
MCs-86 ASSEMBLY LANGUAGE
REFERENCE MANUAL

Manual Order Number: 9800640A

Copyright © 1978 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
lnsite Megachassi~ RMX
Intel Micromap UPI
Intellec Multibus ~Scope

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A62/479/10K FL

PREFACE I

Two main purposes guided the creation of this book: the first was to teach this
language in easy steps of concepts and usage. In each section everything should be
understandable using information that is defined close-by or is immediately findable
via an explicit local reference to other sections in the text. Although the first steps
always seem too easy, a gradual approach usually helps you progress farther with
less effort.

The other purpose was to offer easy access to reference information. This purpose is
addressed via the figures, tables, glossary-index, and tab-type flag headings on the
top outer corners of reference pages.

Most chapters and sections begin with a brief explanation of their content, why and
when you need to use what is presented, plus prerequisite or related information and
where to find it.

This manual proceeds from general overview topics to a gradual development of the
specific features of this assembly language. Later in the book come the complete and
concise presentations of commands, permissible constructs, and other considera
tions.

If you are an advanced assembly programmer, you may not require this careful and
gradual introduction to underlying concept and structure. You may choose to leap
ahead, learning as you go the similarities and differences of this language from your
prior knowledge/experience. However, at least one glance through might prove
beneficial as to new concepts, features or requirements.

For those with less experience, the manual attempts to prepare you in advance for
novel or complex concepts by supplying the motivation or rationale behind them.
This can help you to understand, for example, why some otherwise appealing short
cuts are dangerous or disallowed.

Thus this manual gives an overview, first of certain programming considerations
and then of the 8086 architecture in terms of addressing, register sets, and memory
layout. It proceeds then to look briefly at this assembler's commands, directives,
and automatic features, some of which are unusual in any assembler, particularly
for a microprocessor.

With these topics as background and introduction, the manual begins to teach the
details of the language in a conversational style, with many examples.

If your experience leads you to prefer to browse at random, you might benefit most
by reading the assembler features, skipping the tutorial sections, and studying the
later detailed discussions of the instructions and expressions. The frequent embedd
ed references to discussions or explanations elsewhere in the manual will likely lead
to further browsing, gradually filling in the full story.

iii

CHAPTER 1
INTRODUCTION TO 8086
ASSEMBLY LANGUAGE

PAGE

Introduction. .. 1-1
What is an Assembler? , 1-1
What the 8086 Assembly Language Provides 1-1

Mnemonic Instructions. .. 1-1
Typing 1-2
Enhanced Data Handling 1-2

What the Assembler Does 1-3
Object Code 1-3
Program Listing 1-3
Error File 1-5

Do You Need the Assembler? 1-5
Programming, Debugging, and Designing. 1-7

How This Assembler Helps 1-7
Introduction to Relocation 1-9

Modular Program Development 1-10
Overview of Hardware and Architecture 1-11

Hardware. .. 1-11
Memory Organization 1-13

Memory Addressing 1-13
Registers. .. 1-15

Instruction Pointer 1-15
Wraparound 1-15
Segment Registers. .. 1-17
General Registers 1-19
Pointers and Indexes 1-20
Flags Overview 1-21

Addressing Modes , 1-23
Segment-Register Defaults in the Hardware 1-27

Controlling Segment Override Prefixes 1-28
Stack and Stack Pointer. .. 1-28

Stack Operations. .. 1-31
Saving Program Status 1-32

Input/Output. .. 1-32
I/O Device Selection 1-33

Interrupt Procedures 1-33

CHAPTER 2
BASIC CONSTITUENTS OF AN 8086
ASSEMBL Y LANGUAGE PROGRAM
Introduction. .. 2-1
ASM86 Character Set. 2-1
Syntactic Elements of ASM86 .. 2-2

Tokens and Separators. .. 2-2
Delimiters 2-2
Numeric Constants. .. 2-4
Character Strings 2-4
Identifiers. .. 2-5

Keywords. .. 2-6
Symbols and Their Attributes. 2-6
Registers. .. 2-6
Variables 2-7

CONTENTS

PAGE
Labels 2-8
Numbers. .. 2-9
Other Symbols. .. 2-9

Statements 2-10
Modules 2-12

CHAPTER 3
VARIABLES AND INITIALIZATION
Variable Declaration and Initialization. 3-2
The DB, DW, and DD Directives 3-2

Variable Definition 3-2
Memory Initialization " 3-3

Expressions .. 3-3
No Initialization; The Question Mark 3-4
The DUP Facility 3-4

Lists. .. 3-4
Character Strings. .. 3-5
Words and Doublewords .. 3-6
Doublewords .. 3-7
DW and DD Character String. 3-9

Some Attribute Operators (Length, Size, Type) ... 3-10
Record Definition. .. 3-12

CHAPTER 4
ASSEMBLER DIRECTIVES
Segment Definition: The Segment and

Ends Directives .. 4-1
Alignment Choices: PARA, BYTE, WORD,

PAGE, INPAGE 4-2
Introductory Considerations. 4-2
Specific Align-Types. .. 4-3
Combinability Types: .. 4-4

(NONE) 4-4
PUBLiC 4-4
COMMON 4-4
AT expression .. 4-5
STACK 4-5
MEMORy 4-6

Embedded Segments. .. 4-6
ORG Directive. .. 4-8
GROUP Definition. .. 4-9
ASSUME Directive 4-10

ASSUME NOTHING 4-13
Explicit Segment Prefix-Bytes 4-14

LABEL Definition 4-15
PROCedure Definition 4-17
EQU Directive. .. 4-20
PURGE Directive 4-21
Program Linkage Directives 4-21

PUBLIC Directive. .. 4-21
EXTRN Directive. .. 4-22

NAME Directive. .. 4-23
END Directive. .. 4-24

v

CHAPTERS PAGE
EXPRESSIONS AND ADDRESS
EXPRESSIONS
Permissible Range of Values. .. 5-3
Precedence of Operators 5-3
General Introduction to Operator Classes. 5-4
Review of Attributes. .. 5-5
Additive Operators, 5-6
Square Brackets and the Registers BX, BP, SI and DI. 5-6
Variable-Manipulation Operators: "name:",

PTR, THIS, SEG, TYPE, OFFSET 5-10
Segement-Prefix 5-10
The PTR Operator 5-12

PTR With Indexing Registers 5-14
The Operator "THIS" 5-14
SEG, TYPE, and OFFSET " 5-16

Parentheses, Length, Size, Width Square Brackets. .. 5-18
Square Brackets Used As Subscripts , 5-20
Using Square Brackets in Transfers
(Indirect Transfers) 5-23
Other Operators:

SHORT 5-24
OR, XOR , 5-24
AND 5-25
NOT 5-26
Relational Operators: EQ, NE, L T, LE, GT, GE 5-26
Multiplicative and Shifting Operators 5-27
Byte Isolation Operators: HIGH, LOW. 5-28

CHAPTER 6
THE INSTRUCTION SET
Instruction and Data Formats. 6-3
Instruction Set Encyclopedia. .. 6-3

Addressing Modes " 6-4
Organization of the Instruction Set. 6-8

Data Transfer 6-8
Arithmetic .. 6-9
Logic 6-11
String Manipulation 6-11
Control Transfer. , 6-13
Processor Control. 6-15

For specific instructions, see index to this chapter on page
6-156.

vi

CHAPTER 7
CODE MACROS

PAGE

Introduction. .. 7-1
Specifiers. .. 7-3
Modifiers. .. 7-4
Range Specifiers. .. 7-4
Segfix , 7-4
Nosegfix. .. 7-5
Modrm .. 7-6
Relb and Relw 7-8
DB, DW, and DD 7-9
Record Initializations .. 7-10
Using the Dot Operator to Shift Parameters 7-10
Proclen. .. 7-11
Matching ofInstructions to Codemacros. 7-12

CHAPTERS
RECOMMENDATIONS

APPENDIX A
ASMS6 CODEMACROS

APPENDIXB
ADDRESSING MODES

APPENDIXC
FLAGS

APPENDIXD
EXAMPLES

APPENDIXE
INSTRUCTIONS IN HEXADECIMAL
ORDER

APPENDIXF
DISCUSSION OF EXPRESSIONS

APPENDIXG
RELOCATION CONSIDERATIONS

APPENDIXH
GETTING STARTED

INDEX

CHAPTER 1
INTRODUCTION TO 8086

ASSEMBLY LANGUAGE

Assembly Language and Processors

Introduction

This book is about the 8086 Assembly Language. The instructions and directives in
this language use readily remembered abbreviations (e.g. MOY, ADD, EQU) for
programming operations and assembler control. A block of such instructions and
directives, intended for processing as a unit by the assembler, is called a source
module. The assembler translates a source module into relocatable object code.

Assembly language source modules must be in a machine-readable form when
passed to the assembler. The Intellec development system includes a text editor that
will help you maintain source programs as diskette files. You can then pass the
resulting source program file to the assembler. (The text editor is described in the
ISIS-II System User's Guide.)

Most lines of source coding in an assembly language source program translate
directly into one machine instruction for a particular processor. The assembly
language programmer should be familiar with both the assembly language and the
processor for which he or she is programming. The 8086 architecture and registers
are described in this chapter. The instructions are summarized in Chapter 6.

What is an Assembler?

An assembler is a software tool- a program designed to simplify the task of writing
computer programs. If you have ever written a computer program directly in a
machine-recognizable form such as binary or hexadecimal code, you will appreciate
the advantages of programming in a symbolic assembly language. There is less to
remember. It is easier to verify the program's validity and to correct it.

An assembly language is a step up from coding instructions directly in machine
language. How large an improvement it is depends on how much the assembler does
for you and how smart it is. This means how many correct decisions it can make
about what machine code to generate, based on inferences from the code you write
and any additional information you supply.

Thus a good assembler requires a minimum of source input lines written in a
language easily handled by humans, and generates the machine-instructions you
would otherwise laboriously code by hand if you had memorized the entire instruc
tion set of the machine (plus, in the case of certain esoteric machines, wiring
diagrams).

What the 8086 Assembly Language Provides

Mnemonic Instructions
The language includes about 100 symbolic instructions, grouped into six classes.
From source input in this language, the assembler can generate over 3,800 distinct
machine-instructions. Data or addresses (user-defined variables and labels) would

1-1

Introduction

1-2

8086 Assembly Language

add to this total, requiring even more of your effort to manipulate and validate.
However, handling data and addresses by readily remembered names instead of
numbers is automatic in the 8086 assembler, which translates the assembly language
program into machine code.

Assembly language operation codes (opcodes) are easily remembered, e.g., MOV
for move instructions, JMP for jump. Using names for address labels and variables,
you can make them meaningful to the problem you are solving.

For example, if your program must manipulate a date as data, you can assign the
symbolic name DATE to its address e.g.

DATE DB '780704'

If your program contains a set of instructions used as a timing loop, (a set of instruc
tions executed repeatedly until a specific amount of time has passed), you can name
the first instruction of the group TIMER, e.g.

TIMER: MOV AX,255

DA TE is called a VARIABLE, because it is a name for a memory location whose
contents are used as data. TIMER is a LABEL because it names a memory location
whose contents are used as an instruction.

Typing

The 8086 assembly language is "strongly typed". This means it performs extensive
checks on your variables and labels, like DATE and TIMER. The assembler uses the
attributes which are derived implicitly when a variable or label is first declared
(defined). The assembler makes sure that each use of a symbol in later instructions
conforms to the usage defined for that symbol when it was declared. For example,
DATE has the type "byte" because DB was used to define/declare it. The typing
mechanism and means for overriding it are more fully explained in Chapters 2 and 5.

What these checks provide, of course, is an extra safeguard against unintended or
meaningless code arising from errors of omission or inconsistency. These errors can
sometimes slip into the middle of a complex, high-pressure project and be difficult
to discover until deep into the debugging process.

Enhanced Data Handling

Compared to earlier assembly languages, this one has substantially improved flex
ibility in data definition and manipulation, which can significantly simplify coding.
Its capabilities allow very sophisticated goals to be achieved with a straightforward
use of the language.

Powerful string manipulation instructions permit direct transfers to or from
memory or the accumulator. They can be prefixed with a repeat operator for
repetitive execution with a count-down and a condition test. These operations
automatically increment or decrement the relevant indexes to memory, depending
on the direction flag, (DF). They also automatically decrement the count register,
(CX), after each repetition. This implicitly controls the number of iterations by ter
minating the operation when CX = O.

The assembler fully supports the 8086 addressing modes by providing for complex
expressions involving multiple indexes and field offsets. A powerful EQU facility
allows the use of simple synonyms for complicated expressions which may recur
throughout a module.

8086 Assembly Language

What the Assembler Does

The Assembler performs the clerical task of translating your symbolic source code
into object code which can be executed by the 8086 microprocessor (after the reloca
tion and linkage facilities assign absolute addresses). The major functions of the
assembler include assigning a value to each name you code, and later substituting
this value for every use of that name. Assembler input is your source file. The output
consists of three possible files:

1. the object-file containing your program which has been translated into object
code;

2. the list-file printout of your source code, the assembler-generated object code,
error messages, and the symbol table, and

3. a file containing only error messages and the source lines in which the errors
occurred.

- PROGRAM
LISTING

SOURCE OBJECT PROGRAM ASSEMBLER
FILE

FILE

-I ERROR
FILE

Object Code

The object code is the form of the program ultimately executed (after intermodule
references are handled by LINK86 and absolute addresses are assigned by LOC86 or
QRL86). For most microcomputer applications, you probably will eventually load
the object program into some form of Read-Only Memory. This assembler produces
output modules in relocatable format. The ability to use the above-named Reloca
tion and Linkage facilities (R&L) frees you from worrying about the eventual mix of
read only and random access memory in the application system; individual portions
of the program can be located as needed when the application design is final.

Also, the R&L linking facility allows a large program to be broken into a number of
separately assembled modules. Such modules are both easier to code and to test, and
can later be linked to function as a unit. A more thorough description of these ad
vantages appears later in this chapter.

Program Listing

The program listing provides a permanent record of the source program, the object
code, and the assembly process. The program listing also shows the assembler's

Introduction

1-3

Introduction 8086 Assembly Language

diagnostic messages issued for programming errors. For example, if you specify a
16-bit value for an instruction that can use only an 8-bit value, the assembler tells
you that the value exceeds the permissible range. (See accompanying sample listing.)

LOC OBJ LINE SOURCE

1 ; THIS SDK86 PROGRAM ECHOS CHARACTERS FROM A KEYBOARD TO A CRT,
2 ; AND GENERATES A FREQUENCY DISTRIBUTION OF CHARACTER OCCURRENCES.
3
4 RAMSEG SEGMENT AT 30H ;PLACE RAM SEGMENT AT 300H

0000 (128 5 FREQUENCY DB 128 DUP(O) ;INITIALIZE OCCURRENCE COUNT ARRAY TO ZERO
00
)

0080 (10 6 OW 10DUP(?) ;RESERVE AN AREA FORTHE STACK
????
)

0094 7 STKTOP LABEL WORD ;INITIAL STACK POINTER POSITION
8 RAMSEG ENDS
9

10
11 ROMSEG SEGMENT AT20H ;PLACE ROM SEGMENT AT 200H
12 ASSUME CS:ROMSEG,DS:RAMSEG,SS:RAMSEG,ES:NOTHING
13

FFFO 14 USARTDATA EQU OFFFOH ;8251 A OAT A PORT ON SDK86
FFF2 15 USARTSTAT EQU OFFF2H ;8251 A STATUS PORT

0000 3000 16 SETSEG OW RAMSEG ~EGMENT ADDRESS OF BEGINNING OF RAMSEG
17

0002 2E8E1 EOOOO 18 START: MOV DS,CS:SETSEG ;SET UP DATA SEGMENT AS IN ASSUME
0007 2E8E160000 19 MOV SS,SETSEG ;SET UP STACK SEGMENT
OOOC 8B269400 20 MOV SP,OFFSET STKTOP ;SET INITIAL STACK POINTER VALUE

21
0010 E81900 22 LOOP1: CALL CI ;READ CHARACTER TO AL
0013 8AEO 23 MOV AH,AL
0015 E80500 24 CALL CO ;WRITE CHARACTER FROM AH
0018 E81EOO 25 CALL COUNTIT ;COUNT OCCURRENCE OF CHARACTER IN AL
001B EBF3 26 JMP LOOP1

27
0010 BAF2FF 28 CO: MOV DX,USARTSTAT ;IF USART NOT READY FOR CHARACTER
0020 EC 29 IN AL,DX ;INPUT A BYTE INTO AL WITH PORT It IN OX
0021 2401 30 AND AL,1
0023 74F8 31 JZ CO ;THENWAIT
0025 BAFOFF 32 MOV DX,USARTDATA ;ELSE OUTPUT CHARACTER
0028 8AC4 33 MOV AL,AH
002A EE 34 OUT DX,AL
002B C3 35 RET

36
002C BAF2FF 37 CI: MOV DX,USARTSTAT ;IF CHARACTER NOT READY
002F EC 38 IN AL,DX
0030 2402 39 AND AL,2
0032 74F8 40 JZ CI ;THENWAIT
0034 BAFOFF 41 MOV DX,USARTDATA ;ELSE BRING IN CHARACTER
0037 EC 42 IN AL,DX
0038 C3 43 RET

44
0039 45 COUNTIT PROC NEAR ; EXPECTS CHARACTER IN AL
0039 32E4 46 XOR AH,AH ;ZEROAH
003B 8BFO 47 MOV SI,AX ;16 BIT INDEX INTO FREQUENCY TABLE IN SI
0030 FE04 48 INC FREQUENCY[SII ;INCREMENT ARRAY INDEXED BY SI
003F C3 49 RET

50 COUNTIT ENDP
51
52 ROMSEG ENDS
53

0002 54 END START

1-4

8086 Assembly Language

Line #

1&2
4
5
6
7
8
11
12
14 & 15
16
18
19
20
22,24,25
28
29
35
45
48
50
52
54

NOTES:

Error File

Explanation See also chapter

Comment line ... 2
Declaration for data segment in RAM 4
Array declaration of 100 zeroed bytes 3
Declaration of 10 uninitialized words 3
Declaration of label for stack area 4
End of declaration of RAM segment 4
Declaration for code segment in ROM 4
Declaration to assembler of run-time segment register values 4
Symbolic equivalences for hardware 1/0 port number 1,4
Address constant for use in 18 and 19 3
Initialize OS register with address constant for ROM 1,5
Initialize SS register with address constant from ROM 1
Move immediate address constant to SP register 1
Subroutine calls " 1,6, Ap 0
Move immediate device address to OX (see line 15) 6
Input byte to AL using 1/0 address in OX 1
Subroutine return (to line 25) 1,6, Ap 0
Procedure declaration of type N EAR (optional) 1,4
Increment with indexed address mode 1,5
End of procedure declaration 4
End of segment declaration .. 4
End of Program ... 4

i) Segments can be located using "at" option as shown on lines 4 and 11
ii) Segment register and SP must be initialized (lines 19, 20)
iii) Explicit use of segment override prefix (line 18) Cs: was not required,

but shown for emphasis
iv) Procedure declaration not required but shown as example

The assembler detects a variety of errors, both syntactic (form) and semantic (mean
ing). The error messages are listed in the Operator's Manual. The discussions in the
present manual present the correct use of this assembly language and mention cer
tain common errors that may occur.

Do You Need the Assembler?

The assembler is but one of several tools available for developing microprocessor
programs. Typically, choosing the most suitable tool is based on cost constraints
versus the required level of performance and support from the software tools you
choose. Your company and you must determine cost constraints; the required level
of performance and support depends on a number of variables:

• The number of programs to be written:
The greater the number of programs to be written, the more you need
development support. When your application has access to the power of a
microprocessor, you can provide clients with custom features through pro
gram changes. Furthermore, you can add features with programming. Thus
your product can offer unique or more complete services, if the requisite
development support is available.

• The time allowed for programming:

As the time allowed for programming decreases, the need for programming
support tools increases.

Introduction

1-5

Introduction 8086 Assembly Language

1-6

• The level of support for existing programs:

Sometimes programming errors are not discovered until the program has
been in field use for quite a while. Your need for programming support in
creases if you agree to correct such errors for your clients. The number of
different supported programs in use can greatly multiply this requirement.
Also, program support is frequently subject to stringent time constraints.

• The complexity of the problem(s) to be solved.

If most of the support-needed factors listed above apply to you, you may also want
to explore the advantages of a higher-level language such as PLM86. PLM86 is In
tel's compiler language for program development. Such languages are directed more
toward problem-solving than most assemblers, although ASM86 is closer to that
than most.

PLM86 may allow you to write programs more quickly than the assembly language.
On the other hand, the assembler offers greater flexibility and control in direct
manipulation of the 8086 and its operation. In many cases there are many ad
vantages to a mixture of 80-90"70 PLM and 10-20% assembly language. Using PLM
for most of the code can cut development time, while the assembly language pro
grams can be chosen to provide critical control and performance factors.

As an example of the compression of coding, the accompanying chart illustrates the
differences between most assembly languages and ASM86. The more typical code
would take about 18 bytes. The ASM86 code takes 8 bytes.

Assume that a program must move five characters from one location in memory to
another. The assembly language instructions are represented in a flowchart. The
PLM86 code is: CALL MOVE (NUMBEROFCHARS, SOURCE$STRING$AD
DRESS, DESTINATION$ADDRESS).

TYPICAL ASSEMBLY
LANGUAGE CODING

LOAD REGISTER
WITH NUMBER
OF CHARACTERS
TO BEMOVED

LOAD REGISTER
WITH ADDRESS
OF SOURCE

LOAD REGISTER
WITH ADDRESS OF
DESTINATION

LOAD ACCUMULTOR
WITH 1 BYTE FROM
SOURCE

MOVE CHARACTER FROM
ACCUMULATOR TO DEST

INCREMENT SOURCE ADDRESS

INCREMENT DESTINATION ADDRESS

DECREMENT CHARACTER COUNT

CONTINUE IF CHAR. COUNT NON-ZERO

ASM86
CODING

MOV SI, SOURCE_STRING_ADDRESS

MOV 01, DESTINATION_ADDRESS

REP MOVS DESTINATION_ADDRESS, SOURCE_STRING_ADDRESS

8086 Assembly Language

Programming, Debugging, and Designing

At many stages of problem definition it is easy to leap into programming, producing
modules or entire subsystems relatively soon after their functions are first described.

Problems arise, however, when these modules don't work or are incomplete. They
will require expansion, modification, or integration with other modules. Some func
tions may merge. Communication of parameters may change.

Reprogramming may be required again and again, to fit things in, to rework sec
tions, and to retest everything.

Thus arises the idea of good design, to cope in advance with later change.

Change is costly in time and effort. The later it occurs, the greater the cost. How
may we minimize change? For unavoidable change, how may we minimize the
redesign, rework, and relearning resulting from changes or errors in specification?
in design? in implementation?

The answers lie in 4 main areas:

1. extremely clear and specific goals for the program, written down and explicitly
agreed upon by the designers, implementers, and users

2. isolation into separate modules of every non-trivial function of the system or
program, including the isolation of difficult design decisions

3. full and clearly understandable documentation for every module, including
liberal comments in the code

4. clearly written standards for implementation of modules, including conventions
for naming and passing parameters.

Study of this assembly language may not help you to choose your goals well, to for
mulate them clearly, and to get everyone to agree on them. It can, however, aid you
in making your work modular, parameterized, and easier to document. This then
assists delegation of tasks, teamwork, ease of modification, and the sharing of
modules among tasks or teams without the usual cutting and stitching to make them
fit.

How This Assembler Helps

1. One of this assembler's first contributions to successful projects is the use of
typed symbols. A variable is typed 1 or 2 or 4 bytes by the basic unit of its
declaration, being byte or word or doubleword, respectively. A label is typed
NEAR (usually within the same segment) unless you state FAR in its declaration
(types are discussed more in Chapters 2 through 5).

There are several reasons this helps. It allows one mnemonic (e.g. MaY, JMP)
to be used for one kind of function applied to several different kinds of data or
operands, even though there may be many hardware instructions to choose
from. The assembler can choose the correct hardware instruction based on the
type of the operands you supply in the source line. This reduces the amount and
complexity of what you must remember. It allows you to focus more on solving
your problem of creating the program, and less on conforming to too many
restrictions.

Introduction

1-7

Introduction

1-8

8086 Assembly Language

One example of how typed symbols help keep things simple is the mnemonic
MaY. It is used in the same form, MaY, for over 2 dozen different hardware
instruction cases. These cases cover the use of bytes, words, registers, memory,
and immediate data expressions, either as source or destination operands.

Examples:

MOV AL, BYTE_EXPRESSION ; low byte of accumulator as destination implies byte
; source

MOV AX, WORD_EXPRESSION ; full-word accumulator implies word source

MOV BYTE_EXPRESSION, AL ; low byte of accumulator as source impiies byte
; destination

MOVBX,AX

MOV MEM_BYTE, AL

; full word register to full word register

; AL as source requires the destination to have type
; "byte"

; register CL as destination
; requires a byte source

The use and implications of each of the above instructions and expressions are
further explained in the chapters that follow.

2. The assembler is built to assemble programs as collections of user-defined
segments, up to 64K bytes in each segment. This is a natural aid to modularizing
your code, grouping together related functions and/or data.

Examples:

IN ITIALIZATION_ROUTIN E SEGMENT
o
0; statements to initialize
0; tables from input and
0; verify consistency, etc.
o
o

INITIALIZATION_ROUTINE ENDS

GET_5_TYPE_1_RECORDS SEGMENT
o
0; input and edit
o

GET_5_TYPE_1_RECORDS ENDS

PROCESS_FIRST_TYPE_1_REC SEGMENT
o
0; begin analysis,
0; updating, reporting

PROCESS_FIRST_TYPE_1_REC ENDS

3. It supports procedures and code macro definition. These features make it easier
to break a problem down into separately programmable functions which are
easier to develop, test, and modify. Once they are created as generalized
routines, other team members and other projects can share their use. You can
create libraries of programs representing solved problems, problems that
needn't again use up your time and manpower resources.

8086 Assembly Language

4. The assembler is very flexible in allowing a large variety of address expressions,
which are used to refer to locations in memory. It has a very powerful name
and synonym-capability using the EQU directive. This gives you the option to
use expressions and names that are meaningful to you in the context of your ap
plication. It is an aid both to clearer thinking and greater readability of the pro
gram. This in turn is helpful in writing, testing, and modifying that program.

Example:

CUR_PROJ EQU PAYROLLREC [BX] [SI]

The expression on the right could represent part of one employee's payroll
record, out of the many such data records indexable in memory by registers BX
and SI. This kind of usage for base and index registers is called indexing or
subscripting. It is a commonly-used form of address-expression.

5. A number of operators are provided for use in expressions. They aid good
programming practices, the generality of the code, and the ease of modifying
that code. They enable you to refer to (or change) attributes of variables or
labels without coding those attributes explicitly.

Examples:

If you define an array of 50 words initialized to 0 via

RATE_TABLE OW 50 OUP (0)

then your instructions may later say

MOV
MOV

FILL: SUB

NEXT:

MOV
MOV
LOOP

CX, LENGTH RATE_TABLE
SI, SIZE RATE_TABLE
SI, TYPE RATE_TABLE
AX, INPUT_ RATE [SI]
RATE_TABLE [SI], AX
FILL

thereby putting 50 into CX (the number of entries), 100 into SI (the number of
bytes in the word array), and decrementing SI for each iteration by 2 (the
number of bytes in each element). LOOP automatically decrements CX by 1 un
til 0 is reached, halting the iterations and going on to the next sequential instruc
tion, at NEXT.

Introduction to Relocation

Relocation means the ability to reassign addresses at the time the program is loaded
into memory, changing them from the relative addresses assigned during assembly.

This feature allows you to subdivide a complex program into a number of smaller,
simpler programs. After development and debugging of the component modules,
you can link them together, locate them as you choose and enter final testing with
much of the work behind you. (For information on this process of linking and
locating, see the 8086 Cross Development Utilities Operator's Manual). Component
modules can often be allocated among members of a development team, and grow
into a library of solved problems for later use.

Introduction

1-9

Introduction

I-tO

8086 Assembly Language

The relocation feature also has a major advantage at assembly-time: often, large
programs with many symbols cannot be assembled because of limited work space
for the symbol table. Such a program can be divided into a number of modules that
can be assembled separately and then linked together to form a single object
program.

Relocatability allows the programmer to code programs or sections of programs
without having to know the final arrangement of the object code in memory. This
offers developers of microcomputer systems advantages in two areas, memory
management and modular program development.

Modular Program Development

As an example, two programmers might take different approaches to solve the
following problem. Both programmers want to calculate the degree of spark ad
vance that provides the best fuel economy with the lowest emissions. Programmer A
codes a single program that senses all inputs and calculates the correct spark ad
vance. Programmer B uses a modular approach and codes separate programs for
each input plus one program to calculate spark advance.

Although programmer A avoids the need to learn to use the relocation feature (a
one-time cost), the modular approach used by programmer B has a number of
advantages:

• Simplified Program Development

It is generally easier to code, test, and debug several simple programs than one
complex program.

• Sharing the Programming Task

If programmer B finds that he or she is falling behind schedule, one or more
subprograms can be assigned to another programmer. Programmer A will prob
ably have to complete the program alone, because of the single program
concept.

• Ease of Testing

Programmer B can test and debug most modules as soon as they are assembled;
programmer A must test the program as a whole. B has an extra advantage if the
sensors are being developed at the same time as the program: if one of the sen
sors is behind schedule, programmer B can continue developing and testing pro
grams for the sensors that are ready. Because programmer A cannot test the
program until all the sensors are developed, the testing schedule is dependent on
events beyond his or her control.

• Programming Changes

It is reasonable to expect some changes during product development. If a
change to one of the sensors requires a programming change, programmer A
must search through the entire program to find and alter the coding for that sen
sor. The entire program must then be retested to be certain those changes do not
affect any of the other sensors. By contrast, programmer B need be concerned
only with the module for that one sensor.

Similarly, when a bug in some function is reported, programmer B is likely to
find it much sooner, because functions have been localized into modules. Pro
grammer A may need to trace through the whole program to see the connections
leading to the error.

Modularity reduces development time and cost overall. It continues to be a major
advantage throughout the life of the program. Flaws are more readily found and
corrected. Enhancements are accomplished more quickly.

8086 Assembly Language

One disadvantage is the greater need for intermodule and interpersonal communica
tion. Another is the need to manage a larger data base of current modules as they go
through changes and tests.

Overview of Hardware and Architecture

The rest of this chapter is devoted to the following topics:

• 8086 hardware, partial review (see 8086 User's Manual for complete detail)

• General Registers

• Memory
• Pointer and Index Registers

• Program counter (Instruction Pointer)

• Segment Registers

• Condition flags

• Stack and stack pointer

• Input/ output ports

Hardware

The 8086 is a complete microprocessor for use in general-purpose computer systems
of widely varying levels of complexity. At its upper limit, it can be part of a multiple
processor system, each of whose processors is capable of accessing up to 1 megabyte
of memory.

Memory transfers are handled in 8-bit bytes or in 16-bit words. Bit, byte, word, and
block (string) operations are accommodated in the instruction set. The 8086 per
forms signed arithmetic and interruptible string operations, and can make use of
dynamically relocatable procedures, reentrant programming, and multiprocessing.

Access to memory and peripherals is accomplished through a 20-bit time- multiplex
ed address and data bus. Internal configuration switching can adapt the processor to
the level of system complexity you desire.

The bus structure of the MCS-86 systems is compatible with MCS-80 and MCS-85
peripherals. This allows you to utilize pre-existing devices and hardware designs. Ex
isting 8080 system software also is adaptable for use in the MCS-86 systems.

The 8086 uses a queue of prefetched instructions. This aids throughput, but the
calculation of expected execution times must take into account rebuilding the queue
in some circumstances. A jump or call typically forces building a new queue. Condi
tional jumps (and loops) naturally only do this sometimes: when the jump is taken,
16 clock cycles are used, otherwise 4.

See the 8086 User's Manual (9800722) for more information on all hardware and
timing data.

Introduction

1-11

Introduction

1-12

EVENT TEST

INTERRUPT
CONTROL
(2 LINES)

DIRECT·MEMORY·
ACCESS CONTROL
(2 LINES)

GENERAL
REGISTER FILE

16·BIT
ARITHMETICI
LOGIC UNIT

PROGRAM
STATUS WORD

(FLAGS)

RElOCATION
REG ISTER FILE

BUS
INTERFACE

UNIT

6·BYTE
INSTRUCTION

QUEUE

CONTROL AN D TIMING

IG· +5V
URATION GROUND
(MINIMAX) (2 LINES)

8086 Assembly Language

STATUSI
BUS
CONTROL
(5 LINES)

ADDRESSI
DATA
(20 LINES)

QUEUE
STATUS
(2 LINES)

LOCK

8086 Assembly Language

Memory Organization

The 8086 uses a 20-line address bus to locate a byte or word in memory, and can
therefore access 2 to the 20th bytes (I megabyte = 1,048,576 bytes). Each location so
addressed is a byte, 8 bits.

Words (16-bits) consist of 2 consecutive bytes, and can begin at even or odd ad
dresses. Words in memory are stored with the least significant byte in the lower- ad
dressed location and the most significant byte in the higher-addressed location.
When a word begins at an even address, access requires only 1 memory cycle. If it
begins at an odd address, access requires 2 memory cycles, with no other penalty.
Each hardware memory cycle is 4 clock cycles.

8086 MEMORY

00000

SEGMENT ADDRESS xxxxo 1---------1

WORD ADDRESS N
~~~~~~~~ 

N+l 

BYTE ADDRESS M m~~~~~~~ 

FFFFF _______ _ 

• 8086 OPERATES ON 8-BIT BYTES and l6-BIT WORDS. 

64K 
BYTE 
SEGMENT 

• A BYTE OR WORD CAN ONLY BE ACCESSED BY THE CPU IF IT RESIDES IN 
ONE OF FOUR CURRENT 64K SEGMENTS AS ADDRESSED BY THE SEGMENT 
RELOCATION REGISTERS. 

• EVERY BYTE WITHIN A SEGMENT IS ADDRESSABLE USING A l6-BIT 
ADDRESS. 

• WORDS OCCUPY TWO ADJACENT BYTES WITH THE MSB OF A WORD IN THE 
HIGHER ADDRESSED MEMORY LOCATION. WORDS ARE ADDRESSED BY LSB 
(LOWER) MEMORY ADDRESS. 

Memory Addressing 

Memory addresses must be 20-bits long to access unique bytes in the megabyte 
memory. To achieve this using 16-bit words, the 8086 memory space is viewed as 
consisting of 64K-byte segments. Within each 64K segment a 16-bit address is suffi
cient to access any byte. This address is called the offset. 

To specify which 64K segment contains the desired location, a second 16-bit address 
is used, called the segment address, or simply, segment. This is used as a base- ad
dress, moved by the user program into one of the four segment registers designed for 
this purpose. It is useful to think of every address as such a pair of numbers, the seg
ment and offset. 

Introduction 

1-13 



( 
Introduction 

1-14 

15 0 

r-------(=JE~F!FE~C~T~IV~~A~D~R~E~S=jOFFSET ADDRESS 

o I 

SEGMENT REGISTER ; 0 0 0 0 I SEGMENT _________ .&.!_ ...... _ ADDRESS 

I 
I 
I 
I 

19 0 

L--.(::=!M~EM~O~R~y~A~DD~R~E!SS~LA~T~CH~=jPHySICAL ADDRESS 

8086 Assembly Language 

The 8086 memory can be thought of as an arbitrary number of segments. A byte or 
word within a segment is addressed with a 16-bit offset address. The 8086 
automatically adds the offset address to the shifted 16-bit segment address, creating 
a 20-bit physical address. 

The hardware automatically forms a unique 20-bit address from these two words in 
the following way: 

The segment address is shifted left 4 bits in a special20-bit register, leaving its lowest 
4 bits zero. The other address word, the offset, is then added to that 20-bit number, 
giving a unique 20-bit address as the result. 

Example: 

A location with segment word of 123AH and with an offset word of 341BH would 
be addressable by the 20-bit number 157BBH, formed by adding the two words as 
described above. 

123AH becomes 123AO H, to which is added 341 BH, 
+341BH 
157BBH 

This design thus expects segments to begin at an address ending in 4 zeroes. Such ad
dresses are called paragraph boundaries, and the 4 high-order hex digits are called 
the paragraph number. A segment address, therefore, is always a paragraph number 
in the assembly language. 

One consequence of the above design is that every byte is accessible from many base
addresses using different offsets. For example, the sample address above (l57BBH) 
can be reached with an offset of OBH and a segment of l57BH, or an offset of 8BH 
and a segment of 1573H. The 64K-byte segments can overlap, depending on their 
beginning point. 

Complete addresses are formed using the above technique, with the segment word 
always placed in one of the 4 segment registers, called CS for code segment register, 
DS for data segment register, SS for stack segment register, and ES for extra seg
ment register. 

These 4 segment-registers, discussed later in this chapter, are used as base addresses 
for all references into memory, potentially a megabyte. Thus, you can address up to 
one quarter of the megabyte, i.e., four 64K-byte physical segments, at anyone time. 
A new segment becomes addressable whenever the contents of one of these segment 
registers is changed by your program. 



8086 Assembly Language 

Registers 

The 8086 processor contains three sets of four 16-bit registers and a set of nine one
bit flags. The sets of registers are the GENERAL registers, the POINTER and IN
DEX registers, and the SEGMENT registers. There is a 16-bit Instruction Pointer 
(IP) which is not directly accessible; rather it is manipulated with control transfer in
structions. (See figure below.) 

Instruction Pointer. The Instruction Pointer keeps track of the next instruction 
byte to be fetched from memory, which may be Read-Only-Memory or Random
Access-Memory. Each time it fetches an instruction from memory, the processor in
crements the IP by as many bytes as necessary to point to the next instruction. 
Therefore, the IP always indicates the next instruction byte to be fetched. This pro
cess continues as long as program instructions are executed sequentially. 

To alter the flow of program execution as with a jump instruction or a call to a pro
cedure, the processor overwrites the current contents of the IP with the address of 
the new instruction. In the case of a call, the processor saves the old contents of the 
IP on the hardware stack to enable the return from the procedure. The next instruc
tion fetch occurs from the new address. 

(If the new address is not in the 64K bytes above the current contents of the code seg
ment register (CS), then the contents of CS must also be replaced by using an in
tersegment jump. This is generated by the assembler when you transfer to a label or 
procedure which you declared to be of type FAR. This point is discussed further in 
several places: ADDRESSING, the ASSUME statement, and Chapter 6.) 

Instruction Pointer Wraparound 

All addresses are the result of a positive offset address taken from a segment 
register. It is generally not possible to access an address lower than the contents of a 
given segment register using the segment register. 

All offset arithmetic is 16-bit, done modulo 64K. One consequence is that if you add 
1 to the highest possible offset, you get an offset of 0: 

OFFFFH 
+ 1 

OOOOH 

The carry out of the high-order bit is unused. Thus, one byte beyond the highest ad
dress in a segment, you find yourself at the lowest possible address in that segment. 
This is sometimes termed WRAP AROUND. 

This fact is used in generating the displacement in certain self-relative jumps. For ex
ample, a jump instruction located near the high end of a code segment, say at offset 
OEFFDH, may need to transfer control to an instruction near the beginning of that 
code segment, say at offset 5. The source line is written exactly the same as if the 
target location were closer, say at only 257 bytes (= 0101H) bytes after the jump. 

If TARGET _LABEL_NAME were 257 bytes after the jump, the instruction: 

JMP TARGET_LABE~NAME 

would assemble as OE90101H. When it is executed, the IP will already point to the 
next sequential instruction at OFOOOH, i.e., 3 bytes past OEFFDH where the JMP 
begins. 

Introduction 

1-15 



Introduction 

1-16 

8086 Assembly Language 

The OlOlH is added to the IP, so that the instruction at offset OFIOIH is executed 
next. 

However, if TARGET_LABEL_NAME is located at offset 5, the assembler must 
generate a "distance" which, when added to the Instruction Pointer, will cause the 
IP to point correctly to the target location. It does this by adding the complement of 
the IP to the offset of the target. This effectively generates the correct offset to the 
base address in CS. This process is only necessary for JMPs within the same seg
ment, which are self-relative, whereas intra segment CALLS replace the IP rather 
than add to it. (Intersegment calls or jumps, to a different segment, always replace 
both CS and the IP.) 

Example: 

If CS holds the paragraph number 3456H, and the source line JMP 
TARGET_LABEL_NAME occurs at relative location (offset) OEFFDH, and 
TARGET_LABEL_NAME is at offset 5, then the assembler will generate a self
relative distance of lO05H, making the instruction read JMP lO05H. The effect on 
the Instruction Pointer is then: 

Instruction Pointer = OFOOOH; 
complement is OFFFH + 1 = 

1000H 

target's offset = 0005H; 
self-relative distance used = 1005H 

because the carry-bit out of the high order sum is ignored. 

Thus the true offset of the target label, relative to the segment's base address in CS, 
is generated correctly, since when lO05H is added to the IP during the JMP, 
OFOOOH, the target's true offset from the segment's base address is correctly 
generated. 

Your source line: 

is all you have to code. There is no complication of how you write programs. The 
assembler automatically generates the correct displacement to reach your indicated 
target, even when the "apparent distance" is very large, using the above mechanism. 

INSTRUCTION POINTER REGISTER 

ADDRESSES 
(POINTS TO) 
MEMORY 
LOCATIONS 
CONTAINING 
INSTRUCTIONS 
WHICHAREREAD 
AND EXECUTED 

INSTRUCTION 

CPU 

INSTRUCTION 
POINTER 

--:::: 
.--: -IP 
~-::: ---

I OPERATION CODE I OPERAND I 
WHAT TO DO WHERE 

-r ------- _ ..... -- ..... 
-- -. - --- - ..... -- -- ..... 

PROGRAM 
MEMORY 

INSTRUCTION 

INSTRUCTION 

INSTRUCTION 

OP CODE/OPERAND 

INSTRUCTION 

INST.RUCTION 



8086 Assembly Language 

Segment Registers. The (CS, DS, SS, ES) register set, called the Segment Registers, 
are used in ALL memory address computations (but not for I/O, as discussed at the 
end of this chapter). The segment mnemonics are: 

CS: Code 

DS: Data 

SS: Stack 

ES: Extra 

The contents of a segment register is a word called the paragraph number or the 
segment-base-address. It represents a unique address in the one million bytes the 
8086 can access. The special handling given to the contents of a segment register was 
explained above under Memory Addressing. 

The paragraph number in the CS register defines the current CODE SEGMENT as 
the 64K bytes of addresses higher than that paragraph number. All instruction 
fetches are taken to be relative to CS, using the instruction pointer (IP) as an offset. 

The paragraph number in the DS register defines the current DATA SEGMENT as 
the 64K bytes of addresses higher than that paragraph number. Most data reference 
hardware instructions use the DS register by default. One advantage to DS is that 
slightly shorter code will be generated. 

Most references to data can be forced to be relative to one of the other three segment 
registers by preceding the data reference with a one-byte segment override prefix. In 
ASM86, the management of these prefixes is done automatically for you via the 
ASSUME directive (see Chapter 4). 

(There are three exceptions to the hardware's assumption of DS. When either SP or 
BP is used in an address-expression, the hardware assumes that register contains an 
offset to the stack segment (SS register). In certain string instructions, DI is an offset 
to the extra segments (ES register). BP can actually be used with any segment, using 
an appropriate override byte, but SP does unalterably refer to SS. DI, in those cer
tain instructions, does unalterably refer to ES.) 

The current Stack Segment is defined as the 64K bytes of addresses higher than the 
contents of the SS register. Data references involving SP (and typically BP) are 
taken relative to SS. This includes all push and pop operations, including those 
caused by CALL operations, interrupts, and RETurn operations. Data references 
involving BP (but not SP) can be forced to be relative to one of the other segment 
registers by using the special one-byte base prefix discussed below under Overrides. 

The current Extra Segment is defined as the 64K bytes of addresses higher than the 
contents of the ES register. The extra segment is usually created as an additional 
data segment. String instructions which use DI apply its contents as an offset to the 
base-address in ES. 

Programs which do not load or manipulate the segment registers and do not contain 
FAR labels or FAR procedures (see Chapter 2), are said to be dynamically 
relocatable. Such a program may be interrupted, moved to a new location, and 
restarted with new segment register values. 

The uses of segment registers depends on the size of program code, data, as is il
lustrated in the figures below. 

Introduction 

1-17 



Introduction 

1-18 

8086 Assembly Language 

CS=DS=SS=ES_Q 

LJ 
CS-G DS--'G 

64K 64K 
CODE DATA 

CS-G DS--'G ES--'G 

64K 64K 64K 
CODE DATA DATA 

CS-G DS_G DS_G DS_G 

~K ~K ~K ~K 
CODE DATA DATA DATA 

DS DYNAMICALLY REPLACED DURING EXECUTION SO AS TO POINT TO NEW 
64K DATA AREAS 

CS DYNAMICALLY REPLACED DURING EXECUTION SO AS TO POINT TO NEW 
64K CODE AREAS 

CSBCSBCS-G 
~K ~K ~K 

CODE CODE DATA 



8086 Assembly Language 

In order for the automatic addressing described above (under Memory Addressing) 
to occur properly, you must load the segment registers with the paragraph numbers, 
i.e., the segment base-addresses, that you want used for each section of code. You 
do this by using the name of your segment, e.g., 

MOV AX,SEGNAM4 
MOVES,AX 

MOV AX,OATA_SEC_3 
MOV OS,AX 

The names SEGNAM4 and DAT A-SEC_3 represent these segment base- ad
dresses and are defined by your use of SEGMENT directive (discussed fully in 
Chapter 4). The first such directive that the assembler saw bearing that name, i.e., 

SEGNAM4 SEGMENT 
0 
0 
0 

SEGNAM4 ENDS 
OATA_SEC_3 SEGMENT 

0 
0 
0 

OATA_SEC_3 ENDS 

ultimately defined the segment's starting point. 

NOTE 

If you were to put consecutive paragraph numbers into some of the segment 
registers, e.g., 

MOV AX, 1234H 
MOVES, AX 

MOV AX, 1235H 
MOV OS, AX 

MOV AX, 1236H 
MOVSS, AX 

Then clearly many of the same addresses would be accessible using ES, DS, 
or SS. For example, a variable at the address I2378H might be reached 
using ES plus the offset 38H, or using DS plus the offset 28H, or using SS 
plus the offset I8H. The segments would in this sense overlap. 

On the other hand, if the addresses you used were 1234H, 3234H, and 
5234H, then none of the addresses accessible using ES or DS or SS would be 
the same. The segments would be disjoint, since the address 32340H is fur
ther away from 12340H than the maximum possible offset of 64K -1 bytes 
= OFFFFH. There are 16 disjoint segments making up the megabyte, and 
65536 overlapping segments. 

In the discussions that follow, here and throughout the manual, the words "seg
ment" and "base-address" and "paragraph-number" will effectively be synonyms 
whenever the text is referring to the beginning address of a segment. 

Introduction 

1-19 



Introduction 

1-20 

AX: ACCUMULATOR 

BX: BASE 

CX: 1IIIIIml COUNT 
DX: DATA 

,--___ { j;<i"":o","'",";';"",:'}'",;';';'",;\',,,,' ~""p''''''.'''''.;.'.'''':.' ••• :''':)'''(''''."'I':' ST AC K PO INTER 
BP BASE POINTER 

SI SOURCE INDEX 

DI DESTINATION INDEX 

CS CODE SEGMENT 

DS DATASEGMENT 

SS STACK SEGMENT 

ES EXTRA SEGMENT 

H L 
o 7 o 

AX: AH AL 

BX: BH BL 

CX: CH CL 

DX: DH DL 

GENERAL 
REGISTER 
FILE 

l ""OC"'O, REGISTER 
FILE 

8086 Assembly Language 

General Registers. The (AX, BX, CX, DX) register set is called the General 
Register, or HL group. The general registers can participate in the arithmetic and 
logic operations of the 8086 without constraint. Some of the other 8086 operations 
(such as the string operations) dedicate certain of the registers to specific uses. These 
uses are indicated by the following mnemonic phrases: 

AX: Accumulator 

BX: Base 

ex: Count 

DX: Data 

The general registers have a property that distinguishes them from the other 
registers, namely that their upper and lower halves are separately addressable. Thus, 
the general registers can be thought of as two sets of four 8-bit registers. These are 
called Hand L, for high-byte and low-byte, i.e. AH, BH, CH, DH, and AL, BL, 
CL, DL. 



8086 Assembly Language Introduction 

The accumulator has an additional property: you get more compact programs by us
ing it as the target of your data transfer, arithmetic, and logic instructions than when 
you use the other general-registers. Also, assembly language instructions whose 
destination is the accumulator can be abbreviated. 

The remainder of the registers in the 8086 processor must be accessed as if contain
ing 16-bit words, whether or not both their high-order and their low-order bytes are 
utilized. 

Pointers and Indexes. The (SP, BP, SI, DI) register set is called the Pointer and In
dex Register (P and I) Group. The registers in this group are similar in that they 
generally contain offset or base addresses used for calculating addresses within some 
segment. Like the general registers, the pointer and index registers can participate in 
all the 16-bit arithmetic and logical operations of the 8086. 

They are also similar in that they can enter into address computations, with one dif~ 
ference, however, which results in dividing this set into two groups, the P, or Pointer 
Group (SP, BP) and the I, or Index Group (SI, DI). 

The difference is that the offset addresses in the Pointers are assumed by the hard
ware instructions to be relative to (use the base-address of) the current stack seg
ment, and the offset addresses in the Indexes are assumed by the hardware to be 
relative to (use the base-address of) the current data segment. (Certain string opera
tions listed in Chapter 6 are exceptions, using DI relative to the "extra segment" in
stead of the data segment). 

The mnemonics associated with these registers are: 

• THE ONE MEGABYTE OF MEMORY IS PARTITIONED 
INTO FOUR CURRENT SEGMENTS. 

• THE FOUR SEGMENT RELOCATION REGISTERS 
DESIGNATE 64K BYTE "CURRENT" SEGMENTS WHICH 
THE CPU CAN ACCESS FOR CODE. DATA AND STACK. 
ACCESSING OUTSIDE THESE SEGMENTS IS AC· 
COMPLISHED BY RELOADING A SEGMENT REGISTER 
WITH A NEW SEGMENT ADDRESS. 

• SEGMENTS START AT A "HEXADECIMAL BOUNDARY" 
AND CAN OVERLAP. 

SP: Stack Pointer 

BP: Base Pointer 

SI: Source Index 

01: Destination Index 

MEMORY SEGMENTS 

CS~~~~~~~~~~~ I CURRENT CODE 
SEGMENT ADDRESSED BY CS 

~======~ 

CURRENT DATA 
OS ----'~Io:"""""""'~"""""""'~"""'.,..l 
ES --.-mBIIBIII ISEGMENT ADDRESSED BY OS 

CURRENT EXTRA 
SEGMENT ADDRESSED BY 
ES(FORDATA) 

SS ----'~I:<:~~"""'''''''''===~ I 
CURRENT STACK 
SEGMENT ADDRESSED BY SS 

FFFFFH _______ ...... 

1 
MEGABYTE 

1-21 



Introduction 

1-22 

8086 Assembly Language 

Flags Overview. The (AF, CF, DF, IF, OF, PF, SF, TF, ZF) register set is called 
the Flag Register or F group. The flags in this group are all one bit in size, and are 
used to record processor status information and to control processor operation. The 
details of their interpretation are given in the next section. The flag register 
mnemonics are: 

AF: Auxiliary-carry 
CF: Carry 
DF: Direction 
IF: Interrupt-enable 
OF: Overflow 

PF: Parity 
SF: Sign 
TF: Trap 
ZF: Zero 

The AF, CF, PF, and ZF flags are equivalent to 8080 flags, generally reflecting the 
status of the latest arithmetic or logical operation. The 8086 adds to this group as 
follows: The OF flag reflects the signed arithmetic overflow condition. The DF flag 
controls the direction of the string manipulation instructions (auto-incrementing or 
auto-decrementing). The IF flag enables or disables external interrupts. The TF flag 
puts the processor into a single-step mode for program debugging. Interrupt and 
trap mode are discussed in greater detail in the 8086 User's Manual (9800722). 

The flag registers are illustrated in the figures below in the format in which they are· 
stored by push-flag operation (PUSHF). The bit positions marked X are undefined. 
The figures show the equivalence of 8080 flags to those of 8086. An additional dif
ference from the MCS-80 family is that the content of the accumulator is not 
transferred to and from the stack by flag operations. Fuller detail on flag usage ap
pears in Appendix C. 

HIGH 
5 4 3 2 

STATUS FLAGS 

LOW 
7653210 

I xlxlxlxlolDI IITlslzlxlAlxlplxlCI 

OVERFLOW J 
DIRECTION -

IN TERRUPT ENABLE 

TRAP 

SIGN 

ZERO 

AUXILIARY CARRY 

PARITY 

CARRY 

AH AL 

8086 FLAGS 8086/8080 FLAGS 

AF: AUXILIARY CARRY-BCD I 
CF: CARRY FLAG 
PF: PARITY FLAG 8080 FLAGS 
SF: SIGN FLAG 
ZF: ZERO FLAG 

OF: DIRECTION FLAG (STRINGS)} 

~~: ~W~:LUJ'~ ~~:~LE FLAG 8086 FLAGS 
TF: TRAP-SINGLE STEP FLAG 



8086 Assembly Language 

Addressing Modes 

The 8086 instruction set provides several different ways to address operands. In 2-
operand instructions, the source (rightmost) operand may generally be an 
immediate-constant i.e., a value contained in the instruction itself. When an 
immediate-constant is the source, then the destination (left) operand may be either a 
register or a location in memory. Otherwise one of the 2 operands MUST be a 
register. The other may be either a register or a location in memory. 

The examples below illustrate these points. The first three statements define symbols 
used in the 2-operand instructions below them. 

MFG_DEPT_ID EQU 5 
EXMP SEGMENT 

ON_HAND DB 0 
DB 2 
DB 4 

ITEM_COUNT DB 0 
DB 17 
DB 19 

REPORTING_DEPARTMENT DB 0 
EXMP ENDS 

MOV AL,4 ; destination, register AL, receives immediate-value 4 

MOV ITEM_COUNT,14 ; destination, memory location ITEM_COUNT, 
; gets immediate-value 14 

MOV BL,ITEM_COUNT ; register BL is filled 
; with the contents of memory location ITEM_COUNT 

ADD BL,ON_HAND ; contents of memory location ON_HAND 
; are added onto the contents of register BL 

MOV REPORTING_DEPT,MFG_DEPT_ID ; memory location 
; REPORTING_DEPT is filled by immediate-value 5 

Operands in memory may be addressed directly, e.g., by a simple name as above, or 
indirectly using registers and/or subscripts. Direct reference involves a simple 16-bit 
offset, automatically added by the hardware to the address in a segment register. 

Indirect reference involves either one or two of the four registers allowed within 
square brackets [indicating an indirect reference]: BX, BP, SI, or DI. (If a variable is 
named too it must precede the square-brackets expression.) BX and BP are called 
Base registers. SI and DI are called Index registers. An indirect reference may in
volve a single base register alone, a single index register alone, or one base and one 
index register. An indirect reference may also include an 8 or 16 bit displacement. 

The assembly language address expressions which result in these 4 kinds of memory 
access are described in Chapter 5 on Expressions. Only those address-expressions 
which result in the feasible addressing modes (see Table below) are valid. 

Operands residing in memory may be thus addressed in four ways: 

• Direct 16-bit offset address 
Example: MOV REPORTING_DEPARTMENT, AL 

• Indirect through a base register, optionally summed with an 8- or 16-bit 
displacement 
Example: MOV ON_HAND [BX+2J, AL 

MOV BL, ON_HAND [BP] 

Introduction 

1-23 



Introduction 8086 Assembly Language 

1-24 

• Indirect through an index register, optionally summed with an 8- or 16-bit 
displacement 
Example: MOV CL, ITEM_COUNT [51+1] 

MOV ON_HAN 0 [01 + 1], CL 

• Indirect through the sum of a base register and an index register, optionally 
summed with an 8- or 16-bit displacement. 
Example: MOV AH, ITEM_COUNT [8X+1] [51+1] 

MOV ON_HAND [8X+1] [01+1],AH 

The location of an operand in an 8086 register or in memory is specified in many in
structions by up to three fields. These fields are the mode field (mod), the register 
field (reg), and the registerlmemory field (rim). When used, they occupy the second 
byte of the instruction sequence. Any DISPlacement bytes (1 or 2) always come last. 

The mod field occupies the two most significant bits of the byte, and specifies how 
the rim field is to be used. 

The reg field occupies the next three bits following the mod field, and can specify 
either an 8-bit register or a 16-bit register to be the location of an operand. In some 
instructions it can further specify the instruction encoding instead of naming a 
register. 

The rim field either can be the location of the operand (if in a register) or can specify 
how the 8086 will locate the operand in memory, in combination with the mod field 
as shown below. 

These fields are set automataically by the assembler in generating your code. They 
are discussed in greater detail in Chapter 7 on Code macros. The effective addres!l 
(EA) of the memory operand is computed according to the the mode and rim fields: 

if mod = 00 then OISP = 0', disp-Iow and disp-high are absent 
if mod = 01 then OISP = disp-Iow sign-extended to 16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 
if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 

'except if mod = 00 and rIm = 110 then EA = disp-high: disp-Iow. Instructions referencing 
16-bit objects interpret EA as addressing the low-order byte; the word is addressed by 
EA + 1,EA. 



8086 Assembly Language 

RIM 

000 

001 

010 

011 

100 

101 

110 

111 

CPU 

INSTRUCTION 
POINTER 

STACK POINTER 

TYPICAL MEMORY USAGE 

MEMORY 

INSTRUCTION 
STORAGE AREA 
AND FIXED DATA 

ROMIPROMIEPROMIRAM 

STACK AREA 

RAM 

1--+----1 VARIABLE STORAGE AREA 

DATA POINTER RAM 

MOD RIM 

OPCODE 32 COMBINATIONS 

(XX=ll) 
xx YYY 

REGISTER MODE 
MOD SELECTED MODE 

11 REGISTER MODE 

10 016 DISPLACEMENT 

01 08 DISPLACEMENT 

00 NO DISPLACEMENT 

REGISTER TO REGISTER MODE 
USES 8 OF 32 COMBINATIONS 
OF MODE- RIM. ANDW BIT 
SELECTS BYTE OR WORD 

RIM 

111 

110 

101 

100 

all 

010 

001 

000 

MEMORY MODE 
BYTE 

IBX) BH 

IBP) DH 

(01) CH 

lSI) AH 

IBP)+IDI) BL 

IBP)+ISI) DL 

IBX)+IDI) CL 

IBX)+ISI) AL 

ADDRESS MODE ENCODINGS FOR MOD AND RIM 

MOD 
00 01 10 

(BX)+(SI) (BX) + (SI) + 08 (BX)+(SI)+016 

(BX)+(OI) (BX)+(01)+08 (BX)+(01)+016 

(BP)+(SI) (BP)+(SI)+08 (BP)+(SI)+016 

(BP)+(OI) (BP)+(01)+08 (BP)+(01)+016 

(SI) (SI)+08 (SI)+016 

(01) (01)+08 (01)+016 

DIRECT ADDRESS (BP)+08 (BP)+016 

(BX) (BX)+08 (BX)+016 

WORD 

01 

SI 

BP 

SP 

BX 

ox 

CX 

AX 

W-l 

W=O 

AL 

CL 

OL 

BL 

AH 

CH 

OH 

BH 

Introduction 

11 
W=1 

AX 

CX 

OX 

BX 

SP 

BP 

SI 

01 

1-25 



Introduction 8086 Assembly Language 

# BYTES 

1-26 

ADDRESS COMPUTATION REVIEW 

DISPLACEMENT ~ 0,08,016 

+ 

BASE REGISTER BX,BP 

+ 
INDEX REGISTER 51,01 

+ 

RELOCATION REGISTER CS, OS, ES, 55 

MEMORY ADDRESS 

TYPICAL 8086 INSTRUCTION FORMAT 

BYTE 1 

.-REGISTER SELECT 

, BYTE 3 BYTE 4 

I I I I I I I I I I 
------T------, 

DISPLACEMENT I DISPL'ACEMENT I 
OPCODE o W MOD REG R/M ______ .1 ______ J 

t t 
1 I (5 BITS) ADDRESSING MODE·REGISTER OR MEMORY 

BYTE/WORD DATA 

L. ___________ DIRECTION TO/FROM REG 1 

'----------------- OPERATION CODE (IMMEDIATE, # OF OPERANDS) 

1 
0= FROM REG 
1 = TOREG 

Ii' ~PC~D~ 
SINGLE REGISTER 

I I I ~PC'OD~ I I I M~D I 
REGISTER TO REGISTER 

, , , , 

I ' , ~PC'OD~ , iii' ~/~ 
IMMEDIATE BYTE OR RELATIVE SHORTTRANSFER 

, ii' 
DATAIDISP 

IMMEDIATE WORD TO REGISTER OR RELATIVE lONG TRANSFER 

lOW DISP 

lOW DISP 

• INSTRUCTION SIZES VARY DEPENDING ON THE TYPE OF INSTRUCTION, 
ADDRESSING MODE USED, AND SIZE OF IMMEDIATE DATA. 

• A SPECIAL ONE BYTE PREFIX CAN BE USED THAT CHANGES THE WAY THE 
INSTRUCTION FOLLOWING IT IS EXECUTED. THERE ARE FOUR SUCH 
PREFIXES, REPRESENTING THE FOUR SEGMENT REGISTERS. 

, i , , , 

HI DATAIDISP 

HI DISP DATA BYTE 

HI DISP DATA DATA 



8086 Assembly Language 

Segment-Register Defaults in the Hardware 

General registers BX and pointer register BP may serve as base registers. When BX 
is the base the operand by default resides in the current data segment and the DS 
register is used to compute the physical address of the operand. When BP is the base 
the operand by default resides in the current stack segment and the SS segment 
register is used to compute the physical address of the operand. 

When both base and index registers are used the operand by default resides in the 
segment determined by the base register. When an index register alone is used, the 
operand by default resides in the current data segment. As mentioned above, you 
can override the above defaults through use of a segment prefix byte described in 
Chapter 5 and later in this chapter. Three defaults that cannot be overriden are: 

• execution is only performed on instructions accessed by the Instruction Pointer 
acting as an offset to the CS register 

• SP acts as an offset to the SS register only 

• Those certain string instructions which use the ES register cannot use a different 
segment register instead. 

Segment Override Prefixes 

Since every instruction that deals with memory uses a segment register, the 
assembler must decide which one is appropriate for each reference. The address- ex
pression in the source line determines this, as discussed in Chapter 5. 

The physical address of most other memory operands is by default computed using 
the DS segment register. These default segment register selections may be overridden 
by your preceding the referencing instruction with a segment override prefix, or 
allowing the assembler to do it for you, as discussed in Chapter 4. 

The segment register selected by the reg field below is used by the 8086 to compute 
the physical address for the instruction this prefix prece(ies. This prefix may be com
bined with the LOCK and/or REP prefixes, although the latter may not return ap
propriately from an interrupt if multiple prefixes are present. 

Encoding: 

001 reg 1 1 0 

reg is assigned according to the following table: 

Segment 

00 ES 
01 CS 
10 SS 
11 OS 

• Overrides implied segment register in next instruction's data reference. 

INST 
INST 
INST 

SEGMENT INST 
OVERRIDE R 

INST 
INST 

Introduction 

1-27 



Introduction 8086 Assembly Language 

1-28 

• Interrupts are not accepted between prefix and next instruction. 

• Code fetch always made to CS (using IP). 

• Stack fetch always made to SS (using SP). 

Example: 

MOV AL,ES:XYZ 
MOV ES:PDQ, AL 

Controlling Segment Override Prefixes. When a segment override is necessary, it 
must be specified individually in each data reference. Or, segment override prefixes 
can be declared once with an ASSUME statement, and all references will 
automatically generate the correct prefix. The ASSUME directive is described fully 
in Chapter 4. 

The ASSUME declaration associates a segment register with a segment name. All 
references to items in the named segment cause segment override prefixes to be 
generated if necessary. 

Example: 

MORSTUFF 
XYZ 

SEGMENT 

PDQ 
FOO 
MORSTUFF 

is equivalent to: 

DB 1 
OW 0 
DO 2 
ENDS 

ASSUME ES:MORSTUFF 
MOVAL,XYZ 

MOV AL, ES:XYZ 

Segment override prefixes can be symbolic segment names, if the segment names ap
pear in a prior ASSUME statement. 

Example: 

is equivalent to: 

ASSUME ES:SEG1 
MOV AL, SEG1 :XYZ 

MOV AL,ES:XYZ 

See the discussion of the ASSUME directive in Chapter 4. and of the override 
operator in Chapter 5. 

Stack and Stack Pointer. A stack is an area of memory used for storing values 
temporarily. It is available via its own segment register, SS. Thus the same stack can 
be used by different code segments, which must use unique values in CS and often 
also in DS and ES. 



·8086 Assembly Language 

The use of a stack segment depends on SP, the stack pointer. You must set SS to 
hold that segment's base-address, and set SP to the highest offset in the stack seg
ment, e.g., 

MOV AX, 
MOV SS, 
MOV SP, 

STACK_SEG_NAME1 
AX 
LAST _WORD_SS1 

This is because the stack expands by decrementing the stack pointer. As items are 
added to the stack, via PUSH or CALL, the stack expands into memory locations 
with lower addresses toward the stack's base address. As items are removed from the 
stack, via POP or RETurn, the stack pointer is incremented back toward its highest 
value, furthest from the base-address. The most recent item on the stack is known as 
the "top of the stack" (TOS). 

STACK POINTER 

CPU 

15 0 

TOS 

STACK 
POINTER 

SP POINTS TO CURRENT TOS 

PUSH 

LOW ADDRESS 

HI ADDRESS 

1. DECREMENTSPTO POINTTO NEWTOS 
2. WRITE NEW DATA IN MEMORY 

POP 

1. READ OLD DATA 
2. INCREMENT SP TO POINT TO NEW TOS 

LAST·IN, FIRST·OUT (LIFO) 

MEMORY 

r-------
r-------

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

TOPOF 
STACK 

"Stack" is a most descriptive term because you can always put something on top of 
the stack, like a dish stacker. You can PUSH a new dish (word) on top, or POP the 
last one on top off into a destination you specify. In terms of programming, a pro
cedure can call a procedure, and so on. The only limitations to the number of items 
that can be added to the stack are the amount of RAM available and the 64K limit 
on segments. 

To appreciate the purpose and effectiveness of a stack, it is useful to explore this 
concept of a procedure. 

Introduction 

1-29 



Introduction 

1-30 

8086,Assembly Language 

Assume that your program requires a special routine several times. You can recode 
this routine each time it is needed, but this can use a great deal of memory. Or, you 
can code a procedure: 

Inline Coding Use of Procedure 
0 0 
0 0 
0 0 

inline-copy-of-PROC1 CALL PROC1 
0 0 
0 0 
0 0 

inline-copy-of-PROC1 CALL PROC1 
0 0 
0 0 

The 8086 provides instructions you can use to CALL and RETurn from a procedure. 
When the CALL instruction is executed, the address of the next instruction (the con
tents of the instruction pointer) is automatically PUSHed onto the stack. The con
tents of the instruction pointer are replaced by the address of the desired procedure. 
At the end of the procedure, a RETurn instruction POPs that previously-stored ad
dress off the stack and puts it back into the instruction pointer. Program execution 
then continues as though the procedure had been coded inline. The mechanism that 
makes this possible is a stack. 

MAIN PROG 

CALL 
PROC1 

CALL 
PROC1 

CALL 
PROC2 

PROCEDURE PROGRAM FLOW 

PROCEDURE 

ENTRY PROC1 

STACK REMEMBERS CALLING 
~POINT - ROUTE TO TAKE BACK 

EXIT PROC1 

NESTED PROCEDURES 

ENTRY PROC2 

ENTRY 
PROC3 

EXIT PROC3 

• PROCEDURES REDUCE THE AMOUNT OF PROGRAM MEMORY SPACE USED, 
BY ALLOWING COMMON SEQUENCES TO BE EXECUTED FROM DIFFERENT 
POINTS IN THE PROGRAM. 



8086 Assembly Language 

STACK POINTER 

AH AL 

BH BL 

CH CL 

DH DL 

15 

SP 

BP 

SI 

01 

CPU 

15 0 

T05 

STACK 
POINTER 

MEMORY 

r------
r------

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

LOW ADDRESSES 

S5 
(BOTTOM OF STACK) 

TOPOF 
STACK 

HIGH ADDRESSES 

The stack is also used for temporary storage of parameters for use in such a pro
cedure. Before the CALL, the calling routine can first PUSH the data onto the 
stack. The called routine can then simply access the stack directly. Though this has 
certain advantages, it leaves the data sitting on the stack, violating the normal expec
tation that the RETurn will leave the stack as it was before the calling program used 
it. In this situation the called routine can end with the statement: 

RET8 

which causes the stack pointer to be incremented by that number, effectively skip
ping over ("popping off") those words (4 in this case) for any subsequent stack 
operations. Since stack operations always involve WORDS, the number, if any, 
placed on a RETurn instruction must be two times the number of items to be skip
ped. Three parameters would mean a RET 6. 

Stack Operations. As mentioned above, stack operations ttansfer sixteen bits of 
data between memory and a destination register or destination memory word. The 
two basic operations are PUSH, which adds data to the stack, and POP, which 
removes data from the stack. 

A CALL instruction PUSHes the contents of the instruction pointer (which contains 
the address of the next instruction) onto the stack and then transfers control to the 
desired procedure by placing its address in the instruction pointer. A RETurn in
struction POPs the word off the top of the stack and places it in the instruction 
pointer. This requires the programmer to keep track of what is in the stack. For ex
ample, if you call a procedure and the procedure PUSHes data onto the stack, the 
procedure must remove that data before executing a return instruction. Otherwise, 
the return instruction POPs data from the stack and places it in the instruction 
pointer. The results are unpredictable, of course, and probably not what you want. 

Introduction 

1-31 



Introduction 

1-32 

8086 Assembly Language 

Saving Program Status. It is likely that a procedure requires the use of one or more 
of the working registers. However, it is equally likely that the main program has 
data stored in the registers, which it will need when control is returned to it. As a 
general rule, a procedure should save the contents of a register before using it and 
then restore the contents of that register before returning control to the main pro
gram. The procedure can do this by PUSHing the contents of the registers onto the 
stack and then POPping the data back into those registers before executing a return. 
It is important to restore (POP) them in the opposite order from their saving, e.g., 

PUSH BX 
PUSH ex 

POP ex 
POP es 

A pair of procedures could be written to do this, named, say, SAVE and RESTORE. 
Then all other procedures could simply call SAVE at the beginning and RESTORE 
at the end. See also Appendix D. 

Input/Output. Input! output is done using addressable ports, either I byte or 1 
word in size. There are 65536 such port addresses, reflecting the fact that I/O space 
is addressed using a 16-bit address. Segment registers are not used. 

The input/output ports provide communication with the outside world of peripheral 
devices. The IN and OUT instructions initiate data transfers. 

The IN instruction latches the number of the desired port onto the address bus. As 
soon as a byte (or word) of data is returned to the data bus latch, it is transferred in
to the accumulator, AL (or AX). 

The OUT instruction latches the number of the desired port onto the address bus 
and latches the data in AL (or AX) onto the data bus. 

Notice that the IN and OUT instructions simply initiate a data transfer. It is the 
responsibility of the peripheral device to detect that it has been addressed. Notice 
also that it is possible to dedicate any number of ports to the same peripheral device. 
You might use a number of ports as control signals, for example. 

Because input and output are almost totally application dependent, a discussion of 
design techniques is beyond the scope of this manual. For additional hardware in
formation, refer to the 8086 Microcomputer Systems User's ManuaJ(9800722). 

The instructions IN and OUT each have 2 forms. You may specify DX, as in OUT 
DX, AX 'or OUT DX, AL using the contents of the DX register as the address of the 
port. Using DX you have 65536 ports. 

Alternatively, you may specify an immediate byte operand as the address of the port 
in which case you have 256 possible ports. 

In either case the accumulator is the source for output or the destination for input. 
When AX is specified, a word is input or output. When AL is specified, a byte is in
put or output. 



8086 Assembly Language 

1/0 Device Selection. 

• 

• 
• 
• 

• 
• 

IN/OUT port numbers can be designated with 8 bit literals in the instruction 
(0-255). 

IN/OUT port numbers can be contained in a word register, (0-64K), OX. 

IN/OUT ports can transmit bytes (8 bits) or words (16 bits). 

Byte I/O ports can communicate on the low (DO-D7) data bus lines or the high 
(D8-Dl5) data bus lines. 

Even addressed I/O ports transfer data on low (DO-D7) data bus lines. 

Odd addressed I/O ports transfer data on high (D8-Dl5) data bus lines. 

'@;HiW, 
Care must be exercised that each register within an 8 bit peripheral chip is 
addressed by all even or odd addresses. 

Interrupt Procedures-(See also Appendix D) 

The 8086 language supports two types of interrupts, external and internal. An exter
nal interrupt is initiated by some peripheral asserting an interrupt request to the 8086 
in the hardware (refer to the MCS-86 User's Manualfor details). An internal inter
rupt is one initiated by the software the 8086 is executing. An interrupt represents a 
transfer of program execution control. The type of transfer used in the 8086 is called 
a vectored interrupt. An interrupt vector represents an address of a procedure which 
services the interrupt. 

In the 8086, all interrupts (both external and internal) perform a transfer by pushing 
the flag registers onto the stack (as in PUSHF), and then performing an indirect call 
(of the inter segment variety) through an element of an interrupt vector located at ab
solute memory locations 0 through 3FFH. Each vector is a four byte element with 
the first two bytes containing the offset of a procedure (or label) and the second two 
bytes containing the paragraph number of the segment containing the procedure (or 
label). There are 256 possible interrupt vectors. Within the 8086 assembly language, 
each vector is given a number from 0 through 255. Intel Corporation reserves the use 
of interrupts 0 through 31 (locations 0 through 7FH) for Intel hardware and soft
ware products. Users who wish to maintain compatibility with present and future In
tel products should not use these locations except as defined by Intel. Interrupts 0 
through 4 (0 - 13H) currently have the dedicated hardware functions as defined 
below. 

Interrupt # 

o 
1 
2 
3 
4 

Location 

0-03H 
04H-07H 
OSH-OBH 
OCH-OFH 
10H-13H 

Function 

divide by zero 
single step 
non-maskable interrupt 
one byte interrupt instruction (lNT 3) 
interrupt on overflow 

There are three interrupt transfer operations provided: 

- INT pushes the flag registers, clears the TF and IF flags, and transfers control 
with an indirect call through any of the 256 vector elements, i.e., INT 24 will do 
an indirect call through interrupt vector 24 (location 96). A one byte form of this 
instruction is available for interrupt type 3, INT 3. 

Introduction 

1-33 



Introduction 

1-34 

8086 Assembly Language 

- INTO pushes the flag registers, clears the TF and IF flags, and transfers control 
through vector element 4 if the OF flag is set (interrupt on overflow). If the OF 
flag is cleared, then no operation takes place. 

- IRET transfers control to the return address saved by a previous interrupt 
operation and restores the saved flag registers. 

The following example illustrates the means of setting up the interrupt vectors and 
the procedures which service the interrupts. An absolute segment is defined at loca
tion 0 which contains the interrupt vectors (see the chapter on data initialization and 
directives for details concerning the following constructs.) 

INT_VECTORS SEGMENT AT 0 

ORG OCH 
DO TYPE_3_PROC ;interrupt type 3 
ORG 14H 
DO TYPE_5_PROC ;interrupt type 5 

INT_VECTORS ENDS 

In the above example the DD TYPE_3_PROC will store the address (the offset 
and paragraph number) of the procedure called TYPE_3_PROC. 

The interrupt procedures themselves will then appear in another user-defined seg
ment elsewhere in the program. 

IRET 
TYPE_3_PROC ENDP 

IRET 
TYPE_5_PROC ENDP 

;the code for the procedure 

Somewhere in the program you can then specify the following code. 

INT 3 ;will cause the execution of TYPE_3_PROC 

INT 5 ;will cause the execution of TYPE_5_PROC 

For external interrupts, the peripheral device will request an interrupt from the 8086. 
When the 8086 grants the interrupt, the device will supply a byte value on the data 
bus which represents the type or number of the interrupt i.e., 0 through 255. The 
8086 will read this value and then execute the interrupt through the vector. In the 
above example the procedure TYPE_5_PROC can be executed either through the 
instruction INT 5 in the software or by a device requesting an interrupt from the 
8086 and then putting the value 05H on the data bus. (See also Appendix D.) 



CHAPTER 2 
BASIC CONSTITUENTS OF AN 8086 

ASSEMBLY LANGUAGE PROGRAM 

This chapter discusses the elements that constitute a program in the 8086 assemply 
language. The topics include: 

Introduction 
ASM86 Character Set 
Syntactic Elements of ASM86 

Tokens and Separators 
Delimiters 
Constants 

Numeric Constants 
Character Strings 

Identifiers 
Keywords 
Symbols and their Attributes 

Registers 
Variables 
Labels 
Numbers 
Other Symbols 

Statements 
Modules 

Introduction 

There is a legitimate distinction between the 8086 Assembly Language and the 
ASM86. The latter is a program that recognizes and translates the language into ob
ject (machine) code. This manual, however, uses the two terms more or less inter
changeably. 

Programs in the 8086 Assembly Language are written free-form. That is, the input 
(source) lines are column-independent and blanks may be freely inserted between the 
elements of the program. The only exception is a continuation line, which must have 
an ampersand (&) immediately following the terminator of the previous line. 

ASM86 Character Set 

The character set used in ASM86 is a subset of both ASCII and EBCDIC character 
sets. The valid ASM86 characters consist of the alphanumerics: 

ABCDEFG H I JKLMN OPQRSTUVWX Y Z 
abc d e f gh ij kIm nop qr stu vwx yz 
0123456789 

along with these special characters 

+ -* 1= () [] < >; , . " ,_: ? @ $ & 

and the non-printing characters 

space tab carriage-return line-feed 

2-1 



Basic Constituents 8086 Assembly Language 

2-2 

If an ASM86 program contains any character that is not in this set, the assembler 
will treat the character as a blank. The combination of a carriage-return (or linefeed 
or both) immediately followed by an ampersand represents a continuation line and is 
treated as a blank (except within a character string or comment). 

Upper- and lower-case letters are not distinguished from each other (except in string 
constants-see below). For example, xyz and XYz are interchangeable. In this 
manual, all ASM86 code is in upper-case letters to help distinguish it visually from 
explanatory text. 

Blanks are not distinguished from each other (except in string constants). Any blank 
is considered to be the same as any other blank. Moreover, any unbroken sequence 
of blanks is considered to be the same as a single blank. 

Special characters and combinations of special characters have particular meanings 
in an ASM86 program, as described in the remainder of this manual. 

Syntactic Elements of ASM86 

Tokens and Separators 

A token is the smallest meaningful unit of a ASM86 source program, much as words 
are the smallest meaningful units of a book in English. Separators are used to 
separate two adjacent tokens so that they are not mistakenly thought to be one 
longer token. The most commonly used separator is the blank ( ). Blanks are not 
distinguished from each other (except in string constants). Any unbroken sequence 
of blanks may be used wherever a single blank is allowed. Horizontal tabs are also 
used as separators and are interpreted by the assembler identically to blanks except 
that they may appear as multiple blanks in the list file (see operator's manual). Any 
illegal character, or character used in an illegal context, is also treated as a separator. 

Blanks may thus be inserted freely around any token, without changing the meaning 
of the ASM86 statement. Thus the statements: 

MOV ITEM, [BX+3] 
MOV ITEM,[BX+ 3] 

are identical insofar as the meaning to the assembler is concerned. 

Delimiters 

Delimiters are special characters that serve to mark the end of a token and also have 
a special meaning unto themselves (as opposed to separators, which merely mark the 
end of a token). In the sample statements above, the comma, the plus-sign, and the 
square brackets all serve as delimiters. When a delimiter is present, separators need 
not be used; however, using separators often makes your programs easier to read 
and, therefore, easier to understand in ASM86. 



8086 Assembly Language Basic Constituents 

The table below describes the special usages of the delimiters and separators in 
ASM86: 

Character(s) 

20H 
09H 

( ... ) 

ODH (CR) 
OAH (LF) 
CR-LF 

& 

< ... > 

$ 

[ ... ] 

+ 

? 

@ 

English Name 

blank or blanks 
horizontal tab 

comma 

pair of single 
quotes 

pair of matched 
parentheses 

carriage-return 
line-feed 
carriage-retu rn I 
line-feed pair 

semicolon 

colon 

period or dot 

Use 

Separate or terminate tokens; enhance program 
readability 

Separate an operand from a preceding one when 
more than one is present 

Delimit a character string 

Delimit an expression or subexpression, often to 
enhance program readability or to alter operator 
precedence 

Statement terminator (unless immediately followed 
bya '&') 

Comment field delimiter 

Delimiter for symbols used as labels, segment 
overrides, macro specifiers, extrn types, assume 
fields, record field definitions 

Selector for a field from a record; only allowed 
within codemacros 

ampersand Continuation line indicator, when immediately 
following a statement terminator 

pair of matched Indicates the enclosed values are to be used to 
angle brackets initialize a record within a codemacro 

dollar sign Shorthand notation for "The present value of the 
location counter" 

pair of matched Encloses an index or pOinter (subscript) expression 
square brackets 

equal sign Separates field width specification from (optional) 
default initial value 

minus sign Between 2 operands, indicates subtraction; alone 
to the left of an operand, indicates negative value 

plus sign Between 2 operands, indicates addition; alone to 
the left of an operand, indicates positive value 

star, asterisk, Indicates multiplication 
times sign 

slash, division sign Indicates division operation 

question mark Indicates an unspecified value to be used to 
initialize storage; may also be used with other 
characters to form identifiers 

commercial at-sign Used to form identifiers 

underscore Used to form identifiers 

While many of the usages and terms used above may be new to you, they will be ex
plained in subsequent chapters of this manual. 

2-3 



Basic Constituents 8086 Assembly Language 

2-4 

Numeric Constants 

A constant is a value known at assembly-time, which does not change during execu
tion. A constant may either be a whole-number (integer) or a character string. 
Whole-number constants may be expressed as a binary (base 2), octal (base 8), 
decimal (base 10), or hexadecimal (base 16) number. 

A binary number consists of a sequence of the digits (0, I) terminated by a "B". 
Examples: 

08 
18 
01101010101 8 
11111111111111118 

-0001000b 

An octal number consists of a sequence of the digits (0,1,2,3,4,5,6,7) terminated by 
an "0" or a "Q". Examples: 

12345670 
-30 
3770 
Oq 

A decimal number consists of a sequence of the digits (0,1,2,3,4,5,6,7,8,9) ter
minated by a "D" (or a blank). Examples: 

10000 
-6d 
65535 

A hexadecimal number consists of a sequence of hexadecimal digits and letters 
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) terminated by an "H". Furthermore, the con
stant must begin with a digit and not a letter in order to enable ASM86 distinguish it 
from an identifier (see below). It is sufficient to place a "0" before the leading 
character of a hexadecimal constant if it is a letter. Examples: 

1H 
-600H 
OFFH 

-OAAAh 

All numbers must be representable in 17-bits (including one bit for the sign of the 
number), i.e., 

-11111111111111118 <= binary constant 
-1777770 <= octal constant 

-65535 <= decimal constant 

<= 11111111111111118 
<= 1777770 
<= 65535 

-OFFFFH <= hexadecimal constant<= OFFFFH 

Character Strings 

Character strings are denoted by printable ASCII characters enclosed within 
apostrophes ('). Blanks and horizontal tabs are also allowed within strings but 
carriage-returns and line-feeds are not. The assembler represents the character string 
as a sequence of bytes containing the ASCII code for each character within the 
string. (The ASCII encoding consists of 7 bits.) Examples of character strings are: 



8086 Assembly Language Basic Constituents 

'ABCDEFG' 
'This is a string' 
'Let"s include a" , , "character' 
'1234561"#$%&0_ -' 

Notice that the third string includes two consecutive apostrophes within the string to 
represent the presence of a single apostrophe. 

Strings of length I translate to single-byte values; strings of length 2 translate to 
word values. For example: 

'A' is equivalent to 41 H 
'Ag' is equivalent to 4167H 
'I' is equivalent to 23H 

Character strings longer than two characters may only be used to initialize storage 
(see Chapter 3). One-character strings may be used any place a one byte immediate 
value may be used; two character strings may be used any place a one word 
immediate-value may be used. 

Strings may not exceed the maximum length described in the MCS-86 Assembler 
Operator's Manual for ISIS-II Users (9800641). 

Identifiers 

Identifiers are sequences of characters which have a special, symbolic meaning to the 
assembler. All identifiers in ASM86 must obey the following rules: 

1. The first character must be alphabetic (A, .. ,Z,a, ... ,z) or one of the special 
characters, @, _, or ? . (The question mark, however, may not be used alone as 
an identifier.) 

2. Any subsequent characters can be either a character as mentioned in rule 1 
above or a numeral (0,1, ... ,9). 

3. Identifiers are unique within the first 31 characters; subsequent characters are 
ignored. 

Thus the following are examples of valid identifiers: 

A 
WORD 
FFFFH 
Third_Street_and_Main 
Should_We_Jump? 
@variable_number_1234567890123456 
@ variabl e_n u m be r _1234567890123457 

Notice that the last two identifiers will be treated as the same identifier by the 
assembler since they are identical in their first 31 characters. 

Examples of invalid identifiers are: 

First$ld ('$' is not allowed as part of an identifier) 
OFFFFH (this is a number since it begins with a number) 
'Memphis' (characters enclosed by apostrophes constitute a string, not an 

identifier) 

2-5 



Basic Constituents 8086 Assembly Language 

2-6 

Keywords 

One of the examples of an identifier in the section above was WORD. This is a 
keyword. A keyword is an identifier that has a pre-defined meaning to the 
assembler. In general, keywords may only be used in their special context, unless 
they are "purged" first, and not all keywords may be purged. 

AX 
Segment (remember, upper- and lower-case letters are equivalent) 
END 
MOV 

For a complete list of keywords, see Appendix E. 

Symbols and Their Attributes 

A symbol is an identifier defined by you, the user, in order to represent certain loca
tions in memory, or data, expressions, or code (or data) constructs. The assembler 
also predefines the register set and one segment for you. (You may redefine register 
symbols if you desire.) Symbol is used here in a very specific sense, and not 
generically as a name for all tokens. 

Symbols may be divided into five categories: 

1. registers 

2. variables 

3. labels 

4. numbers 

5. others (segments, groups, records, record fields, codemacros, formal 
parameters) 

Each symbol carries with it certain attributes which allow the assembler to use that 
symbol to represent the desired information and distinguish aspects of its intended 
usage. 

Registers 

Each register belongs to a class as shown in Chapter 1. These classes determine 
whether the register is considered to be a byte or word (two byte) register. The 8086 
flags are also considered one-bit registers. The following table partitions all the 
predefined 8086 registers: 

CLASS REGISTERS 
SIZE ALSO KNOWN AS INCLUDED 

H AH 1 byte Accumulator-High-Byte 
BH " Base-RegisterHigh-Byte 
CH " Count-Register-High-Byte 
DH " Data-Register-High-Byte 

L AL " Accumulator-Low-Byte 
BL " Base-Reg ister-Low-Byte 
CL " Count-Register-Low-Byte 
DL " Data-Register-Low-Byte 

X AX 2 bytes Accumulator (full word) 
BX " Base Register " 
CX " Count Register " 
DX " Data Register " 

P BP " Base Pointer 
SP " Stack Pointer 



8086 Assembly Language Basic Constituents 

CLASS REGISTERS SIZE ALSO KNOWN AS 
INCLUDED 

I SI " Source Index 
01 " Destination Index 

S CS " Code-Segment-Register 
SS " Stack-Segment-Register 
OS " Data-Segment-Register 
ES " Extra-Segment-Register 

F AF 1 bit Auxil iary-Carry-Flag 
CF " Carry-Flag 
OF " Direction-Flag 
IF " Interrupt-Enable-Flag 

OF " Overflow-Flag 
PF " Parity-Flag 
SF " Sign-Flag 
TF " Trap Flag 
ZF " Zero Flag 

General purpose registers (X, H, L classes) may be used as "source" or "destina
tion" for most instructions (see below and Chapter 6). Some registers have special 
usages (e.g., BX is used in calculating addresses, CL is used as a count register for 
some instructions, etc.). Flags are not individually addressable but may be altered 
individually by the outcome of certain arithmetic, logical, or relational instructions; 
or collectively, by the outcome of certain data transfer instructions. 

Variables 

Variables are used to identify data which is residing at a particular location or loca
tions in memory. All variables have three attributes: 

1. Segment (which segment was being assembled when this variable was defined) 

2. Offset (how many bytes there are between the beginning of the segment and the 
location of this symbol) 

3. Type (how many bytes of data are manipulated when this variable is referenced) 

As described in Chapter 1, segments start on anyone of 64K segment boundaries. 
One of these values is used as the segment part of the variable's definition (although 
this number may not be available at assembly time). The offset of a symbol may be 
any number between 0 and 64K-l, inclusive. A variable must have one of the follow
ing types: 

BYTE (1 byte long) 
WORD (2 bytes long) 
DWORD (4 bytes long) 

Variables are generally defined by: 

1. Apearing as the name for a storage initialization directive; for example: 
Variable_1 DB 0 (See Chapter 3) 

2. Appearing as the name for a LABEL directive; for example: 
Variable_2 LABEL BYTE (See Chapter 4) 

3. Appearing as the name for a EQU directive; for example: 
Variable_3 EQU Another_variable (See Chapter 4) 

For a more detailed explanation of variables, see Chapter 3. 

2-7 



Basic Constituents 8086 Assembly Language 

2-8 

Labels 

Labels represent locations in memory which contain instruction code and are in
tended to be referenced via jumps or calls. All labels have four attributes: 

1. Segment (similar to the segment part of variables) 

2. Offset (similar to the offset part of variables) 

3. Distance (analogous to the type part of variables; indicates whether the label is 
reachable using a two byte offset or whether a segment-offset pair is needed (4 
bytes)) 

4. CS-Assume (indicates what was ASSUMEd to be in the CS register when this 
label was defined) 

Labels and variables are similar in meaning to the assembler, except that the former 
reference instruction code in memory, while the latter refer to data in memory. That 
is why their attributes are similar. The segment and offset parts of labels are defined 
similarly to those for variables. The distance part is one of two values: 

NEAR: all references to this label use only a two byte, "self-relative" value, i.e., 
only the IP must be altered to reach this location and NOT the CS register's 
contents. 

FAR: all references to this label require that both the IP and the CS registers be 
altered and that all jumps or calls to this label must specify new values for 
both. 

Your choice of NEAR or FAR depends on whether this label is ever going to be 
referred to by jumps or calls whose CS: assumption is different from this label's CS: 
assumption. This usually means a jump or call from outside the code segment (or 
group) defining the label. 

If all references use the same CS: assumption, then the label's distance attribute 
should be declared NEAR, otherwise FAR. If you say nothing, NEAR is assumed. 

Choosing NEAR means you are telling the assembler that jumps to this label can 
always reach it with a self-relative offset of at most 16-bits, whereas FAR will always 
require such a reference to include a second word, giving the segment of this label as 
well as an offset. 

If the assembler finds a reference which requires a "long" jump or call to a label you 
declared NEAR, it will flag an error. 

Thus the CS-Assume attribute is crucial in the assembler's determining what sort of 
jumps and calls are required to transfer to the label. This concept is more fully ex
plained under Label in Chapter 4. 

Labels are generally defined by 

1. Preceding an instruction, with a colon (:) between the label and instruction; for 
example: 

Label_1: ADD AX, BX 

2. Appearing as a name to a LABEL directive; for example: 
Label_2 LABEL FAR 

3. Appearing as the name to an EQU directive; for example: 
Label_3 EQU THIS NEAR 

4. Appearing as the name on a matching PROC/ENDP pair; for example: 
Label_4 PROe 

For a more detailed explanation of labels, see Chapter 4. 



8086 Assembly Language Basic Constituents 

Numbers 

A symbol may be defined to represent a pure number rather than representing a 
register or a memory location (address). When this symbol is used, it is as if you had 
explicitly coded the number it represents, e.g., 

Number_5 EQU 5 
MOV AL, Number_5 

is equivalent to writing: 

MOV AL, 5 

Number_5 has thus been defined as a symbol which does not represent a specific 
memory address but rather the value 5. 

If a symbol is defined to be used as a number, it simply represents a 16-bit value (17 
bits including sign bit during assembly). Operations on numbers are rather intuitive; 
a full explanation of operations on numbers is presented in Chapter 5. Remember 
that a one or two byte character string may also be used as the value of a number, 
e.g., 

Initials EQU 'AA' 
MOV AX, Initials 

is a perfectly legitimate usage of a number (4141H in this case). 

For a further explanation of operators, expressions, and their relationship to 
numbers, see Chapter 5. 

Other Symbols 

Other symbols may be defined by appearing as the name to an assembler directive. 
The directives which require these symbols are: 

SEGMENT I EN DS (defines a segment name) 

G RO U P (defines a group name) 

RECORD (defines both a record name and the names of any record 
fields contained within the record) 

CODEMACRO (defines both a CodeMacro and the name of any formal 
parameters used within the CodeMacro. Note that once a 
symbol has been defined via a CodeMacro, it is no longer 
considered an ordinary symbol but is considered an instruc
tion mnemonic) 

EQU (in addition to defining variables and labels, EQU may be 
used to name expressions) 

SEGMENT/ENDS, GROUP, RECORD, and EQU are all explained in detail in 
Chapter 4; CODEMACRO is explained in detail in Chapter 7. 

A facility for referencing symbols not defined locally is provided in the EXTRN 
directive. This allows an arbitrary list of variables created in other modules to be 
referenced in the current module, and it requires the type (i.e., BYTE, WORD, 
DWORD, FAR, NEAR, or ABS-for numbers) to be specified with the name as 
well. For example: 

EXTRN Iittle:BYTE, medium:WORD, bitDWORD, close:NEAR, distance:FAR, x:ABS 

For a further explanation of the EXTRN directive, and its usage in linking program 
modules, see Chapter 4. 

2-9 



Basic Constituents 8086 Assembly Language 

2-10 

Statements 

Just as tokens may be seen as the assembly language counterparts to the English con
cept of words, so may statements be viewed as analogous to sentences. A statement 
is a specification to the 8086 assembler as to what action to perform. In fact, one 
way of viewing a computer program is as a sequence of statements which, when 
taken as an aggregate, is intended to perform a particular function. Statements may 
be divided into two types: 

Instructions: these are translated by the assembler into machine instruction code 
which "instruct" the 8086 to perform certain operations. 

Directives: these are not translated into machine instruction code by the assembler 
but rather "direct" the assembler itself to perform certain clerical functions. 
(Note: the storage initialization directives DO cause information to be placed in 
the 8086's memory when the program is loaded; however, this is usually intended 
to be used as data, e.g., to provide initial values for variables, and is not intended 
to be "executed".) 

Instruction mnemonics are either predefined by the assembler or defined by the 
user via CodeMacro directives (see Chapter 7 and Appendix A). The assembler, in 
fact, recognizes instructions ONLY if they have been so defined. Instruction 
mnemonics may be changed, added to, redefined, or "purged" at any time. (See 
Chapters 4 and 7.) 

Directives, on the other hand, are permanent, built-in features of the assembler. 
They characterize ASM86 to a large degree. The assembler always takes the same, 
specific action when it encounters a directive keyword. Directives may be neither 
created nor destroyed. 

Usually a statement will occupy one "line" in your source file. A "line" is a se
quence of characters ended by a terminator (carriage-return, line-feed, or carriage
return/line-feed combination). However, ASM86 provides for "continuation lines" 
which allow a statement to occupy more than one physical line in your source file. 
Any statement may be continued if the first character following the terminator is a 
"&". (Symbols, however, may NOT be broken across continuation lines. Character 
strings may not be continued across continuation lines; the string must be closed 
with an apostrophe on one line and then reopened with an apostrophe on a subse
quent continuation line, with an intervening ",". Comments are considered to be 
ended by a terminator; if a comment is continued then the first non-blank character 
following the "&" must be a";".) 

There are several directives which MUST be encoded on more than one line. These 
are briefly described later in this section. 

The format for encoding a statement is flexible in that (except for the restriction on 
the "&" used to denote continuation lines) tokens may appear anywhere on the 
source line. However, it is useful to think of the statement in terms of its constituent 
"fields" where certain kinds of symbols are constrained to appear. Furthermore, 
the general formats for instructions and directives are distinctive enough to require 
different descriptions of their fields. 

The INSTRUCTION statement format is: 

label prefix mnemonic(opcode) operand(s) comment 

where the fields are defined as: 

label: a symbol followed by a ":"; defines a label at the current value of the 
location counter in the current segment (see above and Chapter 4) 

THIS FIELD IS AL WAYS OPTIONAL. 



8086 Assembly Language Basic Constituents 

prefix certain machine instructions may only be used as a prefix to other 
instructions (e.g., LOCK, REP). 

THIS FIELD IS AL WAYS OPTIONAL 

mnemonic a symbol which has been previously defined via a CodeMacro 
directive, either by the assembler or by the user. This field is optional; 
however, if omitted, no operands may be present, although the other 
fields may appear. The set of all instruction mnemonics recognized by 
the assembler at anyone time constitutes the assembler's "instruction 
set" . 

operand(s) an instruction mnemonic may require other symbols to follow it to be 
the object of the actions called for by the machine instruction the 
mnemonic represents. These symbols are called "operands". Instruc
tions provided as part of ASM86 require zero, one, or two operands. 
Users may define other instructions via CodeMacros that require more 
than two operands. All operands after the first must be preceded by a 
comma (,). 

;comment any semicolon (;) appearing outside of a character string begins a 
comment, which is ended by a line terminator. Comments are used to 
document and enhance the readability of programs. The liberal usage 
of comments is strongly urged. 

THIS FIELD IS AL WAYS OPTIONAL 

Examples: 

LAB1: MOV AX, BX 

LAB2: MOV ex, ALF[SI] 

The DIRECTIVE statement format is: 

name directive operand(s) comment 

where the fields are defined by: 

name the name field of a directive MUST NOT BE CONFUSED with the 
label field of a directive. This name is NEVER terminated with a":". 
Some directives require that a name be present (viz., SEGMENT, 
ENDS, GROUP, RECORD, LABEL, EQU, PROC, ENDP); others 
PROHIBIT the use of name (PURGE, NAME, ASSUME, ORG, 
PUBLIC, EXTRN, END). Storage initialization directives (DB, DW, 
DD) allow names to be optionally present. The Codemacro directive is 
an exception to the above description of the directive statement and is 
partially described below. 

directive one of 20 keywords defined by the assembler to perform various 
"assembly-time" functions to assist the programmer in allocating 
storage, communicating between modules, and manipulating 
symbols. 

operand(s) analogous to the operands to an instruction mnemonic. Some 
directives allow an arbitrary list of operands (e.g., DB, DW, DD, 
PUBLIC, EXTRN, PURGE). Others allow special keywords designed 
to impart specific attributes to the entity being defined (e.g., SEG
MENT, PROC). These operands mayor may not be required, 
depending upon the directive. 

;comment exactly as defined for instruction statements. 

2-11 



Basic Constituents 8086 Assembly Language 

2-12 

Example: 

RRR1 Eau AX 

CODEMACRO is an exception to the above formulae. The proper form for a 
CODEMACRO definition is: 

CODEMACRO name operand(s) ;comment 

Notice that the name appears AFTER the CODEMACRO keyword. 

Some directives require certain other directives to be present. These matched pairs 
are: 

SEGMENT/ENDS 
PROC/ENDP 
CODEMACRO/ENDM 

For both the SEGMENT lENDS and PROC/ENDP pairs, the name that appears on 
the first directive must also appear on the second. For example: 

requires a matching 

ENDM directives may contain (but do not require) the name from the matching 
CODEMACRO. 

MODULES 

A module is the unit of assembly, i.e., when you assemble your source file, your ob
ject file defines a module. A program may span several modules (when you employ 
the technique of "modular programming"). These modules usually contain distinct 
logical functions which are combined using the relocation and linkage programs of 
the MCS-86 software family. (See the MCS86 Software Utilities manual.) Only one 
module is produced per assembly. 



CHAPTER 3 
VARIABLES AND INITIALIZATION 

In designing a program or system, you must layout the flow of control, i.e., the se
quence of steps that the computer will follow in processing incoming commands or 
data. The goal is to accomplish this definition in a fashion that is convenient for 
several people: the designer, the programmer, and the person who may need to 
modify or add to the code in the future. 

In the very nature of programming (at least for machines with some limit on 
memory), there are places and processes and data which are referred to multiple 
times. Rather than using numeric addresses, it is most convenient to establish names 
to stand for the addresses of these items: 

a. LABELs, for references to chosen instructions (code), discussed in Chapter 4. 

b. V ARIABLES, for references to data. 

c. NUMBERS, for references to immediate values. 

d. EQUA TED EXPRESSIONS, for references to indexed quantities, or more 
complex expressions, discussed in Chapters 4 and 5. 

Throughout this manual, the word label almost always means code, i.e. relative to 
the CS (code segment) register only. The only exception occurs with a directive (in 
Chapter 4) named LABEL. VARIABLE always means data, not restricted as to seg
ment register, although DS is the normal register used. 

These two types of names are distinguishable in several ways: labels must have a 
distance attribute (see also Chapters 2 and 4) of NEAR or FAR, and can be defined 
using a colon after the name. Variables have a type attribute e.g., BYTE, never a 
distance attribute such as NEAR or FAR. Variables cannot be defined using a colon. 

The convenience of names extends also to larger blocks of code in at least five ways: 

1. in naming code-sequences as PROCEDUREs, defined once and then called into 
execution from many different locations 

2. in naming code-sequences as CODE MACROs, defined in terms of a few 
varying parameters and reproduced in-line at each use of the name 

3. in combining blocks of code 

4. in checking for consistency in the use of names and registers, and 

5. in localizing errors or omissions while testing the code for correctness. 

SEGMENT -names are used to achieve the last three block-naming features. 

Thus this chapter and related sections elsewhere in this book will discuss 

1. how you establish such names 

2. what default values automatically result as the meaning of such names in 
subsequent expressions 

3. what options you have for altering or adding to these automatic consequences 
for names 

4. how names are used. 

Labels are discussed in Chapters 2, 4, and 5. 

3-1 



Variables and Initialization 8086 Assembly Language 

3-2 

Code Macros are discussed in Chapter 7. 

Procedures are discussed in Chapter 4. 

Segments are discussed in Chapter 4. 

Data naming, storage allocation, and initialization are discussed below. 

Variable Declaration and Initialization 

Since data can be defined in terms of bits, bytes, words, double-words, or other 
groupings, it is necessary to tell the assembler how much storage is required. 

There are 3 kinds of storage allocation: 

1. bytes - defined using DB 

2. words - defined using OW 

3. double-words - defined using DO 

When you set up memory for data usage, you must specify its initial content. If you 
don't know or don't care what the initial value of the location is, then the question 
mark (?) should be used to indicate that no initialization is wanted (more about the 
question mark later). 

The DB, OW, and DO Directives 
The DB, OW, and DO directives serve two purposes: (1) to initialize memory and (2) 
to define variables. The acronyms stand for "define byte", "define word", and 
"define double-word". 

Variable Definition 

A variable can be defined with a DB, OW, or DO directive. The desired variable 
name appears to the left of the directive. As was mentioned in Chapter 2, variables 
have three address components: SEGMENT, OFFSET, and TYPE. The directive 
gives the type to the variable which appears to its left (Le., BYTE for DB, WORD 
for OW, and DWORD for DO). The assembly time offset of the variable is equal to 
the number of bytes seen so far in the segment. The segment is the current segment. 

In the case of a variable naming an array, the type is the number of bytes in a single 
element of the variable. 

Example: 

TABLE_DATA SEGMENT 
TABLE OW 12 

OW 34 
NUM1 DB 5 

TABLE_TWO OW 67 
OW 89 
OW 1011 

NUM2 DB 12 
RATES OW 1314 

OTHER_RATES DO 1718 
TABLE_DATA ENDS 



8086 Assembly Language Variables and Initialization 

The segment attribute for all the above variables is T ABLE_DATA. DW defines a 
word variable, 2 bytes, and DB defines a byte variable. The offset for 
TABLE_TWO is 5, the number of bytes between the beginning of the segment and 
that variable. The offset for RATES is 12. 

The type of variables NUMI and NUM2 is 1, meaning byte. The type of 
OTHER_RATES is 4, meaning doubleword. The type of all variables shown here 
in TABLE_DATA is 2, meaning word. 

ATTRIBUTES 
IDENTIFIER SEGMENT 

OFFSET TYPE 

TABLE TABLE_DATA 0 2 
NUM1 TABLE_DATA 4 1 
TABLE_TWO TABLE_DATA 5 2 
NUM2 TABLE_DATA 11 1 
RATES TABLE_DATA 12 2 
OTHER_RATES TABLE_DATA 14 4 

Memory Initialization 

The DB, DW, and DD directives also serve to initialize storage. As seen above, an 
expression may appear to the right of the directive. This has the effect of initializing 
one "unit" of storage to the value of the expression. A "unit" of storage is BYTE 
for DB, WORD for DW, and DWORD for DD, that is 1 byte, 2 bytes, and 4 bytes 
respectively. 

Expressions 

Expressions may be used to initialize storage. Expressions are discussed in Chapter 
5. It will suffice here to say that there are two kinds of expressions, numeric and ad
dress expressions. 5 is a numeric expression as is 4 * 50. A variable is an address ex
pression as is a label. When an address expression is used to initialize storage, it may 
only appear in a DW or DD directive, never in a DB. "DW variable" will initialize a 
word of memory with the offset of the variable from its segment. "DD variable" 
will initialize two words of memory with the segment and offset of the variable. 

Example: 

FOO SEGMENT AT 55H 

ZERO DB 0 ; ONE BYTE OF 0 
ONE OW ONE ; ON E WORD OF 1 (0001 H) 
TWO DO TWO ; LOW WORD OF 3 (0003H), HIGH WORD OF 55H (0055H) 

FOUR OW FOUR + 5 ; ONE WORD OF12 (OOOCH) 
SIX OW ZERO-TWO ; ONE WORD OF -3 (OFFFDH) 

ATE DB 5*6 ; ONE BYTE OF 30 

FOO ENDS 

The DD labelled TWO is very informative. Recall that the DD directive allocates 4 
bytes. The first two were used as a word and filled with the offset of the variable 
TWO (offset = 3). The second word was filled with the number 55H. This is the 
paragraph number that the segment Faa is to begin on. Thus the two words in the 
DD represent the absolute address of the symbol TWO, which is the primary reason 
for the DD directive. 

3-3 



Variables and Initialization 8086 Assembly Language 

3-4 

No Initialization; the question mark: 

A single question mark is a keyword in the assembly language (see Chapter 2 about 
keywords). It may only be used in storage initializations, and means that it doesn't 
matter how the assembler initialized this location. What actually gets put into a loca
tion initialized by the question mark is indeterminate. 

Example: 

DB ? 
OW ? 
DO ? 

For these examples, 1,2, and 4 bytes are reserved, but remain uninitialized. 

The DUP Facility 

The DUP facility allows for storage to be initialized by specifying an initial value (or 
set of values) and the number of times these values should be repeated. This allows 
for large storage areas to be initializedwith a small command. The form of the DUP 
is 

expression OUP (item) 

where expression is a numeric expression evaluating to an absolute number greater 
than zero. Item may be an expression (address or numeric), question mark, list of 
items, or more DUP repetitions. Item must be enclosed in parentheses. 

DB 
OW 

FOO DO 

DB 
OW 

Lists 

100 dup (0) 
10dup(?) 
50DUP(FOO) 

10 DUP (10 DUP (0)) 
35 DUP (FOO, 0, 1) 

; 100 bytes of 0 
; 10 words of unknown value 
; 50 copies of the absolute address of 
; FOO (i.e., offset AND segment) 
; 10 repetitions of 10 repetitions of 0 
; 35 repetitions of three words; the 
; offset of FOO, 0, and 1. 

As seen in the above example, a parenthesized list of items may be DUPed in storage 
initialization. The list (FOO, 0, 1) stands for a single entity to be repeated. Anything 
that can appear by itself can also appear as a list member. This includes lists and str
ings (explained below). Thus we have the following examples: 

DB 5 OUP (1,2,4 OUP (3), 2 OUP (1,0)) 

This DB directive initializes 50 bytes,S copies of the bytes: 

1, 2, 3, 3, 3, 3, 1, 0, 1, 0 
ALPHA OW 2 OUP (3 OUP (1,2 dup (4, 8), 6), 0) 

This DW directive initializes 38 words. Two copies of the words with values: 

1,4,8,4,8,6,1,4,8,4,8,6,1,4,8,4,8,6,0 

A single list, not using the DUP facility, may not use parentheses. The following lists 
achieve the same storage definition and initialization as the line of values above: 

OW 1,4,8,4,8,6 
OW 1,4,8,4,8,6 
OW 1,4,8,4,8,6,0 



8086 Assembly Language Variables and Initialization 

Character Strings 

A byte can also hold the ASCII representation of a character such as' A', '9'. 'ABC
DE' is a string of 5 characters run together ("concatenated"). 

If you wish to initialize storage with characters, you simply enclose them in single
quote marks. Strings for storage allocation/initialization which are longer than 2 
characters are legal ONLY in the DB command, and illegal in the DW and DD 
commands. 

For example, consider the sequence 

PART1 DB 'THANKS' 
PART2 DB 'LOT' 
LlNE1 DB 
BUFFER DB 
LINES DB 

'THANKS A LOT' 
128 DUP(' ') ; INITIALIZE 128 BYTES TO BLANKS 
80 DUP (72 DUP' ',ODH, OAH) ; INITIALIZE 80 LINES, WHERE EACH 

; LINE HAS 72 BLANKS AND ENDS 
; IN A CARRIAGE RETURN, LINE 
; FEED. 

Recall that each character takes a whole byte of memory. The above DB commands 
have thus implicitly reserved and initialized multiple bytes: PARTl got 6 bytes, 
PART2 got 3 bytes, and LINEI got 12 bytes. DB is the only command in the 
language that can accept strings longer than 2 bytes. If you were later to type 

MOV PART1,' 
MOV PART1 +1,'8' 

then the 6-byte string beginning at PART 1 would say 
, BANKS' 

The memory location PAR Tl, being only 1 byte, contains simply the blank you 
moved in, but it also serves as the beginning of this longer string if you were to need 
to refer to it in later instructions. You would get the same result by typing 

MOV WORD PTR PART1,'B ' ; 'B 'because the bytes will 
; be reversed in memory the 
; PTR operator is discussed 
; in Chapter 5 

Examples: 

iNVENTORY_ACCESS SEGMENT 
FIL TER_1 EQU 4 ; FIL TER_1 is now a 

SWITCH_1 DB 
LEVELS_1 DB 
ACCESS_1 DW 
STORES_1 DW 

SWITCH_2 DB 
LEVELS_2 DB 
ACCESS_2 DW 
STORES_2 DW 

INVENTORY_ACCESS 

; name for the absolute number 4. 

? 
4 DUP (?) 
FILTER_1 
FILTER_1 DUP(O,1) 

? 
0,1,2,3 
FILTER_1 + 2 
(FILTER_1 + 2) DUP (1,2) 
ENDS 

3-5 



Variables and Initialization 8086 Assembly Language 

3-6 

The first set of 4 commands, after the EQU above, allocates and initializes 23 bytes 
of storage. SWITCH_I allocates one byte, not initialized. LEVELS_I allocates 4 
bytes, not initialized. ACCESS_I allocates one word, initialized to the set value of 
FIL TE~I, namely 4. STORES_l allocates 8 words based on using the value of 
FILTER_I as a OUP-control expression. These 8 words are initialized to 0, 1,0, 1, 
0, 1, 0, I, respectively. 

The second set of commands allocates and initializes 31 bytes of storage. 
SWITCH_2 allocates one uninitialized byte. LEVELS_2 initializes its byte to ° 
and the successive 3 bytes to 1,2,3 respectively. ACCESS-2 allocates 1 word, in
itialized to 2 more than the value of FILTE~I, i.e., 4 + 2 or 6. STORES_2 
allocates 12 words or 24 bytes based on the value of this expression used as a OUP
control. The word at STO RES-2 is initialized to 1, and the succeeding II words are 
initialized to 2,1,2,1,2, I ,2, 1 ,2, 1,2 respectively. 

VARIABLE TYPE LENGTH SIZE 

SWITCH--.:...1 1 1 1 
LEVELS_1 1 4 4 
ACCESS_1 2 1 2 
STORES_1 2 8 16 

SWITCH-2 1 1 1 
LEVELS_2 1 4 4 
ACCESS_2 2 1 2 
STORES_2 2 12 24 

Words and Double-Words 

OW creates 16-bit values, and DO creates 32-bit values. 

EARLY EQU 3 
MIDDLE EQU 1041 ; = 0411H 
FINAL EQU 28672 ; = 7000H 
BLAST EQU EARLY" MIDDLE 
HEAT1 OW EARLY" MIDDLE ; =OC33H 
HEAT2 OW (FINAL + BLAST)" EARLY ; = 95385 = 17499H (ERROR) 
HEAT3 OW (FINAL + BLAST)"EARLY/4 ; =95385 =17499H (ERROR) 
HEAT4 OW (EARLY/4)"FINAL + BLAST ; NOT AN ERROR 

The value computed to initialize HEAT! will fit in a word (16-bits), being less than 2 
to the 16th minus 1 = 1111 1111 1111 1111 B = OFFFFH. HEA T2 and HEAT3 are 
errors because they exceed that value during evaluation. They will remain undefin
ed. (If such a value resulted from a computation during execution, it would be 
automatically truncated from its computed value of 17499H to 16-bits, becoming 
the number 7499H.) 

IT IS IMPORTANT TO NOTE that the Intel convention for storing words places 
the least-significant byte in the lower-numbered memory location and the most
significant byte in the next-higher memory location. 

Similarly for double-words, the least-significant word is placed in the lower
numbered memory location, and the most-significant word goes into the next-higher 
word of memory. 

Thus the initial value for HEAT! will be stored as 33H OCH, and HEAT2 will be 
completely undefined. 



8086 Assembly Language Variables and Initialization 

Furthermore, memory is typically presented left to right as increasing location ad
dresses, OR top to bottom for increasing location addresses. Thus 

OW 1234H 
OW 5678H 

becomes in memory: 34H 12H 78H 56H, or in vertical representation of memory 
bytes, 

34H 
12H 
78H 
56H 

Thus the above statement: the initial value for HEA T1 will be 33H OCH, stored as: 

33H 
OCH 

Double-Words 

In the case of DD, you are allocating 2 words in 1 command. One purpose for this 
could be reserving room for later storing (during execution) both the segment and 
offset values of a label or variable which is not in this segment. 

Two words contain 4 bytes, and since each byte can store a 2-digit hexadecimal 
number, a double-word could hold an 8-digit hex number. However, the largest con
stant allowed by this assembler is a 17-bit (sign + 16) number, which is truncated in
to 1 word. This is consistent with the 8086 architecture and machine instructions, 
which permit manipulation of values no larger than 16 bits (except for multiplication 
and division-see Chapter 5). The largest negative number possible is OFFFFH. 

Thus if you write: 

DO 1234H 

the high order bits of the DD are assumed to be OOOOH. The convention above is 
followed, first by placing the least-significant half of the double-word in the lower
addressed word, and then followed again by placing the least-significant byte of 
each word in the lower-addressed byte of each word. Thus when you write: 

DO 1234H 

it is assumed you mean OOOOH 1234H, which is the same as 

OW 1234H 
OW OOOOH 

since both become become stored as 

34H 
12H 
OOH 
OOH 

If you need to store 2 non-zero words, e.g., a constant or a segment/offset pair such 
as 8765H 9423H, then 2 DW commands are needed: 

OW 8765H 
OW 9423H 

3-7 



Variables and Initialization 8086 Assembly Language 

3-8 

which is then stored as 65H 87H 23H 94H, or 

6SH 
87H 
23H 
94H 

in order of increasing addresses. (However, a name can be used, as shown early in 
this chapter, under initializing with expressions.) 

NOTE 

The DD command is often used to create space for addresses, or rather that 
pair of words called the offset and the segment, representing an 8086 ad
dress (see Chapter 1 on addressing). By 8086 convention, a pair of words 
representing an address always has the offset first and the segment last (e.g., 
as used by the LDS command, or PUSH of a "long" value). By convention, 
then, 87~5H in the pair of words above would be considered the offset value 
of such an operation, and 9423H the segment value. 

This reversal of bytes in memory is usually only important when reading dumps of 
memory, e.g., in debugging. In most other cases, such as MOVing such quantities, 
the hardware automatically compensates appropriately for this convention and you 
need not pay any attention to it. For example, the sequence: 

LOC1: MOV AX, 'NO' 
LOC2: MOV MEMWORD, AX 
LOC3: MOV ex, MEMWORD 
LOC4: MOV MORWORDS, ex 

operates as follows: 

At LOCI, AH is filled with 4E representing N, and AL gets 4F, representing O. 

4E 4F 
AH AL 

At LOC2, the low-byte of MEMWORD is filled with 4F, high-byte gets 4E: 

4FH 
4EH 

or 

4F 4E 
10 hi 
MEMWORD 

At LOC3, BH gets 4E and BL gets 4F. 

4E 4F 
BH BL 

At LOC4, the low-byte of MORWORDS gets 4F and its high byte gets 4E: 

4FH 
4EH 

4F 4_E 
10 hi 
MORWORDS 



8086 Assembly Language Variables and Initialization 

There is one kind of situation where it is important to remain aware of the memory 
reversal: when you sometimes treat the 2 bytes in a word as individual bytes. For ex
ample, the sequence: 

VECTORB LABEL BYTE ; assigns a 2nd name to next 
; location, but with type "byte" rather than type 
; "word", permitting access by byte-(see Chapter 4) 

VECTOR DW 1234H 
o 
o 
o 

MOV AL,VECTORB 

will put 34H into AL, not 12H. 

OW and 00 Character String 

2-byte strings (but none longer) can be used with DW or DD, but the convention of 
reversed order must be remembered. An example: 

SIGNAL1 
SIGNAL2 

DW 
DW 

'GO' 
'NO' 

are each interpreted by the assembler as a 2-byte number, namely the ASCII value 
for the characters. ASCII for G is 47H, for a is 4FH, N is 4EH. Thus the DW com
mands above are equivalent to: 

SIGNAL1 
SIGNAL2 

DW 
DW 

474FH 
4E4FH 

These will be stored with the least significant byte first in memory, at the lower
addressed location: 4FH 47H 4FH 4EH, or 'OGON'. 

When used in initializing word or double-word variables, one-character strings 
follow the convention of being filled out by zeros, since they fill only 1 byte of the 2 
byte (DW) or 4 byte (DD) field. For example: 

SIGNAL3 
SIGNAL4 

DW 
DD 

'K' 
'P' 

are interpreted as being filled out with numeric zeros as above; the following pairs of 
commands are totally equivalent to the pair above: 

SIGNAL3 
SIGNAL4 

SIGNAL3 
SIGNAL4 

DW 
DD 

OR 

DW 
DD 

4BH 
50H 

004BH 
0050H 

The convention is then followed, storing the least significant byte in the lower
addressed location of each name, so that 4BH becomes 4BH OOH and 50H becomes, 
for a double-word quantity, 50H OOH OOH OOH. 

3-9 



Variables and Initialization 8086 Assembly Language 

3-10 

Some Attribute Operators (Length, Size, Type) 

Recall the definition of LINE 1 : 

LlNE1 DB 'THANKS A LOT' 

If you were constructing messages later on in your program, it could be important to 
know the length of the string pointed at by LINEI. The operator LENGTH provides 
this function, e.g. the instruction 

MOV AX, LENGTH LlNE1 

would move 12, or OOOCH, into the accumulator. (In many earlier assemblers, 
the capability achieved in this one line would have required the use of 2 labels and a 
subtraction.) 

Similarly, after defining variables using DB, DW, and DD as in the examples above, 
you will of course use them in instructions. In many cases it will be necessary to 
know how they were originally defined, in terms of the unit of definition and how 
many were defined there, in order to point to the correct locations for picking up 
data or transferring control. Lists, loops, and arrays of various kinds will require 
precise pointers to achieve your intentions. 

Naturally, you could keep track of whether a name represented a byte or word quan
tity by using a master list, or later in the project by using the listings to look up the 
required information. However, the assembler tracks this automatically for you. 

It uses the implicit type of your variables to select the correct machine instruction to 
generate, and if you code instructions inconsistent with the data definitions used, the 
assembler will flag this as an error. It also provides special operators for use in ex
pressions which need type information. 

These operators are especially useful when you are creating (or calling) generalized 
procedures which are designed to provide the same process for whatever parameters 
are sent. 

It is also a better programming practice to use a name or an expression rather than 
an explicit number in many contexts. A name is both easier to understand when 
reading the listing, and easier to modify later if the need arises, since its single defini
tion (or change) then applies to every usage in the program. 

The assembler operators SIZE, LENGTH, and TYPE provide the above 
capabilities. TYPE tells how many bytes are in the basic unit defined, i.e., TYPE 
LINEI is 1 because the basic unit is a byte. TYPE SIGNAL3 is 2 because the basic 
unit is a word, or 2 1;>ytes. TYPE SIGNAL4 is 4, for the double-word unit. 

SIZE tells how many bytes are defined by the entire line where the name is declared, 
whereas LENGTH tells how many of the basic units were used. In the following 
declaration, 

PATH1 DW 1234H,5678H,OABCDH 

3 words are initialized, the first pointed to by the name PATH I. 

TYPE PATHI is 2, meaning the basic unit is a word. LENGTH PATHI is 3, 
because 3 units were allocated and initialized. SIZE PATHI is 6, since 6 bytes are re
quired to store 3 words. For LINEI, defined in bytes, LENGTH LINEI = SIZE 
LINE!. 



8086 Assembly Language Variables and Initialization 

The general formula is: 

SIZE name = LENGTH name * TYPE name. 

One use of SIZE is to check that an index or subscript does not exceed the extent of 
the table or array it is used with. 

One use of TYPE is to increment or decrement a loop counter or index by the correct 
number of bytes to point to the next item in a list. In a list defined as bytes, i.e., 

LlST_EXMPL DB 500 DUP(13,21,34) 

the correct increment is 1. For words, it would be 2, for double-words, 4. 

The DUP features enables one directive to declare and initialize multiple units of a 
given storage type, e.g., LIST_EXMPL above. Three initial values are given, to be 
duplicated 500 times, for a total of 1500 bytes. The name of the first byte is 
LIST _EXMPL . 

If you think of the 1500 bytes as a list or an array, then it makes sense to think of ac
cessing list elements using an index or subscript. SI (or DI) is the usual index used 
following the variable name, e.g., 

LIST _EXM PL[SI] 

When SI is 0, the first byte is addressed. 
When SI is 5, the sixth byte is addressed. 

The additional examples below may help clarify the operators used above, and also 
further show the use of the DUP feature. 

Examples: 

1. ZERO_ARRAY DW 1000 Dup (0) 

This initializes a block of 1000 words to 0, or 2000 
zeroes. 

TYPE ZERO_ARRAY = WORD = 2. 
LENGTH ZERO_ARRAY = 1000. 
SIZE ZERO_ARRAY = 2000. 

2. BUFFER DB 256 DUP (' ') 

This causes BUFFER to be an array of 256 bytes, each 
containing a blank. 

3. FIB DW 1,1,100DUP(?) 

This initializes "FIB" to be a word array with initial 
values 1, 1, ?, ?, .... with LENGTH FIB = 102 and 
SIZE FIB = 204. As bytes, the values are 
1,0,1,0,?,?,?,?,?, ... 

4. ALT DB 50 DUP (0,1) 

This initializes "ALT" to 50 repetitions of 0, 1; 
i.e. 0, 1,0,1, ..... LENGTH AL T = 100. 

3-11 



Variables and Initialization 8086 Assembly Language 

3-12 

5. The size operator is very useful for strings: 

s1 DB size s1 -1, 'this string has 29 characters' 
s2 DB size (s2) -1, '123456789012345678901234567890', '32' 

using the size operator allows for automatic initialization of the byte before 
the string to the number of bytes in the string. Size sl is 30, size sl - 1 is 29. Size 
s2 is 33, size s2 - 1 is 32. 

Note: Recall that "LENGTH NAME" is the length of the block in terms of its con
stituent units. This is most useful for controlling loops, etc. It is sometimes useful, 
however, to know the length of a block in terms of some standard units, usually 
bytes. This is provided by the Size attribute. 

Record Definition 

Records may be used only in codemacros which are described in Chapter 7. They are 
described here because they act to allocate storage in the codemacro. A record is a 
map or template you define. You may then easily allocate and initialize storage later 
in this format. The template itself has no storage allocated to it. When you use its 
name as the operation field of an instruction, you cause storage to be allocated 
there, at that time, according to the definition in the template. This may include 
defaults to initialize each field individually when that field is not given a value in the 
actual invocation of the record. 

The format of the RECORD directive is: 

name REGORD field_1 ,field_2, ... 

where the fieldnames have the form 

field name: length_expression [= other_expression J 

Such a declaration defines "name" to be a RECORD, packed into a byte or word 
depending on the number of bits in the whole definition, i.e., the number of fields 
and their length. 

Each field is defined by coding its name, a colon, and an expression giving its length 
in bits. The only optional parameter is the "= other_expression", which may be 
specified after the field-length, to provide default initialization values. If the in
itialization value provided is too large, an error is reported. 

The maximum number of bits in a RECORD is 16, the minimum, 1 bit. The 
operator WIDTH of a record gives its width in bits, i.e., the sum of the values of 
each field-length expression. The SIZE of the RECORD is defined as the number of 
bytes needed to hold it, as follows: 

SIZE EXAMPLE_REG = 

1 if WIDTH EXAMPLE_REG is from 1 to 8 bits 
2 if WIDTH EXAMPLE_REG is from 9 to 16 bits 

Once defined as above, the record's "name" can be used for allocating and initializ
ing storage. The manner of doing this is similar to using DB, DW, or DD, with a few 
extra options and consequences, as explored below. 

Each "fieldname" can be used in expressions or instructions as the shift count 
needed to right-justify the field. "MASK fieldname" is defined as that mask 
necessary to access the field in its original position. (The dot usage of record-



8086 Assembly Language Variables and Initialization 

fieldnames is not discussed here. This construction, NAME.RECFIELD, is 
allowable only in CodeMacros and is discussed under that heading in Chapter 7.) 
The examples may serve to make this clearer. 

Examples: 

RECORD FREE:1, EMPTY:1, INDEX:14 

The above RECORD declaration for HASH_ENT will result in creating symbol 
values as follows: 

FREE = 15 
EMPTY = 14 
INDEX = 0 

MASK FREE = BOOOH 
MASK EMPTY = 4000H 
MASK INDEX = 3FFFH 

The values on the left are the shift counts you could use to right-justify those fields if 
you were using them in subsequent instructions. The values on the right are the 
masks needed to extract or test those fields directly from the record at V AR_ONE 
using a logical AND or TEST instruction. Notice that WIDTH HASH_ENT = 16, 
SIZE HASH_ENT = 2. 

To store the EMPTY field of V AR_ONE in the empty field of V AR_ TWO, you 
could use the following instruction sequence: 

MOV AX, VAR_ONE 

AND AX, MASK EMPTY 

MOV BX, VAR_ TWO 
AND BX, NOT MASK EMPTY 
OR AX, BX 

MOV VAR_ TWO, AX 

; moves word at VAR_ON E into 
; accumulator 
; AN Ds to accumulator 
; 0100000000000000 

; cleans VAR_ TWO's EMPTY field 
; preserves the new EMPTY field 
; and other prior contents 
; moves acc. contents into word 
; atVAR_TWO 

The field named EMPTY can be tested by using: 

TESTVAR_ONE, MASK EMPTY 

This sets the zero-flag (ZF) to according to that field of VAR_ONE, i.e., ZF 
becomes 1 if the field is zero. 

The operators SIZE, WIDTH, MASK, plus the automatic definition of the 
fieldnames as the shift counts, provide powerful capabilities that may not be im
mediately evident. They permit record manipulation in loops without explicitly 
coding a variety of specific numbers, such as the number of bytes holding the 
record, or the position or width of individual fields, or of the entire record. 

Instead of numbers, you code the names or "operator name", as in FREE or MASK 
EMPTY or SIZE HASH_ENT. This saves figuring out such sizes or shifts or masks 
for every field and record you use. It also creates code sequences which can apply to 
records of widely varying content and structure, since the sizes, shifts, or masks do 
not appear as fixed numbers but rather as operations which depend on the record 
definitions. 

This makes it much easier to construct generalized sequences or procedures which 
can be used without modification in greatly dissimilar applications, i.e., those which 
process greatly dissimilar data in functionally similar ways. 

3-13 





CHAPTER 41 
ASSEMBLER DIRECTIVES 

This chapter describes the assembler directives used to control the 8086 assembler in 
its generation of object code. 

Generally, directives have the same format as instructions. Assembler directives are 
grouped as follows: 

• LOCATION COUNTER AND SEGMENTATION CONTROL 
SEGMENT lENDS 
ORG 
GROUP 
ASSUME 
PROCIENDP 
LABEL 

• SYMBOL DEFINITION 
EQU 
PURGE 

• PROGRAM LINKAGE 
NAME 
PUBLIC 
EXTRN 
END 

• MEMORY RESERVATION AND DATA DEFINITION 
DB (discussed in Chapter 3) 
DW (discussed in Chapter 3) 
DD (discussed in Chapter 3) 
RECORD (discussed in Chapter 3) 

Segment Definition: 
The Segment and Ends Directives 

Every instruction and every variable is contained in a block of locations called a seg
ment. You create a segment and a segment-name with the segment directive, i.e., 

name1 SEGMENT [align-type] [combine-type] ['classname' ] 

After such a SEGMENT directive, all instructions or data (except embedded 
segments) are considered to be in the 'namel' segment, until a directive of the form 

name1 ENDS 

is encountered. This ends the definition of segment "namel" for the moment. The 
same name field is required on both directives. The parameters after SEGMENT 
must be in the order shown. (Embedded segments are entirely separate, that is, their 
instructions or data are not considered to be in the outer segment at all, but only in 
the local embedded segment. Examples below.) 

As shown above, there are 3 optional parameters in this directive, specifying at
tributes of the segment: 

1. an alignment type, called align-type above, with 5 choices; 

2. a combinability type, called combine-type above, with 5 choices; and 

4-1 



Assembler Directives 8086 Assembly Language 

4-2 

3. a classname of up to 40 characters which can be an arbitrary name you choose, 
enclosed in single quotes. Segments with identical classnames will be located 
together in memory unless more stringent controls are specified to LOC86 (or 
QRL86). 

If more than one parameter is specified, they must be in the above order. 

Alignment Choices: 
PARA, BYTE, WORD, PAGE, INPAGE 

Introductory Considerations 

The choice of an alignment is essentially a directive to the locating facility. The 
assembler must use this directive to create the information needed later by the link
ing and locating facilities to align your segments in the manner you specify. 

The 5 alignment types allow you to state the boundary where you want this segment 
located. This boundary, like all addresses, has 2 parts-a paragraph number and an 
offset. The paragraph number becomes the value of the segment name. (See Chapter 
1 on Addressing.) 

It is useful to think of every address as such a pair of numbers, i.e., 1234H, 0056H 
means the address 12396H, formed by first shifting the paragraph number left 4 bits 
or 1 hex digit (1234H becomes 12340H), and then adding the offset of 0056H: 

12340H + 0056H = 12396H. 

The displacement of a segment boundary above the paragraph number requires 
some explanation. To the assembler, a segment name automatically means the 
paragraph number where the defined segment begins, i.e., there is no offset or the 
offset is zero. In this manual, a segment name can sometimes also mean the extent of 
or the contents of the defined segment, going forward into higher memory addresses 
for any number of bytes from 0 up to a maximum of 64K-l bytes. For example, we 
may speak of moving a segment into a segment register, meaning the paragraph 
number where the segment begins, or we may ask whether some variable is in the 
segment, meaning defined as part of that segment's contents. 

In your assembly language source program, all addresses in a segment are relative to 
the segment's beginning, i.e., a paragraph number with no offset. Each segment's 
beginning operates as relative-zero, so that subsequent definitions of labels or 
variables within the segment occur at relative locations 0, 1, 2, .... 

In your source code you must MOV the segment's beginning into a segment register, 
using its name as in: 

MOV AX, SEGNAM44 
MOV ES, AX 

The 8086 hardware can then automatically form the correct complete addresses for 
the variables or labels you have used in your program code. It combines the 
paragraph number from the segment register with the offset of the variable or label, 
using the built-in shift-and-add described in Chapter 1 on Addressing. 

However, as LOCATE is putting your modules into memory, substituting absolute 
addresses for relative addresses, segments of varying length will end at varying 
locations. ' 



8086 Assembly Language Assembler Directives 

If the next segment to be LOCATEd is placed on a paragraph boundary, i.e., with 
no displacement, then all the relative addresses that were defined in the source code 
for that segment are correct absolute offsets from that paragraph. There may be a 
few bytes unused between the end of the last segment and the beginning of this one, 
a loss of from 0 to 15 bytes since paragraphs occur every 16 bytes. This situation is 
the normal default specification that you get if you say nothing, or which you may 
code explicitly by writing PARA as your align-type on the SEGMENT directive. 

The assembler makes it possible for you to instruct LOCATE to pack your code 
more tightly into the memory space. Part of the job of the LOCATE program is to 
fit logical segments into memory in the most space-efficient manner consistent with 
your specified instructions to it. 

The actual beginning of a segment could be made to be the very next byte after the 
end of the previously located segment. (This will be the case if your align-type is 
BYTE.) If this is done, the segment has one chance in 16 of falling exactly on a 
paragraph boundary, and generally will not. 

THIS IS WHERE THE DISPLACEMENT OF A SEGMENT COMES IN. The seg
ment's paragraph number will be the nearest paragraph boundary at or below its ex
act location. Since the beginning is now NOT on a paragraph boundary, that begin
ning place has a displacement (offset). This offset is the distance in bytes from the 
selected (nearest-lower) paragraph number. Since paragraphs come every 16 bytes, 
this offset will be a number between 0 and 15, inclusive. 

The LOCATE program establishes the paragraph number and displacement for the 
segment's beginning. It then adds the segment's displacement to the offset of every 
location referenced within that segment. This achieves the desired result, that all ad
dresses used within the segment are displacements from that segment's paragraph 
number. The value of the segment's name is always that paragraph number. 

Specific Align-Types 

The default alignment type is PARA. The segment will begin at a location whose ad
dress is divisible by 16 decimal, i.e., whose value in hexadecimal has a last digit of 
zero. This implies an automatic, initial offset of zero for segname. 

PAGE means the boundary address ends in hex 00, e.g., 76500H. This implies that 
the paragraph number itself ends in zero and that the offset, as above for PARA, is 
zero. 

BYTE would mean any offset is acceptable. WORD implies an even offset (lowest 
bit of paragraph number =0) so that the full beginning address of the segment falls 
on an even address. Accessing words on even boundaries requires only 1 memory 
cycle, whereas if the boundary is odd, 2 cycles are needed to access word quantities. 
If your word-variables within this segment are defined on even boundaries, i.e., hex 
addresses ending in 0, 2, 4, 6, 8, A, C, or E, then every access to such a variable will 
take only 1 cycle. 

INP AGE means that this entire segment must be located between one page bound
ary and the next, e.g., between 56700H and 56800H. It must not be allowed to 
overlap a page boundary. Thus its size cannot exceed 256 bytes. This specification is 
usually relevant only to converting some types of programs designed for earlier 
INTEL microcomputers, using the 8080/8085 assembly language. 

If you do specify an align-type, it should appear on the first definition of the seg
ment. You can omit it on subsequent SEGMENT directives for this segment, but 
you may not contradict that first specification. 

If you omit it on the first SEGMENT directive for this segname, you automatically 
invoke the default, PARA. Later SEGMENT directives for this segname may 
specify this default, but naming any other explicit align-type will cause an error. 

4-3 



Assembler Directives 8086 Assembly Language 

4-4 

Combinability Types: (NONE),PUBLIC, COMMON, 
AT expression, STACK, MEMORY 

The combine-type parameter on the SEGMENT directive gives information about 
how this segment may be combined with others when linked and located into ab
solute addresses. 

If no combine-type is given, then no combining is performed, and the segment is 
local to this module or program only. This is the default, and it has certain code op
timization advantages as described in the section titled "Models of Computation", 
Chapter 8. 

If you do specify a combine-type, it should appear on the first definition of the seg
ment. You can omit it on subsequent SEGMENT directives for this segment, but 
you may not contradict that first specification. If you omit it on the first SEGMENT 
directive for this segname, you automatically invoke the default. Later SEGMENT 
directives for this segname may specify this default, but naming any other explicit 
combine-type will cause an error. 

There are 5 choices for combine-type, described in the paragraphs below. 

PUBLIC 

If PUBLIC is specified, then this segment will be concatenated with others of the 
same name encountered during linkage with other modules, i.e. all such segments 
will ultimately be contiguous. Their order is not affected by this directive but rather 
by a Relocation and Linkage (R&L)-command or the R&L default, which uses their 
order in the files being linked. 

COMMON 

Specifying COMMON causes this segment to share the identical memory locations 
with all other segments of the same name from other modules. This means that dif
ferent labels or variable names (from different modules) could be applied to the 
same address. 

For example, say in one module of your program (MODULEl) you declare a 
segment: 

GLOBAL_DATA SEGMENT COMMON 

PARAM1 DB 34H 
ASSOC1 DB 82H 
PARAM2 DB 61H 
ASSOC2 DB 75H 

GLOBALDATA ENDS 

Then in another module, (MODULE2) assembled separately, you define 
GLOBAL_DATA as: 

GLOBALDATA 

ITEM1 
ITEM2 

DW 
DW 

SEGMENT 

? 
? 

GLOBALDATA ENDS 

COMMON 



8086 Assembly Language Assembler Directives 

Then exactly 4 bytes of memory will be allocated to GLOBAL_DATA, but how 
they are accessed will depend on which name is referred to. Each set of names is 
known only within its own module unless PUBLIC and EXTRN directives are used 
(explained later in this Chapter). 

A MOV of PARAMI or ASSOC2 in MODULE 1 will simply get the appropriate 
byte, as you would expect, namely 34H or 75H respectively. However, a reference to 
ITEM2 in MODULE2 will pick up the full word 7561H (and a reference to WORD 
PTR ASSOCI will pick up 6I82H, as discussed in Chapters 3 and 5). 

AT Expression 

This phrase specifies that the segment is to be located at the paragraph number com
puted by the assembler as the value of the expression. The pair of numbers express
ing the absolute address of the segment will be <paragraph number,O> i.e., no offset 
from that paragraph boundary. For example, if you wrote AT I234H, the segment 
would be located at absolute address 12340H. If you needed it to begin at absolute 
12345H, the first line after this segment directive must be ORG 5. (See ORG in next 
section.) 

STACK 

This combine-type is related to the 8080 STKLN directive. It will cause combining of 
the segment with others of the same name in other modules by overlay rather than 
concatenation. This means instead of one starting where the last one stopped, all 
begin at the same base address. Stack segments are overlayed against high memory. 
For example, suppose in one module you define: 

STACK_SEG SEGMENT STACK 
DW 20DUP (?) 

STACL TOP LABEL WORD 
STACLSEG ENDS 

and in another you have: 

STACLSEG SEGMENT STACK 
DW 14DUP (?) 

TOP_STACK LABEL WORD 
STACLSEG ENDS 

overlaying against high memory means that the locate program will combine these 
two pieces of ST AC~SEG as follows: 

-------.OOOOOH 

_55 

RANGtFOR5P 

+ _5P INITIALLY HERE 

L-_____ .... OFFFFFH 

4-5 



Assembler Directives 8086 Assembly Language 

4-6 

Note that the length of the combined segment is 34 words, the sum of the lengths of 
the pieces; but that the top-of-stack variables "stacLtop" and "top_stack", 
whose names are local to each module, are assigned the same offset (680 = 44H 
bytes) at the high end of memory. You can set the stack segment base and the stack 
pointer by the instructions (in module 1): 

MOV AX, STACK_SEG 
MOV SS, AX 
MOV SP, STACK_TOP 

STACK is a special sort of segment, intended for use as temporary storage and 
retrieval using PUSH, POP, CALL, and RETurn, for passing parameters and 
return addresses of procedures and the like, working in a last-in-first-out (LIFO) 
fashion. 

During execution, stacks grow downward as they increase, from higher memory ad
dresses to lower addresses. Their usage is a bit like a stack of dishes: PUSH SI puts 
the word in SI on top of the stack, and POP DI pulls it off the top and puts it into 
01. (See also Appendix D) 

The storage reserved for combined stack segments is the sum of the individual 
segments, since the expected usage from each source could occur after the other had 
filled its stack and not yet emptied it. 

MEMORY 

MEMORY works similarly to COMMON, but the segment is located above all other 
segments in memory. 

There should be only one segment with this combine-type per group of modules be
ing linked together, since only the first one encountered by R&L will be given the 
MEMORY interpretation. Thus if MEMSEG is the first segment with the 
MEMORY combine-type encountered by R&L, it and any segment named 
MEMSEG in other modules will be located above all others in high memory. Other 
segments with MEMORY as their combine-type will be treated as if COMMON had 
been specified instead, and will not be located above all others. A warning will be 
issued by the LOCATE program. 

NOTE 

Although STACK and MEMORY are used as keywords above, they are still 
available as user-variable-names. Programs written in earlier Intel assembly 
languages used STACK to mean the first address of the stack, and 
MEMORY to mean the first byte of memory past the end of the program. 
Earlier assemblers passed along such keyword usage to the LOCATE pro
gram which filled in the final addresses. In ASM86, these keywords cannot 
be used for this identical function without additional coding. 

Embedded Segments, 

If you use a segment name "name1" again after closing that segment with an ENDS 
directive, the code and data you write then will automatically follow the lines written 
earlier in segment "name1". One sequence that causes this is 



8086 Assembly Language Assembler Directives 

ROUTIN E_FIRST SEGMENT 
o 
o 
o 

A: 0 

ROUTINLFIRST ENDS 

OTHER_ROUTINES SEGMENT 
o 

; code here is in segment 
; ROUTINE_FIRST 

o ; code here is in segment 
o ; OTHER_ROUTINES 
o 

OTHER_ROUTINES ENDS 

ROUTINE_FIRST SEGMENT 
o 
o 
o 
o 

ROUTINE_FIRST ENDS 

; code here is in segment 
; ROUTINLFIRST and 
; follows label "A" 

Another way this implicit concatenation happens is with a new segment directive, a 
sequence such as: 

PROC1DATA 

PROC1DATA 

PROCESS_1 

SEGMENT 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

ENDS 

SEGMENT 
o 
o 
o 
o 

ENDS 

; code here is in segment 
; PROCESS_1 

; code here is In segment 
; PROC1DATA 

; code here is in segment 
; process_1 and directly 
; follows the last line 
; of the PROCESS_1 
; block interrupted by 
; the definition of 
; PROC1DATA 

An embedded segment must end before the outer segment ends. Thus if the 

PROC1DATA ENDS 

directive came AFTER the 

PROCESS_1 ENDS 

directive, this overlapping of segments would be flagged as an error. 

Code outside such SEGMENT lENDS pairs will automatically be put in the default 
segment named "??SEG" defined by the assembler. (This segment is paragraph
relocatable and PUBLIC. 

4-7 



Assembler Directives 8086 Assembly Language 

4-8 

When used in other assembler instructions, e.g., 

MOV AX, Segnam 
MOV ES, AX 

this name will automatically have the value of the paragraph number where the seg
ment begins. If a segment of identical name appears in another module that is later 
linked together with your program, the segments will be combined. 

ORG Directive 

The assembler's location counters perform a function during assembly similar to 
that of the instruction pointer during execution, namely, to tell the assembler the 
next memory location available to be assigned to instruction or data. 

The first occurrence of the directive: 

name1 SEGMENT 

defines the beginning of segment namel. A new location counter is established and 
set to zero. This location counter is normally incremented automatically by 1 for 
each byte assigned. An ENDS directive for this segment freezes this location counter 
until the segment is re-opened, if ever, for continued assembly by a later "namel 
SEGMENT" directive. At that point this location counter again begins counting the 
bytes assigned, beginning at the number last attained. 

The currently active location counter can be altered by the ORG (origin) directive. 

Code generated outside of all user-defined segments is placed in a special assembler
defined segment called ??SEG, which is PUBLIC. ORG statements outside of user
defined segments act upon the offset within that segment. 

The ORG directive sets the location counter for the current segment being defined to 
the value specified by the operand expression. 

Opcode Operand 

ORG expression 

Note: This directive may NOT have a label, e.g., SWITCH: ORG 14 is 
INVALID. 

The location counter is set to the value of the operand expression, which may not be 
negative. The operands may be absolute numbers or relocatable numbers in the cur
rent segment. Assembly-time evaluation of ORG expressions always yields a modulo 
64K address i.e., in the range 0 through 65,535. Any symbol in the expression must 
be previously defined. The next instruction or data item is assembled at the specified 
address. 

In most modules, an ORG directive is unnecessary. If no ORG directive is included 
before the first instruction or data byte in a segment, assembly begins at location 
zero relative to the beginning of the segment. 

Your program can include any number of ORG directives. Multiple ORG's need not 
specify addresses in ascending sequence, but if you fail to do so, you run the risk of 
instructing the assembler to create a second block of code for the same addresses as 
some previously assembled portion of the program. When loaded, one of the blocks 
will have overwritten the other. 

See also the discussion of the $ sign in Chapter 5. 



8086 Assembly Language Assembler Directives 

Example: 

Assume that the current value of the location counter is OFH (decimal 15) when the 
following ORG directive is encountered: 

ORG OFFH ORG assembler to location 
OFFH (decimal 255) 

The next instruction or data byte is assembled at location OFFH. 

G roup Definition 

This directive informs the assembler that the segments named in the operand list are 
intended to lie within the same 64K of memory. The group is given the specified 
name, and this name can be used in the same fashion as a segment name. One ad
vantage to using groups is tighter code generation, since jumps within the group, for 
example, require only 16 bits even across segment boundaries. The assembler cannot 
check that all the segments named will fit into 64K, since some may be external or 
combined with others, but it causes such a check to be made by the Relocation and 
Linkage (R&L) facility. If they don't fit, you get the error then. This directive does 
not influence where segments are loaded by LOC86 (or QRL86). The classname 
parameter in the SEGMENT directive does that. 

The form of this directive is: 

name GROUP segnam1,segnam2, ... 

where segnaml etc. can be either the name field of a SEGMENT command or the 
expression "SEG variable-name", or "SEG label-name" which returns the segment 
in which that name is defined. This is particularly useful for forward-referenced or 
external names. 

Example: 

CODE_SET GROUP I_O_ROUTINES, INIT_PROC, SEG FIRST_RECS 

DATA_SET GROUP INVOICE_REC, ACCT_REC, GEN_LDGR_DATA 

When you load a segment register with a group name and put that information in a 
nearby ASSUME statement, then symbols from all segments in that group can be 
addressed using that one segment register. The offset used will be the distance from 
the group base-address. That usually will not be the same offset as the symbol's 
original offset in its segment, due to (possibly) other segments in between. This 
means the address you use for debugging will be from the LOCATE output, rather 
than the assembly output. 

The relevant ASSUME statement could be simply: 

ASSUME CS:CODE_SET, DS:DATA_SET 

The order of the segments in the group command is not necessarily the order in 
which those segments will eventually be located in memory. Furthermore, a given 
segment name can appear in more than one GROUP command. There is no 
automatic method that guarantees an ordering which will satisfy all constraints im
posed by various ASSUME and GROUP commands. You must exercise some care if 
you choose to reference several segments as a named group, from a single register. 
Special care is required to make multiple directives consistent. 

4-9 



Assembler Directives 8086 Assembly Language 

4-10 

If what you are after is not so much that the segments be addressable from a single 
segment register, but rather that they simply be near each other in memory (con
tiguous), then the class-name feature of the SEGMENT command achieves this goal 
more easily. However, it causes no check that the segments in the class lie within a 
64K region of memory. 

A further caution on groups is that they may NOT be forward-referenced (see 
Chapter 8 for discussion of Forward-References). 

Assume Directive 
Form: ASSUME segreg:segnam [,segreg:segnam, ... ] 

or 
ASSUME NOTHING 

where segreg means one of: DS, ES, CS, SS 

Example: 

segnam means any segment name, 
any previously defined group name, 
the expression SEG variable_name or SEG label_name, 
or the keyword NOTHING 

ASSUME DS:DATAWORDS_SEGMENT_NAME, 
& ES:STRING_SEGMENT _NAME, 
& CS:NOTHING, CS:CODE_SEG_NAME 

Note: This directive may NOT have a label, e.g., 

CASE1: ASSUMECS:S4 is INVALID. 

It is essential that the assembler be informed of the execution-time environment in 
which the generated instructions will run. This environment consists of the expected 
contents of all four segment registers. The ASSUME directive tells the assembler 
what addresses will be there. The assembler uses this information to check that the 
variables and labels you refer to are addressable via the segment registers and to 
generate segment prefix bytes for variables whenever this is necessary. 

The assembler-generated instructions depend on these expectations. Every memory 
address is actually a pair of 16-bit numbers, the offset and the segment-base-address 
(see Chapter I). Nearly every instruction that refers to memory uses the offset only, 
expecting the segment-base-address to come from a segment register. If the run-time 
contents of that register are not as ASSUMEd at assembly-time, the correct run-time 
memory address is unlikely to be computed using the specified offset with that 
register. (That is, examples can be constructed wherein the correct address will be 
used, but the vast majority of cases result in a wrong address.) Therefore, an 
ASSUME directive is required before the use of segment registers, and before each 
point in the program where a run-time change to a segment register will occur. 

Any references to memory or stack will use the DS, ES, or SS registers. These 
registers must therefore appear in an ASSUME prior to the code that will access 
memory. Similarly, instruction labels (including procedure names) implicitly use the 
CS register, which must therefore appear in an ASSUME statement prior to any 
code that refers to labels. If a segment register will not be used in a module or a seg
ment, then ASSUME NOTHING should be specified for that register. 

This directive is especially critical in the case of CS, because the offsets of locations 
containing instructions are always relative to CS. Instruction offsets are contained in 
the Instruction Pointer (IP), which determines the next instruction to be executed. In 



8086 Assembly Language Assembler Directives 

most cases, it will only be valid if CS contains the segment-base-address ASSUMEd 
during assembly for that instruction. (Exceptions include self-relative jumps and 
register-only instructions.) If CS contains a different value, unexpected results are 
very likely to occur, untraceable without great effort. 

For this reason, the assembler keeps track of the CS: assumed value for each label 
and instruction. It prohibits intrasegment/intragroup (NEAR) transfers to labels 
with a CS: assumed value different from the transfer instruction's CS: assumed 
value. 

However, this prohibition naturally does not apply if the transfer replaces the con
tents of CS, as in an intersegment ("long" or FAR) jump or call. All subsequent 
uses of CS will then of course refer to the new value only. A new ASSUME directive 
is required at the target label, to inform the assembler of the new values which will 
have been placed in the segment registers during execution up to that point. 

By informing the assembler as to the run-time contents of the segment registers, the 
ASSUME directive also allows you largely to avoid coding explicit segment prefix 
bytes. 

In the absence of an ASSUME directive, all memory references to data must ex
plicitly name the segment register to be used as the base address for accessing that 
data. The assembler requires this information in order to generate any prefix bytes 
necessary for the machine instructions it creates from your source code. For ex
ample, if SOURCE and DEST are defined in segment GLOBAL and FILL in seg
ment PARAMS, then to put DEST~SOURCE+ 1 into FILL, you write: 

GLOBAL SEGMENT 
SOURCE OW ? 
DEST OW ? 

GLOBAL ENDS 

PARAMS SEGMENT 
FILL OW ? 

PARAMS ENDS 

CODE SEGMENT 
ASSUME CS:CODE 

MOV AX, PARAMS 
MOV DS,AX 

MOV AX, GLOBAL 
MOV ES, AX 

;following code assumes values were assigned to source and dest 

MOV AX, ES:DEST 
SUB AX, ES:SOURCE 
INC AX 
MOV DS:FILL, AX 

CODE ENDS 

As you can see, using explicit segment prefixes, ES points to GLOBAL and DS 
points to P ARAMS. 

4-11 



Assembler Directives 8086 Assembly Language 

4-12 

The overrides ES: and DS: are required for every reference to variables in those 
segments. Data in the stack or code segments would similarly require SS: or CS: 
prefixes in your source lines. 

The ASSUME directive allows you to tell the assembler once, rather than on each in
. struction, which segment registers are to be used for such references to variables. 
Thus the following sequence is equivalent to the above: 

ASSUME CS:COOE, OS:PARAMS, ES:GLOBAL 
MOV AX, PARAMS 
MOV OS,AX 

MOV AX,GLOBAL 
MOV ES,AX 

MOV AX,OEST 
SUB AX, SOURCE 
INC AX 
MOV FILL, AX 

As mentioned above, an ASSUME is needed in front of each block of instructions 
where a segment- register is changed, since the flow of control during execution can 
be quite different from the instruction sequence seen by the assembler at assembly 
time in any one. module. 

This means you will not have to code an explicit segment-override byte for variables 
whose segment base-address has been ASSUMEd into any segment register. Using 
ASSUME correctly, you usually do not have to think about segment override bytes. 
The assembler does it for you. 

If the base-address needed for a reference to some variable has NOT been 
ASSUMEd into some segment-register, and there is no explicit override, then the 
assembler flags an error. The ASSUMEd content of each segment register controls 
what is regarded as known and allowed versus unknown and an error. 

Each reference to a data item (variable) or label (code instruction) is checked against 
its initial-declaration-segment and the segments currently ASSUMEd in segment
registers. If the segment containing the referent is ASSUMEd into any segment
register, the assembler will generate the correct instruction to access that referent, in
cluding a segment prefix-byte if necessary. The assembler's choice of segment 
registers depends on the address-expression. 

The address-expression implies a segment register by its use of variables and 
subscripts, i.e., pointer and/or index registers. This correspondence is discussed in 
Chapters 1, 5, and 7 where overrides and the MODRM byte are discussed. 

If a variable appears in the address-expression, then there must be a segment register 
containing that variable's segment-base-address. This is the register used as a prefix 
if one is needed. If only registers are used in the address-expression, then the 
MODRM table tells which segment register is implied (DS for most subscripts, SS 
for those involving BP). 

If that segment name, i.e., base-address, is ASSUMEd in a different segment
register from the default normally used by the relevant hardware instruction, then 
the assembler knows a segment-override prefix-byte is necessary to correctly access 
the given variable. If the needed base address is NOT assumed to be in any of the 
segment-registers, i.e., has not been named in an ASSUME directive, an error is 
reported (unless you coded an explicit prefix-byte as discussed below). 



8086 Assembly Language Assembler Directives 

One way to understand this checking runs as follows: 

a) which segment contains this referent? 

b) has that segment (or a group containing it) been ASSUMEd into a 
segment-register, i.e. into SS, CS, OS, ES ? 

c) if not ASSUMEd, report an error unless the data reference has an 
explicitly-coded segment prefix-byte. 

d) if so ASSUMEd, is that segment-register the one normally used by the relevant 
hardware instruction? 

e) if the ASSUMEd register is the normal default, generate the normal code. 

f) if not, is the default overridable or absolutely required? 

g) if overridable, generate a prefix-byte first, so as to use the correct 
segment-register, and then generate the normal code. 

h) otherwise, report an error. 

ASSUME NOTHING 

The ASSUME NOTHING form of this directive removes all former assumptions as 
to which segment-base-addresses were in which segment-registers. This turns off the 
implicit generation of segment-overrides. The net result is to require you to code an 
explicit segment prefix-byte for every operand. 

If you do not provide the prefix-byte, the assembler will give an error since it is 
unable to verify that the variable is addressable from any segment-register. If the 
assembler were to generate an instruction which used the segment-registers inap
propriately for your expected arrangement of data, you would get unintended, con
fusing, and usually bad results. 

For example, most hardware instructions for references to variables impicitly expect 
to use the (contents of the) OS register as a base: 

MOV AX,DATAWORD 

MOV CX,ARRAY[SI] 

MOV OX,MATRIX[8X+ 7][SI] 

The 8086 hardware would expect these all to use OS unless you code a segment 
prefix-byte. The assembler cannot safely expect all your data to be currently ad
dressable even from the OS register. In the absence of an explicit prefix-byte, the 
assembler must check and supply it from the ASSUME. In the absence of an 
ASSUME, and in the case of ASSUME NOTHING, you must code even the OS as 
an explicit segment prefix-byte. 

Therefore, under the ASSUME NOTHING condition, the correct code for the in
structions above is: 

ASSUME NOTHING 

MOV AX,OS:OATAWORO 

MOV CX,OS:ARRAY[SI] 

MOV OX, OS: MATRIX[8X+ 7][SI] 

Naturally, you would have earlier set BX and SI to the correct values such that they 
pointed to the desired elements in the data segment when used here. 

4-13 



Assembler Directives 8086 Assembly Language 

4-14 

Another example: if you know that DATAWORD is in a segment whose base ad
dress is in SS, and the others are in a segment 'whose base address is in ES, then an 
ASSUME directive could inform the assembler appropriately. Otherwise, in the 
ASSUME NOTHING case, the instructions should appear as follows: 

MOV AX,SS:DATAWORD 

MOV CX,ES:ARRAY[SI] 

MOV DX,ES:MATRIX[BX+ 7][SI] 

The string instructions provide another instructive illustration. In the case of MOYS 
(see Chapter 6), the source operand is normally in the DS segment, and the destina
tion operand must be in the ES segment, i.e., the ES cannot be overridden. Thus the 
instruction sequence 

ASSUME DS:SOURCE_STRING_SEGMENT, ES:DEST_STRING_SEGMENT 

MOV 01, DEST_STRING_INDEX 
MOV SI, SOURCE_STRING_INDEX 
STD ; this sets the direction-flag 
MOVS DEST_STRING, SOURCE_STRING 

moves the byte (or word) pointed at by SOURCE_STRING indexed by SI, in DS, 
to the byte (or word) pointed at by DEST_STRING indexed by 01, in ES, and then 
increments 01 and SI by 1 or 2. 

(The indexing is implicit in MOYS. SI and 01 are not explicitly named. In fact, 
MOYS operates solely by using SI and DI, and doesn't need even the string names, 
but the assembler requires them in order to check type and addressability via the 
ASSUME.) 

If the source string were actually in the stack segment, then a segment-override 
prefix-byte would be necessary, giving the instruction: 

MOVS DEST _STRING, SS:SOURCE_STRING 

In the ASSUME NOTHING case, omitting that SS prefix-byte will cause an error 
message from the assembler. 

Since the ES default cannot be changed or overridden, only an ES: segment-override 
is ever appropriate on the DEST _STRING referent. It is in fact required if the 
variable's segment is not ASSUMEd in ES. 

If SS were the correct segment containing the source-string and the prior ASSUME 
had said: 

ASSUME SS:SOURCE_STRING_SEG 

then the SS segment-override would have been generated automatically by the 
assembler. 

Explicit Segment Prefix-Bytes 

Only 1 segment prefix-byte is permitted in an instruction. 

If you code an explicit segment prefix-byte, e.g. 

MOV AL, ES:DATABYTE 



8086 Assembly Language Assembler Directives 

then the assembler does what you tell it to, rather than checking if it makes sense. 
This means it generates your specified instruction including the override byte you ex
plicitly coded, rather than checking whether the data referent is truly accessible from 
that segment register. 

Example: 

The hardware expects BP to point within the stack segment, i.e., expects to use the 
contents of BP as an offset to the contents of SS in order to form an address. It is 
permissible to use BP as a pointer into the data segment instead, but an override byte 
(DS:) is required, to change which segment register is used to form the address. 

The following code would cause the assembler to generate the needed override: 

ASSUME DS:SEG ARRAY 
o ; seg is described in Chapter 5. 
o 

MOV AX, ARRAY[BP] 
o 
o 

but you might want the code to clearly reflect this usage upon even a casual reading, 
by coding the override explicitly on all such instructions: 

MOV AX, OS: ARRAY [BP] 

Label Definition 

Labels in the most general sense are names for any specific location in memory, i.e., 
for locations that contain instructions or that contain data. Throughout this manual 
a distinction is maintained between "variables", meaning data, and "labels", 
meaning instructions. NEAR and FAR are the two types of labels; the other choices 
below are variable types. 

The LABEL directive can create a name for any location, regardless of its contents 
or intended use, and assign a type to that name. The type determines the legitimate 
uses of the name: 

If the type is NEAR or FAR, then the name is a label per this manual's use of the 
term. It can be used in jumps or calls but not in MOVs or other data manipulating 
instructions. It may not be SUbscripted. 

If the type is BYTE, WORD, DWORD, or some OTHER_ V AR, then the name 
is a variable. It is valid in MOVs etc., but never directly in jumps or calls. (An in
direct jump or call can use a variable (of type 2 or 4). See Chapter 5.) 

The LABEL directive creates a name for the current location of assembly, whether 
data or instruction. 

The format of this directive is: 

name LABEL type 

where "type" has 5 choices: BYTE, WORD, DWORD, NEAR, FAR 

As discussed in Chapter 3, variables (i.e., data names) are created when a name is 
placed on a storage allocation/initialization. For example, 

4-15 



Assembler Directives 8086 Assembly Language 

4-16 

PUFF LABEL BYTE 
DB 21 

is equivalent to 

PUFF DB 21 

Either choice names the current assembly address as PUFF, types it as a byte
variable, and initializes it to 21. 

Naming instructions on the same line requires a colon, e.g. 

TRANS: MOV AX,CX 

which is equivalent to 

TRANS LABEL NEAR 
MOV AX,CX 

A label definition (i.e., for instruction code only, not variables) is allowed only when 
the segment currently being assembled is ASSUMEd to be within reach of the CS 
register. This means you must provide an ASSUME CS:NAME statement, where 
"NAME" is either the name of this segment itself or the name of a group which con
tains the segment. If a group name is ASSUMEd, the label's offset in all references 
will be from the base of the group, and the label's paragraph number will be that of 
the group. To write "name:" is the same as "name LABEL NEAR", due to the 
colon. (See also the NOTE below re: NEAR.) 

However, this colon construction is not legal on the same line as a storage initializa
tion, i.e., ITEM: DW 0 is illegal. Without the colon this would simply define ITEM 
as a word variable initialized to O. If you need ITEM to be a label and not a variable, 
you may put the definition on the prior line by itself, e.g., 

or 

ITEM: 
OW 0 

ITEM LABEL NEAR 
OW 0 

The value of "name" on the LABEL directive will include the current segment and 
offset, i.e., the pair of numbers defining this specific address. It will also carry the 
attribute specified by "type", here NEAR. 

This directive is usually used to attach a second name to a location so that it can be 
referenced in different ways without using the PTR operator. For example, if you 
needed to treat the same area of memory as both a byte and word array, the defini
tion of the array could appear as 

VECTORB 
VECTOR 

LABEL 
OW 

BYTE 
1000DUP (0) 

Future references to it as a byte array would say, e.g., 

ADD AL, VECTORB and for word usage would say 
ADD AX, VECTOR 



8086 Assembly Language Assembler Directives 

This could also be achieved using the PTR operator if it were not too frequent to be 
taxing, writing: 

ADD AL, BYTE PTR VECTOR ; see Ch.5 re PTR 

which alters the type attribute for this reference only. 

An example pertinent to code as opposed to data: you might wish to change the 
distance attribute for a label. Take the case of a label referenced extensively within 
this segment, but also referenced from outside this segment (and outside the group, 
if any). The fact that any references from outside occur forces you to declare the 
FAR attribute. You can, however, define a synonym within this segment with the 
distance attribute NEAR, thereby saving a word for each local reference since only 
the offset value would be needed, and not the segment value. The sequence would be 

PROCESS_ITEMS 
LOCAL_NAME: 

LABEL FAR 
MOV AX, FIRST_ITEM ; any instruction 
o 
o 
o 

This objective could also be achieved using EQU, since at any point in an assembly, 
the following statements are identical: 

name 
name 

LABEL 
EQU 

X 
THISx 

The operator THIS transmits to "name" the current segment/offset pair plus the at
tribute specified by "x", which must be a "type" as above. 

Thus in the example for code above you could have written: 

PROCESS_ITEMS 
LOCAL_NAME: 

EQU THIS FAR 
MOV AX, FIRST_ITEM ; any instruction 

The main utility of the operator THIS lies in expression arithmetic on the current 
location counter, e.g.: 

STAR EQU (THIS FAR) + 1 ; see Ch.5 re THIS 

NOTE 

In assembling your code, the assembler matches the type (of the operands 
you supply) against the type specified in the codemacro definitions which 
make up the legal operations in this language. A NEAR label will match the 
specification Cw (meaning a 16-bit label expression) ONLY within code 
assembled under the SAME CS: assumption as when the label was defined. 
If this CS: assumption is not the same, the NEAR label will not match ap.y 
codemacro specification. See Chapter 2. 

Procedure Definition 

A procedure is a section of ASM86 code which can also be then activated from other 
parts of the program as if it had been encountered sequentially. A CALL statement 
activates the procedure, causing the procedure code to be executed out of normal 
sequence. Program control is transferred from the point of activation to the beginn
ing of the procedure code (or a label within it). The code is executed from that point, 
and upon encountering a RETurn instruction in exit from the procedure code, 

4-17 



Assembler Directives 8086 Assembly Language 

4-18 

program control is passed back to the next instruction beyond the point of activa
tion. RET must be explicitly coded where desired. It is not an automataic function 
of the procedure's end, and there may be more than one point of return within a 
procedure. 

The use of procedures has the following advantages: 

I. It forms the basis of modular programming, 

2. It facilitates making and using program libraries, 

3. It eases programming and documentation, and 

4. It reduces the amount of object code generated by a program. 

The following paragraphs tell how to declare procedures, and how to activate 
procedures. 

name PRoe 
o 
o 
o 

RET 
o 
o 
o 

name ENDP 

NEAR I FAR 

This pair of directives attaches a label to the entry point of a code sequence and 
declares whether the procedure is NEAR or FAR. If you omit the type, NEAR is 
used. The same name field is required on both directives of the pair, and there must 
be only matching pairs in the assembly. 

Using the PROC declarative is almost the same as if LABEL were used instead. 
However, this pair is necessary for the use of CALL and RETURN. When you 
CALL a procedure, before control is transferred to it, the address of the next se
quential instruction is stored on the stack. This enables the RETURN statement at 
the end of the procedure to return control tp that next instruction after the call. 

'-, 

If the procedure is NEAR, the RETURN simply POPs the word at the top of the 
stack into the Instruction Pointer (lP). If the procedure's type is FAR, it POPs that 
first word into IP and then POPs the next word into the CS, restoring the original 
segment address. 

RETurn can only work correctly if the return address stored by the CALL is at the 
top of the stack. If th~ stack is used by this procedure (or any procedure it calls) for 
temporary storage of parameters, such values must be POPped off the top of the 
stack before RETurn is executed. 

If multiple entry points into a procedure are required. this can be accomplished by 
using LABEL directive. If the PROC is declared FAR, then multiple entry points 
can only be achieved via the LABEL directive. Alternate entry points to a procedure 
MUST have the same type (NEAR or FAR) or the returns will not work as needed. 
RETurn instructions appearing outside of PROC-ENDP pairs are assumed to be 
NEAR. 

As with nearly all names in the symbol table, a procedure name can be purged. This 
removes the earlier definition of the name from the symbol table (only), and makes 
it possible to use the name for a new purpose. 



8086 Assembly Language Assembler Directives 

NOTE 

JMPing out of a procedure leaves the return address (1 or 2 words) on the 
stack. This must be taken into account if the stack is later used again. 

RET need not be the physically last instruction in the source code of a PROC, but if 
execution of the procedure allows control to simply fall through to the ENDP, there 
is no automatic or implicit RET. A transfer to a RET is needed. There may be multi
ple RETurn statements in a procedure. 

Procedures and segments may be nested within one another, meaning one procedure 
or segment may completely contain another. They may NOT overlap, i.e., the inner 
procedure or segment must end before the outer one ends. For example, this se
quence is valid: 

STARTER SEGMENT 
FIRST PROe NEAR 
FIR_1: 0 

0 

FIR_3: 0 

NEXT PROe NEAR 
NEX_1: 0 

MID SEGMENT 
0 

0 

MID ENDS 
NEX_44: RET 

NEXT ENDP 
FIR_77: 0 

0 

0 

RET 
FIRST ENDP 
STARTER ENDS 

The following sequence is invalid: 

STARTER SEGMENT 
FIRST PROe NEAR 

0 

0 

0 

NEXT PROe NEAR 
0 

0 

0 

RET 
FIRST ENDP 
STARTER ENDS 

0 

0 

0 

RET 
NEXT ENDP 

Procedures are executable where they appear as well as when they are CALLed. 
After a CALL FIRST instruction is executed, the instruction FIR_l will be exe
cuted. If we assume no jumps or calls occur in FIRST, then FIR_3 will be executed, 
followed by NEX_l. If the instruction at NEX_44 were not a RETurn, then the 

4-19 



Assembler Directives 8086 Assembly Language 

4-20 

instruction next executed would be FIR_77. One reason for emphasizing this is that 
PLM86 works differently: procedures in that language are not executed unless 
CALLed, and embedded procedures are skipped over unless named explicitly in a 
<;ALL. 

EQU Directive 

The assembler automatically assigns values to symbols that appear as instruction 
labels or variable names. This value is the current setting of the location counter 
when the line is assembled. (See ORG.) 

You may define other symbols and assign them values by using the EQU directive. 
Symbols defined using EQU cannot be redefined during assembly. 

The name required in the label field of an EQU directive must not be terminated by a 
colon. 

Symbols defined by EQU have meaning throughout the remainder of the program 
unless PURGEd. 

EQU assigns the value of 'expression' to the name specified. 

Opcode Operand 

name EQU 

EQU defines "name" as a synonym either for another name in the symbol table or 
for a constant value. 

Equ_op may be a number, an expression, a register, or a macro name, e.g.: 

• 
• 
• 
• 

NUMBER 
ADDRESS EXPRESSION 
REGISTER 
MACRO NAME 

THREE EOU 3 
XYZ EOU ALPHA [51] + 3 
COUNT EOU CX 
RADD EOU ADDR 

The required name field may not be terminated with a colon. This name cannot be 
redefined by a subsequent EQU or another directive (unless it is PURGEd first). The 
EQU expression cannot contain any external symbol. (External symbols are ex
plained under EXTRN later in this chapter.) 

Assembly-time evaluation of EQU expressions ialways generates a modulo 64K ad
dress, i.e., a value in the range -64KH to + 64K -1. 

EXAMPLE: The following EQU directive enters the name ONES into the symbol 
table and assigns the binary value 11111111 to it: 

ONES EQU OFFH 

The value assigned by the EQU directive can be recalled in subsequent source lines 
by referring to its assigned name in subsequent expressions: 

MOV AL, 25 AN D ON ES 

It is also possible to use substitute names for more complex expressions or address-
expressions. 

A 
B 

SUMMA 

EQU ARRAY [BX] [SI] 
EQU (ARM*7 + 44) AND MASK ONE 

EQU ARRAY_SUMMER 



8086 Assembly Language Assembler Directives 

After these EQU definitions, A and B may be used freely as synonyms for the ex
pressions shown, possibly saving time and preventing coding errors in complicated 
usage. This feature can also improve readability of programs by creating names 
which have meaning to the application. For example, in a highway control project, 
instead of A, you might use the name TRAFFIC. In a defense command and control 
project, instead of B, you might code SAM_SELECT. SUMMA might be an 
acceptable synonym for a procedure that sums arrays. 

PURGE Directive 

The PURGE directive allows names to be deleted from the symbol table. Once a 
name is PURGEd it can be redefined and used in ways completely different from the 
earlier usage, without assembler conflict or confusion. All occurrences of a name 
after PURGing and redefinition will use the latest redefinition. If the name was 
PURGEd and not redefined, a later use will be flagged as an undefined symbol 
error. 

PURGE name-1 ,name-2, ... ,name-n 

This directive may not have a name, e.g., ALTER PURGE ADD is INVALID. 

Program Linkage Directives 

Modular programming and the relocation feature enable you to assemble and test a 
number of separate modules that are to be joined together and executed as a single 
program. Eventually, it becomes necessary for these separate modules to com
municate information among themselves. Establishing such communication is the 
function of the program linkage directives. 

A module may share its data addresses and instruction addresses with other 
modules. Only items having an entry in the symbol table can be shared with other 
modules; therefore, the item must be assigned a name or label when it is defined in 
the module. Segments with a combine-type of COMMON share the same locations. 
Other items to be made available to other modules must be declared in a PUBLIC 
directive. 

Items needed from other modules must be declared in an EXTRN directive. Your 
module could directly access data or instructions defined in another module if it 
knew the actual address of the item, but this is unlikely when both modules use 
relocation. By using a name, you allow the assembler to arrange that the address be 
supplied by the Relocation and Linkage (R&L) programs. You thus gain access to 
data or instructions declared PUBLIC in other modules. 

However, the assembler normally flags as an error any reference to a name or label 
that has not been defined in your program. To avoid this, you must provide the 
assembler with a list of items used in your module, but defined in some other 
module. The EXTRN directive does this. 

Public Directive 

The PUBLIC directive makes each of the symbols listed in the operand field 
available for access by other modules. 

Opcode Operand 

PUBLIC name-list 

4-21 



Assembler Directives 8086 Assembly Language 

4-22 

Note: This directive may NOT have name, e.g., PUBI PUBLIC GETLIST is IN
VALID. 

Example: 

PUBLIC SIN,COS,TAN,SQRT 

Each item in the operand name-list must be a name assigned elsewhere in this pro
gram to a number, variable, or label (including PROCs). When multiple names ap
pear in the list, they must be separated by commas. Each name may be declared 
PUBLIC only once in a program module. It may not be external too. 

PUBLIC directives may appear anywhere within a program module. 

When assembly is otherwise complete, if an item in the operand name-list has no 
corresponding entry in the symbol table, it is undefined and is flagged as an error. 

EXTRN Directive 

The EXTRN directive provides the assembler with a list of symbols referenced in 
this module but defined in another module. For these symbols, the assembler 
establishes a linkage to outside this module and does not flag the undefined 
references as errors. 

Opcode Operands 

EXTRN extref1 ,extref2, ... 

where each extref has the form 

name: type 

Each item in the list identifies a symbol that may be referenced in this module but is 
defined in another module. The type stated in EXTRN must be the same as that 
definition. When multiple items appear on the list, they must be separated by 
commas. 

The "type" is required, and may be BYTE, WORD, DWORD, NEAR, FAR, or 
ABS. ABS means a pure number and not a variable or label. 

Note: This directive may NOT have a name, e.g., MOJL! EXTRN V:BYTE is IN
VALID. 

Inside a user-declared segment, an external label or variable is assigned to that seg
ment; outside of user segments (in the segment named ??SEG). it is assigned NOT to 
??SEG, but to no segment. If you want to refer to its segment, you must say "SEG 
name" (see Chapter 5). or use an explicit override where you know which segment 
register will be correct at run-time. 

If a symbol in the operand list is also defined in this module. the effect is the same as 
defining the same symbol more than once in a program. The assembler flags this 
error. 

If a symbol is used without a definition in this module and without appearing in an 
EXTRN directive. then the assembler flags it as undefined. 

Although EXTRN directives may appear anywhere within a program module, it 
is usually better to place them near the beginning, to avoid forward-reference 
problems. (See Chapter 8.) 



8086 Assembly Language Assembler Directives 

A symbol may be declared external only once in a program module. There is no re
quirement that it be used in this module. However, it may not be declared both -ex
ternal and public. 

Example: 

EXTRN ENTRY:BYTE,ADDRTN:FAR,BEGIN:WORD,NUMBER:ABS 

NAME Directive 

The NAME directive assigns a name to the object module generated by this 
assembly. 

Opcode Operands 

NAME module-name 

The name directive requires the presence of a module-name in the operand field. 
This name must conform to the rules for defining symbols. It may be identical to 
symbols with other uses. 

Module names are necessary so that you can refer to a module and specify the pro
per sequence of modules when a number of modules are to be bound together. 

The NAME directive may appear in the program at most once. It may NOT have a 
name-field, e.g., MODNAM NAME RATES is INVALID. 

If the NAME directive is coded erroneously or is missing from the program, the 
assembler supplies a default NAME directive. The module-name is taken from the 
root of the input file name: i.e., invoking the assembler by typing ASM86 
MYFILE.MDI will create an object-module, MYFILE, in a disk file named 
MYFILE.OBJ. This will cause an error if you later attempt to bind together several 
object program modules with this name. This could occur if different programs 
whose names differed only in extension were all assembled using the default name 
e.g.: 

MYFILE.MD2 
MYFILE.AB6 
MYFILE.QRX 

all become 

MYFILE.OBJ 

if the default is invoked each time. 

Example: 

NAME MAIN 

This name may be the same as symbols with other usages, e.g.: 

NAME AX 

is valid. 

4-23 



Assembler Directives 8086 Assembly Language 

4-24 

Assembler Termination EN D Directive 

The END directive identifies the end of the source program and terminates each pass 
of the assembler. 

Opcode 

END 

Operand 

optional-label 

Only one END statement may appear in a source program, and it must be the last 
source statement. If it is not the last, all the remaining statements cannot contribute 
to the assembly, e.g., to match Segment or Procedure labels, or to provide defini
tions for forware references. This will cause many statements to appear as errors. 

If the optional label is present, its value is used as the starting address for program 
execution. If no expression is given, there is no starting address, and this module is 
assumed not to be the main module. 

Whenever a number of separate program modules are to be joined together, only 
one may specify a program starting address. The module with a starting address is 
the main module. 



CHAPTER 5 
EXPRESSIONS AND 

ADDRESS EXPRESSIONS 

ASM86 allows many types of expressions. The rules for valid expressions and 
address-expressions are precise. You can use them to determine the validity of 
whatever expressions you may need. 

This present section gives some general guidelines and examples from which you 
may get a feel for the patterns of valid expressions. 

To begin, definitions are needed: 

VARIABLE 

LABEL 

NUMBER 

means the name of a location whose contents are intended as 
data. Its definition will NOT use a colon, e.g. 

SOUP DW 2 
SALAD LABEL BYTE 

The relevant attributes of a variable are its segment, offset, and 
type. (See Chapters 2, and 3, and the review later in this 
chapter.) 

means the name of a location whose contents are intended as an 
instruction. Its definition will often use a colon, e.g., 

ADD_INGREDIENTS: MOV AX, SOUP 

but not always, e.g., 

Faa PROCFAR 
and 

BAZ LABEL NEAR 

are both labels. The four attributes of labels are segment, offset, 
CS:value-assumed, and distance (i.e., NEAR or FAR). See also 
Chapters 2, and 4, and the review later in this chapter. 

means simply a name for a numeric value, not a location, e.g., 7. 
If a name has been given a strictly numeric value, e.g., 

or 
DELTAEQU 77 

B EQU 11 

then DELTA and B are NUMBERs rather than variables or 
labels. 

The distinction between variables and labels on one hand, and numbers on the 
other, is very important in this assembly language. Variables and labels fall into a 
class of expressions called ADDRESS EXPRESSIONS. 

An ADDRESS EXPRESSION is an expression which evaluates to a memory ad
dress. Therefore, a variable is an address expression as is a label. An address expres
sion has 3 components: 

5-1 



Expressions 

5-2 

8086 Assembly Language 

1. The SEGMENT part 

2. The OFFSET part 

3. TheTYPE 

These three components are a necessary part of every legal address expression. 

The other class of expressions is NUMERIC EXPRESSIONS or just NUMBERS. 
Numeric expressions yield a result which is a number. 3 is a number as is 4 * 5 
(i.e., 20). Each component of an address expression is a number, but an address ex
pression is NOT a number. 

To make clear the distinction between address expressions and numeric expressions 
consider the OFFSET operator (more completely defined later in this chapter): OFF
SET of an address expression returns the offset component of the address expression 
as a number. 

The following example program uses the OFFSET operator to illustrate the distinc
tion between address expressions and numeric expressions: 

ASSUME CS: code, OS: data 

data SEGMENT AT 55H 

DB 0,1,2 
e_byte DB OFFH 

data ENDS 

code SEGMENT 

start: MOV AX, data 
MOV DS,AX 

one: MOV AL,3 

two: MOV AL, e_byte 

three: MOV AL, OFFSET e_byte 

code ENDS 
END start 

; 3 bytes 

; segment base address to AX (Le., 55H) 
; and then to the OS register. 

; the number 3 

; address expression: e_byte 

; the number 3 

The two expressions which are most often confused are shown in the instructions 
labeled "two:" and "three:" ,namely e_byte vs. OFFSET e_byte. E_byte is an 
address expression. Instruction "two:" will move OFFH, the value in the memory 
location whose address is e_byte, into the AL register. OFFSET e_byte is a 
number. The MOV instruction labeled "three:" will move 3, the offset component 

, of the address expression e_byte, into the AL register. 

These two MOV instructions are very different; the first must fetch the source 
(rightmost) operand from the byte of memory 3 bytes from paragraph 55H. The 
source operand itself is OFFH. For the MOV labelled "three:" the source operand is 
the immediate value, 3, which is part of the MOV instruction. 

The instructions labeled "one:" and "three:" are identical. 

From this example we see that using an address expression with an 8086 instruction 
means that the operand will come from a memory location. Using a number means 
that the number itself will be used as an immediate operand. 



8086 Assembly Language 

The distinction between address expressions and numbers is important in other 
places in the assembly language. The repetition count on a DUP construct (see 
Chapter 3) and the paragraph number for absolute segments (see Chapter 4) must be 
numbers, not address expressions. 

Permissible Range of Values 
The maximum range of values a number can have is -OFFFFH through OFFFFH. 
All arithmetic operations are performed using signed two's complement arithmetic. 
Out of range values get an error message. The following list gives important 
characteristics of the arithmetic performed by ASM86. 

1. NOT OFFFFH = 0 

2. AND, OR, and XOR do not yield results which are out of range. 
e.g.,OOOOFH AND OFFFOH = O. OFFFFH XOR OFFFFH =0. 

3. All other operators give an overflow message if the result is out of the maximum 
range. 

Since an address expression has 3 numeric components, it is illegal if any component 
goes out of range. An overflow message will be issued if this happens. 

DB will accept values in the range -256 through 255. Any value between -256 and 
-129 will be stored as a positive value between 1 and 127. The mapping is -129 = 
127, ... -255 = I, -256 = O. 

DW will accept the entire range of values. Any value between -32,769 and -65,535 
will be stored as a positive value between 0 and 32,767. The mapping is -32,769 = 
32,767, ... -65,535 = 1. 

Precedence of Operators 
Expressions are evaluated left to right. Operators with higher precedence are 
evaluated before other operators that immediately precede or follow them. When 
two operators have equal precedence, the left-most is evaluated first. 

Parentheses can be used to override normal rules of precedence. The part of an ex
pression enclosed in parentheses is evaluated first. If parentheses are nested, the 
innermost are evaluated first. For example: 

15/3 + 18/9 = 5 + 2 = 7 

15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3 

Expressions 

5-3 



Expressions 

5-4 

8086 Assembly Language 

The following list describes the classes of operators in order of increasing 
precedence: 

1. SHORT 

2. Logical OR, XOR 

3. Logical AND 

4. Logical NOT 

These 3 classes are bit-by-bit 
logical operators. Corresponding 

; bits in the operands are operated 
; on to give corresponding bits in 
; the result. 

5. Relational Operators: EQ, L T, LE, GT, GE, NE 

6. Addition/Subtraction: +, - (both unary and binary) 

7. Multiplication/Division: *, /, MOD, SHL, SHR 

8. HIGH, LOW 

9. The operators to manipulate variables: "name:", PTR, OFFSET, SEG, 
TYPE, THIS 

10. Parenthesized expressions, LENGTH, SIZE, WIDTH, and square brackets. 

In (9) and (10) the operands may include BYTE, WORD, DWORD, NEAR, FAR, 
$, and address references of two types, i.e. 

a symbolic name 

name1 [subscripLexpression] 

Address-expressions may involve BX, BP, SI, or DI enclosed within square 
brackets. The subscript expressions must evaluate to pure numbers or expres
sions involving only these registers. Subscripts are discussed later in this 
chapter. 

Alphabetic operators must be separated from their operands by at least one 
blank. This prevents their being seen as part of a symbolic name in your code. 

General Introduction to Operator Classes 
Certain high-precedence operators never operate on pure numbers. These 8 can only 
be used on or with address-expressions: segment-override ("name:") prefix, OFF
SET, SEG, square brackets for subscript offsets, WIDTH, LENGTH, SIZE, and 
TYPE. WIDTH is only for records. 

The multiplicative and logical operators can work only with pure numbers. 

The remaining 4 operator classes are the relational, additive, high/low, and pointer 
(PTR). They can be used either with pure numbers, or with labels or variables from 
the same segment (only). Subexpressions, such as those within parentheses, even
tually evaluate to one or the other. Then you can judge the validity of the remaining 
operations indicated by the full original expression. 



8086 Assembly Language 

Two other operations are defined only to allow use of the current value of this seg
ment's program counter: "THIS", and "$". The operator "THIS" is always used 
with a "type", i.e., BYTE, WORD, DWORD, NEAR, or FAR. (There is a review 
of attributes later in this chapter.) If you write: 

A EQU THIS BYTE 

you have defined A to be a VARIABLE of type BYTE. A's address is this current 
segment and this current offset within the segment, i.e., the program counter's pre
sent value at this line of code. An equivalent line is: 

A LABEL BYTE 

If you write: 

B EQU THIS NEAR 

you have defined B to be a LABEL of type NEAR, i.e., jumps or calls to B will be 
expected to require at most a 1 word displacement. B's address is again this segment 
and this current offset in it. An equivalent line is: 

B LABEL NEAR 

The usage of $ is explained later in this chapter. 

Review of Attributes 

A VARIABLE is the name of a memory location whose contents are intended for 
use as data. Variables have 3 attributes: segment, offset, and type. Segment is the 
name of the block of code in which the variable is defined. Offset is the number of 
bytes from the beginning of that segment to the line defining the variable. Type is 
the number of bytes in the basic unit used in that definition: 1 for byte, 2 for word, 4 
for double-word. Chapter 3 describes variables in greater detail, particularly about 
types. Chapter 1 describes segment and offset more fully. 

A LABEL is the name of a memory location intended for use as an instruction. Its 
first 3 attributes are segment, offset, and distance, where segment and offset mean 
the same as the above for variables. Its final attribute is the CS:ASSUME value in 
effect when the label was defined. 

The distance attribute can be NEAR or FAR: NEAR means the label will be referred 
to only in segments assembled under the same ASSUME CS:name as the label. Thus 
all references will assemble into one-word displacements. 

FAR means 2 words are needed to be able to access the label: the first is the offset of 
the label within its segment (where it was defined), and the second is the segment ad
dress itself, which must be (put) in CS for such access to occur. Such a replacement 
of the current contents of CS is handled automatically by a long jump or long call 
("long" meaning intersegment, or FAR). 

The CS:ASSUME attribute refers to the segment address (name) that you tell the 
assembler to expect at run-time. This attribute is described more fully in Chapter 4 
under the ASSUME directive. It is used by the assembler to define what labels are 
accessible using the current CS: value (i.e., what labels are presently NEAR). Those 
which are not so accessible are FAR, and can only be reached by a long jump or call, 
which fills CS with the needed value. 

Expressions 

5-5 



Expressions 

5-6 

8086 Assembly Language 

Additive Operators, + and -

These operators perform 17-bit arithmetic (sign plus 16-bit) integer addition and 
subtraction between numbers, variables, and labels under certain rules: 

1. Absolute numbers may always be added or subtracted from variables, or labels, 
or absolute or relocatable numbers. When a number is added to a variable (or 
label), the result is a variable (or label) whose offset is the sum of that number 
and the original offset of the operand variable (or label). 

2. Variables and labels may be subtracted only if they are in the same segment. 

3. Variables and labels may never be added. 

4. One base register and one index register may be added, e.g., [BX + SI]. Absolute 
or relocatable numbers may be added or subtracted from such registers or 
expressions. Registers may not be subtracted from numbers. 

Examples: 

1. MaV AX, ARRAY_START + 6 
This moves the 4th word after ARRAY_START into AX. 

2. TABLE2 OW NEW + 17 OUP (2); NEW must be absolute 

Square Brackets and the Registers BX, BP, SI and 01 

The registers BX, BP, SI, and DI may be used as general purpose registers or as in
dexing registers. When they are used as indexing registers, the value contained in the 
register is used as an offset from some segment register. Square brackets distinguish 
between the two possible usages of the indexing registers. If an indexing register ap
pears in square brackets, then the contents of that register will be used to calculate 
the offset. 

Example: 

Mav AX, BX 

MaV AX, [BX] 

; move the contents of the BX register to AX 

; This moves a word from memory into AX. The 
; word is in the data segment, with segment 
; address in OS. The offset from OS is the 
; contents of register BX. 

The assembly language allows [BX] to appear alone as a legal address expression, 
even though only the offset is present, because there are defaults associated with 
such usage to make the expression legal: 

REGISTER SEGMENT TYPE REGISTER USED 

[BX] OS ? 
[BP] 55 ? 
[51] OS ? 
[01] OS ? 



8086 Assembly Language 

Recall that every address expression has three components: SEGMENT, OFFSET, 
and TYPE. The segment component of a bracketed indexing register is some seg
ment register. The offset is the contents of the indexing register. The type is 
unknown. ASM86 uses the type of the other operand in the instruction to determine 
the type of the bracketed indexing register. 

Square brackets have another use in the assembly language, which is described in the 
section USING SQUARE BRACKETS AS SUBSCRIPTS. The current discussion 
applies only to square-bracketed expressions appearing alone as address expressions. 

Example: 

MOV AX, [BX] 

MOV CL, [01] 

; since AX is a word, [BX] is given type WORD. 

; since CL is a byte, [01] is given type BYTE. 

Using the type of the other operand is only possible if 

1. there is another operand, and 

2. the type of the other operand is unambiguous. 

Therefore, the following examples do not contain sufficient information: 

INC [BX] 

MOV [51],3 

JMP [BP] 

; increment a byte or word? (There is no carry from 
; 255 unless a word is being incremented) 

; move the byte 3 (8 bits) into the byte at offset [51] 
; or the word 3 (16 bits) into the word at offset[SI]? 

; jump indirect INTER-segment or INTRA-segment 
; i.e., is CS to be replaced? 

!J,nd the assembler will issue the error "INSUFFICIENT TYPE INFORMATION 
TO DETERMINE CORRECT INSTRUCTION." See Chapter 7 for a precise 
description of how the type is gleaned from the other operands. 

In the explanation of the additive operators above, it was pointed out that one base 
register and one index register may be added. Furthermore, absolute or relocatable 
numbers may be added or subtracted from such registers or expressions. This may 
only happen inside square brackets. The following rules govern what is legal inside 
square brackets when the bracketed expression is to be used by itself as an address 
expression. 

1. Numbers may appear only if a base or index register appears. 

2. BX and BP may never appear in the same expression. The same is true for SI 
and DI. 

3. BX or BP may appear alone, with numbers, and/or with SI or DI. 

4. SI or DI may appear alone, with numbers, and/or with BX or BP. 

5. Operations on numbers are unrestricted, but only additive operations can apply 
to the base or index registers in this context. 

Expressions 

5-7 



Expressions 

5-8 

Thus the following expressions are all valid: 

[BX + 01 + (5IZE a) I 2] 
[BP] 
[BX + 7] 
[7 + BP] 
[51-100H] ; this is legal, but 100H - 51 is not 
[51] 
[01 + BP] 
[BX + 51] 
[51 + OFF5ET block] 

But the expressions below are all invalid: 

[BX * 7] 
[BX + BP] 
[BP - 51] 
[3 - BX] 
[BX + 01 * TYPE a] 

The following rule determines the appropriate segment register: 

If BP is in the expression Then SS is used, otherwise OS is used. 

8086 Assembly Language 

The TYPE of the bracketed expression is determined as described above when only a 
single register appeared in brackets. 

Expressions in square brackets allow for more sophisticated indexing than if just a 
single base or index register appears in brackets. The address expression [BX + SI] 
means that the sum of the contents of BX and SI will be used as an offset from the 
OS register. [BP + 4] means that the 4 will be added to the contents of the BP 
register and the sum will be used as an offset from the SS register. [BX - 40H] will 
subtract 40H from the contents of the BX register. The result will be used as the off
set from the OS register. Two sample programs follow. 

Example: 

Finding the maximum value in an array of at least one element. The program frag
ment on the following page finds the maximum of an array of words. It uses the first 
element of the array as a temporary maximum. It then compares each element to the 
current temporary maximum. If the element in the array is larger than the temporary 
maximum, it becomes the temporary maximum. When the program has looked at 
every element in the array, the temporary maximum will be the maximum. The tem
porary maximum is held in the AX register. The BX register is used to hold the off
set of the next element in the array. 



8086 Assembly Language 

ASSUME CS: code, DS: data 

data SEGMENT 

values DW 2100 DU P (7) 
count DW 7 

data ENDS 

code SEGMENT 

start: ; initializes segment registers and 

MOV 
MOV 
MOV 
JMP 

find_max: 

BX, OFFSET values 
CX, count 
AX, [BX] 
testlp 

BX,2 

; reads numbers into the values array. Count 
; will contain the number of values read. 

; starting offset into BX 
; the number of values into CX 
; move the first value into AX as a first guess. 

; pOint BX at the next element of the array. ADD 
CMP 
JG 
MOV 

AX, [BX] 
testlp 
AX, [BX] 
find_max 

; Compare the current max with that next element. 
; if AX is still the max, then try next value; 
; else AX gets maximum found so far 

testlp: LOOP ; and we go to test the next value. 

done: 

code ENDS 
END start 

Example: 

The following procedure will print a string on the CRT. It calls the procedure 
named CRT (defined external) with the character in AL. The string is ex
pected to terminate with a null (0). SI is expected to contain the offset of the 
string from DS. 

ASSUME CS: code 
code SEGMENT PUBLIC 

EXTRN crt: NEAR 

print PROC NEAR 

MOV AL, [SI] 
CALL crt 
CMP BYTE PTR [SI + 1],0 
JE done 
INC SI 
JMP print 

done: RET 

print ENDP 

code ENDS 

; move next character to print into AL 
; print the character 
; see if the next character is 0 
; If it is, then go to exit 
; else point to next character 
; and go to beginning of the loop 

Expressions 

5-9 



Expressions 

5-10 

Variable-Manipulation Operators: 

"name:", PTR, THIS, SEG, TYPE, OFFSET 

8086 Assembly Language 

Two of these six operators can change an attribute of a variable or label, usually for 
the duration of one instruction only. These two operators are the segment prefix
byte ("name:"), and the PTR operator. 

Segment-Prefix 

Every instruction that alters the flow of control or which writes or reads memory 
(stack included) uses a segment register in computing the necessary memory address 
(see Chapter 1). This excludes register-only operations. 

The assembler decides which segment register to use. For each instruction, this 
choice depends exclusively on the kind of address-expression you coded and the cur
rent values ASSUMEd in the segment registers. The assembler has a fixed algorithm 
(explained under ASSUME in Chapter 4) for analyzing that expression and deciding 
which segment register is correct. 

If there is more than one correct choice, e.g., because the same segment-base
address is in more than one register, the assembler always chooses the shortest code, 
i.e., no prefix byte if possible. 

You may override the assembler's choice. If you code an explicit override different 
from the assembler's choice, your choice is used. 

A prefix byte is required (and supplied by the assembler) if the desired memory loca
tion is only accessible using a segment register different from the one used by hard
ware default. That is: 

1. if the desired memory location is accessible using the default segment register 
for the specified expression, then no segment prefix byte is needed. 

2. if it is not accessible using the current ASSUMEd contents of ANY segment 
register, the reference is an error. 

3. if it is accessible through a segment register different from the default, a 
segment prefix byte is needed. 

The rules for analyzing address expressions and hardware defaults are as follows: 

1. Any address expression with type NEAR (i.e., labels) always use the CS register. 
No override is legal. 

2. Any address expression with type FAR will always result in the CS and IP 
registers getting new values. No override is legal. 

3. Instructions which use the SP register implicitly will always use the SS register. 
No override is possible. These instructions include PUSH, POP, CALL, RET, 
IRET. 

4. If a string instruction uses the DI register to point to an operand, then the ES 
register will always be used with that operand. No override is legal (see the. 
NOSEGFIX operator in Chapter 7). 

ALL other cases involve data references to memory (i.e., address expressions with 
type BYTE, WORD, or DWORD). The default may be overridden in these cases. 

5. If the address expression uses the BP register (i.e., within brackets), then the 
default segment register is SS. Otherwise it is the DS register. 



8086 Assembly Language 

The expression "segreg:address expression", where segreg is a segment register, 
creates a new address expression whose segment component is that segment register. 
If "segreg" is the same as the default segment register for "address expression", 
then no prefix byte is generated (since it would be redundant). If "segreg" is dif
ferent from the default, then a prefix byte is generated. 

Example: 

ASSUME CS: code, DS: data 

data SEGMENT 
m_byte DB ? 
data ENDS 

code SEGMENT 

MOV AL, [BP] ; SS is the default. [BP] has a segment component 
; of SS. No segment prefix byte is generated. 

MOV AL, DS: [BP] ; SS is the default. DS is explicitly used. A prefix 
; byte is generated so that the DS register is used. 

MOV AL, m_byte ; BP is not used, DS is the default. M_byte has a 
; segment component of "data". "Data" is ASSUMEd 
; in the DS. No prefix is generated. 

MOV AL, ES: m_byte; DS is the default. ES is explicitly used. A prefix 
; byte is generated so that the ES register is used. 

ASSUME DS: NOTHING, ES : data 

MOV AL, m_byte ; DS is the default. "Data" is not in DS, but is in ES. 
; A segment prefix byte for ES is generated. 

MOV AL, DS: m_byte; DS is the default. Ds is explicitly used. No prefix 
; byte is generated. 

code ENDS 

NOTE 

The above example is meant to illustrate how the assembler decides when a 
segment prefix is necessary. It is NOT an example of the proper use of the 
ASSUME statement. Nor is it an example of when to use the segment over
ride operator. 

The following contexts are examples of when a segment register might be used to 
override an address expression. 

• When using the BP register as an indexing register in a segment other than the 
stack segment. The address expression "[BP]" has a segment component of SS. 
If BP is used to index into some other segment, then a segment override must be 
used (e.g., DS: [BP] will index into the current data segment). 

• The string instructions which use SI to point to an operand. It is not uncommon 
to have these operands in the current extra segment. This operand may be over
ridden with an ES: override if that is the case. 

• If a program uses data in the extra segment, then any use of a bracketed register 
expression to reference the data will require a segment override. For example, in 
the instruction MOV AX, [SI], the segment component of "[SI]" is the DS 
register. "ES: [SI]" is necessary if SI is to work as an indexing register into the 
extra segment. The only exception to this need for an ES: override is the DI 
operand to string instructions, for which ES is always used. 

If you find certain forward-references unavoidable, you may be using a variable 
whose entire segment is defined later. In such a case, you can put the name of the 
segment in the ASSUME statement and use it as an override in the relevant 
instructions: 

Expressions 

5-11 



Expressions 

5-12 

ASSUME CS:COOE, OS:OATA, ES:LATER-SEG 
o 
o 

MOV AX, LATER_SEG 
MOVES, AX 

o 
o 

MOVAX, LATER_SEG:LATER-VARIABLE 
o 
o 

MOV OX, ES:LATER-VARIABLE 
o 
o 

8086 Assembly Language 

Both references to LATER-V ARIABLE are acceptable, though there is a slight ad
vantage to using LATER_SEG as an override rather than ES in the above example. 
If you were later to change your choice of segment register, i.e., to use DS instead of 
ES, only one change (to the ASSUME) would handle all such references, whereas 
using ES: would require a line-by-line modification. LATER-SEG must eventually 
be seen as a segment-name ... anything else is an error. The only time a segment
override affects more than one instruction is in an EQU statement. When you say: 

NEW1 Eau ES:ARRAY[SI] 

then every later use of NEW1 includes the fact that ES is the segment register used. 

The use of groups requires some additional discussion here. If you have not yet 
studied groups, or do not intend to use them, the next few paragraphs will be of 
academic interest only. You may prefer to skip to the next section, on the PTR 
operator. 

A group allows one base-address to serve for the multiple segments in the group. 
The maximum size of a group is naturally 64K bytes, as large a distance from the 
base-address as can be expressed in a 16-bit offset. Thus the sum of the sizes of the 
individual segments making up the group may not exceed 64K. 

The ultimate order of these segments within the group is not known during 
assembly. Thus the offset of a variable or address-expression from the group's base
address must be a relocatable quantity. The offset within the variable's segment 
must be added to the size of any segments in the group which may lie between the 
base-address and the variable. This is handled automatically by the LOC86 program 
using information provided by the assembler. 

For your use of groups and overrides, you need to remember that variables or 
address-expressions in a group are of necessity relocatable entities. For example, if 
G is a group and S is one of the segments in G, and IDE NT is a variable in S, then 
G:IDENT is a relocatable entity whose segment attribute is G, whose offset will be 
its displacement from the beginning of G, and whose type is the TYPE of IDENT. 

The PTR Operator 

The PTR operator creates a variable or label. The new variable has the same offset 
(and segment, if any) of the operand on the right side of PTR, plus the attribute on 
the left of PTR. 



8086 Assembly Language 

Examples: 

After defining a 9 word array by coding: 

WARRAY OW 9 OUP (0) 

you may later wish to access the 18 bytes as bytes rather than as 9 words. Normally 
an instruction like 

MOV AL, WARRAY [51] 

would be illegal due to type conflict: the type of AL is BYTE, i.e., 1, and the type of 
W ARRAY is WORD, i.e., 2. 

MOV AL, BYTE PTR WARRAY [51] 

is valid, because you have made it explicit that bytes are what you want despite the 
original definition of W ARRAY as words. 

That original definition stands unchanged by such an instruction . The attribute 
alteration applies only to that instruction containing it. 

Similarly you can write: 

JMP FAR PTR LABEL77 

If you know LABEL 77 will later be defined in a different segment from this JMP, 
requiring 2 words of address in the JMP rather than the 1 word normally assumed. 

If there will be more than a few instructions needing PTR to correctly access the 
same target, you can define a synonym once, using EQU. Thereafter it is simpler to 
use the synonym. For example: 

BARRAY EaU BYTE PTR WARRAY 

allows the same locations defined as words in W ARRAY to be accessed as bytes 
when referred to as BARRAY, e.g., if SI=3 then: 

MOV AH, BARRAY [SI] 

puts the fourth byte of BAR RAY into AH (4th because the first is BARRA Y [0». 

If you use PTR with pure numbers, you create variables or labels with an offset 
equal to the number, with the type you specify, and with a segment attribute of O. 
Such an expression is legal only when preceded by a segment prefix byte or by the 
operators TYPE or OFFSET. 

Example: 

DS:BYTE PTR 77 could be used to temporarily define a byte variable of offset 77 in 
the DS segment. Without an override, e.g., DS:, this expression would have no seg
ment attribute and thus would be illegal. 

MOV AL, DS: BYTE PTR 77 would put into AL the contents of the byte located 77 
bytes past the beginning of the current data segment. This practice is deemed less 
wise and less convenient than naming the desired location and using the name for 
such a reference; but if the need arose, the expression is valid. 

Expressions 

5-13 



Expressions 

5-14 

8086 Assembly Language 

Another example, only slightly more reasonable, might be the case of your knowing 
from prior work that the offset of a desired word in segment ROUT2 was the same 
as the offset of the byte variable PATHl in segment ROUTI. You could then write 

ASSUME ES:ROUT2 
MOV AX, ROUT2: WORD PTR OFFSET PATH1 

Again, this is a valid construct whose convenience and clarity are questionable. 

To round out the picture of PTR, it is also valid to write expressions of this sort: 

or 
NEAR PTRVARIABLE_NAME 

BYTE PTR LABELNAME 

The first enables a programmer to transfer execution control to an area originally 
defined as data. This practice is usually a mistake (see Note). 

The second allows code to be dynamically accessed and tested. Further, it permits a 
programmer to vary the contents of instructions during execution. This too is 
usually a mistake (see Note). 

NOTE 

But it can be done intentionally when there is a need for it, and without 
disastrous results if extreme caution is observed. 

PTR With Indexing Registers 

A common use of the PTR operator is with bracketed indexing registers, as follows: 

It is impossible to determine what the correct type of some bracketed expressions 
must be. Recall that the following three uses of such expressions are illegal: 

INC [SI] ; increment a byte or word? 
MOV [01].3 ; move a byte with value 3 or a word with value 3? 
JMP [BX] ; jump INTRA segment Indirect or INTER segment Indirect? 

The PTR operator allows this situation to be remedied: 

INC BYTE PTR [SI] ; Increment the byte pOinted to by SI 
MOV WORO PTR [01]. 3; move 16 bits worth of 3 to the word at 01 
JMP OWORO PTR [BX~ perform an indirect INTER-segment Jump. 

The Operator "THIS" 

As mentioned in the Introduction to this Section, the operator "THIS" creates a 
variable or label of the type you specify, whose offset and segment are the current 
values of assembly. 



8086 Assembly Language 

The definition of every variable or l~bel includes a type-attribute, e.g., 

DATLTABLES SEGMENT PARA "DATACLASS" 
A DB 100 DUP (0) 
X OW 300 DUP (47) 
Y DO 100 DUP (13) 

LOC1: 
0 

0 

0 

DATLTABLE ENDS 

implicitly types A as an array of byte variables, X as an array of word variables, Y as 
an array of double word variables, and LOCI as a NEAR label. 

"THIS" can be used, at the same place defining the original name, to define an 
alternate name of different type. As discussed above under PTR, there may be times 
you need to access locations as bytes when the original definition was words, or vice 
versa. 

The following definitions illustrate such alternate naming: 

DATLTABLES SEGMENT PARA 'DATACLASS' 
WA EQU THIS WORD 
A DB 100 DUP (0) 

XB EQU THIS BYTE 
B OW 300 DUP (47) 

WY EQU THIS WORD 
YB EQU THIS BYTE 
Y DO 100 DUP(13) 

LOC1: 
0 

0 

00 

00 

DATLTABLES ENDS 

W A allows pairs of bytes in A to be accessed as words. The offset and segment at
tributes of A and W A are the same; they differ as shown in the table below. 

Similarly, XB allows each byte of B to be individually accessed. 

WY can be used to access each WORD in the Y array individually. YB allows every 
BYTE to be directly addressed. WY, VB, and Y have identical segment and offset 
attributes; they differ only in type, size, and length: 

VARIABLE SEGMENT OFFSET TYPE LENGTH SIZE 
WA DATLTABLES 0 2 1 2 
A DATLTABLES 0 100 100 

XB DATLTABLES 100 1 1 1 
B DATA_TABLES 100 2 300 600 

WY DATLTABLES 700 2 2 
YB DATLTABLES 700 1 1 1 
Y DATLTABLES 700 4 100 400 

LOC1 DATLTABLES 1100 NEAR 

Expressions 

5-15 



Expressions 

5-16 

8086 Assembly Language 

NOTE 

"$" is an abbreviation for THIS NEAR; it was used in earlier INTEL 
assemblers in self-relative jumps, i.e., 

JMP $ + 4 

meant to transfer control from this point in the instruction sequence to the 
instruction byte 4 bytes further on. This type of instruction is less useful in 
the 8086. The generality of the assembler mnemonics allows different
length machine instructions to be assembled from similar-looking source 
code, depending on the attributes of the operands. Thus it is inconvenient 
and dangerous for you to supply the precise number of bytes, e.g., 4 in the 
above example. It is much easier to label the target location and put the 
label in the jump command, i.e. 

JMP SHORT @1 
o 
o 
o 

;@ 1 is target label 

@1: MOV AX, NEW_SEG_VAL 
MOV ES,AX 

o 
o 

SEG, TYPE, and OFFSET 

These operators create numbers, by separating out 1 of the 3 attributes of variables 
or labels. 

Since the variables defined above were all in segment DATA-TABLES, then SEG 
A = SEG X = SEG Y = DATA-TABLES. This operator can be used in the 
ASSUME statement or in building addresses, or in any expression you find useful. 

TYPE of a variable gives the number of bytes in the unit of definition. 

TYPE A = TYPE XB = TYPE YB = 1 
TYPE B = TYPE WA = TYPE WY = 2 
:rYPE Y = 4 
TYPE LOC1 = NEAR 

In the last line, the type must be either NEAR or FAR because LOCI is a label rather 
than a variable. NEAR is the default. 

The offset of a variable or label (address-expression) means the distance in bytes 
from the value of the segment-name to the location of that variable or label. The ac
tual value assigned to a segment-name is always a paragraph number, as discussed in 
Chapter 1, and in Chapter 4 under the Segment directive. However, the real beginn
ing of that segment, i.e., the first byte assembled for it, can be assigned an address 
up to 15 bytes higher by the LOCATE progr~m. The determining factor is the align
type on that Segment directive. This means the relative offset seen at assembly time 
may be changed by the time final addresses are assigned and execution begins. If the 
segment is PUBLIC, it is combined with other segments of the same name from dif
ferent modules, possibly adding even more bytes to the offset. 

Thus when you wish to refer to the offset of some variable or label, it is often incor
rect to use the relative offset from the assembly - you must use the OFFSET 
operator instead. The assembler then passes along information enabling LOCATE 
to fill in the final correct offset without further attention on your part. 



8086 Assembly Language 

One typical example is using the offset as the first address of an array, moving the 
offset into a base register and accessing array members by an index register: 

ASSUME DS:SEG S 
o 
o 
o 
MOV SX, OFFSET S 
MOV SI,O 

MORE: 0 

o 
ADD AX, [SX + SI] ; equivalent is [SX] [SI], see below. 
o 
o 
o 
JMP MORE 

Although array B in DATA-TABLES has a relative offset of 100, the OFFSET 
operator assures that even if B's ultimate absolute offset is different from 100, ac
cess to the B array will be made correctly. 

It is also possible to use the OFFSET operator to generate correct offsets within a 
group. Suppose you have a group G containing segments SI, S2, and S3, with VAR 
a variable in S2. The expression OFFSET V AR will give you the offset of V AR 
within S2, its segment. Since S2 is in G, you may need to refer on occasion to 
G:VAR, the location V AR as seen from the base-address of the group G. 

OFFSET G:V AR then gives you the current offset at execution time, after LOCATE 
assigns absolute addresses to all the segments in G (S2 may be first or last or second). 
The use of G: in this expression is absolutely necessary, since without it the OFFSET 
operator will supply only the offset of V AR within the segment where it was defined. 
(See also LEA in Chapter 6.) 

Example: 

(NOTE-you need not master the details in this example. The assembler and locate 
facility handle it for you. These details are provided solely as a matter of more com

.plete information, as to why and how the offset in a group is created.) 

This is a picture of one way the OFFSET G:V AR might turn out. 

OOOOOH 

• G.S3 

SIZE S3 .. S1 • SIZE S1 .. S2 • OFFSET VAR .. 
L..--...J 

OFFFFFH 

Expressions 

5-17 



Expressions 

5-18 

8086 Assembly Language 

The value of OFFSET G:VAR will include the sum of the size of S3, the size of SI, 
and OFFSET S2:V AR, but this sum must be adjusted for the align-types and ending 
points of S3, S2, and SI. 

Suppose S3 has the align-type BYTE and is 24 bytes long (I8H), and SI and S2 are 
align-type WORD and are each 55 bytes long (37H). Suppose VAR is defined as the 
fifth word in S2, i.e., its relative offset is 8. Suppose further that during LOCATE, 
G and S3 are assigned the address 12343H, i.e., base-address 12340H (paragraph 
number 1234H) and offset 3. (See Chapter 1 on addressing and Chapter 4 on the 
Segment Directive). 

Then the last byte of S3 falls at location 1235AH. SI cannot begin at the next byte, 
1235BH, because word alignment means the first byte of the segment falls at an even 
address. Thus SI begins at 1235CH, with 1235BH unused. Similarly, S2 begins at 
12394H, with 12393H unused. 

Now what is OFFSET G: V AR? It is: 

the size of S3 + the size of SI + OFFSET S2:V AR + adjustment, or 

24 + 55 + 8 + 5 = 92, or 5CH. 

The 5 is added in to adjust for both the initial offset (3) of G (beyond its base address 
12340H), and the 2 bytes left unused by aligning SI and S2. Thus this offset, 5CH, 
plus the base-address of G, 12340H, gives the address of VAR, 1239CH, exactly 8 
bytes past the beginning of S2. 

Parentheses, Length, Size, Width, Square Brackets 

These 5 operators have high precedence. WIDTH applies only to RECORDS and 
fields thereof, and is discussed only in Chapter 3. 

Parentheses in an expression indicates a subexpression which needs to be reduced to 
a single number or variable before the other operators in the full expression can be 
done. In writing A * (B + C), you need the result of the addition before multiplying 
byA. 

The LENGTH operator tells how many units (of whatever type) were allocated by 
the original line defining the variable. In the prior example of DA T ~ TABLES, 

LENGTH A = 300, LENGTH Y = 100. 

The SIZE operator tells how many bytes were defined by that original line of code. 
This number is calculated from the units and the type, by the formula: 

SIZE name = LENGTH name * TYPE name. 

SIZEA= 100 
SIZE B = 600 
SIZE Y =400 

As an example of using some of these operators, the following code sequence clears 
a block of storage in the ES segment, given that BLOCK was defined as a byte array. 



8086 Assembly Language 

ASSUME ES:SEG BLOCK, CS: RE_INIT_SEG 
MOV 01, 0 
MOV AX, SEG BLOCK 
MOV ES, AX 
MOV CX, LENGTH BLOCK 

ZER: MOV BLOCK [Oil, 0 
ADD 01, 1 
LOOP ZER 

(The LOOP instruction automatically decrements CX by 1 and transfers to ZER, 
until CX becomes zero. See Chapter 6.) 

If you wanted to use this sequence in several different modules to handle different 
byte or word arrays, then instead of: 

ADD 01,1 

you would write: 

ADD 01, TYPE BLOCK 

the code then appears 

ASSUME ES:SEG BLOCK, CS: RE_INIT_SEG 

MOV 01, 0 
MOV AX, SEG BLOCK 
MOV ES, AX 
MOV CX, LENGTH BLOCK 

ZER: MOV BLOCK [Oil, 0 
ADD 01, TYPE BLOCK 
LOOP ZER 

Then for each separate copy of this sequence, used with different arrays, the 
assembler would generate the correct "move", and reset your DI pointer/subscript 
by 1 or 2 depending on the type of block, i.e., the number of bytes per unit. 

Although the following might take more execution time, it would be functionally 
equivalent if you left the ADD as it was and made these 2 changes: 

1. change LENGTH to SIZE 

2. change BLOCK [01] to BYTE PTR BLOCK [01] 

The code would then read 

ASSUME ES: SEG BLOCK, CS: RE_INIT_SEG 

MOV 01, 0 
MOV AX, SEG BLOCK 
MOV ES, AX 
MOV CX, SIZE BLOCK 

ZER: MOV BYTE PTR BLOCK [Oil, 0 
ADD 01, 1 
LOOP ZER 

Expressions 

5-19 



Expressions 

5-20 

8086 Assembly Language 

(This would also handle DD arrays. Note that each copy of this sequence would use 
a different array name corresponding to the particular definition. To avoid this and 
have only one copy, you would have to make the sequence into a procedure: see 
Chapter 4) The following is another way of achieving the same effects: 

LEA 01, BLOCK 
MOV AX, SEG BLOCK 
MOV ES,AX 
MOV CX, SIZE BLOCK 
MOV AL,O 
CLO 

REP STOS BYTE PTR BLOCK ; see Chapter on Instructions 

Square Brackets Used As Subscripts 

The usage of square brackets in the expression "BLOCK[DI]" is different from 
square brackets when used alone (e.g., just "[DI]"). This new usage of square 
brackets is called subscripting. It is similar, but not identical, to subscripting in a 
higher level language like FORTRAN or PLiM. Using an expression in square 
brackets as a subscript has the effect of adding the quantity in brackets to the offset 
component of the address expression appearing to the left of the brackets. This ad
dress expression may not appear to the right of the brackets.) 

The value to the left of the subscript must be an address expression. The result of a 
subscript operation is always an address expression and must have a data type (e.g., 
BYTE, WORD, or DWORD). It is not legal to subscript labels. 

Thus we see that BLOCK[DI] is an address expression. Moreover, the offset compo
nent of BLOCK[DI] is the same as [OFFSET BLOCK + DI]. Also, the address 
expression [BX][SI] is legal, since [BX] is a legal address expression using the 
defaults discussed above. An equivalent expression to [BX][DI] is [BX + DI]. The 
former involves subscripting, the latter does not. The result is the same. 

The segment and type components of the new address expression are the same as 
those components of the address expression to the left of the subscript. 

Recall the first rule for legal expressions in square brackets: 

Numbers may appear if at least one of the base or index registers appear. 

This rule is relaxed in the case of subscripts; numeric expressions are allowed to 
appear alone in square brackets if the brackets are used as a subscript. Since the 
subscript is added BLOCK[3] would be the same as BLOCK + 3. 



8086 Assembly Language 

Examples: 

For byte arrays of the same size: 

ASSUMECS: SWITCH_SEG, os: DATA_TABLEs 

MOV CX, LENGTH ARRA Y1 
MOV BX, OFFSET ARRAY2 
MOV SI,O 

NEXT: MOV AL,ARRAY1[SI) 
MOV BYTE PTR [BX) [SI), AL 
INC SI 
LOOP NEXT 

This sequence above fills each byte of ARRA Y2 with the contents of the respective 
byte in ARRAY!. For byte or word arrays of the same size, you can change INC SI 
to ADD SI, TYPE ARRAY!. If the sizes are different, the loop must run on the 
smaller, i.e., both the MOV CX command and the one at NEXT must use the 
smaller array name, putting the other name in the MOV BX command. 

If the type are different, you may be making a mistake, but you can achieve your 
goal using PTR and a separate index. Here are three examples, using the earlier 
definitions in the segment DAT~TABLES: 

DATA-TABLES SEGMENT PARA 'DATACLASS' 

A DB 
B OW 
Y DO 

o 
o 

100 DUP (0) 
300 DUP (47) 
100 DUP (13) 

DATA_TABLES ENDS 

SWITCH SEGMENT PARA 'CODE1CLASS' 
o 
o 
o 

ASSUME CS:SWITCH, OS: DATA-TABLES 
. MOV CX, LENGTH A 

MOV BX, OFFSET B 
MOV SI, 0 
MOV 01, 0 

(EXAMPLE#1) NEXT: MOV 
MOV 
ADD 
ADD 
LOOP 

AL, A[DI) 
[BX) [51), AL 
51, TVPE B 
01, TVPEA 
NEXT 

This loop places each of A's 100 bytes into the low-order byte of each of B's first 100 
words, such that A[*J = LOW B[*J 

(EXAMPLE #2) NEXT: MOV 
MOV 
ADD 
ADD 
LOOP 

AL,A[DI) 
[BX) [51 + 1), AL 
SI,TVPE B 
DI,TVPEA 
NEXT 

Expressions 

5-21 



Expressions 

5-22 

8086 Assembly Language 

This performs similarly to Example 1 above but the high-bytes of B's first 100 words 
are filled instead, such that A[H] = HIGH B [H) 

(EXAMPLE #3) NEXT: MOV AX, WORD PTR A[DI] 
MOV [BX] [SI], AX 
ADD SI, TYPE B 
ADD 01, TYPE B 

CMP 01, SIZE A 
JGE A-USED_PROC 

LOOP NEXT 
A_USED_UP: CALL NEW_PROC 

0 

0 

0 

SWITCH ENDS 

This makes the first 100 bytes of B identical with A's 100 bytes. Instead of the com
pare and conditional jump, you could have halved the size of A put into ex, i.e., 
the first line after ASSUME could have read 

MOV ex, LENGTH A/2 
or 

MOV ex, LENGTH A SHR 1 

Example 3 could be accomplished using the string block-move instructions in the 
following two ways: 

1. 

2. 

ASSUME CS: SWITCH,DS: DATA-TABLES, 
& ES: DATA-TABLES ; the block-move 

; requires ES 
MOV CX, LENGTH A 
LEA SI, A 
LEA 01, B 
OLD 

X3: REP MOVS BYTE PTR B, A 

ASSUME 
& 

CS; SWITCH,DS: DATA-TABLES, 

MOV 
LEA 
LEA 
CLD 

ES; DATA-TABLES 
CX, LENGTH A1TYPE B 
SI,A 
DI,B 

X3: REP MOVS B, WORD PTR A ; half the number of moves 



8086 Assembly Language 

Using Square Brackets in Transfers 

(Indirect Transfers) 

Square brackets do have another use, and it relies on an interpretation similiar to the 
above. When [BX] is used, it is taken to mean "use (the data at) the location whose 
offset is in BX". In the examples above, data was being stored into such a location, 
but it is equally valid to write 

MOV AH, OS: [BX] [51] 

This causes the accumulator's high-byte to receive the data stored at the Slth byte 
past the location whose offset is in BX, in the segment whose base-address is in DS. 
(Effectively this amounts to the byte whose address is the contents of SI plus the 
contents of BX plus 16 times the contents of DS.) If you were to write 

MOV AX, DS:[BX] [51] 

then the full-word accumulator would be filled with the word in DS beginning at the 
Slth byte past the location whose offset is in BX. 

The OTHER use of square brackets is in jumps or calls. Jumps and calls are always 
in the CS segment, i.e., using the contents of CS as the paragraph-number of the 
segment-base-address. When you write 

JMP BX ;DIRECT JUMP 

control is transferred to a location in the current CS segment using the contents of 
BX as an offset from the current CS base-address. Thus if BX contains OCI2H, 
JMP BX transfers to the location OC12H beyond the beginning of the CS segment. 

If, however, you write 

JMP WORD PTR [BX] ; INDIRECT JUMP 

the square brackets mean "use the contents of the word whose offset is in BX." This 
usage automatically means the data is in the DS segment. Thus the contents of BX 
are used as an offset (to the segment address in DS) to locate the indicated word. 
Then that word's contents are used for the transfer, replacing the Instruction 
Pointer. 

In the example above, BX contained OCI2H. When the instruction you code is JMP 
WORD PTR [BX], the transfer does not use OC12H as the offset to CS, but rather 
uses the contents of DS:OCI2H as the offset. If the word at OC12H in the DS seg
ment contains OFAFH, JMP WORD PTR [BX] transfers control to OFAFH in the 
current CS segment. 

The WORD PTR preceding [BX] indicates use of one word as an offset, leaving the 
contents of CS unchanged as the segment address. The only other choice for this 
construction is 

JMP DWORD PTR [BX] 

which would use two words at that address in DS. The first, as above, is the offset. 
The next word is used to replace the contents of CS, making this an intersegment 
jump (also called "long" or "FAR"). 

Expressions 

5-23 



Expressions 

5-24 

8086 Assembly Language 

Subscripting such a reference is also legal, e.g., 

JMP WORD PTR [BX] [51] 

which would replace the IP with the word beginning at the Slth byte post the loca
tion whose offset is in BX. Similarly, it is valid to use a subscripted address expres
sion in a jump, e.g., 

JMP TABLE [BX][DI] 

where the type of entry in the table must be word or doubleword. 

The remainder of this chapter discusses the following operators: SHORT, OR, 
XOR, AND, NOT*, I, MOD, SHL, SHR, HIGH, and LOW. Relocatable numbers 
and expressions are discussed in Appendix G. 

All constants are stored internally as 17-bit numbers, that is, a left-most bit for the 
sign of the constant (O=plus, l=minus) and a 16-bit value. The signs of the operands 
are affected by the logical and shifting operators, as is discussed in each case. 

SHORT 

Causes the assembler to expect only 1 byte to be enough to hold the ultimate value of 
the expression. This means machine code will only be generated if the evaluation of 
the expression yields a single byte value. If the result is larger than a byte, you will 
get an error message. If an expression using SHORT undergoes further arithmetic, 
the operator loses all effect. Applying SHORT to a backward reference has no 
effect. 

OR, XOR 

Create the inclusive or exclusive logical "or" of the operands. Inclusive-or means 
the result has a 1 in all bit positions where either operand had a 1. Exclusive-or 
means the result has a 1 where only one operand had a 1 and the other had a 0, and 
the result has a 0 where both operands had the same value, i.e., both Is or both Os. 

Examples: 

11010110B 
OR 01010101 B 

11010111 B 
but XOR 

11010110B 
01010101 B 
10000011 B 

Showing these in a vertical format makes it easier to compare bit by bit, but the 
usual form would be horizontal in an instruction, i.e., 

VALUE_D6H EQU 11010110B ; = OD6H 
VALUE_55H EQU 01010101 B ; = 55H 
MOV AX, VALU E_D6H OR VALU E_55H ; AX = D7H. 
MOV BX, 11010110B XOR 01010101 B; BX = 83H. 



8086 Assembly Language 

AND 

Creates the logical conjunction of the 2 operands, meaning the result has a 1 only in 
those bit positions where BOTH operands had a 1. 

Examples: 

(actually, the sign bit is included, as above); 

110101108 
AND 010101018 

010101008 
AND 

1 11111111 11111011 
o 00000000 00010101 
o 00000000 00 010001 

(-5) 
(21) 
=17 

AND is sometimes used to select certain bits or a pattern of bits out of a larger value. 
This is sometimes called masking the desired bits, or masking out the rejected bits. If 
you use the mask 00001111 BANDed with some byte in memory, the result will be a 
byte whose lower half is the same as the original, with an upper half of all zeroes: 

101111018 
AND 000011118 

000011018 
AND 

100101108 
000011118 
000001108 

(See also discussion of Records in Chapter 3.) 
When AND is combined with "ORs", AND is done first: 

MASK1 Eau 000011118 

1. MOV MEM_WORD, 100101118 AND MASK1 XOR 11108 

2. MOV MEM_WORD, 100101118 XOR MASK1 AND 11108 

The instruction at (1) moves 0000loolB into MEM_ WORD, as follows: 

100101118 
AND 000011118 

000001118 
XOR 

000001118 
000011108 
000010018 

Whereas the instruction at (2) moves loollOooB into 
MEM_ WORD, as follows: 

(MASK 1 =) 
AND 

11118 
11108 
11108 

XOR 
100101118 
000011108 
100110018 

Expressions 

5-25 



Expressions 

5-26 

8086 Assembly Language 

NOT 

Forms the "ones" complement of its operand, i.e., each original zero becomes a one 
and each original one becomes a zero. 

NOT 01011011 B = 1(f100100B 

When NOT is combined with ANDs or ORs, NOT is done first: 

MOV MEM_WORD,97H AND NOT MASK1 

moves lOOlOOOOB into MEM_ WORD, as follows: 

NOT MASK1 = NOT 00001111 B = 11110000B 
97H = 10010111 B AND 10010111 B 

10010000B 

MOV DX,97H AND NOT MASK1 XOR 1110B 

moves lOOlll10B into DX, because XOR is done last. 

MOV BX,97H XOR NOT MASK1 AND 1110B 

moves 97H into BX. NOT is done first, AND second, XOR last. The AND produces 
all zeros, so the XOR effectively duplicates the 97H. 

«any_value OR 0 = any_value 
any_value XOR 0 = any_value 
any_value AND OFFFFH = any_value» 

NOTE: if NOT yields lOOOOH, it is converted to zero: NOT OFFFFH =0 

Relational Operators: EQ, NE, LT, LE, GT, GE 

These operators compare 2 operands, giving a result of all 1 's if the specified rela
tion is true, and all O's if not. In the order listed above, the operators mean: equal, 
not equal, less than, less than or equal (i.e., not greater), greater than, greater than 
or equal (i.e., not less). To compare variables or labels, they must be defined in the 
same segment. These operators compare the offsets of such operands. 

These operators yield a 16-bit result of all ones if the relation is TRUE, or all zeroes 
if it is FALSE. One way to use them in expressions, then, is to use AND: 

MOV AL,25 AND A NE B 

will mean either 

MOV AL, 25 or MOV AL, 0 

depending on the assembly-time value of A being unequal or equal to the value of B, 
respectively. 

TAB DW ((NEW LT OLD) AND OLD + (NEW GE OLD) AND NEW) DUP (1) 

TAB is a word array, whose length is the larger of NEW and OLD. 

NOTE: Variables and labels may only be compared if they are in the same segment. 
Numbers may not be compared to variables or labels. 



8086 Assembly Language 

Multiplicative and Shifting Operators 

* 

/ 

MOD 

Multiplication 

Division. (Division by zero causes an error.) 

Modulo. Result is the remainder caused by a division operation 
(7 MOD 3 = 1). Absolute-number operands only. 

Examples: 

1. The following expressions generate the bit pattern for the ASCII character A 
(65D or 41H): 

2. 

5 + 30*2 

(25/5) + (30*2) 

5+ (-30*-2) 

SAMPLE_NUMBER MOD 8 

NOTE 

The MOD operator must be separated from its operands by spaces. 

If SAMPLE_NUMBER has the value 25, the expression above evaluates to the 
value 1. 

Expressions 

5-27 



Expressions 

5-28 

Shift Operators 

The shift operators are as follows: 

Operator 

y SHR x 

y SHL x 

Meaning 

Shift operand 'y' to the right 'x' bit positions. 

Shift operand 'y' to the left 'x' bit positions. 

8086 Assembly Language 

The shift operators do not "wraparound" any bits shifted out of the byte (as do the 
rotate instructions, for which there are no corresponding operators). Bit positions 
vacated by shifting are zero-filled. The shift operator must be separated from its 
operands by spaces. Both y and x must be absolute numbers. 

Example: 

Assume that NUMBER has the value 01010101. The effect of the shift operators is 
as follows: 

NUMBR SHR 2 

NUMBR SHL 1 

00010101 

10101010 

A shift one bit position to the left has the effect of multiplying a value by two; a shift 
one bit position to the right has the effect of dividing a value by two. Therefore 
shifting N positions left is equivalent to multiplying by 2 to the Nth, and shifting 
right N positions effectively divides by 2 to the Nth. Shifting by a negative number 
reverses the direction of the shift, i.e., 

NUMBR SHR -2 

is identical to 

NUMBR SHL 2 

The sign bit is not affected by SHL or SHR. 

Byte Isolation Operators 

The byte isolation operators are as follows: 

Operator 

HIGH 

LOW 

Meaning 

Isolate high-order 8 bits of 16-bit value. 

Isolate low-order 8 bits of 16-bit value. 

In some cases, you need to deal only with one byte of a word. This is the function of 
the HIGH and LOW operators. You can take the HIGH or LOW of a relocatable 
quantity. These operators are for support of 8080-to-8086 translation only, and are 
not recommended for 8086 programming. 

If it occurs that HIGH or LOW is applied again to a relocatable quantity (called 
RQ), then the following will result: 

LOW 
LOW 
HIGH 
HIGH 

LOW 
HIGH 
LOW 
HIGH 

RQ= LOW RQ 
RQ= HIGH RQ 
RQ=O 
RQ=O 



CHAPTER 6 
THE INSTRUCTION SET 

The descriptors and notation explained below and used in this chapter are not all 
valid in source statements. They are used here as a shorthand, and explained in the 
English text that accompanies each instruction description. The code examples, 
however, are valid source statements. 

Symbols 

MCS-86 Meaning Descriptor 

AX Accumulator (16-bit) (8080 Accumulator holds only 8-bits) 

AH Accumulator (high-order byte) 

AL Accumulator (low-order byte) 

BX Register BX (16-bit) (8080 register pair HL), which may be split and 
addressed as two 8-bit registers. 

BH High-order byte of register BX. 

BL Low-order byte of register BX. 

CX Register CX (16-bit) (8080 register pair BC), which may be split and 
addressed as two 8-bit registers. 

CH High-order byte of register CX. 

CL Low-order byte of register CX. 

DX Register DX (16-bit) (8080) register DE) which may be split and 
addressed as two 8-bit registers. 

DH High-order byte of register DX. 

DL Low-order byte of register DX. 

SP Stack Pointer (16-bit) 

BP Base Pointer (16-bit) 

IP Instruction Pointer (8080 Program Counter) (16-bit) 

Flags 16-bit register space, in which nine flags reside. (Not directly 
equivalent to 8080 PSW, which contains five flags and the contents 
of the accumulator.) 

DI Destination Index register (16-bit) 

SI Stack Index register (16-bit) 

CS Code Segment register (16-bit) 

DS Data Segment register (16-bit) 

ES Extra Segment register (16-bit) 

SS Stack Segment register (16-bit) 

REG8 The name or encoding of an 8-bit CPU register location. 

REG16 The name or encoding of a 16-bit CPU register location. 

LSRC, RSRC Refer to operands of an instruction, generally left source and right 
source when two operands are used. The leftmost operand is also 
called the destination operand, and the rightmost is called the 
source operand. 

reg A field which specifies REG8 or REG16 in the description of an 
instruction. 

EA Effective address (16-bit) 

6-1 



Instruction Set 

6-2 

rim 

MCS-86 
Descriptor 

mode 

w 

d 

( ... ) 

(BX) 

«BX)) 

(BX) + 1, (BX) 

«BX) + 1, (BX)) 

Concatenation, e.g., 
«OX) + 1: (OX)) 

addr 

addr-Iow 

addr-high 

addr + 1: addr 

data 

data-low 

data-high 

disp 

disp-Iow 

disp-high 

+ 

% 

& 

I 
II 

8086 Assembly Language 

Symbols (Cont'd.) 

Meaning 

Bits 2, 1, 0 of the MOORM byte used in accessing memory 
operands. This 3-bit field defines EA, in conjunction with the mode 
and w fields. 

Bits 7, 6 of the MOORM byte. This 2-bit field defines the 
addressing mode. 

A 1-bit field in an instruction, identifying byte instructions (w=O), 
and word instructions (w=1) 

A 1-bit field in an instruction, "d" identifies direction, i.e. whether 
a specified register is source or destination. 

Parentheses mean the contents of the enclosed register or 
memory location. 

Represents the contents of register BX, which can mean the 
address where an 8-bit operand is located. To be so used in an 
assembler instruction, BX must be enclosed only in square 
brackets. 

Means this 8-bit operand, the contents of the memory location 
pointed at by the contents of register BX. This notation is only 
descriptive, for use in this chapter. It cannot appear in source 
statements. 

Means the address (of a 16-bit operand) whose low-order 8-bits 
reside in the memory location pointed at by the contents of 
register BX and whose high-order 8-bits reside in the next se
quential memory location, (BX) + 1. 

Means the 16-bit operand that resides there. 

Means a 16-bit word which is the concatenation of two 8-bit bytes, 
the low-order byte in the memory location pOinted at by OX and 
the high-order byte in the next sequential memory location. 

Address (16-bit) of a byte in memory. 

Least significant byte of an address. 

Most significant byte of an address. 

Addresses of two consecutive bytes in memory, beginning at 
addr. 

Immediate operand (8-bit if w=O; 16-bit if w=1). 

Least significant byte of 16-bit data word. 

Most significant byte of 16-bit data word. 

Displacement 

Least significant byte of 16-bit displacement. 

Most significant byte of 16-bit displacement. 

Assignment 

Addition 

Subtraction 

Multiplication 

Division 

Modulo 

And 

Inclusive or 

Exclusive or 



8086 Assembly Language Instruction Set 

Instruction and Data Formats 
The formats described briefly here reflect the assembly language processed by the 
Intel-supplied assembler, ASM-86, used with the Intellec development systems. 

Assembly language instructions are written one per line. If a semicolon occurs other 
than in a string, then the remainder of that line is taken as a comment. If a line 
begins with an ampersand ("&"), it is considered a continuation of the previous line 
(instruction or directive, not comment). 

Any instruction is made up of a series of tokens. Each token may be one of three 
types: 

Name 
Constant 
Delimiter 

If two consecutive tokens together might be interpreted as some other token, they 
must be separated by a space; if not, spaces have no meaning and may be omitted. 
However, extra spaces may be inserted if desired; the computer ignores them. Com
ments may be made any number of lines long, but a semicolon must start each line 
of a comment. The assembler ignores comments and blank lines. It does not 
distinguish between capitals and lower-case letters. 

An exception to the above rules is the character string. The assembler recognizes all 
of the characters, spaces, and blanks that are contained within the string. 

Instruction Set Encyclopedia 
Page 6-157 is an alphabetical index to this chapter. In these lists, all instructions are 
referenced to the assembly-language mnemonics. Although there is not a unique 
mnemonic for each instruction code, there is enough information in the instruction, 
source, and destination mnemonics for the assembler to identify the correct code. 
This means, for example, that you don't have to keep in mind which of the different 
MOY codes is needed for different source and destination operands. When you 
write 

EXAMPLE: MOV BETA, AL 

~ !I------..-----,. ,-- ----
1 10 1 0 1 0 11 1 0 0 0 o 1 0 oj 010 1 11 10 T , 

ADDRESS I DISPLACEMENT I 
OPCODE o W MOD REG RIM FOR BETA ______ l ______ J 

llL.----t-----:~TE MODE USING AL REGISTER 

'----------- FROM REGISTER - USING AL AS SOURCE 

The assembler takes care of: 

D (direction bit) 
W (word bit) 
MOD (mode field) 
Displacement 

The assembler chooses the correct mode to perform your intended operation. This 
chapter describes how those codes function. 

6-3 



Instruction Set 8086 Assembly Language 

6-4 

Addressing Modes 

The 8086 instruction set provides several different ways to address operands. Most 
two-operand instructions allow either memory or a register to serve as one operand, 
and either a register or a constant within the instruction to serve as the other 
operand. Memory to memory operations are excluded. 

Operands in memory may be addressed directly with a 16-bit offset address, or in
directly with base (BX or BP) andlor index (SI or DI) registers added to an optional 
8- or 16-bit displacement constant. This constant can be the name of a variable or a 
pure number. When a name is used, the displacement constant is the variable's off
set (see Chapter I). 

The result of a two-operand operation may be directed to either memory or a 
register. Single-operand operations are applicable uniformly to any operand except 
immediate constants. Virtually all 8086 operations may specify either 8- or 16-bit 
operands. 

Memory Operands. Operands residing in memory may be addressed in four ways: 

• Direct 16-bit offset address 

• Indirect through a base register, BX or BP, optionally with an 8- or 16-bit 
displacement 

• Indirect through an index register, SI or DI, optionally with an 8- or 16-bit 
displacement 

• Indirect through the sum of one base register and one index register, optionally 
with an 8- or 16-bit displacement. 

The location of an operand in an 8086 register or in memory is specified by up to 
three fields in each instruction. These fields are the mode field (mod) the register 
field (reg), and the registerlmemory field (rim). When used, they occupy the second 
byte of the instruction sequence. 

The mode field occupies the two most significant bits 7, 6 of the byte, and specifies 
how the rim field (bits 2, I, 0) is used in locating the operand. The rim field can 
name a register which holds the operand or can specify an addressing mode (in com
bination with the mod field) which points to the location of the operand in memory. 
The reg field occupies bits 5, 4, 3 following the mode field, and can specify that one 
operand is either an 8-bit register or a 16-bit register. In some instructions, this reg 
field gives additional bits of information specifying the instruction, rather than only 
encoding a register (see also Chapter 7 and Appendix A). 

Description: The effective address (EA) of the memory operand is computed ac
cording to the mod and r/m fields: 

if mod = 00 then 015P =0*, disp-Iow and disp-high are absent 
if mod = 01 then 015P = disp-Iow sign-extended to 16 bits, 

disp-high is absent 
if mod = 10 then 015P = disp-high:disp-Iow 
if rIm = 000 then EA = (BX) + (51) + 015P 
if rIm = 001 then EA = (BX) + (01) + 015P 
if rIm = 010 then EA = (BP) + (51) + 015P 
if rIm = 011 then EA = (BP) + (01) + 015P 
if rIm = 100 then EA = (51) + 015P 
if rIm = 101 then EA = (01) + 015P 
if rIm = 110 then EA = (BP) + 015P* 
if rIm = 111 then EA = (BX) + 015P 

*except if mod = 00 and rIm = 110 then 
EA = disp-high: disp-Iow 

Instructions referencing 16-bit objects interpret EA as addressing the low-order 
byte; the word is addressed by EA + I,EA. 



8086 Assembly Language Instruction Set 

Encoding: 

I mod reg rim I disp-Iow disp-high 

Segment Override Prefixes. General register BX and pointer register BP may serve 
as base registers. When BX is the base the operand by default resides in the current 
Data Segment and the DS register is used to compute the physical address of the 
operand. When BP is the base the operand by default resides in the current Stack 
Segment and the SS segment register is used to compute the physical address of the 
operand. When both base and index registers are used the operand by default resides 
in the segment determined by the base register, i.e., BX means DS is used, BP means 
SS is used. When an index register alone is used, the operand by default resides in 
the current Data Segment. The physical address of most other memory operands is 
by default computed using the DS segment register (exceptions are noted below). 
These assembler-default segment register selections may be overridden by preceding 
the referencing instruction with a segment override prefix. 

Description: The segment register selected by the reg field of a segment prefix is 
used to compute the physical address for the instruction this prefix precedes. This 
prefix may be combined with the LOCK andlor REP prefixes, although the latter 
has certain requirements and consequences-see REP. 

Encoding: 

10 0 1 reg 1 1 0 I 
reg is assigned according to the following table: 

Exceptions: 

Segment 

00 ES 
01 CS 
10 SS 
11 OS 

The physical addresses of all operands addressed by the SP register are computed 
using the SS segment register, which may not be overridden. The physical addresses 
of the destination operands of the string primitive operations (those addressed by 
the DI register) are computed using the ES segment, which may not be overridden. 

Register Operands: The four 16-bit general registers and the four 16-bit pointer 
and index registers may serve interchangeably as operands in nearly alll6-bit opera
tions. Three exceptions to note are multiply, divide, and some string operations, 
which use the AX register implicitly. The eight 8-bit registers of the HL group may 
serve interchangeably in 8-bit operations. Multiply, divide, and some string opera
tions use AL implicitly. 

Description: Register operands may be indicated by a distinguished field, in which 
case REG will represent the selected register, or by an encoded field, in which case 
EA will represent the register selected by the rim field. Instructions without a "w" 
bit always refer to 16-bit registers (if they refer to any register at all); those with a 
"w" bit refer to either 8- or 16-bit registers according to "w". 

6-5 



Instruction Set 8086 Assembly Language 

6-6 

Encoding: 

General Registers: 

Distinguished Field: 

L...-___ re_g-ll or reg 

for mode = 11 EA = rIm (a register): 

I 11 reg 

REG is assigned according to the following table: 

16-Bit [w = 1] 8-Bit [w = 0] 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 OL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 81 110 OH 
111 01 111 BH 

Instructions which reference the flag register file as a 16-bit object use the symbol 
FLAGS to represent the file: 

FLAGS X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

where X is undefined. 

Immediate Operands. All two-operand operations except multiply, divide, and the 
string operations allow one source operand to appear within the instruction as im
mediate data. Sixteen-bit immediate operands having a high-order byte which is the 
sign extension of the low-order byte may be abbreviated to eight bits. 

Three points about immediate operands should be made: 

• Immediate operands always follow addressing mode displacement constants 
(when present) in the instruction. 

• The low-order byte of 16-bit immediate operands always precedes the 
high-order byte. 

• The 8-bit immediate operands of instructions with s:w = 11 are sign-extended to 
16-bit values. 

Below each type of instruction, the following information is given: 

1. A descriptive English name or phrase 

2. The instruction's binary encoding 

3. The time it takes, expressed in clock cycles (using a 5-MHz clock, one cycle is 
200 nanoseconds; using an 8-MHz clock, one cycle is 125 nanoseconds) 

4. A step-by-step operational description 

5. A list of flags set to 1 or reset to 0 during the operation of this instructjon (see 
also Appendix C). 

6. A general description of when the instruction is used, how it works, defaults it 
may use or invoke, and points to remember about its interaction with other in
structions or directives. 



8086 Assembly Language Instruction Set 

7. Examples 

The times given for instructions depend on the nature of the operands. These times 
are fixed for register-to-register operations and for immediate-data-to-register 
operations, e.g. 

MOV OX, AX takes 2 cycles 
MOV OX, 444 takes 4 cycles, regardless of which register or what data. 

Operands in memory take some extra time for calculating the Effective Address. 
These added cycles are indicated in the listed times by the term "+ EA". The 
amount of tirpe needed varies depending on 3 factors: 

a. Which addressing mode was used in the address expression for the memory 
operand. 

b. Whether a segment override prefix byte is needed. 

c. For word operands, whether the first byte of the word resides at an even or odd 
address. 

The list below shows the added cycles needed for each addressing mode to access 
either 8-bit memory operands or 16-bit memory operands (words) whose first byte is 
at an even address. Add 4 cycles for words residing at odd memory addresses. Add 2 
cycles if a segment override is used. 

1. 

2. 

3. 

4. 

5. 

Addressing Mode 

direct 16-bit offset address 
e.g., MOV SX, SIMPLE_NAME 
takes 8 + 6 or 14 cycles 

indirect through base or index register 
e.g., MOV ex, [SX] 

MOV ex, [SI] 
each takes 8 + 5 or 13 cycles 

indirect through base or index register with 
displacement constant 
e.g., MOV OX, SIMPLE_NAME [SX] 

MOV SIMPLE_NAME [01] , ex 
each takes 8 + 9 or 17 cycles 

indirect through sum of one base and one index register 
e.g., MOV OX, [SX] [SI] 

MOV [SX] [01] ex 
each takes 8 + 7 or 15 cycles 

indirect through sum of base and index register plus 
displacement constant 
e.g., MOV OX, SIMPLE_NAME [SX] [SI] 

MOV SIMPLE_NAME [SX] [01] ,ex 
each takes 8 + 11 or 19 cycles 

Add 

6 

5 

9 

7 or 8 

11 or12 

If SIMPLE_NAME resides at an odd address, each of the above address expres
sions involving that variable would require 4 extra cycles. If a segment override were 
necessary (see ASSUME in Chapter 4), then an additional 2 cycles must be added. 
Thus the instruction MOV ES:SIMPLE_NAME, CX would require 16 instead of 
14 cycles, and 20 cycles if the first byte of SIMPLE_NAME were at an odd address. 

6-7 



Instruction Set 8086 Assembly Language 

6-8 

Organization of the Instruction Set 
Instructions are described in this section in six functional groups: 

Data transfer 
Arithmetic 
Logic 
String manipulation 
Control transfer 
Processor control 

Each of the first three groups mentioned in the preceding list is further subdivided 
into an array of codes that specify whether the instruction is to act upon immediate 
data, register or memory locations, whether 16-bit words, or 8-bit bytes are to be 
processed, and what addressing mode is to be employed. All of these codes are listed 
and explained in detail, but you do not have to code each one individually. The con
text of your program automatically causes the assembler to generate the correct 
code. There are three general categories of instructions within each of the three func
tional groups mentioned: 

Register or memory space to or from register 
Immediate data to register or memory 
Accumulator to or from registers, memory, or ports 

Data Transfer 

Data transfer operations are divided into four classes: 

• general purpose 

• accumulator-specific 

• address-object 

• flag 

None affect flag settings except SAHF and POPF. 

General Purpose Transfers. Four general purpose data transfer operations are pro
vided. These may be applied to most operands, though there are specific exceptions. 
The general purpose transfers (except XCHG) are the only operations which allow a 
s(lgment register as an operand. 

- MOV performs a byte or word transfer from the source (rightmost) operand to 
the destination (leftmost) operand. 

- PUSH decrements the SP register by two and then transfers a word from the 
source operand to the stack element currently addressed by SP. 

- POP transfers a word operand from the stack element addressed by the SP 
register to the destination operand and then increments SP by 2. 

- XCHG exchanges the byte or word source operand with the destination operand. 
The segment registers may not be operands of XCHG. 

Accumulator-Specific Transfers. Three accumulator-specific transfer operations 
are provided: 

- IN transfers a byte (or word) from an input port to the AL register (or AX 
register). The port is specified either with an inline data byte, allowing fixed ac
cess to ports 0 through 255, or with a port number in the DX register, allowing 
variable access to 64K input ports. 

- OUT is similar to IN except that the transfer is from the accumulator to the 
output port. 



8086 Assembly Language Instruction Set 

- XLA T performs a table lookup byte translation. The AL register is used as an 
index into a 256-byte table addressed by the BX register. The byte operand so 
selected is transferred to AL. 

Address-Object Transfers. Three address-object transfer operations are provided: 

- LEA (load effective address) transfers the offset address of the source operand to 
the destination operand. The source operand must be a memory operand and the 
destination operand must be a 16-bit general, pointer, or index register. 

- LDS (load pointer into DS) transfers a "pointer-object" (i.e., a 32-bit object 
containing an offset address and a segment address) from the source operand 
(which must be a doubleword memory operand) to a pair of destination registers. 
The segment address is transferred to the DS segment register. The offset address 
is transferred to the 16-bit general, pointer, or index register that you coded. 

- LES (load pointer into ES) is similar to LDS except that the segment address is 
transferred to the ES segment register. 

Flag Register Transfers. Four flag register transfer operations are provided: 

- LAHF (load AH with flags) transfers the flag registers SF, ZF, AF, PF, and CF 
(the 8080 flags) into specific bits of the AH register. 

- SAHF (store AH into flags) transfers specific bits of the AH register to the flag 
registers, SF, ZF, AF, PF, and CF. 

- PUSHF (push flags) decrements the SP register by two and transfers all of the 
flag registers into specific bits of the stack element addressed by SP . 

- POPF (pop flags) transfers specific bits of the stack element addressed by the SP 
register to the flag registers and then increments SP by two. 

Arithmetic 

The 8086 provides the four basic mathematical operations in a number of different 
varieties. Both 8- and 16-bit operations and both signed and unsigned arithmetic are 
provided. Standard twos complement representation of signed values is used. The 
addition and subtraction operations serve as both signed and unsigned operations. 
In these cases the flag settings allow the distinction between signed and unsigned 
operations to be made (see Conditional Transfer). Correction operations are pro
vided to allow arithmetic to be performed directly on unpacked decimal digits or on 
packed decimal representations. 

Flag Register Settings. Six flag registers are set or cleared by arithmetic operations 
to reflect certain properties of the result of the operation. They generally follow 
these rules (see also Appendix C): 

- CF is set if the operation results in a carry out of (from addition) or a borrow into 
(from subtraction) the high-order bit of the result; otherwise CF is cleared. 

- AF is set if the operation results in a carry out of (from addition) or a borrow into 
(from subtraction) the low-order four bits of the result; otherwise AF is cleared. 

- ZF is set if the result of the operation is zero; otherwise ZF is cleared. 

- SF is set if the high-order bit of the result of the operation is set; otherwise SF is 
cleared. 

- PF is set if the modulo 2 sum of the low-order eight bits of the result of the 
operation is a (even parity); otherwise PF is cleared (odd parity). 

- OF is set if the operation results in a carry into the high-order bit of the result but 
not a carry out of the high-order bit, or vice versa; otherewise OF is cleared. 

6-9 



Instruction Set 8086 Assembly Language 

6-10 

Addition. Five addition operations are provided: 

- ADD performs an addition of the source and destination operands and returns 
the result to the destination operand. 

- ADC (add with carry) performs an addition of the source and destination 
operands, adds one if the CF flag is found previously set, and returns the result to 
the destination operand. 

- INC (increment) performs an addition of the source operand and one, and 
returns the result to the operand. 

- AAA (unpacked BCD (ASCII) adjust for addition) performs a correction of the 
result in AL of adding two unpacked decimal operands, yielding an unpacked 
decimal sum. 

- DAA (decimal adjust for addition) performs a correction of the result in AL of 
adding two packed decimal operands, yielding a packed decimal sum. 

Subtraction. Seven subtraction operations are provided: 

- SUB performs a subtraction of the source from the destination operand and 
returns the result to the destination operand. 

- SBB (subtract with borrow) performs a subtraction of the source from the 
destination operand, subtracts one if the CF flag is found previously set, and 
returns the result to the destination operand. 

- DEC (decrement) performs a subtraction of one from the source operand and 
returns the result to the operand. 

- NEG (negate) performs a subtraction of the source operand from zero and 
returns the result to the operand. 

- CMP (compare) performs a subtraction of the source destination operand, 
causing the flags to be affected, but does not return the result. 

- AAS (unpacked BCD (ASCII) adjust for subtraction) performs a correction of 
the result in AL of subtracting two unpacked decimal operands, yielding an un
packed decimal difference. 

- DAS (decimal adjust for subtraction) performs a correction of the result in AL of 
subtracting two packed decimal operands, yielding a packed decimal difference. 

Multiplication. Three multiplication operations are provided: 

- MUL performs an unsigned multiplication of the accumulator (AL or AX) and 
the source operand, returning a double length result to the accumulator and its 
extension (AL and AH for 8-bit operation, AX and DX for 16-bit operation). CF 
and OF are set if the top half of the result is non-zero. 

- IMUL (integer mUltiply) is similar to MUL except that it performs a signed 
multiplication. CF and OF are set if the top half of the result is not the sign- ex
tension of the low half of the result. 

- AAM (unpacked BCD (ASCII) adjust for multiply) performs a correction of the 
result in AX of multiplying two unpacked decimal operands, yielding an un
packed decimal product. 

Division. Three division operations are provided and two sign-extension operations 
to support signed division: 

- DIV performs an unsigned division of the accumulator and its extension (AL and 
AH for 8-bit operation, AX and DX for 16-bit operation) by the source operand 
and returns the single length quotient to the accumulator (AL or AX), and 
returns the single length remainder to the accumulator extension (AH or DX). 
The flags are undefined. Division by zero generates an interrupt of type O. 



8086 Assembly Language Instruction Set 

- IDIV (integer division) is similar to DIV except that it performs a signed division. 

- AAD (unpacked BCD (ASCII) adjust for division) performs a correction of the 
dividend in AL before dividing two unpacked decimal operands, so that the result 
will yield an unpacked decimal quotient. 

- CBW (convert byte to word) performs a sign extension of AL into AH. 

- CWD (convert word to double word) performs a sign extension of AX into DX. 

Logic 

The 8086 provides the basic logic operations for both 8- and 16-bit operands. 

Single-Operand Operations. Three-single-operand logical operations are provided: 

- NOT forms the one's complement of the source operand and returns the result to 
the operand. Flags are not affected. 

- Shift operations of four varieties are provided for memory and register operands, 
SHL (shift logical left), SHR (shift logical right), SAL (shift arithmetic left), and 
SAR (shift arithmetic right). Single bit shifts, and variable bit shifts with the shift 
count taken from the CL register are available. The CF flag becomes the last bit 
shifted out; OF is defined only for shifts with count of 1, and is set if the final 
sign bit value differs from the previous value of the sign bit; and PF, SF, and ZF 
are set to reflect the resulting value. 

- Rotate operations of four varieties are provided for memory and register 
operands, ROL (rotate left), ROR (rotate right), RCL (rotate through CF left), 
and RCR (rotate through CF right). Single bit rotates, and variable bit rotates 
with the rotate count taken from the CL register, are available. The CF flag 
becomes the last bit rotated out; OF is defined only for shifts with count of 1, and 
is set if the final sign bit value differs from the previous value of the sign bit. 

Two-Operand Operations. Four two-operand logical operations are provided. The 
CF and OF flags are cleared on all operations; SF, PF, and ZF reflect the result. 

- AND performs the bitwise logical conjunction of the source and destination 
operand and returns the result to the destination operand. 

- TEST performs the same operations as AND causing the flags to be affected but 
does not return the result. 

- OR performs the bitwise logical inclusive disjunction of the source and 
destination operand and returns the result to the destination operand. 

- XOR performs the bitwise logical exclusive disjunction of the source and 
destination operand and returns the result to the destination operand. 

String Manipulation 

One-byte instructions perform various primitive operations for the manipulation of 
byte and word strings (sequences of bytes or words). Any primitive operation can be 
performed repeatedly in hardware by preceding its instruction with a repeat prefix 
(see REP). The single-operation forms may be combined to form complex string 
operations with repetition provided by iteration operations. 

Hardware Operation Control. All primitive string operations use the SI register to 
address the source operands. The DI register is used to address the destination 
operands, which reside in the current extra segment. If the DF flag is cleared, the 

6-11 



Instruction Set 8086 Assembly Language 

6-12 

operand pointers are incremented after each operation, once for byte operations and 
twice for word operations. If the DF flag is set, the operand pointers are 
decremented after each operation. See Processor Control for setting and clearing 
DF. 

Any of the primitive string operation instructions may be preceded with a one-byte 
prefix indicating that the operation is to be repeated until the operation count in CX 
is satisfied. The test for completion is made prior to each repetition of the operation. 
Thus, an initial operation count of zero in CX will cause zero executions of the 
primitive operation. 

The repeat prefix byte also designates a value to compare with the ZF flag. If the 
primitive operation is one which affects the ZF flag, and the ZF flag is unequal to 
the designated value after any execution of the primitive operation, the repetition is 
terminated. This permits the scan operation, for example, to serve as a scan-while or 
a scan-until. 

During the execution of a repeated primitive operation, the operand index registers 
(SI and DI) and the operation count register (CX) are updated after each repetition, 
whereas the instruction pointer will retain the offset address of the repeat prefix byte 
(assuming it immediately precedes the string operation instruction). Thus, an inter
rupted repeated operation will be correctly resumed when control returns from the 
interrupting task. 

You should try to avoid using the two other prefix bytes with a repeat-prefixed string 
instruction, i.e., a segment prefix or the LOCK prefix. Execution of the repeated str
ing operation will not resume properly following an interrupt if more than one 
prefix is present preceding the string primitive. Execution will resume one byte 
before the primitive (presumably where the repeat resides), thus ignoring the addi
tional prefixes. 

Primitive String Operations: Five primitive string operations are provided: 

- MOVS transfers a byte (or word) operand from the source (rightmost) operand to 
the destination (leftmost) operand. As a repeated operation, this provides for 
moving a string from one location in memory to another. 

- CMPS subtracts the rightmost byte (or word) operand from the leftmost operand 
and affects the flags but does not return the result. As a repeated operation this 
provides for comparing two strings. With the appropriate repeat prefix it is possi
ble to determine after which string element the two strings become unequal, 
thereby establishing an ordering between the strings. 

- SCAS subtracts the destination byte (or word) operand from AL (or AX) and 
affects the flags but does not return the result. As a repeated operation this pro
vides for scanning for the occurrence of, or departure from a given value in the 
string. 

- LaDS transfers a byte (or word) operand from the source operand to AL (or 
AX). This operation ordinarily would not be repeated. 

- STOS transfers a byte (or word) operand from AL (or AX) to the destination 
operand. As a repeated operation this provides for filling a string with a given 
value. 

In all cases above, the source operand is addressed by SI and the destination operand 
is addressed by Dl. Only in CMPS does the DI-indexed operand appear as the 
rightmost operand. 



8086 Assembly Language Instruction Set 

Software Operation Control. The repeat prefix provides for rapid iteration in a 
hardware-repeated string operation. The iteration control operations (see LOOP) 
provide this same control for implementing software loops to perform complex str
ing operations. These iteration operations provide the same operation count update, 
operation completion test, and ZF flag tests that the repeat prefix provides. 

By combining the primitive string operations and iteration control operations with 
other operations, it is possible to build sophisticated yet efficient string manipula
tion routines. One instruction that is particularly useful in this context is XLAT; it 
permits a byte fetched from one string to be translated before being stored in a sec
ond string, or before being operated upon in some other fashion. The translation is 
performed by using the value in the AL register as a index into a table pointed at by 
the BX register. The translated value obtained from the table then replaces the value 
initially in the AL register (see XLA T). 

Control Transfer 

Four classes of control transfer operations may be distinguished: calls, jumps, and 
returns; conditional transfers; iteration control; and interrupts. 

All control transfer operations cause the program execution to continue at some new 
location in memory, possibly in a new code segment. Conditional transfers are pro
vided for targets in the range -128 to + 127 bytes from the transfer. 

Calls, Jumps, and Returns. Two basic varieties of calls, jumps, and returns are 
provided-those which transfer control within the current code segment, and those 
which transfer control to an arbitrary code segment, which then becomes the current 
code segment. Both direct and indirect transfers are supported; indirect transfers 
make use of the standard addressing modes as described above. 

The three transfer operations are described below: 

- CALL pushes the offset address of the next instruction onto the stack (in the case 
of an inter-segment transfer the CS segment register is pushed first) and then 
transfers control to the target operand. 

- JMP transfers control to the target operand. 

- RET transfers control to the return address saved by a previous CALL operation, 
and optionally may adjust the SP register so as to discard stacked parameters. 

Intra-segment direct calls and jumps specify a self-relative direct displacement, thus 
allowing position independent code. A shortened jump instruction is available for 
transfers in the range -128 to + 127 bytes from the instruction for code compaction. 

Conditional Jumps. The conditional transfers of control perform a jump con
tingent upon various Boolean functions of the flag registers. The destination must 
be within a -128 to + 127 byte range of the instruction. Table 6-2 shows the 
available instructions, the conditions associated with them, and their interpretation. 

6-13 



Instruction Set 8086 Assembly Language 

6-14 

Table 6-2. 8086 Conditional Transfer Operations 

Instruction Condition Interpretation 

JE orJZ ZF = 1 "equal" or "zero" 

JL or JNGE (SF xor OF) = 1 "less" or "not greater or equal" 

JLE or JNG ((SP xor OF) or ZF) = 1 "less or equal" or "not greater" 

JBorJNAE CF = 1 "below" or "not above or equal" 

JBE orJNA (CF or ZF) = 1 "below or equal" or "not above" 

JPorJPE PF = 1 "parity" or "parity even" 

JO OF=1 "overflow" 

JS SF = 1 "sign" 

JNEorJNZ ZF = 0 "not equal" or "not zero" 

JNLorJGE (SF xor OF) = 0 "not less" or "greater or equal" 

JNLE orJG ((SF xor OF) or ZF) = 0 "not less or equal" or "greater" 

JNBorJAE CF=O "not below" or "above or equal" 

JNBEorJA (CF or ZF) = 0 "not below or equal" or "above" 

JNPorJPO PF = 0 "not parity" or "parity odd" 

JNO OF=O "not overflow" 

JNS SF = 0 "not sign" 

'''Above'' and "below" refer to the relation between two unsigned values, while 
"greater" and "less" refer to the relation between two signed values. 

Iteration Control. The iteration control transfer operations perform leading- and 
trailing-decision loop control. The destination of iteration control, transfers must be 
within a -128 to + 127 byte range of the instruction. These operations are par
ticularly useful in conjunction with the string manipulation operations. 

There are four iteration control transfer operations provided: 

- LOOP decrements the ex ("count") register by one and transfers if ex is not 
zero. 

- LOOPZ (also called LOOPE) decrements the ex register by one and transfers if 
ex is not zero and the ZF flag is set (loop while zero or loop while equal). 

- LOOPNZ (also called LOOPNE) decrements the ex register by one and 
transfers if ex is not zero and the ZF flag is cleared (loop while not zero or loop 
while not equal). 

- JeXZ transfers if the ex register is zero. 

Interrupts. Program execution control may be transferred by means of operations 
similar in effect to that of external interrupts. All interrupts perform a transfer by 
pushing the flag registers onto the stack (as in PUSHF), and then performing an in
direct intersegment call through an element of an interrupt transfer vector located at 
absolute locations 0 through 3FFH. This vector contains a four-byte element for 
each of up to 256 different interrupt types. 

There are three interrupt transfer operations provided: 

- INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and 
transfers control with an indirect call through anyone of the 256 vector elements. 
A one-byte form of this instruction is available for interrupt type 3. 

- INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and 
transfers control with an indirect call through vector element 4 if the OF flag is set 
(trap on overflow). If the OF flag is cleared, no operation takes place. 



8086 Assembly Language Instruction Set 

- IRET transfers control to the return address saved by a previous interrupt 
operation and restores the saved flag registers (as in POPF). 

Processor Control 

Various instructions and mechanisms are provided for control and operation of the 
processor and its interaction with its environment. 

Flag Operations. There are seven operations provided which operate directly on 
individual flag registers: 

- CLC clears the CF flag. 

- CMC complements the CF flag. 
- STC sets the CF flag. 

- CLD clears the DF flag, causing the string operations to auto-increment the 
operand pointers. 

- STD sets the DF flag, causing the string operations to auto-decrement the 
operand pointers. 

- CLI clears the IF flag, disabling external interrupts (except for the non-maskable 
external interrupt). 

- STI sets the IF flag, enabling external interrupts after the execution of the next 
instruction. 

Processor Halt. The HL T instruction causes the 8086 processor to enter its halt 
state. The halt state is cleared by an enabled external interrupt or RESET. 

Processor Wait. The WAIT instruction causes the processor to enter a wait state if 
the signal on its TEST pin is not asserted. The wait state may be interrupted by an 
enabled external interrupt. When this occurs the saved code location is that of the 
WAIT instruction, so that upon return from the interrupting task, the wait state is 
reentered. The wait state is cleared and execution resumed when the TEST signal is 
asserted. Execution resumes without allowing external interrupts until after the ex
ecution of the next instruction. This instruction allows the processor to synchronize 
itself with external hardware. 

Processor Escape. The ESC instruction provides a mechanism by which other pro
cessors may receive their instructions from the 8086 instruction stream and make use 
of the 8086 addressing modes. The 8086 processor does no operation for the ESC in
struction other than to access a memory operand. 

Bus Lock. A special one-byte prefix may precede any instruction causing the pro
cessor to assert its bus-lock signal for the duration of the operation caused by that 
instruction. This has use in multiprocessing applications (see LOCK). 

Single Step. When the TF flag register is set the processor generates a type I inter
rupt after the execution of each instruction. During interrupt transfer sequences 
caused by any type of interrupt, the TF flag is cleared after the push-flags step of the 
interrupt sequence. No instructions are provided for setting or clearing TF directly. 
Rather, the flag register image saved on the stack by a previous interrupt operation 
must be modified, so that the subsequent interrupt return operation (IRET) restores 
TF set. This allows a diagnostic task to single-step through a task under test, while 
still executing normally itself. 

6-15 



Instruction Set 8086 Assembly Language 

6-16 

If the single-stepped instruction itself clears the TF flag, the type I interrupt will still 
occur upon completion of the single-stepped instruction. If the single-stepped in
struction generates an interrupt or if an enabled external interrupt occurs prior to 
the completion of the single-stepped instruction, the type I interrupt sequence will 
occur after the interrupt sequence of the generated or external interrupt, but before 
the first instruction of the interrupt service routine is executed. 



AAA (ASCII adjust for addition) 

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary 
carry flag has been set, then 6 is added to AL and 1 is added to AH. AF and CF are 
set. The new value of AL has an upper nibble of all zeroes, and the lower nibble is 
the number between 0 and 9 created by the above addition. 

if ((AL) & OFH) > 9 or (AF) = 1 then 
(AL) +- (AL) + 6 
(AH) +- (AH) + 1 
(AF) +-1 
(CF) +- (AF) 
(AL) +- (AL) & OFH 

Encoding: 

1001101111 

Timing: 4 clocks 

Example: AAA ;after the addition 

Flags Affected: AF, CF. 
Undefined: OF, PF, SF, ZF 

Description: AAA (Unpacked BCD (ASCII) adjust for addition) performs a cor
rection of the result in AL of adding two unpacked decimal operands, yielding an 
unpacked decimal sum. 

AAA 

6-17 



AAD 

6-18 

AAD (ASCII adjust for division) 

Operation: The high byte (AH) of the accumulator is multiplied by 10 and added to 
the low byte (AL). The result is stored into AL. AH is zeroed out. 

(AL) +- (AH)*OAH + (AL) 
(AH) +- 0 

Encoding: 

1110101011000010101 

Timing: 60 clocks 

Example: AAD ;prior to the division 

Flags Affected: PF, SF, ZF. 
Undefined: AF, CF, OF 

Description: AAD (Unpacked BCD (ASCII) adjust for division) performs an ad
justment of the dividend in AL before a subsequent instruction divides two unpack
ed decimal operands, so that the result of the division will be an unpacked decimal 
quotient. 



AAM (Ascii adjust for multiply) 

Operation: The contents of AH are replaced by the result of dividing AL by 10. 
Then the contents of AL are replaced by the remainder of that division, i.e. by AL 
modulo 10. 

(AH) .- (AL) 10AH 
(AL) .- (AL) % OAH 

Encoding: 

1110101001000010101 

Timing: 83 clocks 

Example: AAM ;after the multiply 

Flags Affected: PF,SF,ZF. 
Undefined: AF, CF, OF 

Description: AAM (Unpacked BCD (ASCII) adjust for multiply) performs a cor
rection of the result in AX of multiplying two unpacked decimal operands, yielding 
an unpacked decimal product. 

AAM 

6-19 



AAS 

6-20 

AAS (ASCII adjust for subtraction) 

Operation: If the lower half of AL is above 9, or if the auxiliary carry flag is set, 
then 6 is subtracted from AL and 1 is subtracted from AH. The AF and CF flags are 
set. The old value of AL is replaced by a byte whose upper nibble is all zeroes and 
whose lower nibble is a number from 0 to 9 created by the above subtraction. 

if «AL) & OFH) > 9 or (AF) = 1 then 
(AL) - (AL)-6 
(AH) - (AH)-1 
(AF) -1 
(CF) - (AF) 
(AL) - (AL) & OFH 

Encoding: 

1001111111 

Timing: 4 clocks 

Example: AAS ;after the subtraction 

Flags Affected: AF, C F. 
Undefined: OF, PF, SF, ZF 

Description: AAS (Unpacked BCD (ASCII) adjust for subtraction) performs a 
correction of the result in the AL register of subtracting two unpacked decimal 
operands, yielding an unpacked decimal difference. 



Ace (Add with carry) 

Operation: If the carry flag was set, ADC adds 1 to the sum of the two operands 
before storing the result into the destination (leftmost) operand. If the carry flag was 
not set, i.e. is zero, 1 is not added. 

if (CF) = 1 then (OEST) +- (LSRC) + (RSRC) + 1 
else (OEST) +- (LSRC) + (RSRC) 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

10 0 0 1 0 0 d wi mod reg rIm I 
if d = 1 then LSRC = REG, RSRC = EA, OEST = REG 
else LSRC = EA, RSRC = REG, OEST = EA 

Timing (clocks): (a) register to register 
(b) memory to register 
(c) register to memory 

Examples: 

(a) AOC AX, SI 
AOC ,SI ;same as above 
AOC 01, BX 
AOC CH, BL 

(b) AOC OX, MEM_WORO 
AOC AX, BETA [SI] 

3 
9+EA 

16+EA 

AOC , BETA [SI] ;same as above 
AOC CX, ALPHA [BX] [SI] 

(c) AOC BET A [01], BX 
AOC ALPHA [BX] [SI], 01 
AOC MEM_WORO, AX 

Immediate Operand to Accumulator: 

10001010wl data I data if w=1 

if w = 0 then LSRC = AL, RSRC = data, OEST = AL 
else LSRC = AX, RSRC = data, OEST = AX 

Timing: 4 clocks 

ADC 

6-21 



ADC 

6-22 

Examples: 

ADC AL, 3 
ADC AL, VALUE_13_IMM 
ADC AX, 333 
ADC AX,IMM_VAL_777 
ADC ,IMM_VAL_777 ;sameasabove 

Immediate Operand to Memory or Register Operand: 

11 00000 s wlmod 0 1 1 rim 1 data 

LSRC = EA, RSRC = data, DEST = EA 

Timing (clocks): (a) immediate to memory 
(b) immediate to register 

Examples: 

(a) ADC SETA [SI], 4 
ADC ALPHA [SXJ [DIJ, IMM4 
ADC MEM_LOC, 7396 

(b) ADC SX, 
ADC DH, 
ADC CX, 

IMM_VAL_987 
65 
432 

1 data if s:w=01 1 

17+ EA 
4 

If an immediate-data-byte is being added from a register-or-memory word, then that 
byte is sign-extended to 16 bits prior to the addition. For this situation the instruc
tion byte is 83H (i.e., the s:w bits are both set). 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: ADC (add with carry) performs an addition of the two operands, adds 
one if the CF flag is set, and returns the result to the destination (leftmost) operands. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 



ADD (Addition) 

Operation: The sum of the two operands is stored into the destination (leftmost) 
operand. 

(DEST) +- (LSRC) + (RSRC) 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

1000000 d wi mod reg rIm 1 

if d = 0 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Timing (clocks): (a) register to register 
(b) memory to register 
(c) register to memory 

Examples: 

(a) ADD AX, BX 
ADD ,BX ;same as above 
ADD CX, OX 
ADD 01, SI 
ADD BX, BP 

(b) ADD CX, MEM_WORD 
ADD AX, BETA [SI] 
ADD ,BETA [51] ;same as above 
ADD OX, ALPHA [BX] [01] 

(c) ADD GAMMA [BP] [01], BX 
ADD BETA [01], AX 
ADD MEM_WORD, CX 
ADD MEM_BYTE, BH 

Immediate Operand to Accumulator: 

3 
9+EA 

16+EA 

10 0 0 0 0 1 0 w I data 1 data if w=1 

if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

Timing: 4 clocks 

ADD 

6-23 



ADD 

6-24 

Examples: 

ADD AL, 3 
ADD AX, 456 
ADD AL, IMM_VAL_12 
ADD AX, IMM_VAL_8529 
ADD ,IMM_VAL_6AB9H ;destination AX 

Immediate Operand to Memory or Register Operand: 

11 00000 s w Imod 000 rIm 1 data 

LSRC = EA, RSRC = data, DEST = EA 

Timing (clocks): (a) immediate to memory 
(b) immediate to register 

Examples: 

(a) ADD MEM_WORD, 48 
ADD GAMMA [01], IMM_84 

1 data if s:w=01 I 

17+EA 
4 

ADD DELTA [BX] [SI], IMM_SENSOR_5 

(b) ADD BX, ORIG_ VAL 
ADD CX, STANDARD_COUNT 
ADD OX, 1776 

If an immediate-data-byte is being added from a register-or-memory word, then that 
byte is sign-extended to 16 bits prior to the addition. For this situation the instruc
tion byte is 83H (i.e., the s:w bits are both set). 

FlagsAffected: AF, CF, OF, PF, SF, ZF 

Description: ADD performs an addition of the two source operands and returns 
the result to the destination operands. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



AN 0 (And: logical conjunction) 

Operation: The two operands are ANDed, the result having a 1 only in those bit 
positions where both operands had a 1, with zeroes in all other bit positions. The 
result is stored into the destination (leftmost) operand. The carry and overflow flags 
are reset to O. 

(DEST) - (LSRC) & (RSRC) 
(CF) ..- 0 
(OF)..- 0 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

10 0 1 0 0 0 d wi mod reg r / m 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Timing (clocks): (a) register to register 
(b) memory to register 
(c) register to memory 

Examples: 

(a) AN D AX, BX 
AND ,BX ;same as above 
AND CX, DI 
AND BH, CL 

(b) AND SI, MEM_NAME_WORD 
AND DX, BETA [BX] 
AND BX, GAMMA [BX] [SI] 
AND AX, ALPHA [DI] 

3 
9+EA 

16+EA 

AND ,ALPHA [DI] ;same as above 
AND DH, MEM_BYTE 

(c) AND MEM_NAME_WORD, BP 
AND ALPHA [DI], AX 
AND GAMMA [BX] [DI], SI 
AND MEM_BYTE, AL 

Immediate Operand to Accumulator: 

10010010wl data 1 data if w=1 

if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

Timing (clocks): immediate to register 4 

AND 

6-25 



AND 

6-26 

Examples: 

AND AL, 7AH 
AND AH, OEH 
AND AX, IMM_VAL_MASK3 

Immediate Operand to Memory or Register Operand: 

11 000000 w Imod 1 00 rIm 1 data 

LSRC = EA, RSRC = data, DEST = EA 

Timing (clocks): (a) immediate to register 
(b) immediate to memory 

Examples: 

(a) AND BL, 10011110B 
AND CH, 3EH 
AND OX, 7A46H 
AND SI, 987 

(b) AND MEM_WORD, 7A46H 
AND MEM_BYTE, 46H 

data if w=1 

4 
17+EA 

AND GAMMA [01], IMM_MASK 14 
AND CHI_BYTE [BX] [SI], 11100111 B 

FlagsAffected: CF, OF, PF, SF, ZF. 
Undefined: AF 

Description: AND performs the bitwise logical conjunction of the two source 
operands and returns the result to one of the operands. 

NOTE: The early pages of this Chapter explain mod, reg, rim; EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 



CALL 
CALL (Call a procedure) 

Operation: If this is an intersegment call, the stack pointer is decremented by 2 and 
the contents of the CS register are pushed onto the stack. CS is then filled by the sec
ond word (segment) of the doubleword inter segment pointer. 

Then the stack pointer is decremented by 2 and the contents of the Instruction 
Pointer are pushed onto the stack. The last step is to replace the contents of the IP 
by the offset of the target destination, i.e. the offset of the procedure's first instruc
tion. An intra-segment or intra-group call does only steps 2, 3, and 4. 

1) if Inter-Segment then 
(SP) +- (SP)-2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- SEG 

2) (SP) +- (SP)-2 
3) ((SP) + 1 :(SP)) +- (IP) 
4) (lP) +- DEST 

See note. 

Encoding: 

Direct Intra-segment or Intra-group: 

11 1 1 0 1 0 0 0 1 disp-Iow 

DEST = (lP) + disp 

Timing: 13 + EA clocks 

Examples: 

CALL NEAR_LABEL 
CALL NEAR_PROC 

Inter-Segment Direct: 

11 0 0 1 1 0 1 0 1 offset-low 

DEST = offset, SEG = seg 

Timing: 20 clocks 

Examples: 

CALL FAR_LABEL 
CALL FAR_PROC 

disp-high 

offset-h ig h seg-Iow seg-high 

6-27 



CALL 

6-28 

Inter-Segment Indirect: 

111111111 Imod 0 11 r/ml 

DEST = (EA), SEG = (EA + 2) 

Timing: 29 + EA clocks 

Examples: 

CALL DWORD PTR [BX] 
CALL DWORD PTR VARIABLE_NAME [SI] 
CALL MEM_DOUBLE_WORD 

Indirect Intra-Segment or Intra-Group 

11 1 1 1 1 1 1 1 Imod 01 0 r/ml 

DEST= (EA) 

Timing: 11 clocks 

Examples: 

CALL WORD PTR [BX] 
CALL WORD PTR VARIABLE_NAME 
CALL WORD PTR [BX] [SI] 
CALL WORD PTR [01] 
CALL WORD PTR VARIABLE_NAME [BP] [81] 
CALL MEM_WORD 
CALL BX 
CALL CX 

Flags Affected: None 

Description: CALL pushes the offset address of the next instruction onto the stack 
(in the case of an inter-segment call the CS segment register is pushed first) and then 
transfers control to the target operand. 

Direct calls and jumps can only be made to labels, relative to CS; not variables. 
NEAR is assumed unless FAR is stated in the instruction or in the declaration of the 
target label. 

As shown in the indirect-call examples above, calls through variables may use the 
PTR operator to indicate the intended use of one word for NEAR calls, or two 
words for calls to FAR labels or procedures. Indirect calls using word registers 
(within squarebrackets) are of necessity NEAR calls. 



CALL 
The implicit segment register used in a register-indirect call is DS, unless BP is used 
or an override is specified. The implicit segment register is used to construct the ad
dress which contains the offset (and segment, if a "long" call) of the call's target. If 
BP is used, SS is the segment register used. However, if a segment prefix byte is ex
plicitly specified, e.g., 

CALL WORD PTR ES: [SP] [01] 

then the segment register so specified is used (here ES). An implicit segment register 
for indirect calls through variables or address-expressions is determined by the 
address-expression in the source line and the applicable ASSUME directive (see 
Chapter 4). 

When CALL is used to transfer control, a RETurn is implied. With indirect 
CALLS, you must carefully ensure that the type of the CALL matches the type of 
RETurn, or errors may result that are difficult to trace. The issue is whether CS is 
saved and restored. See RET and Appendix D. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

6-29 



CBW 

6-30 

CBW (Convert byte to word) 

Operation: If the lower byte of the accumulator (AL) is less than SOH, then AH is 
made zero. Otherwise, AH is set to FFH. This is equivalent to replicating bit 7 of AL 
all through AH. 

Encoding: 

1100110001 

Timing: 2 clocks 

Example: CBW 

Flags Affected: None 

Description: CBW (convert byte to word) performs a sign extension of the AL 
register into the AH register. 

( 



CLC (Clear carry flag) 

Operation: The carry flag is reset to zero. 

(CF) -0 

Encoding: 

1111110001 

Timing: 2 clocks 

Example: CLC 

Flags Affected: CF 

Description: CLC clears the CF flag. 

CLC 

6-31 



CLD 

6-32 

CLD (Clear direction flag) 

Operation: The direction flag is reset to zero. 

(OF) +- 0 

Encoding: 

1111111001 

Timing: 2 clocks 

Example: CLO 

Flags Affected: OF. 

Description: CLD clears the DF flag, causing the string operations to auto- incre
ment the operand pointers. 



CLI (Clear interrupt flag) 

Operation: The interrupt flag is reset to zero. 

(IF) +- 0 

Encoding: 

1111110101 

Timing: 2 clocks 

Example: eLi 

Flags Affected: IF 

Description: eLi clears the IF flag, disabling maskable external interrupts, which 
appear on the INTR line of the 8086. (Nonmaskable interrupts, which appear on the 
NMI line are not disabled.) 

ell 

6-33 



CMC 

6-34 

CMC (Complement carry flag) 

Operation: If the carry flag is zero, it is set to 1; if it is 1, it is reset to O. 

if (CF) = 0 then (CF) ..... 1 else (CF) ..... 0 

Encoding: 

1111101011 

Timing: 2 clocks 

Example: CMC 

Flags Affected: CF 

Description: CMC complements the CF flag. 



CMP(Compare two operands) 

Operation: The source (rightmost) operand is subtracted from the destination (left
most) operand. The flags are altered but the operands remain unaffected. 

(LSRC)-(RSRC) 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

1001 1 1 0 d w I mod reg rIm I 
if d = 1 then LSRC = REG, RSRC = EA 
else LSRC = EA, RSRC = REG 

Timing (clocks): (a) register with register 
(b) memory with register 
(c) register with memory 

Examples: 

(a) CMP AX, OX 
CMP ,OX ;same as above 
CMP SI, BP 
CMP BH, CL 

(b) CMP MEM_WORO, SI 
CMP MEM_BYTE, CH 
CMP ALPHA [01], OX 
CMP BETA [BX] [SI], CX 

(c) CMP 01, MEM_WORO 
CMP CH, MEM_BYTE 
CMP AX, GAMMA [BP] [SI] 

Immediate Operand with Accumulator: 

3 
9+EA 
9+EA 

1001 1 1 1 0 w I data I data if w=1 

if w = 0 then LSRC = AL, RSRC = data 
else LSRC = AX, RSRC = data 

Timing (clocks): immediate with register 4 

CMP 

6-35 



CMP 

6-36 

Examples: 

CMP AL, 6 
CMP AL, IMM_VALUE_DRIVE 11 
CMP AX, IMM_VAL_909 
CMP ,999 
CMP AX, 999 ;same as above 

Immediate Operand with Memory or Register Operand: 

1100000 s wlmOd 111 r/ml data Idataifs:w=011 

LSRC = EA, RSRC = data 

Timing (clock): (a) immediate with register 
(b) immediate with memory 

Examples: 

(a) CMP BH, 7 
CMP CL, 19_IMM_BYTE 
CMP DX, IMM_DATA_WORD 
CMP SI, 798 

4 
17+EA 

(b) CMP MEM_WORD, IMM_DATA_BYTE 
CMP GAMMA [BX], IMM_BYTE 
CMP [BX] [DI], 6ACEH 

If an immediate-data-byte is being compared from a register-or-memory word, then 
that byte is sign-extended to 16 bits prior to the compare. For this situation the in
struction byte is 83H (i.e., the s:w bits are both set). 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: CMP (compare) performs a subtraction of the two operands causing 
the flags to be affected but does not return the result. 

The source (rightmost) operand must usually be of the same type, i.e. byte or word, 
as the destination operand. The only exception for CMP is comparing an 
immediate-data byte with a memory word. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



CMPS 
CMPS (Compare byte string, compare word string) 

Operation: The rightmost operand, using DI as an index into the extra segment, is 
subtracted from the leftmost operand, which uses SI as an index. (This is the only 
string instruction in which the DI-indexed operand appears as the rightmost 
operand.) Only the flags are affected, not the operands. SI and DI are then in
cremented, if the direction flag is reset (zero), or they are decremented, if DF=l. 
They thus point to the next element of the strings being compared. The increment is 
1 for byte strings, 2 for word strings. 

(LSRC)-(RSRC) 
if (OF) = 0 then 

(SI) +-- (SI) + OEL T A 
(01) +-- (01) + OEL T A 

else 
(SI) +-- (SI)-OEL T A 
(01) +-- (Ol)-OEL T A 

Encoding: 

11010011wl 

if w = 0 then LSRC = (SI), RSRC = (01), OELTA = 1 (BYTE) 
else LSRC = (SI) + 1 :(SI), RSRC = (01) + 1 :(01), OEL T A = 2 (WORO) 

Timing: 22 clocks 

Example: 

MOV SI, OFFSET STRING1 
MOV 01, OFFSET STRING2 
CMPS STRING 1, STRING2 
;the operands named in the CMPS instruction are used only 
;by the assembler to verify type and accessibility using current seg
;ment register contents. CMPS actually uses only SI and 01 to point to 
;the locations whose contents are to be compared, without using the 
;names given in the source CMPS line. 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: CMPS subtracts the byte (or word) operand addressed by DI from the 
operand addressed by SI and affects the flags but does not return the result. As a 
repeated operation this provides for comparing two strings. With the appropriate 
repeat prefix it is possible to determine after which string element the two strings 
become unequal, thereby establishing an ordering between the strings. 

Note that the operand indexed by DI is the rightmost operand in this instruction, 
and that this operand is addressed using the ES register only-this default CANNOT 
be overridden. 

6-37 



cwo 

6-38 

cwo (Convert word to doubleword) 

Operation: The high order bit of AX is replicated throughout DX. 

if (AX) < 8000H then (OX) +- 0 
else (OX) +- FFFFH 

Encoding: 

1100110011 

Timing: 5 clocks 

Example: CWD 

Flags Affected: None 

Description: CWD (convert word to double word) performs a sign extension of the 
AX register into the DX register. See also DIY. 



DAA (Decimal adjust for addition) 

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary 
carry flag has been set, then 6 is added to AL and AF is set. If AL is greater than 
9FH or if the carry flag has been set, then 60H is added to AL and CF is set. 

if (AL) & OFH) > 9 or (A F) = 1 then 
(AL) +- (AL) + 6 
(AF) +-1 

if (AL) > 9FH or (CF) = 1 then 
(AL) +- (AL) + 60H 
(CF) +-1 

Encoding: 

1001001111 

Timing: 4 clocks 

Example: DAA 

Flags Affected: AF, CF, PF, SF, ZF 
Undefined: OF 

Description: DAA (decimal adjust for addition) performs a correction of the result 
in AL of adding two packed decimal operands, yielding a packed decimal sum. 

DAA 

6-39 



DAS 

6-40 

DAS (Decimal adjust for subtraction) 

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary flag 
has been set, then 6 is subtracted from AL and AF is set. If AL is greater than 9FH 
or if the carry flag has been set, then 60H is subtracted from AL and CF is set. 

if (AL) & OFH) > 9 or (AF) = 1 then 
(AL) +- (AL)-6 
(A F) +-1 

if (AL) > 9FH or (CF) = 1 then 
(AL) +- (AL)-60H 
(CF) +-1 

Encoding: 

1001011111 

Timing: 4 clocks 

Example: DAS 

Flags Affected: AF, CF, PF, SF, ZF. 
Undefined: OF 

Description: DAS (decimal adjust for subtraction) performs a correction of the 
result in the AL register of subtracting two packed decimal operands, yielding a 
packed decimal difference. 



DEC (Decrement destination by one) 

Operation: The specified operand is reduced by 1. 

(DEST) +- (DEST)-1 

See note. 

Encoding: 

Register Operand: (Word) 

1 0 1 001 reg 1 

DEST= REG 

Timing: 2 clocks 

Examples: 

DEC AX 
DEC 01 
DEC SI 

Memory or Register Operand: 

11 1 1 1 1 1 1 w Imod 001 r/ml 

DEST= EA 

Timing (clocks): register 
memory 

Examples: 

DEC MEM_BYTE 
DEC MEM_BYTE [01] 
DEC MEM_WORD 
DEC ALPHA [BX] [SI] 
DEC BL 
DEC CH 

2 
15+EA 

FlagsAffected: AF, OF, PF, SF, ZF 

Description: DEC (decrement) performs a subtraction of one from the operand 
and returns the result to that operand. 

DEC 

6-41 



DEC 

6.42 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



DIV (Division, unsigned) 

Operation: If the division results in a value larger than can be held by the ap
propriate registers, an interrupt of type 0 is generated. The flags are pushed onto the 
stack, IF and TF are reset to 0, and the CS register contents are pushed onto the 
stack. CS is then filled by the word at location 2. The current IP is pushed onto the 
stack and IP is then filled with the word at o. This sequence thus includes a long call 
to the interrupt handling procedure whose segment and offset are stored respectively 
at locations 2 and O. 

If the division result can fit in the appropriate registers, then the quotient is stored in 
AL or AX (for word operands) and the remainder in AH or DX, respectively. 

(temp) +- (NUMR) 
if (temp) I (DIVR) > MAX then the following, in sequence 

(QUO), (REM) undefined 

else 

See note. 

Encoding: 

(SP) +- (SP)-2 
((SP) + 1 :(SP» +- FLAGS 
(IF) +- 0 
(TF) +- 0 
(SP) +- (SP)-2 
((SP) + 1 :(SP» +- (CS) 
(CS) +- (2) i.e., the contents of memory locations 2 and 3 
(SP) +- (SP)-2 
((SP) + 1 :(SP» +- (lP) 
(lP) +- (0) i.e., the contents of locations 0 and 1 

(QUO) +- (temp) I (DIVR), where I is unsigned division 
(REM) +- (temp) % (DIVR), where % is unsigned modulo 

11 1 1 1 01 1 w Imod 1 1 0 r/ml 

(a) if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM= AH, 
MAX = FFH 

(b) else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = OX, 
MAX= FFFFH 

Timing: (clocks): 8-bit 
16-bit 

90+EA 
155+ EA 

DIV 

6-43 



DIV 

6-44 

Examples: 

(a1) to divide a word by a byte 

MOV AX, NUMERATOR_WORD 
DIV DIVISOR_BYTE 
;quotient will be in AL, remainder in AH 

(a2) to divide a byte by a byte 

MOV AL, NUMERATOR_BYTE 
CBW ;converts byte in AL to word in AX 
DIV DIVISOR_BYTE 
;quotient in AL, remainder in AH 

(b1) to divide a double word by a word 

MOV DX, NUMERATOR_HI_WORD 
MOV AX, NUMERATOR_LO_WORD 
DIV DIVISOR_WORD 
;quotient in AX remainder in DX 

(b2) to divide a word by a word 

MOV AX, NUMERATOR_WORD 
CWD ;converts word to doubleword 
DIV DIVISOR_WORD 
;quotient in AX, remainder in DX 

NOTE: Each memory operand above could be any variable or valid address- ex
pression so long as its type were the same. For example, in (al) above, 
NUMERATOR_ WORD could be replaced by the expression 

ARRAY_NAME [BX] [SI] + 67 

so long as ARRAY _NAME is of type WORD. Similarly DIVISOR_BYTE could 
be 

RATE_TABLE [BP] [DI] 

so long as RATE_ TABLE is of type BYTE. 

Flags Affected: no valid flags result 
Undefined: AF, CF, OF, PF, SF, ZF 

Description: DIV (divide) performs an unsigned division of the double-length 
NUMR operand, contained in the accumulator and its extension (AL and AH for 8-
bit operation, or AX and DX for 16-bit operation) by the DIVR operand, contained 
in the specified source operand. It returns the single-length quotient (QUO operand) 
to the accumulator (AL or AX), and returns the single-length remainder (the REM 
operand) to the accumulator extension (AH for 8-bit operation or DX for 16-bit 
operation). If the quotient is greater than MAX (as when division by zero is at
tempted) then QUO and REM are undefined, and a type 0 interrupt is generated. 
Flags are undefined in any DIV operation. Nonintegral quotients are truncated to 
integers. 



NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 

DIV 

6-45 



ESC 

6-46 

ESC (Escape) 

Operation: 

if mod * 11 then data bus +- (EA) 
if mod = 11, no operation. 

See note. 

Encoding: 

11011x mod x rim 

Timing: 7 + EA clocks 

Example: 

ESC EXTERNAL_OPCODE, ADDRESS 
; this opcode is a 6-bit number, which is split into the two 3-bit fields 
; shown as x above. 

Flags Affected: None 

Description: The ESC instruction provides a mechanism by which other processors 
may receive their instructions from the 8086 instruction stream and make use of the 
8086 addressing modes. The 8086 processor does no operation for the ESC instruc
tion other than to access a memory operand and place it on the bus. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



HL T (Halt) 

Operation: None 

Encoding: 

1111101001 

Timing: 2 clocks 

Example: H L T 

Flags Affected: None 

Description: The HL T instruction causes the 8086 processor to enter its halt state. 
The halt state is cleared by an enabled external interrupt or reset. 

HLT 

6-47 



IDIV 

6-48 

IDIV (Integer division, signed) 

Operation: If the division results in a value larger than can be held by the ap
propriate registers, an interrupt of type 0 is generated. The flags are pushed onto the 
stack, IF and TF are reset to 0, and the CS register contents are pushed onto the 
stack. CS is then filled by the word at location 2. The current IP is pushed onto the 
stack and IP is then filled with the word at O. This sequence thus includes a long call 
to the interrupt handling procedure whose segment and offset are stored respectively 
at locations 2 and o. 

If the division result can fit in the appropriate registers, then the quotient is stored in 
AL or AX (for word operands) and the remainder in AH or DX, respectively. 

(temp) +- (NUMR) 
if (temp) I (DIVR) > 0 and (temp) I (DIVR) > MAX 
or (temp) I (DIVR) < 0 and (temp) I (DIVR) < 0-MAX-1 

then 

else 

See note. 

Encoding: 

(QUO), (REM) undefined 
(SP) +- (SP)-2 
((SP) + 1 :(SP)) +- FLAGS 
{IF)+-O 
(TF) +- 0 
(SP) +- (SP)-2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- (2) 
(SP) +- (SP)-2 
((SP) + 1 :(SP)) +- (lP) 
(lP) +- (0) 

(QUO) +- (temp) I (DIVR), where I is signed division 
(REM) +- (temp) % (DIVR), where % is signed modulo 

11 1 1 1 01 1 w Imod 1 1 1 r/ml 

(a) if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = 7FH 
(b) else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH 

Timing (clocks): 8-bit 
16-bit 

Example: 

112+ EA 
177 + EA 

(a) MOV AX, NUMERATOR_WORD [BX] 
IDIV DIVISOR_BYTE [BX] 

(b) MOV DX, NUM_HI_WORD 
MOV AX, NUM_LO_WORD 
IDIV DIVISOR_WORD [SI] 
SEE ALSO DIV. 



Flags Affected: AF, CF, OF, PF, SF, ZF 
Undefined: All 

Description: IDIV (integer divide) performs a signed division of the double-length 
NUMR operand, contained in the accumulator and its extension (AL and AH for 8-
bit operation, or AX and DX for 16-bit operation) by the DIVR operand, contained 
in the specified source operand. It returns the single-length quotient (QUO operand) 
to the accumulator (AL or AX), and returns the single-length remainder (the REM 
operand) to the accumulator extension (AH for 8-bit operation or DX for 16-bit 
operation). If the quotient is positive and greater than MAX or if the quotient is 
negative and less than (O-MAX -1), (as when division by zero is attempted) then 
QUO and REM are undefined, and a type 0 interrupt is generated. Flags are 
undefined in any divide operation. IDIV truncates non integral quotients and returns 
a remainder with the same sign as the numerator. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

IDIV 

6-49 



IMUL 

6-50 

IMUL 
(Integer multiply accumulator by register-or-memory; signed) 

Operation: The accumulator (AL if byte, AX if word) is multiplied by the specified 
operand. If the high·order half of the result is the sign·extension of the low· order 
half, the carry and overflow flags are reset, otherwise they are set. 

(OEST) +- (LSRC) * (RSRC) where * is signed multiply 
if (EXT) = sign-extension of (LOW) then (CF) +- 0 
else (CF) +- 1; 
(OF) +- (CF) 

See note. 

Encoding: 

11 1 1 1 0 1 1 w 1 mod 1 0 1 rIm 1 

(a) if w = 0 then LSRC = AL, RSRC = EA, OEST = AX, EXT = AH, LOW =AL 
(b) else LSRC = AX, RSRC = EA, OEST = OX:AX, EXT = OX, LOW = AX 

Timing (clocks): 8·bit 
16-bit 

90+EA 
144+ EA 

Example: 

(a) MOV AL, LSRC_BYTE 
IMUL RSRC_BYTE ;result in AX 

(b1) MOV AX, LSRC_WORO 
IMUL RSRC_WORO 
;high-half result in OX, low-half in AX 

(b2) to multiply a byte by a word 
MOV AL, MUL_BYTE 
CBW ;converts byte in AL to word in AX 
IMUL RSRC_WORO 
;high-half result in OX, low-half in AX 

NOTE: Any memory operand above could be an indexed address·expression of the 
correct TYPE, e.g., LSRC_BYTE could be ARRAY [SI] if ARRAY were of type 
BYTE, and RSRC_WORD could be TABLE [BX] [DI] if TABLE were of type 
WORD. 

Flags Affected: CF, OF. 
Undefined: AF, PF, SF, ZF 



IMUL 
Description: IMUL (integer multiply) performs a signed multiplication of the ac
cumulator (AL or AX) and the source operand, returning a double-length result to 
the accumulator and its extension (AL and AH for 8-bit operation, or AX and OX 
for 16-bit operation). CF and OF are set if the top half of the result is not the sign
extension of the low half of the result. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, OEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MOORM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

6-51 



IN 

6-52 

IN (Input byte and input word) 

Operation: The contents of the accumulator are replaced by the contents of the 
designated port. 

(OEST)-(SRC) 

Encoding: 

Fixed Port: 

11 1 1 0 0 1 0 w I port 

if w = 0 then SRC = port, DEST = AL 
else SRC = port + 1 :port, DEST = AX 

Timing: 10 clocks 

Examples: 

IN AX, WORD_PORT ;input word to AX 
IN AL, BYTE_PORT ;input a byte to AL 

;the destination for input must be AX or AL, and must be specified in 
;order for the assembler to know the type of the input The port names 
;must be immediate values between 0 and 255, as used above or literally 
;the register name DX, which must be filled earlier with the requisite 
;port location 

Variable Port: 

11 1 1 01 1 0 wi 
if w = 0 then SRC = (DX), DEST = AL 
else SRC = (OX) + 1 :(DX), DEST = AX 

Timing: 8 clocks 

Examples: 

IN AX, DX ;input a word to AX 
IN AL, OX ;input a byte to AL 

Flags Affected: None 

Description: IN transfers a byte (or word) from an input port to the AL register (or 
AX register). The port is specified either with an inline data byte, allowing fixed ac
cess to ports 0 through 255, or with a port number in the DX register, allowing 
variable access to 64K input ports. 



INC (Increment destination by 1) 

Operation: The specified operand is incremented by 1. There is no carry out of the 
most-significant bit. 

(OEST) +- (OEST) + 1 

See note. 

Encoding: 

Register Operand: (Word) 

1 0 1 0 00 reg 1 

OEST= REG 

Timing: 2 clocks 

Examples: 

INC AX 
INC 01 

Memory or Register Operand: 

11 1 1 1 1 1 1 w Imod 000 r/ml 

OEST= EA 

Timing (clocks): (a) register 
(b) memory 

Examples: 

(a) INC CX 
INC BL 

(b) INC MEM_BYTE 
INC MEM_WORO [BX] 

2 
1S+EA 

INC BYTE PTR[Bx] ;byteinOATASegmentatoffset[BX] 
INC ALPHA [01] [BX] 

INC 

INC BYTE PTR [SI] [BP] ;byte in Stack Segment at offset [SI + BP] 
INC WORD PTR [BX] ;increments the word in Data Segment at 
offset [BX], and thus can get carry into bit 8. 

Flags Affected: AF, OF, PF, SF, ZF 

Description: INC (increment) performs an addition of the source operand and one, 
and returns the result to the operand. 

6-53 



INC 

6-54 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



INT (Interrupt) 

Operation: Stack Pointer is decremented by 2 and all flags are pushed into the 
stack. The interrupt and trap flags are then reset. SP is then decremented by 2 and 
the current contents of the CS register are pushed onto the stack. CS is then filled 
with the high-order word of the doubleword interrupt vector, i.e., the segment base
address of the interrupt handling procedure for this interrupt type. 

SP is then decremented by 2 and the current contents of the Instruction Pointer are 
pushed onto the stack. IP is then filled with the low-order word of the interrupt vec
tor, located at absolute address TYPE*4. This completes an intersegment ("long") 
call to the procedure which is to process this interrupt type. 

See also PUSHF, INTO, IRET. 

(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- FLAGS 
(IF) +- 0 
(TF) +- 0 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- (TYPE * 4 + 2) 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (lP) 
(IP) +- (TYPE * 4) 

Encoding: 

11 1 0 0 1 1 0 v 1 type if v=1 

(a) if v = 0 then TYPE = 3 
(b) else TYPE = type 

Timing: 52 clocks 

Examples: 

(a) INT 

(b) INT 
INT 
IMM_44 
INT 

3 ;one byte instruction, 11001100 

2 ;two bytes: 11001101 00000010 
67 ;two bytes: 11001101 01000011 
EQU 44 
IMM_ 44 ;two bytes: 11001101 00101100 

Note: The operand must be immediate data, not a register or a memory reference. 

Flags Affected: IF, TF 

Description: INT pushes the flag registers (as in PUSHF), clears the TF and IF 
flags, and transfers control with an indirect call through anyone of the 256 vector 
elements. The one-byte form of this instruction generates a type 3 interrupt. 

INT 

6-55 



INTO 

6-56 

INTO (Interrupt if overflow) 

Operation: If the overflow flag is zero, no operation occurs. If OF is 1, then Stack 
Pointer is decremented by 2 and all flags are saved onto the stack. The trap and 
interrupt flags are reset. SP is again decremented by 2 and the contents of CS are 
pushed into the stack. CS is then filled with the second word (segment) of the 
doubleword interrupt vector for a type 4 interrupt. 

SP is again decremented by 2, and the current Instruction Pointer (pointing to the 
next instruction after INTO) is pushed onto the stack. IP is then filled with the first 
word of the type 4 doubleword interrupt vector, located at absolute location 16 
(lOH). This word is the offset of the procedure to handle type 4 interrupts. The seg
ment base address was already placed in CS. Thus this completes a "long" call to 
the proper procedure. 

See also INT, IRET, PUSHF. 

if (OF) = 1 then 
(SP) +- (SP) - 2 
((SP) + 1 :(SP» +- FLAGS 
(IF) +- 0 
(TF) +- 0 
(SP) +- (SP) - 2 
((SP» + 1 :(SP» +- (CS) 
(CS) +- (12H) 
(SP) +- (SP) - 2 
((SP) + 1 :(SP» +- (lP) 
(lP) +- (10H) 

Encoding: 

1110011101 

Timing: 52 clocks 

Example: INTO 

Flags Affected: None 

Description: INTO pushes the flag registers (as in PUSHF), clears the TF and IF 
flags, and transfers control with an indirect call through vector element 4 (location 
IOH) if the OF flag is set (trap on overflow). If the OF flag is clear, no operation 
takes place. 



IRET (Interrupt return) 

Operation: The instruction Pointer is filled with the word at the top of the stack. 
The Stack Pointer is then incremented by 2, and the CS register is filled with the 
word now at the top of the stack. This returns control to the point where the inter
rupt was encountered. 

SP is again incremented by 2, and the flags are restored from the appropriate bits of 
the word now at the top of the stack. (See also POPF.) SP is again incremented by 2. 

(lP) +- ((SP) + 1 :(SP» 
(SP) +- (SP) + 2 
(CS) +- ((SP) + 1 :(SP» 
(SP) +- (SP) + 2 
FLAGS +- ((SP) + 1 :(SP» 
(SP) +- (SP) + 2 

Encoding: 

1110011111 

Timing: 24 clocks 

Example: IRET 

Flags Affected: All 

Description: IRET transfers control to the return address saved by a previous inter
rupt operation and restores the saved flag registers (as in POPF). 

IRET 

6-57 



JA 

6-58 

IN BE and JA (Jump if not below nor equal, or jump if above) 

Operation: If both the carry flag and the zero flag are zero, then the distance from 
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting a transfer. If (CF) = 1 or (ZF) = 1, no jump results. 

IF (CF)I(ZF) = 0 then 
(lP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 0 1 1 0 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JA TARGET_LABEL 
JNBE TARGET_LABEL 

Flags Affected: None 

Description: JNBE (or JA) transfers control to the target operand on not below or 
equal (or above). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JNB and JAE (Jump if not below, or jump if above or equal) 

Operation: If the carry flag is zero, the distance from the end of this instruction to 
the target label is added to the Instruction Pointer, effecting the transfer. If (CF) = 
1, no jump results. 

if (CF) = 0 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

I 0 1 1 1 0 0 1 1 I d isp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JNB TARGET_LABEL 
JAE TARGET_LABEL 

Flags Affected: None 

Description: JNB (or JAE) transfers control to the target operand on not below (or 
above or equal). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JAE 

6-59 



JB 

6-60 

JB andJNAE (Jump if below, or jump if not above nor equal) 

Operation: If the carry flag is 1, then the distance from the end of this instruction 
to the target label is added to the Instruction Pointer, effecting the jump. If (CF) = 
0, no jump occurs. 

if (CF) = 1 then 
(IP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011100101 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JB TARGET_LABEL 
JNAE TARGET_LABEL 

Flags Affected: None 

Description: JB (or JNAE) transfers control to the target operand on below (or not 
above or equal). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JBE and JNA (Jump if below or equal, or jump if not above) 

Operation: If either the carry flag or the zero flag is set, then the distance from the 
end of this instruction to the target label is added to the Instruction Pointer, effec
ting the jump. If both (CF) = 0 and (ZF) = 0, no jump occurs. 

if (CF)I(ZF) = 1 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011101101 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JBE TARGET_LABEL 
JNA TARGET_LABEL 

Flags Affected: None 

Description: JBE (or JNA) transfers control to the target operand on below or 
equal (or not above). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JBE 

6-61 



JCXZ 

6-62 

JCXZ (Jump if CX is zero) 

Operation: If the count register (CX) is zero, then the distance from the end of this 
instruction to the target label is added to the Instruction Pointer, effecting a 
transfer. If (CX) = 1, no jump occurs. 

if (CX) = 0 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

11 1 1 0 0 0 1 1 1 disp 

Timing (clocks): Jump is taken 9 
Jump is not taken 5 

Example: JCXZ TARGET_LABEL 

Flags Affected: None 

Description: JCXZ (jump on CX zero) transfers control to the target operand if 
the CX register is zero. . 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 



JE and JZ (Jump if equal, jump if zero) 

Operation: If the last operation to affect the zero flag gave a result of zero, then 
(ZF) will be 1. If (ZF) = 1, then the distance from the end of this instruction to the 
target label will be added to the Instruction Pointer, effecting a transfer of control to 
that label. If (ZF) = 0, no operation occurs. 

if (ZF) = 1 then 
(IP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011101001 disp 

Timing (clocks: Jump is taken 8 
Jump is not taken 4 

Examples: 

1) CMP CX, DX 
JE LAB2 
INC CX 

LAB2: 
;the increment of CX will only occur if CX '" DX 

2) SUB AX, BX 
JZ EXACT 
;jump occurs if result was zero, i.e., AX = BX 

EXACT: 

Flags Affected: None 

Description: JE (or JZ) transfers control to the target operand on equal (or zero). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JE 

6-63 



JG 

6-64 

JNLE and JG (Jump if not less nor equal, or jump if greater) 

Operation: If the zero flag is reset and the sign flag equals the overflow flag (Le., 
both zero or both 1), then the distance from the end of this instruction to the target 
label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1 or (SF) :f. 
(OF), then no jump occurs. 

if ((SF)II(OF»I(ZF) = 0 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 1 1 1 1 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JG TARGET_LABEL 
JNLE TARGET_LABEL 

Flags Affected: None 

Description: JNLE (or JG) transfers control to the target operand on not less or 
equal (or greater). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JNL and JGE (Jump if not less, or jump if greater or equal) 

Operation: If the sign flag equals the overflow flag, then the distance from the end 
of this instruction to the target label is added to the Instruction Pointer, effecting the 
jump. If (SF) *' (OF), no jump results. 

if (SF)II(OF) = 0 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 1 1 0 1 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JGE TARGET_LABEL 
JNL TARGET_LABEL 

Flags Affected: None 

Description: JNL (or JGE) transfers control to the target operand on not less (or 
greater or equal). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JGE 

6-65 



JL 

6-66 

JL and JNGE (Jump on less, or jump on not greater nor equal) 

Operation: This jump occurs only if the sign flag is not equal to the overflow flag, 
i.e., (SF) oF (OF). (SF) exclusive-or (OF) = 1 means the same. If (SF) oF (OF), then the 
distance from the end of this instruction to the target label is added to the Instruc
tion Pointer, effecting the jump. If (SF) = (OF), no jump occurs. 

if (SF)II(OF) = 1 then 
(lP)'" (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011111001 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JL TARGET_LABEL 
JNGE LABEL_TARGET 

Flags Affected: None 

Description: JL (or JNGE) transfers control to the target operand on less (or not 
greater or equal). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JLE and JNG (Jump if less or equal, or jump if not greater) 

Operation: If the zero flag is set, or if the sign flag is unequal to the overflow flag, 
then the distance from the end of this instruction to the target label is added to the 
Instruction Pointer, effecting the jump. If (ZF) = 0, and (SF) = (OF), then no jump 
occurs. 

if «SF)II(OF»I(ZF) = 1 then 
(IP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

I 0 1 1 1 1 1 1 0 I d isp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JLE TARGET_LABEL 
JNG TARGET_LABEL 

Flags Affected: None 

Description: JLE (or JNG) transfers control to the target operand on less or equal 
(or not greater). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JLE 

6-67 



JMP 

6-68 

JMP (Jump) 

Operation: The Instruction Pointer is replaced by the target's offset in all interseg
ment jumps, and in intra-segment (or intra-group) indirect jumps. 

When the jump is a direct intra-segment or intra-group, the distance from the end of 
this instruction to the target label is added to the IP. 

Intersegment jumps first replace the contents of CS, using the second word follow
ing the instruction (direct) or using the second word following the indicated data ad
dress (indirect). 

if Inter-Segment then (CS) +- SEG 
(lP) +- DEST 

See note. 

Encoding: 

Intra-Segment or Intra-Group Direct: 

11 1 1 0 1 00 1 1 disp-Iow disp-high 

DEST = (IP) + disp 

Timing: 7 clocks 

Example: JMP NEAR_LABEL 

Intra-Segment Direct Short: 

11 1 1 0 1 0 1 1 1 disp 

DEST = (IP) + disp sign extended to 16 bits 

Timing: 1 clock 

Examples: 

JMP TARGET_LABEL 
JMP SHORT NEAR_LABEL 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

Inter-Segment Direct: 

11 1 1 0 1 0 1 0 1 offset-low offset-high seg-Iow seg-high 

DEST = offset, SEG = seg 



Timing: 7 clocks 

Examples: 

JMP LABEL_DECLARED_FAR 
JMP FAR PTR LABEL_NAME 
JMP FAR PTR NEAR_LABEL 

Inter-Segment Indirect: 

11 1 1 1 1 1 1 1 1 mod 1 0 1 rIm 1 

DEST = (EA), SEG = (EA + 2) 

Timing: 16 + EA clocks 

Examples: 

JMP VAR_DOUBLEWORD 
JMP DWORD PTR [BX][SI] 
JMP ALPHA [BP] [DI] 

Intra-Segment or Intra-Group Indirect: 

11 1 1 1 1 1 1 1 Imod 1 00 r/ml 

DEST = (EA) 

Timing: 7 + EA clocks 

Examples: 
JMP TABLE [BX] 
JMP WORD PTR [BX] [DI] 
JMP BETA_WORD 
JMP AX 
JMP SI 
JMP BP 
;these replace the Instruction Pointer by the contents of the named 
;register. This causes a jump directly to the byte with that offset past 
;CS. This is different from the direct intra-segment jumps, which are 
;self-relative, causing an add to the IP. 

Flags Affected: None 

Description: JMP transfers control to the target operand. 

The jump is always relative to the segment base address in the CS register. A direct 
jump directly uses the offset (and segment, if "long") bytes that follow the instruc
tion byte. Indirect jumps use the contents of the location addressed by the bytes that 
follow the instruction byte. 

JMP 

6-69 



JMP 

6-70 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



JNA and JBE (Jump if below or equal, or jump if not above) 

Operation: If either the carry flag or the zero flag is set, then the distance from the 
end of this instruction to the target label is added to the Instruction Pointer, effec
ting the jump. If both (CF) = 0 and (ZF) = 0, no jump occurs. 

if (CF)I(ZF) = 1 then 
(IP) ~ (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011101101 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JBE TARGET_LABEL 
JNA TARGET_LABEL 

Flags Affected: None 

Description: JBE (or lNA) transfers control to the target operand on below or 
equal (or not above). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JNA 

6-71 



JNAE 

6-72 

JNAE and JB (Jump if below, or jump if not above nor equal) 

Operation: If the carry flag is 1, then the distance from the end of this instructon to 
the target label is added to the Instruction Pointer, effecting the jump. If (CF) = 0, 
no jump occurs. 

if (CF) = 1 then 
(lP)'-- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011100101 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JB TARGET_LABEL 
JNAE TARGET_LABEL 

Flags Affected: None 

Description: JB (or JNAE) transfers control to the target operand on below (or not 
above or equal). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



IN Band JAE (Jump if not below, or jump if above or equal) 

Operation: If the carry flag is zero, then the distance from the end of this instruc-' 
tion to the target label is added to the Instruction Pointer, effecting the jump. If 
(CF) = 1, no jump occurs. 

if (CF) = 0 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011100111 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JNB TARGET_LABEL 
JAE TARGET_LABEL 

Flags Affected: None 

Description: JNB (or JAE) transfers control to the target operand on not below (or 
above or equal). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JNB 

6-73 



JNBE 

6-74 

JNBE (Jump if not below nor equal) 

Operation: If neither the carry flag nor the zero flag is set, then the distance from 
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting the jump. If (CF) = 1 or if (ZF) = 1, no jump occurs. 

if (CF)i(ZF) = 0 then 
(IP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 0 1 1 1 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JNBE TARGET_LABEL 
JA TARGET_LABEL 

Flags Affected: None 

Description: JNBE (or JA) transfers control to the target operand on not below or 
equal (or above). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JNE and JNZ (Jump if not equal, or jump if not zero) 

Operation: If the zero flag is reset, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting the jump. If 
(ZF) = 1, no jump occurs. 

if (ZF) = 0 then 
(lP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011101011 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JNE TARGET_LABEL 
JNZ TARGET_LABEL 

Flags Affected: None 

Description: JNE (or JNZ) transfers control to the target operand on not equal (or 
not zero). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

JNE 

6-75 



JNG 

6-76 

JNG and JLE (Jump if not greater, or jump if less or equal) 

Operation: If the zero flag is set, or if the sign flag is unequal to the overflow flag, 
then the distance from the end of this instruction to the target label is added to the 
Instruction Pointer, effecting the jump. If (ZF) = 0, and (SF) = (OF), then no jump 
occurs. 

if ((SF)II(OF»I(ZF) = 1 then 
(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 1 1 1 0 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JLE TARGET_LABEL 
JNG TARGET_LABEL 

Flags Affected: None 

Description: JLE (or JNG) transfers control to the target operand on less or equal 
(or not greater). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JNGE 
JL and JNGE (Jump if less, or jump if not greater nor equal) 

Operation: If the sign flag is unequal to the overflow flag, then the distance from 
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting the jump. If (SF) = (OF), no jump occurs. 

if (SF) II (OF) = 1 then 
(IP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 1 1 0 0 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JL TARGET_LABEL 
JNGE TARGET_LABEL 

Flags Affected: None 

Description: JL (or JNGE) transfers control to the target operand on less (or not 
greater or equal). 

The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

6-77 



JNL 

6-78 

JNL and JGE (Jump if not less, or jump if greater or equal) 

Operation: If the sign flag equals the overflow flag, then the distance from the end 
of this instruction to the target label is added to the Instruction Pointer, effecting the 
jump. If (SF) =1= (OF), no jump results. 

if (SF)II(OF) = 0 then 
(IP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

I 0 1 1 1 1 1 0 1 I d isp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JGE TARGET_LABEL 
JNL TARGET_LABEL 

Flags Affected: None 

Description: JNL (or JGE) transfers control to the target operand on not less (or 
greater or equal). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 



JNLE 
JNLE and JG (Jump if not less nor equal, or jump if greater) 

Operation: If the zero flag is reset and the sign flag equals the overflow flag (Le., 
both zero or both 1), then the distance from the end of this instruction to the target 
label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1 or (SF) :I
(OF), then no jump occurs. 

if «SF)II(OF»I(ZF) = 0 then 
(lP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011111111 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

JG TARGET_LABEL 
JNLE TARGET_LABEL 

Flags Affected: None 

Description: JNLE (or JG) transfers control to the target operand on not less or 
equal (or greater). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

"Above" and "below" refer to the relation between two unsigned values. 
"Greater" and "less" refer to the relation between two signed values. 

6-79 



JNO 

6-80 

JNO (Jump on not overflow) 

Operation: If overflow flag is 1, no jump occurs. If (OF) = 0, the distance from the 
end of this instruction to the target label is added to the Instruction Pointer, effect
ing a jump to that location. 

if (OF) = 0 then 
(lP) .... (IP) + disp (sign-extended to 16-bits) 

Encoding: 

I 0 1 1 1 0 0 0 1 I d isp 

Timing (clocks): Jump is taken 
Jump is not taken 

Example: JNO TARGET_LABEL 

Flags Affected: None 

8 
4 

Description: JNO transfers control to the target operand on no overflow. 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 



JNP and JPO (Jump on no parity or jump if parity odd) 

Operation: If the parity flag is 1, meaning even parity resulted from the last opera
tion to affect PF, then no jump occurs. If (PF) = 0, then the distance from the end 
of this instruction to the target label is added to the Instruction Pointer, effecting a 
transfer to that location. 

if (PF) = 0 then 
(lP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding 

1011010111 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) JNP TARGET_LABEL 
2) JPO TARGET_LABEL 

Flags Affected: None 

Description: JNP (or JPO) transfers control to the target operand on not parity (or 
parity odd). 

NOTE: The target label must be within -128 to +127 bytes off this instruction. 

JNP 

6-81 



JNS 

6-82 

JNS (Jump on not sign, jump if positive) 

Operation: If the sign flag is not set, then the distance from the end of this instruc
tion to the target label is ad Qed to the I~struction Pointer, effecting a transfer. If 
(SF) = 1, no jump occurs. 

it (SF) = 0 then 
(IP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011110011 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Example: JNS TARGET_LABEL 

Flags Affected: None 

Description: JNS transfers controls to the target operand on not sign. 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 



JNE and JNZ 

Operation: If the new flag is reset, then the distance from the end of instruction to 
the target label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1, 
no jump occurs. 

if (ZF) = 0 then 
(lP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 0 1 0 1 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) JNE TARGET_LABEL 
2) JNZ TARGET_LABEL 

Flags Affected: None 

Description: JNE (or JNZ) transfers control to the target operand on not equal (or 
not zero). 

JNZ 

6-83 



JO 

6-84 

JO (Jump on overflow) 

Operation: If the overflow flag is 1, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting the jump. If 
(OF) = 0 no jump occurs. 

if (OF) = 1 then 
(IP)'" (IP) + disp (sign-extended to 16 bits) 

Encoding: 

10 1 1 1 0 0 0 0 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Example: JO TARGET _LABEL 

Flags Affected: None 

Description: JO transfers control to the target operand on overflow. 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 



JP and JPE (Jump on parity, or jump if parity even) 

Operation: If the parity flag is 1, then the distance from the end of this instruction 
to the target label is added to the Instruction Pointer, effecting the jump. If (PF) = 
0, no jump occurs. 

if (PF) = 1 then 
(IP)'- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011100101 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) JP TARGET_LABEL 
2) JPE TARGET_LABEL 

Flags Affected: None 

Description: JP (or JPE) transfers control to the target operand on parity (or pari
tyeven). 

NOTE; The target label must be within -128 to +127 bytes of this instruction. 

JP 

6-85 



JPE 

6·86 

JP and JPE (Jump on parity, or jump if parity even) 

Operation: If the parity flag is 1, then the distance from the end of this instruction 
to the targt!t label is added to the Instrucotion Pointer, effecting the jump. If (PF) = 
0, no jump occurs. 

if (PF) = 1 then 
(IP) - (IP) + disp (sign-extended to 16-bits) 

Encoding: 

10 1 1 1 1 0 1 0 I disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) JP TARGET_LABEL 
2) JPE TARGET_LABEL 

Flags Affected: None 

Description: JP (or JPE) transfers control to the target operand on parity (or pari· 
tyeven). 

NOTE: The target label must be within -128 to +127 bytes of this instruction. 



JNP and JPO 

Operation: If the parity flag is I, meaning even parity resulted from the last opera
tion to affect PF, then no jump occurs. If (PF) = 0, then the distance from the end 
of this instruction to the target label is added to the Instruction Pointer, effecting a 
transfer to that location. 

if (PF) = 0 then 
(IP) - (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011110111 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) JNP TARGET_LABEL 
2) JPO TARGET_LABEL 

Flags Affected: None 

Description: JNP (or JPO) transfers control to the target operand on not parity (or 
parity odd). 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 

JPO 

6-87 



JS 

6-88 

JS (Jump on sign) 

Operation: If the sign flag is 1, then the distance from the end of this instruction to 
the target label is added to the Instruction Pointer, effecting the jump. If (SF) = 0, 
no jump occurs. 

if (SF) = 1 then 
(lP) - (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1011110001 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Example: JS TARGET_LABEL 

Flags Affected: None 

Description: JS transfers control to the target operand on sign. 

NOTE: The target label must be within -128 to + 127 bytes of this instruction. 



JZ and JE (Jump if equal, jump if zero) 

Operation: If the last operation to affect the zero flag gave a result of zero, then 
(ZF) will be 1. If (ZF) = 1, then the distance from the end of this instruction to the 
target label will be added to the Instruction Pointer, effecting a transfer of control to 
that label. If (ZF) = 0, no operation occurs. 

if (ZF) = 1 then 
(IP) ~ (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1011101001 disp 

Timing (clocks): Jump is taken 8 
Jump is not taken 4 

Examples: 

1) CMP CX, OX 
JE LAB2 
INC CX 
LAB2: 
;the increment of ex will only occur if CX = OX 

2) SUB AX, BX 
JZ EXACT 
;jump occurs if result was zero, i.e., AX = BX 

EXACT: 

Flags Affected: None 

Description: JE (or JZ) transfers control to the target operand on equal (or zero). 

NOTE: The target label must be within -128 to + 127 bytes on this instruction 

JZ 

6-89 



LAHF 

6-90 

LAHF (Load AH from flags) 

Operation: Specific bits of AH are filled from the following flags: The sign flag 
fills bit 7. The zero flag fills bit 6. The auxiliary carry flag fills bit 4. The parity flag 
fills bit 2. The carry flag fills bit O. Bits 1, 3, and 5 of AH are indeterminate, i.e., 
they may on some occasions be 1 and at other times be O. 

(AH) +- (SF):(ZF):X:(AF):X:(PF):X:(CF) 

Encoding: 

1100111111 

Timing: 4 clocks 

Example: LAHF 

Flags Affected: None 

Description: LAHF (Load AH with Flags) transfers the flag registers SF, ZF, AF, 
PF, and CF (which, when 8080 code is translated into 8086 code, are the 8080 flags) 
into specific bits of the AH register. The bits indicated "X" are unspecified. 



LOS (Load data segment register) 

Operation: 

1) The contents of the specified register are replaced by the lower addressed word of 
the doubleword memory operand. 

(REG) +- (EA) 

2) The contents of the DS register are replaced by the higher-addressed word of the 
doubleword memory operand. 

(OS) +- (EA + 2) 

See note. 

Encoding: 

11 1 0 0 0 1 0 1 1 mod reg r / m 1 
for mod I- 11 (if mod = 11 then undefined operation) 

Timing: 16+EA clocks 

Examples: 

LOS BX, AOOR_ TABLE [SI] 
LOS SI, NEWSEG [SX] 

Flags Affected: None 

Description: LDS (Load Pointer into DS) transfers a "pointer-object" (Le., a 32-
bit object containing an offset address and a segment address) from the source 
operand (which must be a doubleword memory operand) to a pair of destination 
registers. The segment address is transferred to the DS segment register. The offset 
address may be transferred to any 16-bit general, pointer, or index register you 
specify (not a segment register). 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions refering directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

LOS 

6-91 



LEA 

6-92 

LEA, (Load effective address) 

Operation: The contents of the specified register are replaced by the offset of the 
indicated variable or label or address-expression. 

(REG) +- EA 

See note. 

Encoding: 

11 0 0 0 1 1 0 1 1 mod reg r / m 1 
for mod", 11 (if mod = 11 then undefined operation) 

Timing: 2+EA clocks 

Examples: 

LEA BX, 
LEA DX, 
LEA AX, 

VARIABLE_7 
BETA [BX] [SI] 
[BP] [01] 

Flags Affected: None 

Description: LEA (Load Effective Address) transfers the offset address of the 
source operand to the destination operand. The source operand must be a memory 
operand and the destination operand can be any 16-bit general, pointer, or index 
register. LEA allows the source to be subscripted. This is not allowed using the 
MOV instruction with the OFFSET operator. Also, the latter operation invariably 
uses the offset of the variable in the segment where it was defined. LEA, however, 
will take into account a group offset if the group is the only possible access route via 
the latest ASSUME directive. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



LES (Load extra-segment register) 

Operation: 

I} The contents of the specified register are replaced by the lower addressed word of 
the doubleword memory operand. 

(REG) +- (EA) 

2} The contents of the ES register are replaced by the higher-addressed word of the 
doubleword memory operand. 

(ES) +- (EA + 2) 

See note. 

Encoding: 

11 1 a a a 1 a a 1 mod reg rim 1 

for mod 1= 11 (if mod = 11 then undefined operation) 

Timing: 16+EA clocks 

Examples: 

LES BX, 
LES 01, 

AOOR_ TABLE [SI] 
NEWSEG [BX] 

Flags Affected: None 

Description: LES (Load Pointer into ES) transfers a "pointer object" (Le., a 32-bit 
object containing an offset address and a segment address) from the source operand 
(which must be a doubleword memory operand) to a pair of destination registers. 
The segment address is transferred to the ES segment register. The offset address 
may be transferred to a 16-bit general, pointer, or index register (not a segment 
register). 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter I). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, Le. a name for a 
memory location containing data, the instruction bytes will be followed by 2 bytes 
giving the computed displacement from the segment-base-address. 

LES 

6-93 



LOCK 

6-94 

LOCK 

Operation: None 

Encoding: 

1111100001 

Timing: 2 clocks 

Example: LOCK 

Flags Affected: None 

Description: A special one-byte lock prefix may precede any instruction. It causes 
the processor to assert its bus-lock signal for the duration of the operation caused by 
the instruction. In mUltiple processor systems with shared resources it is necessary to 
provide mechanisms to enforce controlled access to those resources. Such 
mechanisms, while generally provided through software operating systems, require 
hardware assistance. A sufficient mechanism for accomplishing this is a locked ex
change (also known as test-and-set-Iock). 

It is assumed that external hardware, upon receipt of that signal, will prohibit bus 
access for other bus masters during the period of its assertion. 

The instruction most useful in this context is an exchange register with memory. A 
simple software lock may be implemented with the following code sequence: 

Check: 
LOCK 

MOV AL,1 
XCHG Sema,AL 
TEST AL,AL 
JNZ Check 

MOV Sema,O 

;set AL to 1 (implies locked) 
;test and set lock 
;set flags based on AL 
;retry if lock already set 

;clear the lock when done 

The LOCK prefix may be combined with the segment override and/or REP prefixes, 
although the latter has certain problems. (See REP.) 



LODS 
LO OS (Load byte or word string) 

Operation: The source byte (or word) is loaded into AL (or AX). The Source Index 
is incremented by I (or 2, for word strings) if the Direction Flag is reset; otherwise SI 
is decremented by I (or 2). 

(DEST) +- (SRC) 
if (DF) = 0 then (51) +- (51) + DELTA 
else (51) +- (SI)-DELTA 

Encoding: 

11010110wl 

1) if w = 0 then SRC = (51), DEST = AL, DELTA = 1 
2) else SRC = (51) + 1 :(51), DEST = AX, DELTA = 2 

Timing: 12 clocks 

Examples: 

1) CLD ;clears direction flags so 51 will be incremented 
MOV 51, OFFSET BYTE_STRING 
LODS BYTE_STRING ;51 +- 51 + 1 

2) STD ;sets DF so 51 will be decremented 
MOV 51, OFFSET WORD_STRING 
LODS WORD_STRING ;51 +- 51-2 
;DF = 1 implies that the variable 
;WORD_STRING names the last or 
;highest-addressed word in the string. The operand named in the 
;LODS instruction is used only by the assembler to verify type and 
;accessibility using correct segment register contents. LODS 
;actually uses only 51 to pOint to the location whose contents are to 
;be loaded into the accumulator, without using the name given in the 
;source instruction 

Flags Affected: None 

Description: LODS transfers a byte (or word) operand from the source operand 
addressed by SI to accumulator AL (or AX) and adjusts the SI register by DELTA. 
This operation ordinarily would not be l'epeated. 

6-95 



LOOP 

6-96 

LOOP 
(Loop, or iterate instruction sequence until count complete) 

Operation: The Count register (CX) is decremented by 1. If the new CX is not zero, 
then the distance from the end of this instruction to the target label is added to the 
Instruction Pointer, effecting the jump. If CX = 0, no jump occurs. 

(CX) +- (CX)-1 
if (CX) *" 0 then 

(IP) +- (IP) + disp (sign-extended to 16-bits) 

Encoding: 

1111000101 

Timing (clocks): Jump is taken 9 
Jump is not taken 5 

Example: The following sequence will compute the 16-bit checksum of a non-null 
array: 

(1) MOV CX, LENGTH ARRAY 
MOV AX, 0 
MOV SI, AX 

NEXT:AOO AX, ARRAY [SI] 
ADD SI, TYPE ARRAY 
LOOP NEXT 
MOV CKS, AX 

(2) MOV AX, ° 
MOV BX, 1 
MOV CX, N ;number of terms 
MOV 01, AX 

FIB: MOV SI, AX 
AOD AX, BX 
MOV BX, SI 
MOV FIBONACCI [01], AX 
ADD 01, TYPE FIBONACCI 

LL: LOOP FIB 

;the instructions from FIB to LL will be executed N times 
;and will store into the FIBONACCI array the first N terms of that sequence 
;i.e., 1, 1, 2, 3, 5, 8, 13, 21, ..... 

Flags Affected: None 

Description: LOOP decrements the CX (count) register by 1 and transfers control 
to the target operand (label) if CX is not zero. 

The target label must be within -128 to + 127 bytes of this instruction. 



LOOPE 
LOOPZ and LOOPE (Loop on equal, or loop on zero) 

Operation: The Count register (CX) is decremented by 1. If the zero flag is set and 
(CX) is not yet zero, then the distance from the end of this instruction to the target 
label is added to the Instruction Pointer, effecting the jump. No jump occurs if (ZF) 
=Oorif(CX)=O. 

(CX) +- (CX)-1 
if (ZF) = 1 and (CX) *" 0 then 

(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

1111000011 disp 

Timing (clocks): Jump is taken 11 
Jump is not taken 5 

Example: The following sequence finds the first non-zero entry in a byte array: 

NEXT: 

OKENTRY: 

MOV CX, LENGTH ARRAY 
MOV 81, -1 

INC 81 
CMP ARRAY [81], 0 
LOOPE NEXT 
JNE OKENTRY 

;arrive here if whole array is zero 

;81 tells which entry is non-zero 

Flags Affected: None 

Description: LOOPE, also called LOOPZ (loop while zero or loop while equal) 
decrements the CX register by one and transfers if CX is not zero and if the ZF flag 
is set. 

The target label must be within -128 to + 127 bytes of this instruction. 

6-97 



LOOPNE 

6-98 

LOOPNZ and LOOPNE (Loop on not zero, or loop on not equal) 

Operation: The Count register (CX) is decremented by 1. If the new (CX) is not 
zero and the zero flag is reset, then the distance from the end of this instruction to 
the target label is added to the Instruction Pointer, effecting the jump. If (CX) = 0 
or if (ZF) = 1, then no jump occurs. 

(CX) +- (CX)-1 
if (ZF) = 0 and (CX) t= 0 then 

(lP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

11 1 1 0 0 0 0 0 I disp 

Timing (clocks): Jump is taken 11 
Jump is not taken 5 

Examples: The following sequence will compute the sum of 2 byte arrays, each 
of length N, only up to the point of encountering zero entries in both arrays at the 
same time. At that point the expression SI -1 will give the length of the non-zero sum 
arrays. 

MOV AX, 0 
MOV 51-1 
MOV CX, N 

NONZER: INC 51 
MOV AL, ARRAY1 [51] 
ADD ,ARRAY2 [SI] 
MOV SUM [51], AX 
LOOPNZ NONZER 

The following sequence will search down a linked list for the last element. This will 
be the element with a zero in the word that normally contains the address of the next 
element. This word is always located the same number of bytes past each list ele
ment's beginning. LINK is the name for that absolute number of bytes, e.g., 

LINK Eau 7 
MOV AX, OFFSET HEAD_OF _LIST 
MOV CX, 1000 ;search at most 1000 entries 

NEXT: MOV BX, AX 
MOV AX, [BX] + LINK 
CMP AX, 0 
LOOPNE NEXT 

Flags Affected: None 

Description: LOOPNZ, also called LOOPNE, (loop while not zero or loop while 
not equal) decrements the CX register by one and transfers if CX is not zero and the 
ZF flag is cleared. 

The target label must be within ~ 128 to + 127 bytes of this instruction. 



LOOPNZ 
LOOPNZ and LOOPNE (Loop on not zero, or loop on not equal) 

Operation: The Count register (CX) is decremented by 1. If the new (CX) is not 
zero and the zero flag is reset, then the distance from the end of this instruction to 
the target label is added to the Instruction Pointer, effecting the jump. If (CX) = 0 
or if (ZF) = 1, then no jump occurs. 

(CX) +- (CX)-1 
if (ZF) = 0 and (CX) -+ 0 then 

(IP) +- (lP) + disp (sign-extended to 16-bits) 

Encoding: 

11 1 1 0 0 0 0 0 1 disp 

Timing (clocks): Jump is taken 11 
Jump is not taken 5 

Examples: The following sequence will compute the sum of 2 byte arrays, each 
of length N, only up to the point of encountering zero entries in both arrays at the 
same time. At that point the expression SI -1 will give the length of the non-zero sum 
arrays. 

MOV AX, 0 
MOV SI-1 
MOV CX, N 

NONZER: INC SI 
MOV AL, ARRAY1 [SI] 
ADD ,ARRAY2 [SI] 
MOV SUM [SI], AX 
LOOPNZ NONZER 

The following sequence will search down a linked list for the last element. This will 
be the element with a zero in the word that normally contains the address of the next 
element. This word is always located the same number of bytes past each list ele
ment's beginning. LINK is the name for that absolute number of bytes, e.g., 

LINK EQU 7 
MOV AX, OFFSET HEAD_OF _LIST 
MOV CX, 1000 ;search at most 1000 entries 

NEXT: MOV 8X, AX 
MOV AX, [8X] + LINK 
CMP AX, 0 
LOOPNE NEXT 

Flags Affected: None 

Description: LOOPNZ, also called LOOPNE, (loop while not zero or loop while 
not equal) decrements the CX register by one and transfers if CX is not zero and the 
ZF flag is cleared. 

The target label must be within -128 to + 127 bytes of this instruction. 

6-99 



LOOPZ 

6-100 

LOOPZ and LOOPE (Loop on equal, or loop on zero) 

Operation: The Count register (CX) is decremented by 1. If the zero flag is set and 
(CX) is not yet zero, then the distance from the end of this instruction to the target 
label is added to the Instruction Pointer, effecting the jump. No jump occurs if (ZF) 
= 0 or if (CX) = O. 

(ex) - (eX)-1 
if (ZF) = 1 and (eX) f 0 then 

(lP) - (lP) + disp (sign-extended to 16-bits) 

Encoding: 

11 1 1 00001 1 disp 

Timing (clocks): Jump is taken 11 
Jump is not taken 5 

Example:The following sequence finds the first non-zero entry in a byte array: 

NEXT: 

OKENTRY: 

MOV ex, LENGTH ARRAY 
MOV 81, -1 

INC 81 
CMP ARRAY[8Ij, 0 
LOOPZ NEXT 
JNE OKENTRY 

;arrive here if whole array is zero. 

;81 tells which entry is non-zero 

Flags Affected: None 

Description: LOOPZ, also called LOOPE (loop while zero or loop while equal) 
decrements the CX register by one and transfers if CX is not zero and if the ZF flag 
is set. 

The target label must be within -128 to + 127 bytes of this instruction. 



MOV (MOVE) 

There are 7 separate types of move instructions, as shown below. 

Each type has multiple uses and encodings depending on the type of data being 
moved and the location of that data. The assembler generates the correct encoding 
based on these 2 factors. 

If the destination is a register, the bit shown as "d" will be 1, otherwise O. If the type 
is a word, the bit shown as "w" will be 1, otherwise O. 

See note. 

Type 1: TO Memory FROM Accumulator 

11 01 0001 wi addr-Iow 1 addr-high 

If w=O then SRC=AL, DEST=addr else SRC=AX, DEST=addr + 1: addr 

Timing (clocks): 10 + EA 

Examples: 

MOV ALPHA_MEM, AX 
MOV GAMMA_BYTE, AL 

MOV CS:DATUM_BYTE, AL 
MOV ES:ARRAY [BX] [SI], AX 

(prefix byte, e.g., ES:, will precede instruction byte; see 
beginning of this Chapter) 

Type 2: TO Accumulator FROM Memory 

11 01 0000 wi addr-Iow 1 addr-high 

If w=O then SRC=addr, DEST=AL else SRC=addr + 1: addr, DEST=AX 

Timing (clocks): 8 + EA 

Examples: 

MOV AX, BETA_MEM 
MOV AL, GAMMA_BYTE 

MOV AX, ES:ARRA Y [BX] [SI] 
MOV AL, SS:OTHER_BYTE 

(prefix byte, e.g., ES:, will precede instruction byte; see 
beginning of this Chapter). 

Type 3: TO Segment Register FROM Memory-or-Register Operand 

11 0 0 0 1 1 1 0 1 mod Oreg rim 1 

if reg t- 01 then SRC=EA, DEST=REG else undefined operation 

MOV 

6-101 



MOV 

6-102 

Timing: register to register 2 
memory to register 8 + EA 

Examples: 

MOV ES, OX 
MOV OS, AX 
MOV SS, BX 
MOV ES, SS:NEW_WORO [01] 
Note: es is illegal as a destination here. 

Type 4: TO Memory-or-Register FROM Segment Register 

11 0 0 0 1 1 0 0 1 mod Oreg rIm 1 

SRC=REG, DEST=EA,(DEST) +- (SRC) 

Timing (clocks): memory to register 
register to register 

Examples: 

MOV OX, OS 
MOV BX, ES 
MOV ARRAY [BX] [SI], SS 
MOV BETA_MEM_WORO, OS 

9 + EA 
2 

MOV GAMMA, es; Note: es is legal as a source here. 

Type 5: (a) TO Register FROM Register 
(b) TO Register FROM Memory-or-Register Operand 
(c) TO Memory-or-Register Operand FROM Register 

11 0001 0 d wi mod reg rIm 1 addr-Iow* 1 addr-high* 

if d=1 then SRC=EA, DEST=REG else SRC=REG, DEST=EA 

*these bytes omitted in register to register moves, i.e., when mod=11, 
MOV ex, OX 

and also when the address-expression to memory is register-indirect with no 
varia ble-name-disp lacement, i. e., 

MOV [BX] [SI], OX 
MOV AX, [BP] [01] 

Timing (clocks): (a) 2 
(b) 8 + EA 
(c) 9 + EA 



Examples: 

(a) MOV AX, BX 
MOV Cl, OH 
MOV CX, 01 

(b) MOV AX, MEM_VAlUE 
MOV OX, ARRAY [SI] 
MOV 01, MEM [BX] [01] 

(c) MOV ARRAY [DI], OX 
MOV MEM_VAlUE, AX 
MOV [BX] [SI], 01 

Type 6: TO Register FROM Immediate-data 

11 0 1 1 w reg 1 data 

SRC=data, DEST=REG 

*present only if w = 1 

Timing (clocks): 4 

Examples: 

MOV AX, 77 
MOV BX, VAlUE_14_IMM 
MOV SI, EQU_VAL_9 
MOV 01, 618 

data-high* 

Type 7: TO Memory-or-Register Operand FROM Immediate-data 

11100011 wlmod 000 rIm 1 data 

SRC=data, DEST=EA 

*present only if w= 1 

Timing (clocks): 10 + EA 

Examples: 

MOV ARRAY [BX] [SI], OAT A_4 
MOV MEM_BYTE, IMM_BYTE_3 
MOV BYTE PTR [01], 66 
MOV MEM_WORO, 1999 
MOV BX, 84 
MOV OS:MEM_WORO [BP], 3989 

data-high* 

(prefix byte, e.g., DS:, of 00111110 will precede 1100011 w above) 

Flags Affected: None 

MOV 

6-lO3 



MOV 

6-104 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



MOVS 
MOVS (Move byte string or move word string) 

Operation: The source string whose offset is in the Source Index is moved into the 
location in the extra segment whose offset is in the Destination Index. SI and DI are 
then both incremented, if the direction flag is zero, or both decremented, if (DF) = 
1. The increment or decrement is 1 for byte strings, 2 for word strings. 

(OEST) +- (SRC) 
if (OF) = 0 then 

(51) +- (51) + OEL T A 
(01) +- (01) + OELTA 

else 
(51) +- (SI)-OELTA 
(01) +- (Ol)-OEL T A 

Encoding: 

11010010wl 

if w = 0 then SRC = (51), OEST = (01), OEL T A = 1 
else SRC = (51) + 1 :(51), OEST = (01) + 1 :(01), OEL TA = 2 

Timing: 17 clocks 

Example: 

MOV 51, OFFSET SOURCE 
MOV 01, OFFSET OEST 
MOV CX, LENGTH SOURCE 

REP MOVS OEST, SOURCE 
;the above sequence moves the entire source string (in any 
;segment reachable by current segment registers) into the 
;destination locations in the Extra Segment (the ES register is 
;always used for 01 operands in string operations). See also 
;REP. The operands named in the string operation are used 
;only by the assembler to verify type and accessibility using 
;current segment registers contents. MOVS actually moves the 
;byte pOinted at by 51 to the byte pOinted at by 01 in ES, without 
;using the names given in the source MOVS instruction. 

Flags Affected: None 

Description: MOVS transfers a byte (or word) operand from the source operand 
addressed by SI to the destination operand addressed by DI, and adjusts the SI and 
DI registers by DELTA. As a repeated operation this provides for moving a string 
from one location in memory to another. 

6-105 



MUL 

6-106 

MUL (Multiply accumulator by register-or-memory; unsigned) 

Operation: The accumulator (AL if byte, AX if word) is multiplied by the specified 
operand. If the high order half of the result is zero, then the carry and overflow flags 
are reset, otherwise they are set. 

(DEST) +- (LSRC) * (RSRC), where * is unsigned 
multiply 

if (EXT) = 0 then (CF) +- 0 
else (CF) +- 1; 
(OF) +- (CF) 

See note. 

Encoding: 

11 1 1 1 01 1 w Imod 1 00 rlml 

(a) if w = 0 then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH 
(b) else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX 

Timing (clocks): 8-bit 
16-bit 

Example: 

71 +EA 
124+ EA 

a) MOV AL, LSRC_BYTE 
MUL RSRC_BYTE ;result in AX 

b1) MOV AX, LSRC_WORD 
MUL RSRC_WORD 
;high-half result in DX, low-half in AX 

b2) to multiply a byte by a word 
MOV AL, M U L_ BYTE 
CBW ;converts byte in AL to word in AX 
MUL RSRC_WORD 

NOTE: Any memory operand above could be an indexed addressed-expression of 
the correct TYPE, e.g., LSRC_BYTE could be ARRAY [SI] if ARRAY were of 
type BYTE, and RSRC_ WORD could be TABLE [BX] [DI] if TABLE were of 
type WORD. 

Flags Affected: CF, OF. 
Undefined: AF, PF, SF, ZF 

Description: MUL (multiply) performs an unsigned multiplication of the ac
cumulator (AL or AX) and the source operand, returning a double-length result to 
the accumulator and its extension (AL and AH for 8-bit operation, or AX and DX 
for 16-bit operation). CF and OF are set if the top half of the result is nonzero. 



NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

MUL 

6-107 



NEG 

6-108 

NEG (Negate, or form 2's complement) 

Operation: The specified operand is subtracted from all ones (OFFH for bytes, 
OFFFFH for words), 1 is added, and the result stored back into the given operand. 

(EA) .- SRC-(EA) 
(EA) .- (EA) + 1 (affecting flags) 

See note. 

Encoding: 

111 1 1 01 1 w Imod 01 1 rlml 

if w = 0 then SRC = OFFH 
else SRC = OFFFFH 

Timing (clocks): register 
memory 

Examples: 

3 
16+EA 

1) If AL contains 13H (00010011), then NEG AL causes AL to contain 
-13H or OEDH (11101101). 

2) If MEM_BYTE contains OAFH (10101111), then NEG MEM_BYTE 
causes MEM_BYTE to contain -OAFH or 51 H (01010001). 

3) If SI contains 2FC3H, then NEG SI causes SI to contain OD03DH. 

(See also NOT.) 

FlagsAffected: AF, CF, OF, PF, SF, ZF 

Description: NEG (negate) performs a subtraction of the operand from zero, adds 
1, and returns the result to the operand. This forms the 2's complement of the 
specified operand. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



NOP (No operation) 

Operation: None 

Encoding: 

1100100001 

Timing: 3 clocks 

Example: NOP 

Flags Affected: Non e 

Description: NOP causes no operation and takes 3 clocks. The next sequential in
struction is then executed. 

NOP 

6-109 



NOT 

6-110 

NOT (Not, or form 1 '5 complement) 

Operation: The specified operand is subtracted from OFFH (or OFFFFH, if a word) 
and the result is stored back into the given operand. 

(EA) - SRC-(EA) 

See note. 

Encoding: 

11 1 1 1 01 1 w Imod 0 1 0 rlml 

if w = 0 then SRC = OFFH 
else SRC = OFFFFH 

Timing (clocks): register 
memory 

Examples: 

3 
16+EA 

1) If AH contains 13H (00010011), then NOT AH causes AH to contain 
OECH (11101100). 

2) If MEM_BYTE contains OAFH (10101111), then NOT MEM_BYTE 
causes MEM_BYTE to contain 50H (01010000). 

3) If OX contains 2FC3H, then NOT OX causes OX to contain 0003CH. 

See also NEG. 

Flags Affected: None 

Description: NOT forms the ones complement of (inverts) the operand and returns 
the result to the operand. Flags are not affected. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



OR (Or, inclusive) 

Operation: Each bit position in the destination (leftmost) operand becomes 1, 
unless it and the corresponding bit position of the source (rightmost) operand were 
both 0. Alternative phrasing: each bit position of the result has a 1 if either operand 
had a 1 in that position; if both had a 0, that position of the result has a zero. The 
carry and overflow flags are both reset. 

(OEST) +- (LSRC)I(RSRC) 
(CF) +- 0 
(OF) +- 0 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

100001 0 d wi mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, OEST = REG 
else LSRC = EA, RSRC = REG, OEST = EA 

Timing (clocks): (a) register to register 
(b) memory to register 
(c) register to memory 

Examples: 

3 
9+EA 

16+EA 

(a) OR AH, BL ;result in AH, BL unchanged 
OR SI, OX ;result in SI, OX unchanged 
OR CX, 01 ;result in CX, 01 unchanged 

(b) OR AX, MEM_WORO 
OR CL, MEM_BYTE [SI] 
OR SI, ALPHA [BX] [SI] 

(c) OR BETA [BX] [DI], AX 
OR MEM_BYTE, OH 
OR GAMMA [DI], BX 

Immediate Operand to Accumulator: 

I0000110wl data 1 data if w=1 

(a) if w = 0 then LSRC = AL, RSRC = data, OEST = AL 
(b) else LSRC = AX, RSRC = data, OEST = AX 

Timing (clocks): immediate to register 4 

OR 

6-111 



OR 

6-112 

Examples: 

a) OR Al, 11110110B 
OR Al, OF6H 

b) OR AX, 23F6H 
OR AX, 750 
OR ,23F6H 

Immediate Operand to Memory or Register Operand: 

11 0 0 0 0 0 0 w 1 m od 0 0 1 rIm 1 data 

lSRC = EA, RSRC = data, OEST = EA 

Timing (clocks): (a) immediate to register 
(b) immediate to memory 

Examples: 

a) OR AH, OF6H 
OR Cl, 37 
OR 01, 23F5H 

b) OR MEM_BYTE, 30H 
OR GAMMA [BX] [01], OFACEH 
OR ALPHA [01], VAl_EOUO_33H 

FlagsAffected: CF, OF, PF, SF, ZF. 
Undefined: AF 

data if w=1 

4 
17+EA 

Description: OR performs the bitwise logical inclusive disjunction of the two 
operands and returns the result to one of the operands. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



OUT (Output byte and output word) 

Operation: The contents of the designated port are replaced by the contents of the 
accum ulator. 

(DEST) +- (SRC) 

Encoding: 

Fixed Port: 

11 1 1 0 0 1 1 w 1 port 

if w = 0 then SRC = AL, DEST = port 
else SRC = AX, DEST = port+ 1 :port 
(0 < port < 255) 

Timing: 10 clocks 

Examples: 

OUT BYTE_PORT _ VAL,AL ;outputs a byte from AL 
OUT WORD_PORT _VAL,AX ;outputs a word from AX 
OUT 44,AX ;outputs a word from AX through port 44 

Variable Port: 

11110111wl 

if w = 0 then SRC = AL, DEST = (DX) 
else SRC = AX, DEST = (DX) + 1 :(DX) 

Timing: 8 clocks 

Examples: 

OUT DX,AL 
OUT DX,AX 

Flags Affected: None 

;outputs a byte from AL through variable port in DX 
;outputs a word from AX through variable port in AX 

Description: OUT transfers a byte (or word) from the AL register (or AX register) 
to an output port. The port is specified either with an inline data byte, allowing fixed 
access to ports 0 through 255, or with a port number in the DX register, allowing 
variable access to 64K output ports. 

OUT 

6-113 



POP 

6-114 

POP (POp word off stack into destination) 

There are 3 separate types of POP instructions, for different destinations. 

See note. 

Operation: 

1) The contents of the destination are replaced by the word at the top of the stack 

(DEST) +- ((SP) + 1 :(SP)) 

2) The stack pointer is incremented by 2. 

(SP) +- (SP) + 2 

Flags Affected: None 

Type 1: 

Register Operand: 

1 0 1 0 1 1 reg 

OEST= REG 

Timing: 8 clocks 

Examples: 

POP ex 
The assembler generates 
POP ox 
The assembler generates 

Type 2: 

Segment Register: 

10 0 0 reg 1 1 11 

if reg *" 01 then OEST = REG 
else undefined operation 

Note: POP CS is not legal 

Timing: 8 clocks 

Examples: 

POP SS 
The assembler generates 
POP os 
The assembler generates 

01011001 

01011010 

000 1 011 

o 0 0 1 1 111 



Type 3: 

Memory or Register Operand: 

11 0001111 1 mod 00 rIm 

DEST= EA 

Timing (clocks): memory 
register 

Examples: 

17+EA 
8 

POP ALPHA 
The assembler generates 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 ALPHA addr-Io ALPHA addr-hi 

POP ALPHA [BX] 
1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 ALPHA addr-Io ALPHA addr-hi 

Description: POP transfers a word operand from the stack element addressed by 
the SP register to the destination operand and then increments SP by 2. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes 
given the computed displacement from the segment-base-address. 

POP 

6-115 



POPF 

6-116 

POPF (Pop flags off stack) 

Operation: 

Flags +- ((SP) + 1 :(SP)) 
(SP) +- (SP) + 2 

The flag registers are filled from the appropriate bit positions of the word at the top 
of the stack, i.e., 

overflow flag +- bit 11 
direction flag +- bit 10 
interrupt flag +- bit 9 
trap flag +- bit 8 
sign flag +- bit 7 
zero flag +- bit 6 
auxiliary carry flag +- bit 4 
parity flag +- bit 2 
carry flag +- bit 0 

Then the Stack Pointer is incremented by 2. 

Encoding: 

1100111011 

Timing: 8 clocks 

Example: POPF 

Flags Affected: All 

Description: POPF (pop flags) transfers specific bits of the stack element ad
dressed by the SP register to the flag registers and then increments SP by two. See 
alsoPUSHF. 



PUSH 
PUSH (Push word onto stack) 

There are 3 separate types of PUSH instructions depending on the kind of operand 
supplied. 

See note. 

Operation: 

1) The stack pointer (SP) is decremented by 2. 

(SP) .... (SP)-2 

2) The contents of the specified operand are placed on the top of stack at 
the location pointed to by SP. The contents of SP are used as an offset to 
the stack's base address in register SS. 

((SP + 1 ):(SP» .... (SRC) 

Flags Affected: None 

Type 1: 

Register Operand (word) 

1 0 1 0 1 0 reg 1 

Timing (clocks): 10 

Examples: 

PUSH AX (generates: 0 1 0 1 0 0 0 0) 
PUSH SI (generates: 0 1 0 1 0 1 1 0) 

Type 2: 

Segment Register 

10 0 0 reg 1 1 0 1 

Timing (clocks): 10 

Examples: 

PUSH SS (generates: 0 0 0 1 0 1 1 0) 
PUSH ES (generates: 0 0 0 0 0 1 1 0) 
PUSH ES 
Note: PUSH CS is legal. 

Type 3: 

Memory-or-Register Operand 

111111111 Imod 110 r/ml 

6-117 



PUSH 

6-118 

Timing (clocks): memory 
register 

Examples: 

1 1 1 1 1 111 

11111111 

1111111 1 

16+EA 
10 

PUSH 
00 110 110 

PUSH 

10 110 111 

BETA 
Beta addr-Io 

BETA [BX] 

Beta addr-Io 

PUSH BETA [BX] [DI] 

10 110 001 Beta addr-Io 

Beta addr-hi 

Beta addr-hi 

Beta addr-hi 

Description: PUSH decrements the stack pointer SP by 2 and then transfers a word 
from the service operand to the stack element currently addressed by SP. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source lines and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression inclu ::. 6 a variable name is used, i.e. a name for a 
memory location containing data, the L·)DRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



PUSHF 
PUSHF (Push flags onto stack) 

Operation: The Stack Pointer is decremented by 2, then the flags replace the ap
propriate bits of the word at the top of the stack (see POPF). 

(SP) +- (SP)-2 
((SP) + 1 :(SP» +- Flags 

Encoding: 

1100111001 

Timing: 10 clocks 

Example: PUSHF 

Flags Affected: None 

Description: PUSHF decrements the SP register by 2 and transfers all of the flag 
registers into specific bits of the word operand (stack element) addressed by SP . 

6-119 



RCL 

6-120 

RCL (Rotate left through carry) 

Operation: The specified destination (leftmost) operand is rotated left through the 
carry flag a number of times (COUNT). That number is either exactly once, 
specified by an absolute number of value 1, or it is the number held in the CL 
register, specified by a right operand of CL. 

The rotation continues until the COUNT is exhausted. CF is preserved and is rotated 
into bit 0 of the destination. The highest order bit of the destination is rotated into 
CF. If the COUNT was 1 and the 2 highest-order bits of the original destination 
value were unequal (one 0 and one 1), then the overflow flag is set. If they were 
equal, OF is reset. If the COUNT was not 1, OF is undefined and has no reliable 
value. 

(temp) +- COUNT 
do while (temp) * 0 

(tmpcf) +- (CF) 
(CF) +- high-order bit of (EA) 
(EA) +- (EA) * 2 + (tmpcf) 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) * (CF) then (OF) +-1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

11 1 0 1 0 0 v wi mod 0 1 0 rIm 1 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) RCL AH, 1 
RCL BL, 1 
RCL CX, 1 
VAL_ONE EQU 1 
RCL OX, VAL_ONE 
RCL 81, VAL_ONE 

(b) RCL MEM_BYTE, 1 
RCL ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
RCL OH, CL ;rotates 3 bits left 
RCL AX, CL 

2 
15+EA 

8+4/bit 
20+EA+4/bit 



(d) MOV Cl, 6 
RCl MEM_WORO, Cl ; rotates 6 times 
RCl GANOAlF _BYTE, Cl 
RCl BETA [BX] [01], Cl 

Flags Affected: CF, OF 

Description: RCL (rotate through carry flag left) rotates the operand left through 
the CF flag register by COUNT bits. See also ROL. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

RCL 

6-121 



RCR 

6-122 

RCR (Rotate right through carry) 

Operation: The specified destination (leftmost) operand is rotated right through 
the carry flag a number of times (COUNT). That number is either exactly once, 
specified by an absolute number of value 1, or it is the number held in the CL 
register, specified by a right operand of CL. 

The rotation continues until the COUNT is exhausted. CF is preserved and is rotated 
into the high order bit of the destination. The lowest order order bit of the destina
tion is rotated into CF. If the COUNT was 1 and the 2 highest-order bits of the 
destination value are now unequal (one 0 and one 1), then the overflow flag is set. If 
they were equal, OF is reset. If the COUNT was not 1, OF is undefined and has no 
reliable value. 

(temp) - COUNT 
do while (temp) "* 0 

(tmpcf) - (CF) 
(CF) - low-order bit of (EA) 
(EA) - (EA) I 2 
high-order bit of (EA) - (tmpcf) 
(temp) - (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) "* next-to-high-order bit of (EA) 

then (OF)-1 
else (OF)-O 

else (OF) undefined 

See note. 

Encoding: 

11101 00 v w 1 mod 0 11r/m 1 

if v = 0 then COUNT = 1 
else COUNT = (Cl) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) RCR AH, 1 
RCR Bl, 1 
RCR CX, 1 
VAL_ONE EQU 1 
RCR OX, VAL_ONE 
RCR 51, VAL_ONE 

(b) RCR MEM_BYTE, 1 
RCR ALPHA [01], VAL_ONE 

(c) MOV Cl, 3 
RCR OH, Cl ; rotates 3 bits right 
RCR AX, Cl 

2 
15+EA 

8+4/bit 
20+EA+4/bit 



(d) MOV 
RCR 
RCR 
RCR 

CL, 6 
MEM_WORD, CL ;rotates 6 times 
GANDALF_BYTE, CL 
BETA [BX] [01], CL 

Flags Affected: CF, OF 

Description: RCR (rotate through carry flag right) rotates in EA operand right 
through the CF flag register by COUNT bits. See also ROR. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

RCR 

6-123 



REP 

6-124 

REP/REPZ/REPE/REPNE/REPNZ (Repeat string operation) 

Operation: The specified string operation is performed a number of times, i.e., un
til (CX) becomes O. CX is decremented by 1 after each iteration. 

The compare and scan string operations exit the loop when the zero flag is unequal 
to the value of bit 0 of this instruction byte. 

do while (CX) #= 0 
service pending interrupt (if any) 
execute primitive string operation in succeeding byte 
(CX) ~ (CX) -1 
if primitive operation is CMPS, 

or SCAS and (ZF) #= z then exit from while loop 

Encoding: 

11111001z1 

Timing: 6 clocks/loop 

Examples: 

1) REP MOVS OEST, SOURCE ;see also MOVS 

2) REPE CMPS DEST, SOURCE 
;Ioop will be exited prior to (CX)=O only if 
;(ZF)=1, i.e., only if the byte at (01) is equal 
;to the byte at (SI). See also CMPS. 

3) REPNZ SCAS OEST ;see also SCAS 
;only if (ZF)=1, i.e., (AL) = OEST, will 
;this loop be exited prior to (CX) = 0 

4) REPNZ (nonzero) = REPNE (not equal) 
REPNZ (zero) = REPE (equal) 

Flags Affected: See individual string operations. 

Description: REP (repeat) causes the succeeding primitive string operation to be 
performed repeatedly while (CX) is not zero. In the case of CMPS and SCAS, if 
after any repetition of the primitive operation the ZF flag differs from the "z" bit of 
the repeat prefix, the repetition is terminated. This prefix may be combined with the 
segment override and/or LOCK prefixes, although with multiple prefixes, interrupts 
must be disabled, because the return from an interrupt returns control to the inter
rupted instruction or to at most one prefix byte before that instruction. 



RET (Return from procedure) 

Operation: The Instruction Pointer is replaced by the word at the top of the stack 
(offset of top is in Stack Pointer). SP is incremented by 2. For inter segment returns, 
the Code Segment register is replaced by the word now at the top of the stack, and 
SP is again incremented by 2. If an immediate value was specified on the RET state
ment, that value is now added to SP. 

(lP) +- ((SP) + 1 :(SP» 
(SP) +- (SP) + 2 
if Inter-Segment then 

(CS) +- ((SP) + 1 :(SP» 
(SP) +- (SP) + 2 

if Add Immediate to Stack Pointer then (SP) + data 

Encoding: 

Intra-Segment 

1110000111 

Timing: 8 clocks 

Example: RET 

Intra-Segment and Add Immediate to Stack Pointer: 

11 1 0 0 0 0 1 0 1 data-low 

Timing: 12 clocks 

Examples: 

RET 4 
RET 12 

data-high 

;these values cause 2 and 6 parameter 
;words earlier stored on the stack to be 
;discarded. Since most stack operations 
;are on words, these values are usually 
;even numbers (2 bytes per word). 

Inter-Segment: 

1110010111 

Timing: 18 clocks 

RET 

6-125 



RET 

6-126 

Example: RET 

Inter-Segment and Add Immediate to Stack Pointer: 

11 1 0 0 1 0 1 0 1 data low data high 

Timing: 17 clocks 

Examples: 

RET 2 ;intersegment returns restore lP first, then CS 
RET 8 

Flags Affected: None 

Description: RET transfers control to the return address pushed by a previous 
CALL operation and optionally adds an immediate constant to the SP register so as 
to discard stack parameters. If this is an inter segment RET, i.e., it was assembled 
under a procedure labeled FAR, it will replace the IP AND the CS using the two 
words at the top of the stack. Otherwise, only the IP is replaced, using only one 
word from the top of the stack. 

When using indirect CALLs, the programmer must carefully ensure that the type of 
CALL matches the type of RETurn in the procedure, e.g. 

CALL WORD PTR [SX] 

must not invoke a FAR procedure and 

CALL DWORD PTR [SX] 

must not invoke a NEAR procedure. 

See also Appendix D. 



ROL (Rotate left) 

Operation: The specified destination (leftmost) operand is rotated left COUNT 
times. Its high order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move up" one position, e.g., the value of the third bit is 
replaced by the value of the second bit. The vacated bit-position-O is filled by the 
new CF, i.e., the old high-order bit. 

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new 
value of CF is not equal to the new high order bit, then the overflow flag is set; if 
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1, 
OF is not defined and has no reliable value. 

(temp) +- COUNT 
do while (temp) 1= 0 

(CF) +- high-order bit of (EA) 
(EA) +- (EA) * 2 + (CF) 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) 1= (CF) then (OF) +-1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

11 1 0 1 0 0 v wi mod 0 0 0 r! m 1 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks): (a) single bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) ROL AH, 1 
ROL BL, 1 
ROL CX, 1 
VAL_ONE EQU 1 
ROL OX, VAL_ONE 
ROL 81, VAL_ONE 

(b) ROL MEM_BYTE, 1 
ROL ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
ROL OH, CL ;rotates 3 bits left 
ROL AX, CL 

(d) MOV CL, 6 

2 
1S+EA 

8+4!bit 
20+EA+4! bit 

ROL MEM_WORO, CL ; rotates 6 times 
ROL GANOALF_BYTE, CL 
ROL BETA [BX] [01], CL 

ROL 

6-127 



ROL 

6-128 

Flags Affected: CF, OF 

Description: ROL (rotate left) rotates the operand left by COUNT bits. See also 
RCL. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



ROR (Rotate right) 

Operation: The specified destination (leftmost) operand is rotated right COUNT 
times. Its low order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move down" one position, e.g., the value of the second bit is 
replaced by the value of the third bit. The vacated high order position is filled by the 
new CF, i.e., the old value of position o. 

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new 
high order value is not equal to the old high order value, then the overflow flag is 
set; if they are equal, (OF) = O. However, if COUNT was not 1 then OF is undefined 
and has no reliable value. 

(temp) +- COUNT 
00 WHilE (temp) 1= 0 

(CF) +- low-order bit of (EA) 
(EA) +- (EA) I 2 
high-order bit of (EA) +- (CF) 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) 1= next-to-high-order bit of (EA) 

then (OF) +- 1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

11 1 01 00 v w Imod 001 rlml 

if v = 0 then COUNT = 1 
else COUNT = (Cl) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) ROR AH, 1 
ROR Bl, 1 
ROR CX, 1 
VAL_ONE EQU 1 
ROR OX, VAL_ONE 
ROR 51, VAL_ONE 

(b) ROR MEM_BYTE, 1 
ROR ALPHA [01], VAL_ONE 

(c) MOV Cl, 3 
ROR OH, Cl ; rotates 3 bits right 
ROR AX, CL 

2 
15+EA 

8+4/bit 
20 + EA + 4/bit 

ROR 

6-129 



ROR 

6-130 

(d) MOV 
ROR 
ROR 
ROR 

CL, 6 
MEM_WORO, CL ;rotates 6 times 
GANOALF _BYTE, CL 
BETA [BXJ [OIJ, CL 

Flags Affected: CF, OF 

Description: ROR (rotate right) rotates the source operand right by COUNT bits. 
See also RCR. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 110 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



SAHF 
SAHF 

Operation: The five flags shown are replaced by specified bits from AH, high
order byte of the accumulator: 

(SF) - bit 7 
(ZF) - bit6 
(AF) - bit4 
(PF) - bit 2 
(CF) - bitO 

ofAH 

(SF):(ZF):X:(AF):X:(PF):X:(CF) - (AH) 

Encoding: 

1100111101 

Timing: 4 clocks 

Example: SAHF 

FlagsAffected: AF, CF, PF, SF, ZF 

Description: SAHF transfers specific bits of the AH register to the flag registers 
SF, ZF, AF, PF, and CF. The bits of AH indicated by "X" in the operation are 
ignored. 

6-131 



SAL 

6-132 

SHL and SAL (Shift logical left and shift arithmetic left) 

Operation: The specified destination (leftmost) operand is shifted left COUNT 
times. Its high order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move up" one position, e.g., the value of the third bit is 
replaced by the value of the second bit. The vacated low order bit-position is filled 
byO. 

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new 
value of CF is not equal to the new high order bit, then the overflow flag is set; if 
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1, 
OF is not defined and has no reliable value. 

(temp) +- COUNT 
do while (temp) #= 0 

(CF) +- high-order bit of (EA) 
(EA) +- (EA) * 2 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) #= (CF) then (OF) +-1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

111 01 00 v wi mod 1 00 r/ml 
if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) SHL AH, 1 
SHL BL, 1 
SHL CX, 1 
VAL_ONE EQU 1 
SHL OX, VAL_ONE 
SHL SI, VAL_ONE 

(b) SHL MEM_BYTE, 1 
SHL ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
SHL OH, CL ; rotates 3 bits left 
SHL AX, CL 

(d) MOV CL, 6 

2 
15+EA 

8+4/bit 
20+EA+4/bit 

SHL MEM_WORO, CL ; rotates 6 times 
SHL GANOALF_BYTE, CL 
SHL BETA [BX] [01], CL 



Flags Affected: CF, OF, PF, SF, ZF 
Undefined: AF 

Description: SHL (shift logical left) and SAL (shift arithmetic left) shift the source 
operand left by COUNT bits, shifting in low-order zero bits. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-eit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

SAL 

6-133 



SAR 

6-134 

SAR (Shift arithmetic right) 

Operation: The specified destination (leftmost) operand is shifted right COUNT 
times. Its low-order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move down" one position, e.g., the value of the second bit is 
replaced by the value of the third bit. The vacated high order position retains its old 
value i.e., if the original high order bit value was 0, zeroes are shifted in. If that 
value was 1, ones are shifted in. 

The shift continues until the COUNT is exhausted. If COUNT was 1 and the high 
order value is not equal to the next-to-high order value, then the overflow flag is set; 
if they are equal, (OF) = 0. However, if COUNT was not 1 then OF is reset. 

(temp) +- COUNT 
do while (temp) :f. 0 

(CF) +- low-order bit of (EA) 
(EA) +- (EA) I 2, where I is equivalent to signed 

division, rounding down 
(temp) +- (temp)-1 
if COUNT = 1 then 

if high-order bit of (EA) :f. next-to-high-order bit of (EA) 
then (OF) +- 1 
else (OF) +- 0 

else (OF) +- 0 

See note. 

Encoding: 

11 1 01 0 0 v w Imod 1 1 1 r/ml 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) SAR AH, 1 
SAR BL, 1 
SAR CX, 1 
VAL_ONE EQU 1 
SAR OX, VAL_ONE 
SAR SI, VAL_ONE 

(b) SAR MEM_BYTE, 1 
SAR ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
SAR OH, CL ;rotates 3 bits right 
SAR AX, CL 

2 
1S+EA 

8+4/bit 
20+ EA+4/bit 



(d) MOV 
SAR 
SAR 
SAR 

Cl, 6 
MEM_WORO, Cl ; rotates 6 times 
GANOAlF _BYTE, Cl 
BETA [BX] [01], Cl 

Flags Affected: CF, OF, PF, SF, ZF. 
Undefined: AF 

Description: SAR (shift arithmetic right) shifts the destination operand right by 
COUNT bits, shifting in high-order bits equal to the original high-order bit of the 
operand (sign extension). 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 

SAR 

6-135 



SBB 

6-136 

see (Subtract with borrow) 

Operation: The source (rightmost) operand is subtracted from the destination Oeft
most). If the carry flag was set, 1 is subtracted from the above result. The result 
replaces the original destination operand. 

if (CF) = 1 then (OEST) - (LSRC)-(RSRC)-1 
else (OEST) - (LSRC)-(RSRC) 

See note. 

Encoding: 

Memory or Register Operand and Register Operand: 

10001 1 0 d wi mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, OEST = REG 
else LSRC = EA, RSRC = REG, OEST ";EA 

Timing (clocks): (a) register from register 
(b) memory from register 
(c) register from memory 

Examples: 

(a) SBB AX, BX 
SBB CH, OL 

(b) SBB OX, MEM_WORO 
SBB 01, ALPHA [SI] 
SBB BL, MEM_BYTE [01] 

(c) SBB MEM_WORO, AX 
SBB MEM_BYTE [01], BX 
SBB GAMMA [BX] [01], SI 

Immediate Operand from Accumulator: 

3 
9+EA 

16+EA 

10001 1 1 0 w 1 data 1 data if w=1 

(a) if w = 0 then LSRC = AL, RSRC = data, OEST = AL 
(b) else LSRC = AX, RSRC = data, OEST = AX 

Timing (clocks): immediate from register 4 

Examples: 

(a) SBB AL, 4 
VAL_SIXTY EQU 60 
SBB AL, VAL_SIXTY 

(b) SBB AX, 660 
SBB AX, VAL_SIXTY * 6 
SBB ,6606 



Immediate Operand from Memory or Register Operand: 

11 0 0 0 0 0 s w 1m od 0 1 1 rIm 1 data 

lSRC = EA, RSRC = data, OEST = EA 

Timing (clocks): (a) immediate from register 
(b) immediate from memory 

Examples: 

(a) SBB BX, 2001 
SBB Cl, VAL_SIXTY 
SBB SI, VAL_SIXTY * 9 

(b) SBB MEM_BYTE, 12 
SBB MEM_BYTE [01], VAL_SIXTY 
SBB MEM_WORO [BX], 79 
SBB GAMMA [01] [BX], 1984 

1 data if s:w=o11 

4 
17+EA 

If an immediate-data-byte is being subtracted from a register-or-memory word, then 
that byte is sign-extended to 16 bits prior to the subtraction. For this situation the in
struction byte is 83H (i.e., the s:w bits are both set). 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: SBB (subtract with borrow) performs a subtraction of the two source 
operands, subtracts one if the CF flag is set, and returns the result to one of the 
operands. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 

SBB 

6-137 



seAS 

6-138 

seAS (Scan byte string or scan word string) 

Operation: The string element specified by DI in the Extra Segment is subtracted 
from the value in the accumulator but the operation affects flags only. The Destina
tion Index is then incremented (if the direction flag is zero) or decremented (if 
(DF) = 1) by 1 for byte strings or 2 for words. 

(LSRC)-(RSRC) 
if (OF) = 0 then (01) +- (01) + OEL T A 
else (01) +- (Ol)-OEL T A 

Encoding: 

11010111wl 

if w = 0 then LSRC = AL, RSRC = (01), OEL TA = 1 
else LSRC = AX, RSRC = (01) + 1 :(01), OELTA = 2 

Timing: 15 clocks 

Examples: 

1) CLO ;clears OF, causes 01 incrementing 
MOV 01, OFFSET OEST _BYTE_STRING 
MOV AL, 'M' 
SCAS OEST _BYTE_STRING 

2) STO ;sets OF, causes 01 decrementing 
MOV 01, OFFSET WORO_STRING 
MOV AX, 'MO' 
SCAS WORO_STRING 
;the operand named in the SCAS instruction is used only by the 
;assembler to verify type and accessibility using current segment 
;register contents. The actual operation of this instruction uses 01 to 
;point to the location to be scanned, without using the operand 
;named in the source line. 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: seAS subtracts the destination byte (or word) operand addressed by 
DI from AL (or AX) and affects the flags but does not return the result. As a 
repeated operation this provides for scanning for the occurrence of, or departure 
from, a given value in a string. See also REP. 



SHL and SAL (Shift logical left and shift arithmetic left) 

Operation: The specified destination (leftmost) operand is shifted left COUNT 
times. Its high order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move up" one position, e.g., the value of the third bit is 
replaced by the value of the second bit. The vacated low order bit-position is filled 
byO. 

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new 
value of CF is not equal to the new high order bit, then the overflow flag is set; if 
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1, 
OF is not defined and has no reliable value. 

(temp) +- COUNT 
do while (temp) :F 0 

(CF) +- high-order bit of (EA) 
(EA) +- (EA) * 2 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) :F (CF) then (OF) +-1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

11 1 01 00 v w Imod 1 00 rlml 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks): (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) SHL AH, 1 
SHL BL, 1 
SHL CX, 1 
VAL_ONE EQU 1 
SHL OX, VAL_ONE 
SHL SI, VAL_ONE 

(b) SHL MEM_BYTE, 1 
SHL ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
SHL OH, CL ; rotates 3 bits left 
SHL AX, CL 

(d) MOV CL, 6 

2 
1S+EA 

8+4/bit 
20 + EA + 4/bit 

SHL MEM_WORO, CL ;rotates6times 
SHL GANOALF_BYTE, CL 
SHL BETA [BX] [01], CL 

SHL 

6-139 



SHL 

6-140 

Flags Affected: CF, OF, PF, SF, ZF 
Undefined: AF 

Description: SHL (shift logical left) and SAL (shift arithmetic left) shift the source 
operand left by COUNT bits, shifting in low-order zero bits. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



SHR (Shift logical right) 

Operation: The specified destination (leftmost) operand is shifted right COUNT 
times. Its low order bit replaces the carry flag, whose original value is lost. All other 
bits in the destination "move down" one position, e.g., the value of the second bit is 
replaced by the value of the third bit. The vacated high order position is filled by O. 

The shift continues until the COUNT is exhausted. If COUNT was 1 and the new 
high order value is not equal to the next-to-high-order value, then the overflow flag 
is set; if they are equal, (OF) = O. However, if COUNT was not 1 then OF is unde
fined and has no reliable value. 

(temp) +- COUNT 
do while (temp) '* 0 

(CF) +- low-order bit of (EA) 
(EA) +- (EA) 12, where I is equivalent to unsigned division 
(temp) +- (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) '* next-to-high-order bit of (EA) 

then (OF) +- 1 
else (OF) +- 0 

else (OF) undefined 

See note. 

Encoding: 

11 1 0 1 0 0 v w 1 m od 1 0 1 rIm 1 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

Timing (clocks) (a) single-bit register 

Examples: 

(b) single-bit memory 
(c) variable-bit register 
(d) variable-bit memory 

(a) SHR AH, 1 
SHR BL, 1 
SHR CX, 1 
VAL_ONE EQU 1 
SHR OX, VAL_ONE 
SHR SI, VAL_ONE 

(b) SHR MEM_BYTE, 1 
SHR ALPHA [01], VAL_ONE 

(c) MOV CL, 3 
SHR OH, CL ; rotates 3 bits right 
SHR AX, CL 

(d) MOV CL, 6 

2 
15+EA 

8+4/bit 
20+EA+4/bit 

SHR MEM_WORO, CL ; rotates 6 times 
SHR GANOALF_BYTE, CL 
SHR BETA [BX] [01], CL 

SHR 

6-141 



SHR 

6-142 

Flags Affected: CF, OF, PF, SF, ZF 
Undefined: AF 

Description: SHR (shift logical right) shifts the source operand right by COUNT 
bits, shifting in high-order zero bits. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. 



STC (Set carry flag) 

Operation: The carry flag is set to 1. 

(CF) -1 

Encoding: 

1111110011 

Timing: 2 clocks 

Example: STC 

Flags Affected: CF 

Description: STC sets the CF flag. 

STC 

6-143 



STO 

6-144 

STO (Set direction flag) 

Operation: The direction flag is set to 1. 

(OF) -1 

Encoding: 

1111111011 

Timing: 2 clocks 

Example: STO ;causes decrementing of 01 (and SI) in string operations. 

Flags Affected: OF. 

Description: STD sets the DF flag, causing the string operations to auto-decrement 
the operand index(es). 



STI (Set interrupt flag) 

Operation: The interrupt flag is set to 1. 

(IF) -1 

Encoding: 

1111110111 

Timing: 2 clocks 

Example: STI ;enables interrupts 

Flags Affected: IF 

Description: STI sets the IF flag, enabling maskable external interrupts after the 
execution of the next instruction. 

STI 

6-145 



STOS 

6-146 

STOS (Store byte string or store word string) 

Operation: The byte (or word) in AL (or AX) replaces the contents of the byte (or 
word) pointed to by DI in the Extra Segment. DI is then incremented if the direction 
flag is zero or decremented if DF= 1. The change is 1 for bytes, 2 for words. 

(OEST) +- (SRC) 
if (OF) = 0 then (01) +- (01) + OEL TA 
else (01) ... (Ol)-OEL T A 

Encoding: 

11010101wl 

if w = 0 then SRC = AL, OEST = (01), OEL T A = 1 
else SRC = AX, OEST = (01) + 1 :(01), OEL T A = 2 

Timing: 10 clocks 

Examples: 

1) MOV 01, OFFSET BYTE_DEST _STRING 
STOS BYTE_DEST _STRING 

2) MOV 
STOS 

01 ,OFFSET WORD_DEST 
WORO_OEST 

Flags Affected: None 

Description: STOS transfers a byte (or word) operand from AL (or AX) to the 
destination operand addressed by DI and adjusts the DI register by DELTA. As a 
repeated operation (see REP) this provides for filling a string with a given value. The 
operand named in the STOS instruction is used only by the assembler to verify type 
and accessibility using current segment register contents. The actual operation of the 
instruction uses only DI to point to the location being stored into. 



SUB (Subtract) 

Operation: The source (rightmost) operand is subtracted from the destination (left
most) operand and the result is stored in the destination. 

(OEST) +- (LSRC)-(RSRC) 

See note. 

Encoding: 

Memory or Register Operand and Register Operand: 

10 0 1 0 1 0 d wi mod reg rIm I 
if d = 1 then LSRC = REG, RSRC = EA, OEST = REG 
else LSRC = EA, RSRC = REG, OEST = EA 

Timing (clocks): (a) register from register 
(b) memory from register 
(c) register from memory 

Examples: 

(a) SUB AX, BX 
SUB CH, OL 

(b) SUB OX, MEM_WORO 
SUB 01, ALPHA [SI] 
SUB BL, MEM_BYTE [01] 

(c) SUB MEM_WORO, AX 
SUB MEM_BYTE [01], BL 
SUB GAMMA [BX] [01], SI 

Immediate Operand from Accumulator: 

10010110wl data 1 data if w=1 

3 
9+EA 

16+EA 

(a) if w = 0 then LSRC = AL, RSRC = data, OEST = AL 
(b) else LSRC = AX, RSRC = data, OEST = AX 

Timing (clocks): immediate from register 4 

Examples: 

(a) SUB AL, 4 
VAL_SIXTY EQU 60 
SUB AL, VAL_SIXTY 

(b) SU B AX, 660 
SUB AX, VAL_SIXTY * 6 
SUB ,6606 

SUB 

6-147 



SUB 

6-148 

Immediate Operand from Memory or Register Operand: 

11 00000 s w Imod 1 01 rIm 1 data 

LSRC = EA, RSRC = data, OEST = EA 

Timing (clocks): (a) immediate from register 
(b) immediate from memory 

Examples: 

(a) SU B BX, 2001 
SUB CL,VAL_SIXTY 
SUB SI, VAL_SIXTY * 9 

(b) SUB MEM_BYTE, 12 
SUB MEM __ BYTE [01], VAL_SIXTY 
SUB MEM_WORO [BXJ, 79 
SUB GAMMA [01] [BXJ, 1984 

1 data if s:w=01 1 

4 
17+EA 

If an immediate-data-byte is being subtracted from a register-or-memory word, then 
that byte is sign-extended to 16 bits prior to the subtraction. For this situation the in
struction byte is 83H (i.e., the s:w bits are both set). 

Flags Affected: AF, CF, OF, PF, SF, ZF 

Description: SUB performs a subtraction of the source (rightmost) operand from 
the destination, and returns the result to the ddestination operand. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for 1/0 and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 



TEST (Test, or logical compare) 

Operation: The 2 operands are ANDed to affect the flags but neither operand is 
changed. The carry and overflow flags are reset. 

(LSRC) & (RSRC) 
(CF) - 0 
(OF) -0 

See note. 

Encoding: 

Memory or Register Operand with Register Operand: 

11 00001 0 wi mod reg rIm 1 

LSRC = REG, RSRC = EA 

Timing (clocks): (a) register with register 
(b) register with memory 

Examples: 

(a) TEST AX, OX 
TEST ,OX ;same as above 
TEST SI, BP 
TEST BH, CL 

(b) TEST MEM_WORO, SI 
TEST MEM_BYTE, CH 
TEST ALPHA [01], OX 
TEST BETA [BX] [SI], CX 
TEST 01, MEM_WORO 
TEST CH, MEM_BYTE 
TEST AX, GAMMA [BP] [SI] 

Immediate Operand with Accumulator: 

11 01 01 00 w 1 data 1 data ifw=1 

(a) if w = 0 then LSRC = AL, RSRC = data 
(b) else LSRC = AX, RSRC = data 

Timing (clocks): immediate with register 4 

Examples: 

TEST AL, 6 
TEST AL, IMM_VALUE_ORIVE11 
TEST AX, IMM_VAL_909 
TEST ,999 
TEST AX, 999 ;same as above 

3 
9+EA 

TEST 

6-149 



TEST 

6-150 

Immediate Operand with Memory or Register Operand: 

11 1 1 1 01 1 w Imod 000 rIm I data 

lSRC = EA, RSRC = data 

Timing (clocks): (a) immediate with register 
(b) immediate with memory 

Examples: 

(a) TEST BH, 7 
TEST Cl, 19_IMM_BYTE 
TEST DX, IMM_DATA_WORD 
TEST SI, 79& 

data if w=1 

4 
10+EA 

(b) TEST MEM_WORD, IMM_DATA_BYTE 
TEST GAMMA [BX], IMM_BYTE 
TEST [BP] [DI], 6ACEH 

Flags Affected: CF, OF, PF, SF, ZF. 
Undefined: AF 

Description: TEST performs the bitwise logical conjuntion of the two source 
operands, causing the flags to be affected, but does not return the result. 

The source (rightmost) operand must usually be of the same type, i.e., byte or word, 
as the destination operand. The only exception for TEST is testing an immediate
data byte with a memory word. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacemeht. 



WAIT 
WAIT (Wait) 

Operation: None 

Encoding: 

1100110111 

Timing: 3 clocks 

Example: WAIT 

Flags Affected: None 

Description: The W AJT instruction causes the processor to enter a wait state if the 
signal on a TEST pin is not asserted. The wait state may be interrupted by an en
abled external interrupt. When this occurs the saved code location is that of the 
W AJT instruction, so that upon return from the interrupting task the wait state is 
reentered. The wait state is cleared and execution resumed when the TEST signal is 
asserted. Execution resumes without allowing external interrupts until after the exe
cution of the next instruction. The instruction allows the processor to synchronize 
itself with external hardware. 

6-151 



XCHG 

6-152 

XCHG (Exchange) 

There are 2 forms of the XCHG instruction, one for switching the contents of the 
accumulator with those of some other general word register, and one for switching a 
register and a memory-or-register operand. 

See note. 

Operation: 

1) The contents of the destination (leftmost operand) are temporarily stored in an 
internal work register 

(Temp) +- (DEST) 

2) The contents of the destination are replaced by the contents of the source 
(leftmost) operand 

(DEST) +- (SRC) 

3) The former contents of the destination are moved from the work register into the 
source operand 

(SRC) +- (Temp) 

Flags Affected: None 

Type 1: 

Register Operand with Accumulator: 

11 00 1 0 reg 1 

SRC = REG, DEST = AX 

Timing: 3 clocks 

Examples: 

XCHG AX, BX 
XCHG SI, AX 
XCHG CX, AX 

Type 2: 

Memory or Register Operand with Register Operand: 

11 0 0 0 0 1 1 w 1 mod reg rIm 1 

SRC = EA, DEST = REG 

Timing (clocks): memory with register 
register with memory 

17+EA 
4 



XCHG 
Examples: 

XCHG 
XCHG 
XCHG 
XCHG 

BETA_WORD, CX 
BX, DELTA_WORD 
DH, ALPHA_BYTE 
BL, AL 

Description: XCHG exchanges the byte or word source operand with the destina
tion operand. The segment registers may not be operands of XCHG. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 

6-153 



/ 

XLAT 

6-154 

XLAT (Translate) 

Operation: The contents of the accumulator are replaced by a byte from a table. 
The table's starting address has been moved into register BX. The original contents 
of AL is the number of bytes past that starting address, where the desired translation 
byte is to be found. It replaces the contents of AL. 

(AL) - ((BX) + (AL)) 

Encoding: 

1110101111 

Timing: 11 clocks 

Example: MOV BX, OFFSET TABLE_NAME 
XLAT TABLE_ENTRY 
;(see also example at LODS) 

Flags Affected: None 

Description: XLAT performs a table lookup byte translation. The AL register is 
used as an index into a table (256-bytes at most) addressed by the BX register. The 
byte operand so addressed is transferred to AL. 



XOR (Exclusive or) 

Operation: Each bit position in the destination (leftmost) operand is set to zero if 
the corresponding bit positions in both operands were equal. If they were unequal 
then that bit position is set to 1. 

(OEST) +- (LSRC)II(RSRC) 
(CF) +- 0 
(OF) +- 0 

See note. 

Encoding: 

10 0 1 1 0 0 d wi mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, OEST = REG 
else LSRC = EA, RSRC = REG, OEST = EA 

Timing (clocks): (a) register to register 
(b) memory to register 
(c) register to memory 

Examples: 

3 
9+EA 

16+EA 

(a) XOR AH, BL 
XOR SI, OX 
XOR CX, 01 

;result in AH, BL unchanged 
;result in SI, OX unchanged 
;result in CX, 01 unchanged 

(b) XOR AX, MEM_WORO 
XOR CL, MEM_BYTE [SI] 
XOR SI, ALPHA [BX] [SI] 

(c) XOR BETA [BX] [01], AX 
XOR MEM_BYTE, OH 
XOR GAMMA [01], BX 

Immediate Operand to Accumulator: 

10011010wl data 1 data if w=1 

if w = 0 then LSRC = AL, RSRC = data, OEST = AL 
else LSRC = AX, RSRC = data, OEST = AX 

Timing (clocks): immediate to register 4 

Examples: 

a) XOR AL, 11110110B 
XOR AL, OF6H 

b) XOR AX, 23F6H 
XOR AX, 75Q 
XOR ,23F6H ;AX destination 

XOR 

6-155 



XOR 

6-156 

Immediate Operand to Memory or Register Operand: 

11 0 0 0 0 0 0 w 1 m od 1 1 0 rIm 1 

LSRC = EA, RSRC = data, OEST = EA 

Timing (clocks): immediate to register 
immediate to memory 

Examples: 

a) XOR AH, OF6H 
XOR CL, 37 
XOR 01, 23F5H 

b) XOR MEM_BYTE, 30H 

data 

4 
17+EA 

XOR GAMMA [BX] [01], OFACEH 
XOR ALPHA [01], VAL_EQUO_33H 

Flags Affected: eF, OF, PF, SF, ZF. 
Undefined: AF 

data ifw=1 

Description: XOR (exclusive Or) performs the bitwise logical exclusive disjunction 
of the source operands and returns the result to the destination operand. 

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and 
other notation. Included there are tables showing the encoding of addressing modes 
and registers. In most cases reg is a 3-bit field allowing any register except segment 
registers. Instructions referring directly to segment registers use a 2-bit field. 

All references to memory implicitly use a segment register in constructing an address 
(see Chapter 1). Except for I/O and interrupts, the choice of segment register 
depends on the address-expression in the assembly language source line and on the 
ASSUME directive which applies to that line. See Chapters 4 and 5. 

Whenever an address-expression including a variable name is used, i.e. a name for a 
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of 
immediate-data is also used, it will follow that displacement. 



INDEX TO INSTRUCTION MNEMONICS 

AAA, ASCII Adjust for Addition, 6-17 
AAD, ASCII Adjust for Division, 6-18 
AAM, ASCII Adjust for Multiplication, 6-19 
AAS, ASCII Adjust for Subtraction, 6-20 
ADC, Add with Carry, 6-21 
ADD, Add, 6-23 
AND, And, 6-25 

CALL, Call, 6-28 
CBW, Convert Byte to Word, 6-30 
CLC, Clear Carry, 6-31 
CLD, Clear Direction, 6-32 
CLI, Clear Interrupt, 6-33 
CMC, Complement Carry, 6-34 
CMP, Compare, 6-35 
CMPS, Compare byte or word (of string), 6-37 
CWD, Convert Word to Double Word, 6-38 

DAA, Decimal Adjust for Addition, 6-39 
DAS, Decimal Adjust for Subtraction, 6-40 
DEC, Decrement, 6-41 
DIV, Divide, 6-43 

ESC, Escape, 6-46 

HLT, Halt, 6-47 

ID IV, Integer Divide, 6-48 
IMUL, Integer Multiply, 6-50 
IN, Input byte or word, 6-52 
INC, Increment, 6-53 
INT, Interrupt, 6-55 
INTO, Interrupt on Overflow, 6-56 
IRET, Interrupt Return, 6-57 

JA, Jump on Above, 6-58 
JAE, Jump on Above or Equal, 6-59 
JB, Jump on Below, 6-60 
JBE, Jump on Below or Equal, 6-61 
JCXZ, Jump on CX Zero, 6-62 
JE, Jump on Equal, 6-63 
JG, Jump on Greater, 6-64 
JGE, Jump on Greater or Equal, 6-65 
JL, Jump on Less, 6-66 
JLE, Jump on Less or Equal, 6-67 
JMP, Jump, 6-68 
JNA, Jump on Not Above, 6-71 
JNAE, Jump on Not Above or Equal, 6-72 
JNB, Jump on Not Below, 6-73 
JNBE, Jump on Not Below or Equal, 6-74 
JNE, Jump on Not Equal, 6-75 
JNG, Jump on Not Greater, 6-76 
JNGE, Jump on Not Greater or Equal, 6-77 
JNL, Jump on Not Less, 6-78 
JNLE, Jump on Not Less or Equal, 6-79 
JNO, Jump on Not Overflow, 6-80 
JNP, Jump on Not Parity, 6-81 
JNS, Jump on Not Sign, 6-82 
JNZ, Jump on Not Zero, 6-83 
JO, Jump on Overflow, 6-84 
JP, Jump on Parity, 6-85 

JPE, Jump on Parity Even, 6-86 
JPO, Jump on Parity Odd, 6-87 
JS, Jump on Sign, 6-88 
JZ, Jump on Zero, 6-89 

LAHF, Load AH with Flags, 6-90 
LDS, Load Pointer into DS, 6-91 
LEA, Load Effective Address, 6-92 
LES, Load Pointer into ES, 6-93 
LOCK, Lock Bus, 6-94 
LODS, Load byte or word (of string), 6-95 
LOOP, Loop, 6-96 
LOOPE, Loop While Equal, 6-97 
LOOPNE, Loop While Not Equal, 6-98 
LOOPNZ, Loop While Not Zero, 6-99 
LOOPZ, Loop While Zero, 6-100 

MOV, Move, 6-101 
MOVS, Move byte or word (of string), 6-105 
MUL, Multiply, 6-106 

NEG, Negate, 6-108 
NOP, No operation, 6-109 
NOT, Not, 6-110 

OR, Or, 6-111 
OUT, Output byte or word, 6-113 

POP, Pop, 6-114 
POPF, Pop Flags, 6-116 
PUSH, Push, 6-117 
PUSHF, Push Flags, 6-119 

RCL, Rotate through Carry Left, 6-120 
RCR, Rotate through Carry Right, 6-122 
REP, Repeat, 6-124 
RET, Return, 6-125 
ROL, Rotate Left, 6-127 
ROR, Rotate Right, 6-129 

SAHF, Store AH into Flags, 6-131 
SAL, Shift Arithmetic Left, 6-132 
SAR, Shift Arithmetic Right, 6-134 
SBB, Subtract with Borrow, 6-136 
SCAS, Scan byte or word (of string), 6-138 
SHL, Shift Left, 6-139 
SHR, Shift Right, 6-141 
STC, Set Carry, 6-143 
STD, Set Direction, 6-144 
STI, Set Interrupt, 6-145 
STOS, Store byte or word (of string), 6-146 
SUB, Subtract, 6-147 

TEST, Test, 6-149 

WAIT, Wait, 6-151 

XCHG, Exchange, 6-152 
XLA T, Translate, 6-154 
XOR, Exclusive Or, 6-155 

6-157 





CHAPTER 7 
CODE MACROS INTRODUCTION 

In this chapter the word macro always means codemacro. 

A macro is a preset body of code which you define, a skeleton in which most instruc
tions and values are fixed. They are automatically assembled wherever the macro is 
invoked (used as an instruction), which saves your rewriting them every time that se
quence is needed. 

However, certain names used in the definition are NOT fixed. They are stand-ins, 
which are replaced by names or values that you supply in the same line that invokes 
the macro. These stand-ins are called "dummy" or "formal" parameters. They 
simply "hold the place" for the actual parameters to come. Formal parameters thus 
indicate where and how the actual parameters are to be used. 

You invoke the macro by using its name as an instruction, e.g.,: 

MOV 
MAC1 
ADD 

• 
• 
• 

BX, WORD3 
PARAM1, PARAM2 
AX, WORD4 

• 
• 
• 

MACI above represents the use of some macro you defined earlier. It apparently re
quires 2 parameters, that is, the definition used 2 formals to be replaced by these ac
tual parameters supplied above when you invoke the macro. 

In fact, the MOV and ADD instruction above are macros. The assembler's entire in
struction set is defined and implemented as a large number of macros. (The defini
tions are in APPENDIX A). Once you understand how this is done, you may add in
structions, or even replace those supplied as part of the assembler. 

The type of macro used to implement this assembly language is called a code macro, 
to distinguish it from text macros. The latter are more familiar to programmers 
because previous assembly languages have included such a facility. Text macros are 
not discussed in this manual. The presentation below will describe creating and using 
code macros. 

These macros are encoded at macro definition time into a very compact form, so 
that all defined codemacros may reside simultaneously in memory. Each definition 
specifies a certain combination of parameters and will match only those. Other com
binations of parameters may be accommodated by redefining the codemacro. Multi
ple definitions of the same codemacro name are chained together; so that when the 
codemacro is called, each link of the chain can be checked for a match of operands. 

Since the 8086 instruction set consists of codemacros, it is natural to refer to a 
codemacro being called as an "instruction"; and to refer to its actual parameters as 
"operands" . 

For example, the language has an ADD instruction that works properly with any 
general register or memory location as a destination operand or as a source operand, 
and also works with immediate-data operands. This is achieved by defining 11 

7-1 



Code Macros Introduction 8086 Assembly Language 

7-2 

codemacros to generate the 11 different machine instructions appropriate to these 
different cases and combinations. The correct one is used because the specification 
of its formal parameters is matched by the actual parameters supplied in your source 
code. The details of how this works are covered in this chapter. 

The definition of a codemacro begins with a line specifying its name and a list of its 
formal parameters, if any: 

or 
CODEMACRO name [formal_list] 

CODE MACRO name PREFX 

where formaUist is a list of formals, each in the form 

form_name:specifier_letter [modifier_letter] [range] 

These square brackets indicate optional items; they are not actually used in the state
ment that you code. The single word CODEMACRO and the name are both re
quired. The formals are optional. If they are present, then each one must be follow
ed by one of the specifier letters A, C, D, E, M, R, S, X. After the specifier letter 
comes an optional modifier letter: b, d, or w. There follows an optional range 
specifier, which consists of a pair of parentheses enclosing either one number, or 
two numbers separated by a comma. The semantics of specifiers, modifiers, and 
ranges are described below. 

When no formals are used, you may code the keyword PREFX, indicating the 
codemacro is to be used as a prefix to other instructions. This too is optional. Ex
amples of prefixes in the 8086 instruction set are LOCK and REP. 

The definition ends with a line as follows: 

ENDM name 

On this line, the name is optional, but including it is a good idea to keep things clear, 
and to provide an error check for your code. If given, the name must match the 
name given in the CODEMACRO line. 

Between the first and last lines of a codemacro definition is the body of the macro, 
the actual bit patterns and formal parameters which will be assembled and replaced 
each time the macro is invoked. Only a few kinds of directive are allowed in 
codemacros. They are: 

1. SEGFIX 

2. NOSEGFIX 

3. MODRM 

4. RELB 

5. RELW 

6. DB 

7. OW 

8. DO 

9. Record initialization 

Each of these directives, along with the special expression operand PROCLEN, are 
explained further on in this chapter. 



8086 Assembly Language Code Macros Introduction 

Some simple examples of codemacros: 

Codemacro STC 
DB OF9H ; this sets the carry flag (CF) to 1. 
EndmSTC 

Codemacro PUSHF 
DB 9CH ; pushes all flags into top word on stack. 
Endm PUSHF 

Codemacro ADD dstAb, src:Db 
DB04H 
DBsrc 
EndmADD 

The first two examples simply allow a machine instruction to be invoked by the use 
of a name, which is usually more easily remembered ("mnemonic") than a string of 
numbers. 

The third example is one of the 11 macros defining the ADD instruction, or more 
precisely, defines one of the 11 ADD instructions. (There are 11 in order to cover all 
the valid combinations of parameters.) It has two formal parameters, called "dst" 
and "src", for destination and source operands. These formals could be called 
anything, e.g.,: 

Codemacro ADD anything:Ab, other:Db 
DB04H 
DB other 
Endm ADD 

is the identical macro in function and format. 

Specifiers 

Every formal parameter must have a specifier letter, which indicates what type of 
operand is needed to match the formal parameter. There are eight possible specifier 
letters: 

I. A 

2. C 

3. D 

4. E 

5. M 

6. R 

7. S 

8. X 

meaning Accumulator, that is AX or AL. 

meaning Code, i.e., a label expression only. 

meaning Data, i.e., a number to be used as an immediate value. 

meaning Effective address, i.e., either an M (memory address) or an R 
(register). 

meaning a memory address. This can be either a variable (with or without 
indexing) or a bracketed register expression. 

meaning a general Register only, not an address-expression, not a register in 
brackets, and not a segment register. 

meaning a Segment register only, either CS, DS, ES, or SS. 

meaning a direct memory reference, a simple variable name with no 
indexing. 

A more detailed discussion of which operands match which specifier letters appears 
in the instruction-matching section later in this chapter. 

7-3 



Code Macros Introduction 8086 Assembly Language 

7-4 

Modifiers 

The optional modifier letter imposes a further requirement on the operand, relating 
either to the size of data being manipulated, or to the amount of code generated by 
the operand. The meaning of the modifier depends on the type of the operand: 

• For variables, the modifier requires the operand to be of a certain TYPE: "b" 
for byte, "w" for word, "d" for dword. 

• For labels, the modifier requires the object code generated to be of a certain 
amount: "b" for an 8-bit relative displacement on a NEAR label, "w" for 
NEAR labels which are outside the -128 to 127 short displacement range, and 
"d" for FAR labels. 

• For numbers, the modifier requires the number to be of a certain size: "b" for 
-256 through 255: and "w" for other numbers. The specifier-modifier pair 
"Dd" is never matched. 

Note that this manual uses upper-case letters for specifiers and lower-case letters for 
modifiers. This is a useful language convention to clarify the code. However it is 'not 
required-as in all source code outside of strings, the distinction between upper and 
lower case is ignored by the assembler. 

Range Specifiers 

If a range is specified, it can be a single expression or two expressions separated by a 
comma. Each expression must evaluate to a register or a pure number, i.e., not an 
address. The list of number values corresponding to range registers is given in the 
instruction-matching section later in this chapter. The following shows the first lines 
(only) of three codemacros in the current language which use range specifiers: 

1. Codemacro IN dst:Aw,port:Rw(DX) 

2. Codemacro ROR dst:Ew,count:Rb(CL) 

3. Codemacro ESC opcode:Db(O,63),adds:Eb 

The first of these is one of the four codemacros for the IN (input) instruction. It says 
that if a register is to specify the port from which to input a word, only DX will 
match this codemacro. Any other register will fail to match, and the source line will 
be flagged as erroneous (e.g., IN AX,BX is in error). 

The second is one of the four ROtate Right codemacros. It says the word rotated can 
be any word register except a segment register, or any word in memory. It is to be 
rotated right some number of bit positions ("count"), where "count" is specified as 
a byte register, and further specified to be CL. No other register will match (e.g., 
ROR DL is in error). 

The third says the "opcode" supplied as the first parameter to the ESC instruction 
must be a byte of immediate-data of value 0 to 63 inclusive. 

Segfix 

SEGFIX is a directive, included in some codemacro definitions, which instructs the 
assembler to determine whether a segment-override prefix byte is needed to access a 
given memory location. If the override byte is needed, it is output as the first byte of 
the instruction. If it is not needed, no action is taken. 

The form of the directive is: 

SEGFIX formal_name 



8086 Assembly Language Code Macros Introduction 

where "formal_name" is the name of a formal parameter which represents the 
memory address. Because it is a memory address, the formal must have one of the 
specifiers E, M, or X. 

In the absence of a segment-override prefix byte, the 8086 hardware uses either DS 
or SS. Which one depends on which base register, if any, was used. BP implies SS. 
BX implies DS. No base register also implies DS. (This, of course, includes the three 
possibilities of SI alone, DI alone, or no indexing at all.) The assembler must decide 
whether this hardware-implied segment register is actually the one that will reach the 
intended memory location. 

The assembler examines the segment attribute of the memory-address expression 
provided as the actual parameter. This attribute could be a segment, a group, or a 
segment register. 

• If it is a segment, the assembler determines whether that segment or a group 
containing that segment has been ASSUMEd into the hardware-implied seg
ment register. If so, no override byte is needed. If not, the assembler checks the 
ASSUMEs of other segment registers, looking for the segment or a group con
taining it. If found, the override byte for that segment register is issued. If not 
found, an error is reported. 

• If it is a group, the assembler takes the same action as for a segment, except that 
the possibility of an including group is ruled out: the group itself must be 
ASSUMEd into one of the segment registers. Otherwise an error is reported. 

• If it is a segment register, the assembler sees if it is the hardware-implied 
segment register. If so, no override byte is issued. If not, the override byte for 
the specified segment register is issued. 

The bit patterns for the override bytes are as follows: 

00100110 for the ES override 
00101110 for the CS overrid e 
00110110 forthe SS override 
00111110 for the DS override 

Nosegfix 

NOSEGFIX is used for certain operands in those instructions for which a prefix is il
legal because the instruction cannot use any other segment register but ES for that 
operand. This applies only to the destination operand of these string instructions: 
CMPS, MOVS, SCAS, STOS. 

The form of the directive is 

NOSEGFIX segreg, formal_name 

where "segreg" is one of the four segment registers ES, CS, SS, DS, and 
"formal_name" is the name of a memory-address formal parameter. As a memory 
address, the formal must have one of the specifiers E, M, or X. 

The only action the assembler performs when it encounters a NOSEGFIX in 
assembling an instruction is to perform an error check-no object code is ever 
generated from this directive. 

The assembler looks up the segment attribute of the actual parameter (memory
address) corresponding to "formal_name". If the attribute is a segment register, it 
must match "segreg". If the attribute is a group, it must be ASSUMEd into 

7-5 



Code Macros Introductio' 8086 Assembly Language 

7-6 

"segreg". If the attribute is a segment, it or a group containing it must be 
ASSUMEd into "segreg". If these tests fail and "formaLname" is thus deter
mined not to be reachable from "segreg", an error is reported. 

The only value for "segreg" actually used by the string instructions listed above is 
ES. 

Modrm 

This directive instructs the assembler to create the ModRM byte, which follows the 
opcode byte on many of the 8086's instructions. The byte is constructed to carry the 
following information: 

I. the indexing-type or register number to be used in the instruction. 

2. which register is (also) to be used, or more information to select the instruction. 

The MODRM byte carries the information in three fields: 

The mod field occupies the two most significant bits of the byte, and combines with 
the rim to form 32 possible values: 8 registers and 24 indexing modes. 

The reg field occupies the next three bits following the mod field, and specifies either 
a register number or three more bits of opcode information. The meaning of the reg 
field is determined by the first (opcode) byte of the instruction. 

The rim field occupies the three least significant bits of the byte. It can specify a 
register as the location of an operand, or form part of the addressing-mode encoding 
in combination with the mod field as described above. 

The bit patterns corresponding to each indexing mode and register combination are 
given in Chapter 1 and Appendix B. They need not concern you when you are 
writing codemacros, since the assembler takes care of the encoding when you pro
vide the operands. 

The form of the imperative is 

MODRM formal_or_number, formal_name 

where "formaLor_number" is either the name of a formal parameter, or an ab
solute number: and "formaLname" is the name of another formal parameter. 

"formaLor_number" represents the quantity which goes into the reg field of the 
ModRM byte. If it is a number, then that same value is always plugged into the field 
every time that codemacro definition is invoked. The number in this case is a con
tinuation of the opcode identifying which instruction the hardware is to execute. 

If it is a formal, then the corresponding operand (usually a register number) is 
plugged in. 

"formal-name" represents an effective-address parameter. The assembler examines 
whether the operand supplied is a register, variable, or indexed variable, and con
structs the mod and rim fields which correctly represent the operand. If the operand 
calls for an 8-bit or 16-bit offset displacement, the assembler generates that as well. 



8086 Assembly Language Code Macros Introduction 

As an example of an 8086 instruction using ModRM: 

Codemacro ADD dstRw, src:Ew 
Segfix src 
DB3 
MODRM dst, src 
Endm ADD 

The specifiers R wand Ew indicate this codemacro will match only when the actual 
parameters in the invocation line are a full word general register destination, and a 
full word source, memory or general register. 

Example 1: 

ADD OX, [BXJ [SIJ becomes 

00000011 10010000 
76543210 76543210 

The first byte identifies this as an ADD of a memory word into a register. This par
ticular byte covers only 1 of the 4 cases that are possible depending on the lowest 2 
bits. If bit 1 (direction) is a 0, the ADD is FROM a register TO either a register or a 
memory location. If bit 1 is a 1, then the ADD is TO a register FROM a register or 
memory location. The least significant bit, bit 0, tells whether the data being ADDed 
is byte (0) or word (1). 

The second byte is the MODRM byte, with DX encoded as 010 in bits 5, 4, 3, a mode 
of 10 in bits 7,6, and an RM of 000 (see Chapter 1 or Appendix B for more detail). 

If the source line had included a variable, e.g., 

ADD OX, MEMWORD [BXJ [SIJ 

then the offset of MEMWORD (low-order byte first, high byte last) would follow 
the MODRM byte. 

Example 2: 

ADD OX, [DIJ 

00000011 10010101 
76543210 76543210 

As a different example, consider a destination of a word in memory and a source of 
immediate-data. The relevant codemacros are: 

Codemacro ADD dstEw,src:Dw 
Segfix dst 
DB81H 
MODRM O,dst 
DWsrc 
EndmADD 

Codemacro ADD dstEw,src:Db (-128, 127) 
SEGFIXdst 
DB83H 
MODRMO,dst 
DB src 
Endm ADD 

7-7 



Code Macros Introduction 8086 Assembly Language 

7-8 

The object code generated for the instruction and data are different in the 2 cases of 
a byte of data or a word of data. 

Furthermore, the MODRM line for these instructions specifies a "for
mal_or_number" field of zero, i.e., 3 bits all zero, whereas the MODRM line for 
the two examples above specified a field of dst, which became 010 to represent DX. 

Example 3: 

ADD [01], 513 

10000011 10000101 00000001 00000010 

Example 4: 

ADD BYTE PTR [BX] [51], 4 

10000001 10000000 00000100 

The immediate-data byte or word follows the MODRM byte. 

Relb and Relw 
These directives, used in calls and jumps, instruct the assembler to generate the 
displacement between the end of the instruction and the label which is supplied as an 
operand. This means RELB generates the 1 byte (and RELW the 2 byte) displace
ment, or distance in bytes, between the instruction pointer value (at the end of the 
codemacro) and the destination address. 

The directives have the following form: 

RELB formal_name 
or 

RELW formal_name 

where "formal_name" is the name of a formal with a "C'" (Code) specifier. 

The assembler assumes that all RELB and RELW directives occur immediately after 
a single opcode byte in the codemacro (as in all the JUMP and CALL instructions in 
the 8086 instruction set). It needs this assumption to determine (during codemacro 
matching) where the displacement starts from, so that an operand can be identified 
as "Cb" or "Cw". Although the assembler allows you to define codemacros in 
which RELB and REL W occur elsewhere in the definition (e.g., a multi-instruction 
codemacro), you run the risk of making the wrong match when the codemacro is in
voked. If a "b" is thus matched as "w", a wasted byte is generated: if a "w" is thus 
matched as a "b", an error is reported. 

Examples of RELB and REL W as they appear in the 8086 instruction set are: 

Codemacro JMP place:Cw 
OBOE9H 
RELW place 
EndmJMP 

Codemacro JE place:Cb 
OB74H 
RELB place 
Endm JE 



8086 Assembly Language Code Macros Introduction 

These are direct jumps to labels in the CS segment. The specifier on the formal 
parameter of the first macro calls for a NEAR label in the current CS segment (Cd 
would mean FAR). This means a 16 bit offset, able to reach any byte in the im
mediate 64K bytes of address higher than the start of the segment. REL W computes 
the distance and provides it as a word to follow the OE9H instruction byte. 

If the offset of the target is 513, then this codemacro would generate the instruction: 

11101001 00000001 00000010 

The distance begins at the end of that REL W word, i.e., if you were counting the 
bytes to that label, the first byte counted would be the one after the 3 bytes compris
ing this jump. 

NOTE 

A match only occurs if the label was assembled under the same ASSUME 
CS:name as the jump. Only if there is a match is object code actually 
generated. 

The second example is a conditional jump, executed only if its conditions are met. In 
this case, a Jump if Equal, the jump occurs if ZF=O. Conditional jumps are always 
self-relative and limited to destinations whose distance can fit in 1 byte. This means 
destinations no further ahead than 127 bytes and no further behind this instruction 
than -128 bytes. 

If the target is 99 bytes ahead, then this codemacro would generate the instruction: 

01110100 01100011 

The distance counted begins with the byte after these 2 bytes above. 

DB, OW, and DO 

These directives are similar to the DB, OW, and DO directives which occur outside 
of codemacro definitions (see Chapter 3); however, there are some differences in the 
operands they accept. 

The form of the directives is: 

or 

or 

DB cmac_expression 

DW cmac_expression 

DD cmac_expression 

where cmac_expression is either an expression without forward references which 
evaluates to an absolute number; a formal parameter name; or a formal parameter 
name with a dot-record field shift construct. 

An absolute number means that the same value is to be assembled every time this 
codemacro definition is invoked. A formal parameter means that the corresponding 
actual operand is to be assembled. A dot-recordfield shift construct means that the 
actual operand is to be shifted and then plugged in, as discussed later in this chapter. 

The operands to these codemacro initializations are restricted, in that lists and DUP 
counts are not allowed. 

7-9 



Code Macros Introduction 8086 Assembly Language 

7-10 

Record Initializations 

The record initialization directive allows you to control bit fields smaller than one 
byte in codemacro definitions. The form of the directive is: 

record_name [cmac_expression_list] 

where recorLname is the name of a previously-defined record (see Chapter 3), and 
cmac_expressioD-list is a list of cmac_expressions, separated by commas. (These 
particular square brackets are not used in writing the list; their meaning here is that 
the list is optional.) A cmac_expression is, as in the above section, either a number, 
a formal, or a shifted formal. In addition, null cmac_expressions are allowed in the 
list; in which case the default record field value as specified in the RECORD defini
tion is used. 

The directive instructs the assembler to put together a byte or a word (depending on 
the record), using the constant numbers and supplied operands as specified in the ex
pression list. The values to be plugged in might not fit into the record fields; in that 
case, the least significant bits are used, and no error is reported. 

Using the Dot Operator to Shift Parameters 

A special construct allowed as the operand to a DB, OW, or DO, or as an element of 
the operand to a record initialization, is the shifted formal parameter. The form of 
this construct is 

where formaLname is the name of a formal whose corresponding operand will be 
an absolute number; and record_field_name is the name of a record field. The 
assembler evaluates this expression when the codemacro is invoked, by right-shifting 
the operand provided using the shift count defined by the record field. 

The example in the 8086 instruction set where this feature is used is the ESC instruc
tion, which permits communication with other devices using the same bus. Given an 
address, ESC puts that address on the bus; given a register operand, no address is 
put on the bus. This enables execution of commands from an external device both 
with or without an associated operand. These commands are represented in the ESC 
codemacro as numbers between 0 and 63 inclusive. The interpretation of the number 
is done by the external device. 

R53 Record RF1 :5, RF2:3 
R233 Record RF6:2, mid3:3, RF7:3 
Codemacro ESC opcode:Db(O,63), addr:E 
Segfix addr . 
R53 <11011 B, opcode.mid3> 
ModRM opcode, addr 
EndM 

The R53line in the body of the codemacro generates 8 bits as follows: the high-order 
5 bits become 1l01lB, and the low-order 3 bits are filled with the actual parameter 
supplied as "opcode" shifted right by the shift count of mid3, namely 3. 



8086 Assembly Language Code Macros Introduction 

Example: 

Assume that you wish to use ESC with an "opcode" of 39 on an "addr" of MEM
WORD, whose offset is 477H in ES, indexed by DJ. 

ESC 39, ES: MEMWORO [01] 

SEGFIX addr becomes ES: = 0010 0110B 

39 = 00111001 B 

opcode.Ml03 = (000)00111 

R53 <11011 B,opcode. mid3> becomes 11011111 B 

for [OI],MOO = 10,R/M = 101 

MODRM opcode,addr puts "opcode" into bits 5, 4, 3 of the modrm byte, with bits 
7,6,2,1,0 filled by the appropriate mod and RIM from "addr". 

Since opcode is 6 bits and the field is only 3 bits wide, only the low-order 3 are used, 
namely 111, and the high-order bits (100) are ignored. 

Therefore MODRM opcode,addr becomes 1011 110lB followed by the offset of 
MEMWORD, 0111 0111 00000100. 

Therefore the full object code for this ESC source line is: 

0010 0110 (byte 1) 

1101 1111 (byte 2} 

1011 1101 (byte 3) 

0111 0111 (byte 4) 

0000 0100 (byte 5) 

Note that opcode's 6 bits are split between the last 3 bits of byte 2 and bits 5, 4, 3 of 
byte 3. 

PROCLEN 

This special operand equals 0 if the current PROC is declared NEAR, and OFFH if it 
is declared FAR. Code outside of PROC ... ENDP blocks is considered NEAR. The 
RET codemacros use this operator in creating the correct machine instructions to 
return from a CALL to a NEAR or FAR procedure: 

Codemacro RET 
R413 <OCH,PROCLEN,3> 
Endm RET 

Instead of the more familiar DB or DW storage allocation commands, this 
codemacro makes use of a previously defined record. It is used here the same way a 
DB would be, but with the initialization given inside angle brackets to show that 
each field in the record gets its own initial value. You can tell there are at least 3 
fields in the record (if this invocation validly matches the definition, i.e., is not an 
error) because 3 values are given, separated by commas. 

7-11 



Code Macros Introduction 8086 Assembly Language 

7-12 

Four such records are defined as one of the first acts of the assembler, to be used in 
defining its instruction set. They are listed in APPENDIX A along with the 
codemacros for ASM86: . 

R53 Record RF1 :5, RF2:3 

R323 Re90rd RF3:3, RF4:2, RF5:3 

R233 Record RF6:2, Mid3:3, RF7:3 

R413 Record RF8:4, RF9:1, RF10:3 

The last line above, R413, defines an 8 bit record of 3 fields: the high-order 4 bits (7, 
6, 5, 4) called RF8, the next (bit 3) called RF9, and the low-order 3 (bits 2, 1, 0) 
called RFIO. (When R413 is used as a storage allocation command, initial values for 
all fields must be specified within angle brackets because none were specified in the 
definition.) 

In the codemacro for RET, the field RF8 is set to OCH = 1100, and RFIO is set to 3 = 
011. Field RF9, which becomes bit 3 of the allocated record byte, will be 0 if the cur
rent PROC (in which the RET appears) is typed NEAR, or it will be 1 if the PROC is 
typed FAR. 

Note that PROCLEN is defined to give 8 bits, all zeros or all ones, but that R413 
uses only one bit. The field size determines how many bits are used, and if more are 
supplied then the high-order bits are ignored beyond the field width. 

Matching of Instructions to Codemacros 
This section describes what might aptly be termed the heart of the 8086 assembly 
language. The careful ordering of the chain of codemacro definitions of a given in
struction (for example, the ADD instruction) combines with the varied set of typing 
requirements on the operands to produce a single assembly language instruction 
mnemonic which represents many hardware instructions. 

The algorithm for matching an instruction to a particular codemacro definition is as 
follows: • 

1. In pass 1, actual parameters are evaluated. Those containing forward references 
are treated as a special type, as described in each of the cases below. 

2. If any of the actual parameters is a register expression without an associated 
type (e.g., [BX]), or if an implicit reference to the accumulator is made (e.g., 
"MOV,3"), then the other parameters are checked to see if at least one contains 
an unambiguous modifier type. Numbers matching "b" do not suffice; but 
numbers matching "w", explicitly-given registers, and all typed variables do 
suffice to distinguish the modifier type. If no such parameter is found, the error 
message "INSUFFICIENT TYPE INFORMATION TO DETERMINE COR
RECT INSTRUCTION" is issued, and no match is attempted. 

3. The chain of codemacro definitions for a given instruction is searched for a 
match, beginning with the last one defined and working backwards. In order for 
a definition to match, the number of actual parameters must match the number 
of formals in the particular definition, and each actual must match the formal in 
specifier type, modifier (if given in the formal), and range (if given in the for
mal). The run-down of which actuals match which formals is as follows: 



8086 Assembly Language Code Macros Introduction 

a. SPECIFIERS. 
Forward references match C,D,E,M,X. 
AX and AL match A,E,R. 
Labels match C. 
Numbers match D. 
Non-indexed variables match E,M,X. 
Indexed variables and register expressions match E,M. 
Registers except segment registers match E,R. 
Segment registers CS,DS,ES,SS match S. 

b. MODIFIERS. 
The nature of modifier-matching depends on what the matched specifier is. 
For numbers: Numbers between -256 and 255 match "b" only. Other 

numbers match "w" only. 
For labels: NEAR labels with the SAME CS-assume which are in the range 
-126 to + 129 from the beginning of the codemacro match "b" only. 

Other NEAR labels with the same CS assume match "w" only. 
NEAR labels with a different CS-assume match no modifier. 
FAR labels match "d". 

For variables: Type BYTE matches "b" . 
Type WORD matched "w". 
Type DWORD matches "d". 
Other numeric types match no modifier. 

Forward references match any modifier, except when typing information is 
attached, with BYTE PTR, SHORT, FAR PTR, etc. 

Index-register expressions without a type associated with them (e.g., [BX]) 
match either "b" or "w" . 

c. RANGES. 
Range specifiers are legal only for parameters which are numbers or 
registers (specifiers A, D, R, S). If one specifier follows the formal, the 
value of the actual must match; if two follow the formal, the value must fall 
within the inclusive range of the specifiers. For this matching, registers 
which are passed as actuals assume the following numeric values: 

AL: 0 
CL: 1 
DL: 2 
BL: 3 
AH: 4 
CH: 5 
DH: 6 
BH: 7 
AX: 0 
CX: 1 
DX: 2 
BX: 3 
SP: 4 
BP: 5 
SI: 6 
DI: 7 
ES: 0 
CS: 1 
SS: 2 
DS: 3 

Forward references do not match the formal if there is a range specifier. 

4. If a match is found, the number of bytes of object code generated is estimated. 
Forward-reference variables, unless explicitly overridden, are assumed not to 
need a segment override byte. ModRMs involving forward references are 
assumed to require 16-bit displacements, except if the reference has SHORT, in 
which case an 8-bit displacement is assumed. 

7-13 



Code Macros Introduction 8086 Assembly Language 

7-14 

5.· In pass 2, the search through the codemacro chain starts all over again, starting 
at the end of the chain and working backwards just as in pass 1. Resolution of 
forward references might cause a different codemacro to be matched. 

6. Object code generated by the instruction is issued in pass 2. If the number of 
bytes output exceeds the pass 1 estimate, an error message is issued and the extra 
bytes are withheld. The instruction is thus incomplete and the program should 
not be executed. If the number of bytes is less than the pass 1 estimate, the re
maining space is padded with 90H's (Nap; i.e., no operation). 

The ADD instruction (like many other instructions) provides an excellent example of 
codemacro matching. The 11 codemacro definitions of the ADD instruction cover 
the following cases: 

DESTINATION 

1. BYTE MEMORY 
2. WORD MEMORY 
3. WORD MEMORY 
4. WORD MEMORY 
5. AL 
6. AX 
7. AX 
8. MEMORY BYTE OR BYTE-REGISTER 
9. MEMORY WORD OR WORD-REGISTER 

10. BYTE-REGISTER 
11. WORD-REGISTER 

SOURCE 

IMMEDIATE BYTE 
IMMEDIATE BYTE (not between -128 and 127) 
IMMEDIATE BYTE (from -128 to 127) 
IMMEDIATE WORD . 
IMMEDIATE BYTE 
IMMEDIATE BYTE 
IMMEDIATE WORD 
BYTE-REGISTER 
WORD-REGISTER 
MEMORY BYTE OR BYTE-REGISTER 
MEMORY WORD OR WORD-REGISTER 

Each of the above English-language phrases is abbreviated in the codemacro defini
tions into a two-letter specifier-modifier combination. Once you are used to the ab
breviations, the codemacros themselves are easier to scan and understand than the 
above English summary. Here are the first lines of each codemacro described above, 
in the same order, with an English reminder of its meaning, using EA to represent an 
effective address expression resolving to either a memory or register reference: 

1. CodeMacro ADD dstEb, src:Db (TO EA byte FROM data byte) 

2. Code Macro ADD dstEw, src:Db (TO EA word FROM large data byte) 

3. CodeMacro ADD dstEw, src:Db(-128,127) (TO EA word FROM signed data byte) 

4. CodeMacro ADD dstEw, src:Dw (TO EA word FROM data word) 

5. CodeMacro ADD dstAb, src:Db (TO AL FROM data word) 

6. CodeMacro ADD dstAw, src:Db (TO AX FROM data byte) 

7. CodeMacro ADD dstAw, src:Dw (TO AX FROM data word) 

8. CodeMacro ADD dstEb, src:Rb (TO EA byte FROM register byte) 

9. CodeMacro ADD dstEw, src:Rw (TO EA word FROM register word) 

10. Code Macro ADD dstRb, src:Eb (TO register byte FROM EA byte) 

11. Code Macro ADD dstRw, src:Ew (TO register word FROM EA word) 

The ordering of the codemacros is crucial. For example, the instruction "ADD 
AX,3" matches not only definition ##6, but also definition ##2, since as a register, AX 
qualifies as an Ew as well as an Aw. Since definition ##6 produces less object code, it 
should be selected before definition ##2. Hence, it is given later, so that when the 
~ssembler searches backwards from ##11 up, it comes across ##6 first. 

Assuming that the following user symbols have been defined with the following 
attributes: 

BYTE_VAR 
WORD_VAR 
WORD_EXPR 
B_ARRAY 

byte variable 
word variable 
memory-address expression 
byte variable 



8086 Assembly Language Code Macros Introduction 

the following assembler instructions would match the indicated codemacro defini
tion line above: 

ADD AX,250 -6 

ADD AX,350 -7 

ADD BX,WORD_EXPR -11 

ADD BX,DX -11 

ADD BYTE_VAR,AL -8 

ADD BYTE_ V AR,254 -1 

ADD WORD_VAR,CX -9 

ADD DH,BARRAY[SI] -10 

ADD CL, BYTE_ VAR -10 

ADD AL,3 -5 

ADD WORD_VAR,3564B -4 

ADD WORD_VAR, OFFSET B_ARRAY - 4 

ADD [BX] [51], AH -8 

ADD [BP],CL -B 

ADD DX,[DI] -11 

ADD AX,[SI] [BP] -11 

ADD WORD_VAR,3 -2 

ADD WORD_VAR,255 -3 

NOTE 

Codemacros are limited to a maximum of 128 internal bytes, which is reach
ed at approximately 60 bytes of generated object code. 

7-15 





CHAPTER 8 
MODELS OF COMPUTATION: 
RECOMMENDED PRACTICES 

Recommendations 

1. Place EQUates to registers and numbers at the top of your program. 

2. Place data segments before code segments. 

3. Within code segments, place definitions of any variables early, meaning as near 
as you can to the first segment directive defining that segment. 

4. Where possible, make modules private (non-combinable) and paragraph
aligned. 

5. Try to consolidate the use of public symbols in modules assembled separately 
from those which neither need them as externals nor supply them as publics. 

The basic unit of assembly program in this language is a module. Within modules 
the basic unit of contiguous code or data is a segment. Memory layout and ad
dressability (via base addresses in the "segment registers") require the use of 
segments. Segments can be placed anywhere in memory by the LOCATE facility. 
Their order in an assembly is thus not necessarily their sequence in memory during 
execution. 

To the assembler, however, certain orderings are distinctly preferable in the interest 
of creating optimal code using minimal memory. These orderings prevent most of 
the ambiguities and possible errors associated with forward referencing. 

Forward-referencing refers to the assembler working with a variable or label whose 
definition has not yet been scanned. In this situation the assembler must reserve 
enough room for the address or number to come. It chooses either the most pro
bable case of 1 word (based on these recommendations) or the "worst" case of 2 
words, i.e., room for both the offset and segment (paragraph-number). In the 
absence of user-supplied data, it chooses 2 bytes. Given the definitions of segments 
and variables prior to their use in instructions, the assembler can choose the optimal 
8086 machine instruction to generate and can reserve only the minimum bytes 
needed. 

A one word offset is adequate to access any byte within the 64K bytes above a base
address in one of the segment registers, and 64K is the maximum size of a segment. 
The assumption is that the definition will be found later in this assembly. Otherwise 
you would have already supplied it in a segment scanned earlier, or in an EXTRN 
directive, which gives its attribute and says not to expect its full definition in this seg
ment. If this reasoning fails because you supply no definition at all, then an error is 
flagged for you to resolve before re-assembling. 

When a 2-word space is reserved, it is always adequate. If the forward-reference is 
ultimately defined in this segment, 1 word suffices and the other is unused. This is 
safe but non-optimal. If the forward-reference is never defined even in an EXTRN, 
an error is flagged. 

The recommendation that code be placed in segments which are non-combinable 
and paragraph-aligned allows faster assembly, linkage, and relocation as well as in
creased optimization of code. When a one-module program has no groups, no need 
for external variables or labels, and provides no publics, then linking can be skipped 
entirely. The program is ready for direct relocation into absolute addresses. 

8-1 



Recommended Practices 8086 Assembly Language 

8-2 

Forward Referencing 
This is a 2-pass assembler, meaning it goes through a representation of your source 
code twice. 

By placing data segments early in the module, and variables early within code 
segments, you enable the assembler to recognize the attributes (type, segment, off
set) of these operands in the code it sees later. Armed with this knowledge, it pro
duces the tighest code it can, by using 1 byte instead of 2, or 2 bytes instead of 4, 
wherever possible. References to data always use a 2 byte offset, but transfers of 
control Gumps or calls) can vary requiring 1 or 2 or 4 bytes depending on the context 
of definition and usage. 

In the absence of special coding, the assembler assumes forward references require 1 
word, with no implicit segment override to be discovered later. You may code an ex
plicit segment override, and in some cases cause a double-word space or a byte space 
to be reserved for the forward reference instead of the usual word. Registers may not 
be forward-referenced, i.e., if a forward-reference is later found to be defined as a 
register, you get an error. 

Variables and Labels 

For a forward-reference variable, e.g., 

MOV AL, FRVAR 

which could be defined anywhere beyond this reference, the assembler reserves a full 
word for the offset of the variable. For a forward-reference label, e.g., 

JMP FRLAB 

the assumption is that FRLAB will be typed NEAR later in this segment, hence 1 
word is sufficient for its address. 

However, if FRLAB is found to be declared FAR, or not in the current segment or 
group then you get an error. Such a reference would require an operand of 2 words, 
the first being the offset address of the label in its segment, "the second being the 
segment-base-address for insertion into CS. Thus 2 words are needed but only 1 was 
reserved after the JMP instruction word. 

If it turns out in pass 2 that a smaller operand is sufficient, the remainder of the 
space in pass 1 is no-op instructions (90H). This is usually of little concern if 
forward-references are kept to a minimum, by following the above recommended 
practices. 

In some cases you know that when the reference is ultimately resolved, it will fit in 
less space (or more) than the assembler can assume. You may override the default by 
using the attribute-changing operators of the language. For example, if you know 
that FRLAB was to be defined within the next 127 bytes of this segment, you could 
write: 

JMP SHORT FRLAB 



8086 Assembly Language Recommended Practices 

causing the assembler to reserve only 1 byte for this forward-reference, instead of 
the normal 2 bytes. (A segment-override may be required, as discussed below.) 

Similarly, if you know FRLAB is a label defined later in a different code segment, 
you may write: 

JMP FAR PTR FRLAB 

causing the assembler to reserve 2 words instead of only 1. 

There are some further issues mentioned below which are discussed in greater detail 
under the ASSUME and GROUP directives. 

Segments 

A forward-reference in an ASSUME directive, e.g., 

ASSUME DS:FORWREF, ES:SEG2 

will be taken to be a segment name. If FORWREF turns out later to be a group
name, or anything else other than a segment name, you will get an error message and 
must re-assemble. 

A forward-referenced variable might need a segment prefix byte. If so, you must 
code it or refer to it explicitly, e.g., 

MOV AL, ES:FRVAR 

MOV AL, SEG2:FRVAR 

Otherwise the assembler leaves no room for that prefix byte in pass 1, and if it turns 
out in pass 2 to be necessary, you will get an error message and must re-assemble. 
Note that this use of SEG2 above generates a prefix byte only because in the prior 
ASSUME, SEG2 is not in DS. 

PLM86 Linking Conventions 

GROUPs are necessary to link ASM86 and PLM86 programs and procedures in 
some cases. There are established conventions for passing data, parameters, or ad
dresses between programs written in these languages. 

These cases and conventions are described in detail in the ASM86 Operator's Guide. 

8-3 





R53 Record 
R323 Record 
R233 Record 
R413 Record 

CodeMacro 
DB 
EndM 

CodeMacro 
DW 
EndM 

CodeMacro 
DW 
EndM 

CodeMacro 
DB 
EndM 

CodeMacro 
Segfix 
DB 
ModRM 
DB 
EndM 

CodeMacro 
Segfix 
DB 
ModRM 
DW 
EndM 

CodeMacro 
Segfix 
DB 
ModRM 
DB 
EndM 

CodeMacro 
Segfix 
DB 
ModRM 
OW 
EndM 

CodeMacro 
DB 
DB 
EndM 

RF1 :5, RF2:3 
RF3:3, RF4:2, RF5:3 
RF6:2, Mid3:3, RF7:3 
RF8:4, RF9:1, RF10:3 

AAA 
37H 

AAD 
OAD5H 

AAM 
OAD4H 

AAS 
3FH 

Adc dst:Eb, src:Db 
dst 
80H 
2, dst 
src 

Adc dst:Ew, src:Db 
dst 
81H 
2, dst 
src 

APPENDIX A 
CODEMACRO DEFINITIONS 

CodeMacro Adc dst:Aw, src:Db 
DB 15H 
DW src 
EndM 

CodeMacro Adc dst:Aw, src:Dw 
DB 15H 
DW src 
EndM 

CodeMacro Adc dst:Eb, src:Rb 
Segfix dst 
DB 10H 
ModRM src,dst 
EndM 

CodeMacro Adc dst:Ew, src:Rw 
Segfix dst 
DB 11H 
ModRM src,dst 
EndM 

CodeMacro Adc dst:Rb, src:Eb 
Segfix src 
DB 12H 
ModRM dst,src 
EndM 

CodeMacro Adc dst:Rw, src:Ew 
Segfix src 
DB 13H 
ModRM dst,src 
EndM 

CodeMacro Add dstEb, src:Db 
Segfix dst 

Adc dst:Ew, src:Db(-128, 127) DB 80H 
dst ModRM 0, dst 
83H DB src 
2, dst EndM 
src 

CodeMacro Add dst:Ew,src:Db 
Segfix dst 

Adc dst:Ew, src:Dw DB 81H 
dst ModRM 0, dst 
81H OW src 
2, dst EndM 
src 

CodeMacro Add dstEw, src:Db(-128,127) 
Segfix dst 

Adc dstAb, src:Db DB 83H 
14H ModRM 0, dst 
src DB src 

EndM 

A-I 



Codemacro Definitions 8086 Assembly Language 

CodeMacro Add dst:Ew, src:Dw CodeMacro And dst:Ew, src:Dw 
Segfix dst Segfix dst 
DB 81H DB 81H 
ModRM 0, dst ModRM 4, dst 
DW src DW src 
EndM EndM 

CodeMacro Add dst:Ab, src:Db CodeMacro And dst:Ab, src:Db 
DB 04H DB 24H 
DB src DB src 
EndM EndM 

CodeMacro Add dst:Aw, src:Db CodeMacro And dst:Aw, src:Db 
DB 05H DB 25H 
DW src DW src 
EndM EndM 

CodeMacro Add dst:Aw, src:Dw CodeMacro And dst:Aw, src:Dw 
DB 05H DB 25H 
DW src DW src 
EndM EndM 

CodeMacro Add dst:Eb, src:Rb CodeMacro And dst:Eb, src:Rb 
Segfix dst Segfix dst 
DB 0 DB 20H 
ModRM src,dst ModRM src,dst 
EndM EndM 

CodeMacro Add dst:Ew, src:Rw CodeMacro And dst:Ew, src:Rw 
Segfix dst Segfix dst 
DB 1 DB 21H 
ModRM src,dst ModRM src,dst 
EndM EndM 

CodeMacro Add dst:Rb, src:Eb CodeMacro And dst:Rb, src:Eb 
Segfix src Segfix src 
DB 2 DB 22H 
ModRM dst,src ModRM dst,src 
EndM EndM 

CodeMacro Add dst:Rw, scr:Ew CodeMacro And dst:Rw, src:Ew 
Segfix src Segfix src 
DB 3 DB 23H 
ModRM dst,src ModRM dst,src 
EndM EndM 

CodeMacro And dst:Eb, src:Db CodeMacro Call addr:Ew 
Segfix dst Segfix addr 
DB 80H DB OFFH 
ModRM 4, dst ModRM 2,addr 
DB src EndM 
EndM 

CodeMacro And dst:Ew, src:Db CodeMacro Call addr:Ed 
Segfix dst Segfix addr 
DB 81H DB OFFH 
ModRM 4, dst ModRM 3,addr 
DW src EndM 
EndM 

A-2 



8086 Assembly Language Codemacro Definitions 

CodeMacro Call addr:Cd CodeMacro Cmp dst:Ab, src:Db 
DB 9AH DB 3CH 
DO addr DB src 
EndM EndM 

CodeMacro Call addr:Cb CodeMacro Cmp dst:Aw, src:Db 
DB OE8H DB 3DH 
RelW addr OW src 
EndM EndM 

CodeMacro Call addr:Cw CodeMacro Cmp dstAw, src:Dw 
DB OE8H DB 3DH 
RelW addr OW src 
EndM EndM 

CodeMacro CBW CodeMacro Cmp dstEb, src:Rb 
DB 98H Segfix dst 
EndM DB 38H 

CodeMacro CLC ModRM src,dst 

DB OF8H EndM 

EndM CodeMacro Cmp dstEw, src:Rw 

CodeMacro CLD Segfix dst 

DB OFCH DB 39H 

EndM ModRM src,dst 
EndM 

CodeMacro CLI 
CodeMacro Cmp dstRb, src:Eb DB OFAH 

EndM Segfix src 
DB 3AH 

CodeMacro CMC ModRM dst,src 
DB OF5H EndM 
EndM 

CodeMacro Cmp dst:Rw, src:Ew 
CodeMacro Cmp dstEb, src:Db Segfix src 

Segfix dst DB 3BH 
DB 80H ModRM dst,src 
ModRM 7, dst EndM 
DB src 

CodeMacro CmpS SI_ptr:Eb, DI_ptr:Eb EndM 
NoSegfix ES,DI_ptr 

CodeMacro Cmp dst:Ew, src:Db Segfix SI_ptr 
Segfix dst DB OA6H 
DB 81H EndM 
ModRM 7, dst 

CodeMacro CmpS SI_ptr:Ew,DI_ptr:Ew OW src 
EndM NoSegfix ES,DI_ptr 

Segfix SI_ptr 

CodeMacro Cmp dst:Ew, src:Db(-128,127) DB OA7H 
Segfix dst EndM 
DB 83H CodeMacro CWO ModRM 7, dst DB 99H DB src EndM 
EndM 

CodeMacro Cmp dst:Ew, src:Dw 
CodeMacro DAA 

DB 027H Segfix dst EndM 
DB 81H 
ModRM 7, dst CodeMacro DAS 
OW src DB 02FH 
EndM EndM 

A-3 



Codemacro Definitions 8086 Assembly Language 

CodeMacro Dec dstEb CodeMacro Imul mplier:Eb 
Segfix dst Segfix mplier 
DB OFEH DB OF6H 
ModRM 1, dst ModRM 5, mplier 
EndM EndM 

CodeMacro Dec dstEw 
CodeMacro Segfix dst Imul mplier:Ew 

DB OFFH Segfix mplier 
ModRM 1, dst DB OF7H 
EndM ModRM 5, mplier 

EndM 
CodeMacro Dec dstRw 

R53 <01001 B,dst> CodeMacro In dst:Ab,port:Db 
EndM DB OE4H 

DB port 
CodeMacro Div divisor:Eb EndM 

Segfix divisor 
DB OF6H CodeMacro In dst:Aw,portDb 
ModRM 6, divisor DB OE5H 
EndM DB port 

CodeMacro Div divisor:Ew 
EndM 

Segfix divisor CodeMacro In dstAb, port Rw(DX) 
DB OF7H DB OECH 
ModRM 6, divisor EndM 
EndM 

CodeMacro Esc opcode:Db(0,63), addr:Eb CodeMacro In dst:Aw,portRw(DX) 

Segfix addr DB OEDH 

R53 <11011 B,opcode.mid3> EndM 

ModRM opcode,addr 
CodeMacro Inc dstEb EndM 

Segfix dst 

CodeMacro Esc opcode:Db(0,63), addr:Ew DB OFEH 

Segfix addr ModRM 0, dst 

R53 <11011 B,opcode.mid3> EndM 

ModRM opcode,addr 
EndM CodeMacro Inc dstEw 

CodeMacro Esc opcode:Db(0,63), addr:Ed 
Segfix dst 
DB OFFH 

Segfix addr ModRM 0, dst 
R53 <11011 B,opcode.mid3> EndM 
ModRM opcode,addr 
EndM CodeMacro Inc dstRw 

CodeMacro Hit 
R53 <01000B,dst> 

DB OF4H 
EndM 

EndM CodeMacro Int itype:Db 

CodeMacro IDiv divisor:Eb 
DB OCDH 
DB itype 

Segfix divisor EndM 
DB OF6H 
ModRM 7, divisor 
EndM CodeMacro Int itype: Db(3) 

DB OCCH 
CodeMacro IDiv divisor:Ew EndM 

Segfix divisor 
DB OF7H CodeMacro IntO 
ModRM 7, divisor DB OCEH 
EndM EndM 

A-4 



8086 Assembly Language Codemacro Definitions 

CodeMacro Iret CodeMacro Jmp place:Md 
DB OCFH Segfix place 
EndM DB OFFH 

ModRM 5, place 
CodeMacro JA place:Cb EndM 

DB 77H 
RelB place CodeMacro Jmp place:Cd 
EndM DB OEAH 

DO place 
CodeMacro JAE place:Cb EndM 

DB 73H 
RelB place CodeMacro Jmp place:Cb 
EndM DB OEBH 

RelB place 
CodeMacro JB place:Cb EndM 

DB 72H 
RelB place 
EndM CodeMacro Jmp place:Cw 

DB OE9H 
CodeMacro JBE place:Cb RelW place 

DB 76H EndM 
RelB place 
EndM JNA Equ JBE 

CodeMacro JCXZ place:Cb JNAE EquJB 
DB OE3H 
RelB place JNB EquJAE 
EndM 

JNBE EquJA 
CodeMacro JE place:Cb 

DB 74H CodeMacro JNE place:Cb 
RelB place DB 75H 
EndM RelB place 

EndM 
CodeMacro JG place:Cb 

DB 7FH JNG Equ JLE 
RelB place 
EndM JNGE EquJL 

CodeMacro JGE place:Cb JNL Equ JGE 
DB 7DH 
RelB place JNLE EquJG 
EndM 

CodeMacro JNO place:Cb 
CodeMacro JL place:Cb DB 71H 

DB 7CH RelB place 
RelB place EndM 
EndM 

CodeMacro JNP place:Cb 
CodeMacro JLE place:Cb DB 7BH 

DB 7EH RelB place 
RelB place EndM 
EndM 

CodeMacro JNS place:Cb 
CodeMacro Jmp place:Ew DB 79H 

Segfix place RelB place 
DB OFFH EndM 
ModRM 4, place 
EndM JNZ Equ JNE 

A-5 



Codemacro Definitions 8086 Assembly Language 

CodeMacro JO place:Cb CodeMacro LoopE place:Cb 
DB 70H DB OE1H 
RelB place RelB place 
EndM EndM 

CodeMacro JP place:Cb CodeMacro LoopNE place:Cb 
DB 7AH DB OEOH 
RelB place RelB place 
EndM EndM 

JPE EquJP LoopNZ Equ LoopNE 

JPO Equ JNP LoopZ Equ LoopE 

CodeMacro Mov dst:Eb, src:Db 
CodeMacro JS place:Cb Segfix dst 

DB 78H DB OC6H 
RelB place ModRM 0, dst 
EndM DB src 

JZ EquJE 
EndM 

CodeMacro Mov dst:Ew, src:Db 
CodeMacro LAHF Segfix dst 

DB 9FH DB OC7H 
EndM ModRM 0, dst 

OW src 
CodeMacro LOS dst:Rw, src:Ed EndM 

Segfix src 
DB OC5H CodeMacro MOY dst:Ew, src:Dw 
ModRM dst, src Segfix dst 
EndM DB OC7H 

ModRM 0, dst 
CodeMacro LES dst:Rw, src:Ed OW src 

Segfix src EndM 
DB OC4H 
ModRM dst, src CodeMacro Mov dst:Rb, src:Db 
EndM R53 <10110B,dst> 

DB src 
CodeMacro LEA dst:Rw, src:M EndM 

DB 8DH 
ModRM dst, src CodeMacro Mov dst:Rw, src:Db 
EndM R53 <10111 B,dst> 

OW src 
CodeMacro Lock Prefx EndM 

DB OFOH 
EndM CodeMacfo Mov dst:Rw, src:Dw 

R53 <10111 B,dst> 
CodeMacro LodS SI_ptr:Eb OW src 

Segfix SI_ptr EndM 
DB OACH 
EndM CodeMacro MOY dst:Eb, src:Rb 

Segfix dst 
CodeMacro LodS SI_ptr:Ew DB 88H 

Segfix SI_ptr ModRM src, dst 
DB OADH EndM 
EndM 

CodeMacro Mov dst:Ew, src:Rw 
CodeMacro Loop place:Cb Segfix dst 

DB OE2H DB 89H 
RelB place ModRM src, dst 
EndM EndM 

A-6 



8086 Assembly Language Codemacro Definitions 

CodeMacro Mov dst:Rb, src:Eb CodeMacro MovS SI_ptr:Ew,DI_ptr:Ew 
Segfix src NoSegfix ES, SI_ptr 
DB BAH Segfix DI_ptr 
ModRM dst, src DB OA5H 
EndM EndM 

CodeMacro Mov dst:Rw, src:Ew CodeMacro Mul mplier:Eb 
Segfix src Segfix mplier 
DB BBH DB OF6H 
ModRM dst, src ModRM 4, mplier 
EndM EndM 

CodeMacro Mov dst:Ew, src:S CodeMacro Mul mplier:Ew 

Segfix dst Segfix mplier 

DB OBCH DB OF7H 

ModRM src, dst ModRM 4, mplier 

EndM EndM 

CodeMacro Mov dst:S(ES), src:Ew 
CodeMacro Neg dst:Eb 

Segfix dst 
Segfix src DB OF6H 
DB OBEH ModRM 3, dst 
ModRM dst, src EndM 
EndM 

CodeMacro Neg dst:Ew 

CodeMacro Mov dst:S(SS,DS), src:Ew Segfix dst 

Segfix src DB OF7H 

DB OBEH ModRM 3, dst 

ModRM dst, src EndM 

EndM CodeMacro Nil 

CodeMacro Mov dst:Ab, src:Xb 
EndM 

Segfix src CodeMacro Nop 
DB OAOH DB 90H 
OW src EndM 
EndM 

CodeMacro Not dst:Eb 
CodeMacro Mov dst:Aw, src:Xw Segfix dst 

Segfix src DB OF6H 
DB OA1H ModRM 2, dst 
OW src EndM 
EndM 

CodeMacro Not dst:Ew 
CodeMacro Mov dst:Xb, src:Ab Segfix dst 

Segfix dst DB OF7H 
DB OA2H ModRM 2, dst 
OW dst EndM 
EndM 

CodeMacro OR dst:Eb, src:Db 

CodeMacro Mov dst:Xw, src:Aw Segfix dst 

Segfix dst DB BOH 

DB OA3H ModRM 1, dst 

OW dst DB src 

EndM EndM 

CodeMacro MovS SI_ptr:Eb, DI_ptr:Eb 
CodeMacro OR dst:Ew, src:Dw 

Segfix dst 
NoSegfix ES, SI_ptr DB B1H 
Segfix DI_ptr ModRM 1, dst 
DB OA4H OW src 
EndM EndM 

A-7 



Codemacro Definitions 8086 Assembly Language 

CodeMacro OR dstEw, src:Db CodeMacro Out portRw(DX),dstAw 
Segfix dst DB OEFH 
DB 81H EndM 
ModRM 1, dst 
OW src CodeMacro Pop dstEw 
EndM Segfix dst 

DB 08FH 
CodeMacro OR dst:Ab, src:Db ModRM 0, dst 

DB OCH EndM 
DB src 
EndM CodeMacro Pop dstS(ES) 

R323 <0,dst,7> 
CodeMacro OR dst:Aw, src:Db EndM 

DB ODH 
OW src CodeMacro Pop dst:S(SS,DS) 
EndM R323 <0,dst,7> 

EndM 

CodeMacro OR dst:Aw, src:Dw 
CodeMacro Pop dst:Rw DB ODH 

OW src R53 <01011 B,dst> 

EndM EndM 

CodeMacro OR dst:Eb, src:Rb CodeMacro PopF 

Segfix dst DB 9DH 

DB 8 EndM 

ModRM src,dst CodeMacro Push src:Ew 
EndM Segfix src 

CodeMacro OR 
DB OFFH 

dstEw, src:Rw ModRM S, src 
Segfix dst EndM 
DB 9 
ModRM src,dst CodeMacro Push src:S 
EndM R323 <O,src,S> 

EndM 
CodeMacro OR dstRb, src:Eb 

Segfix src CodeMacro Push src:Rw 
DB OAH R53 <01010B,src> 
ModRM dst,src EndM 
EndM 

CodeMacro PushF 
CodeMacro OR dst:Rw, src:Ew DB 9CH 

Segfix src EndM 
DB OBH 

CodeMacro RCL ModRM dst, src dstEb, countDB(1) 
EndM Segfix dst 

DB ODOH 
CodeMacro Out port: Db,dstAb ModRM 2, dst 

DB OESH EndM 
DB port 

RCL EndM CodeMacro dst:Ew, count:Db(1) 
Segfix dst 

CodeMacro Out port:Db,dstAw 
DB OD1H 
ModRM 2, dst 

DB OE7H EndM 
DB port 
EndM CodeMacro RCL dst:Eb, count:Rb(CL) 

Segfix dst 
CodeMacro Out port:Rw(DX),dstAb DB OD2H 

DB OEEH ModRM 2, dst 
EndM EndM 

A-8 



8086 Assembly Language Codemacro Definitions 

CodeMacro RCL dst:Ew, count:Rb(CL) CodeMacro ROL dst:Eb, count:Db(1) 
Segfix dst Segfix dst 
DB OD3H DB ODOH 
ModRM 2, dst ModRM 0, dst 
EndM EndM 

CodeMacro RCR dst:Eb, count:Db(1) CodeMacro ROL dst:Ew, count:Db(1) 
Segfix dst Segfix dst 
DB ODOH DB OD1H 
ModRM 3, dst ModRM 0, dst 
EndM EndM 

CodeMacro RCR dst:Ew, count:Db(1) CodeMacro ROL dst:Eb, count:Rb(CL) Segfix dst 
DB OD1H Segfix dst 

ModRM 3, dst DB OD2H 

EndM ModRM 0, dst 
EndM 

CodeMacro RCR dst:Eb, count:Rb(CL) CodeMacro ROL dst:Ew, countRb(CL) Segfix dst 
DB OD2H Segfix dst 

ModRM 3, dst DB OD3H 
ModRM 0, dst EndM EndM 

CodeMacro RCR dst:Ew, count:Rb(CL) 
Segfix dst CodeMacro ROR dst:Eb, count:Db(1) 
DB OD3H Segfix dst 
ModRM 3, dst DB ODOH 
EndM ModRM 1, dst 

EndM 
CodeMacro Rep Prefx 

DB OF3H CodeMacro ROR dst:Ew, count:Db(1) 
EndM Segfix dst 

DB OD1H 
CodeMacro RepE Prefx ModRM 1, dst 

DB OF3H EndM 
EndM 

CodeMacro RepNE Prefx CodeMacro ROR dst:Eb, count:Rb(CL) 
DB OF2H Segfix dst 
EndM DB OD2H 

ModRM 1, dst 
RepNZ Equ RepNE EndM 

RepZ Equ RepE CodeMacro ROR dst:Ew, count:Rb(CL) 
Segfix dst 

CodeMacro Ret src:Db DB OD3H 
R413 <OCH,Proclen,2> ModRM 1, dst 
OW src EndM 
EndM 

CodeMacro SAHF 
CodeMacro Ret src:Dw DB 9EH 

R413 <OCH,Proclen,2> EndM 
OW src 
EndM CodeMacro SAL dst:Eb, countDb(1) 

Segfix dst 
CodeMacro Ret DB ODOH 

R413 <OCH,Proclen,3> ModRM 4, dst 
EndM EndM 

A-9 



Codemacro Definitions 8086 Assembly Language 

CodeMacro SAL dst:Ew, count:Db(1) CodeMacro Sbb dst:Ew, src:Db(-128,127) 
Segfix dst Segfix dst 
DB OD1H DB 83H 
ModRM 4, dst ModRM 3, dst 
EndM DB src 

EndM 

CodeMacro SAL dst:Eb, count:Rb(CL) CodeMacro Sbb dst:Ew, src:Dw 
Segfix dst Segfix dst DB OD2H 
ModRM 4, dst DB 81H 

ModRM 3, dst 
EndM OW src 

EndM 
CodeMacro SAL dst:Ew, count:Rb(CL) 

Segfix dst CodeMacro Sbb dst:Ab, src:Db 
DB OD3H DB 1CH 
ModRM 4, dst DB src 
EndM EndM 

CodeMacro SAR dst:Eb, count:Db(1) CodeMacro Sbb dst:Aw, src:Db 
Segfix dst DB 1DH 
DB ODOH OW src 
ModRM 7, dst EndM 
EndM 

CodeMacro Sbb dst:Aw, src:Dw 
CodeMacro SAR dst:Ew, count:Db(1) DB 1DH 

Segfix dst OW src 
DB OD1H EndM 
ModRM 7, dst 
EndM CodeMacro Sbb dst:Eb, src:Rb 

Segfix dst 

CodeMacro SAR dst:Eb, count:Rb(CL) 
DB 18H 
ModRM src,dst Segfix dst EndM DB OD2H 

ModRM 7, dst 
EndM CodeMacro Sbb dst:Ew, src:Rw 

Segfix dst 

CodeMacro SAR dst:Ew, count:Rb(CL) DB 19H 
ModRM src,dst Segfix dst EndM DB OD3H 

ModRM 7, dst CodeMacro Sbb dst:Rb, src:Eb 
EndM Segfix src 

DB 1AH 
CodeMacro Sbb dst:Eb, src:Db ModRM dst,src 

Segfix dst EndM 
DB 80H 
ModRM 3, dst CodeMacro Sbb dst:Rw, src:Ew 
DB src Segfix src 
EndM DB 1BH 

ModRM dst,src 
CodeMacro Sbb dst:Ew, src:Db EndM 

Segfix dst 
DB 81H CodeMacro ScaS DI_ptr:Eb 
ModRM 3, dst NoSegfix ES,DI_ptr 
OW src DB OAEH 
EndM EndM 

A-tO 



8086 Assembly Language Codemacro Definitions 

CodeMacro ScaS DI_ptr:Ew CodeMacro Sub dst:Ew, src:Db 
NoSegfix ES,DI_ptr Segfix dst 
DB OAFH DB 81H 
EndM ModAM 5, dst 

OW src 
SHL Equ SAL EndM 

CodeMacro SHA dst:Eb, count:Db(1) CodeMacro Sub dst:Ew, src:Db(-128,127) 
Segfix dst Segfix dst 
DB ODOH DB 83H 
ModAM 5, dst ModAM 5, dst 
EndM DB src 

EndM 
CodeMacro SHA dst:Ew, count:Db(1) 

Segfix dst CodeMacro Sub dst:Ew, src:Dw 
DB OD1H Segfix dst 
ModAM 5, dst DB 81H 
EndM ModAM 5, dst 

OW src 
CodeMacro SHA dstEb, countAb(CL) EndM 

Segfix dst 
DB OD2H CodeMacro Sub dst:Ab, src:Db 
ModAM 5, dst DB 2CH 
EndM DB src 

EndM 
CodeMacro SHA dst:Ew, count:Ab(CL) 

Segfix dst CodeMacro Sub dst:Aw, src:Db 
DB OD3H DB 2DH 
ModAM 5, dst OW src 
EndM EndM 

CodeMacro STC CodeMacro Sub dst:Aw, src:Dw 
DB OF9H DB 20H 
EndM OW src 

EndM 
CodeMacro STD 

DB OFDH CodeMacro Sub dst:Eb, src:Ab 
EndM Segfix dst 

DB 28H 
CodeMacro STI ModAM src,dst 

DB OFBH EndM 
EndM 

CodeMacro Sub dstEw, src:Aw 
CodeMacro StoS DI_ptr:Eb Segfix dst 

NoSegfix ES,DI_ptr DB 29H 
DB OAAH ModAM src,dst 
EndM EndM 

CodeMacro StoS DI_ptr:Ew CodeMacro Sub dst:Rb, src:Eb 
NoSegfix ES,DI_ptr Segfix src 
DB OABH DB 2AH 
EndM ModAM dst,src 

EndM 
CodeMacro Sub dst:Eb, src:Db 

Segfix dst CodeMacro Sub dst:Aw, src:Ew 
DB 80H Segfix src 
ModAM 5, dst DB 2BH 
DB src ModAM dst,src 
EndM EndM 

A-ll 



Codemacro Definitions 8086 Assembly Language 

CodeMacro Test dst:Eb, src:Db CodeMacro Wait 
Segfix dst DB 09BH 
DB OF6H EndM 
ModRM 0, dst 
DB src CodeMacro Xchg dst:Eb, src:Rb 
EndM Segfix dst 

DB 86H 
CodeMacro Test dstEw, src:Db ModRM src, dst 

Segfix dst EndM 
DB OF7H 
ModRM 0, dst CodeMacro Xchg dstEw, src:Rw 
OW src Segfix dst 
EndM DB 87H 

ModRM src, dst 
CodeMacro Test dst:Ew, src:Dw EndM 

Segfix dst 
CodeMacro Xchg dst:Rb, src:Eb DB OF7H 

ModRM 0, dst Segfix src 
OW src DB 86H 
EndM ModRM dst, src 

EndM 

CodeMacro Test dst:Ab, src:Db CodeMacro Xchg dst:Rw, src:Ew 
DB OA8H Segfix src 
DB src DB 87H 
EndM ModRM dst, src 

EndM 
CodeMacro Test dst:Aw, src:Db 

DB OA9H CodeMacro Xchg dstRw, src:Aw 
OW src R53 <10010B,dst> 
EndM EndM 

CodeMacro Test dstAw, src:Dw CodeMacro Xchg dst:Aw, src:Rw 
DB OA9H R53 <10010B,src> 
OW src EndM 
EndM 

CodeMacro Xlat table:E 

CodeMacro Test dst:Eb, src:Rb Segfix table 

Segfix dst DB OD7H 
DB 84H EndM 

ModRM src,dst CodeMacro Xor dstEb, src:Db EndM Segfix dst 

CodeMacro Test 
DB 80H 

dst:Ew, src:Rw ModRM 6, dst 
Segfix dst DB src 
DB 85H EndM 
ModRM src,dst 
EndM CodeMacro Xor dstEw, src:Db 

Segfix dst 
CodeMacro Test dst:Rb, src:Eb DB 81H 

Segfix src ModRM 6, dst 
DB 84H OW src 
ModRM dst,src EndM 
EndM 

CodeMacro Xor dstEw, src:Dw 
Code Macro Test dst:Rw, src:Ew Segfix dst 

Segfix src DB 81H 
DB 85H ModRM 6, dst 
ModRM dst,src OW src 
EndM EndM 

A-12 



8086 Assembly Language 

CodeMacro Xor dst:Ab, src:Db 
DB 34H 
DB src 
EndM 

CodeMacro Xor dst:Aw, src:Db 
DB 35H 
DW src 
EndM 

CodeMacro Xor dst:Aw, src:Dw 
DB 35H 
DW src 
EndM 

CodeMacro Xor dst:Eb, src:Rb 
Segfix dst 
DB 30H 
ModRM src,dst 
EndM 

CodeMacro Xor dst:Ew, src:Rw 
Segfix dst 
DB 31H 
ModRM src,dst 
EndM 

END 

Codemacro Definitions 

CodeMacro 
Segfix 
DB 
ModRM 
EndM 

CodeMacro 
Segfix 
DB 
ModRM 
EndM 

Xor dst:Rb, src:Eb 
src 
32H 
dst,src 

Xor dst:Rw, src:Ew 
src 
33H 
dst,src 

Purge R53,R323,R233,R413 
Purge RF1 ,RF2,RF3,RF4,RF5 
Purge RF6,RF7,RF8,RF9 
Purge RF10,Mid3 

A-13 





APPENDIX BI 
MEMORY ORGANIZATION 

The location of an operand in an 8086 register or in memory is specified in many in
structions by up to three fields. These fields are the mode field (mod), the register 
field (reg), and the registerlmemory field (rim). When used, they occupy the second 
byte of the instruction sequence. Any DISPlacement bytes (1 or 2) come last. 

The mod field occupies the two most significant bits of the byte, and specifies how 
the rim field is to be used. 

The reg field occupies the next three bits following the mod field, and can specify 
either an 8-bit register or a 16-bit register to be the location of an operand. In some 
instructions it can further specify the instruction encoding instead of naming a 
register. 

The rim field either can be the location of the operand (if in a register) or can specify 
how the 8086 will locate the operand in memory, in combination with the mod field 
as shown below. 

These fields are set automatically by the assembler in generating your code. They are 
discussed in greater detail in Chapter 7 on Code macros. 

The effective address (EA) of the memory operand is computed according to the 
mod and rim fields: 

if mod = 00 then OISP = 0', disp-Iow and disp-high are absent 
if mod = 01 then OISP = disp-Iow sign-extended to 16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 
if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 

• except if mod = 00 and rIm = 110 then EA = disp-high: disp-Iow 
Instructions referencing 16-bit objects interpret EA as addressing the low-order byte; 
the word is addressed by EA + 1, EA. 

Encoding: 

mod reg rIm 
disp-Iow 

or 
data-low 

disp-high 
or 

data-high 

B-1 



B-2 

reg is assigned according to the following table: 

18-blt (w .. 1) 

000 AX 
001 CX 
010 OX 
011 BX 
100 8P 
101 BP 
110 81 
111 01 

8-blt (w .. 0) 

000 AL 
001 CL 
010 OL 
011 BL 
100 AH 
101 CH 
110 OH 
111 BH 



APPENDIX Cl 
FLAG OPERATIONS 

FLAG REGISTERS 

Flags are used to distinguish or denote certain results of data manipulation. The 
8086 provides the four basic mathematical operations (+, -, *, /) in a number of 
different varieties. Both 8- and 16-bit operations and both signed and unsigned 
arithmetic are provided. Standard two's complement representation of signed 
values is used. The addition and subtraction operations serve as both signed and 
unsigned operations. In these cases the flag settings allow the distinction between 
signed and unsigned operations to be made (see Conditional Transfer instructions in 
Chapter 9). 

Adjustment operations are provided to allow arithmetic to be performed directly on 
unpacked decimal digits or on packed decimal representations, and the auxiliary flag 
(AF) facilitates these adjustments. 

Flags also aid in interpreting certain operations which could destroy one of their 
operands. For example, a compare is actually a subtract operation; a zero result in
dicates that the operands are equal. Since it is unacceptable for the compare to 
destroy either of the operands, the processor includes several work registers reserved 
for its own use in such operations. The programmer cannot access these registers. 
They are used for internal data transfers and for holding temporary values in 
destructive operations, whose results are reflected in the flags. 

Your program can test the setting of five of these flags (carry, sign, zero, overflow, 
and parity) using one of the conditional jump instructions. This allows you to alter 
the flow of program execution based on the outcome of a previous operation. the 
auxiliary carry flag is reserved for the use of the ASCII and decimal adjust instruc
tions, as will be explained later in this section. 

It is important for you to know which flags are set by a particular instruction. 
Assume, for example, that your program is to test the parity of an input byte and 
then execute one instruction sequence if parity is even, a different instruction se
quence if parity is odd. Coding a JPE (jump if parity is even) or JPO (jump if parity 
is odd) instruction immediately following the IN (input) instruction would produce 
false results, since the IN instruction does not affect the condition flags. The jump 
conditionally executed by your program would reflect the outcome of some previous 
operation unrelated to the IN instructions. 

For the operation to work correctly, you must include some instruction that alters 
the parity flag after the IN instruction, but before the jump instruction. For exam
ple, you can add zero to the input byte in the accumulator. This sets the parity flag 
without altering the data in the accumulator. 

In other cases, you will want to set a flag though there may be a number of interven
ing instructions before you test it. In these cases, you must check the operation of 
the intervening instructions to be sure that they do not affect the desired flag. 

The flags set by each instruction are detailed in the individual instructions in 
Chapter 6 of this manual. 

Details of Flag Usage. Six flag registers are set or cleared by most arithmetic 
operations to reflect certain properties of the result of the operation. They follow 
these rules below, where "set" means set to 1 and "clear" means clear to O. Further 
discussion of each of these flags follows the concise description. 

C-l 



Flag Operations 8086 Assembly Language 

C-2 

CF is set if the operation resulted in a carry out of (from addition) or a borrow 
into (from subtraction) the high-order bit of the result; otherwise CF is 
cleared. 

AF is set if the operation resulted in a carry out of (from addition) or borrow into 
(from subtraction) the low-order four bits of the result; otherwise AF is 
cleared. 

ZF is set if the result of the operation is zero; otherwise ZF is cleared. 

SF is set if the high-order bit of the result is set; otherwise SF is cleared. 

PF is set if the modulo 2 sum of the low-order eight bits of the result of the 
operation is 0 (even parity); otherwise PF is cleared (odd parity). 

OF is set if the signed operation resulted in an overflow, i.e., the operation 
resulted in a carry into the high-order bit of the result but not a carry out of the 
high-order bit, or vice versa; otherwise OF is cleared. 

Carry Flag. As its name implies, the carry flag is commonly used to indicate 
whether an addition causes a "carry" into the next higher order digit. (However, the 
increment and decrement instructions (INC, DEC) do not affect CF.) The carry flag 
is also used as a "borrow" flag in subtractions. 

The logical AND, OR, and XOR instructions also affect CF. These instructions set 
or reset particular bits of their destination (register or memory). See the descriptions 
of the logic instruction in Chapter 6. 

The rotate and shift instructions move the contents of the operand (registers or 
memory) one or more positions to the left or right. They treat the carry flag as 
though it were an extra bit of the operand. The original value in CF is only preserved 
by RCL and RCR. Otherwise it is simply replaced with the next bit rotated out of the 
source, i.e., the high-order bit if an RCL is used, the low-order bit if RCR. 

Example: 

Addition of two one-byte numbers can produce a carry out of the high-order bit: 

Bit Number: 

AEH
+ 74H-

122H 

7654 

1010 
0111 

0010 

3210 

11108 
01008 
00108 - 22H ;carry flag-1 

An addition that causes a carry out of the high-order bit of the destination sets the 
flag to 1; an addition that does not cause a carry resets the flag to zero. 

Sign Flag. The high-order bit of the result of operations on registers or memory can 
be interpreted as a sign. Instructions that affect the sign flag set the flag equal to this 
high-order bit. A zero indicates a positive value; a one indicates a negative value. 
This value is duplicated in the sign flag so that conditional jump instructions can test 
for positive and negative values. The high order bit for byte value is bit 7; for word 
values it is bit 15. 



8086 Assembly Language Flag Operations 

Zero Flag. Certain instructions set the zero flag to one. This indicates that the last 
operation to affect ZF resulted in all zeros in the destination (register or memory). If 
that result was other than zero, then ZF is reset to O. a result that has a carry and a 
zero result sets both flags, as shown below: 

10100111 
+ 01011001 

00000000 Carry Flag = 1 
Zero Flag = 1 
meaning yes, zero 

Parity Flag. Parity is determined by counting the number of one bits set in the 
destination of the last operation to affect PF. Instructions that affect the parity flag 
set the flag to one for even parity and reset the flag to zero to indicate odd parity. 

Auxiliary Carry Flag. The auxiliary carry flag indicates a carry out of bit 3 of the 
accumulator. You cannot test this flag directly in your program; it is present to 
enable the Decimal Adjust instructions to perform their function. 

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com
pare, and all logical AND, OR, and XOR instructions. 

C-3 





APPENDIX D I 
EXAMPLES 

In this Appendix, several sample problems are presented, each with several 
solutions. 

Each code example has comments and is followed by explanatory paragraphs. 
Inevitably there will still be a few undefined words and less-than-crystal concepts. 
You may prefer to look them up in the index as soon as you encounter them. This 
thoroughness will increase your depth of understanding but will also slow your use 
of this chapter. 

Another way to go about it is to note unclear items on a pad as you read-but to 
continue reading, leaving the detailed exploration and analysis until later. Many 
early questions will be answered by later examples and text; twice through this 
chapter might build familiarity that could save time in studying the manual as a 
whole. 

The first two examples illustrate transferring control to one of eight routines, 
depending on which bit of the accumulator has been set to 1 (by earlier instructions, 
not shown). 

Examples 3, 4, and 5 discuss additional methods of passing data and parameters to 
procedures, illustrating the use of both the registers and the stack for passing 
parameters. Examples 6 and 7 cover multibyte addition and subtraction. Interrupt 
procedures and timing loops are described in examples 8 and 9. Examples 10-13 il
lustrate input/ output control. 

The 8086 code examples given here are not optimal, and the presentation is not an 
attempt at an exhaustive and complete overview of the language. These examples are 
presented more as a gradual method of building familiarity, perhaps suggestive of 
further improvements, rather than as ideal, finished models. Some instruction usage 
is not introduced until the need for it has been suggested by the discussion of prior 
code. 

Examples 1 and 2 

Consider a program that executes one of eight routines depending on which bit of 
the accumulator is set: 

Jump to routine 1 if the accumulator holds 00000001 
Jump to routine 2 if the accumulator holds 00000010 
Jump to routine 3 if the accumulator holds 00000100 
Jump to routine 4 if the accumulator holds 00001000 
Jump to routine 5 if the accumulator holds 00010000 
Jump to routine 6 if the accumulator holds 00100000 
Jump to routine 7 if the accumulator holds 01000000 
Jump to routine 8 if the accumulator holds 10000000 

MAIN PROGRAM 

I 
BRANCH TABLE 
PROGRAM 

I 
I 

------....-, 
_-- I 

L---- I 
I 
I 

JUMP 
ROUTINES 

(normal procedure return sequence not provided by branch table program) 

D-1 



Examples 

D-2 

8086 Assembly Language 

Example 1 below is a routine which transfers control to one of the eight possible pro
cedures depending on which bit of the accumulator is 1. 

It moves the low-order bit of the accumulator into a flag register to find the one 
. signalling the correct routine, and then transfers based on that flag. This routine 
uses seven instructions,. including a test to prevent an infinite loop and an indirect 
transfer via register BX. 

Example 2 achieves the same transfer using a different technique for selecting the 
appropriate address. It shifts the high-order bit of AL, and uses register SI as an in
dex into the branch table. 

Each example contains comments, and is followed by a brief explanation. 

Example 1: 

The 8086 assembly language mnemonics used below can be read and (briefly) inter
preted as follows: 

ASSUME 

MOV 
CMP 
JE 
SHR 
JNB 
JMP 

ADD 
TYPE 

tells assembler what you intend to put in the segment registers during 
execution (required) 

moves 2nd operand ("source") into 1st operand ("destination") 

compares 2 operands by subtracting 2nd from 1st 

jumps to label given if comparison said "equal" 

shifts operand 1 bit to the right, putting lowest order bit into carry flag 

jumps to label given if carry flag is zero 

jumps to label, if given; or jumps-indirect to address held as contents 
of the given variable or register, as here 

adds source into destination 

means how many bytes in each entry. The branch table is in words, 
each 2 bytes 

BRANCH_ADDRESSES SEGMENT 
BRANCH_ TABLE_1 OW ROUTINE_1 

OW ROUTINE-2 
OW ROUTINE_3 
OW ROUTINE_4 
OW ROUTINE-5 
OW ROUTINE_6 
OW ROUTINE-7 
OW ROUTINE-8 

BRANCH_ TABLE-2 

BRANCH_ADDRESSES ENDS 

OW PROCESS_31 
OW PROCESS_61 
OW PROCESS_81 

I 

\ 



8086 Assembly Language 

PROCEDURE_SELECT SEGMENT 

ASSUME CS:PROCEDURLSELECT, 
& DS:BRANCH_ADDRESSES 

L: 

MOV BX,BRANCH_ADDRESSES 
MOV DS,eX ; moves above segment 

; base-address into segment register DS. 
CMP AL,O ; this test assures that 
JE CONTINUE_MAIN_LlNE ; some bit of AL has been 

; set by earlier Instructions to specify 
; a routine (prior insts. not shown). 

LEA BX,BRANCH_ TABLE_1 ; BX setto location 
; holding address of first routine. 

SHR AL,1 ; puts least-significant 
; bit of AL into the carry flag (CF). 

JNB NOT _YET ; if CF = 0, the ON bit 
; In AL has not yet 
; been found. 

JMP WORD PTR [BX] ; if CF = 1, then control 
; is transferred (see 
; explanation below). 

NOT_YET: ADD ex, TYPE BRANCH_ TABLE_1 ; if no transfer, then 

JMP L 
CONTINUE_MAIN_LlNE: 

ROUTINL1: 

ROUTINL2: 

PROCEDURE_SELECT ENDS 

; the bit that Is ON has 
; not yet beenfound,so 
; BX Is set to point to 
; the next entry in the 
; address-table, by adding 2. 
; jump to L to shift and retest 
; we reach here only If 
; no bit was set to 
; Indicate a desired 
; routine 

The line after "L:", JNB NOT_YET, reads "jump if not below", which means 
jump if CF = O. This will skip over the next line's transfer if the" 1" bit, signalling 
the desired procedure, has not yet appeared. If it has been found, CF will be 1 and 
this conditional jump JNB will be skipped. The appropriate procedure is then reach
ed by the indirect jump instruction JMP WORD PTR [BX]. 

A jump is always to an address in the code segment, i.e., relative to CS. The offset 
defining that address in the code segment is not given explicitly here. Instead, an in
direct JMP is used, with [BX] given as a pointer to the cell where that offset is 
stored. 

Examples 

D-3 



Examples 

D-4 

8086 Assembly Language 

Register BX as used here within square brackets automatically refers to the contents 
of a location in the data segment. The contents of that location are the desired offset 
for the jump. In other words, the Instruction Pointer is replaced by the contents of a 
cell in the data segment, a cell whose offset is in BX. The next instruction, ADD BX, 
TYPE BRANCH_TABLE_l, adds 2 to BX, the index into the branch table. This 
causes BX to point to the next word of the table. The contents of that word are the 
offset of the "next" routine, again in the code segment. 

Only BX, BP, SI, and DI are permitted within square brackets. 

BRANCH_ T ABLE_2 is unused in this example. It is shown only as an indication 
that data segments may contain multiple tables referenced at different times by dif
ferent code segments. 

NOTES 

Note that the ASSUME statement is necessary, to identify what the run
time contents of CS and DS will be. 

If you have already looked at the Attributes of Symbols section in Chapter 
2, then it should be noted also that all routines whose labels are in the 
branch table must be defined under the same CS:assumption as the code 
that transfers to them. The reason is that in this example, they are to be 
NEAR jumps, using only the one word offset. They need not necessarily be 
in the same segment, but the same contents of CS must be ASSUMEd. This 
is also indicated by the phrase WORD PTR preceding [BX], indicating the 
intent to use one word from the table as an offset. 

This restriction does not apply to FAR jumps or calls. Thus it would not be 
necessary to ensure that the same ASSUME CS:name in fact applied to each 
branch table entry, if the requirements for FAR jumps were coded. These 
requirements are given below: 

In the above example, it would be necessary to change the JMP 
WORD PTR [BX] to read JMP DWORD PTR [BX]. It would 
also be necessary to change each BRANCH_TABLE entry into an 
entry of the form 

DD ROUTIN E_1 

so that the transfer would replace the contents of CS as well as IP. 
Attributes of symbols, such as NEAR and FAR, are discussed in 
Chapters 2, 4, and 5. PTR is also discussed in Chapter 5 on Expres
sions. Jumps and calls are further explained later in this appendix 
and in Chapter 6. ASSUME is in Chapter 4. 



8086 Assembly Language 

Example 2: 

BRANCH_ADDRESSES SEGMENT 
BRANCH_TABLE_1 DW ROUTINE_1 

DW ROUTINE_2 
DW ROUTINE_3 
DW ROUTINE_4 
DW ROUTINL5 
DW ROUTINE_6 
DW ROUTINE_7 
DW ROUTINE_B 

BRANCH_ T ABLE_2 DW PROCESS_31 
DW PROCESS_61 
DW PROCESS_B1 

BRANCH_ADDRESSES ENDS 

PROCEDURE_SELECT SEGMENT 

& 
ASSUME CS:PROCEDURE_SELECT, 

DS:BRANCH_ADDRESSES 

MOV BX,BRANCH_ADDRESSES ; base-address of 
MOV DS,BX ; segment containing lists 

LEA BX,BRANCH_ TABLL1 ; base-address of list of 
; branch addresses 

MOV SI,7*TVPE BRANCH_ TABLE_1 ; pOints initially to last 
; such entry in list 

MOV CX,S ; loop-counter allowing S 
; shifts maximum 

L: SHL AL,1 ; shifts high-order AL bit 
; into CF 

JNB NOT_VET ; if CF = 0, routine 
; represented by that bit 
; not desired 

JMP WORD PTR [BX][SI] ; if CF = 1, transfer to 
; procedure represented bl 
; most recent bit tested 

NOLVET: SUB SI,TYPE BRANCH_ TABLL1 ; adjust index register to 
; pOint to "next" 
; branch-address 

LOOP L ; decrement CX, if CX > 0, 
; transfer to L so as to 
; shift AL and retest 

CONTINULMAIN_LlNE: ; we reach here only if 
; no bit was set to 

PROCEDURE_SELECT ENDS 

; indicate a desired 
; routine 

Examples 

D-5 



Examples 

D-6 

8086 Assembly Language 

In Example 2 several elements have changed, though the net result is the same. In
stead of being incremented, BX stays constant, pointing to the beginning of the list 
of branch addresses. SI is used as an index (subscript) within that list. 

The number of shifts is controlled by the count register CX, which the LOOP in
struction automatically decrements after each iteration. The accumulator AL is 
searched from its most-significant-bit using the shift-left instruction (SHL) instead 
of SHR. This accounts for the initialization of SI to 14, pointing initially to the last 
branch-address in the list, 14 bytes past the base-address in BX. SI is subsequently 
decremented in each iteration just as Example 1 's BX was incremented. 

The instruction JMP WORD PTR [BX][SI] uses the sum of BX and SI just as Exam
ple 1 used BX alone. That is, the sum gives the offset of a word in the data segment, 
and the contents of that word replaces the IP. The next instruction executed is thus 
the one whose code-segment offset was stored in the branch table. 

If more than 1 bit were set in AL, these two examples would select different routines 
due to selecting the rightmost or leftmost such bit. 

Transferring Data to Procedures 
The data on which a procedure performs its operations may be made available in 
registers or memory locations. In many applications, however, reserving registers 
for this purpose can be inconvenient to the system flow of control and uneconomical 
in execution time, requiring frequent register saves and restores. 

Reserving memory, on the other hand, can be uneconomical of space, especially if 
such data is needed only temporarily. It is often preferable to use and reuse a special 
area called a stack, storing and deleting interim data and parameters as needed. 

Regardless of the method used to pass data to procedures, a stack will be necessary 
and useful. The CALL instruction uses the stack to save the return address. The 
RET instruction expects the return address to be on the stack. The stack is also 
usually used to save the caller's register values at the beginning of a procedure. 
Then, just before the procedure returns to the caller, these values can be restored. 

Example 3 shows the use of memory to pass parameters. Registers are used for this 
in Example 4. Example 5 uses a stack. 

One way to use memory to pass data is to place the required elements (called a 
parameter list) in some data area. You then pass the first address of this area to the 
procedure. 

For example, the following procedure, ADSUB, expects the address of a three-byte 
parameter list in the SI register. It adds the first and second bytes of the list, and 
stores the result in the third byte of the list. 

The first time ADSUB is called, at label CALLI, it loads the accumulator from 
PLIST, adds the value from the next byte and stores the result in PLIST + 2. Return 
is then made to the instruction at RET!. 

AFTER first call to ADSUB: 

81 08 PLiST 

08 PLlST+l 

14 PLlST+2 



8086 Assembly Language 

The second time ADSUB is called, at label CALL2, the prior instruction has caused 
the SI register to point to the parameter list LIST2. The accumulator is loaded with 
10, 35 is added, and the sum is stored at LIST2 + 2. Return is then made to the in
struction at RET2. 

Example 3: 
PARAMS SEGMENT 
PLiST DB 6 

DB 8 
DB ? 

LlST2 DB 10 
DB 35 
DB ? 

PARAMS ENDS 

STACK SEGMENT 
DW 4 DUP (?) 

STACK_TOP LABEL WORD 
STACK ENDS 

ADDING SEGMENT 
ASSUME CS:ADDING, DS:PARAMS, SS:STACK 

START: 

CALL1: 
RET1: 

CALL2: 
RET2: 

ADSUB 

ADSUB 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
CALL 

LEA 
CALL 

PROC 
MOV 
ADD 
MOV 
RET 
ENDP 

ADDING ENDS 
END START 

AX,PARAMS 
DS,AX 
AX,STACK 
SS,AX 
SP ,OFFSET STACK_TOP 
SI,OFFSET PLiST 
ADSUB 

SI,LlST2 
ADSUB 

AL,[SI] 
AL,[SI+1] 
[SI+2J,AL 

The instructions just prior to each CALL load the SI register with the offset of the 
first parameter to be added. The MOV statement prior to CALLI makes use of the 
OFFSET operator (discussed in Chapter 5). If this operator were omitted, SI would 
receive the contents of PLIST instead of its offset. The LEA instruction prior to 
CALL2 automatically puts the offset of its source (2nd operand) into the register 
destination (lst operand). The MOV statement is more efficient, but may only be 
used if just the offset is being loaded into the register. If the address involves an in
dexing register (e.g., PLIST [SI + 1]), then the LEA should be used, since this will 
add the contents of the SI, 1, and the offset of PLIST, putting the sum in the 
destination register. 

Examples 

D-7 



Examples 

D-8 

8086 Assembly Language 

A More General Solution 

The approach used in Example 3 has its limitations, however. As coded, ADSUB 
will process a list of two and only two numbers to be added, and they must be con
tiguous in memory. Suppose you wanted a subroutine (GENAD) which would add 
an array containing an arbitrary number of bytes, located anywhere in memory, and 
leave the sum in the accumulator. 

CALL to GENAD: 

ex I 
r::l 
L:.I 

• PARM1 

PARM2 

PARM3 

PARM4 

Example 4 below shows how this process can be written in the 8086 assembly 
language. GENAD returns the sum in the accumulator. It receives the address of the 
array in the BX register, and the number of array elements in CX. 

Example 4: 

INITIAL_PARAMETERS SEGMENT 
RESULT DB 0 
PARM DB 6,82,13,16 

INITIAL_PARAMETERS ENDS 

GPR EQU GENERAL_PROCEDURES 
PR1 EQU INITIAL_PARAMETERS 

GENERAL_PROCEDURES SEGMENT 
ASSUME CS:GPR, DS:PR1 ; uses short synonyms from EQUs 

; The procedure is placed first, to avoid forward referencing 
; the FAR procedure GENAD86. Note that the program start address 
; is after the procedure, at label "START". 

GENAD86 PROC FAR 
PUSH SI 

INIT: MOV AL,O 
MOV SI,O 

; save current value of SI 
; on the stack (discussed below), 
; so that this routine can use this 
; register freely, restoring its 
; original contents just prior to 
; returning control to calling routine. 
; initialize AL to receive sum. 
; initialize SI to point to first array element 



8086 Assembly Language 

MORE?: ADD AL, [BX] [SI] ; add next array element to sum. 
; BX points to the start of the array, 
; and SI selects an element of the array. 

INC SI ; have SI index the next array element. 
LOOP MORE? ; continue looping until CX is zero (all 

; array elements have been added into AL) 

POP 81 ; restore original contents of SI. 
RET ; transfer to instruction immediately 

; following CALL. 

GENAD86 ENDP 

; Program execution starts here (due to the lab"el "start" named on the END directive below). 
; Point OS to the INITIAL_PARAMETERS segment, and call GENAD86 with the array PARM. 

START: MOV AX, INITIAL_PARAMETERS 
MOV OS, AX 

MOV CX, SIZE PARM 
MOV BX, OFFSET PARM 
CALL GENAD86 
MOV RESULT, AL 

; number of elements is passed in CX 
; address of array PARM is passed in BX. 

; Sum is returned in AL 

HLT 
GENERAL_PROCEDURES 

; ••••••• end of program' •••••• 

ENDS 
END START 

In Example 4 the general guidelines for the 8086 Assembly Language are followed 
by coding first the data segments and EQUs, followed by the code segments which 
refer to these program elements. The EQUs enable names to be used in place of 
numeric values, or shorter synonyms instead of longer names. 

A forward reference to an EQU is allowed. An EQU may refer to a later-defined 
simple name, (but not to a later-defined full address-expression). 

In GENAD86, the first action is to save (PUSH) onto the stack the current value of 
SI before using it. Just before the RETurn, this value is restored (via POP). Thus 
this procedure does not destroy the status of registers (except AL and CX) possibly 
relied upon by the calling routine. Stacks are discussed in Chapter 4. Further ex
amples appear below. 

The routine does not explicitly save the value of CS because the CALL and RETurn 
save CS on the stack and restore it automatically. The accumulator AL is here ex
pected to be usable without saving its pre-CALL contents. Using AL, the sum is 
modulo 256. 

The FAR type declaration on the PROC statement forces the use of "long" CALLs 
to and RETurns from this procedure. This means the procedure is not expected to be 
in the same segment as all of the CALLs to it. In a "long" CALL the contents of CS 
are PUSHed onto the stack first, then the IP is PUSHed onto the stack. (This allows 
an eventual return to the next sequential instruction.) Control is then transferred to 
the procedure by first moving into CS the segment base address for the procedure, 
and then replacing the contents of IP with the offset of the procedure in that seg
ment. A "long" RETurn reverses this process by POPping the former IP contents 
back off the stack into IP, and then POPping the former CS contents off the stack 
back into CS. 

Examples 

D-9 



Examples 

D-1O 

8086 Assembly Language 

Within the inner body of GENAD86, the statement 

MOV AL,O 

initializes the sum to zero. The statement 

MOV 51,0 

initializes SI to zero, to index the first element of the passed array. 

The first statement in the loop 

ADD AL, [SX] [51] 

adds the array element indexed by SI into the sum in the accumulator (recall that the 
BX register points to the parameter array). In the next statement (INC SI), the array 
index in SI is incremented to point to the next array element. The last statement in 
the loop 

LOOP MORE? 

executes the loop repeatedly until the count in CX (passed in as a parameter) is 
exhausted. 

As mentioned earlier, BX, BP, SI, and 01 are the only registers permitted within 
square brackets. Such usage is further restricted: in anyone expression you may use 
BX or BP, but not both, and SI or 01, but not both. Thus [BX][SI] is valid but 
[BX][BP] is not. This is discussed in greater detail in Chapter 5. 

Using a Stack 

Passing parameters on the stack offers different advantages than passing them in 
registers. Passing parameters in registers is faster, but more complicated. The con
ventions as to which parameter should end up in which register can be confusing, 
especially if there are many procedures. 

For parameters passed on the stack, the convention need only specify the order they 
should be pushed onto the stack. High level language compilers (e.g., PLlM-86) 
generate code which passes parameters on the stack. Therefore, any procedure 
which expects its parameters on the stack is callable from PliM (see Appendix B of 
the Operator's Guide for more details). The 8086 also offers special instructions to 
facilitate using the stack for passing parameters. The RET instruction has an op
tional byte count (e.g., RET 4), which says how many bytes should be popped off 
the stack in addition to the return address. This makes returning from procedures 
very easy. Moreover, since the BP indexing-register uses the SS segment by default, 
it is very economical to use BP to reference data near the top of the stack. 

Use of stacks may require some further introduction. A stack segment is expected to 
be used relative to the contents of the stack-segment register SS, just as a code seg
ment uses CS and data segments use DS or ES. The stack segment below is defined 
for use in this discussion and the examples. 

PARAMS_PASS SEGMENT STACK 
OW 12 DUP (0) 

LAST_WORD LABEL WORD 
PARAMS_PASS ENDS 



8086 Assembly Language 

Four instructions use a stack in predefined ways: PUSH, CALL, POP, and 
RETurn. They automatically use the stack pointer SP as an offset to the segment

. base-address in SS. One of your first actions in a module which will use a stack must 
be to initialize SS and SP. e.g., 

MOV AX,PARAMS_PASS 
MOV SS,AX 
MOV SP, OFFSET LAST _WORD 

This use of LAST_WORD is critically important due to the built-in actions of the 
four instructions named above. 

The first two, PUSH and CALL, store additional words on the stack by decrement
ing SP by 2. Thus the stack "grows downward" from the last word in the stack seg
ment toward the segment-base-address lower in memory. Each successive address 
used for new data on the stack is a lower number. The location pointed to by SP is 
called the Top Of Stack (TOS). When a word is stored on the stack, e.g., by the 
instruction 

PUSH SOURCE_DATA 

SP is decremented by 2 and the source data is moved onto the stack at the new offset 
now in SP. As described above in Example 4, CALL implicitly uses PUSH before 
transferring control to a procedure. 

The instruction 

POP DESTINA nON 

takes the word at TOS, i.e., pointed at by SP, and moves that word into the 
specified destination. POP also then automatically adds 2 to SP. This causes SP to 
point to the next higher-addressed word in the stack segment, farther from the seg
ment's base-address. The figures accompanying the examples below show the expan
sion and contraction of a stack. 

Example 5 below illustrates the use of a stack to pass the number of byte parameters 
plus the address of the first one. For this example all the parameters are expected in 
successive bytes after that one. 

Supplying the N umber of Parameters and the First Address, 
On the Stack 
ExampleS: 

params_pass SEGMENT STACK 
ow 12 DUP (?) ; reserve 12 words of stack space 

lasLword LABEL WORD ; lasLword is the offset of top of stack 
params_pass ENDS 

SEGMENT 

first DB 11, 22, 33, 44, 55, 66 
second DB 4,5, 6 
third DB 94,88 
result OX? 
dat1L-items ENDS 

stLusage_xmpl SEGMENT 
ASSUME CS: stLusage_xmpl, OS: dat1L-items, SS:params_pass 

Examples 

D-ll 



Examples 8086 Assembly Language 

D-12 

genaddr PRoe FAR 

adder: 

PUSH BP ; save old copy of BP 
PUSH BP, SP ; move tos to BP (see figure 4) 
PUSH BX ; save BX, so ok to use BX In genaddr 
PUSH ex ; save ex, so ok to use ex in genaddr (figure 5) 
MOV ex, [BP + 6J ; get count of number of bytes in array 
MOV BX, [BP + 8J ; get address of array of bytes 

MOV 
ADD 
ADe 
INe 
LOOP 

AX,O 
AL, [BXJ 
AH,O 
BX 
adder 

POP ex 
POP BX 
POP BP 
RET 4 

; AX :- O. AX holds running sum In adder loop. 
; add in the first byte 
; and add any carry into AH. 
; point to next byte to be added in. 
; ex := ex -1; IF ex < > 0 THEN GOTO ADDER; 

; The registers must be restored in the 
; reverse order they were pushed. 

; return, popping off the 2 WORD parameters 
genaddr ENDP 

stLusage_xmpl ENDS 

caller SEGMENT 
ASSUME es: caller, OS: data.-.-items, SS: params_pass 

start: 

caller 

MOV 
MOV 
MOV 
MOV 
MOV 

MOV 
PUSH 
MOV 
PUSH 
CALL 

AX, data.-.-items 
DS,AX 
AX, params_pass 
SS,AX 
SP, offset lasLword 

AX, OFFSET first 
AX 
AX, SIZE first 
AX 
genaddr 

MOV result,AX 

MOV AX, OFFSET second 
PUSH AX 
MOV AX, SIZE second 
PUSH AX 
CALL genaddr 

MOV result,AX 

MOV AX, OFFSEST third 
PUSH AX 
MOV AX, SIZE third 
PUSH AX 
CALL genaddr 

MOV result,AX 

HLT 
ENDS 
END start 

; paragraph number of data segment to AX 
; and then to OS. 
; paragraph number of stack segment to AX 
; and then to SS 
; offset of the stacLtop to the SP 

; offset of first to AX 
; then onto the stack 
; number of bytes in first array to 'AX 
; then onto the stack 
; Call the far procedure 

; same as above except doing second 

; same as above except doing third 



8086 Assembly Language 

OOOOOHr---------------~ 

OS Points to belllnnlnll 01 
DATA-ITEMS 

- CS Points to beglnnlnll 01 
STLUSAGLXMPL 

- SS Points to belllnnlnll 01 
PARAMS_PASS 

OFFFFFH .... --------.... 

Figure 1 

OOOOOH 

OS 

I-CS 

- SS 

OLDIP - TOS _SP 

OLDCS 

NUMBER OF PARAMETERS 

PARAMETER ADDRESS 

OFFFFFH 

Figure 2 

Examples 

D-13 



Examples 

OFFFFFH 

OLD BP 

OlDIP 

OlDes 

NUMBER OF PARAMETERS 

PARAMETER ADDRESS 

OOOOOH 

Figure 3 

OOOOOH 

OLDBX 

OLD BP 

OLDIP 

Oloes 

NUMBER OF PARAMETERS 

PARAMETER ADDRESS 

OFFFFFH 

Figure 4 

D-14 

- OS 

- es 

- SS 

~ TOS -SP 

-OS 

-es 

-S5 

_TOS_SP 

_BP 

8086 Assembly Language 



8086 Assembly Language 

OOOOOH 

OS 

- CS 

- SS 

OLDCX lOS _SP 

OLDBX 

OLOBP - BP 

OLDIP 

OLDCS 

NUMBER OF PARAMETERS 

PARAMETER ADDRESS 

OFFFFFH 

Figure 5 

To indicate why each register was saved, the above code has each PUSH placed just 
prior to the first local use of that register. Earlier examples clustered those PUSHes 
at the top of the routine, just as the POPs appear (in reverse order) at the end. This 
makes it easy to see the proper order of saving and restoring. In either case you must 
consider carefully where the parameters are relative to the pointer you are using, 
e.g., BP. Making your own diagrams can help. 

Note that the RET instruction of "genaddr" is a RET 4; the two parameters are 
popped off the stack as the RETurn is executed. Without the 4, this 12 word stack 
named "PARAMS_PASS" could only be used three times. The fourth call would 
cause two words outside that segment to be clobbered. 

This is why: prior to each call the parameter words are pushed onto the stack. Then 
each call uses two words of the stack to store the return address. Each execution of 
the procedure pushes three more words onto the stack to preserve register values. 
These last five words are popped off by the procedure's end and return, but those 
first two parameters would remain. 

After three calls, the old six parameter words would use up half the stack. The first 
would be in LAST_ WORD-2, next in LAST_ WORD-4, LAST_ WORD-6, etc. 
to LAST_WORD-12. The fourth use of the procedure would put on the two 
parameters, and then the return address would go in LAST_WORD-l8 and 
LAST_WORD-20. The procedure's PUSHes of original register contents would 
fill LAST_ WORD-22 and LAST_ WORD-24, and then two words outside 
PARAMS_P ASS. (Those two words would be at offsets of + OFFFE and 
+ OFFFC, since address arithmetic is done modulo 64K. That is, the offset of 
LAST_ WORD is 24, so the location whose offset is 26 less than 24 has offset 
OFFFE.) 

Examples 

D-15 



Examples 

D-16 

LAST_WORD-2 
-4 
-6 
-8 
-10 
-12 
-14 
-16 
-18 

LAST _WORD-20 
LAST_WORD-22 
LAST _WORD-24 

0000 
-0000 

FFFE 
-0002 

FFFC 

1st param 
2nd param 
3rd param 
4th param 
5th param 
6th param 
7th param 
8th param 
instr pOinter 
oldCS 
old BP 
old BX 

+22 
+20 
+18 
+16 
+14 
+12 
+10 
+8 
+6 
+4 
+2 
o 

Multibyte Addition and Subtraction 

8086 Assembly Language 

The carry flag and the ADC (add with carry) instructions may be used to add un
signed data quantities of arbitrary length. Consider the following addition of two 
three-byte unsigned hexadecimal numbers: 

32AF8A 
+ 84BA90 

B76A1A 

To perform this addition, you can use ADD or ADC to add the low-order byte of 
each number. ADD sets the carry flag for use in subsequent instructions, but does 
not include the carry flag in the addition. 

Step 3 Step2 Step 1 

32 AF 8A 
84 SA 90 
-
B7 6A 1A 

carry=1 carry=1 

The routine below performs this multibyte addition, making these assumptions: 

The numbers to be added are stored from low-order byte to high-order byte begin
ning at memory locations FIRST and SECOND, respectively. 

The result will be stored from low-order byte to high-order byte beginning at 
memory location FIRST, replacing the original contents of these locations. 

MEMORY BEFORE 

ARST + SECOND + CF 

8A + 
AF + 

32 + 

90 + 0 = 1A 

BA + 1 = 6A 

84 + 1 = B7 

MEMORY AFTER 

FIRST SECOND 

1A 

6A 

B7 

90 

BA 

84 



8086 Assembly Language 

The routine uses an ADC instruction to add the low-order bytes of the operands. 
This could cause the result to b~ high by one if the carry flag were left set by some 
previous instruction. This routine avoids the problem by clearing the carry flag with 
the CLC instruction just before LOOPER. 

Since none of the instructions in the program loop affect the carry flag except ADC,. 
the addition with carry will proceed correctly. 

When location DONE is reached, bytes FIRST through FIRST + 2 will contain 
lA6AB7H, which is the sum shown at the beginning of this section, from low-order 
byte to high-order byte. 

If you change the ADC instruction to an SBB instruction, the routine becomes a 
multibyte subtraction process. It will then subtract the number beginning at SE
COND from that at FIRST, placing the result at FIRST. (Different length numbers 
are not handled.) 

Example 6: 

ADDDATA SEGMENT 

FIRST DB 8AH,OAFH,32H 
SECOND DB 90H,OBAH,84H 
ADDDATA ENDS 

MULTIBYTE_ADD SEGMENT 

ASSUME CS:MULTIBYTE_ADD, 
& DS:ADDDATA 
START: MOV AX,ADDDATA 

MOV DS,AX 
MOV CX,LENGTH FIRST ; Number of bytes in each 

; addend.Controls # of loop iterations. 
MOV SI,O 
CLC ; Clears any prior carry. 

LOOPER: MOV AL, SECOND [SI] ; Each successive byte 
; replaces AL 

ADC FIRST [SI], AL ; Parallel byte added with carry. 
INC SI ; Index incremented by 1 
LOOP LOOPER; CX = CX-1. Repeat till CX=O, 

; then fall thru to DONE 

DONE: 

MULTIBYTE_ADD ENDS 
END START 

The two numbers could be of different lengths, e.g., one 5 bytes long and the other 3 
bytes long. If so, the routine below would perform the multibyte addition. However, 
a carry out of the highest byte of the longer number would be lost. This could be 
handled by additional code to check the flags, or by the expedient of an extra high
order byte on the longer number. 

Examples 

D-I7 



Examples 8086 Assembly Language 

D-t8 

FIRST DB 11,22,33 
NUM1 DW LENGTH FIRST 

SECOND DB 99,88,77,66,55 
NUM2 DW LENGTH SECOND 

MULTLTWO 

ASSUME 
& 

START: 

ENDS 

SEGMENT 

CS:MULTLTWO, 
DS:ADD_DATA_2 

MOV AX,ADD_DATL2 
MOV DS,AX 

;The routine determines which number is longer and stores the result there. The size in 
; bytes of the smaller number controls LOOP1, i.e., where both numbers do have a byte of 
; data to be added. 
; The difference in size controls LOOP2, which is needed if there is a final carry. 

MOV AX, NUM2 ; Initially assume NUM2larger, and 
LEA BX, SECOND ; give BX address of longer number, 
LEA BP, FIRST ; BP address of shorter number. 

CMP AX, NUM1 ; Check assumption. 
JGE NUMLBIGGER ; continue with values as they 

, are unless N2 < N1. 

XCHG AX, NUM1 ; Switch NUM2 and NUM1, exchanging 
XCHG AX, NUM2 ; through AL NUM2 now> NUM1. 

XCHG BX, BP ; Must also now switch addresses 
; referred to, so that number 
; of bytes still corresponds 
; with correct number, and sum 
; goes to longer place. 

NUMLBIGGER: MOV CX, NUM2 
SUB CX, NUM1 ; NUM2 now gets difference 

MOV NUM2, CX 
MOV CX, NUM1 ; of sizes. Use smaller number 

; of bytes for central add. 
CLC ; Clear carry of possible prior setting. 
MOV SI, 0 ; Initialize index to bytes 

; of addends. Then SI=SI + 1. 
LOOP1: MOV AL, DS: [BP) [SI) ; Get byte of shorter number. 

ADC [BX) [SI), AL ; Add it to relevant byte of 
INC SI ; longer number. Then SI=SI + 1 
LOOP LOOP1 

MOV CX, NUM2 ; Number.of bytes yet unused 
; in longer number. 



8086 Assembly Language 

LOOP2: JNB DONE ; If no carry, CF=O, then done. 
ADC BYTE PTR [BX] [51],0 ; Add carry to remaining bytes 
INC 51 ; of longer number. Then 51=51+ 1. 

LOOP LOOP2 
DONE: 

MULTLTWO END5 
END 5TART 

With some additional instructions, this same routine will do arithmetic for packed
decimal numbers. Packed-decimal means the 8 bits of each byte are interpreted as 2 
decimal digits, e.g., OllOOlllB would mean 67 decimal instead of 67 hexadecimal 
(103 decimal). 

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal 
numbers. ' 

Example 7: 

MOV SI,O 
MOV CX, NUMBYTES 
CLC 

MORE?: MOV AL, FIRST [SI] 
SBB AL, SECOND [SI] 
DAS 
MOV SECOND [SI], AL 
INC SI 
LOOP MORE? 

Interrupt Procedures 

Example 8: 

; The following illustrates the use of interrupt procedures for the 8086. The code sets up six 
; interrupt procedures for a hypothetical 8086 system involved in some type of process 
; control application. There are 4 sensing devices and two alarm devices, each of which 
; can supply external interrupts to the 8086. The different interrupt-handling procedures 
; shown below are arbitrary, that is, the events and responses described are not inherent 
; in the 8086 but rather in this hypothetical control application. The procedures merely 
; illustrate the diverse possibilities for handling situations of varying importance and 
; urgency. 

ASSUME CS:INTERRUPT _PROCEDURES, DS:DATA_VAR 

DEVICLLPORT 
DEVICLLPORT 
DEVICLLPORT 
DEVICL4_PORT 
WARNING_LIGHTS 
CONTROL_1 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EXTRN 

OFOOOH 
OF002H 
OF004H 
OF006H 
OEOOOH 
OE008H 
CONVERT_VALUE:FAR 
; Positioning this EXTRN here indicates that 
; CONVERT_VALUE 
; is outside of all segments 1n this module. 

Examples 

D-19 



Examples 8086 Assembly Language 

D-20 

INTERRUPT _PROC_ TABLE SEGMENT BYTE AT 0 
ORG OSH 

DO ALARM_1 ; non-maskable interrupt type 2 

; One 64K area of memory contains pOinters to the routines that handle interrupts. This 
; area begins at absolute address zero. The address for the routine appropriate to each 
; interrupt type is expected as the contents of the double word whose address is 4 times 
; that type. Thus the address for the handler of non-maskable-interrupt type 2 is stored as 
; the contents of absolute location S. These addresses are also called interrupt vectors 
; since they point to the respective procedures. 

ORG SOH 

; the first 32 interrupt types (0-31) are defined or reserved by INTEL for present and future 
; uses. (See the SOS6 User's Manual for more detail.) User-interrupt type 32 must therefore 
; use location 12S (=-SOH) for its interrupt vector. 

DO 
DO 
DO 
DO 
DO 

ALARM_2 
DEVICE_1 
DEVICE_2 
DEVICE-3 
DEVICE_4 

; INTERRUPT TYPE 32 
; INTERRUPT TYPE 33 
; INTERRUPTTYPE34 
; INTERRUPT TYPE 35 
; INTERRUPT TYPE 36 

INTERRUPT _PROC_ TABLE ENDS 

DATA_VAR SEGMENT PUBLIC 

EXTRN 
& 

EXTRN 

INPUT _1_VAL:BYTE, OUTPUT _LVAL:BYTE, 
INPUT _LVAL:BYTE, INPUT _4_VAL:BYTE 
ALARM_FLAG:BYTE, INPUT _FLAG:BYTE 

; The names above are used by 1 or more of the procedures below, but the location or 
; value referred to is located (defined) in a different module. These EXTeRNal 
; references are resolved when the modules are linked together, meaning all addresses 
; will then be known. Declaring these EXTRNs here indicates what segment they are in. 

; The names below are defined later in this module. The PUBLIC directive makes their 
; addresses available for other modules to use. 

PUBLIC 
& 

ALARM_1, ALARM_2, DEVICE-1, DEVICE_2, DEVICE_3, 
DEVICE_4 

INTERRUPT_PROCEDURES SEGMENT 

ALARM_1 PROC FAR 

; The routine for type 2, "ALARM_1" is the most drastic because this interrupt is intended 
; to signal disastrous conditions such as power failure. It is non-maskable, i.e., it cannot be 
; inhibited by the CLear Interrupts (CLI) instruction. 



8086 Assembly Language Examples 

MOV OX, WARNING_LIGHTS 
MOV AL, OFFH 
OUT OX,AL ; turn on all lights 
MOV OX, CONTROL_1 
MOV AL, 38H ; turn off 
OUT OX,AL ; machine 
HLT ; stop all processing 

ALARM_1 ENOP 

ALARM_2 PROC FAR 

PUSH OX 
PUSH AX 
MOV OX, WARNING_LIGHTS 
MOV AL, 1 ; turn on warning light #1 
OUT OX,AL ; to warn operator of device 

MOV ALARM_FLAG,OFFH ; set alarm flag to inhibit 
POP AX ; later processes which may 

; now be dangerous 
POP OX 
IRET ; return from interrupt: 

; this restores the flags and returns control 
; the interrupted instruction stream 

ALARM_2 ENOP 

OEVICE_1 PROC 

PUSH OX 
PUSH AX 
MOV OX, OEVICE_1_PORT 
IN AL,OX ; get input byte from device_1 

MOV INPUT _LVAL, AL ; store value 

MOV INPUT _FLAG,2 ; this may alert another 
; routine or device that 
; this interrupt and input 
; occurred 

POP AX 
POP OX 
IRET 

OEVICE_1 ENOP 

OEVICE_2 PROC 

PUSH OX ; when this interrupt-type occurs, 
PUSH AX ; the action necessary is to notify 

; device_Lport of the event 

MOV AL, OUTPUT _L VAL ; get value, to output 
MOV OX, OEVICCLPORT ; to device_Lport 

OUT OX,AL 
POP AX 
POP OX 
IRET 

D-21 



Examples 

D-22 

DEVICE_2 ENDP 

DEVICE_3 PROC 
PUSH 
PUSH 
MOV 
IN 
AND 
MOV 
POP 
POP 
IRET 

DEVICE_3 ENDP 

DEVICE_4 PROC 

PUSH 
PUSH 
PUSH 
MOV 

IN 
MOV 

CALL 

ox ; when a device_3 interrupt occurs, 
AX ; only the lower byte at the port is 
OX, DEVICE_LPORT ; of value 
AL,DX 
AL,OFH ; mask off top four bits 
INPUT _LVAL, AL ; store value for use 
AX ; by later routines in another module 
OX 

OX 
CX ; a device_4 interrupt provides 
AX ; a value which needs immediate 
OX, DEVICE_4_PORT 

; conversion by another procedure 
AL,DX ; before this interrupt-handler can 
CL, AL ; allow it to be used at inpuL4_val 

CONVERLVALUE ; converts input value in CL 

8086 Assembly Language 

MOV INPUL4_VAL, AL ; to new result in AL and saves that 
; result in input_4_val 

POP AX 
POP CX 
POP OX 
IRET 

DEVICE_4 ENDP 

INTERRUPT_PROCEDURES ENDS 

END 

Timing Loop 

Example 9: 

; This example is a procedure for supplying timing loops for a program. The amount of time 
; delayed is set by a byte parameter passed in the AL register, with the amount of time = 
; PARAM * 100 microseconds. This is assuming that the 8086 is running at 8 MHZ. 

ASSUME CS:TIMER_SEG 

TlMER_SEG SEGMENT 

TIME PROC 

DELAY _LOOP: MOV 
SHR 
DEC 
JNZ 

CL, 78H ; shift count for supplying 
CL,CL ; proper delay via SHR countdown 
AL ; decrement timer count 
DELAY _LOOP 



8086 Assembly Language 

RET 
TIME ENDP 
TlMER_SEG ENDS 

END 

The examples below (10-13) illustrate the type of procedures used by the SDK86 
Serial I/O Monitor to communicate with the keyboard and display units during 
execution. 

The first, SIO_CHAR_RDY, tests whether an input character is awaiting 
processing. 

The second SIO_OUT _CHAR, outputs a character unless SIO_CHAR_RDY 
reports in input character is there, which is handled first. 

The third, SIO_OUT _STRING, puts out an entire string of characters, e.g., a page 
heading, using SIO_OUT _CHAR for each output byte. 

Example 10: 

PUSH BP ; save old value 
MOV BP,SP 

MOV DX,OFFF2H ; address of status port to OX 
IN AL,DX ; input from status port 
TEST AL,2H ; is read-data-ready line=1, 

; i.e., character pending? 
JNZ @1 ; if so, return TRUE 

MOV AL,O ; if not, return FALSE: AL=O 
POP BP ; restore old value 
RET ; done, no char waiting 

@1: 

MOV AL,OFFH ; return TRUE: AL=all ones 
POP BP ; restore old value 
RET ; done, char is waiting 

Example 11: 

The above procedure also appears in this example, which introduces names for some 
of the specific numbers used above, and for some that will be used in later examples. 
These names can make it easier to read the procedure and understand what is going 
on, or at least what is intended. 

The example also uses BX and reorders the code to save a few bytes. 

TRUE EQU OFFH 
FALSE EQU OH 

STATUS_PORT EQU OFFF2H 

Examples 

D-23 



Examples 

D-24 

8086 Assembly Language 

DATA_PORT EQU OFFFOH 
ASCILMASK EQU 7FH 
CONTROLS EQU 13H 
CONTROL_Q EQU 11H 

CARR_RET EQU ODH 

SIO-,-CHAR_RDY2 PROC NEAR 

PUSH BX ; save old BX value 
MOV BL, TRUE ; prepare for one reesult 
MOV OX, STATUS_PORT ; check the facts 
IN AL,OX ; char waiting??? 
TEST AL,2H ; if 2nd bit ON, char is waiting 
JNZ RESULT ; hence skip over FALSE set-up 
MOV BL, FALSE ; here if 2nd bit was OFF, 

; hence no char waiting 
RESULT: MOV AL, BL ; AL receives whichever result 

POP, BX ; restore old BX value 
RET 

SIO_CHAR_ROY2 ENOP 

Example 12: 

SIO_OUT _CHAR PROC NEAR 

; This routine outputs an input parameter to the USART output port when UART is ready for 
; output transmit buffer empty. The input to this routine is on the stack. 

PUSH BP 
MOV BP,SP 

CALL SIO_CHAR_ROY 
RCR AL,1 
JNB @117 

MOV OX, DATA_PORT 
IN AL,OX 

AND AL, ASCILMASK 
MOV CHAR, AL 
CMP AL, CONTROL_S 
JNZ @117 

@115: 

CMP CHAR, CONTROLQ 
JZ @117 

CALL SIO_CHAR_ROY 
RCR AL,1 
JNB @115 

MOV OX, OAT A_PORT 
IN AL,OX 

; keyboard input pending? 
; put low-byte into CF to test 
; if no input char waiting from 
; keyboard, go to output loop 

; char waiting: get it 
; charto AL from that port 
; strip off high bit, leaving 
; ASCII code 
; save char 
; is char control-S? 
; if this halt-display signal 
; is not rec'd, continue 
; output at @117 

; if control-S rec'd, must 
; await its release 
; Control-Q received? 
; if this continuation-signal 
; rec'd, to do next output 
; keep checking for new keyboard 
; input, looping from @115 
; to here until input waiting 

; get waiting character 



8086 Assembly Language 

AND 
MOV 
CMP 
JNZ 

JMP 

@117: 
CONTINUE: 

MOV 
IN 
TEST 
JZ 

MOV 
MOV 
OUT 

POP 
RET 

Example 13: 

AL, ASCII_MASK 
CHAR, AL 
AL, CARR_RET 
@115 

NEXTCOMMAND 

DX,STATUS_PORT 
AL,DX 
AL,1 
@117 

DX,DATA_PORT 
AL, [BP] + 4 
DX,AL 

BP 
2 

PROC NEAR 

; if char=carriage-return, 
; skip this Instruction, which 
; loops to await control-Q, and 
; go to NEXTCOMMAND 

; loop until status port 
; and transmit line Indicate 
; ready to put out character 

; output port address to DX 
; character from stack to AL 
; output character in AL through 

; restore original BP value 
; repositions SP behind prior 
; parameter 

; Outputs a string stored in the "extra" segment (uses ES as base), the string being 
; pOinted to by a 2-word pOinter on the stack 

PUSH BP 
MOV BP, SP 
MOV SI,O 

LES BX, DWORD PTR [BP] + 4 

; load ES with base address and BX with offset of string (addresses pushed onto stack by 
; calling routine) 

@121: 

CMP BYTE PTR ES: [BX] [SI], 0 
; terminator character is ASCII null = all zeroes. 

JZ @122 ; if done, exit 

MOV AL, BYTE PTR ES: [BX] [SI] ; put next char on 
PUSH AX 
CALL SIO_OUT _CHAR ; stack for output by 

INC 
JMP 

@122: 
POP 
RET 

; this called procedure 

SI ; point index to next char 
@121 

BP 
4 ; after return, resets 

; SP behind former parameters 

Examples 

D-25 





00 00000000 MOD REGR/M ADD EA,REG 
01 00000001 MOD REGR/M ADD EA,REG 
02 00000010 MOD REGR/M ADD REG,EA 
03 00000011 MOD REGR/M ADD REG,EA 
04 00000100 ADD AL,DATA8 
05 00000101 ADD AX,DATA16 
06 00000110 PUSH ES 
07 00000111 POP ES 
08 00001000 MOD REGR/M OR EA,REG 
09 00001001 MOD REGR/M OR EA,REG 
OA 00001010 MOD REGR/M OR REG,EA 
OB 00001011 MOD REGR/M OR REG,EA 
OC 00001100 OR AL,DATA8 
0000001101 OR AX,DATA16 
OE 00001110 PUSH CS 
OF 00001111 (not used) 
10 00010000 MOD REGR/M ADC EA,REG 
11 00010001 MOD REGR/M ADC EA,REG 
12 00010010 MOD REGR/M ADC REA,EA 
13 00010011 MOD REGR/M ADC REG,EA 
14 00010100 ADC AL,DATA8 
15 00010101 ADC AX,DATA16 
16 00010110 PUSH SS 
17 00010111 POP SS 
18 00011000 MOD REGR/M SBB EA,REG 
19 00011001 MOD REGR/M SBB EA,REG 
1A 00011010 MOD REGR/M SBB REG,EA 
1 B 00011011 MOD REGR/M SBB REG,EA 
1C 00011100 SBB AL,DATA8 
10 00011101 SBB AX,DATA16 
1E 00011110 PUSH OS 
1F 00011111 POP OS 
20 00100000 MOD REGR/M AND EA,REG 
21 00100001 MOD REGR/M AND EA,REG 
22 00100010 MOD REGR/M AND REG,EA 
23 00100011 MOD REGR/M AND REG,EA 
24 00100100 AND AL,DATA8 
25 00100101 AND AX,DATA16 
26 00100110 ES: 
27 00100111 DAA 
28 00101000 MOD REGR/M SUB EA,REG 
29 00101001 MOD REGR/M SUB EA,REG 
2A 00101010 MOD REGR/M SUB REG,EA 
2B 00101011 MOD REGR/M SUB REG,EA 
2C 00101100 SUB AL,DATA8 
2000101101 SUB AX,DATA16 
2E 00101110 CS: 
2F 00101111 DAS 
30 00110000 MOD REGR/M XOR EA,REG 
31 00110001 MOD REGR/M XOR EA,REG 
32 00110010 MOD REGR/M XOR REG,EA 
33 00110011 MOD REGR/M XOR REG,EA 
34 00110100 XOR AL,DATA8 
35 00110101 XOR AX,DATA16 
36 00110110 SS: 
37 00110111 AAA 
38 00111000 MOD REGR/M CMP EA,REG 
39 00111001 MOD REGR/M CMP EA,REG 
3A 00111010 MOD REGR/M CMP REG,EA 
3B 00111011 MOD REGR/M CMP REG,EA 
3C 00111100 CMP AL,DATA8 
3D 00111101 CMP AX,DATA16 
3E 00111110 DS: 
3F 00111111 AAS 
40 01000000 INC AX 
41 01000001 INC CX 

APPENDIX E 
INSTRUCTIONS IN 

HEXADECIMAL ORDER 

BYTE ADD (REG) TO EA 
WORD ADD (REG) TO EA 
BYTE ADD (EA) TO REG 
WORD ADD (EA) TO REG 
BYTE ADD DATA TO REG AL 
WORD ADD OAT A TO REG AX 
PUSH (ES) ON STACK 
POP STACK TO REG ES 
BYTE OR (REG) TO EA 
WORD OR (REG) TO EA 
BYTE OR (EA) TO REG 
WORD OR (EA) TO REG 
BYTE OR DATA TO REG AL 
WORD OR OAT A TO REG AX 
PUSH (CS) ON STACK 

BYTE ADD (REG) WI CARRY TO EA 
WORD ADD (REG) WI CARRY TO EA 
BYTE ADD (EA) WI CARRY TO REG 
WORD ADD (EA) WI CARRY TO REG 
BYTE ADD DATAW/CARRYTO REG AL 
WORD ADD OAT A W I CARRY TO REG AX 
PUSH (SS) ON STACK 
POP STACK TO REG SS 
BYTE SU B (REG) WI BORROW FROM EA 
WORD SUB (REG) WI BORROW FROM EA 
BYTE SUB (EA) WI BORROW FROM REG 
WORD SUB (EA) WI BORROW FROM REG 
BYTE SUB DATA WI BORROW FROM REG AL 
WORD SU B DATA WI BORROW FROM REG AX 
PUSH (OS) ON STACK 
POP STACK TO REG DS 
BYTE AND (REG) TO EA 
WORD AND (REG) TO EA 
BYTE AND (EA) TO REG 
WORD AN 0 (EA) TO REG 
BYTE AND DATA TO REG AL 
WORD AND DATA TO REG AX 
SEGMENT OVERIDE WI SEGMENT REG ES 
DECIMAL ADJUST FOR ADD 
BYTE SUBTRACT (REG) FROM EA 
WORD SUBTRACT (REG) FROM EA 
BYTE SUBTRACT (EA) FROM REG 
WORD SUBTRACT (EA) FROM REG 
BYTE SUBTRACT DATA FROM REG AL 
WORD SUBTRACT DATA FROM REG AX 
SEGMENT OVERIDE WI SEGMENT REG CS 
DECIMAL ADJUST FOR SUBTRACT 
BYTE XOR (REG) TO EA 
WORD XOR (REG) TO EA 
BYTE XOR (EA) TO REG 
WORD XOR (EA) TO REG 
BYTE XOR DATA TO REG AL 
WORD XOR OAT A TO REG AX 
SEGMENT OVERIDE WI SEGMENT REG SS 
ASCII ADJUST FOR ADD 
BYTE COMPARE (EA) WITH (REG) 
WORD COMPARE (EA) WITH (REG) 
BYTE COMPARE (REG) WITH (EA) 
WORD COMPARE (REG) WITH (EA) 
BYTE COMPARE DATA WITH (AL) 
WORD COMPARE DATA WITH (AX) 
SEGMENTOVERIDE WI SEGMENT REG DS 
ASCII ADJUST FOR SUBTRACT 
INCREMENT (AX) 
INCREMENT (CX) 

E-l 



Instructions In Hexadecimal Order 

E-2 

42 01000010 
43 01000011 
44 01000100 
45 01000101 
46 01000110 
47 01000111 
48 01001000 
49 01001001 
4A 01001010 
4B 01001011 
4C 01001100 
4001001101 
4E 01001110 
4F 01001111 
50 01010000 
51 01010001 
52 01010010 
53 01010011 
54 01010100 
55 01010101 
56 01010110 
57 01010111 
58 01011000 
59 01011001 
5A 01011010 
5B 01011011 
5C 01011100 
5001011101 
5E 01011110 
5F 01011111 
60 01100000 
61 01100001 
62 01100010 
63 01100011 
64 01100100 
65 01100101 
66 01100110 
67 01100111 
68 01101000 
69 01101001 
6A 01101010 
6B 01101011 
6C 01101100 
6001101101 
6E 01101110 
6F 01101111 
70 01110000 
71 01110001 
72 01110010 
73 01110011 
74 01110100 
75 01110101 
76 01110110 
77 01110111 
78 01111000 
79 01111001 
7A 01111010 
7B 01111011 
7C 01111100 
7001111101 
7E 01111110 
7F 01111111 
80 10000000 MOD 000 RIM 
80 10000000 MOD 001 RIM 
80 10000000 MOD 010 RIM 
80 10000000 MOD 011 RIM 
80 10000000 MOD 100 RIM 
80 10000000 MOD 101 RIM 
80 10000000 MOD 110 RIM 
80 10000000 MOD 111 RIM 
81 10000001 MOD 000 RIM 
81 10000001 MOD 001 RIM 

INC OX 
INC BX 
INC SP 
INC BP 
INC SI 
INC 01 
DEC AX 
DEC CX 
DEC OX 
DEC BX 
DEC SP 
DEC BP 
DEC SI 
DEC 01 
PUSH AX 
PUSH CX 
PUSH OX 
PUSH BX 
PUSH SP 
PUSH BP 
PUSH SI 
PUSH 01 
POP AX 
POP CX 
POP OX 
POP BX 
POP SP 
POP BP 
POP SI 
POP 01 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
(not used) 
JO DISP8 
JNO DISP8 
JB/JNAE DISP8 
JNB/JAE DISP8 
JE/JZ DISP8 
JNE/JNZ DISP8 
JBE/JNA DISP8 
JNBE/JA DISP8 
JS DISP8 
JNS DISP8 
JP/JPE DISP8 
JNP/JPO DISP8 
JL/JNGE DISP8 
JNL/JGE DISP8 
JLE/JNG DISP8 
JNLE/JG DISP8 
ADD EA,DATA8 
OR EA,DATA8 
ADC EA, OAT A8 
SBB EA,DATA8 
AND EA,DATA8 
SUB EA,DATA8 
XOR EA,DATA8 
CMP EA,DATA8 
ADD EA,DATA16 
OR EA,DATA16 

INCREMENT (OX) 
INCREMENT (BX) 
INCREMENT (SP) 
INCREMENT (BP) 
INCREMENT (SI) 
INCREMENT (01) 
DECREMENT (AX) 
DECREMENT (CX) 
DECREMENT (OX) 
DECREMENT (BX) 
DECREMENT (SP) 
DECREMENT (BP) 
DECREMENT (SI) 
DECREMENT (01) 
PUSH (AX) ON STACK 
PUSH (CX) ON STACK 
PUSH (OX) ON STACK 
PUSH (BX) ON STACK 
PUSH (SP) ON STACK 
PUSH (BP) ON STACK 
PUSH (SI) ON STACK 
PUSH (01) ON STACK 
POP STACK TO REG AX 
POP STACK TO REG CX 
POP STACK TO REG OX 
POP STACK TO REG BX 
POP STACK TO REG SP 
POP STACK TO REG BP 
POP STACK TO REG SI 
POP STACK TO REG 01 

JUMP ON OVERFLOW 
JUMPON NOT OVERFLOW 

8086 Assembly Language 

JUMP ON BELOW INOT ABOVE OR EQUAL 
JUMPON NOT BELOW/ABOVEOR EQUAL 
JUMP ON EQUAL/ZERO 
JUMP ON NOT EQUAL/NOT ZERO 
JUMPON BELOW OR EQUAL/NOT ABOVE 
JUMPON NOT BELOW OR EQUAL/ABOVE 
JUMPON SIGN 
JUMPON NOT SIGN 
JUMP ON PARITY IPARITY EVEN 
JUMPON NOT PARITY/PARITY ODD 
JUMPON LESS/NOTGREATER OR EQUAL 
JUMP ON NOT LESS/GREATER OR EQUAL 
JUMP ON LESS OR EQUAL/NOT GREATER 
JUMP ON NOT LESS OR EQUAL/GREATER 
BYTE ADD DATA TO EA 
BYTE OR DATA TO EA 
BYTE ADD DATA WI CARRY TO EA 
BYTE SU B DATA W I BORROW FROM EA 
BYTE AND DATA TO EA 
BYTE SUBTRACT DATA FROM EA 
BYTE XOR OAT A TO EA 
BYTE COMPARE DATA WITH (EA) 
WORD ADD DATA TO EA 
WORD OR DATA TO EA 



8086 Assembly Language Instructions In Hexadecimal Order 

81 10000001 MOD 010 RIM ADC EA,DATA16 WORD ADD OAT A W I CARRY TO EA 
81 10000001 MOD 011 RIM SBB EA,DATA16 WORD SU B DATA WI BORROW FROM EA 
85 10000001 MOD 100 RIM AND EA,DATA16 WORD AND DATA TO EA 
81 10000001 MOD 101 RIM SUB EA,DATA16 WORD SUBTRACT DATA FROM EA 
81 10000001 MOD 110 RIM XOR EA,DATA16 WORDXOR DATA TO EA 
81 10000001 MOD 111 RIM CMP EA,DATA16 WORD COMPARE DATA WITH (EA) 
82 10000010 MOD 000 RIM ADD EA,DATA8 BYTE ADD DATA TO EA 
82 10000010 MOD 001 RIM (not used) 
82 10000010 MOD 010 RIM ADC EA,DATA8 BYTE ADD DATA W I CARRY TO EA 
82 10000010 MOD 011 RIM SBB EA,DATA8 BYTE SUB DATA WI BORROW FROM EA 
82 10000010 MOD 100 RIM (not used) 
82 10000010 MOD 101 RIM SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA 
82 10000010 MOD 110 RIM (not used) 
82 10000010 MOD 111 RIM CMP EA,DATA8 BYTE COMPARE DATA WITH (EA) 
83 10000011 MOD 000 RIM ADD EA,DATA8 WORD ADD DATA TO EA 
83 10000011 MOD 001 RIM (not used) 
83 10000011 MOD 010 RIM ADC EA,DATA8 WORD ADD DATA WI CARRY TO EA 
83 10000011 MOD 011 RIM SBB EA,DATA8 WORDSUBDATAWI BORROW FROM EA 
83 10000011 MOD 100 RIM (not used) 
83 10000011 MOD 101 RIM SUB EA,DATA8 WORD SUBTRACT DATA FROM EA 
83 10000011 MOD 110 RIM (not used) 
83 10000011 MOD 111 RIM CMP EA,DATA8 WORD COMPARE DATA WITH (EA) 
84 10000100 MOD REGR/M TEST EA,REG BYTE TEST (EA) WITH (REG) 
85 10000101 MOD REGR/M TEST EA,REG WORD TEST (EA) WITH (REG) 
86 10000110 MOD REGR/M XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA) 
87 10000111 MOD REGR/M XCHG REG,EA WORD EXCHANGE (REG) WITH (EA) 
88 10001000 MOD REGR/M MOV EA,REG BYTE MOVE (REG) TO EA 
89 10001001 MOD REGR/M MOV EA,REG WORD MOVE (REG) TO EA 
8A 10001010 MOD REGRIM MOV REG,EA BYTE MOVE (EA) TO REG 
8B 10001011 MOD REGR/M MOV REG,EA WORD MOVE (EA) TO REG 
8C 10001100 MOD OSR RIM MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA 
8C 10001100 MOD 1-- RIM (not used) 
8D 10001101 MOD REGR/M LEA REG,EA LOAD EFFECTIVE ADDRESS OF EA TO REG 
8E 10001110 MOD OSR RIM MOV SR,EA WORD MOVE (EA) TO SEGMENT REG SR 
8E 10001110 MOD -- RIM (not used) 
8F 10001111 MOD 000 RIM POP EA POP STACK TO EA 
8F 10001111 MOD 001 RIM (not used) 
8F 10001111 MOD 010 RIM (not used) 
8F 10001111 MOD 011 RIM (not used) 
8F 10001111 MOD 100 RIM (not used) 
8F 10001111 MOD 101 RIM (not used) 
8F 10001111 MOD 110 RIM (not used) 
8F 10001111 MOD 111 RIM (not used) 
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NaP) 
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX) 
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (DX) 
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX) 
94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP) 
95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP) 
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI) 
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (DI) 
98 10011000 CBW BYTE CONVERT (AL) TO WORD (AX) 
99 10011001 CWD WORD CONVERT (AX) TO DOUBLE WORD 
9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT CALL 
9B 10011011 WAIT WAIT FOR TEST SIGNAL 
9C 10011100 PUSHF PUSH FLAGS ON STACK 
9D 10011101 POPF POP STACK TO FLAGS 
9E 10011110 SAHF STORE (AH) INTO FLAGS 
9F 10011111 LAHF LOAD REG AH WITH FLAGS 
AO 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG AL 
A110100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX 
A210100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR 
A310100011 MOV ADDR16,AX WORD MOVE (AX) TO ADDR 
A410100100 MOVS DST8SRC8 BYTE MOVE, STRING OP 
A510100101 MOVS DST16,SRC16 WORD MOVE, STRING OP 
A610100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP 
A710100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP 
A810101000 TEST AL,DATA8 BYTE TEST (AL) WITH DATA 
A910101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA 
AA10101010 STOS DST8 BYTE STORE, STRING OP 
AB10101011 STOS DST16 WORD STORE, STRING OP 
AC10101100 LaDS SRC8 BYTE LOAD, STRING OP 

E-3 



Instructions In Hexadecimal Order 8086 Assembly Language 

AD10101101 LODS SRC16 WORD LOAD, STRING OP 
AE10101110 SCAS DIPTR8 BYTE SCAN, STRING OP 
AF10101111 SCAS DIPTR16 WORD SCAN, STRING OP 
BO 10110000 MOV AL,DATA8 BYTE MOVE DATA TO REG AL 
B110110001 MOV CL,DATA8 BYTE MOVE DATA TO REG CL 
B210110010 MOV DL,DATAB BYTE MOVE DATA TO REG DL 
B310110011 MOV BL,DATA8 BYTE MOVE DATA TO REG BL 
B410110100 MOV AH,DATA8 BYTE MOVE DATA TO REG AH 
B510110101 MOV CH,DATA8 BYTE MOVE DATA TO REG CH 
B610110110 MOV DH,DATA8 BYTE MOVE DATA TO REG DH 
B710110111 MOV BH,DATA8 BYTE MOVE DATA TO REG BH 
B810111000 MOV AX,DATA16 WORD MOVE DATA TO REG AX 
B910111001 MOV CX,DATA16 WORD MOVE DATA TO REG CX 
BA10111010 MOV DX,DATA16 WORD MOVE DATA TO REG DX 
BB10111011 MOV BX,DATA16 WORD MOVE DATA TO REG BX 
BC10111100 MOV SP,DATA16 WORD MOVE DATA TO REG SP 
BD10111101 MOV BP,DATA16 WORD MOVE DATA TO REG BP 
BE10111110 MOV SI,DATA16 WORD MOVE DATA TO REG SI 
BF10111111 MOV DI,DATA16 WORD MOVE DATA TO REG DI 
CO 11000000 (not used) 
C111000001 (not used) 
C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP 
C311000011 RET INTRA SEGMENT RETURN 
C411000100 MOD REGRIM LES REG,EA WORD LOAD REG AND SEGMENT REG ES 
C511000101 MOD REGRIM LDS REG,EA WORD LOAD REG AND SEGMENT REG DS 
C611000110 MOD 000 RIM MOV EA,DATAB BYTE MOVE DATA TO EA 
C611000110 MOD 001 RIM (not used) 
C611000110 MOD 010 RIM (not used) 
C611000110 MOD 011 RIM (not used) 
C611000110 MOD 100 RIM (not used) 
C611000110 MOD 101 RIM (not used) 
C611000110 MOD 110 RIM (not used) 
C611000110 MOD 111 RIM (not used) 
C711000111 MOD 000 RIM MOV EA,DATA16 WORD MOVE DATA TO EA 
C711000111 MOD 001 RIM (not used) 
C711000111 MOD 010 RIM (not used) 
C711000111 MOD 011 RIM (not used) 
C711000111 MOD 100 RIM (not used) 
C711000111 MOD 101 RIM (not used) 
C711000111 MOD 110 RIM (not used) 
C711000111 MOD 111 RIM (not used) 
C811001000 (not used) 
C911001001 (not used) 
CA11001010 RET DATA16 INTER SEGMENT RETURN, ADD DATA TO REG SP 
CB11001011 RET INTER SEGMENT RETU RN 
CC11001100 INT 3 TYPE 3 INTERRUPT 
CD11001101 INT TYPE TYPED INTERRUPT 
CE11001110 INTO INTERRUPT ON OVERFLOW 
CF11001111 IRET RETURN FROM INTERRUPT 
DO 11010000 MOD 000 RIM ROL EA,1 BYTE ROT ATE EA LEFT 1 BIT 
DO 11010000 MOD 001 RIM ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT 
DO 11010000 MOD 010 RIM RCL EA,1 BYTE ROTATE EA LEFT THRU CARRY 1 BIT 
DO 11010000 MOD 011 RIM RCR EA,1 BYTE ROTATE EA RIGHTTHRU CARRY1 BIT 
DO 11010000 MOD 100 RIM SHL EA,1 BYTE SHIFT EA LEFT 1 BIT 
DO 11010000 MOD 101 RIM SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT 
DO 11010000 MOD 110 RIM (not used) 
DO 11010000 MOD 111 RIM SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT 
0111010001 MOD 000 RIM ROL EA,1 WORD ROTATE EA LEFT 1 BIT 
D111010001 MOD 001 RIM ROR EA,1 WORD ROTATE EA RIGHT 1 BIT 
0111010001 MOD 010 RIM RCL EA,1 WORD ROTATE EA LEFTTHRU CARRY 1 BIT 
D111010001 MOD 011 RIM RCR EA,1 WORD ROTATE EA RIGHT THRU CARRY 1 BIT 
0111010001 MOD 100 RIM SHL EA,1 WORD SHIFT EA LEFT 1 BIT 
0111010001 MOD 101 RIM SHR EA,1 WORD SHIFT EA RIGHT 1 BIT 
0111010001 MOD 110 RIM (not used) 
D111010001 MOD 111 RIM SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1 BIT 
0211010010 MOD 000 RIM ROL EA,CL BYTE ROTATE EA LEFT (CL) BITS 
D211010010 MOD 001 RIM ROR EA,CL BYTE ROTATE EA RIGHT (CL) BITS 
D211010010 MOD 010 RIM RCL EA,CL BYTE ROTATE EA LEFTTHRU CARRY (CL) BITS 
D211010010 MOD 011 RIM RCR EA,CL BYTE ROTATE EA RIGHTTHRU CARRY (CL) BITS 
0211010010 M0D 100 RIM SHL EA,CL BYTE SHIFT EA LEFT (CL) BITS 
D211010010 MOD 101 RIM SHR EA,CL BYTE SHIFT EA RIGHT (CL) BITS 
D211010010 MOD 110 RIM (not used) 
D211010010 MOD 111 RIM SAR EA,CL BYTE SHIFT SIGNED EA RIGHT (CL) BITS 

E-4 



8086 Assembly Language Instructions In Hexadecimal Order 

0311010011 MOD 000 RIM ROl EA,Cl WORD ROTATE EA LEFT (Cl) BITS 
0311010011 MOD 001 RIM ROR EA,Cl WORD ROTATE EA RIGHT (Cl) BITS 
0311010011 MOD 010 RIM RCL EA,Cl WORD ROTATE EA lEFT THRU CARRY (Cl) BI1:S 
0311010011 MOD 011 RIM RCR EA,Cl WORD ROTATE EA RIGHT THRU CARRY (Cl) BITS 
0311010011 MOD 100 RIM SHl EA,Cl WORD SHIFT EA lEFT (Cl) BITS 
0311010011 MOD 101 RIM SHR EA,Cl WORD SHIFT EA RIGHT (CL) BITS 
0311010011 MOD 110 RIM (not used) 
0311010011 MOD 111 RIM SAR EA,Cl WORD SHIFT SIGNED EA RIGHT (Cl) BITS 
0411010100 00001010 AAM ASCII ADJUST FOR MULTIPLY 
0511010101 00001010 ADD ASCII ADJUST FOR DIVIDE 
0611010110 (not used) 
0711010111 XlAT TABLE TRANSLATE USING (BX) 
0811011- MOD - RIM ESC EA ESCAPE TO EXTERNAL DEVICE 
EO 11100000 LOOPNZ/LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT ZEROINOT EQUAL 
E111100001 LOOPZ/LOOPE DISP8 LOOP (CX) TIMES WHILE ZERO/EQUAL 
E211100010 LOOP DISP8 LOOP (CX) TIMES 
E311100011 JCXZ DISP8 JUMP ON (CX)=O 
E411100100 IN AL,PORT BYTE INPUT FROM PORT TO REG Al 
E511100101 IN AX,PORT WORD INPUT FROM PORT TO REG AX 
E611100110 OUT AL,PORT BYTE OUTPUT (AL) TO PORT 
E711100111 OUT AX,PORT WORD OUTPUT (AX) TO PORT 
E811101000 CALL DISP16 DIRECT INTRA SEGMENT CALL 
E911101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP 
EA11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP 
EB11101010 JMP DISP8 DIRECT INTRA SEGMENT JUMP 
EC11101010 IN AL,DX BYTE IN PUT FROM PORT (OX) TO REG AL 
ED11101010 IN AX,DX WORD INPUT FROM PORT (OX) TO REG AX 
EE 11101010 OUT OX BYTE OUTPUT (AL) TO PORT (OX) 
EF 11101010 OUT OX WORD OUTPUT (AX) TO PORT (OX) 
FO 11110000 LOCK BUS LOCK PREFIX 
F1 11110001 (not used) 
F2 11110010 REPNZ REPEAT WHilE (CX)+O AND (ZF)=O 
F311110011 REPN REPEAT WHILE (CX)+O AND (ZF)=1 
F411110100 HlT HALT 
F511110101 CMC COMPLEMENT CARRY FLAG 
F611110110 MOD 000 RIM TEST EA,DATA8 BYTE TEST (EA) WITH OAT A 
F611110110 MOD 001 RIM (not used) 
F611110110 MOD 010 RIM NOT EA BYTE INVERT EA 
F611110110 MOD 011 RIM NEG EA BYTE NEGATE EA 
F611110110 MOD 100 RIM MUl EA BYTE MULTIPLY BY (EA), UNSIGNED 
F611110110 MOD 101 RIM IMUl EA BYTE MULTIPLY BY (EA), SIGNED 
F611110110 MOD 110 RIM DIV EA BYTE DIVIDE BY (EA), UNSIGNED 
F611110110 MOD 111 RIM IDIV EA BYTE DIVIDE BY (EA), SIGNED 
F711110111 MOD 000 RIM TEST EA,DATA16 WORD TEST (EA) WITH OAT A 
F711110111 MOD 001 RIM (not used) 
F711110111 MOD 010 RIM NOT EA WORD INVERT EA 
F711110111 MOD 011 RIM NEG EA WORD NEGATE EA 
F711110111 MOD 100 RIM MUl EA WORD MULTIPLY BY (EA), UNSIGNED 
F711110111 MOD 101 RIM IMUL EA WORD MULTIPLY BY (EA), SIGNED 
F711110111 MOD 110 RIM DIV EA WORD DIVIDE BY (EA), UNSIGNED 
F711110111 MOD 111 RIM IDIV EA WORD DIVIDE BY (EA), SIGNED 
F811111000 CLC CLEAR CARRY FLAG 
F911111001 STC SET CARRY FLAG .. 
FA 11111010 CLI CLEAR INTERRUPT FLAG 
FB11111011 STI SET INTERRUPT FLAG 
FC11111100 CLD CLEAR DIRECTION FLAG 
FD11111101 STD SET DIRECTION FLAG 
FE 11111110 MOD 000 RIM INC EA BYTE INCREMENT EA 
FE 11111110 MOD 001 RIM DEC EA BYTE DECREMENT EA 
FE 11111110 MOD 010 RIM (not used) 
FE 11111110 MOD 011 RIM (not used) 
FE 11111110 MOD 100 RIM (not used) 
FE 11111110 MOD 101 RIM (not used) 
FE 11111110 MOD 110 RIM (not used) 
FE 11111110 MOD 111 RIM (not used) 
FF 11111111 MOD 000 RIM INC EA WORD INCREMENT EA 
FF 11111111 MOD 001 RIM DEC EA WORD DECREMENT EA 
FF 11111111 MOD 010 RIM CALL EA INDIRECT INTRA SEGMENT CALL 
FF 11111111 MOD 011 RIM CALL EA INDIRECT INTER SEGMENT CALL 
FF 11111111 MOD 100 RIM JMP EA INDIRECT INTRA SEGMENT JUMP 
FF 11111111 MOD 101 RIM JMP EA INDIRECT INTER SEGMENT JUMP 
FF 11111111 MOD 110 RIM PUSH EA PUSH (EA) ON STACK 
FF 11111111 MOD 111 RIM (not used) 

E-5 



Instructions In Hexadecimal Order 8086 Assembly Language 

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE: 

16-BIT (W=1) 8-BIT(W=0) SEGMENT REG 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 DL 10 SS 
011 BX 011 BL 11 OS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 DH 
111 01 111 BH 

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS) 

00 000 (BX)+(SI) OS 
00 001 (BX)+(DI) OS 
00 010 (BP)+(SI) SS 
00 011 (BP)+(DI) SS 
00 100 (SI) OS 
00 101 (01) OS 
00 110 DISP16 (DIRECT ADDRESS) OS 
00 111 (BX) OS 
01 000 (BX) + (SI) + DISP8 OS 
01 001 (BX) + (01) + DISP8 OS 
01 010 (BP) + (SI) + DISP8 SS 
01 011 (BP) + (01) + DISP8 SS 
01 100 (SI)+DISP8 OS 
01 101 (DI)+DISP8 OS 
01 110 (BP)+DISP8 SS 
01 111 (BX)+DISP8 OS 
10 000 (BX)+(SI)+DISP16 OS 
10 001 (BX)+(DI)+DISP16 OS 
10 010 (BP) + (SI) + DISP16 SS 
10 011 (BP) + (01) + DISP16 SS 
10 100 (51) + DISP16 OS 
10 101 (01) + DISP16 OS 
10 110 (BP)+ DISP16 SS 
10 111 (BX)+ DISP16 OS 
11 000 REG AX I AL 
11 001 REG CX I CL 
11 010 REG OX I DL 
11 011 REG BX I BL 
11 100 REG SP I AH 
11 101 REG BP I CH 
11 110 REG 511 DH 
11 111 REG 011 BH 

FLAGS REGISTER CONTAINS: 

, X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

E-6 



8086 Assembly Language 

SET MATRIX 

L 0 
Hi 8 9 A 8 C D E 

0 OR OR OR OR OR OR PUSH 
b.f.r/m w.fJ/m b.t.r/m w.t.r/m bl W.I CS 

I SBB SBB SBB SBB SBB SBB PUSH 
b.f.r/m w.l.r/m b.t.r/m w.t.r/m b.1 W.I OS 

2 SUB SUB SUB SUB SUB SUB SEG 
b.f.r/m w.f.r/m b.t.r!m w.t.r/m b.1 W.I CS 

3 CMP CMP CMP CMP CMP CMP SEG 
b.fJ/m w.fJ/m b.t.r/m w.t.r/m b.1 W.I OS 

4 DEC DEC DEC DEC DEC DEC DEC 
AX CX OX BX SP BP SI 

5 POP POP POP POP POP POP POP 
AX CX DX BX SP BP SI 

6 

7 JS JNS JPI JNPI JlI JNlI JLEI 
JPE JPO JNGE JGE JNG 

8 MOV MOV MOV MOV MOV LEA MOV 
b.f.r/m w.t.rlm b.t.r/m w.t.r/m sr,f,r/m sr,t,r/m 

9 CBW CWD CALL WAIT PUSHF POPF SAHF 
I.d 

A TEST TEST STOS STOS LODS LODS SCAS 
b,l,a w,l,a 

8 MOV MOV MOV MOV MOV MOV MOV 
I - AX 1- CX I - OX 1- BX 1- SP I - BP I - 51 

C RET. RET INT INT INTO 
I.(I+SP) I Type 3 (Any) 

D ESC ESC ESC ESC ESC ESC ESC 
0 1 2 3 4 5 6 

E CALL JMP JMP JMP IN IN OUT 
d d I.d sl.d v,b V,W v,b 

F CLC STC Cli STI CLD STD 
Grp 2 
b.rlm 

where 

modOr/m 000 001 010 011 100 101 110 

Immed ADD OR ADC SBB AND SUB XOR 

Shllt ROL ROR RCL RCR SHLISAL SHR -
Grp 1 TEST - NOT NEG MUL IMUL DlV 
Grp 2 INC DEC CALL CALL JMP JMP PUSH 

Id I.ld Id lid 

F Hi 
D 

POP I 
OS 

DAS 2 

AAS 3 

DEC 4 
01 

POP 5 
DI 

6 

JNLEI 7 
JG 

POP 8 
rim 

LAHF 9 

SCAS A 

MOV B 
1- DI 

IRET C 

ESC D 
7 

OUT E 
V,W 

Grp 2 F 
wr/m 

111 

CMP 

SAR 

IDIV 
-

Instructions In Hexadecimal Order 

8086 INSTRUCTION 

Lo 
D I 2 

ADD ADD ADD 
b.t.r/m w.t.r/m b.t.rlm 

ADC ADC ADC 
b.t.rlm w.t.rlm b.t.rlm 

AND AND AND 
b.t.rlm w.t.rlm b.t.rlm 

XOR XOR XOR 
b.tJlm w.t.r/m b.t.rlm 

INC INC INC 
AX CX OX 

PUSH PUSH PUSH 
AX CX OX 

JO JNO JBI 
JNAE 

Immed Immed Immed 
b.r/m w.r/m b.r/m 

XCHG XCHG XCHG 
AX CX OX 

r- MOV MOV MOV 
m - AL m - AX AL - m 

MOV MOV MOV 
1_ AL 1- CL 1- DL 

RET. 
(I+SP) 

Sh,tt Shift Shift 
b w b.v 

LOOPNZ/ LOOPZI LOOP 
LOOPNE LOOPE 

LOCK REP 

b = byte operation 
d = direct 
t = from CPU reg 
i = Immediate 
ia = immed to accum 
id = Indirect 

3 

ADD 
w.t.r/m 

ADC 
w.t.rlm 

AND 
w.tJlm 

XOR 
w.tJlm 

INC 
BX 

PUSH 
BX 

JNBI 
JAE 

Immed 
Is.r/m 

XCHG 
BX 

MOV 
AX - m 

MOV 
1- BL 

RET 

Shift 
W.V 

JCXZ 

REP 
Z 

is = immed byte. sign ext. 
I = long ie. intersegment 

4 5 6 
ADD ADD PUSH 
b.la w.la ES 

ADC ADG PUSH 
b.1 W.I SS 

AND AND SEG 
b.1 W.I ES 

XOR XOR SEG 
b.1 W.I SS 

INC INC INC 
SP BP SI 

PUSH PUSH PUSH 
SP BP SI 

JEI JNEI JBE/ 
JZ JNZ JNA 

TEST TEST XCHG 
b.r/m w.r/m b.r/m 

XCHG XCHG XCHG 
SP BP SI 

MOVS MOVS CMPS 

MOV MOV MOV 
1- AH ,.- CH 1- DH 

LES LOS MOV 
b.i.r/m 

AAM AAO 

IN IN OUT 
b w b 

HLT CMC 
Grp 1 
b.r/m 

m = memory 
rim = EA is second byte 
Sl = short mtrasegment 
sr = segment register 
t = to CPU reg 
v = variable 
w = word operation 
z = zero 

7 
POP 
ES 

POP 
SS 

DAA 

AAA 

INC 
01 

PUSH 
01 

JNBE/ 
JA 

XCHG 
w.r/m 

XCHG 
01 

CMPS 

MOV 
I - BH 

MOV 
w.IJ/m 

XLAT 

OUT 
w 

Grp 1 
w.r/m 

E-7 





DUAL FUNCTION KEYWORD/SYMBOLS 

AND NOT OR 

SYMBOLS 

A CLD FAC 
AAA CLI HLT 
AAD CMC IDIV 
AAM CMP IMUL 
AAS CMPS IN 
ADC CS INC 
ADD CWO INT 
AH CX INTO 
AL DAA IRET 
AX DAS JA 
BH DEC JAE 
BL DH JB 
BP 01 JBE 
BX DIV JCXZ 
CALL DL JE 
CBW OS JG 
CH DX JGE 
CL ES JL 
CLC ESC JLE 

NON-CONFLICTING KEYWORDS 

DEBUG 
ERRORPRINT 
MEMORY 
NODEBUG 
NOERRORPRINT 
NOOBJECT 
NOPAGING 

NOPRINT 
NOSYMBOLS 
OBJECT 
PAGING 
PRINT 
STACK 
SYMBOLS 

HANDS-OFF KEYWORDS 

ABS ENDS 
ASSUME EO 
AT EOU 
BYTE EXITM 
COMMON EXTRN 
CODEMACRO FAR 
DB GE 
DD GROUP 
DUP GT 
DW HIGH 
DWORD INPAGE 
END LABEL 
ENDM LE 
ENDP LENGTH 

SHL 

JMP 
JNA 
JNAE 
JNB 
JNBE 
JNE 
JNG 
JNGE 
JNLE 
JNO 
JNP 
JNS 
JNZ 
JO 
JP 
JPE 
JPO 
JS 
JZ 

LOW 
LT 
MASK 
MEMORY 
MOD 
MODRM 
NAME 
NE 
NEAR 
NOTHING 
OFFSET 
ORG 
PAGE 
PARA 

APPENDIX F I 
PREDEFINED NAME~ 

SHR XOR 

LAHF POPF STC 
LDS PUSH STD 
LEA PUSHf STI 
LES RCL STOS 
LOCK RCR SUB 
LODS REPE TEST 
LOOP REPNE WAIT 
LOOPE REPNZ XCHG 
LOOPNE REPZ XLAT 
LOOPNZ RET ??SEG 
LOOPZ ROR 
MOV SAHF 
MOVS SAL 
MUL SAR 
NEG SBB 
NIL SCAS 
NOP SI 
OUT SP 
POP SS 

PREFX STACK 
PROC THIS 
PROCLEN TYPE 
PTR WIDTH 
PUBLIC WORD 
PURGE ?' 
RECORD 
RELB 
RELW 
SEG 
SEGFIX 
SEGMENT 
SHORT 
SIZE 

F-l 





APPENDIX G I 
RELOCATION 

Address expressions and numeric expressions may have results which cannot be 
known until the program has been positioned in memory. These expressions are 
relocatable. The following rules define (1) when an expression is relocatable 
and (2) what kind of arithmetic is allowable with relocatable numbers and 
relocatable address expressions. 

NOTE 

Associated with every relocatable value is a set of relocation attributes. The 
assembler tells the R & L system how to calculate the final absolute value via 
these attributes. 

Relocatable Expressions 

The following rules define when an expression is relocatable. The EQU facility of 
the assembler allows a symbol to have as its value the results of a relocatable expres
sion. Therefore, any relocatable expressions may be embodied in a single symbol. 

1. Segments and Groups. A segment is considered "non-relocatable" if 

a. It has either PARA or PAGE alignment type and it is not a PUBLIC or 
STACK segment 

b. It is absolute (Le., defined via "AT exp"). 

A non-relocatable segment has the property that the run-time offset of any byte 
in the segment is known at assembly time. 

The name of a segment or group may be used in an expression. The name then 
stands for the paragraph number in 8086 memory space where the segment or 
group will be located. If a segment is defined via "At exp", then this number is 
known at assembly time and is "absolute". Otherwise, the paragraph number 
will not be known until the program has been located by LOC86 (or QRL86) 
and is "base" relocatable 

2. The offset of a variable or label is known at assembly time (called an 
"absolute" offset) if it meets both these tests: 

a. its containing segment is non-relocatable 

b. it was defined by appearing as a statement label, or to the left of a DB, DW, 
DD, or LABEL directive, or by an expression of the kind "THIS type" 

The variable's offset is NOT known at assembly time, Le., is "offset" 
relocatable, if it fails either (a) or (b). Variables or labels defined by an EX
TRN statement always have relocatable offsets, (Le., are "offset" 
relocatable). 

3. Numbers. A symbol is a number if 

a. it was defined in an EXTRN statement with type ABS, or 

b. it is the name of a group or segment, or 

c. it is defined by EQUating it to an expression evaluating to a number. 

Numbers defined by (a) are always "offset" relocatable, numbers as in (b) are 
either absolute or "base" relocatable as described in 1 above. Numbers defined 
via (c) receive the relocation attributes of the expression. Rules governing 
relocation of expressions are discussed below. 

A number whose value is known at assembly time is called an "absolute" 
number. 

0-1 



Relocation 

0-2 

8086 Assembly Language 

4. Expressions. Expressions evaluate to either a number or an address expression. 
The rules governing expression evaluation are given in Chapter 5. The following 
rules define how relocation affects expression evaluation. 

a. The SHORT operator does not affect relocation. 

b. The operators OR, XOR, AND, and NOT may only operate on absolute 
numbers. The result of one of these operations is always an absolute 
number. 

c. The relational operators EQ, NE, GT, GE, L T, and LE may have operands 
which are 

i. both absolute numbers. 

ii. both relocatable numbers. The numbers must have exactly the same 
relocation attributes. 

iii. Variables and/or Labels. The operands must have exactly the same 
relocation attributes 

The result of a relational operation is always an absolute Number. 

d. The operators + and -. Two relocatable expressions may never be added. 
A relocatable expression may appear to the right of "-" if a relocatable ex
pression is on the left, and the two expressions relate as in c above. In this 
case, the result is always an absolute number. An absolute number may be 
added to or subtracted from a relocatable expression. A relocatable number 
may be added to an indexing register. The result has an offset which is iden
tical to the number. 

e. The operators *, /, MOD, SHL, SHR only operate on absolute numbers 
and the result is always an absolute number. 

f. HIGH and LOW accept either a number or a variable or label as an 
operand. If the operand is an absolute number, the result is an absolute 
number. If the operand is a variable or label with an absolute offset, then 
the result is an absolute number. If the variable or label has a relocatable of
fset, then the offset is treated as a relocatable number and the following 
rules apply: 

Let RN be a relocatable number with relocation type 

i. "low", then LOW RN = RN and HIGH RN = 0 

ii. "high", then LOW RN = RN and HIGH RN = 0 

iii. "offset" then LOW RN = RN', which is "low" relocatable and HIGH 
RN = RN', which is "high" relocatable 

iv. "base" then HIGH and LOW are illegal. 

g. TYPE always returns an absolute number. The operand to the OFFSET 
operator must be an expression evaluating to a variable or label. If the 
operand has a relocatable offset, then the result is a relocatable number 
with the same relocation attributes as the offset. If the operand has an ab
solute offset, then the result is an absolute number. In either case, the value 
of the result will equal the operand's offset (i.e., as described in (2) above or 
PTR and ":" below). 

The SEG operator operates on any legal address expression and returns the 
paragraph number (or segment register) of that address expression. The resulting 
number is relocatable or absolute as defined in 1 above. 

The PTR operator can be used in two ways; the simplest just changes the type at
tribute of an address expression. No relocation attributes are affected by this action. 
The other aspect of the PTR operator is to create a variable or label from its two 
operands. One of the operands must be an absolute number (the type). The other 
operand represents the offset of the new quantity. This operand may be absolute or 
any legal relocatable number. Note that this includes "low", "high", or "base" 



8086 Assembly Language 

relocatable numbers, as well as "offset" relocatable numbers. The result of this 
usage of PTR is a variable or label with no segment part and an offset part which is 
exactly equal to the offset of the operand, including any relocatable attributes that 
operand has. This result is not valid in any context except as an operand to the seg
ment override operator, the OFFSET operator, or the TYPE operator. 

The SEGMENT OVERRIDE operator, ":" is interpreted as follows: 

i. The left operand is restricted to be one of 

1. A segment register 

2. A segment name defined in this module 

3. A group name 

ii. The right operand must be an address expression. 

iii. If the left operand is a segment register or segment name, the OFFSET 
of the right operand is first determined and then a new address expres
sion is formed as the result. The segment portion of the result is the left 
operand. The offset of the result is the OFFSET of the right operand, 
which may be relocatable. 

iv. If the left operand is a group name, then the result has the group as its 
segment part. The number of bytes from the base of the group to the 
right operand is the offset of the result. This offset is always 
relocatable. 

The following notation will allow a more exact description of the results from 
using PTR and the SEGMENT OVERRIDE operator ":". "Vsada" will stand 
for an address expression. The "s" is its segment part (segment name, group 
name, segment register, or 0 for undefined). The "d" is its offset part, and "a" 
is the type (BYTE, WORD, DWORD, NEAR, FAR). 

Let d be any number (absolute or relocatable) and a be any valid type. Then 

a ptr d = VOda, 

an address expression whose offset is exactly equal to d and whose type is a. The 
segment part is undefined, i.e., the paragraph number to which the offset must 
be added to obtain a valid 8086 memory address. 

Let s be a segment name, let r be a segment register and let g be a group name. 
Then 

s : Vs'da = Vsd'a and 
r : Vs'da = Vrd'a 

where d' = OFFSET(Vs'da). Morever, 

g : Vs'da = Vgd'a, 

where d' = OFFSET(Vs'da) + (s' - g) * 16. In this case, d must be either ab
solute or "offset"-relocatable FROM s'. Furthermore, 

g: VOda = Vgda, 

which represents an offset of d from the base of g. 

A symbol is an absolute number if one of the following applies: 

1. it represents the paragraph number of a segment defined by "At exp". 

2. it is equated to an expression involving only absolute numbers. 

3. it is the OFFSET of a variable or label defined in a non-relocatable segment. 

4. it is equated to the comparison or difference of two expressions. 

5. it is equated to any expression whose result is always an absolute number, 
regardles of the types of operands in the expression (e.g., TYPE, LENGTH, 
SIZE, WIDTH, BYTE, WORD, DWORD, NEAR, FAR) 

6. it is equated to the HIGH or LOW of an absolute number or a variable or label 
as described in 2 above. 

Relocation 

G-3 



Relocation 

0-4 

8086 Assembly Language 

A symbol is a relocatable number if and only if it is a number and not absolute. 

Assume that Nabs is an absolute number, Nrel is a relocatable number, Vabs is a 
variable or label whose offset is absolute, Vrel is a variable or label whose offset is 
relocatable, s is the name of a segment whose paragraph number is not known at 
assembly time, and g is a group name. The expressions shown in the following list 
are the only expressions which yield a relocatable result: 

EXPRESSION VALUE 

Nrel Nrel 
Vrel Vrel 
9 Nrel 
s Nrel 

Nabs + Nrel Nrel 
Nabs + Vrel Vrel 
Nabs + s Nrel 
Nabs + 9 Nrel 

Nrel + Nabs Nrel 
Vrel + Nabs Vrel 
s + Nabs Nrel 
9 + Nabs Nrel 

Nrel- Nabs Nrel 
Vrel - Nabs Vrel 
s -Nabs Nrel 
9 - Nabs Nrel 

HIGH Vrel Nrel 
HIGH Nrel Nrel 

LOWVrel Nrel 
LOW Nrel Nrel 

s : Nabs PTA Nabs' Vrel 
9 : Nabs PTA Nabs' Vrel 

s : Nabs PTA Nrel Vrel 
9 : Nabs PTA Nrel Vrel 

s : Vabs Vrel 
g: Vabs Vrel 

SEG Vrel Nrel 
OFFSETVrel Nrel 

The expressions shown in the following list are the expressions which involve 
relocatable quantities, but always yield an absolute result: 

where r is one of 

Vrel- Vrel 
Nrel- Nrel 

Vrel rVrel 
Nrel r Nrel 

EQ 
NE 
GT 
GE 
LT 
LE 

The result is always Nabs. 



APPENDIX H I 
GETTING STARTED 

The primary purpose of this appendix is to show a simple way to get started using 
ASM86. The information is given in four sections, corresponding to four cases of 
the size or program code and data (including stack). 

Each section summarizes the required and recommended declarations to simplify 
coding and references to data. Linking with PLM86 is described in the ASM86 
Operator's Manual. 

The four cases are: 

1. total code size less than 64K bytes, total data size less than 64K bytes, total stack 
size less than 64K bytes 

2. total code size greater than 64K, total data and stack each less than 64K 

3. total code and stack size each less than 64K, total data size greater than 64K 

4. code and data greater than 64K, stack less than 64K 

These numbers refer to the sizes after all modules have been linked. 

Code, Data, and Stack Sizes Each Less Than 64K 

Segments 

For the first case, there are 3 types of segments: 

1. code, which contains the instructions the program will execute, 

2. data, which contains the data being manipulated and 

3. stack, which will contain temporary data, procedure parameters, return 
addresses, etc. 

In this case, it is advisable that the final program have only one code segment, one 
data segment, and one stack segment. There can, however, be many modules which 
ultimately become linked into this final program. 

This situation is completely handled by declaring the segments to have the PUBLIC 
attribute, as shown below for each type of segment. 

Code 
The declaration is 

CODE SEGMENT PUBLIC 
o 
o ; ASM86 instructions 
o 

CODE ENDS 

The PUBLIC attribute is used to combine all segments of the same name, defined in 
different modules, into a single final segment for execution. 

H-I 



Getting Started 8086 Assembly Language 

H-2 

Data 

The declaration is 

DATA 

DATA 

SEGMENT 
o 
o 
o 

ENDS 

PUBLIC 

; data declarations 

Again, the PUBLIC attribute is used to insure that there will be only one such seg
ment in the final program. This segment will be composed of all segments named 
DA T A from all modules linked together. 

Stack 

The declaration is 

STACK 

STACK 

SEGMENT 
OW 

ENDS 

STACK 
N DUP (?) 

N is the maximum number of stack words used by this module at anyone time, e.g., 
the maximum depth of procedure nesting plus all parameters used by these pro
cedures, plus any data stored temporarily on the stack by any such procedure in this 
module. The STACK attribute automatically makes this segment public as well. 

If this is the main module, then the line preceding this ENDS should read 

LABEL WORD 

This enables this main module to initialize the SS and SP registers with the following 
code: 

o 
o 

MOV AX, STACK 
MOV SS, AX 
MOV SP, OFFSET STACK_TOP 

o 
o 
o 
o 

This code belongs only in the main module. (LINK86 and LOC86 or QRL86 will 
correctly adjust the offset of STACK_TOP.) Any other module which uses the 
stack must use the declaration above, but it is not necessary to declare 
STACK_TOP. Such a module should not reinitialize SS and SP. 

ASSUME Directive 

There need be only one ASSUME per module: 

ASSUME CS:CODE, DS:DATA, ES:DATA, SS:STACK 

The ES, DS, and SS registers must be explicitly loaded by your code. Therefore a 
sample main module skeleton is as follows: 



8086 Assembly Language Getting Started 

ASSUME CS:CODE, DS:DATA, ES:DATA, SS:STACK 
STACK SEGMENT STACK 

OW 10 DUP (?) 
STACK_TOP LABEL WORD 
STACK ENDS 
DATA SEGMENT 

o 
o 
o 

DATA ENDS 

CODE 
START: 

SEGMENT 
MOV AX, 
MOV OS. 
MOV ES, 
MOV AX. 
MOV SS, 
MOV SP, 

o 
o 
o 
o 

CODE ENDS 

PUBLIC 

PUBLIC 
DATA 
AX 
AX 
STACK 
AX 
OFFSET 

END START 

; Paragraph # of Data segment to AX 
; then to OS 
; and ES 
; Paragraph # of Stack segments to AX 
; then to SS 
STACK_TOP 
; offset of the top of the stack 
;totheSP 

Code Greater Than 64K, Data and Stack 
Each Less Than 64K 
The data and stack segments are treated the same as in case 1. There are many op
timal methods to organize the code segments. One example would be for each 
module to have a private code segment. This means each such code segment must 
have a unique name and must omit the PUBLIC attribute on the segment directive. 

Example: 

(In module A) 
A_CODE P1 PROC FAR 

o 
o 
o 

(In module B) 
B_CODE SEGMENT 

o 
0 

P1 PROC FAR 
0 

0 

0 

RET 
P1 ENDP 

0 

0 

0 

B_CODE ENDS 

H-3 



Getting Started 8086 Assembly Language 

H-4 

This will result in all intermodule jumps and calls being "long" (Le., FAR). 
Therefore if a procedure is going to be called from another module it should be 
FAR. 

Total Code and Stack Sizes Each Less Than 64K, 
Data Size Greater Than 64K 
In this case, code and stack segments are handled exactly as they were in case 1. Data 
segments, however, should be constructed to minimize changing the contents of the 
DS and ES registers. 

This is usually a problem-specific optimization. As an example, the ES register could 
contain the paragraph number of a segment containing global data, which is 
referenced from many modules. The ES would remain fixed throughout the pro
gram. On the other hand, the DS register could point to a segment containing data 
local to a module or group of modules. As program control switches to a new 
module, the DS register would change to point to the local data segment of the new 
module. The following (non-main) module skeleton is an example of this: 

ASSUME CS: CODE, OS: L_DATA, ES: G_DATA, SS: STACK 

STACK SEGMENT STACK 
OW 8 DUP (?) 

; Maximum of 8 words of stack used at anyone time by this module 
STACK ENDS 

PUBLIC BUFFER, B_COUNT ; Global data declared in this module 

SEGMENT PUBLIC G_DATA 
BUFFER 
B_COUNT 
G_DATA ENDS 

DB 80 DUP (' ') ;Buffer initialized to 80 blanks 
DB ? 

LDATA SEGMENT 
o 
o 
o 

PUBLIC P 

CODE SEGMENT PUBLIC 

P PROC NEAR 
PUSH OS 
MOV AX,LDATA 
MOV DS,AX 

0 

0 

0 

POP OS 
RET 

P ENDP 

CODE ENDS 
END 

; Data structures local to this module 

; P is a public procedure 

; Save the old OS register contents 
; Paragraph number of L_data to AX 
; and then to OS 

; restore the OS contents 
; return to caller 



8086 Assembly Language 

The segments CODE and G_DAT A are public, they will be combined with the 
other CODE and G_DATA segments respectively from the other modules which 
comprise the total program. This will also happen for the segment STACK. The seg
ment L_DA T A is not public, since the data in that segment is only referenced in 
this module. 

The DS register is saved when this module is entered (presumably by a call to the 
public procedure P) and restored when this module is exited. 

Code and Data and Stack Each Possibly Greater Than 
64K Bytes 
Code segments will be private as in case 2. Data segments would be handled as above 
in case 3. Since it is desirable to reduce the overhead of switching segment registers 
frequently, the design of programs this large should emphasize modularity. 

Getting Started 

H-5 





absolute, 4-5 
accumulator (AX or AL), 1-2, 18, 19,20 

usage examples, 1-4,8,9, 18 
additive operators, 5-6 
address, 1-1, 9 

base, 1-13, 14,20 
bus, 1-13 

multiplexed, 1-11 
effective, 1-14,24 
even, 1-13 
memory, 1-13 
expressions, 1-2, 9; 4-11; Chapter 5 
modes, 1-2,23; Ap B 
odd, 1-13 
offset, 1-13, 20 
relative, 1-9 
segment, 1-13 
shifted, 1-14 
16-bit, 1-13 
20-bit, 1-14 

AF (auxiliary flag), see flags 
AH see accumulator 
AL see accumulator 
alignment-type, 4-1 ff 
ampersand,2-1 
AND,5-25 
angle-brackets, see Chapters 2, 7 
architecture overview, 1-11 ff 
arithmetic 

signed, 1-11 
logic unit, 1-12 

arrays 
examples, 1-4,9; Chapters 3,5 

assembler 
features, 1-1,2,7,8,9 
files, 1-3 
how this-helps, 1-7 
need for, 1-5,6 
programming, 1-5,6,7 
what is an, 1-1 
what the-provides, 1-1 

does, 1-3 
ASM86,2-1 

character set, 2-1 
syntactic elements, 2-2 

character strings, 2-4 
delimiters, 2-2 
identifiers, 2-5 
keywords, 2-5 
numeric constants, 2-4 

symbols, 2-6 
attributes, 2-6 

statements, 2-10 
ASSUME 

directive, 4-lOff 
usage, 1-17,28 
examples, 1-4; Chapters 4,5; Ap D 

attribute 5-5 
AT combine-type (used on 

SEGMENT), 4-5 
usage 

example, 1-4; 4-lOff 
at-sign, 2-1 
attributes, 1-2,7,9,15; 2-6; 

Chapter 3; 4- lOff 
"distance", 1-15 
operators, some, 3-10 
review, 5-5 
type, 1-2, 7; 5-7 

auxiliary flag, see flags 
AX, see accumulator 

B, suffix for binary numbers, see suffix 
base 

address, 1-13,14,20 
pointer (BP), 1-17, 19,23,24,27 
register (BX), 1-19,23,24,27 

binary, see suffix 
BH, see base register 
BL, see base register 
blanks, 2-2 
BP, see base pointer 
bus 

address or data, 1-13 
multiplexed, 1-11 

interface unit, 1-12 
BX, see base register 
BYTE,3-1 

on SEGMENT, 4-3 
byte, 1-2, 13 

address, 1-13 
adjacent, 1-13 
least significant, 1-13 
most significant, 1-13 
parameters, Ap D; see also ASM86 

Operator's Guide, Ap B 
unique, 1-13 

call, 1-30ff; 4-17ff; Ap D 
carriage return, 2-lff 
CF (carry flag), see flags and Ap C 
CH, see count register 
character 

set, 2-1 
strings, 2-4; 3-5ff 

CL, see count register 
classname,4-1ff 
code 

coding, 1-2 
compression, 1-6 
examples, 1-4,6,8,9; 3-2, 5; Chapter 5; 

ApD 
macro, 2-12; 3-1; Chapter 7 

-ASM86 list, Ap A 
segment, 1-15, 17 

register, 1-14, 19,27 
source, 1-2 

INDEX 

Index-l 



Index 

Index-2 

colon (used or allowed by many directives) 
see overrides, prefixes, ASSUME, 

Chapters 2,4, 5, 7 
com bine-types, 4-1 ff 
comma, 2-lff 
comments, 1-7, Chapter 2 
COMMON (on SEGMENT), 4-4 
communication 

intermodule, 1-7, 9, 10, 11 
interpersonal, 1-7, 11 

complement, 1-16 
constants, numeric, 2-4 
continuation line, 2-1 ff 
count 

down, 1-2 
register (CX), 1-2, 19 

examples, 1-6,9; Chapters 5,6; Ap D 
CS see code segment register 

D suffix for decimal constants, see suffix 
data, 1-1,7 

bus, 1-11, 34 
handling, 1-2 
immediate, 1-8,23 
register (DX), 1-19 
segment, 1-17, 27 

register, 1-14, 19,20 
DB see define byte and character strings 
DB, DW, and DD in codemacros, 7-9 
DD see define doubleword and 

character strings 
debugging, 1-2, 7,9, 10 
declare, see define 
defaults 

segment register, 1-27 
define 

byte (DB), 1-2,4,7,23; 3-2ff 
word (DW), 1-4,7,9; 3-2ff 
doubleword (DD), 1-7,34; 3-2ff 

delimiters, 2-2, 3 
designing, 1-7 
destination 

index (DI), 1-18,23 
usage, 1-17,23,24 
examples, 1-6; Chapters 3,5,6; Ap D 

operand, 1-8, 23 
DF (direction flag) see flags 
DH see data register 
DI see destination index 
direction flag, 1-2 
directive, 2-10, 11; Chapter 4 
displacement, 1-15, 16,24; 4-2,3 
distance attribute, 1-15; see also 

NEAR, FAR 
division, 5-27 

sign, 2-1, 3ff 
DL, see data register 
documentation, 1-7 
dollar sign, see Chapters 2, 5 
DOT operator in codemacros, 7-10 
doubleword, 3-6ff; see also define 
DS, see data segment register 
DUP facility, 3-4 

examples 1-4,9; Chapter 3 

DW, see define word 
character strings, 3-9 

DWORD, see TYPE, EXTRN 
DX, see data register 

EA see address, effective 
embedded 

segment, 4-6 
procedure, 4-19 

END,4-24 

8086 Assembly Language 

examples 1-4; 5-2; see also code 
ENDM, Chapter 7 
ENDP,4-17ff 

examples 1-4, 34; 4-17ff; Ap D 
ENDS,4-lff 

examples 1-4, 8, 23; 4-lff; Ap D 
EQ (equal), see operators, relational 
EQU, 4-20; 1-2,4,9,23; 3-1, 5, 6 
error 

detection 1-2, 10; 3-1 
file, 1-3,5 

ES, see extra segment regiser 
even address, 1-13 
examples 

code, 1-4,6,8,9; Chapters 3, 5; Ap D 
execution times, 1-11; Chapter 6 
expressions, address, 1-2,9; 3-3; 4-11; 

Chapter 5 
external, see program linkage 
extra segment 1-17 

register, 1-14, 19,27 
EXTRN directive, 4-22 

FAR, 1-7, 15, 17, 33; 3-2; 4-18; 5-5; 8-2 
features, assembler, 1-1,2,7,8,9 
files, assembler, 1-3 
flags, 1-12, 19, 2lff; Ap C 
forward reference, 8-lff 

GE (greater than or equal), see 
operators, relational 

general registers, 1-12, 19, 20 
Getting Started, Ap H 
goals, 1-7 
GROUP, 4-9 

see also LEA, 6-92 
OFFSET,5-16 
ASM86 Operator's Guide 
segment override operator, 5-10 
ASSUME,4-1O 

GT (greater than) see operators, relational 

H suffix for hexadecimal numbers, see 
suffix 

hardware, 1-7,11 
memory cycle, 1-13 

hexadecimal, see Chapter 2 
hex digit (hexadecimal), 1-2; see Chapter 2 
HIGH,5-28 
high byte 

of registers, see individual register names 
how this assembler helps, 1-7 



8086 Assembly Language 

identifiers, 2-5 
IF (interrupt-enable flag) see flags 
immediate-data, 1-8, 23 
index, 1-2,9, 19,20,23; see also 

source or destination 
indirect 

memory reference, 1-23 
transfer, 5-23 

initialize, 3-3ff 
no initialization, 3-4 
examples 1-4, 6, 8, 9; Chapter 3; Ap D 

INP AGE (on SEGMENT), 4-3 
input-output, 1-32 

device selection, 1-33 
instruction pointer (IP), 1-15, 17,19,27 

overwritten, 1-15 
wraparound, 1-15 
saved, 1-15 

instructions, 1-1,2,7 
alphabetic order, Chapter 6 
example, 1-4,6,8,9; Chapters 3,5; 

ApD 
format, 1-26 
hexadecimal order, Ap E 
interruptible, 1-11; see also LOCK, REP, 

ApD 
matching to codemacros, 7-12 
prefetched queue, 1-11 

INT,I-33ff 
intermodule references, 1-3; see also 

PUBLIC and EXTRN 
interrupts, 1-17, 33ff; Ap D 
intersegment, see jump 
intrasegment, see jump 
IP, see instruction pointer 
iteration, see loop 

jumps, 1-15; Chapter 6 
intersegment, 1-15 
self-relative, 1-15 
intrasegment, 1-15 

keywords, 2-5; Ap F 

LABEL,4-15ff 
label, 1-1,4,7; 2-8,10; 3-1; 5-1, 5 

far, 1-15 
target, 1-14, 15 

LE (less than or equal), see 
operators, relational 

LENGTH, 3-1Off; 5-18 
libraries of modules, 1-8,9 
line, 2-10 
line-feed,2-lff 
link 

-ing, 1-3,9 
-age directives, 4-21, 2 

list 
-ing, 1-3 
file, 1-3; 2-2 
lists, 3-4 

locating, 1-3,9; 4-3ff 
"long", see jump, intersegment 
loops, timing, 1-2; Ap D 
LOW, 5-28 

low byte of registers, see 
individual register names 

LSB, see byte, least significant 
L T (less than), see operators, relational 

machine 
instructions, 1-1 
code, 1-2 

macro, see codemacro 
MASK,3-13ff 
matching of insructions to 

codemacros, 7-12 
megabyte, 1-13 
MEMORY (on SEGMENT), 4-6 
memory 

addressing, 1-13 
-latch, 1-14 

cycle, 1-13 
indirect reference, 1-23 
management, 1-10 
organization, 1-13 
transfers, 1-11 

minus sign, 2-lff 
mnemonic, 1-1,2,7,8; 2-11 
MOD (modulo), 5-27 
mod, see MODRM byte 
modes, address, 1-2,23; Ap B 
modifications, 1-7,9,10 
modifiers in codemacros, 7-4 
MODRM,7-6 
need for an assembler, 1-5,6 

byte, 1-24, 25 
encodings, 1-25; Ap B 
mod, 1-24, 25 
reg, 1-24, 25 
rm, 1-24,25 

module, 1-2, 3, 7, 9; 2-12; 8-1 
latest, 1-11 
sharing, 1-7, 8, 9 
-ar development, 1-10 

MSB, see byte, most significant 
multiprocessors, 1-11 
multiplication operator, 5-27 

NAME,4-23 
names, 1-2,9; 3-1 
NE (not equal), see operators, relational 
NEAR, 1-7; 3-1; 4-18; 5-5; 8-2 
Nosegfix in codemacros, 7-5 
NOT,5-26 
NOTHING (used with ASSUME), 4-1Off 
numbers, 2-9; 3-1; 5-lff 
numeric constants, 2-4 

odd address, 1-13 
OF (overflow flag), see flags 
OFFSET operator, 5-16 
offset, 1-13; 5-2 

address, 1-13,20 
different for same location, 1-14 
highest possible, 1-15 
reserved during assembly, 8-1 
-segment pair, 1-13 
simple, 1-23 

operand, 2-11 

Index 

Index-3 



Index 

Index-4 

destination, 1-8 
location in memory, 1-24 
source, 1-8 

operators, 1-9; Chapter 5 
additive, 5-6 
AND,5-25 
attribute, implicit, 3-10 
classes, intro, 5-4 
DOT,7-1O 
HIGH,5-28 
LENGTH,5-18 
LOW, 5-28 
NOT,5-26 
OFFSET,5-16 
OR,5-24 
parentheses, 5-18 
precedence, 5-26 
PTR,5-12ff 
relational, 5-26 
SEG,5-16 
shift, 5-28 
SHORT,5-24 
SIZE,5-18 
some implicit, 3-10; see also LENGTH, 

SIZE, TYPE 
squarebrackets, 5-6ff, 18,20,23 
THIS, 5-14 
TYPE,5-16 
variable-manipulation, 5- IOff 
WIDTH,5-18 
XOR,5-24 

OR,5-24 
ORG,4-8 
over-ide, 1-2, 27 

PAGE (on SEGMENT), 4-3 
PARA (on SEGMENT), 4-3 
paragraph 

boundaries, 1-14,20 
number, 1-14, 15, 17, 18; 4-2ff 

parameters, 1-7; Ap D 
parentheses, 5-18; also Chapter 2 
period, Chapters 2, 7 
peripherals, 1-11, 34 
permissible range of values, 5-3 
PF (parity flag), see flags 
PLM86, 1-6; 8-3; ASM86 Operator's Guide 
plus sign, 2-1 ff 
pointer registers 

base (BP), 1-17, 19,23,24,27 
stack (SP), 1-19, 27ff 

pop, 1-30ff; Ap D 
precedence of operators, 5-3 
prefix, 2-11; 5-lOff; Chapter 7; see also 

segment prefix 
problem 

breakdown, 1-8 
definition, 1-7 
solved, 1-9 

PROC directive, 4-17ff 
PROCLEN in codemacros, 7-11 
procedure, 1-8, 15, 29ff; 3-1 
program 

status 
word (see flags) 

saving, 1-32 
linkage,4-2lff 

programming 
assembler, 1-5,6,7 
changes, 1-10 
control, 1-6,7 
flexible, 1-6 
shared, 1-10 
simplified, 1-10 
speed, 1-5,6, 10 
support, 1-6 
see also designing, debugging 

PTR,5-12ff 
PUBLIC directive, 4-21, 2 
PUBLIC (on SEGMENT), 4-4 
PURGE,4-21 
push, 1-30ff; Ap D 

8086 Assembly Language 

Q suffix for octal numbers, see suffix 
question mark, 2-1; 3-4 
??SEG,4-7 
queue, see instructions, prefetched 
quotes,2-lff 

R&L, see Relocation and Linkage 
RAM,I-15 
range of values permitted, 5-3 
range-specifiers in codemacros, 7-4 
RECORD, 3-12; 7-10 
reg, see MODRM 
registers, 1-14, 15, 18,23; 2-6 

general, 1-12, 19,20 
data: accumulator, base, count, data 
pointer: base, stack 
index: source, destination 

relocation, 1-12, 13, 17, 18 
segment: code, data, stack, extra 
IP see instruction pointer 

relational operators, 5-26 
relative addresses, 1-9 
RELB in codemacros, 7-8 
relocatable 

object code, 1-1, 17 
offsets, discussion, Ap G 

relocation 
and linkage, 1-3,9, 10; 4-21 
effect on names and expressions, Ap G 
registers, 1-12, 13, 17, 18 

RELW in codemacros, 7-8 
repeat, 1-2; REP in Chapter 6 
return, 1-30ff; 4-17ff; Ap D 
review of attributes, 5-5 
rm, see MODRM 
ROM,I-3 
routines, see procedures 

saving program status, 1-32 
SEG operator, 5-16 
segfix in code macros, 7-4 
SEGMENT directive, 4-lff,7 
segment, 1-8, 13; 3-1; 4-1 

address, 1-13 
base-address, 1-13 
disjoint, 1-18,20 
embedded, 4-lff, 17 



8086 Assembly Language 

new, 1-14 
-offset pair, 1-14, 18,20 
overlap, 1-14, 18,20 
override, 1-17,27,28; 5-10,11 
registers, 1-17 

defaults, 1-27 
usage, 1-13, 14,20 

64K-byte, 1-13 
word, 1-14 

self-relative distance, 1-16; see also jump 
semicolon, see Chapter 2 
separators, 2-2, 3 
SF (sign flag), see flags 
shifted address, 1-14 
SHL operator, 5-28 
"short", see jumps 
SHORT operator, 5-24 
SHR operator, 5-28 
SI, see source index 
SIZE operator, 3-lOff; 5-18 
slash, 2-1, 3ff 
software tool, 1-1 
source 

be with you, always 
coding, 1-1,3 
index (SI), 1-19 

usage, 1-23,24 
module, 1-1 
operand, 1-8, 23 
program, 1-1 

SP, see stack pointer 
special characters, 2-1, 3 
specifiers in code macros 

operand,7-3 
range, 7-4 

specifications, 1-7 
square-brackets, see Chapters 2,5; 5-6ff 

as subscripts, 5-20 
in indirect transfers, 5-23 

SS, see stack segment register 
STACK combine-type (used 

with SEGMENT), 4-5 
stack pointer (SP), 1-1, 27ff 

usage 1-4,15, 17; Ap D 
stack segment, 1-17, 27ff 

register, 1-14, 19,27 
usage 1-20; Ap D; Ap H 

standards, 1-7 
statements, 2-10 
status, see flags 
string 

character, 3-5 
constants, 2-2, 4 

manipulation, 1-2 
operands, segment of 1-7 

subroutine, see procedure; call; return 
subscripts, 5-6ff, 20 
suffix on numeric constants 

B,2-4 
D,2-4 
H, 1-4, 14; 2-4 
0,2-4 
Q,2-4 

symbols, 2-6 
attributes, 2-6 
code, 1-3 
instructions, 1-1 
names, 1-2; 2-6 
other, 2-9 

symbol table, 1-10; see also 
Operator's Guide 

synonyms, 1-2, 9 
syntactic elements, 2-2ff 

target, see label 
teamwork, 1-7,9,10 
testing, see debugging 
TF (trap flag), see flags 
THIS, 5-14 
throughput, 1-11 
times sign, 2-lff 
tokens, 2-2 
TOS (top of stack), see stack; Ap D 
transfer, see jump; call; indirect 
TYPE, 3-lOff; 5-16 
type, 1-2, 7 

ambiguous, 5-7 

underscore,2-lff 

variable, 1-1,7, 18,23; 2-7; 3-lff; 5-lff 
manipulation operators, 5-lOff 

what is an assembler, 1-1 
what this assembler provides, 1-1 
WIDTH,5-18 
WORD,5-23 

on SEGMENT, 4-3 
word, 1-13; 3-6ff 
wraparound, see instruction pointer 

XOR,5-24 

ZF (zero flag), see flags 
16-bit address, 1-13 
20-bit address, 1-14 

Index 

Index-5 





MCS-86 Assembly Language Reference Manual 
9800640A 

REQUEST FOR READER'S COMMENTS 

The Microcomputer Division Technical Publications Department attempts to provide documents that meet 
the needs of all Intel product users. This form lets you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is It at the right level? What other types of 
documents are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME __________________________________________ DATE ________________ __ 

TITLE ________________________________________________________________ __ 

COMPANYNAME/DEPARTMENT ______________________________________________ __ 

ADDRESS ____________________________________________________________ _ 

CITY ________________________ _ STATE __________ __ ZIP CODE ____________ _ 

Please check here If you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ••• 

This document Is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefutly reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
Attn: Technical Publications MIS 6-2000 
3065 Bowers Avenue 
Santa Clara, CA 95051 

I11111 NO POSTAGE 
NECESSARY 

IF MAILED 
IN U.S.A. 





inter 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080 

Printed in U.S.A. 


