
MCS·86
ASSEMBLY LANGUAGE CONVERTER

OPERATING INSTRUCTIONS
FOR ISIS·II USERS

Manual Order No. 9800642A

Copyright © 1978 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 L

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE
INSITE
INTEL
INTELLEC
iSBC

LIBRARY MANAGER
MCS
MEGACHASSIS
MICROMAP
MULTIBUS

PROMPT
RMX
UPI
,.sCOPE

A30/379/10K TL

PREFACE

This manual describes how the ISIS-II user who is familiar with 8080/8085 assembly
language can convert 8080/8085 source files to 8086 assembly language source files,
which can then be assembled, linked, located, and run to perform their equivalent
8080/8085 functions on the upwardly compatible, 16-bit 8086.

Chapter 1 describes the scope and environment of conversion.

Chapter 2 describes how to operate the converter program CONV86.

Chapter 3 describes how to edit converter output to obtain MCS-86 source files.

Appendices describe the instruction, operand (expression), and directive mappings;
reserved names; and sample conversions with 8080/8085 and MCS-86 Assembler
listings of source and output files.

Although the MCS-86 Assembler (version VI.O) does not support macro or condi­
tional assemblies, Appendix F provides a method by example whereby 8080/8085
source files containing macros and conditionals can be converted to acceptable
MCS-86 source files.

The following publications contain detailed information on 8080/8085 and MCS-86
software related to this manual:

• 8080/8085 Assembly Language Programming Manual, Order No. 9800301

• ISIS-II 8080/8085 Macro Assembler Operator's Manual, Order No. 9800292

• ISIS-II User's Guide, Order No. 9800306

• MCS-86 User's Manual, Order No. 9800722

• MCS-86 Assembly Language Reference Manual, Order No. 9800640

• MCS-86 Assembler Operating Instructions for ISIS-II Users, Order No.
9800641

• MCS-86 Software Development Utilities Operating Instructions for ISIS-II
Users, Order No. 9800639

• PL/M-86 Operator's Manual for ISIS-II Users, Order No. 9800478

iii

CHAPTER 1 PAGE
AN OVERVIEW OF CONVERSION
Conversion and You. .. 1-1

What Is Conversion? 1-1
Why Convert? .. 1-1
What Preparation Does CONV86 Require of

Source Code? 1-1
What About SETs, Macros, and Conditional

Assembly Directives? 1-3
What Hardware/Software Is Needed

for Conversion? 1-3
How Much Manual Editing of CONV86

Output Is Necessary? 1-3
What Advantage Is There in Rewriting

Programs in MCS-86 Assembly Language Rather
Than Converting? 1-3

Functional Mapping. .. 1-6
What Are the MCS-86 Assembly Language

Prologues Generated by CONV86? 1-6
What If a Converted Program Exceeds 64K? 1-6
How Does CONV86 Handle the Stack? 1-7
How Are the 8080 Registers Mapped

into 8086 Registers? 1-7
How Are the 8080 Flags Mapped into 8086 Flags? .. 1-8
How Are the 8080 Instructions Mapped

into 8086 Instructions. .. 1-8
How Are 8080 Operands (Expressions) Mapped

into 8086 Operands (Expressions)? 1-8
How Are Comments Mapped? 1-9
How Are 8080/8085 Assembler Directives

Mapped into MCS-86 Assembler Directives? 1-9
How Are 8080/8085 Assembler Controls Mapped? 1-9
How Does CONV86 Handle Reserved Names? 1-9

Functional Equivalence 1-10
What Is Functional Equivalence? 1-10
What About Program Execution Time? 1-10
What Happens to Software Timing Delays

in Conversion? 1-10
Does the MCS-86 Code Produced Set Flags Exactly

as on the 8080? .. 1-10
How Does the EXACT Control Preserve

Flag Semantics? 1-11
Editing CONV86 Output for MCS-86 Assembly.. 1-12

What Output Files Does CONV86 Create? 1-12
What Are Caution Messages? 1-12
Does a Caution Message Necessarily Mean

a Manual Edit?•.................... 1-12
Do Caution Messages Identify All Manual Editing? 1-12
What Features Are Not Implemented for

the MCS-86 Assembler (V1.0)? 1-12

CONTENTS

CHAPTER 2 PAGE
OPERATING THE CONVERTER
Source File Requirements 2-1
CONV86 Controls and Defaults. 2-2
Example 1: Full Default Saves Flags and Relocatability 2-4
Example 2: Absolute Code with No Flags Saved. 2-4
Example 3: Absolute Code with Flags Saved. 2-4
Example 4: Relocatable Code with No Flags Saved ... 2-5
Example 5: Prompting and Continuation Lines 2-5
Example 6: Overriding Controls 2-5

CHAPTER 3
EDITING CONVERTER OUTPUT
Interpreting the PRINT File .. 3-1
8086 Checklist 3-2

Initializing Registers. .. 3-2
Absolute Addressing. .. 3-2
Relative Addressing 3-2
Interrupts. .. 3-3

PL/M-86 Linkage Conventions. 3-6
Case 1: When PLiM Calls. .. 3-6
Case 2: When Your Converted Program Calls. 3-7

Caution Messages 3-8
Caution Message Descriptions 3-9

APPENDIX A
INSTRUCTION MAPPING

APPENDIXB
CONVERSION OF EXPRESSIONS IN
CONTEXT

APPENDIXC
ASSEMBLER DIRECTIVES MAPPING

APPENDIXD
RESERVED NAMES

APPENDIXE
SAMPLE CONVERSION

APPENDIXF
CONVERTING MACROS AND
CONDITIONAL ASSEMBLIES

APPENDIXG
RELOCATION AND LINKAGE
ERRORS AND WARNINGS

INDEX

v

TABLE

1-1
1-2

1-3
2-1
A-I
B-1

TITLE PAGE

SOSO/SOS6 Flags Correspondence I-S
Flag Settings That Change If APPROX Is

Specified 1-11
CONVS6 Output Files 1-12
CONVS6 Controls and Defaults. 2-2
Instruction Mapping A-I
Operand Mapping B-1

FIGURE TITLE PAGE

1-1

1-2
1-3
1-4

3-1
3-2
E-l
E-2

From SOSO/SOS5 Assembly Language
Source File to SOS6 Execution 1-2

CONVS6 Input and Output Files 1-2
Sample PRINT File. .. 1-4
Program Listings: Original SOSO, Converted

SOS6, OriginalSOS6. 1-5
Annotated PRINT File. 3-1
Converting Your Interrupt Procedures. 3-4
Program Listing of SOSO Sort Routine. E-2
PRINT File of Conversion of SOSO Sort

Routine .. • E-4
E-3 Program Listing (MCS-S6) of Converted

SOSO Sort Routine. E-9

vi

TABLE

C-l

C-2

D-l
G-l

TABLES

TITLE PAGE

Directives Supported by MCS-S6
Assembler (V 1.0) .. • C-l

Directives Not Supported by MCS-S6
Assembler (V 1.0) C-2

Reserved Names. .. D-l
Relocation and Linkage Errors and

Warnings G-l

FIGURES and LISTINGS I

FIGURE

E-4

F-l

F-2
F-3

F-4

TITLE PAGE

Program Listing (MCS-S6) of Sort Routine
Coded originally in MCS-S6 Assembly

Language. .. E-ll
Annotated SOSO Macro Assembler Listing

of SOSO Macro Source File. F-2
Edited SOSO Macro Assembler Listing. F-3
PRINT File from Conversion of Edited

SOSO Macro Assembler Listing F-4
MCS-S6 Assembler (Vl.0) Listing of

Converted SOSO Macro Source File. F-6

CHAPTER 1
AN OVERVIEW OF CONVERSION

Conversion and You
What Is Conversion?

Conversion is a way for you to obtain MCS-S6 source files from your error-free
SOSO/8085 assembly-language source files. (Recall that an assembly-language source
file consists of assembler control statements, assembler directives, and assembly­
language instructions.)

Figure 1-1 shows the role of conversion in 80S0/80S5-to-8086 software development.
Conversion consists of two phases:

1. Operating the program CONV86 under ISIS-II. As shown in Figure 1-2,
CONV86 accepts as input an error-free 8080/8085 assembly-language source
file and optional controls, and produces as output optional PRINT and OUT­
PUT files. The OUTPUT file contains machine-readable 8086 assembly­
language source code generated by CONV86. The PRINT file is human­
readable and contains:

• Input 8080/8085 assembly-language source code

• Output 8086 assembly-language source code with embedded diagnostic
("caution") messages

Chapter 2 describes how to operate CONV86 under ISIS-II.

2. Manually editing (using the ISIS-II text editor) the OUTPUT file as indicated by
the caution messages in the PRINT file. Chapter 3 describes how to edit
CONV86 output according to the caution messages generated. Some machine­
dependent sequences (such as software timing delays) are not detected by
CONV86, but still require manual editing. Recall that in going from the 8080 to
the 8086, both the instruction size (length) and time (clocks) change.

Figure 1-1 shows both phases of conversion, as well as subsequent assembling, link­
ing, and (absolute) loading required for execution of your program.

Figure 1-3 shows the format of the PRINT file, and highlights features of conver­
sion discussed here and elsewhere in this manual.

Why Convert?

If you want to capitalize on your software investment in the 8080/S085, and if your
8080/8085 source files are tried-and-true, then conversion may offer you a con­
siderable head-start in your software development effort for the upwardly­
compatible 8086.

What Preparation Does CONV86 Require of Source Code?

You must ensure that all 8080/8085 source files to be converted can be assembled
without error by the ISIS-II S080/80S5 assembler. No source line can be longer than
129 characters, excluding carriage-return and line-feed. If your program contains
more than 600 symbols, you must break your program down into smaller programs
(even if you have 64K RAM).

1-1

Overview of Conversion

1-2

USER INTERFACE TOOL

SOFTWARE o ENGINEER

~:=:J=:'

filES REFERENCES

CHAPTER 2

CHAPTER 3

Mes-a6
ASSEMBLER
OPERATING

INSTRUCTIONS
FOR ISIS·II

USERS
(ORDER NO.

9800641)

Mes·a6
SOFTWARE

DEVELOPMENT
UTILITIES
FOR ISIS-II

USERS
(ORDER NO.

9800639)

Figure 1-1. From SOSO/SOS5 Assembly Language Source File to SOS6 Execution.

80BO/8085
SOURCE

FilE

MeS·86
SOURCE

WITH
CAUTIONS -

OUTPUT
FilE

(EDIT UNDER ISIS· II)

)

PRINT
FilE

(USE AS REFERENCE
TO EDIT OUTPUT FILE)

Figure 1-2. CONVS6 Input and output Files (The MCS-S6 Assembler (version
VI.O) does not support the INCLUDE control.)

CONV86

CONV86 Overview of Conversion

What About SETs, Macros and Conditional Assembly Directives?

The SET directive, macro definitions, macro calls, and conditional assembly direc­
tives are not supported by Version V 1.0 of the MCS-86 Assembler. Table C-2 in Ap­
pendix C shows how Version Vl.O of CONV86 maps these statements. When
CONV86 encounters a macro definition, macro call, or conditional assembly direc­
tive, the following caution message is issued to the PRINT file:

29 FEATURE NOT SUPPORTED FOR ASM86 V1.0

The caution message, however, should not be construed as an indication that the
mapping shown in Table C-2 will be accepted by the MCS-86 Macro Assembler. If
you want to convert your source programs containing macros and conditional direc­
tives, you can refer to Appendix F for instructions and examples regarding pre- con­
version 8080/8085 assembly and editing procedures.

What Hardware/Software Is Needed for Conversion?

You need an Intellec microcomputer development system with 64K bytes of RAM
and at least one diskette unit. The CONV86 program occupies a single diskette and
runs under ISIS-II. During execution, CONV86 creates a work file (CONV86.TMP)
which requires seven bytes for each line of 8080/8085 code processed. Upon normal
termination, CONV86 deletes this temporary file.

How Much Manual Editing of CONV86 Output Is Necessary?

Anywhere from none to a considerable amount, depending on the nature of the
8080/8085 source file. In general, the following kinds of source code are better im­
plemented on the 8086 by recoding from scratch in 8086 assembly language, rather
than by converting from 8080:

• "Tricky" code that modifies itself

• Code that uses operation mnemonics as operands (for example, the instruction
MVI C,(MOV A, B); the intent of this instruction is to load C with the opcode
for MOV A,B).

• Programs relying heavily on the 8085 instructions RIM and SIM (Read/Set
Interrupt Mask) should be recoded from scratch in 8086 rather than converted.
The 8086 has no functional counterparts for these instructions.

It is therefore recommended that source files not be blindly submitted for conver­
sion. Each source file under consideration for conversion should be carefully ex­
amined for these problem areas.

What Advantage Is There in Rewriting Programs in 8086 Assembly Language
Rather Than Converting?

CONV86 converts most 8080/8085 assembly-language source programs adequately.
You can take advantage of the more powerful 8086 by coding some routines directly
in 8086 assembly language.

For example, Figure 1-4 shows assembled program listings for:

• 8080 Assembly of BCDBIN (13 bytes 8080 object code)

• MCS-86 Assembly of Conversion of BCD BIN (22 bytes 8086 object code)

• MCS-86 Assembly of BCDMCS Original 8086 Source (7 bytes 8086 object code)
(Recall that the PRINT file for the conversion of BCDBIN is shown in Figure 1-3.)

1-3

Overview of Conversion CONV86

1-4

• 2
3
4

• 5
b

.r.-.... 7

" .. 9
~ 10 ..
0 11 .2g' 12 0.-

~i 13 · ~-; 14 .. - 15
c': 1 b .. 0 .H 17
~~

1 " ~o .. -
eg

0

../ •
•

Title from Invoking Command

;THl~ ROUTIN~ CWNVEkl'S bCU 10 LINARY AS ~OLL0kS:

i beD TE~'S DIGIT IN LOw l\I&bLI-. Or B Rf!:G.
j beD UIIIIT'5 DIGIT IN LO~ NIbbLe. OF C ~eG.
; HIGh ~lEBLlS OF b A!IID C ASSUMED 10 EE IHkELEVAhT.
j bINARi RESULT (0-99) IS LI:.fT II'< ACCI"MULA10R.

ORG 4000H
BCDbIN: NOV A,e

A'I Or' 11
Mull

" A
l'JOV A,b
AN I OFlJ
1'10 V o ,A
RLe
RLC
ADD 0
fiLe

A"D E
E~D

;UN11'S DIGI1 & GAHhAGb TO ACC.
;MASK CUT GAhBAG~

;SAVE U~I1'S DIGIT It; E (LO.)
;TEh'S ~IGIT & GARbAGt 10 ACC •
;~A~K OUT GAhBAG~

j~AVE U./II'S l.HGIr IN D (LOw)
;2*1'J:.N'S
j~·Tt.N·S

j 5*TJ:.to' S
i lOAH.N'S
; 10*l'cto;'s + LhlT'S BIN. kEF. IN ACC,.

•

•
•
• ~ Copy of Source File

•
•
•
•
•
•

)

• A~t-lbO TO AS,hbb CUJ'ojVt.HH.lt I bLD-l O-CINAk) RUOTl'E I f-----'

•
•
•

•
I ASS1.Jl'JJ:, DS: AbS_O, ('S: AoS_O

'--'---------t-----.. ~~II Ab~_O SEGM •• T bUb AT 0 t • '"1 :'THlS HC~~~~~ ('U~~~~lS bC •
• 2 ; bCi.J Ttl\;' ~ DIGII IJIi LO

• ~ ~ ~~~cl L~:i!~~E~Ig~T b I:~~{)
Sequence Numbers Correspond ""'\ __

to Source File Line Numbers ~ •
•
•
•
•

~ ; bll~Alil Rb:SULl' lO-99) IS
6 r---utl,---"ooo]ii
7 I BeLBlN: NOV AL,CC 1
b AhU AL,Ofh I
0;, I MeV DL,AL

10 I MLV AL,CH I
11 A~D AL,Ofh I
12 I MOy DIi,AL

~~ I ~~~ AL,I I
" 1 ADD ~~:~H 1

~~ 1 ~~t :~:~L I

10 1 lAbS (; ."""1.. I
~ L ___ 2"..!:. ____ -.J

•
•
•
•

I OUTPUT File , } I __ I
"-----.....,\:F1:BCDBIN.saa ~Io CAU1l01dS)1

Should Assemble
•):'hD ur A.:::.hbO 'j u

•

10 b NAk} AS fWLLOhS:
NlBB Of B HG.

NIb to Ufo' C hEG.
AS~U ED Te bE IRhELEVAhT.
LEFI ~ ACC~N~LATO~. •

jUI'IIT'S DIGIT & GAhbAGE TO A ••
jMASK OuT GARBAGB
;SAVE UHT'S DIGIT IN E (LOW ...
jTeN'~ DIGIT & GAHBAGE TO AC!P

r-....L-~.'-':"' •. ~ •. " OOT GARBAGE

:~::ku~:~~~~~s ~~N'S DIUlT IN D (LOW).

Pseudo"aOaO • S
\ I-E_nV-:1,,;-o_nm_e_n_'_-1' • S • \/ jl0*1E.JIj'S
/~ ;10*TUIj'S + lJNll"S EIN. REP. ~N

MCS-86 Assembly Language
Source Code) •

•
•

Figure 1-3. Sample PRINT File

CONV86 Overview of Conversion

4t ASHBO :Fl:BCDBIN.S60 4t

4t ISIS-II BOBO/BOB5 MACRO ASSEMbLER , V2.0 MODuLE PAGE 4t

4t LaC OBJ SK" SOURCE STATEMENT 4t

• 1 ; THIS ROUllNE CONVERTS bCD TO BINARl AS FOLLO.S:
4t 2 BCD TEN'S DIGIT IN LOW NI~bLb OF B REG.

3 BCD UNIT'S DIGIT IN LO. NIbBLE OF C REG.

• 4 ~~~~R~I:~~~~TO~0~9!~OI; ~i~~M~~ !~ce:ui:~~~~VANT~ 5
0000 6 ORG 4000H

4t
4000 79 7 bCDtilN: HOV A,C i~:;~'~u~I~!~a:G;ARBAGE TO lela
4001 E60F b ANI on
4003 SF 9 MOV E,A iSAVE UNIt'S DIGIT IN ~ (LOW)

4t
4004 7B 10 kOV A,B ;~!~;SO~~G~!R:Ag~RBAGE TO ACC ..
4005 E60F 11 UI O,'M
4007 57 12 HOY D,A ;SA~E. T~~ts DIGIT IN D (La.)

4t
400b 07 13 RLC ;2e lJ::.h'S 4t 4009 07 14 RLC ;4·TEN'S
400A 62 15 ADD 0 ;5·1'Eall'S

4t
400B 07 16 RLC ;10e 'l:.E;H'S • 400C b3 17 ADD i 10-Tl!:N' S + Ut-IIT'S BIH. hEP.

lB bND

4t ASSEHBL~ COMPLETE, Ih.O~E.R.RO.R.S .. 4t""IIIIIIIIII~~
4t

•

MlS-&6 ASSEMBLER BCDBlh

ISIS-II hCS-b6 ASSEMBLER Y1.0 ASSbMBLI OF MODuLE 5~DBIN

.. ~~;~~!L~~D~~~0~~~C~~:I:S~~~:~~~~~~D~~~.S86 PRINT(:F1:B"DBIN.L86)

4t
LOC OBJ LlhE SOURCE

1 ASSUME DS:ABS_O,CS:ABS_O

4t
2 A5S_0 SEGMEhT BITE AT 0

0000 3 M LABEL BYTE
4 ; THIS ROUTINE CONVERTS BCD TO 51

4t
5 BCD TEN'S DIGIT Ih LOh NIB
b B'D UNIT'S DIGIT IN La. NIB
7 HIGH NIBbL~S OF BAND C ASSUM

4t
b bINUI RhSULT (0-99) IS LEFT IN

4000 !I ORG 4000H
4000 bAC1 10 BCOBIN : HOY AL,CL

• 4002 240~' 11 AND AL,OFh
4004 BADO 12 MOV DL,AL
4006 8AC5 13 HOV AL,Lh

4t
400b 240~' 14 AN~ AL,DFh
400A bAFO 15 hOY DH,AL
4 DOC DOCO 16 ROL AL,l .. 400E DOCO 17 ROL AL,l
~O 10 0?C6 1B ADD AL,DH
4012 DOCO 19 HOL AL,l

4t
4014 02C2 20 ADD AL,DL

21 Ab~_O UDS
22 END

ASSEHB~I COM.LETE, hO ERRORS FOUND

1~lb-l1 MCS-&6 ASSEkbL~R Vl.O a~~EHbLl OF MULDL~ bCDMC~
0bJ,bCT NGllDLE t'LACl:.v 11'-4 :t'1 :.bCDt-ll,S.OLJ
ASS~MbLI:.~ l~~UKED bl: ASM~b :rl:bCD~CS.~Ob t'H1~lt:~1:bCDMLS.Lb6)

LUC 0BJ Ll~.I!. S(;unCE.

ASSlJN.b. lJE.: AhS_D I CS: ABS_O
AbS_O St.Gl-Jht.I BilO Ai 0

4000 OR(, 400011
j lhiS RGuII~t:. ASS1.Jr-il~.S TEt-l'S LlGIl' IN eM Hi>G. LO~ hlBBLE

4000
400.2
1.1005

l.J~jlT' .5 DIGlT a lL REG. LO.
GAkhAGE. e.LSE~HEli.E

; 1hl.5 HOuIl'" f'LACt::~ blillAl-n: HEJ?RF.SEhlAlI01~ (0-99)
bbC 1 U l"jOV Ax,(.} ..
.2501' OF ~ t..1 .. D Ai.., Ofo 01' h
L5DA 10 AA1 jAL <-- 10tl-Ah + AL

11 1OS_O el~l.J~

1" bND

Figure 1-4. Program Listings: Original 8080 (top);
Converted 8080 (middle); Original 8086 (bottom)

Nl£BU

IN AL

1-5

Overview of Conversion

1-6

Functional Mapping
What Are the 8086 Assembly Language Prologues Generated by CONV86?

The main source file of your SOSO/SOS5 program should be converted using the
(defaulted) control NOTINCLUDED. If NOTINCLUDED is in effect, the con­
verted file begins with a converter-generated prologue. The prologue generated by
the converter depends on whether the ABS or REL control is specified when
CONVS6 is run (REL is the default).

If the ABS control is specified (for subsequent absolute loading by SOS6 reiocation
and linkage), CONVS6 generates as a prologue:

ASSUME DS:ABS_O,CS:ABS_O
ABS_O SEGMENT BYTE AT °
M LABEL BYTE

If the REL control is specified (for converting SOSO/SOS5 source files with
relocatability features, and/or for subsequent linking to PL/M-S6 modules)
CONVS6 generates as a prologue:

CGROUP
DGROUP

CODE
CODE
CONST
CONST
DATA

GROUP
GROUP
ASSUME
SEGMENT
ENDS
SEGMENT
ENDS

ABS_O,CODE,CONST,DATA,STACK,MEMORY
ABS_O,CODE,CONST, OAT A,STACK, MEMORY
DS:DGROUP,CS:CGROUP,SS:DGROUP
WORD PUBLIC 'CODE'

WORD PUBLIC 'CONST'

SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
STACK SEGMENT WORD STACK 'STACK'

DB N DUP(?)
STACK_BASE LABEL BYTE
STACK ENDS
MEMORY
MEMORY_
MEMORY
ABS_O

SEGMENT WORD MEMORY 'MEMORY'
LABEL BYTE
ENDS
SEGMENT BYTEATO

M LABEL BYTE

where N in the STACK segment corresponds to the operand of the S080 STKLN
directive.

These statements help to set up a pseudo-8080 environment, since an S086 segment
cannot exceed 64K bytes. The register mappings help to complete the pseudo-8080
environment.

NOTE

If more than one module is linked, multiple ABS_O segments will cause
QRL86 and LINK86 to issue error messages concerning SEGMENT
OVERLAP. These errors are nonfatal and can be ignored, but you should
check your 8080 ASEG (now the S086 ABS_O segment) to make sure that
you intend the overlap to occur. See Appendix G for further details.

What If a Converted Program Exceeds 64K?

If your 8080 object file exceeds 50K bytes, then there is a chance that your converted
source file, when assembled, will exceed 64K bytes and therefore will be too large to

CONV86

CONV86 Overview of Conversion

fit into a single 8086 segment. (To determine this, you must first convert your 8080
source file, including required manual editing of 8086 source code, and then assem­
ble under the MCS-86 Assembler. An error message will inform you if the resulting
MCS-86 object file exceeds 64K bytes.)

If your converted program exceeds 64K bytes, you must reorganize your MCS-86
source code into two or more segments, or else optimize your converted program (by
recoding portions directly in more efficient MCS-86 source code).

To reorganize your converted program into two or more segments, you will need to
change the GROUP, SEGMENT, and ASSUME assembler directives as described in
the manual, MCS-86 Assembly Language Reference Manual, Order No. 9800640.

If you need to reorganize your converted program, you can place your data in one
segment or group based at absolute location 0, and place your code in another seg­
ment or group located above the data segment (or group). You should pay particular
attention to absolute addresses and pointers (address values stored as data) in this
case, to ensure that your program accesses its data as originally intended.

How Does CONV86 Handle the Stack?

"STKLN" is converted to "DB n DUP(?)" in the STACK segment, where n is taken
from the operand of STKLN. The reserved name STACK is converted to
STACIL-BASE. (See also "Initializing Registers" under "8086 Checklist" in
Chapter 3.)

How Are the 808018085 Registers Mapped into 8086 Registers?

Byte registers are mapped as follows:

8080/8085 8086

A AL
B CH
C CL
0 OH
E OL
H BH
L BL

Word registers are mapp~d as follows:

8080/8085 8086

PSW AX
B CX
0 OX
H BX

SP SP
\

1-7

Overview of Conversion

1-8

How Are the 8080 Flags Mapped into the 8086 Flags?

The SO SO flags correspond to a subset 1 of the SOS6 flags as shown in Table 1-1 :

Table 1-1. S080-8086 Flag Correspondence

Flag Name 8080 8086
Designation Designation

Auxiliary-carry AC AF

Carry C CF

Zero Z ZF

Sign S SF

Parity P PF

1. Four 8086 flags do not concern us here: OF (direction), IF (interrupt-enable), OF (overflow),
and TF (trap).

How Are 8080/8085 Instructions Mapped into 8086 Instructions?

Appendix A shows how all instructions are mapped. But first, consider that it is not
enough simply to map an SO SO instruction mnemonic directly into an SOS6 instruc­
tion mnemonic, because the instruction operands must be examined as well.

How Are 8080 Operands (Expressions) Converted to 8086 Operands (Expressions)?

SOS6 Assembly Language is a typed language, whereas SOSO/SOS5 is not. Thus,
CONVS6 must assign a type-BYTE, WORD, or NEAR-to each symbol en­
countered in your SOSO/SOS5 source file. Each symbol is typed according to its most
frequent usage. After each symbol has been assigned a type (at the end of the first
pass of CONVS6), CONVS6 can explicitly override the type in SOS6 source code
when necessary.

Appendix B describes the conversion of SOSO expressions into SOS6 expressions as a
function of the context and the operand or expression type. For example, during its
first pass in converting your· SO SO source file, CONVS6 may find the symbol
LASZLO used in three different contexts:

8080

LOA LASZLO ;Ioad accumulator with byte at LASZLO

LHLO LASZLO ;Ioad (H,L) with word at LASZLO

JMP LASZLO ;jump to symbolic location LASZLO

Since all three usages of the same symbol are permitted in SOSO/SOS5 assembly
language, but since SOS6 assembly language permits a symbol to be of only one
type-BYTE, WORD, or NEAR-then CONVS6 must assign a single type to

CONV86

CONV86 Overview of Conversion

LASZLO. In this case, LASZLO is assigned type BYTE, and the remaining two
occurrences of LASZLO are overridden as follows:

8086

MOV AL, LASZLO

MOV BX,WORD PTR(LASZLO)

JMP NEAR PTR(LASZLO)

How Are Comments Mapped?

Comments are mapped unchanged.

;Ioad AL with byte at LASZLO

;Ioad BX with word at LASZLO

;jump to symbolic location LASZLO

How Are 808018085 Assembler Directives Mapped Into 8086 Assembler
Directives?

Appendix C shows the assembler directive mapping. (Recall that the MCS-S6
Assembler (version V1.0) does not support macro or conditional directives, or the
SET directive.)

Table C-I shows the mapping of directives supported by the MCS-S6 Assembler
(version VI.O).

Table C-2 shows a pseudo-mapping of directives not supported by version VI.O, and
should notbe construed as a specification of MCS-S6 Macro Assembler directives.

Operands (expressions) of all directives (whether supported or not) are mapped ac­
cording to Appendix B.

How Are 808018085 Assembler Controls Mapped?

CONVS6 deletes the MODS5 and NOMACROFILE controls, and issues correspon­
ding caution messages.

The MACROFILE (:Fn:) control is converted to WORKFILES(:Fs:, :Fn:), where
:Fs: is the diskette on which the source file resides. All other SOSO/SOS5 assembler
controls are copied unchanged to the SOS6 source file.

The only SOSO/SOS5 assembler control interpreted by the converter is the INCLUDE
control, which causes included files to be processed in the first pass. Included files
are neither listed nor converted when the main source file is converted; they are pro­
cessed in order to evaluate symbol definitions and attributes. The maximum nesting
level for included files is four.

NOTE

The MCS-S6 Assembler (version VI.O) does not support the INCLUDE
control. CONVS6 supports the INCLUDE control as described above.

How Does CONV86 Handle 8086 Reserved Names?

Whenever CONVS6 encounters an SOS6 reserved name (such as AL, TEST, or
LOOP) in an SOSO/S085 source file, CONV86 appends an underscore to the name
(thus obtaining AL_, TEST_, or LOOP _). The only exception to this rule is

1-9

Overview of Conversion

1-10

STACK, which is converted to STACIL-BASE. As a result, you don't need to be
concerned about any SOS6 reserved names that might be hiding in your SOSO/SOS5
source files. Appendix D gives a complete list of SOS6 reserved names.

Functional Equivalence

What Is Functional Equivalence?

The ideal conversion results in total functional equivalence, which means that the
converted SOS6 source file, when assembled, linked, located, and run, performs the
equivalent function of the input SOSO/SOS5 source file.

CONVS6 cannot infer the intent of your source program.

While CONVS6 cannot usually achieve total 1 functional equivalence on a per- pro­
gram basis, CONVS6 can, in almost every instance, achieve functional equivalence
on a line-by-line basis. This means that CONVS6 attempts to "map" each
SOSO/SOS5 instruction, directive, or control into its SOS6 counterpart, if it exists.

Using the instruction mapping of Appendix A, the operand (expression) mapping of
Appendix B, and the directive mapping of Appendix C, CONVS6 achieves line-by­
line functional equivalence. Problems encountered in achieving program functional
equivalence arise from:

• Symbol-typing ambiguities - overridden symbol types might not yield the
desired SOS6 source code. CONVS6 flags potential problems of this sort with
caution messages.

• Machine-dependent sequences, such as software timing delays or other
sequences which depend on instruction length or clock periods.

What About Program Execution Time?

The SOS6 assembly-language instructions produced by CONVS6 require, in general,
more clock periods than did the original 8080/S085 instructions. Thus, the 8086
code produced is less efficient in terms of instruction cycles. However, since the 8086
can be driven by a faster clock, this loss of instruction-cycle efficiency is offset.

What Happens to Software Timing Delays in Conversion?

You should examine the S086 code derived from timing delay loops. Then, taking in­
to consideration the number of cycles for each 8086 instruction involved, as well as
the bandwidth (frequency) of your 8086 clock, you can manually edit the 8086
source code to preserve your timing delays. You should also take into account the
S086 instruction queue (pipeline), which contains six prefetched bytes of in-line
code.

Does the 8086 Code Produced Set Flags Exactly as on the 8080?

Yes, unless you specify the APPROX control when you run CONV86. Table 1-2
shows the five 8080 instructions whose 8086 counterparts set flags differently if AP­
PROX is specified. The EXACT control (a default) forces all flag settings to be
preserved.

ITotal functional equivalence on a per-program basis would constrain instruction sequence sizes and
clocks to be preserved.

CONV86

CONV86 Overview of Conversion

Table 1-2. Flag Settings That Change If APPROX Is Specified

Source Equivalent
8080 8080 Flags Affected 8086 8086 Flags Affected

Instruction Instruction

DAD CY ADD BX,_ AF,CF,PF,SF,ZF

INX none INC AF,PF,SF,ZF

DCX none DEC AF,PF,SF,ZF

PUSH PSW none; saved in stack PUSH AX none

POPPSW Z,S,P,CY,AC POP AX [SEE NOTE 1]

[NOTE1: No flags are set if APPROX is specified. EXACT sets AF, CF, PF, SF, and ZF (but not
OF).]

How Does the EXACT Control Preserve Flag Semantics?

By inserting the LAHF (load AH with flags) and SAHF (store flags from AH) in­
structions before and after the 8086 counterpart of the 8080 instruction being con­
verted. For example, the 8080 instruction INX B increments the 16-bit register-pair
(B,C) without affecting any 8080/8085 flags, whereas the 8086 instruction INC CX
not only increments the 16-bit register CX on the 8086, but also can affect four rele­
vant flags:

• Auxiliary-carry flag (AF)

• Parity fLag (PF)

• Sign flag (SF)

• Zero flag (ZF)

If your program is not concerned with these flag settings, then the APPROX mapp­
ing will suffice:

8080 8086
INXB~APPROX~INCCX

However, if your program flow depends on the settings of any of the four flags men­
tioned, you will want to ensure that in your 8086 program, these flags are saved
before INC CX is executed, and restored after INC CX is executed. The EXACT
control does this for you as follows:

8080 8086
INX B--(EXACT~ LAHF

INCCX
SAHF

COMMENTS
;Ioad flags into AH

;store flags from AH

Similar flag-preserving code results from EXACT conversion of the 8080/8085 in­
structions DCX, DAD, PUSH PSW and POP PSW.

When in doubt, let CONV86 default to the EXACT control. More 8086 source code
is generated than for APPROX, but the code can be counted on to preserve the flag­
setting semantics of your 8080/8085 program.

1-11

Overview of Conversion

1-12

Editing CONV86 Output for 8086 Assembly

What Output Files Does CONV86 Create?

Table 1-3 shows CONV86 output files, their default extensions, and uses.

Table 1-3. CONV86 Output Files

File Designation in
Default File-Name Contents and Use

Invoking Command

OUTPUT :Fs:source.A86 Machine-readable 8086 source file; to be
manually edited according to caution
messages in PRINT file.

PRINT :Fs:source.LST 1) Copy of 8080/8085 source.

2) Human-readable 8086 source file with
embedded caution messages for
manually editing OUTPUT file.

What Are Caution Messages?

In general, CONV86 issues a caution message when it detects a potential problem in
the converted 8086 source code. Caution messages can alert you to possible symbol
type ambiguities, such as a symbol used both as a byte and a word, or to possible dis­
placed references, such as JMP $ + (exp). In the latter case, the displacement (exp)
usually increases in going from the 8080 to the 8086. Chapter 3 describes caution
messages and identifies what, if anything, you need to do to your SOS6 source file.

Does a Caution Message Necessarily Mean a Manual Edit?

No. In some instances, such as displaced references, CONVS6 cannot be sure if an
error exists. In other instances, such as MODS5 CONTROL DELETED, the con­
verter is simply informing you of a deliberately omitted source file line. Never­
theless, all caution messages and the lilies to which they apply demand scrutiny.

Do Caution Messages Identify All Manual Editing?

No. Since CONVS6 cannot infer the intent of a source program, you must be the
final judge as to whether the 80S6 source code produced will do a satisfactory job. In
particular, you should be alert to machine-dependent sequences of instructions,
bearing in mind that instruction sizes (lengths) and execution time (clocks) will
change in going from the 80S0/S0S5 to the S086.

What Features Are Not Implemented for the MCS-86 Assembler (version VI.O)?

These features are not implemented for the MCS-S6 Assembler (version VI.O):

• The SET directive.

• Macros and/or conditional assembly directives (IF, ELSE, ELSE IF, ENDIF)
can be successfully converted using CONVS6, but the MCS-86 Assembler (ver­
sion VI.O) does not support macro or conditional assembly.

• Programs using assembler controls can be converted successfully, but the
MCS-86 Assembler (version V 1.0) does not support assembler control
statements. (In particular, no INCLUDE files are permitted.)

Appendix C shows directive mappings.

You can, however, convert SOSO source files containing macros, macro calls, and
conditional assemblies by following the procedure and example given in Appendix
F. SETs having constants as operands can be replaced by EQUs in your 80S6 source
file as described under Caution Message 26 in Chapter 3.

CONV86

CHAPTER 2
OPERATING THE CONVERTER

Before operating the converter program CONVS6, you should ensure that the main
source file and all included source files meet the following requirements:

1. The source file must be capable of being assembled without errors by the ISIS-II
SOSO/SOS5 Assembler.

2. Diskettes containing files INCLUDEd by the main source file must be mounted
on their indicated diskette drives.

3. The maximum source line length is 129 characters, not including carriage­
return and line-feed characters. Longer lines are converted to comments and
flagged with a caution message.

4. The maximum number of symbols allowed per conversion is approximately 600.
Programs having more than 600 symbols must be divided into smaller pro­
grams.

5. Your source file must not contain assembler controls or any of the following
SO SO assembler directives:

• The SET directive.

• Macro definition or macro statements, including MACRO, NUL, LOCAL,
REPT, IRP, IRPC, EXITM, ENDM, and macro calls.

• Conditional assembly directives, including IF, ELSE, ENDIF.

These statements are not supported by version V1.0 of the MCS-S6 Assembler.
Appendix F shows how to convert SOSO/SOS5 source files that contain macros
and conditionals.

If the above requirements are met, you can invoke the converter under ISIS-II by
entering the command:

:Fn:CONV86 source controls

where source is the name of the file to be converted, and controls are as described in
Table 2-1.

2-1

Operating the Converter

2-2

Table 2-1. CONV86 Controls and Defaults

CONTROLS DEFAULTS

PRINT(path-name) I NOPRINT PRINT(:Fs:source.LST)

OUTPUT(path-name) I NOOUTPUT OUTPUT(:Fs:source.A86)

DATE('date') DATE(' ')

TITLE(,title') TITLE(, ')

PAGELENGTH(n) I NOPAGING PAGELENGTH(60)

PAGEWIDTH(n) PAGEWIDTH(120)

EXACT I APPROX EXACT

INCLUDED I NOTINCLUDED NOTINCLUDED

ABS/REL REL

WORKFILES(:Fn:) WORKFILES(:Fs:)

where:

Fs

specifies the diskette unit on which the source file resides.

PRINT

specifies an ISIS-II path-name (file or device designation) for a copy of
your SOSO/S085 source code together with generated SOS6 source code
and embedded caution messages.

NOPRINT

specifies that the PRINT file is not to be created.

OUTPUT

specifies an ISIS-II path-name for the output SOS6 source code. Refer to
Table 1-3, "CONVS6 Output Files."

NOOUTPUT

specifies that the OUTPUT file is not to be created.

DATE

specifies a date (or other information) of up to nine characters to be
printed in the page header of the PRINT file.

TITLE

specifies a title (or other information) of up to 40 characters to be printed
in the page header of the PRINT file.

CONV86

CONV86 Operating the Converter

PAGELENGTH(n)

specifies the number of lines per output page in the PRINT file. The
minimum is four lines per page; there is no effective maximum.

PAGEWIDTH(n)

specifies the number of characters per output line in the PRINT file. The
miniumum is 60 characters per line; there is no effective maximum.

EXACT

specifies that full flag-setting semantics are to be preserved in conver­
sion. This control affects conversion of the DAD, DCX, INX, POP
PSW, and PUSH PSW.

APPROX

specifies that full flag-setting semantics are not to be preserved for the in­
structions DAD, DCX, INX, POP PSW, and PUSH PSW. Refer to
Chapter 1, "Functional Equivalence," for a description of flag preserva­
tion.

INCLUDED

specifies that this module is included in another module for assembly.
This control suppresses generation of a standard prologue.

NOTINCLUDED

REL

ABS

specifies that this module is not included in another module for
assembly. The converter therefore generates a standard prologue. Refer
to Chapter 1, "Functional Mapping," for a description of prologues.

specifies that this module will subsequently be assembled in relocatable
format andlor linked to a PLlM-86 module. If REL and NOTINCLUD­
ED are both specified or defaulted to (both are defaults), the standard
prologue generated is compatible with PLlM-86, and informs the con­
verter that 8080 relocation capabilities are present in the source file and
must be mapped into 8086 relocation features. See "Functional Mapp­
ing" in Chapter 1.

specifies that this module is absolute and not relocatable (and hence not
to be linked to a PLlM-86 module). If ABS and NOTINCLUDED are
both in effect (NOTINCLUDED is a default), then the standard pro­
logue generated is not compatible with PLlM-86, but is compatible with
other 8086 assemblies. See "Functional Mapping" in Chapter 1 for a
description of standard prologues.

WORKFILES(:Fn:)

specifies that the single, temporary workfile CONV86. TMP is to be
created on (and subsequently deleted from) diskette unit :Fn:, where n
defaults to the source file diskette unit number if the WORKFILES con­
trol is omitted. The single workfile created (the plural WORKFILES is
used for consistency with other programs) requires seven (7) bytes for
each source line.

2-3

Operating the Converter

2-4

NOPAGING

specifies no forms control and is equivalent to PAGELENGTH (65535).

Examples

Example 1-1. Full Default Saves Flags and Relocatability

Suppose CONV86 resides on diskette unit 0, and that the program to be converted is
named MY ASM.A80 and resides on diskette unit 1. Then the command:

CONV86 :F1:MYASM.A80

invokes the converter and results in the following controls:

• The 8080 source file and 8086 source file with embedded cautions are written to
the file :F1 :MY ASM.LST

• The converted file (without embedded caution messages) is placed in the file
:F1 :MYASM.A86

• Blanks appear in the title and date fields of page headers.

• Page lengths default to 60 lines per page.

• Page widths (line lengths) default to 120 characters, not including
carriage-return or line-feed.

• Flag-setting semantics are preserved for all instructions.

• The prologue generated in the OUTPUT file :F1 :MYASM.A86 will cause the
MCS-86 Assembler to generate relocatable object modules suitable for linking
with other assemblies or PLlM-86 object modules.

• The temporary workfile CONV86.TMP is created on, and deleted from,
diskette unit 1, the default.

Example 2: Absolute Code with No Flags Saved

If, in Example 1, you had entered the command:

CONV86 :F1 :MYASM.A80 ABS APPROX

then the results would differ as follows:

• Full flag-setting semantics are not preserved for DAD, DCX, INX, PUSH
PSW, or POP PSW.

• A standard 8086 assembly language absolute prologue is generated in the
converted code. This prologue is not compatible with PLlM-86, but is compati­
ble with other 8086 assemblies. Your MCS-86 Assembler object file will not be
relocatable.

Example 3: Absolute Code with Flags Saved

The invoking command:

CONV86 :F1 :MYASM.A80 ABS

generates an absolute prologue, and defaults to EXACT.

CONV86

CONV86 Operating the Converter

Example 4: Relocatable Code with No Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 APPROX

does not preserve flag semantics for the five instructions just mentioned, and
defaults to REL.

NOTE

In the following examples, the double asterisks (* *) indicating prompting
are generated internally, and not by the user.

Example 5: Prompting and Continuation Lines

You need not enter the entire invoking command on a single line. If you wish to con­
tinue the command on one or more subsequent lines, you must enter an ampersand
(&) as the last character of the current line. Characters entered following the amper­
sand and preceding the carriage-return are comments; they are echoed by CONV86
in the PRINT file header but are not processed. The converter then prompts for
more command input with a double asterisk:

CONV86 :F1 :MYASM.A80 & source file is MYASM.A80 on disk drive 1

** DATE('10/5/78') & date cannot exceed 9 chars. excluding quotes

** TITLE(,CONVERSION TEST 39, PROJECT AXOLOTL') & 40 chars.

The date and title are included in the PRINT file headers as shown in Figure 1-3,
Chapter 1. The remaining controls default as in Example 1.

Example 6: Overriding Controls

It may happen that you have entered a control incorrectly, or for some other reason
wish to override a previously entered control. You can override any previously
entered controls so long as prompting is in effect. Suppose you have entered the
following:

CONV86 :F1 :MYASM.80 &

** DATE('10/5/39') &

** TITLE(,CONVERSION TEST 78, PROJECT AXOLOTL') &

If you happen to notice at this point that the wrong information has been entered -
that is, the 39 and 78 have been interchanged, there is no problem, since prompting
is still in effect. On subsequent continuation lines, you can enter:

** DATE('10/5/78') &

** TITLE(,CONVERSION TEST 39, PROJECT AXOLOTL') &

**

Controls can be entered in any order and overridden in any order as many times as
necessary. For this reason, it is good practice to end every line with an unquoted
ampersand. When you are satisfied that the controls are correct, you can end the
command with the last line consisting of a lone carriage return.

2-5

CHAPTER 3
EDITING CONVERTER OUTPUT

•

After you have run CONV86 and it has terminated normally, you should examine
the PRINT file. As shown in Figure 3-1, the PRINT file consists of:

• A copy of the 8080/8085 assembly-language source file
• MCS-86 assembly-language source code with embedded caution messages
Using the PRINT file as a reference, you can manually edit the OUTPUT file to ob­
tain 8086 source code that can be assembled by the MCS-86 Assembler.

•
•

l::.lS-11 A~MbO 10 A!:>hbb c..()Jljvf.kSl()l~ OF FILl::. :1' 1 :Ellt.S('H.~bo

41 ~~~~~h~~~ce~.~~I~~~~~~~:~7·~b6 •
CONHib :Fl:bINSCh.,sI.HJ & dObO source file

• ~~~'~~~'~~';'~~~~~~~h~~~~! ~O~~~~~!O~o~~~e c~~~~ons ~
l11LJ!.l 'bQbQ binary Search Routine') 6; 3~ cr,ar max
AbS ~ aon't need relocatability or ~L/h-bb interf'ace

• AI-'pk01 & cionft neeo flags preserved

r-------------~------~----------------~

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1
2
3
4
5
6
7
6
9

10
11
12
13
14
15
1 L
17
18
1,
20
21
22
23
24
';::l
2b
C7
2~

29
30
31
32
3 j
34
35
36
37
3"

;bl~ARl S1ARCh ~OL11~E
; E R1G. LO~lAlhS SbARCb AhGU~bNl

If NOPAGING has not been requested in the invoking statement, each page
begins with a heading. The title and date (or blanks) printed in the heading are
taken from the TITLE and DATE controls, if specified, of the invocation com~
mand. The top of the first page shows the name of the file being converted, the
name of the OUTPUT file, and the invoking command.

j DREG. CuNTAlhS lAbLe LENGTh (1-2~5)

hL REG. POINT
jhb,sLlLIS -- IF A _I A~hbU Iv A':"hLb CUI\vr.h'lt.h

If A

./

•
GhG 1000h

SLrlG: I'jVl C,O
h01v A,D
ALL C
hAH

b, A
L
$+4
h
L,A
A,h
E
La ;

he'V
.01

J'C
HR
I"JOV
!'tu\l
CNP
JC
JZ
f'IGV
JI"IF

HATCh

1'10\1
Su b
JNC
LCn
/'"10\1
M;\I
SUb
Cf!
JiIll:.

hOff:.: !'IVl
!i.E-I

r-,ATCH: bVI
HET

E'"

Ii,l:
,+4
C, b
A,L
b
:;'+4
H
L ,A
h,L
C
1
SCRG+
A,O

A,1

•
•
•
•
•
•

•
•
•
•
•

I
,
4
')

o
7
o ,

10
11
1.2
1 i
14
b
1 b
17
1 e
19
<0
< 1
(:,2-

d
<,
2')

26
27
2b 2, ,0
j 1
3<
j)

34

0000 t,inary l.outine

j PI The line number is shown In columns 1-5. The statement Itself begins in column 9 with tab settings I ; I every 8 columns thereafter for label. operation (mnemonic), operand(s), and comments fields. II
; ~~nt~n~~~ 1i~~s-1.~~elg!n ~i~h ~ ~!p,--h:n l'! :nr1c~lumn 7 of the next line and resume In column 25. La
j.ht.SLLlS -- IF Pi ht.G. = 1, Tht.h b ht.LI. =l.hJJt.}. G1' 0. AhG. H. 'lAbLr. (0-25
j H A liM ... = 0, Tnl.!.. SI:.J.ihCh hiiGLml:.Nl r.Gl J.<'(:uNiJ. • lihG 10(;01-.

bOv CL,O
AL,Dh
1IL,CL
AL,l
Cb,b.L
AL,tL
SiJOi1T L_1
th

bL,AL
AL,MLbAJ
AL,LL
'::'J-lOhl L0

Shun'! J'lAICH
Lh,CH
.::)hGhl L_<::
CL,Cb
AL,LL
AL,Ce
ShGIi'I
bh
LL,hL
.4.L,1.Ih
1'.L, lL
ilL, 1
L_4
AL,O

j':',cl Ll.d,~1i l!'(,~A LIL17 10 ()

~~~~'lL~~~~L~U~:L~ :~C~~lLHlli 
[>,11-\,j\). l.h hilJ.GE 

~~~~~ ~~~~~~A h~~h~~~D~~ ~~.b~f. • 
;~L ~hhRk lU 0~IP H

;hc~~L~L L--bL NG~ ~()I~T 10
;L0A~ ~1_Ah fRLh lAlL~

;~~I:'C ~~'~u~~A~~~h A~~? GREATf.Fi •

;l-ES, b.tl.lLb rlul.L
jNu, SCulJh'l l..l".idl J.~ LES::' • ;CU1nr.nT I~LSX b~C01lb~ LG~.r.R IN
;hcS~l nL Ie StAhl
; ufO '1 ht.Ll! • ;~u CAhhl 10 ~hl~ h

;hE..::>t.l L • jLh.r.Ch l~ Ll~ll~ Llft'~R b) 1

• ;D1FiShLhCt.>1 0C E~~tAl lA~Lt S
;h~luh~ A~ 0 = ~01 fO~~D • j~ hA'ICh: J"lU\I AL,l jnE.lldi~ AS 1 = l'GLrdJ

3l.l RE.T • • [[II AoS_O Ej~lJS

.................... / 1141 .~~~~ .1~T~~-~~c~O~N~v-8-6-p~R~,N~T--lis-t-in-g-.-n~d-s-w~it~h-a-c-o-u-nt--of-t-h-.-n-u-m~~-r-O-f-c-a-ut-io-n':1
~ .-- messages generated (including multiple occurrences of the same caution V ·1 ° (, A (; II U l~ l S) message) and an end-ol-converslon message.

.r.l~JJ ut' iI..)hbO 10 A':-ll06 C{;I~ljJ.<..h.slC.d~1

•
•

The source and converted files are listed separately. Each line in the converted
listing is numbered the same as the source line from which it was derived. This
means that:

The standard prologue (whether resulting from the PLM or ASS control) has
no line numbers

• If the same input line is converted to several output lines, each output line
has the same number as the input line

Embedded caution messages are generated only in the 8086 code for the PRINT
file and immediately follow the lines to which they apply. (The only exception to
this is Caution Message No. 10, which applies to symbols defined in included
files. Caution Message No. 10 appears at the end of the 8086 PRINT listing.)
Caution messages do not appear in the OUTPUT file.

Figure 3-1. Annotated PRINT File

3-1

Editing Converter Output

3-2

8086 Checklist

Caution messages and the modifications they may require are described later in this
chapter. This section provides a list of items that you should check yourself.

1. Initializing Registers. Before your converted program can be assembled for
subsequent linking, locating, and execution, you must insert register initializa­
tion code at the entry point to your main program. The register initialization
code that you insert must be the first sequence of instructions executed by your
program. If you omit this code from your main program, neither the segment
registers nor the stack pointer (SP) can be depended on to contain meaningful
data, and the results are unpredictable.

The code that you insert follows. Note that expr should not be coded verbatim;
what you substitute for expr depends on whether you converted using the ABS
or REL control (REL is the default), and how your 8080/8085 program
initialized SP.

mainentrypoint: CLI ;First instruction to be executed in your main program

where:

MOV AX,CS ;Use CS to initialize:
MOV DS,AX ; -data segment register
MOV ES,AX ; -extra segment register
MOV SS,AX ; -stack segment register
LEA SP, expr ;see below for what to code for expr
STI ;Enable interrupts

main en try point is the symbolic location of the first instruction to be executed
in your main program. If, in your original 8080 program
development, you used the 8080 LOCATE control
RESTARTO (to have the locater insert code to jump to the en­
try point of your main module when the 8080 was reset), the
corresponding QRL86 and LOC86 control is BOOTSTRAP.

expr is STACK_BASE if you converted using the REL control
and your original 8080 program used the STKLN directive to
set the stack size.

Otherwise expr is a constant, expression, or program label
that your original 8080 program used to set SP. For constants
or expressions, you should check that these values are really
what you want.

You should check every instance in your program where SP is loaded to ensure
that the stack reinitialization has the intended effect in your converted program.

2. Absolute Addressing. Absolute addresses should be checked for correctness.
This includes ORGs in the absolute segment, LHLD and LDA from a constant
location, and immediate operations such as LXI whose constant operands
represent addresses. Remember that 8086 instruction lengths are generally dif­
ferent from those of their 8080/8085 counterparts.

3. Relative Addressing. Relative addressing should.be checked, since the number
of bytes between instructions will in general increase in going from 8080/8085 to
8086. In some instances, CONV86 generates and inserts a label of the form
L_n for a displaced reference, as in the following:

CONV86

CONV86 Editing Converter Output

7
I..
SI

10
1 1
1 ;:
1 j

t:-

3
4
5

hl;\i
J 1'11:'

Dt
DE
D~.

D~.

hOT

8080 Source MCS-86 (CONV86-Generated) PRINT File

hO\! 0,b ~ t'lU v Dh,('h
J Hi' $+4 3 j !'-1.1:' ShOET L -

LU: hO\! (',1 Lt LO: iV1VV CL,Ch
!'iGV A,L t.: :; L_1 : r·J l; \! AL,bL

In some instances, however, CONVS6 does not generate such a label, as in the
following:

8080 Source MCS-86 (CONV86-Generated) PRINT File

7 hail AL,CL

1

f'ii () \! A,C
Jhf' ~+3*((3+2)*2-7) 0 J i'l1:' .$+3* ((3+2) *2-7)

CALlION 017 *** ADDR£SS ExPRE.SSIOlll DB 7th
':J Db 7Gh DB 10111101b

D v. ObiU.,J:"h 1 0 DB 10111101b

lJ ~, 01EACb 1 1 D~v OEADAh

C tcJi~ 12 G ~i 01E1I.O,
1 3 b (j'1 AL

CONVS6 does not attempt to evaluate the expression or insert a label, although
Caution Message 17 is issued for a possible displaced reference. Thus, it is up to
you to insert a label. At the same time, since the jump (forward)is less than 127
bytes, the SHORT label attribute can be used, as follows:

CONV86 OUTPUT File

bL,l..L
$+3*(3+2)*2-7)
7bh
10111101b
G£AEAh
Obl:,A(,h

r;(.J~

Jh1:'

Db
Db
Dw
1; \~

i-.L, LL
':;hOfi T LiiS2.LG
7tlli
1011110H
OlAbAh
01£A('L

AL LASi.L(): Mi'l

Before Your Edit After Your Edit

In general, you should check all relative addressing.

4. Interrupts. Figure 3-2 shows how interrupt service routines on the SOSO/SOS5
can be converted to interrupt service routines on the SOS6.

The principal difference between the two schema is that on the SOSO/SOS5, con­
trol traps to location S*N, where executable code resides; whereas on the SOS6,
control traps to the location pointed to by the 16-bit offset and 16-bit base
values stored at location 4*N.

3-3

Editing Converter Output CONV86

3-4

8080/8085 8086

I" 4 BYTES---__ I

OH JMP

)

ABSOLUTE
LOCATIONS
OOH-7FH
ARE INTEL-

b;::::::;;;e::::;:::::;:~;~:::::;:;;;1 RES E RVE D
USER-INITIALIZED

OSH

Figure 3-2. Converting Your Interrupt Procedures

}
OFFSET & BASE
VALUES POINT
TO CALLING
SEQUENCE

USER-INSERTED
CALLING SEQUENCE
INVOKES CONVERTED
USER-WRITTEN
INTERRUPT VECTOR
INSTRUCTION
SEQUENCE

CONVERTED INTERRUPT
VECTOR INSTRUCTION
SEQUENCE REQUIRES
USER-INSERTED
PROCEDURE
DEFINITION

CONV86 Editing Converter Output

You can convert your 8080 interrupt service routines as follows:

1. Insert, at a convenient place in your 8086 source code, the following calling
sequence, using your own label (be sure not to use a reserved name given in
Appendix D):

INTSEQ: PUSH ES
PUSH OS
PUSH AX
PUSH CX
PUSH OX
PUSH BX
PUSH SI
PUSH 01
CALL INTER ;INTER used here for example in Figure 3-2
POP 01
POP SI
POP BX
POP OX
POP CX
POP AX
POP OS
POP ES
IRET ;note that this is IRET, and not RET

2. Insert the following initialization sequence for absolute location 4*N in the
ABS_O segment:

ORG 4*N

00 CGROUP:INTSEQ

00 INTSEQ

;N is the interrupt number on the 8086
;INTSEQ used here for example above
;If REL control was used

;If ABS control was used

3. Sandwich the converted code from INTER (used here for example in Figure 3-2)
between PROC and ENDP statements as follows:

INTER PROC NEAR
[converted code]
INTERENOP

;nothing special about the word INTER

;nothing special about the word INTER

While these steps are general enough to cover virtually any application, you may
find that as you become familiar with the 8086, you can recode your interrupt
service routines in MCS-86 Assembly Language to obtain optimal code more
suited to your application.

3-5

Editing Converter Output

3-6

PL/M-86 LINKAGE CONVENTIONS

The only PL/M-86 model of computation relevant to conversion is the SMALL
model.

Case 1: When PL/M Calls

Converted assembly-language programs called from PL/M programs must be
changed if any parameters are passed, since PL/M-80 passes parameters in registers
and on the stack, and PL/M-86 passes all parameters on the stack. PLlM-86
parameter passing is as follows:

• Arguments are pushed on the stack in left-to-right order and therefore
occupy successively lower memory locations. The return address is pushed
on the stack last.

• Each argument occupies two bytes. One-byte arguments are passed in the
lower half (least significant byte) of a word.

Therefore, converted 8086 assembly language programs called from PL/M-86 pro­
grams need to access arguments from the stack, and not from registers. However,
since the calling PLlM-86 program has pushed the return address on the stack last,
the called 8086 assembly language program needs to:

1. POP the return address to any convenient word register, such as BX.

2. POP arguments as needed into their 8086 register counterparts, as follows:

• If no arguments are expected, POP no further. Go to Step 3 below.

• If one argument is expected, then it was originally expected in (B,C).
Therefore the converted assembly language program is accessing the single
argument from the 8086 CX register. This means that you need to insert the
instruction:

POPCX ;Retrieve only PLlM-86 Argument

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the single argument as intended.

• If two arguments are expected, then they were originally expected in (B,C)
and (D,E). Therefore the converted assembly language program accesses its
arguments from the 8086 CX and OX registers. Since PLlM-86 passes these
arguments on the stack in order, this means that you need to insert the in­
structions:

POPDX
POPCX

;Retrieve Second PLlM-86 Argument
;Retrieve First PLlM-86 Argument

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the two arguments as intended.

• If more than two arguments are expected, the remainder are in the stack
(where the converted assembly language program expects them), and there
is no problem. The last two arguments are accessed as described in the
preceding paragraph.

3. PUSH the return address back on the stack immediately after accessing the
arguments as just described. If BX was used in Step 1 above to retain the return
address, then you need to insert the instruction:

PUSH BX ;Replace Return Address On Stack

immediately following your argument-accessing sequence of POPs.

4. PL/M-86 expects the return value (a one-word pointer or data item) of the
assembly language program to be in the AX register. If the return value is a
byte, it is expected in AL.

CONV86

CONV86 Editing Converter Output

Case 2: When Your Converted Program Calls

If your 8080/8085 source program calls another routine (written either in MCS-86
Assembly Language or PL/M-86) which expects arguments to be passed on the
stack, you need to insert 8086 source code in your converted program.

If your original 8080 source program passed only one argument to the CALLed
routine, that argument was passed in the (B,C) register-pair. Hence you need to
insert:

PUSH CX ;push (B,C) argument on stack

immediately before the CALL.

If your original 8080 source program passed two or more arguments to the CALLed
routine, those arguments were passed in the (B,C) register-pair, in the (D,E) register­
pair, and remaining arguments on the stack. Hence you need to insert:

PUSH CX
PUSH DX

;push (B,C) argument on stack
;push (D,E) argument on stack

immediately before the CALL. The remaining arguments (if any) are already on the
stack in the correct order. PL/M-86 return values are placed in AX or AL as de­
scribed in Case 1.

3-7

Editing Converter Output

3-8

Caution Messages

Caution messages do not necessarily imply manual editing, but they do demand
scrutiny. In many cases, CONV86 cannot be sure if an error actually exists (as for in­
stance, in expression evaluation). This section lists all possible caution messages.
The next section lists caution message descriptions and indicates what manual
editing of the output file may be necessary.

The entire list I of caution message is as follows:

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

8 UNKNOWN STATEMENT

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

13 8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

14 FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX] CANNOT
BE CORRECTLY ASSEMBLED

16 EXPRESSION ASSUMED TO BE A VARIABLE OR LABEL

17 ADDRESS EXPRESSION MAY BE INVALID FOR 8086

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

19 REGISTER USED IN UNKNOWN CONTEXT

20 OUTPUT LINE TOO LONG; TRUNCATED

21 LABEL ASSUMED TO BE NEAR

22 NOMACROFILE CONTROL DELETED

23 MOD85 CONTROL DELETED

24 SOURCE LINE TOO LONG; IGNORED

~ CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

26 THIS SET DIRECTIVE INCOMPATIBLE WITH 8086

27 SYMBOL NAME TOO LONG

28 CONDITIONAL ASSEMBLY GENERATED

29 FEATURE NOT 1M PLEMENTED FOR ASM86 V1.0

1. Caution messages 9 and 15 do not exist.

CONV86

CONV86 Editing Converter Output

Caution Message Descriptions

1 BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif­
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc­
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS
PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
You may need to manually convert the mnemonics yourself.

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine the
resulting symbol and see if it corresponds to the intent of the 8080/8085 source
code. You should also check to see if the resulting concatenated name is reserv­
ed. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over­
ride the argument type.

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD
CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

An EQU symbol has been multiply defined, perhaps due to conditional com­
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONV86 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the 8080 source to
produce recognizable statements (legal instructions) and submit the recoded
8080 file to CONV86, or else simply insert the appropriate 8086 source code in
the OUTPUT file.

3-9

Editing Converter Output

3-10

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH
DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONV86 here. You should convert the INCLUDE file and examine the type
CONV86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

11 CONVERSION OF NOP MAY NOT YIELD DESIRED RESULTS

A NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

12 CONVERSION OF RST MAY NOT YIELD DESIRED RESULTS

A RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an in­
terrupt. You should examine the operand carefully to ensure that the instruction
traps to the desired absolute address, and that the intended routine to be trap­
ped to will be bound to (loaded at) that address.

13 BOBS-SPECIFIC INSTRUCTION CANNOT BE CONVERTED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the MCS-86 User's Manual under
"Interrupts."

14 FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX]
CANNOT BE CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

16 EXPRESSION ASSUMED TO BE A VARIABLE OR LABEL

CONV86 has not been able to determine what type of expression is in this in­
struction. CONV86 has assumed that the expression is a variable or label. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to in­
sert additional labels.

17 ADDRESS EXPRESSION MAY BE INVALID FOR BOB6

Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$ + BAZ*(FOO-N)) correctly. You can manually check the mapped displace­
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions

You should check the symbols operated on by the HIGH/LOW functions to en­
sure that their alignments in 8086 memory correspond to their 8080 page
alignments.

CONV86

CONV86 Editing Converter Output

In addition, if you converted using the REL control (a default), you should in­
sert a group override prefix as follows:

Before Your Editing
LOW(expr)
HIGH(expr)

Case 3: Overly Complex Expressions

After Your Editing
LOW DGROUP:(expr')
HIGH DGROUP:(expr')

It is possible that an overly complex SOSO expression has resulted in unaccep­
table MCS-S6 source code in your OUTPUT file. You should examine the
original SOSO expression carefully to determine its intent, and then hand­
translate the expression to a valid MCS-S6 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

SOSO/SOS5 instructions are not permitted as operands in your source file.

19 REGISTER USED IN UNKNOWN CONTEXT

A register was used in an unknown context, such as:

REG EaU B

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONVS6 will not know at the time of the INCLUDE file's conversion whether
B maps into CH or CX., You should check to see whether you want B to map
into a byte register or a word register, and change the converter's mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in SOS6 accordingly.

21 LABEL ASSUMED TO BE NEAR

The label for this line is unreferenced in this file; it is assumed to be of type
NEAR. Since CONVS6 has no information on how to type this symbol, you
should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the SOS6 assembler. No manual editing is re­
quired for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the SOS6 assembler. No manual editing is re­
quired for this caution.

24 SOURCE LINE TOO LONG; IGNORED

The current source line exceeds 129 characters and has been mapped into a com­
ment in both SOSO/SOS5 and SOS6 output files. You can either recode the source
line and reconvert the source file using CONVS6, or you can insert SOS6 code in
the OUTPUT file to accomplish the intent of the source line.

3-11

Editing Converter Output

3-12

~ CURRENTSEGMENTUNKNOWN;CANNOTGENERATEENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

26 THIS SET DIRECTIVE INCOMPATIBLE WITH 8086

An 8086 assembler SET directive must have a constant as its operand. Thus, ex­
pressions of the form:

X SET X+Y

have no direct counterpart in 8086-AL. You can, however, use sequences of the
form:

z

X

EQU
PURGE
EQU
PURGE

X+Y
X
Z
Z

V SYMBOLNAMETOOLONG

Symbol names in 8086 cannot exceed 31 characters.

28 CONDITIONAL ASSEMBLY GENERATED

CONV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

• POP PSW (Using EXACT Control)

• POP PSW (Using APPROX Control)

• PUSH PSW (Using EXACT Control)

• PUSH PSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

• POP rw

• PUSHrw

(Using either EXACT or APPROX)

(Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk­
check or single-step your source program until you are able to make that deter­
mination. Otherwise, the conditional assembly statements placed by CONV86
in your OUTPUT file will not assemble under version Vl.O of the MCS-86
Assembler.

29 FEATURE NOT IMPLEMENTED FOR ASM86 V1.0

The MCS-86 Assembler (Vl.O) does not support IF, ELSE, ENDIF, MACRO,
LOCAL, IRP, IRPC, REPT, SET, EXITM, or ENDM. Mappings of these
directives are not intended to be assembled. Refer to Appendix F for a conver­
sion procedure for these directives.

CONV86

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from SOSO/SOS5 to SOS6 assembly language.
Operands are mapped according to Appendix B. Operand designations are as
follows:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory

mn = near memory
rb = byte register
rw = word register

Similarly, ib' refers to the mapping of ib, iw' refers to the mapping of iw, and so on.
Thus, if B = rb, then rb' = CH. But if B = rw, then rw' = CX.

Constructs of the form L_n are generated internally by CONVS6 for use as labels in
mappings of conditional CALLs, conditional RETurns, conditional JMPs.

8080/8085

ACI ib

ADC rb

ADD rb

ADI ib

ANArb

ANI rb

CALLmn

CCmn

CMmn

CMA

CMC

CMPrb

CNCmn

CNZmn

CPmn

CPEmn

CPlib

CPOmn

CZmn

8086

ADCAL,ib'

ADC AL,rb'

ADDAL,rb'

ADDAL,ib'

ANDAL,rb'

ANDAL,ib'

CALLmn'

JNB SHORT L_n
CALLmn'

JNS SHORT Ln
CALLmn'

NOTAL

CMC

CMPAL,rb'

JNAE SHORT L_n
CALLmn'

JZSHORTLn
CALLmn'

JSSHORTL_n
CALLmn'

JNPSHORTLn
CALLmn'

CMPAL,ib'

JPSHORTL_n
CALLmn'

JNZ SHORT L_n
CALLmn'

Remarks

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

(L_n inserted as label for
instruction following CALL)

A-I

Instruction Mapping CONV86

8080/8085 8086 Remarks

DAA DAA

DADrw ADD BX,rw' (Using APPROX Control)

DADrw LAHF (Using EXACT Control)
ADD BX,rw'
RCRSI,1
SAHF
RCLSI,1

DCR rb DEC rb'

DCXrw DEC rw' (Using APPROX Control)

DCXrw LAHF (Using EXACT Control)
DEC rw'
SAHF

DI CLI

EI STI

HLT HLT

IN ib INAL, ib'

INR rb INCrb'

INXrw INCrw' (Using APPROX Control)

INXrw LAHF (Using EXACT Control)
INCrw'
SAHF

A-2

CONV86 Instruction Mapping

8080/8085 8086 Remarks

JCmn JBSHORTmn' (for forward short branch)

JCmn JBmn' (for backward short branch)

JCmn JAE SHORT L_n (otherwise)
JMPmn'

JM mn JS SHORT mn' (for forward short branch)

JM mn JSmn' (for backward short branch)

JM mn JNS SHORT L_n (otherwise)
JMPmn'

JMPmn JMP SHORT mn' (for forward short branch)

JMPmn JMP mn' (otherwise)

JNCmn JAE SHORT mn' (for forward short branch)

JNCmn JAE mn' (for backward short branch)

JNCmn JNAE SHORT L_n (otherwise)
JMP mn'

JNZ mn JNZ SHORT mn' (for forward short branch)

JNZmn JNZ mn' (for backward short branch)

JNZ mn JZSHORTL_n (otherwise)
JMP mn'

JP mn JNS SHORT mn' (for forward short branch)

JP mn JNS rnn' (for backward short branch)

JP mn JS SHORT L_n (otherwise)
JMPmn'

JPEmn JPSHORTmn' (for forward short branch)

JPE mn JP mn' (for backward short branch)

JPEmn JNP SHORT L_n (otherwise)
JMP mn'

JPOmn JNP SHORT mn' (for forward short branch)

JPOmn JNP mn' (for backward short branch)

JPOmn JPSHORTL_n (otherwise)
JMP mn'

JZ mn JZSHORTmn' (for forward short branch)

JZ mn JZmn' (for backward short branch)

JZmn JNZSHORTLn (otherwise)
JMPmn'

A-3

Instruction Mapping CONV86

8080/8085 8086 Remarks

LDAmb MOVAL,mb'

LDAXrw MOVSI,rw'
LODS DS:M[SI]

LHLDmw MOVBX,mw'

LXI rW,iw MOVrw',iw' (when 2nd operand immed. or near)

LXI rW,iw LEA rw',iw' (when 2nd operand is byte or word)

MOV rb1,rb2 MOV rb1' ,rb2'

MOV M, rb MOV M[BX], rb'

MVI rb,ib MOV rb',ib'

MVIM,ib MOV M[BX], ib'

NOP NOP XCHG AX,AX (1 byte, 3 clocks)

ORArb OR AL,rb'

ORlib OR AL,ib'

OUTib OUTib',AL

PCHL JMPBX

POPrw POP rw' (for EXACT or APPROX when rw is
definitely not PSW)

POPPSW POP AX (Using APPROX Control)
XCHGAL, AH

POP PSW POP AX (Using EXACT Control)
XCHG AL,AH
SAHF

POPrw IFrw' EQAX (Using APPROX when rw
could be PSW)

POP rw'
XCHG AL,AH
ELSE
POP rw'
ENDIF

POPrw IF rw' EQAX (Using EXACT Control when rw'
could be PSW)

POP rw'
XCHGAL, AH
SAHF
ELSE
POP rw'
ENDIF

A-4

CONV86

8080/8085

PUSHrw

PUSH PSW

PUSH PSW

PUSHrw

PUSHrw

RAL

RAR

RC

RET

RIM

RLC

RM

RNC

RNZ

RP

RPE

RPO

RRC

RSTib

RZ

8086

PUSH rw'

LAHF
XCHGAL,AH
PUSH AX
XCHG AL, AH

XCHG AL,AH
PUSH AX
XCHG AL, AH

IFrw' EOAX

XCHGAL, AH
PUSH rw'
XCHGAL,AH
ELSE
PUSH rw'
ENDIF

IF rw EOAX

LAHF
XCHG AL, AH
PUSH rw'
XCHGAL, AH
ELSE
PUSH rw'
ENDIF

RCLAL,1

RCRAL,1

JNBSHORTL_n
RET

RET

"""error"" •

ROLAL,1

JNS SHORT Ln
RET

JNAE SHORT L_n
RET

JZSHORTLn
RET

JS SHORT L_n
RET

JNPSHORTLn
RET

JPSHORTL_n
RET

ROR AL,1

INTib'

JNZSHORTLn
RET

Instruction Mapping

Remarks

(for EXACT or APPROX when rw is
definitely not PSW)

(Using EXACT Control)

(Using APPROX Control)

(Using APPROX Control when rw
could be PSW)

(Using EXACT Control when rw
could be PSW)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L~n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

A-5

Instruction Mapping CONV86

8080/8085 8086 Remarks

SBB rb SBBAL,rb'

SBI ib SBBAL,ib'

SHLDmw MOVmw',BX

SIM "" "error"""

SPHL MOVSP,BX

STAmb MOV mb',AL

STAXrw MOV DI,rw'
MOV DS:(Dlj,AL

STC STC

SUB rb SUBAL,rb'

SUI ib SUBAL,ib'

XCHG XCHG BX,DX

XRArb XOR AL,rb'

XRlib XORAL,ib'

XTHL POPSI
XCHG BX,SI
PUSH SI

unknown expr unknown' expr'

A-6

APPENDIX B
CONVERSION OF EXPRESSIONS

IN CONTEXT

The following describes how SOSO/SOS5 expressions are converted to SOS6 expres­
sions according to the context in which an operand or expression occurs.
The context is simply what CONVS6 infers from the use of the operand in the
instruction:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory
mn = near memory
rb = byte register
rw = word register

M is defined to be a byte located at absolute location O. In contexts 3 and 5 below,
forward-referenced memory items are treated as "unknown."

1. Context = ib

• Operand = ib: expr -+ expr'

• Operand = iw: expr -+ LOW(expr')

• Operand = mn, mw, mb, or unknown: 1 2

If REL control, then
expr -+ LOW DGROUP:(expr')

If ABS control, then
expr -+ LOW(expr')

2. Context = iw

• Operand = ib or iw: expr -+ expr'

• Operand = mb, mw, mn, orunknown2 :

If REL control, then
expr -+ OFFSET DGROUP:(expr')

If ABS control, then
expr -+ OFFSET(expr')

3. Context = mb

• Operand = mb: expr -+ expr'

• Operand = mn or mw or unknown: expr -+ BYTE PTR(expr')

• Operand = ib or iw: expr -+ M[expr']

4. Context = mn

• Operand = mn: expr -+ expr'

• Operand = mb or mw or unknown: expr -+ NEAR PTR(expr')

• Operand = ib or iw: expr -+ NEAR PTR M[expr']

5. Context = mw

• Operand = mw: expr -+ expr'

• Operand = mb or mn or unknown: expr -+ WORD PTR(expr')

• Operand = ib or iw: expr -+ WORD PTR M[expr']

B-1

Conversion of Expressions CONV86

6. Context = rb

• Operand = rb:

• A-AL

• B-CH

• C-CL

• D-DH

• E-DL

• H-BH

• L-BL

• Operand = mb:M - M[BX]

7. Context = rw

• Operand = rw:

• B-ex

• D-DX

• H-BX

• SP-SP

• PSW-AX

I. mn, mw, and mb are illegal in 8080 in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

B-2

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, "expr", "mn", and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, "Functional Mapping").

For purposes of the MCS-86 Assembler (version V1.0), the mapping of 8080
assembler directives by CONV86 is here shown in two tables:

• Table C-I shows the mapping of 8080 directives which convert to 8086 directives
that are supported by the MCS-86 Assembler (VI.O).

• Table C-2 shows the mapping of 8080 directives which convert to 8086
pseudo-directives. Entries in Table C-2 are neither supported by the MCS-86
Assembler (version VI.O), nor are they intended to be construed as bona fide
statements for any future versions of the MCS-86 Assembler.

Table C-l. Assembler Directives Mapping for Supported MCS-86 Directives

8080/8085 8086

ASEG prev-seg ENDS
ABS_O SEGMENT BYTE AT 0

CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE'

DB expr-list DB expr-list'

OS expr DB expr' DUP(?)

DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA'

DWexpr-list OW expr-list'

END [mn] prev-seg ENDS
END [mn']

name EQU expr name' EQU expr'

EXTRN name-list EXTRN name:usage-list'

NAME name NAME name'

ORGmn ORGmn'

PUBLIC name-list PUBLIC name-list'

STKLN expr """deleted"""'

1. If the REL control (a default) is used, STKLN converts to information in the
prologue. Refer to Chapter 1, "Functional Mapping."

C-l

Assembler Directive Mapping

C-2

Table C-2 shows those 8080 assembler directives which map into unsupported (by
version V 1.0 of the MCS-86 Assembler) 8086 statements.

If you want to convert a source file containing any of these 8080 assembler direc­
tives, you can do it by pre-assembling your source file, and then manually editing
(under ISIS-II) your program listing as outlined and illustrated by example in Ap­
pendix F.

Table C-2. Assembler Directive Mapping for Unsupported MCS-86 Directives

8080/8085 8086

ELSE ELSE

ENDIF ENDIF ,

ENDM ENDM

EXITM EXITM

IFib IFlb'

IRP parm,<lIst> IRP parm', <list>

IRPC parm,strlng IRPC parm' ,string

LOCAL. name-list LOCAL name-list'

name MACRO parm-list name' MACRO parm-list'

macro-call arg-list macro-call' arg-list'

REPTexpr REPTexpr'

name SET constant-expr name' SET constant-expr'

name SET nonconstant-expr PURGE name'
name' EQU nonconstant-expr'

CONV86

APPENDIX D I
RESERVED NAMES

A name appearing in an SOSO/SOS5 expression may have a special SOS6 interpreta­
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK-BASE,
each such name is automatically converted by CONVS6 by appending an underscore
to it (for instance, AL_ or TEST_). The SOSO reserved word MEMORY is treated
specially.

The following ASMS6 reserved names are modified by CONVS6:

AAA CS INC JNP NIL ROL
AAD CWD INT JNS NOSEGFIX SAHF
AAM CX INTO JO NOTHING SAL
AAS DAS IRET JS OFFSET SAR
ABS DD JA LABEL PARA SCAS
AH DEC JAE LAHF POPF SEG
AL DH JB LDS PREFX SEGFIX
ASSUME DIV JBE LEA PROC SEGMENT
AT DL JCXZ LENGTH PROCLEN SHORT
AX DUP JE LES PIR SI
BH DWORD JG LOCK PURGE SIZE
BL DX JGE LODS PUSHF SS
BP ELSE JL LOOP RCL STO
BX ELSEIF JLE LOOPE RCR STI
BYTE ENDIF JNA LOOPNE RECORD STOS
CBW ENDM JNAE LOOPNZ RELB STRUC
CH ENOP JNR LOOPZ RELW TEST
CL ENDS JNBE MASK REP THIS
CLC ES JNE MODRM REPE TYPE
CLD ESC JNG MOVS REPNE WAIT
CLI FAR JNGE MUL REPNZ WIDTH
CMPS GROUP JNL NEAR REPZ WORD
CODE MACRO IDIV JNLE NEG ROL XLAT
COMMON IMUL JNO

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by
CONVS6 to set up a PLlM-S6 environment.

The assembler-reserved symbols? and ??SEG are not permitted as user mnemonics.

D-l

APPENDIX E
SAMPLE CONVERSION

AND LISTINGS

This appendix consists of:

• Figure E-l. 8080 Listing of Sort Routine

• Figure E-2. PRINT File of Conversion of 8080 Sort Routine

• Figure E-3. MCS-86 Assembler Listing of Conversion of 8080 Sort Routine

• Figure E-4. MCS-86 Assembler Listing of Originally Coded 8086 Sort Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASM86 for assembly. The OUTPUT file was edited as follows:

1. To retrieve PL/M-86 stack parameters, code (corresponding to lines 36-39 in
Figure E-3) was inserted as described in Chapter 3.

2. For space/time considerations, only the necessary LAHF/SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures E-2 and E-3 .

E-l

Sample Conversion and Listings

AS~,bO :1'1 :~GRTbO.AbO !'hUT (:fl :SORlbO.bOL) ObJECT(:l"1 :SOH1EO.bOG)

ISIS-II HObO/bOb5 MACRO ASSEMBLER, \2.0

LOC ObJ

0000 EB
0001 5E
0002 23
0003 56
0004 Eb
0005 2b
0006 29
0007 09
0008 220000

OOOB 59
OOOC 50

0000 3AOOOO
0010 93
0011 3A0100
0014 9A
0015 D8

0016 6B
0017 62
0018 23
0019 23

001A 3AOOOO
0010 95
OOlli. 3A0100
0021 9C
0022 DA4300

0025 lA
0026 96
00,,7 13
002& 23
0029 lA
002A 9E
002B D23EOO

ooa lA
ooa 4E

E-2

D

D

D

D

D

C

C

SGlihCE SlAH.hJl~T

1 ; ••••••••••• * ••• ,* •••••• ** ••••••••••••••••••••••••••
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
1 b

A PL/h callable subroutine:
CALL SORl (.A 1, .~)

Sorts the array Al, containing ~ words.
At entry bC points to the array Al, and
DE paints to~. T~o painters to elements of Al are
kept in the Vb ana hL registers. These pointers are
incremented in two loops. The outer loop steps DE
through the elements of Al. The inner loop steps
hL througn the elements of Al that follow Db. At
each step of the inner loop, the items at hL and DE
are exchanged, if required, so that at the end of
the inner loop, the item at DE is larger than all
the items that follow it. The item at DE is then in
its proper position, so DE is incremented to

; complete one iteration of the outer loop.
;.** ••

19 CSEO
20 PubLlC SORT
21 , lEST = address of the last element of Al.
22 SORl: llChG ; TEST = (I, - 1) * 2 + .Al

MOV
INll
MJV
llChG
['Cll
['AD
DAD
~hLD

OUlI::R LOOP:
MOV
MOV

E,M
H
L,M

Ii
Ii
B
TEST

DO DE
E,C
D,b

; (I>j

- 1)

• 2
+ • A 1

.Al TO TE~T bY 2;
; be (;Ol.TA11.5 .A 1

TEST

<:3
,,4
25
26
27
28
29
30
31
32
33
34
35
36
37
3&
39
40
41
42
43
44
45
46
47
46
49
50
51
52
53
54
55
56
57
56
59
bO
61
62
63
64
65
66
67
6&
69

OUTTST: LDA
SUB
LDA
SBb
RC

TEST
E

IF DE > TEST THEN RETURN

aNER LOOP:
MOV
foWV
INll
ax

lEST +
Ii

DO HL
L,E
H,D
Ii
Ii

Dc+2 TO TcST E1 2

; hL = DE+2

; IF HL > TESI THEN GOTO ODTINC
HoTST: LDA lEST

L Slib
LOA
Sbb
JC

TEST +
H

ClUTHC

IF Al(hL) Al(Dh) THEI. GOTO I~INC
As a side effect, HL and DE are incremented by 1
to point to the high bytes of their array elements.

LDU. Ii
SUB N
INX D
INll h
LDAll 0
SBb M
JNC ININC

Exchange A(DE) with A(HL). Leave hL and DE
pointing to HIGh bytes.

LDAX D ; SwAP HlGH BYTES
fo,OV L ,M

FigureE-IA

CONV86

CONV86 Sample Conversion and Listings

ISIS-II 60bO/&Ob5 MACRO ASS~MBL~R, 12.0 NODULE

LOC ObJ

0030 77
0031 ~B

0032 71
0033 EB

0034 1 b
0035 ,Il

0036 1A
0037 4E
0036 77
0039 eo
003A 71
003b Eb

003C 13
003D 23

0030. 1E
003F 23
0040 C31AOO

0043 13
0044 13
0045 C30DOO

0002

l'~bLIC SYMbOLS
SORT C 0000

eXTERhAL 51MbOLS

~SEIi SYMbOLS

C

C

SE"

70
71
72
73
74

SO~RCE

MOV
>'CHG
MO~

ACHG

STATEMENT

h,A

M,C

75 POINT HL AND DE TO LOW blTES. DCA D
70
77

DCX H

7b S~AP LOW EYTES LDA>' D
79
&0
81
82
&3
84

MO~
~jOV

HhG
NUV
AChG

C,M
~j ,A

M,C

&5 POI~T HL AND DE TO HIGH BYTeS. lI,A D
&6
87

INA H

bb ; D~ and HL point to HIGh bytes. For the next iteration,
89 ; set D~ = Previous DE, HL = 2 + Previous hL.
90 INI~C: DCA D
91 lilA h
92 JMP INTST
93
~4 ; End of outer loop. Set DE DE + 2 and CONTINUE
95 OUTINC: INX D
96 INA D
97 JMI' OUTTST
98
99

100 ; Data area follows.
101 DSEC,
10;:0 TEST: OS 2
103 END

ISIS-II bObO/80&5 MACHC ASSEMbLER, I~.O MODULE I'AGE 3

INlI<C C 003E INTST C 001A OUTII<C C 0043 OUTTST C DODD SORT C 0000

ASSEMbLY COMPLET~, NO ERRORS

FigureE-IB

TEST D 0000

E-3

Sample Conversion and Listings

AS~tiO TO ASMb6 CONVEhTER

ISIS-II AS~80 TO ASM66 C0NVERSIOh OF FILE :'I:S0hTbO.A80
AS~b6 PLAC~D IN :Fl:S0RT80.A86
CONVERTER Vl.0 I~VOKED b1:
CON~66 :Fl:S0R180.A80 PRINTI:.l:S0RT60.CVL)

E-4

1 ; •••
2 A PL/~ callable subroutine:
3 CALL SOhT(.Al, .~)
4 Sorts the array AI, containing N words.
5 At entry BC points to the array AI, and
6 DE points to N. Two pointers to elements of Al are
7 kept in the DE and hL registers. These pointers are
8 incremented in two loops. The outer loop steps DE
9 through the elements of AI. The inner loop steps

10 HL through the elements of Al that follow DE. At
11 each step of the inner loop, the items at hL and DE
12 ,are exchanged, if required, so that at the end of
13 the inner loop, the item at DE is larger than all
14 the items that follow it. The item at DE is then in
1; its proper position, so DE is incremented to
lb ; complete one iteration of the outer loop.
17 ; •••
18
19 CSEG
20 PubLIC SORT
21 ; TEST: address of the last element of AI.
22 SORT: XChG ; TESl : (N - 1) • 2 + .Al
23 MOV E,h
24 INX h
25 HOV D,~

26 i.ChG ; (~
27 DCX Ii - 1)
2b DAD Ii • 2
~9 DAD B + • A 1
30 ShLD TEST TEST
31
32
33
34
35
36
37
38
39
40
41
4"
43
44
45
116
117
48
49
50
51
52
53
54
55
5b
57
50
59
bO
61
62
63
64
65
66
67
bo

CuTER LOOP: DO DE .Al TO TEST bY 2 ;
kO~ E,C ; bC CONTAIIIS .A 1
hOY D,b

OU1TST: LDA TEST IF' DE > TEST lhEII RETURN
SUB E
LDA TEST +
SBB D
RC

INNER L00P: DO hL DE+2 10 TEST bI 2
MOV L,E
MOV Ii,D
INi. h
ln Ii ; hL : DE+2

; IP IiL > lEST TH"'~ GOTO OUTIIIC
INTST: LDA TEST

SUB L
LDA TEST +
SBB H
JC OUTINC

IF Al(hL) < Al(DE) ThEN GOTO INlhC
As a side'effect, HL and DE are incremented by 1
to point to the high bytes of their array elements.

LDAX D
SUb M
Illi. D
INX h
LDU D
SbB M
J~C HiUC

Exchange A(DE) with A(HL). Leave hL and DE
pointing to hIGH bytes.

LDAX D ; SwAP hIGh bYTES
FigureE-2A

CONV86

CONV86

ASkbo TO ASHH6 CO~~ERTEri

6~
70
71
72
73
74
75
76
77
78
7<J
80
111
02
b3
84
b5
116
07
8il
69
90
91
92
93
94
95
96
97
98
99

100
101
102
103

MO~ C,M
HOV H,A
li.CHG
HO\ M,C
XChG

DCX D POINT hL AND DE TO LOw BYTES.
Deli. h

LDAli. D S.AP LOll B1TES
MOV e,11
MUV M,A
li.CHG
~jGV H,e
li.ChG

INX D POINT HL AND DE TO hIGh hYTES.
lNli. h

; DE and hL point to HlGH bytes. For the next iteration,
; set DE = ~revious DE, hL = ~ + Previous HL.
ININC: DCli. D

ll'lli. H
JMP INTST

; End of outer
OUTae: lNli.

INX
JI1P

loop. Set DE
D
D
ounST

; Data area follows.
DSEG

TEST: DS 2
END

DE + 2 and CONTINUE

FigureE-2B

Sample Conversion and Listings

E-5

Sample Conversion and Listings

ASMbO TO ASMbo COhVERTER

1
2
3
4
5
6
7
b
9

CGROUP GROUP
DGROuP GROul'

AbS_O,COvE,COhST,DATA,SlAClI.,I'oIlNOR1
AbS_O, COLE, ('OIlST, vA 1'A, STHK, ~.UjOlii
DS:DGROUP,('S:CGHOU~,SS:DGROuP ASSUMII

('ONST SEGMEhl' wOIiD PUbL1C 'COhST'
CONST EhDS
Sl'ACK SIIGMJ:;t.T'
STACK_bASE
STACK Et;DS
MU.ORI SEGMJ:;NT
NEMORi_ LAbEL
MEHOrn: ENIJS
Ab::;_O SEGl'lENT

~ORIJ SlACK 'STACK'
LABH bitE

wORD MIIMORY 'hllMORY'
bYTE

bYlE. AT °
bitE M LABEL

i··· A PL/h oallable subroutine:
CALL SORT(.Al, .~)

Sorts the array Al, oontaining h words.
At entry bC points to the array Al, and
DE pOints to h. Two pointers to elements of Al are
kept in the DE and hL registers. These pointers are
inorementea in two loops. The outer loop steps IJE
through the elements of Al. lhe inner loop steps
hL through the elements of Al that tollow DII. At
eaoh step of the inner loop, the items at hL and DE
are exohanged, it required, so that at the end of
the inner loop, the item at 011 is larger than all
the items that follow it. The item at 011 is then in
its proper position, so DE is inoremented to

; oomplete one iteration of the outer loop.
; .. .

ENDS
SEGMENT hORD PUBLlC 'CODII'
PUbLIC SORT

; TEST = address of the last element of Al.
SORT: IChG EI,DI ; TEST (h - 1) • 2

hOV DL,N[Elj
LAhF
hC EI
SAh~'

MOV DIl,M[bl]
llChG bX,Dll ; (Ii
LAI!F
DEC bX
SAhF - 1)
LAI!F
ADD Bll,bl
ItCIi Sl,l
SAhF
RCL SI,l • 2
LAIiF
ADD hX,CI
RCR Sl,l
SAhF
ReL Sl,l + .Al
MOV wORD PlR(TEST_),BX

OUTER LOO},: DO DE = .Al TO TEST BY,,;
MO~ DL,CL BC CONTAINS .Al
MOV DIl,CIl

+ .Al

TEST

10
11
12
13
14
15
16
17
18
19
19
20
21
22
23
24
24
24
25
26
27
27
,,7
2&
2/l
28
2/l
2/l
«9
,,9
29
29
29
30
31
32
33
34
35
36
37
38
39
40
40
40
41
42
43
44
45
45

OUTTST: /'lOV AL,TEST_ IF DE > TEST TIlEN RETURN
Sub
MOV
SBE
JNb
RET

L_ 1:

; INNER LOOP:
MOV
hOV
LAHF
INC

E-6

AL,uD
AL,TEST_+1
AL,Dh
SHORT L_l

DO hL = DE+2 TO TEST 81 2
BL,DL
Bh,Dh

bll.

FigureE-2C

CONV86

CONV86

45
46
46
46
47
48
49
50
51
52
53
54
55
56
57
58
58
59
60
60
60
61
61
61
62
62
63
64
65
66
07
68
6&
69
70
71
72
73
74
75
75
75
76
76
76
77
78
76
79
60
81
8~

83
84
b5
85
65
bb
86
66
81
bb
89
90
90
90
~ 1
91
91
92
93
94
95
95

Sample Conversion and Listings

SAIH'
LAhF
INC
SAHF

; It' HL > TEST
lhTST: MOV

SUb
MOll
Sbb
Jb

IF Al(hL)

bX

ThE~ GOTO OUTINC
AL,TEST_
AL, bL
AL,TEST_+1
AL,bh
SHORI OUTINC

Al(DE) ThE~ GOTO INlhC

hL 0<'+2

As a side effect, hL ana L~ are incremented by 1
to point to the high bytes of their array elements.

~jOV SI, OX
LOOS OS:MlSI]
SUB AL,N[bX)
LAII,'
INC OX
SAhF
LAHF
ac bX
SAhF
MOV SI,OX
LOOS {)S:MLSI]
Sbb AL,i'JlbX]
JA~ ShORI ININC

Exchange A(OE) ~ith A(hL). Leave hL ana DE
pointing to hIGh b~tes.

NOll SI,DA
LOOS OS:M[SI) S~AP IIIGH bYTES
HOV CL,NlbX]
HOV MLbA] ,AL
XGIiG BX,DX
1'1011 M[blIj,CL
ACIiG B).,!JX

LAIi!'
ObC lJ)'

SAIIF POINT HL A~D DE TO LO~ bYTES.
LAliF
!JEC BX
SAhF

NOV Sl,OX
LODS DS:NlSl] S.AP LO. BYT ES
MOll CL,NlIlX]
NOV NlLA) ,AL
XCHG bX,DX
MOll ~jlBX) ,CL
XCHG BX,OX

LAHF
UC OX
SAhF ~OI.T hL AND Db TO HIGh BYTES.
LAIIF
INC BX
SAhF

; DE and ilL point to hIGh bytes. For the next iteration,
; set DE = frevious DE, HL = 2 + frevious hL.
UINC: LAhf

DEC OX
SAhF
LAhF
HiC BX
SAHF
JMP HlT::'T

; End of outer loop. Set DE
OuTINC: LAhF

INC OX

DE + 2 and CONTINUE

FigureE-2D

E-7

Sample Conversion and Listings

AS~80 TO ASM86 CO~VEhTER

95
96
96
9b
97
98
99

100
101
101
102
103
103

; Data
CODE
DATA
TESl_
DATA

o CAlJ1l0t4(S)

SAHF
LAHF
INC DX
SAHF
J~P OUTTST

area follows.
EhIJS
SEG~Ehl .OhD PUBLIC 'DATA'
DB 2 DlJP (1)
ENDS
END

EhD OF AS~60 TO AS~86 COhvERSION

E-8

CONV86

FigureE-2E

CONV86 Sample Conversion and Listings

11C,:;-86 ASSE.hbLE.H :;(;I\T80

1:;IS-li I1CS-86 ASSE.MbLE.R Vl.0 A:;StMbLl OF h(;LULE SOhl80
UBJECT MODULE PLACED 1~ :Fl:S08100.860
ASSEMBLER I~'OK~~ bl: ASMo6 :Fl:S081bO.A86 PRI~T(:Fl:S0RT80.66LI ObJECT(:fl:S0RlHO.b601

LOC ObJ

0000

0000

0000

0000 58
0001 5A
0002 59
0003 53

LIN~

2
3
4
5
6
7
b
9

10
11
12
13
14 1,

SOURCE-

CGI\OlH'
D(,HOUP

(;O!.ST
CONST
SHU.
STAGK_
STACK
~JEMOhY

~,E~JUhY

~;Il~,O R Y
AbS_O
h

GROUP
GROUP
A:;SU~JE

SEGhEl>1
1'.1,(;:;
S!'.GhE~T

bASE
trWS
StG"'J!'.1, T
LABl;L
E-~DS

SE.GME-NT
LAbEL

A b S_ 0 , COD t. , CON:; T , D A T A , S T A C K , ~J E.h C, R 1
AbS_O,LC,Dt.,CON:;l,DAIA,STACK,NEHORl
D:;:DGROLP,LS:CGROLP,SS:DGROUP
~OhD PUbLIC 'LONST'

~OHD STALK 'STACK'
LAbtL blTE-

~OhD MlMOHl 'hbhORY'
bYl E

blIE- Al 0
bYTE

; ••••• ** ••••• v ••••••••••••••••••••••••••••••••••••••
A PL/M callable subroutine:

CALL SORT(.Al, .NI
'" Sorts the array A1, containing N words.

At Entry be points to the array A1, and
D~ pOints to &. Two pointers to elements of A1 are
kept in the DE and hL registers. These pointers are
incrementea in two loops. The outer loop steps DE
through the elements of A1. The inner loop steps
hL through the elements of Al that follow D~. At
each step of the inner loop, the items at hL and Dt.
are exchanged, if required, so that &t the end of
the inner loop, the item at DE is larger than all
the items that follow it. The item at D~ is then in
its proper pOSition, so DE is incremented to

; complete one iteration of the outer loop.
; •••••••••••••• ** ••• ~ ••••••••••••• * •••••• * ••••••• * ••

; TEST
SOhT:

ENDS
SEGME-NT ~ORD PUBLIC 'CODi'
PlJbL1C SuRl

= address of the
POP B)'
PUP D).
PO P C).

PlJSh B)'

last element of Al.
••• * CODE INSERTED 10
•••• RETRIE\E PL/M-86
•••• STACK PARAMETER~
taU (ChAP1ER 3)

0004 onA)'(;hG b).,D)' ; 1 ES 1 = (r, - 1 I * 2
0006 oA970000 h ~Jc,\ DL,I1[BX]
OOOA 43 l!;C b)'

OOOb 8A870000
OOOF 87UA
0011 4b

h Dh,h[EX]
o).,D)'
bX

~JO~

XChG
DbC

; (N
- 1)

0012 03DB ADD BX,B)' • <:
0014 03D9 ADD bX,C)' + .A 1
0016 5911'.0000 R ~10V ~ORD pTR(TEST_I,BX

OuTER LOuP: DO D~ = .Al TO TEST tY 2;
001A 8ADl MO\ DL,(;L BC CONTAINS .Al
001C HAF5 MOV Dh,CH

+ .Al

lES1

~OH; AOOOOO R

16
17
10
19
20
21
22
2:;
24
25
26
27
~&

29
30
31
32
33
34
35
36
37
38
39
liD
41
42
43
44
45
46
47
48
4~

50
51
52
53
54
55
56
57
50
59
60
61
62
63
64
65
6b
67

OUTTST: MOV AL,TEST_ IF DE > TEST ThEN RETURi
0021 aC2
0023 A00100 R
0026 lAC6
0028 1301
ooa C3
002B L_l :

; Ih~ER

0028 bAJJA
002D bAn:
002F 43
0030 43

SUb
MOV
SBc
J~c
Rt.!

LOOP:
MOV
hOV
INC
I~C

AL,DL
AL,1ES1_+1
AL,IJh
SHORT L_l

DO HL = 01+2 TO TEST BY 2
bL,DL
8h,Dh
bX
BX hL

FigureE-3A

DE+2

E-9

Sample Conversion and Listings

~CS-86 ASSEMbLER

LOC ObJ

0031 AOOOOO
003lj 2AC3
0036 A00100
0039 lAC7
003b 7242

003D 8bF2
003~' AC
0040 a!l70000
00411 91'

0045 42
0046 1I3
0047 9t
004b bU'2
004A AC
004b lA870000
004~' 732A

0051 bbF'"
0053 AC
0054 (JAbF'OOOO
005(, bbb70000
005e iJ7DA
005E. b8bFOOOO
0062 87DA

0064 4A
0065 4b

0066 8EF"
006b AC
0069 oAIH'OOOO
0061; ciiH170000
0071 871;A
0073 88&FOOOO
0077 b7LA

007~ 4"
007A 43

007b 4A
007C 43
007D Ebb2

OOH' 42
OObO 42
0081 E.b9b

0000 (2
11
)

SOR180

R

R

R

It
l\

It

l\
R

R

LINb

66
69
70
71
72
73
74
75
76
77
78
79
bO
81
82
83
84
65
ti6
87
b8
b9
90
91
92
93
911
95
96
97
98
99

100
101
102
103
lOll

105
106
107
lOb
lOY
110
111
112
113
114
115
11 b
117
llti
119
120
121
122
1,,3
124
125
126
127
128
129
130

131
13"

Suul\CE

; IF hL > nST
INTS1: ~OV

TIIEN GOTO OuTlNC
AL,TE.,sT_

SlrB
~OV
Sbb
JB

AL,bL
AL,TEST_+1
AL,bll
ShORT OUT INC

IF Al(IIL) < Al(Db) ll1EN GOTO lNINC
As a side eftect, hL and DE are incremented by 1
to point to the high oytes of their array elements.

NOV SI,Dll
LODS DS:M[SIj
SUB AL,~llBlll
LAhF •••• TilE UNNECCESSARY 'EllACT'

•••• ~APPED CODE ~AS HEMO~ED

INC. Dll
1I<c. bX
SAIIF ; •••• 111105 'EllACT' LODE IS ALSO NEEDED
~IUV Sl,tX
LODS J)S:~'lSI]
ShB AL,~,(hX]

JAE SIIOIIT lhINC

bxchange A(DE) with A(HL). Leave ilL and DE
pointing to hIGh bytes.

M0V ::;l,Dll
LODS J)S:I'IlSI] ShAP IIlGII bYTES
",OV CL",(bX]
MOV Mlhll],AL
XC.hG Bll,DX
MOV Mlbllj,C.L
llLhG BX,Dll

CONV86

LEC OX POINT HL AhD DE TO LOh bYIES.
DbC bll

,,:OV Sl,Dll

LU!)::; DS:~llSl) SwAP L0~ BYTES
MC,V CL,Mbll]
MOV MlBll],AL
llCIIG bll,Dll
MO\ I'lL Elll], CL
II (.ItG bll,Dll

HoC Dll ~OlhT hL AhD DE 10 HIGH &lTES.
H.C bll

; Db and hL point to HIGII bytes. For the next iteration,
; set DE = erevious DE, HL = 2 + Previous hL.
IhlhC: DEC OX

It.L bX
J~,I' IN1'ST

; End of outer
CUTINC: INC

lhC
J"'I'

loop. Set DE
OX
DX
OuTTST

; Data area follows.

CODE ,ENDS

DE. + 2 and C0NTINuE

DAIA SE.GMEhT wunD PubLIC 'DATA'
1£ST_ Db 2 DUP (1)

DATA ENDS
EtoD

ASS~~bL~ C0MPLETE., NO bRROhS FOuND

FigureE-3B

E-IO

CONV86 Sample Conversion and Listings

ISIS-II ~CS-b6 ASSEMbLER Vl.0 ASSEMBLl or hOD~LE SORT86
ObJECl hODULE PLACED Ih :Fl:SDnlb6.860
ASSEMBLER INVOKED BY: ASMb6 :fl:SDkTb6.Ab6 PHIhT(:fl:SDRT66.8bLI OBJECl(:fl:S0R~86.8601

LOC ObJ LlhE

2
3
4
5
6
7
b
9

10
11
12
13
14
15
16
17
lb
19
20
21
22
23
~4

0000 25
OOOc[] 26
0004[] 27

28
0000 55 29
0001 bbEC 30
0003 oB7606 31

32
33

0006 8B5E04 34
0009 obOF' 35
OOOB 03C9 36
OOOD 03C]'; 37

38
OOOF 3BF'l 39
0011 7310 40

41
42

0013 bD7C02 .43
0016 3B~'9 44
0018 730F 45

4b
OOlA 8B04 47
001C 3b05 48
001E 7304 49

50
0020 8705 51
0022 8904 52

53
0024 83C702 54
0027 EBED S5

56
0029 b3C602 57
002C EoEl 58

59
002E 5D 60
o 02F' C20400 b 1

62
03
64

SOUliCE

•••
A PL/M callable subroutine:

CALL SOkI(.Al, .hl
Sorts the array Al, containing ~ words.
At entry the address ot N, and the addre~s of Al
are on the stack. Two pOinters to elements of Al
are kept in the SI and Dl registers. These pointers
are incremented in two loops. The outer loop steps
Sl through the elements of Al. The inner loop steps

, Dl through the elements of Al that follow SI. At
each step of the inner loop, the items at DI and SI
are exchanged, if required, so that at the end of
the inner loop, the item at SI is larger than all
the items that follow it. The item at SI is then in
its proper position, so SI is incremented to

; complete one iteration of the outer loop.

i···
CGROUp GhOUl' CODE
; ho OS ASSUME is needed, since this routine
; doesn't reference a DATA segment.

CODE

SORT
ADDR_Al
ADDR_N

Outer

OUTTST:

; Inner

UT5T:

IhHiC:

OUTINe:

E.XlT:

SORT
CODE

A5S~hE CS:CGRGUP
SEGMENT P~BLIC 'CODE'
PUbLIC 50nT
PROC hEAIi
EQ~ wOaD PTR [BP+6] first parameter

second parameter EQU .ORD PIR [Bp+4]

I'~SII BP use SP to access parameters
HO~ OP,S;'
MOV Sl,ADDR_Al

loop: DO 51 = .A 1 bY 2 wHILE SI < CX
MO~ bA,ADOR_h
MO~ ex, [bX] cx N
ADD CX,CX • 2
ADD O.,SI + .Al

CMP SI,CX IF SI >= CX TliEII RETURt.
JAE EUT

loop: DO 01 = Sl+2 bY 2 wHILE DI < CX
LEA DI,lSI+2] ; DI = SI+2
C~.P DI,CX ;IF 01 >= ex
JAE OUTINC TIIEh exit inner loop

MOV AX, [SI] IF All Sl]
e~JI) AX, (01] < A1[DI]
JhB IlHr.C

XeHG AX, [01] THEh ElellANGE A1[LI]
MOV [SI],AX \jITH A 1[SI j

ADD DI,2 END HINER LOOP
Jl'lP INTST

ADD SI,2 E.ND OUTER LOOP
J~IP 0~TT5T

PCP BP
liE.T 4
ENDP
EhD5
EhL

ASSEMbLY COMpLhT~, hO ~nRORS fO~hD

FigureE-4

E-ll

APPENDIX F
CONVERTING MACROS

AND CONDITIONAL ASSEMBLIES

Because version V1.0 of the MCS-S6 Assembler does not support macros (including
the directives MACRO, IRP, IRPC, LOCAL, REPT, macro call, EXITM, or
ENDM) or conditional assembler directives (including IF, ELSE, ENDIF), this Ap­
pendix provides a method of converting these constructs. The method is as follows:

1. Assemble your SOSO/SOS5 source file using the ISIS-II SOSO/SOS5 Macro
Assembler, version 2.0, using the following controls:

• NOPAGING

• MACROFILE

• NOCOND

• GEN
• NOMACRODEBUG

2. Edit your SOSO/SOS5 program list file as follows:

a. Delete the header and trailer information.

b. Delete the first 24 columns (location, object, sequence numbers, and
macro-generated plus (+) signs, where applicable) of every remaining line.

c. Delete (or convert to comments) all macro skeletons (definitions), macro
calls, and other (non-comment) lines which result in no object code.

3. Submit the resulting file to CONVS6 as described in Chaper 2, and treat the
converter output as described in Chapter 3.

The remainder of this Appendix traces the evolution of an SOSO source file contain­
ing macros and conditional assembler directives through the following steps:

• F-l. SO SO Macro Assembler Listing (MACROS.LSO) and Editing Procedure

• F-2. Edited SO SO Macro Assembler listing (MACROS.ESO)

• F-3. PRINT file from conversion of edited listing (MACROS.CNV)
• F-4. MCS-S6 Macro Assembler (V 1.0) listing of converted file

(MACROS.LS6)

F-l

Converting Macros CONV86

• ASMSO ,rl:HICROS.SRC *OPAGIHG MACROFl~E NOCONV pEN NOluCaOUEBUG PRInt :Fl :lU.O

• ISIS.11 6080/3065 .. AeRO "SSEIIB~ER, Y2.0 HonULE I'AGE 1 •
• LOC 08J SEQ SOU~C!! sun .. E.

r--i This header Information was deleted using: I
BIOKS

I
....

3412 • 0000 1 LASZLO: DW 12348
2 ; (THIS LISTING HA~DLES MACRO, IRP, IRPC, and REPT) •
3 ; HOW TO EDIT ASM60 LISTING FOR MACROS, CONDITIONALS

• 4
~AC !,~:RO ~~.~~,G3 • 5

• LOCAL IIOY!!S

I First ~4 columns were deleted using: I 1 ~OVS~' LHLD 01 I Macro skelalon found and commenied oul using: I ij MOt ',M
'lfr:Al~?IOL T$$ B$99<24D$L$>$$ 9 LIiLD G2

• J
1O HOY 8,M • !l 1F G3 EQ LASZLO

nUH

• n iLl>E • LHLV 03
15 IIOV -C,t1

• 16 ENDIF • 11 NOI'
III ENOl!

• 19 ; J Macro call commenled oul uolng: I
20 A ·'0 au LUno --I FMACI$OL n$ 0002 ZH100 21 ??0001: LHLD FOO 1;$$

• 0005 u: Z2 HOV A,M

I 0006 2A3200 H LHLD BAZ • 0009 46 24 HOV B,M

• n
28 BEn b
29 UC REPT skelelon found and commenled out ullng: I

• 30 nDIi
~m'[~tl$$ (lOOA OF H+ RRC

POOB OF 32+ RRC

• OOOC OF 33+ RRC
000l> Qf 3- RRC • OOOl(Of 35 RRC

• OOOf Of 3~ RRC • 37 ;
33 ;

• 39 ; • OO)Jr· 210000 110 LXI H,LASZ-LO
41

~:~ l(,HOO, 3E2~lI.BH>

• .42 X
~3 ~OV MIA 11 'RP okelelon found and commenled oul uolng: I
H UX ij FIRP$OLT$$

• -5 BliOM 5<1;1>$$
(1)13 3'3100 ~6 LDA FOO
0016 17 111 HOV H,A

• 0011 23 4e+ INX H • 00\8 31203E ~9 LDA 3E20H
0018 11 50 HOV M,A

• OOIC 23 51. INX H
00 In 3A3200 52 LDA BAZ • 0020 11 S3 MOV M,',

• 002! 23 54 INX H • 55 ;
56 ;

• 002. < 241ur
51 ; • 58 LHLD LASZLO-l
59 IVDITE, i:~C ~,'91C

• 60 IRPC okeleton found and commented oul uolng: I 61 IIVl M,l
62 EIil>M FIRPC$OL T$$

• aV2S 23 63 INX H 4<1;L>$$
0026 3601 6~ MVI M,l -0028 23 65 INX H

• 0029 3609 66 MVI H,9 • 0028 23 61 ax H
ooZC 3601 66 MVI M,7

• Don H 69- INX H • QOH Jua 10 MVI M,8
11 ,

• 12 ; • n
~OO: 0031 08 14 DB 8

• 0032 9900 15 ~AZ : D~ 99H • 16 END

• PUBLIC SYMBOLS .--~ <

-1Th18 trailer Information was delated using:

• UTdUL SlHBOL$ Z$-l1K$$ -
• U~ER SXM50LS

•• 0 IIAZ A D032 roo A 0031 LUZl,O • 0000 MAC! • 0000 MVDUIi

• ASSt~aLX COMPLETE, NO ERROBS •
1 RESULTING FILE (MACROS.ESO) SHOWN IN FIGURE F-2.1

Figure F-l. Annotated 8080 Macro Assembler Listing (MACROS.L80)

F-2

CONV86 Converting Macros

• LASZLO: D~ 1234h • ; (THIS LISTING hANDLE.S MACRO, IRP, IRPC, and REPT)

• ; HO~ TO EDlT ASM80 LISTING FOR MACROS, CONDITIONALS • ,
;MAC1 MACRO 01,02,<":3

• LOCAL MOVES • ;~OVES: LHLD G1
MOV A,M

• LhLD G2
MOV 8,M • IF G3 EQ LASZLO

• E.XIl'M
ELSE • LhLD G3

• MOV C,M
ENDH • NOP

• ENDM • , MAC 1 FOO,BAZ,LA!:lZLO

• 770001: LHLD FOO
MOV A,M • LHLD 8AZ

• MOV 8,M • REPT

• RRC
ENOl'l • .hG

• HRC
RRC • RRC

• RRC
RRC •

• • LAl H,LASlLO

• lRl' X,<FOO,3E~Oh,BAZ>
LDA ~ • MOV M,A

• IN). h
ENDM • LDA FOO

• HOV M,A
INX h • LDA 3E20H

• NOV to.,A
INX H • LDA vA,

• HOV M,A
INX h •

• • LHLD LASZLO-1

• ; MVDA l'E: IHPC ~, 1970
INX H • MVI M,l

• END~,

INX • MVl H,1

• INX H • MVI 1'1,9
INX H

• l-llJ I 1'1,1 • INX h

NVI M,B

• •
• fOO: D8 b

bAZ: DW 99H • E.ND

Figure F-2. Edited 8080 Macro Assembler Listing (MACROS.E80)

F-3

Converting Macros CONV86

• ASI'IoO TU ASr-I06 L.Gt-lVt:HTiih Converting l-'!acros and Cond i tionals •
• I'.I;-lI ASMUO TO A;M8b CuJltVl!.ltSlO~ Of f'ILE :1" 1 :macros.etiO • ASMbb PLACED IN :fl:macros.Abb

• COr.V.ldil'E.Ii. V1.0 INVOKED hi: • convtl6 :f1 :macros.e80 & edited listing of macro assemoly
print(:f1 :macros.cnv) • conversion and cautions

• tltle('Converting Macros and c..onditionals') & See App ' dixr'-l • abs • t,..on't care about relocatab 11 i ty or PL/M-btJ
approx • lJon't care about saving flags

• •
• LAS"LO: D. 1234H • ; (ThIS LISTING hANDLeS MACfW, lRP, IRPC, and HEPT)

• 3 ; "0. TC EDIT ASM80 LISTING FOh ~jACROS , L.()~Dll' H) f'" ALS • 4 ;
5 il-tALl MACRQ G 1 ,G2. L-3

• 6 LOCAL Men .t:.S • 7 ;MOV E.S: LhLD G1
b J-j0~ A,t:;

• 9 LhLD G" • 1 0 MOV b ,l'1
11 If G3 oQ LASZLO

• 12 EXIHl
13 USE • 14 LHLD 03

• 15 l'1UV C,M • 16 EI'iDlJ.o
17 NOP

• 1 b E.t10M • 19
20 l'JAC 1 fOll, hAl., LASL.L(J

• 21 ~t?OOOl: LHLD '00 • 22 1'1(; Y A,t-.
23 L"LD bA"

• 24 M0lj b ,1"; • 25
26 HEfT

• 27 FdiC
20 1'.NDh • <9 fihC

• 3D fiRe • 31 :HRt.
32 RRL

• 33 RRC • 34 "RC
35

• 36 • 37
3b LXI b,LA~l.LC

• 3> IRP X,<~DU,~~~Oh,bAZ> • 40 LDA X
41 MO~ 1"1,1\

• 42 HX h • 43 eND!-!
44 LOA ,00

• 45 t-lUli N,l!. • 40 INX h
47 LDA 3c20h

• 46 MD~ M,A • 4~ lOA " 50 LDA bAZ

• 01 MC, l", ,A • ,2 1"" I<
53

• 54 • 55
,6 LHLD LASZLu-l

• 57 ; N\lVAlt.: uu'!,,; X,191b • 5b IJ>;,X h
59 MH M,X

• 00 elliuM • 61 HX
02 MH 1"1,1

• 63 INX h • 64 l'lv 1 M,9
b5 IN). h

• 6b MV 1 1<1,7 • 67 INX h
bb 1',\ 1 h,tl

• 09 • 70
71

• 72 ,'CO: "" • 73 bAl.: li. ';1fjh
74 to J~ Jj

Figure F-3A. Conversion of Edited Macro File (8080 Source Shown)

F-4

CONV86 Converting Macros

• A:'-htrO '10 ASMbb (.Lt.Vt.lili:.k t.:onverting I"Jacros ana Lono~tiona15 •
• A~SLd·J!:. uS: AbS_D, CS: AhS_O • AbS_O ~r.Gr1I:.Nl bY'1 to k1 0

• .. LAbfo,L bi TE
LASi.Ll.o D. 1 ~ 3411 • ; (TH1S Ll!:,111'.C hAhDLf:.,s t-;ACIW, I t1 r I 1hPC, and RI:.Pl)

• ; HO' lC !:.11 'i it.,srJoO LISllNt. fun i'JAChu,:;, , CuNJJl'llGhALt:. • ii"IA('l l'lAlhO G 1,li~, G;

• LuCAL fo,LIj f!.~
j EuV to oS : LhLlJ G 1 • d h0V A ,1-1

• ~ LhLD G>
10 f"JOv b ,}<j • 11 H 03 "' LA.)ZLU

• 1 "
eX 111'1

1 -, E.L,sB • 1. LhLV 03

• 15 NC,\, C,1-,
16 t.1~l.JU • 11 hGl"

• 1 0 t:.fIIUt',
1, • <0 1',fi.C 1 rOO,bA2.,LASZLG

• ,,1 110001; I"J.OV bA,l1IUI1D ~1h('OU)
22 I'.UY AL, '",L b)'] • -,:j 1>10'" h>.,bAZ

• >" 1".(J'v Ch, I'll hA]
25 • "0 ht.i-'l

• <1 hhC
<,6 i:.l~ut-i • 2~ hO" AL 11

• 30 hOh AL,l
31 het!. AL,l • 3': nOH 1.L,l

• 33 ROi1 AL,l

3" "Ok AL 11 • -"

• 30
31 • 36 LEA b1,LAS.<.LU

• 39 HI' A,<~OO,31:.20h,bA~)

40 LDA). • .1 tHJ'v' j', I Ii

• 42 11. A

43 l:.Nlil'; • 44 !"1l,.V AL,l"OU

• .5 hl...!i, hl b)' J ,AL
40 ,"C bA • ., !-lull AL,hl3E20h]

• 40 MO, r'J l bJl.J ,AL
4; INC oJ. • 50 MO, AL,biTt. Plh(bAl.)

• ., 1 t-ILV !-Il bX) ,AL
52 IhC BA • 5,

• .,.
55 •
"0 H(;'" bA,LiI.':'i.Lu-1

• ... (.AU1ION 011 ADDfi.E:.SS E.Xl;'hbSSlQl'. hAl be ltoVALlD fOh l086
51 jMIJl.IATr..: HiI C).,1 <;I7b • 50 INlI. h

• '>9 N'w I 1'1,).

00 EtdJi"J • 61 H.C Bi. NOTE

• 0<' ,·;0\ I>ab).J,l
03 ,.L b1 • 04 NOv t-IL b)'), 9

• 05 ,." hi.
ob MOV i'llbX],7 • 07 ac bA

• 60 M0, t,l bx] ,G

09 • 70

• 11
12 FDG Db b • 73 vaL. o. 99h

• ,. Ab"_O E.l~1~ ,. ""0 •
•

Figure F-3B. Conversion of Edited 8080 Macro File (MCS-86 Source Shown)

F-S

Converting Macros

F-6

• hlS-8b ASS.E.hbLEfi HACRQS •
• • ISIS-II I"ICS-d6 AS!>E:t1bLEfi V1.0 ASSEMbLY uf MODULI:. MACHOS

GbJhCl l'JvDi.lLE. PLACtD 10 :fl:macros.vE.J • I!.S!)io;MbLt:1'i l1"4VQi\bll bl:: a5m86 :1'1 :macros.adb print(:1 1 :macros.Hs6) •
LaC OBJ LUE SOUhC.

• ASSUME DS: AbS_O, CS: AbS_O •
ABS_O SEGME.h1' bYTt AT 0

• 0000 3 M LAb.L E)'l't; • 0000 3~ 12 ~ LASUO D. 123~h

5 ; (THIS LISTING HAHDLI::S MACRO, lftf, HU'e, and

• 6
1

; hU. lU !,DI T ASMBO LISn,G fOR l>'jACROS, CON.l

b jNACl MAChO Gl,G2,G3

• 9 LOCAL MuVES • 10 jt'IOH.S: LjjLD Gl
11 hOY A," • 12 LHLlJ G2 • 13 MGV b ,"1
14 IF G3 EQ LASZLO

• 15 EXIUI • 16 i!.LSb
11 LhLD G3

• lB MOV C,M • 19 EhOlF
20 'OP • 21
22

E.NDM •
23 MACI FOO, bAZ, LAS2.10

• 0002 01>1>.4400 <4 770001: MOV BX,wORD Pl'R(FOO) • 0006 bAD? 25 MOV AL,M[BXl
DODo 61>104500 2b MOV B};.,BAZ

• oooe bA2F 2? MOV Ch,M{bXj • 28
29 R EPT

• 30 Ii RC • 31 ENDN
0001. 00C8 3~ ROH AL,l

• 0010 DO(,;o ,3 ROR AL,l • 0012 DOC6 34 ROH AL,l
0014 Doc8 35 hOR AL,l

• 0016 DOCb 36 ROR AL,l • 0016 DOC8 37 ROR AL,l
36

• 3,
40 •

001A tiDlt:QOOO 41 LEA 1:1)" LA SZ10

• 42 IRP X,<FOO,3E20h,BAZ) • 43 LDA).

4~ hOV M.,A

• 45 lOX H • 40 £NOM
0011. '04400 47 110V AL,FOO

• 00~1 ob07 4b MOV M[BXl,AL • 0023 43 "9 INC BX
0024 A0203t 50 !;JV AL,>Jl3E20Hl

• OO~1 ob07 51 MOV IIlBXl,AL • 0029 43 52 INC BX

• 00211. AO~500 53 NOV AL,BYlE PTR(BAZ) • 002D b807 54 MOV M[BX],AL
00210' 43 55 INC BX • 5b

57 •
58 • 0030 OBIEHU 59 MOV BX,LASZLO-l • bO jMVDA1E: IRPC X,1970
61 ax H

• 6;::
63

1'1 V I
E'DI1

M,X •
0034 43 64 INC BX • 0035 C60701 65 MOV N[&.l!..],l • 0038

" 3
66 INC EX

0039 C60709 67 MOV M[EX l, 9

• o u 3C 43 68 1.0 bX • 0031; C60107 09 MOV M[EX l, 7
0040 43 70 INC BX • 0041 C00108 71 MOV M[oxl,8 • 72

73 • 7~ , • 0044 Db 75 fDa Db 8
0045 9900 76 HZ ow 998

• 77 HS_O I.NDS • 70 EfolD

• ASSl:.NbL~ COl-lPLETE, NO EHRORS FOUND •

Figure F-4. MCS-86 Assembler (V 1.0) Listing of Converted File
(MACROS.L86)

CONV86

APPENDIX G
RELOCATION AND LINKAGE

ERRORS AND WARNINGS

Because of the way CONV86 sets up multiple segments beginning at absolute loca­
tion 0 (as described in Chapter 1 under "Functional Mapping"), MCS-86 linkage
and relocation tools will issue warnings/errors as shown in Table 0-1. You can safe­
ly ignore these warnings/errors when they specifically apply to intentional segment
overlap.

Table 0-1. MCS-86 Relocation and Linkage Warnings/Errors
for Segment Overlap

R&L Tool Message 10 Message Text

ERROR9 ABS_O HAS INCOMPATIBLE ATIRIBUTES

QRL86 IN modnameAND modname

ERROR 11 ABS_O AT OOOOOH PRECEDES LC= addr.

WARNING 14 GROUP ENLARGED
FILE: filename
GROUP: groupname •

MCS-86 MODULE: modname

LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_O
CLASS:

G-l

ABS control (CONV86), 1-6, 2-3
absolute address, 3-2
APPROX control (CONV86), 1-10,2-3

caution message, 1-12,3-8
comments, mapping of, 1-9
conditional assembler directives, 1-3, F-l
conditional assembly, 1-3
continuation lines,

in CONV86 command, 2-5
in PRINT file, 3-1

controls (ASM80) mapping, C-l
controls (CONV86), 2-2
conversions, sample, 1-3,3-1, E-2, F-3
cross-development (8080/8085-

to-8086), 1-2

DATE control (CONV86), 2-2
directives mapping, C-l
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-10,2-3
expressions, conversion of, B-1

files, CONV86, 1-2, 1-12
files, cross-development, 1-2
flags, mapping of, 1-8
flag semantics, 8080-8086 differences, 1-11
functional equivalence, 1-10
functional mapping, 1-6

INCLUDED control (CONV86), 2-3
instruction mapping, A-I
instruction queue (8086), 1-10
interrupts, 3-3

label insertion by CONV86, 3-2, A-I
label insertion by user, 3-3

macro call, F-l
macro conversion, F-1
macro definition, F-l
MACROFILE control (ASM80), 1-9
manual editing, 1-3, 1-12,3-1, E-l, F-l
MOD8S control (ASM80), 1-9

INDEX I

NOMACROFILE control (ASM80), 1-9
NOOUTPUT control (CONV86), 2-2
NOP AGING control (CONV86), 2-4
NOPRINT control (CONV86), 2-2
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1
OUTPUT control (CONV86), 2-2
overriding controls (CONV86), 2-5
overriding symbol types, 1-8,3-9,

3-10,3-11

P AGELENGTH control (CONV86), 2-3
P AGEWIDTH control (CONV86), 2-3
pipeline (8086), 1-10
PLiM linkage conventions (8080 &

8086),3-6
PLiM parameter passing (8080 &

8086),3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, E-2, E-9, E-ll, F-6
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2
register mapping, 1-7
REL control (CONV86), 1-6, 2-3, 3-2, 3-11
relative addressing, 3-2
relocation & linkage (8086)

errors/warnings, 1-6, G-l
requirements for conversion, 1-1, 1-3,3-1
reserved names, 1-9, D-1

stack, CONV86 handling of, 1-7
stack segment (8086), 1-6
STKLN directive (8080), 1-6, C-l
symbol typing, 1-8

timing delays, software, 1-10
TITLE control (CONV86), 2-2

WORKFILES control (CONV86), 2-3
WORKFILES control (ASM80), 1-9

Index-l

MC8-86 Assembly Language Converter
Operating Instructions For ISIS-II Users

9800642A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME _______________________________ DATE _____________________ __
TITLE ___ ___
COMPANYNAME/DEPARTMENT __ _
ADDRESS __ __
CITY _________________________________ STATE _______________ ZIPCODE ________________ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Attention: MCD Technical Publications

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

111111
First Class

Permit No. 1040
Santa Clara, CA

