
iAPX 86,88 FAMILY UTILITIES
USER'S GUIDE

Order Number: 121616-004

Copyright @ 1980,1981, 1982 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP inte1 iSBC MULTICHANNEL
CREDIT Intelevision iSBX MUL TIMODULE
i inteligent Identifier iSXM Plug-A-Bubble
FICE inteligent Programming Library Manager PROMPT
ICE Intellec MCS RMX/80
iCS Intellink Megacbassis RUPI
im iOSP MICROMAINFRAME System 2000
iMMX iPDS MULTIBUS UPI
Insite iRMX

A749/1082/5K DO

REV. REVISION HISTORY DATE

-001 Original issue. 9/80

-002 Adds information to support V2.0 of LINK86, 11/81
LOC86, and LIB86 and V 1.0 of CREF86; corrects
technical and typographical errors.

-003 Adds examples for iRMX 86 operating environment. 5/82

-004 Adds examples for Series IV operating environment. 10/82

iii

PREFACE I

This manual describes how to use the iAPX 86,88 Family utilities:

• LINK86

• CREF86

• LIB86

• LOC86

• OH86

These products run on 8086- and 8088-based systems. They are used by program
mers developing programs with ASM86, ASM89, PL/M-86, P ASCAL-86,
FORTRAN-86, or any other language translator that produces object code compat
ible with the iAPX 86,88 Family of processors. The iAPX 86,88 Family of pro
cessors inlcudes 8086, 8088, 8087, and 8089 processor chips. Because the 8086 is the
first member of this family, this manual uses 8086 generically to represent the entire
family.

This manual presumes familiarity with the conventions of the operating system
under which the iAPX 86,88 utilities are being executed. It also presumes familiarity
with the basic requirements of individual languages and translators.

This manual is divided into the following chapters:

• Chapter I, Introduction: a summary of the relationship among the utilities and
basic concepts governing their use

• Chapter 2, LINK86: how to invoke, use the controls for, and read the printed
listing from LINK86

• Chapter 3, CREF86: how to invoke, use the controls for, and read the output
listing from CREF86

• Chapter 4, LIB86: how to invoke and use the commands for LIB86

• Chapter 5, LOC86: how to invoke, use the controls for, and read the printed
listing from LOC86

• Chapter 6, OH86: how to invoke OH86

This manual also contains several appendixes, meant for quick access to the follow
ing information:

• iAPX 86,88 absolute object file format definitions (Appendix A)

• Hexadecimal-decimal co~version information (Appendix B)

• The effect of available memory on the performance of LINK86, CREF86,
LIB86, and LOC86 (Appendix C)

• Summaries of iAPX 86,88 Family utility controls and error messages:

• LINK86 (Appendix D)

• CREF86 (Appendix E)

• LIB86 (Appendix F)

• LOC86 (Appendix G)

• OH86 (Appendix H)

v

vi

NOTE

The following appendixes address issues dependent on specific
operating systems, such as operating environments, related
publications, and examples. These appendixes contain foldout
pages, designed to be opened out to your right and used in conjunc
tion with general instructions provided in the chapters and other
appendixes. On these foldout pages you will find sample invoca
tions for the iAPX 86,88 Family utility controls and commands.

• Additional information for Series III users (Appendix I)

• Additional information for iRMX 86 users (Appendix J)

• Additional information for Series IV users (Appendix K)

Once you have gained sufficient familiarity with the basic principles of iAPX 86,88
Family utilities operation, you will find the following publication convenient for
quick syntax reference: ~

• iAPX 86,88 Family Utilities Pocket Reference, order number 121669

Before reading this manual, ensure that you are familiar with the following terms
and conventions.

Notational Conventions

punctuation

{}

[]

UPPERCASE

italic

pathname

directory-name

filename

other than the following must be entered if required by the
control syntax.

indicates that one and only one of the syntactic items
contained within the braces is required.

indicates that the syntactic item or items contained within the
brackets are optional.

indicates that the preceding syntactic item may be repeated an
indefinite number of times. (The ellipsis is often used within
brackets and with a comma" [, ...]" to indicate that preceding
item may be repeated, but each repetition must be separated
byacomma.)

separates various options within the brackets [] or braces
{}.

indicates that these characters must be entered exactly as
shown.

indicates a meta symbol that may be replaced with an item
that fulfills the rules for that symbol. The actual symbol may
be any of the following:

is a valid designation for a file; in its entirety, it consists of a
directory-name and a filename.

is that portion of a pathname that acts as a file locator by
identifying the device and! or directory containing the
filename.

is a valid name for the part of a pathname that names a file.

minimum-size
maximum-size
paragraph
offset
address

segment name
module name
class name
group name
overlay name
public symbol
variable name

system-id

pathname1,
pathname2, ...

Vx.y

are numbers and must follow Intel standards for number
representation (see PL/M-86 or ASM86). Use the H suffix for
hexadecimal, B suffix for binary, 0 or Q suffix for octal and
D or nothing for decimal.

are defined by the 8086 object file formats described in
Appendix A. They may be up to forty characters
long and may contain any of the following characters in any
order:

A, B, C, D, E, F, G, H, I, J, K, L,M, N, 0, P, Q, R, S, T, U, V,
W, X, Y, Z, 0,1,2,3,4,5,6,7,8,9, ?, @, :,.,_,

Black background is used in examples to indicate the user's
entries.

is a generic label placed on sample listings where an operating
system-dependent name would actually be printed.

are generic labels placed on sample listings where one or more
user-specified path names would actually be printed.

is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

vii

CHAPTER 1
INTRODUCTION

PAGE

Program Development .. I • 1-1
Overview of the Utilities 1-2

External References and Public Symbols 1-2
Use of Libraries 1-3
Relative Addressing 1-4
The LINK86/LOC86 Process 1-4

An 8086 Overview 1-5
Memory 1-5
8086 Addressing Techniques 1-5
Segments 1-6

Segment Alignment 1-7
Segment Combining 1-8
Segment Locating 1-8

Classes 1-9
Groups 1-9
Overlays 1-10
Position-Independent-Code and Load-Time-

LocatableCode 1-10

CHAPTER 2
LINK86
LINK86 Invocation Line 2-1
LINK86 Controls 2-2

ASSIGN 2-4
ASSUMEROOT 2-5
BIND/NOBIND 2-6
COMMENTS/NOCOMMENTS 2-7
FASTLOAD/NOFASTLOAD 2-8
INITCODE 2-9
LINES/NOLINES 2-10
MAP/NOMAP 2-11
MEMPOOL 2-12
NAME 2-13
OBJECTCONTROLS 2-14
ORDER 2-15
OVERLAY/NOOVERLAY 2-16
PRINT/NOPRINT 2-17
PRINTCONTROLS 2-18
PUBLICS/NOPUBLICS 2-19
PUBLICSONL Y 2-20
PURGE/NOPURGE 2-21
RENAMEGROUPS 2-22
SEGSIZE 2-23
SYMBOLS/NOSYMBOLS 2-24
SYMBOLCOLUMNS .. 2-25
TYPE/NOTYPE 2-26

LINK86's Print File 2-27
The Header 2-27
The Link Map 2-27
The Group Map 2-28
The Symbol Table 2-29
Error Messages 2-30

CONTENTS I

CHAPTER 3
CREF86

PAGE

CREF86 Invocation Line
CREF86 Controls

PAGE LENGTH
PAGEWIDTH
PRINT
TITLE

3-2
3-2
3-3
3-4
3-5
3-6

CREF86's Print File 3-7
Header
Warnings
Module List
Symbol Cross-Reference Information

CHAPTER 4
LIB86

3-7
3-7
3-8
3-8

LIB86 Invocation 4-1
LIB86 Commands 4-1

ADD .. '.................................... 4-2
CREATE 4-3
DELETE' 4-4
EXIT...................................... 4-5
LIST 4-6

CHAPTERS
LOC86
LOC86 Invocation Line .. 5-1
LOC86 Controls . 5-1

ADDRESSES 5-3
BOOTSTRAP 5-4
COMMENTS/NOCOMMENTS 5-5
INITCODE/NOINITCODE 5-6
LINES/NOLINES 5-7
MAP/NOMAP 5-8
NAME.................................... 5-9
OBJECTCONTROLS 5-10
ORDER 5-11
PRINT/NOPRINT 5-12
PRINTCONTROLS 5-13
PUBLICS/NOPUBLICS 5-14
PURGE/NOPURGE 5-15
RESERVE 5-16
SEGSIZE 5-17
START '" 5-18
SYMBOLS/NOSYMBOLS 5-19
SYMBOLCOLUMNS 5-20

LOC86's Print File 5-21
The Symbol Table 5-21
The Memory Map 5-23
Error and Warning Messages 5-24

LOC86's Algorithm for Locating Segments 5-24
Absolute Segments!....................... 5-24
Segment Ordering 5-24

ix

· ~ n

PAGE
Assigning Addresses to Relocatable Segments 5-25

LOC86's Algorithm for Locating Modules
Containing Overlays 5-25

CHAPTER 6
OH86

APPENDIX A
iAPX 86,88 ABSOLUTE OBJECT
FILE FORMATS

APPENDIX B
HEXADECIMAL-DECIMAL
CONVERSION

APPENDIXC
THE EFFECT OF AVAILABLE
MEMORY ON LINK86, CREF86,
LIB86, AND LOC86

APPENDIX D
LINK86 CONTROLS AND
ERROR MESSAGES

APPENDIXE
CREF86 CONTROLS AND
ERROR MESSAGES

TABLE TITLE PAGE

2-1
3-1
4-1
5-1
D-l

Summary of LINK86 Controls 2-2
Summary of CREF86 Controls 3-2
Summary of LIB86 Commands 4-1
Summary of LOC86 Controls 5-1
Summary of LINK86 Controls D-l

x

CONTENTS (Cont'd.)

APPENDIX F
LIB86 COMMANDS AND
ERROR MESSAGES

APPENDIXG
LOC86 CONTROLS AND
ERROR MESSAGES

APPENDIXH
OH86 ERROR MESSAGES

APPENDIX I
ADDITIONAL INFORMATION FOR
INTELLEC SERIES III USERS

APPENDIXJ
ADDITIONAL INFORMATION FOR
iRMX 86 USERS

APPENDIXK
ADDITIONAL INFORMATION
FOR SERIES IV USERS

TABLES I

TABLE

E-l
F-l
G-l
J-l

TITLE PAGE

Summary of CREF86 Controls E-l
Summary of LIB86 Commands F-l
Summary of LOC86 Controls G-l
iRMX 86 Memory Requirements J-l

FIGURE

1-1

1-2
1-3
1-4
1-5
1-6
1-7

2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5
5-1
5-2
5-3
5-4

6-1
1-1

1-2

TITLE PAGE

The iAPX 86,88 Family Development
Process 1-1

Library Linkage by LINK86 1-3
The LINK86/LOC86 Process 1-4
8086 Addressing 1-6
Segment Physical Relationships 1-7
Segment Alignment Boundaries 1-8
Memory Configuration of Program

with Overlays ... 1-10
LINK86 Input and Output Files 2-1
LINK86 Print File Header 2-27
LINK86 Link Map 2-27
LINK86 Group Map 2-28
LINK86 Symbol Table 2-29
CREF86 Input and Output Files 3-1
Header of Cross-Reference Listing 3-7
Warning Messages on CREF86 Listing 3-7
Module List on CREF86 Listing 3-8
Symbol Cross-Reference Information 3-9
LOC86 Input and Output Files 5-1
LOC86 Symbol Table 5-22
LOC86 Memory Map 5-23
LOC86's Address Assignments for

Overlays .. 5-26
OH86 Input and Output Files 6-1
LINK8§ Print File for Bound

Object Module .. 1-3
LOC86 Print File for Bound Object

Module ... 1-4

FIGURE

1-3
1-4
1-5

1-6

1-7
1-8
1-9
J-l
J-2

J-3

J-4
J-5
J-6
K-l

K-2
K-3
K-4

K-5

K-6
K-7
K-8

ILLUSTRATIONS I

TITLE PAGE

LINK86 Default Print File 1-5
CREF86 Cross-Reference Listing 1-6
LINK86 Listing for Program with

Overlays .. ;............ 1-9
LOC86 Listing for Program with

Overlays ... 1-10
LINK86 Map for Root File 1-11
Module Information for Overlays 1-12
Memory Organization for "Example 6 1-13
CREF86 Cross-Reference Listing J-4
LINK86 Listing for Program with

Overlays J-7
LOC86 Listing for Program with

Overlays ... J-8
LINK86 Map for Root File J-9
Module Information for Overlays J-1O
Memory Organization for Example 4 J-ll
LINK86 Print File for Bound

Object Module .. K-3
LINK86 Default Print File K-5
CREF86 Cross-Reference Listing K-5
LINK86 Listing for Program with

Overlays ... K-8
LOC86 Listing for Program with

Overlays ... K-I0
LINK86 Map for Root File K-ll
Module Information for Overlays K-12
Memory Organization for Example 6 K-13

xi

SOURCE
FILES

CHAPTER 1
INTRODUCTION

Program Development

Program development is a process of varying complexity. The complexity depends
on the language used to develop code, the complexity of the end product, and the
tools chosen.

Figure 1-1 shows the development process and the tools available for development
of an iAPX86,88 Family-based product.

The tools described in this manual are:

• LINK86, which is a linkage and binding tool

• CREF86, which provides a cross-reference of information on symbols in several
modules

• LIB86, which is the librarian function for 8086 object modules

• LOC86, which is the relocation tool

• OH86, which converts 8086 absolute object information to the hexadecimal
format

r-------,
r-----------..I: OPERATING:

• SYSTEM •

r-------, •
f-+-:TRANSLATOR

•
• :--.
• L _______ .1

OBJECT
MODULES

".OBJ"

WITH BIND

r--- ---,
• •
: LlNK86 • ~:
• • L _______ .!

r-------, • •
: CREF86 :

• • L---i---.I
CROSS·

REFERENCE
LISTING

r-------
• I

LINKED
OBJECT
MODULE
".LNK"

: L1B86·-_----1

r-------,
I I

: LOCS6 :
I I L _______ .1

r-------,
I DEBUGGER:
I OR
: MONITOR: I. _______ J

ABSOLUTE
OBJECT
MODULE

· .;~--------------------------~ :.-------.1

Figure 1-1. The iAPX86,88 Family Development Process

• LOADER • L _______ .1

r-------'I • •
• IN-CIRCUIT·
: EMULATOR:
L _______ .1

r-------,
• I
: OH86 :

• • L---l---.I

ABSOLUTE
HEX FILE
".HEX"

r-------,
• I • HEX •
• LOADER • • • L _______ .1

121616-1

1-1

Introduction

1-2

iAPX 86,88 Family Utilities

Overview of the Utilities

ASM86, ASM89, PL/M-86, PASCAL-86, FORTRAN-86, and other translators as
well as LINK86 and LOC86 produce 8086 object modules. The language translators
produce 8086 relocatable object modules that must usually be processed by utilities
before execution. (Under certain circumstances the translators can produce absolute
object modules, but this is rare and does not contribute to modular design.) LINK86
combines 8086 object modules, and LOC86 converts relocatable object modules into
absolute object modules. OH86 converts 8086 absolute object modules to 8086 hexa
decimal format.

LINK86 combines a list of 8086 object modules into a single object module and
attempts to match all external symbol declarations with their public symbol defini
tions in library modules. (LIB86 is the utility used to create and maintain program
libraries.) The output of LINK86 is a relocatable object module. However, when
specified in the controls, LINK86 produces a load-time-Iocatable (L TL) object
module; an LTL module can be executed on an 8086-based system. (See the descrip
tion of LTL modules later in this chapter.) Whether the LINK86 output is an L TL or
a relocatable object module, it can serve as input to LOC86.

CREF86 provides a means for producing a cross-reference listing of public and
external symbols in mUltiple 8086 object modules. The object modules may include
library modules. The output produced by CREF86 should help the programmer to
identify how symbols will be resolved by LINK86, given the same input files.

LOC86 converts relocatable (or L TL) object modules to absolute object modules.
Absolute object modules contain references that require the module segments to be
placed at particular places in 8086 memory.

The sequence in which the segments in the input modules are combined and absolute
addresses assigned to segments is determined by the controls supplied and the order
in which the modules are listed in the LINK86 and LOC86 invocations.

External References and Public Symbols

An address field that refers to a location in a different object module is called an
external reference. An external reference differs from a relative address because the
translator that generates the modules knows nothing about the location of the
referenced symbol. You must declare these references as external when coding a pro
gram. This tells the translator, and subsequently the relocation and linkage (R&L)
utilities, that the target of the reference is in a different module.

A module that contains external references is called an unsatisfied module. To
satisfy the module, a module with a public symbol that matches the external symbol
must be found. Associated with a public symbol in a module is an address that
allows other modules, with the appropriate external reference, to reference the
module with the public symbol. You must define these symbols as public when
coding the program. This tells the source translator and the R&L utilities that other
modules can reference the symbol.

If there are external references that are not satisfied by public symbols, warning
messages are issued and the resulting module remains unsatisfied.

iAPX 86,88 Family Utilities

Use of Libraries

Libraries aid in the job of building programs. The library manager program, LIB86,
creates and maintains files containing object modules.

LINK86 and CREF86 treat library files in a special manner. If you specify a library
file in the input to these utilities, they search the library for modules that satisfy
unresolved external references in the input modules already read. This means that
libraries should be specified after the input modules that contain external references.
If a module included from the library has an external reference, the library is
searched again to try to satisfy the reference. This process continues until all external
references have been the subject of a search of all public symbols in the library
modules.

When LINK86 and CREF86 search a library, they normally include only library
modules that satisfy external references in the output. If no external references are
satisfied by a library, no modules from the library are included in the LINK86 out
put module or the CREF86 output listing. However, LINK86 and CREF86 provide
the means to unconditionally include a library module even if there is no external
reference to it. Figure 1-2 shows LINK86 handling of a library file.

MODA

MODB

MODC

MODD

MODE

MODF

MODG

MODH

MODI

MODJ

MODK

INPUTS

MOD1

PUBLICA

PUBLIC ••

PUBLICC

PUBLIC D

PUBLIC E

PUBLIC F

PUBLlCG

PUBLIC H

PUBLIC I

PUBLIC J

PUBLIC K

LINK 86

MODC

MODG

Figure 1-2. Library Linkage by LINK86

OUTPUT
MODULE

121616-2

Introduction

1-3

Introduction

1-4

iAPX 86,88 Family Utilities

Relative Addressing

The relative addresses of instructions and data in program modules are assigned by
the source translator. The addresses are relative to the beginning of the segment in
which they reside. The relative address is actually the number of bytes from the
beginning of the segment.

After LINK86 combines all the input segments, LOC86 can be used to assign
absolute memory addresses to all relative addresses. The resulting output module
can only be executed when its segments are loaded at the absolute addresses assigned
by the command. If LINK86 is used to create a bound object module, LOC86 is not
needed to execute the program.

The LINK86/LOC86 Process

Although controls are not required for LINK86 and LOC86 execution, the com
mands invoking them may contain controls that affect their output. The controls
make it possible to change the defaults for module combination, address assign
ment, and output information.

The inputs are object modules in disk files. The input modules can contain relative
addresses, absolute addresses, external references, and public symbols. The input
modules must be in the 8086 object module format such as is generated by 8086
translators and LINK86 and LOC86 themselves.

LINK86 combines segments from the input modules, and for LTL object modules
LINK86 orders segments in groups and assigns offsets. LOC86 orders the segments
and assigns absolute addresses according to the controls specified with the command
and/or the default algorithms. Both commands output the module when processing
is completed along with any error messages and diagnostic information. Figure 1-3
shows the LINK86/LOC86 process.

INPUTS
LlNK86

COMMAND
AND

CONTROLS

LlNK86 / LOC86
OUTPUTS INPUT

----/
LTL
OR

LINKED
OBJECT
MODULE

LOC86
COMMAND

AND
CONTROLS

Figure 1-3. The LINK86/LOC86 Process

LOCATED
ABSOLUTE

OBJECT
MODULE

121616-3

iAPX 86,88 Family Utilities

An 8086 Overview

To use the R&L commands you must have an understanding of the following
concepts:

• Addresses, given as offsets into segments, which must be translated into
absolute memory addresses, or base offsets

• Segment definitions, which identify contiguous pieces of information, usually
code or data

• Class definitions, which identify segments that share common attributes and
should be kept together

• Group definitions, which identify segments that must be kept within a 64K byte
range of memory

• Overlay definitions, which identify modules that will be loaded in memory at
different times during execution.

• Load-time-Iocatable object modules

Memory

The 8086 can address up to a maximum of a megabyte of memory. In decimal a
megabyte is 1,048,576 bytes. Memory addresses are always shown in hexadecimal. A
megabyte of memory has the addresses: OH through OFFFFFH.

Not all 8086-based systems will have a full megabyte of memory. Many systems will
have gaps in the memory that is available. The different portions of memory will
probably be implemented with different types of memory chips. The system monitor
or supervisor is usually stored in ROM or PROM chips. Because it is not modified
by execution it can be a permanent part of the system. This prevents the need to load
it each time the system is turned on. The data that is referenced often is kept in high
speed RAM because it is modified frequently. It may be practical to keep data that is
referenced less often in slower-speed memory. The size and composition of a
system's memory is totally dependent on the application the system serves.

Linkage and relocation is designed to handle the linking and locating of your pro
gram, no matter how your 8086-based system memory is implemented. It provides
very flexible segment placement within any given memory configuration.

8086 Addressing Techniques

The 8086 addresses memory with a 20-bit address that is constructed from a segment
address and a 16-bit offset from that segment address. This means that with a single
segment address, 64K bytes of memory is directly addressable by changing only the
offset.

A hardware segment address is a 20-bit address. But the segment address is con
strained such that the segment is placed on a boundary that is a multiple of 16 (IOH).
The segment address can be set to any hexadecimal address ending in 0:

OH
010H
020H

OFFFFOH

Introduction

1-5

Introduction

1-6

iAPX 86,88 Family Utilities

Because the low four bits of the 20-bit segment address are always zero, the segment
address can be represented with only 16 bits.

The segment address is kept in one of four 16-bit segment registers. Because there
are four segment registers, the 8086 can, at any moment, access 256K (4 x 64K) bytes
of memory. The full megabyte of memory is accessed by changing the values in the
segment registers. Figure 1-4 shows the 8086 addressing concept.

SEGMENT
REGISTER OFFSET

8003H I

Segments

1234H I
I .. 12340H

+ 8003H • I
1A343H EFFECTIVE 20-BIT ADDRESS

64K BYTES CAN BE
ADDRESSED BY
CHANGING THE

OFFSET ONLY

MEMORY r----------_ FFFFFH

64K BYTES

~---------~OH

Figure 1-4. 8086 Addressing 639-4

Programs comprise pieces called segments, which are the fundamental units of
linkage and relocation. The basic divisions have functional purposes related to the
hardware configuration of memory. The portions of programs that are to be kept in
ROM or PROM can be put in separate segments from the portions that will be kept
in RAM.

The 8086 Assembler allows the programmer to name the segments of the program
being developed. The PL/M~6 compiler may generate predefined names for
segments.

A segment is a contiguous area of memory that is defined at translation time
(assemble or compile). When defined, a segment does not necessarily have a fixed
address or size. A fixed address is assigned to a segment during the locate function.
The size can be changed by combining segments and by a control that specifies a
specific size. Some translations may produce absolute object information, with
absolute addresses and a specific segment size.

iAPX 86,88 Family Utilities

LINK86 combines all segments with the same complete (segment, class and overlay)
name and combination type (memory, stack, etc.) from all input modules. The
ordering of segments is done on the basis of these combined segments. The manner
in which segments are combined depends on the alignment of the segments (which is
described in the next topic) and a combining attribute associated with the segment.

When we refer to combining segments, we are talking about how the segments will
be loaded in memory, not how they will be stored in the output module. The
segments in the LOC86 output module contain addresses that determine where they
will be loaded in memory. The segments reside in the output module in the same
order as they were in the input modules. Figure 1-5 shows the physical relationships
between the input modules, output module, and loaded program.

INPUT
MODULES

seG A

seG B

seG C

seG D

seG E

SEG F

OUTPUT
MODULE

ON DISKETTE

SEG A

SEG B

SEG C

SEG D

SEG E

SEG F

OUTPUT MODULE
LOADED IN
MEMORY

/ seG B I

/ SEG E /

Figure 1-5. Segment Physical Relationships

Segment Alignment

639-5

A segment can have one (and in the case of the inpage attribute, two) of five align
ment attributes:

• Byte, which means a segment can be located at any address

• Word, which means a segment can be located only at an address that is a
multiple of two, starting from address OH

• Paragraph, which means a segment can be located only at an address that is a
multiple of 16, starting from address 0

• Page, which means a segment can be located only at an address that is a multiple
of 256, starting from address 0

• Inpage, which means a segment can be located at whichever of the preceding
attributes apply, plus must be located so that it does not cross a page boundary

Figure 1-6 shows the segment alignment boundaries.

Any alignment attribute except byte can result in a gap between combined segments.
For example, when two page-aligned segments are combined, there will always be a
gap, unless the first happens to be an exact mUltiple of 256 bytes in length.

Introduction

1-7

Introduction

1-8

iAPX 86,88 Family Utilities

t I 1 I 2 I 3 I • I 5 I 6 I ,I, I 9 H~/ci 0 I~ F 1
I BYTE

WORD = 2 BYTES ~, ______________ ~~ ______________ J

PARAGRAPH = 16 BYTES

50

60

70
PAGE = 256 BYTES

80

90

AO

80

co

DO

EO I I I I I I I I I I I I I

Figure 1-6. Segment Alignment Boundaries 639-6

Segment Combining

Segments containing data and code are combined end to end. There may be a gap
between the segments if the alignment characteristics require it. The relative
addresses in the segments are adjusted for the new longer segment.

There are two special cases of segment combination: stack segments and memory
segments. Such translators as PL/M-86 define these segments with the names
STACK and MEMORY. With ASM86 you must define them by adding the STACK
or MEMORY parameter to the SEGMENT directive.

When stack segments are combined, they are overlaid but their lengths are added
together.

When memory segments are combined, they are overlaid with their low addresses at
a common address. The length of the combined memory segment is the length of the
largest segment that was combined. No relative address adjusting is necessary. Nor
mally the memory segment is located above (at a higher memory address) the rest of
the program segments if no controls are used to override this.

To make sure that stack segments are combined correctly, you should always give
them the same segment name in each module. The same is true of memory segments.
If you are going to link assembly language routines to PL/M-86 routines you should
give them the names STACK and MEMORY to be compatible with PL/M-86.

Segment Locating

Segments are located in the order in which they are encountered in the input
modules. If classes (described in the next section) are defined, the segments from a
class are located/tOgether. The locating algorithm can be changed by using LOC86
locating controls.

iAPX 86,88 Family Utilities

One variation to the sequential locating of segments is how the MEMORY segment
is located. When the first segment with the memory attribute is encountered, it is
placed last in the list of segments. This means that after all other segments are
located, the MEMORY segment will be assigned the highest address in the output
module.

NOTE

The MEMORY segment may not get located at the top of the module if its
name or class name appears in any LOC86 control (other than SEGSIZE) or
it has the absolute attribute.

Classes

A class is a collection of segments. When segments are defined in assembly
language, a class name can be specified. The segments generated by such translators
as PL/M-86 are generated with predefined class names. Any number of segments
can be given the same class name. Class names can extend beyond module bound
aries; the same class name can be used in different modules that are to be combined.

The primary purpose of classes is to collect together (in an arbitrary order) segments
that share a common attribute and to manipulate this collection at locate-time by
specifying only the class name.

All segments with the same class name are located together in the memory address
space of the output module. (You can override class collection by specifying the
location of segments with the LOC86 ORDER control or LOC86 ADDRESSES
control.)

Classes give you a second means of collecting like segments in the output module.
The first is giving segments the same name. If you are developing several modules
that are to be combined, you may want to give the segment containing executable
code the name CODE in each module. If there are several differently named
segments within a module that contain executable code, you may want to give these
segments the class name of CODE that causes them to be located together but not
combined. (The same name can be used for segments and classes.)

Groups

A group is also a collection of segments. Groups define addressing range limitations
in 8086 object modules. A group specifies a collection of segments that must be
located within a 64K byte range. This means that the entire group of segments can be
addressed with offsets from a single segment register. Or, to put it another way, the
segment register need not be changed when addressing any segment in a group. This
permits efficient addressing within the module.

Group addressing always begins at an address that is a multiple of 16 (i.e., a
paragraph boundary). R&L does not manipulate segments of a group to make sure
they fall within a 64K byte range. However, if they do not fit in the range, a warning
message is issued.

The segments included in a group do not have to be contiguous in the output
module. The only requirement is that all the segments defined in the group must
totally fall within 64K bytes of the beginning address of the group.

Introduction

1-9

Introduction

1-10

iAPX 86,88 Family Utilities

Overlays

Sometimes your 8086 program is too large to fit into the memory available on the
system. Overlays permit programs to be larger than the available memory.

Typically, an overlay is composed of code and data that is executed in one phase of a
program's execution, but not used at any other time. Once executed the memory
used by this code can be overwritten with code and data used in an other phase.
Sections of code that occupy the same part of memory at different times during
execution are called overlays.

Part of an overlaid program is always resident in memory; it usually comprises the
main program module, frequently used routines, and the overlay loader. This part
of the program is called the root. Figure 1-7 illustrates the memory configuration of
one program that uses overlays.

,-----,
, SPACE ,

L T---
, RESERVED

L7 ---
, FOR ROOT

L 7 ---
, MODULE

L ___ _

I3FfEB0J0WJr - - - - - - - -7
OVERLAY SPACE I ,

-----------'

Figure 1-7. Memory Configuration of Program with Overlays 639-7

Position-Independent Code and Load-Time
Locatable Code

An L TL (load-time-Iocatable) program can be loaded anywhere in memory (assum
ing alignment attributes are honored). Code and data addresses are assigned by the
system loader. References to segment bases (segment registers) are permitted. The
loader, when it determines where to locate each segment, must resolve these
references to the segment bases. Before executing the LTL program, the loader must
also initialize the segment registers.

A PIC (position-independent-code) program is an L TL program, but it contains no
references to segment bases .. To execute these programs the loader need only place
the program in memory (recognizing alignment attributes) and initialize the segment
registers and go. No fixup of segment bases is required.

CHAPTER 2
LINK86

LINK86 combines 8086 object modules and resolves references between
independently translated modules. LINK86 takes a list of files and controls as input
and produces two output files: a print file and an object file.

Figure 2-1 illustrates the linkage process. The input files may be any object module
(output from a translator, LINK86, LOC86 or an 8086 library file). The print file
contains diagnostic information. The output object file is a bound load-time
locatable module or simply a relocatable module.

This chapter provides details concerning the LINK86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LINK86 controls and information on error and warning messages that may be
produced, refer to Appendix D. For details concerning symbol table space limita
tions, refer to Appendix C.

INVOCATION
LINE CONTROLS

NSOLE CO
ME SSAGES

I-
r-L---

BOUND
OBJECT
MODULE

PRINT FILE

r WITH SYMBOL
TABLE ".MP1"

OBJECT
MODULE I BIND

1----...... 1 L1NK86 r- - - - - - - - - NO BIND - - - -

I

L-l-~

CONSOLE
MESSAGES

LINKED
OBJECT
MODULE
".LNK"

PRINT
FILE

".MP1"

, Figure 2-1. LINK86 Input and Output Files

LINK86 Invocation Line
The general syntax for the invocation line is:

[directory-name] lIN K 8 6 input Iist[T 0 output file] [controls]

121616-4

The input list is one or more modules to be linked together into a single object
module:

pathname[(module name[, ...]> H, ...]
Unless a module name is specified, all modules in a pathname are included. If the
pathname is a library file, any modules named in parentheses are included in the out
put file even if they do not contain public symbol definitions for external symbols
declared elsewhere in the input list.

2-1

LINK86

2-2

iAPX 86,88 Family Utilities

The input list may also contain the control PUBLICSONL Y before selected
pathnames. If you wish to include a file called PO or PUBLICSONL Y, ensure that
the filename is preceded by a directory-name in order to distinguish it from the con
trol or its abbreviation.

The order of modules in the input list affects the order of segments in the output file.

TO output file designates the file to receive the linked object module. If output file is
not specified, then output is directed to a file that has the same path name as the first
element in the input list, but its extension is .LNK. If the first element in the list is a
PUBLICSONLY control, then the first pathname in its argument is used for the
default name.

If the BIND control is specified, then the default name for the output file has no
extension, and the object module can be executed without locating.

The controls can be any subset of the controls specified in the next section.

LINK86 Controls
The controls are described in table 2-1.

Table 2-1. Summary of LINK86 Controls

Control Abbrev. Default

ASSIGN((variable(address)} [, ...]) AS Not applicable

ASSUMEROOT(pathname) AR Not applicable

BIND BI NOBIND

NO BIND NOBI

COMMENTS CM COMMENTS

NOCOMMENTS NOCM

FASTlOAD Fl NOFASTlOAD

NOFASTlOAD NOFl

INITCODE IC Not applicable

LINES II LINES

NOLINES NOLI

MAP MA MAP

NOMAP NOMA

MEMPOOl(min-size[,max-size]) MP Not applicable

NAME(module name) NA Not applicable

OBJECTCONTROlS(OC Not applicable
{LINES I NOLINES I
COMMENTS I NOCOMMENTS I
SYMBOLS I NOSYMBOlS I
PUBLICS [EXCEPT(symbol [, ...])] I
NOPUBLICS [EXCEPT(symbol [, ...])] I
TYPE I NOTYPE I
PURGE I NOPURGE}[, ...])

ORDER({group ({segment[\class[\overlay)]} OD Not applicable
[, ...])}

[, ... J)

iAPX 86,88 Family Utilities

Table 2-1. Summary of LINK86 Controls (Cont'd.)

Control Abbrev. Default

OVERLA Y[(overlay)] OV NOOVERLAY

NOOVERLAY NOOV

PRINT[(path name)] PR PRINT(object file.MP1)

NOPRINT NOPR

PRINTCONTROLS(PC Not applicable
{LINES I NOLINES I
COMMENTS I NOCOMMENTS I
SYMBOLS I NOSYMBOLS I
PUBLlCS[EXCEPT(symbol[, ...])] I
NOPUBLICS [EXCEPT(symbol [, ...])] I
TYPE I NOTYPE I
PURGE I NOPURGE}[, ... j)

PUBLICS [EXCEPT(symbol [, ...])] PL[EC] PUBLICS

NOPU BLICS [EXCEPT(symbo/[, ... j)] NOPL[EC]

PUBLlCSONLY(pathname[, ... j) PO Not applicable

PURGE PU NOPURGE

NOPURGE NOPU

RENAMEGROUPS({group TO group} [, ... j) RG Not applicable

SEGSIZE({segment[\ class [\ overlay)] SS Not applicable
(min-size[,[max-size]])} [, ... j)

SYMBOLS SB SYMBOLS

NOSYMBOLS NOSS

SYMBOLCOLUMNS({1121314}) SC SYMBOLCOLUMNS(2)

TYPE TV TYPE

NOTYPE NOTY

If you specify a control more than once in a single invocation line, only the last ver
sion entered counts. For example, if you enter NOMAP on the invocation line and
then later decide you want a link map, you can specify MAP. The ASSIGN control,
however, is an exception to this general rule.

The following controls are effective only when the BIND control is specified:

FASTLOAD
MEMPOOL
ORDER
PRINTCONTROLS
SEGSIZE
SYMBOLCOLUMNS

The following control is effective only when the BIND control is NOT specified:

INITCODE

The following control is effective only when the OVERLAY control is specified:

ASSUMEROOT

At the end of this document you will find operating system-specific examples of the
LINK86 controls. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

LINK86

2-3

ASSIGN iAPX 86,88 Family Utilities

2-4

Syntax

ASS I G N ({variable-name (address) } [, ...])

Abbreviation

AS

Default

Not applicable

Definition

ASSIGN makes it possible to define absolute addresses for symbols at LINK time.
The absolute address associated with the variable-name is specified in address,
which should be an absolute 20-bit memory address that conforms to PL/M-86
notation. The variable-name is internally defined as a PUBLIC symbol.

Notes

• This control is particularly useful for memory-mapped I/O.

• If the variable-name has a matching public definition in another module, the
public definition in that module is flagged as as duplicate. Whenever a reference
to the variable-name occurs, the variable defined in the ASSIGN control
governs.

• If multiple ASSIGN specifications are provided in one LINK86 invocation, aJJ
will be effective (not only the final entry).

iAPX 86,88 Family Utilities ASSUMEROOT

Syntax

ASS UME ROOT <pathname)

Abbreviation

AR

Default

Not applicable

Definition

ASSUMEROOT suppresses the inclusion of any library module(s) in an overlay if
the library module(s) have already been included in a root file identified by
pathname. When this control is used, the root file is scanned, and all external,
undefined symbols in the overlay modules which have a matching definition in the
root file are marked "temporarily resolved." This marking means that while a
library search for the symbols will not be made, their status remains externally
undefined until the overlays are linked with the root.

Notes

• This control should be used only in conjunction with the OVERLAY control
and libraries.

• This control will not eliminate common library modules from overlay to
overlay.

• This control may not be used when an input module already has an overlay
record.

2-5

BIND/NOBIN·D iAPX 86,88 Family Utilities

2-6

Syntax

BIND
NOBINO

Abbreviation

BI
NOBI

Default

NOBINO

Definition

BIND combines the input modules into a load-time-Iocatable (L TL) module. An
L TL module may be loaded and executed, and any logical reference to a segment or
group base can be resolved at load time. The load-time-Iocatable output cannot be
loaded by the ICE-86 loader or UPM.

Notes

• FASTLOAD, MEMPOOL, ORDER, SEGSIZE, and SYMBOLCOLUMNS
have no effect when NOBIND is specified.

• When NOBIND is in effect, [NO]LINES, [NO]SYMBOLS, [NO]PUBLICS,
and [NO]PURGE affect only the output object module.

• When BIND is specified, the default object file name has no extension.

iAPX 86,88 Family Utilities COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default

COMMENTS

Definition

COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as nonpurgable.

Comment records are added to the object module for various reasons. All
translators add a comment record, identifying the compiler or assembler that pro
duced it.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process.

Notes

• See PURGE, PRINTCONTROLS and OBJECTCONTROLS.

• COMMENT records should not be removed when you submit an object file in a
Software Problem Report.

• NOCOMMENTS will decrease the size of the output object file.

2-7

FASTLOAD/NOFASTLOAD iAPX86,88 Family Utili~

2-8

Syntax

FASTLOAD
NOFASTLOAD

Abbreviation

FL
NOFL

Default

NOFASTLOAD

Definition

F ASTLOAD reduces program loading time by causing data record concatenation.
The data records are concatenated to a maximum length of 64K. F ASTLOAD also
makes the object file compact by removing such information as local symbols,
public records, comments, and type information (unless the object file contains
unresolved external symbols).

Notes

• This control is effective only when BIND is specified.

• Output produced with this control in effect may be incompatible with LINK86
versions earlier than 2.0.

iAPX 86.88 Family Utilities. INITCODE

Syntax

INITCODE

Abbreviation

IC

Default

Not applicable

Definition

INITCODE causes LINK86 to create a new segment that contains code to initialize
the segment registers. The equivalent assembly language code is shown below:

STACKFRAME OW stack frame
OATAFRAME OW data frame
EXTRAFRAME OW extra frame

C L I
MOV SS, CS:STACKFRAME
MOV SP, stack offset
MOV OS, CS:OATAFRAME
MOV ES, CS:EXTRAFRAME
JMP program start

Notes

• The initialization code segment is created only if a register intialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main
modules.

• BIND and OVERLAY controls used in conjunction with INITCODE will cause
LINK86 to ignore the INITCODE control and issue a warning message.

• INITCODE should be used to ensure compatibility with 8085-based LINK86,
LOC86, and LIB86 products.

• The name of the new segment, if created, is ??INITCODE.

2-9

LINES/NOLINES iAPX 86,88 Family Utilities

2-10

Syntax

LINES
NOLINES

Abbreviation

LI
NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. ICE-86 and
other debuggers use this information. The line number information is not needed to
produce executable code. The NOLINES control removes this information from the
output file.

Notes

• See PRINTCONTROLS and OBJECTCONTROLS.

• See the PURGE control.

• NOLINES will decrease the size of the output object file.

• Unless BIND is in effect, LINES/NOLINES affects only the object module.

• LINES has no effect on local symbols; the inclusion of local symbol records in
the object file is controlled by SYMBOLS.

iAPX 86,88 Family Utilities MAP/NOMAP

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default

MAP

Definition

MAP produces a link map and inserts it in the PRINT file. The link map contains
information about the attributes of logical segments in the output module. This
includes size, class, alignment attribute, address (if the segment is absolute) and
overlay name (if the segment is a member of an overlay).

NOMAP inhibits the production of the link map.

Notes

• MAP can be overridden by the NOPRINT control.

• See the discussion of the link map at the end of this chapter.

2-11

MEMPOOL iAPX 86,88 Family Utilities

2-12

Syntax

MEMPOO L (minimum-size[,maximum-size]>

Abbreviation

MP

Default

Not applicable.

Definition

MEMPOOL specifies the dynamic memory requirements of the program. This
allows the loader to check free memory at load time, and prevent a run-time error.

The minimum size is a 20-bit number. There are three ways of specifying this value:

• + indicates that the number should be added to the current dynamic memory
requirements.

• - indicates that the number should be subtracted from the current dynamic
memory requirements.

• no sign indicates that the number should become the new minimum dynamic
memory requirement.

The maximum size is a 20-bit number. There are two ways of specifying this value:

• + indicates that the number should be added to the current minimum dynamic
memory requirement.

• no sign indicates that the number should become the new maximum dynamic
memory requirement.

Notes

• The minimum-size must be less than or equal to the maximum-size.

• MEMPOOL has no effect unless the BIND control is also specified.

iAPX 86,88 Family Utilities

Syntax

N A ME (module name)

Abbreviation

NA

Default

The module name of the first element in the input list.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module will have the name of the first module in the input
list.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark),
@ (commercial at),
: (colon),
. (period),
_ (underscore),
A, B, C, ... , Z or
0,1,2, ... ,9.

Lower-case letters may be used, but they are automatically converted to uppercase.

Notes

• NAME does not affect the output file's name. Only the module name in the
output module's header record is changed.

NAME

2-13

OBJECTCONTROLS iAPX 86,88 Family Utilities

2-14

Syntax

OBJECTCONTROLS({LINES I NOLINES I

Abbreviation

OC

Default

COMMENTS I NOCOMMENTS
SYMBOLS I NOSYMBOLS I
PUBLICS [EXCEPT (symbo/[, ...])] I
NO PUB L I C S [E XC E P T (symbo/[, ...])] I
TYPE I NOTYPE I
PURGE I NOPURGE}[, ...]
)

Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file nor the information contained in it.

Notes

• Abbreviations for the controls within the parentheses may be given.

• A control specified in both OBJECTCONTROLS and PRINTCONTROLS has
the same effect as specifying it once outside of these controls.

iAPX 86,88 Family Utilities ORDER

Syntax

OR D E R ({group name ({segment name

[, ... J>

Abbreviation

OD

Default

[\class name[\overlay name]]}
[, ... J)}

Segments are placed into object file in the same order in which they were
encountered in the input list.

Definition

ORDER specifies a partial or complete order for the segments in one or more
groups.

The group name identifies the group whose segments are to be ordered.

The segment name identifies the segments to be ordered. The \ class name and
\overlay name may be used to resolve conflicts with duplicate segment names. If
\ overlay name is specified, the \ class name is required.

Notes

• ORDER has no effect unless BIND is also specified.

• If one of the segments specified is not contained in the designated group, an
error message is generated.

• See discussion of module combination at the end of the chapter for details of the
default ordering.

2-15

OVERLAY/NOOVERLAY, iAPX 86,88 Family Utilities

2-16

Syntax

OV ER LA Y [(overlay name)]
NOOVERLAY

Abbreviation

OV
NOOV

Default

NOOVERLAY

Definition

OVERLAY specifies that all of the input modules shall be combined into a single
overlay module. When the optional overlay name argument is specified, all
segments contained within the overlay module have that name in addition to their
segment names and class names. When overlay name is not specified, LINK86 uses
the module name of the first module in the input list.

Notes

• Each overlay in a given program must be linked separately before they are all
linked into a single object module.

• The overlay specified in the argument must be the same as the overlay name
used when calling the operating system to load the overlay.

• When linking root and overlay files, LINK86 assumes the first file in the
invocation line is the root.

• The ASSUMEROOT control can be specified in conjunction with the
OVERLAY control.

iAPX 86,88 Family Utilities PRINT INOPRINT

Syntax

P R I N T[(pathname)]
NOPRINT

Abbreviation

PR
NOPR

Default

P R I NT (object file. M P 1)

Definition

PRINT allows you to direct the link map and other diagnostic information to a
particular file. If the PRINT control is not specified or if the control is given without
an argument, the print file will have the same pathname as the output file except the
extension will be .MP 1. NOPRINT prevents the creation of this file.

Notes

• The discussion at the end of this chapter describes the contents of the print file.

• MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS and
PRINTCONTROLS affect the contents of the print file.

2-17

PRINTCONTROLS iAPX 86,88 Family Utilities

2-18

Syntax

PRINTCONTROlS({lINES I NOlINES I

Abbreviation

PC

Default

COMMENTS I NOCOMMENTS
SYMBOLS I NOSYMBOlS I
PUBLICS [EXCEPT(symbo/[, ...]>] I
NO PUB L I C S [E XC E P T (symbo/[, ...]>] I
TYPE I NOTYPE I
PURGE I NOPURGE} [, ...]
)

Controls apply to both the print file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

• When a control is specified in both the PRINTCONTROLS and the
OBJECTCONTROLS, it has the same effect as specifying it once outside of
these controls.

• Abbreviations to the parenthesized controls may be used.

• Unless BIND is specified, PRINTCONTROLS and its arguments have no
effect.

iAPX 86,88 Family Utilities PUBLICS/NOPUBLICS

Syntax

PUB L I C S [E XC E P T (public symbol [, ...]>]
NO PUB LIe S [E XC E PT (public symbol [, ... J>]

Abbreviation

PL [EC]
NOPL [EC]

Default

PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file. Public symbol records are
needed to resolve external symbol definitions in other files. The EXCEPT sub
control allows you to modify the control. Public records are used by LINK86 to
resolve external references.

Notes

• The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

• Unless BIND is specified PUBLICS/NOPUBLICS affect only the object file.

• NOPUBLICS will decrease the size of the output object file.

2-19

PUBLICSONLY iAPX 86,88 Family Utilities

2-20

Syntax

PUB LIe SON L Y <pathname [, ...]>

Abbreviation

PO

Default

Not applicable

Definition

PUBLICSONL Y is an input list control. When used it must appear in the input list
and not the control list.

PUBLICSONL Y indicates that only the absolute public symbol records of the argu
ment files will be used. The other records in the module will be ignored. This can be
used to resolve external references to 8089 files and overlays when a multifile overlay
system is desired.

Notes

• Although it is possible to create overlays using PUBLICSONL Y, it is easier to
use the OVERLAY control to create overlays.

iAPX 86,88 Family Utilities PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default

NOPURGE

Definition

PURGE in the control list is exactly the same as specifying NOLINES,
NOSYMBOLS, NOCOMMENTS, NOPUBLICS, and NOTYPE. NOPURGE in
the control list is the same as specifying LINES, SYMBOLS, COMMENTS,
PUBLICS, and TYPE.

PURGE removes all of the debug or public records from the object file and their
information from the print file. It will produce the most compact object file
possible.

The records that would be included by NOPURGE are useful to debuggers, but
otherwise they are unnecessary for producing executable code.

Notes

• PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

• Unless BIND is specified, PURGE affects only the output object file.

2-21

RENAMEGROUPS iAPX 86,88 Family Utilities

2-22

Syntax

RENAMEGROUPS ({group name TO groupname} [, ... J)

Abbreviation

RG

Default

All groups keep the name they already have.

Definition

RENAMEGROUPS allows you to change the group names assigned by the
translator. The first group name must be an existing group in one of the modules in
the input list.

Notes

None

iAPX 86,88 Family Utilities SEGSIZE

Syntax

S E G S I Z E ({segment name[\class name[\overlay name]]
(minimum size[, [maximum size]]>)

[, ...]>

Abbreviation

SS

Default

Not applicable

Definition

SEGSIZE allows you to specify the minimum memory space needed for any seg
ment. If you specify the maximum size for a segment, that segment must either not
be a member of any group or be the last segment in the group.

The segment name identifies the segment whose size is to be changed.

The minimum size is a 16-bit number. There are three ways of specifying this value:

• + indicates that the number should be added to the current segment length.

• - indicates that the number should be subtracted from the current segment
length.

• no sign indicates that the number should become the new segment length.

The maximum size is a 16-bit number. There are two ways of specifying this value:

• + indicates that the number should be added to the minimum segment length.

• no sign indicates that the number should become the new maximum segment
length.

Notes

• The maximum segment size must always be greater than or equal to the
minimum segment size.

• Segment lengths are initially assigned by the translator.

• Unless BIND is also specified SEGSIZE has no effect.

2-23

SYMBOLS/NOSYMBOLS iAPX 86,88 Family Utilities

2-24

Syntax

SYMBOLS
NOSYMBOlS

Abbreviation

SB
NOSB

Default

SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object file.
Local symbol records are used by debuggers.

Notes

• Unless BIND is also specified, SYMBOLS affects only the output object file.

• NOSYMBOLS will decrease the size of the output object file.

• SYMBOLS has no effect on line numbers; the inclusion of line numbers in the
object file is controlled by the LINES control.

iAPX 86,88 Family Utilities SYMBOLCOLUMNS

Syntax

SYMBOlCOlUMNS({1 I 2 I 3 I 4})

Abbreviation

SC

Default

SYMBOlCOlUMNS(2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes

• SYMBOLCOLUMNS has no effect unless BIND is also specified.

2-25

TYPE/N OTYPE iAPX 86,88 Family Utilities

2-26

Syntax

TYPE
NOTYPE

Abbreviation

TY
NOTY

Default

TYPE

Definition

TYPE specifies that type checking is to be performed on the object file. Symbol type
records produced by the translator are used by LINK86 to perform type checking on
modules. Symbol type records should be kept in the file if it may be relinked with
another file.

Notes

• NOTYPE will decrease the size of the ouput object file without affecting
run-time operation.

iAPX 86,88 Family Utilities

LINK86's Print File

The print file is always created unless you specify NOPRINT. The optional argu
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP 1.

The print file may contain as many as five parts:

1. A header (always in the print file)

2. A link map (requires MAP)

3. A group map (requires BIND)

4. A symbol table (requires BIND and PUBLICS, LINES, or SYMBOLS)

5. An error message list (always included when they occur)

The Header

The header is self-explanatory; it identifies the 8086 linker by version number and
gives the important details about the input and output files used during this execu
tion. Figure 2-2 shows an example of LINK86's print file header.

syStflm-ld 8086 LINKER. Vlr.y

INPUT FILES: : pathname1.pathname2
OUTPUT FILE: :pathname3
CONTROLS SPECIFIED IN INVOCATION COMMAND:

BIRD
DA TE: MMIDDIYY TIME: HH:MM:SS

Figure 2-2. LINK86 Print File Header

The Link Map

The link map supplies useful information about segments in the object file - order,
size, alignment attribute, and segment, class, and overlay names. Figure 2-3 shows
LINK86's link map.

LINK MAP OF MODULE ROOT

LOGIC'AL SEGMENTS IliCLUDED:
LENGTH ADDRESS ALIGk SEGMENT

09B6H ------ • CODE
0016H ------ • COkST
OB38H --~~-- W DATA
0442H ------ W STACK
OOOOh ------ • M~MORl
OOOOH ------ G ??SEG

INPUT MODULES INCLUDED:
pathnamel(ROOT)

CLASS
CODE
CONST
DATA
STACK
MEMOlll

OYERLAX

Figure 2-3. LINK86 Link Map

LINK86

2-27

LINK86

2-28

iAPX 86,88 Family Utilities

The map consists of three parts:

• Segment map

• Input module list

• Unresolved symbol list

The segment map describes all of the segments included in the object file. Each seg
ment description includes five entries: length, the address (if the segment is
absolute), alignment attribute, segment name, class name and overlay name, if any.

A segment may have anyone of the following alignment attributes:

A absolute
B byte
G paragraph
M member of an L TL group
P page
W word
R in-page

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first 2-
hexadecimal digits (OOH, 100H, 200H, ... OFFFOOH).

The module list identifies the order of modules included in the output file. LINK86
gives both the file containing the module and the module name for each entry in the
list.

The unresolved symbol list itemizes each external symbol whose public definition
was not encountered. The module that references the unresolved symbol is also
indicated. The printed message that appears under the heading UNRESOLVED
EXTERNAL NAMES is as follows:

• symbol name IN pathname (module name)

• If ASSUMEROOT is specified, the message would read:

symbolname (DEFINED IN ROOT-FILE,pathname)

• If PUBLICS/NOPUBLICS EXCEPT is specified, .the message would read:

symbolname IN LINK86 COMMAND LINE

The Group Map

LINK86 produces a group map when the BIND control is specified. Each group
name and all segments contained in that group are listed. The offset from the group
base for each segment appears to the right of the segment name. Figure 2-4 shows an
example of the group map.

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
OOOOH CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
OOOOH CONST
0016H DATA
OMEH STACK
OF90H MEMOR Y

Fi~ure 2-4. LINK86 Group Map

iAPX 86,88 Family Utilities

The Symbol Table

LINK86 produces a symbol table only when the following conditions are true:

1. BIND is specified

2. PRINT and MAP controls are in effect.

3. At least one of the following controls is in effect: PUBLICS, LINES, or
SYMBOLS.

Figure 2-5 shows LINK86's symbol table with the SYMBOLCOLUMNS set at two
(the default). The symbol table is shown in two parts: the top section contains the
public symbol information; the lower section contains line and local symbol
information.

SYMBOL TABLE OF MODULE ROOT

.BASE OFFSET THE SYMBOL BASE OFFSET TYPE SYMBOL

G(2) 0166H PUB BINDCOIiTROL G(2) 004CH PUB BNODEBASE
G(2) 0018H PUB BUFBASE G(2) 0016H PUB BUFLEN
G(2) 004EH PUB CLASHNODEBASE G(2) 0060H PUB COCOillN

.G(2) 015A& PuB COMMEIiTSCOIiTROL G(2) 0111H PUB CURRENTOVERLAYNU
-H

G(2) 017:3H PUB DEBUGTOGGLE G(2) 00A7H PUB DEFAULTPRTFILENA
-ME

G(2) 006211 PUB EXCEPTION G(2) 00488 PUB FANODEBASE
G(2) 006EH PUB FBLOCKBASE G(2) 006A8 PUB FBLOCKLISTHEAD
G(2) 006CH PUB FBLOCKLISTTAIL G(2) 013DH PUB FBLOCKSEQUENCENU

-HBER
G(2) 004AH PUB FBNODEBASE G(2) 0046H PUB FDNODEBASE
G(2) 0044H PUB FENODEBASE G(2) 00408 PUB FFNODEBASE
G(2) 0034H PUB FIRSTBNODEP G(2) 0028H PUB FIRSTEXNODEP
G(2) 002CH PUB FIRSTGRNODEP G(2) 001CH PUB FIRSTNMNODEP
G(2) 0030H PUB FIRSTOVNODEP G(2) 0050H PUB FIRSTRENAMEBLOCK

-1'
G(2) 0020H PUB FIRSTSGNODEP G(2) 0024H PUB FIRSTTDNODEP
G(2) 0038H PUB GRNODEBASE G(2) OB4CH PUB HIGHESTDATALOCAT

-ION

MODULE NAME = ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

G(2) OF90H SYM MEMORY G(2) OOOOH SYM COPYRIGHT
·G(2) 0016& SYM BUFLEIi G(2) 0018H SYH BUFBASE
G(0 00F7H S:tH ERROR G(O OOFEH SYM WARNItlG
G(2) OOHh SYH LASTI/MIiODEP G(2) 001CH SlH FIRSTHHIlODE1'
G(2) 001EI1 S:tM LASTSGIIODEP G(2) 0020H SYH FIRS'fSGNODEP
G(2) 0022H SYM LASTTDI/ODEP G(2) 0024H SYH FIRSTT nN ODEI'
G(2) 0026H SYM LASTEXIIODEP G(2) 0028H SYM FIRSTEXNODE1'
G(2) 002AI1 SUt LASTGRJlODEP G(2) 002CH SlH FIRSTGRNODEP
G(2) 002EI1 SYH LASTOUODEP G(2) 0030H SYM FIRSTOVNODEP
G(2) 0032H SYM LASTBIIODEP G(2) 00348 SYM FIRSTBNODEP
G(2) 003611 SYM SGI/ODEBASE G(2) 0038H SYM GRNODEBASE
G(2) 003AI1 SIM SIIIODEBASE G(2) 003CH SYM NMNODEBASE
G(2) 003E8 SYM 'fDI/ODEBASE G(2) 0040H SIM FFNODEBASE
G(2) 0042H SYH OVNODEBASE G(2) 0044H SYM FENODEBASE
G(2) 0046H SYM FDNODEBASE G(2) 0048H Slit FANODEBASE
G(2) 004AH SYM FBNODEBASE G(2) 004CH SUI BNODEBASE
G(2) 004EH SYM CLASHNODEBASE U(2) 0050H SYM FIRSTRENAMEBLOCK

-1'

Figure 2-5. LINK86 Symbol Table

LINK86

2-29

LINK86

2-30

iJ\PX 86,88 Family Utilities

G(2) 01A4H SYM SIGNONHSG G(1) 0174H SYM PRUlTNAME
G (1) 01A3H SYM LHlTIALIZhINPUT G(1) 01A8h SYM OPIo;NFBLOCKFlLE
G (1) o lFbH SYM CLOSEFBLOCKFILE G(1) OOF71i LUI 7
G (1) OOFAH LIN 10 G(1) OOFEH LIN 11
G(1) 0101H LIN 14 G(1) 0105H LIN 73
G (1) 010llH LIN 75 G(1) 010FE LIN 76
G(1) 011ljH LIN 77 G(1) 011DH LIN 78
G (1) 0126H LIN 79 G(1) 012AH LIN 80
G(1) 012DH LIN 84 G(1) 0136H LIN lI5
G(l) 013DH LIN 86 G(1) 014"4H LIN 87
G (1) 0151H LIN 88 G(1) 015AH LIN 89
G (1) o 168H LIN 90 G(1) 0170E LIN 91
G(1) o 17I1H LIN 94 G(1) 0177H LIN 96
G (1) 018EH LIN 97 G(1) 0198H LIN 98
G (1) 019FH LIN 99 G (1) 01A3H LIN 100
G (1) 01A6H LIN 103 G(1) 01A8H LIN 105
G (1) 01ABH LIN 106 G(1) 01BEH LIN 107
G (1) 01C8H LIN 108 G(1) 01CFH LIN 109

REFERENCES TO SEGMENT BASES EXIST IN INPUT MODULES:
ROOT

Figure 2-5. LINK86 Symbol Table (Cont'd.)

BASE is usually a symbolic group or segment index. If the base is the stack, then
STACK is used instead of the index.

OFFSET is a four-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on an other symbol's value
LIN line (not a symbol)
PUB public symbol (alphabetized within each separate BASE)
S Y M local symbol

SYMBOL refers to the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is one, this field is 40 characters wide. Otherwise, this
field is 16 characters wide. If the symbol name is longer than the width of the field,
then the name is hyphenated and continued on the next line.

If there are any references to segment bases in the input modules (if the output
module is an L TL program), LINK86 prints the following message at the bottom of
figure 2-5. The message identifies all input modules containing such references.
These references are to be resolved by the system loader or LOC86.

Error Messages

The warning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map. Errors always terminate
processing-an error message will always be the last line in the print file.

See the discussion of the interpretation of individual messages in Appendix C.

CHAPTER 31
CREF86

CREF86 scans 8086 object modules to provide a cross-reference among external and
public symbols in multiple modules. CREF86 accepts a list of files and controls as
input and produces one output file: a print file.

Figure 3-1 illustrates the types of input accepted and output produced. The input
modules may include one or more of the following 8086 object modules:

• Unlinked modules from one or more translators

• Library files or specific library modules

• Linked modules

The output file consists of information about files and modules, plus an
alphabetically sorted list of external and public symbols. Information printed for
each symbol includes the name of the module defining the symbol and the name(s)
of the module(s) declaring the symbol as external.

This chapter provides details concerning the CREF86 invocation, controls, and
cross-reference listing. For definition of file-naming and syntax notation conven
tions used in this chapter, refer to Notational Conventions following the Preface.
For a summary of the CREF86 controls and information on error and warning
messages which may be produced, refer to Appendix E. For details concerning
CREF86 symbol table space limitations, refer to Appendix C.

TRANSLATED
OBJECT

MODULE(S)

LIBRARY
MODULE(S)

LINKED
OBJECT

MODULE(S)

I NVOCATION
LI

:~:I~~:
•

CREF86 .~. ----II~ P~,I.~~~!~E
• L_-r-_·

CONSOLE
MESSAGES

Figure 3-1. CREF86 Input and Output Files 121616-5

3-1

CREF86

3-2

iAPX 86,88 Family Utilities

CREF86 Invocation Line

The general syntax for invocation is:

[directory-name] eRE F 86 input list[controls]

The input list is one or more modules to be scanned for external-public cross
references:

pathname[(module name [, ...])][, ...]

Unless a module name is specified, all modules in a pathname are included in the
cross-reference listing produced. If the pathname is a library file, any modules
named in parentheses are included in the cross-reference listing, even if they do not
contain public symbol definitions for external symbols declared elsewhere in the
input list.

Either all or none of the path names may contain overlay records (produced by
LINK86 with the OVERLAY control). If the input modules do contain overlay
records, the first file named in the invocation is considered to be the root file; the
rest are treated as overlays.

The controls can be any subset of the controls described in the next section.

CREF86 Controls

The controls specify cross-reference listing attributes such as print file name, the
title at the top of each listing page, and the amount of information printed on each
page. The controls are described in table 3-1.

Table 3-1. Summary of CREF86 Controls

Control Abbrev. Default

PAGELENGTH(number) PL PAGELENGTH(60)

PAGEWIDTH(number) PW PAGEWIDTH(120)

PRINT[(pathname)] PR PRINT(first input file.CRF)

TITLE(character-string) TT Not applicable

If there are multiple occurrences of any control in the invocation line, the rightmost
occurrence governs.

At the end of this document you will find operating system-specific examples of the
CREF86 controls. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

iAPX 86,88 Family Utilities PAGELENGTH

Syntax

PAGE LENGTH (number)

Abbreviation

PL

Default

PAGELENGTH(60)

Definition

PAGELENGTH specifies the number of lines to be printed on each page. The
number must be a decimal value between 10 and 255, inclusive.

Notes.

None

3-3

PAGEWIDTH iAPX 86,88 Family Utilities

3-4

Syntax

PAG EW 10TH (number)

Abbreviation

PW

Default

PAGEWIDTH(120)

Definition

PAGEWIDTH specifies the maximum number of characters to be printed on a
single line. The number must be a decimal value from 80 to 132, inclusive.

Notes

• P AGEWIDTH truncates the TITLE if TITLE is greater than the number of
unused character locations on the title line.

• If the specified P AGEWIDTH does not allow enough space to print the
referring module name(s) on the same line as the defining module name, the
referring module names(s) will be printed on separate lines.

iAPX 86~88 Family Utilities

Syntax

P R I NT[(pathname)]

Abbreviation

PR

Default

P R I NT (first input file • C R F)

Definition

PRINT provides the ability to specify a pathname for the cross-reference listing.
The pathname identifies the destination of the listing. If the PRINT control is not
specified or if the control is given without an argument, the print file will have the
same pathname as the first file in the input list, except the extension will be .CRF.

Notes

• If no PRINT control is specified, output goes to a default file. The name of the
default file is the name of the first file in the invocation command with the
extension .CRF.

• If PRINT is specified with no pathname, output goes to the default file.

PRINT

3-5

TITLE

3-6

iAPX 86,88 Family Utilities

Syntax

TIT L E (character string)

Abbreviation

TT

Default

Not applicable

Definition

TITLE may be used to specify a heading having a character string of null to 80
characters, inclusive. This heading appears on the first line of every page of the
cross-reference listing.

Notes

• The TITLE string is truncated if the P AGEWIDTH control is not large enough
to accommodate the entire string.

• If the character string contains any characters defined by the operating system
as special, the string must be delimited in accord with operating system conven
tions for special characters and string delimiters.

iAPX 86,88 Family Utilities

CREF86's Print File

The print file is a cross-reference listing of external and public symbols in the input
modules. This listing consists of the following parts:

• A header
• Warnings (if any)

• Module list

• Cross-reference information

Header

Figure 3-2 illustrates the components printed in this part of the cross-reference
listing:

• A title line output by CREF86, usually consisting of a program identifier
(CREF86), any user-defined TITLE, date of listing, and the page number

• A line identifying the CREF86 environment (operating system and version
number)

• One or more lines summarizing the path names of input files

• A line for identifying the print file pathname

• One or more lines giving the controls specified at invocation, present only if
controls were specified

Warnings

Figure 3-3 illustrates how warning messages appear on the cross-reference listing
when CREF86 detects such conditions as mismatched types, modules not found, etc.
Refer to Appendix E for information on CREF86 error and warning messages.

CRE.'116 EXAhPLI> OF CROSS REFEIIEIICE USlIlG CREFb6

system-id CkEF&o Vx.y

IIIPUT FILES: pathnamel pathname2 pathname3 pathname4
pathname7 pathnameB pathname9 pathname10
pathname13 pathlllJffle14 pathname15 pathname16

OUTPUT FI LE: pathname18
CONTROLS SPECIFIED: PR(OUT) TT(EllAMPLE OF CROSS REFERENCE USIIG CREF66) Pl1i(120) PL(60)

MMIDDIYY

pathname5
pathnamel1
pathname17

Figure 3-2. Header of Cross-Reference Listing

IIARN1NG 19: TYl'& MISMATCH
FILE: pathname15
MODULE: MISMATCH
SYMBOL: ENAIIEID

WARNING 19: TYPE MISMATCh
FILE: pathname15
MODULE: MISMATCH
SYMBOL: FOUR

WARNING 20: SPECIFIED MODULE NOT FOUND
FILE: pathname16
MODULE: UNKNOWN_MODULE

Figure 3-3. Warning Messages on CREF86 Listing

rAGE

pathname6
pathname12

CREF86

3-7

CREF86 iAPX 86,88 Family Utilities

Module List

The module list, shown in figure 3-4, is a tabulated summary of all input files and
corresponding modules included from these files.

After the module list is printed, the rest of the page is skipped, so that the symbol
cross-references begin on the next new page.

MODULES INCLUDED:

3-8

FILE NAME

pathnamel
pathname2
pathname3
pathname4
pathname5
pathname6
pathname7
pathname8
pathname9
"pathnamel0
pathnamel1
pathname12

pathname13
pathname14
pathname15
pathname16
pathname17

MODULE MAME(S)

CREF8b
PARSE
SIGNON
NEXTSTATE
ERROR
UTILITIES
ME1'!IORYMANAGEMENT
SCANMODULES
P ROCESSRECORDS
SCANUTlLI TIES
LIS10UTPUT
LISTUTlLITIES
51MBOLSORT

OBJMAN
MISMATCH

DQALLOCATE
OQDETACH
DQGETTlHE
SY STEMST ACK

DQATTACH
DQEXIT
DQOPEN

DQCHANGEEITENSION
DQFREE
DQREAD

DQCREATE
DQGETARGUMENT
OQSEEK

Figure 3-4. Module List on CREF86 Listing

Symbol Cross-Reference Information

OQDECOOEEXCEPTION
OQGETSYSTEMID
DQIIRITE

Figure 3-5 illustrates the format for listing data for all external and public symbols
referenced in the Module List.

The first column contains the names of the external and public symbols, in
alphabetical order.

The second column identifies the type of each symbol, as declared in the external or
public reference. The following tabulation identifies the entries which may occur in
this column:

CREF86 Entry

BYTE
WORD
DWORD
LWORD
INTEGER(n)
REAL(n)
POINTER
STRUCTURE
ARRAY OF
UNKNOWN
FILE
LABEL
PROCEDURE

(NEAR, FAR)
CONSTANT
SELECTOR

Symbol Type

8-bit unsigned
16-bit unsigned
32-bit unsigned
54-bit unsigned
n = 1 , 2, 4, or 8 bytes
n = 1 , 2, 4, or 8 bytes

null

The symbol type that appears in the second column is that associated with the first
occurrence of that symbol in the input list.

iAPX 86,88 Family Utilities

CREF86 ~XAMPLE OF CROSS REYEHEJICE USIIIG CREF86

SYMBOL IIAME

ACCESS_P AGE • •
ALLOCATE ••••
APPENDNODE. • • •
APPENDUDSMJlODE ••
ARRAYBASE
ATOI ••••••

BTOX. • • • • • • •
BUBBLESORTVARNAMES.
BUMPLiliECOUNT

SYMBOL TYPE

UJiUlOliN
UNltliOliN
PROCEDURE NEAR
PROCEDURE NEAR
POINTER
PROCEDURE liORD NEAR

PROCEDURE liORD NEAR
PROCEDURE NEAR
PROCEDURE NEAR

MMIDDIYY

DEFIIIIIIG MODULE; REFERRING MODULE(S)

OBJMAII
OBJMAJI
UTILITIES
UTILITIES;
SYMBOLSORT;
UTILITIES;

UTILITIES;
SYMBOLSORT;
LISTUTILITIES;

PARSE SCAIIMODULES PROCESSRECORDS
LISTOUTPUT
PARSE

LISTUTILITIES
LISTOUTPUT
LISTOUTPUT

SCAJIMODULES
SCAN MODULES
PROCESSRECORDS
SYMBOL SORT

!'AG~

CHECItHEADER •
CHECItOVERLAY.
CSECn ARTY PE.
CMPNAMES •••
CMPSTRNGS ••
CNCTI ••••

PROCEDURE JlEAR
PROCEDURE NEAR
PROCEDURE BYTE NEAR
PROCEDURE BYTE NEAR
PROCEDURE BYTE NEAR
WORD

SCAJIUTILITIES;
SCANUTILITIES;
SCAJIUTILITIES;
LISTUTILITIES;
UTILITIES;
UTILITIES;
UTILITIES;
PARSE;

JlEXTSTATE SCANMODULES SCAIIUTILITIES
MISMATCH

CNCTO • • • • • • •
CONTROLIDCOORDIJIATE
CONTROLOFFSETCOORDINATE
COIITROLSARESPECIFIED.
CREATEOBJECT.

CURRENTOVLJlUM
CURREIIT_PAGE.

DEBUGTOGGLE •
DEBUGTOGGLE •
DQALLOCATE. •
DQATTACH •••••
DQCSAJIGEEXTENSION
DQCREATE. • •••
DQDECODEEXCEPTIOJl
DQDETACH. • •
DQEXIT. • ••
DQFREE ••••
DQGETARGUMEJlT
DQGETSYSTEMID •
DQGETTIME ••

WORD
liORD
BYTE
BYTE
PROCEDURE liORD NEAR

BYTE
UliltIIOliN

BYTE
BYTE
PROCEDURE WORD JlEAR
PROCEDURE liORD IIEAR
PROCEDURE JlEAR
PROCEDURE WORD IIEAR
PROCEDURE JlEAR
PROCEDURE NEAR
PROCEDURE NEAR
PROCEDURE NEAR
PROCEDURE BYTE IIEAR
PROCEDURE NEAR
PROCEDURE NEAR

PARSE;
PARSE;
OBJMAN;

PROCESSRECORDS;
OBJMAJI

SIGNON ERROR MISMATCH
UTILITIES
UTILITIES
UTILITIES
PARSE SCANMODULES PROCESSRECORDS
SCAJIUTILITIES SYMBOLSORT
SCANUTILITIES

PARSE; ERROR
····DUPLICATE DECLARATION •• ··: MISMATCH
DQALLOCATE; MEMORYMAIIAGEMENT SYMBOLSORT OBJMAJI
DQATTACH; UTILITIES SCANUTILITIES
DQCHANGEEXTENSION; PARSE
DQCREATE; UTILITIES
DQDECODEEXCEPTIOII; ERROR
DQDETACH; SCANMODULES
DQEXIT; CREF86 ERROR
DQFREE; LISTOUTPUT
DQGETARGUMENT; PARSE
DQGETSYSTEMID; SIGNON
DQGETTIME; LIST OUTPUT

Figure 3-5. Symbol Cross-Reference Information

The third column contains the following for each symbols listed:

• The name of the module in which the symbol is defined public (defining
module)

• A semicolon (;), if there are external references to the symbol in any of the input
modules

• The name(s) of the modules(s) in which the symbol IS declared external
(referring module(s»

The third column is also used to flag unresolved and duplicate references. In the case
of unresolved external references, the string ***UNRESOL VED*** appears before
the semicolon. In the case of duplicate references, i.e., when a symbol has two or
more public definitions, the first public declaration is considered legal, and the rest
are flagged as duplicates. The string ***DUPLICATE DECLARATION***
appears, followed by a colon (:) and the name of the module containing the
duplicate public declaration.

If the input files contain overlays, CREF86 produces a symbol cross-reference that
consolidates all the symbols from all overlay and root modules. The first file in the
input list is considered to be the root file. CREF86 distinguishes between public
symbols with the same name in different overlays and does not flag these symbols as
duplicates. However, CREF86 does flag duplicate public declarations within any
one root/ overlay combination.

CREF86

3-9

CHAPTER 41
LIB86

LIB86 allows you to create, modify, and examine library files. It is an interactive
program.

This chapter provides details concerning LIB86 invocation and commands. For
definition of file-naming and syntax notation conventions used in this chapter, refer
to Notational Conventions following the Preface. For a summary of the LIB86 com
mands and information on error and warning messages that may be produced, refer
to Appendix F. For details concerning LIB86 symbol table space limitations, refer to
Appendix C.

LIB86 Invocation

The general syntax for the invocation line is:

[directory-name] LIB 8 6 [comment]

LIB86 Commands

Once LIB86 has begun execution, it displays an asterisk (*) and waits for a com
mand. Table 4-1 lists all of LIB86's commands.

Table 4-1. Summary of LIB86 Commands

Command Abbrev. Description

ADD {pathname[(module name [, ...])]} A Adds modules to a library
[, ...] TO pathname

CREATEpathname C Creates library files

DELETEpathname(module name [, ...]) 0 Deletes modules from a library file

EXIT E Terminates session with LlB86

LIST {pathname[(module name [, ...])]} L Lists modules contained in a library
[, ...] [TO pathname] [PUBLICS] [P] file, and optionally lists all publics

At the end of this document you will find operating system-specific examples of the
LIB86 commands. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

4-1

ADD

4-2

iAPX 86,88 Family Utilities

Syntax

ADD {pathnamel [(module name[, ...])]} [, ...] T 0 pathname2

Abbreviation

A

Definition

ADD adds modules to a library file.

The pathnamel can be an object file or a library file.

The pathname2 is the destination library file. The library must exist before the ADD
command is given; it may contain other modules.

If pathnamel is an object file produced by a translator, LINK86, or LOC86, then all
modules contained within the object file will be added to the designated library.

If pathname2 is a library file, it may be specified with or without the module name
list. If no module name list is specified, all modules contained in the source library
will be added to the destination library. If the module name list is specified, then
only the modules specified within the parentheses are added to the destination
library.

iAPX 86,88 Family Utilities CREATE

Syntax

C R EAT E pathname

Abbreviation

C

Definition

CREATE creates a library file with the specified pathname.

Notes

• If a file with the specified pathname already exists, the library will not be
created and an error message will be provided.

4-3

DELETE iAPX 86,88 Family Utilities

4-4

Syntax

DEL E T E pathname (module name [, ...])

Abbreviation

o

Definition

DELETE removes modules from a library file. Modules can be deleted from only
one library at a time.

Notes

None

iAPX 86,88 Family Utilities

Syntax

EXIT

Abbreviation

E

Definition

EXIT terminates a session with LIB86 and returns control to the operating system.

Notes

• LIB86 disassembles libraries into an internal form. The library is not
reconstituted until the EXIT command is processed. Therefore significant 110
will take place following an EXIT command.

EXIT

4-5

LIST

4-6

Syntax

LIS T {pathnamel[(module name [, ...]>]) [, ...][TO pathname2]
[PUBLICS]

Abbreviation

L [P]

Definition

iAPX 86,88 Family Utilities

LIST prints the names of modules, and optionally the public symbols contained in
those modules, to the specified output pathname.

The pathnamel is the library whose modules are to be listed.

The module name, if specified, identifies the modules to be listed.

TO pathname2 identifies the device or file to receive the listing. If it is not specified,
the listing is directed to the console output device.

PUBLICS indicates that, in addition to the module names, all public symbols con
tained within the module will also be listed. PUBLICS may be abbreviated as 'P'.

Notes

None

CHAPTER 51
Loe86

LOC86 changes a relocatable 8086 object module into an absolute object module.
As figure 5-1 illustrates, LOC86 takes a single 8086 object module as input and out
puts a located object file and, optionally, a print file. The print file output contains
diagnostic information. The object file contains absolute object code.

This chapter provides details concerning the LOC86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LOC86 controls and information on error and warning messages that may be
produced, refer to Appendix G. For details concerning LOC86 segment support
capabilities, refer to Appendix C.

INVOCATION
LINE CONTROLS

L" ---,
OBJECT
MODULE

ABSOLUTE
1------..1 LOC 86' .. OBJECT

L -r-Jl ____ MODULE

CONSOLE
MESSAGES

PRINT
FILE

··.MP2··

Figure 5-1. LOC86 Input and Output Files

LOC86 Invocation Line
The general syntax for the invocation line is:

[directory-name] lO C86 input file [TO object file][controls]

121616-6

The input file is a file containing an object module to be located. It is usually, but
not necessarily, the output from LINK86.

TO object file specifies the file to receive the located object module. In most cases
this is an executable file. If object file is not specified, then output will be directed to
a file that has the same pathname as the input file, except it will have no extension.

The controls may be any subset of the controls described in the next section.

LOC86 Controls
The controls are described in table 5-1.

If you specify the same control more than once in the same invocation line, only the
last version entered counts. For example, if you enter NOMAP, and then later
decide you want a locate map, you can enter the MAP control without error. The
second version of the control is recognized and the first is ignored.

At the end of this document you will find operating system-specific examples of the
LOC86 controls. Fold out the pages containing the examples relevant to your
operating environment and use them in conjunction with the syntax conventions
provided in this chapter.

5-1

LOC86 iAPX 86,88 Family Utilities

Table 5-1. Summary of LOC86 Controls

Control Abbrev. Default

ADDRESSES(AD Not applicable
{SEGMENTS({segment[\ class [\ overlay]] (SMI

(addr)}[, ...]) 1 CSIGR)
CLASSES({class(addr)} [, ... J) I
GROUPS({group(addr)} [, ... J) }

[, ...])

BOOTSTRAP BS Not applicable

COMMENTS CM COMMENTS

NOCOMMENTS NOCM

INITCODE[(address)j IC INITCODE(200H)

NOINITCODE NOIC

LINES LI LINES

NOLINES NOLI

MAP MA MAP

NOMAP NOMA

NAME(module) NA Not applicable

OBJECTCONTROLS(OC Not applicable
{LINES 1 NOLINES I

COMMENTS I NOCOMMENTS 1
SYMBOLS I NOSYMBOLS 1
PUBLICS 1 NOPUBLICS 1
PURGE 1 NOPURGE}[, ... J)

ORDER(00 Not applicable
{SEGMENTS({segment[\c/ass[\ overlay]p (SMICS)

[, ... j) 1
CLASSES({class[(segment [, ... j)]} [•...])} [, ... J) CS

PRINT[(pathname)] PR PRINT(object file. MP2)

NOPRINT NOPR

PRINTCONTROLS({L1NES 1 NOLINES 1 PC Not applicable
COMMENTS I NOCOMMENTS 1
SYMBOLS 1 NOSYMBOLS 1
PUBLICS I NOPUBLICS I
PURGE 1 NOPURGE}[. ...))

PUBLICS PL PUBLICS

NOPUBLICS NOPL

PURGE PU NOPURGE

NOPURGE NOPU

RESERVE({addrTOaddr} [•... j) RS Not applicable

SEGSIZE({segment[\ class [\ overlay II SS Not applicable
(size)} [•... J)

START({symbo/lparagraph.offsef}) ST Not applicable

SYMBOLS SB SYMBOLS

NOSYMBOLS NOSB

SYMBOLCOLUMNS({1121314}) SC SYMBOLCOLUMNS(2)

5-2

iAPX 86,88 Family Utilities ADDRESSES

Syntax

ADD RES S E S ({ S E G MEN T S ({segment name[\ class name
[\overlay name]] (address) }

[, ...]) I
C LA SSE S ({class name (address) }[, ...]) I
G R 0 UPS ({group name (address) } [, ...]) }
[, ...]

)

Abbreviation

AD(SMICSIGR)

Default

Not applicable

Definition

ADDRESSES allows you to override LOC86's default address assignment
algorithm. You may assign a beginning address to segments, classes, or groups. All
addres.ses must follow Intel rules for integer representation. (These rules are the
same as those used by ASM86 and PL/M-86.) The subcontrols, SEGMENTS,
CLASSES, and GROUPS, identify exactly what elements of the input module are
being assigned addresses. When assigning an address with the SEGMENTS sub
control, you may also specify the class name and overlay name of the particular
segment.

LOC86 attempts to detect and avoid conflicts whenever possible. If the specified
address does not agree with the alignment attribute of the specified segment or the
first segment in the specified class, then the address is ignored. If an absolute seg
ment is located at the address assigned to a class, then the class begins at the first free
address after the absolute segment. If you assign a non-paragraph address to a
group, LOC86 will assign the first paragraph address below the specified address.

Notes

• The subcontrols SEGMENTS, CLASSES, and GROUPS can be specified
multiple times in a single ADDRESSES control.

• If an address assignment causes a conflict with an ORDER control, a
RESERVE control or an absolute segment, LOC86 generates an error message.

• When locating bound object modules, you may not assign an address to a
segment in a group.

5-3

BOOTSTRAP iAPX 86,88 Family Utilities

5-4

Syntax

BOOTSTRAP

Abbreviation

BS

Default

Not applicable

Definition

BOOTSTRAP indicates that the code for a long jump to the module's start address
should be placed at location OFFFFOH, when the module is loaded. This is the first
instruction executed by the 8086 after reset. If the input module has no start address
and none is specified in the START control, LOC86 will generate an error message.

Notes

• See also the START and INITCODE controls.

iAPX 86,88 Family Utilities COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default

COMMENTS

Definition
COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as non-purgable.

Comment records are added to the object module for various reasons. All
translators add a comment record to the object files they produce. The record iden
tifies the compiler or assembler that produced the object file.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process, or left in the file.

Notes
• See PRINTCONTROLS, OBJECTCONTROLS, and PURGE.

• Comment records should not be removed when you submit an object file in a
Software Problem Report.

• NOCOMMENTS will decrease the size of the output object module.

• COMMENTS has no effect on the print file.

5-5

INITCODE/NOINITCODE iAPX 86,88 Family Utilities

5-6

Syntax

I NIT COO E [(address)]
NOINITCOOE

Abbreviation

I C
NOIC

Default

INITCOOE(200H)

Definition

INITCODE causes LOC86 to create a new segment that contains code to initialize
the segment registers. The optional address argument specifies the physical address
of the code that performs this initialization. If no address is specified, the initializa
tion code will be placed at 200H. The equivalent assembly language code is shown
below:

STACKFRAME OW stack frame
OATAFRAME OW data frame
EXTRAFRAME OW extra frame

C L I
MOV S S , CS:STACKFRAME
MOV SP, stack offset
MOV OS, CS:OATAFRAME
MOV ES, CS:EXTRAFRAME
JMP program start

Notes

• The initialization code segment is created only if a register initialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main
modules.

• If the area of memory used by the INITCODE default is reserved, LOC86
places the initialization code above the reserved space.

• If created, the new segment is called ??LOC86_INITCODE.

iAPX 86,88 Family Utilities LINES/NOLINES

Syntax

LINES
NOLINES

Abbreviation

LI
NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. In-circuit
emulators and other debuggers use this information; it is not needed to produce
executable code. The NOLINES control removes this information from the output
file.

Notes

• The scope of the LINES control can be modified with PRINTCONTROLS and
OBJECTCONTROLS.

• See the PURGE control.

• NOLINES will decrease the size of the output object file.

5-7

MAP/NOMAP iAPX 86,88 Family Utilities

5-8

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default

MAP

Definition

MAP causes LOC86 to produce a locate map for the output module and add it to the
print file. For all segments in the module the map shows the complete name (seg
ment name, class name, and overlay name), size, alignment, start address, and stop
address. A more complete description of the locate map and the rest of the print file
is at the end of this chapter.

Notes

• MAP can be overridden by the NOPRINT control.

iAPX 86,88 Family Utilities

Syntax

NAME (module name)

Abbreviation

NA

Default

Module retains its current name.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module retains its current name.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark)
@ (commercial at)
: (colon)
. (period)
_ (underscore)
A, B, C, ... , Z
0,1,2, ... ,9.

Lower case letters may be used, but they are automatically converted to upper case.

Notes

• NAME does not affect the output file's name, only the module name in the
output module's header record.

NAME

5-9

OBJECTCONTROLS iAPX 86,88 Family Utilities

5-10

Syntax

OBJECTCONTROLS({LINES I NOLINES I
COMMENTS I NOCOMMENTS
SYMBOLS I NOSYMBOLS I
PUBLICS I NOPUBLICS I
PURGE I NOPURGE}
[, ...]

)

Abbreviation

OC

Default

Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file and the information contained in it.

Notes

• If you specify an invalid control in the arguments to OBJECTCONTROLS,
LOC86 generates an error message.

• You may specify a control or control pair more than once within
OBJECTCONTROLS, but only the last version specified counts.

• You may abbreviate the controls used within OBJECTCONTROLS.

• When you specify a control in both OBJECTCONTROLS and
PRINTCONTROLS, it will have the same effect as specifying it once outside of
these controls.

iAPX 86,88 Family Utilities ORDER

Syntax

OR D E R ({ S E G MEN T S ({segment name[\ class name[\ overlay name]]}
[, ...]) I

C LA SSE S (\ {class name[(segment name [, ...])]} [, ...]) }
[, ...])

Abbreviation

OO(SMICSI)

Default

Not applicable

Definition

ORDER specifies a partial or complete order for segments, classes, and the segments
within a class. Segments and classes listed in ORDER are located before any other
relocatable segment.

The subcontrol SEGMENTS indicates that the list of segment names shall be
ordered.

The segment name identifies the specific segments to be ordered. The \ class name
and \overlay name may be used to resolve conflicts with duplicate segment names.
If \ overlay name is specified, the \ class name is required.

If one of the segments specified is not contained in the designated group, an error
message is generated.

Notes

• See "LOC86's Algorithm for Locating Segments" at the end of this chapter.

5-11

PRINT INOPRINT iAPX 86,88 Family Utilities

5-12

Syntax

P R I NT [(path name)]
NOPRINT

Abbreviation

PR
NOPR

Default,

P R I N T (object file • M P 2)

Definition

PRINT allows you to direct the locate map symbol table and other diagnostic
information to a particular file. If the PRINT control is not specified or if the con
trol is given without an argument, the print file will have the same pathname as the
output file except the extension will be .MP2. NOPRINT prevents the creation of
this file.

Notes

• The discussion at the end of this chapter describes the contents of the print file.

• See also MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS, and
PRINTCONTROLS.

iAPX 86,88 Family Utilities PRINTCONTROLS

Syntax

PRINTCONTROLS({LINES I NOLINES I
COMMENTS I NOCOMMENTS
SYMBOLS I NOSYMBOLS I
PUBLICS I NOPUBLICS I
PURGE I NOPURGE}
[, ...]

)

Abbreviation

PC

Default

Controls apply to both the print file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

• If you specify an invalid control in the arguments to PRINTCONTROLS,
LOC86 generates an error message.

• You may specify a control in OBJECTCONTROLS more than once, but only
the last version specified counts.

• You may abbreviate the controls used within PRINTCONTROLS.

• When you specify a control in both PRINTCONTROLS and
OBJECTCONTROLS, it will have the same effect as specifying it once outside
of these controls.

5-13

PUBLICS/NOPUBLICS iAPX 86,88 Family Utilities

5-14

Syntax

PUBLICS
NOPUBLICS

Abbreviation

PL
NOPL

Default

PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file.

Notes

• The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

• NOPUBLICS will reduce the size of the output object file; however, public
symbol records are used by debuggers.

• See the PURGE control.

iAPX 86,88 Family Utilities PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default

NOPURGE

Definition
PURGE is exactly the same as specifying NOLINES, NOSYMBOLS,
NOCOMMENTS, and NOPUBLICS. NOPURGE in the control list is the same as
specifying LINES, SYMBOLS, COMMENTS, and PUBLICS.

PURGE removes all of the public and debug information from the object file and
the print file. It will produce the most compact object file possible. The records that
would be included by NOPURGE are useful to debuggers and in-circuit emulators,
but otherwise they are unnecessary for producing executable code.

Notes

• PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

5-15

RESERVE iAPX 86,88 Family Utilities

5-16

Syntax

RES E R V E ({address1 TO address2) [, ...]>

Abbreviation

RS

Default

All of memory is assumed available.

Definition

RESER VE prevents LOC86 from locating segments in certain areas of memory.
LOC86 will not use all memory addresses from address1 to address2 inclusive;
address1 must be less than or equal to address2.

Notes

• If an absolute segment uses a reserved memory area, a warning message is
generated.

• Reserved areas may overlap.

iAPX 86,88 Family Utilities SEGSIZE

Syntax

5 E G 5 I Z E ({segment name[\ class name[\ overlay name]] (size)}
[, •.• J>

Abbreviation

55

Default

Not applicable

Definition

SEGSIZE allows you to specify the memory space used by a segment.

The segment name may be any segment contained in the input module.

The size is a 16-bit number that LOC86 uses to change the size of the specified seg
ment. There are three ways of specifying this value:

• + indicates that the -number should be added to the current segment length.

• - indicates that the number should be subtracted from the current segment
length.

• No sign indicates that the number should become the new segment length.

Notes

• LOC86 issues a warning message when SEGSIZE decreases the size of a
segment.

5-17

START iAPX 86,88 Family Utilities

5-18

Syntax

S TAR T ({public symbol I paragraph, offset})

Abbreviation

ST

Default

The start address designated in the input module

Definition

START allows you to specify the start address of your program.

If you specify public symbol, that symbol must be defined within the input module.

The paragraph value initializes the CS register and the offset value initializes the IP
in an 8086 long jump when your program is started.

Notes

• See the BOOTSTRAP and INITCODE controls.

iAPX 86,88 Family Utilities SYMBOLS/NOSYMBOLS

Syntax

SYMBOLS
NOSYMBOLS

Abbreviation

SB
NOSB

Default

SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object file,
and information concerning local symbols will also appear in the symbol table con
tained in the print file. Local symbol records are used by debuggers and in-circuit
emulators.

Notes

• The scope can be modified by OBJECTCONTROLS and PRINTCONTROLS.

• NOSYMBOLS will decrease the size of the output object file.

• See the PURGE control.

5-19

SYMBOLCOLUMNS iAPX 86,88 Family Utilities

5-20

Syntax

SYMBOlCOlUMNS({1121314})

Abbreviation

SC

Default

SYMBOlCOlUMNS(2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes

None

iAPX 86,88 Family Utilities

Loe86's Print File

The print file is always created unless you specify NOPRINT. The optional argu
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP2.

The print file may contain as many as three parts:

• A symbol table

• A memory map

• An error message list

The symbol table is included in the print file when a PUBLICS, LINES, or
SYMBOLS control is in effect. The memory map is controlled by the
MAP/NOMAP control. Error and warning messages, if any, are always added to
the print file.

The Symbol Table

LOC86 produces a symbol table when any or all of the symbol controls (LINES,
SYMBOLS, and PUBLICS) are in effect. No symbol table will be produced when
PURGE is in effect for the print file.

Figure 5-2 shows LOC86's symbol table with the SYMBOLCOLUMNS set at 2 (the
default).

BASE is usually a 4-digit hexadecimal number that is the base address of the group
that contains the symbol. If the base is the stack, then STACK is used instead of a
number. If the symbol is based on another symbol's value, then the BASE and
OFFSET values for that symbol are given.

OFFSET is a 4-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

To compute the physical address of the specified symbol you would use the follow
ing equation:

(BASE * lOH) + OFFSET = Physical Address

Of course, the physical address of the symbols whose base is the STACK, or symbols
that are based on another symbol's value, cannot be computed until run-time.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on another symbol's value
lIN line (not a symbol)
PUB public symbol
S Y M local symbol

SYMBOL field contains the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is 1, this field is 40 characters wide. If the
SYMBOLCOLUMNS value is 2 or more, then this field is 16 characters wide. If the
symbol name is longer than the width of the entry, then the name is hyphenated and
continued in the SYMBOL field on the next line.

LOC86

5-21

LOC86 iAPX 86,88 Family Utilities

system-id 8QII6 LOCAT ER, Vx.y

INPUT FILE: pathname1
OUTPUT FILE: pathname2
CONTROLS SPECIFIED IN INVOCATION COMMAND:

DATE: MMIOOIYY TIME: HH:MM:SS

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

OOBbH 016CH PUb BINDCONTROL OOBBH 0052H PUB BNODEBASE
OOBBIi 001Eh PUB BUFBASE OOBbH 001CH PUB BU FLEN
OOBBH 0054H PUB CLASHNODEBASE OOBBI1 0066H PUB COCONN
OOBBH 0160H PUb COMMENTSCOHTROL OOBBH 0117H PUb CURRENTOVERLAYNU

-H
OOBBH 0179H PUB DEBUGTOGGLE OOBBH OOADIi PUB DEFAULTPRTFILENA

-HE
OObBH 0068H PUb ElICEPTION OOBBI1 004EH PUB FANODEBASE
OOBBH 0074H PUB FBLOCKBASE OOBBH 0070H PUB FBLOCKLISThEAD
OOBBH OU72H PUB FbLOCKLISTTAIL OOBBh 0143H PUB FBLOCKSEQUENCENU

-KBER
OOBBH 0050H PUB FBNODEBASE OOBbH 004CH PUB FDNODEBASE
OOBBH OOIlAH PUB FENODEBASE OOBBH 0046H PUB FFNODEBASE
OOBBH 003AH PUB FIRSTBNODEP OOBBH 002EH PUB FIRSTEXNODEP
OOBBH 0032H PUB FIRSTGRNODEP OOBBH 0022H PUB FIRSTNMNODEP
OOBBH 0036H PUB FIRSTOVNODEP OOBBH 0056H PUB FIRSTRENAMEBLOCK

-1'
OOBBH 0026H PUB FIRSTSGNODEP OOBBH 002AH PUB FIRSTTDNODEP
OOBBH 003EH PUB GRNODEBASE OOBBH OB52H PUB HIGHESTDATALOCAT

-ION

MODULE = ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL

OOBBH OFAOH SYM MEMORY OOBBH 0006H SYM COPYRIGHT
OOBBH 001CH SYM BUFLEN OOBBH 001EH SYM BUFBASE
0020H 00F7H SYM ERROR 0020H OOFEH SYM WARNING
OOBBH 0020H SYM LASTNKNODEP OOBBH 0022H SYM FIRSTNMNODEP
OOBBH 0024H SYM LASTSGNODEP OOBBH 0026H SYM FIRSTSGNODEP
OOBBH 0028H SYM LASTTDNODEP OOBBH 002AH SYM FIRSTTDNODEP
OOBBH 002CH SYM LASTEXNODEP OOBBH 002EH SYM FIRSTEXNODEP
OOBBH 0030H SYM LASTGRNODEP OOBBH 0032H SYM FIRSTGRNODEP
OOBBH 0034H SYM LASTOVNODEP OOBBH 0036H SYM FIRSTOVNODEP
OOBBH 0038H SYM LASTI!NODEP OOBBH 003AH SYM FIRSTBNODEP
OOBBH 003CH SYM SGNODEBASE OOBBH 003EH SYM GRNODEBASE
OOBBH 0040H SYM SYNODEBASE OOBBH 0042H SYM NMNODEBASE
OOBBH 00-44H SYM TDNODEBASE OOBBH 0046H SYM FFNODEBASE
OOBBH 0048H SYM OVNODEBASE OOBBH 004AH SYM FENODEBASE
OOBBH 004CH SYM FDNODEBASE OOBBH 004EH SYM FANODEBASE
OOllBH 0050H SYM FBNOOEBASE OOBBH 0052H SYM BNODEBASE
OOBBIi 005411 SiM CLASHNODEBASE OOBBH 0050H SYM FIRSTRENAMEBLOCK

-I'

OOBBH 01AAH SYM SIGNONMSG 0020H 0174H SYM PRINTNAKE
0020H 0.1 A3H SYM INITIALIZEINPUT 0020H 01A8H SYM OPENFBLOCKFILE
0020H 01 F6H SYM CLOSEFBLOCKFILE 0020H 00F7H LIN 7
0020H OOFAH LIN 10 0020H OOFEH LIN 11
0020H 0101H LIN 14 0020H 0105H LIN 73
0020H 0108H LIN 75 0020H 010FH LIN 76
002011 o llbH LIN 77 0020H o 110H LIN 78
0020H 0126H Llli 79 0020H 012AH LIN 80
0020H 0120H LIN 84 002011 0136H LIN 85
0020h 013Dh LIN 06 0020H 0144H LIl< 07
0020H 01511i LIN bb 00201i 01:,AH LIN 89
0020H 0100h LIN YO 0020H 0170H LIN 91
0020h 0174H LIN 94 002011 0177H LIN <;6
002011 01 bEh LIN 97 002011 019011 LIN 91l
002011 019FIi LIN 9'i 0020H 01A3H LIN 100
0020H 01Aah LIN 103 0020H 01AdH LIN 105

Figure 5-2. LOC86 Symbol Table

5-22

iAPX 86,88 Family Utilities

The Memory Map

The memory map supplies useful information about segment placement and address
assignment. Figure 5-3 shows LOC86's memory map.

The map consists of three parts:

• Header

• Segment map

• Group map

The header includes the input module name and the start address.

The segment map is a table with six columns. From left to right the columns show:

• the START address of the segment

• the STOP address of the segment

• the LENGTH of the segment

• the ALIGNMENT attribute of the segment

• the NAME of the segment

• the CLASS of the segment

• the OVERLAY of the segment

A "C" printed between the STOP and LENGTH columns indicates that two
segments have overlapping memory locations; a warning message is also issued.

A segment may have anyone of the following alignment attributes:

A absolute
B byte
G paragraph
M member of an L TL group
P page
W word
R in-page

MEMORY MAP OF MODULE ROOT

MODULE START ADDRESS PARAGRAPH = 0020H OFFSET = 0002H
SEGMENT MAP

START STOP LENGTH ALIGN NAME

00200H 00BB5H 0986H Ii
OOBBbH OOBCBH 0016H Ii
00BCC8 a 1703H OB3!!H Ii
01704H 01S458 0442H '" 01B501i 01850H OOOOH G
0185011 01.85011 00008

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
00200H CGROUP

CODE
OOSBOH DGROUP

CONST
DATA
ST·ACK
MEMORY

CODE
CONST
DOATA
STACK
??SEG
!lEMORY

CLASS

CODE
CONST
DATA
STACK

!lEMOn

Figure 5-3. LOC86 Memory Map

OVERLAY

LOC86

5-23

LOC86

5-24

iAPX 86,88 Family Utilities

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first two
hexadecimal digits (DOH, IDDH, 20DH, ... OFFFOOH).

The group map has two columns: the first is the physical address (five-digit hexa
decimal number) of the beginning of the group; the second column is the group
name, followed by the segments contained in that group. The segment names con
tained within a given group are listed in the same column but indented slightly.

Error and Warning Messages

The error and warning messages are listed consecutively as the error situations are
encountered.

See the discussion of the interpretation of individual messages in Appendix F.

Loe86's Algorithm for Locating Segments

Assuming that there are no errors in the invocation line or input module, LOC86
locates an input module in three stages.

1. All absolute segments are removed from the list of segments contained in the
module.

2. The remaining relocatable segments are ordered into a sequential list.

3. The relocatable segments are then given absolute addresses according to each
segment's alignment, size, and memory attribute.

Absolute Segments

When LOC86 encounters an absolute segment, LOC86 removes the segment from a
list of input segments and reserves the memory area used by that segment. LOC86
maintains a map of free memory. Each time an absolute segment is encountered, the
memory space used by that segment is removed from the memory map. A segment
can become absolute in one of three ways:

1. It may be assigned an absolute address by the translator.

2. It may be explicitly specified in an ADDRESSES control.

3. It may become absolute implicitly. If an absolute segment is specified in an
ORDER control, then all other segments referred to in that control, either by
segment name or by class name, are treated as absolute.

Segment Ordering

After all memory used by absolute segments has been removed from LOC86's free
memory map and before LOC86 begins assigning addresses to the remaining
relocatable segments, LOC86 prepares an ordered list of all relocatable segments.

All relocatable segments specified in an ORDER control are placed at the head of
the list.

iAPX 86,88 Family Utilities

After all ORDER controls, if any, have been processed, LOC86 adds the relocatable
segments that remain to the end of the list. If the first segment not previously used
has a class name, then all other segments with the same class name are added to the
list. After all segments of the class have been added to the list, then the next segment
is added to the list.

This process continues until all segments have been added to the ordered list.

NOTE

Memory segments do not adhere to this process - a memory segment is
always located at the top of memory, if possible. If an input module con
tains more than one memory segment, only the first is placed at the top of
memory; the other segments are treated as any other relocatable segment.

Assigning Addresses to Relocatable Segments

Once LOC86 completes the ordered list of relocatable segments, it begins assigning
addresses. LOC86 will never assign addresses that conflict with the location of
absolute segments or the RESERVE control or between OOH and 200H, since that
area is reserved for interrupt routines.

Starting at location 200H, LOC86 scans free memory to find an area in which the
first segment will fit. When LOC86 finds a suitable address, it assigns it to the seg
ment and removes that area from free memory. LOC86 then scans free memory for
an area that will fit the next segment in the ordered list. LOC86 begins scanning at
the end of the previous segment.

IF LOC86 reaches the end of memory and all of the relocatable modules have not
been located, it makes an additional scan through free memory. The scanning pro
cess continues until all modules have been located.

LOC86's Algorithm for Locating Modules
Containing Overlays

LOC86 locates programs with overlays in much the same way as it handles programs
that do not contain overlays. However, there are some differences.

1. Segments contained in the root and each overlay are ordered separately.

2. Segments that are common to both the root and overlays (e.g.,STACK and
MEMORY) are put at the end of the list of relocatable segments.

3. Segments in the root are located at the lowest available addresses in memory.

4. Segments contained in the overlays are located at the first available address
above the root.

5. Segments common to the root and overlays are located immediately above the
largest overlay in the file.

Figure 5-4 illustrates how LOC86 treats two PL/M-86 programs that use overlays.
Figure 5-4a shows how segments are located when the modules are compiled with the
LARGE model. Figure 5-4b shows how segments are located when the modules are
compiled with the SMALL model of segmentation.

LOC86

5-25

LOC86 iAPX 86,88 Family Utilities

ROOT OVERLAY 1 OVERLAY 2

A.CODE

C.DATA B.CODE

cs------------~~----~~~~--_.

CLASS CODE

CLASS DATA

a. LARGE Model

Figure 5-4. LOC86's Address Assignments for Overlays 121616-7

5-26

iAPX 86,88 Family Utilities

ROOT OVERLAY 1

CODE

CONST

DATA

DATA
STACK

MEMORY

MEMORY

CS-------------.~~----~~--~--~

CODE FOR
OVERLAY 1

DATA FOR
OVERLAY 1

STACK

5P------------~~~----------------~

MEMORY

b. SMALL Model

OVERLAY 2

'--__ C_O_D_E __ .. I } C GROUP

STACK

MEMORY

SIZE OF ROOT STACK

MAXIMUM SIZE
OVERLAY STACK

MAXIMUM SIZE
OF MEMORY (OVERLAY 1)

D GROUP

} C GROUP

D GROUP

Figure 5-4. LOC86's Assignments for Overlays (Cont'd.) 121616-8

LOC86

5-27

· ::., CHAPTER 6
OH86 n

OH86 converts 8086 absolute object modules to 8086 hexadecimal format. The
input module must be in absolute format, and it may not contain overlays or register
initialization records.

Figure 6-1 illustrates the object-to-hexadecimal conversion process. Any errors
encountered during execution are displayed at the console output device.

For definition of file-naming conventions and syntax notation, refer to Notational
Conventions following the Preface. For information on error and warning messages
which may be produced, refer to Appendix H.

The general syntax for the invocation line is:

[directory-name]OH86 input fi/e[lO output file]

The input file contains an 8086 absolute object module.

TO output file designates the file to receive the 8086 hexadecimal format. If output
file is not specified, then output is directed to a file that has the same path name as
the input list, but its extension is HEX.

At the end of this document you will find operating system-specific examples of the
OH86 invocation.

r-----,
ABSOLUTE 1 I
~g~~~1 1----...... 1 OH86h I-------.. ~I

~ ___ J l
CONSOLE

MESSAGES

ABSOLUTE
HEX
FILE

".HEX"

Figure 6-1. OH86 Input and Output Files 121616-9

6-1

APPENDIX A
iAPX 86.88 ABSOLUTE OBJECT

FILE FORMATS

Introduction

The 8086 Absolute Object File Format herein described is a proper subset of the full
8086 Object File Formats. An absolute object file consists of a sequence of records
defining a single absolute module. An absolute module is defined as a collection of
absolute object information that is specified by a sequence of object records.

Definitions

This section defines certain terms fundamental to 8086 Relocation and Linkage
(R&L). The terms are ordered not alphabetically, but so you can read forward
without forward references.

Definition of Terms

OMF-acronym for Object Module Formats

R&L-acronym for Relocation and Linkage

MAS-acronym for Memory Address Space. The 8086 MAS is one megabyte
(1,048,576 bytes). Note that the MAS should be distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE-an "inseparable" collection of object code and other information pro
duced by a translator or by the LINK86 program. When a distinction must be made:

T-MODULE-denotes a module created by a translator, such as PL/M-86 or
ASM86, and

L-MODULE-denotes a module created by LINK86 from one or more constituent
modules. (Note that modules are not "created" in this sense by the iAPX86,88
Locater, LOC86; the output module from LOC86 is merely a transformation of the
input module).

Two observations about modules must be made:

1. Every module must have a name, so that the iAPX86,88 Librarian, LIB86, has a
handle for the module for display to the user. (If there is no need to provide a
handle for LIB86, the name may be null.) Translators provide names for T
modules, providing a default name (possibly the file name or a null name) if
neither source code nor user specifies otherwise.

2. Every T -module in a collection of modules linked together may have a different
name, so that symbolic debugging systems can distinguish the various symbols.
This restriction is not required by R&L and is not enforced by it.

FRAME-a contiguous region of 64K of MAS, beginning on a paragraph boundary
(i.e., on a multiple of 16 bytes). This concept is useful because the content of the
four 8086 segment registers define four (possibly overlapping) FRAME's; no 16-bit
address in the 8086 code can access a memory location outside of the current four
FRAME's. The FRAME starting at address OOOOH is FRAME O.

A-I

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-2

Module Identification

In order to determine that a file contains an object program, a module header record
will always be the first record in a module. There are two kinds of header records
and each provides a module name. The additional functions of the header records
are explained below.

A module name may be generated during one of two processes: translation or link
ing. A module that results from translation is called aT-MODULE. AT-MODULE
will have aT-MODULE HEADER RECORD (THEADR). A name may be
provided in the THEADR record by a translator. This name is then used to identify
the progenitor of all debug information found in the T-MODULE. The name may
be null, i.e., of length zero.

A module that results from linking and locating is called an L-MODULE. An
L-MODULE will always have an L-MODULE HEADER RECORD (LHEADR) or
an R-MODULE HEADER RECORD (RHEADR). In the LHEADR or RHEADER
record a name is also provided. This name is available for use to refer to the module
without using any of its constituent T -MODULE names. An example would be two
T -MODULES, A and B, linked together to form L-MODULE C. L- MODULE C
will contain two THEADR records and will begin with an LHEADR record with the
name C provided by the linker as a directive from the user. The L- MODULE C can
be referred to by other tools such as the library manager without having to know
about the originating module's names, yet the originating module's names are
preserved for debugging purposes.

Module Attributes

In addition to a name, a module may have the attribute of being a main program as
well as having a specified starting address.

If a module is not a main module yet has a starting address, then this value has been
provided by a translator, possibly for debugging purposes. A starting address
specified for a non-main module could be the entry point of a procedure, which may
be loaded and initiated independent of a main program.

Physical Segment Definition

A module is defined as a collection of data bytes defined by a sequence of records
produced by a translator. The data bytes represent contiguous regions of memory
whose contents are determined at translation time.

Physical Segment Addressability

The 8086 addressing mechanism provides segment base registers from which a 64K
byte region of memory, called a Frame, may be addressed. There is one code seg
ment base register (CS), two data segment base registers (DS, ES), and one stack seg
ment base register (SS).

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Data

The data that defines the memory image represented by a module is maintained in
two varieties of OAT A records: PHYSICAL ENUMERATED DATA RECORD
(PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). Both
records specify the data to be loaded into a contiguous section of memory. The start
address of this contiguous section is given in the record. PEDA TA records contain
an exact byte-by-byte copy of the desired memory image. The PIDATA record dif
fers in that the data bytes are represented within a structure that must be expanded
by the loader. The purpose of the PIDATA record is to reduce module size by
encoding repeated data rather than explicitly enumerating each byte, as the
PEDA T A record does.

Record Syntax

The following syntax shows the valid orderings of records to form an absolute
module. In addition, the given semantic rules provide information about how to
interpret the record sequence. The syntactic description language used herein is
defined in Wirth: CACM, November 1977, V20, N II, pg. 822-823.

absol ute_object_ fi I e

module

tmod

Imod

omod

o_component

t_component

content_def

mod_tail

=module.

=tmod Ilmod lomod.

=THEADR [REGINT]contenLdef mod_tail.

=LHEADR [REGINT]t_component mod_tail.

=RHEADR {OVLDEF}[REGINT] o_component
{OVLDEF} mod_tail.

=t_component ENDREe.

=[THEADR] content_def

=PEDATA I PIDATA.

=[REGINT] MODEND.

NOTE

The character strings represented by capital letters above are not literals but
are identifiers that are further defined in the section defining the Record
Formats.

One module may not contain more than one REGINT record and more than one
OVLDEF sequence. If a REGINT record and an OVLDEF sequence exist, the
REGINT record must immediately follow the OVLDEF sequence.

A proper Absolute Object File produced by Intel products will contain at least the
above record types. It may also contain other record types which, if present, will
follow the Module Header record and precede the Module End record. These other
record types fall into two categories:

1. Extraneous, containing information not pertinent to an absolute loader. The
record numbers in this category are:

72H, 74H, 7 AH, 7CH, 7EH, 88H, 8CH, 8EH, 9OH, 92H, 94H, 96H, 98H, 9AH, 9CH

2. Erroneous, containing information about relocation, indicating that the object
module is not yet in absolute form or that erroneous record types exist. The
record numbers in this category are all other recprd type numbers.

A-3

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-4

Record Formats

The following pages present diagrams of Record Formats in schematic form. Here is
a sample, to illustrate the various conventions: I

Sample Record Format (SAMREC)

~----~-------------r---- ... ----~--------,
REC
TYP
xxH

RECORD
LENGTH

NAME CHK
SUM

...... ___ ____________ ••• ___ ..a..... _____ _

L rpt -.J

Title and Official Abbreviation

/

At the top is the name of the Record Format described, together with an official
abbreviation. To promote uniformity among various programs, the abbreviation
should be used in both code and documentation. The abbreviation is always six
letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes represent single
bytes. The wide boxes represent two bytes (or one word) each. In the object file, the
low order byte of a word value comes first. The wide boxes with four vertical bars in
the top and bottom represent 4-byte fields. The wide boxes with three dots in the top
and bottom represent a variable number of bytes, one or more, depending upon
content.

RecTyp

The first byte in each record contains a value between ° and 255, indicating the type
of record.

Record Length

The second field in each record contains the number of bytes in the record, exclusive
of the first two fields.

Name

Any field that indicates a "NAME" has the following internal structure: the first
byte contains a number between ° and 40, inclusive, that indicates the number of
remaining bytes in the field. The remaining bytes are interpreted as a byte string;
each byte must represent the ASCII code of a character drawn from this set:

[?@ :._0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ]

Most translators will choose to constrain the character set more strictly; the above
set has been chosen to "cover" that required by all current processors.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Repeated Fields
Some portions of a Record Format contain a field or series of fields that may occur
an indefinite number of times (zero or more). Such fields are indicated by the
"repeated" or "rpt" brackets below the boxes.

Similarly, some portions of the Record Format are present only if some given condi
tion obtains; these fields are indicated by similar "conditional" brackets below the
boxes.

ChkSum

The last field in each record is a check sum, which contains the two's complement of
the sum (modulo 256) of all other bytes in the record. Therefore, the sum (modulo
256) of all bytes in the record equals O.

Bit Fields

Descriptions of contents of fields will sometimes get down to the bit level. Boxes
with vertical lines drawn through them represent bytes or words; the vertical lines in
dicate bit boundaries; thus this byte has three bit-fields of three, one, and
four bits:

Ignored Records

r-------~----------__ ---- ... ----__ --------_
REC
TYP

RECORD
LENGTH

IGNORE
THIS
PART

CHK
SUM

--------~----------~--- ... --------------
All record types that may be in an object module that provide information not perti
nent to an absolute loader must be ignored. They may all be treated as if they have
the above format. Records in this category have REC TYP in the set 72H, 74H,
7AH, 7CH, 7EH, 88H, SCH, SEH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH.

T-Module Header Record (THEADR)

~------------------~--- ... --~~--------
REC
TYP
80H

RECORD
LENGTH

T
MODULE

NAME

CHK
SUM

~------~----------~---... --~~------~
Every module output from a translator must have a T-MODULE HEADER
RECORD. Its purpose is to provide the identity of the original defining module for
all debug information encountered in the module up to the following T -MODULE
HEADER RECORD or MODULE END RECORD.

This record can also serve as the header for a module; i.e., it can be the first record
and will be for modules that are output from translators.

A-5

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-6

T-ModuleName

The T -MODULE NAME provides a name for the T -MODULE.

L-Module Header Record (LHEADR)

~------~---------------... ----,--------,
REC
TYP
82H

RECORD
LENGTH

L
MODULE

NAME

CHK
SUM

~------~----------~---... ----~------~
A module created by LINK86 and LOC86 may have an L-MODULE HEADER
RECORD. This record serves only to identify a module that has been processed
(output) by LINK86 and/or LOC86. When several modules are linked to form
another module, the new module requires a name, perhaps unique from those of the
linked modules, by which it can be referred to (by the LIB86 program, for example).

L-Module Name

The L-MODULE NAME provides a name for the L-Module.

R-MODULE HEADER RECORD (RHEADR)

REC
TYP
6EH

RECORD
LENGTH NAME INFO SUM

R_M~~UTE OV;~:j:JY CHK

-------~------------
Every module with overlays created by LINK86/LOC86 will have an R-MODULE
HEADER RECORD. This record serves to identify a module that has been pro
cessed (output) by LINK86/LOC86. It also specifies the overlay count and the loca
tion of the Overlay Definition records. When several modules are linked to form
another module, the new module requires a name, perhaps unique from those of the
linked modules, by which it can be referred to.

R-MODULE NAME

The R-MODULE NAME provides a name for the R-Module.

OVERLAY INFO

The OVERLAY INFO field provides information on overlays in the module and has
the following format:

CG~·;RE OVERLAY ~V~RlAIYG~~R[J
THIS RECORD RECORD. THIS
PART COUNT OFFSET PART

... -----------'---t~. I I •••
The first subfield is a 5-byte field that should be ignored.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

The OVERLAY RECORD COUNT subfield indicates the number of Overlay
Definition Records in the module.

The OVERLAY RECORD OFFSET sub field is a 4-byte field. It contains a 32-byte
unsigned number indicating the location in bytes, relative to the start of the object
file, of the first Overlay Definition Record in the Module.

The last sub field is a 16-byte field that should be ignored.

OVERLAY DEFINITION RECORD (OVLDEF)

J
I I It-----! !r------,-----,

REC RECORD OVERLAY
TYP LENGTH NAME
76H

OVERLAY
OCATION L

I
I

z CHK
SUM

This Record provides the overlay name, the location of the overlay in the object file.

A loader may use this record to locate the data records of the overlay in the object
file.

OVERLAY NAME

The OVERLAY NAME field provides a name by which a collection of data records
may be referenced for loading.

OVERLAY LOCATION

The OVERLAY LOCATION is a 4-byte field which gives the location in bytes
relative to the start of the file of the first byte of the records in the overlay.

z
The Z field is a reserved field. This field is required to be zero.

END RECORD (ENDREC)

REC RECORD END CHK
TYP LENGTH TYP SUM
78H

This record is used to denote the end of a set of records such as records in an
overlay.

A-7

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-8

END TYP

This field specifies the type of the set. It has the following format:

o o o o o o ~P
TYP is a two bit subfield that specifies the following types of ends:

TYP TYPE OF END

0 End of overlay
1 (Reserved)
2 (Illegal)
3 (Illegal)

REGISTER INITIALIZATION RECORD (REGINT)

... ----~--------
REC RECORD REG RE GISTER CHK
TYP LENGTH TYP CO NTENTS SUM
70H ... ----~------~

"------- repeated -------'

This record provides information about the 8086 registers/register-pairs: CS and
IP, SS and SP, DS and ES. The purpose of this information is for a loader to set the
necessary registers for initiation of execution.

REG TYP

The REG TYP field provides the register/register-pair name. It has the following
format:

REGID

REGID is a two bit sub field that specifies the name of the registers/register-pairs as
follows:

REGID

o
1
2
3

REG ISTER/REG ISTERPAIR

CSand IP
SSand SP
OS
ES

iAPX 86»88 Family Utilities iAPX 86»88 Absolute Object File Formats

REGISTER CONTENTS

The REGISTER CONTENTS field has the following format:

z Z FRAME REGISTER
NUMBER OFFSET

L conditional~

The Z fields are reserved fields. They are required to be zero.

The FRAME NUMBER field specifies a frame number that must be used to
initialize the base register indicated by the REGID value.

The REGISTER OFFSET field, present only if REGID <= 1, specifies an offset
relative to the FRAME. This value is appropriate for the initialization of either the
IP register (REGID = 0) or the SP register (REGID = 1).

Module End Record (MODEND)

... ----~--------
REC RECORD MOD S TART CHK
TYP LENGTH TYP A DDRS SUM
BAH ... ----~------~

L conditional.~
This record serves two purposes. It denotes the end of a module and indicates
whether the module just terminated has a specified entry point for initiation of
execution. If the latter is true, then the execution address is specified.

ModTyp

This field specifies the attributes of the module. The bit allocation and their
associated meanings are as follows:

MATTR is a two-bit sub field that specifies the following module attributes:

MATTR

o
1
2
3

MODULE ATTRIBUTE

Non-main module with no starting address
Non-main module with starting address
(invalid value for MATTR)
Main module with starting address

A-9

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-lO

Start Addrs

The START ADRS field has the following format:

FRAME
NUMBER

OFFSET

FRAME NUMBER. This field specifies a frame number relative to which the
module will begin execution. This value is appropriate for insertion into the CS
register for program initiation.

OFFSET. This field specifies an offset relative to the FRAME NUMBER that
defines the exact location of the first byte at which to begin execution. This value is
appropriate for insertion into the IP register for program initiation.

Physical Enumerated Data Record (PEDATA)

REC RECORD FRAME OFF CHK
TYP LENGTH NUMBER SET OAT SUM
84H

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed.

Frame Number

This field specifies a Frame Number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte of the DAT field. Successive data bytes in the DAT
field occupy successively higher locations of memory. The value of OFFSET is con
strained to be in the range 0 to 15 inclusive. If an OFFSET value greater than 15 is
desired, then an adjustment of the FRAME NUMBER should be done.

Dat

This field provides consecutive bytes of an 8086 memory image. The number of
DAT bytes is constrained only by the RECORD LENGTH field. The address of
each byte must be within the frame specified by FRAME NUMBER.

Physical Iterated Data Record (PI DATA)

;;;EIT:JCHK
DATA SUM
LOCK

•••

REC RECORD FRAME OFF ITE
TYP LENGTH NUMBER SET
86H B

L repeated-.J

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed. It allows initialization of data segments and provides a
mechanism to reduce the size of object modules when there are repeated data to be
used to initialize a memory image.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Frame Number

This field specifies a frame number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte in the ITERATED DATA BLOCK. Successive data
bytes in the ITERATED DATA BLOCK occupy successively higher locations of
memory. The range of OFFSET is constrained to be between 0 and 15 inclusive. If a
value larger than 15 is desired for OFFSET, then an adjustment of FRAME
NUMBER should be done.

Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. It is a structure
that has the following format:

REPEAT BLOCK
COUNT COUNT CONTENT

Repeat Count. This field specifies the number of times that the CONTENT portion
of this ITERATED DATA BLOCK is to be repeated, and must be greater than zero.

Block Count. This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero then the CONTENT portion of this ITERATED DATA
BLOCK is interpreted as data bytes.

If BLOCK COUNT is non-zero then the CONTENT portion of this ITERATED
DATA BLOCK is interpreted as that number of ITERATED DATA BLOCKS.

Content. This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a one-byte count followed by the
indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first byte of
another ITERATED DATA BLOCK.

NOTE

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17; i.e., the number of levels of recursion is limited
to 17.

The address of each data byte must be within the frame specified by
FRAME NUMBER.

Hexadecimal Object File Format

Hexadecimal object file format is a way of representing an object file in ASCII.

The function of the utility program, OH86, is tp convert 8086 absolute object
modules to 8086 hexadecimal object modules.

A-ll

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-12

The hexadecimal representation of binary is coded in ASCII. For example, the eight
bit binary value 0011 1111 is 3F in hexadecimal. To code this ASCII, one eight-bit
byte containing the ASCII code for 3(00110011 or 33H) and one eight-bit byte con
taining the ASCII code for F(0100 0110 or 46H) are required. This representation
(ASCII hexadecimal) requires twice as many bytes as the binary.

There are four different types of records that may make up an 8086 hexadecimal
object file. They are:

• Extended Address Record

• Start Address Record

• Data Record

• End of File Record

Each record begins with a RECORD MARK field containing 3AH, the ASCII code
for colon (:).

Each record has a REC LEN field which specifies the number of bytes of informa
tion or data which follows the RECTYP field of each record. Note that one byte is
represented by two ASCII characters.

Each record ends with a CHECKSUM field that contains the ASCII hexadecimal
representation of the two's complement of the eight-bit sum of the eight-bit bytes
that result from converting each pair of ASCII hexadecimal digits to one byte of
binary, from and including the RECORD LENGTH field to and including the last
byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after
converting to binary, from the RECORD LENGTH field to and including the
CHECKSUM field, is zero.

Extended Address Record

RECD REC REC CHK
MARK LEN ZEROES TYP USBA SUM

'.' '02' '0000' '02'

The 8086 EXTENDED ADDRESS RECORD is used to specify bits 4-19 of the Seg
ment Base Address (SBA) where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA
are referred to as the Upper Segment Base Address (USBA). The absolute memory
address of a content byte in a subsequent DATA RECORD is obtained by adding
the SBA to an offset calculated by adding the Load Address Field of the containing
DATA RECORD to the index of the byte in the DATA RECORD (0, 1,2, ... n).
The offset addition is done modulo 64K, ignoring a carry, so that offset wrap
around loading (from OFFFFH to OOOOOH) results in wrapping around from the end
to the beginning of the 64K segment defined by the SBA. The address at which a par
ticular data byte is loaded is calculated as:

SBA + ([DRLA + DRI] MOD 64K)

where

DRLA is the DATA RECORD LOAD ADDRESS.

DRI is the data byte index within a DATA RECORD.

iAPX 86,88 .Family Utilities iAPX 86,88 Absolute Object File Formats

When an EXTENDED ADDRESS RECORD defines the value of SBA, the
EXTENDED ADDRESS RECORD may appear anywhere within an 8086 hexa
decimal object file. This value remains in effect until another EXTENDED
ADDRESS RECORD is encountered. The SBA defaults to zero until an
EXTENDED ADDRESS RECORD is encountered.

Reed Mark

The RECD MARK field contains 03AH, the hex encoding of ASCII':' .

Ree Len

The Record Length field contains 3032H, the hex encoding of ASCII '02'.

Zeroes

The Load Address field contains 30303030H, the hex encoding of ASCII '0000'.

ReeTyp

The Record Type field contains 3032H, the hex encoding of ASCII '02'.

USBA

The USBA field contains four ASCII hexadecimal digits that specify the 8086 USBA
value. The high-order digit is the 10th character of the record. The low order digit is
the 13th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, and USBA fields.

Data Record

RECD REC LOAD REC
MARK LEN ADDRESS TYP

I.'
"

'00'

The DATA RECORD provides a set of hexadecimal digits that represent the ASCII
code for data bytes that make up a portion of an 8086 memory image. The method
for calculating the absolute address for each byte of DATA is described in the
discussion of the Extended Address Record.

Reed Mark

The RECD MARK field contains 03AH, the hex encoding of ASCII':' .

Ree Len

The REC LEN field contains two ASCII hexadecimal digits representing the number
of data bytes in the record. The high-order digit comes first. The maximum value is
'FF' or 4646H (255 decimal).

A-13

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-14

Load Address

The LOAD ADDRESS field contains four ASCII hexadecimal digits representing
the offset from the SBA (see EXTENDED ADDRESS RECORD) defining the
address at which byte 0 of the DATA is to be placed. The LOAD ADDRESS value is
used in calculation of the address of all DATA bytes.

ReeTyp

The REC TYP field in a DATA record contains 3030H, the hex encoding of
ASCII '00'.

Data

The DATA field contains a pair of hexadecimal digits that represent the ASCII code
for each data byte. The high order digit is the first digit of each pair.

ChkSum

This is the check sum on the REC LEN, LOAD ADDRESS, REC TYPE, and
DATA fields.

Start Address Record

RECD REC REC CHK
MARK LEN ZEROES TYP CS IP SUM

'.' '04' '0000' '03'

The START ADDRESS RECORD is used to specify the execution start address for
the object file. Values are given for both the Instruction Pointer (lP) and Code Seg
ment (CS) registers. This record can appear anywhere in a hexadecimal object file.

If a START ADDRESS RECORD is not present in an 8086 hexadecimal file, a
loader is free to assign a default start address.

Reed Mark

The RECD MARK field contains 03AH, the hex encoding for ASCII ':'.

Ree Len

The REC LEN field contains 3034H, the hex encoding for ASCII '04'.

Zeroes

The ZEROES field contains 30303030H, the hex encoding for ASCII '0000'.

ReeTyp

The REC TYP field contains 3033H, the hex encoding for ASCII '03'.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

CS

The CS field contains four ASCII hexadecimal digits that specify the 8086 CS value.
The high-order digit is the 10th character of the record; the low-order digit is the
13th character of the record.

IP

The IP field contains the four ASCII hexadecimal digits that specify the 8086 IP
value. The high-order digit is the 14th character of the record, the low order digit is
the 17th character of the record.

ChkSum

This is the check sum on the REC LEN, ZEROES, REC TYP, CS, and IP fields.

End of File Record

RECD REC REC CHK
MARK LEN ZEROES TYP SUM

'.' '00' '0000' '01 ' 'FF'

The END OF FILE RECORD specifies the end of the hexadecimal object file.

Reed Mark
The RECD MARK field contains 03AH, the ASCII code for colon (:).

ReeLen
The REC LEN field contains two ASCII zeroes (3030H).

Zeroes

The ZEROES field contains four ASCII zeroes (30303030H).

ReeTyp

The REC TYP field contains 3031H, the ASCII code for OIH.

ChkSum

The CHK SUM field contains 4646H, the ASCII code for FFH, which is the check
sum on the REC LEN, ZEROES and REC TYP fields.

A-15

iAPX 86,88 Absolute Object File Formats iAPX 86,88 Family Utilities

A-16

Examples

Sample Absolute Object File

The following is an example of an absolute object file. The file contains eight
records. The eight records perform the following functions:

Record Function

LHEADR record begins the object module and defines the module
name.

2 THEADR record defines the translator-generated module name
which is the same as the name in the LHEADR record.

3 PEDA T A record defines a contiguous memory image from 00200H
to 00215H.

4 PEDA T A record defines a contiguous memory image from 00360H
to00377H.

5 PEDATA record defines a contiguous memory image from 00415H
to0042BH.

6 PEDA T A record defines a contiguous memory image from
05 I 620H to 051633H.

7 PIDA T A record defines a contiguous memory image from
051BOOH to 05IBIDH. The iterated data consists of three repeti
tions of "ABC" (414243H), followed by three repetitions of (four
repetitions of "D" (44H», three repetitions of "E" (45H).

8 MODEND record specifies that the module should be started with
CS = 5162H and IP = 0005H.

(I) 82 0008 0653414D504C45 AE
(2) 80 0008 0653414D504C45 BO
(3) 84 OOIA 0020 00

004992D B246D B6FF 4891 DA236CB5FE4 7
90D9226BB4FD 63

(4) 84 OOIC 0036 00
0062C42688EA4CAE I 072D43698F A5 CBE
2082E446A80A6CCE 82

(5) 84 OOIB 0041 05
00lD3A577491AECBE805223F5C7996B3
DOEDOA2744617E 72

(6) 84 0018 5162 00
00850A8FI4991EA328AD32B73CCI46CB
50D55ADF FB

(7) 86 OOIC 51BO 00
0003 0000 03 414243
0003 0002
0004 0000 01 44
0003 0000 01 45 FA

(8) 8A 0006 CO 5162 0005 F8

NOTE

The blank characters and carriage return and line feed characters are
inserted here to improve readability. They do not occur in an object
module. This file has been converted to ASCII hex so that it may be printed
here. All word values (RECORD LENGTH, REPEAT COUNT, etc.) have
been byte-reversed to improve readability.

iAPX 86,88 Family Utilities iAPX 86,88 Absolute Object File Formats

Sample Absolute Hexadecimal Object File

The following is the hexadecimal object file representation of the object file given in
the example above:

:020000020020DC
:10000000004992DB246DB6FF4891DA236CB5FE47B8
:0600100090D9226BB4FD43
:020000020036C6
: 1 000000OOO62C42688EA4CAE 1 072D43698F A5CBEOO
:080010002082E446A80A6CCE30
:020000020041 BB
: l0000500001D3A577491AECBE805223F5C7996B353
:07001500DOEDOA2744617ED3
:02000002516249
:1000000000850A8FI4991EA328AD32B73CCI46CB98
:0400100050D55ADF8E
:0200000251 BOFB
:loooooo041424341424341424344444444454545BF
:OEOO 1 000444444444545454444444445454524
:040000035162000541
:0000000 1 FF

A-17

APPENDIX B
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal-to-decimal and decimal-to-hexadecimal con
version. To find the decimal equivalent of a hexadecimal number, locate the hexa
decimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower
decimal number in the table and note the hexadecimal number and its position. Sub
tract the decimal number from the table from the starting number. Find the dif
ference in the table. Continue this process until there is no difference.

BYTE BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEXDEC

° 0. 0 ° ° ° 0 0 0 0 0 ° 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 13,631,488 0 851,968 0 53,248 0 3,328 0 208 0 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

B-1

APPENDIX C
THE EFFECT OF AVAILABLE MEMORY

ON LINK86, CREF86, LIB86, AND LOCS6

The system resources required by LINK86, CREF86, LIB86, or LOC86 depend on
the number of symbols, modules, or segments in the input file(s). The greater the
number of symbols in the input, the greater the memory requirements.

LINK86, CREF86, AND LIB86

These utilities can take advantage of up to 512K of available memory space. When
the number of symbols in the input list requires more memory than is available,
these utilities use disk resources to accommodate the remainder. A vailable memory
means RAM which the utilities have available to them exclusively. Once a utility has
run out of memory and has to use disk, performance will become impaired.

The following table defines the number of symbols or modules which these utilities
may process without performance degradation, given several levels of available
memory. The available memory depends on the hardware and software environment
under which the utilities are running on your system. Note that the relationship
between number of symbols or modules and the amount of available memory is
linear, up to a maximum. The following assumptions were used to calculate the
figures provided:

• Variable and module names average 10 characters~

• Each symbol has five references (CREF86).

• Each module has 1.4 public names (LIB86).

• A symbol as used here is an abstract representation of an 8086 object module
format record:

UNK86 CREF86 UB86

Maximum number of symbols or
modules which can be processed
without performance penalty:

With 100K available memory 1,700 symbols 1,900 symbols 450 modules

With 164K available memory 2,900 symbols 3,300 symbols 1,000 modules

With 228K available memory 4,200 symbols 4,700 symbols 1,700 modules

With 484K available memory 10,000 symbols 11,000 symbols 4,000 modules

Theoretical maximum number of
symbols or modules, regardless of
available memory: 10,000 symbols 11,000 symbols 4,000 symbols

LOC86

With 96K of available memory, LOC86 will support up to 900 segments.

C-l

APPENDIX D
LINK86 CONTROLS

AND ERROR MESSAGES

Table D-l lists all of LINK86's control syntax, abbreviations, and default settings.

Table D-l. Summary of LINK86 Controls

Control Abbrev. Default

ASSIGN({variable(address)} [, ... J) AS Not applicable

ASSU MEROOT(pathname) AR Not applicable

BIND BI NOBIND

NOBIND NOBI

COMMENTS CM COMMENTS

NOCOMMENTS NOCM

FASTLOAD FL NOFASTLOAD

NOFASTLOAD NOFL

INITCODE IC Not applicable

LINES LI LINES

NOLINES NOLI

MAP MA MAP ..
NOMAP NOMA

MEMPOOL(min-size[,maxsize]) MP Not applicable

NAME(module name) NA Not applicable

OBJECTCONTROLS(
{LINES 1 NOLINES 1 OC Not applicable
COMMENTS 1 NOCOMMENTS 1
SYMBOLS 1 NOSYMBOLS 1
PUBLICS [EXCEPT(symbol [, ...])] 1
NOPUBLICS [EXCEPT(symbol [, ...])] 1

TYPE 1 NOTYPE 1
PURGE 1 NOPURGE} [, ...])

ORDER({group({segment[\class[\ overlay]]} OD Not applicable
[, ... j)}

[, ...])

OVERLA Y[(overlay)] OV NOOVERLAY

NOOVERLAY NOOV

PRINT[(path name)] PR PRINT(object file.MP1)

NOPRINT NOPR

PRINTCONTROLS(
{LINES 1 NOLINES 1 PC Not applicable
COMMENTS 1 NOCOMMENTS 1
SYMBOLS 1 NOSYMBOLS 1
PUBLICS [EXCEPT(symbol [, ... j)] I
NOPUBLICS [EXCEPT(symbol [, ...])]1
TYPE I NOTYPE 1
PURGE 1 NOPURGE} [, ... j)

0-1

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-2

Table D-l. Summary of LINK86 Controls (Cont'd.)

Control Abbrev. Default

PUBLICS [EXCEPT(symbol [, ...])) PL[EC) PUBLICS

NOPUBLICS [EXCEPT(symbol [, ...))) NOPL [EC)

PUBLlCSONLY(pathname[, ... j) PO Not applicable

PURGE PU NOPURGE

NOPURGE NOPU NOPURGE

RENAMEGROUPS({group TO group} [, ...]) RG Not applicable

SEGSIZE(SS Not applicable
{segment[\ class [\ overlay))
(min-size[,[max- size lJ)}
[, ...])

SYMBOLS SB SYMBOLS

NOSYMBOLS NOSB

SYMBOLCOLUMNS({1121314}) SC SYM BOLCOLU M NS(2)

TYPE TY TYPE

NOTYPE NOTY

The following are descriptions of all LINK86 error and warning messages. The
description of each message has up to four parts:

• Meaning-how to interpret the message

• Cause-the usual reason for the error or warning condition

• Effect-the state of LINK86 and the object file(s) after the message is issued

• User Action-what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the
resulting code is valid.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/O ERROR
operating system error message
F I L E: pathname

ERROR 2: I/O ERROR
operating system error message
F I L E: path name

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 3: 1/0 ERROR
operating system error message
F I L E: pathname

ERROR 4: CONSOLE 1/0 ERROR
operating system error message
F I L E: path name

Meaning

An 110 error was detected by the operating system. The error number identifies the
file that caused the error:

1. The input file

2. The print file

3. The object file

4. The console file (usually the console)

Refer to the documentation for your operating system for a complete list of all
possible messages.

Effect

LINK 86 immediately terminates processing, all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the error and restart LINK86.

ERROR 5: INPUT PHASE ERROR
F I L E: pathname
MO 0 U L E: module name

Meaning

LINK86 encountered a record during the second phase of linkage that does not agree
with information gathered during the first phase of linkage.

Cause

This error is caused by a data transmission error or a LINK86 error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca
tion line, and your version of LINK86.

D-3

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-4

ERROR 6: CHECK SUM ERROR
F I L E: pathname
MO DU L E: module name

Meaning

The check sum field at the end of one of the object module records indicates a
transcription error.

Cause

Anyone of many possible data encoding or communication errors could be at fault.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source that produced the specified module and relink.

ERROR 7: COMMAND INPUT ERROR

Meaning

LINK86 encountered an error while attempting to read the complete invocation line.

Cause

Possibly an end-of-file while reading from the console input device.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Examine the invocation line, and reinvoke LINK86 correctly.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 8: SEGMENT COMBINATION ERROR
F I L E: path name
MOD U L E: module name
SEGMENT: segment name
C LA S S: class name

Meaning

Two segments with the same name have been found to be uncombinable.

Cause

The specified segments have different combination attributes or incompatible align
ment attributes.

Effect

Although LINK86 will continue processing pass 1, pass 2 will not be started. The
object file will be useless and the print file will contain limited information.

User Action

Retranslate the source that produced the specified file and module.

WARNING 9: TYPE MISMATCH
F I L E: pathname
MODULE: module name
SYMBOL: symbolname

Meaning

LINK86 has found a public/external symbol pair for which the type definitions do
not agree.

Effect

LINK86 continues processing using the first definition only. The object file and the
print file should be valid, except the second definition is ignored.

User Action

Modify the public or external declaration and recompile and relink the source file.

D-5

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-6

WARNING 10: DIFFERENT VALUES FOR
F I L E: pathname
MODU LE: module name
S Y M B 0 L: symbol name

Meaning

LINK86 encountered the same symbol declared public in two different modules. The
specified file and module contains the second definition encountered.

Cause

Two modules have used the same symbol name for different public definitions.

Effect

LINK86 continues processing using the value of the first public definition; the
second definition is ignored. Both the print file and the object file will be valid.

User Action

Change the name of the symbol in either the specified file or the file containing the
earlier definition.

ERROR 11: INSUFFICIENT MEMORY
F I L E: pathname
MO 0 U L E: module name

Meaning

There is insufficient memory in your system for LINK86 to build its internal tables
and data structures.

Cause

You are using too many public symbols.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

If expanding system memory is not possible, try incremental linkage (i.e., link
smaller sets of files together using the NOPUBLICS control, then link the resulting
composite modules together).

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 12: UNRESOLVED SYMBOLS
FILE: pathname
MODU LE: module name

Meaning

There are declarations of external symbols that were not resolved during this
linkage.

Cause

This is very common when performing an incremental linkage.

Effect

The print file is valid. The object file must be linked to resolve the external
references.

User Action

Link object file to a file that will resolve the external references.

WARNING 13: IMPROPER FIXUP
F I L E: path name
MO DU LE: module name

Cause

The external reference makes assumptions about the segment register that do not
agree with the assumption made for the public definition.

Effect

LINK86 continues processing. The object file will not be usable, but the print file
will be complete and accurate.

User Action

Depending on the cause of the error: change your ORDER control, recompile with a
different model of segmentation, or change the source and reassemble.

D-7

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-8

WARNING 14: GROUP ENLARGED
F I L E: pathname
GROUP: group name
MO D U LE: module name

Meaning

The specified group name has been defined twice in two different modules. The
segments contained in the two definitions are different.

Effect

The two groups are combined into one. All segments that were in either group are
included in the resulting group. Segments with the same segment name, class name,
and overlay name are combined. LINK86 continues processing. Both the print file
and object file are valid.

User Action

No user action should be necessary.

ERROR 15: LINK86 ERROR
F I L E: path name
MO D U L E: module name

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca
tion line, and your version of LINK86.

ERROR 16: STACK OVERFLOW
F I L E: pathname
MOD U L E: module name

Meaning

LINK86's run time stack used for type matching has overflowed.

Cause

The type definition of one of your symbols is overly complex.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Try incremental linkage - if error persists, contact Intel.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 17: SEGMENT OVERFLOW
SEGMENT: segment name
C LA S S: class name

Meaning

The combination of two or more segments has resulted in a segment that exceeds
64K.

Effect

LINK86 continues processing during the current pass, but the print and object files
are not useable.

User Action

Reorganize your segments and reassemble.

WARNING 18: IMPROPER START ADDRESS
F I L E: pathname
MO D U L E: module name

Meaning

A start address was found in one of the overlay modules, and none was found in the
root module.

Cause

This error is often caused by misordering the input modules in the input list.

Effect

LINK86 ignores the start address in the specified overlay module and continues
processing.

User Action

If you want the module containing the start address to be the root, rei ink with that
module first in the input list.

ERROR 19: TYPE DESCRIPTION TOO LONG
F I L E: pathname
MODULE: modulename

Meaning

The type definition is too long to fit in LINK86's symbol table.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca
tion line, and your version of LINK86.

D-9

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-1O

WARNING 20: NO SUCH GROUP
N AM E: group name

Cause

You have attempted to rename a nonexistent group.

Effect

LINK86 ignores the RENAME control and continues processing.

User Action

Reinvoke LINK86 with the correct invocation line.

WARNING 21: RENAME ERROR
NAME: name

Meaning

The new group name specified is the same as an existing group.

Effect

The group is not renamed. LINK86 continues as if the rename control was not given.

User Action

Reinvoke LINK86 with the correct invocation line.

ERROR 22: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #
partial command tail

Cause

This is usually the result of a typo in the invocation line. The partial command tail
up to the point where the error was detected is printed.

Effect

LINK86 terminates processing and closes all open files. The contents of the print file
and the object file are undefined.

User Action

Reinvoke LINK86 more carefully this time.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 23: BAD OBJECT FILE
F I l E: pathname
MODU lE: module name

Meaning

LINK86 has discovered an inconsistency in the fields of a record in the specified
input file.

Cause

This could be an error by the translator or a data transmission error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source file. If the problem persists contact Intel.

WARNING 24: CANNOT FIND MODULE
F I l E: pathname
MODULE: modulename

Meaning

The specified module cannot be found in the specified library file.

Effect

LINK86 continues processing as if the specified module was not in the list.

User Action

If the module is important, you can link it into the output object file later.

WARNING 25: EXTRA START ADDRESS IGNORED
F I l E: pathname
MODU lE: module name

Meaning

LINK86 has encountered a start address in more than one module.

Cause

This will occur any time you specify more than one main module in the input list.

Effect

LINK86 uses the start address encountered earlier and ignores the start address in
the specified module. LINK86 continues processing with no otht:r side effects.

User Action

None, if the start address in the specified module was intended to be ignored.

D-l1

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-12

ERROR 26: NOT AN OBJECT FILE
F I L E: pathname

Meaning

The specified file is not an object file.

Cause

This is usually the result of a typo when entering. However, certain data trans
mission errors can also cause this error.

Effect

LINK86 terminates processing and closes all open files.

User Action

Reinvoke LINK86 typing the line more carefully. If error resulted from a data
transmission error, retranslate and then relink.

ERROR 27: OPERATING SYSTEM INTERFACE ERROR
F I L E: path name

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Refer to the documentation for your operating system. If you cannot correct the
error condition, contact Intel; forward a copy of the object file, the LINK86 invoca
tion line, and your version of LINK86.

WARNING 28: POSSIBLE OVERLAP
F I L E: pathname
MODULE: modulename
SEGMENT: segmentname
C LA S S: class name

Meaning

LINK86 issues this warning when it combines two absolute segments.

Effect

LINK86 continues processing with no side effects.

User Action

If there is a conflict LOC86 or the loader will detect the overlap.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 29: GROUP HAS BAD EXTERNAL REFERENCE
G ROU P: group name
S E GM E NT: segment name

Meaning

This error occurs if the public symbol corresponding to an external reference has
been specified by its absolute address, and the address does not reside in any
segment.

Effect

LINK86 continues processing and the print and object files will be valid except the
external reference has not been properly resolved.

User Action

Either remove the reference to the public symbol or do not allow the symbol to be
absolute.

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL
F I L E: pathname

Meaning

The specified file is a library and libraries are not allowed in a PUBLICSONL Y
control.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Remove library file from PUBLICSONL Y argument list and reinvoke LINK86.

WARNING 31: REFERENCED LOCATION OFFSET UNDERFLOW
F I L E: path name
MO DU L E: module name

Meaning

While computing the offset for an 8089 self relative reference, LINK86 had a
negative result.

Cause

Either with the ORDER control or the order of files in the input list, the reference
was separated from its target, or the 8089 segment is too large.

Effect

LINK86 continues processing; however, the invalid offset computation is used.

User Action

Examine the ORDER control in the invocation line and modify its arguments.
Reinvoke LINK86 carefully.

D-13

LINK86 Controls and ErrQr Messages iAPX 86,88 Family Utilities

0-14

WARNING 32: EXTRA REGISTER INITIALIZATION RECORD IGNORED
F I L E: path name
MODU LE: module name

Cause

You have included two main modules in your input list.

Effect

LINK86 uses the first register initialization record and ignores the second. Process
ing continues.

User Action

If the register initialization information in the specified file and module should be
used, then modify your input list; otherwise, no user action is necessary.

ERROR 33: ILLEGAL USE OF OVERLAY CONTROL
F I L E: pathname
MODULE: module name

Meaning

LINK86 has found an overlay definition in the specifed file and module, while pro
cessing input modules for an overlay.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified file from the input list and relink.

ERROR 34: TOO MANY OVERLAYS IN INPUT FILE
F I L E: path name
MO D U LE: module name

Meaning

The specified file and module above contains more than one overlay definition.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified file from the input list and relink.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 35: SAME OVERLAY NAME IN TWO OVERLAYS
F I L E: pathname
MO D U L E: module name
NAME: name

Meaning

The specified file contains an overlay that has the same name as an overlay
encountered in the input list.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove one of the duplicate names from the input list and relink. If both overlays
are necessary, relink one overlay specifying a different overlay name.

ERROR 36: ILLEGAL OVERLAY CONSTRUCTION
F I L E: pathname
MOD U L E: module name

Meaning

Some of the modules in the input list contain overlay definitions while others do not.
This is not permitted - all modules in the input list must be the same with respect to
overlays.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the non-overlay files and relink.

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT
F I L E: path name
MODULE: module name

Meaning

LINK86 has found two symbol definitions in the overlay modules that resolve an
external symbol definition in the root.

Effect

LINK86 ignores the definition in the specified file and module, and continues pro
cessing with no side effects.

User Action

Remove the unwanted symbol definition and relink.

D-15

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-16

ERROR 38: INVALID OVERLAPPING GROUPS
F I L E: pathname
MO DU LE: module name
SEGMENT: segment name
G R OU P: group name

Meaning

While binding the input list LINK86 found a segment that was defined to be within
two groups.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Either modify the source to remove the segment from one of the groups or do not
link with the BIND control.

ERROR 39: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
G R 0 UP: group name

Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 40: SPECIFIED SEGMENT NOT FOUND IN THE GROUP
SEGMENT: segment name
G R OU P: group name

Cause

Usually this is the result of a typographical error in the ORDER control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
S E G MEN T: segment name
C LAS S: class name

Cause

Usually this is the result of a typographical in the SEGSIZE control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Find the module that contains the specified segment and add it to the input list.

WARNING 42: DECREASING SIZE OF SEGMENT
SEGMENT: segmentname

Meaning

The size change specified in SEGSIZE has caused LINK86 to decrease the size of the
specified segment.

Effect

Decreasing the size of a segment can cause sections of code to be unaccounted for
during the memory allocation process. LINK86 continues processing with no side
effects.

User Action

None if the size decrease was intended.

ERROR 43: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE> 64K
SEGMENT: segmentname
C LA S S: class name

Meaning

The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Reinvoke LINK86 with the correct SEGSIZE control.

D-17

LINK86 Controls and ErrOl: Messages iAPX 86,88 Family Utilities

0-18

ERROR 44: SEGMENT SIZE UNDERFLOW; OLD SIZE + CHANGE < 0
S E G MEN T: segment name
C LA S S: class name

Meaning

The size change specified in the SEGSIZE control caused the segment's size to be
less than zero.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Reinvoke LINK86 with the correct SEGSIZE control.

ERROR 45: THE SEGMENT MAXIMUM SIZE IS LESS THAN THE
SEGMENT MINIMUM SIZE

S E GME NT: segment name
C LA S S: class name

Cause

Usually this is the result of a typographical error in the SEGSIZE control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 46: ILLEGAL USE OF SEGSIZE CONTROL
S E GM E NT: segment name
C LA S S: class name

Cause

A maximum size was specified for either a stack segment, an absolute segment, or a
segment that is not the highest component of its group.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified segment from the SEGSIZE control and relink.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 47: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINK86 does not place the specified group in the object file and continues process
ing with no side effects.

User Action

Unless there is some particular need for the specified group, no user action is
necessary.

WARNING 48: SIZE OF GROUP EXCEEDS 64K
G RO UP: group name

Meaning

All of the segments that belong to the specified group do not fit within the physical
segment defined for that group.

Cause

This error is usually caused by misuse of the SEGSIZE or ORDER controls.

Effect

LINK86 includes all segments in the object file and continues processing the input
module. The output module will be executable, although addressing errors may
occur.

User Action

Examine the invocation line and reinvoke LINK86 using the SEGSIZE or ORDER
control more carefully.

D-19

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-20

WARNING 49: MAXIMUM SIZE OF GROUP EXCEEDS 64K
G ROU P: group name

Meaning

The maximum segment size for the segments contained in the specified group
exceeds 64K.

Cause

This error is usually caused by misuse of the SEGSIZE control.

Effect

LINK86 reduces the maximum size of the group and its constituent segments.
LINK86 continues processing the input module. The output module will be
executable.

User Action

No action is necessary. If you want to remove the error, examine the invocation line
and reinvoke LINK86 using the SEGSIZE control more carefully.

WARNING 50: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE

S E G MEN T: segment name

Meaning

After the first memory segment is found, LINK86 issues this warning each time it
finds a segment with the memory attribute.

Effect

LINK86 ignores the memory attribute on the segment specified in the message.
Processing continues with LINK86 treating the additional memory segment as just
another segment.

User Action

Depending on your intentions, this message may be ignored or you may wish to
change the segment definition and relink.

WARNING 51: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY

S E G MEN T: segment name

Meaning

The specified memory segment was not located at the highest offset in its group.

Cause
This can only occur when you explicitly request this organization through the
ORDER control.

Effect

Since this can only occur by user request, LINK86 continues processing without side
effects.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 52: OFFSET FIXUP OVERFLOW
F I L E: pathname
MO D U L E: module name

Meaning

While computing an offset from a base, LINK86 found that the offset was greater
than 64K.'

Cause

One of the segments of a group is outside the 64K frame of reference defined by its
group base.

Effect

LINK86 continues processing. The print file will be valid, but the output file with
regard to the out of place segment will not be usable.

User Action

Modify the group definitions in your source and retranslate.

WARNING 53: OVERFLOW OF LOW BYTE FIXUP VALUE
F I L E: pathname
MODU LE: module name

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

Cause

This type of error often occurs when a page resident segment crosses a page
boundary.

Effect

LINK86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Organize your segments so that the addressing error will not be encountered.

ERROR 54: ILLEGAL USE OF ORDER CONTROL
GROUP: group name

Meaning

The specified group's segments have already been ordered.

Cause

You are attempting to relink a file that has been linked with the BIND control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Relink using the unbound input modules.

D-21

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-22

ERROR 55: ILLEGAL FIXUP
F I L E: path name
MOD U L E: module name

Meaning

While processing a fixup record, LINK86 found that the base for the reference and
target are different.

Cause

This is usually a coding error.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Examine your assembly language source and retranslate.

ERROR 56: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
F I L E: pathname
MODU LE: module name
SEGMENT: segment name

Meaning

One of the data records associated with the specified segment contains an address
outside of the segment's boundary.

Cause

This error can occur when you decrease the size of a segment.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Change SEGSIZE control and relink.

ERROR 57: MAXIMUM DYNAMIC STORAGE LESS THAN MINIMUM
DYNAMIC STORAGE

Meaning

The size change specified in MEMPOOL has caused the maximum dynamic storage
to be less than the minimum dynamic storage.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Reinvoke LINK86 with correct arguments to MEMPOOL.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 58: NO START ADDRESS SPECIFIED IN INPUT MODULES

Meaning

The BIND control was specified, and none of the input modules has a start address.

Cause

The input list contains no main module.

Effect

The CS and IP registers remain uninitialized, and their values are dependent on your
system loader. The object module will be valid.

User Action

Reinvoke LINK86 with a main module or execute LOC86 with the START control.

ERROR 59: I/O ERROR WITH ROOT-FILE IN ASSUMEROOT CONTROL
F I L E: path name
operating system message

Meaning

The ASSUMEROOT control was specified, but the root file identified by pathname
in the invocation could not be accessed.

Effect

LINK86 immediately terminates processing.

User Action

Refer to your operating system documentation to correct the condition, then rein
voke LINK86.

ERROR 60: OUTPUT FILE IS SAME AS INPUT FILE
F I L E: path name

Meaning

LINK86 detected an output pathname identical to an input pathname.

Cause

The pathnames of the specified input file and the output file were identical.

Effect

LINK86 terminates processing immediately.

User Action

Reinvoke LINK86 after fixing the duplicate-name situation.

D-23

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-24

ERROR 61: ROOT-FILE IN ASSUMEROOT CONTROL IS NOT PROPER
OBJECT FILE

F I L E: pathname

Meaning

The ASSUMEROOT control was specified, but the root file is not found to have an
overlay recore in it.

Cause

The root file needs an overlay record.

Effect

LINK86 terminates processing immediately.

User Action

Relink the root file using the OVERLAY control.

WARNING 62: ASSUMEROOT CONTROL MEANINGFUL ONLY WITH
OVERLAYS

Meaning

The ASSUMEROOT control should be used only when the input modules do not
contain overlay records.

Cause

ASSUMEROOT was specified, but not in conjunction with the OVERLAY control.

Effect

LINK86 ignores the ASSUMEROOT control. The object code is valid.

User Action

Reinvoke LINK86, using the OVERLAY and ASSUMEROOT controls.

WARNING 63: BAD SEGMENT ALIGNMENT
F I L E: pathname
MO 0 U L E: module name
SEGMENT: segment name

Meaning

The segment is not paragraph/page-aligned.

Cause

The object code has references to the base of the specified segment, and the segment
is not declared as paragraph/page-aligned.

Effect

Although the object module will be valid, the loader may not load the program
correctly.

User Action

Declare the specified segment to be paragraph/page-aligned.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 64: PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT
MEMORY

Meaning

The amount of memory required to sort the public symbols for the LINK86 print file
listing is insufficient.

Cause

The number of public symbols in the input-list modules is too large for LINK86 to
sort with the available memory resources.

Effect

The LINK86 print file listing provides public symbols in the order in which they were
encountered in the input files. This condition has no effect on the correctness or
validity of the output module.

User Action

Increase the amount of available RAM or decrease the number of public symbols.

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL

F I L E: path name containing external declaration
MOD U L E: name of module containing external declaration
S Y M B 0 L: name of external symbol
F RAM E: identification of reference location
TAR GET: identification of target location

Meaning

The declaration of the specified SYMBOL was found to be inconsistent with a
corresponding public symbol definition, and LINK86 could not resolve the
reference.

Cause

This condition may exist for several reasons. The modules containing the external
and public symbols may have been compiled under different translator controls
(e.g., SMALL, LARGE). In the case of assembly language programs, the SYMBOL
may be defined in a group, segment, or frame different from that in which it is
declared as external. Or an attempt has been made to access absolute entry points
from pre-located code without using the PUBLICSONLY control explicitly.

Effect

LINK86 internally converts these illegal fixups to legal formats to identify all
occurrences in a single execution. Thus the output object module may not be cor
rect, although it will be a valid 8086 object module.

User Action

If the warning occurred because of an attempted access of absolute entry points
from pre-located code, use the PUBLICSONL Y control in conjunction with the file
that contains public definitions for those entry points. Otherwise, use the FRAME
and TARGET information given in the warning message to pinpoint the source of
the error, then correct the code.

D-25

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-26

For example:

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL

FILE: EXTFIL
MODULE: EXTMODULE
SYMBOL: EXTSYM
FRAME: GROUP - GROUP1
TARGET: SEGMENT - SEGMENTS

The symbol EXTSYM is declared to be in SEGMENT5. The external-public resolu
tion specified that the calculations be made with respect to the base of GROUPI,
but the segment SEGMENT5 is not in GROUP I.

WARNING 66: CS AND IP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of 8086 registers. CS means code segment
register, and IP means instruction pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are entirely depen
dent on the loader of your system. The object code will be valid.

User Action

Retranslate your code, then reinvoke LINK86.

WARNING 67: SS AND SP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of 8086 registers. SS means stack segment and
SP means stack pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen
dent on the loader of your system. The object code will be valid.

User Action

Correct your code if necessary, then reinvoke LINK86.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

WARNING 68: os REGISTER NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of the 8086 DS (data segment) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the DS register at program execution is entirely dependent on the loader
of your system.

User Action

Correct your code if necessary, then reinvoke LINK86.

WARNING 69: OVERLAPPING DATA RECORDS

Meaning

The FASTLOAD control was specified, and two data records belonging to the same
segment have offsets which make them overlapping.

Cause

This warning is usually the result of a translation error, unless you have intentionally
overlapped data records.

Effect

LINK86 ignores the second record and does not include it in the output file. The
code will be unusable.

User Action

If you want an overlap condition to exist, reinvoke, but do not use the FASTLOAD
control. Otherwise, retranslate, then reinvoke LINK86.

WARNING 70: INITCODE CONTROL INEFFECTIVE WITH BIND
CONTROL

Meaning

The INITCODE and BIND controls were combined in one invocation statement.

Effect

The INITCODE control will be ignored by LINK86.

User Action

Do not invoke LINK86 using both of these controls at the same time. To invoke
them separately, use the INITCODE control first, then the BIND control during a
second invocation.

D-27

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-28

WARNING 71: TOO MANY MAIN MODULES IN INPUT
F I L E: path name
MO DU L E: module name

Meaning

LINK86 discovered two or more main modules (modules with start addresses) in the
input list.

Cause

The input list contains too many main modules.

Effect

LINK86 uses the start address of the first main module it reads and ignores the
others. The object code will be valid.

User Action

Ensure that the LINK86 interpretation is suitable to your objectives. If not, modify
the input list, and reinvoke LINK86.

WARNING 72: REGISTER INITIALIZATION CODE EXISTS, NEW
INITIALIZATION IGNORED

F I L E: path name
MO DU L E: module name

Meaning

Two or more initialization codes for 8086 registers were encountered in the input
list.

Cause

This condition resulted from a translation or linkage problem.

Effect

LINK86 uses the first initialization code and ignores the others. The object code will
be valid.

User Action

If retranslating or relinking does not correct the error, contact Intel.

WARNING 73: INITCODE CONTROL INEFFECTIVE WITH OVERLAYS

Meaning

Both INITCODE and OVERLAY controls were specified.

Effect

The INITCODE control is ignored. The object code will be valid.

User Action

Reinvoke LINK86, using the INITCODE control. In a second invocation, specify
the OVERLAY control.

iAPX 86,88 Family Utilities LINK86 Controls and Error Messages

ERROR 74: PRINT FILE SAME AS INPUT FILE
F I l E: pathname

Meaning

The pathnames of the print file and one of the input files are identical.

Effect

LINK86 terminates processing immediately.

User Action

Reinvoke LINK86 after fixing the duplicate-name situation.

ERROR 75: PRINT FILE SAME AS OUTPUT FILE

Meaning

The names of the print and output files are identical.

Cause

The invocation line included duplicate names.

Effect

LINK86 terminates processing immediately.

User Action

Correct the invocation line and reinvoke LINK86.

WARNING 76: BASE OF REFERENCED SEGMENT DIFFERS FROM BASE
OF CONTAINING GROUP

F I L E: path name
GROUP: group name
MODULE: module name
S E G MEN T: segment name

Meaning

An assembly language reference to the base of the specified segment in the specified
group exists. However, the specified segment is not the first segment in the group.
This warning occurs only when BIND is in effect.

Cause

Unless you have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator
specification.

Effect

LINK86 will process the specified reference to the segment base rather than to the
group base. The output module will be valid.

User Action

If the reference to the segment base was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

D-29

LINK86 Controls and Error Messages iAPX 86,88 Family Utilities

D-30

WARNING 77: REFERENCED OFFSET IN SEGMENT DIFFERS FROM
OFFSET FROM GROUP BASE

F I L E: pathname
G ROU P: group name
MO D U L E: module name
S E G MEN T: segment name

Meaning

An assembly language reference to an offset from the base of the specified segment
in the specified group exists. However, the specified segment is not the first segment
in the group. This warning occurs only when BIND is in effect.

Cause

Unless you have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator
specifica tion.

Effect

LINK86 will process the specified reference as an offset from the segment base
rather than the group base. The output module will be valid.

User Action

If the reference to the offset in the segment was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

APPENDIX E
CREF86 CONTROLS

AND ERROR MESSAGES

Table E-1lists all of CREF86's control syntax, ~bbreviations, and default settings.

Table E-1. Summary of CREF86 Controls

Control Abbrev. Default

PAGELENGTH(number) PL PAGELENGTH(60)

PAG EWI DTH(number) PW PAGEWIDTH(120)

PRINT (pathname) PR PRINT (first input file .CRF)

TITLE(character-string) TT Not applicable

The following are descriptions of all CREF86 error and warning messages. The
description of each message has up to four parts:

• Meaning-how to interpret the message

• Cause-the usual reason for the error or warning condition

• Effect-the state of CREF86 and the object file(s) after the message is issued

• User Action-what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self
explanatory.

Error messages are always fatal, but warning messages are not.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/O ERROR
operating system message explaining the cause of this erorr
F I L E: path name

Meaning

An 110 error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 immediately terminates processing; all open files are closed. The contents
of the print file are undefined.

User Action

Correct the error and restart CREF86.

E-1

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

E-2

ERROR 2: SYNTAX ERROR IN INPUT COMMAND

Meaning

An error in the syntax of the invocation line was detected.

Cause

This condition is usually the result of a typographical error or transposition.

Effect

The invocation command line, to the point it is parsed, is written to the console with
a =# following this string.

User Action

Correct the syntactic error and retransmit the invocation line(s).

ERROR 3: OUT OF MEMORY

Meaning

CREF86 does not have enough memory to create its internal data structures, tables,
etc. This condition may also occur because of inadequate disk space for temporary
files.

Cause

The input list contains too many symbols and/or too many references among them.

Effect

CREF86 immediately terminates processing, closing all open files. The contents of
the print file are undefined.

User Action

Ensure that adequate resources are available to run CREF86.

ERROR 4: 1/0 ERROR
operating system error message
F I L E: path name

Meaning

An I/O error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 processing is immediately terminated.

User Action

Correct the error and restart CREF86.

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 5: IMPROPER OBJECT MODULE
F I L E: pathname
MO DU LE: module name

Meaning

The specified module does not meet 8086 object module requirements.

Cause

This condition may be caused by the translator or by an error in data transmission.

Effect

CREF86 processing is immediately terminated.

User Action

Try retranslating the source file. If the problem persists, call Intel.

ERROR 6: PREMATURE EOF
F I L E: pathname

Meaning

CREF86 expects more input data, but encounters an end-of-file (EOF) condition.

Cause

This condition usually results from a translator error.

Effect

CREF86 processing is immediately terminated.

User Action

Return to the previous step in program development, then retranslate or relink.

ERROR 7: LIBRARY SEEK ERROR
F I L E: path name
MOD U L E: module name

Meaning

CREF86 did not encounter a proper library record when scanning a library file.

Cause

The library file or the disk may be corrupted.

Effect

CREF86 immediately terminates. processing.

User Action

Reinvoke CREF86 after replacing the file or the disk.

E-3

CREF86 Controls and ErrQr Message& iAPX 86,88 Family Utilities

E-4

ERROR 8: LIBRARY IN OVERLAY MODE
F I L E: path name

Meaning

An input list contains object file(s) with an overlay record count greater than zero
and a library file.

Cause

Libraries cannot contain overlay records. CREF86 can process either all modules or
no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action

Reinvoke CREF86 using a valid input list.

ERROR 9: IMPROPER MODULE SEQUENCE
F I L E: pathname
MO D U L E: module name

Meaning

A combination of modules contammg overlay records with those containing
nonoverlay records was encountered in the input list.

Cause

CREF86 can process input lists consisting of either all modules with overlay records
or no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action

Reinvoke CREF86 with a valid input list.

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 10: MORE THAN 255 OVERLAYS NOT SUPPORTED

Meaning

The input list contains over 255 files with overlay records.

Cause

CREF86 does not support more than 255 overlay files. In the case of input lists
without overlays, however, there is no limit (except available memory) on the
number of files CREF86 can process.

Effect

CREF86 immediately terminates processing.

User Action

Reinvoke CREF86 using fewer than 255 overlay files.

ERROR 11: TOO MANY OVERLAYS
F I L E: pathname
MODULE: modu/ename

Meaning

The input file contains more than one overlay.

Cause

CREF86 can support files with only one overlay record each.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 with an input list containing files with no more than one overlay
each.

E-5

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

E-6

ERROR 12: liD ERROR
operating system error message
F I l E: path name

Meaning

An 110 error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 terminates processing immediately.

User Action

Correct the error and restart CREF86.

ERROR 13: IMPROPER PAGE WIDTH SPECIFICATION

Meaning

The P AGEWIDTH control specification includes a number outside the valid
syntactic range.

Effect

CREF86 terminates processing immediately.

User Action

Correct the syntax error and reinvoke CREF86. CREF86 accepts a PAGE WIDTH
number in decimal form from 80 to 132, inclusive, in the following format:

PA G E WID T H (number>

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 14: IMPROPER PAGE LENGTH SPECIFICATION

Meaning

The P AGELENGTH control specification includes a number outside the valid
syntactic range.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 using the proper PAGE LENGTH syntax. CREF86 accepts a
P AGELENGTH number in decimal form from 10 through 255, in the following
format:

PAGE LENGTH (number)

ERROR 15: ILLEGAL LIBRARY FILE
F I L E: pathname

Meaning

CREF86 did not encounter a proper library record in the proper location.

Cause

The library file or disk may be corrupted.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 after replacing the file or the disk.

E-7

CREF86 Controls and Frror Messages iAPX 86,88 Family Utilities

£-8

ERROR 16: IMPROPER OBJECT FILE
F I L E: pathname
MODU LE: module name

Meaning

CREF86 did not encounter an 8086 object module record in the proper location.

Cause

The object file may be corrupt or the file may not be an 8086 object file.

Effect

CREF86 terminates processing immediately.

User Action

Determine whether the integrity of the object file is intact and whether the file is a
proper input file for CREF86. Reinvoke CREF86 with a valid and usable object file.

ERROR 17: OUTPUT FILE SAME AS INPUT FILE
F I L E: pathname
MO DU L E: module name

Meaning

CREF86 detected an output path name identical to an input pathname.

Cause

The invocation line specified two identical pathnames.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 after fixing the duplicate-name situation.

iAPX 86,88 Family Utilities CREF86 Controls and Error Messages

ERROR 18: CREF86 INTERNAL ERROR
F I L E: pathname
MOD U L E: module name

User Action
Contact Intel immediately. Forward a copy of the object file, the CREF86 invoca
tion line, and your version of CREF86.

WARNING 19: TYPE MISMATCH
F I L E: path name
MO 0 U L E: module name
S YMBO L: symbol name

Meaning

CREF86 detected a type mismatch between two symbols with the same name.

Cause

Two symbols are declared to have identical names but different types, and the
symbols are not in different overlay modules.

CREF86 does not check the entire TYPE declaration for any given symbol. For
example, dimension values for arrays, numbe~ of parameters in procedure calls, etc.
are not compared. Only simple types (e.g., byte, word, structure) are checked.

Effect

CREF86 flags the condition in the cross-reference listing.

User Action

Ensure that the condition is not damaging to your programming objectives.

E-9

CREF86 Controls and Error Messages iAPX 86,88 Family Utilities

E-lO

WARNING 20: SPECIFIED MODULE NOT FOUND
F I L E: path name
MOD U L E: module name

Meaning

A module explicitly included in the input list of the invocation is not found by
CREF86.

Cause

The specified module is not part of the file specified by the pathname.

Effect

CREF86 continues processing the modules it is able to find.

User Action

Determine why the module is missing, then reinvoke CREF86.

ERROR 21: OPERATING SYSTEM INTERFACE ERROR
operating system error message

Meaning

CREF86 cannot open its temporary file.

Effect

CREF86 terminates processing immediately.

User Action

Refer to the documentation on the operating system to help diagnose any possible
operating system malfunction.

APPENDIX F
LIB86 COMMANDS

AND ERROR MESSAGES

The table below shows all of LIB86's commands.

Table F -1. Summary of LIB86 Commands

Command Abbrev. Description

ADD {pathname[(module name[, ...])]} A Adds modules to a library
[, ...] TO pathname

CREATE pathname C Creates a library file

DELETEpathname(module name [, ...]) D Deletes modules from a library
file

EXIT E Terminates session with L1B86

LIST {pathname[(module name [, ...])]} L Lists modules contained in a
[, ...] [TO pathname] [PUBLICS] [P] library file, and optionally lists

all publics

The following are descriptions of all LIB86 error and warning messages. The
description of each message has up to four parts:

• Meaning-how to interpret the message

• Cause-the usual reason for the error or warning condition

• Effect-the state of LIB86 and the object file(s) after the message is issued

• User Action-what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self
explanatory.

Error and warning messages are displayed at the console device.

MODULE NOT FOUND
MODULE: modulename
F I L E: path name

Meaning

The specified module could not be found in the specified library.

Cause

There is a typographical error in the command line.

Effect

LIB86 ignores the module in the list and continues processing.

User Action

No user action is necessary.

F-l

LIB86 Commands and Error Messages iAPX 86,88 Family Utilities

F-2

RIGHT PARENTHESIS EXPECTED
partial command tail

LEFT PARENTHESIS EXPECTED
partial command tail

INVALID MODULE NAME
partial command tail

MODULE NAME TOO LONG
partial command tail

INVALID SYNTAX
partial command tail

I TO I EXPECTED
partial command tail

Meaning

All of the above errors are syntax errors. For each of the above errors LIB86 issues
the associated error message and displays the partial command up to the point of the
error.

Cause

There is a typographical error in the command line.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Examine the command line, make the necessary corrections and reissue the
command.

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

UNRECOGNIZED COMMAND

Cause

You mistyped a command (ADD, CREATE, DELETE, EXIT, or LIST).

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Examine the command line and enter the corrected command.

INSUFFICIENT MEMORY

Meaning

There is not enough memory available to execute the command.

Cause

Exceptionally long and complex commands can cause this error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Simplify your command line and reexecute.

COMMAND LINE TOO LONG
partial command tail

Meaning

The length of the LIB86 command you tried to execute exceeded the size limit of the
system's command buffer.

Effect

LIB86 immediately terminates processing the command, displays this error message
plus the portion of the command it would accept, then issues the prompt character
(*).

User Action

Simplify your command line and reexecute.

F-3

LIB86 Commands and Error Messages iAPX 86,88 Family Utilities

F-4

LIB86 ERROR

Meaning

LIB86 failed an internal consistency check.

Effect

LIB86 immediately terminates processing. The results of previous commands on the
library being manipulated when this error occurred may have been lost.

User Action

Contact Intel. Forward a copy of the libraries and object files used during the
session in which the error occurred.

FILE ALREADY EXISTS
F I L E: pathname

Meaning

The file specified in the CREATE command already exists.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Specify a nonexistent file in the CREATE command.

DUPLICATE SYMBOL IN INPUT
SYMBOL: symbolname
MO D U L E: module name
F I L E: path name

Meaning

The specified public symbol conflicts with a public symbol defined in one .of the files
given earlier in the input list. This error occurs only during the ADD command.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). The library being manipulated returns to the
state it was in prior to the ADD command that prompted this message.

User Action

Correct the ADD command and reinvoke LIB86.

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

NOT A LIBRARY
FILE: pathname

Cause

The file that the command requests LIB86 to DELETE or LIST is not a library file.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reissue the command specifying a library file.

ILLEGAL RECORD FORMAT
MO DU LE: module name
FILE: pathname

Cause

This error is usually caused by a transcription error or translation error in some part
of an object file examined by LIB86.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or relocate.

PREMATURE EOF
MO DU LE: module name
F I L E: pathname

Meaning

Due to some transcription error or other the specified file has no module end record.

Cause

This is usually the result of a transcription error or translator error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then restranslate, relink, or
relocate.

F-5

LIB86 Commands and Error Messages, iAPX 86,88 Family Utilities

F-6

CHECKSUM ERROR
MODU lE: module name
F I l E: path name

Meaning

The specified file has an error in one of its checksum fields.

Cause

This is the result of a transcription error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or relocate.

ATTEMPT TO ADD DUPLICATE MODULE
MODU lE: module name

Meaning

A module with the specified module name already exists in the library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Remove the duplicate module from the list and reissue the command.

ATTEMPT TO ADD MODULE CONTAINING OVERLAYS
MO DU L E: module name
F I l E: pathname

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). All modules in the input list up to the erroneous
file are added to library.

User Action

Reissue the command with all elements in the input list except those that contain
overlays.

iAPX 86,88 Family Utilities LIB86 Commands and Error Messages

PUBLIC SYMBOL ALREADY IN LIBRARY
S Y M B 0 L: symbol name
MOD U L E: input module name
F I L E: input pathname

Meaning

The library already contains the public symbol identified in the error message.

Cause

This error occurs when a module is added that has a symbol definition already in the
library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reexecute the command without the file that contains the duplicate symbol.

F-7

APPENDIX G
LOC86 CONTROLS

AND ERROR MESSAGES

Table G-I lists all of LOC86's control syntax, abbreviations, and default settings.

Table 0-1. Summary of LOC86 Controls

Control Abbrev. Default

ADDRESSES(AD Not applicable
{SEGMENTS({segmenf[\class[\overlay]) (SMI

(addr)}[, ... j) I CSIGR)
CLASSES({class(addr)}[, ...) I
GROUPS({group(addr)} [, ... j) }
[, ...))

BOOTSTRAP BS Not applicable

COMMENTS CM COMMENTS

NOCOMMENTS NOCM

INITCODE[(address)) IC INITCODE(200H)

NOINITCODE NOIC

LINES LI LINES

NOLINES NOLI

MAP MA MAP

NOMAP NOMA

NAME(module name) NA Not applicable

o BJ ECTCONTROLS(
{LINES I NOLINES I OC Not applicable
COMMENTS I NOCOMMENTS I
SYMBOLS I NOSYMBOLS I
PUBLICS I NOPUBLICS I
PURGE I NOPURGE} [, ... j)

ORDC:R(00 Not applicable
{SEGMENTS({segment[\class[\overlay])} (SMI

[, ... j) I CS)
CLASSES({class[(segmenf [, ...)))} [, ... J)}
[, ...))

PRINT[(path name)) PR PRI NT(objectfile. M P2)

NOPRINT NOPR

PRINTCONTROLS(
. {LINES I NOLINES I PC Not applicable

COMMENTS I NOCOMMENTSI
SYMBOLS I NOSYMBOLS I
PUBLICS I NOPUBLICS I
PURGE I NOPURGE} [, ...])

PUBLICS PL PUBLICS

NOPUBLICS NOPL

PURGE PU NOPURGE

NOPURGE NOPU

G-I

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-2

Table 0-1. Summary of LOC86 Controls (Cont'd.)

Control Abbrev. Default

RESERVE({addr TOaddr} [, ...]) RS Not applicable

SEGSIZE({segment[\class[\ overlay II SS Not applicable
(size)} [, ... j)

START({symbol I paragraph,offsef}) ST Not applicable

SYMBOLS SB SYMBOLS

NOSYMBOLS NOSB

SYMBOLCOLUMNS({1121314}) SC SYMBOLCOLUMNS (2)

The following are descriptions of all LOC86 error and warning messages. The
description of each message has up to four parts:

• Meaning-how to interpret the message

• Cause-the usual reason for the error or warning condition

• Effect-the state of LOC86 and the object file(s) after the message is issued

• User Action-what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the code
is valid.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/O ERROR:
operating system error message

Meaning

An I/O error was detected. Refer to the documentation for your operating system
for interpretation.

Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Correct the error and restart LOC86.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 2: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

A syntax error was detected in the invocation line. LOC86 repeats the invocation
line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reenter the invocation line more carefully.

ERROR 3: MISSING INPUT FILE NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was unable to find the input file name in the invocation. LOC86 repeats the
invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more carefully.

G-3

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-4

ERROR 4: INSUFFICIENT MEMORY

Meaning

The memory available on your system has been used up by LOC86.

Cause

This can be caused by an input module that has a very large number of segments or
an impossibly long invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

This may require changing the source file to reduce the number of segments and
retranslating.

ERROR 5: BAD RECORD FORMAT
MODULE: modulename

Meaning

There is a record in the specified input module that has an incorrect format.

Cause

This is usually a transcription error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retranslate and rei ink the input files before attempting to locate the input module
again.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 6: INVALID KEY WORD
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

One of the controls or sub controls in the invocation line is incorrect. LOC86 repeats
the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more correctly.

ERROR 7: NUMERIC CONSTANT LARGER THAN 20 SITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

You have specified an address greater than 1,048,575 (OFFFFFH). LOC86 repeats
the invocation line up to the point of the error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and invoke LOC86 with the correct address.

ERROR 8: NON NUMERIC CHARACTER IN NUMERIC CONSTANT
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

This is a type of syntax error. LOC86 repeats the invocation line up to the point of
the error.

Cause

This is usually caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Enter the invocation more carefully.

G-5

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-6

ERROR 9: NUMERIC CONSTANT LARGER THAN 16 BITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

You have specified an offset greater than 65,536 (OFFFFH). LOC86 repeats the
invocation line up to the point of the error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retype the invocation line more carefully.

ERROR 10: INVALID SEGMENT NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was expecting a segment name when it found a token that does not cor
respond to a valid segment name. LOC86 repeats the invocation line up to the point
of the error.

Cause

This is usually the result of a typographical error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more carefully.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 11: INVALID CLASS NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was expecting a class name when it found a token that does not correspond
to a valid class name. LOC86 repeats the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more carefully.

ERROR 12: INVALID INPUT MODULE
MO D U L E: module name

Meaning

The input module is invalid. It could mean that object module records are out of
order, or LOC86 has found an invalid field within a record, or a required record is
missing.

Cause

This is usually caused by a translator error or an attempt to locate something other
than an object file (e.g., a source file).

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retranslate source and relink, then try to locate again. If this error continues contact
Intel.

G-7

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-8

WARNING 13: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE

S EGME NT: segment name

Meaning

After the first memory segment is found, LOC86 issues this warning each time it
finds a segment with the memory attribute.

Effect

LOC86 ignores the memory attribute on the segment specified in the message. Pro
cessing continues with LOC86 treating the additional memory segment as just
another segment.

User Action

Depending on your intentions, this message may be ignored or you may wish to
change the attribute for the segments and relink them.

WARNING 14: GROUP DEFINED BY AN EXTERNAL REFERENCE
N AM E: external name
G ROU P: group name

Meaning

The specified group is defined by an external reference. This is a type of unresolved
external reference.

Effect

LOC86 continues processing without side effects.

User Action

Find the module that defines the specified symbol and relink the input module.

WARNING 15: PUBLIC SYMBOL NOT ADDRESSABLE
N AM E: public symbol name

Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg
ment containing the public symbol is not completely contained within the 64K
physical segment defined by the symbol's base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified public symbol will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
public symbol will be within range of the symbol's base.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 16: LOCAL SYMBOL NOT ADDRESSABLE
N AM E: local symbol name

Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg
ment containing the local symbol is not completely contained within the 64K
physical segment defined by the symbol's base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified symbol will not produce the desired results. Debug
symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
local symbol will be within range of the symbol's base.

WARNING 17: LINE NUMBER NOT ADDRESSABLE
N AM E: line number

Meaning

The specified line is more than 64K from its base. This error occurs when the seg
ment containing the line number is not completely contained within the 64K physical
segment defined by the line's base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified line number will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the line
number will be within range of the line's base.

0-9

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-lO

WARNING 18: SIZE OF GROUP EXCEEDS 64K
G ROU P: group name

Meaning

Some of the segments of the specified group are not contained within the physical
segment defined by the group's base.

Cause

This error is usually caused by misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing the input module. The output module will be
executable, but addressing errors may result.

User Action

Examine the invocation line and reinvoke LOC86 using the ORDER or
ADDRESSES control more carefully.

WARNING 19: BOOTSTRAP SPECIFIED FOR MODULE WITHOUT START
ADDRESS

Meaning

You have specified BOOTSTRAP when locating a module that has no start address.

Effect

LOC86 continues processing as if no BOOTSTRAP control was specified.

User Action

If you wish initialization code in the program, relocate the input module specifying
both BOOTSTRAP and START.

ERROR 20: INVALID NAME
NAME: bad name

Cause

This is the result of a typographical error in the NAME control. A valid name is
composed of up to forty of the following characters in any order:

• Alphabetic (A, B, C, ... , Z)

• Numeric (0, 1, 2, ... , 9)

• Special(@,?,:, .,_)

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more carefully.

iAPX 86,88 Family Utiliti~s LOC86 Controls and Error Messages

ERROR 21: SEGMENT REGISTER DEFINED BY SPECIFIED EXTERNAL
NAME

N AM E: external name

Meaning

A segment register or register pair is defined using the specified external symbol
name.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Relink and relocate your object modules.

ERROR 22: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE> 64K
SEGMEN T: segment name
C LA S S: class name

Meaning

The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Look at the segment's size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

ERROR 23: SEGMENT SIZE UNDERFLOW; OLD SIZE - CHANGE < 0
SEGMENT: segmentname
C LA S S: class name

Meaning

The size change specified in the SEGSIZE control caused the segment's size to be
less than zero.

Effect

LOC86 i.mmediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Actioo

Look at the segment's size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

G-II

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-12

ERROR 24: INVALID ADDRESS RANGE

Meaning

The arguments to the RESERVE control are invalid.

Cause

The usual cause of this error is that the low address is larger than the high address.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 25: PUBLIC SYMBOL NOT FOUND
N AM E: public symbol name

Meaning

The symbol specified in the START control was not found.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Either specify the argument to START with paragraph and offset, or specify an
existing public symbol.

WARNING 26: DECREASING SIZE OF SEGMENT
S E GM EN T: segment name

Meaning

The size change specified in SEGSIZE has caused LOC86 to decrease the size of the
specified segment.

Effect

Decreasing the size of a segment can cause sections of code to be unaccounted for
during the locating process. This is only a warning message. LOC86 continues pro
cessing with no side effects.

User Action

If the size decrease was not intended, examine the SEGSIZE control in the invoca
tion line and relocate.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 27: SPECIFIED SEGMENT IS ABSOLUTE
SEGMENT: segment name

Meaning

You attempted to assign an address to an absolute segment.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 without using absolute segments in the ADDRESSES control.

WARNING 28: PAGE RESIDENT SEGMENT CROSSES PAGE BOUNDARY
S E G MEN T: segment name

Cause

If you have changed the specified segment's size, it may be too large to fit within a
256 byte page, or if you have specifed an address for the segment, it may force the
segment to cross a page boundary.

Effect

Since this error can only occur when you have intentionally specified the segment in
a control, LOC86 ignores the page resident attribute and continues to process the
module as if no error has occurred.

User Action

If you have invoked LOC86 correctly, then the message is only verifying your inten
tions - no action is necessary.

0-13

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

0-14

WARNING 29: OFFSET FIXUP OVERFLOW
MO DU L E: module name
REF ERE N C ED L 0 CAT ION: 20-bit address
F RAM E 0 f REF ERE N C E: 20-bit address

Meaning

While computing an offset from a base (FRAME OF REFERENCE), LOC86 found
that the REFERENCED LOCATION was more than 64K bytes away from the base.

Cause

This error usually occurs as a result of misuse of the ORDER or ADDRESSES
control. One of the segments of a group is outside the 64K byte physical segment
defined by its group base.

Effect

LOC86 continues processing. The print file will be valid, but the output file with
regard to the out-of-place segment will not be usable.

User Action

Find the symbol that corresponds to the referenced location, and change the
ORDER or ADDRESSES control.

WARNING 30: UNRESOLVED EXTERNAL REFERENCE TO NAME
AT SPECIFIED ADDRESS

N AM E: symbol name
SEGMENT: segment name
ADD RES S: 20-bit address

Meaning

There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.

Cause

You are locating a module that is not completely linked.

Effect

LOC86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
reI ink and resolve the external reference.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 31: UNRESOLVED EXTERNAL REFERENCE TO NAME NEAR
SPECIFIED ADDRESS

N A ME: symbol name
S E GHENT: segment name
ADD RES S: 20-bit address

Meaning

There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.

Cause

You are locating a module that has not been completely linked.

Effect

LOC86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
relink to resolve the external reference.

WARNING 32: OVERFLOW OF LOW BYTE FIXUP VALUE
MO DU L E: module name
REF ERE N CEO L 0 CAT ION: 20-bit address
FRAME OF REFERENCE: 20-bitaddress

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

C~use

This type of error often occurs when a page resident segment crosses a page
boundary.

Effect

LOC86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Find the symbol that corresponds to the REFERENCED LOCATION and organize
your segments so that the addressing error will not be encountered.

G-15

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-16

WARNING 33: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line. However, it
may be a linking error that has not shown up until now.

Effect

LOC86 continues processing with no side effects.

User Action

Unless there is some particular need for the specified group, no user action is
necessary.

ERROR 34: SPECIFIED CLASS NOT FOUND IN INPUT MODULE
C LA S S: class name

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Find the module that contains the specified class and link it into the module to be
located.

ERROR 35: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
S EG ME NT: segment name
C LA S S: class name

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Find the module that contains the specified segment and link it into the module to be
located.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 36: SEGMENTS OVERLAP
SEGMENT: segmentname
S E G MEN T: segment name
LOW OVERLAP ADDRESS: 20-bitaddress
H I G H 0 V E R LAP ADD RES S: 20-bit address

Meaning

The two segments overlap in the specified address range.

Cause

This can be caused by any number of things: mistake in the SEGSIZE control,
misuse of ADDRESSES, or two absolute segments that overlap.

Effect

LOC86 continues processing the input module. The print file is valid, and the object
file, with the exception of the overlap, should be usable.

User Action

If overlap was intended, no action is necessary. Otherwise, depending on the cause
of the message, it may be necessary to relocate or even modify the source, and
retranslate, relink, and relocate.

ERROR 37: INPUT MODULE EXCEEDS 8086 MEMORY
S E G ME NT: segment name

Meaning

While attempting to locate the specified segment, LOC86 ran out of available 8086
address space.

Cause

Although it is possible to write a program that uses a full megabyte of memory, this
error usually results from an error in the arguments to the RESERVE control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the RESERVE control. If, in fact, your program requires more than
1,048,576 bytes of memory, try optimizing with ASM86 or use overlays.

G-17

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-IS

WARNING 38: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY

S E G MEN T: segment name

Meaning

The specified memory segment was not located at the highest address in memory.

Cause

This can only occur when you explicitly request this organization through the
ORDER or ADDRESSES control, or when you implicitly request it by assigning
another segment to the top of memory.

Effect

Since this can only occur by user request, LOC86 continues processing without side
effects.

ERROR 39: NO MEMORY BELOW SEGMENT FOR SPECIFIED SEGMENT
S E G MEN T: segment name
SEGMENT: segmentname

Meaning

In the ORDER control you have requested that the first segment be located below
the second segment. LOC86 found that there is not enough memory to maintain this
order.

Cause

This error can only occur when one of the segments in an ORDER control is
absolute. The absolute segment is not necessarily either of the segments specified in
the command.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the order control.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 40: CANNOT MAINTAIN SPECIFIED ORDERING
S E G ME NT: segment name

Meaning

LOC86 cannot locate all of the segments in the ORDER control consecutively.

Cause

This is usually caused by specifying absolute segments in the ORDER control or by
specifying the same segments in ORDER and ADDRESSES. The conflict might not
be immediately obvious. For example, the specified segment may be specified in the
ORDER control by its segment name and specified in the ADDRESSES control by
its class name.

Effect

LOC86 continues processing. The print and object files are valid. However, the
requested segment ordering is not maintained.

User Action

Carefully examine your invocation line to find the conflict and relocate the input
module.

ERROR 41: SPECIFIED CLASS OUT OF ORDER
C LA S S: class name

Meaning

The ORDER control and ADDRESSES control for the specified class disagree.

Cause

Either you have assigned an address to the specified class or one of its constituent
segments, or the translator has made one of its constituent segments absolute. In
either case, the ORDER control cannot be realized.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the ADDRESSES control or modify the ORDER control.

G-19

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-20

ERROR 42: SPECIFIED SEGMENT OUT OF ORDER
S E G MEN T: segment name

Meaning

The ORDER control and ADDRESSES control for the specified segment disagree.

Cause

Either you have assigned an address to the specified segment or the translator has
made the segment absolute. In either case, the ORDER control cannot be realized.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the ADDRESSES control or modify the ORDER control.

ERROR 43: ADDRESS FOR CLASS SPECIFIED MORE THAN ONCE
C LA S S: class name

Cause

This is often caused by a typographical error or some other mechanical error while
entering the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 44: SEGMENT ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE

S E G MEN T: segment name
C LA S S: class name

Cause

Either the specified segment is absolute or it has been listed twice in the same
ADDRESSES control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line. If the translator has made it an absolute segment,
either use the translator-assigned address or retranslate the segment.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 45: SEGMENT SPECIFIED MORE THAN ONCE IN ORDER
S E G M EN T: segment name
C LA S S: class name

Cause

This error can be caused by either of two errors in the invocation line. You have
simply specified the same segment twice in the ORDER control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and ORDER control and reinvoke LOC86.

ERROR 46: CLASS SPECIFIED MORE THAN ONCE IN ORDER
C LA S S: class name

Cause

You have specified the same class more than once in the same ORDER control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 47: SPECIFIED SEGMENT NOT IN SPECIFIED CLASS
S EG ME NT: segment name
C LA S S: class name

Cause

This error is usually caused by a typographical error in the arguments to an ORDER
control.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

0-21

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-22

ERROR 48: INVALID COMMAND LINE

Meaning

LOC86 has encountered an end-of-file or an I/O error while reading the invocation
line.

Cause

You probably terminated the invocation line in the middle of a control argument.
Most likely you forgot to type the ampersand before you typed the carriage return.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reirivoke LOC86 correctly.

WARNING 49: SEGMENT ALIGNMENT NOT COMPATIBLE WITH
ASSIGNED ADDRESS

SEGMENT: segmentname

Meaning

The alignment attribute does not agree with the address specified in the
ADDRESSES control.

Effect

LOC86 ignores the address assignment and treats the segment as any other
relocatable segment.

User Action

If the address that LOC86 assigns is satisfactory, then no action is necessary. Other
wise, examine the print file and assign an address that will agree with the alignment
attribute.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 50: INVALID COMMAND LINE; TOKEN TOO LONG
ERROR IN COMMAND LINE NEAR #:

partial command tail

Meaning

An invocation line "token" is impossibly long. A token is a series of characters that
are not broken by a parenthesis, a comma or a blank (space, carriage-return, line
feed or tab). Tokens are syntactic units used in invocation line parsing. Depending
on how it is used, a token can be a control word, a symbol name, a segment name, a
filename, etc.

Cause

This is often the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

WARNING 51: REFERENCING LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE

MOD U L E: module name
ADD RES S: 20-bit address
F RAM E 0 F REF ERE NeE: 20-bit address

Meaning

The address of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the self
relative instruction.

Cause

This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

G-23

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-24

WARNING 52: REFERENCED LOCATION OUTSIDE 64K FRAME OF
REFERENCE

MO D U L E: module name
REF ERE NeE 0 L 0 CAT ION: 20-bit address
F RAM E 0 F REF ERE NeE: 20-bit address

Meaning

The target of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the target of
a self-relative instruction.

Cause

This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

WARNING 53: CANNOT ALLOCATE CLASS AT SPECIFIED ADDRESS
ADD RES S: 20-bit address
C LA S S: class name

Meaning

The specified class cannot be located at the address requested. This is the result of a
conflict with another address assignment, or an absolute segment, or an address less
than 200H.

Effect

LOC86 assigns the class to the nearest address that will not cause conflict. LOC86
continues processing, and both the print and object file are valid.

User Action

If the alternate address suits your purpose, then no action is necessary. Otherwise,
examine the locate map and modify your invocation line.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 54: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
SEGMENT: segment name
MODULE: modulename

Meaning

One of the data records associated with the specified segment contains an address
outside of the segment's boundary.

Cause

This error can occur when you assign an address or an order to an absolute segment,
or a size to a segment. Under some circumstances this can be the result of a linkage
or translation error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Change the ADDRESSES, ORDER, or SEGSIZE control and relocate.

WARNING 55: UNDEFINABLE SYMBOL ADDRESS
S E GME NT: segment name
MO D U L E: module name

Meaning

A local symbol, line number, or public symbol has been found in the specified seg
ment that is addressed relative to the specified group's base address. However, the
segment containing the symbol is not within the 64K frame of reference that is
defined for that group.

Cause

This is usually the result of an address assignment error in the invocation line.

Effect

LOC86 continues processing with no other side effects. The print file and object files
are valid. However, you cannot use the symbols contained in the specified segment.

User Action

Examine the invocation line and reinvoke LOC86.

G-25

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-26

WARNING 56: SEGMENT IN RESERVE SPACE
S E G MEN T: segment name

Cause

Either an absolute segment uses the area reserved in the invocation line or you
assigned an address to a segment or class that forces the specified segment to be
located in the reserved area.

Effect

The specified segment is located in the reserved area, and LOC86 continues process
ing with no other side effects. Both the print file and object file are usable.

User Action

If the assigned address is acceptable for the segment, no action is necessary.

ERROR 57: INVALID GROUP NAME
ERROR IN COMMAND TAIL NEAR #:

partial command tail.

Meaning

LOC86 was expecting a group name when it found a token that did not correspond
to a valid group name. LOC86 repeats the invocation line up to the point of the
error.

Cause

This is often caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 58: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name

Cause

This is often caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line to LOC86 and the link map for the input module.
Reinvoke LOC86 correctly.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

ERROR 59: GROUP ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE

GROUP: group name

Cause

Either you gave a single group an address twice in the same ADDRESSES control or
the group already had an address (due to a previous locate).

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and either use the previously assigned address or assign
the group one address per ADDRESSES control.

WARNING 60: REFERENCED LOCATION IS NOT WITHIN 32K OF
SPECIFIED ADDRESS

MO DU L E: module name
REF ERE NeE 0 L 0 CAT ION: 20-bit address
F RAM E 0 F REF ERE NeE: 20-bit address

Meaning

An 8089 self-relative reference is not within 32K bytes of its target address.

Cause

Either with the ORDER or ADDRESSES control you have separated the reference
from its target or the 8089 segment is too large.

Effect

LOC86 leaves the invalid reference and continues processing with no other side
effects. Both the print file and the object file will be valid.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 61: OVERLAY ERROR

Meaning

An internal LOC86 error has occurred.

User Action

Contact Intel immediately.

G-27

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-28

WARNING 62: CS AND IP REGISTERS NOT INITIALIZED

Meaning

This warning occurs when INITCODE is specified and the input register initializa
tion record does not specify intialization of the 8086 code segment (CS) register ane
the 8086 instruction pointer (IP) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are completely
dependent on the loader of your system.

User Action

Invoke LOC86 with the START control if desired.

WARNING 63: SS AND SP REGISTERS NOT INITIALIZED

Meaning

The INITCODE control was specified, but the register initialization record does not
contain information for initialization of stack segment (SS) and stack pointer (SP)
records.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen
dent on the loader of your system.

User Action

If you will need to use the stack, retranslate your code, then relink and relocate.

iAPX 86,88 Family Utilities LOC86 Controls and Error Messages

WARNING 64: OS REGISTER NOT INITIALIZED

Meaning

INITCODE was specified, but the data segment (DS) register initialization record is
incomplete.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the CS register at program execution is entirely dependent on the
system loader.

User Action

Correct your code if necessary, then reinvoke LINK86 and LOC86.

WARNING 65: SEGMENT ORDER IN ORDER-CONTROL CANNOT BE
MAINTAINED

S E G MEN T: segment name

Meaning

The ADDRESSES and ORDER control specifications for a segment are in conflict
and/or the segment cannot be allocated space in accordance with the ORDER
control.

Effect

The conflicting segment is allocated space after all other segments in the target 8086
memory.

User Action

If desired, reinvoke LOC86, using the appropriate ADDRESSES and ORDER
controls.

G-29

LOC86 Controls and Error Messages iAPX 86,88 Family Utilities

G-30

WARNING 66: START ADDRESS NOT SPECIFIED IN OUTPUT ~ODULE

Meaning

The CS (code segment) and IP (instruction pointer) registers are not initialized.

Cause

The input module does not have an explicit start address, and the START control
was not specified.

Effect

The values of these registers upon initial program execution are entirely dependent
on the loader.

User Action

Either reinvoke LOC86 using the START control or relink to include a main
module.

APPENDIX H
OH86 ERROR MESSAGES

The following are descriptions of all OH86 error and warning messages. The
description of each message has up to four parts:

• Meaning-how to interpret the message

• Cause-the usual reason for the error or warning condition

• Effect-the state of OH86 and the object file(s) after the message is issued

• User Action-what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the
resulting code is valid.

Error and warning messages are displayed at the console device.

paffiname, PREMATURE END-OF-FILE ENCOUNTERED

Meaning

OH86 has scanned the entire input file without finding the record that signals the
end of the module.

Cause

There is a transcription error in the specified file.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Return to the last step in the program development process that did not generate this
error and relocate, relink, or even retranslate.

H-I

OH86 Error Messages iAPX 86,88 Family Utilities

H-2

pathname, EX PEe TED MOD U L E H E AD ERN 0 T F 0 UN D

Meaning

The first record in the input file was not a module header record.

Cause

This is usually caused by specifying an input file that does not contain an 8086 object
module.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Check the invocation line; if you specified the input file incorrectly, then reinvoke
OH86 more carefully. Otherwise, return to the last step in the program development
process and reexecute.

pathname, ILLEGAL RELOCATION RECORD ENCOUNTERED

Cause

This error occurs whenever you specify a non-absolute 8086 object module as the
input file.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Locate the object module with LOC86 before reinvoking OH86.

path name , I NS U F F I C 1 EN T MEMO R Y TOP ROC E S S D A TAR E COR D

Meaning

There is insufficient memory in your system for OH86 to process your input file.

Cause

You are trying to convert a file that is too complex for the available memory in your
system.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Expand. the memory on your system.

iAPX 86,88 Family Utilities OH86 Error Messages

paMname, ILLEGAL REGISTER INITIALIZATION RECORD ENCOUNTERED

Cause

Your input module contains a register initialization record.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Relocate with INITCODE in effect.

paMname, ILLEGAL OVERLAY INFORMATION ENCOUNTERED

Cause

You attempted to convert a file containing overlay information.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

If overlays are necessary, create root and overlay in separate files.

H-3

• 'R)
APPENDIX I

ADDITIONAL INFORMATION
FOR INTELLEC® SERIES III USERS

n

Change 1

Environmental Considerations

The iAPX 86,88 Family utilities run on and can be used to produce code executable
on the Intellec Series III Microcomputer Development System. Resulting code is also
compatible with the ICE-86 Emulator and DEBUG-86.

The following conventions of the Series III operating system (ISIS-II) are
encountered in running the utilities:

• The utilities must be executed when the Series III is in the 8086 mode. This
operating mode is activated by entering the RUN command, either in conjunc
tion with a utility program invocation or by itself (to enter the "interactive"
8086 mode):

>
>

RUN : F1 : LOC86 : F3: MYPROG. LNK<c r>

• The :Fn: portion of the path name is the Series III directory-name. In this
configuration, the directory-name is the equivalent of a device name, the device
on which the filename is located. If the file is located on the system disk (:FO:),
the directory-name may be omitted from the pathname.

• Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
the continuation characters to expect:

>

>
• The LIB86 utility presents an exception to these prompt conventions. Because

this program is interactive, it has its own prompts:

RUN LIB86<cr>

*

*
The following table defines compatible software version combinations.

ISIS-II ISIS-III(O)
V1.0 or later

V4.0 V4.1 V4.2

RUN - V1.0 V1.0 V1.3 V1.2 V1.3
V1.1 V1.1 or later or later

V1.2

UNK86 - V1.0 V1.0 V2.0 V1.0 V2.0
or later or later

CREF86 - V1.0 or later

UB86 - V1 .0 or later

LOC86 - V1 .0 or later

OH86 - V1 .0 or later

1-1

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

1-2

Related Publications

The following manuals may be helpful during various aspects of your work with
iAPX 86,88 utilities on the Series III:

• Intellec Series III Microcomputer Development System Product Overview,
order number 121575

• iAPX 86,88 User's Manual, order number 210201

• Intellec Series III Microcomputer Development System Console Operating
Instructions, order number 121609

• Intellec Series III Microcomputer Development System Programmer's
Reference Manual, order number 121618

• PASCAL-86 User's Guide, order number 121539

• PL/M-86 User's Guide, order number 121636

• ASM86 Language Reference Manual, order number 121703

• ASM86 Macro Assembler Operator's Manual, order number 121628

• 8089 Macro Assembler User's Guide, order number 9800938

• FORTRAN-86 User's Guide, order number 121570

Program Development Examples

The following examples are programming problems solved by using one or more of
the iAPX 86,88 utilities on the Series III to develop code for an 8086-based host.

Example 1: Preparing to Use DEBUG-86

There are only two steps to preparing your code for execution: translating the code,
then linking it with BIND.

First you must translate your code. Any of the 8086 translators will work. An
example of one such translatioi1 is shown below:

RUN PLM86 :F6:TEST.SRC DEBUG SMALL<cr>

Once the program has been translated, you must then link the program with the
BIND control. LINK86 with BIND produces an L TL module - the loader assigns
addresses· to the L TL modules at load time. This operation can be performed by the
8086 loader, RUN. The operation and control of both of these programs is given in
the Intellec Series III Microcomputer Development System Console Operating
Instructions.

The invocation line for LINK86 when linking the program shown above might
appear as follows:

In the above example note that all of the symbol information (LINES, SYMBOLS,
PUBLICS) is left in the output object file. This will aid you while debugging your
program. DEBUG-86 uses the symbol information to produce diagnostic informa
tion on the program.

This information is also included in the symbol table. Figure 1-1 shows the print file
from the invocation above.

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

The libraries specified resolve all of the external references in TEST .OBJ.

After the above linkage, the program can be executed with the following command
to the Series III:

RUN DEBUG :F6:TEST.86<cr>

S~RIES-III bUllo LINKE/(. Vx.y

INPUT FILES: :F6:TEST.OBJ. :Fb:UTILS.OI:!J. :F6:SMALL.LIB
OUTPUT FILE: :F6:TEST.86
CONTROLS SPECIFIED IN INVOCATION COMMAND:

BIND
DATE: MMIDDIYY TIME:

LINK MAP OF MODU LE ROOT

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT CLASS

CODE
CONST
DATA
STACK
MEMORY

OVERLAY
0351H ------ W CODE
0014H ------ W CONST
0196H ------ DATA
03F8H ------ W STACK
OOOOH ------ W MEMORY
OOOOH ------ G ??SEG

INPUT MODULES INCLUDED:
:F6:TEST.0&J(RUOT)
:F6:~TILS.OBJ(UTILITIES)
:Fb:SMALL.LIB(D~ATTACH)
:F6:SMALL.LIB(DQCLOSE)
:F6:SMALL.LIB(DQCR~A1E)

GROUP HAP

GROUP NAME: cGROUP
OFFSET SEGMENT NAME
OOOOH CODE

GROUP NAME: DGROUP
OFFSET SEGMENT NAME
OOOOH CONST
0014H DATA
01AAH STACK
05A2H MEMORY

SYMBOL TABLE OF MODULE ROOT

BASE OUSET TYPE SYMBOL

G(2) 0164H PUS BIND CONTROL
G(2) 0016H PUB BUFSASE
G(2) Ou .. CH PUS cLASHNODEBASE
G(2) 0151lH PUB COMMENTScONTROL

G(2) 0171H PUB DEBUGTOGGLE

MODULE NAME = ROOT

BASE OFfSET TYPE SYMBOL

G(2) 05A2H SYM MEMORY
G(2) 0014H SYM BUFLEN
G (1) 00F7H SYM ERROR
G(2) 0018H SYM LASTNMNODEP
G(2) 001CH SYM LASTSGNODEP
G(2) 0020H SYM LASTTDNODEP
G(2) 0024H SYM LASTEXNODEP

G(1) OOAbH LIN 141
G(1) OOBEll LIN 144
G(1) oocra LIN 146
G(1) OODDh LIN 149
G(1) OOEEH LIN 152

REFERENCES TO SEGMENT BASES EXIST IN
ROOT

BASE OFfSET TUE SYMBOL

G (2) 004AH PUS BNODESASE
G(2) 0014H PUB BUFLEN
G(2) 005EH PUS COCONN
G (2) 016FH PUB CURRENTOVERLAYNU

-M
G (2) 00A5H PUB DEFAULTPRTFILENA

-ME

--
BASE OF FSET TYPE SYMBOL

G{2) OOOOH SYM COP YRIGHT
G (2) 0016H SYM BUFBASE
G(1) OOFEH SYM WARNING
G(2) 001AH SYM FIRSTNMNODEp
G(2) 001EH SYM FIRSTSGNODEP
G (2) 0022H SYM FIRSTTDNODEP
G(2) 0026H SYM FIRSTEXNODEP

G(1) 00B3H LIN 143
G(1) Ooc8H LIN 145
G(1) 00D2Il LIN 14/j
G(1) 00E7H LIN 150
G(1) OOFSH LIN 153

INPUT MODULES:

Figure 1-1. LINK86 Print File for Bound Object Module

1-3

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

1-4

Although we do not recommend it, it is possible to execute an absolute object
module with DEBUG-86. However, the module must be located in free user
memory. DEBUG-86 uses the address from OFCOOOH to OFFFFFH, and RUN uses
the address from OOH to 77FFH. All other memory is available. However, if your
system does not have a full megabyte of memory, there may be other areas that must
be reserved. You can use the RESERVE control to prevent LOC86 from using these
areas.

The following invocation line is an example of how :F6:TEST.86 might be located;
although :F6:TEST .86 has been bound, programs that are to be located for execu
tion on the Series III need not be bound:

The print file produced from the above invocation is shown in figure 1-2.

SERIES-III 80tl6 LOCATER, Vx.y

INPUT FILE: :F6:TEST.86
OUTPUT FILE: :F6:TEST
CONTROLS SPECIFIED IN INVOCATIUN COMMAND:

RESERVE(OOB TO 77FF8,OFCOOOB TO OFFFFFB)
DATE: MMIDDIYY TIME:

SYMBOL TABLE OF MUulJLE ROOT

llA~E OFFSET TYPE SYMBOL

07B8H 014CB PUB BU.DCUNTROL
07B8B 0034B PUb CLASHNODEBASE
07B8B 0140H PUB COMMENTSCONTROL

07B8H 0159H PUB DEBUGTOGGLE

07B8H 0048H PUB EXCEPTION
07B8H 0054H PUB FBLOCKBASE
07B8H 0052H PUB FBLOCKLISTTAIL

MEMORY MAP OF MODULE ROOT

MODULE START ADDR]';SS PAHAGRAfH = Ob 11 H
SEGMENT MAP

START STOP L ENG T li ALIGN NAME

07bOOH 07 B7 CB 0371)B M
07B80H 07680H 00008 M
07Bb08 010118 01928 M
01D128 Ob109H 03FbH M
Ob10A8 o b 10 Ah OuOOB M
Obll0li o b 12 bB 0019h G

0!l130H 0!l130H OOOClti

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP

CODE
07B80H DGROUP

CONST
DATA
STACK
MEMORY

CODE
CONST
DATA
STACK
MEMOR Y
??LOCbb

-DE
??SEG

bASE

07BtsH
07B811
07Bbli

07B8H

07Bi:lH
07B8H
07B&11

OFFSET

INITCO

OFFSET TYP E SYMbOL

0032B PUB BIliODEBASE
0046H PUB COCONN
0157H PUB CURRENTOHRLAYNU

-M
008DH PUB DEFAULTP RT F lLENA

-ME
002EH PUB FANODEBASE
0050H PUB FBLOCKLISTHEAD
0123H PUB FBLOCKSEQUENCENU

-MBER

= 0006H

CLASS OVERLAi

CODE
CONST
DATA
Sl ACK
MEMORi
COllE

Figure 1-2. LOC86 Print File for Bound Object Module

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

Example 2: Preparing to Use an ICE-86 System

Another way to test and debug software is using in-circuit emulation (ICE) system.
The ICE-86 loader can load only absolute object modules. Therefore, you cannot
use the output from LINK86 immediately; it must be located too.

The whole process of preparing a program for ICE-86 execution takes three steps.
The first two are the same as in Example 1: the program must be translated and
linked:

RUN PLM86 :F6:ICETST.SRC SMALL<cr>

RUN LINK86 :F6:ICETST.OBJ,:F6:SMALL.LIB<cr>

The above example shows a straightforward linkage with no change to the default
control setting. Note that NOOVERLA Y and NOBIND, the defaults, are set. The
ICE-86 loader has no facility for dealing with overlay modules created by using the
LINK86 OVERLA Y control. In this case there are no unresolved external references
in the object module. If the module did contain unresolved references, it could still
be executed by the ICE-86 system. However, as with execution under DEBUG-86,
executing instructions that contain unresolved references will produce undefined
results.

Figure 1-3 shows the print file produced during the invocation shown above.
LINK86 does not produce a symbol table with NOBIND is in effect.

The last step before ICE-86 execution is transforming the relocatable object module
into an absolute object module with LOC86. The invocation line shown below
would produce an object file that could be loaded and executed by the ICE-86
Emulator:

RUN LOC86 :F6:ICETST.LNK<cr>

SERIES-III 8086 LINKER, Vx.y

INPUT FILES: :F6:ICETST.OBJ, :F6:SMALL.LIB
OUTPUT FILE: :F6:ICETST.LNK
CONTROLS SPECIFIED IN INVOCATION COMMAND:
DATE: MMIOOIYY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

031DH ------ W CODE
OOOOH ------ W CONST
0192H ------ w DATA
03FbH ------ w STACK
OOOOH ------ w MEMORY
OOOOH ------ G ??SEG

NPUT MODULES INCLUUhD:
F6:ICETST.OBJ(LOANER)
F6:SMALL.LIB(uQATTACH)
F6:SMALL.LIB(DQCLOSE)
F6:SMALL.LIB(DQCREATE)
F6:SMALL.LIB(DQDETACH)
F6:SHALL.LIB(DQEXIT)
F6:SHALL.LIB(DQGETSYSTEMID)
F6:SMALL.LIB(DQOPEN)
F6:SMALL.LIB(DQOVERLAY)
F6:SMALL.LIB(DQWRITE)
F6:SMALL.LIB(SYSTEMSTACK)

CLASS
CODE
CONST
DATA
STACK
MEMORY

OVERLAY

Figure 1-3. LINK86 Default Print File

1-5

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

1-6

CREF86

This invocation line shows LOC86 invoked with the default control setting. Note
that the INITCODE control is in effect by default.

The PL/M-86 program ICETST .SRC is ready for execution on an ICE-86 system.

Example 3: Using CREF86
Figure 1-4 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains several modules. The output print file pathname OUT and a
title for the listing were specified in the controls. Although PAGEWIDTH (PW) and
P AGE LENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

EXAMPLE OF CROSS REFERENCE USING CREF86 MMIOOIYY

SERIES-III CREF86 Vx.y

PAGE

INPUT FILES: :F1:ROOT.OBJ :F1:PARSE.OBJ :F1:SIGNON.OBJ :F1:STAlE.OBJ :F1:ERROR.OBJ
:F1 :MEMMAN.OBJ :F1 :SCANNR.OBJ :F1 :PROCES.OBJ :F1 :SCUTIL.OBJ :F1 :LIST.OBJ

:F1 :UTILS.OBJ
:F1:LSUTIL.OBJ

:F1:S0RT.OBJ :F1:UDSMA.LNK COMPAC.LIB
OUTPUT FILE: OUT
CONTROLS SPECIFIED: PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREFb6) f~(120) PL(60)

MODULES I~CLUDEU:

~'ILE ~AME

:F1:ROOT.OBJ:
:F1:PARSE.OBJ:
:F1 :SIGNON .OBJ:
:Fl :STATE.OBJ:
:Fl:ERROR.OBJ:
:Fl:UTILS.OBJ:
: F 1: MEHMAN • OBJ :
:Fl :SCANNR.OBJ:
:Fl:PROCES.OBJ:
: Fl : SCUTIL. OBJ:
:F1 :LIST.OBJ:
:F1:LSUTIL.OBJ:
:F1:S0RT.OBJ:
:Fl :UDSMA.LNK:
COMPAC.LlB:

MODULE NAME(S)

CREF86
PARSE
SIGNON
NEXTSTATE
ERROR
UTILITIES
MEMORYMANAGEMENT
SCANMODULES
PROCESSRECORDS
SCANUTILITIES
LISTOUTPUT
LISTUTILITIES
SYMBOLSORT
OBJMAN
DQALLOCATE
DQDETACH
DQGETTIME
SYSTEMSTACK

DQATTACH
DQEIlT
DQOl'EN

O~ CRUSS REF~H~NC~ uSING CRbFa6

51MBOL NAME SlMllOL THE

----------- -----------

ACCESS I'AGE UNKNOWN
ALLOCATE. UNKNOWN
API'ENDNODE. PROCEDURE NEAR
APPENDUDSMNODE. PROCEDURE NEAR
ARRAYBASE POINTER
ATOI. PROCEDURE WORD NEAR

BTOX. PROCEDURE woaD NE AR
BUBBLESORTVARNAMES. PROCEDURE NEAR
BUMPLINECOUNT PROCEDURE NEAR

CHECKHEADER I'ROCEDlJRE NEAR
CHECKOVERLAY. I'/(OCl'.DUR~ Nl'.AR
CHE.CKVAhTlI't.. ,,1\0<·IODU HE BiTE NUR

m' CROSS REfER ENCE USING CREFo6

UNLOAD_PAGE U~KNO~N

~ARAREAP. POINTER
VBLOCKLlSlhEADER. liORD

~ARl\oING PROCEDURE 1'<EAR
IORITEDATA PROCEDUR~ NEAR
wRITEINITLINEBUF. PROCEDURE NEAR
wRITELINE PROCEDURE NEAR
WRITENEWLINE. PROCEDURE NEAR
wRITETOCOMMANDBUF PROCEDURE NEAR
WRITETOFILE PROCEDURE NEAR

ZERO. WORD

DQCHANGEEXTENSION
DQFREE

DQCREATE
DQGETARGUMENT
DQSEEK

DQUECODEEXCEPTION
DQGETSYSTEMID
DQ~RITE DQREAD

MMIOOIYY

DEFINING MOUUL~; REF~RRING MODULE(S)

OBJMAN
OBJ MAN
UTILITIES
UTILITIES;
SYMBOLSORT;
UT ILl T IES;

UTILITIES;
SYMBOLSORT;
LISTUTILlTIES;

SCANUTlLITltS;
SCANuTILlTIES;
"CANU TIL 1 T US;

OBJMAN

MEMORJMA~AGEMENT;

PROCESSRECORD;,;

ERROR;
LISTUTILlTIES;
LISTUTILlTHS;
LISTUTILITIES;
LISTUTlLITIES;
PARSE
LISTUTILITIES;

UTILITIES

PARSE SCANMODULES
LISTOUTPUl
PARSE

LISTUTILITHS
LISTOlJTPUT
LISTOUTPUT

SCANHOUULES
SCAN MODULES
i'ROCtSShgClJhDS

MMIOOIYY

PROCESSIiECORDS

PAGE

PROCESS RECORDS LISTOUTI'UT SYMBOLSORT
UTILITIES LISTOUTPUT SYMBOLSORT

SCA~MODULES PROCESSRECORDS
ERROR UTILITIES LISTOUTPUI
ERROR UTILITIE.S LIST OUTPUT
LISTOUT.PUT
UTILITIES LISTOUTPUT

ERROR LIST OUTPUT

Figure 1-4. CREF86 Cross-Reference Listing

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

Example 4: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect
commonly used pieces of software into one file. The library file can be included in a
LINK86 invocation,-and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOC86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let's consider the following scenario - we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to put them in a single source module, the translator would translate them
into one module with six public symbols. We could add this module to a library, but
when we tried to link one of the routines into a program, all six would be included.

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it.

RUN LIB86<cr>
SERIES-III 8086 LIBRARIAN Vx.y

:F :TRIG.LIB
SIN

SINE
COS

COSINE
SEC

SECANT
CSC

COSECANT
COT

COTANGENT
TAN

TANGENT
*~IIIft;IP.lI~'''+_'_''''-

1-7

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

1-8

Example 5: Linking and Locating Programs with
Overlays Using OVERLAY Control

The easiest way to build an 8086 program that contain overlays is with LINK86's
OVERLA Y cOY1trol. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con
structed in this way. See Intellec Series III Microcomputer Development System
Programmer's Reference.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all of the overlays are linked together.

The example below shows the first step toward linking overlays-linking all of the
modules that will constitute each overlay and the root separately:

RUN LINK86 OV3.0BJ,OV3A.OBJ OVERLAY(OVERLAY3)<cr>

RUN LINK86 OV4.0BJ,OV4A.OBJ OVERLAY(OVERLAY4)<cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as for the
overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since anyone of the files
could be the root, LINK86 requires that for the final link the file containing the root
must be first in the input list. During this final the OVERLAY control is not used:

In the invocation, the optional BIND control is specified. The resulting object file is
executable on a Series III.

Figure 1-5 shows the LINK86 print file listing for the above invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

The RESERVE control prevents LOC86 from assigning memory addresses reserved
for the operating system. Figure 1-6 illustrates the printout from this invocation.

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

SEl<I£S-III bObb LI 11K<. R , Vx_y

INPUT r'ILE,S: ROO1.LhK, OV1.LNK, OV2.LNK, OV3.LNK, OV4.LhK
OUTPUT HLE: PROG.!l6
COt.1ROLS SPECIfIED IN INVOCATION COMMAND:

BIND
DATE: MMIDDIYY TIME:

LINK MAP Of MODULE ROOT

LOGICAL SEGMENTS INCLUDED:
L ENGT H ADDRESS ALIGN SEGMENT

3CE1H G CODE
ODOOH CONST
2840H DATA

CLASS
CODE
CONST
DATA

OVERLU
ROOT
ROOT
ROOT

~------------~====~--~
INPUT MODULES INCLUDED:
ROOT.LNK(ROOT)
OV1.LNK(PARSE)
OV2.LNK(ILUDE)
OV3.LNK(PICILUDE)
OV4.LNK(FASTLOAD)

GROUP MAP

GROUP NAME:
OFFSET
OOOOH
3Cr;(lH
3CEbH

CGROUP
SEGMENT NAME
CODE\CODE\ROOT
CODE \CODE \1' ASS 1
CODE \CODE \1' ASS2

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL

G(2) 251CH PUB ACTUAL

G (2) Or'22H PU B BASEFIXU PSEXIST
G(2) OD26H PUB bNODEID
G(2) OD2bH PUB CLASHNO DEID
G (2) OFOOH PUB COMMEIoTSCOloTROL
G(2) Of1AH PU B CURRENTOVERLAiNU

-1'1

OVERLAY NAME = ROOT, MODULE NAME ROOT

BASE OFFSET TYPE SYMBOL

G(2) 4A20H SYM MEMORY
G(2) ODOOH SYM LASTNMNODEID
G (2) OD04H SYM LASTSGNODEID
G(2) OD08H SYM LASTIDNODEID
G(2) ODOCH SYM LASTEXNODEID
G (2) OD10H SYM LASTGRNODEID
G(2) OD14H SYM LASTOVNODEID
G(2) OD1bH SYM LASTGNODEID

OVERLAY NAME = ROOT, MODULE NAHE LIT

BASE OFFSET TYP E SYMBOL

G(2) 4A20H SYM MEMORY
G(2) OF56H SYM LIT BASE
G(2) OF56H BAS LIT NODE
G(2) OF64H SYM FIRSTNODE
G(2) OF96H SYM TEMPLATE
G(1) 016EH SYM GETLIT
STACK 0004H SYM I

BASE OFFSET TYPE SYMBOL

G (2) OFODH PUB ASSUMEROOTCONTRO
-L

G (2) OFOCH PUB BINDCONTHOL
G (2) 24EAH PUB BUFEASE
G(2) OD5AH PUB COCONN
G (2) OF50H PUB CURRENTfILNUM
G (2) OFtlEH PUB CURRENTRECINDEX

BASE OFFSET TYPE SYMBOL

G (2) 0002H SYM COPYRIGHT
G (2) OD02H SYM FIRSTNMNODEID
G (2) OD06H SYM FIRSTSGNODEID
G(2) ODOAH SYM r'IRSTTDNODEID
G (2) ODOEH SYM FIRSTEXNODEID
G (2) OD 12H SYM FIRSTGRNODEID
G(2) OD16H SYM FIRSTOVf<jODEID
G(2) OD1AH SYM FIRSTBNODEID

BASE OFFSET TYh:. SYMBOL

G(2) 003CH BAS SGNODE
G (2) OF58H SYM LITID
G (2) OF5AH SYM FIRSTNODEIDS
G(2) OF8EH SYM CURRENTRECINDEX
G(2) OFB9H SYM II
STACK 0006H SYM INDEX
G (1) 0207H SYM SGLIT

Figure 1-5. LINK86 Listing for Program with Overlays

1-9

Additional Information for Intellec Series III Users

SERIeS-Ill (lObb LOCA1J:.k, Vx.y

INPUT FILE: PROG.bo
OuTPUT ~ILE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:

RESERVE(OH TO 77FFH,OFCOOOH TO OFFF'~H)
DATE: MMIOOIYY TIME:

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TnE SYMBOL

1034H 251CH PUB ACTUAL

1034H OF22H PUB BASEFIXUPSEXIST
1034H OD26H PUB BNODEID
1034H OD28H PUB CLASHNODEID
103411 OFOOH PUB COMMENTSCONTROL
1034H OF1Ah PUB CURRENTOVERLAYNU

-11

OVERLAY = ROOT, MODULE = ROOT

BASE

1034H

1034H
1034H
1034H
1034H
1034H

BASE OFFSET TYPE SYMBOL BASE

1034H 4A20H snl MEMORY
1034H ODOOH SUI LASTNMNODEID
103411 OD04H SYM LASTSGNODEID
1034H OD08H SUI LASTTDNODEID
1034H ODOCII SYM LASTEXNODEID
10:,4H OD10H SIM LASTGRNODEID
1034H OD14H SIM LASTOVNODEID
1034H OD18H SIM LASTBNODEID
1034H OD1CH SIM SGIWDEID

OVERLU = ROOT, MODULE = LIT

BASE OF 'SET TY PE SYMBOL

1034H 4A2011 SYM MEMORY
1034H OF50H SYM LITBASE
1034H OF50H SY M LlTNODE
1034H OF6411 SYM FIRSTNODE
10:'4H OF90H SIM TEMPLATe
07bOl1 01bEH SY M GETLlT
STACK 0004H SYM

MEMORY MAP OF MODULE ROOT

MODULE START AlJDRESS PARAGHAI'I1
::'EGMENT MAP

START STOP LENGTH ALIGN

07bOOH OB4E6H 3CE7H M
OB4EtlH OF9BAH 44D3H M
OB4E8H OEOCEH 2BE7H M
OB4E8H 10337H 4E50H

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP

CODE\CODE\ROOT
CODE\CODE\PASS1
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD

10340H DGROUP
CONST\CONST\ROOT
DATA\DATA\ROOT
STACK\STACK\

1034H
1034H
1034H
1034H
1034H
1034H
103411
1034H
1034H

BASE

1034H
1034H
1034H
1034H
1034H
STACK
07bOH

= 14110H Ofr'S!:.T

NAME

CODE
CODE
CODE
CODE

iAPX 86,88 Family Utilities

OHSET THE SYMBOL

OFODH PUB ASSUI1EROOTCONTRO
-L

OFOCH PUB BINDCONTROL
24EAH PUB BUFBASE
OD5AH PUB COCONII
OF50H PUB CURRENHILNUM
Or'8EH PUB CURRENT HCINDEX

OFFSET TYPE SYMBOL

0002H SYM COP ~ RIGHT
OD02H SYM FIRSTNMNODEID
ODOoH SYM FIRSTSGNODEID
ODOAH SYM FIRSTTDNODEID
ODOEH SYM FIRSTEXNODEID
OD12H SYM FIRSTGRNODEID
OD10H SYM FIRSTOVNODEID
OD1AH SYM FIRSTBNODEID
OD1EH SIM GRNODEID

OFFSET TYPE SYMBOL

003CH SYM SGNODE
OF58H SYM LITID
OF5AI1 SYM FIRSTNODUDS
OFbEH SYM CURRENTHJ:.CINDEX
OFB9H SYM II
0006a SYM INDEX
0207H SYM SGLIl

= 000011

CLASS OVERLAY

COllE ROOT
CODE PASS1
CODE PASS2
CODE PIC_PASS2

Figure 1-6 LOC86 Listing for Program with Overlays

1-10

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

Example 6: Linking nnd Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example,
building a program for running under an operating system that does not support
overlay modules contained in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOC86) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown
below:

RUN PLM86 :F1:ROOT.SRC SMALL<cr>

RUN PLM86 :F1:0V1.SRC SMALL<cr>

RUN PLM86 :F1:0V2.SRC SMALL<cr>

In the next step we must link the root module to resolve external symbols with a
library and to obtain a link map:

RUN LINK86 :F1 :ROOT.OBJ,USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure 1-7,
shows the size of each segment in the root. Since the overlays are self-contained
except for references to the root, we do not need a link map for them. The PL/M-86
listing files will show the size of each overlay's segments, as illustrated in figure 1-8.

Note that the length of the root's code segment and OV l's code segment must fit
within 64K. This means that the code for the overlays must be in a part of memory
contiguous with the root (to avoid altering the CS register during execution). OV2's
CONST and DATA segments are larger than OV l's so that the STACK segment
must be placed to leave room for OV2's CONST and DATA segments. If the
overlays share the STACK and MEMORY segments with the root, they must be
located at the same address.

SERIES-III bObb LINKt:R, Vx.y

INPUT FILES: :Fl :ROOT.OBJ ,USER.LIB
OUTPUT FILE: :Fl:ROOT.LNK
~ONTROLS SPECIFIED IN INVOCATION COMMAND:

MAP
DATE: MMIDDIYY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTR ADDRESS ALIGN SEGMENT
~A9BR ------ W CODE
03S1H ------ W CONST
0291h ------ W DATA
0030H ------ W STACK
OOOOH ------ W M~MORJ

NP T MODULES INCLUDED:
Fl ROOT.OBJlROOT)
fO uSEH.LIBlLOADER)
FO USER.LIB(EXIT)
Fa USt;R.LIBlERROR)
Fa USER.LIBllIME)

CLASS
CODE
CONST
DATA
STACK
MEMORY

OVERLAY

Figure 1-7. LINK86 Map for Root File

I-it

Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities

1-12

MODULE INFORMATION:
CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

MODULE INFORMATION

END

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERROR(S)

OF PL/M-86 COMPILATION

o V 1 ' sse gme n t s i z e in forma t ion

7531H
0081H
0181 H
0040H

30001 D
1290
385D

640

this is the CODE segment
this is the CONST segment
t his is the 0 A T A s e gme n t
t his is the S T A C K s e gme n t

o V 2 ' sse gme n t s i z e in forma t ion

1B9AH
0101 H
0454H
0067H

7066D
2570

1108D
1030

this is
this is
this is
this is

the CODE segment
the CONST segment
the DA TA segment
the STACK segment

Figure 1-8. Module Information for Overlays

After computing the required location for the root's DGROUP and STACK, we can
locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root's code and data symbols in the overlays. The following
LOC86 invocation will leave room for the overlays' code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2's DATA segment:

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

The PUBLICSONL Y control resolves references to public symbols contained in the
root.

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded up to OFFDOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONL Y control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously:

The executable forms of the root and its overlay files are contained in :Fl :ROOT,
:Fl :,OV 1, and :Fl :OV2. Figure 1-9 shows the resulting layout of memory.

1 r- cs

ROOT CODE

I
SPACE

fAS' OVERLAY
BA9C

I
CODE

fFFeo ~DS. SS SPACE

ROOT DATA

OFFCE

I
SPACE

IOSDF
OVERLAY

105EO

I
DATA

tOB33
SPACE

STACK AREA
10834

10C33
10C34-SP

MEMORY

Figure 1-9. Memory Organization for Example 6 121616-10

1-13

Additional Information for, Intellec Series III Users iAPX 86,88 Family Utilities

1-14

Example 7: Linking 8089 Programs with 8086 Programs

The process of linking and locating 8086 programs with 8089 programs that use 8089
local memory is very similar to creating overlay modules in separate files.

Let us consider the following example: we have created an 8086 program and two
8089 program modules. The 8089 programs reference each other's symbols and
public symbols in the 8086 program. In addition, one of the 8089 programs must be
resident in 8089 local memory.

The first step is to translate the programs. The 8089 program modules must be
translated separately, since they will be located in different 8089 address spaces. The
following lines illustrate the invocation lines to the translators:

RUN ASM86 : F1 :PROG86.A86<cr>

ASM89 : F1 :TASK1.A89<cr>

ASM89 :F1:TASK2.A89<cr>

T ASK2 should be linked and located first for 8089 local memory. This linkage will
leave unresolved external references, but it is needed to resolve the references in
TASKl:

RUN LINK86 :F1:TASK2.0BJ,8089.LIB<cr>

RUN LOC86 :F1 :TASK2.LNK RESERVE(10000H TO OFFFFFH)<cr>

The RESERVE control in the locate above is a precaution to avoid exceeding 64K.

The next step is to link and locate the object modules that will reside in the 8086's
address space. The external references to the 8089 program module that is resident in
8089 local memory are resolved with the PUBLICSONL Y control. The invocation
lines for linking and locating the modules are:

RUN lOC86 :F1 :86N89.LNK<cr>

:Fl :86N89 contains an absolute object module that includes PROG86 and TASKl.
It may be loaded and executed on an 8086-based system. However, the 8089 pro
gram to be located in 8089 local memory still has some unresolved external
references. To resolve those references we must relink with PUBLICSONL Y and
relocate. The invocation lines to LINK86 and LOC86 shown below are identical to
those used earlier. This is necessary to guarantee that the references resolved earlier
are not invalidated:

RUN LOC86 :F1 :TASK2.LNK RJS~RVE(10000H TO OFFFFFH)<cr>

NOTE
The example above makes many assumptions about the 8089 and 8086 code
that it deals with. In most practical situations it is usually necessary to use a
more complex LINK86 and LOC86 invocation. However, the example
above illustrates the key linking and locating principles underlying
ASM861 ASM89 module combination.

iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con
trols and commands. The examples, all in the "interactive 8086" mode, may be used
in conjunction with syntax specifications given:

• In Chapter 2 for LINK86

• In Chapter 3 for CREF86

• In Chapter 4 for LIB86

• In Chapter 5 for LOC86

When using the directions in these chapters, fold out the page in this appendix con
taining examples of the command or control you are interested in.

The following is a sample Series III OH86 invocation:

> OH86 :F3:DCtljE TO :~3:FINI f<EX, .;,

1-15

iAPX 86,88 Family Utilities

Comments

This example defines two public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

In this example the root file is RTFILE and LlB1 and
L1B2 are library files.

This line creates an L TL module. The output object
file is TEST with no extension.

Control

ASSIGN

ASSUMEROOT >

BINO/NOBIND >

This example specifies default to avoid ambiguity. >

COMMENTS/NOCOMMENTS >

FASTLOAD/NOFASTLOAO >

INITCODE >

LINES/NOLINES >

LINES is the default, so it need not be specified. >

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

MAP/NOMAP >

MEMPOOL

>
>

>
>

SERIES III LINK86 EXAMPLES

Examples

, LIB1, &<cr>

LINK86 TEST.OBJ,USER.LIB BIND PRINT<cr>

LINK86 GEN.OBJ NOBIND<cr>

LINK86 :F1 :SOURCE.OBJ NOCOMMENTS <cr>

LINK86 : F1 :MYPROG INITCODE<cr>

LINK86 :F1:RUN.OBJ NOLINES<cr>

LINK86 :F1:TEST.OBJ LINES<cr>

LINK86 :F1:TESTER.OBJ MAP<cr>

LINK86.86 :F3:MAIN.OBJ,USER.OBJ, &<cr>
PUBLICSONLY(:~2:8089.LOC) NOMAP<cr>

LINK86 :F1:TEST.OBJ,USER.LIB, &<cr>
PASCAL.LIB BIND MEMPOOL(+20H)<cr>

1-17/1-18

iAPX 86,88 Family Utilities

Comments

The L1NK86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPU BLiGS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overlay record, and the
name of the overlay wil be OVERLA Y1.

First the constituent files must be linked to form
overlays.

The print file is :F1 :TEMP1.MP1.

The print file is :F1 :PROG.MP1.

The print file is :F1 :THE.MAP.

This example removes information about line
numbers, local symbols, and comments from the
print file.

This statement removes all but the segment informa
tion and error messages from the print file.

Control

NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT INOPRINT

PRINT CONTROLS

>
>

>
>

>
>

>
>

>
>

>

>

>

>

>

SERIES III LINK86 EXAMPLES

Examples

LINK86 :F1:TOM.OBJ,SYS.LIB NAME &<cr>
(THIS_IS A_VERY_LONG_MODULE@NAME.)<cr>

LINK86 :F1 :FINAL, USER.LIB, &<cr>
SYS.LIB OBJECTCONTROLS(PURGE)<cr>

LINK86 FILE1,FILE2,FILE3 TO &<cr>
:F1 :OV1.LNK OVERLAYCOVERLAY1)<cr>

LINK86 FILE4,FILE5,FILE6 TO &<cr>
:F1 :OV2.LNK OVERLAYCOVERLAY2)<cr>

LINK86 FILE7,FILE8,FILE9 TO &<cr>
:F1:ROOT.LNK OVERLAY(ROOT)<cr>

LINK86 : F1 : PROG. OBJ <c r>

1-19/l-20

iAPX 86,88 Family Utilities

Comments

Public information concerning only DATA1, DATA2,
LABEL3, and PROC4 is placed in the object file and
print file.

All public symbol information will be included in both
the print file and output file.

This example will produce a file containing only the
absolute public symbol records from :F1 :8089.LOC.
The object file will be :F1 :8089.LNK.

This will resolve the references in ROOT.OBJ to
absolute public symbols in the separately linked and
located overlays OV1 and OV2.

This produces an object file containing no debug or
public information.

This confirms that the line and symbol information
should be kept in the print file.

This will change the translator-assigned name
CGROUP to THE@CODE. A subsequent linkage
would not combine THE@CODE with a group named
CGROUP.

This changes the name of the CODE group to
CGROUP.

This tells the loader that 15FFH bytes of code is the
minimum requirement for MEMORY. The new max
imum size of MEMORY is 35FFH.

This increments MEMORY's minimum size by 1 FFH
(7951 D) bytes. The maximum size of MEMORY is
equal to the old minimum size plus 3FEH (159020).

The local symbol records will be included in the
object file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLlCS, NOTYPE, and
NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

LlBMOO will retain its type information.

Control

PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEGROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

>

>

>
>

>

>

>

SERIES III LIN K86 EXAMPLES

Examples

ATA2, &<cr>

LINK86 PUBLICSONLY(:F1 :8089.LOC)<cr>

LlNK86 :F1 :INDEX.OBJ PURGE<cr>

LlNK86 :F3:TEST.OBJ,USER.LlB PURGE<cr>

LlNK86 :F1 :TEST .OBJ SYMBDLCOLUMNS(1)<cr>

LINK86 :F1 :LIBMOD.OBJ TYPE<cr>

1-2111-22

iAPX 86,88 Family Utilities

Comments

The cross-reference listing will have 35 lines on each
page.

The cross-reference listing will be 100 characters
wide maximum per page.

The pathname of the print file will be :F1 :MYFILE.

The message in the TITLE control must be placed on
one line. If the message contains special characters,
it must be enclosed in single quotes (').

Control

SERIES III CREF86 EXAMPLES

Examples

PAGELENGTH

PAGEWIDTH

PRINT

TITLE

1-2311-24

iAPX 86,88 Family Utilities

Comments

Three object files are added to the USER.LlB.

Three modules from the library LlB.ABC are added
to :F3:PROJ.TOM.

This command will produce an empty library file
called TOMS.lIB.

Four modules are deleted from the library USER. LIB.

Control

ADD

CREATE

DELETE

*

*

*
*

*
*

*

*

SERIES III LI B86 EXAMPLES

Examples

CREATE :F3:TOMS.LIB<cr>

CREATE :FO:USER.LIB<cr>

EX IT *1"'
>

LIST *

*

*

LIST USER.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

LIST USER.LIB(TEMP,TEST)<cr>
USER.LIB

TEMP
TEST

LIST USER.LIB,TEMP.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

TEMP.LIB
MODULE1
MODULE3
MODULETC

1-25/1-26

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH.
If SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, unless they are
absolute.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (80aOH).

Control

ADDRESSES

BOOTSTRAP

COMMENTS/NOCOMMENTS >

>

INITCODE/NOINITCODE >

No initialization code will be produced. >

LINES/NOLINES >

LIN ES is the default, so it need not be specified. >

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PUBLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable
segment located. SEG@B will be next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

MAP/NOMAP >

NAME

OBJECTCONTROLS

ORDER >
>
>
>

SERIES III Loe86 EXAMPLES

Examples

LOC86 : F1: SOURCE. LNK NOCOMMENTS<c r>

LOC86 :F1:TEMP.LNK COMMENTS<cr>

LOC86 : F1 :FORK. LNK INITCODE(32768)<cr>

LOC86 : F1 :TEST. LNK NOINITCODE<cr>

LOC86 : F1 :RUN. LNK NOLINES<cr>

LOC86 : F1 : TEST. LNK<c r>

LOC86 : F1 :TESTER. LNK MAP<cr>

LOC86 : FO: SPCSEQ. LNK ORDER &<c r>
(CLASSES(CLASS1 (SEG@A,SEG@B), &<cr>
CLASS2) ,SEGMENTS(SEG1\CLASS3 &<cr>
\OVERLAY1,SEG22,SEG10\CLASSS»)<cr>

1-27/1-28

iAPX 86,88 Family Utilities

Comments

The print file is :F1:TEMP.MP2.

The print file is :F5:INTERPL.MP2.

The print file is :F1 :MAP.

Information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(:F7:PRIVAT.MP2 and :F7:PRIVAT).

All public symbol information will be included in both
the print file and output file.

The object file contains no public or debug informa
tion, and the symbol table does not appear in the
print file.

The line and symbol information will be kept in the
print file and object file.

This control reserves the high order 64K of memory.

A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment FREUD will be decreased by
511 bytes.

The new segment size for XENDA is 7770 bytes.

:F9:AUTO will start at IGNITION.

:F7:HAL TS will start at location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLlCS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer line can hold a four-column symbol table.

Control

PRINT INOPRINT

PRINTCONTROLS

PUBLICS/NOPUBLICS

PURG E/N OPURG E

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

>

>

>
>

>

>

>

>

>

>

>

SERIES III Loe86 EXAMPLES

Examples

LOC86 : F5: INTERP. LNK<c r>

LOC86 :F4:PROG.LNK PRINT(:F1:MAP)<cr>

LOC86 : F1: LINEAR. LNK &<c r>
PRINTCONTROLS(NOLINES)<cr>

LOC86 :F7:PRIVAT.LNK NOPUBLICS<cr>

LOC86 :F3:PROJ5.LNK PURGE<cr>

LOC86 :F9:AUTO.LNK START(IGNITION)<cr>

LOC86 :F7:HALTS.LNK STARTCOOH,200H)<cr>

LOC86 GESHTA.LNK SYMBOLS<cr>

LOC86 :F3:TEST.LNK PURGE<cr>

LOC86 :F1 :TEST.LNK SYMBOLCOLUMNS(1)<cr>

1-29/1-30

APPENDIX J
ADDITIONAL INFO'RMATION

FOR iRMX™ 86 USERS

Environmental Considerations

The iAPX 86,88 Family utilities run on and can be used to produce code executable
on the iRMX 86-based systems. Resulting code is also compatible with the ICE-86
Emulator and the iSBC 957B Interface and Execution Package.

To run the utilities on an iRMX 86-based system, you must have the following hard
ware and software:

• The iRMX 86 Human Interface (and other iRMX 86 layers necessary to support
the Human Interface).

• At least one mass storage device. The installation of the utilities always requires
a single- or double-density diskette drive, since the product is delivered in
diskette form.

• Enough memory to run the utilities (above and beyond that required for the
Operating System). Table J-l lists the memory requirements for the individual
utilities. The minimum required column indicates the minimum amount of
memory needed to run the utilities, assuming connection to only six files. The
maximum usable column indicates the largest amount of memory the utilities
can use.

Table J -1. iRMX 86 Memory Requirements

Utility Minimum Required Maximum Usable

LlNK86 105K 512K

CREF~6 129K 512K

L1B86 128K 512K

LOC86 120K 120K

OH86 90K 90K

When you run the utilities on an iRMX 86-based system, you must obey the follow
ing conventions:

• To invoke a utility, you must enter the pathname of the file that contains the
utility. An example of this is:

:PROG:LOC86 :FDO:PROGDIR/MYPROGRAM.LNK <cr>

]-1

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

J-2

• The portion of the path name delimited with colons (:) is an iRMX 86 logical
name. A logical name identifies the device that contains the file; in some cases it
also identifies a portion of the directory tree. In this example, LOC86 resides in
a directory identified by the logical name :PROG:; MYPROGRAM.LNK
resides in a subdirectory of a device identified by the logical name :FDO:. If you
omit the logical name from the command (in this case, LOC86), the Operating
System automatically searches several directories for the command. The direc
tories searched and the order of search are iRMX 86 configuration parameters.
If you omit the logical name from a file used as a parameter (in this case
PROGDIR/MYPROGRAM.LNK), the Operating System assumes that the file
resides in the default directory (:$:).

• Slashes (I) and up-arrows or circumflexes (A) separate individual components of
the pathname. A file's pathname can consist of several comp011ents, depending
on where the file exists in the overall directory tree. To identify a file, you start
with a logical name (or assume the default), continue through the directory tree
specifying as many directory names as necessary, and finally specify the name of
the file with which you are concerned. You use separators between the
individual components of the pathname (except immediately after the logical
name). The slash separator tells the Operating System to search down one level
in the directory tree for the next component. The circumflex separator tells the
Operating System to search up one level in the directory tree. For example, if
file TEXTFILE.P86 resides in directory PROGRAMS, and if directory
PROGRAMS resides on a device identified by logical name :FDI:, you can
identify the file by specifying the following pathname:

:FDI :PROGRAMS/TEXTFILE.P86

• Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
the continuation characters to expect:

, :WD1:PROG

• The LIB86 utility presents an exception to these prompt conventions. Because
this program is interactive, it has its own prompts:

Related Publications

The following manuals may be helpful during various aspects of your work with the
iAPX 86, 88 utilities on an iRMX 86-based system:

• Introduction to the iRMX 86 Operating System, order number 9803124

• iRMX 86 Human Interface Reference Manual, order number 9803202

• iAPX 86, 88 User's Manual, order number 210201

• PASCAL-86 User's Guide, order number 121539

• PL/M-86 User's Guide, order number 121636

• ASM86 Language Reference Manual, order number 121703

• ASM86 Macro Assembler Operating Instructions for 8086-Based Development
Systems, order number 121628

• FORTRAN-86 User's Guide, order number 121570

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

Generating Code to Run on an iRMX 86-Based
System

To generate code that runs on an iRMX 86-based system, perform the following
steps:

1. Translate the program into object code by using the appropriate compiler or
assembler.

2. Use LINK86 to link the program with other routines or libraries as necessary.
When doing this, remember the following:

• If you wrote your program in FORTRAN or Pascal, or if you invoked
specific universal development interface (UDI) calls, you must link your
program to the iRMX 86 UDI library that corresponds to the model of
segmentation for your program. These libraries are:

Library

URXLRG.LIB

URXCOM.LIB

URXSML.LIB

Model of Segmentation

LARGE or MEDIUM

COMPACT

SMALL

• Do not use FAST LOAD control. Currently, the iRMX 86 Operating System
cannot load programs linked with this control.

• To produce L TL code, use the BIND control. In this case, also specify the
MEMPOOL and SEGSIZE controls to allocate memory for the memory
pool and stack. If you do not use BIND, you must specify SEGSIZE with
the LOC86 command.

3. If you did not specify the BIND control in the LINK86 command, use LOC86 to
assign absolute addresses to your program. In order to run this program in an
iRMX 86 environment, you must also reserve the program's memory locations
during iRMX 86 configuration.

4. To invoke the program from a terminal, enter the path name of the file that
contains the program's linked (if L TL code) or located object code.

Program Development Examples

The following examples are programming problems solved by using one or more of
the iAPX 86,88 utilities on an iRMX 86-based system.

Example 1: Using CREF86

Figure J-l illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains several modules. The output print file pathname OUT and a
title for the listing were specified in the controls. Although P AGEWIDTH (PW) and
P AGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

.1-3

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

J-4

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86 MMIDDIYY PAGE

iRMX 86 CREF86 Vx.y

INPUT FILES: :F1 :ROOT.OBJ :F1 :PARSE.OBJ :F1 :SIGNON.OBJ :F1 :STATE.OBJ :F1 :ERROR .OBJ :F1 :UTILS.OBJ
:F1 :LSUTIL .OBJ :F1:MEMMAN.OBJ :F1:SCANNR.OBJ :F1:PROCES.OBJ :F1:SCUTIL.OBJ :F1:LIST.OBJ

:F1 :SORT.OBJ :F1 :UDSMA.LNK URXCOM.LIB
OUTPUT FIL~: OUT
CONTROLS SPECIFIED: PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREFb6) f~(120) PL(60)

MODULES IhCLUDEU:

FILE hAME

: F 1 : ROOT. OBJ :
:F1 :PARSE.OBJ:
:F1:SIGNON.OBJ:
:F1:STATE.OBJ:
:F1:ERROR.OBJ:
:F1:UTILS.OBJ:
:F1 :MEMMAN .OBJ:
:F1:SCANNR.OBJ:
:F1:PROCES.OBJ:
:F1:SCUTIL.OBJ:
:F1 :LIST.OBJ:
:F1 :LSUTIL.OBJ:
:F1:S0RT.OBJ:
:F1 :UDSMA.LNK:
URXCOM. LIB

MODlJLE NAME(S)

CREFl:lb
PARSE
SIGNON
NEXTSTATE
ERROR
UTILITIES
MEMORYMANAGEMENT
SCAN MODULES
PROCESS RECORDS
SCANUTILITIES
LISTOUTPUT
LISTUTILITIES
SYMBOL SORT
OEJMAN
DQALLOCATE
DQDETACH
DQGETTIME
SYSTEMSTACK

DQATTACH
DQEXIT
DQOPEN

EXA~J1'LE 01" CROSS REHHt.NC~ usnG CRI:.Fb6

SiMBOL NAM~ S 1 MEOL THE.
----------- --- --------

ACCESS _<'AGE UNKNOWN
ALLOCATE. UNKNOWN
AP~E.NDNODE • PROCEDURE NEAR
AP P E·NDU DSMNODE. PROCEDURE NEAR
ARRAYBASE POINTER
ATOI. PRO CEDU RE WORD NEAR

BTOX. PROC~DUR~ WORD NEAR
EUBBLESORTVARNAMES. PROC~DURE NEAR
BUMPLINECOUNT PROCEDURE NEAR

CHECKHEADER f~OCEDlJRE NEAR
CHECKOVERLAY. I'kOCEDlJlle NEAR
CHE.CKVAh1l.d .• "l1.0CEDUHl'. J3i'IE NEAR

01"' CROSS REHRENCE USING CREF66

UNLOAD_I'AGE UhKNOwN

~ ARAREAP • POIhTER
VBLOCKLlSlhEADEk. wORD

IoAkNING PROCEDURE NEAR
WRllEDATA PROCEDURe IiEAR
IoRITEINITLINEBUF. PROCEDURE NEAR
IoRITELINE PROCEDURE NEAR
WRI TENEWLItU;;. PROCEDURE NEAR
IoRITETOCOMMANDBUF PROCEDURE NEAR
WRITETOFILE PROCEDURE NEAR

-ZERO. WORD

DQCHANG~EXTENSION

DQFREE
DQCREATE
DQGETARGUMENT
DQSEEK

DQUECODEEXCEPTION
DQGETSYSTEMID
DQIoRITE DQREAD

MMIDDIYY

DEFINING M0lJUU.; REFERRING MODULE(S)

OBJ MAN
OBJ MAN
UT IL IT I ES
UT IL IT lES;
SYMBOLSORT;
UTILITIES;

U TILIT IES ;
SYMBOLSORT;
LISTUTILlTHS;

SCANUTlLITHS;
SCAl'<ulILI TIES;
SCANUTILI TICS;

OBJMAN

MEMORtMANAGEMENT;
PROCESSRECORDS;

ERiiO R;
LISTUTILIT IES ;
LISTUTILITIES;
LISTUTILITIES;
LISTUTILITIES;
PARSE
LISTUTILIT IES ;

UTILITIES

PARSE SCANMODULES P ROCESSliECORDS
LlSTOUTP U1
P AHSE

LISTUTILITHS
LISTOUTPUT
LISTOOTPUT

SCANt-;OlJULES
SCANMODU LES
P ROl.l:.SSh£C0hi.JS

MMIDDIYY PAGE

PROCESSRECORDS LISTOUTPUT SYMBOLSORT
UTILITIES LISTOIJTPUT SYMBOLSORT

SCANMODULES PROCESSRECORDS
ERROR UTILITIES LISTOUTPUT
ERROR UTILITIES LISTOUTI'UT
LISTOUTPUT
UTILITIES LISTOUTPUT

ERROR LISTOUTI'UT

Figure J-I. CREF86 Cross-Reference Listing

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

Example 2: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect
commonly-used pieces of software into one file. The library file can be included in a
LINK86 invocation, and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOC86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let's consider the following scenario-we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to put them in a single source module, the translator would translate them
into one module with six public symbols. We could add this module to a library, but
when we tried to link one of the routines into a program, all six would be included.

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it.

-".:1:,
iRMX 86 8086 LIBRARIAN Vx.y

:PROG:LIBRARY/TRIG.LIB
SIN

SINE
COS

COSINE

:PROG:LIBRARY/TRIG.LIB
SI~

SINE
COS

COSINE
SEC

SECANT
CSC

COSECANT
COT

COTANGENT
TAN

TANGENT

J-5

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

J-6

Example 3: Linking and Locating Programs with Overlays
Using OVERLAY Control

The easiest way to build an 8086 program that contains overlays is with LINK86's
OVERLAY control. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con
structed in this way. See the iRMX 86 Loader Reference Manual or the Run-Time
Support Manual for iAPX 86,88 Applications.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all of the overlays are linked together.

The example following shows the first step toward linking overlays-linking all of
the modules that will constitute each overlay and the root separately:

*
LINK86 OV3.0BJ, OV3A.OBJ OVERLAY(OVERLAY3)<cr>

LINK86 OV4.0BJ, OV4A.OBJ OVERLAY(OVERLAY4)<cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as for the
overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since anyone of the files
could be the root, LINK86 requires for the final link the file containing the root
must be first in the input list. During this final link, the OVERLAY control is not
used:

In the invocation, the BIND control is specified. The resulting object file is exe
cutable on an iRMX 86-based system.

Figure 1-2 shows the LINK86 print file listing for the previous invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

The RESERVE control prevents LOC86 from assigning memory addresses reserved
for the Operating System. However, the values you enter with the RESERVE con
trol must depend on the size and location of your Operating System and other
application software. Figure 1-3 illustrates the printout from this invocation.

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

iRMX 86 8086 LINKER .IVx.y

IIiPUT i"ILE.S: ROOl.LNK, OV1.LNK, OY2.LNK, OY3.LIIK, OY4.LtlK
OUTPUT jo'ILE: p80G.86
CONTROLS SPECIFIED III INVOCATION COKKAIID:

BIIiD
DA TE: MMIOOIYY TIME:

LIIiK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

3CE7H GeODE
ODOOH CONST
2840H DATA

CLASS
CODE
CONST
DATA

OVERLAY
ROOT
ROOT
ROOT

~----------~========~~

-

INPUT MODULES INCLUDED:
ROOT.LNK(ROOT)
OV 1. LNK(PARSE)
OV2.LNK(ILUDE)
OY3.LNK(PICILUDE)
OV4.LNK(FASTLOAD)

GROUP MAP

GROUP NAME: CGROUP
OFFSET
OOOOH
jCEllh
3CEbH

SEGMENT NAME
CODE\CODE\ROOT
CODE\CODE\PASSl
CODE\CODE \1' ASS2

SYMBOL T ABLE OF MODU LE ROOT

BASE OFFSET TYPE SYMBOL

G(2) 251CH PUB ACTUAL

G(2) OF22H PUB BASEFIXUPSEXIST
G(2) OD26H PUB bNODEID
G(2) OD2bH PUB CLASHNODEID
G(2) OFOOH PUB COMHEhT SCOhT ROL
G(2) OF1Aii PUB CURREN1'OVERLHNU

-M

OVERLAY NAHE = ROOT. HODULE NAME ROOT

BASE OFFSET TYPE SYMBOL

G(2) 4A20H SYM HEMORY
G(2) ODOOH SUI LASTNHNODEID
G(2) OD04H SYM LASTSGNODEID
G(2) OD08H SYH LASTIDNODEID
G(2) ODOCH SYM LASTEXNODEID
G(2) OD10H SYM LASTGRNODEID
G(2) OD14H SYM LASTOVNODEID
G(2) OD1oH SYM LASTGNODEID

OVERLAY NAHE = ROOT, MODULE NAME LIT

BASE OFFSET TYPE SYMBOL

G(2) 4A20H SYM MEMORY
G(2) OF56H SYM LIT BASE
G(2) OF56H BAS LIT NODE
G(2) OF64H SYH FIRSTNODE
G(2) OF96H SYH TEMPLATE
G(1) 016EH SYH GET LIT
STACK 0004H SYH I

BASE OFFSET TYPE SYMBOL

G(2) OFODH PUB ASSUMEROOTCONTRO
-L

G (2) OFOCh PUB BINDCONTROL
G (2) 24EAH PUB BUFBASE
G(2) OD5AH PUB COCONN
G(2) OF50H PUB CURRENTFILNUM
G(2) OFIlEH PUB CURRENTRECINDEX

BASE OFFSET TYPE SYMBOL

G(2) 0002H SYH COPYRIGHT
G(2) OD02H SYH FIRSTNMNODEID
G(2) OD06H SYM FIRSTSGNODEID
G(2) ODOAR SYM FIRSTTDNODEID
G(2) ODOEH SYM FIRSTEXNODEID
G(2) OD12H SYM FIRSTGRNODEID
G(2) OD16H SYM FIRSTOVliODEID
G(2) OD1AH SYM FIRSTBNODEID

BASE OFFSET TYPE SYMBOL

G(2) 003CH BAS SGNODE
G(2) OF58H SYH LITID
G(2) OF5AH SYH FlRSTNODEIDS
G(2) OF8EH SYH CURRENTRECINDEX
G (2) OFB9H SYH II
STACK 0006H SYM INDEX
G (1) 0201H SYH SGLIT

Figure J-2. LINK86 Listing for Program with Overlays

J-7

Additional Information for iRMX 86 Users

iRHX 86 8086 LOCATOR, Vx.y

INPUT FILE: PROG.be
O~TPUT iILE: PROG
COHTROLS SPECIFIED IN INVOCATION COMMAND:

8ESEftVE(OH TO 77FFH,OFCOOOH TO orrFF~H)
DATE: MMIDDIYY TIME:

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL

1034H 251CH PUB ACTUAL

1034H OF22H PUB BASEFIXUPSEXIST
1034H OD26H PUB BNODEID
1034H OD28H PUB CLASHNODEID
1034& OFOOH PUB COI!MENTSCONTROL
1034H OF1Ah !'DB CURRENTOVERLAYNU

-M

OVERLAY = ROOT, MODULE = ROOT

BASE

1034H

1034H
1034H
1034H
1034H
1034H

BASE OFFSET TYPE SYMBOL BASE

10348 4A208 SYM MEMORY
1034H ODOOH SYM LASTNMNODEID
103411 OD04H SYM LASTSGNODEID
1034H OD08H S1M LASTTDNODEID
1034H ODoell SYM LASTEXHODEID
10:;48 OD108 SYM LASTGRHODEID
1034H 001411 SYM LASTOVHODEID
10348 OD18H SYM LASTBNODEID
10348 OD1CH SYM SGtiODEID

OVERLU = ROOT, MODULE = LIT

BASE OFFSH THE SY MBOL

1034H 4A20h SYM MEMORY
1034H OF5bH SYM LIT8ASE
10311H OF5bH SY M LITNODE
1034H OFb4h SYM FIRSTNODE
10:;4H OF9bH SYM TEMPLATl!:
o 7bOh o 1bEh SYM GETLIT
STACK 0004H SYM I

MEMOR): MAP OF MODOLE Roor

MODULE START ADDRl!:SS PARAGI<Al'h
~EGMENT MAP

START STOP LENGTH ALIGN

07bOOh 084E6H 3CE7H M
084EIIH OF98AH 44D3H M
084E6H OEOCEH 2BE7H M
084E8H 10337H 4E50H Ii

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
07BOOH CGROUP

CODE\CODE\ROOT
CODE\CODE\PASS1
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD

10340H DGROUP
CONST\CONST\ROOT
DATA\DATA\ROOT
STACK\STACK\

1034H
1034H
1034H
1034H
1034H
1034H
10341l
1034H
10348

BASE

1034H
1034H
1034H
1034H
1034H
STACK
07bOH

= 140611 OFFSE.T

NAME

CODE
CODE
CODE
CODE

iAPX 86,88 Family Utilities

O~'FSET TYPE SYMBOL

OFODH PUB ASSUMEROOTCONTRO
-L

OFOCH PUB BINDCONTROL
24EAH PUB BUFBASE
OD5AH PUB COCONN
OF50H PUB CURRENT HLNUM
OFBEH I'UB CURRENTRl!:CINDEX

OFFSET TYPE SYMBOL

0002H SYM COP1RIG8T
OD02H SYM FlRSTNMNODEID
ODObH SYM FlRSTSGNODEID
ODOAH SYM FIRSTTDNODEID
ODOEH SYM FIRSTEXNODEID
OD12H SYM FIRSTGRNODEID
ODlbR SYM FIRSTOVNODEID
OD1AH SYM FIRSTBNODEID
OD1EH SYM GRHODEID

OFFSET TYPE SHIBOL

003CH SYM SGNODE
OF58H SYM LITID
OF5Ah SlM FIRSTNODE.IDS
OFbEH SYM CURRE~TRE.CHlDEX

OFB9H SYM II
0006H SYM INDEX
0207H S):M SGLIl

= OOObl1

CLASS OVERLAY

CODE ROOT
CODE PASS1
CODE I' ASS2
CODE PIC_PASS2

Figure J-3. LOC86 Listing for Program with Overlays

1-8

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

Example 4: Linking and Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example,
building a program for running under an operating system that does not support
overlay modules contained in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOC86) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown
below:

PLM86 :F1:ROOT.SRC SMALL<cr>

PLM86 :F1 :OV1.SRC SMALL<cr>

PLM86 :F1:0V2.SRC SMALL<cr>

In the next step we must link the root module to resolve external symbols with a
library and to obtain a link map:

LINK86 :F1:ROOT.OBJ,USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure J-4,
shows the size of each segment in the root. Since the overlays are self-contained
except for references to the root, we do not need a link map for them. The PL/M-86
listing files will show the size of each overlay's segments, as illustrated in figure J-5.

Note that the length of the root's code segment and OVl's code segment must fit
within 64K. This means that the code for the overlays must be in a part of memory
contiguous with the root (to avoid altering the CS register during execution). OV2's
CONST and DATA segments are larger than OVl's so that the STACK segment
must be placed to leave room for OV2's CONST and DATA segments. If the
overlays share the STACK and MEMORY segments with the root, they must be
located at the same address.

i RMX 86 8086 LINKER, Vx.y

INPUT FILES: :F1:ROOT.OBJ,USER.LIB
OUTPUT FILE: :F1:ROOT.LNK
CONTROLS SPECIFIED IN INVOCATION COMMAND:

MAP
DATE: MMIDDIYY TIME:

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

8A9BH ------ W CODE
0381H ------ W CONST
0291H ------ W DATA
0030H ------ STACK
OOOOH ------ M~MORY

NP T MODULES INCLUDED:
F1 ROOT.OBJ(ROOT)
FO uSEH.LIB(LOADER)
FO USER.LIB(EXIT)
FO USER.LIB(ERROR)
FO USER.LIB(tIME)

CLASS
CODE
CONST
DATA
STACK
MEMORY

OVERLAY

Figure J-4. LINK86 Map for Root File

J-9

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

1-10

MODULE INFORMATION:
CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

MODULE INFORMATION

END

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERROR(S)

OF PL/M-86 COMPILATION

o V 1 ' sse gme n t s i z e in forma t ion

7531H
0081H
0181 H
0040H

300010
1290
3850

640

this is the CODE segment
this is the CONST segment
t his is the D A T A s e gme n t
this is the STACK segment

OV2's segment size information

1B9AH
0101 H
0454H
0067H

70660
2570

11080
1030

this is
t his is
this is
this is

the CODE segment
the CONST segment
the DATA segment
the STACK segment

Figure J-5. Module Information for Overlays

After computing the required location for the root's DGROUP and STACK, we can
locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root's code and data symbols in the overlays. The following
LOC86 invocation will leave room for the overlays' code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2's DATA segment:

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

The PUBLICSONL Y control resolves references to public symbols contained in the
root.

iAPX 86,88 Family Utilities Additional Information for iRMX 86 Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

*
*
*
*

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded down to OFFCOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONL Y control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously:

*

*
*
*
*

LINK86 :F1 :ROOT.OBJ,USER.LIB, &<cr>
PUBLICSONLY(:F1 :OV1, :F1 :OV2)<cr>

The executable forms of the root and its overlay files are contained in :Fl :ROOT,
:Fl :OVl, and :Fl :OV2. Figure J-6 shows the resulting layout of memory.

1 r- CS

ROOT CODE

I
SPACE

V
A9B

OVERLAY
SA9C

I
CODE

[FFCO - OS, SS
SPACE

ROOT DATA

OFFCE

f
SPACE

{OSOF
OVERLAY

105EO

I
DATA

10833
SPACE

STACK AREA

10B34

10C33
10C34-SP

MEMORY

Figure J-6. Memory Organization for Example 4 121616-10

J-ll

Additional Information for iRMX 86 Users iAPX 86,88 Family Utilities

1-12

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con
trols and commands. The examples may be used in conjunction with syntax
specifications given:

• In Chapter 2 for LINK86

• In Chapter 3 for CREF86

• In Chapter 4 for LIB86

• In Chapter 5 for LOC86

When using the directions in these chapters, fold out the page in this appendix con
taining examples of the command or control in which you are interested.

The following is a sample iRMX 86 OH86 invocation:

OH86 :FDO:FINALPROGRAM to :FDO:FINISH.HEX<cr>

iAPX 86,88 Family Utilities

Comments

This example defines two public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

In this example, the root file is RTFILE, and LlB1 and
LlB2 are library files.

This line creates an L TL module. The output object
file is :FDO:TEST with no extension.

This example specifies default to avoid ambiguity.

Do not use the FASTLOAD control when producing
code for an iRMX environment.

LINES is the default, so it need not be specified.

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

Control

ASSIGN

ASSUMEROOT

BIND/NOBIND

COMMENTS/NOCOMMENTS

FASTLOAO/NOFASTLOAD

INITCOOE

LINES/NOLINES

MAP/NOMAP

MEMPOOL

*

*
*

*
*

*
*

*

iRMX 86 LINK86 EXAMPLES

Examples

LINK86 ROOT1.0BJ, ROOT2.0BJ, &<cr>
LIB1, LIB2 TO RTFILE OVERLAY<cr>

LINK86 OV11.0BJ, OV12.0BJ, &<cr>
LIB1, LIB2 TO OV1.0BJ &<cr>
OVERLAY ASSUMEROOT(RTFILE)<c r)

LI N K 8 6 0 V'21 . 0 B J, 0 V 2 2 . 0 B J, & < c r>
LIB1, LIB2 TO ov2.0BJ &<cr>
OVERLAY ASSUMEROOT(RTFILE)<cr>

LINK86 :PROG:MVPROG INITCODE<cr>

LINK86 :F1:TEST/RN.OBJ NOLINES<cr>

LINK86 :F1:TEST/RN.OBJ LINES<cr>
()

LINK86 :F1:TESTER.OBJ MAP<cr>

LINK86 :WDO:USER/TEST.OBJ &<cr>
MEMPOOL(100H, +200H) BIND<cr>

J-13/1-14

iAPX 86,88 Family Utilities

Comments

The LIN K86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPUBLICS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overlay record. The
name of the overlay will be OVERLAY1.

First the constituent files must be linked to form
overlays.

The print file is :FDO:USER/TEMP1.MP1.

The print file is :F1 :PROG.MP1.

The print file is :F1 :THE.MAP.

This example removes information about line
numbers, local symbols, and comments from the
print file.

This statement removes all but the segment informa
tion and error messages from the print file.

Control

NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT INOPRINT

PRINT CONTROLS

*
*
*

*
*

*
*

*
*

*

*
*

*
*

*

iRMX86 LINK86 EXAMPLES

Examples

:F1:SRC1.0BJ,
RC2,OBJ, :WDO:U

LIN K 8 6 : F 1 : P L M P R G . 08 J, & < c r >
PLM.LIB, URXSML.LIB, &<cr>
USER. LIB ORDER(DGROUP &<cr>
(SEG1, SEG2\CLASS1, &<cr>
SEG2\CLASS1 \OVERLAY1), &<cr>
CGROUP(CSEG1, CSEG2, &~cr>
CSEG3))<cr>

, FILE2, F

, FILES, F

:FDO:ROOT.LNK,
OV1.LNK, :FDO:OV

LINK86 :F1:PROG.OBJ<cr>

1-15/1-16

iAPX 86,88 Family Utilities

Comments

Public information concerning only DATA1, DATA2,
LABEL3, and PROC4 is placed in the object file and
print file.

All public symbol information will be included in the
print file and output file.

This example will produce a file containing only the
absolute public symbol records from :F1 :B087.LOC.
The object file will be :F1 :BOB7.LNK.

This will resolve the references in ROOT.OBJ to
absolute public symbols in the separately linked and
located overlays OV1 and OV2.

This produces an object file containing no debug or
public information.

This confirms that the line and symbol information
should be kept in the print file.

Th is will change the translator-assigned name
CGROUP to THE@CODE. A subsequent linkage
would not combine THE@CODE with a group named
CGROUP.

This changes the name of the CODE group to
CGROUP.

Th is tells the loader that 15FFH bytes of code is the
minimum requirement for MEMORY. The new max
imum size of MEMORY is 35FFH.

This increments MEMORY's minimum size by 1 FFH
(7951 D) bytes. The maximum size of MEMORY is
equal to the old minimum size plus 3FEH (15902D).

The local symbol records will be included in the
object file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBlICS, NOTYPE, and
NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

LlBMOD will retain its type information.

Control

PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEG ROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

*

*

iRMX 86 LINK86 EXAMPLES

Examples

LINK86 :F1:INDEX.OBJ PURGE<cr>

LINK86 :WDO:FINAL.OBJ &<cr>
PRINTCONTROLS(NOPURGE)<cr>

LINK86 :F1 :LIBMOD.OBJ TYPE<cr>

1-17/1-18

iAPX 86,88 Family Utilities

Comments

The cross-reference listing will have 35 lines on each
page.

The cross-reference listing will be 100 characters
wide maximum per page.

The pathname of the print file will be :FX1 :MYFILE.

The message in the TITLE control must be placed on
one line. If the message contains special characters,
it must be enclosed in single quotes (').

Control

iRMX 86 CREF86 EXAMPLES

Examples

PAGELENGTH

PAGEWIDTH

PRINT

TITLE

J-19/J-20

iAPX 86,88 Family Utilities

Comments

Three object files are added to the USER.LlB.

Three modules from the library LIB. ABC are added
to :FDO:PROJ.TOM.

This command will produce an empty library file
called TOMS. LIB.

Four modules are deleted from the library USER.LlB.

Control

iRMX 86 LIB86 EXAMPLES

Examples

ADD

CREATE * CREATE :WDO:SYSTEM/TOMS.LIB<cr>

* CREATE :FO:USER.LIB<cr>

DELETE

EXIT *1111.'.

LIST *

*

*

LIST USER.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

LIST USER.LIB(TEMP,TEST)<cr>
USER.LIB

TEMP
TEST

LIST USER. LIB, TEMP. LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

TEMP.LIB
MODULE1
MODULE3
MODULETC

J-21 / J-22

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH.
If SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, as long as addresses do
not conflict with existing absolute addresses.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (8000H).

No initialization code will be produced.

LINES is the default, so it need not be specified.

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PUBLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable
segment located. SEG@B will be next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

Control

ADDRESS

BOOTSTRAP

COMMENTS/NOCOMMENTS

INITCODE/NOINITCODE

LINES/NOLINES

MAP/NOMAP

NAME

OBJECTCONTROLS

ORDER
*
*
*

iRMX 86 LOC86 EXAMPLES

Examples

LOC86 : F1: SOURCE. LNK NOCOMMENTS<cr>

LOC86 :F1 :TEMP.LNK COMMENTS<cr>

LOC86 :F1 :TEST.LNK NOINITCODE<cr>

LOC86 :F1:RUN.LNK NOLINES<cr>

LOC86 :F1:TEST.LNK<cr>

LOC86 :F1:TESTER.LNK MAP<cr>

LOC86 :FO:SPCSEQ.LNK ORDER &<cr>
(CLASSES(CLASS1CSEG@A,SEG@B), &<cr>
CLASS2),SEGMENTS(SEG1\CLASS3 &<cr>
\OVERLAY1,SEG22,SEG10\CLASSS»<cr>

1-23/1-24

iAPX 86,88 Family Utilities

Comments

The print file is :F1 :TEMP1.MP2.

The print file is :FDDO:INTERRUPT.MP2.

The print file is :F1 :MAP.

Information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(:USER:PRIVATE.MP2 and :USER:PRIVATE).

All public information will be included in both the
print file and output file.

The object file contains no public or debug informa
tion, and the symbol table does not appear in the
print file.

The line and symbol information will be kept in the
print file.

This control reserves the high-order 64K of memory.

A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment MYSEG will be decreased by
511 bytes.

The new segment size for XENDA is 7770 bytes.

:FD1 :AUTO will start at IGNITION.

:PROG:HAL TS will start at location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS,
NOCOMMENTS, NOPUBLlCS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer line can hold a four-column symbol table.

Control

PRINT INOPRINT

PRINTCONTROLS
*

PU BLICS/N 0 PU B LICS

PURGE/NOPURGE

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

iRMX 86 LOe86 EXAMPLES

Examples

LOC86 : F DOO: INTERRUPT. LNK<c r>

LOC86 :WDO:PROG.LNK PRINT(:F1:MAP)<c r)

LOC86 :F1 :LINEAR.LNK &<cr>
PRINTCONTROLS(NOLINES)<cr>

LOC86 :USER:PRIVATE.LNK NOPUBLICS<cr)

LOC86 :F3:PROJ5.LNK PURGE<cr>

lOC86 :FD1 :AUTO.LNK STARTCIGNITION)<cr>

LOC86 GESHTA.LNK SYMBOLS<cr>

LOC86 :F3:TEST.LNK PURGE<c r)

1-25/1-26

· -
APPENDIX K

ADDITIONAL INFORMATION
FOR INTELLEC® SERIES IV USERS

n

Environmental Considerations

The iAPX 86,88 Family utilities run on the Series IV Microcomputer Development
System. These utilities can be used to produce code for an 8086-based host; the code
can be executed on the Series IV if the code is load-time locatable (L TL). Resulting
code is also compatible with DEBUG-86 and DEBUG-88 debuggers (if it is L TL
code) and with ICE-86 and ICE-88 emulators (if it is absolute code).

The following conventions of the Series IV operating system (iNDX) are
encountered when running the utilities:

• Each of the utilities is invoked by entering the name of the file in which the
utility resides:

>
>

LINK86 MYPROG.OBJ, HERPRO.OBJ, HISPRO.OBJ TO OURPRO<cr>

>
>

/SYSTEMDRIVE/LOC86 /WORKDRIVE1/PROG.LNK<cr>

• The Series IV path name consists of path components, each preceded by a slash
(I):

ISYSA/J 0 HN IFILE .ABC

• The directory-name is one or more path components consIstmg of 1 to 14
characters, inclusive. One of the directory-name path components may be a
"logical name." A logical name must be the first path component in a
pathname and not preceded by a slash:

SYSJOHN/FILE.ABC

• A logical name for some directory may be defined as a null string. Null logical
names do not appear in the pathname:

FILE.ABC

Examples in this appendix employ all these pathname variations.

• Continuation lines are necessary when a command or invocation will not fit on
one line. The following example illustrates the line-end conventions to use and
continuation characters to expect:

>
»

Pathnames may not be split between lines.

• The LIB86 utility presents an exception to these prompt conventions. Because
this program is interactive, it has its own prompts:

> '1':':'·6'· iNDX 8086 LlaRARIAN
* ~

K-l

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-2

The following versions of the iAPX 86,88 Family utilities may be executed on the
Series IV:

LINK86: V2.0 or later
CREF86: V 1.0 or later
LIB86:
LOC86:
OH86:

V2.0 or later
V2.0 or later
V 1.0 or later

Related Publications

The following manuals may be helpful during various aspects of your work with
iAPX 86,88 utilities on the Series IV:

• Intellec Series IV Microcomputer Development System Overview, order number
121752

• iAPX 86,88 User's Manual, order number 210201

• Intellec Series IV ISIS-IV User's Guide, order number 121880

• Intellec Series IV Operating and Programming Guide, order number 121753

• DEBUG-88 User's Guide, order number 121758

• PASCAL-86 User's Guide, order number 121539

• PL/M-86 User's Guide, order number 121636

• ASM86 Language Reference Manual, order number 121703

• ASM86 Macro Assembler Operator's Manual, order number 121628

• 8089 Macro Assembler User's Guide, order number 9800938

• FORTRAN-86 User's Guide, order number 121570

Program Development Examples

The following examples are programming problems solved by using one or more of
the iAPX 86,88 utilities on the Series IV to develop code for an 8086-based host.

Example 1: Preparing to Use DEBUG-SS

There are only two steps to preparing your code for DEBUG-88 execution:
translating the code, then linking it with BIND.

First you must translate your code. Any of the 8086 translators will work. An
example of one such translation is shown below:

> PLM86 TEST.SRC DEBUG SMALL<cr>

Once the program has been translated, your must link the program with the BIND
control. LINK86 with BIND produces an L TL module. The Series IV assigns
addresses to L TL modules at load time. The invocation line for LINK86 when link
ing the program shown above might appear as follows:

>
»

iAPX 86,88 Family Utilitie,s Additional Information for Intellec Series IV Users

In the above example note that all of the symbol information (LINES, SYMBOLS,
PUBLICS) is left in the output object file. This will aid you while debugging your
program. DEBUG-88 uses the symbol information to produce diagnostic information
on the program. This information is also included in the symbol table. Figure K-l
shows the print file from the invocation above.

The libraries specified resolve all of the external references in TEST .OBJ.

After the above linkage, the program can be executed with the following command
to the Series IV:

> DEBUG TEST.86<cr>

HlDX oObb LINKllR, V x.y

INPuT FlLl:.S: Tt.~1.0BJ, UTILS.OBJ, SMALL.LIB
OuTPUT FILE: T£S1.bb
CONlftOLS SPECIFIED IN INVOCATllJN COMMAND:

BIND
DATE: MMIDDIYY TIME: HH:MM:SS

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

031DH W CODE
OOOOH W CONST
0192H W DATA
03FBH W STACK
OOOOH W MEMORY
OOOOH G ??SEG

INPUT MODULES INCLUDED:
lEST.OBJ(ROOT)
UTILS.OBJ(UTILITIES)
SMALL.LIB(DQATTACH)
SMALL.LIB(DQCLOSE)
SMALL.LIB(DQCReATE)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NAME
OOOOH CODE

GROUP NAME: DOROUP
OFFSET SEGMENT NAME
OOOOH CONST
0014H DATA
01AAH STACK
05A2H MEMORY

SY MBOL TABLE OF MODU LE ROOT

BASE OFr'SET TUE SYMBOL

G(2) 0164H PUB BINDCONTROL
G(2) 0016H PUB BUFBASE
0(2) 004CH PUB CLASHNODEBASE
0(2) 0158H PUB COMMENTSCONTROL

0(2) 0111 H PUB DEBUGTOGOLE

MODULE NAME = ROOT

BASE OFFSET TYPE SYMBOL

G(2) 05A2H SYM MEMORY
0(2) 0014H SYM BUFLEN
0(1) OOF1H SYM ERROR
G(2) OOlBH SYM LASTNMNODEP
0(2) 00lCH SYM LASTSGNODEP
0(2) 0020H SYM LASTTDNODEP
G(2) 0024H SYM LASTEXNODEP
0(2) 0028H SYM LASTGRNODEP

CLASS
CODE
CONST
DATA
STACK
MEMORY

BASE

G (2)
0(2)
G(2)
G (2)

G(2)

BASE

G(2)
0(2)
O(1)
0(2)
G(2)
G(2)
G(2)
G (2)

OVERLAY

OFFSET TYPE SYMBOL

004AH PUB BNODEBASE
0014H PUB BUFLEN
005EH PUB COCONN
016FH PUB CURRENTOVERLAYNU

-M
OOA5H PUB DEFAULTPRTFILENA

-ME

OFFSET TYPE SYMBOL

OOOOH SYM COP YRIGHT
o016H SYM BUFBASE
OOFEH SYM WARNING
00lAH SYM FIRSTNMNODEP
00lEH SYM FIRSTSGNODEP
0022H SYM FIRSTTDNODEP
0026H SYM FIRSTEXNODEP
002AH SYM FIRSTORNODEP

Figure K-l. LINK86 Print File for Bound Object Module

-
-

K-3

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-4

G(1) OOAbH LIN 141 G (1) 00B3H LIN 143
G(1) OOBEh LIN 144 G(1) 00C8H LIN 145
G(1) OOCFH LIN 146 G(1) 00D2H LIN 148
G(1) OOOOb LIN 149 G(1) 00E7H LIN 150
G(1) OOEEH LIN 152 G(l) 00F5H LIN 153

REFERENCES TO SEGMENT BASES EXIST IN INPUT MODULES:
ROOT

Figure K-l. LINK86 Print File for Bound Object Module (Cont'd.)

Example 2: Preparing to Use an ICE System

Another way to test and debug software is using an in-circuit emulation (ICE)
system. The ICE-86 or ICE-88 loader can load only absolute object modules.
Therefore, you cannot use the output from LINK86 immediately; it must be located,
too.

The whole process of preparing a program for ICE system execution takes three
steps. In the first two, the program must be translated and linked:

> PLM86 ICETST.SRC SMALL<cr>

> LINK86 ICETST.OBJ, SMALL.LIB<cr>

The above example shows a straightforward linkage with no change to the default
control setting. Note that NOOVERLA Y and NO BIND, the defaults, are set. The
ICE loader has no facility for dealing with overlay modules created by using the
LINK86 OVERLAY control. In this case there are no unresolved external references
in the object module. If the module did contain unresolved references, it could still
be executed by the ICE system. However, as with execution under DEBUG-88,
executing instructions that contain unresolved references will produce undefined
results.

Figure K-2 shows the print file produced during the invocation shown above. LINK86
does not produce a symbol table when NOBIND is in effect.

The last step before ICE system execution is transforming the relocatable object
module into an absolute object module with LOC86. The invocation line shown
below would produce an object file that could be loaded and executed by an ICE-86
or ICE-88 system:

> LOC86 ICETST. LNK<cr>

This invocation line shows LOC86 invoked with the default control setting. Note
that the INITCODE control is in effect by default.

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

eRE F86

iND~ tlOa6 LINKER, V ~y

INPUT FILES: ICETST.OBJ, SMALL.LIB
OUTPUT FILE: ICETST.LNK
CONTROLS SPECIFIED IN INVOCATION COMMAND:
DATE: MMIDDIYY TIME: HH:MM:SS

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

031DH W CODE
OOOOH ------ W CONST
0192H ------ W DATA
03F8H W STACK
OOOOH ------ W MEMORY
OOOOH ------ G ??SEG

INPUT MODULES INCLUDED:
ICETST.OBJ(LOANER)
SMALL.LIB(DQATTACH)
SMALL.LIB(DQCLOSE)
SMALL.LIB(DQCREATE)
SMALL.LIB(DQDETACH)
SMALL.LIB(DQEXIT)
SMALL.LIB(DQGETSYSTEMID)
SMALL.LIB(DQOPEN)
SMALL.LIB(DQOVERLAY)
SMALL.LIB(DQWRITE)
SMALL.LIB(SYSTEMSTACK)

CLASS
CODE
CONST
DATA
STACK
MEMORY

Figure K-2. LINK86 Default Print File

Example 3: Using CREF86

OVERLAY

Figure K-3 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains serveral modules. The output print file pathname 110UTI and
a title for the listing were specified in the controls. Although P AGEWIDTH (PW)
and PAGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

EXAMPLE OF CROSS REFERENCE USING CREF86 MMIDDIYY HH:MM:SS

iNDX CREF86 V~y

PAGE

INPUT FILES: 1/ROOT.OBJ 1/PARSE.OBJ 1/SIGNON.OBJ 1/STATE.OBJ 1/ERROR.OBJ 1/UTILS.OBJ
1/SCANNR.OBJ 1/PROCES.OBJ 1/SCUTIL.OBJ 1/LIST.OBJ 1/LSUTIL.OBJ 1/S0RT.OBJ

l/MEMMAN.OBJ
l/UDSMA.LNK

O/COMPAC.LIB
OUTPUT FI LE: 1 lOUT 1
CONTROLS SPECIFIED: PR(1/0UT1) TT(EXAMPLE OF CROSS REFERENCE USING CREF86) PW(120) PL(60)

MODULES INCLUDED:

FILE NAME

1/ROOT.OBJ:
1/PARSE.OBJ:
1/SIGNOI'l.OBJ:
1/STATE.OBJ:
1 IERROR .OBJ:
l/UTILS.OBJ:
l/MEMMAN.OBJ:
1/SCANNR.OBJ:
l/PROCES.OBJ:
1/SCUTIL.OBJ:
l/LIST.OBJ:
l/LSUTIL.OBJ:
1/S0RT.OBJ:
l/UDSMA.LNK:
O/COMPAC.LIB:

MODULE NAME(S)

CREF86
PARSE
SIGNON
NEXTSTATE
ERROR
UTILITIES
MEMOUHANAGEMENT
SCAN MODULES
PROCESSRECORDS
SCANUTILITIES
LISTOUTPUT
LISTUTILITIES
SYMBOLSORT
OBJMAN
DQALLOCATE
DQDETACH
DQGETTIME
SYSTEMSTACK

DQATTACH
DQEXIT
DQOPEN

DQCHANGEEXTENSION
DQFREE
DQREAD

DQCREATE
DQGETARGUMENT
DQSEEK

Figure K-3. CREF86 Cross-Reference Listing

DQDECODEEXCEPTION
DQGETSYSTEIHD
DQWRITE

K-5

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-6

eRE F86 EXAMPLE OF CROSS REFERENCE USING CREF86

SiMEOL NAME

ACCE.SS_f' AGE •.
ALLOCAT!>. • • .
AP PENDNODE. • •
APPENJJlJDSMNODE.
ARRAY BASE. ••
ATOI •••.••

BTOX •••••••
BUBBLESORTVARNAMES.
BUMP LINE COUNT

CHECKHEADER •
CHECKOVERLAY •
CRECKVARTYPE.

SYMBOL TYPE

UNKNOWN
U NKN OWN
PROCEDURE NEAR
PROCEDURE NEAR
POINTER
PROCEDURE WORD NEAR

PROCEDURE WORD NEAR
PROCEDURE NEAR
PROCEDURE NEAR

PROCEDURE NEAR
PROCEDURE NEAR
PROCEDURE BYTE NEAR

MMIDDIYY HH-MM-SS

DEFINING MODULE; REfERRING MODULE(S)

OBJMAN
OBJMAN
UTILITII>S
UTILITIES;
SYMBOLSORT;
UTILITIES;

UTILITIES;
SYMIlOLSORT;
LISTUTILITIES;

SCANUTILITIES;
SCANUTIL IT IES;
SCANUTIL IT IES;

PARSE SCANMODULES PROCESSRECORDS
LIST OUTPUT
PARSE

LISTUTILITIES
LISTOUTPUT
LISTOUTPUT

SCAN MODULES
SCANMODULES
PROCESSRECORDS

PAGE

CREF86 EXAMPLE OF CROSS REFERENCE USING CREF86 MMIDDIYY HH:MM:SS PAGE

VARAREAP. • • • •
VBLOCKLISTHEADER.

WARNING • • • • •
WRITEDATA • • • •
WRITEINITLINEBUF.
WRITELINE • • • •
WRITENEWLINE •••
WRITETOCOMMANDBUF
WRITETOFILE

ZERO •••••••

UNKNOWN

POINTER
1i0RD

PROCEDURE NEAR
PROCEDURE. NEAR
P ROCEDU RE NEAR
P ROCEDU RE NEAR
P ROCEDU RE NEAR
PROCEDURE NEAR
PROCEDURE NEAR

WORD

OBJMAN

MEMORYMANAGEMENT;
PROCESSRECORDSj

ERROR;
LISTUTILITIES;
LISTUTILITIES;
LISTUTILITIES;
LISTUTILITIES;
PARSE
LISTUTILIT IES;

UTILITIES

PROCESS RECORDS LIST OUTPUT SYMBOLSORT
UTILITIES LISTOU-TPUT SYMBOLSORT

SCANMODULES PROCESSRECORDS
ERROR UTILITIES LISTOUTPUT
ERROR UTILITIES LIST OUTPUT
LISTOUTPUT
UTILITIES LISTOUTPUT

ERROR LIST OUTPUT

Figure K-3. CREF86 Cross-Reference Listing (Cont'd.)

Example 4: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect com
monly used pieces of software into one file. The library file can be included in a
LINK86 invocation, and LINK86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOC86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Let's consider the following scenario-we have created six routines (SINE,
COSINE, TANGENT, COSECANT, SECANT, and COTANGENT). We want to
create a library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
we were to output them in a single source module, the translator would translate
them into one module with six public symbols. We could add this module to a
library, but when we tried to link one of the routines into a program, all six would be
included.

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

Once the routines are translated, LIB86 can be used to create a library file and add
modules. The LIST command is used to display the contents of the library and the
publics contained within it:

*
*
*
*

*

/SYSTEMDISK/FRED/LIB86<cr>
I : I : • : ~ 1· I

CREATE /WORKDISK/FRED/TRIG.LIB<cr>
ADD /WORKDISK/FRED/SIN.OBJ, /WORKDISK/FRED/COS.OBJ &<cr>

TO IWORKDISK/FRED/TRIG.LIB<cr>II
LIST /WORKDISK/FRED/TRIG.LIB PUBLICS<cr>

•• •
SIN

SINE
COS

COSINE

RKDI
SIN

SINE
COS

COSINE
SEC

SECANT
CSC

••

COSECANT
COT

COTANGENT
TAN

TANGENT
*r.:Il.m,n,ni-"lf-·-ML-.
>

Example 5: Creating Programs with Overlays Using OVERLAY
Control

The easiest way to build an 8086 program that contains overlays is with LINK86's
OVERLAY control. Overlay modules built with this control reside in the same file
as the root. The operating system supplies routines that will load the overlays con
structed in this way. See the InteJJec Series IV Operating and Programming Guide.

After the program modules that will constitute the root and its overlays are
translated, each of the overlays and the root must be linked separately. Then the
root and all the overlays are linked together.

The example below shows the first step toward linking overlays-linking the root
and all of the modules that will constitute each overlay separately.

K-7

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-8

>

>
»

>

>

>

LINK86 OV1.0BJ,OV1A.OBJ,OV1B.OBJ OVERLAY(OVERLAY1)<cr>

LINK86 OV3.0BJ, OV3A.OBJ OVERLAY(OVERLAY3)<cr>

LINK86 OV4.0BJ ,OV4A.OBJ OVERLAY(OVERLAY4)<cr>

LINK86 NROOT.OBJ,ROOTA.OBJ,ROOTB.OBJ,SMALL.LIB OVERLAY(ROOT)<cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as is that for
the overlays, since the overlay name is used when calling the loader.

Finally, the overlays and root must be linked together. Since anyone of the files
could be the root, LINK86 requires that for the final link, the file containing the
root must be first in the input list. During this final linkage, the OVERLAY control
is not used:

>
»

In this invocation, the optional BIND control is specified. The resu1tin~ object file is
executable on a Series IV.

Figure K-4 shows the LINK86 print file listing for the above invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

>
»

The RESERVE control prevents LOC86 from assigning memory addresses that the
user wishes to reserve for the target system. Figure K-5 illustrates the printout from
this invocation.

iNDX ti066 LINKER, V~y

INPUT FILES: NHU01.LNK, OV1.LNK, OV2.LNK, OV3.LNK, Ov4.LNK
OUTPUT FILE:
CONTROLS SPECIFIED IN INVOCA1IUN CUMMAND:

BIND
DA H.: MMIDDIYY TIME: HH.MM:SS

LINK MAP O~' MODuLE ROOT

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT

3CE7H ------ G CODE
ODOOH ------ CONST

CLASS
CODE
CONST

OVERLAY
ROOT
ROOT

Figure K-4. LINK86 Listing for Program with Overlays

iAPX 86,88 Family Utilities

INPUT MODULES INCLUDED:
ROOT.LNK(ROOT)
OV1.LNK(PARSE)
OV2.LNK(ILUDE)
OV3.LNK(PICILUDE)
OV4.LNK(FASTLOAD)

GROUP MAP

GROUP NAME:
OFFSET
OOOOH
jCEdl:!

CGROUP
SEGMENT NAME
COOE\COOE\ROOT
COOE\COOE\PASS1

SYMBOL 1ABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL

G(2) 251CH PUB ACTUAL

G(2) OF22H PUB BASEFIXUPSEXIST
G(2) OD26H PUB bNODEID
G(2) OD2bH PUB CLASHNODEID
G(2) OFOOH PUB COMMEhTSCOhTROL
G(2) OF1AH PUB CURRENTOVERLA~NU

-M

OVERLAY NAME = ROOT, MODULE NAME ROOT

BASE OFFSET TYPE SYMBOL

G(2) 4A20H SYM MEMORY
G(2) ODOOH SYM LASTNMNODEID
G(2) OD04H SYM LASTSGNODEID
G(2) ODOBH SYH LASTIDNODEID
G(2) ODOCH SYH LASTEXNODEID
G(2) OD10H SYH LASTGRNODEID
G(2) OD14H SYH LASTOVNODEID
G(2) OD1BH SYM LASTGHODEID

OVERLAY NAME = ROOT, HODULE NAHE LIT

BASE OFFSET TYPE SYMBOL

G(2) 4A20H SYM MEMORY
G(2) OF56H SYM LITBASE
G(2) OF56H BAS LITNODE
G(2) OF64H SYM FIRSTNODE
GU) OF96H SYM TEMPLATE
aT,) 016EH SYM -GETLIT
STACK 0004H SfM I

Additional Information for Intellec Series IV Users

-

BASE OFFSET TYPE SYMBOL

G(2) OFODH PUB ASSUMEROOTCONTRO
-L

G(2) OFOCIt PUB BINDCONTHOL
G(2) 24EAH PUB" BUFBASE
G(2) OD5AH PUB CO CONN
G(2) OF50H PUB CURRENTfILNUH
G(2) OFdER PUB CURRENTRECINDEX

-
-

BASE OFFSET TYPE SYMBOL

G(2) 0002H SYM COPYRIGHT
G(2) OD02H SYM FIRSTNMNODEID
G(2) ODo6H SYM FIRSTSGIIODEID
G(2) ODOAH SYM FIRSTTDNODEID
G(2) ODOEH SYM FIRSTEXNODEID
G(2) OD12H SYM FIRSTGRNODEID
G(2) OD16H SYM FIRSTOVNODEID
Gt2) OD1AH SYM FIRSTBNODEID

-

BASE OFFSET TYPE SYMBOL

G(2) 003CH BAS SGNODE
G(2) OF5BH SYM LITID
G(2) OF5AH SYM FIRSTNODEIDS
G(2) OFBEH SYM CURRENTRECINDEX
G(2) OFB9H SYM II
STACK 0006H SYM INDEX
G(1) 0207H SfM SGLIT

Figure K-4. LINK86 Listing for Program with Overlays (Cont'd.)

K-9

Additional Information for Intellec Series IV Users

iNDI tiOti6 LOCATOR, VLY

INPUT FILl;: 1/PROG.o6
OUTPUT FluE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:

TO PROG RESERVE(OH TO 77FFH,OFCOOOH TO OFFFFFH)
DATE: MMIOOIYY TIME: HH:MM:SS

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL

1034H 251CH PUB ACTUAL

1034H OF22H PUB BASE FIXUP SEXIS T
1034H OD.26H PUB BNODEID
1034H OD28H PUB CLASHNODEID
1034H OFOOH PUB COMMENTSCONTROL

OVERLAY = ROOT, MODULE = ROOT

BASE OFFSET TYPE SYMBOL

1034H IIA20H SYM MEMORY
10311H ODOOH SYM LASTNMNODEID
103118 ODOIIH SUI LASTSGNODEID
10311H OD08H S}M LASTTDNODEID
10348 ODOCH SYM LASTEXNODEID
10jllH OD10H SYM LASTGRNODEID
1.0348 OD14H SYM LASTOVNODEID
1034H OD18H SYM LASTBNODEID
10348 OD1CH SYM SGNODEID

OVERLAY = ROOT, MODULE = LIT

BASE OFFSET TYPE SYMBOL

1034H 4A20H SYM MEMORY
10311H OF56H SYM LITBASE
10311H OF5bH SYM LITNODE
1034H OFb4H SYM FIRSTNODE
10:;118 OF9bH SYM TEMPLATE
0780h 01bEH SUI GET LIT
STACK OOOIlH sn, I

MEMORY MAP OF MODULE ROOT

MODULE START ADDRESS PARAGRAPH
SEGMENT MAP

START STOP LENGT8 ALIGN

07800H OB4Eb8 3CE7H M
OBIIEtiH OF9BAH 411D3H M
OB4E8H OEOCEH 2BE7H M
OB4E8H 10337H 4E50H M

GROUI' MAP

ADDRESS GROUP OR SEGMENT NAME
07800H CGROUP

CODE\CODE\ROOT
CODE\CODE\PASSl
CODE\CODE\PASS2
CODE\CODE\PIC_PASS2
CODE\CODE\FASTLOAD

10340H DGROUP
CONST\CONST\ROOT
DATA\DATA\ROOT
STACK\STACK\

= 14DbH

NAME

CODE
CODE
CODE
CODE

BASE OFFSET

10311H OFODH

10311H OFOCH
1034H 24EAH
1034H OD5AH
10311H OF50H

BASE OFFSET

1034H 0002H
1034H OD02H
1034H OD06H
1034H ODOAH
1034H ODOEH
1034H OD12H
1034H OD16H
1034H OD1AH
1034H OD1EH

BASE OFFSET

10311H 003CH
1034H OF58H
1034H OF5AH
1034H OF8EH
1034H OFB9H
STACK OOObH
07bOH 0207H

OFFSET = OOObi1

CLASS

CODE
CODE
CODE
CODE

iAPX 86,88 Family Utilities

TYPE SYMBOL

PUB ASSUMEROOTCONTRO
-L

PUB BINDCONTROL
PUB BUFBASE
PUB COCONN
PUB CURRENTFILNUM

TYPE SYMBOL

SYM COPXRIGHT
SYM FIRSTNMNODEID
SYM FIRSTSGNODEID
SYM FIRSTTDNODEID
SYM FIRSTEXNODEID
SYM FIRSTGRNODEID
SYM FIRSTOVNODEID
SYM FIRSTBNODEID
SYM GRNODEID

-

TYPE SYMBOL

SYM SGNODE
SYM LITID
SYM FIRSTNODEIDS
SYM CURRENTRECINDEX
SYM II
SYM INDEX
SYM SGLIT

OVERLAY

ROOT
PASSl
PASS2
PIC_PASS2

Figure K-5. LOC86 Listing for Program with Overlays

K-IO

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

Example 6: Linking and Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example, for
running under an operating system that does not support overlay modules contained
in the same file as the root module.

But regardless of the reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86
(and LOC86) if he were to use the OVERLAY control. In the following example we
prepare a root and two overlay modules in separate files.

First we must compile all modules. Examples of the invocation lines are shown
below:

> PLM86 ROOT.SRC SMALL<cr>

> PLM86 OV1.SRC SMALL<cr>

> PLM86 OV2.SRC SMALL<cr>

The next step is to link the root module to resolve external symbols with a library
and to obtain a link map:

> LINK86 ROOT.OBJ, USER.LIB MAP<cr>

We will need the link map for locating purposes. The link map, shown in figure K-6,
shows the size of each segment in the root. Since the overlays are self-contained except
for references to the root, we do not need a link map for them. The PL/M-86 listing
files will show the size of each overlay's segments, as illustrated in figure K-7.

iNDl tiOH6 LINKER, V~Y

INPUT FILES: ROOT.OBJ,USER.LIB
OUTPUT FILE: ROOT.LNK
CONTROLS SPECIFIED IN INVOCATION COMMAND:

MAP
DATE: MMIDDIYY TIME: HH.MM.SS

LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:
LENGTH ADDRESS ALIGN SEGMENT
8A~B8 ------ W CODE
03811i ------ W CONST
02918 ------ W DATA
00308 ------ STACK
OOOOH ------ MEkORY

INfUT kODULES INCLUDED:
ROOT.OBJ(ROOT)
USER.LIB(LOADER)
USER.LIB(EXIT)
USER.LIB(ERROR)
USER.LIB(TIME)

CLASS
CODE
CONST
DATA
STACK
kEMORY

OVERLAY

Figure K-6. LINK86 Map for Root File

K-ll

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-12

MOOULE INFORMATION:

ENO

COOE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERRORCS)

OF PL/M-86 COMPILATION

MOOULE INFORMATION

ENO

COOE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
918 LINES READ
o PROGRAM ERRORCS)

OF PL/M-86 COMPILATION

OV1's segment size information

7531 H
0081 H
0181 H
0040H

300010
1290
3850

640

this is
this is
this is
t his is

the CODE segment
the CaNST segment
the DATA segment
the STACK segment

OV2's segment size information

1B9AH
0101 H
0454H
0067H

70660
2570

11080
1030

this is
t his is
t his is
this is

the CODE segment
the CaNST segment
the DATA segment
the STACK segment

Figure K-7. Module Information for Overlays

Note that the length of the root's code segment and the l~lfger overlay's (OVI 's) code
segment must fit within 64K. This means that the code for the overlays must be in a
part of memory contiguous with the root (to avoid altering the CS register during
execution). OV2's CONST and DATA segments are larger than OVl's so that the
ST ACK segment must be placed to leave room for OV2's CONST and DATA
segments. I{ the overlays share the STACK and MEMORY segments with the root,
they must be located at the same address.

After computing the required location for the root's DGROUP and STACK, we can
'~locate the root module. The resulting file will not be executable, but it allows us to
resolve references to the root's code and data symbols in the overlays. The following
LOC86 invocation will leave room for the overlays' code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2's DATA segment:

>
»
»
»
»

Once the root is located, we can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when we use the located overlays to
resolve external references in the root:

>
»

>
»

LINK86 OV1.0BJ,PUBLICSONLY(ROOT) &<cr>
NOPUBLICS EXCEPT(OV1CODE, OV1DATA)<cr>

LINK86 OV2.0BJ,PUBLICSONLY(ROOT) &<cr>
NOPUBLICS EXCEPT (OV2CODE, OV2DATA)<cr>

The PUBLICSONL Y control resolves references to public symbols contained in the
root.

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

After the overlays have been linked, they must be located. The code and data
segments must be placed in the memory locations that were reserved when we first
located the root. In this case the STACK and MEMORY segments must be the same
for the overlays and the root:

>
»
»
»
»

>
»
»
»
»~~

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded up to OFFDOH.

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONL Y control will resolve references to symbols in the overlay
modules. Other than the addition of this input control, the LINK86 and LOC86
command must be identical to those used previously:

>
»

>
»
»
»
»

The executable forms of the root and its overlay files are contained in ROOT, OVl,
and OV2. Figure K-8 shows the resulting layout of memory.

1 r- CS

ROOT CODE

I
SPACE

tAO' OVERLAY
8A9C

I
CODE [FFCO -05.55 SPACE

ROOT DATA

OFFCE

I
SPACE

{OSOF
OVERLAY

10SEO

I
DATA

10B33
SPACE

STACK AREA

10B34

10C33
10C34-Sp

MEMORY

Figure K-8. Memory Organization for Example 6 121616-10

K-13

Additional Information for Intellec Series IV Users iAPX 86,88 Family Utilities

K-14

Example 7: Linking 8089 Programs with 8086 Programs

The process of linking and locating 8086 programs with 8089 programs that use 8089
local memory is very similar to creating overlay modules in separate files.

Let us consider the following example. We have created an 8086 program and two
8089 program modules. The 8089 programs reference each other's symbols and
public symbols in the 8086 program. In addition, one of the 8089 programs must be
resident in 8089 local memory.

The first step is to translate the programs. The 8089 program modules must be
translated separately, since they will be located in different 8089 address spaces. The
following lines illustrate the invocation lines to the translators:

> ASM86 /JOE/ASM/PROG86.A89<cr>

> ASM89 IHARRIET/TASK1.A89<cr>

> ASM89 ISTEVE/TASK2.A89<cr>

T ASK2 should be linked and located first for 8089 local memory. This linkage will
leave unresolved external references, but it is needed to resolve the references in
TASK1:

> LINK86 ISTEVE/TASK2.0BJ, 8089.LIB<cr>

> LOC86 ISTEVE/TASK2.LNK RESERVE(10000H TO OFFFFFH)<cr>

The RESERVE control in the locate above is a precaution to avoid exceeding 64K.

The next step is to link and locate the object modules that will reside in the 8086's
address space. The external references to the 8089 program module that is resident in
8089 local memory are resolved with the PUBLICSONL Y control. The invocation
lines for linking and locating the modules are:

>
»
» IIAi

> LOC86 86N89.LNK<cr>

The file 86N89 contains an absolute object module that includes PROG86 and
TASKl. It may be loaded and executed on an 8086-based system. However, the 8089
program to be located in 8089 local memory still has some unresolved external
references. To resolve those references, we must relink with PUBLICSONL Y and
relocate. The invocation lines to LINK86 and LOC86 shown below are identical to
those used earlier-to guarantee that the references resolved earlier are not
invalidated:

>
»

> LOC86 ISTEVE/TASK2.LNK RESERVE(10000H TO OFFFFFH)<cr>

NOTE

The example above makes many assumptions about the 8089 and 8086 code
that it deals with. In most practical situations it is usually necessary to use a
more complex LINK86 and LOC86 invocation. However, the example
above illustrates the key linking and locating principles underlying
ASM861 ASM89 module combination.

iAPX 86,88 Family Utilities Additional Information for Intellec Series IV Users

Invocation Examples

The following foldout pages contain examples of the iAPX 86,88 Family utility con
trols and commands. The examples illustrate conventions you are likely to encounter
while using the Series IV. They may be used in conjunction with syntax specifica
tions given:

• In Chapter 2 for LINK86

• In Chapter 3 for CREF86

• In Chapter 4 for LIB86

• In Chapter 5 for LOC86

When using the directions in these chapters, fold out the page in this appendi4 con
taining examples of the command or control you are interested in.

The following is a sample Series IV OH86 invocation:

> ISYSTEM/CHARLIE/OH86 IMYCODE/DONE TO IMYCODE/FINI.HEX<cr>

K-15

iAPX 86,88 Family Utilities

Comments

This example defines two· public symbols, VARONE
and VARTWO, with absolute addresses 50H and
2000H, respectively.

In this example, the root file is RTFILE, and
SYSTEM/LlB1, ISYSTEMB/LlB2, LlB1, and LlB2 are
library files.

This line creates an L TL module. The output object
file is WORK/TEST with no extension.

Control

ASSIGN

ASSUMEROOT

BIND/NOBIND

>
»
»

>
»
»
»

>
»
»

>
»
»

>
»

>
»

This example specifies default to avoid ambiguity. >

COMMENTS/NOCOMMENTS >

>
»

FASTLOAD/NOFASTLOAD >
»

INITCODE >

LINES/NOLINES >

LINES is the default, so it need not be specified. >

This MEMPOOL example will increase the minimum
dynamic memory requirements by 20H bytes, and by
default the maximum size will increase, if necessary,
to equal the minimum.

The minimum dynamic memory requirement is 100H.
The maximum dynamic memory requirement is
300H.

MAP/NOMAP

MEMPOOL

>
»

>
»
»

>
»
»

>
»

SERIES IV LINK86 EXAMPLES

Examples

LINK86 OV21.0BJ, WORK/OV22.0BJ, &<cr>
SYSTEM/LIB1, ISYSTEMB/LIB2 TO &<cr>
OV2.0BJ OVERLAY ASSUMEROOT(RTFILE)<cr>

SYSTEM/LINK86 WORK/GEN.OBJ NOBIND<cr>

LINK86 SOURCE.OBJ NOCOMMENTS<cr>

LINK86 MYDISK/PLM/MYPROG INITCODE<cr>

LINK86 RUN.OBJ NOLINES<cr>

LINK86 TEST.OBJ LINES<cr>

K-17 jK-18

iAPX 86,88 Family Utilities

Comments

The LlNK86 output module will have the name
specified in parentheses in the control.

This example removes all debug and public records
from the object file.

The EXCEPT in the NOPUBLICS overrides the
PURGE.

This use of ORDER specifies the order of segments
for two groups.

This example will create an overlay record, and the
name of the overlay will be OVERLAY1.

First the constituent files must be linked to form
overlays.

The print file is WORKDISK/TEMP1.MP1.

The print file is PROG.MP1.

The print file is THE.MAP.

This example removes information about line
numbers, local symbols, and comments from the
print file.

This statement removes all but the segment informa
tion and error messages from the print file.

Control

NAME

OBJECTCONTROLS

ORDER

OVERLAY/NOOVERLAY

PRINT INOPRINT

PRINTCONTROLS

>
»
»

>
»

>
»
»

>
»
»
»
»
»

>
»

>
»

>
»

>

>
»

>

>
>

>
»

SERIES IV LINK86 EXAMPLES

Examples

SYSTEM/LINK86 PLM/PROG.OBJ, &<cr>
PLM/PLM86.LIB, SMALL.LIB, &<cr>
USER.LIB &<cr>" ____ "~ ____ •
ORDER(DGROUP(SEG1,SEG2\CLASS1, &<cr>
SEG2\CLASS1\OVERLAY1), &<cr>
CGROUP(CSEG1,CSEG2,CSEG3))<cr>

, FILE2, FILE3 TO

LINK86 ROOT.LNK,OV1 .LNK,OV2.LNK<cr>

LINK86 PROG.OBJ<cr>

K-19/K-20

iAPX 86,88 Family Utilities

Comments

Public information concerning only DATA1, DATA2,
LABEL3, and PROC4 is placed in the object file and
print file.

All public symbol information will be included in both
the print file and the output file.

This example will produce a file containing only the
absolute public symbol records from 8089.LOC. The
object file will be 8089.LNK.

This example will resolve the references in
WORK/PLM/ROOT.OBJ to absolute public symbols
in the separately linked and located overlays
WORK/PLM/OVL1 and WORK/PLM/OVL2.

This example produces an object file containing no
debug or public information.

This confirms that the line and symbol information
should be kept in the print file.

This will change the translator-assigned name
CGROUP to THE@COOE. A subsequent linkage
would not combine THE@COOE with a group named
CGROUP.

This example changes the name of the CODE group
to CGROUP.

This tells the loader that 15FFH bytes of code is the
maximum requirement for MEMORY. The new max
imum size of MEMORY is 35FFH.

This example increments MEMORY's minimum size
by 1 FFH (79510) bytes. The maximum size of
MEMORY is equal to the old minimum size plus 3FEH
(159020).

The local symbol records will be included in .the
object file.

Purge is a shorthand for NOSYMBOLS, NOCOM
MENTS, NOPUBLlCS, NOTYPE, and NOLINES.

SYMBOLCOLUMNS has no effect, since BIND was
not specified.

The symbol table will be printed on a line printer.

WORK/LlBMOD.OBJ will retain its type information.

Control

PUBLICS/NOPUBLICS

PUBLICSONLY

PURGE/NOPURGE

RENAMEGROUPS

SEGSIZE

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

TYPE/NOTYPE

>
»
»

>
»
»

>

>
»
»

>

>
»

>
»

>
»

>
»
»
»

>
»
»

>
>

>
>

>

>
»
»

>

SERIES IV LIN K86 EXAMPLES

Examples

ATA1, DATA2,

LINK86 PUBLICSONLY(8089.LOC)<cr>

SYSTE~/LINK86 WORK/INDEX.OBJ PURGE<cr>

LINK86 TEST.OBJ SYMBOLCOLUMNS(1)<cr>

SYSTEM/LINK86 WORK/LIBMOD.OBJ TYPE<cr>

K-21jK-22

iAPX 86,88 Family Utilities

Comments

The cross-reference listing will have 35 lines on each
page.

The cross-reference listing will be 1 00 characters
wide maximum per page.

The pathname of the print file will be MYFILE.

The message in the TITLE control must be placed on
one line. If the message contains special characters,
it must be enclosed in single quotes (').

Control

PAGELENGTH

PAGEWIDTH

PRINT

TITLE

>
»

>
»

>
»

>
»
»
»
»
»

SERIES IV CREF86 EXAMPLES

Examples

CREF86 FILES(MODULE1, &<cr>
MODULE2) PRINT(MYFILE)<cr>

SYSTEM/CREF86 MINE/PROGA, &<cr>
HIS/PROGB, HERS/PROGC, &<cr>
LIBA/MYLIB, LIBB/HISLIB, &<cr>
LIBC/HERLIB TITLE &<cr>"_,,,.
CiA COMBINED CROSS-REFERENCE') &<cr>
PAGEWIDTH(10S)<cr>

K-23/K-24

iAPX 86,88 Family Utilities

Comments

Three object files are added to the USER.LlB.

Three modules from the library WORK/LlB.ABC are
added to SYSTEM/PROG.TOM.

This command will produce an empty library file
called SYSTEM/TOMS.LlB.

Four modules are deleted from the library USER.LlB.

Control

ADD

CREATE

DELETE

*
*

*

*
*

*
*

*

*

SERIES IV LIB86 EXAMPLES

Examples

ADD SIN, COS, TAN TO USER.LIB<cr>

CREATE SYSTEM/TOMS.LIB<cr>

CREATE WORK/uSER.LIB<cr>

EX IT *!:IJ'Ji ••
>

LIST *

*

*

*

LIST USER.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

LIST USER.LIB(TEMP,TEST)<cr>
USER.LIB

TEMP
TEST

LIST USER.LIB,TEMP.LIB<cr>
USER.LIB

TEMP
TEST
EXEC
MAIN
LOOP

TEMP.LIB
MODULE1
MODULE3
MODULETC

K-25jK-26

iAPX 86,88 Family Utilities

Comments

If SEG1 is byte alignable, it will be located at 15FFH. If
SEG2 is byte or word alignable, it will be at 4F5AH.

Address assignment of groups, segments, and
classes can be in any order, unless they are
absolute.

A long jump to GO will be placed at location
OFFFFOH.

The initialization code is placed at address 32768
decimal (8000H).

Control

ADDRESSES

BOOTSTRAP

>
»
»

>
»
»
»
»
»

>
»

COMMENTS/NOCOMMENTS >

>

INITCODE/NOINITCODE >
»

No initialization code will be produced. >

LINES/NOLINES >

Lines is the default, so it need not be specified. >

This statement removes all debug records from the
object file, but keeps the information in the print file.

NOPUBLICS is implied by PURGE, but PU BLICS
overrides it.

SEG@A of CLASS1 will be the first relocatable seg
ment located. SEG@B will be the next, followed
immediately by any other segments contained within
CLASS1. The extra segments in CLASS1 (and all of
the segments in CLASS2) are located in the order in
which they are encountered. Finally, the list in the
SEGMENTS subcontrol is handled.

MAP/NOMAP >

>

NAME

OBJECTCONTROLS >

>
»

ORDER >
»
»
»
»

SERIES IV Loe8S EXAMPLES

Examples

LOC86 SOURCE.LNK NOCOMMENTS<cr>

LOC86 TEMP.LNK COMMENTS<cr>

LOC86 TEST.LNK NOINITCODE<cr>

LOC86 RUN.LNK NOLINES<cr>

LOC86 TEST.LNK<cr>

SYSTEMiLOC86 WORKiTESTER.LNK MAP<cr>

LOC86 GONE.LNK TO HERMAF.OVY NOMAP<cr>

~ ~

K-27 jK-28

iAPX 86,88 Family Utilities

Comments

The print file is TEMP1.MP2.

The print file is WORKIINTERP.MP2.

The print file is MAP.

Information about line numbers is removed from the
print file.

All but the segment information is removed from the
print file.

No public information is included in the output files
(PRIVAT.MP2and PRIVAT).

All public symbol information will be included in both
the print file and the output file.

The object file contains no public or debug informa
tion, and the symbol table does not appear in the
print file.

The line and symbol information will be kept in the
print file and object file.

This control reserves the high order 64K of memory.

A 200H and a 100H section of memory at the top and
bottom of memory are reserved.

The size of segment MEMORY will be increased by
2000 bytes.

The size of segment FREUD will be decreased by 511
bytes.

The new segment size for XENDA is 7770 bytes.

AUTO will start at IGNITION.

HALTS will start at location 200H.

This statement will include the local symbol records
in the object file and the symbol information in the
print file.

PURGE is a shorthand for NOSYMBOLS, NOCOM
MENTS, NOPUBLlCS, and NOLINES.

The symbol table will be printed on a line printer. A
line printer line can hold a four-column symbol table.

Control

PRINT INOPRINT

PRINTCONTROLS

PUBLICS/NOPUBLICS

PURGE/NOPURGE

RESERVE

SEGSIZE

START

SYMBOLS/NOSYMBOLS

SYMBOLCOLUMNS

>

>

>

>
»

>
»

>

>

>

>
»

>
»

>
»

>
»

>
»

>

>

>

>

>
»

SERIES IV LOC86 EXAMPLES

Examples

LOC86 PROG.LNK TO TEMP1.TST PRINT<cr>

SYSTEM/LOC86 WORK/INTERP.LNK<cr>

LOC86 PROG.LNK PRINT(MAP)<cr>

LOC86 PRIVAT.LNK NOPUBLICS<cr>

LOC86 TEXT.LNK NOPUBLICS PUBLICS<cr>

LOC86 PROJ5 oLNK PURGE<cr>

LOC86 80209.LNK PURGE &<cr>
PRINTCONTROLS(NOPURGE)<cr>

LOC86 LOWMEM. LNK &<cr>
RESERVE(OFOOOOH TO OFF

SYSTEM/LOC86 ASM/HUGOS.I,'H &<cr>
RESERVE(OOH TO OZOOH, &<cr>
OFFFOOH TO OFFFFFH)<cr>

LOC86 AUTO.LNK START(IGNITION)<cr>

LOC86 HALTS.LNK START(OOH, 200H)<cr>

ISYS/LOC86 GERTIE/GESTA.LNK SYMBOLS<cr>

LOC86 TEST.LNK PURGE<cr>

K-29jK-30

absolute object file formats, A-I
absolute object modules, 1-2
AD,5-3
address,

in ADDRESSES control, 5-3
in ASSIGN control, 2-4
in INITCODE control, 5-6
in RESERVE control, 5-16

ADDRESSES, 5-3
addressing,

A,4-2
absolute, 1-4,2-4
ADD,4-2
80S6, 1-5
relative, 1-4

alignment,
boundaries, 1-8
of segments, 1-7

AR,2-5
AS, 2-4
ASSIGN,2-4
available memory, effect of, C-I

BI,2-6
BIND, 2-6
BOOTSTRAP, 5-4
bound modules (see LTL modules)
BS,5-4

C,4-3
class, 80S6, 1-9
CLASSES, 5-3, 5-11
class name,

in ADDRESSES control, 5-3
in ORDER control,

LINKS6, 2-15
LOCS6,5-11

in SEGSIZE control,
LINKS6, 2-23
LOCS6,5-17

CM,2-7
COMMENTS,

in OBJECTCONTROLS,
LINKS6,2-14
LOCS6,5-1O

in PRINTCONTROLS,
LINKS6, 2-18
LOCS6,5-13

LINKS6 control, 2-7
LOC8S control, 5-5

control summary,
CREFS6, E-I
LIBS6, F-I
LINKS6, D-l
LOC86, G-l

CREATE,4-3

INDEX

CREF86,
controls,

PAGELENGTH, 3-3
PAGEWIDTH, 3-4
PRINT,3-5
TITLE, 3-6

control summary, 3-2
error messages, E-I
in development process, I-I
input, 3-1
invocation, 3-2
iRMX 86 invocation examples, J-19/J-20
output, 3-1
print file, 3-7
Series III invocation examples, 1-23/1-24
Series IV invocation examples, K-23/K-24
use of libraries, 1-3

cross-reference listing, 3-7
CS, 5-3, 5-11

D,4-3
data records, 8086, A-3
debug records,

LINK86, 2-21
LOCS6,5-15

DELETE,4-3

E,4-4
ENDREC, A-7
error messages,

CREF86, E-l
LIBS6, F-l
LINKS6, D-2
LOCS6, G-2
OHS6, H-I

examples, iRMX S6
invocation,

CREF86, J-19/ J-20
LIB86, J-21/J-22
LINKS6, J-13/J-14
LOC86, J-23/ J-24
OHS6, J-12

program development
CREFS6, J-3
LIB86, J-5
LINKS6, J-6, J-9
LOC86, J-IO

examples, Series III,
invocation,

CREFS6, 1-23/1-24
LIB86,1-25/1-26
LINKS6,1-17/1-1S
LOC86, 1-27/1-28
OH86,1-15

program development,
CREFS6,1-6
LIB86,1-7
LINKS6, 1-2, 1-5, I-S, I-II, 1-14
LOC86, 1-4, 1-5, 1-8, 1-12

Index-l

Index

Index-2

examples, Series IV
invocation,

CREF86, K-23/K-24
LIB86, K-25/K-26
LINK86, K-17/K-18
LOC86, K-27/K-28
OH86, K-15

program development,
CREF86, K-5
LIB86, K-6
LINK86, K-2, K-4, K-8, K-ll, K-12,

K-14
LOC86, K-4, K-8, K-12

EXIT, 4-4
external references,

cross-reference listing, 3-7
definition of, 1-2
resolution of, 1-3

FASTLOAD,2-8
FL,2-8

GR,5-3
group,

addressing, 1-9
8086, 1-9

group map, 2-27
group name,

in ADDRESSES control, 5-3
in LINK86 ORDER control, 2-15
in LINK86 RENAMEGROUP control, 2-22

GROUPS, 53

hexadecimal-decimal conversion, B-1
hexadecimal object file format,

conversion to, 6-1
records of,

IC,

data, A-13
end of file, A-15
extended address, A-12
start address, A-14

LINK86,2-9
LOC86,5-6

INITCODE,
LINK86,2-9
LOC86,5-6

initialization code,
LINK86,2-9
LOC86,5-6

input list control, 2-20
iRMX 86 information,

continuation-line characters, J-2
environmental conditions, J-l
examples, J-12
file-naming conventions, J-2
generation of code, J-3
invocation, J-l
memory requirements, J-l
program development examples, J-3
prompts, J-2
related publications, J-2

L,4-6
LHEADR, A-6
LI,

LINK86, 2-10
LOC86,5-7

LIB86,
commands,

ADD,4-2
CREATE,4-3
DELETE,4-4
EXIT,4-5
LIST,4-6

command summary, 4-1, F-l
error messages, F-l
in development process, 1-1
input, 4-1
invocation, 4-1

iAPX 86,88 Family Utilities

iRMX 86 invocation examples, J-21/ J-22
Series III invocation examples, 1-25/1-26
Series IV invocation examples, K-25/K-26

librarian (see LIB86)
libraries,

adding to, 4-2
creating, 4-3
deleting from, 4-4
listing contents of, 4-6
use of by CREF86, 1-3
use of by LINK86, 1-3

line number control,
LINK86,2-10
LOC86,5-7

LINES,
in OBJECTCONTROLS,

LINK86,7-14
LOC86,5-10

in PRINTCONTROLS,
LINK86,2-18
LOC86,5-13

LINK86, 2-10
LOC86,5-7

link map, 2-27
linkage (see LINK86)
LINK86,

and LOC86, 1-4
controls,

ASSIGN,2-4
ASSUMEROOT, 2-5
BIND, 2-6
COMMENTS, 2-7
FASTLOAD,2-8
INITCODE,2-9
LINES, 2-10
MAP, 2-11
MEMPOOL,2-12
NAME,2-13
NOBIND,2-6
NOCOMMENTS, 2-7
NOF ASTLOAD, 2-8
NOLINES, 2-10
NOMAP, 2-11
NOOVERLAY, 2-16
NOPRINT,2-17
NOPUBLICS, 2-19
NOPURGE,2-21

iAPX 86,88 Family Utilities

NOSYMBOLS, 2-24
NOTYPE, 2-26
OBJECTCONTROLS, 2-14
ORDER,2-15
OVERLAY, 2-16
PRINT,2-17
PRINTCONTROLS, 5-12
PUBLICS, 2-19
PUBLICSONL Y, 2-20
PURGE,2-21
RENAMEGROUPS, 2-22
SEGSIZE, 2-23
SYMBOLCOLUMNS, 2-25
SYMBOLS, 2-24
TYPE,2-26

control summary, 2-2, D-l
erorr messages, D-2
in development process, 1-1
input,I-4, 2-1, 2-20
invocation, 2-1
iRMX 86 invocation examples, J-13 I J-14
output, 1-4, 2-1
print file, 2-27
segment combination, 1-7
Series III invocation examples, 1-17 11-18
Series IV invocation examples, K-17/K-18
use of libraries, 1-3

LIST,4-6
load-time-Iocatable module (see L TL module)
location (see LOC86)
location algorithm,

for modules with overlays, 5-25
for segments, 5-24

LOC86,
and LINK86, 1-4
controls,

ADDRESSES, 5-3
BOOTSTRAP, 5-4
COMMENTS, 5-5
INITCODE, 5-6
LINES, 5-7
MAP, 5-8
NAME,5-9
NOCOMMENTS, 5-5
NOINITCODE, 5-6
NOLINES, 5-7
NOMAP, 5-8
NOPRINT,5-12
NOPUBLICS, 5-14
NOPURGE,5-15
NOSYMBOLS, 5-19
OBJECTCONTROLS, 5-10
ORDER,5-11
PRINT,5-12
PRINTCONTROLS, 5-13
PUBLICS, 5-14
PURGE,5-15
RESERVE,5-16
SEGSIZE,5-17
START,5-18
SYMBOLS, 5-19
SYMBOLCOLUMNS, 5-19

control summary, 5-2, G-l
error messages, G-2

in development process, 1-1
input, 1-4, 5-1
invocation, 2-1
iRMX 86 invocation examples, J-23 I J-24
output, 1-4, 5-1
print file, 5-21
Series III invocation examples, 1-27/1-28
Series IV invocation examples, K-27/K-28

L TL controls,
BIND,2-6
FASTLOAD,2-8
MEMPOOL, 2-12
ORDER,2-15
PRINTCONTROLS, 2-18
SEGSIZE, 2-23
SYMBOLCOLUMNS, 2-25

LTL modules, 1-2, 1-4, 1-10

MA,
LINK86, 2-11
LOC86,5-8

MAP,
LINK86, 2-11
LOC86,5-8

maxim urn -size,
in MEMPOOL control, 2-12
in SEGSIZE control, 2-23

memory,
configuration with overlays, 1-10
8086, 1-5

memory map, 5-23
memory requirements controls,

LINK86 MEMPOOL, 2-12
SEGSIZE,

LINK86, 2-23
LOC86,5-17

MEMPOOL,2-12
minimum-size,

in MEMPOOL control, 2-12
in SEGSIZE control, 2-23

MODEND,A-9
module attributes, A-2
module identification, A-2
module name,

in LINK86 NAME control, 2-13
in LOC86 NAME control, 5-9

MP,2-12

NA,
LINK86, 2-13
LOC86,5-9

NAME
LINK86, 2-13
LOC86,5-9

naming output module,
LINK86, 2-13
LOC86,5-9

NOBI,2-6
NOBIND,2-6
NOCM,2-7

Index

Index-3

Index

Index-4

NOCOMMENTS,
in OBJECTCONTROLS,

LINK86,2-14
LOC86,5-10

in PRINTCONTROLS,
LINK86,2-18
LOC86,5-13

LINK86,2-7
LOC86,5-5

NOFASTLOAD,2-8
NOFL,2-8
NOIC, 5-6
NOINITCODE,5-6
NOLI,

LINK86,2-10
LOC86,5-7

NOLINES,
in OBJECTCONTROLS,

LINK86,2-14
LOC86,5-10

in PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

LINK86, 2-10
LOC86,5-7

NOMA,
LINK86, 2-11
LOC86, 5-8

NO MAP
LINK86, 2-11
LOC86, 5-8

NOOV, 2-16
NOOVERLAY, 2-16
NOPL,

LINK86,2-19
LOC86, 5-14

NOPR,
LINK86, 2-17
LOC86, 5-12

NOPRINT,
LINK86, 2-17
LOC86,5-12

NOPU,
LINK86, 2-21
LOC86,5-15

NOPUBLICS,
in OBJECTCONTROLS,

LINK86,2-14
LOC86,5-10

in PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

LINK86, 2-19
LOC86,5-14

NOPURGE,
in OBJECTCONTROLS,

LINK86,2-14
LOC86,5-10

in PRINTCONTROLS,
LINK86,2-18
LOC86,5-13

LINK86,2-21
LOC86,5-15

NOSB,
LINK86, 2-24
LOC86,5-19

NOSYMBOLS,
in OBJECTCONTROLS,

LINK86,2-14
LOC86, 5-10

in PRINTCONTROLS,
LINK86,2-18
LOC86, 5-13

LINK86, 2-24
LOC86,5-19

NOTY, 2-26
NOTYPE,

iAPX 86,88 Family Utilities

in OBJECTCONTROLS, 2-14
in PRINTCONTROLS, 2-18
LINK86, 2-26

OBJECTCONTROLS,
LINK86,2-14
LOC86,5-1O

object module format, 1-4, A-I
OC,

LINK86,2-14
LOC86,5-1O

OD,
LINK86,2-15
LOC86,5-11

offset, 5-18
OH86,

error messages, H-l
in development process, 1-1
input, 6-1
invocation, 6-1
iRMX 86 invocation examples, J-12
output, 6-1
Series III invocation example, 1-15

ORDER,
LINK86,2-15
LOC86,5-11

OV,2-16
OVERLAY, 2-16
overlay controls,

ASSUMEROOT,2-5
OVERLAY, 2-16

overlay, 8086, 1-10
overlay name,

ADDRESSES, 5-3
LINK86 ORDER control, 2-15
LINK86 OVERLAY control, 2-16
SEGSIZE,

LINK86, 2-23
LOC86,5-17

overlays and location, 5-25
OVLDEF, A-7

P AGELENGTH, 3-3
P AGEWIDTH, 3-4
paragraph, 5-18

iAPX 86,88 Family Utilities

pathname,
in ASSUMEROOT control, 2-5
in LIB86 commands, 4-1
in PRINT control,

LINK86, 2-17
LOC86,5-12

in PUBLICSONL Y control, 2-20
PC,

LINK86,2-18
LOC86,5-13

PEDATA,A-lO
performance-memory relationship, C-l
PIC, 1-10
PIDATA, A-lO
PL,

CREF86,3-3
LINK86, 2-19
LOC86,5-14

PO, 2-20
position-independent code (see PIC)
PR,

CREF86, 3-5
LINK86, 2-17
LOC86,5-i2

PRINT,
CREF86,3-5
LINK86, 2-17
LOC86,5-12

PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

print file,
controls,

CREF86,3-2
LINK86,2-18
LOC86,5-13

CREF86,
cross-reference information, 3-8
header, 3-7
module list, 3-8
warnings, 3-7

LINK86,
e!.Jr messages, 2-30
group map, 2-28
header, 2-27
link map, 2-11, 2-27
symbol table. 2-29

LOC86,
errors and warni.lgs, 5-24
memory map, 5-23
symbol table, 5-21

print file name,
LINK£6, 2-17
LOC86,5-12

program development, 1-1
PU,

LINK86,2-21
LOC86,5-15

PUBLICS,
in LIB86 LIST control, 4-6
in OBJECTCONTROLS,

LINK86,2-14
LOC86,5-1O

in PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

LINK86,2-19
LOC86,5-14

PUBLICSONL Y, 2-20
public symbol, 1-2, 5-18
public symbol cross-references, 3-7
public symbol records,

in libraries, 4-6
LINK86,

PUBLICS/NOPUBLICS, 2-19
PUBLICSONL Y , 2-20

LOC86,5-14
PURGE,

in OBJECTCONTROLS,
LINK86, 2-14
LOC86,5-1O

in PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

LINK86,2-21
LOC86,5-15

PW,3-4

record formats,
end, A-7
L-module header, A-6
module end, A-9
overlay definition, A-7
physical enumerated data, A-lO
physical iterated data, A-I0
register initialization, A-8
R-module header, A-6
sample, A-4
T-module header, A-5

record syntax, A-3
REGINT, A-8
register initialization, 2-9, 5-6, A-8
relocatable object module, 1-2
relocation (see LOC86)
RENAMEGROUPS, 2-22
RESERVE,5-16
RG,2-22
RHEADR, A-6
RS,5-16

SAMREC, A-4
SB,

LINK86, 2-24
LOC86,5-19

SC,
LINK86, 2-25
LOC86,5-20

segment,
alignment, 1-7, 2-28
combining, 1-8

Index

Index-5

Index

Index-6

8086, 1-6, A-2
locating, 1-8, 5-24
memory, 1-8, 2-23, 5-17
ordering,

LINK86,2-15
LOC86, 5-11, 5-24

stack, 1-8
segment addressability, A-2
segment location algorithm,

absolute segments, 5-24
relocatable segments, 5-25
segment ordering, 5-24

segment map, 2-29
segment name,

in ADDRESS control, 5-3
in ORDER control,

LINK86, 2-15
LOC86,5-11

in SEGSIZE control,
LINK86, 2-23
LOC86,5-17

SEGMENTS, 5-3
SEGSIZE,

LINK86, 2-23
LOC86,5-17

Series III information,
continuation-line characters, 1-1
environmental considerations, 1-1
ISIS-II conventions, 1-1
program development examples, 1-2
prompts, 1-1
related publications, 1-2
software version compatibilities, 1-1

Series IV information,
continuation-line characters, K-l
environmental considerations, K-l
iNDX conventions, K-l
pathnames, K-l
program development examples, K-2
prompts, K-l
related publications, K-2
software version compatibilities, K-2

size, 5-17
SM, 5-3, 5-11
SS,

LINK86, 2-23
LOC86,5-17

ST,5-18
START,5-18
start address, 5-4, 5-18
SYMBOLCOLUMNS,

LINK86, 2-25
LOC86,5-20

SYMBOLS,
in OBJECTCONTROLS,

LINK6,2-14
LOC86,5-10

in PRINTCONTROLS,
LINK86, 2-18
LOC86,5-13

LINK86, 2-24
LOC86,5-19

symbol table,
LINK86, 2-25,2-29
LOC86, 5-20, 5-21

THEADR, A-5
TITLE,3-6
TT,3-6
TY,2-26
TYPE,

iAPX 86,88 Family Utilities

in OBJECTCONTROLS. 2-14
in PRINTCONTROLS, 2-18
LINK86 control, 2-26

type checking, 2-26

variable name, 2-4

iAPX 86,88 Family Utilities User's Guide
121616-004

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____________ _

NAME __ _ DATE _________ _
TITLE __ _

COMPANY NAME/DEPARTMENT ____________________________ _
ADDRESS ___ _
CITY ______________________ _ STATE _____________ _ ZIP CODE ____ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ..•

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28
	I-29
	I-30
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	J-21
	J-22
	J-23
	J-24
	J-25
	J-26
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	K-17
	K-18
	K-19
	K-20
	K-21
	K-22
	K-23
	K-24
	K-25
	K-26
	K-27
	K-28
	K-29
	K-30
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB
	xBack

