ISIS: Anatomy of a Real-World

by Perry C. Hutchison
Computer Scicnce Department
Jowa Stzate University

Ames, 1A 50010

Dear Jim: : Recendd: 77 Dec 23
J am enclosing a sort of “intemal logic manuel™ for Intel’s
ISIS system. This all sterted some months ago wien I became
the victim of a persistent “data CRC™ error on the MDS which
could not be reproduced on envihing else. Several phone calls
to Intel produced only the claim that, by the tine the error
message came out, the information as to what track and sector
were involved was no ionger cvailable anywhere in the
machine. . This sounded rather preposterous, so 1 went
e-hunting. About 2 weeks’ work, spread over a considerably
longer period, yielded the discoverics contained in this write-
up. Since 1 don't suppose I am ell that unique in needing 1o
debug things in the context of ISIS, 1 decided to wnite it up
Jor publication. It will probably be fairly interesting to &0&D
{and Z-80) heekers, even if they don’t have access to an MDS.
The 1SIS disk allocation and directorv policies would make
an excellent standard for floppy disk file systems.
This article may also be uscful as context for Max
¢zoston’s RIMOS (DD) 9/77).

Very truly yours,
Perry C. Hutchison

ISIS (Intel Systems Implementation Supervisor) is the
floppy disk operating system: developed by Intel Corporation
for the Intellec MDS microcomputer system. I1SIS was written
entirely in PL/N, adialect of PL/] oriented to the 8050 micro-
processor. The ISIS system is exceptionally well desiened: it
bears significant resemblance to Bell Labs’ UNIX operating
system for the PDP-11. .

Intel has released neither the source code nor any internal
documentation concerning ISIS. Since a knowledge of the
internal workings of such systems is occasionally needed if
they are to be utilized to the full extent of their capabilities,
2 study of the object code was undertaken. This document
contains the principal findings of that study. It should be
uscful both as a reference for use by persons heving occasion
to deal with the intemals of the ISIS system and as an cduca-
tional example of what really gocs on in a small single-user
operating systent. Names used are taken from the published
_ISIS docuinentation where appropriate.

The information contained herein has been derived from an
examination of the obicct code of Version 1.2 of 32K ISIS,
teceived in August, 1976. (The same disk also contains Version
1.1 of ASMSO0, 1.3 of EDIT, 1.1 of UPM, and 2.0 of ICEEQ.)
Except where a2 more genceral applicability is specifically
staled, this information should not be expected to apply to

¥ other version of ISIS.

"It is probablz that, despite thorough checking, some errors
will be found in this prescntation. The author would
appreciate being informed of them. '

¢ ” Dr. Dobb's Joutna! of Computer Calisthenics & Orthodontis, Box E, Menlo Park, CA 84026

Operating System

Environment

ISIS operates in the Intellec MDS microcomputer system,
and uses the facilities of the MDS Monitor ROM (which
occupics addresses F800H- FFFFH) to communicate with
character-oriented peripheral devices (ie. everything but the
disk). Table 1 lists the cntry points and functions of the
principal Monitor routines. Parameters and returned values are

" handled as in PL/M — sce the discussion below. (There are,

of course, additional subroutines in the ROM, but an assembly
listing of the ROM is included with the MDS and anyone
interested in its internal workings can look it up. ISIS uses.
no Monitor entry points other than those listed in Table 1)

A detailed description of the MDS disk controller is
contained in the Intel MDS-DOS Hardware Reference Manual
and will be only brictly summarized here. The controller
occupies 1/0 ports 78H - 7FH, and is controlled principally
by a program-generated “1fO Parameter Block™ (IOPB) in
memory. The address of the I0PB is supplied to the controiler
by outputiing s Jow and high bytes to output ports 79H and
7AH. The 1OPB identifies the drive, the operation to be
performed, the sector count, the track address, the starting
sector address, and the starting memory address for reading
or writing. The disk controller contains a DMA controller
which is used for reading the 10PB as well as for transfesring
data. '

L

Organization .

ISIS consists of some 57 PL/M procedures, including 8
which merely provide access to the Monitor ROM. The
remaining 49, plus two compiler-generated subroutincs, are
listed in Table 11; Figures] and 2 depict the caller-called
relationships. (Many of the routinas of Fig. 1 call one or
more routines of Fig. 2, but the spaghetti effect would render
a combined drawing incomprehensible.) The heavy lines in
Fig. 1 lead to routines which directly correspond to and
implement the various ISIS system calls. (The procedures
ERROR and XEQIOPB arc actually Fig. 2 routincs, but the
direct calls to them from ISIS are shown in Fig.] for com-
pleteness.) -

Table 11 should be larpcly self-explanatory, with the
exception of a few abbreviations and notational conventions.
The second column contains the Entry Point address of the
procedure. The columns labeled “T™ signifly the Type of the
associated quantity: A (Address) denotes 2 16-but \'JIUC.'B
(Byte) an §-bit value, and L (Logical) a Byte valuc vsed in
a True-False scnse. (An odd value is taken as Truc, an even
value as Falsc) The column labeled “ADDR™ is used for
two related purposes: in the case of procedurcs which have
parameters, it gives the memory address at which each
parameter is stored: in the case of non-parametric procedures

~ it pives the address at which the first of that procedure’s

local variables is stored. (Local vanables of parameinc pio-
cedures are stored nnmediately followang the 1ast parameter.)
A dash in this column signizies that the procedurc has no local
vatiables and, except in the case of the compilcr-generated

. subroutincs, no parameters.

Number 21

Alsar T4 R

perenE

.
X7
2524

LOAD ATTRIB | RENAME et LONSOLF. .

e, ———-L___._ e - -
LTWEDC 221C 1870 | 1aE8 s ne?
Ridh .
011

e
OFDO

CLOSE OPIN
_— ——
. 1BFF 1095
hasean oL [} A LIRS X4 TH
1278 Rtlal SCRATCH cITrx
. 1713 1837 0832
_ Car K-
o CANON :
T ; K VRITE
SEEK, YRITE 085 .
1210 : 0F12
L D R coriPu2E o Mo TELATO ATo R
o ' ° B8
. . . ‘ il 25
Figure 1. High level ISIS Procedures. 1280) 0643 .
° ’ The conbining of ATTRIB and RENAME is 3 clutter-reducing notational :omrenien:e Saving. no special
significance, Both call the samc three subroutines.

DIRIOLOE RW

e F10
m 0818
Prexner BOF
X BorT 3
PACKBUTS FREE3
- / 0415 1
Tadzy AokT [
. LOBUF ~FRECT
A cponb Trasec " 0418 1042
B 0658
AbPsSTo &1 03J
CETBUT "\ FREEBUF
0216 0251
&r& KXo — XEOIOFS
. 0314 .
Figure 2

Lov Ltni 1515 snl Moniter Procedures,

ppel e’
v eAR

- 13 rt\‘B
% $INASC DIVIDE
N [A L] 4
' 6093 - OODA 7 S .

ct | 34 105X (<:] ro Lo MENC
0063 | .| over 0087 118 007) o (113
1803 reve - 1818 rsoe reoc reor R Feid

e Nakh's Journal of Computer Caiisthanics & Orthodontia, Dox E, Menlo Park, CA 04025

v .

Wher one procedure is entircly contained within another,
the table entry for the inner procedure immediately follows
that for the outer one and the inncr pame is indenicd two

spaces. _ .

*Data Strucfures

One of the principal ‘motivations for this study has been the
desire to obiain information of diagnostic uscfulness. To that
end, Table IH presents a list of memory addsesses whose con-
tents may assist in diagnosing troubles. In addition, parameter
values in active procedures may be usciul. A traceback of
procedure calls is fairly casily obtamed from the stack, since

entries other than retum addresses arce rare. The locations of

the paramneters may then be found from Table 1.

The central in-memory data structure of 1SIS is the File
Structure, located in memory addresses 29E5 through 2B1B
inclusive and summarized in Table IV. The File Structure
consists of 18 1ables. cach containing 10 entries; each table
has associated with it a “current pointer” which contains the
address of the entry in that table which pertains to the current
file (whose table index may. in turn, be found in 29E5). The
first two cntrics (numbered O and 1) in cach table always rcfer
to the directories of disks 0 and 1;in a sense the directorics are
always open, although they do not always have buffers allo-
cated. Entries 2 and 3 are the console files :CO: and :Cl:. This
leaves entrics 4 through 9 fer the six files which a user
program may have open.at any onc time. Each open fie
corfesponds to onc entry in each table, but most of these
entrics are unused if the file is not on a disk.

- The parameter AFT which many of the 1SIS procedures
require is simply a number in the range of O to 9'identifying
a sct of entries in the tables of the File Structure. This differs
from the AFTN supplicd by the user (and retumed by OPEN)
in that AFT = AFTN + 2.

The 1.V. (Initial Value) shown in Table 1V is the value
which appears in the particular File Structure member for a
disk file which has just been opened.

"Disk Layout V :

*The principles of the 1SIS disk organization were rather
well described by David Yulke in the Doecember 1977 issue
of Kilobaud (2though he didn’t mention ISIS by name),
but will be included here for completeness and to provide
additional details.

In ISIS, cvery disk sector falls into one of three groups:
Data blocks, Linkage blocks, and Free blocks: this statement
applics to system data as well as to user files. An ISIS file
sonsists of Linkage blocks and Data blocks. Data blocks
contain the bytes which compose the file, while Linkage
blocks (Yulke calls them Map blocks) tell how the Daia
blocks are to be linked together. The first two byites of a

Linkage block contain the disk address of this file's preceding

Linkage block (zero if this is the first). All disk addresses
in ISIS are stored as a Block Number and 3 Track Number.
Tsacks are numbercd from 0 to 76 and the blocks of each
track are numbered from 1 to 26. The next two bytes contain
the disk addicss of the following Linkage block. The rertaining
324 bytes contain the disk addresses of up to 02 data blocks.
Every 1SI1S-format disk contains four system files,
collectively referred 1o as the Fonmat files. These nay be
opened for input and read just like any other idile, but may

never be writien into {except by special system routines). -

Tables VI and VIl bst the Fonmat files and describe their
contents.,

The system does not always bother 1o look the Format
files up in the dircctory: it assumes that their locations are

Page 12

Dr. Dobb's Journa! of Computer Calisthenics & Orthodontia, Box E, Menlo Psrk, CA 24025

known. Thus the first Linkage block of the directory itself is
always assumed to be Track) Block 1, and the Data blocks of
the Allocation Bit Map arc assumed to bhe Track 2 Blocks 2
and 3. The boot ROM expects to find the System Initialization
Program starting at Track 0 Block T and occupying as much of
Track 0 as may be needed; the System Imitialization Program
then assumies that the first Linkage block of the file ISIS.BIN
{which contains the system proper) will be found at Track 2
Block 4.

Secret “XEQIOPB™ System Call

The XEQIOPB system call is not described in the published
ISIS documentation. lts “command™ valuc is 68 decimal
(44 hex); the “paramcicr block™ must contain the following
3 words: 534BH, drive, .iopb (whese drive is 0 or 1 and .iopb
is the memory address of -the 10PB to be exccuted). This is
presumably intended to be used by programs like FORMAT
which need to perform disk operations not nceded by
“normal™ programs. The 10PB is to he set up as if it were to
sun on drive 0, regardless of which dnve is specified; XEQIOPB
takes care of inscrting the drive identification in the proper
places. Normal system handling of disk errors is provided.
Noie that this call bypasses all directory accessing, file map-
ping, and protection flags, and must thercfore be tised only
with extreme caution. One possible use would be in a program
which does a sector-for-sector copv of a disk. This would be
much faster than FORMAT SA since the nommal disk alloca-
tion mechanism involves considerable overhead. Such 2
program could even copy a non-ISIS disk, e.g., DEC RT11,
CP/M, etc., if needed.

Similar calls exist in Version 1.6 of 16K 1SIS {the 534BH
entry in the parameter block is not examined. but the drive
2nd the JOPB address are still taken from the second and third
words) and in Version 2.2 of ISIS-II (the parameter block
contzins only the drive and the 10PB zadress — the 534BH is
omitted); however since this is an unpublished feature, any
program using it must be considered svstem-dependent. The
-possibility txists that such programs will not work with some
future version of 1SIS.

User-Program Use of ISIS Procedures

A uvser program may occasionally need to perform a proces-
sing task similar or identical to that performed by one of the
ISIS procedures. In such a case. it may be desirabic to call the
system routine rather than having to write and debug code to
perform the same function. In order to do this, a few details of
the implementation of PL/M must bc undesstood.

Up to two parameters of a procedure are passed in via
registers. (The first thing a parametric procedure does is to
store the approprate registers into the memory locations
reserved for those parameters.} A procedure having one para-
meter will expect the paramecter to be in the C reguster (if a
Byte) or in the BC register pair (if an Address). It there are
two or more paramcters, the last will be in the E (or DE) and
the next-to-last will be in the € (or BC). The CALLER must
store all other parameters into the proper memory locations
before the procedure is entered. (This sounds messy. and it is.
Newer PL/M compilers pass extia paramciers on the stack,
which is much nicer.)

A procedure which retums a Byte value will return it in the
A register; one which returns an Address will return the more-
sigmficant byte ‘in the B repister and the loss-significant byte
in the A. (Note: this does not apply to the compiler-generated
MPY and DIVIDE routines — see Table 11.) bxcept for such
returned values, the contents of the registers upon retumn from
a procedure cannot in general be depended upon.

Number 21

.

The bencfits of using a system routine must of course he

weighed against the extreme systen dependency which results:
the foutines will almost certamly be diffcient places in
different versions of the system and there is no puaranicc
that, cven after they have been found in a new version, their
results will be the same as before.

Conclusion

Users of the ISIS operating system have herctofore been
. hampered by the lack of documentation on its internal opera-
“tion. While such documentation is not nccessary most of the
time, the nced for it occasionally becomes critical. This presen-
tation should partially fill that nced for Intel customers while
also assisting hobbyists in understanding how a first-rate
operating system and file handicr is organized.

g
" 2
g
§ [2]
=
P
a8
e
L -
= [4
= b
[Z2]
g8
R
‘C a
5
o, -
B &
(5] []
L] S u
& 3

Number 21

E.P.

E.P.

DOr. Dobb’s Journal of Computer Catisthenics & Orthodontia, Box E, Menlo Park, CA 84025

[3
CP/M USERS' GROUP

Dcar Jimi: Received: 77 Dec 16

Just 2 note to inform you that there exists a CP/M Uscrs’
Group which is active both in uscr soltware exchange and also
in group purchasing of proprictary soltware. Although desig-
nated CP/S Users' Group, we also naturally welcome users of
IMSAI DOS-A and M-DOS and of the Cromemco CDOS, and
soon cxpect 1o see @ TDL FDOS which is sinnlatly compatible
with CP/M in terms of program load point, DOS call conven-
tion and diskette allocation and directory format.

Kindest regards, 345 I 86 Street - .
Anthony R. Gold New York, Ny 10028

NORTH STAR EXECUTIVE SOFTWARE

Nevs Release Received: 77 Sept 13

XEK, a complete system executive package for North Star
users, is now available from the Byte Shop of Westminster.

The XEK package contains a disassembler capable of
creating files that may be left in memory when changing from
the disassembler to the executive package for re-asscimbly.
The monitor software has the ability to accept input frem
cassette tapes and paper tape as cither source or object files,
as well as from the North Star diskette system. In addition.
the assembler features a new auto-line editor for the creation
of source files. This editor also extends to the modification of
existing object files.

Another feature is the XEK's ability to handle up to six
named files at once that may be consccutively assembizd to
form one object file. The assembler. monitor, and disassembler
come with complete documentation, both on cisk and 2s 2
manual. Total price, mcluding first class posiage. insurance
and California resident’s sales tax, is $48.00. For further
information and ordering, contact: The Byte Shop of West-
minster, 14300 Beach Boulevard, Westminster, CA 92683,
(714) 894-9131.

© ©
(4 - = n S b f 3
2 o L] - o F- 8
(4] F - -8 » © (2]
S 8 o % 2% 2 = 5 ¥ %
-] (¥} — o o Lo) &) -
a . [-3 © ~N o ‘ot «
© 0 [« " > == =N > (-] -t © o 2
[- € - - . & o] u
-t O o - © © L . > >
be > 3e UX > -~ T $e < S (3 [
[4 v < 5 O L © © [L]
- -~ LYY] -t © - PY - - w O
v VO e HWO [wun [v on I 7 Ot
- & ao 19 v . [y=1 - o v n a « e oan
-3 O w O [T c o] £ v | b o F 4
€L Hg= Dk e & © o o be a 7o o a
£ € L > & v S X O [*] * el £ £ v [~3=9
[* R Ve b [T v [t £ o] O~ - X
< 5 “w s« O « > &o
© (43 ” s " - R “ . " " . " o
E-« oo [c o © - - o] ct. - o [~ v
[3 :a b o e < Cos ?_u $e Su ™ bu
Sa [8 2L 2S¢ —=£ 3) - 3o [] >
¢E 9% 29 $5 B985 & 33 $E 32 ©5 E£3
®<o 80 [] =©< u D&E v g'ﬂ « B o & = Ll e
o LS | [) < [-]
[o]
x 4] ~ Z
2 2 5 . g 2
(3] G - & O
[. ag Qe =« . ‘o
o> E g g
= s = %
[<]
o 85 & &
[[od [] [" ~ .
Q 0 [] 8 1] S -~ 8 ~ L= q
o © [L} § (=4 8 © L}
o £=4 o ° (<] o o
e] - 3 -
© 0 - © a0 « = © © © L]
" “ [[~ [- 4 4 [Iy
]
e 3 3 &] P
-) -
(%] 8 E = = § 3 b 2 o (%]
Page 13

qzov0 v WeaOlue '3 xog ‘spuopoyiio I S3UsYISIED 9IAGIIUL g T T e

12 tequnN

Table 1. Intemnal 1S1S Procedures

N Eeees E.Pe

AORT 2584

ALLOCATE 0940

ATTRIB 1870
BINASC 0093
CANON 0698

ALPIANUM GAB
CLOSE *18FF
CLRSUF 0210
CONSOLE 2182
DEALLOC O09LC
OCLETE 1ccs

;‘:'iﬁ

PARAMETER T ADDR
20FF
DRIVE B 2cC2

JFILENAME A 206A

NNBER A 2992
BASE A 2994
WIERE A 2996
NDIGITS D 2998
JFILENAME A 209A
SINTFN A 289C
AFT 8 2073

LBUFFER A 290E

JINFILE A 2000
LOUTFILE A 2002

VRIVE
TRXSEC

8 2€C9
A 2CCA

LFILENAME A 209E

RETURNS T

TRISEC A

ERRNUM B

LETOIC L

PURPOSE -

Terminates execution and
reboots system; usual
entry via {nterrupt 1
yector at address 0008,

Allocates nev disk block
and returns its address.

Sets filo attributes.

Converts blnary NUMBER
to Ascii rcprcsentntlon
{n requested BASE
starting at WIERE.

Converts FILENAME tO
internal form in INTFN,

Returns TRUE if byte at
(209A) is o jetter o 8
digite

Closes specified file.

Clears 128-byte BUFFER
Lo 2708, .

Changes console file
assignnents. .

Roleases disk bdlock.

Delctes a file glven i3

name.

CALLS whe

CLOSE
XEQIOPB

ERNOR
RWMAP

ERNOR
GFTFN .
SEARCH
SETTADS
SYNC
WRITE

DIVIDE

ALPHANUM

FRECDUP
MPY
RCGAD .
REW IND.
RWMAP
SLER
SETTADS
SIZECX
SYNC
NRITE
WRTSEC

CLOSE
ERRON
CETFN
OPLN

MPY
RWMAP

CRROR
GUTEN
SCRATCH
SEARCH
SE1TARS

" GETBUP

NAME--*- EOYQ
DIVIDE OODA
EDIT OFDO
ECHO OFDD
ERROR ole6s
EXIT” 252A
F10 0818
cutp 0023
FREEBUP

0251

GETAFT - O3E7

0276

GETFN 0882

PARAMETER

(2C)
(LE)

"AFT

+BUFFLR
COUNT
+ACTUAL

CIIAR

)

0.3

AFT -
+BUFFE
COUNT
+ACTUAL
REAVFLAG

<BUFFER

JFILENAME
+INTEN

T ADDR RETURNS T

A - (88) A
A -- 0B} A

s 2011 °
A 2012
2014
2016

@ >>

2028

. file.

29A2
29A3 -

N

2FE -

B 2CCF
A 2C0V
A 2c02
A 2CD4
L D6

A 29T2
281E AFT B
29E4 ,BUFFER A

A 2BA4°
A 20A6

FURPUQ G ===~

Compilcr-gcnerated
division routire,
Livides BC by DE3
returns quotient in
remainder in DE.

8C,

Called in place of READ
when line-editing is
required.

Writes CIIAR on echo

.

1f FLAC = 0, returnd
CODE to useTr.

1€ FLAC = 1, prints
message,s ..

1€ FLAG » 2, prints .
nessage and aborts.

Closes flles and returns
to system.

Trans {crs COUNT bytes
between disk file buffer
and caller's BUFFCRS
READFLAG 1s TRUE to read
fron (ile.

Allocates new Jata
blocks as necded,

Relesses BUFFER to
buffer pool.

Assigns AFT for file to

be opened.

Allocates & duffer and
returns its address.

pPasscs params to CANON 3
calls ERRON i€ needede

ECIIO
ERROR
READ
WRITE

SETTAS

WITE
BINASC

1oQixk
105ET

CLOSE

RAVAP,

ALLOCATE

CcLRBUF
CETO
nonEC
RYTAP
S1tCK
WRTSLC

CLRBUF

WATSEC

ERROR

ERROR

CANON
ERROR

. ALLOCATE

GZOYE VD P4 Ousyy *3 XOg “SIIUOPOYLIQ 1 Exueyisy e 22indwo jo ruinof £,9990 11 12 squing

g L]

KA E econe

1518

OPEN

* FREE}

FREES

PACYBUFS O41S

E.P, PARAMETER T ADDR RETURNS T PURPOSE

0040 COMMAND
., BLOCK

8 2021
A 2922

226C LPILERAME A 2DE8
BIAS

A 20EA
RETSH A 20EC
JENTRY A 2DCE

OAOC (BC) A - (DE)
(DE) A -

1095 JFILENAME A 20A2 AFTN
ACCESS A 2DAL
ECHOAFT A 2DA6

.-

1DA2 ERRMUM B 2030

10C3 ERRNUM 8 2081

A

8

2820 LOWLIM® A

,Principal user entry
point to operating
systen,

-

Loads and optionally
exccutes an adbsolute.
binary file. .

Compller-generated
multiplication routine,
(0E) = (BC) * (DE)

Opens a file given its
name; assigns and
returns index in file
table.

Frees line-edit duffer
(4f any), then calls
ERRON(O, ERRNUM),

Frees 1ink and data
buffers, then callis
FREEL (ERTNLM) o

Moves buffers currently
in use to lowest
possible locations;
returns lowest vacant
address,

CALLS«na

ATTRIR
CLOSE
CONSOLE
DELETE
EDIT
ERRORN
EXIT
LOAD
OPEN
RCAD
RENAME
RESCAN
SEEK
WHIOCON
WRITE
XEQLOPB
T0PEN

CLOSE
ENROR
MEMCK
OPLN
PACKRUFS
READ

ALLOCATE
CLRDUF
ERRON
FREEL
FREL3
GETAFT
GCTOUF
CLETFN
REWIND
RWMAP
SCRATCH
SEARCH
SETTABS
SYNC
WRITE
KRTSEC

ERROR
FREEBUP

FREERUP
FREEL

LONBUR

HINMEanas. E,P.

' LOMBUF 0418

ROSEC 0658
READ - OE63
RENAME 1AE8
RESCAN . 1276
REWIND 1284
RYMAP © OBAC

OPMAP 03BS
SCRATCI 1887
SEARCH 1723

PARAMETER T ADDR REfURNS T PURPCSE

LBUFPTR A 2822

TRKSEC A 2044
.BUFFER A 2046 -
AFT B DD
(BUFFER A 2CDE
COUNT A CEQ
ACTUAL A 2CE2
.OLDNAME A 2D8E
NEWNAIZ A 2090
AFT B 2029
DRIVE B 2CO
oPCD 8 2cC1
DRIVE B 2095
JNTEN A 205C

Moves buffer whose
sddress is in BUFPTR to
a lover positlion, 1f one
{s ‘avalladle.

Reads requested disk
block into BUFFER, from
proper drive for current
file.

Reads characters from
file into BUFFER until
COUNT s satisfied or
end-of-file is reached,

. Changes the name of a

file.

Sets the next-bdyte
pointer of a line-cdited
file to the deginning of
the current line,

‘ Initiallizes seversl file

tables and recads in
first 1ink block,

Reads or writes bit map
on requested drive,
using fnternal buffer.

Constructs 10Pp'S for:
RWIAP and has thea Tun,

Deletes all disk space
allocated to file vhoso

directory entry is at
204A,

Looks up flle

represented by INTFN in
sppropriate directory,

CALLS wew

FREESUF
GETBUF

X10 ’

cr S
ERROR

F10

3

ETOEV
SETTASS = .

ERNOR
CETFN
SeArCt
SETTASS
SYNC
MUTE

ERROR
SETTABS

RDSCC
oPAP

XEQIOPS

DEALLOC '
RWVAP ¢ .
SEEX °

SETTARS

WRITE

XEQIOPA

FREFBUF

CETBUF
\pY

READ
RIVIND
SECK
SETTARS .

" gy e8ey

SZOYE VD W4 Ojusly *3 X0 ‘IUOPOYLIQ F PrusyINEY 1mpdwo] JO [ruInof 5,490 1Q

L2 iequiny

NN eman

SEEX

COFFEND

SETUEY

SETTARS

stzECK
smic

WIOCON

w1Te

MATSEC

XEQIOPB

x10

T0PEN

E.P.

12F0

12FD

OE3D

028

0ACO

171y

2270

OF12

9678

0514

05Fé

2588

PARAMETER T ADDR RETURNS T PURPOSE

AFT
MODE
» BLOCXNO
«BYTEND

BLRNUMA
BLNvB
BYTENUMA
BYTENNB

AFT
«BUFFER

AFT
+BUFFER
COUNT

TRXSEC
«BUFFER

DRIVE
«10PE

opcoone
DRIVE
TRKSEC
+BUFFER

>>a

8 2020
A 2D2E
A 2030
A 2032

A 2044
A 2046
B 2048
B 2049

8 281D

20t
20E2

>0

2CF8
2CFA

2848
284A

> >

>

282A

2834
2835
836
ap38

> row

2829 °

LARCER L

Repositions the nexte
bytc pointer of a disk
file.

Q

Returns TRUC if
requested scek would
enlarge file,

Sets up ROM's “I0BYT' to
stcer 1/0 properly.

Sets up "current

pointers' into file
tables,

Updates file lenpth in
tables,

Forces delayed write of
current data Llock,

Copies into BUFFCR the
name of the requested
console file,

. Writes COUNT characters

on file from BUFFER,

Hrites requested block
from BUFFER, on proper

drive for current file.

funs given 10PB on
requested drive,

Constructs I0PB to
perform requested
operation, and has it
run,

Increments user-supplied
AFTN value by 2 to -
obtaln internal value;
if this docs not
correspond to an open
file, calls ERROR(O, 2).

‘CALLS ~am

ALLOCATE
CLABUF
ERROR
OFFEND
RDSLC
REWIND
RWMAP
SETTARS
SIZECK
WRTSEC

10CHK
10SET

WRTSEC

co
ERROR
F10

Lo

Poal
SETDEY
SETTABS

X10

ERROR

’

XEQIOPS

ERROR

" Table ML

ADDRESSES

28C0-2920

_2928-2931
294C-294D
2ME-298V
299¢

299D

299E-299F

29CB-290D

29E5-2018
2829
2B2A-2B28
2azc:
2820
2B4C-2B7S
2086G-2B3F

2BA3-2CA?
2CA3
2CA9

2D4A-2059 .

ISIS Variables of Diagnostic Significance

CONTENTS

Unused area, rescrved for future expansion, Might be used
for temporary debugring code, or for “patches,”

Copy of current command paranmeter block,

User's Stack Pointer, ' ‘

ISIS stack.

vebug Switch (Logical). When True, fatal errors will invoke .
the MDS Monitor instead of aborting the progran,

“"CONSOLE" command flag., Value is 2 while processing a
CONSULE systen call, and zero at 3]l other times. This is
what causes all errors detected by CONSOLE to be fatal,

"Result Byte'" and "Result Type" generated by disk chanmnel in.
connection with a "lard" (non-recoverable) disk error. For
detalls, scc the MDS-DOS flardware Manual, (Theso are
printed as part of the "ERROR 24" message.)

Buffer Table, containiné one byte for each of 19 possidle

buffers. The possible values of each byte are:
0 Free.

1 Space preempted by LOAD since the buffer area
contains part of the user prograa,
2 In usc as a buffer,

The buffers thenselves begin at sddress 2E00; each buffer is .,
128 bytes long,

File Structure (sce Table IV),

Disk drive most ;eccntly sccessed,

Address of 10PB,

Result Byte. .

Result Type, : Coe

Table of 2-byte.device names (each name st;red backwrrds),

Internal-format namo of last file sought by SEARQI, 2836
contains tho device identification (index in table at 234C).v

2887-2D8C contain the file name, 2B8D-288F contain the °
name extension,

Bit Map Buffer,

Urive to which this bit map delongs.

(Logical) True if bit map has been modified since it was
last written. .

Dircctory Entry for last file found by SEARCI, as it then

appeared. (This 43 not kept current with respect to growth
of the file,)

GZO¥6 YD “%I84 OJUeyy "J XUY TUUUPUYHY P WU TITS T T e s e

11 otegd

MO&ESSES' CONTENTS

Table V. ISIS Device Identification Codes

2D82-20C0 Name of current :CI: file,) ') . h . E
20C1-20CF Namo of current 1CO: file. S NUMBER DEVICE
20F6-20F7 Address field of last logical rocord read by LOAD. (Except 0 sF0:
during a LOAD, this turns out to be the entry point of the 12 ';1;
Iast file LOADCd,) iT1
3 :TO:
4 VIt
2£00~ Buffer Axrea, M avo1:
6 sI11e
. . . 7 H
. 8 tTR:
' . 9 tHR:
TableJV. 18IS File Control Structure (in memory) 10 R1:
* 11 HiyH
. 12 TP .
MAME<eas BASE T CUR. 1.V, DESCRIPTION 2 . “ 13+ alips
ADDR PTR, . 14 1P1s ..
. . e 15 tP2: .
CLOSED 2A0E L 29EA True if this file is not open,) i;’ ”l:‘;:) :
DEVICE 18 B3 29EC * Device idontification (see Table V). .
ACCESS . 2422 B 29EE Value of OPEN's ACCESS parameter, ' ' .
‘ . . . Table VI. 1SIS Format Files ' i
ECHOAFT 20X B 29F0 AFT of echo file; zero if non-edit, - ! .
' ; HEX DISK ADDRESSES
EBUP n36 A 29F2 Address of edit buffer. + FILE NAME LINK --=DATA--- CONTINTS
DRUF 2MA A 29F4 . Address of data buffer (copy of current . : 1S15.TV 0,18 0,1 - 0,17 System Initinlization Progras,
, lement at 29E8). . " ISIS.LAB 0,19 0,1A Disk Label. ,
YTENO 2A 9F6 in dat ffer. ' .
s 8 8 2 128 Byte counter In data buffer 1S1S.01R 1,1 1,2 = 1,]A Disk Directory (see Table VII).
ONM 468 A 29F8 Position {n directory. ' . 1SISMAP 2,1 2,2~ 2,3 Allocatlon Bit Map.
LBUF 2A7C A 29FA Address of iink-block buffer (copy of
. current element at 29E6).
DFTR 2490 B 29FC 1 Word pointer in link block. ‘ Table VIL ISIS Directory Entry - .
LASTBYTE 2A9A° B 29FE Mumber of bytes in last data block. ' BYTES CONTENTSememcuccassacssccsccccccss .
ALLOC 20 L 2400 P True if sllocation has been done for . ' 00 Flag: 00 = active
. this file. } . 7F = never uscd
. . FF = doleted *
00 2AE L 2402 ., P True if current data Llock has been '
v modified, . . 01-06 File Name
BLXCNT MBS A 2004 Nunber of data blocks in this file. ' 07-09 Name Extension
BLXNO ALC A 2A06 0 .Scquential number of current Jata block - Co . GA Attributes: Bit 0 = Invisible
within this flle, i Bit 1 w» System
Dit 2 = Hrite-protect
. LADOR 24E0 A 2A08 (2AF4) Track-Scctor address of current 1ink . Bit 7 » Format
block, ’ '
. . B b f bytes in last data block
LIADOR 2AF4 A 2AGA Track-Sector address of file's first ‘ 08 Number of Bytes In last <
Hink block, 0C-00 Number of data blocks
DADDR 2808 A 200C 0 Track-Sector address of current data OE-OF Disk Address (Block, Track) of .
- e Yi.atb *

Cleer Iinkasa hinck

1S/ .0 FoZMHAT L
s & b A &8 ¢ b
.

[

'

NIVHZHI DA I

T)'”\\\\"’:
nl
Li

DS
b & ‘93

DN EN BN ST

“~

>
=
N ~
D R
L 3
O I

o 8. |0 0 o |m
e NN NN

o

o
EQ'\'\\\\"
vlelalnjuls

e

o s e s e o e e = - - '

525 - . /)cwwry__. _ S S
. PP - oPN_ o Copy bl
FF -DELaTsD__ B S I
. 7F - NEVER USED '- ? S _

E e o F1us NAME éeyr S M%?r S S R

7-9. ____,-_:‘:.ZK.EN&éé[__.__3__8y_zz§-

— -

-—— T ’ « i + i ¢ : : H
i

A= Arreieurss Eym A
: ar 7 S 4 3 2 igle oo
F | < | X | x| x<|W{S 1T codL
: : DR i /r/ ' ' I

R

B— HumMasR oF . BYTES /M. tpsr I DATA. BLIL _Sé isis el KNOW_WHERT
L THI INQ OF FILE K fo A S O S
~ B @t__a.rwceb.

C-D)\JUMB..Q; ©F_DATA. BLzs a@;o By Az Fies. [FSEMSBL sni

S . e H'l'b\)\ { ; ; : _‘ . e e -
E — 3=¢rc>;? o:—__/ff Luvaé.. oL .é/moecz Bc,ovfé | o

x HE ; o

. .
e e e ———————— e e o o

I Tpace o= I /,wme,_ o /T’Zp?ozﬁ &oma e

-___.._,..____ —_—— _. —______ —— e — =

[—————————— SRl e

ﬁLL R=Fz rzzm&zg ,QQ"_JQASz .4—;(AND A/ Musr__ee,______ .
L8O w:rﬁ é)ofwfc AS T ba ?Aw—rs ro BASE. Lo_;_j__a__,___:_.._‘

; 3] __3 _E_.-_‘__._;.___-,.__..,_.A S
T R : i T : .
H . : .
! ; ! bt ————————— e e = —_ - —_—
T S T T T T T T T T T T ' : i ' i !
i [: -
- S SRS SO SRS G SO S - - - -
. == ;
— e —— . . p ————————— e — — P —— . ——— — — ———
. § i . -
i : - _ — _

— L INRAGE. Btoor FORMAT™ —_ .
DSK ADDQBSS’S _OF DArA. 8/4&/&5 on b/s/u ﬂ%_

sl A S

..4)1.___“5'_.,. _é.. _..;_._?_ . .'mg R

G - - B 8 -

c'__

D--E

ot PRLCD o | Fortdusma | Y V2 N .
w—_"z_ A,/ P v }/’ . ”/ P i/;" - ;’/’ / /://j/// /”// ”
P - . 7 v -
Y N I XA A A _
R A Ao VAV A A
RN NSV AN
RS NA VNN X S A |
,/_, / ’ . - 3 T T T
7 //»' /-’-9 SRS NS i
. 'sSze Tek | Sz - Tew S0 TPk séc:-rm\.e.,' Cod ‘ L
e __lADDRESS & Aaoasasoe;_, _A_DoL-of,_bA_ré_&LoQ%_'é_ x - i - _
Forrounng :] : : : i
e iPEIeIONNG | LiNEAGT_BUKS]. ' L : i
LinNkAGY B*-K- R : ' . . .
— et w |TexvoE | — T 3 : i :
L 11We s FRer | 1e THIom ARZ S RSN . :
1B Nows ' IR P |
. ; . .- ! , , i : - ;
. __.Za\;r::s._,._?._%.vrs,s.'___-__-_124 Bqns G l ! % - i
v I 4
St b ENE JLINK Bl Aboa_ DT BL—\L Aoon_ S L —
_ : _IQ¥ %!CTDQ— | r»rzw tex’ st TS vee sse

o igs.Th
TS
__;___i_._IS £

/

JMJBH ’

I

o 4

@ ‘-17}4

| JAH

2 <

______ 2 ‘2 B ol
___-_-i__'éf_é_-_,__éﬁ_&__ _®___I9H g A -7 I B
O Ry Lzau T
BN YT N R S S T S L
I B R T RO N ANE ST 3 doH | _
e 2y . SN a2 opd '

_-Ls_zs_._,_cz.l I = T R BN SEE 3 3du |
e 1 Co gy) o gl
Sic:N¢ON$ M@, /él-l_ . . P R

&sx:\, MAO

_xAMpL

qspz.A ys . n\a r\!u‘ua"sz ofF . b
ARD NUMBIR ARO Lo ATIEN. or: Fﬁ‘z spac_aC;\-r 0 6¢)

(<2 ASSITICNALC 1IN ro)

o ”mo Locm"fm’ “"‘?"“ '
2 Loc.x-.s VST

o eleeleelrr|Fr|rrlrelrelrrlrF|rF Fry
_olF FlrFrlerlr FlFFlEFIF FIFFIF FIF FIF AV
alrrlrFAlrrlFrlecleclecleelecled|a N
g elsels clodle dlacle elaglaele clocle o

ISIS BREAKDOWMN

TRACK SECTOR USE

%] 1-52 ISIS. To

1 2-52 ISIS DIR

1 , 1 HERDER BLOCK FOR ISIS. DIR

2 1 HERDER RBLOCK FOR ISIS. MAP

2 2-5 - ISIS. MARP

2 & HEADER ELOCK FOR ISIS BIN

=2 =&H HERDER ELOCK FOR ISIS CLI
ISIS LAR COMTAIMS THE DISK LSEEL OMNLY. SECTORS 4AH-

34H OM TRACK @, SECTORS 1BH-Z4H QM TRACK 4 HRVYE BEEN ALLOCRTED

FOR ISIS. LAB.. THARTS QUITE R LOT OF FREE SFARCE.

ISIS.NHP:VTHE SQCTORS USED FER GIVEM TRACK <(OR DISKY ARE
 JISTED SEGQUENTIALLY STARTING AT TRACK 2 SECTOR 2, EBIT @ OF EvYT

@ <BIT @ OF BYTE & WOULD BE SECTOR 1 OF TRACK @> IF A GIVEM BIT
IN ISIS MAP IS SET TO A OME, THE CORESFONDING SECTOR ONM THE
DISKETTE 15 BEING USED. THE BIT PATTERNS ARE REARD SEQUEMTIALLY

AMD 52 SECTORS ARE ALLOMWED FOR DOUBLE DENSITY, 26 FOR SIMGLE. .

15815=11 Niskette Uperating SysteT rolklore, vi.u

Stave Kreuscher

ihis discussion is intend=d to answer & few guestions
regarcing the 18I8-11 operating system and its Jiskette
structure. It is not intended to be a complete bpreakaown
of 18iS8-I1. It is not complete; any inputs for additions
will be aprreciated.

1.0 IS18.DIR

1.1 Purpose = Directory of files for use by 18IS.CLI

1.2 Location
Linkage plock = Sector 1, Track 1

Data tlocks - fronm sector 2, Trasck 1
througn Sector 1AH, Track 1

1.3 Description

This is nct to be confused with the alsketrte flle
called DLIr. DiIR is a program which accesses 1818.LIK
to list tnhe names of the currently open files on the
diskette, IS15.01IR is actually & taple, Each entry
consists of 16 hytes. #hen GANEF 1is used to display
a4 plock ot IS81S8.0DIK, the CRT display consists of the

128 nex bytes that make up the bloGk apd their ASCIT
equivalents: A g G%fg‘*&‘m

1 Az extT tigle T]E

Q 1 2 3 4 5 o} 7 g 91 A =1 C Dt Bl Fl 01234506789ABCODuF

00 f89 53 49 53 00 00|40 41 50§81 R0 |04 00d01]uv2| J1S1S..MAP..eann
00 By 53 49 53 00 00|54 30 oo 81 Jso {17 vofrsfoo) LIsIS..10.......
00 B3 52 45 44 49 54f00 00 oofce ke [36 02{1409 | .CREDIT....&6...
FE kD 59 50 52 4F 47(4F 4z 4Aalo4 e o2 0oy18loe | MYPRUGOEJeeenan
17 bo 00 00 00 G0 00{0C 00 o {co PO [00 VOJOO{GU] veenernnnnnecnss
7F Po 00 00 00 00 0oloe 00 0O|00 O 00 V000|000 Y ceseecoccnacncan
7F go 00 00 00 00 ouloo 00 ooloo o 6o 00100 00 veereeenrencnnes
7F B0 00 00 00 0O 00 106 SIVIRUIVE (eI VAVOR (YVRNVIVR ToIVRVICH PR

Byte 0 - Current status of file
06 = 1in use
1F never used
FF deleted
note tnst when a tile 1s celeted, the file 1tself
remains intact; only this tyte ot ISIS.DIR changes,

o

BHytes 1 tnrough & = File name

Bytes 7 through ¥ -~ @xtension

Hyte A =~ Atriputes

pit U set = invisipcle file

pit 1 set = system file

plt 2 set = write protected file
pilt 7 set = tormat tile

(bits 3 tinrouon 5 NOL used)

kryte ¢ = Number of bytes in last Jdatz block, Thls is used

to determine tne location ¢f the eny of file,

Bytes C and D - nNumper of cata plocks used bv tne file.

pyte C = least slagnificant pyte
pyte D = most significant byte

Byte k = Sector of the first linkage block,

Byte ¥ = Track of tne first linkage nlock.

Last Data Block

ISIg-11 only stores data on diskettes in 12#8-byte blocks.
The number of pytes ip a file will not often be an exact
multiple, but the system will occupy blocks 1in integer
increments only. Thus, the system needs to Know tne
number of bytes uysed in the last bhlock of the f£ile, in
order to deterinine the whereabouts of &£nd=-of=File,

Linkage BlocKks

Since every file is proken up into 128~-byte pleces and
strewn 3pout wnerever there is room on the diskette,
IS1IS8~11 needs to Know where tne pieces are, and in what
order to load them, Tnat information is contained in
the linkage plock. wtacn file nhas a linkage block for
every 124 data blocks., 1t lists the sector and track
of each data block in tne order in w#whicn tney are to
pe loadeqa. why only 1247 fecause tne first two bytes
of the block show the sector and track of any preceeding
linkage block, and the nexi two bytes show The sector
and track of any subseguent linkage block. For any
file that is less than 124 blocks, these will be 00,
CRE cess pe BUl VLR (W LKy DI

IS1S.T1T0
2.1 Purpose = Track U Loader
2.2 Location
Linkage pblock = Sector 18H, Track ¢
pData pblocks = froin Sector 1, Track O
tnrough Sector 17H, fPrack 0
2.3 Description

Tnis is tne file pulled in py the system”s monitor
when the diskette system is initialized. It hegins at

4,0

sector | of track 9 {("nowme" position tor tne drive),
so it 1s 1mmediately 10acded as the first action ot the
diskette operating systen.

- . . ’*‘,
SEG E G EAO T el

ISIS.MAP

3.1 Purpose =~ Rit map of [Diskette #locCks
3.2 Location
Linkage block =~ pector 1, Track 2
Data blocks = from Sectoer 2, Track 2
through Sector 5, frack Z.
3.3 Description
This file is a bit map of all diskette blocks,
used to adetermine which plocks are in use. Each of
the 4004 blocks of the diskette 1is assianed one bit
in the map A set bit indicates that the block is 1in
yse. - e C .
Sector 1 of Track U 1is represented in the map by
Bit 7 of Byte U of 181S8,.MAP. Sector £ 1s represented
py 8it e, Sector 3 by Bit 3, etc. 8Since there are 4004
plocks on a double=density diskette, ISIS.MAF needs to
store 4004 bits. Thus, it occuplies four blocks (4096
pits) of agata.
IS1S.LAR
4.1 Purpose = [iiskette Lahel
4.2 Location
Linkage plock = Sector 1%H, Track O
Data blocks = trom Sector 1AH, fifrack 0
‘ throuah Sector 34r, Track U
from Sector 1pH, Track 1
throuan Sector 34hH, Track 1
4.3 pDescription

This space cf 53 vlocks (6784 pytes) 1is reserved for
the lapel ot the diskKetre, which is limited by ISIS&
te nine ASCII characters (six for name, three for
extensicn). Tne larel may only be issued at the time
of diskKette initiajization, and can only be altered
using GANEKEE (or equivalent). RENAME won’t work.

Yes, this ocoes seem like A lot of space for storing
nipne cnaracters, Actually, the version number of
IS1s~11 V4.0 is also stored here, so that brings the

total to eleven, <00nr tor future 2¥pansion?

5.0 1318.BId

5.1 Purpose = kinary flle of lperatini

i
<
™m
t
]
=y

5.2 Location

Linkage ovlocks = Sector &, Track 2
fector 11in, Track 3

pData blocks - from Sector f, 1drack ¢
throuon Sector 34H, ITracx 2
from sSector 1, Track 3
throuan Sector 10H, Track 3
from Sector 12H, Track 3
throuch Sector 2Fd, Track 3

5.3 Descriction
This is tnhe main brairs of 1813-I1. Tdnis is the program
that actually rupns the system when 15I85-11 is operating,
0.0 I815.CLI1

&£.1 Purpose - (omrand Line Interpreter

6.2 Locaticn =~

Linkage pblock = Sector 30H, Track 2

Pata plocks - from Sector 31H, irsck 3
through Sector 34H, dirack 3
from Sector i, Treck 4
throuon Sector 11H, Yrack 4

6.3 Description

This is the portion of IS1(8-11 which accepts cowmmand
lines from the operator and determines wnat to do witn
them. If you issue an 1nvalid commana, this is where
it gets rejected.

ISIS-1I Version 4

EXTERNAL REFERENCE SPECIFICATION

Revision 2

January 2, 1979

by
S. Fung
R. Harper

T. Stolz

Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

ISIS-II ERS

Page 2
TABLE OF CONTENTS
PREFACE -
1.0 PRODUCT IDENTIFICATION
1.1 Name, Mnemonic, and Project Number
1.2 Product Abstract
1.3 Product Use Environment
1.3.1 Hardware
1.3.2 Software
2.0 FUNCTIONAL SPECIFICATIONS
.1 General Characteristics and Scope of Product
.2 Description of all Major Functions Performed
.3 Performance Characteristics
.4 Applicable Standards
.5 Syntax Description Conventions
.6 Nomenclature

INTERFACE SPECIFICATIONS
ISIS-II File Structure
Input Line Editing
Operator Controlled Pause
Ability to Exit and Reenter Disk Console Input
Use of a Quote or Literal Character in
Line-Edited Files

Command Language

Memory Layout

System Calls

Open

Read

Write

Seek

Rescan

Close

Exit

Load

Delete

Rename

Attrib

Console

Error

Whocon

Spath

Disk Format

Directory Structure

I/0 Driver Specifications
Teletype I/0 Driver

Video Terminal I/O Drivers

NeWwNo O

HEF RSO0 N0YU S WN -

Vb WO

* [[) L] L] [] L[] [) [L[] . L[] L] [L[]

WWWWWWWWWWWwWwWwWwwWwWwWwwwwww WWwwwww [(SN NN SIS NE N

. L] . L . L] L[] . L[] . L) L] L] L] L] L] L] L] L] L] . . L]

0 0000000000000 c 0dC GO0 000 000 ~d N

O
L] *

N -~

'ISIS-II ERS

Page 3

3.11.3 Paper Tape Punch I/0 Drivers

3.11.3.1 Low Speed Punch

3.11.3.2 High Speed Punch ,

3.11.4 Paper Tape Reader I/0 Drivers

3.11.5 Line Printer I/O Driver

3.11.6 User-Defined Devices

3.11.7 Disk Driver -
3.12 System Commands

3.12;1 DIR Command

3.12.2 RENAME Command

3.12.3 COPY Command '

3.12,3.1 Description of Major Functions Performed
3.12.4 ATTRIB Command

3.12.5 DELETE Command

3.12.6 FORMAT Command

3.12.7 HEXOBJ Command

3.12.8 OBJHEX Command .

3.12.9 BINOBJ Command

3.12.10 SUBMIT Command

3.12.10.1 Description of All Major Functions Performed
3.12.10.2 Command Language

3.12.10.3 Interaction with ISIS-II Cold Start Console
3.12.10.4 Interaction with ISIS-II Cusps

3.12.10.5 Summary of Normal Use Methodology
3.12.10.6 Error Messages

3.12.11 IDISK Command

3.12.12 HDCOPY Command

3.13 Supported Configurations

3.14 TOBOOT

4.0 OPERATING SPECIFICATIONS

4.1 Product Activation Instructions

4.1.1 ISIS-II Cold Start Procedure

4.2 Summary of Normal Use Methodology

4.3 Summary of Error Conditions

4.4 Operator Intervention

Appendix A. PL/M EXTERNAL PROCEDURE DECLARATIONS FOR ISIS-II
SYSTEM CALLS

Appendix B. ASSEMBLY LANGUAGE CODE FOR 1SIS-II SYSTEM CALLS
Appendix C. ERROR NUMBERS AND MEANINGS
Appendix D. DEVICES SUPPORTED BY ISIS-II

Appendix E. INTERNAL DATA STRUCTURES

ISIS-II ERS
Page 4

PREFACE

I. Substantive differences between the ERS for ISIS-II Version
g, revision 2, and the ERS for ISIS-II Version 4, revision
0, are:

Section 1.3.1. Addition of hard disk drives.

Section 3.7. Addition of Monitor work area to memory
layout diagram.

Section 3.8. Addition of explanation of buffer allocation.
Section 3.8.15. Addition of hard disk devices to device
number table.

Section 3.9. Addition of hard disk platter format
information. Deletion of Attachments A and B.

Section 3.10. Addition of directory information for the
hard disk.

Section 3.12.1. Addition of switches 6,7,8,9,0,T.

Section 3.12.4. Allow display of file attributes without
having to specify a switch setting.

9. Section 3.12.6. Addition of K switch and target devices
tF6:, :F7:, :F8:, :F9:.

. Section 3.12.10. Specification of nesting levels of SUBMIT.
. Section 3.12.11. Addition of K switch.

. Section 3.12.12. Addition of HDCOPY.

13. Section 3.13. Addition of hard disk configurations.

00 ~J (<)} w o W N
L]

Section 3.14. Description of changes to TOBOOT.

Section 4.1. Addition of cold start procedures in a hard
disk environment.

16. Appendix A. Addition of correct PL/M external declarations.
17. Appendix E. Addition of description of selected ISIS-II
internal data structures.

II. Differences between ISIS-II Version 4, Revision 0 and
Revision 1, (other than typographical corrections) fall
into two categories. The first category concerns those
changes which amplify or clarify the operation of ISIS-II
but which do not represent a change in the operation of
ISIS-II. Major changes in this category include:

. Section 1.3.1 "four hard disk drives (= 2 disk boxes)"
changed to "two hard disk drives (4 platters)".

Section 2.4 Remove references to PL/M version numbers.
Section 3.2 "Control-2Z has no echo." changed to "Control-Z
is echoed as CR, LF."

Sections 3.6, 3.12, 3.12.1-3.12.12 BNF notation revised.
Section 3.6 Insert paragraph concerning relationship of
uppercase to lowercase letters.

Section 3.6 "starting address" changed to "load address".
Section 3.7 Clarified relationships of UOP,TOB.

~N e wWwN L d

ISIS-II ERS
Page S

8.
9.

10.
11.
12.
13.
14,
15.
16.

17.
18.
19.

20.
21.

22.

23.
24.

25.

26.
27.

28.
29.
- 30.
31.

32.
33.

Section 3.7 "one or more I/0 buffers" changed to "three or
more I/0 buffers”.

Section 3.7 "the more buffers ISIS-II may allocate for the
user's benefit" changed to "the more buffers ISIS-II may
alliocate for the user’s benefit (up to the maximum of 19)*%.
Section 3.8.2 Rewritten.

Section 3.8.3 Change "RAM area" to "memory area”.
Section 3.8.4 Added description to Mode=2.
Section 3.8.7 Rewritten.

Section 3.8.8. Added description of FILESPOINTER.
Section 3.8.8. Expanded description of RETSW=1 and RETSW=2.
Section 3.8.15. Corrected Byte Bucket description.

Deleted references to nulls in filename and filename
extension.

Section 3.9. Expanded description of hard disk mapping.
Section 3.10. Added EDIT to list of ISIS-II cusps.

Section 3.11.5. "is closed" changed to "is opened or
closed".

Section 3.12. Wildcard description moved to Section 3.6.
Section 3.12. Clarified explanation of invalid pathname
and switch processing.

Section 3.12.1 "of the files in the specified disk
directory" changed to "of the filenames in the specified
disk directory".

Section 3.12.1. Clarified Pause Switch.

Section 3.12.3.1.A 2nd paragraph reworded. Corrected
output messages.

Section 3.12.4. Attributes modified message is not
displayed.

Section 3.12.5. Corrected output messages.

Section 3.12.10.B "SUBMIT will use the default extension
.CSD" is changed to "SUBMIT will assume the default
extension .CSD".

Section 3.12.10.3. Added cautionary note.

Section 3.12.10.4. Added clause concerning nested SUBMITs.
Section 3.12.11. Last paragraph amended.

Section 3.14. TOBOOT will output the appropriate error
message when an incompatible hard disk controller is used.
All references to COLONEL changed to KERNEL.

Appendix E. Added cautionary note concerning changeability
of internal data structures.

The second category concerns those changes which do represent a
change in the operation of ISIS-II. Major changes include:

1.

2.
3.

4.

5.

Section 3.12.6 FROM integer added. Drive 0 is now a
valid target device.

Section 3.12.11 FROM integer added.

Section 3.12.12 HDCOPY revised - added verification switch
and backup switch.

Section 3.13 The hard disk fixed platters will be :F0: and
¢tF2: instead of :Fl: and :F3:.

Section 4.3 and Appendix C. Disk error messages changed
from "FDCC"™ TO "“STATUS".

ISIS-II ERS
Page 6

III. Differences between ISIS-II (Version 4) Revision 1 and

l-
2‘

Revision 2 (other than typographical corrections and minor
rewording) are:

Section 3.2 1If the console echo file is :VO: a Rubout will
be echoed as a backspace, blank, backspace.

Sections 3.6, 3.12.1, 3.12.6, 3.12.10.2, 3.12.11 Brackets

were mistakenly left off the BNF representation of the
syntax. :

Section 3.12.1 "2" switch added.

Section 3.12.12 Specification of HDCOPY error messages.
Also, processing will continue upon detection of a
miscompare in the verification process instead of exiting.
More information will be displayed during BACKUP operation.

,ISIS-II ERS
Page 7

1.0 PRODUCT IDENTIFICATION

1.1 Name, Mnemonic, and Project Number
Name: Intel Systems Implementation Supervisor
Mnemonic: ISIS-II V4.n

:Project Number: 2816

1.2 Product Abstract

ISIS-1I provides a set of services normally required to execute
programs on an Intellec MDS or Intellec Series 2 development
system such as: supervisory function, logical input/output
facilities, and file management capabilities. ISIS-IT must be
used in conjunction with a ROM-Resident Monitor and it requires
at least one floppy disk device configured in the hardware
system.

1.3 Product Use Environment
1.3.1 Hardware

ISIS-II operates in an Intellec MDS or Intellec Series 2
microcomputer system with at least 32K bytes of RAM memory, a
flexible disk drive, and a console device (such as TTY or

CRT). 1ISIS-II can support up to six floppy disk drives and two
hard disk drives (4 platters) in certain configurations, a full
complement of 64K RAM memory and all peripherals currently
offered in the Development Systems line.

1.3.2 Software
ISIS-II requires access to the I/0 system of either the

Intellec MDS Monitor, Version 2.0, or the Intellec Series 2
Monitor, Version 1.2.

ISIS-1II ERS
Page 8

2.0 FUNCTIONAL SPECIFICATIONS
2.1 General Characteristics and Scope of Product

ISIS-II is a disk operating system intended to simplify a
microcomputer development effort by providing a convenierit
environment for source editing, assembly/compilation, linking,
locating, debugging, and simulation. Major emphasis is placed
on ease of use of ISIS-II, based on the assumption that the
typical user is not a senior systems programmer, but more
likely, an electronic engineer involved in his first software
project.

2.2 Description of All Major Functions Performed

For purposes of exposition, ISIS-II is considered to comprise
two components: KERNEL and a collection of programs called
"user programs."

KERNEL may be conceived as a subroutine collection which is
permanently resident in low memory during ISIS-II execution.

KERNEL provides facilities for loading and executing user
programs, and serves the I/0 needs of user programs. User
programs may be Intel-supplied (e.g., the Editor, Assembler,
PL/M), or they may be written by the ISIS-II user.

Whenever the ISIS-II user is communicating to software (i.e.,
by typing at the console device), he is in communication with a
user program, never with the KERNEL.

User programs achieve I/0 by making calls ("system calls") to
subroutines within the KERNEL. All I/O occurs to/from

"files.” A program normally "opens" a file, then "reads" from
it or "writes" to it, and finally "closes" it. All I/0 is
status-driven, not interrupt-driven, and except for disk I/0 is
achieved by use of subroutines in the Monitor.

There is a system call (EXIT, see Section 3.8.7) which user
programs make to terminate their execution (and

RAM-residency). This system call causes KERNEL to load and run
a special user program called CLI ("Command Language
Interpreter”).

CLI reads and interprets command lines provided by the user.
Command line syntax is described in Section 3.6. Briefly, each
command contains a generalized keyword which specifies either a
user program or CLI command. If the former, CLI causes that
program to be loaded and run; otherwise CLI performs the
indicated command and reads another command line.

ISIS-II ERS
'Page 9

2.3 Performance Characteristics

The most important requirement placed on ISIS-ITI is the maximum
size of its data and code areas which cannot exceed the
combined size of 3000H (12K) bytes. This requirement will be
satisfied but, as a result, speed of execution may suffer. It
should also be pointed out that the system response time will
depend on the bus speed and the data throughput of the
particular disk controller to which the disk on which ISIS-II
resides is connected.

The hardware does not permit ISIS-II to protect itself from
user programs. Operation of ISIS-II conformance to this ERS is
Predicated on the condition that the user program does not
modify RAM below its origin point (UOP, see Section 3.7) or
within the Monitor work area.-.”

2.4 Applicable Standards

ISIS-II is written in 8080 Resident PL/M. Aall system call
from a user program to ISIS-II conform to the parameter calling
sequence of PL/M.

Throughout ISIS-II, the character set used is ASCII (USAS X
3.4-1968). The flexible diskettes and controllers and hard
disk platters and controller used by ISIS-II support a
soft-sectored format with 128 bytes of data per sector.

ISIS-II supports absolute load files of the Object Module
Formats.

2.5 Syntax Description Conventions

Standard Backus Normal Form is used. The symbols "¢", "o,
"::=" and "!" are the usual meta-linguistic symbols; when they
are required as terminal symbols, they are enclosed by braces
('é" and "}"); these braces are also used to enclose concepts
defined informally in English.

2.6 Nomenclature

This document distinguishes meanings for "diskette", "platter",
"drive™ and "disk":

"Diskette™ is the recording medium for floppies while "platter™
is the recording medium for the hard disk; "“drive” is the
mechanism on which the medium is mounted; “disk"™ is the drive
together with a mounted diskette/platter. Where the meaning is
unambiguous, "disk" is often used in place of "diskette" and
"platter."

ISIS-II ERS
Page 10

"MONITOR", "MDS MONITOR", and "SERIES 2 MONITOR" are also used
interchangeably, but where necessary, distinctions are made
between the MDS Monitor and the Series 2 Monitor.

ISIS-I1I ERS
Page 11

3.0 INTERFACE SPECIFICATIONS
3.1 1ISIS-II File Structure

A "file" is an abstraction of an I/0O device, and may be
considered to be a collection of information, usually in _
machine-readable form. Throughout this document, a file is
formally defined as a sequence of 8 bit values called "bytes".

ISIS-II usually places no semantic interpretation on the byte
values of a file. The single exception is lined files (see
Section 3.2). However humans, programs, and devices will
frequently assume that the bytes represent ASCII values, and
thereby characters.

Programs receive information by "reading” from an "input file",
and transmit information by "writing" to an "output file".

A major purpose of ISIS-II is to implement files (called "disk
files") on diskettes/platters. Every disk file is identified
by a name unique on its diskette/platter, which has 2 parts: a
filename and an optional extension. A disk file's filename is
a sequence of from 1 to 6 ASCII characters; an extension is a
sequence of from 1 to 3 ASCII characters. To facilitate name
specification within command strings, these ASCII characters
are constrained to be letters and/or digits.

For every non-disk device supported by ISIS-II, there are one
or more associated files, each identified by a name consisting
of a pair of ASCII characters between colons (see Appendix D

for a complete list). Disk drives also have names which are
prefixed to filenames to specify on which disk the file resides.

No file can exist on more than 1 physical device. 1In
particular, a disk file must reside entirely on one
diskette/platter.

Three files (:BB:, :CI: and :C0O:) deserve special mention:

ISIS-II supports a virtual input/output device known as a
"Byte Bucket" (:BB:). This device acts as an infinite sink for
bytes when written to, and a file of zero length when read
from. Multiple opening of :BB: is allowed, each open returns a
different AFTN. (See Section 3.8.1).

ISIS-II supports a virtual teletype known as "the Console,"
which is implemented as 2 files, an input file (:CI:) and an
output file (:CO:). These 2 files are always "open" (see
Section 3.8.1); :CI: is always a "lined file", :CO: is its
associated echo file (see Section 3.2). Each of :CI: and :CO:
is a pseudonym for some file corresponding to an actual
physical device. After a cold start of ISIS-II (see Section
4.1.1), :CI: and :CO: will reference either the teletype (:TI:

ISIS-II ERS
Page 12

and :TO:) or the video terminal (:VI: and :VO:), which will be
called the "cold start Console"; however user programs may
"move" the two halves of the Console from one physical device
to another (see Section 3.8.12)

Whenever an end of file is encountered on :CI:, then both
:CI: and :CO: are automatically "moved" to the cold start
Console.

It is always from the current Console that CLI obtains its
command lines. (See Section 3.6).

3.2 Input Line Editing

Programs, when opening a file for input, may optionally request
ISIS-II to "filter" the input data through a module called line
editor. This option caters to the frequent situation where a
human is typing input for a program in real time at a keyboard
console but is not restricted to such situations.

Files read in this fashion are called "lined files."™ (Note
that a file is so characterized not because of any attribute
intrinsic to the file, but merely by its current method of
access).

Every lined file has associated with it an output file, which
is the file on which the echo is printed. This allows programs
to ignore complications of input echoing; ISIS-II does it
automatically. 1If no echo is desired, as may be the case when
a disk file is a lined file, the associated echo file may be
:BB:.

ISIS-II interprets bytes in a lined file as 7-bit ASCII codes
(the high order bit is ignored); furthermore, special
interpretations (described below) are placed on the following
byte values:

VALUE CHARACTER

OAH LF (Line Feed)

ODH CR (Carriage Return)
12H Control R

18H Control X

1AH Control 2

1BH ESC (Escape)

7FH Rubout

0SH Control E

10H Control P

LF and ESC are defined as "break characters®™, with semantics
defined below.

ISIS-II ERS
Page 13

Lined files are conceptually partitioned into segments, called
"logical lines,"” by the following rules:

1. A LF is inserted following every CR, and then all LF°'s
immediately following a break character are removed;

2., A logical line is defined to be all characters between
break characters, together with the terminating break
character;

3. 1If all logical lines comprise no more than 122
"uncancelled"” characters (by the editing transformations
defined below), the partitioning is complete:; otherwise the
"long" logical lines are themselves further partitioned
into 2 segments: the left segment comprises the largest
possible number of characters such that no proper substring
of those characters comprise more than 121 "uncancelled"
characters; the right segment comprises the remaining
characters;

4. Rule (3) is applies as many times as necessary to eliminate
"long" logical lines.

A READ call (see Section 3.8.2) returns bytes from only one
logical line at a time; thus READ's of lined files often
transfer fewer bytes than requested by COUNT.

A READ system call returns no characters from a logical line
until the line has been input in its entirety. Thus, during
physical input, the logical line is accumulated in an internal
buffer; no information in the buffer is transferred to the
READing program until the termination character (normally a LF
--- see Rule 1) is seen. Therefore ISIS-II has the opportunity
to modify buffer contents conditionally on values entertaining
the buffer. This is the mechanism of line editing, which
permits the following manipulations:

A CR character entering the buffer has the effect that a LF
character is automatically appended to it (this is rule 1
above), and both are echoed. Thus the CR character may be used
at a keyboard to terminate an input line.

A LF character as the first (and therefore only) byte in a line
has no effect (this is also rule 1 above); it is discarded;
there is no echo. This permits disk files with CRLF line
terminators to be used as lined files; the CR generates an LF,
yielding CRLFLF, but then the 2nd LF is removed from the buffer
and is ignored. :

A Rubout character has the effect that it cancels both itself

and the most recent uncancelled byte in the buffer. 1In general
a Rubout is echoed as the character it cancels. However, in the
case that the console echo file is :VO: a Rubout is echoed as a

ISIS-II ERS
Page 14

sequence of backspace (08H), blank character (20H), and a
backspace. If there is no uncancelled character remaining in
the buffer, the Rubout has no effect and is echoed as a Bell
(ASCII 7).

A Control-X character cancels all characters in the buffer,
including itself, thereby erasing the current input line read
in so far. It is echoed as a '#', CR and LF.

A Control-R echoes a CR and LF, followed by the current
uncancelled contents of the buffer.

A Control-2 cancels all characters in the buffer including
itself, and causes the READ call to return immediately without
transferring any bytes, thus simulating an end of file. The
remainder of the logical line, if any, may be read by a further
READ call. This is the only way to obtain an end of file
indication on keyboard input devices. Control-Z is echoed as a
CR and LF.

An ESC character is echoed as a dollar sign ('$') character.
The function of a Control-E is described in Section 3.4.

The function of a Control-P is described in Section 3.5.

3.3 Operator Controlled Pause

ISIS-II provides a pause facility for all console output
devices (:VO:, :TO:, :CO:), to allow the operator to stop
scrolling of output, inspect the display, and then continue
scrolling. Two control keys are used as follows:

1. 1If Control-S (X-OFF) is entered from the keyboard of the
pPhysical device which corresponds to the current :CO:
device, the display stops. The display will remain stopped
until a Control-Q (X-ON) is entered from the same device.

2. All intervening characters entered between control-S and
Control-Q are ignored.

3. The above operations have no effect on any input
operations. Control-S and Control-Q are not considered to
be line editing characters.

Note that stopping the display also stops the program
generating the display, along with the rest of the system.
Entering a Control-S will cause the program executing to pause
at its next console output.

Since this feature is associated with physical devices below
the file level, a pause is controlled from the physical device

+ISIS-II ERS
Page 15

paired with the output device. Thus, pauses on :VO: are
controlled from :VI:, no matter where the console input (:CI:)
is originating.

3.4 Ability to Exit and Reenter Disk Console Input -

In many cases, it is useful to interrupt a SUBMIT (see Section
3.12.10) job temporarily and accept input from the Cold Start
Console and then continue the SUBMIT job. This is useful when
a sequence of standard operations (e.g. ICE80 initialization)
is followed by an interactive session (e.g. ICESO debugging of
a user program) which is then followed by another standard
sequence (saving the modified program image, exiting). ISIS-IT
line-edited input logic checks for a Control-E (ENQ) which
causes an exchange of the console input from the currently
assigned file to the cold start console. A subsequent
Control-E will perform the converse, since the Control-E is
interpreted as a toggle. Control-E is echoed as an up arrow
followed by an E (9E) but is not returned in the input buffer.

At cold start time, whenever a CONSOL call is made, and
whenever a fatal error or interrupt 1 occurs, the alternate
console (the console to be made active when the next Control-E
- is encountered) is set equal to the cold start console.
Therefore, entering a Control-E from the cold start console
when no submit job has been suspended, results in a null
operation.

3.5 Use Of A Quote Or Literal Character In Line~-Edited Files

There are occasions when it is necessary and desirable to
override the line-edited input conventions and input the
literal value of a character (cr, 1f, Control-R,...) which
would otherwise be interpreted as a line-editing character.

The Control-P (DLE) character is used to indicate that the
following character is to be treated literally and to be placed
in the input buffer.

ISIS-II ERS
Page 16

3.6 Command Language

When ISIS-II (CLI) is ready to accept a command it prompts with
a dash character ("-") at the beginning of a new line on the
current Console output device (:CO:). Normally, the user now
gives a command to CLI by typing a sequence of characters,
followed by a carriage return. This character sequence, ~
including the carriage return (and the automatically appended
line feed) is a "command line", as defined further below. 1In
general, CLI reads 1 line of input from the current console
input device (:CI:). All line editor features are available at
command-input time (see Section 3.2).

CLI also performs a conversion of the command head from lower
case into uppercase characters. Commands (i.e. programs) must
decide for themselves whether to treat uppercase and lowercase
characters in the command tail as being equivalent. The
ISIS-II cusps (Section 3.12), for example, convert all
lowercase characters in the command tail into their uppercase
equivalents. A command line must conform to the following
syntax:

{command line® ::= <{command head) ommand taild!
<comment line
{command head> ::= T DEBUG J<command>
{command) ::= <pathname>
{command tail> ::= ia sequence of 0 or more characters,
not including a LF or ESC} [<terminator?]}
{comment line> ::= ; {a sequence of 0 or more’characters, not
including a LF or ESC} [{terminator)X
{terminator> ::= CR ! LF ! ESC
<pathname> ::= {deviced ! (fid) ! ddeviced L fidd
Kdeviced ::= : &LcP<cH :
fid» ::= {filenam&® [.<extension>1
<filename> ::= {a sequence of 1 to 6 e s}
<extensiond ::= {a sequence of 1 to 3 Lc?» s}
&> = A!B!C!D!E!F!G!H!I!J!K!L!M!N!O!P!Q!R!S!T!U!V!W!X!Y!Z!a!b!
cldle!figthtitjlk!lim!ntolpiqiristitiulviwlxlylz!0!11213!
41516171819 *

Examples of command lines:

;s THIS IS AN EXAMPLE

COPY :F1:MYPROG.HEX TO :HP:
IDISK :Fl:NEW.DSK

:TR:

:F1:SIMULA BROWNSL

EDIT JIM

DEBUG MYPROG :LPLSN

A command line must contain 122 or fewer characters. The
terminating LF in the command tail will normally be inserted
automatically by the line editing mechanism (see Section 3.2)
when it encounters the CR.

ISIS-II ERS
Page 17

The DIR, ATTRIB, DELETE, and COPY system commands incorporate a
wild card facility in the command line. The syntax of the
wildcard pathname element is as follows:

{wildcard pathname} ::= <{device> ! <wildcard £idd>! - -
{deviced<wildcard £id>

{wildcard £fid) ::= {wildcard filename> T .<wildcard extension) 1

{wildcard filename& ::= Ja sequence of 1 to 6 {char)s

{wildcard extension> :: {a sequence of 1 to 3 (chards

{chard ::=c> ! * 1 ?

1. 1In either filename or extension, the character '?' can be
used as a token to match any valid non-null character.

AB?.HEX matches ABC.HEX, ABX.HEX,...but not AB.HEX.

2. The character '*' is used to match all or the remainder of
either filename or extension field. '*' can be interpreted
as filling the rest of the field with don't care tokens.

AB*.HEX matches ABC.HKEX, ABCD.HEX, AB.HEX, ...
A* . * matches ABC.HEX, A, ...
A*C.HEX is illegal.

3. A device specifier, :Fx:, may be used to prefix a wildcard
filename, but must be fully specified. (i.e. :F?: is not
allowed).

A pathname normally specifies a file as follows: the device
specifies one of the physical devices listed in Appendix D. If
device is not specified, then the system disk (:F0:) is
specified by default. 1If a disk is specified, then an fid must
be specified. If a non-disk device is specified, than an fid
may be specified, but has no significance.

Comment lines can be input interspersed with command lines. A
comment line starts with ';' as its first nonblank character.

If the command line does not conform to the above syntax, an
error message is sent to the current console output device
(:CO:), together with another prompt. Otherwise the command
specifies a file which is interpreted by ISIS-II as a file in
ISIS-II Absolute Object Module Format (see Absolute Object File
Formats, Intel Technical Specifications, 9800183B), which is to
be loaded. After loading, one of two actions occurs, depending
on debug: If DEBUG is not specified, then the DEBUG TOGGLE
(see Section 4.3) is reset, and the program is executed. If
DEBUG is specified, then the DEBUG TOGGLE is set, thereby
entering debug mode, and control is transferred to the Monitor
with the starting address of ‘the program displayed, at which
pcint the entire debugging facility of the Monitor is at the

ISIS-1I ERS
Page 18

user's command. There are 4 ways to leave debug mode (thereby
resetting the DEBUG TOGGLE): (1) a user program can call EXIT
(see Section 3.8.7), (2) a user program can call LOAD with
RETSW=1 (see Section 3.8.8), (3) the user may press interrupt
switch #1 while the user program is running (see Section 4.4),
or (4) the user may execute a G8 command from the Monitor.

If the file specified by command does not exist, or if it has
an illegal ISIS-II Absolute Object Module Format, or if its
load address lies within the ISIS-II memory or buffer area, an
error is issued (see Section 4.3) and another prompt is given.
If the file does not correspond to a main program, then results
are undefined.

By the use of RESCAN and READ ,calls (see Section 3.8), CLI
arranges that the loaded progf¥am may read the command tail by
normal READ calls on the current console input device (:CI:):
the first character read will be the first character following
the command head. 1If desired the command head may also be
examined by use of the RESCAN system call in conjunction with

The loaded program is free to implement its own semantics on
the command tail. (Note: if the loaded program fails to READ
the entire command tail, the unread portion will be flushed by
CLI before processing the next command line.)

ISIS-IT ERS
Page 19

3.7 Memory Layocut

Intellec memory is logically compartmented into 7 sections by
ISIS-I1I: interrupt areas, the ISIS-II area, the buffer area, a
vacant area, the user area, and the Monitor work area. This
logical partitioning of memory is described by the following
diagram: -

MONITOR WORK AREA 320 Bytes
Top of Memory (TOM)
USER AREA
: User Org Point (UOP)
VACANT AREA
- Top of Buffers (TOB)
BUFFER AREA N

. Buffer Org. Point (BOP)
= 3000H

ISIS-II AREA

USER INTERRUPTS ‘\\\\\

‘ Locations 24-63)
ISIS-1I1 INTERRUPTS
(Locations (0-23)

Relative sizes of these memory areas are constrained by the
following equations:

UOOP greater than or equal to 3180H
TOB greater than or equal to 3180H (varies
dynamically)
TOB less than or equal to UOP
TOB less than or equal to 3980H
TOM = 32K, 48K or 62K (less 320 bytes for
Monitor work area)

ISIS-II reserves interrupts 0 through 2 for use by itself and
the Monitor, and leaves interrupts 3 through 7 available to the
user.

The buffer area contains three or more I/0O buffers of 128 bytes
each (the permanent buffer is the line edited buffer for the
Console). Buffers are dynamically allocated and deallocated
according to the I/0 needs of the user program (see OPEN,
CLOSE, LOAD, DELETE, RENAME, and ATTRIB, Sections 3.8.1 through
3.8.11); allocation of buffers may cause the Buffer Area to
grow at the expense of the Vacant Area, thus causing TOB to
vary dynamically.

ISIS-II ERS
Page 20

The number of buffers required by a user program can vary from
a minimum of 3 to a maximum of 19. The following rules can be
used to determine the reguired number of buffers:
1. Each open disk file requires two buffers until the
file is closed.

2. An open line-edited file including :CI: requires one
buffer until the file is closed. For a disk file,
ihis buffer is in addition to the two required in rule

3. A system call that accesses a disk directory (LOAD,
DELETE, RENAME, ATTRIB, CONSOL when it specifies a
disk file) requires two buffers during the processing
of the call. The buffers are released on return to
the calling program.

4. When the CONSOL system call assigns the console input
Or output device to a disk file, three buffers are
required for the console input file and two buffers
are required for the console output file. These
buffers are required until end-of-file. A program
called by a system command in a SUBMIT file must also

User programs run in the user area. The user origin point
(UOP) is specified by the user (via the translators, LOCATE,

- HEXOBJ, etc) and must be at least as large as BOP+180H. The
higher the user program is origined, the more buffers 1S1s-1I7
may allocate for the user's benefit (up to the maximum of 19).
Roughly Speaking, more buffers allow more simultaneously open
disk files. If the value of TOM is of interest to the user
program, it may be obtained by a call on the MEMCK routine in

Note: the lower 32K of memory must be RAM. The remaining 30K
of address spzce may be occupied by any combination of memories
and/or non memory. The last 2K of 64K address space is
occupied by the Monitor ROM. The Monitor Work Area is located
at the highest 320 bytes of contiguous RAM.

1SIS-II ERS
Page 21

3.8 System Calls

A system call is a subroutine call: the call is in the user
program, the subroutine is within ISIS-II (KERNEL). The
ISIS-II subroutine will use its own stack as necessary; thus
the depth of the user stack is not affected by subroutine calls
within ISIS-II. -

The following subsections demonstrate the various system calls
in PL/M schemata, and define the action of the subroutines.
(The interface to assembly language user programs is given in
Appendix B.) -

The schemata share the following conventions:

l. Every variable in a system «call is of type ADDRESS (never
of type BYTE).)

2. Errors in hardware or in user programs, or certain
hardware- or software-imposed limitations, may prevent the
successful completion of system calls. These situations
are identified by "error numbers,” (listed in Appendix
C.). Errors are classed as non-fatal or fatal. Fatal
errors are handled as in Section 4.3, non-fatal errors are
described below.

Most system calls specify the address of a variable into
which ISIS-II will place an error number if control returns
to the user program. This variable is denoted by "STATUS"
in the schemata below. TIf STATUS=0 on return, no error was
encountered.

The following terminology is used throughout Sections 3.8n;
(a) "Non-fatal error occurs": no action was performed by
the system call; control returns to the user program; the
nature of the difficulty is indicated by the value of
STATUS on return, which is an "error number." (b) "Fatal
error issues:" a message is printed on the cold start
Console device, and control passes to the Monitor or to
CLI, as described in Section 4.3.

If a hardware error or a user programming error prevents
successful output of an error message to the cold start
Console device, the system may hang without the normal
error message, in which case the system must be restarted
(see Section 4.1.1).

3. A pathname is specified by a PL/M variable which points to
the first of a string of bytes in memory. :

This byte string must conform to the syntax of pathname as
given in Section 3.6, but may have leading ASCII space
characters, and must be terminated by a character which is
neither a (> nor ':' nor '.’'.

ISIS-II ERS
Page 22

If the byte string does not conform to this description, a
fatal error may issue or a non-fatal error may occur,
depending on the System call.

4. To clarify the effect of certain system calls upon Files,
we can imagine that there are 2 integer quantities, LENGTH
- and MARKER, associated with each file.

The LENGTH associated with a file is the number of bytes in
the file. Por many input files, such as Sequences of bytes
being read from a teletype keyboard, the LENGTH is
potentially infinite; for other input files, such as paper
tape, the LENGTH is unknown until the end of the tape is
read in. The LENGTH of an output file typically increases
as it is written.

call), and is the number of bytes in the file which precede
the byte to be read Or written next. The range of MARKER
is between 0 and LENGTH, inclusive.

3.8.1 oOpen
CALL OPEN(.AFTN,FILE$POINTER,ACCESS,ECHOAFTN,.STATUS);

The OPEN system call establishes a connection between a user
program and a file. No input from or output to a file may
occur until such a connection is established. A file for which
such a connection is established is said to be an "open file."
Two files, :CI:, :CO: are always open.

When a file is opened via the OPEN System call, ISIS-II returns
an integer value between 0 and 255 inclusive in "AFTN" (Active
File Table Number). This value is used in future System calls
to specify an open file. (The values 0 and 1 are used in such
system calls to specify :CO:, and :CI:, respectively.)

If the specified file is already open, a non-fatal error occurs
(unless the file ig :CI: or :C0:, in which case the appropriate
value is returned in AFTN.) An attempt to open a device
currently serving as a Console file will cause a non-fatal
eérror to occur. In both these non-fatal cases, the value used
to identify the already open file is returned in AFTN.

No more than 6 files (exclusive of :CI: and :CO:) may be
simultaneously oben; an attempt to open more than this number
of files simultaneously Causes a non-fatal error to Ooccur.
FILESPOINTER is the address of the first of a string of bytes
which satisfy the restrictions listed under point 3 in Section
3.8. .

.ISIS-II ERS
Page 23

The ACCESS parameter has value 1, 2 or 3. (Otherwise a
non-fatal error occurs.)

If ACCESS=1, the file is being opened for input. The
associated MARKER is set to 0, LENGTH is unchanged. No
attributes (see Section 3.10) of the file are changed. 1If
FILESPOINTER specifies a non-existent file, a non-fatal error
occurs.

If ACCESS=2, the file is being opened for output. If the file
specified is a non-existent disk file, then a disk file so
specified is created, with all attributes (see Section 3.10)
reset. If the file specified is an existing disk file, then
the Format and Write-Protect attributes must be in a reset
state (otherwise a non-fatal error occurs). 1In either case the
associated MARKER and LENGTH are both set to 0.

If ACCESS=3, the file is being opened for update (reading
and/or writing, which may be interleaved). 1If the file already
exists, LENGTH is unchanged; if the file does not exist, then a
new file is created (as above) and LENGTH is set to 0. 1In
either case, MARKER is set to 0. 1If the file specified is not
a disk file with Format and Write-Protect attributes in a reset
state, a non-fatal error occurs.

If the hardware characteristics of the device being opened (see
Appendix D) are not compatible with the access modes specified
by ACCESS, a non-fatal error occurs.

If the file is not to be opened as a lined file, then ECHOFTN
must be 0; otherwise the lower byte of ECHOFTN must be the AFTN
of a file already open for output, specifying the associated
echo file. For example, AFTN = OFF00H specifies the console
output to be an echo file. Echoes will be interleaved with
user's output to the file, if any. If a non-zero ECHOAFTN does
not specify a file opened in write mode, a non-fatal error
occurs.

Opening disk files causes 2 buffers to be allocated within the
Buffer Area (see Section 3.7). 1If the file is opened as a
lined file an additional buffer is allocated to it. If the
Buffer Area and the Vacant Area together contain insufficient
space for such buffers, a fatal error occurs. :
If the file opened is a paper tape punch (:HP: or :TP:), then
12 inches of leader (ASCII null characters) are punched.
3.8.2 Read

CALL READ (AFTN, .BUFFER,COUNT, .ACTUAL, .STATUS) ;

This call transfers information from the open input or update

ISIS-1I ERS
Page 24

incremented by the same number (if the file is line-editeq,
MARKER is updated by the appropriate number). No more than
COUNT bytes will be transferred. If ACTUAL=0 on return, then

For all files, either COUNT or (LENGTH minus MARKER) bytes will
be transferred, whichever is fewer. For lined files, there is
the additional pProviso than no bytes beyond the current logical
line will be transferred.

If AFTN does not specify a file open for input or update, a
non-fatal error occurs.

If COUNT = 0, then ACTUAL = 0 Mmay or may not indicate
end-of-file. End-of-file is best indicated, in the case of
line-edited files and COUNT greater than 0, by ACTUAL = 0; in
the case of 1lined files and COuUNT greater than 0, it is
indicated by ACTUAL less than COUNT.

3.8.3 Write
CALL WRITE(AFTN,.BUFFER,COUNT,.STATUS):

This call transfers information from the memory area addressed
by .BUFFER to the open file identified by AFTN. Exactly COUNT
contiguous bytes are transferred. MARRER is incremented by
COUNT; if this causes MARKER to be greater than LENGTH, then
LENGTH is set equal to MARKER.

If APTN does not specify a file open for output or update, a
non-fatal error occurs. '

If disk hardware does not permit & successful write, a fatal
error is issued. 1f other hardware does not permit a
Successful write, the System may hang (e.g. line Printer), or
continue without indicating the failure (e.qg. teletype).

3.8.4 Seek

CALL SEEK(AFTN,MODE,.BLOCKNO,.BYTENO,.STATUS);
If APTN specifies ¢BB:, this is a no-op; otherwise AFTN must
Specify a disk file open in either READ mode (access=1), or

UPDATE mode (access=3), in which case the call sets or returns
the MARRER value associated with the file.

ISIS-II ERS
Page 25

BLOCKNO and BYTENO are address values which together specify a
number, N, of bytes, by the formula N = (128*(BLOCKNO modulo
2*%]15) + BYTENO).

MODE must have one of the values 0,1,2,3, or 4, otherwise a
non-fatal error occurs.

If MODE=0(SEEK Return), then MARKER is not changed; instead,
values are returned in BLOCKNO and BYTENO such that N=MARKER.

If MODE=1l(SEEK Backward), then the current MARKER value is
decremented by N; if this new value of MARKER is negative,
MARKER is set to 0, and a non-fatal error occurs.

If MODE=2(SEEK Absolute), then the new MARKER value is set to
N. 1If this new value of MARKER is greater than LENGTH, then
sufficient zero-value bytes (ASCII nulls) are appended to the
file to make LENGTH=MARKER. If insufficient disk space remains
for this extension, a fatal error will be issued, either during
execution of the SEEK call, or later when an attempt is made to
WRITE into the extended area of the file (which can happen at
any time during the life of the file on its diskette/platter).

If MODE=3(SEEK Forward), then the current MARKER value is
incremented by N. If this new value of MARKER is greater than
LENGTH, then sufficient zero-value bytes (ASCII nulls) are
appended to the file to make LENGTH=MARKER. If insufficient
disk space remains for this extension, a fatal error will be
issued, either during execution of the SEEK call, or later when
an attempt is made to WRITE into the extended area of the file

(which can happen at any time during the life of the file on
its diskette/platter).

If MODE=4 (SEEK EOF), then the current MARKER value is set to
LENGTH; the values of BLOCKNO and BYTENO are ignored.

It should be observed that the editing and buffering implicit
in the handling of lined files has the side effect that the
current MARKER value is not always calculable by the READing
program; thus the use of SEEK on lined files can have
unexpected effects.

If the file specified by AFTN is not a disk file or :BB:, then
a non-fatal error occurs.

Attempts to seek backward past the beginning of a file, or to
extend a file opened for input (ACCESS=1, see Section 3.8.l1) by
seeking past the end of the file, will result in a non-fatal
error.

ISIS-I1 ERS
Page 26

3.8.5 Rescan
CALL RESCAN(APTN,.STATUS);

This call affects the READing of the lined file specified by
AFTN. If the file is not a lined file, a non-fatal error
occurs. The effect is that the MARKER associated with the file
is adjusted so that the next byte to be input by a READ command
will be the first byte in the logical line from which a byte
was last transferred by READ command. If RESCAN is given
before any READ is given, it has no effect. This permits the
READing of a line to begin anew, after some or all of it has
been previously read. A RESCAN call on :BB: is a null
operation.

3.8.6 Close
CALL CLOSE(AFTN,.STATUS):

CLOSE severs the connection established by the OPEN system
call. All files should be "closed" when input or output is
complete.

Closing a file releases all buffers allocated for it (by OPEN)
in the Buffer Area.

If the file closed is a paper tape punch (:HP: or :TP:), 12
inches of trailer (ASCII null characters) are punched.

If AFTN specifies :BB:, :CI: or :CO:, or the file specified by
AFTN is not an open file, CLOSE returns with no error
(STATUS=0) , but the action is a no-op.

3.8.7 Exit
CALL EXIT;

When a user program wishes to terminate execution, a call to
EXIT is used. This call causes all currently open files
(except :CI: and :C0:) to be closed and the Command Interpreter
(CLI) to be loaded from the booting drive and started. At the
conclusion of this operation, the DEBUG TOGGLE is in a reset
state. The current Console definition is not changed.

If CLI cannot be loaded (e.g. the boot drive does not contain
ISIS.CLI) then control will be passed to the MONITOR.

ISIS-II ERS
Page 27

3.8.8 Load
CALL LOAD(FILESPOINTER,BIAS,RETSW, .ENTRY, .STATUS);

This call requests ISIS-II to load a portion of RAM as
specified by the contents of an ISIS-II Absolute Object Format
file specified by FILESPOINTER.

First, ISIS-II rearranges buffers currently allocated in order
to make TOB (see Section 3.7) as small as possible.

Then the program (or data) is loaded into memory at addresses
calculated by addition (modulo 64K) of BIAS to the load address
specified by the input file. FILESPOINTER is the address of
the first of a string of bytes which satisfy the restrictions
listed under point 3 in Section 3.8. If FILESPOINTER does not
correctly specify a file in ISIS-II Absolute Object Format, or
if an attempt to load memory (other than interrupt areas 3-7)
below TOB (see Section 3.7) is made, then a fatal error will be
issued.

RETSW (Return Switch) must have one of 3 wvalues: 0, 1, or 2;
otherwise a non-fatal error occurs.

RETSW=0 will cause control to return to the calling program
after the memory loading has been accomplished. ENTRY will be
set equal to the loaded program's entry point, as given in the
input file. The new UOP is the minimum of the old UOP and the
lowest address loaded (exclusive of locations 24-63). Certain
error conditions (internal error in object file or attempt to
load RAM below TOB) will cause a fatal error to be issued.

RETSW=1 will cause control to tranfer to the newly loaded
program at its start address entry point. If the loaded
program is not a main program, then results are undefined.

RETSW=2 will cause control to transfer to the Monitor after
loading with the PC equal to the start address.

The LOAD call can also affect the DEBUG TOGGLE (see Section
4.3). The toggle is unchanged, reset or set as RETSW is 0,1 or
2, respectively. In the event of an error, the toggle is
unchanged.

ISIS-II will not permit loading into the "ISIS-II Area" or the
"Buffer Area” (see Section 3.7, Memory Layout); however buffers
in current use will be relocated as necessary to make the
buffer area as small as possible.

Execution of this system call uses 2 transitory buffers. If
the Buffer Area and the Vacant Area (see Section 3.7) together
contain insufficient space for such buffers, a fatal error will
be issued.

ISIS-IT ERS
Page 28

3.8.9 Delete
CALL DELETE(FILE$POINTER,.STATUS); -

This call removes the disk file Specified by FILESPOINTER from
the disk. Disk Space allocated to the file is released. 1If
FILESPOINTER specifies a non-existent file, or if the specifiegd
file is not a disk file, or has its Write-Protect or Format
attribute set (see Section 3.10), or is already open, a
non-fatal error occurs. 1If the specified file is currently
serving as :CI: or :CO:, then it is neither closed nor deleted,
and a non-fatal error occurs.

3.8.10 Rename
CALL RENAME(OLDFILE$POINTER,NEWFILE$POINTER,.STATUS);

This call changes the name of a disk file. Both FILESPOINTER's
must specify files on the same disk.

If the files Specified are not both disk files on the same
disk, or if NEWSFILEPOINTER Specifies an already existing file,

er Area and the Vacant Area (see Section 3.7) together
contain insufficient space for such buffers, a fatal error will

3.8.11 Attrip
CALL ATTRIB(FILESPOINTER,SWID,VALUE,.STATUS);

This call allows the user to set or reset attributes (see

Section 3.10) associated with the disk file Specified by

FILESPOINTER. 1If the specifiegd file is a non-existent disk
ile, a non-fatal error occurs. _

SWID (SWitch IDentification) must have the valye 0, 1, 2 or 3
(else a non-fatal error occurs), which specifies the Invisible,
System, Write-Protect or the Format attribute, respectively;
this attribute is reset or Set as low order bit of VALUE is a 0
or 1, respectively.

ISIS-II ERS
Page 29

Execution of this system call uses 2 transitory buffers. 1If
the Buffer Area and the Vacant Area (see Section 3.7) together
contain insufficient space for such buffers, a fatal error will
be issued.

3.8.12 Console
: CALL CONSOL(CISFILEsPOINTER,CO$FILE$POINTER,.STATUS);

This call allows independent redefinition of the 2 halves of
the virtual Console device. The physical file corresponding to
the current Console input (output) ‘device is closed, and the
file specified by CISFILESPOINTER (COSFILESPOINTER) is opened
as the new Console input (output) device. 1If this file cannot
be opened for input (output), for any reason, a fatal error
will be issued.

If CISFILESPOINTER (COSFILESPOINTER) specifies the logical
device :CI: (:CO:), then there is no effect.

3.8.13 Error
CALL ERROR{STATUS):;

This call allows a user program to cause an error message to be
printed on the cold start Console (see Section 4.1.1) in the
standard system format (see Section 4.3).

The low-order 8 bits of STATUS specify the value of an error
number to be printed in the error message.

Authors of user programs are advised to use error numbers in
conformance with Appendix C.

3.8.14 wWhocon
CALL WHOCON (N, .BUFFER} ;

This call allows determination of what physical device is now
serving as the current Console input or output device.

BUFFER must be at least 15 bytes long; into it will be placed

the ASCII representation of the pathname, end-delimited by an

ASCII space, of the device now serving as the input or output

Console device, depending on whether the least significant bit
of N is a 1l or a 0, respectively. No errors are reported.

ISIS-II ERS
Page 30

3.8.15 Spath

CALL SPATH(FILE$POINTER..ARRAY,.STATUS}:

This call allows the caller to gain
regarding the file specified by the
FILESPOINTER is pointing.

The ‘information is returned in a 12
format:

ARRAY(0) = Device number

ARRAY (1) - ARRAY (6) = Filename
ARRAY(7) - ARRAY (9) = Filename
ARRAY (10) = Device Type
ARRAY(11l) = Drive Type ..7

The

. Device Number is a number which

Peripheral device to which the file is associated.

some logical information
string to which -

byte ARRAY in the following

extension

logical entities have the following meaning;

specifies the physical
Valid

device numbers and their corresponding peripheral devices

are as follows:

DISK
DISK
DISK
DISK

DRIVE
DRIVE
DRIVE
DRIVE
DISK DRIVE
DISK DRIVE
TELETYPE INPUT */
TELETYPE OUTPUT */
CRT INPUT */

CRT OUTPUT */

Vb wwrHO
*
™~

TELETYPE PAPER TAPE
HIGH SPEED PAPER TAP
USER READER 1 */
USER READER 2 */

USER PUNCH 1 */
USER PUNCH 2 */
LINE PRINTER */
USER LIST 1 */

CONSOLE INPUT #
CONSOLE OUTPUT */
DISK DRIVE 6 */
DISK DRIVE 7 */
DISK DRIVE 8 */
DISK DRIVE 9 */

USER CONSOLE INPUT */

USER CONSOLE OUTPUT */

READER */

E READER */

TELETYPE PAPER TAPE PUNCH (TELETYPE) */
HIGH SPEED PAPER TAPE PUNCH */

BYTE BUCKET (A PSEUDO INPUT/OUTPUT DEVICE) */
/

ISIS~-II ERS
Page 31

. Filename is the ISIS-II filename.
. Filename Extension is the ISIS-II filename extension.

. Device Type is a field which defines the type of peripheral
to which the file is associated. The following types. (and
corresponding Device Type value) have been defined:

Sequential Input = 0
Sequential Output = 1
Sequential Input/Output = 2
Random Input/Output = 3

) Drive Type is a field which is meaningful only if Device
Type = 3. In this case the Drive Type semantic is as
follows:

Controller not Present = 0

Two boards double density =1
Two boards single density = 2
Integrated single density = 3

5440 type hard disk = 4

3.9 Disk Format

All floppy disks contain 77 tracks which are divided into
sectors of 128 bytes each. A single density disk has 26
sectors per track, a double density disk has 52 sectors per
track.

All hard disk platters contain a minimum of 800 tracks (=400

- tracks per surface) with 36 sectors per track; each sector
contains 128 bytes. The ISIS-II file structure addressing
mechanism is predicated upon track and sector variables defined
as byte variables. Thus ISIS-II must perform a mapping of the
800 tracks, 36 sectors/track into a logical representation of
200 tracks, 144 sectors/track.

ISIS-II related files (i.e. not counting ASM80, LIB, LINK,
LOCATE, PLM80.LIB, FPAL.LIB) occupy approximately 800 sectors
on a system disk and 100 sectors on a non-system disk.

In the previous versions of ISIS-II information pertaining to
the soft sector format of the tracks on the diskette was
carried in the data area of the ISIS.LAB file. The FORMAT cusp
would read the information contained within ISIS.LAB on the
diskette mounted on drive 0 and format the new diskette
accordingly. This is no longer possible since different
densities require different interleave factors. The FORMAT and
IDISK cusps each contain a table with the appropriate
interleave factors for each diskette/platter density, and will

<

ISIS-II ERS
Page 32

use the contents of this table to correctly format a
diskette/platter.

The interleave factors for each diskette/platter will continue
to be written into ISIS.LAB to provide media compatibility with
earlier releases of the system (especially important in regards
to OEM customers). -

3.10 Directory Structure

A diskette directory can accomodate 200 files while a pPlatter
directory can accomodate 992 files. On a system
diskette/platter approximately 20 files are reserved for
ISIS-I1I; there are 6 basic files (ISIS.DIR, ISIS.LAB, ISIS.MAP,
Is1s.TO, ISIS.BIN, ISIS.CLI) and 14 ISIS-I1 cusps (ATTRIB,
BINOBJ, COPY, DELETE, DIR, EDIT, FORMAT, HDCOPY, HEXOBJ, IDISK,
OBJHEX, RENAME, SUBMIT, SYSTEM.LIB). On a nonsystem
diskette/platter 4 files are reserved for ISIS-IT ISIS.DIR,
&32IS.LAB, ISIS.MAP, ISIS.TO.

Each directggy_egpry contains 4 attributes associated with the
file: the *"Invisible" attribute, the "Write Protect”
attribute, the "Format" attribute, and the "System" attribute.

These attributes may be set and reset by use of the ATTRIB
command (see Section 3.12.4) or ATTRIB call (see Section
3.8.11). '

Files with the Invisible attribute set are normally not listed
by the DIR command (see Section 3.12.1). All files listed
above normally have the Invisible attribute set.

Files with the Write Protect attribute or the Format attribute
set may not be opened for output or update, or be deleted or
renamed; an attempt td do so will result in a non-fatal error.
The Format attribute is set for 6 special ISIS-II files
(ISI1S.DIR, ISIS.MAP, Isis.TO, ISIS.LAB, ISIS.BIN, and
ISIS.CLI), and should not be changed by the user.

Files with the "System" attribute set are assumed to be an
integral part of the ISIS-II system and are handled
accordingly. For example a FORMAT operation with the S switch
selected will format a System disk; during this process all
files which reside on the source disk and have the system

ISIS~II ERS
Page 33

3.11 1I/0 Driver Specifications

In addition to disks, the devices supported by ISIS-II are all
those (except the PROM Programmer) supported by the MONITOR.
The drivers for all devices (except disks) are contained in the
MONITOR ROM provided with the Intellec and their definitive
description appears elsewhere (see Intellec MDS Operator's
Manual or Intellec Series 2 Model 210 User's Guide).

CAUTION: ISIS-II uses the Monitor's IOSET routine to select
non-disk devices; therefore ISIS-II will interfere with the
user's attempts to select devices by use of the Monitor's
ASSIGN command. Furthermore, user programs which call the
Monitor I/0 routines directly will possibly cause such I/0 to
be interleaved with ISIS-II I/Q.

The remainder of Section 3.11 is for information only; in the
event of conflict with the above 2 manual references, the
references are definitive.

_The hardware does not allow software to determine if a device
is physically present. Thus, for example, output directed to
the line printer will be lost if no line printer is on the
system.

. 3.11.1 Teletype I/0 Driver

ISIS-II supports communication with a teletype by treating it
as 2 separate devices, an input device (:TI:), and an output
device (:TO:). These 2 devices define logical I/0 files which
are distinct, although :TO: may be used as the echo device for
:TI: when :TI: is accessed as a lined file.

ISIS-II uses the Monitor I/0 system to access the teletype.
This I/0 is unbuffered; thus the teletype is unresponsive to
keyboard typing except when a user program is requesting input
via a READ command.

3.11.2 Video Terminal I/O Drivers

The ISIS-II video terminal I/O drivers (:VI: and :VO:), are
identical to the teletype drivers (:TI: and :TO:) except for a
higher transmission speed.

3.11.3 Paper Tape Punch I/0 Drivers

ISIS-II supports 2 separate punch devices, a low speed device

located on the teletype (:TP:), and a separate high speed punch
peripheral (:HP:). ‘

ISIS-II ERS
Page 34

When either punch is opened for access, 12 inches of leader
(ASCII null characters) are produced by ISIS-II. When either
punch is closed, ISIS-II Produces 12 inches of trailer (ASCII
null characters).

3.1133.1 Low Speed Punch

The ISIS-II low speed punch, :TP:, is integrated with the
teletype and has no automatic on/off control. Therefore, the
user must manually start the punch when it is opened, and stop
it after it is closed. Furthermore, since the teletype print
device, :TO:, is actually the same hardware as ¢tTP:, the user
should insure, through a combination of program logic and
operations procedure, that these 2 devices don't interleave
outputs.

3.11.3.2 High Speed Punch

The high speed punch device (:HP:), is driven fhrough the
Monitor I/O system.

3.11.4 Paper Tape Reader I/O Drivers

ISIS-II supports 2 paper tape reader devices, a low speed
device located on the teletype (:TR:), and a separate high
speed reader peripheral (:HR:). The 2 readers are identical in
operation; the major difference lies in the speed of the
devices. End-of-file on both devices is indicated by absence
of data for a period of 250 milliseconds. When this occurs,
the user receives a standard-end-of-file indication from
ISIS-II (see Section 3.8.2). Note that end of tape and tape
jam are treated identically!

3.11.5 Line Printer I/0 Driver

ISIS-II supports a line printer (:LP:). When the line printer
is opened or closed, a Page eject is not generated.

3.11.6 User-Defined Devices

ISIS-II allows users to implement their own I/0 drivers, as

defined by the Monitor. These devices are referenced in
ISIS-II by the device names listed in Appendix D.

ISIS-II ERS
Page 35

3.11.7 Disk Driver

The ISIS-II Disk Driver will support four types of disk
controllers. The types of controllers supported will be: two
board single density, two board double density, integrated
single density, and 5440 hard disk controller. The
relationships among I/O ports and present disk controllers is
contained in a table called DRCFTB which is updated at the time
of system activation. (see Section 3.13).

ISIS-II ERS
.Page 36

3.12 System Commands

The general syntax of commands has been given above (see
Section 3.6). This section lists the commands which constitute
an essential part of the ISIS-II system. The syntax and
semantics of these commands is given below. Where non-terminal
symbols are not here defined, they may be found in Section

3.6, Whenever a pathname occurs in a commangd line, it must be
folXowed by a character which is neither a <) nor ':' nor

'.’. One or more ASCII space characters may be used for this
purpose.

If invalid pathnames or switches are detected in a command
tail, the command processing is halted at that point, and a
non-fatal error occurs.

The command language may be extended by the user's providing
files in ISIS-II Absolute Object Format; CLI will then
recognize the corresponding filenames as commands (more
specifically, as <command head)>'s) and invoke the corresponding
program.

The command language may be tailored to a user's naming
preferences by renaming the system command files. For example,
DELETE could be renamed to DEL or CAREFL.

ISIS-II ERS
Page 37

3.12.1 DIR Command

The DIR (Directory) command provides the means whereby the user
can ascertain what files are on a disk directory. The syntax
for the Directory Command is:
{command line> := L DEBUG J DIR [command tail 3
{command taild> ::= {(parameter 1list>
{parameter list> ::= (parameter listd<parameter> ! ¢parameter>
{parameter) ::= FOR <wildcard pathname> !
TO {pathname> !
{switch list>

(switch list> <{switch> ! dswitchd

¢Switch list> =
11213141516!718191TIFIPIOIT!Z

{switch)> ::= 0!
THis command causes a list (in ASCII) of the filenames in the
specified disk directory to be output. 1If the listing device
is not specified the output will be to :CO:, else it will go to
the device, or file, specified in the pathname following the TO
keyword. Each entry in the list contains (a) the filename and
extension, (b) the number of bytes in the file, {c) the number
£ disk sectors allocated for representation of the file, and
(d) which attributes are set for the file.

The last line of the list will display a count of all sectors
used on the diskette/platter as a fraction of the number of
total available sectors. Normally, this list does not include
files whose "Invisible" attribute in the directory is set. 1If
an "I" (Invisible) switch is given, then the listing will
include such files. 1If an "F" (Fast) switch is given, then the
number of bytes, number of sectors, and set attributes are not .
given in the output, yielding a "faster" listing.

If the "2" switch is specified, the only information displayed
will be a count of all sectors used on the diskette/platter as
a fraction of the number of total available sectors.

The "O" (One) and "T" (Two) switches specify whether the
display of the directory is to be in a single (one) column
format or double (two) column format, respectively. 1If the
directory device corresponds to a floppy diskette, the default
is single column. If it corresponds to a hard disk platter,
the default is double column.

If a "P" (Pause) switch is given, then the system will pause
and output the message

LOAD SOURCE DISK, THEN TYPE (CR)
The user can then load the disk for which a directory listing

is required, type carriage return, and the directory contents
of that disk will be output to the designated device. Upon

ISIS-II ERS
Page 38

conclusion, the message
LOAD SYSTEM DISK, THEN TYPE (CR)

will be output.

If the FOR construct is followed by a Pathname which does not
contain any wildcard tokens the DIR cusp will 1list the file as
being present on the disk even if the file has the invisible
attribute set to true and the I switch was not specified in the
DIR command.

Note that while a wildecard Pathname may contain a device
specifier, any numerie switch specifying a disk unit number
will override the wildcard device unit number. What's more,
the rightmost numeric switch found in a command line will
override any previous ones. Only one "TO<pathname>" construct
may appear in a command line. Only one "FOR<wildcard pPathname)
" may appear in a command line.

ISIS-II ERS
Page 39

3.12.2 RENAME Command

The RENAME command provides the faciiity whereby the user can
change the filename (and/or extension) of a disk file. The
syntax is:

{command line) ::= [DEBUG 1 RENAME {command tail> -
{command tail> ::= {oldfiled TO (newfile

<oldfile) ::= {(pathname>

{newfile) ::= <pathname?

The two pathnames's must specify the same disk. The file
specified by {oldfile> has its filename and/or extension
changed, so that it is now specified by <(newfile). If <newfile®
specifies an already existing file, the message

¢FX:FILE.EXT ALREADY EXISTS, DELETE?

is output on the current Console device (:CO:), and one logical
line is input from the current Console device (:CI:).

If this line begins with the ASCII character "Y" or "y". then
the RENAME command continues, otherwise no action is performed
and control returns to CLI.

If the files specified are not both disk files on the same disk
or if oldfile specifies a non-existent file or a file whose
Write-Protect or Format attribut is set, then an error message
is issued and control returns to CLI.

ISIS-II ERS
Page 40

3.12.3 COPY Command

The COPY command pProvides the user with the facility to copy a
file, or group of files, and to concatenate files. The CoOPY
command can be used with either single disk or multi-disks
configuration. The syntax of the command allows the user to
specify a file copying operation using the wildcard faciTity.
A file renaming capability using wild cards is also provided.
The syntax is:

{command line> ::= L DEBUG 1 COPY <command tail®
{command tail> ::= <sourced TO <{destination® [<switch list>]
{sourced ::= ¢wildcard pPathnamed ! <concatenate file list>
<concatenate file listd ::= {concatenate file list>, <pathname>
! {pathname>

:= <wildcard pathname>
:= &switch listd<switchd> ! (switch>

!SI N!IPI!QIC!B

{destination> :
<switch listd :
<switch ::= U

3.12.3.1 Description of Major Functions Performed

A. Copy with wildcard facility

allowed.)

The user can specify his source files with any valid wildcard
construct, however, his destination file specification has two
choices. First, he can specify only the device. 1In this case,
the filename becomes the Same as the source filename, i.e.,

COPY :Fl:*.BAZ TO :F3:
is identical to:
COPY :Fl:*.BAZ TO F3:* ,BAZ
This is included for the user's convenience.

The second choice the user has for specifying his destination
file is to use a wildcard name with the same mask as the source
wildcard name. Having 'the same mask' is defined as follows:

name must contain the same * token; for every position in the
destination wildcard name which contains a ?, the corresponding
pPosition in the destination wildcard name must contain a
wildcard token (?,*). (Note that *.* can be thought as

RAXEXX k%% for this purpose) .

"ISIS-II ERS
Page 41

Also, every position in the source wildcard name that does not
contain a wildcard token must have a corresponding non-wildcard
token in the destination wildcard name. Therefore,

COPY :F2:F??3*,* TO :F4:A?25% *
is valid, while

COPY :F2:SK?LL TO :F4:SKILL
is not valid.

The wildcard facility has a default scope which covers all
non-format files. Accordingly,

COPY :F2:*.* 70 :F1:

will copy all non-format files from the disk mounted on drive 2
to the disk mounted on drive 1. There are two switchs (S and
N) which may be used to modify the scope of wildcards. The S
switch restricts the scope of the wildcards to system files
(with the exclusion of ISIS.BIN and ISIS.CLI which are also
format files and therefore already expected to be on the disk),
while the N switch restricts the scope of the wildcards to
non~-format and non-system files.

As files are copied the attributes are all set to false in the
destination file. The C (copy attributes switch), if
specified, will insure that the destination file, or files,
will have the same attributes set which were set in the
corresponding source file.

As each file is copied the message

COPIED source name TO destination name
will be output to the :CO: device.
If user wants to reserve tHe right to decide on a file by file
basis whether a file is to be copied, the Q switch affords him
such facility. The Q (query) switch will cause COPY to display
the message.

COPY {source name> TO <{¢destination named?
and expect a 'Y' (or 'y') for a pPositive response or anything
else for a negative response. Only if a positive response is

given will the file be copied, else COPY will continue its
normal process.

ISIS~-II ERS
Page 42

If a destination file already exists on the destination disk,
the message

:FX:FILE.EXT ALREADY EXISTS, DELETE?

is output on the current Console device (:CO:), and one togical
line is input from the current Console device (:CI:). 1If this
line begins with the ASCII character ®"¥Y" or "y", then the COPY
command continues, otherwise no action is performed and
processing of the next file continues.

A U (Update) switch, if present in the command line, will cause
suppression of the above warning message and cause a copy over
the file named newfile . In this case, the new file will be
opened in update mode (ACCESS = 3, see Section 3.8.1), and thus
the length of the new file, if it already exists, will not be
decreased. .

The switch B (Brief) is used to achieve the same effect as the
U switch with the difference that the old destination file is
deleted and a new file, with the same name, is created,
containing the exact copy of the source file.

The COPY command allows the user to copy one file on a disk to
a file on another disk using just one disk drive. To execute
this function the user specifies the P (Pause) switch. When
this switch 'is specified the following message is output to the
:CO: device

LOAD SOURCE DISK, THEN TYPE (CR)
The user must mount the source disk on the disk drive specified
by the source file pathname. When it is necessary to switch
disks, the message

LOAD OUTPUT DISK, THEN TYPE (CR)
is output. As each file is copied a message

COPIED source name TO destination name

will be output to the :CO: device. These messages are repeated
until all the files are transferred. At that point the message

LOAD SYSTEM DISK, THEN TYPE (CR)
will be output to the :C0: device, and when this is done
control will pass to ISIS-II. This switch permits the user of
a single drive system to back up files from one disk to another.

If the source name is equal to the destination name the P
switch is implied and a single drive copy will be executed.

ISIS-II ERS
Page 43

B. Renaming Files While Copying
The COPY command permits the user to rename the file or group
of files being copied with the following syntactical rule
covering the use of wildcard tokens: if a wildcard token is
used in the source file name it must also be used in the same
position in the destination file name. Both explicitly named
portions of the source and destination file names must have the
same length.

COPY :F2:F00?? TO :Fl:FXX??
is allowed, while

COPY :F2:FO0* TO :Fl:FXX?
and

COPY :F2:FO0? TO :Fl:F?7?X

are not.

C. File Concatenation

The COPY command allows the user to concatenate files together
and create a new file.

This facility entails certain restrictions. The destination
filename must not be the same as any of the filenames to be
concatenated. Also, none of the source files, or the
destination file can contain wildcard tokens.

The concatenation facility of COPY has its own operator, the
'»'. If there is a ',' in the command line, COPY will
automatically assume that there is to be concatenation. The
error checking for concatenate will be done before any of the
disk operations.
Example:

COPY A,B,C TO D

will result in the concatenation of files A, B, C into one file
called D. As each file is concatenated to file D, the message

APPENDED source filename TO destination filename

will displayed on :CO:.

ISIS-II ERS
Page 44

3.12.4 ATTRIB Command

This command allows the user to examine, set, or reset
attributes of a disk file. The syntax is:

{command line” ::= [DEBUG J ATTRIB <command tail® -
{ommand tail> ::= (wildcard pathname> L <switch 1list>1}
{switch list> ::= (switch list) <switch element> !

- {switch element>

(switch element> ::= WO ! Wl ¢ IO ! I1 ! SO ! S1 ! FO ! F1 ! Q

Wl sets the write protect attribute:
WO resets it.

Il sets the invisible attribute:

I0 resets it.

Sl sets the system attribute:

S0 resets it.

Fl sets the format attribute:

FO resets it.

If the Q (query) switch is entered, ATTRIB will display the
message

¢tFX:FILE.EXT, MODIFY ATTRIBUTES?
on :CO: and expects a response on :CI:. A response of 'Y' or
'y' will cause ATTRIB to modify the attributes of the file in
question. The filename along with the attributes will be
displayed on the :CO: device.. Any other response causes ATTRIB
to leave the file's attributes unmodified and continue.

If pathname does not specify a disk file, or specifies a
non-existent disk file, an error message will be issued.

If{switch list) specifies different values for the same
attribute, the value rightmost in the command line takes
precedence.

I1f {switch list> is not specified, then the filename will be
displayed along with those attributes which are set. This
allows the user to determine the present attributes of a file.

ISIS-II ERS
Page 45

3.12.5 DELETE Command

The DELETE Command provides the facility to remove files from a

disk, thereby freeing disk space for allocation to other

files. The syntax is:

I DEBUG] DELETE <command tail®)

{file spec list> L switch]

= {file spec listd , <file specd!
<{file spec>

{file spec) ::= (wildcard pathname> T Q 1

{switch) ::= P

{command lineb :
{command tail>
{file spec list)

=

=
.
.

If a pathname specifies a device other than disk, or if it
specifies non-existent disk file or a file whose Write-Protect
or Format attribute is set, then the file is not deleted and an
informative comment is printed; processing of the

file spec list continues.

The Q (query) switch causes DELETE to display the message
:FX:FILE.EXT, DELETE?

and expects a 'Y' or 'y' for a positive response and anything
else for a negative response.

The P (pause) switch allows deleting a file on another disk
while using just one drive. When this switch is specified the
following message is output to the :CO: device

LOAD SOURCE DISK, THEN TYPE (CR)

The user must load the disk containing the file(s) to be
deleted and then type a carriage return. As each file is
deleted, the message

¢:FX:FILE.EXT, DELETED

will be output to the console. When done, the following
message will be output to the :CO: device

LOAD SYSTEM DISK, THEN TYPE (CR)

ISIS-II ERS
Page 46

3.12.6 FORMAT Command

The FORMAT command allows the user to format a disk, so that it
may be used by ISIS-II. The syntax is:

= [DEBUG 1 FORMAT {command taild -

= {target device> <fid> r <switch list>)"

i= FO: ! :Fl: ! :F2: | :F3: ! :F4:
:F5: | :F6: ! :F7: | :F8: { :F9:

£idd ::= Lfilename) [.<extensiondl

<switch list> ::= <switch list) <switch> ! &switehd

{switch> *:= A 1 S ! K | FROM {integer>

<integer> t:= 0 P 1120131 4 ! 5161718109

{command line) ::
{command tail> ::
{target device> :

The disk mounted on the target device is formatted in a
soft-sectored format; four necessary files (ISIS.LAB, ISIS.DIR,
ISIS.MAP, and 1SIS.T0) are written on it. The label given in
the command line is written in ISIS.LAB.

If the S5 (system) switch is present, all files on the source
disk which have the system attribute will be copied to the
target disk; thus, if the user has not tampered with the system
attribute, a copy of a System disk will be produced (the source
disk must, of course, be a system disk).

If the A (all) switch is Present, then all files along with
their attributes on the source disk are copied to the target
disk, thus building a duplicate disk.

If the K switch is Present, the target disk will be initialized
using interleave factors which are optimized for operation on
an IPB85-based system. The default, i.e. K switch not present,
are interleave factors optimized for operation on an
IPB80-based system.

Note: The K switch should not be mentioned in any
documentation intended for the outside user until
the IPB85-based system is released.

The FROM {integer> switch allows the user to specify the disk
drive from which the required initialization files will be
taken. If no FROM (integerd is given, the default will be
Drive 0. 1If FROM is not followed by a valid integer (0-9), the
message

UNRECOGRIZED SWITCH

will be displayed on the :C0: device. If the FROM {integer>
device corresponds to the target device, the message

CANNOT FORMAT FROM TARGET DRIVE

will be displayed on the ¢tCO: device.

ISIS-II ERS
Page 47

The FROM {integer» device should correspond to a system disk.
If it does not and if the "S"™ or "A" switch is specified, the
effect is to duplicate the ability to backup a nonsystem disk
without having to use the "DEBUG FORMAT label A" syntax of
ISIS-I1I V2.2D. -

If no disk is mounted in the target drive, an error message is
issued and ISIS.CLI is reloaded.

This command cannot be used directly on a single drive system.
In such systems IDISK should be used instead.

ISIS-II ERS
Page 48

3.12.7 HEXOBJ Command

This cusp converts hexadecimal files into a corresponding
absolute subset of the Object Module Formats. HEXOBJ command
syntax is as follows: -

L DEBUG] HEXOBJ <command tail®

{command line) ::
:= Linput file> TO Loutput filed [«&tart optiorm}

{command taild)
{input file> ::
Loutput file> :

= <pathname>
{start optiom> ::

= START (<&addr))

HEXOBJ uses the name of the output file, minus extension, for
the module name of the output module. START (addr) is used to

instruction to be executed) in the absolute object module. The
address can be specified by a hexadecimal, decimal, octal, or
binary number followed by a letter (H, D, O or Q, B,
respectively) indicating the base. If no letter is specified,
D is assumed. 1If START (addr) is omitted, the starting address
is taken from the end-of-file record of the hexadecimal format
file, which is determined by the END assembly language
Statement or is determined by the PL/M compiler. If no

3.12.8 OBJHEX Command

OBJHEX is a cusp which converts the absolute subset of the
Object Module Formats to hexadecimal. OBJHEX syntax is as
follows:

{command lineb ::= [DEBUG 3 OBJHEX <command tail>

<command taild ::= {input file® TO <output file®
<input filed ::= <{pathname>
doutput filed ::= <pathname®

3.12.9 BINOBJ Command

BINOBJ is a cusp. which converts 1518 V1.0-1.2 fastload format
to the absolute subset of the Object Module Formats. BINOBJ
Syntax is as follows:

{command line) ::= [DEBUG 3 BINOBJ <command tail®>
{command tail) ;::= <input file TO <output filed
dinput filed ::= <pathname>

{output file® ;:= <pathname®

JISIS-II ERS
Page 49

3.12.10 SUBMIT Command

SUBMIT permits non-interactive execution of an ISIS-II command

sequence. The term "command sequence" is defined to be a file

consisting of an integral number of ISIS-II command lines.

Each command line may be followed by an integral number of data
lines, as required by the program invoked by the command line.

By making use of the ISIS-II system calls CONSOL and WHOCON,
SUBMIT alters the system console input device (:CI:) to accept
input from a user defined disk file containing the command
sequence, returning to the previous console device when input
is exhausted. CSUBMIT accepts as input a command sequence
definition file, consisting of a sequence of commands to
ISIS-II cusps (possibly with formal parameters), and a list of
actual parameters.

A command sequence invocation is somewhat analogous to a
procedure Call-Execute-Return sequence. SUBMIT "calls" the
user defined command sequence after saving the state of the
current command sequence, "passing” parameters as required.
ISIS-II then executes the command sequence. SUBMIT is invoked
again at the end of the command sequence to return (restore) to
the point of call in the previous command sequence.

SUBMIT command sequences may be nested to any level.

3.12.10.1 Description of All Major Functions Performed

A. Invocation

Invocation is the process of
1. Reading the SUBMIT command line,

2. Opening and/or creating the necessary files,

3. Subsituting actual parameters found in the command line for
formal parameters found in the command sequence definition,

4. Saving the current command sequence information (by adding
a restoration command to the end of the new command
sequence) ,

5. Changing :CI: to the specified command sequence,

6. Exiting to ISIS-II to actually execute the command sequence.

B. Command Sequence Definition

The input file specified in the SUBMIT command and containing
the sequence of ISIS-II commands to be executed is called the

ISIS-II ERS
Page 50

Command Sequence Definition. fThis file may contain formal
parameters. SUBMIT will assume the default extension .CSD if
no extension is supplied. The Command Sequence Definjition is
read and copied to the Command Sequence (extension .CS), with
actual parameters substituted for formal ones.

C. Command Sequence

The Command Sequence file, formed by appending the extension
.CS to the root filename of the Command Sequence Definition, is
the file that will become the console input. fThis is a
temporary file that will be deleted upon restoration.

D. Formal Parameters

(the two characters must be immediately adjacent), where n is a
digit 0 through 9. These formal parameters may appear anywhere
in the Command Sequence Definition.

E. Actual Parameters

Actual parameters are character strings (up to 31 characters),
defined by their position in the Parameter list (0 being the
first Parameter) and delimitegd by comma, right pParenthesis, or
blank. Actual parameters containing delimiter characters may
be entered by embedding the parameter in quotes ('). SUBMIT
will allow DLE (Control-P) in pParameters, and in its input
file, to quote the following character. SUBMIT parameter
conventions conform to the Intel Software Standard, section
2.4.1.4. A null actual parameter may be specified by adjacent
commas in the parameter list.

F. Restoration

Restoration is the process of undoing a SUBMIT command. A
restoration command is a SUBMIT command with the RESTORE
control set. The restoration command is Placed at the end of a
command sequence by SUBMIT. at restoration time, the command
Sequence is no longer needed and is deleted.

3.12.10.2 Command Language

A. Syntax

{command lined ::= [DEBUG 1 SUBMIT <command tail®
{command taild> s:= <invoke> ! <(restore>
{nvoke> ::= (commang file> L (¢parameter list>) 3
{restore) ::= RESTORE <command file)>
<{previous :CI:H>IC ,block, byte J)
¢(command file) ::= {a aisk pPathname}
{parameter list) ;:= {parameter list) » {parametqrd | {parameter)>

' ISIS-II ERS
Page 51

B. Semantics

A command tail may be a single line, its length subject to
the restrictions within ISIS-I1, namely 122 characters.
{invoke) - SUBMIT is invoked by the user in a manner similar
to other ISIS-II cusps. As can be determined from the above
syntax, SUBMIT requires as input the name of a disk file to be
used as the new console command file, along with an optional
list of parameters to be substituted for formal parameters in
the command file. <invoke> adds a <restored command to the end
of the <(command file) in order to cause :CI: to be restored to
its former value.

<{restore) - The (restored command is used to restore :CI: to
the state it was in prior to (invoked> . {restore> is generated
by SUBMIT, and need never be entered by the user. When the
Previous :CI: is a disk file, the file must be opened and
repositioned by seeking to the line following the SUBMIT
command, hence the block and byte parameters.

3.12.10.3 1Interaction with ISIS-II Cold Start Console

ISIS-II provides a facility for temporarily suspending input
from a console input stream and exchanging it for the cold
start Console, and vice versa. If a SUBMIT Command File
Definition contains a Control-E character, input is switched to
the cold start Console and interactive input is enabled. While
input is from the cold start Console, the command sequence file
should not be modified (e.g. edited). The SUBMIT command
Sequence may be restarted by entering a Control-E character
from the cold start keyboard.

3.12.10.4 Interaction With ISIS-II Cusps

Any program executing under ISIS-II and receiving its console
commands from :CI: may be executed under SUBMIT, given
sufficient buffer space (see Section 3.7). Regardless of the
number of nested SUBMITs, SUBMIT requires a total of 1 open
file, since the console input is a disk file. This overhead
must be taken into account when determining the origin point of
programs destined to run in a SUBMIT environment.

3.12.10.5 Summary of Normal Use Methodology

The invocation of a SUBMIT command sequence is best described
via an example. 1In this example, it is desired to copy a group
of files from one disk to another (in this case, disk 0 to disk
l). This can be accomplished by using a nested SUBMIT.

ISIS-II ERS
Page 52

A. Command File Definition

First Level File, ARCHIV.CSD

SUBMIT COPY (FOO)
SUBMIT COPY (BAZ)

Second Level File, COPY.CSD
ATTRIB :Fl:%30 WO

DELETE :F1:%0

COPY %0 TO :F1:%0

B. Invocation

P
‘e

-SUBMIT ARCHIV
C. Expansion

-SUBMIT ARCHIV
-SUBMIT COPY (FOO)
-ATTRIB :F1:FOO WO
FILE CURRENT ATTRIBUTES

:F1:F00
-DELETE :F1l:FOO

:F1:F00, DELETED
-COPY FOO TO :Fl:FOO

. COPIED :F0:FOO TO :F1l:FOO
-:F0:SUBMIT RESTORE :F0:COPY.CS{:F0:ARCHIV.CS,0,17)
-SUBMIT COPY (BAZ)
-ATTRIB :Fl:BAZ WO
FILE CURRENT ATTRIBUTES

tFPl:BAZ
-DELETE :Fl:BAZ

:F1:BAZ DELETED
-COPY BAZ TO :Fl:BAZ
COPIED :F0:BAZ TO :Fl:BAZ
-:F0:SUBMIT RESTORE :F0:COPY.CS (:FO:ARCHIV.CS,0,35)
-:F0:SUBMIT RESTORE :FO0:ARCHIV.CS(:VI:)

3.12.10.6 Error Messages

SUBMIT can produce 3 error messages in addition to those
produced by the ISIS-II KERNEL. All are fatal.

ILLEGAL SUBMIT PARAMETER
PARAMETER TOO LONG
TOO MANY PARAMETERS

The P (pause) switch supported by the COPY, DIR, an
cusps should not be used in a SUBMIT command string

ISIS-II ERS INTEL PROPRIETARY
Page 53

exchanging disks while SUBMIT is being executed could generate
errors in the logical structure of one or more disks. Since it
is possible to correctly execute SUBMIT with the command string
containing the P switch, no error message will be output, but
the user should be warned of the possibility of loss of data on
one or more disks. -

ISIS-II ERS INTEL PROPRIETARY
Page 54

3.12.11 IDISK Command

IDISK is used to initialize a disk. This operation is a subset
of the format operation because it does not perform any general
file copying operation. It can be used on either a single or a
multiple drive systen.

IDISK allows the user to create a non-system disk or a basiec
system disk. 1If it is used to create a non-system disk, the
disk will contain the following files: 1ISIS.MAP, ISIS.DIR,
ISIS.LAB and ISIS.TO. This last file will contain a nonsystem
bootstrap. A basic system disk can be produced by using the S
switch. 1If the S switch is used then ISIS.BIN and ISIS.CLI are
put on the disk together with the files mentioned above, with
the difference that ISIS.TO will now contain the TOBOOT program.

E 4

= I DEBUG 1 IDISK <command tail®
= <(target device><4fid> L <{switch lis® 1
¢= :FO: t :Fl: ! :F2: tF3: ! :F4: !

:tF5: t :F6: ! :F7: :F8: ! :F9;
Eigd> ::= {filenamed L .<extensiond]
¢switch list> {switch listd><switch> ! <switch®
¢Switch® ::= § ! FROM <integer>
(integer) ::= 0 1213141516 1!7181!9

{command lineY :
{command tail>
{target device

A

If the K switch is present, the target disk will be initialized
by using interleave factors which are optimized for operation
on an IPB85-based system. The default, i.e. K switch not
present, are interleave factors optimized for operation on an
IPB80~based system. .

Note: The K switch should not be mentioned in any
documentation intended for the outside user until
the IPB85-based system is released.

The FROM <integer? switch allows the user to specify the disk
drive from which the required initialization files will be
taken. If no FROM {integer? is given, the default will be
Drive 0. 1If FROM is not followed by a valid integer (0-9), the
message

UNRECOGNIZED SWITCH
will be displayed on the :CO: device.

When invoked, the IDISK program will determine whether or not
it must run in a single drive mode. If the target device and
the FROM integer device specify the same drive, then single
drive mode will be assumed. 1In a single drive mode IDISK will
issue the following message:

LOAD DISK TO BE FORMATTED, THEN TYPE (CR)

ISIS-II ERS INTEL PROPRIETARY
Page 55

When required the following message will be output at the end
of pass one:

LOAD SYSTEM DISK, THEN TYPE (CR)

The meséage to load disk to be formatted will then be repeated
one more time. When the disk initialization is finished IDISK
will output the following message:

FORMATTING FINISHED, LOAD SYSTEM DISK, THEN TYPE (CR)

When this is done control is returned to ISIS-II. A system
with 32K of memory will require two disk swaps in order to
complete the single drive format operation. Systems with 48K
or more will require only one swap. Because of this
requirement, IDISK is located in such a manner that it cannot
be invoked from within a SUBMIT file.

IDISK cannot abort and return control to ISIS-II every time a
fatal error condition occurs since IDISK cannot count on the
fact that a system disk is present on the system. In this
situation control will be passed to the MONITOR.

ISIS-II ERS
Page 56

3.12.12 HDCOPY Command

The HDCOPY commangd provides a fast physical track-by-track
copying capability from one hard disk platter to another. The
syntax is:

{command line) ;::= L DEBUG I HDCOPY {command tail>

{command taily ::= <{source> TO <Ldestinatiornd Lvia:
’ BACKUP [v 1

{source> ::= Qrive number>

{destination ;:= ddrive number®>

4drive number> ::= 01121913

<{source> and {destination® must refer to hard disk Platters but
they must not refer to the same drive number (i.e. there is no
single drive COPy capability)., 1If they do refer to the same
device number, then a fatal eérror will result and the message

SOURCE DRIVE CANNOT EQUAL DESTINATION DRIVE

will be output to the :C0: device. If both devices do not
correspond to hard disk Platters, then a fatal error will
result and the message

SPECIFIED DRIVES NOT HARD DISK
will be output to the :C0: device.

The destination disk must have been Previously initialized;
otherwise a fatal disk error will result.

If the v (verification) switch is specified, the destination
Platter will be verified by a process of read from the source,
write to the destination, read from the destination, compare
with the source. If the comparison Process reveals a conflict,
the message

DRIVE n, LOGICAL TRACK XXxx, LOGICAL SECTOR YYy MISCOMPARES
will be output to the :C0: device and Processing will continue.
If the verification Process reveals no miscomparisons, the
message

VERIFICATION COMPLETE
will be output to the :c0: device.
If ISIS-II is unable to load CLI upon the completion of HDCOPY
(e.g. under the environment of Section 4.1.3 ang tFO: was the

destination of HDCOPY and :F0: no longer contains system
files), then control is passed to the Monitor.

ISIS-II ERS
Page 57

A sample invocation is:
-HDCOPY 1 TO 3 V
ISIS-II HARD DISK COPY Vm.n

LOAD DISK(S), THEN TYPE (CR)
:F1:MYDISK.NOW IS SOURCE DISK
:F3:MYDISK.BAK WILL BE OVER-WRITTEN
OK TO CONTINUE?

Y

:F1:MYDISK.NOW COPIED TO :F3:MYDISK.NOW
VERIFICATION COMPLETE

HDCOPY COMPLETED

b 4

If the BACKUP switch is specified, the following actions will
be taken: drive 1 copied to drive 0, prompt for backup
removable platter to be placed in drive 1, drive 0 copied to
drive 1, prompt for system removable platter to be placed in
drive 1, drive 1 copied to drive 0. If the V (verification)
switch is specified, the disk platters will be verified at each
step in the process. The BACKUP option applies only to drives
0 and 1 of a hard disk system. If :F0O: and :Fl: do not
correspond to hard disk platters, an appropriate error message
will be displayed on the :CO: device.

A sample invocation is:
-HDCOPY BACKUP
ISIS-II HARD DISK COPY Vm.n

LOAD DISK, THEN TYPE (CR)
:F1:MYDISK.NOW IS SOURCE DISK
:FO0:ISO0AT.SYS WILL BE OVER-WRITTEN
OK TO CONTINUE?

y
¢:F1:MYDISK.NOW COPIED TO :FO0:MYDISK.NOW

LOAD BACKUP DISK IN :Fl:, THEN TYPE (CR)
¢:FO:MYDISK.NOW IS SOURCE DISK
:F1:MYDISK.BAK WILL BE OVER-WRITTEN

OK TO CONTINUE?

Yy
:F0:MYDISK.NOW COPIED TO :Fl:MYDISK.NOW

LOAD SYSTEM DISK IN :Fl:, THEN TYPE (CR)
¢:F1:IS00AT.SYS IS SOURCE DISK
:FO:MYDISK.NOW WILL BE OVER-WRITTEN

OK TO CONTINUE?

y
:F1:ISO0AT.SYS COPIED TO :F0:ISO0AT.SYS
HDCOPY COMPLETED

ISIS-II ERS
Page 58

3.13 Supported Configurations

come about either through the purchase of an MDS701 or through
modification of the Model 220). 1In this Case, the integrated
double density drive will be referenced as :FO0:, :F2:, :F4:, or
:F6: depending upon the presence or absence of a hard disk
and/or a set of double density drives.

'ISIS-II ERS

Page 59
DRIVE HD HD HD HD HD HD
NUMBER +DD +SD +ISD +DD +DD +SD
+SD +ISD +ISD
:FO: HD-F HD~F HD-F . HD~-F HD-F HD-F
:Fl: HD-R HD-R HD-R HD-R HD-R HD-R
tF2: (HD) -F (ED) -F (HD) -F (HD) -F (HD) -F (ED) -F
:F3: (HD) -R (ED)-R _ (HD)-R (ED) -R (HD) -R (HD) =R
—IF4T ;¢ DD SD ISD DD DD SD
:F5: DD SD DD DD SD
:F6: (DD) (SD) (DD) (DD) (SD)
:F7: (DD) {SD) (DD) (DD) (SD)
:F8: SD ISD ISD
tF9: . ¢ SD
DRIVE DD SD ISD DD DD SD
NUMBER +SD +ISD +ISD
:FO: DD SD ISD DD DD SD
:F1l: DD SD DD DD SD
tF2: (DD) (SD) (DD) (DD) {(SD)
:F3: (DD) (SD) (DD) (DD) (SD)
:F4: SD ISD ISD
:FS: SD
:F6: T .
tF7:
:F8:
:F9:
TABLE 13.3 1ISIS-II SUPPORTED CONFIGURATIONS
HD = Hard disk,
F = fixed platter of hard disk
R = removable platter of hard disk
DD = Double density floppy
SD = Single density floppy

ISD = Integrated single density floppy
Parentheses () indicate optional drives within the
particular configuration.

ISIS-II ERS
Page 60

3.14 TOBOOT

The function of the TOBOOT program (=ISIS.TO0) is to (a)
determine the system hardware configuration and the system
drive, (b) load the ISIS-II KERNEL (=ISIS.BIN) from the system
drive, and (c) convey the information found in (a) to the
KERNEL.

Upon’ operator hardware reset, TOBOOT is loaded by the MDS BOOT
ROM (or Series II BOOT ROM) from a floppy disk drive. Refer to
Table 13.3: For configurations involving only floppy
diskettes, this "boot drive" corresponds to :F0:. For
configurations involving hard disk and floppy diskettes, this
"boot drive" corresponds to :F4:.

TOBOOT may also be loaded via an abort (i.e. fatal error), an
Interrupt 1, or a MONITOR G8 command. Under these conditions
ISIS-II must already have been loaded into the system.

Once TOBOOT has been loaded and control passed to it, it will
Proceed to make the assignment of physical devices to logical
drives. This order of assignment is based on controller
present only (as opposed to controller present and drive
ready). The order of assignment is hard disk, followed by
double density, then single density, and finally integrated
single density. The various physical device to logical drive
assignments are shown in Table 13.3. (Note the determination

Next TOBOOT will determine the system drive. The system drive
is that drive from which ISIS.T0, ISIS.BIN, and ISIS.CLI are
loaded following an abort (=fatal error), a G8, or an Interrupt
l. The system drive is determined by the following algorithm:

1. If the hard disk controller is present and the 0-th
hard disk drive is ready, then it is the system drive.

2. Otherwise, if the two board floppy controller at Port
78H is present and the 0-th floppy drive is ready,
then it becomes the system drive.

3. Otherwise, the integrated single density becomes the
system drive.

Note that at least one of the three steps above must be true
since TOBOOT itself had to have been loaded from a disk
device. Note also that under the situations where a hard disk
controller is present but the 0Oth hard disk drive is not ready,
the system drive is a floppy drive, and so in this case the
system drive is not :F0: but rather :F4:.

ISIS-II ERS
Page 61

After the above tasks are accomplished, TOBOOT will load the
ISIS-II KERNEL (=ISIS.BIN) from the system drive and will then
cause CLI to be loaded (also from the system drive) and control
to be passed to it.

TOBOOT conveys information concerning the hardware -
configuration and the system drive to the ISIS-IT KERNEL via a
10 byte array called DKSCF$TB (Disk Configuration Table) and a
byte variable called SYSTEMSDRIVE (see Appendix E).

Error Conditions

1. 1If the TOBOOT (i.e. ISIS.TO) loaded corresponds to a
nonsystem diskette, the message

NON-SYSTEM DISK, TRY ANOTHER

will be displayed on the Console and control will pass to
the Monitor.

2. 1If in the course of making its device assignments, TOBOOT
finds a non-single density controller at Port 88H, the
message

ILLEGAL DISK DEVICE AT PORT 88H

is displayed on the Console and control is passed to the
Monitor.

3. If in the course of making its device assignments, TOBOOT
finds a non-standard 5440 hard disk controller, the message

ILLEGAL DISK DEVICE AT PORT 68H
will be displayed on the Console and control will pass to
the Monitor.
3.15 Support of Relo Object Files In Load System Call

ISIS-II has internal code for the LOAD system call to implement
loading of the absolute subset of the Object Module Formats.

The absolute subset of the Object Module Formats consists of:
1. Module Header Record.

2. Content Record, with absolute segment identifier.

3. Module End Record.

Records with record types numerically greater than or equal to
22H (RELOC) are considered errors and cause loading to be

ISIS-II ERS
Page 62

aborted with a "BAD LOAD FORMAT" fatal érror. Record types
less than 22H but greater than 6H (CONTENT) are bypassed at
load time and have no effect on the loaded image.

- ISIS-II ERS
Page 63

4.0 OPERATING PROCEDURE

4.1 ISIS-II Cold Start Procedure

4.1.1 Cold Start in a Floppy Disk Only Environment

In an environment involving floppy disks only (i.e. no hard
disks and hard disk controller) the following sequence is
employed:

1. Power on the Intellec MDS or Intellec Series 2.

2. Power on the physical disk device corresponding to drive 0.

3. Place a system diskette in drive 0.

4. (Omit this step if Intellec Series 2): Set the BOOT switch
to ON.

5. Press RESET.

6. (Omit this step if Intellec Series 2 containing integrated
CRT): When Interrupt 2 light comes on, type a space on
either the teletype or video terminal keyboard. This
determines which device will be the initial system console
(i.e. cold start console).

7. (Omit this step if Intellec Series 2): Set BOOT to OFF.
8. The message
will be displayed on the system console.
9. CLI will now prompt with a dash '-'; the system is now
ready to accept commands.
4.1.2 Cold Start in a Hard Disk and Floppy Disk Environment
(Drive 0 Is System Disk)
In an environment involving hard disk and floppies with a
system hard disk platter in Drive 0, the following sequence is
employed:
l. Power on the Intellec MDS or Intellec Series 2.

2. Power on the hard disk device corresponding to drive 0 and
the floppy disk device corresponding to drive 4.

3. a) Place a system diskette in drive 4.
b) Place a hard disk system platter in drive 0.
c) Flip START switch of the hard disk, wait for ready
light to come on.

4-9 Same as Steps 4-9 in 4.1.1.

ISIS~II ERS
Page 64

drive 4 whenever a hardware reset is initiated. 1n all other
situations (aborts= fatal errors, Interrupt 1, G8), it is
sufficient to have a System platter in drive 0 of the hard disk.

4.1.3 Cold Start in a Hard Disk and Floppy Disk
Environment (Drive 0 Not a System Disk)

In an environment involving hard disk and controller (or just
the hard disk controller) with floppy disks, the sequence of
operations is exactly like that of 4.1.1 except in Step 3 a
System diskette should be placed in drive 4 instead of drive 0.

4.2 Summary of Normal Use Methodology

ISIS-II is used normally in an interactive mode. The user

types commands and, in response, Cusps are loaded and executed
under the ISIS-II KERNEL. The Syntax of commands to the cusps
is governed by the cusp's syntax and is covered in section 3.12,.

4.3 Summary of Error Conditions

ISIS-II (RERNEL) Provides a uniform method of handling error
conditions. Errors are either fatal or non-fatal. Every error
is designated by an "error number” (see Appendix C). Detection
of a non-fatal error results in the appropriate error number
being returned to the user program in the STATUS parameter (see
Section 3.8).

Detection of a fatal error results in 2 actions:

l. An error message, including the error number ang a memory
location, is Printed on the colg start Console device (as
specified at cold-start time, see Section 4.1.1). The message
format is

ERROR NNN, USER PC XXXx

where NNN is one of the error numbers listed in Appendix C, and
XXXX is the return address to the user program which made the
system call resulting in the error condition. (If NNN
specifies the disk IO error (Error 24), then two additional

ISIS-II ERS
Page 65

lines are printed:

STATUS = 00YY
DRIVE = ZZ

where "YY" represents the error value from the appropriate disk
hardware and "ZZ2" is the disk drive (See Appendix C).

2.

Control returns to CLI or to the Intellec Monitor, as

- determined by the setting of a system entity called the

DEBUG TOGGLE. The value of this toggle is reset by CLI
(see Section 3.6), is set by the DEBUG command (see Section
3.12.7), and is modified by the LOAD system call (see
Section 3.8.8).

If the toggle is false (reset), then all open files
(including :CI: and :C0:) are closed in their current
state, the Console is reopened as the cold start Console
{see Section 4.1.1), and CLI prompts for another command.

If the toggle is true (set), then control passes to the
Intellec Monitor, and the user PC value is displayed. A
graceful return to ISIS-II may be accomplished if desired
by typing the Monitor command "G8".

User programs may announce error conditions on the cold
start Console in conformance with above error message
format by use of the ERROR system call (Section 3.8.13).

Operator Intervention

The operator may, at any time, interrupt ISIS-II execution
by depressing Interrupt Switch #1 on the Intellec front
panel. This causes all currently open files to be closed
in their current state, the Console to be redefined (and
reopened) as the device originally specified at cold start
time (see Section 4.1.1), the DEBUG TOGGLE to be reset (see
Section 4.3), and CLI to be called in to accept a command
line.

By depressing Interrupt Switch #0 on the Intellec front
panel, the user may transfer control to the Monitor,
leaving ISIS-II in a state such that it may be resumed by a
"G" command, or terminated by a "G8" command.

ISIS-II ERS
Page 66

APPENDIX A
PL/M EXTERNAL PROCEDURE DECLARATIONS FOR ISIS-II SYSTEM CALLS

These are the PL/M external procedure declarations required in
order for a pProgram to make ISIS-ITI System calls. The public
declarations for these calls are contained in the file
SYSTEM.LIB. -

OPEN:
PROCEDURE (AFTPTR,FILE,ACCESS,MODE,STATUS) EXTERNAL;
DECLARE (AFTPTR,FILE,ACCESS,MODE,STATUS) ADDRESS;
END OPEN;

CLOSE:
PROCEDURE (AFT, STATUS) EXTERNAL;
DECLARE (AFT,STATUS) ADDRESS;
END CLOSE;

DELETE:
PROCEDURE (FILE, STATUS) EXTERNAL;
DECLARE (FILE,STATUS) ADDRESS;
END DELETE;

READ:
PROCEDURE (AFT,BUFPER,COUNT,ACTUAL,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,ACTUAL,STATUS) ADDRESS:;
END READ;

WRITE:
PROCEDURE (AFT,BUFFER,COUNT,STATUS) EXTERNAL;
DECLARE (AFT,BUFFER,COUNT,STATUS) ADDRESS;
END WRITE;

SEEK:
PROCEDURE (AFT,BASE,BLOCKNUM,BYTENUM,STATUS) EXTERNAL;
DECLARE (AFT,BASE,BLOCKNUM,BYTENUM,STATUS) ADDRESS;
END SEEK;

LOAD:
PROCEDURE (FILE,BIAS,RETSW,ENTRY,STATUS) EXTERNAL;
DECLARE (FILE,BIAS,RETSW,ENTRY,STATUS) ADDRESS;
END LOAD;

RENAME:
PROCEDURE (OLDFILE,NEWFILE,STATUS) EXTERNAL;
DECLARE (OLDFILE.NEWPILE,STATUS) ADDRESS;
END RENAME:;

CONSOL:
PROCEDURE (INFILE,OUTFILE,STATUS) EXTERNAL;
DECLARE (INFILE,OUTFILE,STATUS) ADDRESS;
END CONSOL;

ISIS-II ERS
Page 67

EXIT:
PROCEDURE EXTERNAL;
END EXIT;

ATTRIB:
PROCEDURE (FILE,SWID,VALUE, STATUS) EXTERNAL;
DECLARE (FILE,SWID,VALUE,STATUS) ADDRESS;
END ATTRIB;

RESCAN:
PROCEDURE (AFT,STATUS) EXTERNAL:
DECLARE (AFT,STATUS) ADDRESS;
END RESCAN;

ERROR:
PROCEDURE (ERRNUM) EXTERNAL;
DECLARE (ERRNUM) ADDRESS;
END ERROR;

WHOCON
PRCCEDURE (AFT,BUFFER) EXTERNAL;
DECLARE (AFT, BUFFER) ADDRESS:
END WHOCON:;

SPATH:
PROCEDURE (FILE,BUFFER, STATUS) EXTERNAL;
DECLARE (FILE,BUFFER,STATUS) ADDRESS;
END SPATH;

ISIS-II ERS

Page 68
APPENDIX C
ERROR NUMBERS AND MEANINGS

0 No error detected.

1 Insufficient space in buffer area for a required buffer,

2 AFTN does not specify an open file.

3 Attempt to open more than 6 files simultaneously.

4 Illegal pathname specification.

5 Illegal or unrecognized device specification in pathname.

6 Attempt to write to a file open for input.

7 Operation aborted; insufficient disk space.

8 Attempt to read from a file open for output.

9 No more room in disk directory.

10 Pathnames do not specify the same disk.

11 Cannot rename file; name already in use.

12 Attempt to open a file already open.

13 No such file.

14 Attempt to open for writing or to delete or rename a
write-protected file.

15 Attempt to load into ISIS-II area or buffer area.

16 1Illegal format record.

17 Attempt to rename/delete a non-disk file.

18 Unrecognized system call.

19 Attempt to seek on a non-disk file.

20 Attempt to seek backward past beginning of a file.

21 Attempt to rescan a non-lined file.

22 1Illegal ACCESS parameter to OPEN or access mode impossible
for file specified.

23 No filename specified for a disk file.

24 Disk error (see below) .

25 Incorrect specification of echo file to OPEN.

26 Incorrect SWID argument in ATTRIB system call.

27 Incorrect MODE argument in SEEK system call.

28 Null file extension.

-29 End of file on console input.

30 Drive not ready.

31 Attempted seek on write-only (output) file.

32 Can't delete an open file.

33 1Illegal System call parameter.

34 Bad RETSW argument to LOAD.

35 Attempt to extend a file opened for input by seeking past
end-of-file.

201 Unrecognized switch.

202 Unrecognized delimiter character.

203 Invalid command syntax.

204 Premature end-of-file.

206 Tllegal disk label.

207 No END statement found in input.

208 Checksum Error.

209 Illegal records sequence in object module file.

210

Insufficient memory to complete job.

ISIS-II ERS
Page 69

211 Object module receord too long.

212 Bad object module record type.

213 Illegal fixup record specified in object module file.
214 Bad parameter in a SUBMIT file.

215 Argument too long in a SUBMIT invocation.

216 Too many parameters in a SUBMIT invocation.

217 Object module record too short.

218 Illegal object module record format.

219 Phase error in LINK.

220 No end-of-file record in object module file.

221 Segment overflow during Link operation.

222 Unrecognized record in object module file.

223 Fixup record pointer is incorrect.

224 Illegal records sequence in object module file in LINK.
225 Illegal module name specified.

226 Module name exceeds 31 chafacters.

227 Command syntax requires left parenthesis.

228 Command syntax requires right parenthesis.

229 Unrecognized control specified in command.

230 Duplicate symbol found.

231 File already exists.

232 Unrecognized command.

233 Command syntax requires a "TO" clause.

234 File name illegally duplicated in command.

235 File specified in command is not a library file.
236 More than 249 common segments in input files.

237 Specified common segment not found in object file.
238 Illegal stack content record in object file.

239 No module header in input object file.

240 Program exceeds 64K bytes.

When error number 24 occurs, an additional message is output to
the console:

STATUS=00nn

DRIVE=mm

where nn has the following meanings for floppy disks:

01 Deleted record.

02 Data field CRC error.

03 Invalid address mark.

04 Seek error.

08 Address error.

oa ID field CRC error.

0E No address mark.

OF Incorrect data address mark.

10 Data overrun or data underrun.

20 Attempt to write on Write Protected drive.
40 Drive has indicated a Write error.

80 Operation attempted on drive which is not ready.

ISIS-II ERS
Page 70

For hard disks, nn has the following meanings:

01 ID field miscompare.

02 Data Field CRC error.

04 Seek error.

08 Bad sector address.

oa ID field CRC error.

OB Protocol violations.

0C Bad track address.

0E No ID address mark or sector not found.

OF Bad data field address mark.

10 Format error.

20 Attempt to write on Write protected drive.
40 Drive has indicated a Write error.

80 Operation attempted on drive which is not ready.

Table 1: Nonfatal Error Numbers Returned by System Calls

OPEN 3, 4, 5, 9, 12, 13, 14, 22, 23, 25, 28.
READ 2, 8.

WRITE 2, 6.

SEEK 2, 19, 20, 27, 31, 35.

RESCAN 2, 21.

CLOSE 2.

DELETE 4, 5, 13, 14, 17, 23, 28, 32.
RENAME 4, 5, 10, 11, 13, 17, 23, 28.
ATTRIB 4, 5,. 13, 23, 26, 28.

CONSOL None; all errors are fatal.
WHOCON None.

ERROR None.

LOAD 3, 4, 5, 12, 13, 22, 23, 28, 34,
EXIT None.

SPATH 4, 5, 23, 28.

Table 2: Fatal Errors Issued by System Calls

OPEN 1, 7, 24, 30, 33. v
READ 24, 30, 33,

WRITE 7, 24, 30, 33.

SEEK 7, 24, 30, 33,

RESCAN 33,

CLOSE 33,

DELETE 1, 24, 30, 33.

RENAME 1, 24, 30, 33.

ATTRIB 1, 24, 30, 33,

CONSOL 1., 4,5, 12, 13, 14, 22, 23, 24, 28, 30, 33.
WHOCON 33.

ERROR 33.

LOAD 1, 15, 16, 24, 30, 33.

SPATH 33.

—_AFT$wiNDOW

AFTS (w'e#’

5@%3 Nonle

\ltb

’]

J soTsnomby

7‘ J}vw a’r
AFT Rewd 1o
RFT" Buse P.;—-{d

(77 aun.w :3

PRUF ¥
fFovr

e afT
: I

Foinler 4B0az MPOT

I PAtuw 4Gase =

Ajpovr

G ETS AFTiSLDT (FU"L%:'"‘\)

ABSRTX
(AFT§F V)

ABORTEISR

Tiderrgd 1 »
7 \> ABORIE

1se

CLOSH AL
(AFTS8TTw)

o

QISKILO

(0, 8os1¢
Do)

" {

JuMmp
(Toeo'.>3

SNAC r.‘)

"Vtof‘%j.'— Falre

‘¢+ COMMAA
Set v fartiyon

N
Disk$ o

(Dukl.ml-‘-

|

MAPSWRITE
= CuvreM D
« - ,
Mag chanye = [Ccv--ml - wnt ﬂ
R
MAPIO
1
{ Re,"‘ R)
MAP ¢ READ

SetdVom §Sedé
TRK

N

2o Singe DWM

N $Se34
Trk = Sz

Mo $Se I
TRz 2(

(Retova)

StarT

Disk <y Coerest
Rausrk

ofA
Lvrred Q1 <Y
Nt § Port

No

0,51’. <> Cuwes

D1k

Yes

Sc" J), %O !!cl
Werd fotig.,

oL

mrrIo

|

(Rdorm)

S¢* ™ \'tok
ned Bt ey
> 3
MAPdLvite
(Comwetd
Q:tMap)
)

X f/ \
' g-EJ:$ BLO»(_ ,i . S‘}w‘}_ ig‘-‘x{’ o JVQSL‘/Se\%w mt.éé't.'.'

Seisf‘\!mlﬁsﬁ‘ﬁ

TRX
DBK <> Corveat Yes

Ry =
~“+;Pﬂb4(*“o‘i
=

“h! T

Fi'sl S Liv.h
by & 2ex0 5:* (Sec)-’:"I.:)\
in Qi Mep
MAE Jhany = Tove
Abov'};r 4
- ~ Tﬁ(t &‘ﬁ'
(oi1skdRuN) R o
- LI &
kY(L&BLOGK Tﬁ;’-/&(‘dur Ao‘lr

Sel§ Nmg Sectd

RER S

¥

C-C-\(u A1 0 gﬁM;.’

iom {rom

Trw-lﬁ/ScL R,
34

MAPIRERD

A

Set B3 BAM
B'Po Zevo Y

sy

Rejv L -

 GETSBYF i) — ,_ |

Fb crj)l
(NoYFove ﬂ
8.3)

S ————
P

i;ﬁ Slo'l p.,

B -___._1... Sta.d aJQ.m_ 6{

128 byte L33

VS:J

ﬁolc "L bv;’tt'

\:IS

Rdvm B8 e).
Ridress

Clear§ BUF L 6fshomes
2¢"e ‘28 b;jf.‘
Statin, oY
qs "oﬁn
\ Rc.'f'uv,', ,
L‘*wn ﬁ Bu¥ { Bv;\iﬁums

Ve bv‘gé oddress cal,
"‘\&?r XA wa‘;ﬁ,sm}c
« st db Yo g

(F2e+hﬂ'h~)

Fackd AFT48L. G
e

 C\WDSE_ e

[E 2 L

st 41

Q 1.

s ,f J_H

‘r-————————-

‘Rdur n

APJUSTS Eo F

S

T4EOF= AL Eof
TEX™ MEY.

EYT{‘S = tr‘ﬂ"u,};
ety

AFT§LOINGR
(AFIX)

A

AYEDIT <@

R 4

MAPSWRITE

NS

AFT (ASOwicc) DB
= A$deuvr
AFI (A, POV
l = A$PEVT

X

AFTS \o)(hégu
(P‘a 0(\11“_3

4

3<+ 1, Osr
ku)ar

Rcui»l

T

sfx‘r 1.
(e "’i?

Gest {ASntus,
S LINE . B, B

"\éu

Ry

Qg.k Dir

e.d.

Reed (ASD:-,

-piu"d’ l‘.,.

R

Directd gk 27804
opdde ASORMPIR

Oived$rof= TeeoP

X

01r4 QDS
{ AyoeviCE)

]

/ (A$LBUF
Mo ‘
. s
” Do CASE
(A$DEVICE)
- @ Jex
50«{30\’“& 4 ﬂuﬂ
SRS [
RN
. A —
SO\VL QP \,“L...j :
%Loc_f Wrike (.\AFTA-& (R LE
- .(c&‘xs,)z)
Rdvrn% SV‘F) i
(A3 FEVF
T “ 3 j |
R(«?vmi BU'? ! . - o) | o S 125 nolks
(AgDBYR) | Wk (AFm) §
‘ :
\a.)v\ng(pFrN ‘: o
Lerre Fr) 3) | CR L RF
o :
AFI(AFIN) E"‘f‘r
- TM

(Rejun—. !

Conso,c i \l‘ '-n‘f‘;)v.

outfi e

Co)dt SHats \"_

nf} = Tre ¥

—Se c..ll S.Lf.;

coscle = 4'"
ey, |
| v
GLOBAL e,
= ABot
)&PATH(SuTm ¢
- PX)
Yes
I o
close(arng i
wonol fout E
b
| Mepew i:rr.-;s)rk
xmm(.uhi ' welemids, Fuls 5‘
- Fr) - . _
weamm (oAbl | cd oMite 1o con
= ‘ .(uﬁs(o-\s’m?c‘f , (ou’vlrc'ﬁou'z
Yes fN(D) N . L T
r < >

(Lase{ AFTHE i cyoev 7

CONGHEIN) e
open(anrik, |
fe d, 100 K) !

cbui C’yp/‘i
x| -
K b:l ~ TNL

Gldfavey =)
ARIN 2> vt Loased
'T)Be(

Qe

L

ATt Cipevs
Coigc 10y

yeays (. 1,

o Curdlone I |

L LY

i34 A3 A
- FL)(»\

|

(Rl)

NI L N

LOpo Con

X

!

Mz_:

eCov$lowde 0

Nomcloe =
e Cov $Consk §9 10

L

Vs

§unpc-‘”\ (
i)V&.h-r)b(l

| erfiedo)

AFTHY

8l loc

. DELETE _M%’ ARHnwe

ChRE NS DK
FJe (F‘_{

CRYIPHY Exirt

1

Chxdweks
Frs ’Z'&.}

WARN (

ARt pelck) || DeL (ont)

(Redom)

CHKIPNE exieT

Gl UAe {)v . PN

N
gn;:) vo:!;

Ocer {\k e;i(? Yes

LAY (
Nb‘a Jj = lt.

DE) - B

ABSID{ vead

r
MAP§write
oisx®)

N Dok

et Q. g.fi»,

!hj&"y
A

Difdiex
(Oisk &)

4

\Stct (b‘:tkj o H
| 'S“{&Jy-&odfm,

.B;kno)

0 ','c‘j.' HDE% 81Kk

<>

Frew $Block
(Rived, npd
!»&15

N2

ABeI0

(el Dt
Weider

'3
Qind. ol =

forwa § 1Lk
+o we,? "‘L&JF»’&LL

Y
(SR 1-4 ﬁ«i»b‘-JJi
to Fee v PUSN &
Blocky tortein vn |

e Had, Yoof !,

i

j S

™oy)onr Gl tmes

- DLoDX._ (Funclion)

T Tooe - Ple foud
Fdi =T net foy —

AFT = Devite

AFTI L ndoe
{ bgw':-c)

Po»d:.}eaf
AZPDF =

66?3&)):

OATUMEPyIF-
A§ DB
= GETIBUF

3

Re,u.)}né

¥

DweddTivos FF
Do, Oirect, Enyi
Rdurndithe = Bl

;H!L "*)‘: 6

DITECIIIINO = £ ,_,,e’ e

LYo N L ”:"{

Recowad =4

—3

Dire ‘{sr,,m
IS

I I
Oirdgzine
. 3 £)-_!-; 13
o :

Rcou..f(>9

Dot Emch/)\

en ‘f\

- N
/ File nd ‘g-n)\

(\é] c-dr uj
?
No erg?
entes ".'» 4
CecK o
| et
V:.(7
Filename - D."dg‘:jw : F ::
Rt rlon Réw[fs%tuf)
Do | Rcc;:- :L-r‘. "06
J
- - |
SIM = QUN ‘
p + 1 Rg'}v'n Q\—‘{
(A1PG-R)

[Ryorn R %wi

%

)

O

PRSWRITE
ALTPUE)

Sie (,'Dnu."))
(INSDM):&(L

\A)v.\h (k"'

o DNREGT

Valot

__DISKIO

POrive
2oFL

St opg 4o Do
Jm»t AW”“/
i

Save Prime ¥ dor
etror mesiL g4

M

AgDRTY

Disk$Lod
f Fvor)

LTRI810

(QL-“\?\'"‘() |

1

(R: -T. \/)

T‘-—\ = ¢
(°F¢"6'{u.‘ :97'14'
oK)

Yes
oy e
SDoy OD |

Condaller
P"dcn‘*’ //"’

| aud (Dn‘}'int" m:“ {.‘-:_sl
h‘_ v e V(iv’hl‘:) Te kgr(

R&S*bv(, '-n"m .‘
P T

@‘T‘Lﬁ’

5\ ety a)

e

¥ _m.sx o

____ ARsIO o
R YY.YS S T
8L PR
Sciu IDPBW
""" Pasul
favamelos .
R
diskzxo (
stLj.m,
|
ABSREAD i 810K
) Buth PR
ABSIO (R«A) ASDEv
Blosk, € RIS
Block
ARS\WRITE BT e PR

ABSIO {Wride,
ASDEVICE, BLDeT
B - §PIF

é*'-’fh’

'

___ERR_

Nk Stech cr‘\nr&,
So net velovm
Lojd f‘:‘ld"\ yos

A

Wfb os =

Ereoo$) pic

STAxgrL = vgerd
3Taw g rri

Se \JQV:\"
Eermy

¥

~ N

'fl‘

o {grmend
‘T‘:r@no_,.nsez

N

Num(z?g 3
o« MSEY)

ﬁb."]

Mo

&,Jc o

!
-

Set o Dick 2%
Erour Messs,.
{wo h)
[R
JL
o ;
(.Q., "! jcht (lbf ‘.“ . ‘/f.n
mue)n -

"y
ABORTS T SR Tvep 1o |
t m-o’\‘.{w 5‘
ST .
¢ “,S'Iﬁ.. VALO &
LOARN ABbRIX ABOFI facs
B.IALE
EP»F\ (wcxu;v__ ' £RA (}%:.’“ . ‘;f. /.f{ouvj:/-z
stag 7| SiArus D Rgreeddd
] buse -.',cc:";:.
Qac -
b] £ [:l;
lere Comcines
hu!\)" "R
IRV SIS

— _CIOSEQARLL J
I =AFT§Start
g

I = AF18IAT

£><}'}

Cioso&,/ﬁL‘-l 4
(ﬁF‘géFro"?J

Ne g;but;'lg
((\;vvd\se;f\
WNap!
1
Coverd 3 P M4
1

T .) "

: L.OR#D(K.’I,Q,

H . " Is} P -
O SRR

AFTECheck
(:.sls)

RFINZ AFTY, |

AFTYBotiom |

R

S AETMD
< AETgTACE
e
]|
(em‘s._{r;! N

I5I0

i COman

T T Rvamde $BLoK T T

E’“-Lc-n VST
+ -S)@ < S"Atg

Nom- Usey RsLI®

DK (fenty) CPF BT (et sore 104 3T a paramd
favem (1)' } a,_«k-;, PRT I 5 an addeer HI 1 dbee ne

T N 1313

user &3due = £
&iahuScu:- 1’ =

GV Ny
v

\ -
- - (ommu}
>~ } >—_—j
MM) o178
DO CASE deom Abode (
Commmé})eﬁa&‘(onnug
N Cele ¢-0PEN
AF‘L&“ZW*;G;; 1 w3 5
DPENM ik f(‘-‘» :
Nbors) j AFT§<hecK
4 A
2 Belek
0.l %‘[(‘)J) ’ AFIN 5= Yes
.
Gereln AFTS Brolect
| | (.iD.Sﬁ (
if o REIN)
L 3, Recd I
AFT$ Checko 4 Weite -
7/
AFT$Check
T
\.)Yﬂk (BFNY
BVP;“T (.Ovﬂ)
Linver RETN
39";; ‘gb‘u‘l L 1
Relon , 5’ SgeK 3 |
Reed (artn, |i C
ot QM/ AFTS Chee!
AC*U&]) ;ig
s 3 SG‘EL U“:“‘.’«
T &; LOARC E&Ti’-.ﬁ_fh %,
: 1
Ltoan (Fies,
BREE KT 6 n, Renant —
k Rename (Fil?
Fih?) -
 § T

.___,Q;:S‘IS _(CD.b'i‘)

Rtorn Yo el

SR 7

T8

—_—fTsrs-a))
(Do Coxe)
X S, Consolic
Console (Fik2 .
Fik) ‘ 5 Eit ¥
T v
% crx.“f
J 1] ATTR B
ATTRIB (Fy g9 (s
Swln‘:wk\fy‘e- A, ReScan x|
L A AFTICH kK
¥ 12 ERR ~
ERR (Messe Y FeScan (A,:'n;)
Er 'hum) . T
1 A)
13, &tocel +
L 14, FATF LoHDC OX (AF-T;\;‘
WISERY STRYw = ﬁw‘f"?')
PATR{Filed, ¢
efl,)
! _
lf‘hl Do Chut J
Ris.kt\,
Viewv
Stack

.
[

fxl doc’ h-?.} v:‘}wq}

—JLOAD

T RIRS T T T

pgj' Sw

OSerf Bk = grr TS
Rouswo= 86

E "d’y

vSER$ B Hom =
MENMLCK

ﬂ “ehse RFIN= AFT®olhon
RE’Sw DP{'}V/Pdlqu
— _ ~ ___ _ B l':&'uJ/ o)
.2
gSLrgToP =
PALKE RFTSBVE
Loap-2
R.‘Ao(AT, | Red 3 s
. Recerd /
oy

oR
R:lg‘;}‘ ﬁ:u"

Pb&v"! (Sh{)é

Acdoal €3N

Loabd Fov-.")
Do CASE
RC(Wé 17'?!..
1 Cose &, Evrov
ABoitx (824 |
LOADS Formet)
i [,
Case)J M“é Ml\'
Seek(f«Fw
S&ZJ\Wwv&
MHD Qéa A .
‘-t»-f i
— =
LoAD -1

SCC k (h HA’ S'«ij’:
I'Qn.at

Q’“'A{(\j*(/

ﬁ.,___LQAD__(.coni) S

bt ALl TIfC

e ddsTape
E“F/‘}{ n.é,,lc.

Loso-1) ___. o e

DB (0-2 J

¥

Resd (AFTN

« NoDENO N)
Ad,.;j

CReE 2, Mod erd

CAE 3, LonleA o

RERD{AFTY,
&-“vd’ 3 P«do

Bourds $TE5T

{moocnm, Lok

S¢+ %7;1 i~ Lﬂ-rﬁ
TAELC o0 uagk.\i;
S eroran Joad @

ReTsw= @

P
-

"ADPR, p‘)l A (ep,o$
LOAD] FormeY)
Bounds§TesT
’.
T
READ (W, odd _
e #Lébk‘bﬁé 24'-3 QE&J Dd‘;\ ‘76/7’;'5— ;a‘:\
Cdeyglond = ML mtw}

Modead. LOMGT ao0e

-

b

\—.Lr

NS (Lwl}}%w
VSRS Shen k. 1})

|

STAY PIR = menv i

~ Y

C———L—j' N
R du" ~) .
Ao, (BAGY Read (arrw, |
O ADS For-.‘i) LCheeKsor }/ !
AT !

Ené DO (Q!‘u

Extry = Stacdirsf
€, Feid 2 Loan toree
BALEPLN = Tre
T
TRAF Ao
BovndgTest LEN

N

ADDE +1¢n
ke Audcrv ~. ""&
*‘FM(

~N

b

/\JS tRIB,. ﬁ&rn >

vieRY Re¥orn
= ARDR

¢S
e ﬂﬂﬁzen (:.:lﬁi 1{

. __OF._E N ,er\c.'}:ck

&

WRPH

LIARN \BRRYECH

PDevite &

v

[e

Dcvice = CO ?

GEI$RFI§SIOT

R

AFTIWINDLL
(/;>:7x}

Yes L/mk

~ > e

' e
\,{

@ Pt -
—Acless $mn3‘- — j AFT
Linedd AFT

OFEN »(en'!)

Sa

WUnew (Aveal, ¢
ru(mafélz)

L:;r—ew(No4 sucHF

DLook (.Br;

) OisX ok

Ncw ';\‘L \ No

S A

Set Dir. indy
Tele AR

a: rgg'}n r’

Foll
°

WREN (D\redcr)»v‘

Kol

Bigonlz @
EoFdleud 2 V28
. 1
I
CRR§WRITZ §
FM‘}: s+
N
T«an\£y 81]({,0-»-,
< EOF3ConT ron
div. o AFIN
/

2foevir = (LETY
gu¥

—

ALPBUF =ETS
suF

Pﬁrmaus«-— ore T lf »
'-j—-

5(‘7 o al.r‘,d.rg/ ente,
4

At ﬂ,v{‘i,

/

OpEN (cont)
327)‘? iI‘;E‘L (asocv‘.ce‘) J

S W)NDOW
-—-L AfTNB

[v

sd.

BZuK teud
£

i g woxillic =

DIR, HORY GLL

1 A 8K DWW _gux

R.EoF = DIR EOF

: New $ile
H,m l [\
Ruvek (RS
DEvicE Ne
T
DIR E»{,:n
wrild oird i
éh‘fr !
7 1
T

AF1Window
CARTY)

3
5.
[W

Cleardp S
C ALPRo>

|

L3

th$w721:.
(A$TEVICE)

|

R

ABSwrilE
(ASRDRE Bt

/‘NPEJ')

i

O3

(DP E N ((0 h".)

-

Mo Disk File

— i et ome e o e e e -—

Ot\ak\ \‘!QA
leader -

= Folia
A.u,iy T Fe

\.Jv'ti'*

O" 3 4, (120 b-lf.;)

" |

A$LEUF, Toptuniy
= bETBUR

3>?¢_’ @ = LF
ADOK (Q}: oPFOOH
5,')\‘. (29 Tt

|

A 57’) - F‘Lr\

RC;UYH FFTri‘ -
AFRE 6 ttom

—XPATH.

— ,. -

STATS =
PATR(P £7)

Wavrn

(3*{&05
PATH Funclion (@PAthrare e
. @ @*: ;’"07) %’ enor $7.’:

. 12 Ly(g vy

Cleav €N

¥

SKp Veadin, Block

3. BAH P:..,:?» [y

.

PR

¥

PamiNas =
?

Wana

PWJ(Device

- fh‘19> = D(u,‘.r =

YP NZ)?“*;" 3

e (n)= OxdcreTe
{Pre))

l

=2
IMax
N SNAME T

%

forse

RQ"U"\, eADt
pcvitt

PARsE

2 gl’t’u«'o-\ e Nv’) Yu

. Rduns Nunggij/w.
Neg

Devige = Dusk

{ N
Yes l;. No Relurn NAISF knane
T RS RADSPATH e _
~ BADSFATH (R OX)
| \ .
Nong ‘ —
‘]T(RMlNA " I YZMAX aie SQ") L7 %‘\74
~ * PCL'I’S <

NOV*TCV'M;AJL

R eJ[u\r ~
Raw'\ Fa. \I&
1, o N
Yeg .

Cq-/ %{w C:..

Ahieme ¥o
£

Yes

Nl §Noee = Folie

C CHKEWRITELPROTET oo

Frle wrde

or For '?‘"’.)
p'nin“

WARN
CovictRoted)

\«.)v}")c, $ DJ”R& fu’}vy .

y Flenen
C7/‘r"n¢ r‘;" ‘

o Q»’«d,ﬁ,‘)‘

i

pirdcLos
(A{DENCE)

C HK |

XPATH
(e F:}WJ . pr‘)

¥z

AFTiVindue { LUARN
(Device) { NoN DSk ¢
Fuk)

PY :

.;_Re.no.mc.,

e s e b e e

T e R

L @oifik

XPATH
€1 fik, P12)

I

Caxdeneontd
FlLE (NeA)

TWPRN

Codds

—OuK)

l; ‘Y'L T~ 'Fﬂt

A ;ﬁﬂ.{ p:w‘ﬂ *

Ooe: neww g‘.'ft
a‘rec.l; cvli}'

file)

ChKE wr Rt
Pfo*ﬂ“

WA RN (
Meoll, bt

~)

o

wrikd Ql‘l&
Eh*)y

L

_ Reseav | _

AFT$ WINDOV
(AFTA)

mﬁ’((hw‘ff AILB-F #(3 \'c.rd ro;‘t iu”

Res con <#

__ ATTRIB .

e l Fl3PIR

CHR$PNE Biske
Fue (Filefia)

¥
CHKE Prvd Exit

warN { grod
NTR)Q)

ak

Clear $he
ATIvb

Value s Troa

S the
AﬁviLA ~
Ne J
QIR QLS
(P

Reju L o

~RW

~few-3\ - ;

C

ADJUSTY £ol™

A$DATALFIR
128

No

~ | hen Hed BOK
é r(' ecd = 7r.(]
¥
~ 1| cLeéprgBur
=§ (A§DBUF) |
i' J' (JA-L‘ chwp.l i
- MARS Wit :
;‘« (A$DcwcE |
J [\
ABRSWRITE
(Ms./ r By
A3 ls [229)
£
11
SAVES Povla
$6LK ‘
|
C REATE = FALSE AES.QE»\D
2 (FLvk) AP
Qlesr$Bu ® '
{Adpovr) >
3 RIFRI DLW
St BLAE L,
T AIPTREPIET R
S 1

_RW. __i,

AFTN
8.SAr

“Cout T T T

Actwl
Gném; "I:?

SAVELDAIAS
Bik

v

Sct e to vesld
rert o Secto

APTREPTR = 4

JLYes

Meo s PRREUL
= GET3RIDK
(R¢DEVICE)

A

St + + Crede

Rw-1

”BWiCDb{v) R \.0;_1 ‘

ACPOIFE = 12~
A ALDATALPTR

‘ Rux; g'hJ

Afpixd Comt 22

AiBLK‘,‘é EbF30IFE =
ASEOF GDATAS PIA
} / - ADATASPTR
I, U RN § |+ - R e

Po.v'};-.\- 5¢c4w v ‘)

ADPE DIFF Ye

N
EOF4DiFF

Sed op CouY ADPSOIFE =
— S e — - EOFS§DIFE | -
) 2 T
Contd I =
o)
AOP$DIFF =
coontinisr
. . .."("t‘)’aVnCDv:f
V y ‘c. "‘l
Kae #
wo-—lt!f: &Qr
work$PF 2 R$D S

Noh$S¢L"oy

ASDATASEL

=¢

o AL DEURSRERS Some 4L 3k
Serdrrrm i o]
e«:ﬁ" g - _Nom Seior (weorkd/
)
Reques Aearb S {
4 werks.f)
b |
Yes \
o0
wc‘A ABSREAD(REPTRE Chomy o
ASDATAS B, ¥,
werk §Bur 7 N
ASDATAIR OCA
! z6ERoh || ed 8 5.
CAdoevice)
Rw-T7 I

___Rw.igorig

ABSWRITE
| {A$OATAL BLK,

werk$ E:ﬁ

L

TM{}’ 57{'4 ’
ir:?‘})igrih t)«)‘-
AFRATA §Chanye 3 T

I
Sf"a ':‘:I vser
bq‘nu

ASODATASPIR =128
ik - e Mo vy

I

;
L™

______Chx§edf .

1
MG XYSEQpND =
AfRdCont
ASDATASRTR S
AS EOFSDRASF

|

warw (

Seck$ PASTS
gof-

A%QJSEOF

A(L"! For
>
RFT Eof-

CHK$ go?

5
ura&. ARY

EoOF

1

- ‘L AFTN

Reod

Coun"l
rda
%d\n& = ¢
N
AFT8Window
(AarRIN

e e e o

WARN (canid
" READ)

Roiv‘frw

e Nond OisEES LY

d

N
Read #h¢ munle Rw (AFTN4

|

§ vequed:) b,‘lu. Gfiee toon
. ’
4\'\)'\ efﬁg, d hv*ut{‘ Trvq_)

or R I}qa—u{
lae T bf,‘i',f

v
IBSET
{(zosIAT
Nonﬁ Disk$ Scle{{'
Save .'u\ e
Ry
[xostAizzowmx
1
TOSET | S Jesical p:}a &sSe hm«i\- Fo we

deviug

voudimer Re ac'\:) };\/'k ot & Hime /0

—Wile

AFT§wWindow,

(AFW)

wary

(ANTS Ur]k) _
Non$ DBKi
Select
3 -
Ye
Do Cega
ro (h#Ocvick‘)
¢ t ool
TOSET (2nsTm) Adul = P
Na
!
w {aeTN
cit,
ST - e - + 'Fsytt}
1
PO (ey')“>
3}
< (Foadis)
Lo (By"ﬁ) \ <
I
W
Cowrlz Cousi=)

e e~

FT '
[,,‘ev{;" - —— e
COUn’)

DQ_U;(A S
€4 -é.n tr‘!

lo?a f&’ 2£L

Loop 'rof
Xt

LINED

AFTH

B mz,
C.ouh
A\
L. = Febe
LDt Q)-'.L‘g.«

LFIR2 Rebb s Lﬂ Ao, by Open
Xﬂumn;, i 4 :’ i 7 f

—
Read (AP,
Lhe %.I

\DD/>

~.

AF’IN\

conrok JarT

C)\M b (o:dr -2

T

AB vt (Caw.saLﬁ (
s

5,1;{:25) = False ; o 2‘!1)# 5’; gof
dﬂv N (kr R FFY

.

r YLS C)‘ﬁy’ <>LlF)
fho (C}'m/)
B (ip)=ded]
I b
X Sdedyrs %
N Yes
3
.,SQLAQ\« = In io, :5
V'gol' (kvs.l'
A]
~ ¥
\Sécia ‘.Sec‘,o' +
(M.% :..‘fCN&C
Lilgreev = FALEE
-k
Do CAst
Selecten
L\
NS] Cose OJ Ne
Ltz l-f/i" (ASE,J) Robt
1

LPTR 2> &f

LPIR ~))

1

LN=-)
LINED conl)

ﬁ>o CABE mv-"J

R (*S‘ 2] (.&d‘t."z
AdL)= P
L2)2T~ | Chse 3 Gd-R ~
AoR WD) ZoFEosp 4 —
EC.L& (LR)
S >
Echo (CR) Lo (LF) -
L'
Wk (R3O
- ef,m‘ LFTR
Eglb (LF)
i
T | S
T CASE 4 Codr-X
{ ‘-”Tg’]‘z’ | cnse 5, LR 3
. £Je (£7)
Elo (#) R Lr?;:wi"’ .
1 . & wo(ifrr)Tds
. T
E‘-)\O ((R} I N3Moot = Flre —
1 : , LPrR =L
)]
s 0¥ K
1
(.hfai &; LF y
£ CASE 7 £SC
Eho(po) | Vet
N
o ('33) ; Lo (F)
—— ' T
INmopt [AbSE ' e
Lo J Sty
= | iR :
AN Q, wir-E
9 -9
AFIN = Case 5 < 1
AFTU&WU l(}.;+¢w'tkd Mok
Sl..\;‘, asT(aF1d = Trute
towrle s :N),Dw-'e« J
witk AL‘QGOEV <
sz
H—fsko (‘A.)
Ry
£de CE)
l
E.) 0 Lasa
LN-2

Lived (cowm)

RN

57'324(120: LFIR
gygles (129):3v4
Mop€

[4o

Iné Moo = Tre

~ne J“L ‘}o s ey 15»-‘”

lopor(adD= 9)@

LPTR 2 £
INIMOX T Tewe
LOTR = =1
NP
| .
At’lctl‘- Alt&’ +1
LPTR:LFPIR 1
d |
\l C\NQV
EJo
fuvide (AAEY,
| «Char, 4)
i
AFTwrvpo
(AFTV

— SAVEJOATA$BLK

ASOATAS C.N»7l

T e Tra

Abguvik (
AJOATAIBLK,
A$OBUF)

sl

RIONTA ‘C)\u\gg *

Tvve
!

__SAVE§POINTER
}A'l 4\»:}%"—
Moc.v-u)
Ne -
ABSWr e (
%4
MRS .
<
A{PTREC AN, =
False
Refuer ‘
R CWIND
Pain‘}u fbf‘;d
4o z(uf H;Jr’
Olee
4
ABSREAD
(A$HDAfEIK,
A4 P BuF

Blouk = AIB L Count =/

SEEK

Wak (Seelont

uri‘k)

WARY {ESand
l Stexdaes)

ASACCESS
\..ﬂHg},Mng

MODE

SoldRivem

i fv‘5

> T
AETorL wrnot L
{ AfIN)

o
WARN (Nov g
Dixd Seep)

Yeu

Cehvu* G 1f 4
8Lt s. 917.11
Loj e €125

|

MORE = Sc LACS
l(‘ A‘EUF!‘-
Dd.d P

ARLE g Y- N\

*
[Losd iz tob s 4774

N

[Modez S..biEt]

Mowt

ABESTLEK el
Ve

[Blor =t]

M

LD‘B,‘ c - Lbb{e

T

Neo

L8Rk 2 aspATRY
P 4 LedGyic

L°$&/{c >128

Sl k = Buk 1!
4_,,»,# 1 Lo&,?--)?&

)]

Seek (Coh‘}')

Yes

ak
Mode = Se k foraed

TL oW Mo T R LIV
-Qp?’ﬁsk

Block vozasaund

S€p~ BLOUAD

F RLedl = &

L O&Eyvc >
ARDARW §FTR

, Seek o3
MMoDE = S«F;- wnllis
&"\dho\ Qleh

N

@__}

REOMTAL PTR:)_Dg,;LJ

Yee)m?:DE
> SQL's
ATOSTE (OF o
T e
J
Save$03. 481K
s
> oy Yes Mg?;“ Ne
A$0BLUF S T Falsd <
S
Block = Blect =) i mom»awr‘\: \?8‘1 %27;;19273
wARN (LO“&$ RC‘L}(V
REESECK)
&
No N: Y¢S -
ed mﬂt"%!&hﬁ
Yes Ne
‘ \gcs/
. = Yes Flink =g o ‘
Eos, S F&'-\kj T >
Hdfor i \/ : N i
—— i
FLAY Terg = E AESPixg (Temy,
i cersgoex (|, AYEELT)
ASTEVC z) ' }

3
AQF’TRQL}‘?Q:'B\.c l
K'Y

Sa2 4R dmSRUC

ALPTREPIR:
ALPIRINL-Temp

.

ClLemrdBst
(is?&w—)

[BLisk = A]wla tux |
1

SK-§
3

‘AESwv:'E-.ITcnrl
AYPRVF)

femeees §

Seck (Cbh';)

%

(Seell'sy Rackend)

ALDATAPIR ,
Mo

H
[V

Plus$Mive = &2
ASCATAYPTR: &

= 1
W [Prefrusz =) |

CASPIRIf TR
-1)

<2

S

Y:S

IF Back-
Link 258

o o
6(*‘_“‘“;‘

L3 _
LAvE §fointe P “

kM
ASFTRY PR = (Y

K]
ABSREAD (8L
JASECLR)

ASPTRI T 2Ll

Sk-§

rd

ASBLLI 0= AR IS (e
+ PlusfMings

A PRIPTR 2 APINIRT
1o plasganl £

A
ADIUSTIELF

Ve

By

ol

ASPIRICIC T !
ASEE tSei = ¢

6o 1o
SK~(L ERRYY

2

LISY
LIST .
LIST
LIST :
LIST
LIST
LI8T
LISTY ¢
LISY
LIST
LIST
LISY
LIST
LIST
LIST
LISY
LIST
LIST
LIST
LIST
LIST
LIST
LIST
iisT
LIST
LIST
Lisy

F1:TORBOT.NOD —
FL:BUFFER.HOD —
Fl:Jume ng9 ¥
FL:TRAP 80 ¥
F1:JBPD .M80 ¥
FL:AFT M0 R
FL:ALLBC .MOD <
F1:CLOSE .pmap X

FLATIRIR . HOD —
(F1:ISIS .mgp X
FLERIT oD
F1:-PATH .mp ¥
(F1:ARBRT MOp ¥
:F1:OPEX .ABD =
(F1:CORSRL B30 —
:FL:ERRDR .mED X
F1:DELETE nodp —
F1:RENARE ROD
-F1:RESCAN.MOD X
:F1:DISK .Hgb X
FL:LDBC62 8o »~
FL:imsh oap X
(FL:pISK: m8y X
F1:DIREEY.AOD —
F1:DISE? Hge XX
FLLR M >
FLISEEK MOD)~

EXD.JBE

LoiS .o SOM Pelet 2

i F
%%*******************%**%%
(5) 1977,197% INTEL CORPORATION. ALL RIGHTS RESERVED. NO PART OF THIS PROGRAN®
GF PUELICATION MAY EE REFRODUCEDs TRANSMITTED, TRANSCRIBED, STORED IN A
AETEIEVAL SYSTEM, OR TRANSLATED INTO ANY LANGUAGE DR COMPUTER LANGUAGE, IN
_ANY FORM OR BY ANY MEANS, ELECTRONIC: MECHANICAL; MAGNETIC, OFTICAL, CHEMICAN
MANUAL 0OR OTHERWISEy WITHOUT THE PRIOR WRITTEN PERMISSION OF INTEL
CORFORATLONy 2065 BOWERS AVENUE, SANTA CLARAs CALIFORNIA 95651. A
****************************%**************************%********************ii

THE FURFOSE OF THIS DOCUMENT 1S TO BRIEFLY DESCRIBE THE OFERATION OF THE
iSIS-11 OPERATING SYSTEM, VERSION =.

IT 1S INTENDED THAT THIS DOCUMENT BE THE FIRST ONE ON THE LISTINGS 0OF THE o
RESIDENT ISIS SOURCE MODULES TRANSMITTED TQ FPRODUCT ENGINEERING. SIMILAR v
OOCUMENTS COVERING CUSF SOURCE MODULES AND CSPLIE SOURCE MODULES SHOULLD AFFEAR
A% THE FIRST LISTINGS ON THEIR RESFECTIVE LISTINGE. -

FLEASE REFER TO THE ISIS-II VERSION 2 ERS (EXTERNAL REFERENCE SPECIFICATION) Ab
TO THE ACTUAL SOURCE MODULES THEMSELVES FOR MORE DETAILED DESCRIFPTION 0OF THE
SYSTEM.

%%************************************i***********************************

1. THE ISIS-II OPERATING SYSTEM MAY EE VIEWED AS A COLLECTION OF ROUTINES »
SOME OF WHICH ARE ALWAYS PRESENT IN MEMORY AND THE REST OF WHICH ARE
LGCATED ON THE SYSTEM DISKETTE (IN DRIVE @) AND ARE CALLED IN AS NEEDED.
4. THE RESIDENT PORTION OF ISIS, REFERRED TO AS THE “COLONEL™, Is

LOCATED IN THE FIRST 12K OF MDS/EMDS MEMORY (I.E. @ TO £

20 MODULES (ABORT Ts 0cy <BTIR
& TELETPY DIRECL nxswycﬁééggl EXITY ISISy DA
(RENAME» ®EZLANY | SEEK) AND 5 ASME@ MUDULES (DISKL, DISKE,
JUMPs LOCAZY TRAF) GUris niyni opaTh W WO CcoND
a. THE NONRESIDENT PORTION OF ISIS, REFERRED TO AS THE “CUSFS'
i LOCATED ON THE SYSTEM DISKETTE. WHEN LOADED INTO MDS/EMDS MEMORY.
A CUSF WILL OCCURY MEMORY ABOVE THE ISIS BUFFER SPACE (THE ISIS
BUFFER SPACE IS A CONTIGUOUS SECTION OF MEMORY BEGINNING AT 36@GH
AND EXTENDING UPWARDS IN 128 BYTE INCREMENTS). THE CUSPS
CONSIST OF 12 MUTUALLY INDEFENDENT FLM3§ MODULES (ATTRIE, BINOBJ.
L1, COPYs DELETEs DIRy EDITs FORMAT, HEXOBJ, IDISK, OBJHEX» RENAME,
SUBMIT) . WITH THE EXCEPTION OF CLI» EACH CUSP CORRESFONDE
TO AN ISIS SYSTEM COMMAND KNOWN TO THE USER; TYPING IN THE COMMAND
AN THE CONSOLE DEVICE WILL CAUSE THE LOADING OF THE CORRESPONDING
FUSF. CLis THE COMMAND LANGUAGE INTERPRETER. IS RESPONSIELE FOR
CARSING AND ACTING ON INFUT TYPED BY THE USER ON THE CONSOLES IT IS
LOADED INTO THE MEMORY AS A RESULT OF ACTION TAKEN BY THE EXIT
ROUTINE IN RESIDENT ISIS.
©. IN ADDITION TO THE AEOVE, THE ISIS SYSTEM 15 COMPOSED OF THE BOOTSTRAF
LOALDER. THE EOOTSTRAF IS COMFRISED OF A FLMS@ MODULE CALLED T@EOOT
(FOR TRACK @ BOOT, THE TRACK NUMBER ON THE SYSTEM DISKETTE UFON WHICH
THE FILE RESIDES) AND AN ASME2@ MODULE CALLED JMFD.
THE JMPD MODULE FLACES INTD LOCATION 2@@@H A JUMP INSTRUCTION TO
T@EOOT (WHICH THE LOCATE PROGRAM FLACES AT 3Z@¢H) . THE T@BOOT MODULE
* NOES THE ACTUAL BOOTING ITS OPERATION IS DESCRIBED IN SECTION
7.0 BELOW.

- ¥ caveledt Vewac o | e Lsey %vcn.kcl{z\ \WW\‘P 2 {oe 40
Lo asve . ave P eesh g

*/

{Sle 3.0 QuW Pe 2o

THE ISIS-II OFERATING SYSTEM IS LOADED INTO MEMORY AS FOLLOWZ:

4. WHEN THE MDS/EMDS MONITOR/BOOTSTRAF OFERATION I% INITIATED, THE
FIRST & SECTORS OF TRACK @ ON THE SYSTEM DISKETTE ARE READ IN
AND LOADED INTO MEMORY AT ADDRESS 3@086H AND UFWARDS.

@. THE MOS/EMDS BOOT THEN TRANSFERS CONTROL TO THE I21S THEBOOT
(LOCATED AT 26@@H) . THE ISIS TEEODOT IN TURN LOADS THE RESIDENT
FORTION OF ISIS, CALLED ISIS.EIN (BECAUSE IT IS IN BINARY OBJELCT
FORMAT) . THROOT ALED DETERMINES THE EXACT DOISK CONFIGURATION OF
THE SYSTEM (1.E. NUMBER OF DRIVES, TYPES OF CONTROLLERS) AND
PASSES THIS INFORMATION ON TO RESIDENT IS15 IN THE FORM OF THE
4-BYTE ARRAY DKCFTE (DISK CONFIGURATION TAELE).

. T@EOOT THEN TRANSFERS CONTROL To ISIS VIA A CALL TO EXITs A CALL
SROM WHICH IT NEVER RETURNS. THE EXIT SYSTEM CALL IN TURN CAUSES
THE LOADING AND EXECUTION OF THE COMMAND LANGUAGE INTERFRETER (CLI) .
SLT WILL SIT PATIENTLY WAITING FOR USER INFUT FROM THE CONSOLE
EITHER IN THE FORM OF & SYSTEM COMMAND OR THE NAME OF A
LUSER OBJECT FILE (WHICH IT WILL CAUSE TO EE LOADED AND EXECUTED).

*

RESIDENT ISIS CONSISTS OF MODULES WHICH IMPLEMENT THE ISIS SYSTEM

CALLS (THE ISIS SYSTEM CALLS ARE: OPENyREADYWRITE SEEK,RESCAN, CLOSE

SPQTHyUELETErHENQMEvATTRIBvCDNSUL;WHDEDNyERRHR;LGAE;EXIT) AN
MODULES WHICH ARE REGUIRED FOR THE CORRECT OFERATION iF THE SYSTEM
(SUCH A% DIRECTORY MAINTENANCE, DISK STORAGE ALLOCATION AND DEALLOCATIONS
EiFFER ALLOCATIONs AND ERROR RECOVERY).
4. THE ISIS SYSTEM CALLS ARE CALLS TO LOCATION 4@H. AT LOCATION
4¢H IS & JUMF TO THE MODULE CALLED ISIS. THIS MODULE COFIES THE

FARAMETERS USED IN THE SYSTEM CALLs EXCHANGES STACK FOINTERS (ISIS MAIM

STACK POINTER) » AND THEN CALLS THE MODULE RESPONSIELE FOR
CORRYING 0OUT THAT PARTICULAR SYSTEM CALL. UPON RETURN FROM THAT
MODULE, THE ISIS STACK FOINTER AND USER STACK FOINTER ARE AGAIN
EXCHANGED: AND CONTROL IS RETURNED TO THE USER PROGRAM (WHICH
MAY BE A CUSP) .

B. WITHIN RESIDENT ISIS, THE MODULES CAN AND DO CALL EACH JTHER.

Y

.
“11"; 1o el doar 'S

FL/H-80 COMPILER 03-02-78

ISIS-II PL/M-80 V3.1 CONPILATION OF HODULE PATH
DEJECT HODULE PLACED IN :F1:PATH.DBJ
CONPILER INVOKED EY: PLM8O (FL:PATH.NOD PRINTC:F2:PATH.LST) DERUG DATE(03-02-78) IXREF(:F3:PATH.IXD)

1 FATH:
iH
i
HEEH MR IERIE RIS KM MR MO0 HITRIN R IR OO IR
SERHM MR I RO HIEH HOIHIE J I M M MM MMM RO SN Mt

HODULE MANE PATH

MERNZEDZ [|ID ommEs

ABSTRACT

sarm pat e s ost atten
ssnmosan

THIS IS THE RODULE THAT UNDERSTANDS THE SYNTAR OF
PATHRANES, AND PARSES THEN.

RODULE DRCANIZATION

SEIESSS ReSnRsoEasns

THE NODULE CONTAINS THE FOLLOUING COMPONENTS:

1. 2 cLOEAL ARRAYS, ‘PN’ AND ‘PN2/, EITHER OF UHICH IS
SUFFICIENT TD CONTAIN THE “INTERNAL FORN™ OF A PATHNANE.
THESE ARE PROVIDED HERE FOR THE CONVENIENT TRANSITORY
USE BY SUCH SUBROUTINES AS DFEN, RENARE, DELETE, ETC.
THEY ARE NOT DIRECTLY USED BY ‘PATH’.

2. THE BYTE PROCEDURE “PATH/, UHICH CONVERTS A LEGAL FATHNANE
INTD INTERNAL FORH, RETURNING AN ERROR NUMBER FOR THE
TYPE OF PATHNANE FOUND. (O HEANS LEGAL PATHNARE, OTHER
HUMEERS INDICATES SYNTAX ERRORS IN PATHNAME.)

3. THE PROCEDURE ‘XPATH/, UHOSE DMLY REASDN FOR EXISTENCE IS
T0 REDUCE THE SPACE USED FOR CALLS TO ‘PATH’ THROUCHBUT
THE PROGRAW; IT REDUCES CODE TO TEST THE RESULT FRON
PATH AND OPTIONALLY CALL ERR, TO A SINCLE POINT IN THE
PROGRAN.

CALLING GRAPH

e omemom mamem sea o ssssmess
BRESRSE SSRSs

PPRTH
>PATH
‘PATH
ERR (ERROR)

GLOBAL YARIABLES ACCESSED

abasseans muess mobm omute o omrer oveies o o whe rraest st etk s
SRSLSS IRSSIRSEs Snonmmnno

-> P
- M2

GLOBAL UARIABLES MODIFIED

rmrusem e mice e e

PAGE

1

ATTRIE:

b

RGN IS TR/

STNCLUDE (:F2:COMMON.LIT)
SINCLUDE (:F2:ATTRIE.LIT)
SIRCLUDE (:F2:4FT.LID)
SINCLUDE (.F2:ERRDR.MEX)
SINCLUDE (:F2:PATH.MEXD)
GINCLUDE €:F2:DEVICE.LIT)
SINCLUDE (:F2:ERROR.LIT)
SINCLUDE (:F2:AFT.HEX)
SINCLUDE (:F2:DIRECT.HEX)
SINCLUDE € F2:RU.MEX)
SLIST

ATTRIK:
PROCEDURECF ILESPTR, SUID, UALUE) PURLIC,

DECLARE <FILESPTR.SUID) ADDRESS;

DECLARE UALUE BDOLEAN;

DECLARE NASK(x) BYTE DATA {INVISIELESATTRIRUTE.
SYSTERGATIRIENTE,
URITEPSATTRIEUTE,
FURNATSATTRIBUTE) ;

IF SUID > 4 THEN CALL UARNHCBADSATYRIR);
CALL XPATHCFILESPTR. .PN)S
IF PH(O) » FODEV THEN CALL UARNCMINSDISKSFILE); /u DD ®/
CALL AFTSUINDOUCPRCO)),
IF HOT DLODKC. PR THEN CALL UARNCNDSSUCHSFILE):
DIRECT ATTRIR = DIRECT.ATTRIE DR HASK(LOU(SUID));
IF NOT URLUE THEM
DIRECT.ATTEIR = DIRECT .ATTRIE AND (NDT BASK(LDU(SUID)));
£aLl DIRGCLOS(PN(O));
END ATTRIR:
END;

EOF

KUFFER:

UiH

FH R R IR I R RN ORI B RN MR I MBS
HERIEERERHE IR RIS R R HHE R0 IR I RERIR RRN R R R

HEDULE KAWE RUFFER

THIS HODULE CONTAINS ROUTINES FUR DRTAINING, CLEARING,
RELEASING, AND PACKING BUFFERS OF 128 RYTES EACH.

THIS MODULE CONTAINS AN ALLOCATION TARLE (’BUFFERSTARLE ‘), AND

iy SURRDUTINES.
EUFFERS ARE ALDCATED IN RAN. STARTING AT “.MEMORY”. AHD
WORKING UPUARDS (TD THE USER’S PRUCRAM DRIGIN POINT).
‘RUFFERSTABLE ” CONTAINS 19 ENTRIES, PLLOVING HAXINUM RUFFER
USAGE FOR 6 DPEN FILES (ALL LINED INPUT FILES, 3 BUFFERS EACH),
PLUS 1 BUFFER FOR THE CONSILE.

CALLING GRAPH

»>CLEARSEUF
3IRE TURRSRUF
FYEETSRUF
ERR (ERROR)
FIPACKSAF TSRUF
GETSRUF
RETURNSRYF

GLORAL YARTARLES ACCESSED

HERDORY (PL/N PRE-DECLARED VARTARLE)

THUARTANTS

ERCH ENTRY IN ‘BUFFERSTARLE/ IS INYVIALIZED TD ‘9‘; LEGAL
UALUES ARE 707, ‘1’ AND ‘27, UITH THE FOLLIUINE BEAMINCS:
¢ - CORRESPONDING BUFFER IS AUATLAELE, KUT NOT ALLOCATED.
1 ~ CORRESPONDING BUFFER IS NOT AVATLARLE, BECAUSE I7
IS IN THE CURRERT USER RAl ARES.
Z - CORRESPONDING BUFFER IS IN USE.

EHTRIES CHANGE UHER BUFFERS ARE DRTAINED OR RELEASED (VIR
GETSRUF AND RETURNSEUF). OR UHEM THE THE USER‘S PROGRAN ORIGIN
PUINT I3 CHANGED (BY BAKING A CALL TB THE LDAD’ SURRDUTINE).

&/

 HSHILISTH/

SINCLUDE (:FZ:COMNON.LIT)
SINCLUDE C:F2:AFT.LID
SINCLUDE (:F2:ERROR.LID)
SINCLUDE C:FZ:ERROR.BEX)
SINCLUDE (:F2:AFT.NEX)
f@rsT

DECLARE RUFFERSTAELE(13) BYTE PUELIC INITIAL
{0,0:0:0,0,0,0,0,0,0:0,0,0,0,0,0,0,9,0);

CLEARSRUF
PROCEDURE (BUFSADDRESS) PUBLIC;
DECLARE BUFSADDRESS ADDRESS;
DECLARE EUFFER BASED BUF%ADDRESS (128) BYTL;
DECLARE I BYTE:

Do I=0 T8 127;
BUFFER(DD = &
END:
END CLERRSRUF;

RETURNSRUF
PROCEDURE (BUFSADDRESS) PUBLIC;
DECLARE BUF9ADDRESS ADDRESS;

FUFFERSTABLE(SHR{EUFSADDRESS - MEMORY.7)) = §;
ENP RETURKSEUF;

GETSRUF:
PROCEDURE ADDRESS PURLIC:
DECLARE I BYTE;

08 1 =¢ 10 LAST(RUFFERSTARLE);
IF RUFFERSTABLECI) = ¢ THEM
i H
RUFFERSTABLECT) = 25
RETUEN HEHORY + SHL(DOURLE{1).7),
EXD;
EHp;
CALL ERR(ARDRT . NOSFREESRUFFER):
END BETSEUF:

JH RERENEEREERERERRHEEE BRERE KR XERE KHERR KRB RE R ERRER R R RRREE

PROCEDURE PACKSAFTSBUF

ARSTRACT

THIS ROUTINE REASSIGNS BUFFER SPACE, AMD BOVES RUFFER
CONTENTS RS RECESSARY, TO EMSURE THAT THERE IS NO UNUSED
EUFFER SPACE BELIV THE AREA DCCHPTED KY THE HIGHEST BUFFER
I8 USE.

PARANETERS

HONE

VALUE PETURNED

THE #DDRESS OF THE FIRST (LBUEST) KYTE IM THE FIRST
{LOVEST) UNALLOCATED BUFFER. THIS INFORMATION IS THE “TOP OF
EUFFER AREA" DESCRIBED IN THE MDS-DOS DPERATIR’S HANUAL.

CLOEAL UARTABLES ACCESSED

AFT.LEUF
fiF T DRUF
AF 7. PRUF

CLORAL UARIARLES NODIFIED

AFT. LEGF
AFT. PRUF
AFT_DRUF

DESCRIFTION

FOR EUERY AFT ENTRY UHICH IS A CURRENMTLY ASSICNED
BUFFER ADDRESS, THE BUFFER IS RETURNED (USING ‘RETURNSBUF’),
fND IS REPLACED BY A NEU BUFFER (USINC ‘BEYSRUF/). TIF THE HEW
EUFFER IS & DIFFERENT DNE THAT THE OME RETURMED, THEN THE
DATA FROM THE OLD IS NBUED INTO THE NEW.
il

PACKGAF TSRUF
PROCEDURE ADDRESS PUBLIC;
DECLARE {I.J,INDEX) BYTE;
DECLARE BUFFERSTOP ADDRESS;
DECLARE BPTR ADDRESS, RUFADR BASED EBPTR ADDRESS;
DECLARE NEUSEADR ADDRESS. MEUSDATUN BASED HEUSKADR(128) EYTE,
BLDSBADR ADDRESS, BLDSDATUM EASED OLDSBADR{(128) RYTE;

FUFFERSTOP = . HERDRY,
DB 1 = AFTSEOTTON TB AFTSLAST;
IF ROT AFYCI)ENPTY THEW
b} INDEK = § 7O 2;
EFTR = AFT(I).PBUF - 2#INDEX,
4 = SHRCRUFADR - MENORY,?7);
IF J (= LAST{RUFFERGTABLE) AND BUFFERSTABLE(J) = 2 THEM
oi;
[LDSBADR = RUFADR:
CALL RETURMSEUF (DLDSBADR)
NEUSEADR = GETSBUF;
IF PUFFERSTOR ¢ NEUSBADR THEN BUFFERSTOP = HEUSEADR;
IF REWSEADR ¢> BLDSBADR THEN
il
DR J =010 127;
HEUSDATUNCS) = BLDSDATUNC);
END;
EUFADR = NEUSBADR:
END
ERD;
END; /Z# OF LOOP TD HANDLE EACH RUFFER P.D.L &/
END: /v OF LODP TO TRAVERSE AFT »/
RETURN BUFFERSTOP + 128;
END PACKSAF TSEUF;

END;

EQF

CONSHL :

bil;

FESRILIS T/

SINCLUDE (:FZ:COMMON.LIT)
SINCLUDE (:F2:ERRDR.LIT)
SIMCLUBE (:F2:AFT.LID)
SIHCLUDE (:F2:DPEN.LIT)
SINCLUDE (:F2:DEVICE.LIT)
SIHCLUDE (:F2:ERROR_MEX)
FZINCLUDE (:FZ:AFT.RMEX)
SINCLUDE (:F2:PATH.HEX)
SINCLUDE C:F2:UNPATH.PEX)
GINCLUDE (:F2:DPEN.HEX)
SINCLUDE (.F2:CLBSE MEX)
SLIST

DECLARE CURGCINSBLSIN (12) BYTE PUBLIC,
CURGCONSOLSOUT (12) BYTE PUBLYC:

DECLARE COLDSCONSDLSINCS) EYTE INITIAL (7:XI:),
COLDSCONSILSOUT (3) BYTE INITIAL (/0% /)

DECLARE COLDGSTARTSFLAC EDDLEAN INITIAL (TRUL);
BECLARE (COLDSCIDEV,ALTSCIDEV) BYTE PURLIC:

CONSHLE:

PROCEDURE <INFILE.DUTFILE) PUBRLIC,
DECLARE (INFILE,DUTFILE) ADDRESS:
DECLARE INSTRING BASED INFILE BYTE,

GUTSTRING RASED DUTFILE BYTE:
DECLARE TEMP BYTE:
DECLARE TORM(2) BYTE
PATA VTY); /T IR U IS 15T LETTER OF DEVICE MAbE w/

DECLARE INITID BYTE AT (6);

{F COLDSSTARTSFLAC THEM

Mk
COLDSCONSIR.SINCL) ,COLDSCONSOLSBUT(1) = TORUCINITIO AND 1))
INFILE = CDLDSCONSHLSIN
BUTFILE= _CHLDSCONSDLEDUT;

ERD;

CLORALSSEVERITY = ARORT:

CALL XPATHCDUTFILE. .PW);

IF PN(O) {) CODEV THEW

bg;
£ALL CLOSECAFTNSCONSOLSHUT) ;
TENP = BPENCDUTFILE,URITESHODE.FALSE);
CALL XPATHCOUTFILE, CURSCONSIR SBUT):

END;

Catl. XPATHCINFILE, .PN):

IF PN(O) (> CIDEV THEN

ol
CaLL CLOSECAFTRGCONSHLSIND
TENP = DPENCINFILE.RERDSNODE, 100H); -
IF COLDSSTARTSFLAG THEW

CILDSCIDEY = AFTCAFTHSCHONSDLSIN) . DEVICE;

ALTSCIDEY = COLDSCIDEV;
EALL XPATHCINFILE, CURSCONSDLSIND;

E¥D;

COLDSSTARTSFLAG = FALSE:

END CONSOLE:

UHBCIN:
PROCEDURE{AFTN, RUFFERLOC) PURLIC;
DECLARE AFTH EYTE:
DECLARE BUFFERLOC ADDRESS,
DECLARE NAMELOC ADDRESS:

HAMELDC = .CURSCONSOLSDUT,
IF AFTN THEN NARELRC = . CURSCONSDLSIN,
CALL UNPATH(NARELUC.BUFFERLOC);
END UHOCDH:
ERD:

ElF

DELETE:

N

FH RIS MR RIERI SRR IO MR MR MR I SR R R IR R
HMHI AL R R SRR A R HHBR HR R BRI KRB I K R e

HBDULE NANE DELETE

WESmeR RESwm mDzmzzz

ARSTRACT

THIS RODULE CONSISTS OF PRDBCEDURES ‘DEL‘ AMD /BELETE’.

CALLIHG GRAPH

PIDELETE
“EPATH (PRTR)
ERRC (ERRIR)
‘AFTSUINDOU” (AFTH
‘BLBOK - (DIRECT)
#3DEL
AFTSUINDDY (AFT)
WRITE” (RD
“AESIDY (DISK)
‘SEEK © (SEEK)
FREESELOCK S {(ALLID)
‘HAPRY” (ALLBLC)

ELERAL UARTARLES ACCESSED

AFTNSDIRECT (LIT) -- DEL
ASPATASELK (AFT) -- DEL
ASDEUF (AFT) -- DEL

CLORAL VARTARLES MODIFIED

wfp

555

B/

FRGNILIS TR/

SINCLUDE (:F2:COMHON.LIT)
SINCLUDE (.FZ:AFT.LIT)
SINCLUDE {:FZ:DISK LIT)
SINCLUDE (:F2:SEEK.LIT)

SINCLUDE (:F2:DEVICE.LIT)
SINCLUDE (.F2:ERROR.LIT)
SINCLUDE (:FZ ATTRIE.LIT)
SINCLUDE :F2:DIRECT.MEX)
STHCLUDE (F2:AFT.HEX)
SINCLUDE (:F2:PATH.HEX)
SINCLUDE (:F2:DISK.MEX)
SINCLUDE (:F2:ALLBC.HEX)
SIMCLUDE (:F2:ERROR.MEX)
SINCLUDE (.F2:RJ.NEX)
SIRCLUDE (:F2:SEEK.HEX)
SLIST

BEL

PROCEDURECDISKNUN) PURLIC,
DECLARE DISKNUM BYTE;
DECLARE {AFTN, I} BYTE;

DECLARE BLOCKRD ADDRESS DATA (0);

DECLARE EYTEND ADDRESS DATA(1S /% SIZECDIRECT) #/);
DECLARE TEWP RDDRESS:

DECLARE EUF BASED TEWP (Su) ADDRESS:

DECLARE FLINK LITERALLY “17;

/% INTERMAL DELETE ROUTINE
DISKHUN = FODEU. FIDEVU, FIDEY, F3DEY, FuDEY, OR F3DEW
DIRECT MUST CONTAIN THE DIRECTDRY ENYRY FUR AN EXTISTING
FILE ON DISK.
AFT SLOT FOR THE APPROPRYATE DIRECTORY MUST HAVE RUFFERS;
AKD THESE BUFFERS WUST BE SETUP FOR DIRECTORY READING aND
URITING. THESE RUFFERS UILL BE CLOERERED.
B

DIRECT.ENPTY = TRUES
CALL AFTSUINDBUCAFTN:=AF TNSDIRECT¢DISKHUM;
CALL URITECAFTH, DIRECT, SIZE(DIRECT))S
CALL ARSID(URITESCOMHAND DI SKMIM, ASDATASILK. ASDEUF);
£aLl SEEK(AFTH, SEEKSRACK, . BLOCKND, .BYTERD),
TERP = ASDBUF: /7% TEMP -» A RUFFER UE KA EXISTS #/
D UHILE DIRECT HDRSELK OO 4;
CALL FREESBLOCKCDISKNUN, DIRECT HDRSBLK);
CALL ARSID(READSCOMHAND, DISKRUN, DIRECT HDRSELK, TEWP),
DIRECT. HDRSRLE = BUF(FLINK);
pE I=2 10 63;
IF BUFCIIC)0 THEN CALL FREESELOCKCDISKMUM.EUF{D));
END;
END;
CALL ABSIN(READSCONAAND, DISHRUN, A%DATASELK, ASDEUF),
CALL NMAPSURTTE DISKNUM);
END DEL:

PELETE:
FROCEDURE {PATHNANE) PURLIC;
DECLARE PATHHANME ADDRESS,
DECLARE I RYTE:

CALL APATHCPATHNARE ., PH);
16 PR > FUDEV THEN CALL UARN(NOMSDISKAFILE), /4 DD #/
CALL AFTSUINDON(PN(O));
Ir HOT DLOOKC. PR THEM CALL UARM(HDSSUCHSFILE);
Ir (DIRECT.ATTRIR AND (VRITEPSATTRIRUTE OR FORMATSATTRIBNTE)) O 9
THER CALL CARNCURITESPRATECT);
DO I = AFTSEDTTON 7O AFTSLAST:
CALL AFTSUINDIVCI);
IF (NOT ASERPTY)
AN (ASDEVICE = PR(O))
AND (ASISHD = DIRECTSISRD
THEN CALL UARNCCANTSDELETE),
ERD:
CALL DEL(PN(0)),
END DELETE:
ERD;

ERF

DIRECY:

itk
%

¢

HRRE RRIRR BRI RN ORI R M R R KM R RIS 00N
RERE RRREERRERR R RRR NI MR RN HRRI R BRI ERE RS IR R R MR

fIBDULE NAME DIRECTORY

NONATLS DRI onmaonmomn

SESTRACTY

it KNOULEDGE AROUY THE FORMAT AND LECATION BF A DISKETTE
DIRECTORY IS CONTAINED BY THIS MODULE.

AEDULE DRGANIZATION

THE HODULE CONTAINS A DATA AREA. UHICH NORMALLY COMTAINS
THE INFORMATION FROM A SINCLE ENTRY I¥ A DISKEVTE DIRECTHRY,
A¥D THE PROCEDURES DIRSCLOSE’ AMD /DLBOK’.

CALLING ERAPH

>yDIRSCLASE
ARSURITE (DISK)
LI
EETSRUF (RUFFER)
AFTSUINDOY (AFT)
REUIND (SEEK)
READ (RY)
SEEK (SEEKD
RETURNSEIF (BUFFER)

GLORAL VARIARLES ACCESSED

ASDATASELK (AFT) -~ DIRSCLAOSE
ASDPRUF (AFT) -~ DIRSCLOSE
ASBEVICE (AFT) -~ DLODK

ELBRAL VARIAELES WODIFIED

ASDEUF (AFT) -- DLODK
ASPRUF (OFT) -- DLODK
DIRECT (ALL 14 BYTES) — DLDOK

THUARTANTS

B¥ EVERY DISKETTE, VTHE DIRECTHRY FILE IS PARTITIODNED IHTD
VERTRIES™ CONTAINING 14 BYTES OF DATA EACH.
THE UARIOUS EYVE- AND ADDRESS-UARIAKLES UITHIM AN ENTRY AHE
CIVEN DESCRIPTIVE HAMES (SEE THE STRUCTURE ‘DIREET’ BELDW.
A7 ALL TINES, THE FOLLDUING MUST BE TRUE:

DIRECT EWPTY = FALSE =) THE ENTRY CONTAINS HEANIMGFUL DATA.
(DIRECT .ERPTY = TRUECOFFH)) =) THE DIRECTURY SLBT IS ERPTY.
(DIRECT.ENPTY = TRUECOPFHD) =) THE DIRECTORY SLOT, AND ALL
FURTHER DIRECTORY SLOTS. ARE ENPTY.

fatd S e

-

SRGHIL IS TR/

SINCLUDE < FZ.COMHBR.LIT)
SIHCLUDE ¢ F2:SEEK.LIT)
STNCLUDE (. FZ.AFT.LID)
SINCLUDE (:F2:AFT.MEX)
SINCLBDE (:F2:ALLEC NEX)
SINCLUDE (.F2.DISK.HEX)

SIHCLUDE (:FZ:RU.DEX)
SINCLUDE (:F2:BUFFER.DEX)
SINCLUDE (:F2:SEEK.REX)
H4I87

DECLARE DIRECT STRUCTURE ¢
ERPTY BODLEAN. /% FLAG TO INDICATE UHETHER DIRECTDRY
ENTRY IS USED #/
FILECA) BYTE, /7% FILE KARE #/
EXT(3) BYVE, /% EXTENSIDN ®/
AITRIB BYTE. /% FILE ATTRIRUTES w/
EOFSCOUNT BYTE. /% CHARACTER COUNT. LAST DATA KLOCK »/
FLKSCDUNT ADDRESS, /% MUMRER OF BLBCKS IN FILE w/
HDRGELK ADDRESS) /% ADDRESL OF FIRST PHINTER RLBCK ®/
PURLIC,

DECLARE DIRECTSISND RYTE PUBLIC; /% DIRECTHRY ENTRY POINTER »/

DIRGCLDS:
PROCEDURE{AFTH) PUBLIC,
BSECLARE AFTN EYTE:

fE
THIS PROCEDURE ASSUNES THAT AFTUINDIN HAS BEER CALLED,
CORRECTLY SETTING UP THE APPREPRIATE DIRECTIRY SLOT.
A%D THAT THE DEUFFER AND PEUFFER HAVE COHRECT DATA,
BUT NEED NOT BE RETURMED TO THE POOL

£

CALL URITE(AFTH, DIRECT, SIZE(DIRECT));

IF ASDRUFSREAD THEN CALL ARSURTTECASDATASBLK.ASDEUF);

EMD DIRSCLDS,

SLOOK:
PROCEDUREC(FN) EDDLEAN PURLIC,
DECLARE FN ADDRESS:
UECLARE RCOURT EYTE
/% THE LOCATION AT (RCOUNT ¢ 1) IS MODIFIED EY THE PROCEDURE READ,
HENCE BYTEMB NUST ALUAYS FOLLDU THE DECLARATIDN DF RCOUNT.
74
ECLARE ELOCKND ADDRESS DATR (0);
GECLARE BYTEND ADDRESS;
BECLARE ARRAY BASED F¥ <12) BYIE;
PECLARE (TLAFTH) BYTE:
SECLARE DNUN ADDRESS:
DECLARE RETURNSVALUE EDDLEAN;

FE
THIS PROCEDURE IS USED TO LUDKUP A FILE BAME TH A
DISK DIRECTORY. THE DEVICE RUMBER OF THE DISK
IS CONTAINED IN FH(O), THE SIX CHARACTERS OF THE
FILE NANE ARE IN FH{1) THROUGH FN(4), AND THE
THREE CHARACTERS OF THE FILE EXTENSION ARE IN
FH(7) THRBUGH FNCD.

THE PROCEDURE RETURNS ‘TRUE” IF THE FILE IS FOUMD.

UITH DIRECTSISHD POINTING TO THE ENTRY OF THE FILE IN THE
STRERTORY

DYHERVISE. THE PROCEDURE RETURNS ‘FALSE’. AND DIRECTSISNH PHINTS
fiT A BLANK SLOT IN THE DIRECTORY. THE DIRECTDRY BARKER IS
ADJUSTED SO THAT IT POINTS AT THE RECIMHING DF THE ENTRY

PUINTED TO BY DIRECTSISND.

IF THE DIRECTORY IS FULL. DIRECTSISHI = OFFH.
e

A SET AFTN TO SLOT NUNRER FOR DIRECTDRY w/
RFTCAFTH = ASDEVICE+AFYNSDIRECT) . DBYUF = GETSEUF;
AFTCAFTND (PRUF = GETSEUF;
CALL AFTSUINDRUCAFTND;
CALL REUIND:
DIRECTSISHD = OFFH;
RCBUNT = 15 /4 ANY NON-ZERD UALUE FOR RUDUNT HERE ®/
DL DIRECT ENPTY, RETURNSUARLUE = FALSE. /e DHUM = ¢ w/
O0 UHILE RCDUNT C> 0 AND DIRECT.ERPTY () 7FH,
CALL READSAFTH, DIRECT,SIZE(DIREET). RCBUNT);
{F DIRECT.EMPTY THEM
il
IF DIRECTSISNH=OFFH THEN DIRECTSISND = DNUM;
END:
ELSE
bit;
MmIi=170%
IF ARRAYC(IXXDIRECT.FILECI-1) THEW GI} TO NOWATCH;
ERD:
DIRECTSISND = DNUN;
PETURNSUALUE = TRUE;
RCIUKT = 9
EXD;
HORATCH:
DRUN = DNUR+L;
EXD:
IF DIRECTSISNN <> OFFH THER
o
RYTEND = DIRECTSISHO#SIZE(DIRECT),
CALL SEERCAF TN, SEEKSAES, .BLOCKMD. BYTENDY:
END;
CALL RETURNGBUF (ASDBUF),
LALL RETURNSEUF (ASPEUF);
RETURR RETURNSUALUE;
t¥D DLDDK:
ERD;

£aF

RERAME:
bl
SE HEER KRR R R R MR R R KR IR I IR I I
MR IR MU M H MR R R KRN IR BN BRI R RIISRE

HUDULE RANE FENARE

ARETRACY

THIS NODULE CONTAINS THE ‘RENANE’ SYSTEN CALL PROCEDURE DNLY.

CALLING GRAPH

$IRERANE
‘APATHT (PATID
‘ERR” {ERROR)
AFTSNINDIVY CAFT)
‘DLEDK” (DIRECTORY)
YRITEY (Rl
‘DIRSCLOSE © (DIRECTARY)

5
FREHILTS TR/

SINCLUDE (:F2:DEVICE.LIT)
SINCLUDE (:F2:ERRIR.LTT)
SINCLUDE (:FZ:ATTRIE.LIT)
SINCLUDE (:F2:COMHEN.LIT)

SINCLUDE C:F2:AFT.LIT)
SINCLUDE (:F2:PATH.BEX)
SINCLUDE C:F2:DIMECT.NEX)
SIHCLUDE (:F2:AFT.MEX)
SINCLUDE (:F2: ERROR.HEX)
SINCLUDE (:F2:RU.BEX)
SLIST

RERARE :

PROCEDURE (DLDSFILE,NEWSFILEY PUBLIC;
DECLARE (DLDSFILE.NEVUSFILE) ADDRESS;
DECLARE I BYTES
DECLARE ALREADYSEXISTS ROOLEAN;
A CDLDSFILE” IS RENABED, THE REU NARE IS “MEUSFILE” #/

CALL XPATHCOLDSFILE, .PN2);
CALL XPRTHONEUSFILE. PN
TF PR(O) > FODEV THEN CALL UARR(HONSDISKSFILE):, /4 DD W/
IF PNCO)Y (3 PR2(0) THEN CALL UARN(DIFFERENTSDIIK);
CALL AFTSUINDDU(RN(O);
/% IF MEUSFILE ALEEADY EXISTS AMD DLDSFILE DUES ROT EXIST,
THEN UE UANT TD GIVE THE DLDSFILE ERROR RESSACE.
HOVEVER, DLEDK(NEUSFILE) SHOULD PRECEDE DLUDBK(DLDSFILE).
THIS XS BECAUSE POINTER VARIARLES SHOULD EE LEFT PRINYING TO
THE BLD FILE UPIIN EXIT FRON THIS PROCEDURE. #/
ALREADYSEXISTS = DLOBKS.PN).
IF ROT DLBDKC.PHZ) THEN CALL UARNCNDSSUCHSIILE);
IF (DIRECT.ATTRIE AND (URITEPSATTRIBUTE OR FORMATSATIRIBUTE)) (3 9
THEN CALL UARN(URITESPROTECT);
IF ALREADYSEXISTS THEM CALL UARNKHULTIDEFIRED);
MI=0TE
DIRECT FILECT) = PR(I+1):
END;

EaLl. DIRSCLDS(ASDEVICE):
END REMANE,
ERD;

EDF

RESCAN:
H1H
£ HREE HHMRE REIRE KRB IR KRR RIS RO S O I R e
HIEISH K MHE R ORI O BIGOM RIRR RIR RIGOHE KRR I MR

NODULE MANE KESCAN

ARETRRET

THIS MDDULE CONTAINS DNLY THE RESCAN SYSTEW CALL PROCEDURE.

CALLING GRAPH

>IRESCAR
AFTSUINDIN CAFT)
ERR (ERRDR)

ELBRAL VARTARLES ACCESSED

AELEUF (AFTY -- RESCAR
ASERIT <AFT) ~-- PESCAN

GLBRAL UARIARLES RODIFIED

HENE

RGN IS TR/

SINCLUDE (.F2:CDMMDN.LIT)
SIRCLUDE (:F2.ERRDR.LIT)
SIMCLUDE (F2:8FT.LID
SINCLUDE (:FZ:AFT.BEX)
SINCLUDE (.F2:.ERROR.NEX)
SLIST

wESCA:
PROCEDURECAFTR) PUELIC,
DECLARE AFTM BYTES
DECLARE TEMP ADDRESS. EYTES RASED TEWP(128) EYTE.
ADDR BASED TENP(éu) ADDRESS;

Call. AFTSUINDOUCAFTHY;
TERP = ASLBUF;
If agEDIY <) O AND HOT BYTES(173) THEM
ADDR{GT) = O, /4 LPTR = O; INSHBDE = FALSE ®/
ELSE CALL UARN(CANTSRESCAN);
END RESCAM:
END:

413

TB: M

DECLARE TOBOOT LAREL PURLIC:

/% THIS UERSION OF TORODT HAS BEEN MODIFIED TD UORK DN EOTH
SINGLE DENSITY AND DDUBLE DEMSITY. IT UILL UORK D¥ ROTH
THE DS AND THE INTELLEC.

u/

SINCLUDE(:F2: CPYRTS.MOT)

SINCLUDEC :F2: CPYRTE.DTA)

SINCLUDE ¢ :F2: CIMMON . LIT)

SINCLUDE (:F2: CHAR.LIT)

SINCLUDE(:F2: GEDE. LIT)

SINCLUDE(:F2:URITE .PEX)
SINCLUDE ¢ F2: EXIY. PEX)
STNCLUDE ¢ :F2: CONSBL .PEX)
SINCLUBE(:F2: RUNOUT . PEX)
SINCLUDEC:F2: ERROR LIT)

SINCLBDE C:F2:DISK.LID)
SINCLUDE (:F2: DEVICE LIT)

SINCLUDE(:F2: CI.PEX)

SINCLUDE (. F2:RI.PEX)

SINCLUDE (:F2:€0.PEX)

SINCLUDE (:F2:PD.PER)

SINCLUDE (:F2:LB.PEX)

SINCLUDE (:F2: IOCHK _PEX)

SINCLUDE (:F2: TASET .PEX)

DECLARE CUSERSSTATUS, USERSSTACKPTR, STARTSADDR) ADDRESS:

DECLARE ASDEVICE BYTE:

DECLARE TEWP EBYTE;

DECLARE RTC LITERALLY “OFFH’: /% REAL TINE CLOCK w/

DECLARE RODT LITERALLY 727;

/% INPUT FROM BTC IS A BYTE. THE SECOND RIT FROM THE RIGNT
CURRESPONDS T8 THE RODT SUITCH. IF THIT EIT IS 1 THE SVITCH IS
0N, ARD IF IT IS ¢ THE SUITCH IS OFF.

L

DECLARE ISISSSICNON(12) BYTE IRITIAL (CR.LF, ISIS-II, U“),

STERGU(2) KYTE, /% VERSION NUMBER w/
STIGNSDOT(L) BYTE INITIM (7.9,

SIENGEC2) BYTE, /% EDIT NUMRER w/
SIENSCRLFC2) BYTE INITIAL (CR.LF)

/% UERSTIONSLEVEL AND EDITSLEUVEL ARE SET IM THE LOCE2 WODULE w/
DECLARE UERSIDNSLEVEL BYTE AT (62);
DECLARE EDITSLEVEL EYTE AT <43);

/% THE FOLLOVING FOUR VARIABLES ARE USED IM THE ERR PROCEDURE =/
DECLARE

STATUS ADDRESS /% ERRNR NUNBERS ARE PLACED HERE »/
DECLARE

DERUESTOECLE KDDLEAN ; /w GOVERNS ACTION CHEN ERROR DCCURS %/
DECLARE

GLORALSSEUERTTY BYTE & /% GUERRIDES NORNAL ERROR SEVERITY »/
DECLARE

FDCCSERRORSTYPE ADDRESS /% HAS DATA DM DISK I/0 ERRORS w/

DECLARE HMDSHON ADDRESS DATA (6)3 /% AN ENTRY POINT FOR THE MDY MORITOR #/

DECLARE ETSTRP ADDRESY DATA (B); /% AN ENTRY PODINT FOR ISIS w/
DECLARE INITIDSBASE ADDREIS INITIAL (6), IHITID BASED INIVIDSBASE RYTE:

DECLARE NS61(8) RYTE INITIAL (CR.LF, ERRBR),
NS62(3) BYTE, /» ERROR NUMBER COES HERE w/
HSE3CT) RYTE INITIRL {” USER PC 1),
NSELCh) BYTE, /% USER PU IN HEX GOES HERE ®/
HSE5(2) EYTE INITIAL (CR.LF),
NSG4(T) BYTE INITIAL (‘FDLC=").
BSG7() RYTE, /u FDCC ERRDR DATA GBES HERE »/
HSGB(2) BYTE INITIAL (CR.LF);

DECLARE SYSSFLE BYTE AT (OFFFFH); /% 1 FOR INTELLEC, ¢ FOR 0S5 &/
DECLARE HDRSELK ADDRESS; /w HEADER ELOCK USED FOR LOADING ISIT #/

DECLARE I BYVE:

DECLARE CONFICSTABLE (6) BYIE, /x BORKING CONFIGURATIDR TABLE »/

DECLARE DKCFYB (4) BYTE EXTERMAL: /% DISK CONFICURATION TARLE IN ISIS w/
DECLARE STAT BYTE

DECLARE CONSHASK LITERALLY /00001000K‘; /¢ DISK CONTRBLLER PRESERT »/
DECLARE DDSMASK LITERALLY ‘00010000R’; /% DD PRESENT w/

DECLARE ISDSHASK LITERALLY “0001000k‘: /= ISD FLOPPY PRESENT »/

DECLARE READSSTATUSSCONNMAMD LITERALLY -01CH-; /% KEAD STATUS COMMAND OF ISD »/

DECLARE ENARL LITERALLY ‘O5H‘; /% PSEUDD ENARLE OF INTERRUPT s/
DECLARE DISAEL LITERALLY “ODH/; /u PSEUDD DISARL OF INTERRUPT #/
DECLARE CPUC LITERALLY ‘OFFH’; /% COMTROLLER PORT w/

DECLARE HESSB8(k) BYTE INITIAL (CR.LF, ILLEGAL DISK DEVICE AT PORT G8H/,CR.LF):

FE EHERE SRR REHEE ERKHE EEHRR EERR R R ERERE MR MR KRR

PROCEDURE ERR

AESTRACT

THE ERR PROCEDURE IS USED TO HANDLE ERROR COMDITINNS.

IF THE SEVERITY OF THE ERRDR IS HEDTIUR /MESSAGE”) TD
HIGH (‘ARDRT“>, THEN AN ERROR MESSACE IS INSUED O THE
COMSOLE. IF THE SEUERITY IS HIGH (“ARORT) AND IF THE
UARIAKLE ‘DEBUCSTOCELE” IS SET TRUE, THEM CONTROL PASSES
TO THE MDS MONITOR.

PARANETERS

SEVERTTY THE SEVERITY OF THE ERROR. SUCH AS MEDIUM (‘NESSAGE)
OR HIGH (’ABBRT’).

ERRORGTYPE ERROR NURBER UHICH IDENTIFIES THE PARTICULAR
TYPE OF ERROR. SUCH AS DISK I/0 ERNOR.

&/

ERR:
PROCEDURE (SEVERITY.ERRDRSTYPEY,
DECLARE (SEVERITY.ERROBSTYPE,I,IHAX) BYTE:
DECLARE PC BASED USERSSTACKSPTR ADDRESS;

IF (SEVERITY := SEVERTTY OR GLOBALSSEVERITY) (> UARNING THEM
b
£ALL RUMDUT(ERRDRSTYPE, 19,0, M862,3);
CALL WUNDUT(PC.14, 707, HSEY,L);
CALL IOSET(CINCHK AND CHSX) OR (INITIO AMD));
InaX = 25; /% HURBER OF CHARACTERS IN HHRMAL ERRDR RESSACE x/
IF ERRDRSTYPE = DISKSIDOSERROR THEM
itH
InAY = 34; /% NUNBER DF CHARACTERS IN ERROR HESSAGE #/
CALL NURBUT(FDCCSERRORSTYPE. 14, 707, HSG7,4);
ERD;
b I =0 10 I,
CALL COISEI(ID);
END;
END;
ELSE
i
USERSSTATUS = ERRORSTYPE:
STACKSPTR = USERSSTACKSPTR:
EXD;
If SEVERITY >= ARDRY THER
oo
IF DERUGSTOGELE THEN CALL NDSHON, /x EXIT UIn MDY MONITHR »/
CALL BYSTRP; /% EXIT UIA SOFTUARE EDOTSTHAR w/
EMD;
END ERR;

FEREEREERERR EREKE ERRER RN BRI SO R RER O KRR B E R ERRR R Ry

PROCEDURE CONFIC

ABSTRACT

CONFIC DETERMINES THE CONFIGURATION OF DISK DRIVES ON THE SYSTEW AND
PUTS THE INFORMATION INTD AN AREAY CALLED CONFIGSTARLE.

DESCRIPTIOHN

CONFIC READS INPUTS FROM THE PBRTS ASSOCIATED UYTH THE DISK CONTROLLERS.
IT DETERHINES UHETHER EACH DRIVE IS DUUELE DEMSITY. SINGLE DERSITY, R
INTECRATED SINGLE DENSITY. THIZ INFIRMATION IS PUT INTD THE ARRAY
CALLED CONFIGSTABLE, VITH 1 STANDING FOR DUUKLE DENSITY, 2 FOR
SINGLE DENSITY, AND 3 FOR INTECRATED SINGLE DENSITY. O MEANS THE DRIVE
IS HOT BEING USED. EACH BYTE OF THE ARRAY CORRESPONDE YO THE DISK DRIVE
OF THE SANE NURRER (CONFICSTARLECO) = :FO: LETCD

L7

CONFIE:
PROCEDURE :
DECLARE T BYTE:

/¢ INITIALIZE CONFICSTAELE VITH ALL ZERDS w/
pI=9135

CONFIGSTABLE(I) = ¢;
ERD;

/% READ STATUS OF DISK CONTROLLER AT 78H
AND FILL IN CBNFICSTABLE ACCORDINGLY ¥/
STAT = INPUT(FDCCSSTATUSSO);
IF SHR{CSTAT AND COMSHASK).3) THEN /% CONTRGLLER PRESENT »/
b
IF SHRCCSTAT AND DDSHASK).Y) THER /4 DD PRESENDe/
MI=01013
CONFIGSTABLE(T) = A
END;
ELSE /4 SD ®/
DBI=90T01:
CONFIGSTABLEXD) = 2;
END;
EXD;

/% RERD STATUS OF DISK CONTRDLLER AT 88K
AND FILL IN CONFICSTABLE ACCORDINGLY w/
STAT = INPUT{FDCESSTATUSSL);
IF SHR((STAT AND CHONSHASK),1) THEM /% CHNVRDLLER PRESENT »/

be;
IF SHROCETAT AND DDSMASKD MY THER /1 DD PRESENT w/
ba;
DB I=0TO LENGTH(MESSSR) - L;
CaLl CO(HESS8R(IN;
END;
CALL MDSHON: /r EXIT UIa HONITOR w/
Edp;
ELSE /& 8D W/
bk
IF CONFICSTARLEC2) = ¢ AND CONFIESTABLE(I) =0 THEM /=% MOT DD SYS ®/
pBEI=2103
CONFIBSTARLECD) = 2;
ExD;
ELSE /7 DD SYS #/
PBI=4 T8
CONFIBSTARLECT) = 25
END;
END;
END;

A DETFRHING TC QVQTFA TR AN BODS IB INTEHIFR TF 77 7€ an

INTELLEC, THEN READ STATUS OF THE INTEGRATED SIMELE
DENSITY CONTROLLER AND FILL IN CONFICSTABLE ACCORDINGLY. ®/
IF SYSSFLG = 1 THEM /% SYSTEH IS AN INTELLEC »/
b;
BUTPUT(CPUC) = DISARL: /7w DISABLE INTERRUFTS w/
I =25 /+# THIS TIREDUT LODBP IS NECESIARY TD TAKE
CARE BF CASES UHERE THERE IS NB IDC. w/
DI BHILE (CTHPUTCOCIHD ARD O7H) (2 03 #dD (KT = 1 ~ 1) O3 &)
; /4 INPUT DBE STRTUS. LOOP UNTIL FO = IRF = OBF = ¢, w/
EXDs
IF I =0 THEN
bl
RUTRUT(CRUC) = ERABL;
RETURN
END;
BUTPUT(OCIN) = READSSTATUSSCONNAND, /u ISSUE CDRMMAND &/
I=23%0 /% THIS TIMEDUT LODP IS PLACED HERE RECAUSE AT THE
HONENT, (ROV. *77), NOT ALL INTELLEC SYSTEMS HAUE
THE CURRENT IBC FIRHUARE. i/
DB UHILE ((INPUTCOCIHD ARD O7H) {3 1) MND (I =1 - 1) (> 0)
i /# INPUT DBB STATUS. LOOP UNTIL FO = IRF = O AND OBF = 1. W/
Edb;

IF 1 = ¢ THEM
bit;
BUTPUT(CPYC) = ENABL:
RETURM;
EXD;
STAT = INPUTCOCOH): /u INPUT STATUS Febn ISD &/
DUTPUT(CPUC) = ENARL: /3 ENAELE INTERRUPTS »/
IF SHR(CSTAT AND ISDSHASK),J) THEN /¢ ISD PRESENT #/
1N
IF CONFIBSTARLE(O) = ¢ THEN /7w XISD IS SYSTEM DISK %/
CORF IGSTARLE(O) = 35
ELSE /¢ ISD IS NOT SYSYEM DISK ®/
CONFIGSTARLE(Y) = 35
END;
EXD;

END CONFIE:

FEBEREEEKEHBERKE SREHRRRERR RERRI HRREYE KRR R REERE KEERE R RN

PRUCEDURE DISKIR

ARSTRACT

THIS PROCEDURE PROVIDES ACCESS TD THE FDCC CONTROLLER(S),
CORTROLLER 1 = BASE ADDRESS 78H (DRIVES ¢.1,2.3 FOR DD,

DRIVES 0.1 FOR SO,
CORTROLLER 2 = BASE ADDRESS 83H <DRIVES 2,3 FOR §D,

GR DRIVES L4, 3 WHEXR o-3 IS DD).
INTEGRATED SINGLE DENSITY CONTROLLER = PORT OCIH.

PARARETERS

DRIVE AN INTEGER O THROUGH 5, SPECIFYING THE DISK 7D BE
AFTFSRFD ..

I8P THE ADDRESS OF A PARRMETER BLOCK T RE SENT TO THE
FDCC CONTROLLER. THIS PARAWETER RLDCK MUST BE SET UP
AS IF IT UERE FOR DRIVE ¢; IF /DRIVE’ SELECTS
ANOTHER DRIVE. ‘DISKIH‘ UTLL SET ALL THE MNECESSARY
ADDITIONAL BITS.

UALUE RETURNED

HIE

DESCRIPTION

THE CALLER PROVIDES fi PARAMETER BLOCK SPECIFYING SONE
UALTD DISK DPERATION BN DRIVE ¢, AMD AN TNTEGER DRIVE
SELECT VALUE.
THIS PROCEDURE UAITS FOR THE CONTROLLER TO €0 UNBUSY. THEM
PERFURNS THE DESIRED ACTION. 1IN CASE OF A CONTROLLER ERROR.
THE DISK DRIVE IS RECALIEBRATED ARD THE ACTION IS TRIED AGAIN.
IF # SUCCESSFUL CONPLETION CANMOT RE DRTAINED AFTER “NAKSRETRIES
ATTENPTS, A FATAL ERROR DCCURS; DYHERVISE A MORMAL RETURH IS
MADE.
L74

DECLARE DRIVESREADY RYTE DATACOIH);

DISKIB:

PROCEDURE (DRIVE,IOPR) PURLIC;

/% THIS PROCEDURE ISSUES THE IBPR 7D THE DISK CONTROLLER. IN THE #/

/% CASE OF THE 8271 IT ALSD TRANSFERS THE DATA DR A BYTE BY BYTE BASIS #/
DECLARE DRIVE BYTE; /% DRIVE HUMBER: ASSUMES UALUE 0.,1.2,3,4 BR § =/
DECLARE TEMP ADDRESS, (TEWP2, TEHPL) RYTE AT (. TENPX
DECLARE I0PE ADDRESS: /% POINTER TO THE PARANETER ELOCK MNAHED DCE w/
DECLARE DCE BASED IDPE STRUCTURE ¢

10U BYTE, /% CHAMNEL QORD ¥/
IBINS BYTE, /% INSTRUCTION »/

NSEC BYTE, /4 WURBER OF SECTORS u/
TADR KYTE, /4 TRACK ADDRESS w/
SADR BYTE, /% SECTOR ADDRESS ®/

EUF ADDRESS); /i BUFFER ADDRESS w/
DECLARE RECALSPE STRUCTURE (

18CY BYTE,
IOTHS BYTE,
HSEC BYTE,
TADR BYTE,
S4DR BYTE):
DECLARE 1 BYTE: /% INDEX URRIARLE USED IN FOR STATEMERTS =/
DECLARE IUAL BYTE; /% INYERRUPT HASK VALUE =/
DECLARE UPBRCSCOMIAND LITERALLY A5, 7w 18D ®/
BRCCSCORNAND LITERALLY ‘1647, /4 I8D W/
YDRCSCORNAYD LITERALLY AR, /% 18D w/
VDCCSCOnnAND LITERALLY ‘1847, /% 18D ¥/
ROECSCONNARD LITERALLY ‘194, 7% 18D w/
RDCCSCORHAND LITERRLLY “1RHY, /% ISD W/
RRSTSSCONNAND LITERALLY ‘LRHY, /w 15D W
RDSTSSCOMMAND LITERALY ‘ACR’; /% ISD W/

DECLARE (ISDSDRIVE. DDSDRIVE) ROULEAN:
/% INGICATES IF DRIVE NUHEER CORRESPOMDY ¥0 ISD DR DD w/

DECLARE GUFFSPTR ADDRESS: /7% VILL BE SANE AS DCR.BUF w/
DECLARE <BUFF BASED BUFFSPTR) (128) RYTE; /u USED FOR DATA TRANSFER UITH ISD u/

IRCORL: /% 15D w/
PROCEDURE (CDHHAKD) BYTE;
/% THIS PROCEDURE RETURNS EITHER THE FLOPPY DEVICE STATUS DR DATR w/
/% FRON THE 8271 ISD. IT IS THE PLN8O EQUIVALENT TO THE NDNITOR/Sw/
/% 10CDR1 ROUTINE. ®/
DECLARE (CDHNAND. INPUTSDATA) BYTE;

JUTPUT(CPUC) = DISARL; /% DISARLE INTERRURTS ®/
DI UHILE CINPUTCOCIHD AND OVHY (3 s
; /4 INPUT DRE STATUS, LDOP UNTIL FO = IBF = OBF = ¢ #/
ERD,
DUTPUTCOCIH) = CONNAND; /% ISSHE THE COWAAND w/
DI UHILE CINPUT(OCIH) AND O7H) ¢ 1;
; /% INPUT DBE STATUS: LDBP UNTIL FO = IBF = O &HD DEF = 1 &/

EXD;
INPUTSDATA = INPUTCOCOM); /HINPUT STATUS DR DATH FRON DEE »/
BUTPUT(CPUC) = ENARL; /it ENARLE INTERRUPTS w/
RETURN (INPUTSDATA)S /% RETURR UITH THE DEVICE STATUS DR DISK DATA ®/
END INCDRL,
I0CDRZ: : /% IS0 v/

PROCEDURE < CONBAND. DUTPUTSDATA):
A% THIS PROCEDURE DUTPUTS DATA TO THE 8271 ISD. IT IS THE PLMGO =/
/% 7O THE MONITOR‘S IDCOR2 ROUTINE. %/

DECLARE {CIHNAND, DUTPUTSDATA) BYTE:

BUTPUT(CPUC) = DISABL; /% DISARLE INTERRUPTS %/
DI UHILE INPUTCOCIR) AND O7H) () ¢;
; /% IRPUT DEE STATUS; LOOP UNTIL FO = XBF = OBF = ¢ #/
END;
BUTPUTCOCIH) = CONMAND; /% ISSUE THE CORMAND x/
b UHILE (INPUTCOCIH)Y AND O7HD <3 4,

; /% INPUT DER STATUS; LOBP UNTIL FO = IRF = BBF = ¢ ®/
ERD:
BUTPUTCOCOR) = DUTPUTSDATA: /% URITE DATA TO THE ISD FLOPRY DISK #/
BUTPUT(CRUC) = ENAEL; /4 ENARLE TRTERRUPTY ®/
EXD IDCDRZ;
TRANSFERSTOPESTOSIND:
PROCEDURE:
/# THIS PROCEDURE SENDS THE IOPR TD THE 8271 ISD ¥/

CALL TOCDRZ(VUPRCSCOMRAND. DCR_INCUY;

CALL INCDRZ(UPCCSCOMIAND, DCB. IHINS):

CALL INCDRZ{UPCCSCOMNAND, DCE.NSECY

EALL INCDR2(UPCCSCONNMAND, DCB.TADR);

CALL INCDRZ(UPCCSCONMAND, DCB.SADR);
END TRANSFERSIDPRSTDSISD:

DISKESTAT:
PROCEDURE BYTE,
/¥ THIS PROCEDURE RETURNS THE DISK DEVICE STATUS ®/
IF ISDSDRIVE /¢ ISD &/

THEM RETURN IDCDRICRDSTSSCONNAND);
ELSE RETURN INPUT(FOCCSSTATUSS0Y; /u DD ON FO.FL.F2.F3 w/
/% 3 I8 FO.F1 #/
END DISRSSTAT,

RSTYPE:
PROCEDURE EYTE;

/% THIS PROCEDURE RETURNS VITH THE RESULT TYPE OF # DISK DPERATION ®/
TE TLnSDRTUF s TED u/

THEN RETURN 00H; /% THERE IS MO RESULY TYPE FOR ISD DPERATIDN %/
ELSE RETURN INPUTCRESULTSTYPES0); /& Db DM FO.FLF2,FI ®/
/e Sl I FO.F1 #/
END RSTYPE;

ReEYIL:

PROCEDURE BYTE:

/% THIS PROCEDURE RETURNS ULTH THE RESULY RYTE OF A DISK DPERATIODN w/
IF ISDSDRIVE /a I8D w/
THEN RETURN IBCORL(RRSTSSCOMHAND);
ELSE RETURN INPUT(RESULTSRYTES0); /¢ DD I FO.FL.F2.F1 w/

/% 5D DK FO,F1 K/
END HGRYTE:

STARTSID:
PROCEDURE (IDPR);
/% THIS PROCEDURE BUTPUTS THE ADDRESS DF THE IOPE 7O THE DISK CONTROLLER
/% aND IN THE CASE OF THE 8278 ISD INUDLVING A DATA TRAMSFER OPERATIDN,
/% IT ALSD TRANSFERS THE DATA ON A EYTE BY RYTE RASIS.

DECLARE TUFB ADDRESS;

IF ISDSDRIVE /% 18D #/

THER DO;
CALL THANSFERGIOPRSTOSISD; /% ISSUE THE TOPE ®/
D UHILE {DISKSSTAT AHD DISKSDEME) = ¢;

END:
Ir DCE.ININS = READSCONMAND THEN PO;
BUFFSPTR = DCR.BUF;
BUTPUT(CRUC) = DISARL;
DB UHILE (INPUTCOCIH) aND 07H) O3 9
i /% TMPUT DEB STATUS; LDDR UNTIL FO = IBF = D6F = ¢ ®/
EHD;
DUTRUT(OCLH) = RDBLSCONMAND:
BT =0 T8 127; /u BET 128 EYTES OF DATA #/
DI PHILE (INPUTC(OCIH) AND O7H) (3 L5

#/

&/
u/

; /% INPUT DER STATUS; LDDP UNTIL FO = IBF = O AND BRF = 1 %/

ExD;
BUFF(I) = INPUTCOCOHY; /& INPUT DATA FROW DEE w/
EXD;
BUTPUT(CRUL) = ENARL,
£ND;

END;

ELSE DB. /¢ HOT ISD ®/
BUYPUT{LOUSADDRESSS0) = LOUCIORE);
BUTPUTCHICHSADDRESSS0) = HIGH(IOPR);

DO UHILE (DISKSSTAT AND DIZKSDOMNE) = ¢
EHD;
Enp;

END STARTSIN:

IpL = THPUT(OFCH);

DUTPUTCOFCHY = TVAL DR 2;

/% PREVENT INTERRUPT 1 FRON CAUSING REENTHANCY »/

IF CONFIGSTARLECDRIVE) = 3 THEN ISDSDRIVE = TRUL:

ELSE DS
ISPSDRIVE = FALSE;
IF CONFICSTARLECDRIVE) = 2 THEN DDSDRIVE = TRUE;
ELSE DI;

DDSDRIVE = FALSE,
J% MHST RF S N2 CONTRMIFE NAT PRESENT n/

£,
END,

RECALSPR. IDCU = 80H;
RECALSPR. IDINS = RECALIRRATE;
RECALSPE.SRDR = ¢

DB I = ¢ TO MAXSRETRIES;
DO VHILE (DISKSSTAT AND DISKSDHNE) (> o,
TEHNPL = RSTYPE;
TENPL = RSBYTES
ERD;
/% IF DISK DRIVE NOT READY, GIUE FATAL ERRUOR %/

IF (DISKSSTAT AND DRIVESREADY) = ¢
THER CALL ERRCARNRT,DRIVESNOTSREADY);
CALL STARTSIDCIOPE):
TENPL = RSTYPE:
IF (TERP2 := RSRYTE) = ¢
THEN bii;
BUTRUTCOFCH) = TUAL; /% RESTORE INTERRURT 1 »/
RETURN,
EHD;
CALL STARTSIOC.RECALSPR);
END;

FOCCSERRBRSTYPE = TEWRS
CALL EFRCABDRT, DISKIDSERRUR);
EXD DISKID:

FH FEHE RN HE R R OO MR U E BRI IO MO BRI e

PROCEDURE AKSID

ARSTRACT

AESIH ACCONPLISHES THE TRANSFER OF 128 RYTES DF
DATA TOJFROM THE DISKETTE.

FARANETERS
RE MIST KE THE NUMERIC USLUE OF THE FDCC CORHAND
DESIRED. <LITERALS ‘READSCIMAND - AND “URITESCDANAND/
EXIST FIR THE COHNDN DPERATONS.)
DISK INTEGER 0 OR 1. SELECTY UHICH DRIVE.
BLOCK DISKETTE BLICK NUMBER, A TRACK NUMBER (0-74)
IX THE HICH ORDER 8 RITS AMD A SECTOH HUMERER (1-24)
I8 THE LOV ORDER & RITS.
EUFFERSFTR THE ADDRESS OF A 128 RBYTE RUFFER IM Rai.

VALUE RETURNED

HINE

DESCRIPTIDON

A 170 PARANETER BLOCK ("DCE") IS SETUP ACCORDING T THE
RARAMFTFQS PRAUTOED. AND VRYSETR TS £atiFD

T

AESIN:
PROCEDURE { CORMAND, DX SILBLOCK, BUFFERSPIR) PUBLIC:
DECLAKRE (CONRARD,DISK) BYTE:
DECLARE (BLOCK,BUFFERSPTR) ADDRESS,
/8% UALUE OF ‘DISK” MUST BE ¢ - 3 w/
DECLARE DCE STRUCTURE ¢
10CY BYTE,
TDINY BYTE,
HSEC RYTE,
TADR RYTE,
SADR BYIE,
LUF ADDRESS);

DEE_IHCY = 80H:
DEB. ININE = COMMAND;

DCE.NSEC = 15 /u IF THIS VALUE CHANGES 1N THE FUTURE.

/% THE 8271 DRIVER HUST BE CHANGED
DCE. TADR = HIGHCBLOCK);
DCE. SADR = LBU(BLOCK);
DLR_BUF = BUFFLRSPTR;
EALL DISKIB(DISK..DCR):
END ARIID;

FB HBRRR SRR KRR R MR K R B MR H KR KRR KRRY

PROCEDURE ALEADR

AESTRALT

#LOADR LDADS THE ARSOLUTE ISIS FILE INTO MERIRY. ALDADR
CALLS ARSIH. UHICH IN TURM CALLS DISKID.

PARARETERS

HORELX HEADER BLOCK OF ISIS FIIE.

LOADADR ADDRESS UHERE FILE IS LBADED.

DESCRIPTION

ALDADR LBADS ISIS INTO A 128 BYTE RUFFER. THEM ISIS IS
TRANSFERED FROM THE RUFFER 7D NEWDRY.

B

ALOADR:
PROCEDURECHDRELK > ADDRESS
/% LOAD YNTD BEMDRY THE ARS LDAD FILE AT ‘HDRELK #/
DECLARE HDRELK ADDRESS;
DECLARE EUF(178) BYTE. BUFPTR BYTE.

DECLARE POINTERS(64) ADDRESS, FIRPIR BYTE;
LECLARE | NADADR ADDRFSR. TARCET EARED | 0ADARD RVIF:

w/
#

DECLARE LENGTH ADDRESS;

i1R:

/% LOAD 1 BYTE ®/

PROCEDURE, /# LOADS 3 RYTE FROM RUF INTG MEHDRY #/
TAREET = BUF (BUFPTR);
BUFPTR = BUFFIR + L.
LENETH = LENETH - 1;
LIADADR= LDADADR+ 1,

END L1R;

£128k:
/% GET 128 BYTES INTD BUFFER AT BUFADR »#/
FRUCEDURE(RUFADR) ;
DECLARE BUFADR ADDREIS;
IF (PTRPTR := PTRPTR + 1) = &4 THEM
b;
IF PRINTERS(FLINK) = ¢ THEM CALL HDSHDM;
CALL ARSIOCREADSCONMNAND 0, PDINTERSCFLINK), . POINTERS):
PIRPIR = 2;
END;
IF POINTERS(PTRPTR) = O THEM CALL HDSMIN,
CALL ABSID(READSCONMAND, O, POINTERS(PIRITR),.BUFADR) ;
END G128E;

£18:
/8 GET 1 BYTE ®/
PROCEDURE BYTE;
IF {EUFPTR AND 7FH) = O THEM
o
CALL €128B{.BUF);
BFPIR = 0;
EXD;
BUFPTR = RUFFIR + 1;
RETURN BUF {BUFPTR-1);
END G1R;

GeR:
/R BET 2 BYTER #/
FROCEDURE ADDRESS;
RETURN GIR + (256 # 61B);
EXD BZER;

POINTERSCFLINKY = HDRELK: /n INITILIZE CL26E x/
PIRPTR = 63; Ig o oow
EUFPTR =)
STARTSLDADINGSHERTSRECHRD:
DD UHILE TRUL;
LENGTH = 628,
LOADADR= 628,
IF LENGTH = O THEN RETURN LDADADR,
DO UHILE BUFPTR <) 128,
IF LENETH > 0 THEN CALL L1
ELSE € TO STARTSLBADINGSREXTSRECORD:
END:
DO UHILE LENGTH)= 128;
£ALL G128R{LOADADR);
LOADADR = LOADADR + 128;
LERETH = LENETH - 128;
END;
EUFFIR = O
IF LENETH O O THEM
an:

CALL GL28RC.BUF),
DO WHILE LENETH > ¢&;
Ll LiR;
ENb;
ERD;
EMD:
RETURN LIIADADR;
EXD AL DADR;

AB RREEEKERER RRERK RIRKN RERKY KEEEY BIERE ER RS RS R R R K

FECINNING BF NAIN PROGRaM L7

TORBDT:

TENP = INPUT(RESUL TSTYPESD):

TERP = INPUT(RESULTSRYTESO):

ERABLE;

IF SYSGFLC = 0 THEN /= SYSTEM IS AN NDS. UAYT FOR BOBY SUITCH &/
DO UHILE INPUT(RTC) AND BOOT) O &

£8D;
CALL CONFIG; /w DETERMINE DISK CONFICURATION »/
CLOBALSSEVERITY = UARNING;
DERUGSTOGELE = TRUE: /% CONTRBL RETURNS Th HINITOR AFTER AN ERROW #/
IF CONFXGSTARLECO) = 1 THEN HDRSELK = ISISSHDRGELK: /% DD DISK ®/
ELSE HORSELR = SSISISSHDRSMLK: /» 8D DISK w/
STARTSADDR = ALDADRCHDRSELRY, /% LBAD ISIS #/
DO I=¢TB3; /% COPY DISK CONFIGURATION INFURMATION 7O ISIS #/
DKEFTR(I) = CINFICSTABLE(I);
END;
CALL CONSDL(.MERDRY, HENDRY. USERSGSTATUS); »¢ INITIALIZE CONSIRE #/
CALL NUMBUT{UERSIONSLEVEL,14.0. SIENSU,2);
CALL NURDUTCKEDITSLEVEL, 16,0, . SIBNSE.2):
CALL URITE(O. . ISISSTICNON, 1%, USERSSTATUS);
CaLL EXITS

E¥D:

RTTRIE:
Bl

PECLARE VERSIONSLEVEL LITERALLY “O3H‘,
EDITSLEVEL LITERALLY “O0H”:

DECLARE VERSION (x) BYTE DATA (VERSIDMSLEVEL,EDITSLEVEL);

SIRCLUDE (:FZ:CPYRTS.NOT)
SINCLUDE (:F2:CPYRTD.DTA)
JRGNILISTH/

SIRCLUDE (:FZ.COMMON.LIT)
SIHELUDE (CF2:CHAR.LIT)
SINCLUDE (:FZ:ATTRIB.LIT)
SINCLUDE (:FZ:DPEN.LID)
SINCLUDE (:FZ:ERROR.LIT)
SINCLUDE (:F2:READ .PEX)
SIRCLUDE (:F2:VRITE.PEX)
SINELUDE (:F2:ATTRIE.PEX)
SINCLUDE (:F2:EXIT.PEX)
SINCLUDE (:FZ:DPEN.PEX)
SINCLUDE (:FZ:UNPATH.PEX}
SINCLUDE (:FZ: UPATH.PEX)
FINCLUDE ¢:F2:UCASE.PEXD
SIRCLUDE {:F2:SER.PEX)
SIRCLUDE (:F2:UDELIN.PEX)
SINCLUDE (:F2:DREQ.PEX)
SINCLUDE (:F2:DLINIT.PEX)
SINCLUDE (:FZ:DBLANK.FEX)
SIRCLUDE (:FZ: FUPPER.PEX)
SINCLUDE (:FZ:FERRUR.FEX)
SLIST

DECLARE (AFTR.ACTUAL,STATUS) ADDRESS:
DECLARE EUFFERSPTR ADDRESS. CHAR BASED EUFFERSMTR(L) BYIES
DECLARE BUFFER (123) BYTL:
DECLARE DIRSFILC®) BYTE INITIRL (7:FX:ISIS.DIR /)
DECLARE PATHNAMEC1S) BYTE;
DECLARE BUF14(14) RYIE;
DECLARE PN(10) BYTE:
DECLARE DLDGAT RYTE, /% STORES DRICINAL ATTRIRUTES #/
DECLARE DIRSAFTN ADDRESS,
BECLARE PTRGSAVE ADDRESS,
DECLARE FDUND BYTE,
DECLARE FILESNANME ADDRESS:
DECLARE ISND RYTE,
DECLARE DISK RYIE;
DECLARE TEWP BYTES
DECLARE I BYTE,
DEELARE VALUE BYTES
DECLARE QUESCH) BYTE DATA (7, MOIDIFY ATTRIRUTER? °);
BECLARE ATTRIRSPODIFIED(®) RYTE DATA (’/, ATTRIGUTES MODIFIED'.CR.LF);
DECLARE ATSLISTC(x) BYTE DATA(1.2,4.80H);
DECLARE DPTIONCT) STRUCTURES
LEH RYTE.
STR{2) BYTE,
54 LOOLEAN.
SUID RYTE.
uhL BYTE
¥ INITIAL ¢
1,8 S FALSE, 0.0,
2,700 ¢, FAL SE.URTTEPS SUID, 9,
2017, FALSE, URTTEFSSUID, 1,

2. 7107, FALSE, INVISIRLESSUID, 0,
2, 11/, FALSE. IRVISIBLESSVID, 1,
I, 7F0 7, FAL SE, FORMATS SVID, ¢,
2, 'FL7FALSE, FORNATSSUID. 1,
2,786, FALSE, SYSTENSSUID. ¢,

4,81/, FALSE, SYSTENSSVID. 1
3

R I I S I B S N S TR T P R
el Bl M Kl M B B B i B e B H B B BB B

KEGINNIMG DF NAIN FROGRAN.

Bt b B Bl =B Hom BBl = B b o B F o b BBl BB e B B e

CALL READCY, DUFFER,LENGTH(RUFFER), .ACTUAL. . STATUS);
EUFFER(ACTUAL) = CR:

£ALL FORCESUFPERC. BUFFER);

BUFFERSPTR = DEBLANK(RUFFER);

FOUND = NOSSUCHSFILE;

FILESHANE = BUFFERSPIR;

STATUS = UPATH(BUFFERSPTR, .PN);

CALL FILESERROR{STATUS, BUFFERSPTR. TRUE);
SUFFERSPTR = DEBLANK(UDELIMITCRUFFERSPTRY);
DIRSFIL(2) = (DISK:=FN(0)} + ‘0’

PRCO) = 0i

CALL URITECD, .¢7 FILE CURRENT ATTRIRUTES /L CR.LFY, 34, . STATUS);

CALL DPENC.DIRSAFTN, .DIRSFIL,READSNBPE ¢, STATUS):
INE = 0
PIRSSAUE = KUFFERSPTR.
BO UHILE 1940 < 209;
0 1 = ¢ 70 LaST(OPTION:
HPTIONCT) SH = FALSE;
EHD;
1548 = DBEQCDIRSAFTN. (PR, ISND. BUF14);
BLDSAT = BUF16(10);
IF ISH0 <= 200 THEM
all;
FOUND = BK;
FUFFERSPTR = PIRSIAVE;
BBF14(0) = DISK;
CALL UNPATHC.BUFL4. .PATHNANE) ;
EUFFERSPTR = DERLANK(BUFFERSPTR);
STATUS = INUALIDSSYNTAK;
DB UHILE CHAR(O) (> CR;
IF CHARCO) = ‘4" THEW
BUFFERSPTR = DERLANK(RUFFERSPTR+L),
STATUS = UNRECOGSSUITCH
b I = 0 TD LASTCOPTIDN);
IF SEG(RUFFERSPTR, .OPTIONCI) STRLOPTIBN(T) LEN)
AND DELINIT(RUFFERSPTR)-BUFFERSPTR = DPTIONCI).LEN THEN
N
HPTIMNCID SU = TRUE;
STATUS = DK;
IF I >0 THEM
pi:
IF T THEW OPTION(I+1).3¥ = FALSE;
ELSE DPTION(I-1).SU = FALSE;

END :
RN

ERD;
CALL FILESERRORCSTATUS,BUFFERSPTR. TRUE);
FHFFERGPTR = DERLANK(DELIRIT(RUFFERSPTR));
£dh;
CALL FILESERROR(STATUS,RUFFERSPIR, TRUE);
HERORYCO) = 7Y
IF HPTIONCO) .SV THEN /% QUERY »/
i
fALL URITELD, {7 .1, .STATUS);

CALL URITECO. PATHRARE ,DELINIT(. PATHNAKE) -~ PATHHARE, . STATUS)

{ALL URITECO, GUES,LENBTHCQUES), STATUR),

CALL READCL, MEROKY.128. ACTUAL, .STATUR);
ERp:
IF UPPERSCASECHEMORY(0)) = ‘Y’ THEH
bt

B I = 1 70 LAST(OPTION);

IF BPTIONCT) S0 THEW
1N

CALL ATTRIEC. PATHNANE, DPTIONCI) . SULD, DPTIBN(I) VAL, STATUS);

EALL FILESERROR(STATUS. .PATHRARE, TRUE)
HLDSAT = DLDSAT OR ATSLIST(RPTIDN(I). SVID);
IF DPTIONCI) . URL = ¢ THEN
BLDSAT = BLDSAT XOR ATSLIST(OPTIONCI).SUID):
Fds
s
FE IF BLDSAT <O BUF14410) THEN u/
b:
CALL URITECO, </ /).1, .STATUS);
FERP = DELINITC. PATHMANE)-. PATHRANE;
CALL URITE(O, PATHNANE, TENR, STATUS);
M I=178 25-TENP:
fatlh WRITEC, . {7 7). 1, STATUSY,
EXD;
IF CDLRSAT AND URITEPSATTRIRUTE) {3 ¢ THEN
CALL URITECQ, .(7U°). 1, (STATHS);
I (IDSAT AND SYSTENSATTRIBUTE) <> ¢ THEN
LALL WRITECD. . (’37),1, STATUS);
Ir (DLDSAT AND INVISIRLESATTRIRUTE) (O ¢ THER
CALL CRITECQ, . (’I°),1, .8TATUSY;
I¥ (DLDSAT AND FURMATSATTRIBUTE) <> ¢ THEM
£ALL URTTECQ, .(7F’), 1, .STATUE):
fall GRITECO, .(CR.LF).2, STATUR);
EHD;
EHD:
EHD;
CALL FILESERRORCFOUND, FILESNANE, FALSE);
£HD;
fALL EXITS
£HD;

B

RINDEL:
il

DECLARE VERSIONSLEVEL LITERALLY <024/,
EDITSLEVEL LITERALLY “18H7;

DECLARE VERSION CGe) RBYTE DATA (VERSIHNSLEVEL,EDITSLEVEL);

SINCLUDE {:F2:CPYRTS.DTA)
SINCLUDE (:F2:CRYRT3.NOT)
JEGNILIS TR/

STHCLUDE (:F2:COARNON.LIT)
SIMCLUDE (.F2.CHAR.LID)
HINCLUDE (.F2:DPER.LIT)
SINCLUDE (:F2:3E6.LIT)
INCLUDE (:F2:RECTYP.LIT)
SINCLUDE (.FZ:ERROR.LIT)
SINCLUDE (.F2:MENCK.PEX)
SINCLUDE (:F2:READ.FEX)
SINCLUDE C(:F2:URITE.PEX)
SYNCLBDE (:F2:EXIT.PEX)
CHINCLUDE C:F2:OPER.FPEX)
SINCLUDE (:F2:CLUSE.PEX)
SIRCLUDE (:FZ.DELANK.PEX)
SINCLUDE (:F2:DLINIT.PEX)
SINCLUDE (:F2.FERRDR.PEX)
HINCLUDE (:F2:FUPPER.PEX)
CINCLUDE (:F2.3EQ.PEX)
SINCLUDE (:F2:PATH.PEX)
SLIST

DECLARE RUFFERSSIZE ADDRESS:
DECLARE IRUF(3328) BYTE:
AECLARE IPTR ADDRESS;
DECLARE BINSEASE ADDRESY.
GECLARE BINGRED RASED RINSBASE STRUCTURE(
LENGTH ADDEESS,
ADDR ADDRESE);
DECLARE BUFFER(128) BYTES
DECLARE BUFFERSPTR ADDRESS., CHAR BASED BUFFERSPIR BYTES
SECLARE (DUTPUTSETR, INPUTSPTR) ADDRESS;
“ECLARE ACTUAL ADDRESS;
HECLARE STATUS ADDRESS,
PECLARE (START.ENDFILE) RDOLEAN:
aEti ARE (AFTSDUT.AFTSIND ADDRESS,
DECLARE STARTSUALUE ADDRESS:
DECLARE RECHRDSEIR ADDRESS:
HECLARE NEMORYSPTR ADDRESS. HEM BASED NEMORYSPIR EBYTE:

i &
JE COMYEMT RECORD DEFINITION #/
8 B/
GECLARE CONTENT STRUCTURE(

IYPE BYTE,

LENGTH ADDRESS,

SECSID BYTE,

ADDR ADDRESS,

BAT(1) BYTE

AT { NEBORY);

DECLARE JUNK BYTE;

SECLARE RECORDSADDRESS ADDRESS;
DECLARE RLEN ADDRESS,

DECLARE TYPE BYTE,

DECLARE IH ADDRESS;

DECLARE DUT ADDRESS;
DECLARE LENSEIN ADDRESS;
DECLARE ENDSREC RYTE;
DECLARE CHECKSUR BYTE:

/% B/
i HODULE HEADER RECIRD DEFIRITIDN w/
% #

DECLARE NODHDR SYRUCTURE(
TYPECL) BYIE,
LENGTH ADDRESS,
HAMESLER BYTE,
MARE(3L) BYTE,
TRNSID BYTE,
TRNSUN BYIE,

CHKSUM BYTE),;
7K ¥/
FH BODULE END RECORD DEFINITION =/

K !
DECLARE MODEND STRUCTUREX '
RECSTYPE BYTE,
LENETH ADDRESS.
TYPE BYTE,
SEGSID BYTE,
HFFSEY ADDRESS,

CHKSU BYTE):
4 B/
FK HODULE END OF FILE RECORD w/
7 DEFINYTION B
74 &/
DECLARE MODEDF STRUCTURE(

TYPE EYIE,

LENETH ADDRESS,

CHESUE BYTE);
fu #/

BUTSRECDRD:
PROCEDURE (PTRY;
DECLARE PTR ADDRESS. CHAR BASED PTR(1) BYTL;
DECLARE F1 ADDRESS, ADDR BASED PL ADDRESE:
DECLARE <I,STATUS> ADDRESS;
DECLARE CHECKSUNM BYTE;

= PIR + 1,

CHECKSUN = ¢,

DB I =49 T0ADDR + 1;

CHECKSUR = CHECKIUN + CHARCID;

END:

CRAR(ADDR+2) = O-CHECKSUN:

CALL URIYECAFTSOUT, PTR.ADDR+3, STATUS);

CALL FILESERRDR(STATUS, BUTPUTSPTR, TRBE);
END DUTSRECORD:

GEVSNEXTSRIRGRCD:
PROCEDURE
CALL READCAF TEIN, (IRUF,LERETR(IRUF), ACTUAL, STATUD);
CalL FILESERROR(STATUS, INPUTSPIR, TRUE),
If ACTUAL = 0 THEM
bi;
{All FILESERRDRCEARL YSEDF , INFUTSPTR, TRUE),
END;
END GETSHEXTSRINGRCD:
Fg.

iu

ué

¥/

CETSHEXTSRINSRYTE:
PROCEDURE BYTE;
DECLARE TEWP RYTE:
/% k¢
IF IPIR = O THEN
CALL GETSNEXTSRINSRCD,
TENP = IBUF(IPTR);
IF(IPTR:=IPTR + 1) = ACTUAL THEM
IPTR = 4
RETURR TENR;
Fe: L1
END GETSNEXTSBINSBYTE,

START = FALSE,
ENDFILE = FALSE:

P U BB BB Bl BB B B B Ml B B BB e B e e B B Bl
Bl R H e Hm B B B H B e B B~ B B B Y o e

EEGINNING OF NAIN PROGRAN.

Mol bl B K Bl Bt KM oM Bl Bl Mool B o BB Bl B
Bl =M B H Ml =Bl B =l H B Bl e Kool B M Bl =B M- B

/% INITIALIZE NODULE HERDER RECDRD ARER »/
HADHDR . TYPE<S) = WODHDRSTYPE,
PO IN = 1 TO SIZE(HODHDR) - 1;
WODHOR . TYPE(INY = 0.
END;
t’* ;’:f
INPUTSPTR = (.01 ')
CALL READCL, BUFFER,LENGTH(RBUFFER), ACTUAL, .STATUS)
CALL FILESERROR(STATUS, INPUTSPTR, TRUE):
FUFFERCACTUAL) = CR;
CALL FORCESUPPERC . BUFFER);
INPUTSPTR, RUFFERSPTR = DERLANKC RUFFER);
CALL DPENC AFTSIN, INPUTSPTR, READSHIODE. 0. . STATUR) ;
CALL FILESERROR{STATUS, INPUTSPTR, TRUE);
EUFFERSPTR = DERLANK{DELINIT(BUFFERSFIR));
IF SEQRC. (/TR 7),BUFFERSPTR,3) THER
pn;
DUTPUTSPIR, BUFFERSPTR = DEBLANK(BUFFERSPTRHZ);
RUFFERSPTR = DERLANKCDELINIT(BUFFERGPTR));
ERD:
ELSE
M
CALL FILESERRIR(INUALIDSSYNTAK, BUFFERSPTR, TRUE):
EXD;
IF CHAR (> CE THEM
CALL FILESERROR(INUAL IDSSYNTAX, BUFFERSPIR. TRUE):
g : #/
/8 #/
CALL OPENC AFTSOUT, DUTPUTSPTR, URITESHODE, 9, . STATUS);
CALL FILESERROR(STATUS, DUTPUTSPIR, TREE);
STATUS = PATHCINPUTSPTR, .MODHDR. NANESLEN);
HODHDR NARESLER = 45
DI UHILE NODHDR.BANE{MODHDR. NAMESLEN-1) = §;
HODHDR HANESLER = NODHDR.NAMESLEN - 1)
ERD;
NODHDR . LENGTH = HODHDR. NAMESLEN + 4;

HEDHDR . TYFECHODHDR NANESLENCW) = 0; /= TRE T D #/
BANHDR TYRE(ANIDUOK NAMFSIFN4T) = 00 A TRM U ¥ u/

Fi-d
BUTPUT NDDULE HEADER RECORD
B

CALL DUTSRECORDC.RODHDR);

/8 &/
P ASSEMELE AND OUTPUT CONTENT RECORD{(S) w/
it L1

RUFFERGSIZE = NENCK - MEMORY ;
CHNTENT. TYPE = CONTENTSTYPES
COMTENT. SECSTD = ARSSSEG;
IPIR = 905
OUT = 0; /u SET RECINNING UALUE FUR DUTRUY PBIMTER ®/
RECORDSPTIR = &;
ENDSREC = FALSES /% RESEY EMD OF BIN FILE FLAG ®/
DB UHILE NBY ERDSREC:
s UE ARE AT THE RECINNING OF # PIN RECORD »/
KECDRDSPTR = 9, /u RESET RIN RECORD OFFSEY #/
FINGBASE = .IRUF +IPTR: /u UPDATE BASE OF EIN RECORD STRUCTURE =/
DO IN =1 T02; /u DUNHY LEDP 1D ADVANCE POINTER IS HERE »/
/u T INSURE THAT A NEU RECDORD IS READ INYD %/
/% IBUF IF & RIN RECDRD ENDS DN A TRACK ¥/
/% BOUNDARY 74
JURK = GETSNEXTSRINSRYTE:
END;
IF (RLER: =BINSRCD LENETH) = O THEM
ENDSREC = TRUE;
RECORDSADDRESS = BINRCD. ADDR,
CONTENT .ADDR = RECDRDSADDRESS + RECDRDSPTR;

P IN=1T0 2;
JUBK = GETSNEXTSEINSRYTE:
END:
/% ¥/
/% #/

DI} SHILE RLEN <> ¢
/% PROCESS RINARY RECORDS UNTIL w/
/% & RECORD UETH A LENCTH FIELD »/

/% BF ZERD IS FOUND ®/
/u %/
fE B
/% TRANSFER DATA TO THE OUTPUT BUFFER =/
fE #/

DB VHILE RLEN <> 0 AND DUT (= BUFFERSSIZE - 25
CHNTENT .DATCIUT) = GETSNEXTSRINGEYTE;

BUY = DUT + 1

RECORDSPTR = RECORDSPIR + 1.

RLEN = RLEN - L;

ERD:

i K/
/% UE HAVE REACHED THE END OF THE w/
/% INPUT OR OUTPUT BUFFER #/
P i/

IF DUT)= BU%FERGSIZE ~ 2 THEH

DI; /% IT UAS THE END OF THE DUTPUT BUFFER =/
CONTENT .LENGTH = DUT + W;
Y = 9,
£ALL DUTSRECHRD(. HENORY);
CONTENY .ADDR = RECDRDSADDRESS + RECDRDSFTR; /7 UPDATE ®/
/¥ RBASE ADDRESS FOR NEXT RECDRD w/
END;
v B/

IF RLER = O THEW
DB: /% END OF INPUT DATA IN THIT RUFFER #/
I DUT > 0 AND RLEX = 0 THEM
bO; /¢ FLUSH A PARTIAL RECORD w/
CONTENT LENCTH = BUT + &;
BT = &
CALL DUTSRECORD C.NEWDRY);
EXD;
EXD;
ERD; /% END OF READ RINARY RECDRD LODP w/
ERD,

%
INITIRLIZE, ASSEMELE. AND
DUTPUT NODULE END RECORD
1/

HODERD . RECSTYPE = NODEMDSTYRE:
RODEND . LERGTH = §;
HBDEND . TYPE = 1
NODEND. SECSTD = ¢
MEDEMD.DFFSET = RECORDSADDRESS; /# SET TRANSFER ADDRESS i/
IF START THEM
HODERD. OFFSET = STARTSVALUE; /¢ USER SPECIFIED START ADDRESS &/
CALL OUTSRECURDC.HODEND);

7% #
/E INITIALIZE, ASSERBLE, AMD =/
K OUTRIT THE ¥/
It HODULE END OF FILE RECORD w/
I B

NBPEDF . TYPE = EDFSTYPES
BDEDF .LENETH = 1,
CALL DUTSRECHRDC HDDEDF),

CALL CLOSECAFTSIN, _STATUS):

CALL FILESERRUOR(STATUS, INPUTSPIR, TRUEY;
CALL CLOSECAF TSIUT, . STATUS);

CALL FILESERRUR{STATUS. DUTPUTSFTR, TRUE),
CALL EXIT,

EXD;

£or

&I
ph;

DECLARE VERSIDNGLEVEL LITERALLY 7024/,
EDITSLEVEL LITERALLY “10H”;

DECLARE VERSION {®) BYTE DATA (VERSIDMSLEVEL,EDITSLEVEL):

SINCLUDE C:F2.CPYRTI.MED)
SINCLBDE ¢:F2:CPYRTS.DTA)
ARENDLISTY/

SINCLUDE (:F2.CBANBN.LIT)
SINCLUDE (:FZ:CHAR.LIT)
SINELUDE (:F2Z:OPEN.LIT)
SINCLUDE (:FZ:READ.PEX)
SINCLUDE (:F2:URITE.PEX)
SINCLUDE (:F2:LBAD.PEX)
SINCLUDE (F2:RESCAN.PEX)
SINCLUDE (:F2:EXIT.PLX)
SINCLUDE (:F2:DLINIT.PEX)
SINCLUDE (.FZ:DELARK.PEX)
SINCLUDE (:F2:FUPPER.PEX)
SINCLUDE (:F2:NENCK.PEX)
SIMCLUDE (:F2:SEQ.PEX)
SIRCLUDE (:FZ.FERRDR.PEX)
SIRCLUDE (:FZ MOSHON.PEX)
S 18T

DECLARE BUFFER(128) RYTE;

DECLARE DERUC BDOLEAN,

DECLARE BUFFERSPTR ADDRESY. CHAR BASED BUFFEHSPTR RYTE:
DECLARE (PATHNARESPTR,ACTUAL . STATUS.ENTRY,RETSU) ADDRESS;

B o B o B o I B SR T I O T)
B I I T R R T O o S S o

BECINNIKG DF PROCRAR.

Holf =B B oMo Bo B el =B e B Ko b o o BB B Bl M B B B
Bl H Bl BB M BB =Bl Mol b Bl BBl =Rl B BB B B

STACKPIR = HENCKS
DUTPUTCOFCH) = OFCH, /% ENARLE CONSOLE INTERRUPTS ¢ AND 1 W/
ENABLE;
BUTRUT(OFDR) = 20H; /u SEND END OF INTERRURY CURNMARD w/
BUFFERSPTR = .(7:CI: 7))
CALL RESCANCY, .STATUS):
IF STATUS = ¢ THEM
i
CALL READCY, .BUFFER,LENCTH(BUFFER). ACTUAL, . STATUS);
CALL FILESERRORCSTATUS, BUFFERSPTR, TRUE);
EXD;
bl FOREVER;
£aLL URITECO. .{’~"):1, STATUS);
CALL READ(I, .BUFFER,LENGTHCRUFFER), .ACTUAL. . STATUS);
CALL FILESERROR(STATUS, BUFFERSPTR, TRUE):
BUFFER(ACTUAL) = CR;
GALL FORCESUPPERC.RUFFERY:
BUFFERSPTR = DERLAMK(.BUFFER):
IF CHAR = *; THEN CHAR = (R;
IF CHAR (> CR THEM
bo;
/% NOU CHECK FOR DERUC MDDE (PATHNAME PRECEDED EY ‘DERUG’ »/

DERUE = FALSE; /% ASSUNE HORNMAL CASE. NOT DERUGEING &/
IF SERY. < 'DEBUE”),BUFFERSPTR,)
AND (DELIMIT(RUFFERSPTR)=BUFF ERSPTR+) THEX
DB
BUFFERSPTR = DERLARK(DELINIT(BUFFERSPTRD),

BERUE = TRUE:
IF CHAR = CR THEN CALL MDNITOR;
£#h;

PATHRARESPTR = BUFFERSPTR:
FUFFERSPTR = DELINIT(DEBLANK{BUFFERSPIR)):
CALL RESCAN(1, STATUS);
CALL READ(1, BUFFER,BUFFERGPTR- RUFFER, .ACTUAL, STATUS),
EALL FORCESUPPER(PATHRANESPIR):
IF DERUE THEM RETSU = 2, ELSE RETSU = 15
CALL LDAD(PATHNARESPTR, O, RETSY, .ENTRY, STATUS);
CALL FILESERROR(STATUS, PATHNANESPTR, FALSE),
Cabl READ(Y, BUFFER.LENCTH(BUFFER), ACTUAL, . STATUS);
END;
E¥D;
END;

EBF

Copy:
Bil;

DECLARE VERSIONGLEVEL LITERALLY "03H’,
EDITSLEVEL LITERALLY “01H‘;

DECLARE UERSION O¢) BYTE DATA (VERSIBNSLEVEL.EDITSLEVEL);

P}

THIS VERSION DF COPY HAS REEM RMODIFIED 70 DB BULK COPIES.
SINGLE DRIVE COPIES, COPY ATYRIRUTES, AND OTHER ASSORTED
UONDERFUL THINES.

#/

SINCLUDE (:F2:CPYRTS.DTA)
SINCLUDE (:F2:CPYRTS.NOT)
FESRILTS TR/
SINCLUDE ¢ F2:SEEK.LIT)
- SINCLUDE (:F2:COMRON.LIT)
SINCLUDE (:F2:ATTRIB.LIT)
SINCLUDE (:FZ:GETLAB.PEX)
SINCLUDE ¢ F2:CHKLAR.PEX)
STNCLUDE (:F2:MASCII.PEX)
SINCLUDE (:F2:DNER.PEX)
STNCLUDE ¢:F2:GETDSK.FEX)
SINCLUDE (:F2:UPATH.PEX)
SINCLUDE (:F2:DPEN.LID)
SINCLUDE (:F2:ERRBR.LIT)
SINCLUDE (:F2:UNPATH.PEX)
SINCLUDE (:F2:SERRDR.FEX)
SINCLUDE (:F2:DEVICE.LIT)
STHCLUDE (:F2:SEEK PEX)
SINCLUDE ¢ F2:MENCK.PEX)
SINCLUDE (:F2:DPEN.PEX)
SINCLUDE (:FZ:CHAR.LID
SINCLUDE (:F2:ATTRIR.PEX)
SINCLUDE (:F2:READ.PEX)
SINCLYDE (:FZ:WRIVE.PEX)
STNCLUDE (:F2:CLDSE.PEX)

(:F2:RENANE.PEX)

C:F2:EXIT.PEX)

(:F2 :DELANK . PEX)
SINCLUDE ¢:F2:UDELIN.PEX)
SINCLUDE (:F2:FUPPER.PEX)
SINCLUDE (:F2:FERROR.PEX)
SINCLUDE ¢:F2:SER.PEX)
SINCLUDE {:F2:UCASE.PEX)

SINCLUDE
SINCLUDE
SINCLUDE

SLIST

DECLARE TARGETSHODE RYTE: /# UPDATE DR URITE w»/

DECLARE PH(10) BYTE; /% HOLDS INTERNAL FILENABE #/

DECLARE (RUFTERGSIZE,SIZE) ADDRESS: /3w SIZE OF RUFFER USED, TUTAL SIZE »/

DECLARE EUFFER(128) BYTE: /% INPUT BUFFER FOR REaD u/

DECLARE SUITCHSPTR ADDRESS.CHAR EBASED SUITCHSPTR BYTE, /u PTR 7O SUITCHES BN INRUT =/
DECLARE PTR ADDRESS AT (. SVITCHSPIR): /% PTR USED IN (DX w/

DECLARE BUFFERSPTR ADDRESS: /7w PTR TO IHPUT RUFFER ®/

DECLARE TOSPTR ADDRESS, KEY KASED TOSPTR RYTE; /x UILL POINT TO KEYUDED ‘70° IN INPUT ®/
DECLARE (ACTUAL.STATUS) ADDRESS; /% USED IM SYSTEW CALLS w/

DECLARE I BYTE: /% INDEX VARIARLE w/

DECLARE FILESHAMEC(LS) BYTE: /# HOLDS EXTERMAL FILENAHE ®/
DECLARE ISND BYTE; /% INDEX OF DIRECTORY »/
DECLARE (AFTN,ECHOSAFTN,DIRSAFTN, DUTSAFTN) ADDRESS: /w FILE AFTH. DIRECTORY AFTH x/
DECLARE NEXT ADDRESS: /# PTR TO BUFFER UHICH HOLDS FILES 7O BE COPRIED w/
DECLARE FILE BASED NEXT STRUCTURE /w HEADER RLDCK FOR FILES w/
(DLDFILEC10) RYTE, /u FILE TD BE CBRIED &/
ATTRIK BYTE, /% ATTRIRUTES OF THE FILE w/
MEUFILEC10) BYTE, /% DESTINATIDN RAME BF FILE ®/
NBDE BYTE, /% SRITE - UPDATE »/
LENGTH ADDRESS, /u LENGTH OF FILE &/
ATEDF BYTE, /% FALSE-ADD AT BEGINING, TRUE AT EOF &/
DOKE BYTE, /% TRUE-IF FILE IS DOME, FALSE-IF BORE TD FOLLOV #/
BEGIHN EYTE),
DECLARE QUERY BODLEAN, /x QUERY SWIVCH »/
FIRST BOULEAN, /# USED RY LAREL CHEEKING w/
SYSTEN BODLEAN. /u COPY SYSTEM FILES? #/
NOMSYSTEM BOBLEAN. /% COPY NONSYSTEW FILES? #/
COPYSAT ROOLEAN. /u COPY ATTRIBUTES? w/
HiSCHOD BOOLEAN, / INTERNAL LODP CONDITIBNAL w/
THESONE BODLEAN, A% USED RY QUERY IR UILDSCARD w/
SANE BOBLEAN, /% USED IN VILDCARD FUOR AUTONATIC SINGLTSDRIVE w/
PRINT BOOLEAN, /&% PRINT THE BUFFER? ®/
AMEIG BONLEAN, /% I3 VILDCARD NAME AMBIGUBUS? »/
BRIEF BODLEAN, /¢ AUTOMATICALLY DELETE FILE IF EXISTS #/
CUNCAT EDOLEAN; /% CONCATENATION BR COPY? w/
DECLARE SIHCLESDRIUE EROLEAN PURLIC; /% SINDLESDRIVE? w/
DECLARE TEWP{128) BYTE; /% TEMPURARY BUFFER =/
DECLARE ATYTRIBSLIST(x) BYTE DATAC1.2.4); /% USED TD SET ATTRIRUTES ®/
BECLARE PASTSBYTEGLENCTH ADDRESS, /x USED TIF SEEK TO SPOT IN FILE w/
PASTSBLKSLENGTH ADDRESS: /m USED TD SEEK YD BLDCK IN FILE #/
DECLARE FILESCOUNT EYTE; /% RUMEER DF FILES IN BUFFER %/
DECLARE SDURCEC10) BYTE; /u INTERNAL SOURCE MAME %/
DECLARE DUTPHT(10) BYTE; /x INTERNAL DUTRUT MARE w»/
DECLARE DIRSFILECH) RYTE INITIAL (/:FX:ISIS.DIR/.0);
DECLARE INSLABEL(®) BYTE; /% LAREL OF SBURCE DISKETTE &/
DECLARE DUTSLABEL(T) BYTE; /% LABEL OF BUTPUT BISKETTE »/
DECLARE ECHOSFILECH) RYTE INITIAL (’:X0:°);
DECLARE (BYTESTENP,BLKSTENP) ADDRESS;
DECLARE URITESFROTECTSFOUND RODLEAN, /% IF AM DUTPUT FILE IS URITE PROTECTED %/

LODKER:
PROCEDURE (FILE SPTR. NOSRETURN) EDBBLEAN:

/2 FILESPTR - PIR TO & EXTERNAL FILE NARE
NOSRETURM ~ BODLEAN. TO FIND DUT GHETHER TD PRINT DELETE MESSAGE
RETURNS TRUE - IF FILE DOES WOT EXIST,
BR IT CAN BE DELETED (NBSRETURM = TRUE)
FALSE ~ OTHERVISE 8}

DECLARE FILESPTR ADDRESS,
DECLARE NBSRETURN BODLEAM:

CALL RERANE (FILESPTR.FILESPTR, STATUS):
IF STATUT <> NOSSUCHSFILE THEM
iH

JHOSEPCTAL FRYIT ROTNT FOO URYTEE PERYECTED FTIEC 4/
|

IF STATUS = URITESPROTECT THEM
bi;
IF CONCAT THEN RETURH FALSE;
ELSE RETURN TRUE;
END;

IF STATUS <> MULTIDEFIRED THER
CALL SSFILESERROR(STATUS.FILESFTR);

IF NOSRETURN THER RETURN FALSE;
CALL URITE(O,FILESPTR, UDELINIT(FILESPTR) - FILESPIR, STATUS),
£ALL URITECD, .{” FILE ALREADY EXISTS’,CR,.LF./DELETE? 3,30, STATUS);:
£ALL READCY, .TEMP,128, ACTUAL, . STATUS),
IF UPPERCASECTENR(0)) (> /Y’ THEN BETURN FALSE;
END:
RETURN TRUE.
END;
FILESPRINT:
PROCEDURE
A% PRINTS: (SBURCE? TO {BUTRUT> w»/
CALL UNPATH(.FILE.DLDFILE, TENP);
CALL SRITECO, TEMP,UDELINMIT(TEMP)- TEWF, STATUS);
CALL URITECO, (7 7D “).h, STATUS),
CALL UNPATHC.FILE NEVFILE, TENP);
CALL URITE(O. TEMP,UDELINITC(.TEHP)- TEWR, STATUS);

END;

HRRANEE :
PROCEDURE:

/% EITHER CETS THE LAREL OF THE DISKETTE (FIRST = TRUE).
IR IF IT ALREADY HAS IT, IT CHECKS IT AGAINST THE CURRENY
LABEL TO SEE IF THEY MATCH w/

IF FIRST THEW
UiH

£ALL GETSDIZK(2),
CALL GETSLABEL(DUTSLABEL,DUTAUT(0));
FIRST = FALSE;
END;
ELSE
CALL CHECKSLARELL . DUTSLABEL.BUTRUT(N.2);

ERD:

HRTTESRUETTR .

PROCEDURE

/% AFTER THE BUFFER HAS BEEN FILLED RY SUCCESSIVE CALLS TD
READSEUFFER, THIS ROUTINE TRAMSFERS ALL THE FILES THAT IT
CAN T0 THE APPROPRIATE DUTPUT DEVICE. X7 CHECKS 7D SEE IF
THE DUTPUT FILE ALREADY EXISTE. AND UHETHER IT
SHOULD BE DELETED (DONE AUTOMATICALLY UITH U OR B SUITCHED) #/

DECLARE COPY RODLEMN: /¢ PRINT THIS FILE? ®/

REXT = _HEWHRY;

DO UHILE FILESCOUNT ¢} ¢;
€apy = TRUE;

CALL UNPATHC FILE. NEUFILE, FILESNANE);

/% CHECK IF DUTPUT FILE EXISTS, AND DETERWINE UHETHER 70 DUERVRITE ®/
IF WOV BRIEF AND FILE.MODE (> UPDATESHIDE
AND FILE NEUFILECO) (= FSDEY THER
CORY = LOOKUP(FILESHANE,FALSE);

IF CBPY THEM
IF (NDY FILE.ATEDF) OR SINCLESDRIVE THEM
bt
CALL DPENC. DUTSAFTN, FILESNARE, FILE. MODE. O, . STATUS),
IF STATUS (> URITESPROTECT R CONCAT THEN
CALL SSFILESERROR(STATUS, FILESHARE),
ELSE DU;
CALL FILESERRUR (STATUR, FILESHAME.FALSE);
COPY = FALSE;
URTTESPROTECTSFBUND = TRUES
END:
END;

IF COPY THEM
pi:

IF FILE.ATEDF AND (FILE NEUFILECO) (= FUDEY) AND (SINGLESDRIVE) THEM
jiF
CALL SEEK(DUTSAF TH, SEEKSARS, BLKSTERP, BYTESTERPR, STATUS);
CALL SSFILESERROR(STATUS, FILESHANE);
END;
CALL URITE(DUTSAFTN, FILE BEGIN.FILE LENCTH, STATUS);
CALL SSFILESERRDR(STATUS, FILESKARE):
IF (FILE.DONE AND NODT CONCAT) R
(CBHCAT AND PTR)= TOSPTR AND (FILESCOUNT = 1)) DR
SINCLESDRIVE THEN
ba:
IF CONCAT THEN
CALL SEEKCDUTSAFTN, SEEKSHETURN, BLKSTENP, RYTESTERR. . STATUS);
CALL CLOSECDUTSAFTH. . STATUS);
CALL SSFILESERROR(STATUS, (FILEGNANE);
EXD;

IF FILE.DONE THEM
i H
IF COPYSAT AND (FILE. NEUFILE(Y) (= FSDEV) THER /% CIIPY ATTRIBWIES w/
DB I = 0 TB LAST(ATTRIRSLIST);
IF (FILE.ATTRIE AND ATTRIBSLIST(I)) (> ¢ THEW

D
ralt ATTRTRS CTIESHAME T TEHE . STATHTY:
|

CALL SSFILESERROR(STRATUS, FILESNARE);
END;
EHD;

IF CONCAT THER
CALL GRITECO, .(“APPENDED “).9, .STATUR);
ELSE
CALL URITECQ, . (‘CORTED 2,7, STATUS);
LAl FILESPRINT;
CALL WRITE(O, (LR.LF).2, STATUS);

END;

ENR;
ELSE /u DO NOT COPY THIS FILE »/
bl
IF CDRCAT THEM
FIR = TOSP1R;
ELSE

7# IF FILE I3 SPLIT, NMAKE SURE NDT TO PRINT SECDND PART w/
IF NDT FILE.DHNE THEM
L H
IGNT = ISHD + 1;
FILESCOUNT, PASTSEYTESLENCTH, PASTSPLKSLENETH = §;
RETURN;
E8D;
END;

HEXT = FILE.BEGIN + FILE LENETH;
FILESCDUNY = FILESCBUNT - 1.
END;

END,

READSBUF FER:
PROCEDURE EOBLEAN:

/% READS # FILE INTD THE BUFFER AND FILLS UP THE HEADER BLOCK w/

DECLARE STARTSADD ADDRESS;

/% ASSURES THAT THE HEADER HAS REEM FILLED UITH OLD AND REU FILE BAMES w/

FILESCOUNT=FILESCOUNT + 1,
BUFFERGSIZE = BUFFERSSIZE - 28; /w LEMGTH OF FILE STRUCTURE »/
CALL UNPATHC FILE .TRDFILE, FILESHARE);
¥ FILE.MDFILECO) = TIDEY OR FILE BLDFILECO) = VIDEY THEM
i H
IF FILE.DLDFILECO) = YIDEV THEM ECHOSFILECL) = Y/
ELSE ECHOSFILECY) = /77
CALL DOPERC ECHOSAFTN, ECHOSFILEURITESHEDE.O. STATUS);
CALL OPEN(AFTN, FILESHANE, READSMIDE, ECHOSAF TN, . STATUS):
END;
ELSE
CALL OPERC.AFTN, FILESHANE READSHODE. D, . STATUSY;
CatL SSFILESERRDR(STATUS, FILESNANE);
FILE LENETH = ¢;
ACTUARL = 15
TARTEADG = FUF RFCTM:

/% IF PART OF THE FILE HAS BEEM READ ALREADY. THEM SEEX TO YHAT POINT »/
IF PASTSBYTESLENGTH (> O IR PASTSBLKSLENETH (> ¢ THER
bl
IF FILE NEUFILE(Q) <= FGDEV THER FILE.RODE = UPDATESHODE
FILE ATEDF = TRUE:
I FILE MDFILE(O) (= FODEV THEN
N
CALL SEEK (AFTN,SEEKSARS, PASTSHLESLENETH, PASTSBYTESLENGTH, (STATUS);
CAtY SSFILESERROR (STATUS, FILEGNANE);
ERD;
END;

#% PERFORM THE READ, STHP UHEW ACTUHAL IS 0 w/

DB UHILE CRCTUAL <> 0) AND (LUFFERSSIZE &5 02
CALL READ(AFTN, STARTSADD , BUFFERSSIZE, ACTUAL . STATUS);
CALL SSFILESERROR{STATUS, .FILESNARE),
BUFFERSSIZE=RUFFERSSIZE - ACTUAL:
FILE .LEXGTH = ACTUAL + FILE LENGTH,
STARTSADD = STARTSADD + ACTUAL,
ERD;

IF FILE DLPFILECO) = VIDEY OR FILE.DLDFILE(O) = TIDEV THER
CALL CLOSECECHOSAFTH. .STATUS);
CALL CLOSECAFTN, . STATUSY,
CALL SSFILESERROR(STATUS, FILESHANE);
IF (PASTSEYTESLENGTH (> O DR PASTSELKSLENGTH (> 0) AND (HOT CONCAT) THEW
i
EYTESTENP = PASTSRYTESLENETH,
RLKSTENP = PASTSBLKSLENGTH;
END:

7% THIS NEANS THE COMPLETE FILE UDULD WOY FIT IN THE BUFFER w/
IF BUFFERSSIZE = ¢ THEW
i
PASTSBLKSLENGTH = PASTSRLKSLENCTH + SHRC(PASTSRYTESLENCTH.7):
PASTSEYTESLENGTH = (PASTSEYTESLENGTH HBD 128) + FILE.LENGTH;
FILE .DIME = FALSES
RETURR TRUE;
E¥p;

F% THE FILE FITS IN THE BUFFER &/
PASTSBLKSLENGTH, PASTSRYTESLENGTH = ¢;
FILE.DONE = TRUE;

KEXT = FILE.BEGIN + FILE.LENCTH:
RETURN FALSE,

END;

UILDSCARD:
PHBCEDURE
DECLARE DISK BYTE;
DECLARE (FINISHED,NOSFILE) BOOLEAN;

/7 THIS FROCEDURE IS CALLED UHEM THE USER XS NOT CDING 7D
CONCATENATE ANY FILES TBGETHER. IT UILL COPY DNE, OR HaNY
FILES FROM & DEVICE, AND SEE THAT THEY ARE URITTEM TD THE
PROPER DUTPUT DEVICE. IF THE INMPUT DEVICE IS A DISK, THEM

VILDSCARD DPENS THE DIRECTDRY AND SEARCHES FOR ALL DCCURENCES
AF THE PATHNANF TN THF DYRFCTIRIY THF 1OORS. PHFCE FOR THF

FOLLDVING CONDITIONS. 1) IF UE HAVE REACHED THE END OF THE
DIRECTORY, IN UHICH CASE VE ARE FINISHED. 2) IF THE RUFFER

IS FILLED, IN UHICH CASE, UE UANT TO URITE THE RUFFER DUT AND

RETURN TO READ SUNEMDRE. 3> IF THE BUFFER I3 FILLED, ARD UE HAUE
HOT READ ALL OF A FILE, IN THIS CASE UE UANT TD READ BUT THE RUFFER
AND THEN FINISH READING THE FILE AHD APPEND 17 7O THE ALREADY

COPIED PORTION DF THE FILE. TRIS PROCEDURE ALSD CHECKS 7O SEL

IF THE DUTPUT FILE IS EQUAL TO THE SOURCE FILE, IN UHICH CASE

IT AUTOMATICALLY GDES INTD SIMGLE DRIVE MODE. 74

IR0 = &
FINISHED, ROSFILE, SAHE = TRUE;

CALL FILESERRORCUPATHC GUFFER, (SOURCE), . BUFFER, TRUE);
STATUS = UPATH(BUFFERSPTR. .DUTRUT);
IF STATUS <) MULLSFILENAME THEN

CALL FILESERRIR(STATUS, BUFFERSFTR, TRUEDS

IF BUTPUT(L) = O THEN /% FILENARE = NULL THEM SET 7B w.u w/
Mmi=117%
BUTRUTLI) = %/
EMD;

/% TEST NASKS FOR SINGLESDRIVE.AMRIG, AND ERROR #/
BI=07T0%
IF SIURCE(I) = “?7 OR SHURCE(I) = "/ THEW ANEIEC = TRUE:
ELSE IF SBURCESI) <) DUTRUT(I) AND BUTRUT(I) (> ‘%
AND DUTPUTCI) <3 ‘277 THEW SAHE = FALSE;
IF (SOURCECT) = ‘77 AND (OOTRUTCI) 3 /77 AND BUTRUICLY O ‘#')) IR
(SOBRCECTY = “u/ AND DUTRUT(I) (> “&*) BR
{SOURCECT) = ¢ AND DUTRUTLI) = 77/) THEW
b
/% FILE HASK ERROR ®/
CALL URITECD, (C’FILE BASK ERROR‘, CR.LF).17, (STATUS);
CALL EXIT;
END;
ERD;

it

DIRSFILESZ) = (DISK := SDURCE(O)) + “9/;
SOURCE(Q} = ¢,

SINGLESDRIVE = SINGLESDRIVE OR SAME:
IF SINCLESDRIVE THEN
p;
CALL EETSDISK(1),
CALL BETSLAREL(.INSLAREL,DISK):
ERD

bO BHILE ISHD <) 201;

IF DISK (= F3DEV AND (ISND = 0 DR SIHCLESDRIVE) THEM
1 H
Catl OPENC.DIRSAFTN, .DIRSFILE.READSHODE. O, STATUS):
CALL SSFILESERROR(STATUS, DIRSFILED;
END;

HOSCBOD = TRUL;

DR UHILE NOsehoD;

TE BHFFFRSRTZE 3 100 THEM

b

IF DISK (= FSDEV THER
IGND = DREQ(DIRSAF TN, . SOURCE.ISMA, FILE):
ELSE DB;
CALL MOVESASCITC.FILE.BLDFILE(1), . €0,9.90,0:0.0:0.9.0).8);
FILE ATTRIE = 0.
END;
IF I8HE = 201 THEN
b
KOsenhp = FALSE;
IF FILESCOURT > 0 THEN PRINT = TRUE:
ERD;
YiSE
bl;

IF (NOT AMEIG) OR
(C(FORNATSATTRIBUTE AND FILE.ATTRIB)=0) AND
((NONSYSTEN 8D
((SYSTENGATTRIKUTE AND FILE.ATTRIE)=0)) DR
(SYSTEN AND
C(SYSTENGATTRIRUTE AND FILE ATTRIBICOMD)) THER
oh;

FILE DLDFILE()=DISK;
FILE.ATEDF = FaLSE;
FILE _RODE = TARGETSHODE:
IF (FILE.MEUFILE(D) := DUTPUT(0)) (= FIDEV THEN
pBI=1T84;
IF (FILE REUFILECI): =DUTRUTCI)) = /77 BR
MUTRUTCT) = ‘%’ THER
FILE MEWILEC(D) = FILE.ILDFILECI);
END;
ELSE CALL HOVESASCIIC FILE. NEUFILECL), €9:0:9:9,0,9.0.¢,9),%):

THESENE = TRUE:
KBSFILE = FALSE;
IF QUERY ARD FINIZHED THEN /u PERFORW QUERY &/
ba;
CALL URITECO, .(“COPY 72,35, STATUS),
CALL FILESPRINT:
CALL URITECD, (‘Y 7,2, .STATUS):
CALL READCL, . TEMP, 128, ACTUAL, . STATUSY,
IF UPPERCASECTENP(O)) <2 ¥’ THEN THESONE = FALSE.
EXD;

FINISHED = TRUE;
IF THESDME TREN
IF (PRINT := READSEUFFER) THEN

bo:
IND = IsNB -1
FINISHED = PALSES
NOSEROD = FALSES
ENp:

ERD;
Edp;

LND;

ELSE DI; /% BUFFERSSIZE ¢ 100, SO DUNP BUFFER w/
NOS6ODD = FALSES
PRINT = TRUE;
FHDC

I¥ FINISHED AND DISK > FSDEV THEN I8N = 201
ERD; /O WHILE ¥/

IF DISK {= FIGDEV AND (ISND = 0 DR SINCLESDRIVE) THEM
it
£ail CLOSECDIRSAFTH, . STATUS):
CALL SSFILESERROR(STATUS, DIRSFILE),
ENp;

IF PRINT THER
pE:

/% GET DISK #/
IF SINGLESDRIVE THER CALL ARRANGE;

CALL URITESEUFFER;
PRINT = FALSE;

/% BET DISK w/
TF SINGLESDRIVE AND (ISND <> 201) THEM CALL CHECKSLARELC INSLAREL.DISK.1);

BUFFERSSIZE = SIZE;
NEXT = .HENORY;

END:

ERD: /% GHILE ®/
IF NDSFILE THEN CALL SSFILESERROR(MDSSUCHSFILE, BUFFER):
IF SINCLESDRIVE THEM CALL GETSDISK(0):

END;

i
PROCEDURE
DECLARE (MONSEXIST, CHECK) KODLEAN:

/% THIS PROCEDURE PERFORNS THE DPERATIDN OF CONCATEMATION.
IF THERE I8 # 7,7 IN THE COMMAND LIRE, YHEN THIS PROCEDUREIS
IHVOKED. IT FIRST CHECKS TO SEE IF THE SDURCE FILE IS EQUAL
TO THE OUTPUT FILE, AND THEN T8 SEE IF THERE ARE ANY UILDCARD
CHARACTERS IN THE LINE. THEM IT GOES THROUGH THE INPUT RUFFER
FILE RY FILE AND LDADS THE BUFFER TILL THE BUFFER IS FILLED, OR
THERE ARE RO NORE FILES TO CONCATENATE. #/

CHECK = FALSE:
PTR = DEBLANKS.BUFFER);
£ALL FILESERRDR (UPATH(RUFFERSPTR, BYTPUT), BUFFERSPTR, TRUEDS

DO UHILE PTR ¢ TOSPTRS

£4LL FILESERRORCUPATH(RTR, . SBURCE).PTR. TRUE):

IF SEQ{. SDURCE, .BUTPUT,10) THEW
R

/% SOURCE FILE EQUALS DESTIMATINN FILE w/
€ALL URITE(O, (“SDURCE FILE EQUALS BUTPUT FILE ERRUR/.CR.LF), 38, STATUS);
CAtL EXIT;
END;
PR = DEBLANK(DEELANKCUDELIRIT(RIRI)4 1]

END;
SUITCHSPTR = .BUFFER.
DI UHILE CHAR <> CRi

IF CHAR = 77/ OR CHAR = ‘B’ THEN
bh;
/% WILDCARD DELINITER IR CONCATEMATE w/
CALL URITECY,. ('VILDCARD DELIMITERS DURING CONCATENATE *,CR,LF).ud, STATUS);
CALL EXIT,
£8D;

SUITCHSPTR = SULTCHSPIR ¢ 15
ERD;
PTR = DERLANK(.BUFFER);
FILE ATEBF = FALSE;
COPYSAT = FALSE:
IF SINCLESDRIVE THEN CALL CETSDISK(1);
D UWHILE FTR ¢ TOSPTR;

NONSEXIST = FALSES
CALL SSFILESERRORCUPATH(PTR, FILE.HLDFILE) .PTR),
IF FILE DLDFILECO) { FSDEV THER
IF (NONGEXIST := LOOKUPCPTR.TRUE)) AMD FILEGCOUNT) O THENM
FRINI = TRUE;

IF NDT NOMSEXIST THEM
bR;

CALL MBVESASCIIC.FILE NEVFILE, OUTPUT.19);
FILE HODE = TARGETSHODE;

IF HOT (PRINT := READSBUFFER) THER
N
PIR = DERLANK(DEBLANK (UDELIRITC(PTRI)+1);
IF PR)= TDSPTR THEN PRINT = TRUE:
END;
ELSE
o
PRINT = TRUE;
CHECK = TREE;
CALL GETSLARELC.INSLAREL,FILE.BLDFILECO));
3, F

IF DUTPUTCO) (= FODEV THER TARGETSHIDE = UPDATESHIDE:
END;

IF PRIMT THEN
BN

IF SIHCLESDRIVE THEN CALL ARRAMGE:
CALL VRITESEUFFER;
PRINT = FALSE;

IF SINGLESDRIVE AND (PTR (THSPTR)
AND (NOT NONSEXIST) THEM

bil;

IF CHECK THEW
i
CALL CHECKSLABEL(INSLAKEL.FILE MOFILECO),1);
CHECK = FALSE;
END:
ELSE CALL GETSDISK<1);

ERD:

BUFFERSSIZE = SIZE;
REXT = .BENDRY;

END;
FILE ATEDF = TRUE:
IF NOMSEXIST THEN CALL SSFILESERRORCNDSSUCHSFILE.PTR);
END; /% BMILE ®/
IF SINGLESDRIVE THEM CALL GETSDISK(¢);

ERi;

R R O R T 2
KBt Bl BBl =B B H e B e o Moo Bl el B o Bl

BEGINNING OF MAIN PROCRAH

B T I AL TR I I T
Yo B =B B B o BBl BB B = o BBl H o B B BB -8 B

ANRIC, URITESPROTEC TSFOUND. PRINY, COPYSAT, BRIEY , SINCLESDRIVE , QUERY, CONCAT = FALSE;
SYSTEN.FIRST, NOMSYSTER = TRUE;
FILESCOUNT=0,
TARGETSRODE = VRITESHODE:
PASTSRLKSLENGTH, BY TESTENP, BLKSTENP, PASTSRYTESLENGTH = 05
CALL READCY, BUFFER.LENGTHCRUFFER), ACTUAL, . STATUS);
RUFFERCACTUAL) = CR;
CAtL FORCESUPPER(. BUFFER);
i
ADUANCE POINTER TO KEYWORD ‘70’ AND CHECK IT ...
¥/
TOSPTR = DERLANK(UDELINIT(DERLANK(BUFFER)));
IF REY = 7,7 THEN CONCAT = TRUE; /x 60 INTD CONCATEMATION HODE »/
o0 UHILE REY = 7,75
THSPTR = DEEBLANK (UDELINIT(DEBLANK(TOSPIR+1)));
ERD;
Ir SEM. €18 /), TOSPTR. 3) THEX

EUFFERSPTR = DEBLANKCUDELINIT{(TOSFTR));

TISF Catl P FSFRRNRITNUAL TDASYNT Y. TRSPTR. TRIRY :
|

/i
RUFFERSPTR NDU POINTS TO THE TARGET FILEMANME STRING.
ADVANCE SUITCHSPTR REYOMD TARCET FILE NAME, T SUITCH (IF aMY)...
L
SUTTCRSPTR = DEELANK(UDELIRITCRUFFERSPTRI);
DD GHILE CHAR <> CR,
IF CHAR = ‘U’ THEN TARGETSHODE = BPDATESHODES
EL3E
IF CHAR = “S7 THEN NONSYSTEW = FALSE;
ELSE
IF CHAR = “H* THEN SYSTEH = FALSE;
ELSE
IF CHAR = “E° THER BRIEF = TRUE;
ELSE
Ir CHAR = ‘C’ THEN CUPYSAT = TRUE:
FLIE
IF CHAR = “P’ THER SINGLESDRIVE = TRUE;
ELSE
IF CHAR = ‘@’ THEX QUERY = TRUE;
ELSE
IF CHAR <) "5/ THEM
CALL FILESERROR(URRECHESSVUITCH, SUITCHSPTR, TRUE),
IF CDRCAT AND QUERY THEM
CALL FILESERRDR(INUALIDSSYNTAX, SUTTCHSPTR, TRUE);
SUTTCHSPTR = DERLANK(SUITCHSPTR+1);
TRD:
IF BOT(SYSTER DR NONSYSTER) THEN SYSTEM. MIMEYSTER = TRUE:
RUFFERSSIZE,SIZE = NERCK - _BENDRY:
HERT = . MENORY:
TF CORCAT THEN
bl
IF SIRGLESDRIVE THEN TARGETSHODE = UPDAYESHODE
CALL €OW:
END,
ELSE CALL VILDSCARD:
IF URITESPROTECTSFOUND THEN
CALL VRIVECO, . (’URITE PROTECTED FILE ENCOUNTERED/,CR.LF),3h, 3TATUS);
CALL EXIT;
END;

BELETE:
b

DECLARE VERSIONSLEVEL LITERALLY “0M‘,
EDITSLEVEL LITERALLY “28H7;

DECLARE VERSION (%) EYTE DATA (VERSIONSLEVEL,EDITSLEVEL):

SINCLUDE (:F2:CPYRTH.MOT)
SINCLUDE (:FZ:CPYRTS.DTR)
FHSROLIS TR/

STHCLUDE (:F2:COMMON.LITY
STRCLUDE (:F2:CHAR LIT)
SINCLUDE (:F2:ERROR.LIT)
SIRCLUDE C.F2:DPEN.LIT)
SINCLUDE (:F2:OPEN.PEX)
SINCLUDE (:F2:CLOSE.PEX)
SIRCLUDE (:FZ:READ PEX)
SINCLUDE (:F2:URITE.PEX)
SINCLUDE (:F2:DELETE.PEX)
SINCLUDE (.F2:EXIT.PEX)
SINCLUDE (.F2:DLINIT.PLX)
SINCLUDE (:FZ:DELANK.PEX)
SINCLUDE (.F2 FUPPER.PEX)
SINCLUDE (:F2:UCASE.PEX)
SINCLUDE (:F2:GETDSK.PEX)
SINCLUDE ¢:F2:FERROR.PEX)
#INCLUDE (:F2:SERROR.PEX)
SINCLUDE (:F2:UNPATH.PEX)
SINCLUDE ¢ F2Z:UPATH.PEX)
GINCLUDE (:F2:DHEQ.PEX)
SIRCLUDE ¢ F2.UDELINM PEX)
SINCLUDE (:F2:RERROR.PEX)
SLIST

DECLARE (STATUS.ACTUAL.LEN) ADDRESI:

DECLARE BUFFER {128) RYTE;

DECLARE RUFFERSPTR ADDRESS. CHAR BASED EUFFERSPTR RYTE;
DECLARE PATHNAME(1E) BYTE:

DECLARE PH(19) BYTE:

BECLARE RUF16(14) BYTE;

DECLARE DIRSAFTY ADDRERS,

DECLARE (ISND,DISK) RYTE;

DECLARE (HQUERY.FOUND) KDOLEAN;

DECLARE FILESNANE ADDRESS.

DECLARE DIRSFILS®) BYTE IMITIAL (‘:FO:ISIS.DIR /)
DECLARE SINGLESDRIVE EUDLEAN PUBLIC;

DECLARE QUESCH) BYTE DATA ¢, DELETE? /)

GODSTHAR:
PROCEDURE (ITEM) EDOLEAN:
DECLARE ITEM BYTE:

KETURN (ITER >= ‘A7 AND ITEM ¢
iR {ITEM >= ‘0’ AND ITEM ¢
IR (ITEN = 29
OR (ITER = ‘%)
bR (XTER = 7, 7);

= lq!}

END;

FE Rl R R R R R R R e R B e el e e e Bl e B Bl R R

i KK BB BB M =K M KBl =B oo B B B N B - M- B

RECINNING BF MAIN PROCRAM.

B HH= Bl W H - B R R BB R B M BB - Rl BB

CALL READ(L, BUFFER,LENCTH(BUFFER), .ACTUAL, .STATUS):

BUFFER(RCTUAL) = CR:

ISHD = ACTURL - L,

CAll FORCESUPPERC. BUFFER):

CALL FILESERROR(STATUS, . (7:CI:), TRUE);

RUFFERSPTR = DEELANK(.RUFFER);

SINGLESDRIVE = FALSE;

il WHILE (NDT GODDSCHARCBUFFERCISND)) AND ISND X 35
I5¥B=T1588-1;

END;
IF BUFFERCIGRU)="P’ AMD BUFFER(ISND-1)=" ¢ THEM
bi;
ISHI=ISHB-1;
DO UHILE TGN > ¢ AND (NOT CDODSCHAR(BUFFER(ISND)),
IsHD = ISHD - L
ERD;

IF MDBT(RUFFERCIGNI) = /.7 OB ISNB = O) THEN
i
SINGLESDRIVE = TRUE;
RUFFERCISHI+L) = CR;
END;
END;
IF SINGLESDRIVE THEW CALL GETSDISKR(1L);
bil FOREVER:
Ve
BRUCESS UILDCARDS.
& ':‘
FOUND = FALSE;
FILESHARE = BUFFERSPTR:
STATUS = UPATHCRUFFERSPTR, .PN);
CALL SSFILESERROR(STATUS,RUFFERSPIR);
BUFFERSPTR = DERLARK(UDELINITC(BUFFERSPYR)),
DIRSFIL(Z) = LDISK:=PNCO)) + %7,
PNO) = 4
£ALL DPENC DIRSAFTN, . DIRSFIL.READSHODE, O, STATUS);
HUERY = FALSE;
IF CHAR (> 7,7 AND CHAR <> CR THER
i 1H
IF CHAR = ‘@7 AND (DELINIT{RUFFERSPTR)-BUFFERSPTR=1) THEW
bo;
QUERY = TRUE;
FUFFERSPTR = DEELANK(DELIMIT(RUFFERSPTRY);
N
FLSE
og;
EALL SSFILESERROR (INUALIDSSYNTAX, BUFFERSPRTR),
END;
END;
IsND = 05
DO UHILE 158D < 269
TSHG = DMEQCDIRSAFTN, PN, ISKD, .BUF14);
IF TSR (= 200 THER

bl
THHD = TRUF

EUF16¢0) = DISK;
CALL UNPATHC BUF14, PATHNAHE);
LEN = DELIMITC.PATHNAME) - _PATHNANE;
RERORY(D) = ‘¥/;
IF QUERY THEN
o
EALL URITE{O, .{“ “),1, STATUS);
CALL URITECO. PATHMAME.LEN STATHS);
CALL URITE(Q, .QUES,LENGTHC(RUES), STATUS);
CALL READCL, .BENORY, 128, ACTUAL. STATUS);
EXD:
I¥ UPPERSCASE(MENORY(0)) = Y’ THEM
U
CALL URITE(D, . ¢’ “),1, STATUS);
CALL URITE(O, PATHNABE,LEN, . STATUSY;
CALL URTTECO, ¢/, 7). 1, STATHS);
CALL DELETEC.PATHNABE. STATUS);
IF STATUS <> ¢ THEN CALL REPDRTSERROR(STATUS);
ELSE
oll;
CALLL URITECO, .’ DELETED/,CH,LF), 10, STATUS);
Exp;
£RDs
END:
EHD;
CALL CLOSE(DIRSAFTH, STATUS);
IF NOT FOUMD THEN CALL FILESERROR(NODSSUCHSFILE,FILESHANE,FALSE);
IF CHAR = CR THEM

bil;
IF SINCLESDRIVE THEN CALL GETSDISK(0);
CALL EXIT,
ED;
IF CHAR = 7,7 THEW
i
EUFFERSPTR = DEBLANK(BUFFERSPTR+1);
END;
ELSE
P
CALL SSFILESERROR{INVALIDSSYNTAX, RUFFERSPIR);
END:
END;
END;

EBF

DiR:

bo:

DECLARE VERSIONSLEVEL LITERALLY 703/,
EDITSLEVEL LITERALLY “90H;

DECLARE VERSION (x) RYTE DATA (UERSIDNSLEVEL,EDITSLEVEL);

FH
THIS VERVION OF DIR HAY BEEW MODIFIED T VDRK BN THE ENDS,
IT HAS A SINGLE DRIVE SUITCH <P), AND VILL VERK OF AMY DI
CONFIGURATION ALLIVED KY THE EMDS.

274

SINCLUDE (F2:CPYRTS.MDT)
SINCLUDE (.FZ:CPYRTS.DTR)
FRSROLIS T/
SINCLUDE (:F2.COMRON.LIT
SINCLUDE (:F2:CHAR.LIT)
SINCLUDE (:F2:0PER.LID)
SINCLUDE (:FZ:RTTRIE.LIT)
FINCLUDE (:F2:CETDSK.PEX)
SIRCLUDE C.F2:ERWDR.LIT)
SIMELUDE (:F2:DEVICE.LIV)
SINCLUDE :F2:DPER.PEX)
SINCLUDE (:F2:READ .PEX)
SINCLUDE (:F2:URITE.PEX)
SIRCLUDE (:F2:CLOSE.PEX)
SIRCLUDE {:F2:EXIT.PEX)
SINCLUDE (:F2:FUPPER.PEX)
SINCLUDE C:F
SINCLUDE (
SINCLUDE ¢

¢

(

:F2:DLINIT.FEX)
:F2:DELARK.PEX)
:F2 FERROR.PEX)
SINCLUDE (:F2:D.FEX)
SIRCLUDE (:F2:UNPATH.PEX)
SINCLUDE (:F2:DIRECT.DEX)
SIRCLUDE (:FZ:SER.PEX)
SINCLUDE (:F2:UDELIN.PEX)
SINCLUDE (FZ:UPATH.PEX)
SLIST

DECLARE (AFTH,ACTUAL,STATHS) ADDRESS:

DECLARE PH(10) BYTE;

DECLARE <DISK.I) EYTE:

DECLARE (IWVIS.FAST) BOULEAN INITIAL (FALSE.FALSE);
DECLARE BUFFERSPTR ADDRESS. CHAR BASED RUFFERSPTR BYTE;
DECLARE RUFFER(128) BYTE;

DECLARE (703, FORS) EYTE:

DECLARE SINCLESDRIVE RODLEAN PUBLIC;

P B lB it BB B B Hoe oo B el B ol = BB BB = e Bom M B = H o
Yo B o Hm B B b B BB = e B M Bl =l Ml B B e M B BB

EECINNING IF NAIN PROGRAN.

BBl B M BB =R B BBl =Y~ M BB BBl B Hom e B B - H

R R A S o IS 2 B Y

TOS.FORS = O;

JINGLESDRIVE = FALSE;

DISK = OFFH:

EALL READCYL, . KUFFER.LENGTHCRUFFER), ACTUAL, . STATUS);
[UFFERACTUAL) = CR;

A1 FORCESUPPERL. BUFFER):

BUFFERSPTR = DEBLANKC.RUFFER);
TR = 0;
I=170%
PHCI) = ‘w75
END;
B =0
DO UHILE CHAR <> CR;
IF SEQCBUFFERSPTR, . (‘FOR “2,4) THER
bl
7
FROCESS UILDCARD.
K
JF (FORS := FORS ¢ 1) = 2 THEW
£aLl FILESERRORCINUALIDSSYNTAR. RUFFERSPTR, TRUE) ;
FUFFERSPTR = DEELANK(BUFFERSPTR«3);
CALL FILESERRDRCUPATHCBUFFERSPTR. . PN), BUFFERSPTR, TRUEY;
EUFFERSPTR = DEELANK(UDELINIT(BUFFERSPTR));
IF NOT INVIS THEN

pliN
INVIS = TRUE;
MII=1T07%;
IF PHCIY = 777 OR PHCI) = ‘B THEN IWIS = FALSE,
END;
END;
END;
ELSE
IF SEQC.<’TH /), BUFFERSPTR,I) THEM
bil;
/%
PROCESY DESTINATION FILE.
i/

Tr €TOS := 708 ¢ 1) = 2 THEM
CALL FILESERRDECINUALIDSSYNTAX, RUFFERSPTR, TRUE);
BUFFERSPTR = DEBLANK(ERUFFERSPTR+2);
CALL DPERC.AFTN, RUFFERSPTR.URITESHODE, 0, . STATUE);
CALL FILESERROR(STATUS.BUFFERSPTR, TRUE);
EUFFERSPTR = DERLANK(DELINIT(RUFFERSPIR));
END:
ELSE
oh:
IF CHAR >= “97 AND CHAR { ‘8~ THEM
DISK=CHAR-"9’;
ELSE
IF CHAR = ‘17 THER IMVIS = TRUE;
ELSE
IF CHAR = “F7 THEN FAST = TRUE;
E3E
IF CHAR = ‘P’ THEN SINCLESDRIVE = TRUE;
EL3E
IF CHAR O ‘5 THER
CALL FILESERRORCUNRECOCSSVITCH, BUFFERSPTR, TRUE);
KUFFERSPTR = DERLANK(RUFFERSPTR+1);
171
End;
IF DISK (> OFFH THER PN¢9) = DISK;
DISK = PN(O);
PR = 0,
IF SIHCLESDRIVE THEW CALL GETSDISK(1);
CALL DCDISK,AFTH,FAST, INVIS. .P¥3;
IF SINGLESDRIVE THEW CALL GETSDISK(9);
CALL EXITS
EBD;

HEXDRJ:
18

DECLARE VERSIONSLEUEL LITERALLY “02H/,
EDITSLEVEL LITERALLY “18H‘;

DECLARE UERSION (%) KYTE DATA (VERSIUNSLEVEL,EDITSLEVEL);

SINCLUDE (:F2:CPYRT3.DTR)
SINCLUDE (:F2:CPYRTS.MOT)
FHGNILIS T/

SINCLUDE C:FZ:COMMBM.LIT)
SINCLUDE (:F2:CHAR.LID)
SINCLUDE (:F2:DFEN.LIT)
SINCLUDE ¢:FZ:SEE.LID)
SINCLUDE (:FZ:RECTYR.LIT)
SIRCLUDE (:FZ:BENCK.PEX)
SIRCLUDE (:F2:READ PEX)
SINCLUDE (:F2:URITE.PEX)
SINCLUDE (:FZ2:EXIV.PEX)
SINCLUDE ¢ F2:DPER.PEX)
SINCLUDE (:F2:CLOSE PEX)
SIRCLUDE (:F2:DELANK.PEX)
SINCLUDE (:FZ:DLIRIT.PEX)
SINCLUDE (.F2:FUPPER.PEX)
SINCLUDE .F2:SEQ.PEX)
SINCLUDE (:F2:SCANIN.PEX)
STHCLUDE (. F2:ERRDR.LIT)
SINCLUDE (:F2:.FERROKR.PEX)
SINCLUDE (:F2:PATH.PEX)
SLIST

DECLARE BUFFERSSIZE ADDRESS:

DECLARE IRUF(3328) BYTE;

DECLARE IPTR ADDRESS:

DECLARE BUFFER(128) RYTE,

DECLARE BUFFERSPTR ADDRESS. CHAR BASED DUFFERSPTR BYTE:
DECLARE (DUTPUTSPTR, IRPUTSPTR) ADDRESS:

DECLARE ACTUAL ADDRESS;

DECLARE STATUS ADDRESS;

DECLARE (START.ERDFILE) EOOLEAN;

DECLARE (AFTSOUT.AFTSIN) ADDRESS;

DECLARE STARTSUALUE ADDRESS:

DECLARE RECDRDSPTR ADDRESS;

DECLARE NEMDRYSPTR ADDRESS. HEM BASED REMDRYSPIR BYIES

fig: L
e CONTENT RECORD DEFIRITION w/
JH #/
DECLARE CONTENT STRUCTUREC

TYPE RYTE,

LENGTH ADDRESS.

SESSID BYTE,

ADDR ADDRESS.

BRT BYTE

¥ AT { HEMDRY),
DECLARE RECHORDSADDRESS ADDRESS;
BECLARE RLEN EYTE;
DECLARE TYPE BYIE,
DECLARE I RYTES
DECLARE CHECKSUM BYTE;
L L7
b RODULE HEADER RECORD DEFINITION u/
K L7

DECLARE NODHDR STRUCTUREC
TYPEC1) BYTE.
LENGTH ADDRESS,
BAMESLEN RYTE,
BAHEC3L) BYTE,
TRNSID BYTE,

TRHSUN BYIE,

CHESUR BYTE);
7 ¥/
f NODULE END RECORD DEFINITION ®/
I}K W

DECLARE NODEND STRUCTURE(
RECSTYPE BYTE,
LENGTH ADDRESS.
TYPE BYTE,
SEGSID RYTE.
DFFSEY ADDRESS.

CHESUR BYTE)S
¥ B
/# HODULE END DF FILE RECORD w/
At DEFIREVION K/
I¢ : #/
DECLARE NODEDF STRUCTURE(

TYPE RYIE,

LENGTH ADDREIS,
CHKSUR BYTE)S
/% #/

DECLARE TEWPSPTR ADDRESS;

PECLARE NODLDBC STRUCTURE ¢
FECTYPE BYTE.
LENETH ADDRESS,
SEEID BYTE,
OFF SET ADDRESS.
RANELEN BYTE,
HARECIE) BYIED,

DECLARE TEWR1?) BYIE:

HUTSRECORD:
PRUCEDURE (PTR);
DECLARE FTR ADDRESS. CHAR BASED PTR(Y) BYTES
DECLARE P1 ADDRESS. ADDR BASED P2 ADDRESS:
DECLARE <I,STATUS) ADDRESS;
DECLARE CHECKSUN BYTE;

Fi=PR + L

CHECKSUN = 0;

DB Y =¢ Y0 ADDR + 1;

CHECKSUR = CHECKSUN + CHARCI);

END;

CHAR(ADDR+2) = (-CHECKSUN;

CALL URITECAFTSDUT, PTR.ADDR, .STATUR):

Call FILESERROR(STATUS, DUTPUTSPIR, TRUE),
EXD DUTSRECORD:

tRE:
PROCEDURE RYTE;

IF IPTR = LENGTHCIRUF) THEN

o
CALL READCAFTSIN. .IBUF,LENCTH(IRUF), . ACTUAL
fALL FTIFSFRRMRCRTATHR . THRYTSATP . TRIF)

+ STATUSY;

IF ACTUAL = O THER
Bl
CALL FILESERRORCEARLYSEDF INPUTSPIR, TRUED,
CALL EXIV:
END:
PR =0
END;
IPIR = IPTR ¢ 15
RETURN IBUF{IFTE-1) AMD 7FH;
END GHE;

HEX:
PROCEDURE BYTE;
DECLARE CHAR BYTE:

IF (CHAR.=BNC) d= 707 AND CHAR {= “9° THEN RETURN CHa% - %97
IF CHAR »= ‘A" AND CHAR (= ‘F‘ THEN RETURM CHAR - 37H:
RETURN OFFH;

END HEX:

KYTES:
PRUCEDURE RYTE;
DECLARE CHAR BYTE:

CHAR = SHL(HER.U) + HEX:
CHECKSUN = CHECKSUM + CHAR,
RETURH CHAR:

END RYTES;

START = FALSE;
ENDFILE = FALSE:

g B B T T 0 S T
S I R B I O T S VTR I IR I TN T

RECINNING fiF NAIR PRBCRAN.

R B T o o]
Bl BB M Bl =Ml B M= =l Bl B Ho e KBl < Bl Bl BB B/

/¢ INITIALIZE MODULE HEADER RECORD ARER ®/
HODHDR. TYPECO) = MODHDRSTYPE.
DB I =1 T8 STIZECHODHDR) ~ 1,
HODHDR . TYPECI) = ¢
END:
S #
INPUTSPTR = . (7:C1: 70
CALL READ(L, BUFFER,LENGTH(RUFFER), ACTUAL, .STATUS);
CALL FILESERKORCSTATUS, INPUTSPTR, TRUE);
CUFFERCACTUAL) = CR;
£ALL FORCESUPPER(BUFFER);
INPUTSPTR, BUFFERSPTR = DERLANK{ BUFFER);
CALL BPENC.AFTSIN, INPUTSPTR, READSNODE. ¢, STATUS),
£ALL FILESERROR(STATUS, INPUTSETR, TRUE)
RUFFERSPTR = DEBLANK(DELINIT{BUFFERSFTR)):
IF SERC.C'TD /).BUFFERSPIR.3) THEM
bl
RUTPUTSPTR, BUFFERSPTR = DEELANK(BUFFERSPTR+2);
BUFFERSPTIR = DERLANK{DELINIT(RUFFERSPTR)};
END;
HSE
bl
fall FTIFSURPIRE THUAL TRASYHTAY. RHTBHTSRTR TENC Y

1.0 H
bl UHILE CHAR (> CR;

IF CHAR = ‘4§ THEN

BUFFERSPTR = DEBLANK(RBUFFERSPTR + 1)

IF SEQCEUFFERSPTR, . (’START’),T) THEM

Bl;
START = TRUE,
BUFFERSPTR = DEELANK(RUFFERSPTR+3);
IF CHAR <> “¢‘ THEW
iH

CALL FILESERROR(INVALIDSSYNTAX. RUFFERSPTH, TRUE);
END;
BUFFERSPTR = BUFFERSPIR + 1,
STARTSUALUE = SCANSINTECER(.BUFFERSPTR);
BUFFERSPTR = DEBLANK(BUFFERSPTR);
IF CHAR <} “)’ THER
U{H
EALL FILESERRORCINVALIDSSYNTAX. BUFFERSHTH, TRUE)

END;
BUFFERSPTR = DEELARK(BUFFERSPTR+1);

END; /7#ERD BF SEARCH LOUP »/
ELSE
ba; /% UNRECDCRIZED OPTION w/

CALL FILESERROR(UNRECHCSSUITCH, BUFFERSPTR, TRUEY;
END;

END; /% END OF COMRAND LINE SEARCH &/
P B/
A8 #

CALL DPENC.AFTSOUT, DUTPUTSPTR, URTTESHEDE, &, . STATUS);

CALL FILESERRORCSTATUS, DUTPUTSPIR, TRUED;

STATUS = PATH(INPUTSPIR. HODHDR. NANESLEN);

HODHDR MANESLER = 4;

DI} UHILE NDDHDR.NAME(HODHDR. NAMESLEN-1) = &,
HODHDR . MAMESLEN = NODHDR. NANESLEN - 1

EXD;

MIDHDR. LENETH = NODHDR. NANESLEN ¢ 4;

HODHDR. TYPECHODHDR . NARESLEN+Y) = 05 /% TRY 1 D ®/

HODHDR. TYPE(NODHDR . RARESLEN+D) = 0; /n TRR U ¥ w/

i3
BUTPUT MUDULE HEADER RECHRD
¥/

fALL DUTSRECORDS RODHDR);

7K i/
8 ASSENMBLE AND DUTPUT CONTERT RECORD(S) ®/
E B

RUFFERSSIZE = MERCK - .MERORY - éu;
CHNTENY. TYPE = CONTENTSTYPES
CONTENT. LEHETH = 9;
CINTENT . SEESID = ARSSSEG)
CONTERT. ADDR = 9
HEAORYSPTIR = .MEMDRY4S:
RECORDSPTR = ¢
IPTR = LENCTH(IRUF):
BEN =15
b UHILE RLEM <2 0,
bl UHILE <CHAR := 6NC) <> 17
IF CHAR >= ‘0’ aND CHAR <= “§’ THEN
pa;
DI WHILE &NC (> 7 /5

)
21N

DO UHILE CCHAR := GRE) = 7 %

END;
RODLBC. BANECO) = CHAR;
I=1;
P URILE <ROPLOC. NABECI) = GREY 3 7 4
I=1+1;
D
RODLBE. HANECT) = ¢,
HODLBE . HAMELEN = T,
WODLDC. LENETH = 144,
P OGHILE <CHAR .= ENEY ¢ "0/ OR CHAR » 1
END;
DO I = ¢ 70 9; TEWMMIY = 7 7/ EMD;
I=1;
TEHP(D) = CHAR,
DB UHILE (CHAR := ENE) <> 7 ~ AMD CHAR (> ‘S’ AND CHAR (> CR;
TERP(I) = CHAR;
I=1¢1;
END;
TENPSPTR = TENP; /# THIS IS5 LUDICRIOUS, BUT MEEDED DB 7O SCANSINTEGER w/
HOOLEC. OFF SET=SCANGINTECER(. TERPSPTRY ;
HODLBE. SEGID = ¢
HODLOC. RECTYPE = 12K;
CALL DUTSRECORDC. NODLOC);
EXD;
£H#D;
CHECKSUR = 05
RLEM = BYTES;
IF BLEN <> 0 THEH
oll;
RECORDSADDRESS = RYTESK256 ¢ BYTES:
IF RECORDSPTR () RECORDSADDRESS OR
CHNTENY LERGTH > BUFFERSSIZE THER
o
IF CONTENT.LENGTH () 9 THEM
o
CONTENT LENCTH = CONTENT LENCTH + 4;
CALL DUTSRECORD (NENDRY);
E®D;
COETENY .LEXETH = 9,
RECORDSPTR = RECDRD%ADDRESS;
RERORYSPTR = NENDORY+S;
CONTERT .ADDR = RECORDSADDRESS:
END;
TYPE = BYTES:
PO I =1 T0RLEN,
HEN = BYTES,
HENORYSPIR = REMDRYSPTR ¢ 1,
RECORDSPIR = RECORDSFTR + 1,
CONTENT LENGTH = CONTENT.LENGTH + 1;
EXD;
TYPE = BYTES; /% CONPUTE CHECKSUM =/
IF CHECKSUM <> ¢ THEM
(A
CALL FYLESERAOR(CHECKSUNGERRIR. INPUTSPTR. TRUE);
ALl EXITS
£Rp;
END:
ELSE
o
TE CONTENT IFNCTH ¢ & THRN \

pi;
CONTENY .LENGTR = CONTENT.LENGTH + 4
CaLl MUTSRECHORDC. NERORY):

ENp:

¥
INITIALIZE, ASSEHELE, ARD
DUTPUT RODULE END RECORD
7

HEDEND .RECSTYPE = MIDENDSTYPE;
PODEND.LENETH = 3
AODEND. TYPE = L
HODEND SEGSID = 0;
MODEND.BFFSET = RYTESHZIS+BYTES:
IF START THENM
HODEND . DFFSET = STARTSVALUE: /= START ADDRESS UAS SPECIFIED w/
CAld DUTSRECORDC.MODEND):

Pz -7
Fu INITIALIZE, ASSEMELE, AND w/
P DUTRIT THE #/
Pl HODULE END OF FILE RECORD w/
/e B/

HODEDF.TYPE = EDFSTYPE;
HADEDF .LENGTH = 1;
CALL DUTSRECDRDC.NDDEDF),
END; ‘
E¥D;

CALL CLOSECAFTSIN, . ETATUS);

CALL FILESERRORCSTATUS. INPUTSPTR, TRUED
CALL CLOSECAF TSOUT, STATUS),

CALL FILESERRORCSTATUS, DUTPUTSPTR, TRUE),
{ALL EXIT,

END HEXDRJ:

£aF

IDISK:

u;

DECLARE VERSIONSLEUEL LITERALLY “03H/.

EDITSLEVEL LITERALLY “O0OH”,

DECLARE VERSIDNCx) RYTE DATA (VERSIONSLEVEL.EDITSLEVEL);

.
i

#/

IDIZK - THIS IS A CUSP FOR INITIALIZING DISKETTES. IT UILL VORK

0N SIMELE OR DOUBLE DENSITY DRIVES, AND IN SIMCLESDRIVE MOME. IV
DBES TUD THINGS. 1) NORMALLY. IT CREATES A NON-SYSTEN DISKETTE, &Y
PUTTING ISIS.DIR.ISIS.LAK,ISIS 70, ISIS NAP ONTE THE DISKETIE.

2) VITH THE § SUITCH. I7 CREATES A SYSTEM DISKETTE, BY PUTTING
THRONT, ISIS.BIN. AND ISIS.CLI ON THE DISKETIE.

% A 32K SYSTEN UITH SINCLESDRIVE MODE <P SUITCH) IT 4ILL

REQUIRE 4 DISKETTE SUAPS 7O CREATE A SYSTERM DISKETTE. all THE
FILES THAT IDISK PUTS DN THE DISKETTE, HAUE THE FORNMAT ATTRIBUTE
SET.

I8 ORDER TO SIMULATE FDRNMAT USIMC IDISK, IV IS MECESSARY Th USE COFY
T CHPY ALL THE FILES THAT YDU UANT DN THE DISKETTE.

SINCLUDE ¢:FZ:CPYRTS.NOTY
SINCLUDE (:F2.CPYRTI.DTA)
/HSROLIZ TR/

SINCLUDE (:F2:CORROR.LIT)
SINCLUDE (:F2:DISK.LIT)
SINCLUDE (:FZ:CHAR.LID)
SIHCLUDE (.F2:DEVICE.LIT)
SINCLUDE (:F2:BEBE.LID
SINCLUDE (:FZ:ATTRIR.LIT)
SINCLUDE (.FZ:ERRDR.LIT)
SINCLUDE (:FZ:ALLDC DEX)
SINCLUDE (:F2:DIRECT.DEX)
SIHCLUDE (:F2:NDNSYS.BLIO
SINCLUDE (:FZ: HENCK FEX)
SINCLUBE (:F2:DPEN.PEX)
SINCLUDE (:FZ:UPER.LID)
SINCLUDE (:F2:READ .PEX)
SINCLUDE (:F2:URITE.PEX)
SINCLUDE (:F2:CLOSE PEX)
SINCLUDE (:F2:EXIT.PEX)
SINCLUDE (:F2:ATTRIB.PEX)
SIRCLUDE (:F2:DELETE.PERX)

SINCLURE (:
SINCLUDE ¢:
SINCLUDE (:
SINCLBBE (:F
SIRCLUDE C.FZ:DBLANK.PEX)
SINCLUDE (¢
SINCLUDE (:
SINCLUDE (:
SINCLUDE (:
FINCLURE (:

:DISKID.FEX)
2:6ETDSK.PEX)
F2 . SERRIR.PEX)
F2 . FERROR.PEX)

F2
F

FZ:DLINIT.PEX)
F2:NASCIL.PEX)
F2:CLBUF .PEX}
F2:SETBLK.PEX)
F2:AESIR.PEX)

SINCLUDE C.F2:FWTTRK.PEX)
SINCLUDE ¢:F2:FUPPER.PEX)
STRCLUDE (:F2:UD.PEX)
SINCLUDE C:F2:SPATH.PEX)
SINCLUDE (:F2:UNPATH.PEX)
SLIST

DECLARE BUFFERC128) BYTE:

DECLARE HMENSSIZE ADDRESS:
DECLARE ACTUAL ADDRESS;
DECLARE PN(12) BYTE.
DECLARE EUFFERSPTR ADDRESS, CHAR BASED RUFFERSPTR BYTE;
DECLARE (I.J.K) ADDRESS,
PECLARE (FILESNUNRER,HADSPRINT) BYTE;
DECLARE MEXY ADDRESS;
DECLARE (SYSTEN.PRINT,FIRST,COPY) EOOLEAN;
DECLARE (AFTSIN.AFTSDUT.DIRSAFT) ADDRESS,
DECLARE STATUS ADDRESS:
DECLARE ATTRIRSLIST(®) BYTE DATA (1.2.4);
DECLARE DISKSTYPE BODLEAN PUBLIC
DECLARE INPUTSSTRING(14) BYTE,
BUTPUTSSTRING{14) BYTE:
DECLARE FILECS) STRUCTURE
(RANE(13) RYTE)
IMITIAL (7:FO:ISIS.RIN 7,
“:F9:ISIS.Te 4,
TFRISIS.CLY 4,
“-FO:ISIS MAP 7,
‘FO:ISIS.DIR 4,
FQISISLAR 1)
DECLARE LARSELK STRUCTURE(
RANE(R) EYTE.
VERSION(2) BYTE.
LEFTSOVERSIB) EBYTE,
CRLF(D) RYTE.
FHTSTARLECY?) BYTE) AT (. BUFFER);
BECLARE SINGLESDRIVE RODLEAN PUBLIC
DECLARE IMFD BASED NEXT STRUCTHRE
{NUMRER BYTE,
LERETH ADDREZS,
BEGIN BYTE):

THITIALIZE:

PROCEDURE

/% THIS PROCEDURE IS CALLED TO DD THE PHYSICAL FORMAT OF THE
DISKETTE, AND THEN SET UP THE FILES THAT MUST EXIST FDR THE
REST OF THE CHPYING O TAKE FLACE u/

CALL FORMATSTRACKCPN(0),0,0,LABSKLK FHTSTARLE(O)-707);

CALL FORBATSTRACKCPN{(0).1, L LARSKK FNTSTARLE(L-70');

CALL FORMATSTRACKCPN(0), 2,76, LARSKLK FRTSTAKLE(2)-79°);

CALL WRITESDIRECTORY(PR{0));
FILECS) . RANECZ) = PH(O) + “9/;

CALL DPENC.AFTSDUT, . FILECT) . NAME,UPDATESHIDE, 0. STATUS);
CALL SSFILESERROR(STATUS. .FILE(S) HANE);

CALL NOVESASEIIC.LARSBLE, .PHe1.9);

CALL WRITECAFTOUT, LARSBLK, SIZECLARSELE) . SYATUD);
Call SSFILESERRUR(STATUS. FILE(S). HAHE).

CHLL CLOSECAFTOUT, STRTUS),
CALL SSFILESERROR(STATUS, .FILE(3) NANE);

END;

B Bl B Ml =Bl B o Bl Bl — B Bl - M B B BB B 3
BBt W e H = H B H B H Ml Mo b Bt ool = B B M = H- K

KERINMING OF MAIN FROGRAN.

Bl B B i B B BB B e Mol B e B B BB e e i H B
Bl t M B =B KB =M Mo B e e BB o B e B B R B 18

HEXT = _HEWORY:

HERSSIZE = NENCK - .HEHDRY:

FIRST = TRUE;

FILESNUREER.HADSPRINT = 05
STHELESDRIVE, PRINT . DISKSTYPE, SYSTER = FALSES

P] L4
/% READ AND FARSE CORMAND TAIL L4
Pt s/

EALL READCY, . BUFFER,LEHCTR(RUFFER), .ACTURL. STATUS):
HUFFERCACTURL) = CR:
CALL FORCESUFPER(.BUFFER);
KUFFERSPTR = DEEBLANKC BUFFER);
fH(0) = OFFH:
CALL SPATHCBUFFERSPTR, . PN, STATUS),
IF PN(11) = 1 THEN DISKSTYPE = TRUE;
CALL FILESERRDR(STATUS, BUFFERSPTR, TRUE),
IF PNCO) > FODEV DR CHAR <> “:’ THEN CAtl FILESERROR(BADSLAREL . BUFFERSPTR, TRUE);
FUFFERSPTR = DEBLANK(DELINIT(BUFFERSPTR));
DIl UHILE CHAR <) CR;

IF CHAR = ‘P’ THEM SIHGLESDRIVE = TRUE;

ELSE

IF CHAR = ‘S THEW SYSTEM = TRUE:
ELSE
If CHAR (5 "5 THEM
CALL FILESERRORCUNRECOCSSUITCH, BUFFERSPTR, TRUE);

BUFFERSFTR = DEBLANK (BUFFERSPTR#1);

ENG
IF PNQY = FODEY THEM SINGLESDRIVE = TRUE;

/% READ AND DECDBDE THE FORMAT TARLE FRON THE SHURCE DISKETTE #/
/% INTO MEMOGRY 70 BE USED AS THE PROVOTYPE FIR THE HEU #
/% DISKETTE THAT UE ARE GOING 70 CREATE L7
/& 4/

£ALL OPENC.AFTSIN, FILECS) NANE,READSHEODE. ¢, STATUS):
CALL FTLESERROR(STATUS, FILECT) NAME. TRUE).

£ALL READCAFTSIN, | LARSRLK, SIZESLABSELK), .ACTUAL, . STATUS);
CALL FILESERROR(STATUS. .FILE{S) HARE. TRUE),

CALL ELOSE <AFTSIN, .STATUS);
CALL FILESERROR(STATUS. .FILE{T) . NAME. TRUE);

IF HOT (LARSELK.VERSIONCO) = “3° AND LARSRLX VERSIONCL) >= 07} THER
HiH
CALL URITECO, (’SYSTEM DISKETTE NOT COMPATIRLE WITH IDISK’,CR.LF) .43, STATUS):
£l EXITS
END:

/¥ SET UP THE INTCRLEAVE FACTORS DN THE DISK w/
LARSELE . FHTSTARLEC(O)="1";
IF DISKGTYFE THEN
Bl

LARSELK FHTSTARLECL)="07+24;
) ALGRI K FRTSTAREFED)=/57;

END;

ELSE DI
LABSELE . FNTSTARLECL)="9"412;
LARSELK FHTSTARLE(2)="6";
EXD;

MI=3T076
LARSELK . FHTSTABLECT) = LARSBLK.FNTSTABLE(D),
END:

IF SYSTEN THEN CALL URITECO, .(/3YSTER DISKETTE’.CR.LF).17, .STATUS);
IF SYSTER THER
DO UHILE FILESNUNBER (3;

THFO. NUBBER = FILESNUMBER;
HEWSSIZE = MEMSSIZE - 3

CALL ORENC AFTSIN, FILECFILESNUNEER) . NANE, READSNODE. 9, STATUS);
tALL SSFILESERROR(STATUS, FILECFILESHUHEER).NANE);

CALL READ{AFTSIN, INFD.BECIN.HEBSSIZE, ACTUAL,.STATUS);
{ALL SSFILEGERROR(STATUS, FILECFILESHUMKER) BANE);
£all CLOSE{AFTSIN, .STATUS);

CALL SSFILESERROK(STATUS, FILECFILESNUMBER) RARE);
INFO.LENGTH = ACTUAL;

RERT = .INFD.REGIN + ACTUAL

IF (MENSSIZE .= HENSSIZE - ACTHAL) = O THEM
pa;
FILESNUNEER = FILESNUMBER - 1
FRINT = TRUE;
EXD;

IF FILESHUNRER = 2 THER PRINT = TRUE;
FILESHUMBER = FILESHUBBER ¢ 1,
IF PRIRT THEN
4N
IF SINGLESDRIVE THEN CALL BETSDISK(D);
TF FIRST THEM CALL INITIALIZE,
HEXT = .MEMORY:
00 UHILE HADSPRINY { FILESHUMBER;
FILECHADSPRINT) . NANE(2) = PNCO) + "0/
CALL DPENC. AFTSOUT, .FILECHADSPRINT) . NAME, UPDATESHODE, 0, . STATUS);
£ALL SSFILESERRORCSTATUS, . FILECHADSPRINT) NANE);
CALL BRITECAFTSIUT, INFD.RECIM, INFIL LENGTH. . STATUS):
£ALL SSFILESERROR(STATUS, . FILECHADSPRINT) .NAME);
CALL CLOSE{AFTOUT, . STATUS):
CALL SSFILESERROR(STATUS. FILECHADSPRINT) NANE),

HEXY = INFD.BEGIM + INFO.LEXGTH:
HADSPRINT = HADSPRINT + 1,

END;

IF SINGLESDRIVE AND FILESNUMEER ¢ 3 THEM CaLL BETSDISK(0);

FIRST.FRINY = FALSE:

HEXT = .HERORY:
HEMSSIZE = MEMCK - .HEWDRY;
END;

EXD;

ELSE bil;

/% CREATE NON-SYSTEW DISKETTE w/

IF SINCLESDRIVE THEN CALL GETSDISK(2):

CALL INITIMIZE:

FILECO) NARECZ) = PN(O) + “07;

FILECL) NAHE(2) = PHCO) + 07

CALL DPENC.AFTSOUT, FILE(LY NARE,UPDATESHODE, O, . STATUS);
CALL SSFILESERROR(STATUS, FILE(1) HAME);

CALL URITECAFTSOUT. MONSYS,LENCTHCNONSYS), STATUS);

Catt SSFILESERROR(STATUS, FILECL) HAHE):

CALL CLOSECAFTSOUT. .STATUS);

CALL SSFILESERROR(STATUS. FILEC1) NAME);

CALL DELETEC FILECO).NANE, STATUS);

CALL URITECQ. . {/NUN-SYSTEM DISKETTE’.CR.LF), 21, STATUS);
E¥D;

piI=9 71035
FILECI) RAMEC2) = PH(O) + “9%;
CALL ATTRIBC.FILECT) NARE,3, TRUE, .STATUS),
ERD;
CALL ATTRIBC.FILECZY NARE,Q,TRUE, STATUS);
CALL ATTRIBC.FILECZ) HAME,L,TRUE, STATUS):
IF SINCLESDRIVE THEX CALL CETSDISK{4);

CALL EXITS

EXD IDISK,

BRJHEX:
bl;

DECLARE VERSIDNGLEVEL LITERALLY “0m°,
EDITSLEVEL LITERALLY ‘1987

DECLARE UEWSIONC®) BYTE DATA (VERSIONGLEVEL .EDYTSLEVEL):

SIRCLUDE (:FZ:CPYRTH.DTA)
SINCLUDE (.FZ:CRYRTS.NOT)
RGN I TR/

SINCLUDE (:F2:ERRBR.LIT)
SINCLUDE (:F2:COMMDN.LIT)
SINCLUDE (:F2:CHAR.LID)
SINCLUDE (.F2:OPEN.LITY
SINCLUDE (:F2:SEG.LID)
SINCLUDE (:F2:RECTYR.LIT)
SIRCLUDE (:F2I:MENCK PEX)
SINCLUDE (:F2:READ.PEX)
SINCLUDE (:FZ:URITE.PEX)
SINCLUDE (:F2:EXIT.PEX)
SIRCLUDE (:FZ:OPEX.PEX)
SINCLUDE (:F2:CLOSE.PEX)
SINCLUDE (:F2:SEQ.PEX)

SINCLUDE (:F2:DLIMIT.PEX)
SINCLUDE (:F2.DERLANK.PEX)
SINCLUDE (.F2Z:RURDUT.PEX)
SINCLYDE (:F2:FUPPER.PEX)
SINCLUDE (:F2.FERRDR.PEX)
SINCLUDE (:FZ:PATH.PEX)
#HI19

DECLARE RUFFERSCDUNT ADDRESS.

DECLARE SEESID RYTE;

DECLARE RECLEN ADDRESS;

DECLARE TYPE BYTES

DECLARE CHECKSUH RYTE;

DECLARE (I.J) ADDRESS:

DECLARE HEXLEN ADDRESS:

DECLARE ADDR ADDRESS;

DECLARE TEMP BYIE;

DECLARE BUFFERSSIZE ADDRESS:

DECLARE TPTR ADDRESS:

DECLARE BUFFER(128) BYTE:

DECLARE EUFFERSPTR ADDRESS. CHAR BASED BUFFERSPTR BYTES

DECLARE (IUTPUTSPTR, INPUTSPTR) ADDRESS;

DECLARE ACTUAL ADDRESS:

DECLARE STATUS ADDRESS:

DECLARE (AFTSOUT.AFTSIN) ADDRESS;

7

HEXADECINAL CONTENT RECORD.

3 l{

DECLARE HEXRECDRD STRUCTURE(
HEADER BYTE,
LENETH ADDRESS,
ADDR(2) ADDRESS,
TYPE ADDRESS,
DAT(14) ADDRESS,
CHESUN ADDRESS,
TRAILER{(2) BYTE),

L
HEZADECINAL END RECORD.

#

DECLARE ENDRECORD STRUCTURE(
HEADER BYTE,
LENETH ADDRESS.
ADDR(2) ADDRESS,
TYPE ADDRESS,
CHRSUN ADDRESS.
TRATLER(ZY BYTE)S

SETSEYTE:
PROCEDURE BYTE:

IF BUFFERSCOUNT = 0 THEN
1M
CALL READCAFTSIN, HENDRY,BUFFERSSIZE. . RUFFERSCOUNT, . STATUS),
CalL FILESERROR(STATUS, INPUTSPTR,TRUE),
IF RUFFERSCOUNT = 0 THEN
1 H
£ALL FILESERROR(EARLYSEDF, INPUTSPIR, TRUE);
CALL EXTTS
END;
IPTR = §;
END;
EUFFERSCBURT = BUFFERSCBUNT - 1
IPTR = IPTR + L,
RETURN NERDRY(IPTR-1);
END GETSBYTE;

CETSADDRESS:
PROCEDYRE ADDRESS,

RETURN GETSEYTE + GETSEYTER294,
END GETSADDRESS;

R O . S I S B I o T R S A O
e B 15 O 3 S

RECINMIKG DF NAIN PROCRAN.

R R O 1o o o 8 22
o T R I 2 B R O T e e o O

F#
INITIALIZE RECORD STRUCTURES.
K/
HEXRECORD . HEADER = 717,
HEXRECORD . TYPE = “00;
EXDRECORD HEADER = “:7;
EXDRECIRD . TRAILER(O) = £R;
ENDRECORD. TRAILER(1) = LF;
i
READ AND PROCESS CDMWARD TAIL.
L7
IRPUTSPTR = .</:C1: 7);
CALL READCY, BUFFER,LENCGTH(BUFFER). .ACTUAL, STATUS),
CALL FILESERROR(STATUS, INPUTSPTR, TRUEY;
BUFFERCACTUAL) = CR;
{ALL FORCESURPERS.BUFFER);
INPUTSPTR, KUFFERSPTR = DERLANK{.BUFFER);
CALL DPENC. AFTSIN, INPUTSPTR, READSHODE, 0, . STATUS) ;
CALL FILESERBOR(STATUS, IHPUTSPTR, TRUE)

RUFFERSPTR = DERLANK{(DELINIT(BUFFERSPTR)):
TEORFBL (TR O)LCRIHFFFRGETR.TY THFR

i
GUTPUTSPTR, BUFFERSPTR = DEBLANK (BUFFERSPTR+2);
RUFFERSPTR = DEBLARK(DELIMIT(BUFFERSPTRY);
ERD;
ELSE
HiN
CALL FILESERRDB(INUALIDSSYNTAX., DUTRUTSPTRL TRUE);
END;
IF CHAR <> CR THEN CALL FILESERRDR(INUALIDSSYNTAX.BUFFERSPTR, TRUE):
CALL BPENC.AF TSDUT, DUTPUTSPTR, URTTESHODE, 9, . STHTUS):
€ALL FILESERRUR(STATUS, DUTPUTSPIR, TRUE),
7
CONPUTE SIZE BF VDRKSPACE.
8t
RUFFERSSIZE = NEMCK - . HERDRY;
EUFFERSCDUNT = 0,
s 3
READ BRJECT RECORDS. URITE HEXADECIRAL RECIRDS.
74
DO FOREUER;
TYPE = GETSRYTE:
IF TYRE)= BELOCSTYPE THEN
EALL FILESERRORCEADSRECSTYR. INPUTSPTR, TRUEY,
IF TYPE = NODEMDSTYPE THEN
bt
RECLEN = GETSADDRESS:
TERR = GETSRYTE,
TENP = BETSBYTE,
ADDR = CETSADDRESS;
CHECKSHN = LDUCADDR) ¢ HICH{(ADDR) + i
CALL NUMBUT{O,14, ‘0, ENDRECORD LENGTH, 2);
CALL NUNDUT{ADDR.14, 0, ENDRECURD .ADDR, 4},
CALL NUMDUT{3.14.70, ENDRECORD TYPE,2);
Catl NUNBUT{-CHECKSUM. 16, 797, .ENDRECHRD .CHSUH. 2),
CALL URITECAFTSOUT, ENDRECDRD,SIZE CENDRECDHDY, .STATUS),
CALL CLOSECAFTSIM, . STATUS);
CaLL CLDSE(AFTSDUT, . STATUS);
CALL EXIT;
END;
IF TYPE {> CONTENTSTYPE THEW
ba;
RECLEN = BETSADDRESS:
DB I =1 T0 RECLEM:
TENR = GETSBYTE;
- ENDs
END;
ELSE
bil;
RECLEN = GETSADDRESS:
SECSID = GETSRYTE,
ADDR = CETSADDRESS;
RECLEN = RECLEN - 4;
DO UHILE RECLER ¢} 0,
REXLEN = RECLEN:
IF HEXLEN > LENCTH(HEXRECDRD .DAT) THEN
HEXLEN = LENGTHCHEXRECORD.DAT),
RECLEN = RECLEM - HEXLEN;
bl I = 0 70 LENGTH(HEXRECDRD .DAT)+1;
HEXRECORD. DAT(I) = OAODH;
ERD;
CHECKSUN = HEXLEN + LOUCADDR) + HIGH(ADDR);

CALL NUMDUTCHERLEN, 16, “07, HEXRECDRD.LENGTH,2);
TALL BUHANTCADDE. 14,707, HFYUESRRD ADDE.LY:

b8 J = O TB HEXLEN - 1;
ADDR = ADDR ¢ 1,
TERP = GETSEYTE:
CHECKSUR = CHECKSUN + TEWP.
CALL NUMBUT(TENP.18, 0’ HEXBECORD.DATI).2);
END;
CALL RUNBUT(-CHECKSUM. 16, /07, HEXRECHRD BATCHEXLEN), 2);
CALL VRITE(AFTSOUT, HEXRECDRD, HEMLEN+HERI EN+13, STATUS);
END;
TERR = GETSBYTE;
END;
EXD;

END OEJHEX:

EBF

RENRNE:
B

GECLARE VERSIDNSLEVEL LITERALLY ‘0247,
EDITSLEVEL LITERALLY “1IHY;

DECLARE VERSION (x) EBYTE DATR (VERSIONSLEVEL,EDITSLEVEL);

“INCLUDE (:F2:CPYRTS.HOT)
FINCLUDE (.FZ:CPYRTS.DTA)
FRGHOLISTH/

SINCLUDE (:F2:COMMDN.LIT)
SINCLUDE (.FZ:CHAR.LIT)
SINCLUDE (:F2:ERROR.LIT)
SIRCLUDE (.F2:READ .PEX)
STNCLUDE (:F2:URITE.PEX)
FINCLUDE (:F2 BENANE.PEX)
SIMCLUDE C:F2:EXIT PEXD
SINCLUDE C:F2:DELETE.PEX)
SINCLUDE (.F2.DLINIT.PEX)
SINCLUDE (.FZ:DBLAHK.FLX)
SINCLUDE (:F2:FUPRER.FEX)
SIMCLUDE (:F2:UCASE.PEX)
FINCLUDE (:
SINCLUDE ¢
HIST

:F2:3EQ. PEX)
:FZ:FERROR.PEX)

DECLARE (ACTUAL.STATUS) ADDRESS;

BECLARE BUFFER (123) BYTE:

DECLARE BUFFERSPTR ADDRESS:

DECLARE ALREADY(x) BYTE DATA (', ALREADY EXISTS, DELETE? “);

I8 BB Rl H e Bl R B E el oo BB =B B BB B ==Y
gl e B Bl e e Bt Bl MM~ BBl e B B M BB B

EECINNING OF MAIN PROCRAN

Yo R B M BB B MMl B B M el bt B e B e M B B M-
Bttt =B M B M BBl M Bl Bl o Bl Ml M B iR 0 3

CALL READ(L. BUFFER, LENCTR(RUFFER), .ACTUAL, STATUS);
BUFFERCACTUAL) = CR;
CALL FORCESUPPER(. BUFFER);
CALL FILESERRDR(STATUS. .(/:C1: ‘2, TRUE):
EUFFERSPTR = DERLANK(DELINIT(DERLANK(. BUFFERY));
/B
BUFFERSPTR SHBULD NOU PRINT 10 ‘T8 -,
#
IF SEG(. C°TO /) RUFFERSPTR, 3} THEN
1N
EUFFERSPTR = DERLANK{RUFFERSPTR +),
CALL RENABE (BUFFER, .EUFFER, .STATUS):
IF STATUS) HULTIDEFINED THEN CALL FILESERRUR(STATUS, BUFFER,TRUE),
CALL RENARE (RUFFER.BUFFERSPTR. (STATUS);
IF STATUS = MULTIDEFINED THEW
pa;
CALL URITECG, .4’ ’),1, STATUS):
/8
YRITE HUT NEU FILE NAME.
£
CALL URITE(O,RUFFERSPTR, DELINITC(RUFFERSPTR)-RUFFERSPTR,
ATATHS)
CALL URITE(O, . ALREADY.LENGTH{ALREADYZ, . STATUS);

CALL READ{1. .MENDRY.128, .ACTUAL, STATUS);
IF UPPERSCASECHBENDRY(0)) = ’Y’ THEN
M
£ALL DELETECRUFFERSPTR, . STATUS);
CALL FILESERRUR(STATUS.BUFFERSPTR, TRUE):
CALL RENAME(BUFFER,RUFFERSPTR, . STATUS);
CALL FILESERROR(STATUS,EUFFERSPTR, TRUE);
END:
ELSE CALL EXIT;
END;
ELSE IF(STATUS=URITEGPROTECT) THEW
CALL FILESERROR(STATUS. .BUFFER,TRUE);
ELSE
CALL FILESERRORCSTATUS . BUFFERSFTR, YRUED;
END;
ELSE CALL FILESERROR(INUALIDSSYNTAX, RUFFERSPIR. TRUE);
{ALL EXITS
EXp;

EOF

SURNIT:

i

DECLARE UERSIONSLEVEL LITERALLY ‘0247,

ERITSLEVEL LITERALLY “1MM/;

DECLARE VERSIDN <r) BYTE DATA (VERSIDNSLEVEL,EDITSLEVEL);

SINCLUDE (:F2Z:CRYRTS.NBT)

I

35;’

THIS VERSION OF SURNIT HAS BEEN NODIFIED 70 UDRK ON DDUELE DENSITY.
IT RECDGNIZES DISK DRIVES 4 fND 5.

STNCLUDE (:FZ:CPYRTS.DTA)

i

THIS CUSP MAY BE CALLED BY EXTHER BF 2 CONMAMD STRINES:

1.

B/

-SURNIT RESTORE (MACRD-FILENANE> (CPATHNANE >, CELOCKNG >, (BYTEND))

UHEN INUDKED IN THIS FASHION, SURNIT UTItL REPLACE THE
CURRENT CONSGLE INPUT DEVICE (:CI:) RY THE FILE SPECIFIED
EY (PATHRAMEY: THEN THE FILE CALLED :FX:(HACRO-FILENAME) CF
1% DELETED.

FURTHERMORE . IF (PATHNANE> SPECIFIES i DISK FILE, THER
A SEEK IS FERFORNED DN IV, AFTER IT RECHNES THE BED (CI:
FILE, USING THE (RLOCKNO> AND (RYTEND> PARARETERS, WHICH
ARE ASSUNED 7O RE INTEGERS.

~SUBNIT <MACRO-FILENAME >(CARGOY, (ARELY, .. ., (ARGYD)

UHEN INUDKED IN THIS FASHION, SUBNIT WILL CREATE A FILE
FX(MACRO-FILENANEY . CF BY SUBSTITUTING THE ACTUAL
PRRANETERS ((ARGX“S) CIVEN FOR THE FORRAL PARARETERS IN THE
FILE SPECIFIED RY (MACRD-FILEMAMEY. (THE K/TH FORNAL PARARETER
IS 7K » K A DIGIT.) THE CURRENT COMSDLE INPUT DEVICE IS THEM
TENPORARILY REDEFINED AS :FX:(NACRO-FILENAREY.CF; VHEN EXD IF
FILE BN (FX:(MACRO-FILENABEY .CF IS REACHED. IT IS DELETED.
f#D (€I: IS RESUMED aS BEFDRE. (MDTE THRT SUBMITS CAX BE BESTED).

FRGNDLIRTH/

SINCLUDE (. F2:(OMRMON.LIT)
SINCLUDE (.FZ:CHAR.LIT)
SINCLUDE (:F2:ERROR.LIT)

SINCLUDE ¢
SINCLUDE ¢
SINCLBDE ¢
SINCLUDE (
SINCLUDE ¢
SINCLUDE ¢
SENCLUDE ¢
SINCLUDE (
SINCLUDE (
SIRCLUDE
SINCLUBE {
SINCLUDE ¢
SIRCLUDE ¢
SINCLUDE ¢

F2DEVICE.LIT)
(F2:OPEN.LITY
(F2:SEEK.LIT)
:F2:0PEN PEX)
:F2:READ .PEX)
:F2:URITE.PEX)
:F2:CLBSE.PEX)
:F2:SEEK.PEX)
‘FZ:DELETE.PEX)
:F2:EXIT .PEX)
(F2.CONSDL . PEX)
:F2:UHBCON . PEX)
(F2:RESCAN.PEX)
(F2:SER.PEX)

SIRCLUDE (:F2:PATH.PEX)

SINCLUDE (:F2:URPATH.FEX)
SINCLUDE (:F2:DBLANK_PEX)
SIHCLUDE (:F2:DLINIT.PEX)

SINCLUDE {:F2:UCASE.PEX)

SINCLUDE (:FZ:NUNDYUT PEX)
SINCLUDE (:FZ:FERROR.PEX)
SINCLUDE (:FZ:SCANIN PEX)
SLIST

e]
STRUCTURE 7O STORE ACTUAL PARAMETERT AND CURRESPONDING LENGTHE.
u/
DECLARE PARANS(10) STRUCTURE (
DATC31) BYTE,
LENGTH BYTE);

DECLARE RUFFER(1924) BYTE;

DECLARE BUFFERSPTR ADDRESS:

DECLARE BUFFERSCOUNT ADDRESS:

DECLARE CHAR BASED BUFFERSPTR BYTES

DECLARE AUXPTR ADDRESS;

DECLARE PH{10) BYTE:

DECLARE I ADDRESS:

DECLARE L BYTE;

DECLARE (RESTORE.SCANNING,DERUC, PARANSGSCAN) BODLEAN:
BECLARE (8D, €3, STATUS, ACTUAL , BLIICKNG, BYTEND) ADDRESS;
DECLARE (CSDHANE.CSNANE, NICKNANE, CI) {15} BYTE:

FH PRl Rl Bl e e B e el o e el BB B B B B B Yl - B

RECINNING OF NAIN PROCRAN

Hm bl =R R H Bl =Bl M H B H BBl o B B BB B K - B
BB E He K B BBl B o Bl - B B B e MR- H- R 3

i
INITIALIZE PARAHETER ARRAYS.
B
Pt I = 9 T8 SIZE(PARANS);
PARANAS(0) .DAT(I) = 0,
E¥D;
CALL RESCANCL, STATUS):
TALL READ{1, BUFFER,LENGTH(RUFFER), ACTUAL, STATUS);
BUFFERCACTUAL) = CR;
RUFFERSPTR = _BUFFER:; /% FURCESUPPER THAT STOPS AT PARANS x/
DI} UHILE CHAR (> CR AND CHAR <} 7(”;
CHAR = UPPERSCASESCHAR);
BUFFERSPTR = BUFFERSFTR + 1,
END;
KUFFERSPTR = DEELANK(BUFFER);
/B
SAVE KANE SUBNIT UAS INUBKED RY.
&
DERUE = FALSE:
IF SERSEUFFERSPTR, . (’DEEUE 7),4) THEM
i
DERUC = TRUE;
BUFFERSPTR=-DEELANK(BUFFERSPTRS);
END,
STATUS = PATH(BUFFERSPTR, .P¥),
CALL UNPATHC. PN, NICKHANE);
RUFFERSPTR = DERLANK{DELINIT{(BUFFERSPTR));
P
TEST FUR RESTORE CORMAND.

F

RESTORE = FALSES
IF SEQCRUFFERSPTR, . ('RESTORE 7).8) THEW

b

RESTORE = TRUE:

RUFFERSPIR = DERLANK(RUFFERSPIR+8);
ERD;

/5
PARSE FILERANES.
=73
CALL FILESERROR(PATH(RUFFERSPTR, .PN).RUFFERSPTR, TRUE);
I PKTY = O THEM

bl
FRCTY = &7
N8 = '8
PHCD = D5
EXD:
CALL UNPATHC. PN, . CSDMARE);
PR(Y) = ‘€%
(B8 = ‘37
PR = §;

CALL UNPATHC. PN CSNANME))
KUFFERSPTR = DEBLANK(DELINITCRUFFERSPTR));
/8
PROCESS ACTUAL PARARETERS.
#/
I = 0; /% PARANETER COURTER =/
IF CHAR = “{* THEM
ba: .
LUFFERSPTR = RUFFERSFTR + L,
SCANNING = TRUE:
DD UHILE SCANNING;
AUXPTR, BUFFERSPTR = DEBLANK(BUFFERSPTR);
IF I = LENETH(PARANS) THEN
£ALL FILESERRDR(TOOSHANYSPARANS, AUXPTR. TRUE);
L= o /¢ PARANETER LENGTH CDUNTER w/
IF CHAR = 77’/ THEM
iH
PARANSSCAN = TRUE;
BUFFERSPTR = BUFFERSPTR + 1,
DR UHILE PARANSSCAN:
IF L = LEXNGTHC(PARANS .DAT) THEW
CALL FILESERRORCARESTDOSLONG . AUXPTR, TRUE):
FARANSCI) . DAT(L) = CHAR;
IF CHAR = /7’ THEX
ot
PARANSSCAN = FALSE.
BUFFERSPTIR = BUFFERSPIR + 1,
IF CHAR = 7777 THEW
bi;
FARANSSCAR = TRUES
RUFFERSPIR = BUFFERSPIR + 1;
E¥D;
E¥D;
Fi.SE BUFFERSPTR = BUFFERSFTR + 15
L=L+ 4
END;
L=L-1
E¥D;
ELSE
N
PARANGSCAR = TRUE,

pid WHILE PARANSICAN
TF 1 = | FNCTH{RARARE DATY THFN

CALL FILESERROR(ARCSTOOSLONE , AURRTR,TRUE);
IF CHAR > 7/ AND CHAR (= LCZ
AND CHAR (> 7,7
#HD CHAR <> ‘)7 THEN
UiH
PARANSCI) .DAT(L) = CHAR:
KUFFERSPIR = RUFFERSPTR + 15
L=1+1
EHD;
ELSE PARANGSCAN = FALSE;
END;
ENDS
BUFFERSPTR = DEBLARK(RUFFERSPTR);
IF CHAR = ‘.’ THEN

i
BUFFERSPTR = BUFFERSPIR ¢ 1;
END;
ELSE
IF CHAR = 7))’ THEW
ba:

SCANNING = FALSE;
RUFFERSPTR = DERLANK(BUFFERSPTR+1);:
ExD;
ELSE CALL FILESERRORCINVALIDSSYNTAX, AUXPYR.TRUE):
PARARSCI) LERETH = L
I=1+1;
END;
END;
IF CHAR (> CR THEN CALL FILESERRORCINUALIDSSYNTAX.BUFFERSRTR,TRUE);
IF RESTDRE THEW
o
/K
CHANGE CONSDLE TO PREVIDUS FILE.
74
CALL COMSBL (. PARAKS(O) DAT, . {/:C0: 7). STATUS):
STATUS = PATH(. PARANS(0) .DAT, .PN);
IF PH(O) (= FSDEV THEM /¢ DISK FLLE 8/ /8 DD ®/
ba;
BLOCKND = . PARARS(1).DAT,
ELDCKND = SCANGINTECERC. BLOCKND;
SYTENR = _PARANS(2) .DAT:
EYTERD = SCAMSINTECER{ BYTENG);
CALL SEEK(1,SEEKSARS, .BLOCKND, .BYTEND, . STATUS);
END;
s
DELETE FILE UHICH JUST UAS THE CONSHLE.
1/
CALL DELETE(CSNARE, . STRTUS):
CAlL FILESERROR(STATUS, .CSNANE, TRUE):
END;
ELSE
1Y
g
VRITE <MACRD-FILENARE>.CS.
#/
GETSINRUT:
PROCEDURE RYTE:
DECLARE TEWP BYTE;

IF BUFFERSCOUNT = 0 THEH
1M
QUFFERSPIR = BUFFER;
CeE RFADCRSD. RIFFER.|FHRTRORNFFED) . RUFFFRERMINT . STATUSY

END;
IF BUFFERSCDUNT = O THEN RETURK ¢;
TENP = CHAR;
BUFFERSPTR = BUFFERSPTR + 1;
KUFFERGCOUNT = BUFFERSCOUNT - 15
RETURY TERPR;

END GETSINPUT;

CALL OPEN(. CSD, . CSDHANE, READSNODE, 0, . STATUD):
CALL FILESERRORCSTATUS, .CSDNANE.TRUE);
CALL DPENC.CS, .CSNAME, URITESHODE.d, STATUS):
CALL FILESERROR(STATUS, .CSNANE, TRUE) .
RUFFERSCHOURT = ¢,
PO UHILE (L:=BETSINRUT)Y OO ¢;
IF L = CONTROLSP THEM
b
L = GETSINRUT,
CALL URITE(CS, .L, 1, STATUS);
ExD;
ELSE
IF L (777 THEN €ALL URITECCS, .L.1, .STATUS);
ELSE
b
L = GETSIRPUT - ‘47
IF L > LASTC(PARANS) THEW
CALL FILESERRORCEADSPARAN, BUFFERSPTR-1. TRUE);
CALL WRITECCS, PARANSCL) DAY, PARANSCL) . LENGTH. . STATUS):
EXD;
ERD;
7
fiDD COMMAND TO RESTURE PRIOR CONSDLE.
#/
CALL CLOSE(CSD. . STATHS);
IF DERUC THER
1N
CALL URTTECES, .‘DERUE “).4.. STRTUS);
EHD.
CALL URITE(CS, NICKNANEDELINITS NICKNANE >- BICKNANE+L, STATUS);
CALL WRITECCS, (’RESTUORE 7).8,.STATUS)
CALL URITECCS, CONANE,DELINITC. CINARE)- CSHANE, . STATUR);
okl URITECCS, /(). 1, STATUS):
FH
£1 = CURRENT CONSOLE INPUT DEVICE.
#/7
CALL UHDCON(L, .CD);
CALL URITE(CS, CI,DELIMITC .CI)- CX. STATUS),
STATUS = PATRC.CI, .PN);
IF PR(O) (= FGDEV THEN /4 DD %/
biiN
PRINTSELOCKSDRSEYTE :
PROCEDURE <X);
DECLARE {X.,PTR) ADDRESS;
DECLARE EUF(8) BYTE:

EOFCEY = 7 7

CALL SRITE(CS, . (/. 7), 1, .STATUS):

CALL NURMBUT(X.10,7 7, .BUF.5);

PTR = DEBELANKC. BUF),

CALL URITE(CS.PTR.DELINIT(PIR)-FTR, . STATUS),
END PRINTSELOCKSORSRYTE:

CatlL SEEK(1,SEERSRETURN. BLOCKND. BYTEND, .STATUS);
fall PRTNTSRE NCKSNRSKYTE (REOCYNMY:

CALL PRINTSELOCKSORSEYTE (BYTERD):

ERD:

CALL URTTE(CS, . (°)/,CR.LFY.3, STATUD);

£aLl CLOSE(ES, . STATUS):

CALL CONSDLC.CSHARE,. (/:C0: %), .STATUS);
ENb;
CALL EXRIT:
E¥D;

ENF

	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	3-01
	4-01
	4-02
	4-03
	4-04
	5-01_ISISII_ERS_Jan79
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	7-00
	7-01_ISISII_V3
	7-02
	7-03_PATH
	7-04
	7-05_BUFFER
	7-06
	7-07
	7-08
	7-09
	7-10_DELETE
	7-11
	7-12_DIRECT
	7-13
	7-14
	7-15_RENAME
	7-16
	7-17_RESCAN
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30_ATTRIB
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38_CLI
	7-39
	7-40_COPY
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52_DELETE
	7-53
	7-54
	7-55_DIR
	7-56
	7-57_HEXOBJ
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63_IDISK
	7-64
	7-65
	7-66
	7-67
	7-68_OBJHEX
	7-69
	7-70
	7-71
	7-72_RENAME
	7-73
	7-74_SUBMIT
	7-75
	7-76
	7-77
	7-78
	7-79

