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PREFACE

This reference manual is intended as the primary source of information on the hardware within the INTEL-
LEC® MDS Microcomputer Development System. We have tried to explain, in an easy to follow format,
how each of the modules within the system works, as well as provide detailed information on how to utilize
each module, to its fullest extent, in the MDS System or in an independent OEM application. The reader is
also referred to the “INTELLEC® MDS OPERATOR’S MANUAL” for complete instructions on how to
operate the INTELLEC® MDS System.
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Chapter 1
INTRODUCTION

The INTELLEC MDS is a complete microcomputer
design center that provides total support through
your entire product design cycle, from the earliest
program development to the final in-circuit hard-
ware testing and debugging of your product. More-
over, the INTELLEC MDS is a modular system,
which you can custom-tailor to your own require-
ments. You can choose from a complete spectrum
of standard modules and options.

The basic INTELLEC MDS is a complete, coordi-
nated computer system, designed around Intel’s
popular 8080 Microprocessor. With the 8080, you
have a 2-us instruction cycle, a repertoire of 72
powerful instructions, uniimited subroutine nesting,
and a versatile interrupt scheme. The 8080 supports
up to 65,536 (64K) words of memory and up to
512 1I/O devices (256 input and 256 output). But,
the INTELLEC MDS System is much more than
just an 8080 Microprocessor. The basic hardware
configuration includes 16,384 (16K) bytes of
Random-Access-Memory (RAM), and six fully-
implemented I/O interfaces to:

e a Teletype (inciuding its paper tape reader),
e 3 CRT terminal (or other compatible device),
e 3 high-speed paper tape reader,

e a high-speed paper tape punch,

e aline printer, and

e Intel’s Universal PROM Programmer.

The basic system also provides an easy-to-use front
panel, an 18-card chassis with etched motherboard
for module interconnection, two power supplies,
and a host of hardware features that includes:

e the Intel bus, which supports multi-processor
configurations (8 or 16-bit), and which allows
for “master-slave” relationships between mod-
ules such as those used in high-speed Direct—
Memory-Access (DMA) transfers.
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e an 8-level, nested interrupt priority resolution
network, and

e 3 real-time clock with associated status bit and
interrupt request line.

The basic INTELLEC MDS software package is as
comprehensive as the list of hardware features.
Standard INTELLEC MDS software includes a Sys-
tem Monitor/Debugger (firmware implemented and
easily initiated by pressing a few switches on the
front panel), a Macro Assembler for generating
object code from symbolic macro and assembly
language instructions, and a powerful Text Editor
for efficient program alterations. All of these soft-
ware modules execute in the INTELLEC MDS
System. ‘

The addition of INTELLEC MDS options can sig-
nificantly expand the system’s capabilities. You can
add on additional RAM memory up to 64K words
(in 16K increments). The read/write capability of
RAM memory allows you to write, debug, and
optimize your application routines without ever
having to wait, or spend the money, for changes in
metal-masked Read-Only-Memory (ROM). Or, you
can add erasable, electrically Programmable Read-
Only-Memory (PROM) to the system in 6K-byte
increments. PROMs are ideal for storing debugged
system software; less expensive than RAM but re-
programmable, unlike ROM. If you desire expanded
I/O capabilities, you can acquire Intel’s Input/
Output Modules. Each 1/O Module provides four
input ports and four output ports. If your system
requires high-speed direct-memory-access capabili-
ties, Intel offers DMA Modules designed especially
for use with the powerful Intel Bus (5-MHz maxi-
mum transfer rate). Each DMA Module provides
five I/O ports, as well as complete bus interface
logic.



You can continue to expand your system capabili- verification in your system’ real-time envi-
ties with: ronment;

® a complete diskette system, including Intel’s

. . 1 )
e an In-Circuit Emulator (ICE), which allows Diskette Operating System Software (ISIS);

you to plug the INTELLEC MDS (with all its and

capabilities) into your product, in place of ® a Universal PROM Programmer to program
its microprocessor, to perform final product all of Intel’s programmable-read-only-memory
debugging, production testing, and product devices.

1-2



Chapter 2
SYSTEM OVERVIEW

The INTELLEC MDS is a complete, modular micro-
computer development system. In this chapter, we
identify each of the INTELLEC MDS modules and
discuss, in general, how the different modules inter-
act to provide a coordinated computer system.

The standard INTELLEC MDS System consists of
four modules:

Central Processor (CPU) Module
Front Panel Control Module
Monitor Module,

RAM Module (16K)

In addition, seven other modules that also plug
-directly into the INTELLEC MDS chassis are
availabie as options:

e PROM Module
Direct Memory Access (DMA) Module
Input/Output (I/0) Module

ICE-80 (In-Circuit Emulator for Intel 8080-
based appiications)

ICE-30 (In-Circuit Emulator for Intel Series
3000-based applications)

ROM Simulator
e Diskette Controller

Figure 2-1 illustrates the various modules within
the INTELLEC MDS System. The ICE-80, ICE-30,
ROM Simulator and Diskette Controller options,
however, are not described in this manual. (Refer
to the appropriate reference manual for each of
these options.)

CENTRAL PROCESSOR (CPU) MODULE

The basic capabilities of the CPU Module are ob-
tained through the use of Intel’s 8080 Microproces-
sor. This processor contains an 8-bit accumulator,
six 8-bit general purpose registers, and an 8-bit
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parallel Arithmetic and Logic Unit (ALU). Sixteen
latched address lines enable the 8080 to address
65,536 bytes of external memory. As many as 256
8-bit input ports and 256 8-bit output ports may
also be addressed directly. A 16-bit program counter
and a 16-bit stack pointer permit flexible handling
of subroutines and multi-level interrupts. The 8080’s
internal control logic recognizes and executes 72
different instructions. These are encoded numeri-
cally in a binary format consisting of one, two, or
three 8-bit bytes. Five internal status flags enable
conditional jumps, calls and returns, based on carry
(overflow-underflow), sign, zero, parity, and auxil-
iary carry.

While the 8080 Microprocessor provides the module
with an impressive set of basic processing capabili-
ties, the module’s overall performance potenti
further enhanced by the remaining logic on the
board. A crystal-controlled oscillator and clock
generator provide a stable timing reference for all
circuitry on the board. Bus control logic on the
module resolves exchanges of bus control between
the CPU module and other modules capable of
acquiring control of the bus. The ability to resolve
such exchanges makes the CPU module an ideal
component in systems requiring a high-speed Direct
Memory Access (DMA) capability or for systems
employing a multi-processor configuration. Memory
and I/O interface logic is also provided on the CPU
module. The module drives a three-state, 16-line
address bus, which communicates with external
memory and I/O device decoding logic. A bidirec-
tional, 8-line data bus provides the pathway for the
actual data transfers. Logic on the CPU module
monitors the status signals from the 8080 processor,
and generates the appropriate transfer commands:
MRDC (memory read), MWTC (memory write),
IORC (I/O read), and IOWC (I/O write).

11
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An 8-level, nested interrupt priority scheme rounds
out the CPU module’s capabilities. The interrupt
logic resolves simultaneous interrupt requests on a
priority basis and passes the appropriate vector to
the processor, causing it to interrupt program
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execution and branch to one of eight dedicated
memory locations.

FRONT PANEL CONTROL MODULE

The Front Panel Control Module, as its name im-
plies, controls the front panel in the INTELLEC
MDS System. The module drives the INTERRUPT,
RUN and HALT indicators, and responds to the
INTERRUPT, BOOT und RESET switches. The
256-byte bootstrap program is actually stored in a
PROM on the board. The module’s capabilities are
not, however, restricted to controlling the front
panel. The module provides the system with the
following additional features:

e Eight-level parallel bus priority network that
resolves all requests for control of the bus, on
the basis of relative priority.

Real-time clock that sets a status bit and gen-
erates an interrupt request at l-ms intervals;
the interrupt request, however, can be disabled
under program control.

e Failsafe scheme that can be used to prevent
the system from stopping because a non-
existent memory location or I/O port was
addressed. After waiting 10 ms, the failsafe
logic generates the necessary acknowledge
signal, asserts an interrupt request, and lights
an indicator on the module. This feature can
be very useful during program development
and debugging. The acknowledge and interrupt
portions can be easily disabled by disconnect-
ing two solderless jumper pads if the features
are not required.

MONITOR MODULE

The Monitor Module provides the INTELLEC MDS
System with firmware storage for the Monitor pro-
gram (2K words), and I/O interfaces to the follow-
ing peripheral devices:

o Teletype (TTY) including paper tape reader,

e Cathode Ray Tube (CRT) terminal or other
compatible device (TTL or RS232 interfaces
are jumper-selectable),

e high-speed paper tape reader and punch,

e line printer, and
o PROM Programmer.

RAM MODULE

The RAM Module provides the INTELLEC MDS
System with 16,384 (16K) X 8-bit words of dy-
namic random access memory (read/write). Up to
four RAM Modules can be used in the INTELLEC
MDS System, providing the system with 65,536
words of read/write memory. The RAM Module
can complete a read cycle in 735 ns (worst case),
and a write cycle in 1.36 us (worst case). In addi-
tion, all of the logic required to refresh the dynamic
RAM celements (at 12-us intervals) is included on
the module.

PROM MODULE

The PROM Module provides up to 6,144 (6K) X 8-
bit words of PROM storage for the INTELLEC
MDS System. Up to twenty-four 8702A erasable
and electrically Programmable-Read-Only-Memory
(PROM) devices can be included on the module.
Each 8702A PROM provides 256 X 8 bits of stor-
age. In addition, Intel’s 1702 PROMs or 1302
ROMs (both are pin-compatible with the 8702A)
can be used with the PROM Module. Up to 12K of
PROM (or ROM) memory can be implemented in
the system (i.e., two PROM Modules).

DIRECT MEMORY ACCESS (DMA) MODULE

The DMA Module provides a direct memory access
capability for the high-speed transfer of data. Once
a DMA operation is initiated by the Central Proces-
sor Unit (CPU), the DMA Module controls the
actual transfer of up to 65,536 words of data
between memory and an external device without
any further intervention of the CPU required. The
DMA Module can “steal” cycles by requesting con-
trol of the system bus for each word transferred.
In addition, the CPU can, prior to the beginning of
a transfer operation, invoke an override capability
for the DMA Module. In this case, the DMA Module
retains control of the bus until the entire block of
data is transferred. After the entire transfer is com-
pleted, the CPU would, in response to a DMA



interrupt, reset the override capability. This mode
of operation allows for “burst” mode transfers
to/from very high-speed peripherals.

The DMA Module includes provisions that allow it
to be interrupt-driven. In fact, the DMA interrupt
request can be asserted on any one of eight inter-
rupt priority levels. A DMA interrupt request can
originate in the external device (with or without a
delay), in the DMA Module itself (upon comple-
tion of a transfer operation), or can be generated
by the program being executed in the CPU. The
CPU program can also enable/disable interrupts or
reset an existing interrupt request.

In addition to providing a high-speed data path be-
tween memory and peripheral devices, the DMA
module includes five I/O ports that allow the CPU
to directly address and access five devices (or
groups of devices). The fifth port is associated with
a 4-bit tag register. When this fifth I/O port is
addressed, the contents of the tag register can be
used to “‘steer” the input or output strobe to one
of 16 additional devices, thus expanding the I/O
capability of the DMA Module.

INPUT/OUTPUT (1/0) MODULE

The I/O Module includes four input and four out-
put ports. Each output port latches 8-bit data
words and issues a framed strobe pulse, of select-
able duration, to the device. All outputs are driven
by TTL-level buffer drivers. Each input port also
supports 8 bits of data, latched or unlatched.
All inputs are terminated by dual-in-line, socket-
mounted resistor packs.
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The I/O Module includes provisions for accepting
eight external interrupt requests, buffering them
and driving them on eight interrupt priority level
lines. In addition, each of the eight I/O ports in-
cludes an interrupt request line that is activated by
a strobe pulse from the device that is automatically
cleared after the port is serviced. These port inter-
rupt requests can be asserted on the system inter-
rupt status register on another module.

FRONT PANEL, CABINET, MOTHERBOARD,
AND POWER SUPPLIES

The INTELLEC MDS System is delivered ready-to-
use, housed in a cabinet capable of holding eighteen
12-in. X 6.75-in. PCBs, with an etched mother-
board that connects all of the system modules, and
two power supplies that provide the necessary DC
levels for system operation. The INTELLEC MDS
front panel is simple but highly functional, allow-
ing the operator to load a bootstrap program, reset
the entire system, or manually initiate an interrupt
request on any one of eight interrupt levels. Various
indicator lights inform the operator of the current
status of the system.

NOTE: All signals that appear on the INTELLEC MDS
System bus are active-low. Within a module, how-
ever, both active-high and active-low signals appear.
The following notation should eliminate any con-
fusion when reading subsequent chapters: When-
ever a signal is active-low, its mnemonic is followed
by a slash; for example, MRDC/ means that the
level on that line will be low when the memory
read command is true (active). If the signal is sub-
sequently inverted, thus making it active-high, the
slash is omitted; for example, MRDC means that
the level on that line will be high when the memory
command is true.



Chapter 3
CENTRAL PROCESSOR MODULE

The Central Processor Module has been designed
specifically to serve as the Central Processing Unit
(CPU) of the INTELLEC MDS Microcomputer De-
velopment System. However, its general purpose
architecture and varied capabilities permit the CPU
module to serve as the primary building block for
any 8-bit computer system. Thus, the CPU module,
like the other INTELLEC modules, is available in-
dependently on the OEM basis. All inputs and out-
puts are TTL-compatible, to simplify the external
interface.

The basic capabilities of the module are obtained
through the use of Intel’s 8080 Microprocessor.
This processor contains an 8-bit accumulator, six
8-bit general purpose registers, and an 8-bit parallel
Arithmetic and Logic Unit (ALU). Sixteen latched
address lines enable the 8080 to address 65,536
bytes of external memory. As many as 256 8-bit
input ports and 256 8-bit output ports may also be
addressed directly. A 16-bit program counter and a
16-bit stack pointer permit flexible handling of
subroutines and multi-level interrupts.

The 8080’s internal control logic recognizes and
executes 72 different instructions. These are en-
coded numerically in a binary format consisting of
one, two, or three 8-bit bytes. Instruction catego-
ries include:

(a) register-register transfers

(b) register-memory transfers

(c) arithmetic operations, including add and
subtract, with and without carry or borrow

(d) Boolean logic operations, including AND,
OR, XOR

(e) decimal arithmetic

(f) input/output (I/O)

(g) stack control

(h) interrupt control

(1) register operate

(j) branch control
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Five internal status flags enable conditional jumps,
calls and returns, based on carry (overflow-under-
flow), sign, zero, parity, and auxiliary carry.

While the 8080 Microprocessor provides the mod-
ule with an impressive set of basic processing capa-
bilities, the module’s overall performance potential
is even further enhanced by the remaining logic on
the board. A crystal-controlled oscillator and clock
generator provide a stable timing reference for all
circuitry on the board. The use of a 2-MHz clock
permits a basic machine cycle of 2-us for those in-
structions that do not reference memory during
their execution.

Bus control logic on the module resolves exchanges
of bus control between the CPU module and other
modules capable of acquiring control of the bus.
The ability to resolve such exchanges makes the
CPU module an ideal component in systems requir-
ing a high-speed Direct Memory Access' (DMA)
capability or for systems employing a multi-proces-
sor configuration. The resolution of bus exchanges
is referred to a bus clock signal which is derived in-
dependently from the processor clock, thus allow-
ing processors (or other “bus master” devices) of
different speeds to share resources on the same bus.
The bus has been designed to permit single or mul-
tiple read/write transfers at a maximum rate of 5
MHz. Such transfers, however, proceed asynchro-
nously with respect to the bus clock; transfer speed
is only dependent on the transmitting and receiving
devices.

Memory and I/O interface logic is also provided on
the CPU module. The module drives a three-state,
16-line address bus, which communicates with ex-
ternal memory and I/O device decoding logic. A bi-
directional, 8-line data bus provides the pathway for
the actual data transfers. Logic on the CPU module
monitors the status signals from the 8080 proces-
sor, and generates the appropriate transfer com-
mands: MRDC/ (memory read), MWTC/ (memory
write), IORC/ (I/O read), and IOWC/ (I/O write).

VL

The CPU module can access up to 65,536 bytes of



memory and up to 256 input and 256 output de-
vices (8-bit I/O addresses are duplicated on address
lines 0—7 and 8-15).

An 8-level, nested interrupt priority scheme rounds
out the module’s capabilities. The interrupt logic
resolves simultaneous interrupt requests on a prior-
ity basis and passed the appropriate vector to the
processor, causing it to interrupt program execu-
tion and branch to one of eight dedicated memory
locations. The interrupt vector is also saved in a
nested priority table. If a request is subsequently
received on a higher priority level, the vector for
the new level is pushed onto the nested priority
table and passed to the processor, causing it to in-
terrupt the current service routine in order to ser-
vice the higher priority request. After an interrupt
service routine for a particular level is completed,
the program pops the level’s vector off the priority
table, thus allowing the processor to resume execu-
tion of the service routine for the next lower level
interrupt listed in the table. All interrupt levels can
be disabled as a group, or individually, under pro-
gram control.

An initialization (INIT/) input to the CPU module
allows all module circuitry (except the interrupt
control logic) to be reset by an external device,
such as a console panel.

NOTE: Future revisions of the CPU module will utilize a
programmable interrupt control device. In antici-
pation of this future upgrade, we recommend that
you use a programmed initialization sequence to
reset the interrupt logic (in addition to INIT/), as
described in Section 3.4.6. This will prevent the
need to modify your existing software when the
future upgrade is implemented.

As a stand-alone product, the Central Processor
Module is almost entirely self-contained. It requires
only DC power, at levels of +5, +12 and —10 VDC.

All circuitry is mounted on a 12-in. X 6.75-in.
printed circuit board. Power and most signal con-
nections enter the module through an 86-pin,
double-sided PC edge connector (0.156-in. cen-
ters). An auxiliary 60-pin, double-sided PC edge
connector (0.1-in. centers) is also present for use at
the designer’s discretion.

In the following sections we describe the Central
Processor Module in detail. The material has been
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organized such that with each succeeding section,
the reader is exposed to information of a more de-
tailed nature. It is hoped that this gradual approach
to the material will allow the user to acquire a
comprehensive understanding of the module in a
single reading.

The first section introduces certain basic computer
concepts which will be useful in later portions of
this chapter. The next section describes the module
in functional terms with the emphasis on how the
various functional blocks interact to provide a flex-
ible, but coordinated central processing unit. The
third section defines the internal operation of the
8080 Microprocessor in detail. A sound under-
standing of the 8080 is a necessary prerequisite to
examining the operations of the remaining support
logic. The fourth section presents the theory of
operation for all of the support logic on the board.
The fifth section provides information on how to
utilize the module outside of the INTELLEC MDS
System. The final section lists AC and DC charac-
teristics for signals and power inputs on the
module.

3.1 THE FUNCTIONS OF A COMPUTER

This section introduces certain basic computer con-
cepts. It provides background information and def-
initions which will be useful in later sections.
THOSE ALREADY FAMILIAR WITH COM-
PUTERS MAY SKIP THIS MATERIAL, AT
THEIR OPTION.

3.1.1 A TYPICAL COMPUTER SYSTEM
Though the Central Processor Module is an indi-
vidual module that can perform all of the process-
ing functions within a computer system such as the
INTELLEC MDS, it cannot, by itself, produce a
useful end result; the processor module must con-
tinually interact with other system components
that provide such capabilities as memory storage
and input/output. As a result, the discussion of any
individual module must constantly refer to the
activities of other modules in the same system. It is
therefore very important to know something about
the basic functions that must be performed in any
computer system before discussing the processor
module in detail.



A typical digital computer consists of:

(a) A Central Processor Unit (CPU)
(b) Memory
(¢) Input/Output (I/0) ports.

The memory serves as a place to store instructions,
the coded pieces of information that direct the
activities of the CPU, and data, the coded pieces of
information that are processed by the CPU. A
group of logically related instructions stored in
memeory is referred to as a program. The CPU
“reads” each instruction from memory in a logi-
cally determined sequence, and uses it to initiate
processing actions. If the program sequence is co-
herent and logical, processing produces intelligible
and useful results.

The memory is also used to store the data to be
manipulated, as well as the instructions that direct
that manipulation. The program must be organized
such that the CPU does not read a non-instruction
word when it expects to see an instruction. The
CPU can rapidly access any data stored in memory,
but often the memory is not large enough to store
the entire data bank required for a particular appli-
cation. The problem can be resolved by providing
the computer with one or more input ports. The
CPU can address these ports and input the data
contained there. The addition of input ports
enables the computer to receive information from
external equipment (such as a paper tape reader or
a floppy disk) at high rates of speed and in large
volumes.

A computer also requires one or more output ports
that permit the CPU to communicate the result of
its processing to the outside world. The output
may go to adisplay, for use by a human operator,
to a peripheral device that produces “hard-copy”,
such as a line-printer, to a peripheral storage de-
vice, such as a floppy disk unit, or the output may
constitute process control signals that direct the
operations of another system, such as an auto-
mated assembly line. Like input ports, output
ports are addressable. The input and output ports
together permit the processor to communicate
with the outside world.

The CPU unifies the system. It controls the func-
tions performed by the other components. The
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CPU must be able to fetch instructions from mem-
ory, decode their binary contents and execute
them. It must also be able to reference memory
and I/O ports as necessary in the execution of in-
structions. In addition, the CPU should be able to
recognize and respond to certain external control
signals, such as INTERRUPT and WAIT requests.
The functional units within a CPU that enable it to
perform these functions are described below.

3.1.2 THE ARCHITECTURE OF A CPU

A typical Central Processor Unit (CPU) consists of
the following interconnected functional units:

® Registers
e Arithmetic/Logic Unit (ALU)

e Control Circuitry

Registers are temperary storage units within the
CPU. Some registers, such as the program counter
and instruction register, have dedicated uses. Other
registers, such as the accumulator, are for more
general purpose use.

Accumulator

The accumulator usually stores one of the operands
to be manipulated by the ALU. A typical instruc-
tion might direct the ALU to add the contents of
some other register to the contents of the accumu-
lator and store the result in the accumulator itself.
In general, the accumulator is both a source (oper-
and) and destination (result) register.

Often, a CPU will include a number of additional
general purpose registers that can be used to store
operands or intermediate data. The availability of
general purpose registers eliminates the need to
“shuffle” intermediate results back and forth be-
tween memory and the accumulator, thus improv-
ing processing speed and efficiency.

Program Counter (Jumps, Subroutines and the
Stack)

The instructions that make up a program are stored
in the system’s memory. The central processor ref-
erences the contents of memory, in order to deter-
mine what action is appropriate. This means that



to maintain the logical order of the program, the
processor must know which location contains the
next instruction.

Each of the locations in memory is numbered, to
distinguish it from all other locations in memory.
The number which identifies a memory location is
called its address.

The processor maintains a counter which contains
the address of the next program instruction. This
register is called the program counter. The proces-
sor updates the program counter by adding “1” to
the counter each time it fetches an instruction, so
that the program counter is always current.

The programmer therefore stores his instructions in
numerically adjacent addresses, so that the lower
addresses contain the first instructions to be exe-
cuted and the higher addresses contain later in-
structions. The only time the programmer may
violate this sequential rule is when an instruction in
one section of memory is a jump instruction to
another section of memory.

A jump instruction contains the address of the in-
struction which is to follow it. The next instruc-
tion may be stored in any memory location, as
long as the programmed jump specifies the correct
address. During the execution of a jump instruc-
tion, the processor replaces the contents of its pro-
gram counter with the address embodied in the
jump. Thus, the logical continuity of the program
is maintained.

A special kind of program jump occurs when the
stored program “calls” a subroutine. In this kind of
jump, the processor is required to “remember” the
contents of the program counter at the time that
the jump occurs. This enables the processor to
resume execution of the main program when it is
finished with the last instruction of the subroutine.

A subroutine is a program within a program. Usu-
ally it is a general-purpose set of instructions that
must be executed repeatedly in the course of a
main program. Routines which calculate the square,
the sine, or the logarithm of a program variable are
good examples of the functions often written as
subroutines. Other examples might be programs
designed for inputting or outputting data to a par-
ticular peripheral device.

The processor has a special way of handling sub-
routines, in order to insure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and
stores the counter’s contents in a reserved memory
area known as the stack. The stack thus saves the
address of the instruction to be executed after the
subroutine is completed. Then the processor loads
the address specified in the call in its program
counter. The next instruction fetched will there-
fore be the first step of the subroutine.

The last instruction in any subroutine is a refurn.
Such an instruction need specify no address. When
the processor fetches a return instruction, it simply
replaces the current contents of the program
counter with the address on the top of the stack.
This causes the processor to resume execution of
the calling program at the point immediately
following the original call.

Subroutines are often nested; that is, one subrou-
tine will sometimes call a second subroutine. The
second may call a third, and so on. This is perfectly
accceptable, as long as the processor has enough
capacity to store the necessary return addresses,
and the logical provision for doing so. In other
words, the maximum depth of nesting is deter-
mined by the depth of the stack itself. If the stack
has space for storing three return addresses, then
three levels of subroutines may be accommodated.

Processors have different ways of maintaining
stacks. Some have facilities for the storage of re-
turn addresses built into the processor itself. Other
processors use a reserved area of external memory
as the stack and simply maintain a pointer register
which contains the address of the most recent
stack entry. The external stack allows virtually un-
limited subroutine nesting.

In addition, if the processor provides instructions
that cause the contents of the accumulator and
other general purpose registers to be “pushed”
onto the stack or “popped” off the stack via the
address stored in the stack pointer, multi-level in-
terrupt processing (described later in this chapter)
is possible. The status of the processor (i.e., the
contents of all the registers) can be saved in the
stack when an interrupt is accepted and then re-
stored after the interrupt has been serviced. This
ability to save the processor’s status at any given



time is possible even if an interrupt service routine,
itself, is interrupted.

Instruction Register and Decoder

Every computer has a word length that is charac-
teristic of that machine. A computer’s word length
is usually determined by the size of its internal
storage elements and interconnecting paths (re-
ferred to as busses); for example, a computer
whose registers and busses can store and transfer
8 bits of information has a characteristic word
length of 8 bits and is referred to asan 8-bit parallel
processor. An 8-bit parallel processor generally
finds it most efficient to deal with 8-bit binary
fields, and the memory associated with such a
processor is therefore organized to store 8 bits in
each addressable memory location. Data and in-
structions are stored in memory as 8-bit binary
numbers, or as numbers that are integral multiples
of 8 bits: 16 bits, 24 bits, and so on.

This characteristic 8-bit field is often referred to as
abyte.

Each operation that the processor can perform is
identified by a unique byte of data known as an
instruction code or operation code. An 8-bit word
used as an instruction code can distinguish among
956 alternative actions, more than adequate for
most processors.

The processor fetches an instruction in two distinct
operations. In the first, it transmits the address in
its program counter to the memory. In the second,
the memory returns the addressed byte to the
processor. The CPU stores this instruction byte in a
register known as the instruction register, and uses
it to direct activities during the remainder of the
instruction execution.

The mechanism by which the processor translates
an instruction code into specific processing actions
requires more elaboration than we can here afford.
The concept, however, should be intuitively clear
to any logic designer. The 8 bits stored in the in-
struction register can be decoded and used to selec-
tively activate one of a number of output lines, in
this case up to 256 lines. Each line represents a set
of activities associated with execution of a particu-
lar instruction code. The enabled line can be com-
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bined coincidentally with selected timing pulses, to
develop electrical signals that can then be used to
initiate specific actions. This translation of code
into action is performed by the instruction decoder
and by the associated control circuitry.

An 8-bit instruction code is often sufficient to
specify a particular processing action. There are
times, however, when execution of the instruction
requires more information than 8 bits can convey.

One example of this is when the instruction refer-
ences a memory location. The basic instruction
code identifies the operation to be performed, but
cannot specify the object address as well. In a case
like this, a 2 or 3-byte instruction must be used.
Successive instruction bytes are stored in sequen-
tially adjacent memory locations, and the proces-
sor performs two or three fetches in succession to
obtain the full instruction. The first byte retrieved
from memory is placed in the processor’s instruc-
tion register, and subsequent bytes are placed in
temporary storage,- as appropriate; the processor
then proceeds with the execution phase.

Address Register(s)

A CPU may use a register or register-pair to hold
the address of a memory location that is to be
accessed for data. If the address register is pro-
grammable (i.e., if there are instructions that allow
the programmer to alter the contents of the regis-
ter), the program can “build” an address in the
address register prior to executing a memory refer-
ence instruction (i.e., an instruction that reads data
from memory, writes data to memory or operates
on data stored in memory).

Arithmetic/Logic Unit (ALU)

All processors contain an arithmetic/logic unit,
which is often referred to simply as the ALU. The
ALU, as its name implies, is that portion of the
CPU hardware which performs the arithmetic and
logical operations on the binary data.

The ALU must contain an adder which is capable
of combining the contents of two registers in ac-
cordance with the logic of binary arithmetic. This

metic manipulations on the data it obtains from
memory and from its other inputs.




Using only the basic adder, a capable programmer
can write routines which will subtract, multiply,
and divide, giving the machine complete arithmetic
capabilities. In practice, however, most ALUs pro-
vide other built-in functions, including hardware
subtraction, boolean logic operations, and shift
capabilities.

The ALU contains flag bits which specify certain
conditions that arise in the course of arithmetic
and logical manipulations. Flags typically include
carry, zero, sign, and parity. It is possible to pro-
gram jumps which are conditionally dependent on
the status of one or more flags. Thus, for example,
the program may be designed to jump to a special
routine, if the carry bit is set following an addition
instruction.

Control Circuitry

The control circuitry is the primary functional unit
within a CPU. Using clock inputs, the control cir-
cuitry maintains the proper sequence of events re-
quired for any processing task. After an instruction
is fetched and decoded, the control circuitry issues
the appropriate signals (to units both internal and
external to the CPU) for initating the proper pro-
cessing action. Often the control circuitry will be
capable of responding to external signals, such as
an interrupt or wait request. An interrupt request
will cause the control circuitry to temporarily
interrupt main program execution, jump to a spe-
cial routine to service the interrupting device, then
automatically return to the main program. A wait
request is often issued by a memory or I/O element
that operates slower than the CPU. The control
circuitry will idle the CPU until the memory or I/O
port is ready with the data.

3.1.3 COMPUTER OPERATIONS

There are certain operations that are basic to
almost any computer. A sound understanding of
these basic operations is a necessary prerequisite to
examining the specific operations of a particular
computer.

Timing

The activities of the central processor are cyclical.
The processor fetches an instruction, performs the
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operations required, fetches the next instruction,
and so on. An orderly sequence of events like this
requires timing, and the CPU therefore requires a
free-running oscillator clock which furnishes the
reference for all processor actions. The combined
fetch and execution of a single instruction is re-
ferred to as an instruction cycle. The portion of a
cycle identified with a clearly defined activity is
called a state. And the interval between pulses of
the timing oscillator is referred to as a clock per-
iod. As a general rule, one or more clock periods
are necessary to the completion of a state, and
there are several states in a cycle.

Instruction Fetch

The first state(s) of any instruction cycle will be
dedicated to fetching the next instruction. The
CPU issues a read signal and the contents of the
program counter are sent to memory, which re-
sponds by returning the next instruction word. The
first byte of the instruction is placed in the instruc-
tion register. If the instruction consists of more
than one byte, additional states are required to
fetch one byte of the instruction. When the entire
instruction is present in the CPU, the program
counter is incremented (in preparation for the next
instruction fetch) and the instruction is decoded.
The operation specified in the instruction will be
executed in the remaining states of the instruction
cycle. The instruction may call for a memory read
or write, an input or output and/or an internal
CPU operation, such as a register-to-register trans-
fer or an add-registers operation.

Memory Read

An instruction fetch is merely a special memory
read operation that brings the instruction to the
CPUs instruction register. The instruction fetched
may then call for data to be read from memory
into the CPU. The CPU again issues a read signal
and sends the proper memory address; memory re-
sponds by returning the requested word. The data
received is placed in the accumulator or one of the
other general purpose registers (not the instruction
register).

Memory Write

A memory write operation is similar to a read ex-
cept for the direction of data flow. The CPU issues



a write signal, sends the proper memory address,
then sends the data word to be written into the
addressed memory location.

Wait (Memory Synchronization)

As previously stated, the activities of the processor
are timed by a master clock oscillator. The clock
period determines the timing of all processing
activity.

The speed of the processing cycle, however, is
limited by the memory’s access time. Once the
processor has sent a read address to memory, it
cannot proceed until the memory has had time to
respond. Many memories are capable of responding
much faster than the processing cycle requires. A
few, however, cannot supply the addressed byte
within the minimum time established by the
processor’s clock. »

Therefore, a processor should contain a synchroni-
zation provision, which permits the memory to re-
quest a wait state. When the memory receives a
read or write enable signal, it places a request signal
on the processor’s READY line, causing the CPU
to idle temporarily. After the memory has had
time to respond, it frees the processor’s READY
line, and the instruction cycle proceeds.

Input/Output

Input and Output operations are similar to mem-
ory read and write operations with the exception
that a peripheral I/O device is addressed instead of
a memory location. The CPU issues the appropriate
input or output control signal, sends the proper
address and either receives the data being input or
sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is repre-
sented in binary coded form. A binary data word
consists of a group of bits; each bit is either a one
or a zero. Parallel 1/O consists of transferring all
bits in the word at the same time, one bit per line.
Serial 1/O consists of transferring one bit at a time
on a single line. Naturally, serial I/O is much slower
but it requires considerably less hardware than
does parallel I/O.
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Interrupts

Interrupt provisions are included on many central
processors, as a means of improving the processor’s
efficiency. Consider the case of a computer that is
processing a large volume of data, portions of
which are to be output to a printer. The CPU can
output a byte of data within a single machine cycle
but it may take the printer the equivalent of many
machine cycles to actually print the character spe-
cified by the data byte. The CPU could then re-
main idle waiting until the printer can accept the
next data byte. If an interrupt capability is imple-
mented on the computer, the CPU can output a
data byte then return to data processing. When the
printer is ready to accept the next data byte, it can
request an interrupt. When the CPU acknowledges
the interrupt, it suspends main program execution
and automatically branches to a routine that will
output the next data byte. After the byte is output,
the CPU continues with main program execution.
Note that this is, in principle, quite similar to a
subroutine call, except that the jump is initiated
externally rather than by the program.

More complex interrupt structures are possible, in
which several interrupting devices share the same
processor but have different priority levels. Inter-
ruptive processing is an important feature that
enables maximum utilization of a processor’s
capacity.

Direct Memory Access (DMA)

Another important feature that improves the
throughput of a processor is the ability to perform
Direct Memory Access (DMA) transfers.

In ordinary input and output operations, the proc-
essor itself supervises the entire data transfer. In-
formation to be placed in memory is transferred
from the input device to the processor, and then
from the processor to the designated memory loca-
tion. In similar fashion, information that goes from
memory to output devices goes by way of the
processor.

Some peripheral devices, however, are capable of
transferring information to and from memory
much faster than the processor itself can accom-
plish the transfer. If any appreciable quantity of



data must be transferred to or from such a device,
then system throughput will be increased by having
the device accomplish the transfer directly. The
processor must temporarily suspend its operation
during such a transfer, to prevent conflicts that
would arise if the processor and the peripheral
device attempted to use the system bus simultane-
ously.

3.2 FUNCTIONAL ORGANIZATION OF THE
CENTRAL PROCESSOR MODULE

The Intel 8080 Central Processing Unit is the major
functional element on the Central Processor Mod-
ule. All of the other logic on the module supports
or enhances the functions that the 8080 CPU can
perform. This leads to a natural and convenient dis-
tinction between the “processor’ and its “periph-
eral logic”.

The “processor” is a complete 8-bit parallel, 8080
CPU contained in a single 40-pin dual-in-line pack-
age (see Figure 3-1). The 8080 CPU includes the
following functional units:

e Arithmetic and Logic Unit (ALU)
® Register array and address logic

Instruction register and control section

Bidirectional, three-state data bus buffer

The 8080 CPU is fully described in Section 3.3.

The remaining logic on the Central Processor Mod-
ule constitutes what we refer to as the “peripheral
logic”. The peripheral logic consists of the follow-
ing functional blocks:

o Clock generator logic
Bus control logic
Data and address bus buffers and drivers

READY logic

®
[ ]
e Command generation logic (with line drivers)
[ ]
e Interrupt logic

Figure 3-2 illustrates the interaction between the
various functional blocks on the Central Processor
Module.
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Figure 3-1. 8080 Dual-In-Line Package

The bus control logic allows the Central Processor
Module to operate in a multi-processor configura-
tion or, for that matter, any configuration where
more than one module (e.g., processor and disk
controller) can assume control of the bus. Ex-
changes of bus control are particularly helpful in
direct memory access (DMA) transfers, where an
I/O device (e.g., a disk) becomes “master” of the
bus and transfers data directly to/from memory
without CPU intervention.

Transitions within the bus control logic are re-
ferred to the bus clock (BCLK/). If a higher prior-
ity device is not requesting use of the bus, the
Central Processor Module issues a bus request
(BREQ)/) signal. If no higher priority device has
control, as indicated by the bus priority (BPRN/)
line, the Central Processor assumes control and
issues BUSY/ to inform all of the other “master”
modules. In addition to BUSY/, the bus control
logic generates the select (SEL) signal which
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informs the other functional blocks on the Central
Processor Module that is has control of the bus.
Whenever the Central Processor Module relinquishes
the bus, the absence of SEL inhibits the generation
of READY. As a result, the 8080 processor idles in
a wait state.

As long as the Central Processor Module has control
of the bus, the processor is free to fetch and exe-
cute the program stored-in external memory. All
operations of the processor and the peripheral logic
(except the bus control logic) are referred to two
non-overlapping 2 MHz clock pulses (¢ and ¢5)
which are produced in the clock generation logic.
Without digressing into a detailed discussion of
internal processor timing (that comes in the next
section), let us for the moment merely state that
the processor requires one cycle for each external
access to memory or an I/O device. While the exact
nature of each cycle depends on the particular op-
eration to be performed (e.g., fetch an instruction
byte or write a data byte to memory), all cycles
have certain similarities. At the beginning of each
cycle, the processor places an address on its address
lines and places status information on its data lines.

The address uniquely identifies the “device’ to be
accessed, whether it be a memory location, an I/O
device, or internal control logic. The address is out-
put by the tri-state address bus driver circuits.

The status information on the data lines specifies
the exact type of operation that is to occur during
the remainder of the cycle. The command genera-
tion logic interprets the status bits and issues the
appropriate command signal: memory read
(MRDC/), memory write (MWTC/), 1/O read
(IORC)), interrupt (INTA/), or halt (HLTA/). The
processor then removes the status bits from the
data lines, thus freeing the lines for the subsequent
transfer of a data byte to/from the processor.

If a particular device recognizes the address and the
command, it acknowledges recognition (XACK/ is
generated) and responds according to the particular
command. For example, if IOWC/ is true and an
output device recognizes its address on the address
lines, it will generate XACK/ (which tells the proc-
essor ‘that the device is ready to respond), and will
accept the data byte that the processor has output.
Memory modules also acknowledge their respective
commands, MRDC/ and MWTC/, by generation of
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XACK/. A special acknowledge, AACK/, may be
optionally used to provide an advanced indication
of the module readiness to transfer data. This sig-
nal allows the 8080 CPU to avoid unnecessary wait
states imposed by a conflict between the 8080
ready timing and the INTELLEC MDS Bus hand-
shake requirements. It does, however, cause the
memory timing to deviate from the INTELLEC
MDS Bus specifications and must be used only in
consideration of the system’s absolute timing re-
quirements (reference 3.4.4). The option is used in
standard INTELLEC systems to maximize instruc-
tion processing speed but it is easily modified by
use of prewired jumpers on the CPU module and
memory modules that generate AACK/.

When the processor outputs data, it issues an active-
low write strobe (WR/) which is used by the com-
mand generation logic. When the processor expects
to input data, it issues an input strobe (DBIN).

The presence or absence of DBIN dictates direction
to the bidirectional data bus buffers; thus enabling
a data byte from the external data lines into the
processor (DBIN is active) or out of the processor
and onto the external data lines (DBIN is inactive).

The interrupt logic provides the Central Processor
Module with an 8-level, nested interrupt priority
capability. The logic resolves simultaneous inter-
rupt requests on a priority basis and passes a three-
bit binary encoded vector, reflecting the level cur-
rently being recognized, to the processor. The
processor responds by interrupting program execu-
tion and automatically branching to one of eight
dedicated memory locations. The 3-bit vector is
also pushed onto a nested priority table in the in-
terrupt logic. If an interrupt request from a higher
priority level is subsequently received, the inter-
rupt logic causes the processor to interrupt the
service routine currently being executed and
branch to the dedicated memory location associ-
ated with the new, higher priority level. The inter-
rupt logic pushes the 3-bit vector for the new level
onto the nested priority table. After this higher
priority interrupt is serviced, the program pops its
vector off the nested priority table and resumes
execution of the previous, lower priority inter-
rupted service routine.

Any of the eight interrupt levels can be individu-
ally disabled by a program-controlled interrupt



mask. In addition, all interrupts can be disabled as
a group by execution of the DI instruction.

The “peripheral logic” is described in Section 3.4.

3.3 THE 8080 CENTRAL PROCESSOR UNIT

The 8080 is a complete, 8-bit parallel, Central
Processor Unit (CPU) for use in general purpose
digital computer systems. It is fabricated on a
single LSI chip using Intel’s n-channel silicon gate
MOS process. The 8080 transfers data and internal
state information via an 8-bit bidirectional tri-state
Data Bus (Dg—D7). Memory and peripheral device
addresses are transmitted over a separate 16-bit tri-
state Address Bus (Ag—Ajs). Six timing and con-
trol outputs (SYNC, DBIN, WAIT, WR, HLDA and
INTE) emanate from the 8080, while four control
inputs (READY, HOLD, INT and RESET), four
power inputs (+12, +5, —5, and GND) and two
clock inputs (¢1 and ¢;) are accepted by the 8080.

3.3.1 ARCHITECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional
units:

® Register array and address logic

e Arithmetic and Logic Unit (ALU)

e Instruction register and control section

e Bidirectional, tri-state data bus buffer

Figure 3-3 illustrates the functional blocks within
the 8080 CPU.

Registers

The register section consists of a static RAM array
organized into six 16-bit registers:

e Program Counter (PC)
e Stack Pointer (SP)

e Six 8-bit general purpose registers arranged in
pairs, referred to as B,C; D,E; and H,L

e A temporary register pair called W,Z

The program counter maintains the memory address
of the current program instruction and is incre-
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mented automatically during every instruction

fetch. The stack pointer maintains the address of -
the next available stack location in memory. The

stack pointer can be initialized to use any portion

of read-write memory as a stack. The stack pointer

is decremented when data is “pushed” onto the

stack and incremented when data is “popped” off
the stack (i.e., the stack grows “downward”).

The six general purpose registers can be used either
as single registers (8-bit) or asregister pairs (16-bit).
The temporary register pair, W,Z, are not program
addressable and are only used for the internal exe-
cution of instructions.

Eight-bit data bytes can be transferred between the
internal bus and the register array via the register-
select multiplexer. Sixteen-bit transfers can pro-
ceed between the register array and the address
latch or the incrementer/decrementer circuit. The
address latch receives data from any of the three
register pairs and drives the 16 address output buf-
fers (Ag—Ajis), as well as the incrementer/decre-
menter circuit. The incrementer/decrementer cir-
cuit receives data from the address latch and sends
it to the register array. The 16-bit data can be in-
cremented or decremented or simply transferred
through the circuit.

Arithmetic and Logic Unit (ALU)

The ALU contains the following registers:
e An 8-bit accumulator (ACC) and a carry/link
flip-flop (CY)

An 8-bit temporary accumulator (ACT) and a
temporary carry flip-flop

A 5-bit flag register: zero, carry, sign, parity,
and auxiliary carry

e An 8-bit temporary register (TEMP)

Arithmetic, logical and rotate operations are per-
formed in the ALU. The ALU is fed by the tempo-
rary register (TMP) and the temporary accumulator
(ACT) and carry flip-flop. The result of the opera-
tion can be transferred to the internal bus or to the
accumulator; the ALU also feeds the flag register.

The temporary register (TMP) receives information
from the internal bus and send all or portions of it
to the ALU, the flag register and the internal bus.
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Figure 3-3. 8080 CPU Functional Block Diagram



The accumulator (ACC) can be loaded from the
ALU and the internal bus, and can transfer data to
the temporary accumulator (ACT) and the internal
bus. The contents of the accumulator (ACC) and
the auxiliary carry flip-flop can be tested for deci-
mal correction during the execution of the Decimal
Adjust Accumulator (DAA) instruction.

Instruction Register and Control

During an instruction fetch, the first byte of an
instruction (containing the op code) is transferred
from the internal bus to the 8-bit instruction regis-
ter.

The contents of the instruction register are, in turn,
available to the instruction decoder. The output of
the decoder, combined with various timing signals,
provides the control signals for the register array,
ALU and data buffer blocks. In addition, the out-
puts from the instruction decoder and external
control signals feed the timing and state control
section which generates the state and cycle timing
signals.

Data Bus Buffer

This 8-bit, bidirectional three-state buffer is used
to isolate the CPUs internal bus from the external
data bus (Dg through D7). In the output mode, the
internal bus content is loaded into an 8-bit latch
that, in turn, drives the data bus output buffers.
The output buffers are switched off during input
or non-transfer operations.

In the input mode, data from the external data bus
is transferred to the internal bus. The internal bus
is precharged at the beginning of each internal state,
except for the transfer state (T3 — described later
in this chapter).

3.32 THE PROCESSOR CYCLE

An instruction cycle is defined as the time required
to fetch and execute an instruction. During the
fetch, a selected instruction (one, two, or three
bytes) is extracted from memory and deposited in
the CPU’s instruction register. During the execution
part, the instruction is decoded and translated into
specific processing activities.

3-13

Every instruction cycle consists of one, two, three,
four, or five machine cycles. A machine cycle is
required each time the CPU accesses memory or an
I/O port. The fetch portion of an instruction cycle
requires one machine cycle for each byte to be
fetched. The duration of the execution portion of
the instruction cycle depends on the kind of in-
struction that has been fetched. Some instructions
do not require any machine cycles other than those
necessary .to fetch the instruction; other instruc-
tions, however, require additional machine cycles
to write or read data to/from memory or I/O de-
vices. The DAD instruction is an exception in that
it requires two additional machine cycles to com-
plete an internal register-pair add.

Each machine cycle consists of three, four, or five
states. A state is the smallest unit or processing
activity and is defined as the interval between two
successive positive-going transitions of the ¢; clock
pulse. The 8080 is driven by a 2-phase clock oscil-
lator. All processing activities are referred to the
period of this clock. The two non-overlapping
clock pulses, labeled ¢1 and ¢, are furnished by
external circuitry. It is the ¢; clock pulse which
divides each machine cycle into states. Timing logic
within the 8080 uses the clock inputs to produce
a SYNC pulse, which identifies the beginning of
every machine cycle. The SYNC pulse is triggered
by the low-to-high transition of ¢;, as shown in
Figure 3-4.

There are three exceptions to the defined duration
of a state. They are the WAIT state, the hold
(HLDA) state, and the halt (HALTA) state, de-
scribed later in this chapter. Because the WAIT, the
HLDA, and the HALTA states depend upon ex-
ternal events, they are by their nature of indeter-
minate length. Even these exceptional states, how-
ever, must be synchronized with the pulses of the
driving clock. Thus the duration of all states, in-
cluding these, are integral multiples of the clock
pulse.

To summarize then, each clock period, marks a
state; three to five states summarize a machine
cycle; and one to five machine cycles comprise an
instruction cycle. A full instruction cycle requires
anywhere from four to 17 states for its completion,
depending on the kind of instruction involved.
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Machine Cycle Identification

With the exception of the DAD instruction, there
is just one consideration that determines how
many machine cycles are required in any given
instruction cycle: the number of times that the
processor must reference a memory address, or an
addressable peripheral device, in order to fetch and
execute the instruction. Like many processors, the
8080 is so constructed that it can transmit only
one address per machine cycle. Thus, if the fetch-
ing and execution of an instruction requires two
memory references, then the instruction cycle as-
sociated with that instruction consists of two
machine cycles. If five such references are called
for, then the instruction cycle contains five machine
cycles.

Every instruction cycle has at least one reference
to memory, during which the instruction is fetched.
An instruction cycle must always have a fetch,
even if the execution of instruction requires no
further references to memory. The first machine
cycle in every instruction cycle is therefore a
FETCH. Beyond that, there are no fast rules. It
depends on the kind of instruction.
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Consider some examples. The add-register (ADD I)
instruction is an instruction that requires only a
single machine cycle (FETCH) for its completion.
In this 1-byte instruction, the contents of one of
the CPUs six general purpose registers is added to
the pre-existing contents of the accumulator. Since
all the information necessary to execute the com-
mand is contained in the 8 bits of the instruction
code, only one memory reference is necessary: that
actually used to fetch the instruction. Three states
are used to extract the instruction from memory,
and one additional state is used to accomplish the
desired addition. The entire instruction cycle thus
requires only one machine cycle that consists of
four states, or four periods of the external clock.

Support now, however, that we wish to add the
contents of a specific memory location to the pre-
existing contents of the accumulator (ADD M).
Although this is quite similar in principle to the
example just cited, several additional steps will be
necessary. An extra machine cycle will be needed,
in order to address the desired memory location.

The actual sequence is as follows: First the proces-
sor extracts from memory the 1-byte instruction



word addressed by its program counter. This takes
three states. The 8-bit instruction word obtained
during the FETCH machine cycle is deposited in
the CPU’s instruction register and used to direct
activities during the remainder of the instruction
cycle. Next, the processor sends out as an address
the contents of its H and L registers. The 8-bit data
word returned during this MEMORY READ ma-
chine cycle is placed in a temporary register inside
the 8080 CPU. By now, three more clock periods
(states) have elapsed. In the seventh and final state,
the contents of the temporary register are added to
those of the accumulator. Two machine cycles,
consisting of seven states in all, complete the
“ADD M” instruction cycle.

At the opposite extreme is the save H and L regis-
ters (SHLD) instruction, which requires five ma-
chine cycles. During an “SHLD” instruction cycle,
the contents of the processor’s H and L registers
are deposited in two sequentially adjacent memory
locations; the destination is indicated by two ad-
dress bytes which are stored in the two memory
locations immediately following the operation
code byte. The following events occur:

(1) A FETCH machine cycle, consisting of four
states. During the first three states of this
machine cycle, the processor fetches the
instruction indicated by its program coun-
ter. The program counter is then incre-
mented. In the fourth state, the contents of
the H and L registers are transferred to
temporary registers within the chip, W and
Z, respectively. Data previously held in the
H and L registers is thus saved, thereby
clearing H and L to receive incoming data.

(2) A MEMORY READ machine cycle, consist-
ing of three states. During this machine
cycle, the byte indicated by the program
counter is extracted from memory and
placed in the processor’s L register. The
program counter is incremented again.
(3) Another MEMORY READ machine cycle,
consisting of three states, in which the byte
indicated by the processor’s program coun-
ter is deposited in the H register. The pro-
gram counter is incremented, in anticipa-
tion of the next instruction fetch.
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(4) A MEMORY WRITE machine cycle, of
three states, in which the contents of the Z
register are transferred to the memory loca-
tion pointed to by the present contents of
the H and L registers. The state following
the transfer is used to increment the H and
L pointers, so that they indicate the next
memory location to receive data.

A MEMORY WRITE machine cycle, of
three states, in which the contents of the W
register are transferred to the new memory
location pointed to by the H and L reg-
isters.

(5)

The “SHLD” instruction cycle contains five ma-
chine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex-
tremes typified by the “ADD 1 and the “SHLD”
instructions. The input (INP) and the output
(OUT), for example, require three machine cycles:
a FETCH, to obtain the instruction; a MEMORY
READ, to obtain the address of the object periph-
eral; and an INPUT or an OUTPUT machine cycle,
to complete the transfer.

There are nine types of machine cycles that may
occur within an instruction cycle; though no one
instruction cycle will consist of more than five
machine cycles:

FETCH
MEMORY READ
MEMORY WRITE
STACK READ
STACK WRITE
INPUT

OUTPUT
INTERRUPT
HALT

(a)
(b)
(c)
(@
(e)
®
(@
(h)
@

The machine cycles that actually do occur in a
particular instruction cycle depend upon the kind
of instruction, with the overriding stipulation that
the the first machine cycle in any instruction cycle
is always a FETCH.

The processor identiﬁes the machine cycle in pro-
gress, by transmitting an 8-bit status signal during
the first state of every machine cycle. Updated



status information is published on the 8080’s data
lines (Dg—D7), during the SYNC interval. This data
should be saved in latches, decoded, and used to
develop control signals for external circuitry. Table
3-1 shows how the positive-true status information
is distributed on the processor’s data bus.

Status signals are provided principally for the con-
trol of external circuitry. Simplicity of interface,
rather than machine cycle identification, dictates
the logical definition of individual status bits. You
will, therefore, observe that certain processor ma-
chine cycles are uniquely identified by a single
status bit, but that others are not. The M; status
bit (Ds), for example, unambiguously identifies a
FETCH machine cycle. A STACK READ, on the
other hand, is indicated by the coincidence of
STACK and MEMR signals. Machine cycle identifi-
cation data can also be valuable in the test and de-
bugging phases of system development. Table 3-2
lists the status bit outputs foreach type of machine
cycle.

State Transition Sequence

Every machine cycle within an instruction cycle
consists of three to five active states (referred to as
T1, T2, T3, T4, TS, or TW). The actual number of
states depends upon the instruction being executed,
and on the particular machine cycle within the
greater instruction cycle. The state transition dia-
gram in Figure 3-5 shows how the 8080 proceeds
from state to state in the course of a machine cycle.
The diagram also shows how the READY, HOLD,

and INTERRUPT lines are sampled during the ma-

chine cycle, and how the conditions on these lines
may modify the basic transition sequence. In the
present discussion, we are concerned only with
the basic sequence and with the READY function.
HOLD and INTERRUPT functions will be dis-
cussed later.

The 8080 CPU does not indicate its internal state
directly, by transmitting a “state control” output
during each state; instead, the 8080 supplies direct
control output (INTE, HLDA, DBIN, W_R, and
WAIT) for use by external circuitry.

Recall that the 8080 passes through at least three
states in every machine cycle, with each state
defined by successive low-to-high transitions of
the ¢; clock. Figure 3-6 shows the timing relation-

3-16

ships in a typical FETCH machine cycle. Events
that occur in each state are referred to transitions
of the ¢ and ¢, clock pulses.

The SYNC signal identifies the first state (T1) in
every machine cycle. As shown in Figure 3-6, the
SYNC signal is related to the leading edge of the L))
clock. Status information is displayed on Dg—-D~
during this same interval. Switching of the status
signals is likewise controlled by ¢5.

The rising edge of ¢, during T1 also loads the proc-
essor’s address lines (Ag—Aj s). These lines become
stable within a brief delay (tp 4 ) of the 97 clocking
pulse, and they remain stable until the first o)
pulse after state T3. This gives the processor ample
time to read the data returned from memory.

Once the processor has sent an address to memory,
there is an opportunity for the memory to request
a WAIT. This it does by pulling the processor’s
READY line low, prior to the “Ready set-up” in-
terval (trs) which occurs during the ¢ pulse with-
in state T2 or TW. As long as the READY line
remains low, the processor will idle, giving the
memory time to respond to the addressed data re-
quest. (Refer to Figure 3-6.)

The processor responds to a wait request by enter-
ing an alternative state (TW) at the end of T2,
rather than proceeding directly to the T3 state.
Entry into the Ty state is indicated by a WAIT
signal from the processor, acknowledging the mem-
ory’s request. A low-to-high transition on the
WAIT line is triggered by the rising edge of the ¢,
clock and occurs within a brief delay (tpc) of the
actual entry into the Ty state.

A wait period may be of indefinite duration. The
processor remains in the waiting condition until its
READY line again goes high. A READY indication
must precede the falling edge of the ¢, clock by a
specified interval (tgg), in order to guarantee an
exit from the Ty state. The cycle may then pro-
ceed, beginning with the rising edge of the next ¢,
clock. A WAIT interval will therefore consist of an
integral number of Ty states and will always be a
multiple of the clock period.

The events that take place during the T3 state are
determined by the kind of machine cycle in pro-
gress. In a FETCH machine cycle, the processor



Table 3-1
8080 STATUS BIT DEFINITIONS

sympoLs | PATABIT DEFINITION
BUS

HLTA D3 Acknowledge signal for HALT instruction.

INTA Dy Acknowledge signal for INTERRUPT request. Signal should be used to gate a re-
start instruction onto the data bus when DBIN is active.

INP D¢ Indicates that the address bus contains the address of an input device and the input
data should be placed on the data bus when DBIN is active.

ouT Dy Indicates that the address bus contains the address of an output device and the data
bus will contain the output data when WR is active.

MEMR Dy Designates that the data bus will be used for memory read data.

M, Ds Provides a signal to indicate that the CPU is in the fetch cycle for the first byte of
an instruction.

STACK Dy Indicates that the address bus holds the pushdown stack address from the Stack
Pointer.

Wwo Dq Indicates that the operation in the current machine cycle will be a WRITE memory
or OUTPUT function (WO = @). Otherwise, a READ memory or INPUT operation
will be executed.

Table 3-2
STATUS BIT DECODING

STATUS BITS
TYPE g\n: (I;VII-:CHINE D D, D, Ds Dy Ds De by
INTA wo STACK | HLTA ouT M, INP MEMR
FETCH 0 1 0 0 0 1 0 1
MEMORY READ 0 1 0 0 0 0 0 1
MEMORY WRITE 0 0 0 0 0 0 0 0
STACK READ 0 1 1 0 0 0 0 1
STACK WRITE 0 0 1 0 0 0 0 0
INPUT 0 1 0 0 0 0 1 0
OUTPUT 0 0 0 0 1 0 0 0
INTERRUPT 1 1 0 0 0 1 0 0
HALT 0 1 0 1 0 0 o 0

*NOTE: 1 = high level; @ = low level. Notice that the write/output bit (W—O) is negative-true.
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RESET
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Figure 3-5. CPU State Transition Diagram
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interprets the data on its data bus as an instruction.
During a MEMORY READ or a STACK READ,
signals on the same bus are intrepreted as a data
word. The processor itself outputs data on this bus
during a MEMORY WRITE machine cycle. And,
during I/O operations, the processor may either
transmit or receive data, depending on whether an
INPUT or an OUTPUT operation is involved.

Figure 3-7 illustrates the timing that is characteris-
tic of a data input operation. As shown, the low-to-
high transition of ¢, during T2 clears status infor-
mation from the processor’s data lines, preparing
these lines for the receipt of incoming data. The
data presented to the processor must have stabil-
ized, prior to both the “¢j-data set-up” interval
(tps1), that precedes the falling edge of the ¢
pluse defining state T3, and the “¢,-data set-up”
interval (tps;), that precedes the rising edge of
@2 in state T3. And, this same data must remain
stable during the “data hold” interval (tpgy) that
occurs following the rising edge of the next ¢;
pulse. Data placed on these lines by memory or by
other external devices will be sampled during T3.

During the input of data to the processor, the 8080
generates a DBIN signal which should be used ex-
ternally to enable the transfer. Machine cycles in
which DBIN is available include: FETCH, MEM-
ORY READ, STACK READ, and INTERRUPT.
DBIN is initiated by the rising edge of ¢, during
state T2 and terminated by the corresponding edge
of ¢ during T3. Any Tw phases intervening be-
tween T2 and T3 will therefore extend DBIN by
one or more clock periods.

Figure 3-8 shows the timing of machine cycles in
which the processor outputs data. Output data
may be destined either for memory or for periph-
erals. The rising edge of ¢, within state T2 clears
status information from the CPU’s data lines, and
loads in the data which is to be output to external
devices. This substitution takes place within the
“data output delay” interval (tpp) following the
¢ clock’s leading edge. Data on the bus remains
stable throughout the remainder of the machine
cycle, until replaced by updated status information
in the subsequent T1 state. Observe that a READY
signal is necessary for completion of an OUTPUT
machine cycle. Unless such an indication is present,
the processor enters the Ty state, following the T2
state. Data on the output lines remains stable in
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the interim, and the processing cycle will not pro-
ceed until the READY line again goes high.

The 8080 CPU generates a WR/output for the syn-
chronization of external transfers, during those
machine cycles in which the processor outputs data.
These include MEMORY WRITE, STACK WRITE,
and OUTPUT. The negative-going leading edge of
WR/ is referred to the rising edge of the first ¢
clock pulse following T2, and occurs within a brief
delay (tpc) of that event. WR/ remains low until
re-triggered by the leading edge of ¢,, during the
state following T3. Note that any Ty states in-
serted during WR/, affect WR/ in much the same
way that DBIN is affected during data input oper-
ations.

All processor machine cycles consist of at least three
states: T1, T2, and T3, as just described. If the
processor has to wait for a READY response, then
the machine cycle may also contain one or more
Tw states. During the three basic states, data is
transferred to or from the processor.

After the T3 state, however, it becomes difficult to
generalize. T4 and T35 states are available, if the
execution of a particular instruction requires them.
But not all machine cycles make use of these states.
It depends upon the kind of instruction being exe-
cuted, and on the particular machine cycle within
the instruction cycle. The processor will terminate
any machine cycle as soon as its processing activi-
ties are completed, rather than proceeding through
the T4 and TS states every time. Thus, the 8080
may exit a machine cycle following the T3, the T4,
or the T5 state, and proceed directly to the Tl
state of the next machine cycle.

Table 3-3 lists the general activities associated with
each state. Table 3-4 summarizes the state sequenc-
ing involved in the execution of each particular
type of 8080 instruction; you should refer to Table
3-4 if you have any questions on how a specific
instruction is executed.

3.3.3 INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle ex-
ternal interrupt requests. A peripheral device can
initiate an interrupt simply by driving the proces-
sor’s interrupt (INT) line high.
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Table 3-3
STATE DEFINITIONS

STATE ASSOCIATED ACTIVITIES
T A memory address or I/O device number is placed on the Address Bus (A15_g); status information is
placed on Data Bus (D7_gp).
Ty The CPU samples the READY and HOLD inputs and checks for halt instruction.
Tw Processor enters wait state if READY is low or if HALT instruction has been executed.
(optional)
T3 An instruction byte (FETCH machine cycle), data byte (MEMORY READ, STACK READ or INPUT
machine cycle), or interrupt instruction (INTERRUPT machine cycle) is input to the CPU from the
Data Bus; or a data byte (MEMORY WRITE, STACK WRITE or QOUTPUT machine cycle) is output
onto the data bus.
Ty States T4 and Ts are available if the execution of a particular instruction requires them; if not, the
Ts CPU may skip one or both of them. T4 and T5 are only used for internal processor operations.
(optionat)

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during
any instruction cycle. Internal logic re-clocks the
external request, so that a proper correspondence
with the driving clock is established. As Figure 3-9
shows, an interrupt request (INT) arriving during
the time that the interrupt enable line (INTE) is
high, acts in coincidence with the ¢, clock to set
the internal interrupt latch. This event takes place
during the last state of the instruction cycle in
which the request occurs, thus ensuring that any
instruction in progress is completed before the
interrupt can be processed.

The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an
ordinary FETCH machine cycle in most respects.
The M; status bit is transmitted as usual during the
SYNC interval. It is accompanied, however, by an
INTA status bit (Dg) which acknowledges the ex-
ternal request. The contents of the program counter
are latched onto the CPU’s address lines during T1,
but the counter itself is not incremented during the
INTERRUPT machine cycle, as it otherwise would
be. In this way, the pre-interrupt status of the pro-
gram counter is preserved, so that data in the coun-
ter may be saved in the stack. This in turn permits
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an orderly return to the interrupted program after
the interrupt request has been processed.

The interrupt cycle is otherwise indistinguishable
from an ordinary FETCH machine cycle. The
processor itself takes no further special action. It is
the responsibility of the peripheral logic to see that
an 8-bit interrupt instruction is “jammed” onto the
processor’s data bus during state T3. In a typical
system, this means that the data-in bus from mem-
ory must be temporarily disconnected from the
processor’s main data bus, so that the interrupting
device can command the main bus without inter-
ference.

The 8080°s instruction set provides a special 1-byte
call which facilitates the processing of interrupts
(the ordinary program call takes 3 bytes). This is
the restart instruction (RST). A variable 3-bit field
embedded in the 8-bit field of the RST enables the
interrupting device to direct a jump to one of eight
fixed memory locations. The decimal addresses of
these dedicated locations are: 0, 8, 16, 24, 32, 40,
48, and 56. Any of these addresses may be used to
store the first instruction(s) of a routine designed
to service the requirements of an interrupting
device.



Table 3-4

CYCLE AND STATE TRANSITION SEQUENCES FOR EACH 8080 INSTRUCTION

MNEMONIC OP CODE ml1l M2
D7DgD5D4 | D3D2DqDg T T2l2 T3 T4 T5
MOV r1,r2 01 DD ! DS S S | PCOUT | PC=PC+1 [INST-TMP/IR | (SSS)>TMP (TMP)-DDD
STATUS _
MOV r, M 0o10D |[D1 10 ] x[3l HL OUT DATA —{»DDD
STATUSIE]
MOV M, r 0111 |osss (SSS}->TMP ;l%ﬂ%‘g[ 7 (TMP)—»-DATA BUS
SPHL 1111 1001 (HL)
MVI r, data 00DD |D110 PC OUT
STATUSI6!
MVI M, data o011 o110 X B2—{»TMP
LX1 rp, data 0 0RP 000 1 X PC=PC+1 B2 —jmri
LDA addr 0011 1010 X PC=PC+1 B2 —-Z
STA addr 0011 0010 X PC=PC+1 B2—{»Z
LHLD addr 0010 1010 X PC=PC+1 B2—i»Z
SHLD addr 0010 {0010 X PC OUT PC=PC+1 B2—{»-Z
STATUSE]
LDAX rpl4l OORP |[1010 X rp OUT DATA—{»-A
STATUSI6]
STAX rpl4l OO0ORP | 0010 X rp OUT {A) —»-DATA BUS
sTATUsl?]
XCHG 1110 1011 {HL)+—{DE)
ADDr 1000 |0SSS (SSSI>TMP ) (ACT}+{TMP}—A
! (Al>ACT
ADD M 1000 |01 10 ; (AJ>ACT HL OUT DATA—{»-TMP
STATUSIE! T
ADI data 1100 0110 (Al~ACT PC OUT PC=PC+1 B2—-TMP
| i STATUSSE!
ADCr 1000 |1ssS i (SSS}»TMP C)] (ACT)+(TMP}+CY-A
| (A}>ACT
ADCM 1000 (1110 (Al>ACT HL OUT DATA—{»TMP
; STATUSIE!
ACI data 1100 ! 1110 ' (A)~ACT PC OUT PC=PC+1 B2—»TMP
STATUSIS]
suBr 1001 {0SSS . (SSSI-TMP fol {(ACT)-(TMP)—A
' (A)>ACT
SUB M 1001 0110 (A)~ACT HL OUT DATA—{»TMP
sTATUSIE]
SUI date 1101 {0110 i (Al>ACT PC OUT PC=PC+1 B2—»-TMP
STATUSIE!
SBBr 1001 188 S (SSS)-TMP ] (ACT)-(TMP)-CY—A
(A)>ACT
SBE M 1001 1110 (A}>ACT HL OUT DATA—{m-TMP
STATUSIE!
SBI data 1101 1110 (A}>ACT PC OUT PC=PC+1 B2—|»>TMP
STATUSIE]
INR ¢ ooDD | D100 (DDD}»TMP
{TMP) + 1-ALUJ
INRM 0011 o100 X
DCR ¢ oo0DD | D1oOH1 (DDD}>TMP.
(TMP)+1-ALU
DCR M 0011|0101 X
INX rp 0OO0ORP | 0011 (RP) +1
DCX rp COoORP | 1011 (RP) -1 |
= ]
DAD rpl8l 00RP 1001 X {ril~ACT (LI>TMP, ALU-L, CY
{ACT}+(TMP)~ALU
DAA 001010111 DAA—A, FLAGSI10] |
ANA r 1010|08SS (SSS)-TMP )} (ACT)+(TMP}>A
| (A+ACT
ANA M 1010 | 0110 | PCOUT | PC=PC+1| INSTOTMP/IR | (A)~ACT HL OUT DATA
STATUS STATUSI®!
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Table 3-4

CYCLE AND STATE TRANSITION SEQUENCES FOR EACH 8080 INSTRUCTION (Continued)

M3 M4 M5

T T2i2 T3 ™ 1212 T3 T T2(2 73 T4 15

HL OUT (TMP} —»DATA BUS
STATUS!
PC OUT PC=PC+1 B3 —{»-rh
STATUSsI6!
PC=PC+1 B3—{»-W wz OuUT DATA LA
STATUSIE!
PC=PC+1 B3—»-W Wz QUT (A) + DATA BUS
STATUSI?!
PC=PC+1 B3—{»W Wz oUT DATA——+ L WZ OUT DATA-{»H
STATUSIB! | wz=wz+1 STATUS!E!
1
PC OUT PC=PC+1 B3—{»W WZ OUT (L - DATABUS | WZOUT _ | (HI—=DATABUS
STATUSIE] STATUS! | wz=wz+1 STATUSI7)

(ACTH(TMP)>A

(ACT)+(TMP)—-A

L
[9] (ACT)+(TMP)+CY~A

{ACTIHTMP)+CY-A

(ACT)-(TMP}~A

(ACT)-(TMP)}—A

(ACT)-(TMP)-CY-A

(ACT)-(TMP)-CY—A

HLOUT ALU
sTaTUsl7!
T

_ sTATUS(7]

{H}>TMP
(ACT)HTMPHCY=-ALU

{(ACTIH{TMP}-A
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Table

34

CYCLE AND STATE TRANSITION SEQUENCES FOR EACH 8080 INSTRUCTION (Continued)

3-26

MNEMONIC OP CODE mi] M2
D7DgD5D4 | D3D2DqDg T T2l2 T3 T4 | T5 T T2(2 T3
AN data 1110 | 0110 | PCCUT | PC=PC+1|INST>TMP/IR | (A)~ACT PC OUT PC=PC+1 B2_[,TMP
STATUS STATUs6] N
XRA ¢ 1010] 185sS ' (A)>ACT ¢} (ACTI+(TPM)—A
(SSS)-TMP
XRA M 1010] 1110 (A)~ACT HL OUT DATA —{»TMP
STATUSI6!
XRI data 1110|1110 (A)>ACT PC OUT PC=PC +1 B2—{»TMP
STATUSIE!
‘ORAT 1011 | 0sss (A)l>ACT ] (ACT)+(TMP)~A
(SSS)-TMP
ORA M 1011 0110 (A)>ACT HL OUT DATA —{»TMP
) STATUSI6]
ORI data 11110110 (A)>ACT PC OUT PC=PC+1 B2 —{»=TMP
STATUSI6
CMP ¢ 1011 158S {A)>ACT €] (ACT)-(TMP), FLAGS
{SSS)>TMP
CMP M 1011 1110 {Al>ACT HL OUT DATA —{»TMP
STATUS!E]
CPI data 1111 1110 (Al>ACT PC OUT PC=PC +1 B2 —»=TMP
STATUSIE]
RLC 0000|0111 (A)=ALU o] ALU-A, CY :
ROTATE
RRC 0000 | 1111 (A)>ALU )] ALU-A, CY
ROTATE
RAL 0001 01 11 {A), CY—ALU [0 ALU-A, CY
ROTATE
RAR 0001 1111 (A), CY-ALU ALU-A, CY
ROTATE
CMA 0010 1111 (Al>A
cMC 0011 1111 cY-cY o o
sTC 0011 0111 1-CY i g
JMP addr 1100/ 0011 X w0 pcout PC=PC+1 B2—{»-Z
STATUSIE]
Jeondaddel! [ 1 1 cc | co1 0 JUDGE CONDITION PC OUT PC=PC+1 B2 —{»Z
STATUSIE]
CALL addr 1100|1101 SP=5P-1 PC OUT PC=PC+1 B2—»2Z
STATUSIE]
Coondaddrl7l | 1 1 cc | c1 00 JUDGE CONDITION PC OUT PC=PC+1 B2—{»Z
IF TRUE,SP=SP - 1 STATUSIS)
RET 1100 | 1001 X b | spoutr SP=5P+1 DATA—{»Z
0 sTATUSDS!
Reondaddrl’” | 1 1 cc | coo 0 INST-TMP/IR JUDGE CONDITION[14] SP OUT SP=SP+1 DATA—isZ
STATUS[15]
RST n 11T NN| NT11 W SP=8P-1 SP OUT SP=SP-1  (PCH)—|{»DATA BUS
INST-TMP/IR STATUS[16]
PCHL 11101001 INST>TMP/IR | (HL) p PC
PUSH rp 11RP| 0101 SP=SP-1 SP OUT SP=SP-1 (rh)—{=DATA BUS
STATUS16]
PUSH PSW 1111 0101 SP=SP-1 SP OUT SP=SP-1 (A)—{»=DATA BUS
sTATUS[16]
POP rp 11 RP [ 0001 X SP OUT SP=SP+1 DATA—{wr1
sTATUS[15]
POP PSW 1111 0001 X SPOUT SP=SP+1 DATA—»FLAGS
sTATUSI15]
XTHL 1110[ 0011 X SP OUT SP=SP+1 DATA —{»Z
STATUS(15]
IN port 1101 1011 X PC OUT PC=PC+1 B2—»2Z,W
‘ STATUSI6]
OUT port 1101 0011 X PC OUT PC=PC+1 B2—»Z,W
STATUSI®!
El 1111 1011 SET INTE F/F
DI 11110011 RESET INTE F/F
HLT 0111 0110 X PC OUT
STATUS
NOP 0000 /| 000O0 | PCOUT | PC=PC+1| INST>TMP/IR X
STATUS



Table 3-4

CYCLE AND STATE TRANSITION SEQUENCES FOR EACH 8080 INSTRUCTION (Continued)
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PC OUT PC=PC+1
STATUSIE!

PC OUT PC=PC+1 B3 —{»W

sTATUSIE! .

PCOUT PC=PC+1 B3—W SF OUT (PCH)——»DATA BUS | spouT {PCL)— DATA BUS
STATUSE] STATUS[16] | sp=sP-1 sTATUS!E! | |

PC OUT PC=PC+1 B3 —»-w13 SP OUT (PCH) ——{»DATABUS | spouT (PCL)— DATA BUS
STATUSI6! STATUS[6] | sP=5P-1 STATUSL16]

SPOUT SP=SP+1 DATA—l»W ' " V ‘ ”

STATUS[15]

SP OUT SP=SP+1 DATA—|»W

sTATUS[15)

SPOUT (TMP = 0ONNNOOO) —»2Z

STATUSI16] (PCL)—»LATA BUS

SP OUT (rl) —»DATA BUS

STATUS(16]

SP OUT FLAGS —»DATA BUS

STATUS[16]

SPOUT | SP=SP+1 DATA—lsrh

sTATUS[15]

SP QUT SP=SP+1 DATA—isA

sTATUS15]

SP OUT DATA—{»W P OUT (H} DATABUS | SPOUT (w DATA BUS
STATUSI15] STATUSI16] STATUsl16]

WZ OUT DATA —{»A

sTAaTUS!18]

Wz ouT

sTATUSE]

M3 M4 M5
T T2(2 T3 T T2[2 l T3 n I 1212 T3 ! T4 15

ol (ACTI+(TMP)->A ‘ . L ‘ \
[l (ACT)+(TMP)—>A
9 (ACT)+(TMP)>A
€] (ACTIHTMP)>A
[0l (ACT)+{TMP)>A
] (ACT)-(TMP); FLAGS

(ACT)-(TMP); FLAGS

HL

WZ QUT
STATUSI11]

WZ OUT (Wz) +1-PC
STATUS[1
WZ oUT W2} +1-PC
STATUS[1112]
WZ OUT {WZ)+1->PC
STATUS11]
Wz oUT (W2) + 1 PC
STATUs[1112]
WZ OUT {W2) +1-PC
| sTATUS[MY]
| wzout (Wz) +1-PC
STATUSI1.12]
(W2) +1-PC




Table 3-4

CYCLE AND STATE TRANSITION SEQUENCES FOR EACH 8080 INSTRUCTION (Continued)

NOTES:

1. The first memory cycle {(M1) is aiways an instruction
fetch; the first (or only) byte, containing the op code, is
fetched during this cycle.

2. |If the READY input from memory is not high during
T2 of each memory cycle, the processor will enter a wait
state (TW) until READY is sampled as high.

3. States T4 and T5 are present, as required, for opera-
tions which are completely internal to the CPU. The con-
tents of the internal bus during T4 and T5 are available at
the data bus; this is designed for testing purposes only. An
“X’" denotes that the state is present, but is only used for
such internal operations as instruction decoding.

4. Only register pairs rp = B (registers Band C) or rp=D
(registers D and E) may be cpecified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word
will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second
and third sub-cycles (M2 and M3). The HOLD signal is
accepted during M2 and M3. The SYNC signal is not gene-
rated during M2 and M3. During the execution of DAD,
M2 and M3 are required for an internal register-pair add;
memory is not referenced.

9. The results of these arithmetic, logical or rotate in-
structions are not moved into the accumulator (A) until
state T2 of the next instruction cycle. That is, A is loaded
while the next instruction is being fetched; this overlapping
of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-

lator is greater than 9 or if the auxiliary carry bit is set, 6

is added to the accumulator. If the value of the most signifi-

cant 4-bits of the accumulator is now greater than 9, or if
the carry bit is set, 6 is added to the most significant
4-bits of the accumulator.

11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.
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12. If the condition was met, the contents of the register
pair WZ are output on the address lines (Aq.15) instead of
the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.

14. If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds immediately to
the instruction fetch (M1) of the next instruction cycle.

15. Stack read sub-cycle.
16. Stack write sub-cycle.

17. CONDITION CccC
NZ — not zero (Z = 0) 000

Z — zero(Z=1) 001

NC — no carry (CY =0) 010

C — carry (CY=1) 011

PO — parity odd (P = 0) 100

PE — parity even (P=1) 101

P — plus(S=0) 110

M — minus (S=1) 11

18. 1/0 sub-cycle: the 1/O port's 8-bit select code is dupli-
cated on address lines 0-7 (Ag7) and 815 (Ag_15).

19. Output sub-cycle.

20. The processor will remain idle in the halt state until
an interrupt, a reset or a hold is accepted. When a hold re-
qyjest is accepted, the CPU enters the hold mode; after the
hold mode is terminated, the processor returns to the halt
state. After a resét is accepted, the processor begins execu-
tion at memory location zero. After an interrupt is accepted,
the processor executes the instruction forced onto the data
bus (usually a restart instruction).

§SSor DDD Value rp Value
A 111 B 00
B 000 D 01
Cc 001 H 10
D 010 SP 11
E 011
H 100
L 101
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Figure 3-9. Interrupt Timing



3.3.4 HOLD SEQUENCES

By applying a HOLD to the appropriate control
pin on the processor, an external device can cause
the CPU to suspend its normal operations and
relinquish control of the address and data busses.
The processor responds to a request of this kind of
floating its address and data outputs, so that these
exhibit a high impedance to other devices sharing
the busses. At the same time, the processor ac-
knowledges the HOLD by placing a high on its
HLDA output pin. During an acknowledged
HOLD, the address and data busses are under con-
trol of the peripheral which originated the request,
enabling it to conduct memory transfers without
processor intervention. The HOLD provision, how-
ever, is not used on the Central Processor Module.

3.3.5 HALT SEQUENCES

When a halt instruction (HLT) is executed, the
CPU enters the halt state (Twg) after state T2 of
the next machine cycle. There are only three ways
in which the 8080 can exit the halt state:

® A high on the RESET line will always reset
the 8080 to state T1; RESET also clears the
program counter.

A HOLD input will cause the 8080 to enter
the hold state, as previously described. When
the HOLD lines goes low, the 8080 re-enters
the halt state on the rising edge of the next
¢1 clock pulse

An interrupt (i.e., INT goes high while INTE

is enabled) will cause the 8080 to exit the halt

state and enter state T1 on the rising edge of

the next ¢; clock pulse.

NOTE: The interrupt enable (INTE) flag must be set
when the halt state is entered; otherwise, the

8080 will only be able to exit via a RESET
signal.

3.3.6 START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the
processor begins operating immediately. The con-
tents of its program counter, stack pointer, and the
other working registers are naturally subject to ran-
dom factors and cannot be specified. For this
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reason, it will be necessary to begin the power-up
sequence with RESET.

An external RESET signal of three clock period
duration (minimum) restores the processor’s in-
ternal program counter to zero. Program execution
thus begins with memory location zero, following a
RESET. Systems which require the processor to
wait for an explicit start-up signal will store a halt
instruction (HLT) in this location. A manual or an
automatic INTERRUPT will be used for starting.
In other systems, the processor may begin execut-
ing its stored program immediately. Note, however,
that the RESET has no effect on status flags, or on
any of the processor’s working registers (accumu-
lator, indices, or stack pointer). The contents of
these registers remain indeterminate, until initial-
ized explicitly by the program.

3.4 PERIPHERAL LOGIC: THEORY OF
OPERATION

In this section, we describe the peripheral logic on
the Central Processor Module, the logic which
directly supports the activities of the 8080 CPU.
We begin by explaining the clock generator logic,
since all the operations of the module are ulti-
mately referred to signals generated in this section.
We then describe the bus control logic, which re-
solves all exchanges of bus control between the
CPU Module and other modules capable of con-
trolling the bus (i.e., other “master” modules).
Finally, we give descriptive examples of all module
operations, showing how the peripheral logic
extends the basic capabilities of the 8080 processor.

The schematic for the Central Processor Module is
provided in Figure 3-19, located in Section 3.4.8.
You will probably find it helpful to refer to this
schematic as you read the following sections.

3.4.1 CLOCK GENERATOR LOGIC

The clock generator logic consists of a crystal-
controlled clock oscillator, a counter, level shifting
provisions, and miscellaneous counting and gating
circuits. These are shown on sheet 4 of the module
schematic, Figure 3-19.



The clock oscillator furnishes a 32-MHz signal to
the input of the counting section, which uses it to
develop the ¢1 and ¢, clock signals used to gener-
ate the remaining timing outputs.

A 32-MHz quartz crystal, operating in the series-
resonant mode, is the basic frequency reference.
The crystal acts as a bandpass filter at the desired
frequency. It thus permits a portion of the signal
developed across the capacitive divider in the trans-
lator’s collector circuit to reach the emitter, in
proper phase to sustain oscillation. The output
from the oscillator state is coupled to a second
state, biased to operate as an over-driven amplifier,
and the shaped output of the second is used to
drive the synchronous counter chain.

Four 74S114 high-speed J-K flip-flops constitute
the clock counter. This is a synchronous configura-
tion, with the steering function obtained through
the use of external coincidence gates. A slight vari-

CNTR “A”

CNTR “B"

CNTR “C”

ation on conventional practice produces a fourth
stage output which is “displaced” with respect to
the outputs of the first three stages, by one full
period of the driving clock. In all other respects,
however, the counter resembles the familiar
modulo-16 synchronous counters in common
Idealized waveforms are shown in Figure 3-10.

The 2-MHz output of the fourth counting stage be-
comes the ¢y clock signal. Coincidence in the out-
puts of the third and fourth stages generates the
¢1 clock. As Figure 3-10 shows, this produces two
non-overlapping clock signals, with characteristic
pulse widths of 125 and 250 ns and separation
intervals of approximately 31 and 94 ns.

The ¢ and ¢, clock phases are applied to the in-
puts of an MHQ026 level shifter; the shifter out-
puts are then used to drive the 8080’s MOS-level
clock inputs (CPU pins 22 and 15).

CNTR “

1

l— 94 ns —p|g——— 125 ns ——P>]

31 ns j—

$2

)&

N -

250 ns

Figure 3-10. Oscillator—Counter Timing
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3.4.2 BUSCONTROL LOGIC

The Central Processor Module’s bus control logic
consists of two J-K flip-flops and miscellaneous
gating circuits. These are shown on sheet 2 of the
module schematic, Figure 3-19.

Bus contention is resolved on each occurrence of
the bus clock (BCLK) signal. BCLK/ is received at
bus pin 13, inverted and applied to the clock inputs
of the two 74109 J-K flip-flops (A20-12 and A20-
4), and one of the 74H74 D-type flip-flops (A21-
).

The J and Einputs to the first flip-flop are wired
to the halt status inverter (A32-8) and to pin 29 of
the auxiliary connector (J2). In configurations
with more than one “bus master” module, an ex-
ternal request (XREQST/) signal can be input
through J2-29. XREQST/ indicates that another
module requests use of the bus. If XREQST/ is
present and active (low), the flip-flop will reset
with the occurrence of BCLK. Otherwise, the flip-
flop sets. The Q output is inverted and driven
through bus pin 18 as BREQ/. When active, BREQ/
indicates that the CPU module requests use of the
bus. The bus request flip-flop is pre-reset by the
initialization (INIT/) signal.

When low, thea output of the second J-K flip-flop
enables an 8098 tri-state inverter to drive the bus
busy (BUSY/) signal (bus pin 17). When true,
BUSY/ indicates that the CPU module or another
master module has control of the bus. If BUSY/ is
not already active, the busy flip-flop will reset and
activate BUSY/ on the occurrence of BCLK, when
the following conditions are true:

(1) The bus request flip-flop is set and,

(2) The bus priority in (BPRN/) signal is true,
BPRN/ (bus pin 15) indicates that no
higher bus priority module is requesting the
bus.

The busy flip-flop is pre-set by the initialization
(INIT/) signal.

When the CPU module has control of the bus, the
Q output of the busy flip-flop (A20-7) enables the
selected (SEL) signal. In addition, this Q output
serves as the D input to a 74H74 section (A21-2).
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If BUSY/ is true, this D-type flip-flop sets with the
occurrence of BCLK. Unless it is set, the command
enable (CMDE)/) signal cannot be generated. This
provides a one cycle delay between address and
command outputs, during the CPU module recov-
very of the bus.

It is important that the CPU module not lose con-
trol of the bus while in the middle of a transfer.
Three D-type flip-flops [one 7474 (A10) and two
74H74’s (A8)] synchronize transitions of the
BUSY/ and SEL signals with the beginning of a
machine cycle (i.e., before transfers are initiated).
The first flip-flop sets on the negative-going edge of
¢, if SYNC is true (i.e., during the first state, T1,
of a machine cycle). The output of this section, in
turn, clocks the second flip-flop, the output of
which is gated through to the J input of the busy
flip-flop and the NAND gate that drives SEL. If the
CPU module loses control of the bus, this second
flip-flop resets. When the CPU module regains con-
trol of the bus, the third flip-flop is clocked by
SEL and, in turn, pre-sets the second flip-flop, thus
completing recovery of the bus control logic.

Whenever the CPU module relinquishes control of
the bus (SEL goes false), the 8080 CPU enters a
wait state. The absence of SEL, which feeds the D
input of one of the ready flip-flops (A7-12), pre-
vents READY from being generated. The lack of
an active READY input forces the 8080 into the
wait state. When the bus is regained, READY is
again enabled.

If it is necessary to guarantee that one or more
multi-byte transfers not be interrupted by loss of
the bus, an override function can be invoked by
the program (refer to Section 3.4.7). Execution of
an output instruction to address FE g controls the
override function. If data bit 0 (DO) is high when
the output to FEj4° instruction is executed, the
override flip-flop (a 7474 section) is set; OVER-
RIDE/ goes true. OVERRIDE]/ is gated through to
the J input of the busy flip-flop and the D input of
the second D-type section (A8-2). While OVER-
RIDE/ is true, the bus control logic is prevented
from relinquishing control of the bus. If data bit 0
is low when an output to FE;g4 is executed or if
the initialization (INIT/) signal occurs, the override
flip-flop resets; OVERRIDE/ goes false.



The bus control logic is primarily controlled by the
state of the bus priority in (BPRN/) signal. When
BPRN/ is true, the module can gain or retain con-
trol of the bus, and when BPRN/ is false, the mod-
ule will relinquish control of the bus, unless over-
ride has been invoked. BPRN/ may be generated by
a central parallel priority network; in the INTEL-
LEC MDS System such a network is included on
the Front Panel Control Module. BPRN/ may also
be generated and transmitted in serial. BPRN/ is
captured by the highest priority module requiring
control of the bus. Those modules that do not
require the bus accept BPRN/ and pass BPRO/ (bus
priority out) on to the next module on the bus.
Thus, a module’s priority is dependent on its rela-
tive position on the bus. To use the CPU module in
a general serial priority scheme, jumper pad 1-2
must be connected, tying BPRN/ to BPRO/ (bus
pin 16).

ACQUIRING THE BUS

Timine for the bus control logic is shown in Fig-
ure 3-11.

NOTE: Halt and interrupt cycles affect the bus control
logic in a unique manner. If the 8080 CPU enters
the halt state, the HLTA status line at flip-flop
A31 is gated to the J-K inputs of the transfer re-
quest flip-flop (A20), causing removal of the
XREQST signal. Consequently, control of the bus
is relinquished. Recovery from this state is achieved
only by interruption of the 8080 CPU. The halt
status gate (A3-6) allows the 8080 to receive a
ready input for processing of the interrupt instruc-
tion, regardless of bus control status. The CPU
then makes a transfer request and bus operations
are restarted after bus recovery.

3.4.3 INSTRUCTION FETCH AND MEMORY
READ

An instruction fetch and any other memory read
cycle appear the same to the peripheral logic. Only

RELINQUISHING THE BUS

BCLK/ ‘ l_sg...l ‘ ‘ L
r —— —_—_————— 55—
| I
XREQST/ ol - — —_—— e — == | EITHER WILL
CAUSE LOSS
___I \ N OF THE BUS
BPRN/ Q) - G — —J
BPRO/ 3
BREQ/ ) ) £S
”J
BUSY/ ﬁ —55
*J
) Y of o
2
SEL —_F
92
SYNC

Figure 3-11. Bus Control Logic Timing
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the 8080 distinguishes between the two. Status bit
7 (MEMR) is generated by the 8080 for both types
of cycles. While status bit 5 (M1) is only generated
during an instruction fetch, the peripheral logic
does not examine this bit, so it is not aware of the
difference. Consequently, the following description
of how the peripheral logic responds to a memory
read, also applies to an instruction fetch. Refer to
Section 3.3.2 for a complete discussion of how the
8080 CPU distinguishes between the two types of
cycles.

During state T1, the 8080 processor transmits a 16-
bit address on its lines (AO—A15). Assuming that
the CPU module has control of the system bus
(i.e., if SEL is true), the 16-bit address passes
through the 16 tri-state inverters (which are en-
abled by ADEN/) and is presented to the external
memory. Information placed on the address bus
remains stable until the T4 internal processing
state.

Status information is also broadcast during the T1
state, on the processor’s eight data lines (DO—D7).
The eight status bits are buffered by an 8212 de-
vice and passed to the CPU module’s command
generation logic (see sheet 2 of the module sche-
matic, Figure 3-19). During any memory read cycle
(i.e., instruction fetch, stack read or memory read),
the MEMR status bit (D7) is true. The status infor-
mation remains stable for one clock period, during
which SYNC is also active.

If MEMR (D7) is true and the HLTA (D3) status
bit is false (i.e., the 8080 is not halted), the mem-
ory read latch in the command generation logic
sets on the rising-edge of the first ¢; pulse after
SYNC is issued. The Q output (MRDC/) is made
available (from pin 19) to external memory via an
8095 non-inverting driver. MRDC/ is the memory
read command.

The processor issues DBIN in the latter portion of
state T2; DBIN remains stable until the latter por-
tion of state T3, even if one or more wait states
intervene between T2 and T3.

When memory responds to the MRDC/ command
by placing the addressed data byte on the bus, it
issues an external acknowledge (XACK/) signal
which is received at pin 23 on the CPU module.
XACK/ enables the generation of READY on the
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rising edge of the next ¢ pulse. The 8080 proces-
sor will advance to state T3 only after READY
goes true. If XACK/ is not returned prior to T2-¢5,
one or more wait states will occur between T2 and
T3.

A special provision has been implemented that
allows the 16K RAM Module to be accessed with-
out necessitating a wait state, even though the
RAM Module is not capable of returning XACK/
by T2-¢,. Because the RAM Module is fast enough
to have stable data on the bus by the beginning of
state T3 (as required), the RAM Module has been
designed to generate an advanced acknowledge sig-
nal (AACK/), that anticipates having the data
ready in time. The presence of AACK/ (pin 25)
allows READY to be generated early enough in T2
to prevent the occurrence of a wait state, thus
greatly increasing the efficiency of the RAM
Module.

DBIN gates the data byte (on lines DAT®/—DAT7/)
through two 8226 parallel bidirectional bus drivers
and into the 8080. The trailing edge of DBIN resets
the memory read (MRDC/) latch.

Memory read timing is shown in Figure 3-12. The
diagram illustrates the use of XACK/ with a single
wait state, as well as 8080/ without a wait state.
READY is generated by the first acknowledgement
to appear (also refer to NOTE at the end of Sec-
tion 3.4.4).

3.44 MEMORY WRITE

A memory write cycle proceeds in much the same
fashion as a memory read. During state T1, the
8080 processor transmits a 16-bit address. Assum-
ing that the CPU module has control of the system
bus, the 16-bit address is presented to external
memory via 16 enabled tri-state inverters.

Status information is broadcast during state TI,
over the eight data lines. During memory write
cycles, all status bits are low. The low levels on
data lines 1 and 4 (status bits WO and OUT, respec-
tively) are gated through to the D input of the
memory write latch causing the latch to set on the
rising edge of the first ¢; pulse after SYNC is
issued. The Q output (MTWC/) is made available
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Figure 3-12. Memory Read Timing

(from pin 20) to external memory via an 8095
non-inverting driver. MTWC/ is the memory write
command.

At the end of state T2, the processor places the
data byte on the data lines and, subsequently, is-
sues WR/. The data byte and WR/ remain stable
through state T3 and any intervening wait states.
The absence of DBIN enables the data byte through
the two 8226 parallel, bidirectional bus drivers.
The absence or presence of DBIN dictates direction
for the 8226 bidirectional drivers during all data
bus transfers.

When the memory device accepts the data, it issues
XACK/ which enables the generation of READY
on the CPU module. If XACK/ is not received prior
to the rising edge of ¢, during state T2, one or
more wait states will be required before the proces-
sor can advance to state T3.
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As we mentioned in the previous section, memory
references to the RAM Module proceed somewhat
differently. To fully utilize the RAM’s fast access
time, the module anticipates accepting data and
issues an advanced acknowledgement (AACK/)
which eliminates the need for any wait states. The
AACK/ signal (pin 25) enables READY during
state T2.

The trailing edge of the write strobe (WR/) resets
the memory write (MWTC/) latch.

Memory write timing is shown in Figure 3-13.

NOTE: The timing for memory read and write cycles (Fig-
ures 3-12 and 3-13, respectively) is compatible
with the INTELLEC MDS Bus specifications, with
two exceptions. These exceptions are included to
allow the 8080 processor to run at full speed for
memory read and write operations. Neither of the

exceptions severly limit the flexibility of the
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module. In fact, they may be optionally overrid-
den* to achieve full compatibility with the bus if
speed is not critical.

The exceptions cited above are the use of an ad-
vanced acknowledge (AACK/) and the delay to
stable data during a memory write operation
(tpp). Both stem from the manner in which the
READY input is sampled by the 8080 CPU. The
MDS Bus specification requires that an acknowl-
edge be returned only if the “slave” device has
both received a command and completed the

13

*The jumper labeled “advanced write” must be moved
from a D-C connection to an E-D connection and the
AACK/ line must be disabled on the CPU or memory
modules.
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necessary data transfer. The 8080 CPU, however,
samples its READY input prior to generating the
leading edge of its two basic commands, DBIN for
read and WR/ for write, If DBIN and WR/ are used
as memory commands, the first 8080 READY
sampling will find an MDS slave device ‘“not
ready” since the command has yet to reach the
bus (see Figure 3-13). The consequence would be
an unavoidable 500-ns delay, regardless of the
“slave” device’s response time. This may result in
up to a 33% and 14% decrease in the operating
speeds of memory read and write operations,
respectively.

To avoid this degradation, commands are initiated
earlier in the cycle (i.e., MRDC/ and MWTC/ pre-
cede DBIN and WR/, respectively), and the ad-
vanced acknowledge (AACK/) is allowed. This
permits a “‘slave” device to return a ready condi-
tion earlier than the 8080 CPU’s sampling point.



3.45 INPUT/OUTPUT

Input and output cycles, like other types of ma-
chine cycles, are identified by a unique combina-
tion of status bits that appear on the eight data
lines during state T1, coincidentally with SYNC.
Input cycles are indicated by a high level on data
line 6 (INP); output cycles by a high level on data
line 3 (OUT).

INP is applied to the D input of the I/O read latch.
During input cycles, the latch sets on the rising
edge of the first ¢; pulse after SYNC. The Q out-
put (IORC/) is made available (from pin 21) to all
external devices via an 8095 non-inverting device.
IORC/ is the I/O read command.

As we described in the previous section, the OUT
and WO status bits are applied to the inverted in-
puts of a 74S02 gate that feeds the D input of the
memory write latch. During memory write cycles
the low levels on OUT and WO enable the latch to
set.

During output (I/O write) cycles, however, the
high level on OUT prevents the latch from setting.
The high Q output, instead, feeds a 74H00 NAND
gate. On the rising edge of the write strobe (WR),
the gate is activated and the resulting output
(IOWC/) is made available (from pin 22) to all ex-
ternal devices via an 8095 non-inverting driver.
IOWC/ is the I/O write command. Because IOWC/
is dependent on the presence of WR (which does
not occur until after state T2), all output cycles
will incur at least one wait state regardless of
device speeds.

The 1/O device to be accessed is identified by an 8-
bit address that is duplicated on address lines
AO—A7 and A8—AlS5 during state T1. Assuming
that the CPU module has control of the system bus
(i.e., if SEL is true), the 16 address lines are en-
abled through 16 tri-state inverters and presented
to all external devices. The address lines remain
stable until state T4.

During input cycles, the 8080 issues DBIN in the
latter portion of state T2; DBIN remains stable
until the latter portion of state T3, even if one or
more wait states intervene. DBIN is subsequently
used to strobethe input data into the 8080.

During output cycles, the processor issues WR/ at
the beginning of the first wait state. WR/ remains
stable through state T3 and all of the wait states
that precede it. Just prior to generating WR/, the
processor places a data byte on the data lines. The
absence of DBIN during output cycles enables the
data byte through the two 8226 parallel, bidirec-
tional bus drivers and out onto the system bus.

When the addressed I/O device responds to the
IORC/ or IOWC/ command by inputting a data
byte on the data bus or by accepting the data out-
put by the processor, the I/O device returns an ac-
knowledgement (XACK/) signal to the CPU
module.

XACK/ enables READY which, in turn, allows the
processor to proceed with state T3.

During output cycles, the processor maintains
stable levels on the WR/ and data lines through
state T3. IOWC/ goes inactive with the trailing
edge of WR,

During state T3 of a input cycle, DBIN gates the
data byte through the two 8226 parallel, bidirec-
tional bus drivers and into the 8080 processor. The
trailing edge of DBIN resets the I/O read (IORC/)
flip-flop.

I/O timing is illustrated in Figure 3-14.

3.4.6 INTERRUPTS
The interrupt logic for the Central Processor Mod-

ule is shown on sheet 3 of the module schematic,
Figure 3-19.

A device requests an interrupt by pulling one of
the eight interrupt level request lines (INT(/—
INT7/) low. The request is applied to one of the
inverted inputs of a 7432 negative-NAND gate. The
other gate input is furnished by one of the outputs
of an 8212 latch/buffer. This 8212 stores the
program-controlled interrupt mask (see Section
3.4.7). Unless the interrupting level has been
masked out (i.e., disabled), the interrupt request is
gated through the 7432 section and applied to the
appropriate priority request input of a 3214 inter-
rupt control unit. The 3214 latches the request(s),
resolves priority among simultaneous requests, and
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issues an inverted 3-bit binary-encoded output
(A0—A2) that reflects the highest priority request-
ing level. The three encoded bits (INTV3—INVTS5)
are applied to one of the 8212 latch/buffers that
drive the data bus into the processor. The level
indicator bits are also available to external modules
via auxiliary connector pins P2-52, 50 and 48. In
addition, the three bits output by the 3214 are in-
verted and applied to the data inputs of a 3101
RAM element. The 3214 also uses the 3-bit level
indicator internally (see Figure 3-15). The three
bits are fed into the 3214’s priority comparator
where they are compared with the interrupt level
currently being serviced. If the requesting level is

of higher priority than the current level (as indi-

- cated by the output of the 3214’s current status
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latch), the 3214’s INT ACK FF sets on the leading
edge of ¢;. The INT ACK FF output is inverted
(IMB) and applied to the pre-set input of a high-
speed D-type latch (Al1-4). The output of this
latch (INT) is fed directly into the 8080 proces-
sor’s interrupt input. The INT ACK FF output also
pre-sets the INT DIS FF within the 3214, thus pre-
venting any new interrupts until after the 3214’s
current status latch has been updated. If the re-
questing level had lower priority than the current
level, the new request would have been ignored.
Table 3-5 lists relative interrupt level priorities.
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Table 3-6

INTERRUPT LEVEL PRIORITIES

EXTERNAL INTERRUPT
MNEMONIC | PIN (1=DISABLE)

[} INTQ/ 41 Highest 0 D000 Bit @

1 INT1/ 42 2 1 PPs Bit 1

2 INT2/ 39 3 2 0019 Bit 2

3 INT3/ 40 4 3 0018 Bit 3

4 INT4/ 37 5 4 0020 Bit 4

5 INTS/ 38 6 5 0028 Bit 5

6 INT6/ 35 7 6 0039 Bit 6

7 INT7/ 36 Lowest 7 0038 Bit 7

After completing the machine cycle in progress,
the processor acknowledges the interrupt. This it
does by entering an alternative interrupt machine
cycle, instead of proceeding directly to the next
instruction fetch. As we explained in Section 3.3,
the processor does not increment the internal pro-
gram counter as it normally would. Consequently,
the logic sequence of the interrupted program is
maintained. When the interrupt has been serviced,
the interrupted program can be resumed with no
loss of continuity.

During state T1 of an interrupt machine cycle, the
processor issues an INTA status bit over data line 0.
INTA uniquely identifies the cycle as an interrupt
machine cycle.

INTA (D@) is applied to the D input of a D-type
latch within the command generation logic (sheet 2
of the module schematic). The simultaneous occur-
rence of SYNC and ¢, clocks the latch set. The re-
sulting output (INTA/) generates local acknowl-
edgement (LACK/) and disable bus (DISB/) signals
and increments a 74191 counter whose four out-
puts serve as the address for the 3101 RAM ele-
ment. LACK/ enables the READY flip-flop. In the
event that the CPU module does not have control
of the bus when an interrupt occurs, the output of
gate A3-6 enables READY (A7-8) for the interrupt
cycle only. READY, in turn, allows the 8080 proc-
essor to proceed from state T2 to state T3. LACK/
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is necessary because no external device returns an
external acknowledgement (XACK/ or AACK/)
during interrupt cycles. DISB/ disables the two
8226 bidirectional bus drivers so that random data
on the external bus does not interfere with the
Restart instruction (RST) that is forced onto the
8080 processor data lines (by an 8212 I/O port)
during state T3.

At the end of state T2, the processor issues DBIN
in anticipation of accepting the Restart (RST n)
instruction. Recall that the three level indicators,
INV3—INVS, were applied to the inputs of an
8212 I/O port. The other five inputs are tied to +5
volts. Consequently, the eight inputs to this 8212
device constitute the machine code for a RST n
instruction (11 NNNI111), where NNN are the
three encoded interrupt vector bits. The simultane-
ous occurrence of DBIN and INTA/ enables the
8212 section, which, in turn, furnishes the proces-
sor with the RST n instruction. The processor
branches to the instruction whose address is eight
times the value of NNN (see Table 3-5).

The presence of DBIN and INTA/ also allows for
updating of the current status latch within the
3214 interrupt control unit and the nested priority
table that is stored in the 3101 RAM element.
Recall that the three interrupt level indicators were
applied to the data inputs of the 3101 RAM device
and that the address inputs to the 3101 (from the



74191 counter) were incremented with the issu-
ance of INTA/ at the beginning of the interrupt
machine cycle. When DBIN appears, it, in conjunc-
tion with INTA/, strobes the write enable input to
the 3101 RAM, causing the interrupt level indi-
cator to be written into the nested priority table.
This level indicator value subsequently appears on
the RAM output lines, which are applied to the
current status latch inputs of the 3214 interrupt
control unit. DBIN and INTA/ enable this new
interrupt level indicator value into the current
status latch (refer to Figure 3-15). If another inter-
rupt request is received, its priority level will be
compared with the updated value now in the cur-
rent status latch. ~

After servicing an interrupt request, it is the re-
sponsibility of the interrupt service routine to
restore the nested priority table in the RAM and
the current status latchin the 3214 to their former
values. This can be accomplished by executing an
I/O write (output) instruction to port FDyg.

It should be noted here that the interrupt mask we
referred to earlier can be examined and/or updated
by executing an I/O instruction to address FCjg.
The detailed explanation of these three special
internal control cycles, however, is postponed until
the next section where we will deal with all such
special program-controlled operations.

Interrupt timing is shown in Figure 3-16. Notice
that the rising edge of the interrupt request input
to the 8080 (INT) is referred to the ¢ clock pulse
and that INT is not reset until DBIN and INTA/
are encountered, thus ensuring that, if interrupts
are enabled, the 8080 will recognize the interrupt
request after the current instruction is executed.

NOTE: The current interrupt logic is implemented with a
combination of standard TTL logic, and the 3214
interrupt control unit, but will be completely re-
placed by a new INTEL LSI device, the 8259, at a
later date. This will result in a major reduction in
the complexity of the module, but some incom-
patiblities may exist. The software can be made
independent of these incompatibilities, if appro-
priate steps are taken now in anticipation of future
changes.

During interrupt operations, the following differ-
ences exist:

1. When using the 8259 device, a 3-byte CALL in-
struction will replace the 1-byte restart (RST)

instruction, but the same interrupt vector ad-
dresses will be used.

(O]

. When using the 8259, a lockout of further in-
terrupts will occur at the onset of an interrupt
acknowledge from the 8080 (INTA). The cur-
rent logic performs the lockout on acceptance
of the first interrupt. A difference of up to 4-
us may develop, but is considered to be incon-
sequential to any real-time application envi-
sioned for this module.

During initialization, a programmed startup proce-
dure is required. Initialization of the current logic
requires a system reset (external input) and an out-
put to the mask register (port ‘FC1¢’). The 8259
device, to be used in the future, will require a pro-
grammed resef in addition to the system reset. The
sequence required consists of outputting a data
byte equal to ‘1214’ to port ‘FD1¢’, followed by
an output of ‘00’ to port ‘FC’. If this operation
precedes all other interrupt operations, the opera-
tion of the current logic will not be affected. The
following sequence may then be used to initialize
both current and future implementations of the
interrupt logic:

MVI A 12

ouT FD
MVI A, 00

ouT FC

When using an 8259 device, interrupt servicing
must include restoration of the previous operating
level before a return to the interrupted program.
The restoration is achieved by outputting a spe-
cific byte to I/O port ‘FD¢g’ (the specific byte is
an 8259 requirement). During execution of the
output instruction, the interrupts must be disabled
to avoid further interruption at the serviced level
before the return can be completed. This could
result in stack overflow. An example of an ac-
ceptable termination sequence is given below:

DI

MVI A, 20
OUT FD
POP PSW
El

RET

Because of the full nesting capabilities of both cur-
rent and future designs, interrupts may be enabled
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as a service routine is entered. An example of a ser-
vice routine that saves and restores all of the CPU
registers is given below-

ElI

PUSH PSW

gggg g Save all registers
PUSH H

POP H

POP D Restore registers

POP B

DI Disable interrupts
MVI A, 20 Restore previous operating
ouT FD level and restore A and
POP PSW Flog register

EI Enable interrupts

RET Return

3.4.7 SPECIAL INTERNAL CONTROL CYCLE

The Central Processor Module has provisions for
performing special internal control operations by
executing I/O instructions to dedicated addresses

(FCj¢ to FE1¢). The internal operations are:

(1) Define and store interrupt mask. To define
and store the interrupt mask, an 8-bit data-
word should be output to port FCg (OUT
QFCH). Each of the 8 bits correspond to
one of the eight interrupt levels. If the bit
for a particular level is a ““1”°, that level is
disabled. The 8-bit interrupt mask is stored
in an 8212 latch within the interrupt logic
(see sheet 3 of the module schematic, Fig-
ure 3-19). Also refer to the NOTE at the
end of Section 3.4.6.

(2) Read the interrupt mask. The 8-bit inter-
rupt mask stored in the 8212 latch is gated
through another 8212 section and input to
the 8080 processor when an input instruc-
tion to address FCig (IN QFCH) is exe-
cuted.

(3) Restore interrupt priority level. Recall that
the 3-bit level indicator for the interrupt
currently being serviced is pushed onto the
nested priority table in the 3101 RAM ele-
ment and stored in the 3214 interrupt con-
trol unit’s current status latch. After servic-
ing an interrupt, the program must restore
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the nested priority table and the current
status latch by executing an output instruc-
tion to address FD1¢g (OUT $FDH). Execu-
tion of the OUT (FDH instruction decre-
ments the 74191 counter that addresses the
3101 RAM and enables the new 3-bit level
indicator that is output by the RAM into
the 3214’s current status latch. Thus, the
interrupt logic is restored; that is, it is now
capable of responding to the next interrupt
request. Also refer to the NOTE at the end
of Section 3.4.6.
(4) Override loss of the bus. If it is necessary to
quarantee that the CPU module not lose
control of the system bus, the override
function can be invoked by executing an
output instruction to address FEg (OUT
@FEH). If data bit 0 is a “1” when OUT
QFEH is executed, the override flip-flop is
set; OVERRIDE]/ goes true (refer to sheet 2
of the module schematic, Figure 3-15).
OVERRIDE/ is gated through to the J in-
put of the busy flip-flop. While OVER-
RIDE/ is true, the bus control logic is pre-
vented from relinquishing control of the
bus. If data bit 0 is a “0”’ when OUT QFEH
is executed, or if the initialization (INIT/)
signal occurs, the override flip-flop resets
and OVERRIDE/ goes false. The CPU
Module must reset the override capability
when it is finished with exclusive use of the
bus, by executing an OUT QFEH instruc-
tion with data bit 0 equal to “0”.

The special control operations proceed exactly like
a normal I/O cycle, with the following exceptions
(refer to sheet 1 of the module schematic, Figure
3-19):

e The address lines are decoded by logic on the
CPU module. If one of the dedicated addres-
ses is detected, a 3205 decoder issues one of
the following signals: FD, FC or FE/, indicat-
ing the address. These signals are used, in con-
junction with IOWT/ or IMASK/, to effect
the desired control operation. IOWT/ merely
specifies that an output instruction is being
executed; it is referred to the write strobe
WR/. IMASK/ indicates that an input instruc-
tion is being executed; it is referred to the
input strobe DBIN.



e [f a dedicated address is detected and IOWT/
or IORD/ occur (indicating a special internal
control operation), a local acknowledgement
(LACKY/) signal is generated. LACK/ performs
the same function as either of the external
acknowledgements, XACK/ or 8080/. Because
no external device responds to any of the ded-
icated addresses, LACK/ must be generated to
enable READY and allow the processor to
proceed to state T3.

Because no data is actually being transferred
to/from the CPU Module during special con-
trol cycles, it is important that the two 8226
bidirectional bus drivers that gate data on/off
the external data bus be disabled during these
special operations. If an I/O instruction to
hexadecimal address FC, FD or FE is exe-
cuted, or if the interrupt status bit (INTA/) is
true, the disable bus (DISB/) signal is gener-
ated. DISB/, as its name implies, disables the
two 8226 bus drivers by driving the chip
select (CS) inputs inactive (high).

Timing for the internal control cycles is shown in
Figures 3-17 and 3-18.

3.4.8 CENTRAL PROCESSOR MODULE SCHE-
MATIC

Figure 3-19 provides a complete schematic drawing
(4 sheets) of all logic on the Central Processor
Module.

3.5 UTILIZATION: CENTRAL PROCESSOR
MODULE

This section provides information on utilization of
the Central Processor Module outside of the IN-
TELLEC MDS System.

3.5.1 INSTALLATION

In installing the Central Processor Module, the user
must take account of:

(a)
(b)
()
(d)
(e)
63

environmental extremes
mounting considerations
electrical connections
power requirements
signal requirements
jumper connections

10RC/

LACK/

READY

Dis8

DBIN

IMASK/

]

::X MASK DATA IN X::

ADDRESS=FC1g

Figure 3-17. Read Interrupt Mask Control Cycle Timing
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Figure 3-18. Internal Control (Output) Cycle Timing
Environment Mounting

Temperature extremes can cause instability, or
result in permanent damage to the circuits on the
module. Ambient temperature must, therefore, be
maintained within the limits of 0° to 70° Centri-
grade. Exercise caution in locating the module, giv-
ing particular attention to radiant and conducive
sources of heat. Remember that the module itself,
when installed, will contribute some heat to the
environment. Maintain an adequate clearance, to
permit the convective dissipation of heat from the
elements on the card.

Relative humidity should not exceed 90%, non-
condensing.
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Avoid locating the module near vibrating machin-
ery. Exposure to prolonged or violent vibration
may cause fatigue or impact failure of connections
on the board, resulting in abnormally high noise
levels or outright failure of the assembly.

Dimensions of the module are 12-in. X 6.75-in. Be
sure to allow enough additional clearance to ensure
adequate cooling.

The module is designed to plug directly into two
standard double-sided PC edge connectors; one an
86-pin connector, the other a 60-pin auxiliary con-
nector. The connectors will serve as a mounting, as
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