MCS-86
ASSEMBLY LANGUAGE CONVERTER
OPERATING INSTRUCTIONS
FOR ISIS-Il USERS

Manual Order No. 9800642A

Copyright © 1978 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 |

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE LIBRARY MANAGER PROMPT
INSITE MCS RMX
INTEL MEGACHASSIS UPI
INTELLEC MICROMAP uSCOPE
iSBC MULTIBUS

A30/379/10K TL

P

PREFACE

This manual describes how the ISIS-II user who is familiar with 8080/8085 assembly
language can convert 8080/8085 source files to 8086 assembly language source files,
which can then be assembled, linked, located, and run to perform their equivalent
8080/8085 functions on the upwardly compatible, 16-bit 8086.

Chapter 1 describes the scope and environment of conversion.
Chapter 2 describes how to operate the converter program CONV86.

Chapter 3 describes how to edit converter output to obtain MCS-86 source files.

Appendices describe the instruction, operand (expression), and directive mappings;
reserved names; and sample conversions with 8080/8085 and MCS-86 Assembler
listings of source and output files.

Although the MCS-86 Assembler (version V1.0) does not support macro or condi-
tional assemblies, Appendix F provides a method by example whereby 8080/8085
source files containing macros and conditionals can be converted to acceptable
MCS-86 source files.

The following publications contain detailed information on 8080/8085 and MCS-86
software related to this manual:

o 8080/8085 Assembly Language Programming Manual, Order No. 9800301

o ISIS-II 8080/8085 Macro Assembler Operator’s Manual, Order No. 9800292
e ISIS-II User’s Guide, Order No. 9800306

e MCS-86 User’s Manual, Order No. 9800722

e MCS-86 Assembly Language Reference Manual, Order No. 9800640

e MCS-86 Assembler Operating Instructions for ISIS-II Users, Order No.
9800641

o MCS-86 Software Development Utilities Operating Instructions for ISIS-II
Users, Order No. 9800639

e PL/M-86 Operator’s Manual for ISIS-1I Users, Order No. 9800478

iii

CONTENTS

CHAPTER 1 PAGE
AN OVERVIEW OF CONVERSION
Conversionand You........cooiiieienneennenns 1-1
What IsConversion?cciiviievinennn.. 1-1
WhyConvert?coiiiiiiiiiniiiineennnnnn 1-1
What Preparation Does CONV86 Require of
SourceCode?......covviiiiiiiiiiii i 1-1
What About SETs, Macros, and Conditional
Assembly Directives?ccoiieiiinna. 1-3
What Hardware/Software Is Needed
forConversion?.........coviiiniiineennnnn 1-3
How Much Manual Editing of CONV86
Output Is Necessary?covvvivennennnnn. 1-3

What Advantage Is There in Rewriting
Programs in MCS-86 Assembly Language Rather

Than Converting?ovvviiiinnn... 1-3
Functional Mappingccooveveeinnnnnn.. 1-6
What Are the MCS-86 Assembly Language
Prologues Generated by CONV86?............. 1-6
What If a Converted Program Exceeds 64K?. 1-6
How Does CONV86 Handle the Stack? 1-7
How Are the 8080 Registers Mapped
into 8086 Registers?ccoiviiiinnennnnn 1-7

How Are the 8080 Flags Mapped into 8086 Flags? .. 1-8
How Are the 8080 Instructions Mapped

into 8086 Instructions...........cocveeveenn.. 1-8
How Are 8080 Operands (Expressions) Mapped

into 8086 Operands (Expressions)? 1-8
How Are Comments Mapped? 1-9
How Are 8080/8085 Assembler Directives

Mapped into MCS-86 Assembler Directives?..... 1-9
How Are 8080/8085 Assembler Controls Mapped? . 1-9
How Does CONV86 Handle Reserved Names? 1-9

Functional Equivalence 1-10

What Is Functional Equivalence? 1-10
What About Program Execution Time?.......... 1-10
What Happens to Software Timing Delays

inConversion?.coviiiiiiiiiiieenann 1-10
Does the MCS-86 Code Produced Set Flags Exactly

asonthe80807............ccoiiiiiiint, 1-10
How Does the EXACT Control Preserve

Flag Semantics?........covivvieeneennnnnnn. 1-11

Editing CONV86 Output for MCS-86 Assembly .. 1-12

What Output Files Does CONV86 Create? 1-12
What Are Caution Messages? 1-12
Does a Caution Message Necessarily Mean

a Manual Edit? PN 1-12

Do Caution Messages Identify All Manual Editing? 1-12
What Features Are Not Implemented for
the MCS-86 Assembler (V1.0)?............... 1-12

CHAPTER 2 PAGE

OPERATING THE CONVERTER

Source File Requirementsccovunnnns 2-1

CONVS86 Controls and Defaults.................. 2-2

Example 1: Full Default Saves Flags and Relocatability 2-4

Example 2: Absolute Code with No Flags Saved...... 24

Example 3: Absolute Code with Flags Saved 2-4

Example 4: Relocatable Code with No Flags Saved ... 2-5

Example 5: Prompting and Continuation Lines 2-5

Example 6: Overriding Controls 2-5

CHAPTER 3

EDITING CONVERTER OUTPUT

Interpreting the PRINTFile 3-1

8086 Checklistcoovviiiiiiiiniiiieinnnnn 3-2
Initializing Registersccoiiininennnnn. 322
Absolute Addressing.oovvieiiiiiiiiinn, 3-2
Relative Addressingcovviiiiiiiinnnn. 3-2
Interrupts......coviiiiii ittt 3-3

PL/M-86 Linkage Conventions 3-6
Case l: WhenPL/MC Calls...................... 3-6
Case 2: When Your Converted Program Calls. 3-7

Caution Messagescovevrenienrnnenennnnns 3-8

Caution Message Descriptions 3-9

APPENDIX A

INSTRUCTION MAPPING

APPENDIX B

CONVERSION OF EXPRESSIONS IN

CONTEXT

APPENDIX C

ASSEMBLER DIRECTIVES MAPPING

APPENDIX D

RESERVED NAMES

APPENDIX E

SAMPLE CONVERSION

APPENDIX F

CONVERTING MACROS AND

CONDITIONAL ASSEMBLIES

APPENDIX G

RELOCATION AND LINKAGE

ERRORS AND WARNINGS

INDEX

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
1-1 8080/8086 Flags Correspondence 1-8 C-1 Directives Supported by MCS-86
- Flag Settings That Change If APPROX Is Assembler (V1.0)ccvvintn C-1
Specified.........ciiiiiiiiiiia 1-11 C-2 Directives Not Supported by MCS-86
1-3 CONV86 OutputFiles 1-12 Assembler (V1.0)ovvenn.n. C-2
2-1 CONV86 Controls and Defaults 2-2 D-1 Reserved Names........................ D-1
A-1 Instruction Mapping A-1 G-1 Relocation and Linkage Errors and
B-1 Operand Mappingccvvenen B-1 Warnings.oovviiiiiiiiiiiie.., G-1
FIGURES and LISTINGS
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 From 8080/8085 Assembly Language E-4 Program Listing (MCS-86) of Sort Routine
Source File to 8086 Execution 1-2 Coded originally in MCS-86 Assembly
1-2 CONVS86 Input and Output Files........... 1-2 Language........coviviiiiinnnnniannn E-11
1-3 Sample PRINTFile...................... 1-4 F-1 Annotated 8080 Macro Assembler Listing
1-4 Program Listings: Original 8080, Converted of 8080 Macro SourceFile.............. F-2
8086, Original 8086............ P 1-5 F-2 Edited 8080 Macro Assembler Listing F-3
3-1 Annotated PRINT File................... 3-1 F-3 PRINT File from Conversion of Edited
3-2 Converting Your Interrupt Procedures...... 34 8080 Macro Assembler Listing F-4
E-1 Program Listing of 8080 Sort Routine...... E-2 F-4 MCS-86 Assembler (V1.0) Listing of
E-2 PRINT File of Conversion of 8080 Sort Converted 8080 Macro Source File. F-6
Routineccovviiiiiiiannann, E-4
E-3 Program Listing (MCS-86) of Converted
8080 SortRoutine..........ovviviinns E-9

vi

CHAPTER 1
AN OVERVIEW OF CONVERSION

Conversion and You

What Is Conversion?

Conversion is a way for you to obtain MCS-86 source files from your error-free
8080/8085 assembly-language source files. (Recall that an assembly-language source
file consists of assembler control statements, assembler directives, and assembly-
language instructions.)

Figure 1-1 shows the role of conversion in 8080/8085-t0-8086 software development.
Conversion consists of two phases:

1. Operating the program CONV86 under ISIS-II. As shown in Figure 1-2,
CONVS86 accepts as input an error-free 8080/8085 assembly-language source
file and optional controls, and produces as output optional PRINT and OUT-
PUT files. The OUTPUT file contains machine-readable 8086 assembly-
language source code generated by CONV86. The PRINT file is human-
readable and contains:

e Input 8080/8085 assembly-language source code

® Output 8086 assembly-language source code with embedded diagnostic
(‘‘caution’’) messages

Chapter 2 describes how to operate CONV86 under ISIS-II.

2. Manually editing (using the ISIS-II text editor) the OUTPUT file as indicated by
the caution messages in the PRINT file. Chapter 3 describes how to edit
CONYV86 output according to the caution messages generated. Some machine-
dependent sequences (such as software timing delays) are not detected by
CONVS86, but still require manual editing. Recall that in going from the 8080 to
the 8086, both the instruction size (length) and time (clocks) change.

Figure 1-1 shows both phases of conversion, as well as subsequent assembling, link-
ing, and (absolute) loading required for execution of your program.

Figure 1-3 shows the format of the PRINT file, and highlights features of conver-
sion discussed here and elsewhere in this manual.

Why Convert?

If you want to capitalize on your software investment in the 8080/8085, and if your
8080/8085 source files are tried-and-true, then conversion may offer you a con-
siderable head-start in your software development effort for the upwardly-
compatible 8086.

What Preparation Does CONV86 Require of Source Code?

You must ensure that all 8080/8085 source files to be converted can be assembled
without error by the ISIS-II 8080/8085 assembler. No source line can be longer than
129 characters, excluding carriage-return and line-feed. If your program contains
more than 600 symbols, you must break your program down into smaller programs
(even if you have 64K RAM).

1-1

Overview of Conversion

Figure 1-1. From 8080/8085 Assembly Language Source File to 8086 Execution.

USER INTERFACE TooL FILES REFERENCES
8080/6085
ERROR-FREE|
SOURCE
O FILE
" INVOKE h CHAPTER 2
CONTROLS
INTELLEC CONV8S
—
PRINT FILE
MCs-86
SOURCE
FILE
SOFTWARE
ENGINEER
o) MANUAL CHAPTER3
EDIT
INTELLEC ﬂ
MCs-86
SOURCE
FILE MCS-86
ASSEMBLER
O OPERATING
INVOKE INSTRUCTIONS
—1 controLs eS8 FORISISI
INTELLEC o 3 -
B ASSEMBLER USERS
— (ORDER NO.
9800641)
LISTING
MCs-86
0BJECT
FILE
O MCS-86
INVOKE MCS-86 SOFTWARE
m CONTROLS | f ge ocartion DEVELOPMENT
¢ AND UTILITIES
——— LINKAGE FORISIS-II
USERS
(ORDER NO.
MCS-86 9800639)
FXECUTABLE
PROGRAM

INCLUDE
FILE(S)

8080/85

8080/85

Figure 1-2. CONV86 Input and output Files (The MCS-86 Assembler (version

SOURCE
FILE

~(D)—

| CONVBETMP I
(DELETED)

V1.0) does not support the INCLUDE control.)

(MCS-86
SOURCE
FILE

8080/8085
SOURCE
FILE

= = -
MCS-86

SOURCE
WITH

UTIONS
\ CAUTIO!

ouTPUT
FILE
(EDIT UNDER ISIS-Il)

PRINT

FILE
(USE AS REFERENCE
TO EDIT OUTPUT FILE)

CONV86

CONV86 Overview of Conversion

What About SETs, Macros and Conditional Assembly Directives?

The SET directive, macro definitions, macro calls, and conditional assembly direc-
tives are not supported by Version V1.0 of the MCS-86 Assembler. Table C-2 in Ap-
pendix C shows how Version V1.0 of CONV86 maps these statements. When
CONYV86 encounters a macro definition, macro call, or conditional assembly direc-
tive, the following caution message is issued to the PRINT file:

29 FEATURE NOT SUPPORTED FOR ASM86 V1.0

The caution message, however, should not be construed as an indication that the
mapping shown in Table C-2 will be accepted by the MCS-86 Macro Assembler. If
you want to convert your source programs containing macros and conditional direc-
tives, you can refer to Appendix F for instructions and examples regarding pre- con-
version 8080/8085 assembly and editing procedures.

What Hardware/Software Is Needed for Conversion?

You need an Intellec microcomputer development system with 64K bytes of RAM
and at least one diskette unit. The CONV86 program occupies a single diskette and
runs under ISIS-II. During execution, CONV86 creates a work file (CONV86.TMP)
which requires seven bytes for each line of 8080/8085 code processed. Upon normal
termination, CONV86 deletes this temporary file.

How Much Manual Editing of CONV86 Output Is Necessary?

Anywhere from none to a considerable amount, depending on the nature of the
8080/8085 source file. In general, the following kinds of source code are better im-
plemented on the 8086 by recoding from scratch in 8086 assembly language, rather
than by converting from 8080:

o ““Tricky’’ code that modifies itself

e Code that uses operation mnemonics as operands (for example, the instruction
MVI C,(MOV A,B); the intent of this instruction is to load C with the opcode
for MOV A,B).

® Programs relying heavily on the 8085 instructions RIM and SIM (Read/Set
Interrupt Mask) should be recoded from scratch in 8086 rather than converted.
The 8086 has no functional counterparts for these instructions.

It is therefore recommended that source files not be blindly submitted for conver-
sion. Each source file under consideration for conversion should be carefully ex-
amined for these problem areas.

What Advantage Is There in Rewriting Programs in 8086 Assembly Language
Rather Than Converting?

CONV86 converts most 8080/8085 assembly-language source programs adequately.
You can take advantage of the more powerful 8086 by coding some routines directly
in 8086 assembly language.

For example, Figure 1-4 shows assembled program listings for:
* 8080 Assembly of BCDBIN (13 bytes 8080 object code)
® MCS-86 Assembly of Conversion of BCDBIN (22 bytes 8086 object code)

o MCS-86 Assembly of BCDMCS Original 8086 Source (7 bytes 8086 object code)
(Recall that the PRINT file for the conversion of BCDBIN is shown in Figure 1-3.)

Overview of Conversion CONVS86

L

@ .00 10 ASho6 CONVERTER [SCUSTO-BIRARY ROUT Lot | ~g—(__ Title from gC O
® o151 A5mu0 TO ASHE6 CONVEKSION GF FILE :K1:BCDBIN.S50 o
ASh66 PLACED 1h :F1:ECLEIN.SBO
@ (CUMERTER Vi.0 TNVORED BY:
CUNVB6 :F1:BCLEIN.S80 & 6060 SOUKCE FILE
PRINT(:F1:bCDbIN.CNV) & CONVERSION AND CAUTIONS
@ [OUTPUTC:F1:BCLBIN.SBE) & 50B6 COLE GENEKATED PY
TITLE('BCL-TG-bINAKY KOUTINE') & MAX 39 ChAKS — >
APPROX & DOM'T CARE ABGUT FLAG SEMANTICS FOR THIS
ABS & DCN'T CARE ALOUT KELOCATABILITY OR PL/M FOK|THIS
o ®
° Y °
7] [(THIs ROUTINE CONVEKTS BCD 10 EINARY AS FOLLUKS:
PY 2| |5 BCD TEN'S DIGIT 1N LOW NIBBLE OF B REG. ®
3| |; BCD GNLT'S DIGIT IN LOW NIBELE OF C KEG.
4| |5 HBlGH NIEBLES OF b AND C ASSUMED TU EE IRKELEVANT. <« copyotso
° 5| |; EINAKY RESULZ (0-99) 1S LEFT IN ACCUMULATOR. ®
6 0KG 000k
7| |scobin: mov a,c JUNIT'S DIGIT & GAKBAGE TO ACC.
e ® KNI OFH ;MASK CUT GAKBAGE °®
g MOV E,A {SAVE UNIT'S DIGIT IN E (LOW)
10 MOV A,b ;TEN'S DIGIT & GARBAGE TO ACC.
11 ANI OFH ;MASK OUT GAKBAGE
L] 12 MOV D,A ;SAVE TEN'S DIGIT IN D (LOW) L
13 RLC ;2%TEN'S
° 14 KLC JHRTEN'S ®
15 kDD D ;58TEN'S
16 KLC S10*TEN'S
17 ALD E ;10%TEN'S + UNIT'S BIN. KEP. TN ACC.
L] 16 END L
[®
[]
@ Moo T AShob CONVEKTEK [BCD-10-BINARY ROUTLNE]-g—— e i
\
®
[] ASSUME DS:AbS_0,CS:ABS_0 L
3| ABS_0 SEGMENT bYTE AT 0
[] M LABEL EYTe *
® 7] ;THIS KCUTINE CONVEKIS BCR 10 ERNAKY AS FULLOWS:
2| ; bCL TeN'S DIGIT IN LO OF B REG.
o 3| 3 BCD UNIT'S LIGIT IN LO E UF C REG.
® 4| ; H1GR NIBBLES OF b AND Q ASSUNED TG BE IRKELEVANT.]
q Numbers Corresp 5 H blWARY RESULT (0-99) 1S\LEFI ACCUMULATGK.
® to Source File Line Numbers 6 ——T6Ku__ ~ HO00R 1
= 7|, BCLBIN: MOV AL,cL | ;UNLT'S DIGIT & GAKkbAGE To AM%.
M AND AL,0Fk ;MASK OUT GARBAGE
® 9l | MOV oLoaL | ;SAVE UNIT'S DIGLT IN E (LOW
o 10 MOV AL,CH | ;TEN'S DIGIT & GAKBAGE TO AC
° 1! AND AL,OFH | — (A.B‘s;l‘ OUT GARBAGE ,
2 solute “\T&N'S DIGLT IN D (LOW
[] :g I :gt :S:?L | 8086 Segment Is |1 g []
il ROL AL, 1 Pseudo-8080 . /
® Py 15] | ADD ac,on | Environment /15 L
10 KoL AL, 1| ;10%TEN'S
17 ALD AL,DL ;10%TEN'S + UNLT'S BIN. REP. IN
() ° 10| I[Fps 6 EnvS]—on—1 °
18] L END 1
_________ ‘\C MCS-&GsAssemtc::lyé.anquage)
OUTPUT File ource Code
F1:8CDBIN.586 H—@-[0 CAUTION(S)] L]
Should Assemble
@ U ASMEO 10 ASMS6 CONVEKSLON °
[]

Figure 1-3. Sample PRINT File

CONVS86 Overview of Conversion

S
@ 4580 :F1:BCDBIN.S60 L
@ 151S-11 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 1 [
® LOC 0BJ SEG SOURCE STATEMENT ®
1 ;THIS ROUTINE CONVERTS bCD TO BINARY AS FOLLOWS:
® 2 ; BCD TEN'S DIGIT IN LOW NIBbLE OF B REG. ®
3 ; BCD UNIT'S DIGIT IN LUW NIBBLE OF C REG.
4 ; HIGH MIBBLES OF B AND C ASSUMED TO BE IRKELEVANT.
® 5 ; BINARY RESULT (0-99) IS LEFT IN ACCUMULATOR. ®
4000 6 ORG 4O0OOH
4000 79 7 BCDBIN: MOV A,C JUNIT'S DIGIT & GARBAGE TO AC
L 4001 E6OF [ANI OFh ;MASK OUT GARBAGE
4003 SF 9 MOV E,A {SAVE UNIT'S DIGIT IN E (LOW)
4004 78 10 MOV A,B ;TEN'S DIGIT & GARBAGE TO ACC
] 4005 E6OF 11 ANI OFH ;MASK OUT GARBAGE [
4007 57 12 MOV D,A $SAVE TEN'S DIGIT IN D (LOW)
4008 07 13 RLC $2%IEN'S
® 09 07 14 RLC JUeTEN'S L
400A 82 15 ADD D SS¥TEN'S
4005 07 16 RLC S10%TEN'S
[] 400C 63 17 ADD E ;10%TEN'S + UNIT'S BIN. hEP. Q#
18 END
@ \SSEMELY COMPLETE, NO ERRORS]
® M(S-66 ASSEMBLEK BCDBIN
[
1SIS-11 MCS-86 ASSEMBLER V1,0 ASSEMBLY OF MODULE BCDBIN
° OBJECT MODULE PLACED IN :F1:BCDBIN.CBJ
ASSEMBLER INVOKED BY: ASM86 :F1:BCDBIN.S86 PRINT(:F1:BCDBIN.LE6)
C O0BJ
P Lo LINE SOURCE
1 ASSUME DS:ABS_0,CS:ABS_O
® i 2 ABS_O SEGMENT BYTE AT 0
0000 3 M LABEL BYTE
4 ;THIS ROUTINE CONVERTS BCD TO BL
° 5 3 BCD TEN'S DIGIT IN LOw NIBB
6 ; BCD UNIT'S DIGIT IN LOW NIEE
7 3 HKIGH NIBBLES OF B AND C ASSUMM®
PY 8 ; BINAKY RESULT (0-99) IS LEFT IN
4000 g ORG 4000H
4000 bACH 10 BCDBIN: MOV AL,CL
_ 4002 24OF 11 AND AL,OFH
® Loo4 8ano 12 Mov DL,AL
4006 8ACS 13 MOV AL,CH
4006 240F 14 ANL AL,O0Fh
@ Loo0s k0 15 MOV DH, AL
400C DOCO 16 ROL AL,
400E DOCO 17 ROL AL, 1
® .o10 026 18 ADD AL,DH
4012 DOCO 19 ROL AL, 1
® 4014 ozc2 20 ADD AL,DL
---- 21 ABS_O ENDS
22 END
® ASSEMBLY COMPLETE, NO ERRORS FOUND
[MCS-66 ASSEMBLER ECDMCS
®
1515-11 1CS-66 ASSEMbLER V1,0 ASSEMBLY OF MOLULE ECDMCS
PY ObJbCT MODULE PLACED IN :i1:bCDMUS.ULJ
ASSEMBLEK INVUKED bY: ASM86 :F1:bCDMCS.5Scb PKINT(:F1:bCDMCS.LE6)
PY LOC UBJ LINE SGURCE
1 ASSUME DS:AbS_0,CS:ABS_O
Py ———- z ABS_O SEGMENT EYTE AT O
4000 3 OkG 4000n
4 ;1r1S ROUTINL ASSUMES TEN'S DIGIT IN Ch REG. LOW NIBBLE
PY 5 UNIT'S DIGIT IN CL REG. LOw NIEBLE
6 GAKBAGE LLSEWHERE
7 ;ThlS KOUTINE PLACES BINARY REPRESENTATION (0-99) IN AL REG.
4000 sEC1 o KOV AX,Ch
® 400z 250k OF y AND AX,0FOrh
4005 L504 10 AAL JAL <-- 10%4k + AL
———- 11 ABS_0 kNLS
® 12 END
® ASSEMBLY COMPLETE, NG EREOKS FOUND

Figure 1-4. Program Listings: Original 8080 (top);
Converted 8080 (middle); Original 8086 (bottom)

1-5

Overview of Conversion CONVS86

Functional Mapping

What Are the 8086 Assembly Language Prologues Generated by CONV86?

The main source file of your 8080/8085 program should be converted using the
(defaulted) control NOTINCLUDED. If NOTINCLUDED is in effect, the con-
verted file begins with a converter-generated prologue. The prologue generated by
the converter depends on whether the ABS or REL control is specified when
CONVS86 is run (REL is the default).

If the ABS control is specified (for subsequent absolute loading by 8086 relocation
and linkage), CONV86 generates as a prologue:

ASSUME DS:ABS__0,CS:ABS_0
ABS_0 SEGMENTBYTEATO
M LABEL BYTE

If the REL control is specified {for converting 8080/8085 source files with
relocatability features, and/or for subsequent linking to PL/M-86 modules)
CONVS86 generates as a prologue:

CGROUP GROUP ABS__0,CODE,CONST,DATA,STACK,MEMORY

DGROUP GROUP ABS__0,CODE,CONST,DATA,STACK,MEMORY
ASSUME DS:DGROUP,CS:CGROUP,SS:DGROUP

CODE SEGMENT WORD PUBLIC 'CODE’

CODE ENDS

CONST SEGMENT WORD PUBLIC 'CONST’

CONST ENDS

DATA SEGMENT WORD PUBLIC 'DATA’

DATA ENDS

STACK SEGMENT WORD STACK 'STACK’
DB N DUP(?)

STACK_BASE LABEL BYTE

STACK ENDS

MEMORY SEGMENT WORD MEMORY 'MEMORY’
MEMORY__ LABEL BYTE

MEMORY ENDS

ABS_0 SEGMENT BYTEATO

M LABEL BYTE

where N in the STACK segment corresponds to the operand of the 8080 STKLN
directive.

These statements help to set up a pseudo-8080 environment, since an 8086 segment
cannot exceed 64K bytes. The register mappings help to complete the pseudo-8080
environment.

NOTE

If more than one module is linked, multiple ABS__0 segments will cause
QRL86 and LINK86 to issue error messages concerning SEGMENT
OVERLAP. These errors are nonfatal and can be ignored, but you should
check your 8080 ASEG (now the 8086 ABS__0 segment) to make sure that
you intend the overlap to occur. See Appendix G for further details.

What If a Converted Program Exceeds 64K?

If your 8080 object file exceeds SOK bytes, then there is a chance that your converted
source file, when assembled, will exceed 64K bytes and therefore will be too large to

1-6

CONVS86 Overview of Conversion

fit into a single 8086 segment. (To determine this, you must first convert your 8080
source file, including required manual editing of 8086 source code, and then assem-
ble under the MCS-86 Assembler. An error message will inform you if the resulting
MCS-86 object file exceeds 64K bytes.)

If your converted program exceeds 64K bytes, you must reorganize your MCS-86
source code into two or more segments, or else optimize your converted program (by
recoding portions directly in more efficient MCS-86 source code).

To reorganize your converted program into two or more segments, you will need to
change the GROUP, SEGMENT, and ASSUME assembler directives as described in
the manual, MCS-86 Assembly Language Reference Manual, Order No. 9800640.

If you need to reorganize your converted program, you can place your data in one
segment or group based at absolute location 0, and place your code in another seg-
ment or group located above the data segment (or group). You should pay particular
attention to absolute addresses and pointers (address values stored as data) in this
case, to ensure that your program accesses its data as originally intended.

How Does CONV86 Handle the Stack?

“STKLN”’ is converted to ““DB n DUP(?)”’ in the STACK segment, where n is taken
from the operand of STKLN. The reserved name STACK is converted to
STACK__BASE. (See also ‘‘Initializing Registers’’ under ‘‘8086 Checklist’’ in
Chapter 3.)

How Are the 8080/8085 Registers Mapped into 8086 Registers?

Byte registers are mapped as follows:

8080/8085 . 8086

AL
CH
CL
DH
DL
BH
BL

rIMmMooOm>»

Word registers are mapped as follows:

8080/8085 8086
PSW AX
B CX
D DX
H BX
SP SP

Overview of Conversion

1-8

How Are the 8080 Flags Mapped into the 8086 Flags?
The 8080 flags correspond to a subset' of the 8086 flags as shown in Table 1-1:

Table 1-1. 8080-8086 Flag Correspondence

Flag Name Desisgor?:tion Des?:::ﬁon
Auxiliary-carry AC AF
Carry C CF
Zero z ZF
Sign S SF
Parity P PF

1. Four 8086 flags do not concern us here: DF (direction), IF (interrupt-enable), OF (overflow),
and TF (trap).

How Are 8080/8085 Instructions Mapped into 8086 Instructions?

Appendix A shows how all instructions are mapped. But first, consider that it is not
enough simply to map an 8080 instruction mnemonic directly into an 8086 instruc-
tion mnemonic, because the instruction operands must be examined as well.

How Are 8080 Operands (Expressions) Converted to 8086 Operands (Expressions)?

8086 Assembly Language is a typed language, whereas 8080/8085 is not. Thus,
CONYV86 must assign a type—BYTE, WORD, or NEAR—to each symbol en-
countered in your 8080/8085 source file. Each symbol is typed according to its most
frequent usage. After each symbol has been assigned a type (at the end of the first
pass of CONV86), CONV86 can explicitly override the type in 8086 source code
when necessary.

Appendix B describes the conversion of 8080 expressions into 8086 expressions as a
function of the context and the operand or expression type. For example, during its
first pass in converting your 8080 source file, CONV86 may find the symbol
LASZLO used in three different contexts:

8080
LDA LASZLO ;load accumulator with byte at LASZLO
LHLD LASZLO ;load (H,L) with word at LASZLO
JMP LASZLO ;jump to symbolic location LASZLO

Since all three usages of the same symbol are permitted in 8080/8085 assembly
language, but since 8086 assembly language permits a symbol to be of only one
type—BYTE, WORD, or NEAR—then CONV86 must assign a single type to

CONYV86

CONYV86

Overview of Conversion

LASZLO. In this case, LASZLO is assigned type BYTE, and the remaining two
occurrences of LASZLO are overridden as follows:

8086
MOV AL, LASZLO ;load AL with byte at LASZLO
MoV BX,WORD PTR(LASZL O) ;load BX with word at LASZLO
JMP NEAR PTR(LASZL O) ;jump to symbolic location LASZLO

How Are Comments Mapped?

Comments are mapped unchanged.

How Are 8080/8085 Assembler Directives Mapped Into 8086 Assembler
Directives?

Appendix C shows the assembler directive mapping. (Recall that the MCS-86
Assembler (version V1.0) does not support macro or conditional directives, or the
SET directive.)

Table C-1 shows the mapping of directives supported by the MCS-86 Assembler
(version V1.0).

Table C-2 shows a pseudo-mapping of directives not supported by version V1.0, and
should notbe construed as a specification of MCS-86 Macro Assembler directives.

Operands (expressions) of all directives (whether supported or not) are mapped ac-
cording to Appendix B.

How Are 8080/8085 Assembler Controls Mapped?

CONV86 deletes the MOD85 and NOMACROFILE controls, and issues correspon-
ding caution messages.

The MACROFILE (:Fn:) control is converted to WORKFILES(:Fs:, :Fn:), where
:Fs: is the diskette on which the source file resides. All other 8080/8085 assembler
controls are copied unchanged to the 8086 source file.

The only 8080/8085 assembler control interpreted by the converter is the INCLUDE
control, which causes included files to be processed in the first pass. Included files
are neither listed nor converted when the main source file is converted; they are pro-
cessed in order to evaluate symbol definitions and attributes. The maximum nesting
level for included files is four.

NOTE

The MCS-86 Assembler (version V1.0) does not support the INCLUDE
control. CONV86 supports the INCLUDE control as described above.

How Does CONV86 Handle 8086 Reserved Names?

Whenever CONV86 encounters an 8086 reserved name (such as AL, TEST, or
LOOP) in an 8080/8085 source file, CONV86 appends an underscore to the name
(thus obtaining AL__, TEST__, or LOOP__). The only exception to this rule is

Overview of Conversion

1-10

STACK, which is converted to STACK__BASE. As a result, you don’t need to be
concerned about any 8086 reserved names that might be hiding in your 8080/8085
source files. Appendix D gives a complete list of 8086 reserved names.

Functional Equivalence

What Is Functional Equivalence?

The ideal conversion results in total functional equivalence, which means that the
converted 8086 source file, when assembled, linked, located, and run, performs the
equivalent function of the input 8080/8085 source file.

CONYV86 cannot infer the intent of your source program.

While CONV86 cannot usually achieve total’ functional equivalence on a per- pro-
gram basis, CONV86 can, in almost every instance, achieve functional equivalence
on a line-by-line basis. This means that CONV86 attempts to ‘‘map’’ each
8080/8085 instruction, directive, or control into its 8086 counterpart, if it exists.

Using the instruction mapping of Appendix A, the operand (expression) mapping of
Appendix B, and the directive mapping of Appendix C, CONV86 achieves line-by-
line functional equivalence. Problems encountered in achieving program functional
equivalence arise from:

e Symbol-typing ambiguities — overridden symbol types might not yield the
desired 8086 source code. CONV86 flags potential problems of this sort with
caution messages.

® Machine-dependent sequences, such as software timing delays or other
sequences which depend on instruction length or clock periods.

What About Program Execution Time?

The 8086 assembly-language instructions produced by CONV86 require, in general,
more clock periods than did the original 8080/8085 instructions. Thus, the 8086
code produced is less efficient in terms of instruction cycles. However, since the 8086
can be driven by a faster clock, this loss of instruction-cycle efficiency is offset.

What Happens to Software Timing Delays in Conversion?

You should examine the 8086 code derived from timing delay loops. Then, taking in-
to consideration the number of cycles for each 8086 instruction involved, as well as
the bandwidth (frequency) of your 8086 clock, you can manually edit the 8086
source code to preserve your timing delays. You should also take into account the
8086 instruction queue (pipeline), which contains six prefetched bytes of in-line
code.

Does the 8086 Code Produced Set Flags Exactly as on the 8080?

Yes, unless you specify the APPROX control when you run CONV86. Table 1-2
shows the five 8080 instructions whose 8086 counterparts set flags differently if AP-
PROX is specified. The EXACT control (a default) forces all flag settings to be
preserved.

Total functional equivalence on a per-program basis would constrain instruction sequence sizes and
clocks to be preserved.

CONV86

CONV86

Overview of Conversion

Table 1-2. Flag Settings That Change If APPROX Is Specified

Source Equivalent
8080 8080 Flags Affected 8086 8086 Flags Affected

Instruction Instruction
DAD cY ADD BX,__ AF,CF,PF,SF,ZF
INX none INC AF,PF,SF,ZF
DCX none DEC AF,PF,SF,ZF
PUSH PSW none; saved in stack PUSH AX none
POP PSW Z,8,P,CY,AC POP AX [SEE NOTE 1]

[NOTE 1: No flags are set if APPROX is specified. EXACT sets AF, CF, PF, SF, and ZF (but not
OF).]

How Does the EXACT Control Preserve Flag Semantics?

By inserting the LAHF (load AH with flags) and SAHF (store flags from AH) in-
structions before and after the 8086 counterpart of the 8080 instruction being con-
verted. For example, the 8080 instruction INX B increments the 16-bit register-pair
(B,C) without affecting any 8080/8085 flags, whereas the 8086 instruction INC CX
not only increments the 16-bit register CX on the 8086, but also can affect four rele-
vant flags: :

¢ Auxiliary-carry flag (AF)
¢ Parity flag (PF)

e Sign flag (SF)

e Zero flag (ZF)

If your program is not concerned with these flag settings, then the APPROX mapp-
ing will suffice:

8080 8086
INX B——(APPROX)—»INC CX

However, if your program flow depends on the settings of any of the four flags men-
tioned, you will want to ensure that in your 8086 program, these flags are saved
before INC CX is executed, and restored after INC CX is executed. The EXACT
control does this for you as follows:

8080 8086 COMMENTS

INX B——EXACT)—— LAHF ;load flags into AH
INC CX
SAHF ;store flags from AH

Similar flag-preserving code results from EXACT conversion of the 8080/8085 in-
structions DCX, DAD, PUSH PSW and POP PSW.

When in doubt, let CONV86 default to the EXACT control. More 8086 source code
is generated than for APPROX, but the code can be counted on to preserve the flag-
setting semantics of your 8080/8085 program.

Overview of Conversion

1-12

Editing CONV86 Output for 8086 Assembly

What Output Files Does CONV86 Create?
Table 1-3 shows CONV86 output files, their default extensions, and uses.

Table 1-3. CONV86 Output Files

File Designation in

Invoking Command Default File-Name Contents and Use

OUTPUT :Fs:source.A86 Machine-readable 8086 source file; to be
manually edited according to caution
messages in PRINT file.

PRINT :Fs:source.LST 1) Copy of 8080/8085 source.

2) Human-readable 8086 source file with
embedded caution messages for
manually editing OUTPUT file.

What Are Caution Messages?

In general, CONVS86 issues a caution message when it detects a potential problem in
the converted 8086 source code. Caution messages can alert you to possible symbol
type ambiguities, such as a symbol used both as a byte and a word, or to possible dis-
placed references, such as JMP § + (exp). In the latter case, the displacement (exp)
usually increases in going from the 8080 to the 8086. Chapter 3 describes caution
messages and identifies what, if anything, you need to do to your 8086 source file.

Does a Caution Message Necessarily Mean a Manual Edit?

No. In some instances, such as displaced references, CONV86 cannot be sure if an
error exists. In other instances, such as MOD85 CONTROL DELETED, the con-
verter is simply informing you of a deliberately omitted source file line. Never-
theless, all caution messages and the liries to which they apply demand scrutiny.

Do Caution Messages Identify All Manual Editing?

No. Since CONV86 cannot infer the intent of a source program, you must be the
final judge as to whether the 8086 source code produced will do a satisfactory job. In
particular, you should be alert to machine-dependent sequences of instructions,
bearing in mind that instruction sizes (lengths) and execution time (clocks) will
change in going from the 8080/8085 to the 8086.

What Features Are Not Implemented for the MCS-86 Assembler (version V1.0)?
These features are not implemented for the MCS-86 Assembler (version V1.0):
e The SET directive.

® Macros and/or conditional assembly directives (IF, ELSE, ELSEIF, ENDIF)
can be successfully converted using CONV86, but the MCS-86 Assembler (ver-
sion V1.0) does not support macro or conditional assembly.

® Programs using assembler controls can be converted successfully, but the
MCS-86 Assembler (version V1.0) does not support assembler control
statements. (In particular, no INCLUDE files are permitted.)

Appendix C shows directive mappings.

You can, however, convert 8080 source files containing macros, macro calls, and
conditional assemblies by following the procedure and example given in Appendix
F. SETs having constants as operands can be replaced by EQUs in your 8086 source
file as described under Caution Message 26 in Chapter 3.

CONYV86

o

CHAPTER 2
OPERATING THE CONVERTER

Before operating the converter program CONV86, you should ensure that the main
source file and all included source files meet the following requirements:

1.

The source file must be capable of being assembled without errors by the ISIS-II
8080/8085 Assembler.

Diskettes containing files INCLUDEd by the main source file must be mounted
on their indicated diskette drives.

The maximum source line length is 129 characters, not including carriage-
return and line-feed characters. Longer lines are converted to comments and
flagged with a caution message.

The maximum number of symbols allowed per conversion is approximately 600.
Programs having more than 600 symbols must be divided into smaller pro-
grams.

Your source file must not contain assembler controls or any of the following
8080 assembler directives:

e The SET directive.

® Macro definition or macro statements, including MACRO, NUL, LOCAL,
REPT, IRP, IRPC, EXITM, ENDM, and macro calls.

* Conditional assembly directives, including IF, ELSE, ENDIF.

These statements are not supported by version V1.0 of the MCS-86 Assembler.
Appendix F shows how to convert 8080/8085 source files that contain macros
and conditionals.

If the above requirements are met, you can invoke the converter under ISIS-II by
entering the command:

:Fn:CONV86 source controls

where source is the name of the file to be converted, and controls are as described in
Table 2-1.

Operating the Converter

2-2

Table 2-1. CONV86 Controls and Defaults

CONTROLS DEFAULTS
PRINT(path-name) / NOPRINT PRINT(:Fs:source.LST)
OUTPUT(path-name) / NOOUTPUT OUTPUT(:Fs:source.A86)
DATE('date’) DATE(’’)
TITLE(title’) TITLE(" ')
PAGELENGTH(n) / NOPAGING PAGELENGTH(60)
PAGEWIDTH(n) PAGEWIDTH(120)
EXACT / APPROX EXACT
INCLUDED / NOTINCLUDED NOTINCLUDED
ABS/REL REL
WORKFILES(:Fn:) WORKFILES(:Fs:)
where:
Fs
specifies the diskette unit on which the source file resides.
PRINT
specifies an ISIS-II path-name (file or device designation) for a copy of
your 8080/8085 source code together with generated 8086 source code
and embedded caution messages.
NOPRINT
specifies that the PRINT file is not to be created.
OUTPUT
specifies an ISIS-II path-name for the output 8086 source code. Refer to
Table 1-3, ““CONV86 Output Files.”’
NOOUTPUT
specifies that the OUTPUT file is not to be created.
DATE
specifies a date (or other information) of up to nine characters to be
printed in the page header of the PRINT file.
TITLE

specifies a title (or other information) of up to 40 characters to be printed
in the page header of the PRINT file.

CONV86

CONV86 Operating the Converter

PAGELENGTH(n)

specifies the number of lines per output page in the PRINT file. The
minimum is four lines per page; there is no effective maximum.

PAGEWIDTH(n)

specifies the number of characters per output line in the PRINT file. The
miniumum is 60 characters per line; there is no effective maximum.

EXACT

specifies that full flag-setting semantics are to be preserved in conver-
sion. This control affects conversion of the DAD, DCX, INX, POP
PSW, and PUSH PSW.

APPROX

specifies that full flag-setting semantics are not to be preserved for the in-
structions DAD, DCX, INX, POP PSW, and PUSH PSW. Refer to
Chapter 1, ‘‘Functional Equivalence,’’ for a description of flag preserva-
tion.

INCLUDED

specifies that this module is included in another module for assembly.
This control suppresses generation of a standard prologue.

NOTINCLUDED

specifies that this module is not included in another module for
assembly. The converter therefore generates a standard prologue. Refer
to Chapter 1, ‘‘Functional Mapping,’’ for a description of prologues.

REL

specifies that this module will subsequently be assembled in relocatable
format and/or linked to a PL/M-86 module. If REL and NOTINCLUD-
ED are both specified or defaulted to (both are defaults), the standard
prologue generated is compatible with PL/M-86, and informs the con-
verter that 8080 relocation capabilities are present in the source file and
must be mapped into 8086 relocation features. See ‘‘Functional Mapp-
ing’’ in Chapter 1.

ABS

specifies that this module is absolute and not relocatable (and hence not
to be linked to a PL/M-86 module). If ABS and NOTINCLUDED are
both in effect (NOTINCLUDED is a default), then the standard pro-
logue generated is not compatible with PL/M-86, but is compatible with
other 8086 assemblies. See ‘‘Functional Mapping’’ in Chapter 1 for a
description of standard prologues.

WORKFILES(:Fn:)

specifies that the single, temporary workfile CONV86.TMP is to be
created on (and subsequently deleted from) diskette unit :Fn:, where n
defaults to the source file diskette unit number if the WORKFILES con-
trol is omitted. The single workfile created (the plural WORKFILES is
used for consistency with other programs) requires seven (7) bytes for
each source line.

2-3

Operating the Converter

2-4

NOPAGING

specifies no forms control and is equivalent to PAGELENGTH (65535).

Examples

Example 1-1. Full Default Saves Flags and Relocatability

Suppose CONVS86 resides on diskette unit 0, and that the program to be converted is
named MYASM.AS80 and resides on diskette unit 1. Then the command:

CONV86 :F1:MYASM.A80

invokes the converter and results in the following controls:

The 8080 source file and 8086 source file with embedded cautions are written to
the file :F1:MYASM.LST

The converted file (without embedded caution messages) is placed in the file
:F1:MYASM.A86

Blanks appear in the title and date fields of page headers.
Page lengths default to 60 lines per page.

Page widths (line lengths) default to 120 characters, not including
carriage-return or line-feed.

Flag-setting semantics are preserved for all instructions.

The prologue generated in the OUTPUT file :F1:MYASM.A86 will cause the
MCS-86 Assembler to generate relocatable object modules suitable for linking
with other assemblies or PL/M-86 object modules.

The temporary workfile CONV86.TMP is created on, and deleted from,
diskette unit 1, the default.

Example 2: Absolute Code with No Flags Saved
If, in Example 1, you had entered the command:

CONV86 :F1:MYASM.A80 ABS APPROX

then the results would differ as follows:

Full flag-setting semantics are not preserved for DAD, DCX, INX, PUSH
PSW, or POP PSW.

A standard 8086 assembly language absolute prologue is generated in the
converted code. This prologue is not compatible with PL/M-86, but is compati-
ble with other 8086 assemblies. Your MCS-86 Assembler object file will not be
relocatable.

Example 3: Absolute Code with Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 ABS

generates an absolute prologue, and defaults to EXACT.

CONV86

ey

CONV86

Operating the Converter

Example 4: Relocatable Code with No Flags Saved

The invoking command:
CONV86 :F1:MYASM.A80 APPROX

does not preserve flag semantics for the five instructions just mentioned, and
defaults to REL.

NOTE

In the following examples, the double asterisks (**) indicating prompting
are generated internally, and not by the user.

Example 5: Prompting and Continuation Lines

You need not enter the entire invoking command on a single line. If you wish to con-
tinue the command on one or more subsequent lines, you must enter an ampersand
(&) as the last character of the current line. Characters entered following the amper-
sand and preceding the carriage-return are comments; they are echoed by CONV86
in the PRINT file header but are not processed. The converter then prompts for
more command input with a double asterisk:

CONV86 :F1:MYASM.A80 & source file is MYASM.A80 on disk drive 1
** DATE(’10/5/78’) & date cannot exceed 9 chars. excluding quotes
** TITLECCONVERSION TEST 39, PROJECT AXOLOTL’) & 40 chars.

The date and title are included in the PRINT file headers as shown in Figure 1-3,
Chapter 1. The remaining controls default as in Example 1.

Example 6: Overriding Controls

It may happen that you have entered a control incorrectly, or for some other reason
wish to override a previously entered control. You can override any previously
entered controls so long as prompting is in effect. Suppose you have entered the
following:

CONV86 :F1:MYASM.80 &

** DATE(’10/5/39’) &

** TITLECCONVERSION TEST 78, PROJECT AXOLOTL’) &
If you happen to notice at this point that the wrong information has been entered —
that is, the 39 and 78 have been interchanged, there is no problem, since prompting
is still in effect. On subsequent continuation lines, you can enter:

** DATE(’10/5/78’) &

** TITLECCONVERSION TEST 39, PROJECT AXOLOTL') &

* %

Controls can be entered in any order and overridden in any order as many times as
necessary. For this reason, it is good practice to end every line with an unquoted
ampersand. When you are satisfied that the controls are correct, you can end the
command with the last line consisting of a lone carriage return.

PN

CHAPTER 3
EDITING CONVERTER OUTPUT

After you have run CONV86 and it has terminated normally, you should examine
the PRINT file. As shown in Figure 3-1, the PRINT file consists of:

* A copy of the 8080/8085 assembly-language source file
* MCS-86 assembly-language source code with embedded caution messages

Using the PRINT file as a reference, you can manually edit the OUTPUT file to ob-
tain 8086 source code that can be assembled by the MCS-86 Assembler.

ASMEO 10 ASHB6 CONVEKTEK 800 rinary Search houtine

®
1518-11 ASM60 10 ASME6 CONVEKSLUN OF F1Le :k1:BINSCH.SHO
ASKo6 PLACED 1IN :F1:EINSCH.566 .
CONVERTER V1.0 INVOKED pY:
CONVEL :F1:BINSCh.580 & 8080 source tile
PRINT(:F1:E£INSCh.CNV)& conversion and cautions ®
CGUTPUT(:F1:ELNSCh.586) & MLS-8b source only
TI1I1LE('b080 binary Search houtine') & 39 char max
AES &« aon't need relocatability or rL/h-bb interface .
AFPKOM & don't neea flags preserved

[
[]
[J
[J
[) If NOPAGING has not been in the invoking each page
begins with a heading. The title and date (or blanks) printed in the heading are
. . . taken from the TITLE and DATE controls, if specified, of the invocation com-
PY 1 ;BINARY SEARCH KOG11NE mand. The top of the first page shows the name of the file being converted, the
2 ; B REG. CONTAINS SEARChH ARGUMBENT name of the OUTPUT file, and the invoking command.
3 ; D REG. CONTAINS 1ALLE LENGTh (1-255) — 7
4 ; BL REG. POINT 2
® 5 ;RESULIS -- 1F 4| @ [[AskbU 10 ASmib COnVERInN 0000 Einary sear.. ioutine] o
6 ; IF A
7 GKG 1000k
® 8 sere: Wi co | @ ASSUME LS:ABS_0,L5:ABS_U L
9 80V A,D AES_O SEUMENT bYTk AT O
° 10 ALL C n LAEEL cYTe
1 :‘Aﬁ b i B[The line number is shown in columns 1-5. The statement itself begins in column 9 with tab settings |~
12 10 , 5 | every 8 columns thereafter for label, and tields.
PY 13 ADL L ; | Continued lines begin with a hyphen (-) in column 7 of the next line and resumelnco|umn25
14 INC $+4 5 OL RCG. FTULIN1o 1U IRCLE oLARZ d}
15 INK b jEESULLTS == 1F A heG. = 1, Thbh b heG. =1hukX UF S. AhG. 1N 1TABLe (0-254
16 MOV L,A 5 1k A heG. = O, Thklk SrhAkChk ahGLuENT NCT FCUND.
® 17 MOV AN UK 1000k ®
18 CMP E SUKG: 1OV CL,0 ;oel LUwer IhCBA LIL1T 10 O
1y J€ Lo L_4: uOV AL,Dh ;hLL LOUWER, UPrLK 1NDEX LIML
L] 20 JZ HMATCh ADD &L,CL jnLal CLVILE BY 2 10 GET
z1 MOV DL, E KCk AL,1 3 BluwhY 1w KALGE
® zz JMP $+4 MOV Ch, AL ;SsvE INLEX CF MILDLE 1K E
23 LO: MOV C, b AL AL, EL sALL LTAK1 kuDkesS OF TABLE o
2k MOV A, L JAL SUORT L_1 JNC UhRAY TC SKIP b
z5 Sub b 1NC bh
] z6 UNC $+4 L_1: MOV bL,AL sKEoiUbD L--kL NG rOINT 1C D
27 LCR H MUV AL,MLEA] ;LGhr vLAn FKGM 1AELE
28 KOV L,A Chp AL,LL ;UANE Ao SEARCH ARG?
® 29 MGV ALD JB SHOKT LG INO, SGULGR1 Chan 1o GREATER @
30 Sub C Jz ShUK1 MAICH SLES, mslCh rCulLL
31 cpl 1 z1 MOV DH,CH ;NU, SCUURT Lhkhn 15 LESS
® 32 Jnz SCRe+ @ zz Jnp ShORT L_z o
33 NOPE: MVI 4,0 23 LO: MOV CL,Ch 5CURRENT INDEX beCCukS LOweR IND
34 RET z4 L_z: NGV AL, bL sHESET nL 16 SThhl
[35 nATCH: WVI A,1/ | @ 25 SUE AL,Cn i UF 1hELe
36 KET 2 JAb ShOnT L_3 ;MU CARRY 1C Sh1P k-
37 END 27 LkC b
® 36 ® b L_3: MOV LL,AL sRESET L o
2y HOV AL,un ;LheCh 1 LIMITS D1FFER BY 1
30 Sub AL,CL
® [J 31 Cup AL, ®
3z JNL L_k JULFFERLNCE> 1 5C Kkrkal TAELE SY
33 NOPE: OV AL, 0 sheTukn AS 0 = NUT FOUND
] ® 34 kel ®
35 hATCh: MOV AL, 1 GRETUKN AS 1 = FGUKD
3b RET
@ [7] ABS_0 EMDS ®
7 ENE
b
The CONV86 PRINT Ilshng ends with a count of the number of caution o
occurrences of the same caution
_ d-of
0 CAUTIOK(S) and an sion
[J [
eNU OF ASHG0 10 ASL®G COnVERSIC
The source and converted files are listed separately. Each line in the converted Embedded caution only in the 8086 code for the PRINT
listing is numbered the same as the source line from which it was derived. This file and immediately follow the Iines to which they apply. (The only exception to
means that: this is Caution Message No. 10, which applies to symbols defined I;Tlvl\::ludat:
files. Caution Message No. 10 appears at the end of the 8086 PRI sting.
* The from the PLM or ABS control) has " H
no line numbors hd hd Caution messages do not appear in the OUTPUT file.
* If the same input line is converted to several output lines, each output line
has the same number as the input line

Figure 3-1. Annotated PRINT File

3-1

Editing Converter Output

3-2

8086 Checklist

Caution messages and the modifications they may require are described later in this
chapter. This section provides a list of items that you should check yourself.

1. Initializing Registers. Before your converted program can be assembled for

subsequent linking, locating, and execution, you must insert register initializa-
tion code at the entry point to your main program. The register initialization
code that you insert must be the first sequence of instructions executed by your
program. If you omit this code from your main program, neither the segment
registers nor the stack pointer (SP) can be depended on to contain meaningful
data, and the results are unpredictable.

The code that you insert follows. Note that expr should not be coded verbatim;
what you substitute for expr depends on whether you converted using the ABS
or REL control (REL is the default), and how your 8080/8085 program
initialized SP.

mainentrypoint: CLI ;Firstinstruction to be executed in your main program
MOV AX,CS ;Use CS toinitialize:
MOV DS,AX ; —data segment register
MOV ES,AX ;—extra segmentregister
MOV SS,AX ; —stack segment register
LEA SP, expr ;see below for what to code for expr
STI ;Enable interrupts

where:

mainentrypoint is the symbolic location of the first instruction to be executed
in your main program. If, in your original 8080 program
development, you wused the 8080 LOCATE control
RESTARTO (to have the locater insert code to jump to the en-
try point of your main module when the 8080 was reset), the
corresponding QRL86 and LOC86 control is BOOTSTRAP.

expr is STACK__BASE if you converted using the REL control
and your original 8080 program used the STKLN directive to
set the stack size.

Otherwise expris a constant, expression, or program label
that your original 8080 program used to set SP. For constants
or expressions, you should check that these values are really
what you want.

You should check every instance in your program where SP is loaded to ensure
that the stack reinitialization has the intended effect in your converted program.

2. Absolute Addressing. Absolute addresses should be checked for correctness.

This includes ORGs in the absolute segment, LHLD and LDA from a constant
location, and immediate operations such as LXI whose constant operands
represent addresses. Remember that 8086 instruction lengths are generally dif-
ferent from those of their 8080/8085 counterparts.

3. Relative Addressing. Relative addressing should be checked, since the number

of bytes between instructions will in general increase in going from 8080/8085 to
8086. In some instances, CONV86 generates and inserts a label of the form
L__n for a displaced reference, as in the following:

CONV86

CONV86 Editing Converter Output

8080 Source MCS-86 (CONV86-Generated) PRINT File
c MGV L,E z MOV Dh,Ch
3 JHr $+4 3 JiMP ShORT L_1
4 Lu: MOV C,b 4 LG: MOV CL,ChH
5 MGV A, L 5 L_1: MOV AL, EL
In some instances, however, CONV86 does not generate such a label, as in the
following:
8080 Source MCS-86 (CONV86-Generated) PRINT File
7 MOV A, C ! not 52y %)
¢ JhP §+3E((342)%2-7) | U o oME IRACIRRESSGba
y LE Téh CAUTIUON C1T7 ® ADUH{:.bS EXPRESSION
" N 9 Lb T6h
10 LE 10111101b , gy)
10 DE 10111101B
11 Dw OBAbLARL . N,
N ” SO 11 Dw OEABAR
1 Uw OLEACHE . o
- o 12 D ObEACH
13 CMA - e -
13 KOT AL
CONYV86 does not attempt to evaluate the expression or insert a label, although
Caution Message 17 is issued for a possible displaced reference. Thus, it is up to
you to insert a label. At the same time, since the jump (forward)is less than 127
bytes, the SHORT label attribute can be used, as follows:
CONV86 OUTPUT File
ROV AL, CL B0V hL,CL
Jiur $+3%¥((3+2)%2-7) Jiur SEORT LASZLC
Dk Toh DE T8H
DE 10111101k Db 10111101E
D OEAEAR Dw OLAbpAh
Dw CbEACH UWw OBEACL
KOT AL LASZLG: NOT AL
Before Your Edit After Your Edit

In general, you should check all relative addressing.

4. Interrupts. Figure 3-2 shows how interrupt service routines on the 8080/8085
can be converted to interrupt service routines on the 8086.

The principal difference between the two schema is that on the 8080/8085, con-
trol traps to location 8*N, where executable code resides; whereas on the 8086,
control traps to the location pointed to by the 16-bit offset and 16-bit base
values stored at location 4*N.

3-3

Editing Converter Output CONVS86
8080/8085 8086
EXTERNAL l EXTERNAL
INTERRUPT N I INTERRUPT N
y
| ‘ TRAP ’
I | «——s BYTES————»]
T
oH | 16-BIT OFFSET | 16-BIT BASE ABSOLUTE
OH JMP Bigealiiigio "~ —"2"_3| Locations
an | 1617 0FFSET_+__16-BIT BASE 00H.7FH
— 8H | 16-BI 16-BIT BAS R aNTES
/\\/‘ USER-INITIALIZED
osH | mvi — — — — — — — —]\ OFFSET&BASE

4‘ - — — 4*N

| 16-BIT OFFSET

16-BIT BASE

VVVTVVVVTOTUTVUUTT

00000000»CCCCcecco
VUV 0TV TV OO DNDNONBNN

m.
=

INTER PROC NEAR

INTER ENDP

(CONVERTED USER-WRITTEN
INTERRUPT SERVICE ROUTINEY

Figure 3-2. Converting Your Interrupt Procedures

)

VALUES POINT
TO CALLING
SEQUENCE

USER-INSERTED
CALLING SEQUENCE
INVOKES CONVERTED
USER-WRITTEN
INTERRUPT VECTOR
INSTRUCTION
SEQUENCE

CONVERTED INTERRUPT
VECTOR INSTRUCTION
SEQUENCE REQUIRES
USER-INSERTED
PROCEDURE
DEFINITION

CONVS86 Editing Converter Output

You can convert your 8080 interrupt service routines as follows:

1. Insert, at a convenient place in your 8086 source code, the following calling
sequence, using your own label (be sure not to use a reserved name given in
Appendix D):

INTSEQ: PUSH ES
PUSH DS
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SI
PUSH DI
CALL INTER ;INTER used here for example in Figure 3-2
POP DI
POP Si
POP BX
POP DX
POP CX
POP AX
POP DS
POP ES
IRET ;note that this is IRET, and not RET

2. Insert the following initialization sequence for absolute location 4*N in the
ABS__0 segment:

ORG 4*N ;N is the interrupt number on the 8086
;INTSEQ used here for example above
DD CGROUP:INTSEQ ;If REL control was used

DD INTSEQ ;If ABS control was used

3. Sandwich the converted code from INTER (used here for example in Figure 3-2)
between PROC and ENDP statements as follows:

INTER PROC NEAR ;nothing special about the word INTER
[converted code]
INTER ENDP ;nothing special about the word INTER

While these steps are general enough to cover virtually any application, you may
find that as you become familiar with the 8086, you can recode your interrupt
service routines in MCS-86 Assembly Language to obtain optimal code more
suited to your application.

3-5

Editing Converter Output

PL/M-86 LINKAGE CONVENTIONS

The only PL/M-86 model of computation relevant to conversion is the SMALL
model.

Case 1: When PL/M Calls

Converted assembly-language programs called from PL/M programs must be
changed if any parameters are passed, since PL/M-80 passes parameters in registers
and on the stack, and PL/M-86 passes all parameters on the stack. PL/M-86
parameter passing is as follows:

e Arguments are pushed on the stack in left-to-right order and therefore
occupy successively lower memory locations. The return address is pushed
on the stack last.

e Each argument occupies two bytes. One-byte arguments are passed in the
lower half (least significant byte) of a word.

Therefore, converted 8086 assembly language programs called from PL/M-86 pro-
grams need to access arguments from the stack, and not from registers. However,
since the calling PL/M-86 program has pushed the return address on the stack last,
the called 8086 assembly language program needs to:

1. POP the return address to any convenient word register, such as BX.
2. POP arguments as needed into their 8086 register counterparts, as follows:
e If no arguments are expected, POP no further. Go to Step 3 below.

e If one argument is expected, then it was originally expected in (B,C).
Therefore the converted assembly language program is accessing the single
argument from the 8086 CX register. This means that you need to insert the
instruction:

POP CX ;Retrieve only PL/M-86 Argument

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the single argument as intended.

e If two arguments are expected, then they were originally expected in (B,C)
and (D,E). Therefore the converted assembly language program accesses its
arguments from the 8086 CX and DX registers. Since PL/M-86 passes these
arguments on the stack in order, this means that you need to insert the in-
structions:

POP DX ;Retrieve Second PL/M-86 Argument
POP CX ;Retrieve First PL/M-86 Argument

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the two arguments as intended.

e If more than two arguments are expected, the remainder are in the stack
(where the converted assembly language program expects them), and there
is no problem. The last two arguments are accessed as described in the
preceding paragraph.

3. PUSH the return address back on the stack immediately after accessing the
arguments as just described. If BX was used in Step 1 above to retain the return
address, then you need to insert the instruction:

PUSH BX ;Replace Return Address On Stack
immediately following your argument-accessing sequence of POPs.

4. PL/M-86 expects the return value (a one-word pointer or data item) of the
assembly language program to be in the AX register. If the return value is a
byte, it is expected in AL.

CONV86

CONV86 Editing Converter Output

Case 2: When Your Converted Program Calls

If your 8080/8085 source program calls another routine (written either in MCS-86
Assembly Language or PL/M-86) which expects arguments to be passed on the
stack, you need to insert 8086 source code in your converted program.

If your original 8080 source program passed only one argument to the CALLed
routine, that argument was passed in the (B,C) register-pair. Hence you need to
insert:

PUSH CX ;push (B,C) argument on stack
immediately before the CALL.
If your original 8080 source program passed two or more arguments to the CALLed
routine, those arguments were passed in the (B, C) register-pair, in the (D,E) register-

pair, and remaining arguments on the stack. Hence you need to insert:

PUSH CX ;push (B,C) argument on stack
PUSH DX ;push (D,E) argument on stack

immediately before the CALL. The remaining arguments (if any) are already on the

stack in the correct order. PL/M-86 return values are placed in AX or AL as de-
scribed in Case 1.

3-7

Editing Converter Output CONV86

Caution Messages

Caution messages do not necessarily imply manual editing, but they do demand
scrutiny. In many cases, CONV86 cannot be sure if an error actually exists (as for in-
stance, in expression evaluation). This section lists all possible caution messages.
The next section lists caution message descriptions and indicates what manual
editing of the output file may be necessary.

The entire list! of caution message is as follows:

1

10
11
12
13
14

16
17
18
19
20
2
22
23
24
25
26
27
28
29

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER
EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

EQU’D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS
MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE
UNKNOWN STATEMENT

TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION
TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX] CANNOT
BE CORRECTLY ASSEMBLED

EXPRESSION ASSUMED TO BE A VARIABLE OR LABEL
ADDRESS EXPRESSION MAY BE INVALID FOR 8086
INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
REGISTER USED IN UNKNOWN CONTEXT

OUTPUT LINE TOO LONG; TRUNCATED

LABEL ASSUMED TO BE NEAR

NOMACROFILE CONTROL DELETED

MOD85 CONTROL DELETED

SOURCE LINE TOO LONG; IGNORED

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS
THIS SET DIRECTIVE INCOMPATIBLE WITH 8086
SYMBOL NAME TOO LONG

CONDITIONAL ASSEMBLY GENERATED

FEATURE NOT IMPLEMENTED FOR ASM86 V1.0

Caution messages 9 and 15 do not exist.

CONV86 Editing Converter Output

Caution Message Descriptions

1 BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif-
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc-
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS
PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
You may need to manually convert the mnemonics yourself. '

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine the
resulting symbol and see if it corresponds to the intent of the 8080/8085 source
code. You should also check to see if the resulting concatenated name is reserv-
ed. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over-
ride the argument type.

6 EQU’D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD
CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUSs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

An EQU symbol has been multiply defined, perhaps due to conditional com:
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONV86 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the 8080 source to
produce recognizable statements (legal instructions) and submit the recoded
8080 file to CONV86, or else simply insert the appropriate 8086 source code in
the OUTPUT file.

3-9

Editing Converter Output

3-10

10

11

12

13

14

16

17

TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH
DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONV86 here. You should convert the INCLUDE file and examine the type
CONVS86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

CONVERSION OF NOP MAY NOT YIELD DESIRED RESULTS

A NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

CONVERSION OF RST MAY NOT YIELD DESIRED RESULTS

A RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an in-
terrupt. You should examine the operand carefully to ensure that the instruction
traps to the desired absolute address, and that the intended routine to be trap-
ped to will be bound to (loaded at) that address.

8085-SPECIFIC INSTRUCTION CANNOT BE CONVERTED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the MCS-86 User’s Manual under
““Interrupts.’’

FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX]
CANNOT BE CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

EXPRESSION ASSUMED TO BE A VARIABLE OR LABEL

CONYV86 has not been able to determine what type of expression is in this in-
struction. CONV86 has assumed that the expression is a variable or label. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to in-
sert additional labels.

ADDRESS EXPRESSION MAY BE INVALID FOR 8086
Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$+ BAZ*(FOO-N)) correctly. You can manually check the mapped displace-
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions
You should check the symbols operated on by the HIGH/LOW functions to en-

sure that their alignments in 8086 memory correspond to their 8080 page
alignments.

CONV86

CONV86 Editing Converter Output

In addition, if you converted using the REL control (a default), you should in-
sert a group override prefix as follows:

Before Your Editing After Your Editing
LOW(expr) LOW DGROUP:(expr’)
HIGH(expr) HIGH DGROUP:(expr’)

Case 3: Overly Complex Expressions

It is possible that an overly complex 8080 expression has resulted in unaccep-
table MCS-86 source code in your OUTPUT file. You should examine the
original 8080 expression carefully to determine its intent, and then hand-
translate the expression to a valid MCS-86 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
8080/8085 instructions are not permitted as operands in your source file.
19 REGISTER USED IN UNKNOWN CONTEXT
A register was used in an unknown context, such as:
REG EQU B

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONV86 will not know at the time of the INCLUDE file’s conversion whether
B maps into CH or CX. You should check to see whether you want B to map
into a byte register or a word register, and change the converter’s mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in 8086 accordingly.

21 LABEL ASSUMED TO BE NEAR

The label for this line is unreferenced in this file; it is assumed to be of type
NEAR. Since CONV86 has no information on how to type this symbol, you
should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is re-
quired for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is re-
quired for this caution.

24 SOURCE LINE TOO LONG; IGNORED

The current source line exceeds 129 characters and has been mapped into a com-
ment in both 8080/8085 and 8086 output files. You can either recode the source
line and reconvert the source file using CONV86, or you can insert 8086 code in
the OUTPUT file to accomplish the intent of the source line.

Editing Converter Output

3-12

25

26

27

28

29

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

THIS SET DIRECTIVE INCOMPATIBLE WITH 8086

An 8086 assembler SET directive must have a constant as its operand. Thus, ex-
pressions of the form:

X SET X+Y

have no direct counterpart in 8086-AL. You can, however, use sequences of the
form:

Z EQU X+Y

PURGE X
X EQU Z
PURGE Z
SYMBOL NAME TOO LONG

Symbol names in 8086 cannot exceed 31 characters.
CONDITIONAL ASSEMBLY GENERATED

CONV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

e POPPSW (Using EXACT Control)
e POPPSW (Using APPROX Control)
e PUSHPSW (Using EXACT Control)
e PUSHPSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

e POPrw (Using either EXACT or APPROX)
e PUSHrw (Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk-
check or single-step your source program until you are able to make that deter-
mination. Otherwise, the conditional assembly statements placed by CONV86
in your OUTPUT file will not assemble under version V1.0 of the MCS-86
Assembler.

FEATURE NOT IMPLEMENTED FOR ASM86 V1.0

The MCS-86 Assembler (V1.0) does not support IF, ELSE, ENDIF, MACRO,
LOCAL, IRP, IRPC, REPT, SET, EXITM, or ENDM. Mappings of these
directives are not intended to be assembled. Refer to Appendix F for a conver-
sion procedure for these directives.

CONV86

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from 8080/8085 to 8086 assembly language.
Operands are mapped according to Appendix B. Operand designations are as

follows:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory

mn = near memory
rb = byte register
rw = word register

Similarly, ib’ refers to the mapping of ib, iw’ refers to the mapping of iw, and so on.

Thus, if B=rb,

then rb’ = CH. But if B = rw, then rw’ = CX.

Constructs of the form L__n are generated internally by CONV86 for use as labels in
mappings of conditional CALLSs, conditional RETurns, conditional JMPs.

8080/8085 8086 Remarks

AClib ADC AL,ib’

ADCrb ADC AL,rb’

ADD b ADD AL,rb’

ADIlib ADD AL,ib’

ANATb AND AL,rb’

ANIrb AND AL,ib’

CALL mn CALL mn’

CCmn JNBSHORTL_n (L__n inserted as label for
CALL mn’ instruction following CALL)

CM mn JNS SHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CMA NOT AL

-CMC CMC

CMP b CMP AL,rb’

CNC mn JNAESHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CNZ mn JZSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPmn JSSHORT L_n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPE mn JNPSHORTL_n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPlib CMP AL,ib’

CPO mn JPSHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CZmn JNZSHORT L__n (L_n inéerted as label for
CALL mn’ instruction following CALL)

A-1

Instruction Mapping

8080/8085 8086 Remarks
DAA DAA
‘ DAD rw ADD BX,rw’ (Using APPROX Control)
DAD rw LAHF (Using EXACT Control)
ADD BX,rw’
RCR SI,1
SAHF
RCL SI,1
DCRrb DEC rb’
DCX rw DECrw’ (Using APPROX Control)
DCX rw LAHF (Using EXACT Control)
DEC rw’
SAHF
DI CLlI
El STI
HLT HLT
IN ib IN AL, ib’
INRrb INCrb’
INX rw INC rw’ (Using APPROX Control)
INX rw LAHF (Using EXACT Control)
INC rw’
SAHF

CONV86

CONYV86

Instruction Mapping

8080/8085 8086 Remarks

JC mn JB SHORT mn’ (for forward short branch)
JCmn JBmn’ (for backward short branch)
JC mn JAE SHORTL__n (otherwise)

JMP mn’
JMmn JS SHORT mn’ (for forward short branch)
JM mn JSmn’ (for backward short branch)
JM mn JNS SHORTL_n (otherwise)

JMP mn’
JMP mn JMP SHORT mn’ (for forward short branch)
JMP mn JMP mn’ (otherwise)
JNC mn JAE SHORT mn’ (for forward short branch)
JNC mn JAE mn’ (for backward short branch)
JNC mn JNAE SHORTL_n (otherwise)

JMP mn’
JNZ mn JNZ SHORT mn’ (for forward short branch)
JNZ mn JINZ mn’ (for backward short branch)
JNZ mn JZSHORTL__n (otherwise)

JMP mn’
JPmn JNS SHORT mn’ (for forward short branch)
JP mn JNS mn’ (for backward short branch)
JP mn JSSHORTL_n (otherwise)

JMP mn’
JPEmn JP SHORT mn’ (for forward short branch)
JPEmn JP mn’ (for backward short branch)
JPE mn JNPSHORTL__n (otherwise)

JMP mn’
JPO mn JNP SHORT mn’ (for forward short branch)
JPO mn JNP mn’ (for backward short branch)
JPO mn JPSHORTL_n (otherwise)

JMP mn’
JZmn JZ SHORT mn’ (for forward short branch)
JZmn JZmn’ (for backward short branch)
JZmn JNZSHORTL__n (otherwise)

JMP mn’

A-3

Instruction Mapping

A4

8080/8085 8086 Remarks
LDA mb MOV AL,mb’
LDAX rw MOV Sl,rw’
LODS DS:M[SI]
LHLD mw MOV BX,mw’
LXIrw,iw MOV rw’,iw’ (when 2nd operand immed. or near)
LXI rw,iw LEA rw’iw’ (when 2nd operand is byte or word)
MOV rb1,rb2 MOV rb1’,rb2’
MOV M, rb MOV M[BX], rb’
MVirb,ib MOV rb’,ib’
MVIM, ib MOV M[BX], ib’
NOP NOP XCHG AX,AX (1 byte, 3 clocks)
ORATrb ORAL,rb’
ORlib ORAL,ib’
OUuTib OUT ib’, AL
PCHL JMP BX
POP rw POP rw’ (for EXACT or APPROX when rw is
definitely not PSW)
POP PSW POP AX (Using APPROX Control)
XCHG AL, AH
POP PSW POP AX (Using EXACT Control)
XCHG AL, AH
SAHF
POP rw IFrw’ EQ AX (Using APPROX when rw
could be PSW)
POP rw’
XCHG AL, AH
ELSE
POP rw’
ENDIF
POP rw IF rw’ EQ AX (Using EXACT Control when rw’
could be PSW)
POP rw’
XCHG AL, AH
SAHF
ELSE
POP rw’
ENDIF

CONYV86

CONV86

Instruction Mapping

8080/8085 8086 Remarks
PUSH rw PUSH rw’ (for EXACT or APPROX when rw is
definitely not PSW)
PUSH PSW LAHF (Using EXACT Control)
XCHG AL, AH
PUSH AX
XCHG AL, AH
PUSH PSW XCHG AL, AH (Using APPROX Control)
PUSH AX
XCHG AL, AH
PUSH rw IF rw’ EQ AX (Using APPROX Control when rw
could be PSW)
XCHG AL, AH
PUSH rw’
XCHG AL, AH
ELSE
PUSH rw’
ENDIF
PUSH rw IF rw EQ AX (Using EXACT Control when rw
could be PSW)
LAHF
XCHG AL, AH
PUSH rw’
XCHG AL, AH
ELSE
PUSH rw’
ENDIF
RAL RCL AL,1
RAR RCRAL,1
RC JNBSHORT L __n (L_n inserted as label for
RET instruction following RET)
RET RET
RIM ***error***
RLC ROL AL,1
RM JNSSHORTL__n (L_n inserted as label for
RET instruction following RET)
RNC JNAE SHORTL__n (L_n inserted as label for
RET instruction following RET)
RNZ JZSHORTL__n (L_n inserted as label for
RET instruction following RET)
RP JSSHORTL__n (L_n inserted as label for
RET instruction following RET)
RPE JNPSHORT L __n (L_n inserted as label for
RET instruction following RET)
RPO JP SHORTL_n (L_n inserted as label for
RET instruction following RET)
RRC ROR AL,1
RSTib INT ib’
RZ JNZ SHORT L__n (L_n inserted as label for
RET instruction following RET)

A-5

Instruction Mapping

8080/8085 8086 Remarks
SBBrb SBBAL,rb’
SBlib SBBAL,ib’
SHLD mw MOV mw’,BX
SIM ***error***
SPHL MOV SP,BX
STAmb MOV mb’,AL
STAX rw MOV DI,rw’

MOV DS:[DI],AL
STC STC
SUBrb SUBAL,rb’
SUlib SUBAL,ib’
XCHG XCHG BX,DX
XRATb XORAL,rb’
XRIib XORAL,ib’
XTHL POP SI

XCHG BX,SI

PUSH SI

unknown expr

unknown’ expr’

CONV86

APPENDIX B
CONVERSION OF EXPRESSIONS
IN CONTEXT

The following describes how 8080/8085 expressions are converted to 8086 expres-
sions according to the context in which an operand or expression occurs.
The context is simply what CONV86 infers from the use of the operand in the
instruction:

ib = byte immediate

iw = word immediate

mb = byte memory

mw = word memory

mn = near memory

rb = byte register

rw = word register

M is defined to be a byte located at absolute location 0. In contexts 3 and 5 below,
forward-referenced memory items are treated as ‘‘unknown.’’

1. Context=ib
e QOperand = ib: expr = expr’
e Operand = iw: expr > LOW(expr’)

¢ Operand = mn, mw, mb, or unknown: ' ?
If REL control, then
expr > LOW DGROUP:(expr’)
If ABS control, then
expr > LOW(expr’)

2. Context = iw
e QOperand = ib or iw: expr = expr’

¢ Operand = mb, mw, mn, or unknown?;
If REL control, then
expr = OFFSET DGROUP:(expr’)
If ABS control, then
expr = OFFSET(expr’)

3. Context=mb
® Operand = mb: expr = expr’
® Operand = mn or mw or unknown: expr = BYTE PTR(expr’)
e Operand = ib or iw: expr = M[expr’]

4. Context=mn
® Operand = mn: expr = expr’
® Operand = mb or mw or unknown: expr = NEAR PTR(expr’)
e Operand = ib or iw: expr > NEAR PTR M[expr’]

5. Context = mw
¢ Operand = mw: expr = expr’
¢ Operand = mb or mn or unknown: expr = WORD PTR(expr’)
® Operand = ib or iw: expr > WORD PTR M[expr’]

B-1

Conversion of Expressions

B-2

6. Context=rb
e Operand =rb:

e A-AL
e B—-CH
e C—-CL
e D-DH
e E—-DL
e H-BH
e L—->BL

e Operand = mb:M - M[BX]
7. Context=rw
® Operand =rw:

e B—->CX
e D—-DX
e H-BX
e SP-SP
e PSW-—AX

1. mn, mw, and mb are illegal in 8080 in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

CONV86

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, ‘‘expr’’, ‘“mn’’, and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, ‘“‘Functional Mapping”’).

For purposes of the MCS-86 Assembler (version V1.0), the mapping of 8080
assembler directives by CONV86 is here shown in two tables:

e Table C-1 shows the mapping of 8080 directives which convert to 8086 directives
that are supported by the MCS-86 Assembler (V1.0).

e Table C-2 shows the mapping of 8080 directives which convert to 8086
pseudo-directives. Entries in Table C-2 are neither supported by the MCS-86
Assembler (version V1.0), nor are they intended to be construed as bona fide
statements for any future versions of the MCS-86 Assembler.

Table C-1. Assembler Directives Mapping for Supported MCS-86 Directives

8080/8085 8086
ASEG prev-seg ENDS
ABS_0 SEGMENTBYTEATO
CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE’
DB expr-list DB expr-list’
DS expr DB expr’ DUP(?)
DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA’
DW expr-list DW expr-list’
END [mn] prev-seg ENDS

END [mn’]

name EQU expr

name’ EQU expr’

EXTRN name-list

EXTRN name:usage-list’

NAME name

NAME name’

ORG mn

ORG mn’

PUBLIC name-list

PUBLIC name-list’

STKLN expr

***deleted™**!

1. If the REL control (a default) is used, STKLN converts to information in the
prologue. Refer to Chapter 1, ‘‘Functional Mapping.”’

C-1

Assembler Directive Mapping

C-2

Table C-2 shows those 8080 assembler directives which map into unsupported (by
version V1.0 of the MCS-86 Assembler) 8086 statements.

If you want to convert a source file containing any of these 8080 assembler direc-
tives, you can do it by pre-assembling your source file, and then manually editing
(under ISIS-II) your program listing as outlined and illustrated by example in Ap-

pendix F.

Table C-2. Assembler Directive Mapping for Unsupported MCS-86 Directives

8080/8085 8086
ELSE ELSE
ENDIF ENDIF -
ENDM ENDM
EXITM EXITM
IF ib IFib’

IRP parm,<list>

IRP parm’ <list>

IRPC parm,string

IRPC parm’,string

LOCAL name-list

LOCAL name-list’

name MACRO parm-list

name’ MACRO parm-list’

macro-call arg-list

macro-call’ arg-list’

REPT expr

REPT expr’

name SET constant-expr

name’ SET constant-expr’

name SET nonconstant-expr

PURGE name’

name’ EQU nonconstant-expr’

CONV86

APPENDIX D

RESERVED NAMES

A name appearing in an 8080/8085 expression may have a special 8086 interpreta-
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK__BASE,
each such name is automatically converted by CONV86 by appending an underscore
to it (for instance, AL__ or TEST__). The 8080 reserved word MEMORY is treated

specially.

The following ASM86 reserved names are modified by CONV86:

AAA
AAD
AAM
AAS
ABS

AH

AL
ASSUME
AT

AX

BH

BL

BP

BX
BYTE
cBwW
CH

CL

CLC
CLD

cLl
CMPS
CODEMACRO
COMMON

CSs
CwWD
CX
DAS
DD
DEC
DH
DIv
DL
DUP
DWORD
DX
ELSE
ELSEIF
ENDIF
ENDM
ENDP
ENDS
ES
ESC
FAR
GROUP
IDIV
IMUL

INC
INT
INTO
IRET
JA
JAE
JB
JBE
JCXZ
JE
JG
JGE
JL
JLE
JNA
JNAE
JNR
JNBE
JNE
JING
JNGE
JNL
JNLE
JNO

JNP
JNS

JO

Js
LABEL
LAHF
LDS
LEA
LENGTH
LES
LOCK
LODS
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MASK
MODRM
MOVS
MUL
NEAR
NEG

NIL
NOSEGFIX
NOTHING
OFFSET
PARA
POPF
PREFX
PROC
PROCLEN
PIR
PURGE
PUSHF
RCL
RCR
RECORD
RELB
RELW
REP
REPE
REPNE
REPNZ
REPZ
ROL

ROL
SAHF
SAL
SAR
SCAS
SEG
SEGFIX
SEGMENT
SHORT
Sl
SIZE
SS
STD
STI
STOS
STRUC
TEST
THIS
TYPE
WAIT
WIDTH
WORD
XLAT

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by

CONVS86 to set up a PL/M-86 environment.

The assembler-reserved symbols ? and ??SEG are not permitted as user mnemonics.

D-1

APPENDIX E
SAMPLE CONVERSION
AND LISTINGS

This appendix consists of:

Figure E-1. 8080 Listing of Sort Routine

Figure E-2. PRINT File of Conversion of 8080 Sort Routine

Figure E-3. MCS-86 Assembler Listing of Conversion of 8080 Sort Routine
Figure E-4. MCS-86 Assembler Listing of Originally Coded 8086 Sort Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASMS86 for assembly. The OUTPUT file was edited as follows:

1.

To retrieve PL/M-86 stack parameters, code (corresponding to lines 36-39 in
Figure E-3) was inserted as described in Chapter 3.

For space/time considerations, only the necessary LAHF/SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures E-2 and E-3.

E-1

Sample Conversion and Listings

CONYV86

ASMBO

ISIS-11 8000/8065 MACRGC ASSEMBLLEER,

Loc

0000
0001
0002
0003
0004
0005
0006
0007
0008

000B
000C

000D
0010
0011
0014
0015

0016
0017
0018
0019

001a
001D
001E
00z1
0022

0025
0026
00z7
0028
0029
0024
002k

00zE
00zF

tF1:S50RT60.A60 PRINT(:F1:SORT80.50L) OBJECT(:r1:S0R160.500)

ObdJ

EB
5k
23
56
Eb
2b
29
09
220000 D

59
50

340000 D
93
340100 D
94
D38

6b
62
23
23

340000 D
95
3A0100 D
9¢C
DAL300 C

1A
96
13
23
1A
9k
D23E00 C

1A
4E

SkQ

N
_- O OOV EWN =

- e e
oo E W

NN DD
EWN = O

NN
~N o,

28

ww N
- 0w

wwwwww
~NowmeEwh

EEwWwWw
- O\w

>

)

FEEEEE
~_NoumEWN

&=
o

AU RS I
N - O W

(SR8]
sw

Vz.0

MODULE

SOUKCE STATEMENT

R AR R R R R RN R R AR R R R R R R R R R R R R RN R R R E NN NRE RN RN
A PL/M callable subroutine:
CALL SORT(.A1, .N)
Sorts the array Atl, containing N words.
t entry BC points to the array A1, and

DE points

to N. Two pointers to elements of Al are

kept in the UVE and HL registers. These pointers are

incremented in

two loops. The outer loop steps DE

through the elements of A1, The inner loop steps

each step of
are exchanged,

the inner loop, the items a%t HL and DE

if required, so that at the end of

the inner loop, the item at DE is larger than all

the items that

follcew it. The item at DE is then in

its proper position, so DE is incremented %o
complete one iteration of the outer loop.

CSEG

PUBL1C

)
’
’
’
’
’
’
bl
H
5 hL through the elements of A1 that follow DE. At
H
H
’
H
’
H

AR R R R R R R R R R R R 22X X

SORT

3 TEST = address of the last elemen%t of A1,

SORT: XChG

SHLD

; OUTER LOOP:

MOV
MGV

OUTTST: LDA
SUB
LDA
SBE
RC

3 INNER LOGP:

MOV
MOV
INX
INX

TEST = (N - 1) ® 2+ A1

H
E,M
H
L,M
5 (N
H H - 1)
h ; ® 2
B H + A1
TEST H = TEST
DO DE = .A1 TC TEST BbY 2;
E,C ;3 BC CONTAINS .A1
D,b
TEST ; IF DE > TEST THEN RETURN
E
TEST + 1
D
O HL = DE+2 TO TEST EBY 2
L,E
H,D
H
H ; HL = DE+2

5 IF HL > TEST THEN GCTG OUTINC

INTST: LDA
SUB
LDA
Sbb
Jc

LDAX
SUB
INX
INX
LDAX
Sbb
JNC

TEST

L

TEST + 1
H

GUTINC

1F A1(hL) < A1(DE) THEN GOTO ININC
As a side effect, HL and DE are incremented by 1
to point to the high bytes of their array elements,

D
M
D

M
ININC

; Exchange A(DE) with A(HL). Leave HL and DE
; pointing to HIGH bytes.

LDAX
MOV

D ; SWAP HIGH BYTES
C,M

Figure E-1A

E-2

CONV86

Sample Conversion and Listings

ISIS-I1 8060/6065 MACRG ASSEMBLER, V2.0

MODULE

LOC OBJ SEG SOURCE STATEMERNT
0030 77 70 MOV M,A
0031 EB 71 XCHG
0032 71 T2 MOV M,C
0033 EB 73 XCHG
T4
0034 1B 75 DCXx D ;s PCINT HL AND DE TGO LOW BYTES.
0035 2B 76 DCX H
77
0036 1A 76 LDAX D ; SWAP LOW BYTES
0037 4E 79 MOV C,M
0038 77 80 MOV M,A
0039 kb 81 XChG
003A 71 82 MOV M,C
003b EB 63 XChG
84
003C 13 85 INX D ; POINT HL AND DE TO HIGH BYTES.
003D 23 &6 INX H
87
b6 ; DE and HL point to HIGh bytes. For the next iteration,
89 ; set DE = Previous DE, HL = 2 + Previous hL.
003E 1B S0 ININC: DCX D
003F 23 91 INX h
0040 C31A00 C 92 JMP INTST
93
94 ; End of outer loop. Set DE = DE + 2 and CONTINUE
0043 13 95 OUTINC: INX D
0oLy 13 96 1NX D
0045 Cc30D00 c 97 JMP OUTTST
98
99
100 ; Data area follows.
101 DSEG
0002 10z TEST: DS 2
103 END
PUBLIC SYMEOLS
SORT C 0000
EXTERNAL SYMBOLS
USEK SYMbOLS
IS15-11 6050/8085 MACKC ASSEMBLER, VZz.0 MODULE FAGE 3

ININC C 003E INTST C 001A

ASSEMBLY COMPLETE, NO ERROKS

CUTINC C 0043

OUTTST C 000D SORT C 0000 TEST D 0000

Figure E-1B

Sample Conversion and Listings

CONV86

ASMB0 TO ASM66 CONVEKTER

1S1S-I1 ASM80 TO ASM66 CONVERSION OF FILE :F1:S0kT80.A80
ASMb6 PLACED IN :F1:SORT80.486
CONVERTER V1.0 INVOKED BbY:

CONVE6

tF1:SORT80.A80 PRINT(:F1:SOKT60.CVL)

R R RN RN R R R R RN R R RN R R RN R RN
A PL/M callable subroutine:
CALL SOKT(.A1, .N)

Sorts the array A1, containing N words.

At entry BC points to the array A1, and

DE points to N. Two pointers to elements of Al are
kept in the DE and HL registers. These pointers are
incremented in two loops. The outer loop steps DE
through the elements of A1. The inner loop steps
HL through the elements of A1 that follow DE. AtY
each step of the inner loop, the items at hL and DE
are exchanged, if required, so that at the end of
the inner loop, the item at DE is larger than all
the items that follow it. The item at Dt is then in
its proper position, so DE is incremented to

complete one iteration of the outer 1loop.
RN RN RN NN RN RN RN RN R RN RN R RN R LR NN R R R RN RN RN RN

e W we i ws we We we e we we we we ws we ws we

CSEG
PUBLIC SORT
; TEST = address of the last element of A1,

SORT: XCHG ; TEST = (N - 1) * 2+ LAl
MOV E,M
INX h
MOV D,M
XCHG (N
DCX B io- 1
DAD H ; * 2
DAD B ; + A1
SHLD TEST ; = TEST
; CUTER LOOP: DO DE = .A1 TG TEST BY 2;
MOV E,C ; BC CONTAINS .41
MOV b,b
OUTTST: LDA TEST ; IF DE > TEST THEN KETUKN
SUB E
LDA TEST + 1
SBB D
RC
; INNER LOUP: DO hL = DE+2 10 TEST BY 2
MOV L,E
MOV H,D
INX h
1INX h ; HL = DE+2
; IF WL > TEST THEN GOTO OUTIMNC
INTST: LDA TEST
SUB L
LDA TEST + 1
SBB H
Jc OUTINC

IF A1(hL) < A1(DE) ThEN GOTO ININC
As a side'effect, HL and DE are incremented by 1
to point to the high bytes of their array elements.
LDAX D
SUB M
INX D
INX H
D
M
1

LDAX
SEB
JNC NINC
Exchange A(DE) with A(HL). Leave HL and DE
pointing to hIGH bytes.

LDAX D ; SWAP HIGh BYTES

Figure E-2A

CONV86 Sample Conversion and Listings

ASMbO TG ASM86 CONVERTER

6y MOV C,M

70 MOV M, A

71 XChG

72 MOV M,C

73 XCHG

T4

75 DCX D ;5 POINT HL AND DE TO LOW BYTES.
76 DCX h

77

78 LDAX D ; SWAP LOW BYTES

79 MOV C,M

80 MOV M, A

81 XChHG

g2 MOV M,C

63 XCHG

84

&5 INX D ; POINT HL AND DE TO HIGH BYTES.
86 INX [

o7

88 5 DE and hL point to HI1IGH bytes. For the next iteration,
89 ; set DE = Previous DE, HL = 2 + Previous HL.

S0 ININC: DCX D

91 INX B

92 JMP INTST

93

94 ; End of outer loop. 8et DE = DE + 2 and CCNTINUE
95 OUTINC: INX D

96 INX D

97 JMP OUTTST

98

99

100 ; Data area follows.

101 DSEG

102 TEST: DS 2

103 END

Figure E-2B

E-5

Sample Conversion and Listings

CONV86

ASMb0 TO ASMb6 CONVERIER

N oo a2
COWVOENOUVMEWRN 2OV 0OW EWRN =

> N

SELVE &
Ewn

N

LV,
= =

25

CGKOUP GEROUP AbS_0,CODE,CONST,DATA,STACK,MEMORY
DGROUP GROULP ABS_0,COLE,CCNST,DATA,STACK,MEMORY
ASSUME LS:LGROUP,CS:CGROUY ,SS:DGKOULP

CONST SEGMENT WORKLD PUBL1C 'CONST!
CONS1 ENDS
STACK SEGMENT wOKD STACK 'STACK'
STACK_bASE LABEL BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMOkY 'MEMORY'
MEMORY_ LABEL BYTE
MEMOKY ENDS
ABS_0O SEGMENT BYTE AT O
M LABEL BYTk
A ER AR RN R R R R R R RN R RN R R R R RN R R RN RN NN NN NN
A PL/M callable subroutine:

CALL SORT(.A1, .N)
Sorts the array A1, containing N words.
At entry BC points to the array A1, and
DE points to N. Two pointers to elements of A1 are
kept in the DE and hL registers. lhese pointers are
incrementea in two loops. The outer loop steps DE
through the elements of A1, The inner loop steps
hL through the elements of A1 that follow Dk. A%
each step of the inner loop, the items at kL and DE
are exchanged, if required, so that at the end of
the inner loop, the item at Dk is larger than all
the items that follow it., The item at DE is then in
its proper position, so DE is incremented to

complete one iteration of the outer loop.
X Y R R R X R R R X X R X R R X X222]

ABS_0O ENDS
CODE SEGMENT WOKD PUBLIC 'CODL'
PUBLIC SORT
; TEST = address of the las*t element of A1,

SORT: XChG BA,DX 3 TEST = (N - 1) ® 2+ (A1
MOV DL,mlBX]
LAKF
INC EX
SAHF
MOV DH,MLBEX]
XChG BX,DX 3 ON
LARF
DEC BX
SARF H -1
LAHF
ADD BX,BX
KCR S1,1
SAHF
KCL SI,1 ; L)
LARF
ADD bX,CX
RCR S1,1
SAhF
RCL S1,1 H + WAl
MOV WOKD PTIR(TEST_),BX H = TEST
; OUTER LOOP: DO DE = .A1 TO TEST BY z;
MOV DL,CL s BC CONTALINS .A1
MCV DH,CH
OUTTST: MOV AL,TEST_ 3 IF Dk > TEST THEN RETURN
SUB AL,DL
MOV AL,TEST_+1
SBB AL,Dh
JNB SHORT L_1
RET
L_1:
5 INNER LOOP: DO HL = DE+2 TG TEST BY 2
MOV BL,DL
MOV BH,Dh
LAHF
INC bX

Figure E-2C

E-6

CONV86 Sample Conversion and Listings

ASMb0 TG ASM86 CONVERTER

45 SARF

46 LAHF

46 INC BX

46 SAHF s HL = DE+2
47

48 ;7 IF HL > TEST THEN GOTO GUTINC

49 INTST: MOV AL,TEST_

50 SUB AL,BL

51 MOV AL,TEST_+1

52 SEB AL,bh

53 Jb SHORT GUTINC

54

55 ; 1F A1(hL) < A1(DE) THEN GOTO ININC

56 ; As a side effect, HL and CE are incremented by 1
57 ; to point to the high bytes of their array elements.
58 MOV S1,DXx

58 LODS DS:MLSI]

59 SUB AL,M[BX]

60 LAHF

60 INC DX

60 SAHF

61 LAHF

61 INC BX

61 SAhF

62 MOV SI,DX

62 LODS DS:M[SI]

63 Sbb AL,M[BX]

64 JAb SHOKT ININC

65

66 ; Exchange A(DE) with A(HL). Leave hL ana DE
67 ; pointing to hlGH bytes.

68 MOV S1,Dx

66 LCDS DS:M[S1] ; SWAP H1GH BYTES
69 MOV CL,MLBX]

70 MoV MLbx],AL

71 XCHG EX,DX

T2 MOV M[BX],CL

73 XChG Bx, DX

T4

75 LARF

75 DEC DX

75 SAHF ;s POINT HL AND DE TO LOW BYTES.
76 LAHF

76 LEC BX

76 SAHWF

77

78 MGV SI,DX

76 LODS DS:MLSI1] ; SWAP LCw BYTES
79 MOV CL,MLBX]

60 MOV MLBX],AL

81 XCHG bBX,DX

sz MOV M[BXx],CL

83 XCHG BX, DX

84

65 LAHF

85 INC DX

65 SAhF 3+ POINT hL AND DE TO HIGH BYTES.
56 LAHF

86 INC BX

56 SAHF

87

bb ; DE and HL point to hlGh bytes. For the next iteration,
89 ; set DE = Previous DE, HL = 2 + Previous hL.

90 ININC: LAKF

90 DEC DX

90 SARF

91 LARF

91 INC BX

91 SAHF

92 JMP INTST

93

9y ; End of outer loop. Set DE = DE 4+ 2 and CONTINUE
95 OUTINC: LARF
95 INC DX

Figure E-2D

E-7

Sample Conversion and Listings

CONV86

ASM8B0 TO ASM86 CONVEKTER

95 SAKF

96 LARF

96 INC DX

96 SAHF

97 JMP GUTTIST

98

99

100 ; Data area follows.

101 CODE ENDS

101 DATA SEGMENT WCKD PUBLIC 'DATA'
102 TEST_ DE 2 DUP (%)
103 DATA ENDS

103 END

0 CAUTION(S)

END CF ASM80 TO ASME6 CONVERSION

Figure E-2E

E-8

CONV86

Sample Conversion and Listings

MCS5-86 ASSEMBLER

1515-11 MCS-86 ASSEMBLER V1.0 ASSkMbLY OF MULULE SOKT80

OBJECT MODULE PLACED 1IN
ASSEMBLER INVOKED bY:

tF1:50RT60.860
:F1:SORT80.A86 PRINT(:F1:SOKT80.56L) OBJECT(:F1:SOR180.860)

LOC GCtJd LINE SOURCE
1 CGhROULP GROUFP AbS_0,CODL,CONST,DATA,STACK,MEMCRY
2 DUROUP GEROUP ABS_0,CODE,CONST,DATA,STACK, MEMORY
3 ASSUME DS:DGRCLP,CS:CGROUP,SS:DGROUP
———— 4 CONST SEGMENT WOKD PUBLIC 'CONST'
-——- 5 CONST ENDS
-———— 6 STACK SEGMENT WORD STACK 'STACK'
0000 7 STACK_BASE LAbbEL EYTE
-———- <] STACK ENDS
-—-- 9 MEMOhY SKLGMENT wOkD MEMGRY 'MEMORY'
0000 10 MEMOKY_ LABEL EXYTE
-———— 11 MEMORY ENDS .
-———- 12 ABS_0 SEGMENT BYTE AT O
0000 13 M LABEL EYTE
14 R ey
15 5 A PL/M callable subroutine:
16 H CALL SCRT(.A1, .N)
17 ;- Sorts the array A1, containing N words,
18 ; At entry bC points to the array A1, and
19 ; DE points to N, Two pointers to elements of A1 are
20 ; kept in the DE and hL registers. These pointers are
el ; incrementea in two loops. The outer loop steps LE
z2 ; through the elements of A1. The inner loop steps
23 ;7 hRL through the elements of A1 that follow DE. At
24 ; each step of the inner loop, the items at HL and Db
25 ; are exchanged, if required, so that at the end of
26 ; the inner loop, the item at DE is larger than all
27 ; the items that follow it. The item at DE is then in
b ; its proper position, so DE is incremented to
2y ; complete one iteration of the outer loop.
30 R R ey
31
- 32 ABS_0 ENDS
-=-= 33 CODE SEGMENT WGRD PUBLIC 'CODE"
34 PUEL1C SORT
35 ; TEST = address of the last element of A1,
0000 5B 36 SORT: PCOP BXx ; %%%% CGDE INSERTED 10
0001 5A 37 POP DX ; %%%#% RETRIEVE PL/M-86
0002 59 38 POP CX ; %#%¥% STACK PARAMETERS
0003 53 39 PUSh BX ; %%#& (CHAPTER 3)
0004 BTLA 40 XCHG bX,DXx ; TEST = (N = 1) ® 2+ A1
0006 bA970000 41 MOV DL,MLBX]
000A 43 4z INC bBXx
000b 8ABTO0000 43 MOV DH,M[BX]
000F 87LA 4y XCHG BX,DXx 3 (N
0011 4% 45 DEC bx H -1
0012 03DB 46 ADD BX, BX ; * 2
0014 03D9 47 ADD bX,CX ; + A1
0016 891E0000 48 MOV WOKD PTR(TEST_),BX H = TESI
49
50 ; OUTER LGOP: DO DE = .A1 TO TEST EY 2;
001A B8AD1 51 MOV DL,CL ; BC CONTAINS .A1
001C BAFS 52 MOV DH,CH
53
001E AC0000 54 OUTTST: MGV AL,TEST_ ; IF DE > TEST THEN RETURN
0021 zAC2 55 SUb AL,DL
0023 A00100 56 MOV AL,TEST_+1
0026 1ACH6 57 SBb AL,Dh
0028 7301 56 JNE SHORT L_1
00zA C3 59 RET
002E 60 L_1:
61
62 ; INNER LOOP: DO HL = DE+2 TO TEST BY 2
002B YBADA 63 MOV BL,DL
002D &AFE 6u MOV BL,DH
00zF 43 65 INC BX
0030 43 66 INC BX ; BHL = DE+2
67
Figure E-3A

Sample Conversion and Listings CONV86

MCS-86 ASSEMBLER SORT80
LOC OBJ LINk SUUKCE
66 s IF hL > TEST THEN GOTO OUTINC
0031 AC0000 R 69 INTST: MOV AL, TEST_
0034 2AC3 70 SUB AL,BL
0036 A00100 R 71 MOV AL, TEST_+1
0039 1ACT 72 SBEB AL,BH
003b T242 73 Jb SHORT OUTINC
T4
75 3+ 1IF A1(HL) < A1(DE) THEN GOTO ININC
76 ; As a side effect, hL and DE are incremented by 1
77 ; to point to the high oytes of their array elements.
003D &8EF2 78 MOV SI,DX
003F AC 79 LCDS DS:M[SI]
0040 2A8E70000 R 60 SUB AL ,MLBX]
o4y 9F 81 LAQF ; #%#%% THE UNNECCESSARY 'EXACT'
82 ; W®#% MAPPED CODE WAS KEMOVED
0045 42 83 INC DX
0046 43 84 INC BX
0047 98 65 SAHF ; #®#® THIS 'EXACT' CODE 15 ALSO NEEDED
0048 bEF2 86 MOV SI1,0X
004A AC 87 LODS DS:ML81]
004L 14670000 K 68 Sbb AL,M[BX]
0O04F T324A 59 JAE SHORT ININC
90
91 3 kxchange A(DE) with A(HL). Leave HL and DE
ge ; pointing to h1lGh bytes.
0051 8bFz 93 MOV S1,DX
0053 AC 94 LUDS DS:MLSI) ; SwWAP HIGH BYTES
0054 GBALFO0000 k g5 MOV CL,m(BX]
0054 db8b70000 k 96 MCV MLbX],AL
005C 87DA ST XCHG bX, DX
005E 888F0000 K $8 MOV MLBX],CL
0062 87DA 99 AChG bX,DX
100
0064 4a 101 DEC DX ; POINT HL AND DE TO LOW BYTES.
0065 4B 102 DEC EX
103
0066 8BFz 104 MOV S1,DX
006b AC 105 LODS DSiMLSI] ; SWAP LCOw EBYTES
0069 ©A&FO0000 K 106 MOV CL,MLbX]
006L 68870000 R 107 MOV MLEX],AL
0071 87LA 108 XChG bX,DX
0073 886F0000 R 109 MOV mLBXxJ],CL
0077 oTLA 110 XCHG bX,DX
11
0079 4z 112 InC LXx ; POLNT HL AND LE TO KRIGH BYTES.
007A 43 113 InC bX
114
115 ; Dk and HL point to HIGH bytes. For the next iteration,
110 ; set DE = Previous DE, HL = 2 + Previous hL.
007b 4A 17 ININC: DEC DX
007C 43 18 INC EX
007D Ebbe 19 dMPp INTST
120
121 ; End of outer loop. Set DE = Dk + 2 and CONTINUE
007K 42 122 GUTINC: INC DX
0080 42 123 INC DX
0081 EB9B 124 JMP OUTTST
125
126 ; Data area follows.
127
-——— 1286 CUDE (ENDS
-———— 129 DATA SEGMENT WOUKD PUELIC 'DATA'
0000 (2 130 TEST_ Db 2 Dup (?)
??
)
——— 131 DATA ENDS
132 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure E-3B

P

CONV86

Sample Conversion and Listings

MCS-86 ASSEMELER

ISIS-11 mMCS-66 ASSEMBLER V1.0 ASSEMBLY Or MCDULE SORTE6

CBJECT MODULE PLACED IN

:F1:S0R166.860

ASSEMBELER INVOKED BY: ASM86 :F1:SOKT86.A86 PRINT(:F1:SORT86,66L) OBJECT(:F1:SORT86.860)

LoC

0000

0bJ

00061]
0004(]

0000
0001
0003

0006
0009
000B
000D

000F
0011

0013
0016
0018

001A

001C
001E

0020
0022

0024
00z7

0029
00eC

002E
002F

ASSEMBLY COMPLLTE,

55
8bLEC
6B7606

8B5E04
SEOF
03CS
03Ck

3BF1
731B

6D7C02
3bFY
T30F

§BOY
3b05
T304

8705
8904

83C702
EBED

83C602
EBE1

5D
cz0400

=
—
z
o

-
ocwaTNoUEWN =

RN
N -

[N NN
WoNNouU W

>

N
- o

22

LSIL SRV G N)
~_NouU W

28
29
30
31
32
33
34
35
36
37
30
39
40
41
4z

.43

44
45
46
47
ub
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

SOUKCE

R B AR RN R RN R R B R R RN RN RRRRRRRBE R R R R AR RN RN RN

A PL/M callable subroutine:
CALL SOKT(.A1, .N)
Sorts the array A1, containing N words.

are on the stack. Two pointers to elements of A1

are incremented in two loops. The outer loop steps
S1 through the elements of Al. The inner loop steps
D1 through the elements of A1 that follow SI. At

H
H
; At entry the address of N, and the address of A1l
H
H

each step ot the inner loop, the items at DI and SI

are exchanged,

’
H
,
; are kept in the S1 and D1 registers. These pointers
H
H
H

if required, so that at the end of

the inner loop, the item at SI is larger than all

the items that

follow it., The item at SI is then in

complete one iteration of the outer loop.
SRR R R RN RN RN RN R RN RN R RN R RN RE RN R R R RR RN

H
H
; its proper position, so SI is incremented to
H
’

CGROUP GKOUP

CODE

; No DS ASSUME is needed, since this routine
; doesn't reference a DATA segment.

NO BRRORS FOUND

ASSUME CS:CGROUP
CODE SEGMENT PUBLIC 'CODE'
PUBLIC SOKT
SORT PRGC NEAK
ADDR_A1 EQU WORD PTR LBP+61] ; first parameter
ADDR_N EQU WORD PTR [BP+4] ; second parameter
PUSH BP ; use BP to access parameters
MOV EP,SP
MOV S1,ADDR_A1 -
; Outer loop: DG SI = .A1 BY 2 WHILE SI < CX
MOV ba,ADDR_N
MOV Cx,[BX] ; CX = N
ADD CX,CX H * 2
ADD cx,sl1 ; + A1
OUTTST: CMP SI1,CXx ; IF SI >= CX THEN RETURN
JAE EXIT
; Inner loop: DO DI = S1+2 bY 2 WHILE DI < CX
LEA DI, LS5I+2] ; DI = SI+2
INTST: CMP DI,CX sIF DI >= CX
JAE OUTINC THEN exit inner loop
MOV AX,[81] ; IF A1lS1]
Chp AX,[(DI] ; < A1[DI]
JNB ININC
XCHG AX,[D1] ; THEN EXCHANGE A1[LI]
MOV LSI],Ax ; WITH A1[SI]
ININC: ADD DI,2 ;3 END INNER LOOP
JMP INTST
OUTINC: ADD SI,2 ; END OUTER LOOP
JMP OUTTST
EXIT: PCP BP
KET 4
SORT ENDP
COLE ENDS
END
Figure E-4

APPENDIX F

CONVERTING MACROS
AND CONDITIONAL ASSEMBLIES

Because version V1.0 of the MCS-86 Assembler does not support macros (including
the directives MACRO, IRP, IRPC, LOCAL, REPT, macro call, EXITM, or
ENDM) or conditional assembler directives (including IF, ELSE, ENDIF), this Ap-
pendix provides a method of converting these constructs. The method is as follows:

1.

Assemble your 8080/8085 source file using the ISIS-II 8080/8085 Macro
Assembler, version 2.0, using the following controls:

NOPAGING
MACROFILE
NOCOND

GEN
NOMACRODEBUG

Edit your 8080/8085 program list file as follows:

a.
b.

Delete the header and trailer information.

Delete the first 24 columns (location, object, sequence numbers, and
macro-generated plus (+) signs, where applicable) of every remaining line.

Delete (or convert to comments) all macro skeletons (definitions), macro
calls, and other (non-comment) lines which result in no object code.

Submit the resulting file to CONV86 as described in Chaper 2, and treat the
converter output as described in Chapter 3.

The remainder of this Appendix traces the evolution of an 8080 source file contain-
ing macros and conditional assembler directives through the following steps:

F-1.
F-2.
F-3.
F-4.

8080 Macro Assembler Listing (MACROS.L80) and Editing Procedure
Edited 8080 Macro Assembler listing (MACROS.E80)

PRINT file from conversion of edited listing (MACROS.CNYV)

MCS-86 Macro Assembler (V1.0) listing of converted filé
(MACROS.L86)

F-1

Converting Macros CONYVS86

® 45480 :F1:MACROS.SRC KOPAGING MACROFILE NOCOND JGEN NOMACRODEBUG PRINT(:F1:nAlR0d
@ 1515-11 B0B0/8085 MACKO ASSEMBLER, V2.0 MODULE © PAGE 1 L J
This header information was deleted ullnoj
® Loc oss sEQ SOURCE STATEMEN BS10KSS
0000 3k12 1 lLaszLo: DwW 1234H
. 2{; (THIS LISTING HANDLES MACRO, 1RP, IRPC, and REPT) @
3{; HOW TO EDIT ASM80 LISTING FOR MACROS, CONDITIONALS
)‘ .
L 5 MACT HACHG — G1,62,63 o
§ LOCAL MOVES
: MOVES: LHLD Gt <
First 24 columns were deleted uulny:J § MOV AN Macro found and out using:
B$S99<24DSLS>$S 9 LHLD G2 FMACRQSOLTSS
10 MOV B, M . 7’<M
® 1 ¥ 63 EQ LASZLO ®
BXITM
- * sisE
® 14 LHLE 63 : ®
15 MOV ciH
16 ENDIF
] 17 NOP [J
1B ENDM
P 19 §; Macro call commented out using:
20 WACT_ ¥00,BAZ,LASZLO)
0002 243100 214770001: LHLD F00 F;",Amsou”
0005 7B 224 MOV A,M
® o006 243200 23¢ LELD BAZ ®
0009 846 244 MOV B,M
27
° 28 | REPT 8
§g g:;u - REPT found and out using:
Fl
Q@ oo00a oF 314 RRC R S
pOOB OF 324) RRC
000¢ OF 334 RRC
® ooop oF i RRC ®
000E OF 354 RRC
000K OF 364 RRC
L4 37 | ®
38 |;
® B
0018 210000 4o LXI H,LASZLO]
41 TRP X,<F00, 36200, BAZ>
42 LDA X
® 43 MOV Mo A IRP found and out using: (
A INx # FIRPSOLTSS '
A5 ENDM 5<I;SLS>$S
® 0013 33100 6] LDA 00 34
0016 77 N7 MOV M,A
0017 23 PEN INX H
® 0018 34203E 494 LDA 3E20H [J
0018 77 50+ MOV M, A
001C 23 514] INX H
@ o01p 313200 524 LDA BAZ ([
0020 77 534 MOV M,A
0021 23 Sl INX H
® 55 §; {]
56 |;
« 57 §
@ o0ze 2arrer 58 LKLD _ LASZLO-1 (
’ , 59 FVOATE: 1IRPC X,1978 .
60 INX B T3 T Taeino:
® 61 W1 ¥, X C ound and out using:
62 ENDM FIRPCSOLTSS ,
0025 23 634 INX B 4<iSLE>$S {
* 0026 .3601 644 MVI M, 1 - \
o028 23 654, INX H
0029 3609 664 MVI M,9
@® goz5 23 67+ INX H []
002¢ 3607 684 MVI M, T
0028 23 694 INX H
® oozr 3608 704 MV1 8 []
Tt
72 {;
® 73 |; g
0031 08 T4 [FOO: DB 8
0032 9900 75 [bAZ: DW 99H
® 75 END []
® PUBLIC SYMBOLS o
This trailer Information was deleted usi I
EXTERNAL SYMBOLS . 28-11K$$
® -
USER SYMBOLS
® az A D0032 FOO A 0031 LASZLO A 0000] mact s o000 mvoatE A @
ASSEMBLY COMPLETE, NO ERRORS
[' ®

I RESULTING FILE (MACROS.E80) SHOWN IN FIGURE F-2.

Figure F-1. Annotated 8080 Macro Assembler Listing (MACROS.L80)

F-2

CONV86

Converting Macros

@ Lisio: Dw 1234k [J
; (THIS LISTING hANDLES MACKO, 1RP, IRPC, and HEPT)
@ HOW TO EDIT ASHBO LISTING FOR MACROS, CGNDITIONALS °
iMACH MACRO G1,G2,63
: LOCAL MOVES
® .oves: LHLD G1 [)
; MoV AN
; LELD G2
LI MOV B,M Y
H IF G3 EQ LASZLO
H EXITM
e ELSE ®
; LELD 63
; MOV CoM
L ENDIF [J
; NOP
; ENDM
o ®
; MAC1 FOO,BAZ,LASZLO
220001: LHLD FGO
° MOV AM [
LKLD BAZ
MOV B,M
e ®
H REPT 6
H RRC
o ENDM ®
KEC
HRC
[] RRC []
KRC
KRC
® RRC []
;
;
e ! ®
Lx1 H,LASLLO
; 1R X,<FGO0,3EZ0k, BAL>
e LDA X [J
; MOV M, A
H INX h
o ; ENDM [J
LDA FOO
MOV M, A
® INX H)
LDA 3E20H
MOV M, A
[J INX H ®
LDA BAL
MOV N, A
[J INX h ®
;
;
' ; ®
LHLD LASZLO-1
sMVDATE: IKPC X,1976
o ; INX i []
; MVl Y
; ENDM
® INX H [J
MVl M, 1
INX K
o mv1 h,9 ®
INX H
MVI M,7
o INX h o
MVI M,8
(I ®
;
FOO: DB 6
® . DW 99h [J

Figure F-2. Edited 8080 Macro Assembler Listing (MACROS.E80)

F-3

Converting Macros CONVS86

ASMO0 TU ASMEO CLONVEKTER Converting Macros and Conditionals
® I515-11 ASMEO TO ASM86 CUNVERSION OF FILE :fi:macros.ed0]
ASMb6 PLACED IN :f1l:macros.Abt :
CONVERTER V1.0 INVOKED bY:
[] conv8b :fl:macros.ef0 & edited listing of macro assemoly []
print(:fl:macros.cnv) & conversion and cautions
title('Converting Kacros and (onditionals') & See App'dixF-1
o abs & Lon't care about relocatability or PL/M=bb [J
approx & bon't care about saving flags
[] ®
[J 1 LASLLO: D 12348 [}
2 ; (THIS LISTING HANDLES MACRU, 1RP, IRPC, and REPT)
3 ; HOW TC EDIT ASM80 LISTING FOk MACRCS, LONDITLUMALS
([] P [
5 sMACT MACRO G1,62,63
6 H LOCAL MUVES
L 7 ;MOVES: LHLD 61 []
& H MOV A,N
9 H LHLD Gz
o 10 ; MOV b,k []
11 H ¥ G3 EQ LASZLO
12 H EXITM
] 13 ELSE [
14 H LHLD G3
15 MOV C,NM
® 16 ENDIE [J
17 H NOP
16 H ENDM
[] 19 [J
20 H MACT ¥0U,bAZ,LASLZLO
el 7?20001: LHLD rCO
® NV Ah [
23 LELD BAZ
24 MGV BN
.' 25 H '.
26 H REPT 6
27 H RRC
[] 26 ENDN]
3’ RKC
30 RRC
® 31 HRC [J
32 RRC
33 RRC
® 34 KRC ®
35 H
36 H
® 37 H [
38 LX1 h,LALZLC
3y H 1kP X,<FCU,3820h,bAL>
[J 40 H LDA X [J
41 ; MOV M, A
4z H INX 3]
® 43 ENDM []
4y LDLA roo
45 nov M, A
® TS INX H [J
L7 LDa 3&20h
4o MOV M, A
] by Inx H []
50 . LDba BAZ
51 nuv t, A
L 52 Inx b [4
55 H
54 H
® 55 ®
56 LHLD LASZLOU-1
57 sMVUATE: IRrC X,1976
® 58 INX b o
59 ; MV M, X
60 ; ENDM
L4 61 INX b [J
bz mVl b, 1
63 INX h
® o4 MVl M,9 o
65 INX h
66 MV1 M,T
L] 67 INX h ®
08 MVl M, 8
[3°] H
L 70 e
71 H
72 FuO: VE o
® 735 bAL: I 99h [J
Th END I

Figure F-3A. Conversion of Edited Macro File (8080 Source Shown)

CONV86

Converting Macros

ALME0 TG AShbb CUMVEKTEK

ASSUME US:ABS_0,CS:AbS_0
ABS_0O SEGMENT BYTE A1 O
13 LAbBEL BYTE
LASLLU bw 12340

Converting macros ana tonaitionals

3 (TH1S LISTIMC BANDLES MACKG, 1AP, 1hPC, and REPT)

END CE

o &6 & & 0 & O ¢ o o 0 o o & o o O 0o o & o o © ¢ o o o o o O

(1 CAUTIUN(S)) -

ASMEO TO ASMB6 CUNVERSIUN

1
2 H
3 ; HOw 10U kL1 ASMDO LISTING FUR MACKUS, CUNL1TIGNALS
4 H
5 sMACT MACRG G1,02,G3
6 ; LUCAL MOVES
7 jHOVES: LhLv G1
8 H MOy A,h
] H LhLD Ge
10 H MOV b,M
11 H 1k 63 kG LASZLU
12 ; EX11n
15 H ELSE
14 H LhLy 63
15 H MOV Cyb
16 ; ENDIK
17 ; NGF
16 H ENDN
19 H
<0 5 mACH r00, bAZ,LASLLO
<1 720001: MOV bX,wORD P1h(FGO)
2z MUV AL, MLbX]
23 MOV BX,bALZ
ok MOV ChymlbX]
25 H
zb H REFT 6
eT ; KhC
26 ; ENLM
29 KUK AL, 1
30 KOk AL,
31 ROk AL, 1
3z ROk AL, 1
33 ROR AL,
34 nCk AL,
39 i
36 H
37 H
36 LEA bA,LASLLG
39 H Iky X,<EC0,3:20h,bAZ>
H LbA X
41 H 197 by A
Lz ; Iks h
43 H ENLN
iy MUV AL, KGO
45 MUV mLBEAS,AL
4o InC Ba
47 MOV AL,ML3E20h])
4y MOV nlbx],AL
4y 1NC bA
50 MOV AL,BYTE PTh(bAZ)
51 MOV MLEX], AL
52 INC EX
53 H
bk ;
55 H
56 MOV bX,LASLLO=-1
#%* CAUTION 017 *%* ADDRESS EXPHESSICh MAY bk IMNVALID FOh £086
57 sMVDATE: T1heC 2, 1970
5% H 1INk h
59 H MVI My X
60 ; ENDi
61 ING BX NOTE
bz LoV MLbXJ,1
63 1INC BX Caution 17 does not require manual editing
oh MGV MLbXx]),9 here; LASZLO-1 is the expression that we want
05 INC BX
bb MOV MLEXT,T
o7 INC EX
6b MOV nLBX],E
69 H
70 H
71 H
72 FUC b 6
73 BAL ™ Y9h
T4 AbS_0 ENDY
74 END

Figure F-3B. Conversion of Edited 8080 Macro File (MCS-86 Source Shown)

Converting Macros

CONYV86

Loc

0000
0000

0002
0006
00086
000C

000k
0010
o1z
001h
0016
00106

0014

001E
00z1
0023
00zh
0027
0029
0024
002D
oo02r

0030

0034
0035

0039
003C
003p

0041

0044
0045

M(S-86 ASSEMBLEK

0BJ

3412

¢b 14400
bA07
8b1E4500
bA2F

vocs
DOCy
DoCE
Dpocé
DoCo
Locs

8D1E0000

hOKY400
5607
43
A0203k
8507
43
A04500
8807
43

SB1EFFFF

43
C607G1

0038 43

C60709

c60707

0040 43

C60708

08
9900

ASSEMBLY COMPLETE,

MACKOS

LINE SOUKCE

:f1:macros.CbJ

1 ASSUME
3 ABS_0 SEGMENT
3 L3 LABEL
4 LASZLO Dw
5 3 (THIS L1STING
[
7 H
b 3MACT MACROC
9 H LUCAL
10 sMOVES: LHLD
1 H mOov
12 H LHLD
13 H MoV
14 5 1F
15 H EXITH
16 ; ELSE
17 H LHLD
18 ; nov
19 H ENDIF
20 H NOP
21 ; ENDM
z2
23 H MAC1
24 ?770001: MOV
25 Mov
20 MoV
27 MOV
28 H
29 H REPT
30 H HRC
31 5 ENDM
3¢ ROR
33 KOR
34 ROKR
35 KOR
36 KOR
37 ROR
38 H
39 i
40 H
41 LEA
y2 IRP
43 H LDA
4y ; MOV
45 INX
40 H ENDM
47 MOV
46 MOV
49 INC
50 Huv
51 MOV
52 INC
53 MOV
54 MOV
55 INC
56 H
57 H
58 H
59 MOV
60 ;MVDATE: IKRPC
61 H INX
62 H MVl
63 H ENDM
6u INC
65 MOV
66 INC
67 MOV
(] INC
69 MOV
70 INC
71 MOV
T2 H
73 H
T4 ;
75 FOO Db
76 BAL Dw
17 ALS_0 ENDS
76 END

NO ERRGRS FOUND

IS1S~I1 MCS-86 ASSEMBLER V1.0 ASSEMBLY OF MODULE MACRGS
GbJLCT MUGDULE PLACED 1N
ASSEMBLEK INVOKEL bY: asm86 :fl:macros.adb print(:fi:macros.ls6)

DS:ABS_0,CS:ABS_0
EYTE AT O

BYTE

1234h

HANDLES MACROG, IRP,
HOw 10 LDIT ASM80 LISTING FOR MACKOS, CON"I]

G1,G6G2,G3
MOUVES

G1

A,M

Gz

b,M

G3 EQ LASZLO

G3
C,M

FOO,BAZ,LASZLO
BX,wGRD PTR(FQO)
AL,M[BX]

EX,BAZ
Ch,M[BX]

6

AL, 1
AL, 1
AL, 1
AL, 1
AL,1
AL, 1

bX,LASZLO

X,<FC0,3E20H,BAZ>
x

"
H

AL,F00
MI[BX],AL
X

B
AL,ML3E20H]
mLEX],AL

BX

AL,BYTE PTR(BAZ)
M{BX],AL

BX

BX,LASZLO-1
X,1978
[3
M, X
BX
MIBXx],1
BX
M[BXJ,9
bX
MIBX],7
BX :

MiBX],8

99H

1RPC, and

Figure F-4. MCS-86 Assembler (V1.0) Listing of Converted File

(MACROS.L86)

F-6

APPENDIX G
RELOCATION AND LINKAGE
ERRORS AND WARNINGS

Because of the way CONV86 sets up multiple segments beginning at absolute loca-
tion 0 (as described in Chapter 1 under ‘‘Functional Mapping’’), MCS-86 linkage
and relocation tools will issue warnings/errors as shown in Table G-1. You can safe-
ly ignore these warnings/errors when they specifically apply to intentional segment
overlap.

Table G-1. MCS-86 Relocation and Linkage Warnings/Errors

for Segment Overlap
R &L Tool Message ID Message Text
ERROR9 ABS__0 HAS INCOMPATIBLE ATTRIBUTES
IN modname AND modname
QRLS86
ERROR 11 ABS__0 AT 00000H PRECEDES LC=addr.
WARNING 14 GROUP ENLARGED
FILE: filename
GROUP: groupname *
MCS-86 MODULE: modname
LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_0
CLASS:

INDEX

ABS control (CONVS86), 1-6, 2-3
absolute address, 3-2
APPROX control (CONVS6), 1-10, 2-3

caution message, 1-12, 3-8
comments, mapping of, 1-9
conditional assembler directives, 1-3, F-1
conditional assembly, 1-3
continuation lines,

in CONV86 command, 2-5

in PRINT file, 3-1
controls (ASM80) mapping, C-1
controls (CONV86), 2-2
conversions, sample, 1-3, 3-1, E-2, F-3
cross-development (8080/8085-

to-8086), 1-2

DATE control (CONV86), 2-2
directives mapping, C-1
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-10, 2-3
expressions, conversion of, B-1

files, CONV86, 1-2, 1-12
files, cross-development, 1-2
flags, mapping of, 1-8

flag semantics, 8080-8086 differences, 1-11

functional equivalence, 1-10
functional mapping, 1-6

INCLUDED control (CONVS86), 2-3
instruction mapping, A-1
instruction queue (8086), 1-10
interrupts, 3-3

label insertion by CONV86, 3-2, A-1
label insertion by user, 3-3

macro call, F-1

macro conversion, F-1

macro definition, F-1

MACROFILE control (ASM80), 1-9
manual editing, 1-3, 1-12, 3-1, E-1, F-1
MODSS control (ASM80), 1-9

NOMACROFILE control (ASM80), 1-9
NOOUTPUT control (CONV86), 2-2
NOPAGING control (CONV86), 2-4
NOPRINT control (CONV86), 2-2
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1

OUTPUT control (CONV86), 2-2

overriding controls (CONV86), 2-5

overriding symbol types, 1-8, 3-9,
3-10, 3-11

PAGELENGTH control (CONVS86), 2-3
PAGEWIDTH control (CONV86), 2-3
pipeline (8086), 1-10
PL/M linkage conventions (8080 &
8086), 3-6
PL/M parameter passing (8080 &
8086), 3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, E-2, E-9, E-11, F-6
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2

register mapping, 1-7

REL control (CONV86), 1-6, 2-3, 3-2, 3-11

relative addressing, 3-2

relocation & linkage (8086)
errors/warnings, 1-6, G-1

requirements for conversion, 1-1, 1-3, 3-1

reserved names, 1-9, D-1

stack, CONV86 handling of, 1-7
stack segment (8086), 1-6
STKLN directive (8080), 1-6, C-1
symbol typing, 1-8

timing delays, software, 1-10
TITLE control (CONV86), 2-2

WORKFILES control (CONV86), 2-3
WORKEFILES control (ASM80), 1-9

Index-1

Operating Instructions For ISIS-Il Users

in ® MCS-86 Assembly Language Converter
td 9800642A

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT
ADDRESS
CITY. STATE ZIP CODE

Please check here if you require a written reply. [

WE’'D LIKE YOUR COMMENTS. ..

This document is one of a series describing Intel products. Your comments on the back of this form will help

us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

First Class
Permit No. 1040

Santa Clara, CA

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Attention: MCD Technical Publications

Py

