0023 3B810800 CMP AX,D BX+2H]
0021 1346 JNB @4

IF PTR - 1 PTR_2 THEN DO;
STATEMENT # 4

0029 C406CEOO LES AX, PTR 1 -
002D 06 PUSH ES ; 1
002E C416D200 LES DX,PTR_2
0032 8CC1 MOV DI, ES
0034 5E POP SI ; 1
0035 3BF7 CMP SI, DI
0031 1502 JNE $+4H
0039 3BC2 CMP AX, DX
003B 152C JNZ @1

A = A*2 ;
STATEMENT # 6

003D A 1 0000 MOV AX, A
0040 D1EO SHL AX ,1
0042 A30000 MOV A ,AX

ABASED(A) = ABASED(B) ;
STATEMENT # 1

0045 8B360200 MOV SI, B
0049 D1 E6 SHL SI,1
004B D1 EO SHL AX ,1
004D C41 ECEOO LES BX,PTR 1
0051 268B08 MOV CX,ES:[BX].ABASED[SI]
0054 56 PUSH SI 1
0055 89C6 MOV SI, AX
0051 268908 MOV ES: [BX]. ABASED[SI], CX

ABASED(B) ABASED(C) ;
; STATEMENT # 8

005A 8B360400 MOV SI, C
005E D1 E6 SHL SI,1
0060 268BOO MOV AX, ES: [BX].ABASED[SI]
0063 5E POP S1 1
0064 268900 MOV ES: [BX l. ABASED[SI l, AX

END;
; STATEMENT # 9

0061 EBAC JMP @3
@1 :

10 ELSE A A+1 ;
STATEMENT # 10

0069 FF060000 INC
11 END;

STATEMENT # 11
006D EBA6 JMP @3

@4:
12 END EXAMPLES_OF_OPTIMIZAT1ONS;

STATEMENT # 12
006F FB STI
0010 F4 HLT

MODULE INFORMATION:

CODE AREA SIZE - 0011 H 113D
CONSTANT AREA SIZE = OOOOH OD
VARIABLE AREA SIZE 00D6H 214D
MAXIMUM STACK SIZE = 0002H 2D
12 LINES READ
o PROGRAM ERROR (S)

END OF PL/M-86 COMPILATION

Figure 3-4. Sample Program Showing the OPTIMIZE (3) Control

3-16

PL/M-86

PL/M-86 Compiler Control Language

3.5.4 OBJECT I NOOBJECT

These are primary controls. They have the form:

OBJ ECT[(path name)]

NOOBJECT

Default: OBJECT(source-file.OBJ)

The OBJECT control specifies that an object module is to be created during the
compilation. The pathname isa standard ISIS-II pathname which specifies the file
to receive the object module. If the control is absent, or if an OBJECT control
appears without a pathname, the object module is directed to the same device and
file name as used for source input, but with the extension OBJ.

Example: OBJECT(:F1 :OTHER.OBJ)

This would cause the object code to be written to the file :Fl :OTHER.OBJ.

The NOOBJECT control specifies that an object module is not to be produced.

3.5.5 DEBUG I NODEBUG

These are primary controls. They have the form:

DEBUG

NODE BUG

Default: NODE BUG

The DEBUG control specifies that the object module is to contain the statement
number and relative address of each source program statement, information about
each local symbol including based symbols and procedure parameters, and block
information for each procedure. This information may be used later for symbolic
debugging by an ICE-86 or ICE-88 emulator.

The NODEBUG control specifies that this information is not to be placed in the
object module.

3.5.6 TYPE/NOTYPE

These are primary controls. They have the form:

TYPE

NOTYPE

Default: TYPE

The TYPE control specifies that the object module is to contain information on the
types of the variables output in symbols records. This information may be used later
for type checking by LINK86, or an ICE-86 and ICE-88 emulator.

The NOTYPE control specifies that such type definitions are not to be placed in the
object module.

3-17

Compiler Control Language

3-18

3.6 The WORKFILES Control

The WORKFILES control is a primary control, with the form

WORKFILES (:device:, :device:)

Default: WORKFILES(:F1 :,:F1:)

Each device is the name of a direct access device such as a disk drive.

During compilation, the compiler creates work files which are deleted at the end of
compilation (see Section 2.2.3). If the WORKFILES control is not used, these files
will be on :FI:. The WORKFILES control allows you to specify any two devices for
storage of these files. For example, to specify storage of work files on Drives 1 and
0, use

WORKFILES (:FO:,:F1:)

Note that two device names are required. To specify only one device, specify it
twice-for example, to put all work files on Drive 0, use

WORKFILES (:FO:,:FO:)

As a rule of thumb, the space required for work files on each device is roughly equal
to the total space required for the PL/M-86 source (including "included" source
files-see Section 3.7 below). If only one device is used for work files, it should have
twice this amount of space available.

3.7 Source Inclusion Controls

These controls allow the input source to be changed to a different file. The controls
are:

INCLUDE
SAVE I RESTORE

3.7.1 INCLUDE

INCLUDE is a general control, with the form:

INCLUDE (pathname)

where pathname is a standard ISIS-II pathname specifying a disk file.

Example: INCLUDE(:F1 :SYSLlB.SRC)

An INCLUDE control must be the rightmost control in a control line or in the
invocation command.

The INCLUDE control causes subsequent source lines to be input from the specified
file. Input will continue from this file until an end-of-file is detected. At that time,
input will be resumed from the file which was being processed when the INCLUDE
control was encountered.

An included file may itself contain INCLUDE controls. Note that such nesting of
included files may not exceed a depth of five.

PL/M-86

PL/M-86 Compiler Control Language

3.7.2 SAVE / RESTORE

These are general controls. They have the form:

SAVE

RESTORE

These controls allow the settings of certain general controls to be saved on a stack
before an INCLUDE control switches the input source to another file, and then
restored after the end of the included file. However, SAVE and RESTORE can be
used for other purposes as well. The controls whose settings are saved and restored
are

LIST I NOLIST
CODE I NOcODE
OVERFLOW I NOOVERFLOW
LEFTMARGIN
cOND/NOcOND

The SAVE control saves all of these settings on a stack. This stack has a maximum
capacity of five sets of control settings, which corresponds to the maximum nesting
depth of five for the INCLUDE control.

The RESTORE control restores the most recently saved set of control settings from
the stack.

3.8 RAM/ROM Control

This primary control directs the object-module placement of all constants, both
user-defined and compiler-generated. Its form is

RAM
ROM

Default: RAM

The default setting places the CONSTANT section within the DATA segment in all
segmentation models (sizes) except LARGE, in which constants are placed in the
CODE segment instead.

The ROM setting places constants in the CODE segment. Under this setting, the
INITIAL attribute on a variable produces a warning message. The dot operator is
not advised for use under the ROM option. If SMALL is also specified, then
pointers will be four bytes instead of two. (See also section 8.5.)

3.9 Program Size Controls

These controls specify the memory size requirements of the program that is to con­
tain the module being compiled. They affect the operation of the compiler in various
ways and impose certain constraints on the source module being compiled, as
explained in detail in Chapter 5.

Note that for maximum efficiency of the object code, the smallest usable size should
be used for any given program. Also note that all modules of a program must be
compiled with the same size control. These are primary controls. They have the form

3-19

Compiler Control Language

3-20

SMALL

COMPACT

MEDIUM

LARGE

Default: SMALL

See Chapters 4 and 5 for discussions of the output of the compiler and of program­
ming restrictions under each size control.

3.9.1 SMALL

The SMALL control provides for programs with the following space requirements:

• Not more than 64K bytes total for code sections from all modules

• Not more than 64K bytes total for constant, data, stack, and memory sections
from all modules.

See Chapters 4 and 5 for details.

Note that the SMALL size should always be used to compile modules originally writ­
ten in PL/M-80.

3.9.2 COMPACT

The COMPACT control provides for programs with the following space
req uiremen ts:

• Not more than 64K bytes total for code sections from all modules

• Not more than 64K bytes total for data and constant sections for all modules

• Not more than 64K bytes total for stack sections from all modules

• Not more than 64K bytes total for memory sections from all modules

See Chapters 4 and 5 for details.

3.9.3 MEDIUM

The MEDIUM control provides for programs with the following space
requirements:

• Not more than one megabyte total for code sections from all modules

• Not more than 64K bytes total for constant, data,stack, and memory sections
from all modules.

Note that no one code section (compiled from one module) may exceed 64K bytes.
See Chapters 4 and 5 for details.

3.9.4 LARGE

The LARGE control provides for programs with the following space requirements:

• Not more than one megabyte total for code sections from all modules

• Not more than one megabyte total for data sections from all modules

• Not more than 64K bytes total for stack sections from all modules

• Not more than64Kbytes total for memory sections from all modules.

PL/M-86

PL/M-86 Compiler Control Language

In the LARGE case, no constant section is produced. Instead, the program con­
stants are placed in the code section of each module.

Note that no one code or data section may exceed 64K bytes.

See Chapters 4 and 5 for details.

3.10 Conditional Compilation Controls

These controls allow selected portions of the source file to be skipped by the com­
piler if specified conditions are not met. Figure 3-5 shows an example program using
the conditional compilation controls, while Figure 3-6 shows the same example with
NOCOND being used.

The controls are

SET I RESET
IF I ELSEIF I ELSE I ENDIF
COND/NOCOND

PL/M-8b cUMP1LER EXAMPLE

ISIS-II PL/M-86 V1.2 COMPILATION OF MODULE EXAMPLE
UbJECT MODULE PLACED I~ :F1:CEX.OdJ
COMPILEh INVUKED bY: PLM86 :F1:CEX.P86 SET(DEBUG=3)

EXAM PLE: DO j

2 DECLARE BOOLEAN LITERALLY 'BYTE', TRUE LITERALLY 'OFFH',
FALSE LITERALLY '0';

3 1 PkINT$DIAGNOSTICS: PROCEDURE (SWITCHES, TABLES) EXTERNAL;
4 2 DECLARE (SWITCHES, TABLES) BOOLEAN;
5 ~ END PRINT$DIAGNOSTICSj

6

10

11
12

13

DISPLAY$PROMPT: PROCEDURE EXTERNAL; END DISPLAY$PROMPT;

AWAIT$CH: PROCEDURE EXTERNALj END AWAIT$CR;

$IF' DEBUG = 1
CALL PRINT$DIAGNOSTICS (TRUE, FALSE);

$ RESET (TRAP)
$ELSEIF' DEBUG = 2

CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
$ RESET (TRAP)
$ELSEIF DEBUG = 3

CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
$ SET (TRAP)
$ENIHF

$IF TRAP
CALL DISPLAY$PROMPT;
CALL AWAIT$CR;

$ENDIF

END EXAMPLE;

MOD~LE INFORMATION:

CO!;!:. AkEA SIn
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
29 LINES READ
o PROGRAM ERROR(S)

END OF PL/H-86 COMPILATION

00lFH
OOOOH
OOOOH
0006H

31D
OD
OD
6D

Figure 3-5. Sample Program Showing the SET(DEBUG=) Control

3-21

Compiler Control Language

3-22

PL/M-b6 CUM~ILEH HAMPLE

I~IS-II PL/h-b6 V1.2 CUkPILATION Of ~O~ULE EXAMPLE
utJECl hU~~LE PLACE~ I~ :f1:CEX.UEJ
CUMPILEh IhVUklD bY: PLMb6 :F1:CEX.Pb6 SE1(~EBUG=3) NOCOh~

EXM.PLE: ~O;

DECLAhE bOOLEA. LITERALLY 'LYTE'. TkUE LITERALLY 'OFFH',
fALSE LITERALLY '0';

j 1 HINl$uIAGt,OSTICS: PHUCi:.J.;UkE (SW ITCHES, TALLES) EXTEhNAL;
~ECLAkE (SwITCHES, TABLES) bOOLEA~; 4 2

5 2 END PkI~T$LIAG~USTICS;

()

10

11
12

13

LI~PLAY$PkOkPl: PhOCEULHE EXTERhAL; END DI~PLAY$PhO~PT;

A~All$Ck: PkUCE~UkE EXTERNAL; END A~AIT$Ck;

$IF ~EbIJG = 1
$ELSEIF DEBUG = 3

CALL PkINT$LIAG~USTICS (TRUE, TRUE);
$ SET (TRAP)
$CN[;IF

$IF ThAP
CALL DISPLAYSPROMPT;
CALL AioiAIT$Ck;

$ Et; DIF

END EXAfviPLE;

MUDULE INFORMATION:

CO~E AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
29 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 CUMPILATION

001FH
OOOOH
OOOOH
00061i

31D
00
OD
6D

Figure 3-6. Sample Program Showing the NOCOND Control

3.10.1 SET / RESET
These are general controls. The SET control has the general form

SET (switch assignment list)

where the switch assignment list consists of one or more switch assignments
separated by commas. A switch assignment has the form

switch[=value]

where

• switch is a name which is formed according to the PL/M-86 rules for identifiers.
Note that a switch name exists only at the compiler control level, and therefore
you may have a switch with the same name as an identifier in the program; no
conflict is possible. However, note that a PL/M-86 reserved word may not be
used as a switch name.

PL/M-86

PL/M-86 Compiler Control Language

• value is a whole-number constant in the range 0 to 255. This value is assigned to
the switch. If the value and the = sign are omitted from the switch assignment,
the default value OFFH ("true") is assigned to the switch.

The following is an example of a SET control line:

$SET(TEST , ITERATION =3)

This example sets the switch TEST to "true" (OFFH) and the switch ITERATION
to 3. Note that switches do not need to be declared.

The RESET control has the form

RESET (switch list)

where switch list consists of one or more switch names that have already occurred in
SET controls.

Each switch in the switch list is set to "false" (0).

3.10.2 IF I ELSE I ELSEIF I ENDIF

These controls provide the actual conditional capability, using conditions which are
based on the values of switches.

These controls cannot be used in the invocation of the compiler, and each must be
the only control on its contr~lline.

An IF control and an ENDIF control are used to delimit an "IF element," which
can have several different forms. The simplest form of IF element is

$IF condition
text
$ENDIF

where

• condition is a limited form of PL/M expression, in which the only operators
allowed are OR, XOR, NOT, AND, <, <=, =, >=, and >, and the only
operands allowed are switches which have already appeared in SET controls and
whole-number constants in the range 0 to 255. Parenthesized subexpressions are
not allowed. Within these restrictions, the condition is evaluated according to
the PL/M-86 rules for expression evaluation. Note that the condition ends with
a carriage return.

• text is text which will be processed normally by the compiler if the least
significant bit of the value of condition is aI, or skipped if the bit is a O. Note
that text may contain any mixture of PL/M-86 source and compiler controls. If
the text is skipped, any controls within it are not processed.

The second form of IF element contains an ELSE element:

$IF condition
text 1
$ELSE
text 2
$ENDIF

In this construction, text 1 will be processed normally if the least significant bit of
the value of condition is aI, while text 2 will be skipped. If the bit is a 0, text 1 will
be skipped and text 2 will be processed normally.

3-23

Compiler Control Language

3-24

Note that only one ELSE element is allowed within an IF element.

The most general form of IF element allows one or more ELSE IF elements to be in­
troduced before the ELSE element (if any):

$IF condition 1
text 1
$ELSEIF condition 2
text 2
$ELSEIF condition 3
text 3

$ELSEIF condition n
text n
$ELSE
text n + 1
$ENDIF

where any of the ELSE IF elements may be omitted, as may the ELSE element.

The conditions are tested in sequence. As soon as one of them yields a value with a 1
as its least significant bit, the associated text is processed normally. All other text in
the IF element is skipped. If none of the conditions yields a least significant bit of 1,
the text in the ELSE element (if any) is processed normally and all other text in the
IF element is skipped.

3.10.3 COND / NOCOND

These controls determine whether text within an IF element will appear in the listing
if it is skipped. They are general controls with the form

COND

NOCOND

Default: COND

The COND control specifies that any text that is skipped is to be listed (without
statement or level numbers). Note that a COND control cannot override a NOLIST
or NOPRINT control, and that a COND control will not be processed if it is within
text which is skipped.

The NOCOND control specifies that text within an IF element which is skipped is
not to be listed. However, the controls that delimit the skipped text will be listed,
providing an indication that something has been skipped. Note that a NOCOND
control will not be processed if it is within text which is skipped.

PL/M-86

CHAPTER 41
OBJECT MODULE SECTIONS

The output of the compiler is an object file containing the compiled module. This
object module may be linked with other object modules and located using LINK86
and LOC86. A knowledge of the makeup of an object module is not necessary for
PL/M-86 programming, but for those desiring to study this subject in detail, this
chapter is included.

The object module output by the compiler contains five sections:

• Code Section

• Constant Section (Absent in LARGE case and in ROM-see below)

• Data Section

• Stack Section

• Memory Section

As explained in the next chapter, these sections can be combined in various ways
into "memory segments" for execution, depending on the size of the program
(SMALL, COMPACT, MEDIUM, or LARGE).

4.1 Code Section

This section contains the object code generated by the source program. If either the
LARGE control or the ROM control is used, this section also contains the informa-
tion that would otherwise be in the constant section. I

In addition, the code section for the main program module contains a "main pro­
gram prologue" generated by the compiler. This code precedes the code compiled
from the source program, and sets the CPU up for program execution by initializing
various registers and enabling interrupts.

4.2 Constant Section

This section contains all variables initialized with the DATA initialization, as well as
all REAL constants and all constant lists. If the LARGE or ROM controls are used,
this information is placed in the code section and no constant section is produced.

4.3 Data Section

All variables which are not parameters, based, located with an AT attribute,
initialized with the DATA attribute, or local to a REENTRANT procedure are
allocated space in this section.

In addition, when a nested procedure contains a reference to any parameter of an
enclosing procedure, all parameters of the enclosing procedure are placed in the data
section upon entry to the enclosing procedure during program execution. During
compilation, space is reserved in the data section for this purpose.

4-1

Object Module Sections

4-2

4.4 Stack Section

The stack section is used in executing procedures, as explained in Chapters 9 and 10.
It is also used for any temporary storage used by the program but not explicitly
declared in the source module (such as temporary variables generated by the
compiler).

The exact size of the stack is automatically determined by the compiler except for
possible multiple incarnations 'of reentrant procedures. The user can override this
computation of stack size and explicitly state the stack requirement during the
relocation process.

NOTE

When using reentrant procedures the user must be careful to allocate a
stack section large enough to accommodate all possible storage required
by multiple incarnations of such procedures. The stack size can be
explicitly specified during the relocation and linkage process.

The stack space requirement of each procedure is shown in the listing produced by
the SYMBOLS or XREF control. This information can be used to compute the addi­
tional stack space required for reentrant procedures.

4.5 Memory Section

This is the area of memory referenced by the built-in PL/M-86 identifier
MEMORY. Its maximum allowable size depends on the size control used in com­
pilation (SMALL, COMPACT, MEDIUM, or LARGE) as explained in Chapter 5.

The compiler generates a memory section of length zero, and it is the user's respon­
sibility to specify the actual (run-time) space required during the linkage and reloca­
tion process.

PL/M-86

· ' CHAPTER 5
PROG RAM SIZE n

The allocation (via relocation and linkage) of runtime memory for a program
depends on the size control (SMALL, MEDIUM, or LARGE) specified in compiling
the modules of the program. All modules of a program must be compiled with the
same size control.

The size also influences the way in which locations are referenced in the compiled
program, and this in turn leads to certain programming restrictions for each size
control.

A PL/M-86 programmer need not be concerned about memory addressing concepts
on the 8086, as the size controls transparently handle the mechanics of program
segmentation. The simple rule is:

• For programs with less than 64K bytes of code and with less than 64K bytes of
data (for a maximum program size of 128K bytes) use the default (SMALL con­
trol) and observe the restrictions given in section 5.2.1.

• If you just can't squeeze your code into 64K bytes, but all your data fits in 64K
bytes, use the MEDIUM control and observe the restrictions in 5.3.l.

• If you also need more than 64K bytes of data, use the LARGE control and
observe the restrictions in 5.4.1.

5.1 8086 Memory Concepts

8086 memory space has an extent of one megabyte, but a 16-bit value can only
address 64K locations. A complete physical address requires 20 bits. Therefore, a 16-
bit quantity is used as an offset, and references one of 64K possible locations within
a segment of 8086 memory.

A segment is defined as up to 64K contiguous memory locations, beginning at a 16-
byte boundary.

Any location in 8086 memory can be specified by specifying a particular segment
and using a 16-bit value as the offset to specify where the location lies within that
segment.

Since a segment always starts at a 16-byte boundary, the 20-bit physical address of
the first location in the segment always ends with four zero bits. Therefore, it can be
shifted to the right four bits without loss of information. This yields a 16-bit quan­
tity called a segment address. Four CPU registers (CS, DS, SS, and ES) are used by
default to hold segment addresses.

To form a 20-bit physical address, a segment address is shifted left four bits and an
offset is added to it.

5.2 The SMALL Case

The SMALL case is the default case, and should be used whenever possible for
greatest efficiency. As explained below in Section 5.2.2, the SMALL case must be
used to compile PL/M-80 programs.

5-1

Program Size

5-2

When modules compiled with the SMALL control are linked, the code sections from
all modules are combined and are allocated space within one segment. The segment
address for this segment is kept in the CS register. The constant, data, stack, and
memory sections from all modules are allocated space within a second segment. The
segment address for this second segment is kept in the DS register, with an identical
copy in the SS register.

Therefore, the SMALL control may be used if the total size of all code sections does
not exceed 64K, and the total size of all constant, data, stack, and memory sections
does not exceed 64K.

Since there is only one segment for code, the segment address for this segment (CS
register) is never updated during program execution. Likewise, since there is only
one segment for constants, data, stack, and memory sections, the segment address
for this segment (DS and SS registers) is never updated (except when an interrupt
occurs, as explained in Chapter 10). Therefore, when any location is referenced,
only a 16-bit offset is calculated and then used in conjunction with the appropriate
segment address. POINTER values are therefore 16-bit values in the SMALL case,
and this leads to the following restrictions.

5.2.1 Programming Restrictions in the SMALL Case

The following restrictions must be observed:

1. A whole-number constant may not be assigned to a POINTER variable. For
example:

DECLARE P POINTER;
P=100;

is not allowed.

2. A whole-number constant may not be used to initialize a POINTER variable.
For example:

DECLARE P POINTER INITIAL(100);

is not allowed.

3. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not be used with the @ operator. For example:

DECLARE B BYTE AT(100), P POINTER; P=@B;

is not allowed.

4. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not have the PUBLIC attribute. For example:

DECLARE B BYTE PUBLIC AT(100);

is not allowed.

5. If the ROM option is used with SMALL, then pointers will be four bytes instead
of two. (See also section 8.5.) Use of the INITIAL attribute under the ROM
option produces a warning message.

Restrictions 1, 2, and 3 have the net effect of ensuring that all POINTER values used
by the program in the SMALL case are within one of the two segments. Absolutely
located variables can be referenced, but not via POINTER values.

Note that Restrictions 3 and 4 do not apply when the "location" within the AT
attribute is formed with the @ operator.

PL/M-86

PL/M-86

Restriction 4 arises because EXTERNAL variables are assumed to be in the data
segment.

5.2.2 PL/M-80 Compatibility

The SMALL control should always be used when compiling a program written in
PL/M-80. The compiler produces error messages to flag violations of any of the
restrictions or to flag the use of the new reserved keyboards (INTEGER, REAL, and
POINTER) as programmer-defined identifiers. Otherwise, complete upwards com­
patibility is provided by PL/M-86. The dot operator is provided for this purpose,
for use under the SMALL and RAM options only. Its results may not be appropriate
if this restriction is not observed, i.e., if used under other options.

5.3 The COMPACT Case

A program compiled with the COMPACT control has four segments: code, data,
stack, and memory. Each of these is the result of combining the same-type sections
from all modules, and each has a maximum size of 64K bytes. The constant sections
from all modules are merged into the data segment unless the ROM control is used,
which causes all constant sections to be merged into the CODE segment instead.
Since the code, data, and stack segments are fully defined by the time the program is
loaded, the segment base addresses in CS, DS, and SS registers are never changed.
All code and a few prologue constants are addressed relative to CS. All data except
absolute data (declared with the AT (constant) attribute) are addressed relative to
DS. The stack is addressed relative to SS. ES is not initialized and can change during
execution. References to any location require only a 16-bit offset address against
these segment base addresses.

The sole programming restriction in the COMPACT case is that PUBLIC variables
may not be declared AT an absolute location, e.g.,

DECLARE ANVIL BYTE PUBLIC AT (100)

is not allowed. This restriction does not apply when the "location" within the AT
attribute is formed with the @ operator, i.e., DECLARE ANVIL BYTE PUBLIC
AT (@HAMR); is valid. However, the phrases "@ MEMORY" and" .MEMORY"
are undefined and not allowed.

Use of the INITIAL attribute under the ROM option produces a warning message.

5.4 The MEDIUM Case

In a program compiled with the MEDIUM control, a separate segment is used for
the code section of each compiled module. Therefore, the total space required for
code may exceed 64K, although the maximum size of anyone code section is still
limited to 64K.

The constant, data, stack, and memory sections of all modules are combined and are
allocated space within a single se-gment.

At any moment during program execution, one segment of code is the "current"
segment, and its segment address is kept in the CS register. This segment address is
updated whenever a PUBLIC or EXTERNAL procedure is activated, since this may
involve a new code segment.

The segment address for the segment containing constants, data, stack, and memory
sections is kept in the DS register (with an identical copy in the SS register) and is
never changed (except when an interrupt occurs, as explained in Chapter 10).

Program Size

5-3

Program Size

5-4

With the MEDIUM option, a POINTER value is a four-byte quantity containing a
segment address and an offset. Therefore, the first three restrictions of the SMALL
case do not apply. However, the MEDIUM case introduces two minor restrictions
on indirect procedure activation.

5.4.1 Programming Restrictions in the MEDIUM Case

The following restrictions must be observed:

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable- must be used in the CALL statement. This is normal prac­
tice in PL/M-86. For example:

DECLARE P POINTER, W WORD;
PROC: PROCEDU RE PU BLlC;

END PROC;

P=@PROC; CALL P; I*RECOMMENDED WHERE AN INDIRECT
CALL MUST BE USED* I

W=.PROC; CALL W; I*NOT ALLOWED* I

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire. 8086 address space (but are restricted to offsets within an
assumed segment). For example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDURE; I*LOCAL * I

END LPROC;
P=@LPROC; CALL P;

W=.LPROC; CALL W;

I*NOT ALLOWED* I

I*NOT RECOMMENDED, BUT ALLOWED* I

3. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not have the PUBLIC attribute. For example:

DECLARE B BYTE PUBLIC AT(100);

is not allowed.

Restrictions 1 and 2 arise from the fact that the code segment address may change
during program execution. Restriction 3 is the same as Restriction 4 in the SMALL
case, and arises for the same reason.

4. Use of the INITIAL attribute under the ROM option produces a warning
message.

PL/M-86

PL/M-86

5.5 The LARGE Case

In a program compiled with the LARGE control, a separate segment is used for the
code section (with constants) from each compiled module. Thus the total space
required for code and constants may exceed 64K, but the total for the code section
(with constants) from anyone module is limited to 64K.

A separate segment is used for the data section from each compiled module. Thus
the total space required for data sections may exceed 64K, although the size of any
one data section is limited to 64K.

The stack sections from all modules are combined in one segment, and the memory
sections for all modules are combined in another segment. Thus the total space
required for stack is limited to 64K, and the total space required for memory is also
limited to 64K.

At any moment during program execution, one code segment and one data segment
are "current." Code and data segments are paired, so that the current code and data
segments are always from the same module. The compiler implements this pairing
by placing the segment address for the data segment in a reserved location in the
code section. During program execution, the segment addresses for the current code
and data segments are kept in the CS and DS registers, respectively, and are updated
whenever a PUBLIC or EXTERNAL procedure is activated, as this may involve
new code and data segments.

The stack segment address is kept in the SS register.

5.5.1 Programming Restrictions in the LARGE Case

These first two are the same as Restrictions 1 and 2 in the MEDIUM case, and arise
for the same reason.

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable must be used in the CALL statement. This is normal prac­
tice in PL/M-86. For example:

DECLARE P POINTER, W WORD;
PROC: PROCEDURE PUBLIC;

ENDPROC;

P=@PROC; CALL P; I*RECOMMENDED WHERE AN INDIRECT
CALL MUST BE MADE* I

W=.PROC; CALL W; I*NOT ALLOWED*I

Program Size

5-5

Program Size

5-6

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire 8086 address space (but are restricted to offsets within an
assumed segment). For example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDURE; I*LOCAL * I

END LPROC;

P=@LPROC; CALL P; I * NOT ALLOWED* I

W=.LPROC; CALL W; I*NOT RECOMMENDED, BUT ALLOWED* I

3. Use of the INITIAL attribute under the ROM option produces a warning
message.

PL/M-86

• (!::, CHAPTER 6
FLOATING-POINT LINKAGE n

Programming considerations for the use of REAL arithmetic in PL/M-S6 are
explained in the PL/M-86 Programming Manual for 8080/8085-Based Development
Systems.

This chapter deals with the issues of choosing the linkage specifications appropriate
to your use of the REAL math facility: no use, PL/M-86 use only, or use of routines
not written in PL/M-86. What is appropriate also depends on whether execution will
use an actual 8087 chip or an emulator.

These linkage specifications make available to your program the libraries of
floating-point functions. The circumstances determining which library is
appropriate are given in Table 6-1. The libraries themselves are discussed briefly
below the table.

Table 6-1. Linkage Choices For REAL-Math Usage

Link-List Should Include the
Useof Emulator or Specifications Below (Not

REAL Math Facility Actual Chip Used Necessarily in the Order
Shown) After Object Modules

NONE NEITHER (none)

PLI M-S6 ON L Y EMULATOR ESOS7.L1B, PESOS7

With Some Modules EMULATOR ESOS7.LIB, ESOS7
NOT in PLlM-S6

ANY ACTUAL SOS7 CHIP SOS7.L1B

The Interface libraries do the following:

• 8087.LIB resolves external references inserted by the translator of an 8086
program so that floating-point instructions will correctly invoke the 8087 chip.
8087.LIB is the library of floating-point functions written for the chip itself
rather than for emulation.

• E8087LIB resolves such references to invoke the Emulator software instead of
the actual 8087 chip.

Emulation is performed by ESOS7 or PES087.

• E8087 is the actual library of emulation routines, which provide every function
and feature of an actual 8087 chip except speed. Emulation is invoked
automatically as needed, using interrupts 20 through 31.

• PE8087 is a subset of E80S7. The REAL arithmetic performed in PL/M-S6
programs does not require the complete set of routines in the full Emulator. Use
of the subset saves substantial space.

• WARNING: The S087 Emulator processes exceptions exactly as the 8087 does.
However, if your 80S6/S087 implementation includes some external interrupt
masking device such as an S259A, this external device cannot be simulated by
the SOS7 Emulator. An Interrupt 16 will occur after the execution of any instruc­
tion when the SOS7 interrupt is active and the SOS6 interrupt is enabled.

6-1

Floating-Point Linkage

6-2

Examples:

Suppose you write a PL/M-86 program called EASY that, at first, uses no REAL
math at all. No interface library is needed. As modules are added during the
development process, a PL/M-86 calculation routine called ACURAT is supplied,
and you revise EASY to call it.

If you have no 8087 chip installed in your system, the correct linking statement for
the above conditions would be

LlNKB6 ACURAT.OBJ, EASY.OBJ, EBOB7.LlB, PEBOB7

However, if ACURAT were written in some other language such as FORTRAN86
or ASM86, the following command should be used instead:

LlNKB6 ACURAT.OBJ, EASY.OBJ, EBOB7.LlB, EBOB7

If you DO have an actual 8087 chip installed in your system, then the two examples
above should become

LlNKB6 ACURAT.OBJ, EASY.OBJ, BOB7.LlB

More detailed and advanced discussions of the features and functions of the 8086
utilities appear in the manual titled 8086 Family Utilities User's Guide For
8080/8085-Based Development Systems, order number 9800639.

PL/M-86

CHAPTER 7
LISTING FORMATS

7.1 Program Listing

During the compilation process a listing of the source input is produced. (See
Chapters 2 and 3 for details of the file conventions for this listing.) Each page of the
listing carries a numbered page-header which identifies the compiler, and optionally
gives a title, a subtitle, and/or a date. The first part of the listing contains a sum­
mary of the compilation beginning with the compiler identification and the name of
the PL/M-86 source module being compiled. The next line names the file receiving
the object code. Finally, the command line used to invoke the compiler is reproduc­
ed. The listing of the program itself follows. A sample program listing is shown in
Figure 7-1.

~L/~-b~ CUh~ILEh S'! ACK fo',ULULE 28 JUN 79 PAGE

l~l~-ll ~L/k-b6 Vl.2 CO~PILATIOh O~ MODULE STACK
GUJlC1 MOL~LE PLACED Ih :~l:STACK.OBJ
COhPILER IhVOKED BY: PLM86 :~l:STACK.SRC PAGEWIDTH(80) CODE XREF TITLE('STACK M

-OOULE') DATE(28 JUN 79)

2

~TACK: 1.;0;
I~T~is module implements a BYTE stack with push and pop*1

DECLARE S(100) biTE, I*Stack storage*1
T bYTE PUBLIC INITIAL (-1); I*Stack index*1

~USH: PROCELUhE (B) PUBLIC; I*Pushes B onto stack*1
; STATEMENT II 3

PUSH PROC NEAR
0000 55 PUSH BP
0001 bEEC MOV BP,SP

4 2 DECLARE b BYTE;
5 2 S(T:=1+1) b; I*Increment T and store B*I

b 2

'r

0003
0007
0009
0001.;
OOOF
0011
0014

0011>
0019

; STATEMENT # 5
8A066400 ~iOV AL,T
FEeo INC AL
88066400 !viOV T,AL
b400 f¥!OV AH,OH
1>9C3 ~IOV bX,AX
8A4E04 MOV CL, [bP]. B
8881-0000 MOV S[BX] ,CL
t.ND PUSH;

STATEMENT II 6
5[; POP BP
C20200 RET 2H

PUSH ENDP

POP: PROCEDURE BYTE PUBLIC; I*Returns value popped from stack.'
; STATEMENT # 7

POP PROC NEAR
001C 55 rUSH BP
001D I>bEC MOV BP,SP

H 2 RETURN S«T:=T-l)+l); I*Decrement T, then return S(T+1).'
; STATEMENT # 8

001F 8A066400 rv:OV AL,T
0023 FEes DEC AL
0025 88066400 MOV T,AL
0029 B400 NOV AH,OH
002b 1>9C3 NOV BX,AX
0021.; 8A870100 f¥tOV AL,S[BX+1H]
0031 5D POP BP
0032 C3 HET

9 2 END PUP;
STATEMENT # 9

POP ENDP

10 END STACK; I*Module ends here*1
; STATEMENT , 10

Figure 7-1. Program Listing

7-1

Listing Formats

7-2

The listing contains a copy of the source input plus additional information. To the
left of the source image appear two columns of numbers. The first column provides
a sequential numbering of PL/M-86 statements. Error messages, if any, refer to
these statement numbers. The second column gives the block nesting depth of the
current statement.

Lines included with the INCLUDE control are marked with "=" just to the left of
the source image. If the included file contains another INCLUDE control, lines in­
cluded by this "nested" INCLUDE are marked with "=1". For yet another level of
nesting, H=2" is used to mark each line, and so forth up to the compiler's limit of
five levels of nesting. These markings make it easy to see where included text begins
and ends.

Should a source line be too long to fit on the page in one line it will be continued on
the following line. Such continuation lines are marked with "-" just to the left of the
source image.

The CODE control may be used to obtain the 8086 assembly code produced in the
translation of each PL/M-86 statement. This code listing appears interspersed in the
source text in six columns of information in a pseudo-assembly language format:

1. Location counter (hexadecimal notation)

2. Resultant binary code (hexadecimal notation)

3. Label field

4. Opcode mnemonic

5. Symbolic arguments

6. Comment field

Not all six of these columns will appear on anyone line of the code listing. Compiler
generated labels (e.g. those which mark the beginning and ending of a DO WHILE
loop) are preceded by "@". The comments appearing on PUSH and POP instruc­
tions indicate the stack depth associated with the stack instruction.

7.2 Symbol and Cross-Reference Listing

If specified by the XREF or SYMBOLS control, a summary of all identifier usage
appears following the program listing.

Depending on whether the SYMBOLS or XREF control was used to request the
identifier usage summary, five or six types of information are provided in the sym­
bol or cross-reference listing. These are as follows:

1. Statement number where identifier was defined.

2. Relative address associated with identifier

3. Size of object identified in bytes.

4. The identifier.

5. Attributes of the identifier.

6. Statement numbers where identifier was referenced (XREF control only).

Notice that a single identifier may be declared more than once in a source module
(i.e., an identifier defined twice in different blocks). Each such unique object, even
though named by the same identifier, appe~rs as a separate entry in the listing.

The address given for each object is the location of that object relative to the start of
its associated section. Which section is applicable depends upon the attributes of the
object (see Chapter 8).

PL/M-86

PL/M-86 Listing Formats

The AUTOMATIC attribute indicates that the identifier was declared as a
parameter or as a local variable in a REENTRANT procedure, and therefore is
allocated dynamically on the stack.

Figure 7-2 is an example of the cross-reference listing.

7.3 Compilation Summary

Following the listing (or appearing alone if NOLIST is in effect) is a compilation
summary. Six pieces of information are provided:

• Code area size gives the size in bytes of the code section of the output module.

• Constant area size gives the size in bytes of the constant section of the output
module.

• Variable area size gives the size in bytes of the data section of the output
module.

• Maximum stack size gives the size in bytes of the stack section allocated for the
output module.

• Lines read gives the number of source lines processed during compilation.

• Program errors gives the number of error messages issued during compilation.

Figure 7-3 is an example of the compilation summary. Refer to Chapter 4 for an ex­
planation of the various object module sections.

PL/M-86 COMPILER STACK MODULE 28 JUN 79 PAGE 2

CHOSS-REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REfERENCES

3 0004H B BYTE PARAME1ER AUTOMATIC
4 5

7 00lCH 23 POP PROCEDURE BYTE PUbLIC STACK=0002H

OOOOH 28 PUSH PROCEDURE PUBLIC SlACK=0004H

2 OOOOH 100 S bYTE AHHAY('100)
5 8

OOOOH STACK PROCEDURE STACK=OOOOH

2 0064H 1 T BYTE PUBLIC INITIAL
5 b

Figure 7-2. Cross-Reference Listing

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
16 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

0033H
OOOOH
0065H
0004H

51D
OD

lOll;
4C

Figure 7-3. Compilation Summary

7-3

· " CHAPTER 8
RUN-TIME DATA REPRESENTATIONS n

8.1 Byte Values

A BYTE value occupies a single byte of memory, except when it is a BYTE
parameter stored on the stack.

A BYTE parameter on the stack occupies two contiguous memory bytes. The BYTE
value is in the first byte (lower address), and the contents of the second byte (higher
address) are undefined.

8.2 Word Values

A WORD value occupies two contiguous memory bytes. The least significant 8 bits
of the value are in the first byte (lower address), and the most significant 8 bits are in
the second byte (higher address).

8.3 Integer Values

An INTEGER value occupies two contiguous memory bytes. The least significant 8
bits of the value are in the first byte (lower address), and the most significant 8 bits
are in the second byte (higher address).

8.4 Real Values

A REAL value occupies four contiguous memory bytes, as described in Chapter 14
of the PL/M-86 Programming Manual for 8080/8085-Based Development Systems.

8.5 Pointer Values

The representation of a POINTER value depends on the size control used in com­
pilation. In the SMALL case, a POINTER value is a 16-bit offset and is represented
in the same manner as a WORD value. Under the ROM option, however, it follows
the rules below.

In the COMPACT, MEDIUM, and LARGE cases, a POINTER value consists of a
segment address and an offset and occupies four contiguous memory bytes. The 16-
bit offset occupies the first two bytes (lower addresses) with the least significant 8
bits in the first byte and the most significant 8 bits in the second byte. The 16-bit seg­
ment address occupies the third and fourth bytes, with the least significant 8 bits in
the third byte and the most significant 8 bits in the fourth byte.

8.6 Structures

The maximum number of elements in a structure is 64. As described in the PL/M-86
Programming Manual for 8080/8085-Based Development Systems, each of these
elements may be an array of arbitrary size (though the 64K byte limit on segment size
applies to the total storage allocation). The structure may be a member of an array.

8-1

CHAPTER 9
RUN-TIME PROCEDURE AND

ASSEMBLY LANGUAGE LINKAGE

This chapter describes the handling at run time of non-interrupt procedures.
Assembly-language subroutines that are to be linked with PL/M-86 programs or
procedures must be compatible with these conventions. The easiest way to ensure
compatibility is simply to write a dummy procedure in PL/M-86 with the same argu­
ment list as the desired assembly language subroutine, and with the same attributes.
Then compile the dummy procedure with the correct size control and with the
CODE control specified. This will produce a pseudoassembly listing of the
generated 8086 code, which may then be simply copied as the prologue and epilogue
of the assembly language subroutine. This having been done, an understanding of
the material in this chapter is not needed.

For the handling of interrupt procedures, see Chapter 10.

9.1 Calling Sequence

For each procedure activation (CALL statement or function reference) in the
source, the object code uses a calling sequence. The calling sequence places the pro­
cedure's actual parameters (if any) on the stack and then activates the procedure
with a CALL instruction.

The parameters are placed on the stack in left-to-right order. Since the direction of
stack growth is from higher locations to lower locations, this means that the first
parameter occupies the highest position on the stack, and the last parameter
occupies the lowest position. Note that a BYTE parameter value occupies two bytes
on the stack, with the value in the lower byte. The contents of the higher byte are
undefined. A POINTER parameter value in the COMPACT, MEDIUM, and
LARGE cases consists of a segment address and an offset. The 16-bit segment
address is pushed first, and then the 16-bit offset is pushed.See Chapter 8 for details
on data representations.

After the parameters are passed, the CALL instruction places the return address on
the stack. In the SMALL and COMPACT cases, this is a 16-bit offset (the contents
of the IP register) and occupies two contiguous bytes on the stack.

In the MEDIUM and LARGE cases, the type of the return address depends on
whether the procedure is local or public. The return address for a local procedure,
like any return address for the SMALL case, is a 16-bit offset and occupies two con­
tiguous bytes on the stack. Fora public procedure in the MEDIUM or LARGE case,
the return address is a POINTER value consisting of a s.egment address and an off­
set, and is passed in the same way as a POINTER parameter. The 16-bit segment ad­
dress (contents of the CS register) is pushed first, and then the 16-bit offset (lP
register .contents) is pushed.

Control is then passed to the code of the procedure, by updating the IP register and
(in the MEDIUM and LARGE cases) the CS register.

At the point where the procedure gains control, then, the stack layout is as shown in
Figure 9-1.

9-1

Run-Time Procedure Assembly Language Linkage

9-2

higher
locations

lower
locations

... --------.....-... Stack marker (BP reg. contents)

parameter 0
parameter 1

parameter n

return segment address }
1---------1

return offset

Each parameter occupies 2 or 4
bytes - see text

Absent in SMALL or COMPACT
program or local procedure

1-------------41..--. Stack pointer (SP reg. contents)

Figure 9-1. Stack Layout at Point Where a Non-Interrupt
Procedure Is Activated 478·1

9.2 Procedure Prologue

In compiling the procedure itself, the compiler inserts at the beginning a sequence of
code called the prologue. This code accomplishes the following steps: I

1. If the procedure has the PUBLIC attribute and the program size is LARGE, the
contents of the DS register are placed on the stack. Then the DS register is
updated with a value which is found in the current code segment (i.e., the seg­
ment containing the procedure). (The DS register contains the segment address
for the current data segment; thus this step implements the pairing of code and
data segments in the LARGE case, and is not needed in the SMALL, COM­
PACT, and MEDIUM cases because the data segment does not change.)

2. If any parameter of the procedure is referenced by a nested procedure, all
parameters are removed from the stack and placed in space reserved for them in
the data segment.

3. The stack marker offset (BP register contents) is placed on the stack, and the
current stack pointer (SP register contents) is used to update the BP register.

4. If the ,procedure has the REENTRANT attribute, space is reserved on the stack
for any variables declared within the procedure (this does not include based
variables, variables with the DA T A attribute, or variables with the AT
attribute).

Control then passes to the code compiled from the executable statements in the pro­
cedure body. At this point, the stack layout is as shown in Figure 9-2.

During execution of the procedure, further stack space may be used for temporary
storage generated by the compiler.

PL/M-86

PL/M-86 Run-Time Procedure Assembly Language Linkage

higher
locations

IX
W
I­
Z
::::I
o
()

~
()
cr:
I­
!J)

lower
locations

parameter 0
parameter 1

parameter n

return segment address

return offset

old data segment
addr~ss

'- f-4 old stack marker

local variables

This s~ace may be
used uring pro-
cedure execution

}

Absent if any parameter Is
referenced within a nested procedure.

} Absent in SMALL or COMPACT
program or local procedure

}
Only in PUBLIC procedure in
LARGE program

........ New stack marker (BP reg. contents)

} Only in reentrant procedure

Stack pointer may change
during procedure execution

Figure 9-2. Stack Layout During Execution of
Non-Interrupt Procedure Body

9.3 Procedure Epilogue

478-2

To return from the procedure, the compiler inserts a code sequence called the
epilogue. This accomplishes the following steps:

1. If the compiler has used stack locations for temporary storage or local variables
during procedure execution, the stack pointer (SP register) is loaded with the
stack marker (BP register contents). This has the effect of discarding the tem­
porary storage.

2. The old stack marker is restored by popping the stored value from the stack into
the BP register.

3. If the procedure has the PUBLIC attribute and the program size is LARGE, the
old data segment address is restored by popping the stored value from the stack
into the DS register.

4. A RET instruction is used to return from the procedure. If the program size is
SMALL, the RET pops the stored return address (a 16-bit offset) into the IP
register. It also discards any parameters stored on the stack.

If the program size is MEDIUM or LARGE and the procedure is local, the RET per­
forms the same actions described above for a return in the SMALL or COMPACT
case. If the program size is MEDIUM or LARGE and the procedure is public, the
RET pops the stored return-address offset from the stack into the IP register and
then pops the return-address segment address into the CS register. It also discards
any parameters stored on the stack.

9-3

Run-Time Procedure and Assembly Language Linkage PL/M-86

9.4 Value Returned from Typed Procedure

The result of a typed procedure is returned as follows:

Procedure Type Result Returned in:

BYTE AL Register
WORD AX Register
INTEGER AX Register
POINTER (SMALL size)* BX Register
POINTER (COMPACT size) ES and BX Registers
POINTER (MEDIUM size) ES and BX Registers
POINTER (LARGE size) ES and ax Registers
REAL Top of RMU stack

* Under the ROM option, the result is returned in ES and ax registers.

9-4

. (~ CHAPTER 10
RUN-TIME INTERRUPT PROCESSING n

10.1 General

An interrupt is initiated when the CPU receives a signal on its "maskable interrupt"
pin from some peripheral device or control is transferred to an interrupt vector by
the CAUSE$INTERRUPT statement (see Section 9.2.6 of the PL/M-86 Programm­
ing Manual for 8080/8085-Based Development Systems).

Note that the CPU does not respond to this signal unless interrupts are enabled. The
"main program prologue" (code inserted by the compiler at the beginning of the
main program) enables interrupts.

NOTE

If you require your program to begin with interrupts disabled, simply start with the
instruction DISABLE;. Since the 8086 processor does not actually allow an interrupt
to occur until the first machine instruction following the enabling instruction has
been processed, the resulting code sequence will not allow any mask able interrupts
to occur.

if"interrupts are enabled, the following actions take place:

1. The CPU issues an "acknowledge interrupt" signal and waits for the
interrupting device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.

4. Single stepping is disabled by clearing the TF flag.

S. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device. The mechanism for this activation is
described below.

10.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is auto­
matically generated by the compiler for each interrupt procedure. Collectively, the
interrupt vector entries form the interrupt vector. If NOINTVECTOR is used, the
programmer must supply the interrupt vector as explained below in Section 10.4.

The interrupt vector is an absolutely located array of POINTER values beginning at
. location O. Thus the nth entry is at lotation 4*n, and contains the location of a pro­
cedure declared with the INTERRUPT n attribute.

Note that the first and second bytes of each entry contain an offset, while the second
two bytes contain a segment address. The entries are always four-byte pointers, and
the segment address is always used in transferring to the interrupt procedure, even if
the program size is SMALL.

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (lP register contents) are placed on the stack.

10-1

Run-Time Interrupt Processing

10-2

At the point where the procedure is activated, the stack layout is as shown in Figure
10-1.

10.3 Interrupt Procedure Preface

At the beginning of each interrupt procedure, before the prologue described in the
preceding chapter, the compiler inserts an interrupt procedure preface which ac­
complishes the following steps:

1. Push the ES register contents onto the stack.

2. Push the DS register contents onto the stack.

3. Load the DS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the CX register contents onto the stack.

6. Push the DX register contents onto the stack.

7. Push the BX register contents onto the stack.

8. Push the SI register contents onto the stack.

9. Push the DI register contents onto the stack.

10. At this point, a CALL instruction transfers control to the procedure prologue
(described in Chapter 9).

At the point where the procedure prologue gai:t:lS control, the stack layout is as
shown in Figure 10-2.

higher
locations

:..:ffi! <.>1-"'z 1-::>
(/)0

<.>
lower
locations

Flag reg. contents

return segment address

return offset

2 bytes

Present regardless of
program size

1--------1....- Stack pointer

Figure 10-1. Stack Layout at Point Where an Interrupt Procedure
Gains Control 478-3

higher
locations

a::
w
I­
Z
::>
o
<.>
:.::
<.>

"' l-
(/)

lower
locations

Flag reg. contents

return segment address

return offset

ES reg. contents
OS reg. contents
AX reg. contents
ex reg. contents
OX reg. contents
ax reg. contents
SI reg. contents
01 reg. contents I

2 bytes

Present regardless of
program size

CPU status information

....-Stack pointer

Figure 10-2. Stack Layout After Interrupt Procedure Preface
and Before Procedure Prologue 478-4

PL/M-86

PL/M-86 Run-Time Interrupt Processing

After the procedure prologue is executed, at the point where the code compiled from
the procedure body gains control, the stack layout is as shown in Figure 10-3.

higher
location s

a:
w
z
::>
o
()
~
()
<t
(f)

lower
location

s

Flag reg. contents

return segment address
(in interrupted program)

return offset

ES reg. contents
OS reg. contents
AX reg. contents
CX reg. contents
OX reg. contents
BX reg. contents
SI reg. contents
01 reg. contents

return segment address
(in interrupt procedure preface)

return offset

old data segment
address

- old stack marker

local variables

This space may be
used during pro-
cedure execution

} 2 bytes

} Present regardless of
program size

CPU status information

}
Absent in SMALL program
or local procedure

}
Only in PUBLIC procedure in
LARGE program

.-New stack marker (BP reg. contents)

} 0." ,. 'ee""" .,oced.,e

Stack pointer may change
during procedure execution

Figure 10-3. Stack Layout During Execution of Interrupt Procedure Body 478-5

The return from the procedure body transfers control back into the interrupt pro­
cedure preface. At this point the procedure epilogue (see Chapter 9) has restored the
stack to the layout of Figure 10-2. The interrupt procedure preface continues with
the following steps. '

11. Pop the stack into the DI register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the DX register.

15. Pop the stack into the CX register.

16. Pop the stack into the AX register.

17. Pop the stack into the DS register.

18. Pop the stack into the ES register.

19. Execute an IRET instruction to return from the interrupt procedure. This
restores the IP, CS, and flag register contents from the stack.

At this point the stack has been restored to the state it was in before the interrupt oc­
curred, and processing continues normally.

10-3

Run-Time Interrupt Processing

10-4

10.4 Writing Interrupt Vectors Separately

In some cases it may be desirable to write the interrupt vector separately (in
PL/M-86 or assembly language). This can be done by using NOINTVECTOR to
prevent generation of an interrupt vector by the compiler. The separately created
interrupt vector can then be linked into the program.

Creation of a separate explicit interrupt vector requires some care. The @ operator
in PL/M-86 provides access to a procedure's normal (i.e., called) entry point, not to
its interrupt entry point. The interrupt entry point first saves the status of the inter­
rupted program before invoking the interrupt procedure through its normal entry
point. The exact length of these operations depends on the .compilation options
chosen, the attributes of the interrupt procedure, and the version of the compiler
being used. The builtin function INTERRUPT$PTR can be used during execution
to return the actual interrupt entry point. Discussion of this function appears in
Chapter 12 of the PLIM-86 Programming Manual.

The usefulness of a separately created interrupt vector can be seen by considering an
example.

Suppose that two modules for a multimodule program are developed separately.
Both use interrupt procedures, but at the time when the modules are written the
assignment of interrupt numbers to the various interrupt procedures has not been
determined.

The two modules are therefore compiled with the NOINTVECTOR control. When
this is done, the n in an INTERRUPT n attribute is ignored-since normally it
would only be used to put the procedure's entry in the proper location within the
interrupt vector.

Later, when the program is linked together, a separately created interrupt vector can
be linked in. Within this interrupt vector, the placement of the entry fora given
interrupt procedure determines which interrupt number will activate that procedure.

Similarly, you could have a library of interrupt procedures, all compiled with
NOINTVECTOR. Any program could then have any of these procedures linked in,
with a separately created interrupt vector.

The builtin procedure SET$INTERRUPT can be used during execution to create the
correct interrupt vector for each interrupt routine. This procedure is discussed in
Chapter 12 of the PLIM-86 Programming Manual.

PL/M-86

APPENDIX A
THE IXREF PROGRAM

A.1 General

The IX REF program is supplied on the same diskette as the ISIS-II PL/M-86 Com­
piler. It uses intermediate files produced by the compiler under the IXREF control
(see Section 3.2.5) to produce an intermodule cross-reference file.

To use this facility, first compile all modules that are to be cross-referenced, using
the IXREF control in each case. Then run the IXREF program as explained below.

A.2 Invoking the IXREF Program

The IXREF program invocation command has the following general form:

[:device:]IXREF input-list [controls]

where

• device identifies which drive contains the disk with the IXREF program. This
may be omitted if the disk is in Drive O.

• input-list is a list of pathnames of intermediate files produced by the compiler
under the IXREF control. The path names must be separated by commas (spaces
may also be inserted between pathnames). The path names may be in any order
and may use the "wild card" construction (see ISIS-II System User's Guide,
Intel document number 98-306). If any of the specified files is not a valid in­
termediate file, IXREF will type the pathname and the message BAD RECORD
TYPE and will skip the file.

• controls is an optional sequence of one or more controls separated by spaces.
Controls are described below.

If the invocation command is too long to be typed on one line, you can break it by
typing an & character followed by a carriage return. The & must not be within a
pathname or control. IXREF responds to the & with a ** prompt to show that it is
waiting for a continuation line.

A.3 Controls

The control sequence in the IX REF program invocation is optional. If no controls
are used, the output file will have the following characteristics:

• The output path name will be the same as the first pathname in the input-list, but
with the extension IXO.

• No title will be placed at the top of each page.

• All identifiers declared PUBLIC or EXTERNAL will be listed.

• A page width of 120 will be used.

Five controls are provided to modify the characteristics of the output file.

A-I

The IXREF Program

A-2

A.3.1 The PRINT Control

This control has the form

PRINT (pathname)

where pathname is a standard ISIS-II pathname to specify the name of the output
file.

A.3.2 The TITLE Control

This control has the form

TITLE ('string')

where string is a sequence of up to 60 characters to be placed at the top of each page
of output. If the 60-character limit is exceeded, the string will be truncated on the
right.

A.3.3 The PU BLICS Control

This control has the form

PUBLICS

and specifies that only PUBLIC identifiers are to be represented in the output file.

A.3.4 The EXTERNALS Control

This control has the form

EXTERNALS

and specifies that only EXTERNAL identifiers are to be represented in the output
file.

A.3.S The PAGEWIDTH Control

This control has the form

P AG EWI DTH (width)

where width is an unsigned positive integer specifying the maximum line width, in
characters, to be used for listing output. The minimum value for width is 60; the
maximum value is 132.

A.4 The IXREF Output File

Figure A-I shows a typical intermodule cross-reference file produced by IXREF.
Note that a "wild card" construction was used in the input-list to input all files on
Drive I with the extension IXI. Controls were used to specify a title and a path name
for the output file.

PL/M-86

PL/M-86

PL/M-86 COMPILRR STAC""K MOOUI..F. 15 MAY 8J PAGR

ISIS-II PL/II1-86 V2.1 COMPUATION OF 1100ULE STACK
OBJJo:m ~10DULE PLACRD IN :F1 :STACK.OBJ
COMPIL]<;R INVOKF.D BY: PLM36 :F1 :S'fACK.SRC PAGEWIDTH(OO) CODE XRF.F &

TITLR.('STACK 1110DULE') DATE(15 MAY 80)

2

3

4 2
'5 2

6 2

7

S'fACK: 00;
/*This module imnlements a BYTE stack with push and pop*/

0000
0001

000'3
0007
00J9
0000
oooF
0011
0014

fi18
0019

DECLARE S(100) BYT]<;, /*Stack storaF!.e*/
T BYTR. PUBLIC INITIAL (-1); /*Stack index* /

PUSH: PROCEOURN (B) PUBLIC; /*~lshes R onto stack*/
: STATElWiT # ~

PUSH PROC NEAR
55 PUSH BP
8BRC l"lOV BP,SP

DECLARE B BYTE:
S('f:=T+1) = B; /*Increment 'f and store B*/

: STATEMJ'NT # 5
8A066400 l"lOV AL,T
FF.CO INC AL
88066400 MOV '.f.AL
B400 MOY AH,OH
89C~ MOV BX,AX
8A4ID4 fllOV CL,[BP1.B
888FDCOO l"lOV S[BXl,CL
END PUSH:

; STA'1'E~'P'NT # 6
50 pop BP
C20200 Rill 2H

PUSH rnDP

POP: PffiCfi:DURF, BY'1'F, PUBLIC; /*Returns value popped from stack*/
; STATEIIlJ'N'1' # 7

pop PROC NF,AR
001C 55 PUSH BP
001D 8BEC MaY BP,SP

8 2 Rl~riJRN 8«T:=T-1)+1): /*Decrement '1', then return 8('1'+1)*/
; S'rATRlliENT # 8

001F 8A066400 ["lOV ATJ,T
002"5 FFX:8 DEC AI,
0025 00066400 MOV 'r,AI,
002<) B400 MOV AH,OH
002B A9C'3 MOV BX,AX
002D 8A870100 MOV AT"S[BX+1 HI
00'31 50 POP RP
00'32 C'3 Rp.r

9 2 end POP;
STA'l'EIIl"!'NT # 9

illP "NDP

10 END S'rACK: /*JVIodule ends here* /
STATEl"lFN'1' # 10

PL/M-86 COMPILF,R S'TACK MODULF, 1'5 MAY 80 PAGE 2

CROSS-REFERlliG~~ LISTING

DEFN AODR SIZE NAME, ATTRIBUTES, AND RF.FERFNCF.S
-- --- --- -------------

3 0004H B.

7 001GR 23 POP ••
3 OOOOH ~ PUSH
2 OOOOR 100 S ••
1 OOOOH STACK.
2 0064H T ••

l"lODULE INFURMATION:

CODE AREA SIZR = 0033H 51D
CONSTANT AREA SIZR = OOOOH OD
VARIABLE ARFA SIZR = 0065H 101D
MAXIMUM STACK SIZF. = 0004H 4D
16 LINES READ
o PROGRAM ERROR(S)

mD OF PL/M-86 OOMPILATION

BYTR PARAME'l'm AUTOMATIC
4 5

PROCF,DURF, BYTE PUBLIC STACK=OOO2H
PROCF,DURE PUBI,IC STACK=OOO4H
BYTF. ARRAY(100) '5 8
PROCEDURE STACK=OOOOH
BYTE PUBLIC INITIAL '5

8

Figure A-t. Intermodule Cross-Reference Listing

The IXREF Program

A-3

The IXREF Program

A-4

The file contains two listings, the "intermodule cross-reference listing" and the
"module directory." Both are sorted alphabetically. Note that in the illustration,
portions of the intermodule cross-reference listing have been omitted.

Each entry in the intermodule cross-reference listing begins with an identifier in the
left column. In the right column, we have the attributes of the identifier, then a
semicolon followed by the names of all modules in which it is declared PUBLIC or
EXTERNAL.

The first entry after the semicolon is the name of the module in which the identifier
is declared PUBLIC. If no PUBLIC declaration is found, the notation **
UNRESOLVED ** appears. Thus we can see that ACTUALBASEPTR is a WORD
variable declared PUBLIC in module MACRO and EXTERNAL in modules
SYMSCN and STACK.

In the next entry, we see that ACTUALBLOCKENDMARKER is an array of two
BYTE elements, declared PUBLIC in module MACRO.

In the module directory, each entry begins with a module name. In the second col­
umn, we find the name of the PL/M-86 source file from which the module was com­
piled, and in the third column we find the name of the disk where the source file
resides. (A disk is named when it is formatted with the ISIS-II FORMAT
command.)

A.5Error Conditions

IXREF detects the following error conditions in the invocation command:

• Incorrect file specifications in input-list or PRINT control (IXREF terminates
and produces no output).

• Nonexistent file in input-list (if possible, IXREF skips to next pathname and
continues; otherwise it terminates and produces no output).

• Missing parenthesis in PRINT or TITLE control (IXREF terminates and
produces no output).

• Misspelled or unknown controls (IXREF terminates and produces no output).

• PUBLICS and EXTERNALS controls used in same invocation of IXREF
(IXREF terminates and produces no output).

• Repetition of a control (IXREF terminates and produces no output).

A.6 Temporary Files Used by IXREF

While running, IXREF uses the following temporary files:

:device: IXIN. TMP
:device:IXOUT.TMP
:device:MODNM.TMP

where device is the same device specified for the first file in the input-list. These files
are deleted when IXREF terminates. Therefore, if you have any files with these
names on the same device as the first file in the input-list, you must rename them
before running IXREF.

PL/M-86

APPENDIXB
PROGRAM CONSTRAINTS

Certain fixed size tables within the compiler constrain various features of a user pro­
gram to certain maximums. These limits are summarized below:

MAXIMUM:

Nesting of MACRO invocations 5
Nesting of INCLUDE controls 5
Number of nested procedures and DO cases 7
Number of labels on a statement 9
Nesting ,of blocks .. 18
Number of nested typed procedures 20
Number of elements in a factored list 32
Number of members in a structure 64
Structure size .. 64K

Numbers of characters in a line 122
Length ofa string constant .. 255
Number of DO blocks in a procedure 255
Number of cases in a DO CASE block 255
Number of active cases .. 255
Number of EXTERNAL items 255
Number of procedures in a module 255
Segment Size .. 64K

8-1

· ~ APPENDIX C
ERROR MESSAGES n

The compiler may issue five varieties of error messages:

• Source PL/M-86 errors

• Fatal command tail and control errors

• Fatal input! output errors

• Fatal insufficient memory errors

• Fatal compiler failure errors

The source errors are reported in the program listing; the fatal errors are reported on
the console device.

C.1 Source PL/M-86 Errors

Nearly all of the source PL/M-86 errors are interspersed in the listing at the point of
error and follow the general format:

***ERROR #mmm, STATEMENT #nnn, NEAR "aaa", message

where

• mmm is the error number from the list below

• nnn is the source statement number where the error occurs

• aaa is the source text near where the error is detected

• message is the error explanation from the list below; if the
explanation of an error makes a reference to a chapter or section
without an asterisk, it means this book. If an asterisk follows the
reference, it means in the PL/M-86 Programming Manual for
8080/8085-Based Development Systems.

Source error message list:

1. INVALID PLlM-86 CHARACTER

Look near the text flagged for an invalid character, or one that is inappropriate in context.
Edit it out or possibly retype the entire statement.

2. UNPRINTABLE ASCII CHARACTER

Retype the line in question using valid characters.

3. IDENTIFIER, STRING, OR NUMBER TOO LONG, TRUNCATED

Match your intended variable type with the length of the flagged item. For the correct max­
imum lengths, see Sections 2.4*,8.7*, and 14.1 *.

4. ILLEGAL NUMERIC CONSTANT TYPE

This might reflect missing operators, e.g., A=4T instead of 4+ T. For the list of valid types,
see Section 2.4*.

5. INVALID CHARACTER IN NUMERICCONSTANT

For example, 107B and OABCD must cause this error because neither can be valid in any
PLlM-86 interpretation: 7 is not a binary numeral, B may not occur in decimal or octal, and
neither string ends in H. See Section 2.4*.

C-l

Error Messages

C-2

6.ILLEGALMACRO RI;FERENCE,RECURSIVEEXPANSION

Here is an example causing this error:

DECLARE A LIT.ERAL.LY 'B';
DEC LAR EB LITERALLY 'A';

B=4 ; error di~covered here

The erroris that no type can be assigned to vari.ables declared circularly, Le., solely in
terms of each other.

7. LIMIT EXCEEDED: MACROS NESTED TOO DEEPLY

For maximum nesting of DECLAREs, see Appendix B. This error occurs when too many
DECLARE statements refer .back through each other to the one that actually supplies a
type. For example,

DECLARE A LITERALLY 'B';
DE C LA RE B LIT ERA L L Y 'C';
DECLARE C LITERALLY '0';

•. 1

• I

DeCLARE Y LITERALLY 'Z';
DECLARE Z BYTE INITIAL (77);

A=7 ; error discovered here

8. INVALID CONTROL FORMAT

See Chapter 3 for correct formatting of control lines. An example that could cause this
error is

$LIST (MYPROG.LST) ;
because no pathname is expected on this control.

9. INVALID CONTROL

See Chapter 3. Example:

$NXCODE ; probably intended NOCODE

10. ILLEGAL USE OF PRIMARY CONTROL AFTER NON-CONTROL LINE

Primary controls may appear as control lines in your source program, but they must come
first. No other statements may precede them. See Chapter 3.

11. MISSING CONTROL PARAMETER

Certain controls, e.g., DATE, require you to specify a parameter. See Chapter 3.

12. INVALID CONTROL PARAMETER

For example, an illegal pathname for a control like OBJECT. See Chapter 3.

13. LIMIT EXCEEDED: INCLUDE NESTING

See Appendix B for limit. For example, if you INCLUDE a file named A, which INCLUDEs a
file named B, and so on, this error will arise when the limit is exceeded.

14. INVALID CONTROL FORMAT, INCLUDE NOT LAST CONTROL

An INCLUDE may not be followed by another control on the same line, including the
compiler invocation statement. As a control line in your source program, it may not be
followed by a primary control line. See Chapter 3.

15. MISSING INCLUDE CONTROL PARAMETER

The requisite pathname is missing or wrongly specified. See Chapter 3.

16. ILLEGAL PRINT CONTROL

PRINT (:C1:) would be an example, since you cannot print to the console input device. See
Chapter 3.

17. INVALID PATH-NAME

See the ISIS-1/ User's Guide. (underline)

PL/M-86 Error Messages

18. INVALID MULTIPLE LABELS AS MODULE NAMES

The outermost DO-block may not have multiple labels. See Section 9.2* and Chapter 11 *.

19. INVALID LABEL IN MODULE WITHOUT MAIN PROGRAM

A label was found outside any procedure block, without executable statements that would
constitute a main program. Perhaps other intended statements are missing, or this extra
label was coded by mistake.

20. MISMATCHED IDENTIFIER AT END OF BLOCK

See Section 6.1 *. If a label is supplied in an END statement, the label must match that of a
prior DO statement, in fact the first unmatched DO above the END. If multiple labels
appear on a DO, the rightmost must match the END. Sometimes the error involves a con­
fusion of module name with procedure name: see also Chapters 10* and 11 *.

21. MISSING PROCEDURE NAME

Every procedure must have a name. See Section 9.2*.

22. INVALID MULTIPLE LABELS AS PROCEDURE NAMES

Procedures must have exactly one name; no more, no less. See Section 9.2*.

23 INVALID LABELLED END IN EXTERNAL PROCEDURE

An EXTERNAL procedure, by definition, is declared PUBLIC elsewhere. The END of an
EXTERNAL procedure must not be labeled. See Section 9.2.5*.

24. INVALID STATEMENT IN EXTERNAL PROCEDURE

Such a procedure, being defined elsewhere, may not contain executable statements. See
Section 9.2.5*.

25. UNDECLARED PARAMETER

A parameter named in the procedure statement did not get defined in the body of the pro­
cedure. See Section 9.2.1 *.

26. INVALID DECLARATION, STATEMENT OUT OF PLACE

You can intersperse declarations and procedures, but not declarations and executable
statements. See Section 8.1.3* .

27. LIMIT EXCEEDED: NUMBER OF DO BLOCKS (terminal error)

See Appendix B for correct limit.

28. MISSING 'THEN'

In an IF statement, the THEN clause is required. See Section 6.2*.

29. ILLEGAL STATEMENT

This may be due to misspelling or missing parts of afl otherwise valid statement. Look up
your intended statement in the index of this book or the PLIM-86 Programming Manual,
and reread the sections listed.

30. LIMIT EXCEEDED: NUMBER OF LABELS ON STATEMENT

See Appendix B for correct limit.

31. LIMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

See 199.

32. INVALID SYNTAX, TEXT IGNORED UNTIL ';'

Despite repeated trials, the compiler failed to find a reasonable interpretation of this line.
Perhaps keywords were mistyped, or punctuation omitted.

The problem may lie earlier. For example, when an embedded quote mark inadvertently
ends an earlier string, the remainder of the string may be uninterpretable. Or, if a clOSing
quote is missing, subsequent statements may be seen as part of the unclosed string;
when the next quote is encountered, it closes that prior string, leaving inappropriate text
as compiler input.

33. DUPLICATE LABEL

Each label must be unique within its block or scope. Otherwise GOTOs and CALLs would
have ambiguous targets. See Sections 8.6* and 10.3*.

C-3

Error Messages

C-4

34. DUPLICATE PROCEDURE DECLARATION

Procedure names must be unique. See Sections 8.6*,9.1 *,9.2*, and 10.3*.

35. LIMIT EXCEEDED: NUMBER OF PROCEDURES (terminal error)

See Appendix B for correct limit.

36. MISSING PARAMETER

Fewer parameters were supplied in a CALL than were declared in the procedure. See
Section 9.3*.

37. MISSING ')' AT END OF PARAMETER LIST

A parameter list must be enclosed in a pair of parentheses. See Sections 9.1 * and 9.2*.

38. DUPLICATE PARAMETER NAME

A parameter must be declared exactly once. This message indicates that the flagged
parameter already has a definition at this block level, as in

YAR: PROCEDURE (YAR77,YAR78)i
DECLARE YAR77 BYTE i
DECLARE YAR77 BYTE i

Perhaps a different spelling was intended.

39. INVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

The flagged attribute or initialization can only be valid at the module level, not in a pro­
ced u re. See Sections 8.2* , 8.4 * , and Chapter 11 * .

40. DUPLICATE ATTRIBUTE

Attributes should be specified at most once. This message means the compiler has found
a declaration like

DECLARE B BYTE EXTERNAL EXTERNAL i

41. CONFLICTING ATTRIBUTE

The attributes declared are contradictory, as in

DECLARE PAK BYTE WORD i

perhaps resulting from an editing error.

42. INVALID INTERRUPT VALUE

Interrupt numbers must be whole-number constants between 0 and 255. Thus -7 or 272
would be invalid. See Section 9.2.6*.

43. MISSING INTERRUPT VALUE

The interrupt attribute requires a number as above in 42.

44. ILLEGAL ATTRIBUTE, 'INTERRUPT' WITH PARAMETERS

No parameters are allowed in interrupt procedures. See Section 9.2.6*.

45. ILLEGAL ATTRIBUTE, 'INTERRUPT' WITH TYPED PROCEDURE

Interrupt procedures must be untyped. See Section 9.2.6*.

46. ILLEGAL USE OF LABEL

Check the flagged statement against the rules* (see the index*). Here are two types of
statement that might cause this message:

L1: DECLARE DORN BYTE il* cannot label declares *1
L2: DORN = DORN + L2i 1* labels can't be variables *1

47. MISSING ')' AT END OF FACTORED DECLARATION

See Section 3.1 *. The variable list in a factored declaration must be enclosed in a pair of
parentheses.

48. ILLEGAL DECLARATION STATEMENT SYNTAX

See index· for' 'declare" . Possible misspelling or order.

49. LIMIT EXCEEDED: NUMBER OF ITEMS IN FACTORED DECLARE

See Appendix B for correct limit.

PL/M-86

PL/M-86 Error Messages

50. INVALID ATTRIBUTES FOR BASE

A base must be a non-subscripted scalar of type POINTER or WORD. It is not permitted to
have the attribute BASED. See Section 5.4*.

51. INVALID BASE, MEMBER OF BASED STRUCTURE

See 50 above.

52. INVALID BASE, MEMBER OF ARRAY OF STRUCTURES

See 50 above.

53. INVALID STRUCTURE MEMBER IN BASE

Perhaps an insufficiently qualified reference, or a form like

DECLARE LATTICE BASED FRAME.
i.e., no member stated. See Sections 5.2* and 5.3*.

54. UNDECLARED BASE

A variable was declared BASED using an undeclared identifier. See 50 above.

55. UNDECLARED STRUCTURE MEMBER IN BASE

The named structure does not contain the member given as the base. See 50 and 53
above.

56. INVALID MACRO TEXT, NOT A STRING CONSTANT

Possibly a missing apostrophe. See Sections 8.7* and 2.5*.

57. INVALID DIMENSION, ZERO ILLEGAL

Declaring an array to contain zero scalars is invalid. See Section 5.1 *.

58. INVALID STAR DIMENSION IN FACTORED DECLARATION

See Section 8.4*. Star dimensions are for initializations.

59. ILLEGAL DIMENSION ATTRIBUTE

Perhaps negative, or larger than 64K bytes. See Section 5.1 *.

60. MISSING ")' AT END OF DIMENSION

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Section 5.1 * .

61. MISSING TYPE

A type is required in declaring a variable. See Chapter 3*.

62. INVALID STAR DIMENSION WITH 'STRUCTURE' OR 'EXTERNAL'

See Sections 8.2* and 8.4*. Star dimensions are for initialization.

63. INVALID DIMENSION WITH THIS ATTRIBUTE

Dimension is not allowed in declaring a label. See Section 8.6.1 *.

64. MISSING STRUCTURE MEMBERS

Perhaps no structure members were named, or a reference was insufficiently qualified.
See Sections 5.2* and 5.3* .

65. MISSING ")' AT END OF STRUCTURE MEMBER LIST

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Section 5.2* and 5.3* .

66. INVALID STRUCTURE MEMBER, NOT AN IDENTIFIER

Possibly a misspelling, e.g., coding

DECLARE AIR STRUCTURE (F4 BYTE, 5 BYTE);
The 5 probably should have been F5. See Sections 5.2*, 5.3* .

~. DUPLICATE STRUCTURE MEMBER NAME

In the example of 66 above, saying F4 BYTE, F4 BYTE would make subsequent references
to AIR.F4 ambiguous. See Sections 5.2*,5.3*.

C-5

Error Messages

C-6

68. LIMIT EXCEEDED: NUMBER OF STRUCTURE MEMBERS

See Appendix B for correct limit.

69. INVALID STAR DIMENSION WITH STRUCTURE MEMBER

Star dimension must not be used with structures. See Section 8.4*.

70. INVALID MEMBER TYPE, 'STRUCTURE' ILLEGAL

Structures·must not contain structures. See Chapter 5*.

71. INVALID MEMBER TYPE, 'LABEL' ILLEGAL

Labels may not be structure members. See Chapter 5*.

72. MISSING TYPE FOR STRUCTURE MEMBERS

A type must accompany the declaration of each member of a structure. See Section 5.2*.

73. INVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

The flagged attribute or initialization can only be valid at the module level, not in a pro­
cedu re. See Sections 8.2* , 8.4 * , and Chapter 11 * .

74. INVALID STAR DIMENSION, NOT WITH 'DATA' OR 'INITIAL'

Array declarations using the asterisk must use either DATA or INITIAL also. See Section
8.4* .

75. MISSING ARGUMENTOF 'AT', 'DATA', OR 'INITIAL'

These attributes require arguments to be effective. See Sections 8.3*, 8.4*, 8.5*, and
12.6.2* .

76. CONFLICTING ATTRIBUTE WITH PARAMETER

Certain attributes are not allowed in declaring a parameter, e.g. PUBLIC, EXTERNAL,
DATA, INITIAL, AT, BASED.

77. INVALID PARAMETER DECLARATION, BASE ILLEGAL

A procedure parameter cannot be declared BASED. See Section 9.2.1 *.

78. DUPLICATE DECLARATION

The flagged item already has a definition declared at this block level.

79. ILLEGAL PARAMETER TYPE

Parameters may not be declared of type structure or array. See Section 9.2.1 *.

80. INVALID DECLARATION, LABEL MAY NOT BE BASED.

See Section 8.6.2* .

81. CONFLICTING ATTRIBUTE WITH 'BASE'

Examples of attributes conflicting with base include AT, DATA, INITIAL, PUBLIC, and
EXTERNAL. See "based variable" references in the index*.

82. INVALID SYNTAX, MISMATCED '('

Parentheses must balance in any statement using them, Le., same number of '(' as of ')'.
See section 5.1 * .

83. LIMIT EXCEEDED: DYNAMIC STORAGE (terminal error)

Too many symbols were defined. Eliminate unused symbols or break this module into
several modules.

84. LIMIT EXCEEDED: BLOCK NESTING

See Appendix B for correct limit.

85. LONG STRING ASSUMED CLOSED AT NEXT SEMICOLON OR QUOTE

Perhaps an intended clOSing apostrophe is missing. See Appendix B for string length
limit. Unbalanced quotes often cause multiple apparent errors due to "swallowing" later
required words or punctuation as if part of a string. See also 32 above.

86. LIMIT EXCEEDED: SOURCE LINE LENGTH

See Appendix B for correct limit.

PL/M:"S6

PL/M-86 Error Messages

87. MISSING 'END', END-OF-FILE ENCOUNTERED

The source file ended before a needed 'END' statement (for a prior DO) was encountered.
This might indicate an editing problem or a string not closed off. See Sections 1.2.3*,
1.2.4*, and 6.1 *.

88. INVALID PROCEDURE NESTING, ILLEGAL IN REENTRANT PROCEDURE

Reentrant procedures may not contain nested procedures. See Section 9.2.7*.

89. MISSING 'DO' FOR MODULE

A module must be a labeled simple DO-block. See Section 11.1 *.

90. MISSING NAME FOR MODULE

Every module must have exactly one name, i.e., the label on the outermost DO-block. See
Chapter 11 * .

91. ILLEGAL PAGELENGTH CONTROL VALUE

See Section 3.3.2.

92. ILLEGAL PAGEWIDTH CONTROL VALUE

See Section 3.3.3.

93. MISSING 'DO' FOR 'END', 'END' IGNORED

More ENDs were found than prior DOs. See references in 87.

94. ILLEGAL CONSTANT, TOO LARGE FOR CONTEXTUALLY DETERMINED TYPE

See Section 4.5.2*.

95. ILLEGAL RESPECIFICATION OF PRIMARY CONTROL IGNORED

See Section 3.1.

96. COMPILER ERROR: SCOPE STACK UNDERFLOW

Unrecoverable error. Trying a different copy of the compiler on a different drive might
reveal the first copy had somehow gotten clobbered or gone bad. Contact INTEL.

97. COMPILER ERROR: PARSE STACK UNDERFLOW

See96.

98. INCLUDE FILE IS NOT A DIRECT ACCESS FILE (terminal error)

See 3.7.1. See also the ISIS-II User's Guide.

99. INVALID REAL CONSTANT

Examples: 1.7F or 1.7. See Chapter 14 * .

100. INVALID STRING CONSTANT IN EXPRESSION

See Section 4.1.1 *.

101. INVALID ITEM FOLLOWS DOT OR AT SIGN OPERATOR

Examples: @5, @.S1, @'THERE'. See Sections 3.5.1 *,3.5.2*, and Chapter 5*.

102. MISSING PRIMARY OPERAND

An identifier, number, string, address, or other primary was expected. Example: A = A +;
when you meant A = A + B; See Sections 4.1.4* and 4.1.5*.

103. MISSING ')' AT END OF SUBEXPRESSION

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Sections 4.1.4*,4.1.5*.

104. ILLEGAL PROCEDURE INVOCATION WITH DOT OR AT SIGN OPERATOR

"CALL @MYPROC" is an example. See Sections 9.3* and 3.5.1 *.

105. UNDECLARED IDENTIFIER

Every identifier must be declared. See Section 3.1.1 * .

106. ILLEGAL PAGELENGTH (4) AND SUBTITLE COMBINATION

See Sections 3.3.2 and 3.3.6.

C-7

Error Messages

C-8

107. INVALIDUSE OF '@' WITH LOCAL PROCEDURE

See Sections 5.4.1 and 5.5.1. Dot operator should be used instead.

108. INVALID USE OF'.' WITH PUBLIC OR EXTERNAL PROCEDURE

@ operator should be used instead. See Sections 5.4.1,5.5.1.

109. Not used.

110. INVALID LEFT OPERAND OF QUALIFICATION, NOT A STRUCTURE

For example, a reference of the form GNU.F1 where GNU was not declared a structure.
See Chapter 5* .

111. INVALID RIGHT OPERAND OF QUALIFICATION, NOT IDENTIFIER

For example, GNU.6 where GNU is a valid, declared structure; 6, however, is not an iden­
tifier. See Section 2.2* and Chapter 5*.

112. UNDECLARED STRUCTURE MEMBER

For example, KAPI.HORN where KAPI is a valid, declared structure but HORN was never
declared. See Chapter 5* .

113. MISSING ')' AT END OF ARGUMENT LIST

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See also Chapter 12* for requirements of built-in procedures.

114. INVALID SUBSCRIPT, MULTIPLE SUBSCRIPTS ILLEGAL

For any array TING, references of the form TING (2,4) or TING (3,7,9,6) are invalid because
of multiple subscripts. Only references of one subscript are valid, e.g., TING (5). See Sec­
tion 5.1 *.

115. MISSING ')' AT END OF SUBSCRIPT.

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Section 5.1 * .

116. MISSING '=' IN ASSIGNMENT STATEMENT

The flagged statement looked like an assignment statement but the equal sign was miss­
ing. See Section 4.6*. Examples:

SUM SUM + TING(I)
R1,R2,R3 CIRC/TWOPI

117. MISSING PROCEDURE NAME IN CALL STATEMENT

See Section 4.3*. Perhaps the left parenthesis for the parameter list was inadvertently
placed before the procedure name, as in

CALL (MOVE 3, ORIG, FINAL);
instead of

CALL MOVE (3, ORIG, FINAL);

118. INVALID INDIRECT CALL, IDENTIFIER NOT A WORD OR POINTER SCALAR

See Section 9.3.1 *. Only word or pointer scalars can be used for indirect calls. This
excludes word or pointer expressions, byte or real scalars, all structures, and all arrays.

119. LIMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

Too many complex expressions, cases, and procedures. Break it up into smaller
modules.

120. LIMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

Too many subexpressions and typed procedure calls. Break it up.

121. LIMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

See 120.

122. LIMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

See 119.

PL/M-86

PL/M-86 Error Messages

123. INVALID DOT OR AT SIGN OPERAND, BUILT-IN PROCEDURE ILLEGAL

References to built-in procedures may not use the dot or @ operators. See Chapter 12*.

124. MISSING ARGUMENTS FOR BUILT-IN PROCEDURE

See Chapter 12* for required arguments.

125. ILLEGAL ARGUMENT FOR BUILT-IN PROCEDURE

See 124.

126. MISSING ')' AFTER BUILT-IN PROCEDURE ARGUMENT LIST.

Parentheses must balance in any statement using them, Le., same number of '(' as of ')'.
See Chapter 12* .

127. INVALID SUBSCRIPT ON NON-ARRAY

Subscripts are permitted only on identifiers declared as arrays. Check spelling consis­
tency. See Chapter 5* .

128. INVALID LEFT-HAND OPERAND OF ASSIGNMENT

For example, PROCEDURE = 4 or INWORD(7) = 9. See Section 4.6*.

129. ILLEGAL 'CALL' WITH TYPED PROCEDURE

Typed procedures are validly invoked only by use in an expression, not by a CALL. See
Sections 9.2.2*,9.2.4*, and 9.3*.

130. ILLEGAL REFERENCE TO OUTPUT OR OUTWORD FUNCTION

These may be used only to the left of an equal sign, i.e., as the left part of an assignment
statement. See Section 12.4.2*.

131. ILLEGAL REFERENCE TO UNTYPED PROCEDURE

Untyped procedures must be invoked by a CALL statement; references to such pro­
cedures are not permitted in expressions. See references in 129 above.

132. ILLEGAL USE OF LABEL

See references under "label" in index*.

133. ILLEGAL REFERENCE TO UNSUBSCRIPTED ARRAY

In the context of the flagged statement, the array reference requires a subscript. See
Sections 3.5.1 *,3.8.4*,9.3.1 *, and Chapter 5*.

134. ILLEGAL REFERENCE TO UNSUBSCRIPTED MEMBER ARRAY

See references in 133. Here a structure member is an array and the reference requires a
subscript.

135. ILLEGAL REFERENCE TO AN UNQUALIFIED STRUCTURE

See references in 133. This statement was ambiguous as to which structure or member
was intended.

136. INVALID RETURN FOR UNTYPED PROCEDURE, VALUE ILLEGAL

An untyped procedure does not return a value, so its RETURN statement may not specify
one. See Section 9.2.3* .

137. MISSING VALUE IN RETURN FOR TYPED PROCEDURE

A typed procedure must return a value, so its RETURN statement must specify one. See
reference in 136.

138. MISSING INDEX VARIABLE

An iterative DO block requires an index variable. See Section 6.1.4*.

139. INVALID INDEX VARIABLE TYPE

Only BYTE, WORD, or INTEGER are valid. See Section 6.1.4*.

140. MISSING '=' FOLLOWING INDEX VARIABLE

Something like DO 117 TO 34, when it should say DO I =17 TO 34. See Section 6.1.4*.

C-9

Error Messages

C-lO

141. MISSING 'TO' CLAUSE

A statement like DOI= 17~ither doesn't need the DO, or it does need a TO clause. See
Section 6.1.4*.

142. MISSING IDENTIFIER FOLLOWING GOTO

See Sections 6.3.2* and 10.3*. The target destination was absent.

143.INVAUD REFERENCE FOLLOWING GOTO, NOT A LABEL

The identifier following GOTO must be a label; the flagged item was declared otherwise.
See references in142.

144. INVALID GOTO LABEL, NOT AT LOCALOR MODULE LEVEL

See references in 142.

145. MISS.ING 'TO' FOLLOWING 'GO'

GO cannot appear alone. See references in 142.

146. MISSING ')' AFTER 'AT' RESTRICTED EXPRESSION

The expression following an AT must be enclosed in parentheses. Parentheses must
balance in any statement using them, i.e., same number of '(' as of ')'. See Section 8.3*.

147. MISSING IDENTIFIER FOLLOWING DOT OR AT SIGN OPERATOR

See Section 3.5*,3.6*, and Section 5.4.1,5.4.2 in this manual.

148. INVALID QUALIFICATION IN RESTRICTED REFERENCE

See Sections 3.5.1 * and 8.3*.

149. INVALID SUBSCRIPTING IN RESTRICTED REFERENCE

See 148.

150. MISSING ')' AT END OF RESTRICTED SUBSCRIPT

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Sections 4.1.4*,4.1.5*, and 5.1 *.

151. INVALID OPERAND IN RESTRICTED EXPRESSION

For example, PLlM-86 reserved words and predeclared identifiers would be invalid. See
Appendices C*, D*, and page 12-1 *.

152. MISSING ')' AFTER CONSTANT LIST

Parentheses must balance in any statement using them, i.e., same number of '(' as of ')'.
See Sections 4.1.4*,4.1.5*,8.4*,8.5*.

153. INVALID NUMBER OF ARGUMENTS IN CALL, TOO MANY

See Section 9.3*. The number of actual parameters sup.plied in a CALL must equal the
number of formal parameters declared in the procedure. See also Chapter 12* for the
requirements of built-ins.

154. INVALID NUMBER OF ARGUMENTS IN CALL, TOO FEW

See 153.

155. INVALID RETURN IN MAIN PROGRAM

A main program must have no returns. See Section 9.2.3* and Chapter 11 *.

156. MISSING RETURN STATEMENT IN TYPED PROCEDURE

A typed procedure must return a value, so it must have a RETURN statement, with a value
of the declared type. See Section 9.2.3* .

157. INVALID ARGUMENT, ARRAY REQUIRED FOR LENGTH OR LAST

See Section 12.1 *. These built-ins need an array name.

158. INVALID DOT OR AT SIGN OPERAND, LABEL ILLEGAL

A variable-reference is required, not a label. See Section 3.5.1 *.

159. COMPILER ERROR: PARSE STACK UNDERFLOW.

See 96.

PL/M-86

PL/M-86 Error Messages

160. COMPILER ERROR: OPERAND STACK UNDERFLOW.

See 96.

161. COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE

See 96.

162. COMPILER ERROR: OPERATOR STACK UNDERFLOW

See 96.

163. COMPILER ERROR: GENERATION FAILURE

See 96.

164. COMPILER ERROR: SCOPE STACK OVERFLOW

See 96.

165. COMPILER ERROR: SCOPE STACK UNDERFLOW

See 96.

166. COMPILER ERROR: CONTROL STACK OVERFLOW

See 96.

167. COMPILER ERROR: CONTROL STACK UNDERFLOW

See 96.

168. COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT

See 96.

169. ILLEGAL FORWARD CALL

A procedure (other than reentrant) must be declared before it is referenced in a CALL or
expression. See Section 9.2*.

170. ILLEGAL RECURSIVE CALL

A non-REENTRANT procedure is not allowed to call itself. See Section 9.2.7*.

171. INVALID USE OF DELIMITER OR RESERVED WORD IN EXPRESSION

Examples: 1=)+9 or I = DO + 9. See Section 2.2* and Appendix C*.

172. INVALID LABEL: UNDEFINED

No definition for this label was found. See Sections 6.3* and 8.6*.

173. INVALID LEFT SIDE OF ASSIGNMENT: VARIABLE DECLARED WITH DATA ATTRIBUTE

See Section 8.5*. The item is really a constant; unchangeable.

174. INVALID NULL PROCEDURE

A procedure must contain at least a semicolon.

175. ILLEGAL POINTER ARITHMETIC IN RESTRICTED EXPRESSION

Pointer arithmetic is not allowed. See Section 4.5.2*.

176. INVALID ABSOLUTE ADDRESS, TOO LARGE

Absolute addresses must not exceed 1048575. See Section 8.3*.

177. Not used

178. ILLEGAL REAL ARITHMETIC IN RESTRICTED EXPRESSION

Real arithmetic is not allowed in restricted expressions. See Section 8.4*.

179. ILLEGAL REAL CONSTANT IN 'AT' CLAUSE RESTRICTED EXPRESSION

The restricted expression in an AT clause may not contain a real constant. See Sections
3.5.1 * and 8.3*.

180. INVALID OPERATOR OROPERAND, TypE CONFLICTS WITH EXPECTEDTYPE

See Section 4.5.2*.

C-ll

Error Messages

C-12

181. LIMIT EXCEEDED: CONSTANT OR CODE SEGMENT SIZE

See Appendix B for correct limit.

182. ILLEGAL REFERENCE TO ABSOLUTE ADDRESS WITH SMALL OPTION SPECIFIED

See Section 5.2.1.

183. INVALID 'AT' RESTRICTED REFERENCE, EXTERNAL ATTRIBUTE CONFLICTS WITH
PUBLIC

See Sections 8.2* and 8.3* . For example,

DECLARE DARTH BYTE EXTERNAL ;
DECLARE VADER BYTE PUBLIC AT (.DARTH)

184. INVALID EXPRESSION, TWO SUCCESSIVE RELATIONAL OPERATORS

See Section 4.3*.

185. LIMIT EXCEEDED: NUMBER OF EXTERNAL ITEMS

See Appendix B for correct limit.

186. INVALID RESTRICTED EXPRESSION, TYPE CONFLICTS WITH TARGET

See Section 8.4* for appropriate initialization values.

187. ILLEGAL INITIALIZATION TO A BASED OR AUTOMATIC ADDRESS

See Section 8.4 *, 8.5*, and page 12-1 * .

188. MISSING ENDIF OPTION

See Section 3.10.

189. MISSING OR INVALID CONDITIONAL COMPILATION PARAMETER

See Section 3.10.

190. MISSING OR INVALID CONDITIONAL COMPILATION CONSTANT

See Section 3.10.

191. MISPLACED ELSE OR ENDIF OPTION

See Section 3.10.

192. MISPLACED ENDIF OPTION

See Section 3.10.

193. CONDITIONAL COMPILATION PARAMETER NAME TOO LONG, TRUNCATED

See Section 3.10.

194. MISSING OPERATOR IN CONDITIONAL COMPILATION EXPRESSION

See Seeton 3.10.

195. INVALID CONDITIONAL COMPILATION CONSTANT TOO LARGE

See Section 3.10.

196. INVALID UNDEFINED CONDITIONAL COMPILATION PARAMETER

See Section 3.10.

197. LIMIT EXCEEDED: SAVE NESTING

The limit is 5. See Section 3.7.2.

198. MISPLACED RESTORE OPTION

RESTORE can only work if there has been a prior SAVE. See Section 3.7.2.

199. LIMIT EXCEEDED: PROCEDURE COMPLEXITY FOR OPTIMIZE(2) (terminal error)

The combined complexity of expressions, user labels, and compiler generated labels is
too great. Simplify as much as pOSSible, perhaps breaking the procedure into several.

200. LIMIT EXCEEDED: STATEMENT SIZE

The statement is too large for the compiler. Break it up.

PL/M-86

PL/M-86 Error Messages

201. INVALID DO CASE BLOCK, AT LEAST ONE CASE REQUIRED

See Section 6.1.5*.

202. LIMIT EXCEEDED: NUMBER OF ACTIVE CASES

See Appendix B for correct limit.

203. LIMIT EXCEEDED: NESTING OF TYPED PROCEDURE CALLS

See Appendix B for correct limit.

204. LIMIT EXCEEDED: NUMBER OF ACTIVE PROCEDURES OR DO CASE GROUPS

See Appendix B for correct limit.

205. ILLEGAL NESTING OF BLOCKS, ENDS NOT BALANCED

For every DO, an END is needed. See Section 6.1 *.

206. LIMIT EXCEEDED: CODE SEGMENT SIZE

See Appendix B for correct limit.

207. LIMIT EXCEEDED: SEGMENT SIZE

See Appendix B for correct limit.

208. LIMIT EXCEEDED: STRUCTURE SIZE

See Appendix B for correct limit.

209. ILLEGAL INITIALIZATION OF MORE SPACE THAN DECLARED

The number of initialization values exceeds the number of declared elements. See
Sections 8.4* and 8.5*.

210. INVALID RESTRICTED EXPRESSION, VALUE TOO LARGE FOR TARGET

DECLARE BOZO BYTE INITIAL (259) would be an example, because the maximum byte
constant is 255.

211. INVALID IDENTIFIER IN 'AT' RESTRICTED REFERENCE

Example: DECLARE LOGOS WORD AT (@START); START must be a valid pointer or word
expression. See Section 8.3* .

212. INVALID RESTRICTED REFERENCE IN 'AT', BASE ILLEGAL

See Section 8.3* . Based variables cannot be used in AT clauses.

213. UNDEFINED RESTRICTED REFERENCE IN 'AT'

The variable used in the AT clause was not already declared. Example: DECLARE APPLE
BYTE AT (.B); with B undefined. See Section 8.3*.

214. COMPILER ERROR: INVALID OPERATION

See 96.

215. COMPILER ERROR: EOF READ IN FINAL ASSEMBLY

See 96.

216. COMPILER ERROR: BAD LABEL ADDRESS

See 96.

217. ILLEGAL INITIALIZATION OF AN EXTERNAL VARIABLE

External variables may be initialized only where they are declared PUBLIC. See Section
8.2*

218. LIMIT EXCEEDED: REAL EXPRESSION COMPLEXITY

The REAL stack has 8 registers. Heavily nested use of REAL functions with REAL expres­
sions as parameters could get excessively complex. See Chapter 14*.

219. COMPILER ERROR: REAL STACK UNDERFLOW

See 96 and 218. See also Chapter 14*.

C-13

Error Messages

C-14

220. LIMIT EXCEEDED: BASIC BLOCK COMPLEXITY

This means you have avery long list of statements without labels, procedures, if's, gotos,
etc. Either break the program into several modul'es or try adding labels to Some of your
statements.

221. LIMIT EXCEEDED: STATEMENTSIZE

The statementis too large for the compiler. Break itup.

222. INVALID ABSOLUTE LOCATION FOR PUBLIC WITHOUT LARGE OPTION

See Sections 5.2.1,5.3,5.4.1. Absolute locations for PUBLICS are supported only under
the LARGE option.

223. SUBSCRIPTED VARIABLE NOT ALLOWED IN FACTORED DECLARATION

See Section 3.1 *.

224. WARNING: INITIALATTRIBUTE USED WITH ROM OPTION

See Sections3~8, 5.2.1, 5:3, 5.4.1, and 5.5.1.

225. ILLEGAL INDIRECT REFERENCE TO A CONSTANT WHILE USING ROM OPTION

See Section 3.8.

Note: If a terminal error is encountered, program text beyond the point of error is
not compiled. A terminal error message will appear at the beginning of the program
listing and at the point of error in the program listing.

C.2 Fatal Command Tail and Control Errors

Fatal command tail errors are caused by an improperly specified compiler invoca­
tion command or an improper control. The errors which may occur here are as
follows:

ILLEGAL COMMAND TAIL SYNTAX ORVALUE
UNRECOGNIZED CONTROL IN COMMAND TAIL
INCLUDE FILE IS NOT A DIRECT ACCESS FILE
INVOCATION COMMAND DOES NOT END WITH <CR><LF>
INCORRECT DEVICE SPECIFICATION
SOURCE FILE NOT A DIRECT ACCESS FILE
SOURCE FILE NAME INCORRECT
SOURCE FILE EXTENSION INCORRECT
ILLEGALCOMMAND TAIL SYNTAX
MISPLACED CONTROL: WORKFILES ALREADY OPENED

C.3 Fatallnpul/Oulput Errors

Fatal input/output errors occur when the user incorrectly specifies a pathname for
compiler input or output. These error messages are of the form:

PLIM~86ISIS ERROR-­
FILE:
NAME:
ERROR:
COMPILATION TERMINATED

C.4 Fatal Insufficient Memory Errors

The fatal insufficient memory errors are caused by a system configuration with not
enough RAM memory to support thecornpiler.

PL/M-86

PL/M-86 Error Messages

The errors that may occur due to insufficient memory are as follows:

NOT ENOUGH MEMORY FOR COMPILATION
DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY

C.s Fatal Compiler Failure Errors

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please report it to Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 95051, Attn: Software Marketing Department. The errors
falling into this class are as follows:

SYNC FAILURE READING GLOBALS
UNKNOWN FATAL ERROR
96. COMPILER ERROR: SCOPE STACK UNDERFLOW
97. COMPILER ERROR: PARSE STACK UNDERFLOW

159. COMPILER ERROR: PARSE STACK UNDERFLOW
160. COMPILER ERROR: OPERAND STACK UNDERFLOW
161. COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE
162. COMPILER ERROR: OPERATOR STACK UNDERFLOW
163. COMPILER ERROR: GENERATION FAILURE
164. COMPILER ERROR: SCOPE STACK OVERFLOW
165. COMPILER ERROR: SCOPE STACK UNDERFLOW
166. COMPILER ERROR: CONTROL STACK OVERFLOW
167. COMPILER ERROR: CONTROL STACK UNDERFLOW
168. COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT
214. COMPILER ERROR: INVALID OPERATION
215. COMPILER ERROR: EOF READ IN FINAL ASSEMBLY
216. COMPILER ERROR: BAD LABEL ADDRESS
219. COMPILER ERROR: REAL STACK OVERFLOW

C-15

APPENDIX D
PL/M-86 MODELS OF SEGMENTATION

The segments, classes, and groups in the PL/M-86 compiler output module vary
according to the size control specified to the compiler. The segment, class, and group
names generated by the PL/M-86 compiler for the SMALL, COMPACT, MEDIUM,
and LARGE model as shown below. Recall, however, that under the ROM option, the
constant section is merged into the CODE segment in every model.

Table D-l. Models of Segmentation

Small Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Compact Model

Segment Name Class Name Group Name

CODE CODE CGROUP
CONST CONST
DATA DATA DGROUP
STACK STACK none
MEMORY MEMORY none

Medium Model

Segment Name Class Name Group Name

modname CODE CODE none
CONST CONST
DATA DATA DGROUP
STACK STACK
MEMORY MEMORY

Large Model

Segment Name Class Name Group Name

modname CODE CODE none
modname DATA DATA none
STACK STACK none
MEMORY MEMORY none

D-l

PL/M-86 Models of Segmentation

D-2

Table D-l. Models of Segmentation (Cont'd.)

Number of Segments Allowed

Size Code Constant Data Stack Memory Total Control RAM ROM

SMALL one part * part part part 2

COMPACT one part * part one one 4

MEDIUM many part * part part part ~2

LARGE many * * many one one ~4

Legend: part - these sections are combined (with sections of other types) to
produce single segment.

one - sections combined (with sections of the same type) to produce
single segment.

many - sections not combined.

* - section has been combined with the CODE segment by the
compiler.

PL/M-86

arithmetic overflow, 3-8
assembly language linkage, 9-1
AT attribute, 4-1, 9-2
AUTOMATIC attribute, 7-3

based variable, 4-1
block nesting depth, B-1
BYTE data, 8-1

calling sequence, 9-1
CODE control, 3-3
code section, 4-1
COMPACT, 3-20, 5-3
Compact case, 5-3
compilation summary, 7-3
compiler code files, 2-2
compiler controls, 3-1, 3-2
compiler Elisk, 2-1
COND control, 3-24
conditional compilation, 3-21 to 3-24
constant section, 4-1
constraints, B-1
continuation lines, 2-1
control defaults, 3-2
control lines, 3-1
control parameter, 3-1
cross-reference listing, 7-2

DATA attribute, 4-1, 9-2
data section, 4-1
DATE control, 3-5
DEBUG control, 3-17
defaults, 3-2

EJECT control, 3-6
ELSE control, 3-23
ELSE element, 3-23
ELSEIF control, 3-23
ELSEIF element, 3-23
ENDIF control, 3-23
errors detected by IXREF, A-4
errors in PL/M-86 code, C-lff
EXTERNAL attribute, A-2, A-4
EXTERNALS control

(IXREF program), A-2

floating-point linkage, 6-1

general controls, 3-1

IF control, 3-:·23
IF element, 3-23
INCLUDE control, 3-18
input files, 2-2
INTEGER data, 8-1
intermediate files, 3-4
intermodule cross-reference listing, A-2
interrupt, 10-1
INTERRUPT$PTR, 10-4

INTERRUPT attribute, 10-1, 10-4
interrupt procedure preface, 10-2
INTVECTOR control, 3-7
invoking the compiler, 2-1
IXREF control, 3-4
IXREF program, A-I ff

LARGE control, 3-20
case, 5-5
restrictions, 5-5

LEFTMARGIN control, 3-7
library file, iii
line printer, 3-3
line width, 3-5
LIST control, 3-3
listing format controls, 3-4
listing selection controls, 3-2
listings, 7-1

main program module, 4-1
main program prologue, 4-1
MEDIUM control, 3-20

case, 5-3
restrictions, 5-4

memory concepts, 5-1
memory section, 4-2
models of segmentation, D-l
multimodule program, 10-4
multiple incarnations of reentrant

procedures, 4-2

nested IF elements, 3-23
nesting of included files, 3-18, 7-2
NOCODE control, 3-3
NOCOND control, 3-24
NODEBUG control, 3-17
NOINTVECTOR control, 3-7, lO-lff
NOIXREF control, 3-4
NOLIST control, 3-3
NOOBJECT control, 3-17
NOOVERFLOW control, 3-8
NOPAGING control, 3-5
NOPRINT control, 3-2
NOSYMBOLS control, 3-4
NOTYPE control, 3-17
NOXREF control, 3-3
number of segments allowed, D-2

object code, 2-2
OBJECT control, 3-17
object file, 2-2
object file controls, 3-7
object module, 4-1
optimization controls, 3-8
OPTIMIZE control, 3-8 to 3-16
output files, 2-2, A-2
output format controls, 3-4
overflow condition, 3-8
OVERFLOW control, 3-8

INDEX

Index-l

Index

Index-2

page eject, 3-6
page heading, 3-6
page numbering, 3-5.
P AGELENGTH control, 3-5
P AGEWIDTH control, (PL/M-86

compiler), 3-5
P AGEWIDTH control, (lXREF

program), A-2
PAGING control, 3-5
parameter, 3-1
POINTER data, 8-1
primary controls, 3-1
PRINT control (IXREF program), A-2
PRINT control (PL/M-86 Compiler), 3-2
printed output, 3-2
procedure call, 9-1
procedure epilogue, 9-3
procedure linkage, 9-1
procedure prologue, 9-2
program counter, 7-2
program listing, 7-1
program size, 3-19, 5-1
program size constraints, B-1, D-l
PUBLIC attribute, 9-2, A-2, A-4
PUBLICS control (IX REF program), A-2

RAM/ROM Option, 3-19
REAL data, 4-1,8-1
reentrant attribute, 9-2
reentrant procedure, 4-1,4-2,9-2
relative address, 7-2
RESET control, 3-22
RESTORE control, 3-19
results returned by procedures, 9-4
run-time data representations, 8-1
run-time conventions, 9-1

SAVE control, 3-19
section (of object module), 4-1
SET$INTERRUPT, 10-4
SET control, 3-22
size constraints, 5-1-5-6, 8-1, B-1, D-l
SMALL case, 5-1

compatibility with PL/M-80, 5-3
restrictions, 5-2

SMALL control, 3-20
source error list, C-l ff
source file, 2-1
source format controls, 3-4, 3-7
source inclusion control, 3-18
stack section, 4-2
stack size, 4-2
statement number, 7-2
storage allocation, 5-1
structures, 8-1
SUBTITLE control, 3-6
symbol, 3-4
symbol listing, 7-2
symboliC debugging, 3-17
SYMBOLS control, 3-4
system diskette, 1-1

temporary storage, A-4
TITLE control (lXREF program), A-2
TITLE control (PL/M-86 Compiler), 3-6
TYPE control, 3-17

WORD data, 8-1
work files, 2-2
WORKFILES control, 3-17
Writing interrupt vectors separately, 10-4

XREF control, 3-3

PL/M-86

ISIS-II PLlM-86 Compiler Operator's Manual
9800478-04 Rev. 0

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___ DATE ___ _

TITLE __ _

COMPANYNAME/DEPARTMENT __ _
ADDRESS ____________ ~ __ ____

CITY ___ _ STATE ______________________ _ ZIP CODE ___________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

II NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

