ICE-85 IN-CIRCUIT EMULATOR
OPERATING INSTRUCTIONS
FOR ISIS-Il USERS

Manual Order Number 98004638

Copyright © 1977, 1978 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara California 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE LIBRARY MANAGER PROMPT
INSITE MCS RMX
INTEL MEGACHASSIS UPI
INTELLEC MICROMAP uSCOPE
iSBC MULTIBUS

| B43/0578/20K CP

PREFACE

This document describes the purpose and use of the ICE-85 In-Circuit Emulator for
the Intel 8085 microprocessor.

The ICE-85 module is an optional addition to the Intellec Microcomputer Develop-
ment System. The ICE-85 module aids in testing and modification of the hardware
and software for new products designed around the 8085 microprocessor.

Chapter 1 describes the mission of ICE-85 as a development aid for system designs
based on Intel’s MCS-85 microprocessor family.

Chapter 2 gives step-by step instructions for installing the ICE-85 hardware in the
Intellec chassis and connecting ICE-85 to the user prototype system.

Chapter 3 presents a hands-on debugging session with ICE-85.

Chapter 4 describes the meta-notation used to abbreviate the syntax of ICE-85 com-
mands in this manual.

Chapter 5 contains discussions and reference summaries of all of the ICE-85 com-
mands, grouped by function.

Appendix A is a list of all ICE-85 keywords (literals), and their abbreviations, in
alphabetical order.

Appendix B is a list of ICE-85 error messages, with interpretations and recommend-
ed operator responses.

Appendix C is a list of 8080/8085 assembler instructions in order by opcode, for user
reference.

The minimum configuration to run the ICE-85 module is an Intellec system with
32K of RAM, room for two boards, the ICE-85 hardware and software, a console
input device, and a single diskette drive. A serial printer can be added for hard-copy
output.

To use this manual effectively, you need to understand the 8085 architecture and the
technique of programming and debugging. For background information on these
subjects, refer to the following Intel publications.

8085 Microcomputer System User’s Manual 9800366
8080/8085 Assembly Language Programming Manual 9800301
PI/M-80 Programming Manual 9800268
Intellec MDS Operator’s Manual 9800129
Intellec MDS Hardware Reference Manual 9800132
Intellec Series II Installation and Service Manual 9800559
MDS-DOS Diskette Operating System Operator’s Manual 9800206
ISIS-II System User’s Guide 9800306

A Guide To Intellec Microcomputer Development Systems

iii

CONTENTS

PAGE
CHAPTER 1
INTRODUCTION TO THE ICE-85
The Evolution of Microprocessor Design Aids 1-1
ICE-85 Componentsiuemueenennann. 1-4
Generalized Development Cycle with ICE-85 1-6
A Generalized Emulation Session 1-8
CHAPTER 2
ICE-85 INSTALLATION
PROCEDURES
ICE-85 Componentsc...ouiuiiiiennnannn 2-1
Required and Optional Hardware 2-2
Hardware Installation Procedures 2-2
Installation Procedure for Intellec Series I 2-2
Installation Procedure for Intellec Series II 2-3
Installing External Signal Cables 2-5
System Groundingl 2-5
Ideal Grounding Arrangement 2-6
An Observation About Other Grounding
Techniquesttt iiiieinnnn.. 2-6
CHAPTER 3
A SAMPLE ICE-85 SESSION AT
THE TERMINAL
HowtoUse ThisChapter 341
Commands Used inthe Examples 3-2
Memory and 170 Port Mapping Commands 3-2
LOADCommandcomiienninnnnn 3-3
Symbolic Referencesc.cuinna... 3.3
Emulation Control Commands 3-4
Commands That Display or Change Memory
and RegisterContents 34
Trace Display Commands 3-5
Analysis of the Sample Program 3-6
A Debugging Session Using ICE-85 3-7
CHAPTER 4
ICE-85 METALANGUAGE
Introductionol 4-1
Character Set c i, 4-3
TOKeNS . .ottt 4-3
Keywordsot 4-3
Reference Keywords 4-3
Command Keywordsc.c.ou... 4-6
Function Keywords 4-6
User-Namesciuiitiiiiinnnnannnn 4-7
Symbols ... 4-7
Module-Names iiiian... 4-8
Statement-Numbers 49
User Group-Namesc..ceeue... 4-9
Constantsiii e 4-10
Numeric Constantscc.oveeueunn.n. 4-10
Masked Constantsccouen... 4-10

PAGE
Special Tokens i, 4-11
OPperatorsoviiiiniiirinnenenennnnnn 4-11
Punctuation i .. 4-11
Numeric EXpressionsc.cciuiieennnn.. 4-11
OPperators - .ottt it 4-11
Operands ciiuiiiiii it 4-12
EXPressionso.eieiineneiinennnennannn 4-12
Meta-Notation Used in the Manual 4-13
CHAPTER 5
THE ICE-85§ COMMAND
LANGUAGE
Entering Commands at the Console 5-6
Utility Commands Involving ISIS-IT 5-7
DiSCUSSION « vttt ettt it it e et 5-7
ICE-85Commandc.o..... 5-9
EXITCommand 59
LOADCommand, 5-10
SAVECommandc.iuinan.n. 5-11
LISTCommandcciiuuiuninunnnnnnn 5-11
Number Bases and Radix Commands 5-12
Discussion 5-12
Console Input Radixes; SUFFIX Command . 512
Console Output Radixes; BASE Command 5-13
The EVALUATE Command 5-13
Radixes Used in Trace Displays 5-14
Radixes Used for Displaying Breakpoint and
Qualifier Settings, 5-14
Set or Display Console Input Radix Commands .. 5-15
Set or Display Console Output Radix Commands . 5-15
EVALUATECommand 5-16
Memory and 170 Port Mapping Commands 5-16
DiSCUSSION .« v vt e 5-16
Mapping Memory i, 5-16
Mapping Input/Output Ports 5-24
MAP Mode Command 5-27
MAP Memory Command 5-28
MAP IVO PortsCommand 5-29
Display MAP Status Command 5-30
RESETMAP Command 5-30
Hardware Register Commands 5-31
DiSCUSSION « .t ittt it e et it e e et 5-31
Display Processor and Status Register
Commandscoiiuiiiintanennnnnennn 5-36
Set Processor Register Command 5-37
RESET Hardware Commands 5-37
ENABLE/DISABLE TIMEOUT Commands 5-38
Memory and Port Content Commands 5-39
DiSCUSSION + .t it ettt it i e e ieeeenan 5-39
Memory Content References 5-39
Setting Memory Contents 5-42
Port Content References 5-45
Display Memory and Port Contents Commands .. 5-46

CONTENTS (continued)

PAGE
CHAPTER 5
THE ICE-85 COMMAND
LANGUAGE (continued)
Set Memory Contents Command 5-47
Set Input/Output Port Contents Command 5-48
Symbol Table and Statement Number Table
Commandsc.ciiiiiiiiinnan... 5-49
DiSCUSSION . ..ottt ittt e et e 5-49
Display Symbol Table and Statement Number
Table Commands 5-53
DEFINE Symbol Command 5-53
Change Symbol Command 5-54
REMOVE Symbol Command 5-54
Channel Group Commands 5-55
DISCUSSION . iitie it it ieeie i iieeneannn 5-55
DEFINE GROUP Command 5-59
Display GROUP Command 5-60
Change GROUP Command 5-60
REMOVE GROUP Command 5-61
Real-Time Emulation Control Commands 5-62
Discussioncc.iiiiiii i e 5-62
Setting Breakpoint Registers 5-64
Setting the GO-Register 5-68
Emulation Timer 5-70
GOCommand 5-71
Set GO-Register (GR) Command 5-72
Display Real-Time Emulation Registers
Commandscovuvuiniiennnennnnnnn 5-73
Set Breakpoint Register Command 5-73
RESET Breakpoint Register Command 5-74
ENABLE/DISABLE SYOOUT Command 5-74
Trace Control Commands 5-75

vi

PAGE
DisCuUSSIONt e 5-75
Trace DisplayMode 5-76
Moving the Buffer Pointer 5-76
Displaying Trace Data 5-76
Trace Control Factors 5-79
Set TRACE Display Mode Command 5-84
MOVE, OLDEST, and NEWEST Commands ... 5-85
PRINTCommandccoiuenan.n. 5-86
Set Qualifier Register Command 5-87
RESET Qualifier Register Command 5-87
Display Trace Controls Commands 5-88
ENABLE/DISABLE Trace Factors Commands .. 5-88
Single-Step Emulation Control Commands 5-89
DiSCUSSION - vttt e et 5-89
Set Condition Register Command 5-96
SR Command (Set Step-Register) 5-97
STEPCommandcoiiieann. 5-98
Display Step-Register Commands 5-99
ENABLE/DISABLE DUMP Command 5-100
External Call Commands 5-101
DISCUSSION ...\t i it e 5-101
External Call Commands 5-103
APPENDIX A
ICE-85 KEYWORDS AND THEIR
ABBREVIATIONS
APPENDIX B

ICE-85 ERROR CONDITIONS AND
RECOVERY

APPENDIX C
8080/8085 CPU INSTRUCTIONS

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
3-1 Memory and 1/0 Port Mapping 5-8 ICE-85 Status Registers 5-34
Examples 3-2 5-9 External Synchronization Lines 5-35
3-2 Symbol and Statement-Number 5-10 Other External Signals 5-35
References in Command Examples 3-3 5-11 Symbolic References and Statement
3-3 Emulation Control Command Examples . 3-4 References 5-51
3-4 Memory and Register Contents 5-12 User Probe Channels, 8085 Processor
Command Examples 3-5 Channels, and System-Defined Group
3-5 Trace Display Command Examples 3-6 Namescooviiiinininnnnennn. 5-56
. .) 5-13 Mnemonic Match Conditions 5-65
> Icgﬁgfr’;ma“ds‘ Alphabetical 53 5-14 Status Group Bit Settings 5-66
52 Memory Blocks for Mapping 5-19 gi 2 ,}rlal‘ Cg‘d‘ltm‘g "‘;he GO-Register (GR) . g‘gg
5-3 1/0 Port Segments for Mapping 5-25 i race \ASpIay HCACCIS . .- ccerceerienns -
. - 5-17 Mnemonic Match Conditions 5-80
5-4 8085 8-Bit Registers 5-32 . X
. . 5-18 Status Group Bit Settings 5-80
5-5 8085 16-Bit Registers 5-32 5.19 Halt Conditi in the Step-Regi SR 5.92
5-6 8085 1-Bit Status Flags 5-32 - alt Conditions in the Step-Register (SR) . 5-
5-7 8085 Interrupt Mask Bits 5-32
FIGURE TITLE PAGE FIGURE TITLE PAGE
Front ICE-85 with SDK-85 3-2 CARSI1 Program Listing 39
1-1 Logical Blocks in a Microcomputer 3-3 DELAY Subroutine Listing 3-10
: Systemol 1-1 3-4 CARS2 Program Listing 3-24
1-2 808§ CPU.Funcnonal Block Diagram 1-2 4-1 Analysis of the GO Command 4-1
1-3 Typical Microprocessor Development
Cycle .o 1-3 5-1 Intellec Shared Memory Locations with
1-4 ICE-85 Functional Block Diagram 14 64Kof RAM 5-17
1-5 Typical Development Cycle with ICE 5-2 Intellec UNSHARED Memory 5-18
ModUle .o 1-5 5-3 Memory Map Diagram 5-18
1-6 MCS-85System Bus 1-6 5-4 Mapping into User Memory 5-22
1-7 Design Cycle with Shared Resources 1-7 5-5 Mapping into User and Shared Intellec
21 ICE-85 Cable T. inal A bl Memoryooiiiiiiiiiain... 5-22
g i able lermuinal Assemply 2-1 5-6 Mapping into User and Unshared Intellec
2-2 Control Board Jumper Pin Configuration 2-2 U 5.23
2-3 System Grounding for Intellec SeriesI ... 2-6 5.7 10 Port Segments Mapped to User and
3-1 Traffic Light Controller Program Flow Intellec 5-26
Chart e 3-8 5-8 Trace Data Displays 5-77

vii

463-1

CHAPTER 1
INTRODUCTION TO THE ICE-85

This manual presents the operation of the In-Circuit Emulator for the Intel 8085
microprocessor, or ICE-85. As an introduction to the use of this microprocessor
design aid, this chapter contains a brief review of the evolution of microprocessor
design aids, a summary of the design process using the ICE-85, and a discussion of
the main features of the ICE-85 in the context of a generalized emulation session.

The Evolution Of Microprocessor Design Aids

The microprocessor has revolutionized the electronics industry and the process of
electronic design. Designers formerly built up their designs by interconnecting logic
gates. Now you can design using general-purpose digital electronic blocks whose
functions are determined by programming. Whether you choose a microprocessor
or a one-chip microcomputer, it is clear that your design task has changed immense-
ly. Logical blocks that were formerly built by the designer from small- or medium-
scale integrated circuits are now part of a single silicon package.

Your design effort now includes the task of designing software programs to drive the
LSI packages.

Figure 1-1 shows the logical architecture of an LSI microcomputer system. Figure
1-2 shows the functional block diagram of the 8085 CPU; (see the MCS-85 User’s
Manual for details on the 8085 operation).

MICROCOMPUTER

ADDITIONAL
EXPANSION
CAPABILITY

e]
I |——- CPU (MICROPROCESSOR) _] |
I
: : TIMING 1 REGISTERS | :
NI S |
I I I DATA PROGRAM |
I I INSTRUCTION ALY I MEMORY MEMORY I
[I |
I
I
|

110 PORTS INTERVAL |

TIMER

PERIPHERAL INPUT
DEVICES

Figure 1-1. Logical Blocks in a Microcomputer System 463-2

1-1

Introduction

System designs involving the integration of hardware and software long preceded
the advent of the microprocessor. However, the emerging microprocessor design en-
vironment has created special problems of system design, test, and integration. For
example, the number of logic signals available to you for test has been reduced from
hundreds to 64 or fewer signals. Furthermore, the available design tools early in the
evolution of LSI design imposed a separation of hardware and software design ef-
forts.

Figure 1-3 is a diagram of a typical microprocessor development cycle (without
ICE). In this design plan, the designers develop and verify the hardware and soft-
ware components of the design separately. Late in the development cycle, the com-
pleted components are integrated for final test. This design method usually requires
additional coding and hardware rework as the system pieces are eased into a final
package.

System integration frequently involves special debug hardware and software, in-
stalled in the prototype system to give the designers the clearest possible view of the
system interaction. The designers fit together the separate hardware and software
designs and fine-tune them, working around the restrictions caused by extra boards,
wires, and software. The need for separate verification of the debug components
adds another level of complexity to the design task. ‘

The Intellec Development System currently supports four in-circuit emulators,
ICE-80, ICE-30, ICE-48, and ICE-85, for Intel’s MCS-80, Series 3000, MCS-48 and
MCS-85 microprocessor families, respectively. In-circuit emulators for other Intel
microprocessor families are forthcoming. The Intellec system bus structure was
designed specifically to support a multiprocessor configuration, allowing the system
processor and ICE processor to share Intellec memory and 1/O when desired. An
ICE module is more than a microprocessor; it is a complete microcomputer system
containing its own microprocessor, timing circuitry, memory, and I/0.

ICE-85

INTA RST6.5 TRAP

8085 CPU FUNCTIONAL

BLOCK DIAGRAM INfR TRSTSS | RST7.S T %
SERIAL I/0
INTERRUPT CONTROL CONTROL

8-BITINTERNAL DATA BUS

INSTRUCTION
REGISTER (8
ACCUMULATOR TEMP. REG. FLAG (O g ® c ®
{8) 8) FLIP-FLOPS REG. REG.
, s @ ¢ @
y REG. REG.
ARITHMETIC INSTRUCTION h @ @
Loaic PERRD REG. REG. REGISTER
UNIT MACHINE @] [ARRAY
(ALY) CYCLE STACK POINTER
ENCODING
(16)
PROGRAM COUNTER
INCREMENTER] _(16)
DECREMENTER
ADDRESS LATCH ‘

power _| —> SV
SUPPLY > GND

X4 —]

X2 >1 GEN CONTROL STATUS DMA

TIMING AND CONTROL

CLK RESET

ADDRESS BUFFER “’I [DATA/ADDRESS BUFFER (T)l

TTI T LT g

READY HOLD RESET IN

Figure 1-2. 8085 CPU Functional Block Diagram

3

Ays-Ag AD7-AD,
ADDRESS BUS ADDRESSIDATA BUS

463-3

1-2

ICE-85 Introduction

v i

KEY CIRCUIT CIRCUIT 1 prOTOTYPE PROTOTYPE

CONSTRUCTION VERIFICATION HARDWARE HARDWARE
CONSTRUCTION VERIFICATION

CODE CODE CODELOGIC
PREPARATION TRANSLATION VERIFICATION

1
4 i

| PRODUCTION
TEST

SPECIFY DESIGN
PRODUCT PRODUCT

Figure 1-3. Typical Microprocessor Development Cycle 463-4

Thus, the introduction of the microprocessor soon led to the realization that the
designer of microcomputer-based products required specialized design tools. Con-
ventional design aids such as oscilloscopes and multimeters do not provide debug
capabilities such as displaying and altering CPU registers and memory contents,
simulating metal-masked ROM memory with easily-alterable RAM memory, or
stopping program execution to display and alter systems status.

Early generations of microcomputer design aids included simulators that approx-
imate microprocessor logic to aid in software debugging. Prototype boards made it
easier for the hardware designer to check out key circuitry before building the actual
system breadboards. Program assemblers and debugging systems were designed to
run on the microprocessor itself, reducing the need for access to large computers for
software development.

The Intellec Microcomputer Development Systems for Intel’s 4040 and 8080
microprocessors introduced a powerful single package for designers. The hardware
designer could construct key hardware (for example, memory, memory decode, and
170 circuitry) on prototype boards that could then be plugged directly into the
development system backplane. This capability represented a great step forward in
system design. The engineer could now evaluate new system concepts using develop-
ment system resources.

An in-circuit emulator enhances the power of the Intellec system by inserting special
development logic between the prototype system and its microprocessor, and by ex-
tending the range of controls that can be entered through the system console.

Only four years separate the introduction of the first microcomputer design aid, In-
tel’s SIM-4-01, and the introduction of the Intellec MDS.

Seen in terms of later developments, the Intellec system alone is limited in the scope
of its operations. Circuits to be tested must be compatible with the development
system’s bus architecture. The system debug support does not extend into the pro-
totype system. Software and hardware development may be isolated from one
another during most of the design effort.

The Intellec system with an in-circuit emulator option contains at least two
microprocessors. The Intellec processor supervises system resources, executes
system monitor commands, and drives system peripherals. A second processor, the
ICE processor, mterfaces directly to the demgner s prototype or productlon system
v1a an external cable The ICE cable is terminated in a plug that fits the
microprocessor socket in the user system. When you plug the ICE cable into your
system’s microprocessor socket, the development system debug aids are extended

directly into your system.

1-3

Introduction

ICE-85 Components

ICE-85 hardware consists of two printed circuit boards, the Control board and the
Trace board, and two cable assemblies, the ICE-85 module and the External Trace
module. The two PC boards are inserted in adjacent slots in the Intellec chassis, and
connect to each other through an auxiliary connector furnished in the ICE-85
package.

The ICE-85 module, with its three ribbon cables, connects the Control and Trace
boards and the microprocessor socket in the user system. The module, an enclosed
PC card, contains buffering and timing logic, and also contains a set of connector
pins for access to signals used to coordinate the ICE-85 operation with external
events.

The External Trace module, an enclosed PC card on a single ribbon cable, presents a
set of 18 hardware channel probes that you can connect to the signals on your system
that you desire to monitor. The card contains buffers for these 18 probes. The 18
channels from the buffers are available to ICE-85 for the control of trace and emula-
tion.

A block diagram of the ICE-85 hardware is shown in Figure 1-4. ICE-85 hardware is
designed to emulate TTL inputs, and does not emulate MOS inputs.

ICE-85

INTELLEC BUS

ICE-85 CONTROL BOARD

e —_—

MDS BUS MDS BUS
ROM RAM 1 TIMERS CONTROL CONTROL

2MHz
CLOCK

ICE-85
CONTROLLER
PROCESSOR

-
|
I
I
|
|
I
|
I
|
|
|
I
I
|
|
|
I
|
|
I
I
|
I
|

EMULATION
CONTROL

ADDRESS
MAP

MULATION|
ENABLE

]

TRACE MEMORY
AND

QUALIFIER
REGISTERS

BREAKPOINT
REGISTERS

y
=t

DATA
SELECTION

A

CHIP DATA

CONTROL I

TRACE DATA

TRACE CLOCK

FORCE TRACE

ADDRESS
|
- |
CONTROL |
‘ |
T

SYNCO

USER
DATA

ICE-85 TRACE BOARD

8085 CHIP CONTROLLER

r——=—=---"
I 18 USER TRACE
SIGNAL BUFFERS I lsysen

18 EXTERNAL TRACE BUFFER

Figure 1-4. ICE-85 Functional Block Diagram 4635

-O SYNC 1

TOUSER'S
SOCKET

1-4

ICE-85

The ICE-85 program resides in Intellec memory along with the Intellec Monitor and
diskette operating system software. This program is written in PL/M, Intel’s high-
level language, and runs under the Intel Systems Implementation Supervisor (ISIS-
II). The ICE-85 program recognizes and translates your commands from the con-
sole, and places the encoded results in a control block for the hardware to read. It
also retrieves the hardware-modified contents of control blocks and translates the
contents into formats that you can easily understand.

However, the internal communication between ICE-85 and the Intellec system is
transparent to the user. With ICE-85 installed and running, you enter ICE-85 com-
mands interactively at the Intellec system console. Each command is executed im-
mediately as it is entered. The commands provide a wide range of controls over all
aspects of the operation of your system.

ICE-85 also performs extensive self-diagnosis during on-line operation. It checks the
Intellec bus interface during initialization, checks for the absence of system clocks,
verifies loading of ICE-8S5 registers, and verifies data written to user memory (data
verification can be disabled for certain items at your option). When an error is
detected, ICE-85 halts emulation or command processing, and displays an error
message at the console.

To complement the ICE modules, the Intellec Development System hosts all other
tools necessary for microprocessor development work. The Intellec text editor is
standard system software; it enables the designer to create and edit source programs
quickly. The ISIS-II diskette operating system provides high speed file handling and
mass storage facility. The Universal PROM Programmer peripheral for the Intellec
system can be used to program any Intel PROM.

PL/M-80, Intel’s high-level language for the 8080 and 8085 systems, reduces the
time required for software development by allowing the programmer to write code
in a self-documenting, natural manner. The PL/M-80 compiler handles time- con-
suming tasks like managing register usage, allocating data memory, and optimizing
code.

Using the relocating assembler, linker, and loader, programs can take advantage of
PL/M-80 for general programming needs, and also incorporate assembly-language
portions of code for critical timing loops or I/0 procedures.

Introduction

PROTOTYPE
HARDWARE
CONSTRUCTION

PROTOTYPE
HARDWARE
VERIFICATION

SPECIFY
PRODUCT

DESIGN
PRODUCT

H PRODUCTION

TEST

CODE CODE SYSTEM CODE
PREPARATION TRANSLATION VERIFICATION

SCOPE OF INTELLEC DEVELOPMENT SYSTEM WITH AN ICE MODULE

Figure 1-5. Typical Development Cycle with ICE Module 4636

1-5

Introduction ICE-85

Generalized Development Cycle With ICE-85

Figure 1-5 diagrams a generalized product development cycle using ICE-85 as a
design aid. The sequence of events in developing a new product using the Intellec
with ICE-85 is approximately as follows.

e Complete the specifications for the prototype hardware design, software control
logic, and integrated system performance.

® Organize both the hardware and software designs into logical blocks that are
readily understandable, have well-defined inputs and outputs, and are easy to
test. Breaking down the design is an iterative process, but is extremely valuable
in reducing the time required for prototyping, programming, testing, and
modification.

e Program the software modules in PL/M-80 or in 8080/8085 assembly language,
naming and storing the programmed modules as files under ISIS-II. Compile or
assemble the modules, linking and loading the combinations you are ready to
test, creating an object-code (machine language) version. Desk-check each
module as it is completed.

e As software modules are ready for testing, load them into Intellec RAM, and
emulate them via the ICE processor. If no hardware prototype is available, use
the ICE-85 Adapter Socket to configure the ICE-85 for ‘software’ mode. The
ICE-85 system allows you to use Intellec system memory and I/0 ports as parts
of the ‘prototype’ system. The advantages of this feature to software develop-
ment include:

1. You do not have to be concerned about overflowing your prototype system
memory in the initial stages of software design. You have the freedom to
test the program and compact it later without having to make room for ex-
tra memory in your prototype.

2. You may test your program in RAM memory, and make patches quickly
and easily without having to erase and reprogram PROM memory. In later
test phases, the ICE module can control program execution from PROM or
ROM in your prototype. The ICE module can map RAM memory in the In-
tellec to replace prototype memory in set increments, to test out software
changes before reprogramming.

* Hardware prototyping can begin with just a microprocessor socket and a system
bus (Figure 1-6). You can use I/0 ports in the Intellec system to simulate inputs
and outputs that later will come from and go to the ‘real world’, the environ-
ment in which your system is to ‘live’. The Intellec system ports can also give
your system access to external diagnostic routines.

THTE ALE

INTA ——— > (OPTIONAL)
8212 p—d Ag-A7
HOLD ———]
HLDA ———] 8085 X
READY ———»| # - AghAis
RESET OUT t—— - T’r - ADQ-AD7
CLK ———— —— RD,WR
4 10/M, ALE
Figure 1-6. MCS-85 System Bus 4637

1-6

ICE-85

® You can use memory in the Intellec system to check the interaction of prototype
hardware and proven software. The ability to map memory and I/0 is helpful in
isolating system problems. You can exercise all prototype memory and I/O
from a program residing initially in Intellec memory, and reassign memory
block-by-block to the user system as code is verified. Hardware failures can then
be isolated quickly, because interactions between prototype parts occur only at
your command. You do not have to use the prototype to debug itself.

e When the hardware prototype is developed to include additional peripheral
chips, access to ‘real-world’ signals, and perhaps some PROM memory and
system I/0, you can attach the 18 ICE-85 hardware probes so as to monitor the
coordination of these additional elements.

e The debugging/testing process can proceed through each hardware and
software module, using ICE commands to control execution and to check that
each module gets data or control information from the correct locations, and
places correct data or other signals in the proper cells or output locations for
subsequent modules to use.

e Eventually, you test all hardware and software together. The program can
reside in RAM or PROM in your system, or in RAM in the Intellec. All other
hardware can be in the prototype. ICE-85, connected to the system through the
microprocessor socket and hardware probes, can emulate, test, and trace all the
operations of the system.

e After the prototype has been completely tested, the ICE-85 can be used to verify
the product in production test. The test procedures you developed for the final
prototype testing can serve as the basis for production test routines, running the
program from metal-masked ROM in the production system.

Figure 1-7, another diagram of the development cycle using ICE, shows the role of
shared system resources in prototype development.

A. START
DEVELOPMENT SYSTEM PROTOTYPE
DATA MEMORY MICROPROCESSOR SOCKET
CONTROL MEMORY SYSTEM BUS
INPUT/OUTPUT PORTS
DEBUG SOFTWARE &1/0

MICROPROCESSOR SOCKET
BUS

B. DESIGN EVOLUTION

DATA MEMORY - — DATA MEMORY
CONTROL MEMORY < ~ CONTROL MEMORY
110 PORTS -+ —- 110

DEBUG SOFTWARE & 1/10

C. COMPLETE DESIGN

MICROPROCESSOR
BUS
DATA MEMORY
CONTROL MEMORY
110

Figure 1-7. Design Cycle with Shared Resources 4638

Introduction

1-7

Introduction

1-8

A Generalized Emulation Session

This section describes the main steps in an emulation session. You may not always
perform all the procedures given here in every emulation session, but the main
outline is the same in all sessions. The discussion emphasizes some of the features of
ICE-85 that have not been presented earlier. For the details of the command
language, see Chapters 4 and 5.

1.
2.
3.

Install the ICE-85 hardware in the Intellec chassis (see Chapter 2).
Attach channel probes and external signal lines as desired.

Boot the system, and obtain the hyphen prompt from the ISIS-II system. Enter
the ICE85 command, and obtain the asterisk prompt from ICE-85.

From the software to be tested, determine how many memory addresses in the
Intellec system are required to perform the emulation. For example, if your pro-
gram presently uses about 3K of memory but your prototype has only 1K install-
ed, you need about 2K of Intellec memory to be devoted to your program.

Intellec memory that is available for user program mapping is organized into
blocks of 2K (2048) contiguous bytes. Thirty-two such blocks are logically
available; the amount that is physically available depends on what you have in-
stalled in the Intellec.

If your Intellec has only its main memory, the memory blocks mapped to the
user program in the Intellec must share the memory space with the ISIS-1I and
ICE-85 system software, and with the Intellec Monitor. The memory locations
for these programs are constant, and you can easily determine where free blocks
of mappable memory are to be found.

The systems software in shared memory occupies the lower 28K of Intellec
shared memory, and Monitor uses addresses F800H to FFFFH. Typically, your
program also occupies physical locations in low memory. Since you cannot
overwrite the systems software, you must map the memory space used by your
program into locations higher in Intellec memory; ICE-85 stores the displace-
ment in its memory map, and refers each memory reference in your program to
the proper physical location in Intellec memory. For example, suppose your
code would occupy locations 0000H to OFFFH (the ‘H’ means hexadecimal
radix), or 4096 contiguous locations beginning at location 0; the lowest address
in Intellec shared memory that represents the beginning of two free 2K memory
blocks is always 7000H. Thus, the mapping command would be:

MAP MEMORY 0000H TO OFFFH = INTELLEC 7000H

ICE-85 takes care of the rest. You (and your program) continue to use the
memory references in the range 0000H to OFFFH, and ICE-85 makes the correc-
tion transparently to you.

You can also make use of optional unshared memory, up to 64K of extra
memory, if you have the slots available in your Intellec chassis and the extra
memory boards. Just as with the shared memory space, the Intellec Monitor
software uses addresses F80OH to FFFFH. The rest is free to be mapped;
displacement is allowed, but is generally not required for unshared memory
mapping.

. From your program and the state of development of the prototype, determine

how many Input/Qutput ports you would like to borrow from the Intellec
system. 1/0 ports are available in segments of eight ports each; up to 32 such
segments are logically available. Suppose you need to borrow twelve segments
of eight ports each; the mapping command might be:

MAP 10 00T TO 95T = INTELLEC

(The ‘T’ means decimal radix.) The command makes available the lowest 96
ports. No displacement is allowed.

ICE-85

ICE-85

6.

10.

Load your program from diskette into the memory locations you have mapped,
using the LOAD command.

. ICE-85 has three modes of operation: interrogation, real-time emulation, and

single-step emulation. The asterisk prompt signals that ICE-85 is in interroga-
tion mode, ready to accept any command.

. In interrogation mode, prepare the system for emulation by defining symbols

and channel groups, and setting emulation breakpoints and trace qualifiers.

ICE-85 software provides keywords for all 8085 registers and flags. In addition,
you may define and use symbols to refer to memory locations and contents. The
user symbol table is generated along with the object file during a PL/M com-
pilation or assembly. This table can be loaded into Intellec shared memory when
the user program is loaded.™

You are encouraged to add to this symbol table any additional symbolic values
for memory addresses, constants, or variables that you may find useful during
system debugging. Symbols may be substituted for numeric values in any of the
ICE-85 commands.

Symbolic reference is a great advantage to the designer. You do not need to
recall or look up the addresses of key locations in your program, as they change
with each assembly; you can use meaningful symbols from your source program
instead. This facility is especially valuable for high-level language debugging.
You can completely debug a program written in PL/M by referencing symbols
defined in the source code. You do not need to become involved with the
machine level code generated by the compiler. For example, the ICE-85 com-
mand:

GO FROM .START TILL .RSLT WRITTEN

begins real-time emulation of the program at the address referenced by the label
START in the designer’s PL/M-80 program. The command also specifies that
the program is to break emulation when the microprocessor writes to the
memory location referenced by RSLT. You do not have to be concerned with
the physical locations of START and RSLT. The ICE-85 software supplies them
automatiacally from information stored in the symbol table.

The ICE-85 system provides twelve channel groups, representing logical clusters
of the 18 hardware channel probes from the External Trace Module and the ad-
dress, data, and control signals from the 8085 system bus (via the Interface
cable). There are 43 channels in all. In addition to the system-defined groups,
you can define any other groups you wish to use. The channel groups represent
clusters of bit settings that can be used as match values for controlling emula-
tion and trace data collection. In addition, you can specify the display format
for any group you define, to make it easier for you to interpret the status of the
group when it is displayed during trace display.

Emulation breakpoints and trace qualifiers are identical in structure and com-
plementary in function. Both are ICE-85 ‘pseudo-registers’ containing 42 bits;
the bits correspond to the lowest 42 of the 43 channels discussed above. You can
set the bits in a breakpoint or qualifier register to zero, one, or don’t-care.
Then, whenever the states of the 42 channels match the settings of the cor-
responding bits in the register (not counting the don’t-cares), ICE-85 recognizes
the match and takes action. If a breakpoint register matches, emulation halts
(the breakpoint register must be enabled); if a trace qualifier matches, trace data
collection is enabled and runs whenever emulation runs.

. Enter a GO command to begin real-time emulation. ICE-85 uses another

pseudo-register called the GO-register to contain the halting conditions that you
have specified, either in the GO command itself or previously.

When emulation halts, you display the trace data collected during that
emulation. ICE-85 loads trace data into a trace buffer. Using ICE-85 com-
mands, you can position the trace buffer pointer to the information you desire

Introduction

1-9

Introduction

11.

12.

13.

14.

to review, and display one, several, or all the entries in the buffer. You can set
the display mode to one frame per line, one machine cycle per line, or one in-
struction per line of the display.

To control emulation more precisely and obtain more detailed trace data than
with real-time emulation, you can command ICE-85 to begin single-step emula-
tion. Under single-step emulation, you tell ICE-85 how many steps to emulate,
and you can specify other conditions for halting. After each step emulated, you
can obtain an automatic display of the current entry in the trace buffer, and the
current settings of several 8085 registers.

When a halt is reached, you can examine and change memory locations,
machine states, 8085 registers and flags, and 1/0O ports, to provide you with
valuable information on program operation at the point of termination. You
may alter data or register values to examine their effect on the next emulation,
or you can patch in changes to your program code itself. You can display and
change symbolic values in the symbol table, user-defined group names, and
breakpoint and trace qualifier match values.

Alternate between interrogation and emulation until you have checked
everything you want to check.

At the end of the emulation session, you can save your debugged code on an
ISIS-II diskette file, using the ICE-85 SAVE command. The operation can be
specified to save program code, symbol tables, and (for PL/M programs) the
source code line number table.

You can start another session immediately, resetting all parameters to their in-
itial values with a few simple commands, or you can exit to ISIS-II to terminate
the session.

This introduction is intended to show you some of the scope and power of the
ICE-85 in operation, and to suggest how this integrated software/hardware design
aid can fit into your development cycle. Chapter 2 contains detailed installation in-
structions. Chapter 3 contains a hands-on tutorial involving a sample program to be
debugged. Chapter 4 describes the meta-notation used in this manual to specify
command syntax and semantics. Chapter 5 presents the details of the command
language in a format and sequence designed for reference.

ICE-85

CHAPTER 2
ICE-85 INSTALLATION PROCEDURES

This chapter contains information on the installation of the ICE-85.

ICE-85 Components

The following items are included in the ICE-85 package.

e [CE-85 Control board (PN 1001355): A circuit board that plugs into the Intellec
chassis. The Control board contains the emulation controls, address map,
timer, and internal clock.

e ICE-85 Trace board (PN 1001191): A circuit board that plugs into the Intellec
chassis. It contains the breakpoint registers, trace memory, and qualifier
registers for controlling trace data collection.

e ICE-85 Module and Interface Cable (PN 4001461): A cable assembly containing
8085 logic; the cable terminal is a 40-pin connector with an 8085 CPU chip in-
stalled (Figure 2-1). The terminal is inserted in the CPU socket of the user
system.

e External Trace Module and Hardware Probe cable (PN 4001460): A cable
assembly containing signal buffers for 18 probes that can be connected to any
TTL signals you wish to monitor.

e ICE-85 Adapter Socket (PN 4001468): A 40-pin socket that fits the end of the
Interface Cable. The socket contains a 6.144 MHz crystal and the circuits
necessary to run the ICE-85 as a software development tool without user hard-
ware. The Adapter Socket is delivered mounted on the end of the Interface
Cable, to protect the pins on the connector.

e Dual Auxiliary Connector for the Intellec Series I chassis (PN 1000515), and
Dual Auxiliary connector for the Intellec Series II chassis (PN 1000751): Each
connector consists of a pair of parallel circuit board connectors that provide
electrical interconnections between the Control and Trace boards when they are
installed in the Intellec chassis.

e Two Sync Cables (PN 4001603): Two single-wire cables terminating in
micro-hooks, used to connect the external synchronization lines SYNCO and
SYNCI1 to external devices, including other ICEs.

® Some of the parts listed above may be contained in an Accessory Kit (PN
4001635).

e ICE-85 software, diskette-based version.

INTERFACE
CABLE TERMINAL

DO NOT
REMOVE.

REMOVE TO INSERT CABLE
IN PROTOTYPE SYSTEM
8085 SOCKET.

BRAIDED CABLE TO “RQ
ICE-85 MODULE

TERMINAL
ICE-85 STAND-ALONE PIN PROTECTOR

ADAPTER SOCKET

Figure 2-1. ICE-85 Cable Terminal Assembly 4639

2-1

Installation Procedures

Required and Optional Hardware

ICE-85 software requires the following minimum hardware configuration:

Intellec Series I or Series II with 32K of RAM and available slots for two
adjacent circuit boards.

Teletypewriter, CRT, or equivalent for console input and output.
Single diskette unit.
ICE-85 hardware as described above.

The following are optional enhancements to an ICE-85 system:

Serial printer for hard-copy output.

One or more RAM boards (32K or greater) to provide up to 64K unshared
memory in the Intellec chassis. If unshared memory is included, all RAM
boards must be 32K or greater.

Hardware Installation Procedures

The installation of the ICE-85 hardware is presented in the next four sections, as
follows: procedures for Intellec Series I; procedures for Intellec Series II; external
signal cables; and grounding techniques.

Installation Procedure for Intellec Series |

1. Disconnect the power cords of the Intellec chassis and user system.

Install the Intellec peripherals (diskette drives, TTY, CRT, serial printer),
following the installation guidelines given in the MDS Operator’s Manual.

. Inspect the ICE-85 components for damage.

4. Locate the group of six jumper pins at the lower center of the ICE-85 Control

Board. These pins have the configuration shown in Figure 2-2.

. Verify that the jumper is in position 0 as shown, selecting device code 10 to

identify the ICE-85 module. The four positions select device codes as follows.

Position Device Code
0 10 (standard setting)
1 11 (reserved for future ICE-85 use)
2 14 (reserved for future use)
3 15 (reserved for future use)

. Remove the top cover of the Intellec chassis. The top cover is secured by four

half-turn screws.

. Locate the connector panel at the top rear of the Intellec chassis. Remove the

four screws that attach the connector panel to the frame.

. Lift the connector panel away from the frame. Insert the three ribbon cables

from the ICE-85 Module and the ribbon cable from the External Trace Module
through the slot beneath the connector panel. The corrugated sides of the rib-
bon cables should face upward.

se[e o]0

20 © O 1

Figure 2-2. Control Board Jumper Pin Configuration

ICE-85

ICE-85 Installation Procedures

9. Replace the four screws in the connector panel. Replace any ground lugs from
peripheral cables that were attached to these screws.

10. Expand Intellec memory as necessary to accept the ICE-85 and user software.
Be sure to leave two adjacent card slots free for the ICE-85 boards.

11. Mount the Control Board and the Trace Board in the Dual Auxiliary connector.
For ease of ribbon cable routing, the solder side of the Trace Board should face
the component side of the Control Board (i.e., the Trace Board is ‘in front of’
the Control Board).

12. Insert the assembly of boards and connector into the Intellec chassis so that the
Control Board is in an odd-numbered slot.

13. ATTACH THE RIBBON CABLE MARKED X FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE CONTROL BOARD
MARKED X. When the connector is properly alighed, the triangles on connec-
tor and socket that designate pin 1 are lined up. Fold the cable as needed to fit
inside the chassis with the top replaced.

14. ATTACH THE RIBBON CABLE MARKED Y FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE CONTROL BOARD
MARKEDYY, aligning the pin 1 markers as described in the previous step.

15. ATTACH THE RIBBON CABLE MARKED V FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE TRACE BOARD
MARKED V, aligning the pin 1 markers as described above.

16. ATTACH THE RIBBON CABLE MARKED T FROM THE EXTERNAL
TRACE MODULE TO THE RECEPTACLE ON THE TRACE BOARD
MARKED T, aligning the pin 1 markers as described above.

The ribbon cables must be connected exactly as described in steps 13, 14, 15,
and 16 above. Any wrong connection can result in damage to the equipment.

17. Locate the 40-pin terminal at the end of the Interface Cable on the ICE-85
Module (Figure 2-1). The terminal has an 8085 mounted on the top side, and the
Stand-alone Adapter Socket mounted on the lower side through a terminal pin
protector. If the ICE-85 system is to be used without user prototype hardware,
leave the Adapter socket mounted in the terminal.

18. If a user prototype is to be included, remove the Adapter Socket and insert the
user cable into the 8085 socket on the user system. The 40-pin terminal protector
guards the Terminal pins. Plug the terminal assembly in to the user system with
this protector mounted. The pins on the cable terminal itself should never be
plugged directly into the user system.

19. Inpect the system to ensure proper grounding. Grounding techniques are
discussed later in this chapter.

20. Replace the top cover of the Intellec chassis.
21. Insert the power cords of the Intellec and user systems into their sockets.
Connect both to power sources.

Installation Procedure for Intellec Series Il

1. Disconnect the power cords of the Intellec chassis and user system.

2. Install the Intellec peripherals (diskette drives, TTY, serial printer), following
the installation guidelines given in the Intellec Series II Installation and
Maintenance Manual.

3. Inspect the ICE-85 components for damage.

4. Locate the group of six jumper pins at the lower center of the ICE-85 Control
Board. These pins have the configuration shown in Figure 2-2.

Installation Procedures

5.

10.

11.

12.

13.

14.

15.

16.

17.

Verify that the jumper is in position 0 as shown, selecting device code 10 to
identify the ICE-85 module. The four positions select device codes as follows.

Position Device Code
0 10 (standard setting)
1 11 (reserved for future ICE-85 use)
2 14 (reserved for future use)
3 15 (reserved for future use)

. Remove the front cover panel of the Intellec. The panel is below the CRT

screen, and is secured by two half-turn fasteners.

. Expand the Intellec memory as required for the ICE-85 and user software. Be

sure to leave two adjacent card slots free for the ICE-85 boards.

. Mount the Control Board and the Trace Board in the Dual Auxiliary

Connector, part number 1000751. The boards can be mounted in either order,
but must be configured so that, when the component sides are up, the auxiliary
connector is at the left.

. Insert the assembly of boards and connector into any two adjacent slots in the

EMDS chassis, component sides of the boards facing upward.

Locate the cable relief slot at the right front of the EMDS chassis. Bring the
three ribbon cables from the ICE-85 Module and the ribbon cable from the Ex-
ternal Trace Module through the relief slot and behind the vertical cable
restraint just to the left of the slot.

ATTACH THE RIBBON CABLE MARKED X FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE CONTROL BOARD
MARKED X. When the connector is properly aligned, the triangles on connec-
tor and socket that designate pin 1 are lined up. Fold the cable as needed to fit
inside the chassis with the front cover replaced.

ATTACH THE RIBBON CABLE MARKED Y FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE CONTROL BOARD
MARKEDYY, aligning the pin 1 markers as described in the previous step.

ATTACH THE RIBBON CABLE MARKED V FROM THE ICE-85
MODULE TO THE CABLE RECEPTACLE ON THE TRACE BOARD
MARKED V, aligning the pin 1 markers as described above.

ATTACH THE RIBBON CABLE MARKED T FROM THE EXTERNAL
TRACE MODULE TO THE RECEPTACLE ON THE TRACE BOARD
MARKEDT, aligning the pin 1 markers as described above.

The ribbon cables must be connected exactly as described in steps 11, 12, 13,
and 14 above. Any wrong connection can result in damage to the equipment.

Locate the 40-pin terminal at the end of the Interface Cable on the ICE-85
Module (Figure 2-1). The terminal has an 8085A mounted on the top side, and
the Stand-alone Adapter Socket mounted on the lower side through a terminal
pin protector. If the ICE-85 system is to be used without user prototype hard-

- ware, leave the adapter socket mounted in the terminal.

If a user prototype is to be connected, remove the adapter socket and insert the
cable terminal into the 8085 socket on the user system. The 40-pin terminal pro-
tector guards the terminal pins from damage. Plug the terminal assembly into
the user system with the protector mounted. The pins on the cable terminal itself
should never be plugged directly into the user system.

Inspect the system to ensure proper grounding. Grounding techniques are
discussed later in this chapter.

ICE-85

ICE-85

Installation Procedures

18. Replace the front cover panel on the Intellec chassis.

19. Insert the power cords of the Intellec and user systems into their sockets.
Connect both to power sources.

Installing External Signal Cables

The ICE-85 Module presents connectors for several external signals through a slot in
the side of the module case. The signals are as follows.

SYNC 0 Enabled as input by ICE-85 command: halts emulation when set
low.

Enabled as output by ICE-85 command: goes low when emulation
is not running.

SYNC 1 Enabled as input by ICE-85 command: forces trace data collection
when set high.

Enabled as output by ICE-85 command: goes low when trace is not
running.

MATCH 0/ Both signals are always enabled. MATCH 0/ goes low when a
MATCH 1/ condition in register BRO occurs; MATCH 1/ goes low to signal a
match on breakpoint register BR1.

EMUL Always enabled. Goes high when emulation is running.

GND Common ground for external signals.

Refer to Chapter 5 for the use of the external signals.

The installation procedure is the same for all of these signals. The cable consists of
two wires terminated in micro-hooks. Connect one of the wires to the desired exter-
nal signal post, through the slot in the side of the case. Connect the other wire of the
pair to the GND post. The GND post can act as a common reference for several ex-
ternal signals.

System Grounding

On the rear of the Intellec Series I chassis there are two connectors that bring out
Electronic Ground and Chassis Ground. These connectors are the only place in the
Intellec Series I where these two grounds are tied together.

The AC frame ground is tied to the Intellec chassis and is the third wire on the AC
power line (the other two wires being ‘‘hot’’ and ‘‘common’’).

Electronic Ground is routed through the Intellec onto the User Cable, where it is
passed down the cable, through the Cable Card, and presented to the user system
hardware on pin 20 of the 8085 40-pin socket.

On the Intellec Series II chassis, the chassis ground and electronic ground are tied
together at the frame of the power supply. The location is internal, rather than on
the rear of the chassis as on the Series I. The electronic ground wire is lime green
with a yellow stripe. The exact location of the interconnection varies among the dif-
ferent models of the Series II.

Installation Procedures

2-6

Ideal Grounding Arrangement

The ideal grounding arrangement between the Intellec and the user system occurs if
the user system’s Electronic Ground and Chassis Ground are left unconnected (i.e.,
open). Thus, the user Chassis Ground and frame should be tied to the third wire of
his AC power line, but his Electronic Ground should not be tied to it. This arrange-
ment allows just one common electronic ground to the total user system. Figure 2-3
illustrates this ideal grounding arrangement, on the MDS chassis.

CHASSIS

GROUND AC LINE
ELECTRONIC ICE-85 CABLE
‘ 1 CHASSIS
GROUND GROUND

ACLINE
ELECTRONIC
GROUND
\ J
l
MODULE =
USER SYSTEM
INTELLEC

Figure 2-3. System Grounding for Intellec Series I 46311

The above configuration is recommended in order to avoid a ground loop. Such a
ground loop would cause DC current to flow through the user cable, producing a
voltage drop between the Intellec System and the user system and introducing un-
necessary noise levels.

An Observation About Other Grounding Techniques

It may not always be feasible for the user to break his Electronic Ground-Chassis
Ground connection. In this situation, it is possible to avoid a ground loop by break-
ing the Intellec Electronic/Chassis Ground connection. This solution may prove un-
satisfactory, however, because if other peripheral devices tied to the Intellec have
their electronic and chassis grounds connected, you simply get a longer ground loop!

Although you can open all of the connections in the Intellec peripherals, with a large
system this may be arduous.

If the Intellec AC line and the user system AC line plug into the same output, the
ground loop problem may be of minor concern. If they plug into different AC sup-
plies, though, serious problems may develop.

One possible way to solve a suspected long ground loop problem could be to connect
the Intellec Electronic Ground and the user Electronic Ground by way of an external
electronic cable. A braided ground strap should be used for this purpose.

Additionally, since pin 20 at the 8085 socket provides the only ground tie between
the user system and the Intellec, you should ensure that a good ground exists at this
point. In fact, Intel supplies a small grounding cable (PN 400514) that can be used to
guarantee this ground. One end of this cable should be clipped to the user’s Elec-
tronic Ground. The other end should be connected to the User Cable’s 40-pin plug at
the pin connector provided.

ICE-85

CHAPTER 3
A SAMPLE ICE-85 SESSION
AT THE TERMINAL

The purposes of Chapter 3 are to introduce a few common ICE-85 commands, and
to provide hands-on experience with ICE-85 in a sample software debugging session.
To reduce the need for cross-reference to other chapters, this chapter includes brief
discussions of the commands used in the examples. The program to be debugged is a
simple traffic light controller. The program logic is presented before the hands-on
session, to help you understand what is going on.

How To Use This Chapter

To use this program as a hands-on tutorial, you must enter the programs as
listed in Figures 3-2, 3-3, and 3-4, using the ISIS-II Text Editor. Omit the line
number and nesting information that is on the listing; these values are assigned
by the compiler.

Compile CARS1 and CARS2 separately with the PLM80 compiler program,
making two separate diskette files.

Assemble the routine DELAY using ASM80.

Link CARS1 and CARS2 separately to DELAY and to system libraries
containing routines used by the programs. The link step should look like the
following:

LINK :Fx:CARSy.OBJ,:Fx:DELAY.OBJ,SYSTEM.LIB,PLM80.LIB
TO :Fx:CARSy.LNK

Locate the two linked programs as desired. In the examples, the default location
36COH has been used.

Complete directions on how to perform these preliminary steps are contained in
Dan McCracken’s A Guide to Intellec Microcomputer Development Systems ;
this document also contains further hands-on examples using ICE-85.

For details on program preparation, refer to the following manuals.

Text Editor: ISIS-1I System User’s Guide.

PL/M-80 Compiler: PL/M-80 Programming Manual.
ISIS-II PL/M Compiler Operator’s Manual.

8080/8085 Assembly 8080/8085 Assembly Language Programming Manual.
Language: ISIS-1I 8080/8085 Macro Assembler Operator’s Manual.

Read over the command discussions and tables of command examples.

Study the logic of CARSI, the program to be debugged. The material includes
text discussion, a flowchart, and program listings (CARS1, DELAY).

Install the ICE-85 hardware, following the steps given in Chapter 2. Leave the
Stand-alone Adapter mounted on the ICE-85 Interface Cable Terminal, for
‘software mode’ operation.

Insert an ISIS-II system diskette in drive O, and the ICE-85 software diskette in
drive 1.

Boot the system, and receive the ISIS-II hyphen prompt.

Enter the directive :F1:ICE85 followed by carriage return (cr), to load and begin
running the ICE-85 program. ICE-85 signals with an asterisk prompt.

If you have a line printer, you can record your session by typing LIST :LP: (cr).
All ICE-85 interactions are then printed as well as displayed at the console, but
the output from the CARS programs is not captured in the hard copy.

3-1

A Sample ICE-85 Session

3-2

®* The session involves two versions of the same program. CARSI1 (listing in
Figure 3-2) has deliberate errors to be found during the first part of the session.
CARS?2 has the errors fixed (listing in Figure 3-4). The second part of the emula-
tion session demonstrates the correct operation of the program.

* Insert the diskette containing the compiled versions of the two programs in drive
0, replacing the system diskette.

o Enter the ICE-85 commands in the order shown. Do not type the comments
(comments are preceded by semicolons (;)). The commentary on the pages fac-
ing the printout of the emulation session gives the exact form of each command,
and interprets the effect.

Commands Used In The Examples

Memory and 170 Port Mapping Commands

ICE-85 treats references to addresses in both the user program and in the ICE-85
commands as logical addresses. The physical address that corresponds to each
logical address reference can reside either in the user system or in the Intellec system.
By using the MAP commands, you teil ICE-85 where to look in physical memory to
find the address corresponding to each logical address reference to be used. After
that, ICE-85 refers to the map each time an address is used.

Logical addresses range from 0 to 65,535 (64K-1), and are partitioned for mapping
into 32 blocks of 2K addresses each. In our examples, all blocks of memory used by
the programs are mapped to the Intellec system. To avoid loading the program over
pre-existing system software, we have used displacement for the blocks that contain
the sample program. When displacement is used, the physical addresses differ from
the logical addresses; this is permitted only when Intellec memory is used.

Logical I/O port references range from 0 to 255, and are partitioned into 32
segments of 8 ports each. Physical port segments can be mapped to either the user
system or to the Intellec system, but no displacement is permitted. In our example,
all 170 ports used have been mapped to the Intellec system.

Table 3-1 gives a sample of the MAP commands used in this chapter, with their ef-
fects.

Table 3-1. Memory and /0O Port Mapping Examples
Example Effect

MAP MEMORY 0 = INTELLECO Assign physical location in Intellec memory
for the lowest block of logical addresses.

MAP 10 FO TO FF = INTELLEC Assign physical location in Intellec system
for highest two segments of 8 |/O ports
each.

MAP Display current memory mapping.

MAP IO Display current /O port mapping.

ICE-85

ICE-85 A Sample ICE-85 Session

Load Command

The LOAD command directs ICE-85 to load one or more program modules from
diskette into memory. The memory used is the one specified by the map. In other
words, ICE-85 treats each address reference in the program as a logical address,
looks up the physical address corresponding to that logical address in the map, then
loads the program code into the physical address. The program (and you) continues
to refer to the logical addresses, and ICE-85 makes the translation automatically and
invisibly.

The command:

LOAD :F0:CARS1
loads the program (file) named CARSI1 from diskette drive 0 into the physical area
mapped for it. The command also causes ICE-85 to load the program symbol table
and statement number table (if there is one), using physical locations high in
memory.
Symbolic References

The ICE-85 symbol table gives the logical addresses corresponding to:

e Labels in program modules loaded.
o User-symbols defined with the ICE-85 DEFINE command.

To refer to a symbol in ICE-85, precede it with a single period.

The line number table gives the logical address corresponding to each statement
number in a PL/M-80 program loaded. You cannot define any additional statement
numbers.

To refer to a statement number in ICE-85, precede it with a number sign (#).

Note: ICE-85 uses the memory map to find the physical location of the logical ad-
dress corresponding to a symbol or statement number.

Table 3-2 gives some symbolic references used in a sample commands in this
chapter.

Table 3-2. Symbol and Statement Number References in Command Examples
Example Effect
DEFINE .START = PC Define symbol START to be added to
symbol table, and set symbol equal to the
address currently in the program counter

(PC).

SYMBOL Display all current symbols and
corresponding (address) values.

.CARSSWAITING Display address corresponding to symbol
CARSSWAITING.

#62 Display address of first instruction on
program statement 62.

3-3

A Sample ICE-85 Session

34

Emulation Control Commands

The emulation control commands GO, STEP, and CALL cause ICE-85 to begin
running the user program, using the 8085 at the end of the Interface Cable as the
CPU. By contrast, the ICE-85 commands themselves (for example, MAP) are ex-
ecuted by the 8080 processor in the Intellec system.

The GO command begins real-time emulation. If a FROM clause follows the com-
mand word GO, the clause specifies the starting address for emulation. If a TILL
clause is included in the GO command, the clause specifies one or more halting con-
ditions. Emulation halts when one of the halting conditions becomes true. The
halting conditions used in the examples involve instructions executed and variables
written.

The STEP command begins single-step emulation. Single-stepping is much slower
than real-time emulation. The FROM and TILL clauses control the start and stop
conditions for single-stepping just as with the GO command, although the form of
the halting condition used with STEP differs from that used with GO.

The CALL command saves the processor register contents, including the program
counter, then begins emulation from the address given in the command; the address
is the starting point of a procedure block. On return from the procedure, the original
program counter value and all the other processor register values are restored, and
emulation continues automatically. Any halting conditions previously in effect at
the time of the CALL continue to control emulation, but no additional conditions
can be specified as part of the CALL command itself.

Table 3-3 gives some examples of these commands.

Table 3-3. Emulation Control Command Examples
Example Effect

GO FROM .START TILL #56 EXECUTED Begin real-time emulation at the address
corresponding to the symbol START,
and halt when (if) the first instruction in
program line 56 is executed.

STEP FROM #55 Begin single-step emulation starting
with the first instruction on program line
55.

CALL .14 Emulate the procedure that begins at the

address corresponding to the symbol i4,
then continue emulating from the (sav-
ed) value of the program counter as it
was when the CALL was issued.

Commands That Display or Change Memory and Register
Contents

The examples include only a small sample of the commands used-to display and
change memory and register contents. To display the content of any register, just
type the ICE-85 token for that register, followed by carriage return. The content is
displayed on the next line. To display the content of a single location in memory, use
the token BYTE followed by the desired address; a symbol or line number may be
used in the command. To display the content of two contiguous addresses, use the
command token WORD followed by the lower of the two contiguous locations.

ICE-85

ICE-85 A Sample ICE-8S5 Session

To assign (change) the content of a register or memory location, follow the ‘display’
reference with an equals sign (=), then give the desired new value.

Table 3-4 gives examples.

Table 3-4. Memory and Register Contents Command Examples
Exampie Effect

BYTE .CARSSWAITING Display the contents of the single location
corresponding to symbol .CARS$WAITING,
using the ICE-85 memory map, to find the
physical location.

BYTE .CARSSWAITING =1 Set the content of the location given by
.CARSS$WAITING, via the memory map, to 1.

PPC Display the content of the previous program
counter register (last instruction executed
before emulation halted).

Trace Display Commands

ICE-85 maintains a trace buffer that records information on the instructions ex-
ecuted during emulation. The information can be displayed, and the format of the
display can be controlled, with ICE-85 commands.

Trace data is recorded in frames. Each machine cycle represents two frames of trace
data; one frame is recorded when the ADDRESS lines are valid, and a second frame
is recorded when the low address lines represent valid DATA. An instruction
represents several cycles. Trace data collected during real-time emulation can be
"displayed as instructions, cycles, or frames; the default is instructions. Trace data
collected during single step emulation is displayed (when so enabled) after each in-
struction, and is always displayed as cycles.

The ENABLE DUMP command enables the automatic display of trace data after
each instruction executed in single-stepping. It can be further qualified to display
only certain types of instructions; in our examples, we have commanded displays of
this kind only for CALL instructions.

The TRACE command sets the trace mode for display of data from real-time emula-
tion to instructions, cycles, or frames.

The OLDEST command sets the trace buffer pointer to the beginning of the buffer,
so that the earliest items collected can be displayed. The NEWEST command sets
the pointer to the end of the buffer.

The PRINT command displays one or more entries before or after the position of
the buffer pointer.

3-5

A Sample ICE-85 Session

3-6

Table 3-5 gives examples of trace control commands.
Table 3-5. Trace Display Command Examples
Example Effect

ENABLE DUMP CALL Display program cycles and register
contents after each CALL instruction ex-
ecuted during single-step emulation.

TRACE = CYCLE Set trace mode to display one machine
cycle on each display line.

OLDEST Move trace buffer pointer to the first entry in
the trace buffer.

NEWEST Move the trace buffer pointer to just after
the latest entry in the trace buffer.

PRINT 25 Display 25 entries (lines of buffered data),
beginning with the one pointed to by the
current buffer pointer.

Analysis of the Sample Program

The application presented is a simple traffic light controller. Imagine an intersection
of a main street and a side street. The desired operation is that the light should stay
green on the main street until a decision involving the number of cars waiting on the
side street and the amount of time they have been waiting has been satisfied. We
suppose that there is a sensor in the pavement on the side street that sends an inter-
rupt to the computer when a car arrives. We do not include the control of a yellow
light on either street.

Refer to the following figures:

Figure 3-1, Traffic Light Controller Program Flow Chart
Figure 3-2, CARSI1 Program Listing

Figure 3-3, DELAY Subroutine Listing

Figure 3-4, CARS2 Program Listing

Associated with each street is a time called the cycle length. In the program, the
variable named SIDESCYCLESLENGTH controls the fixed length of time the light
is green on the side street when that cycle is called into action. Even though the light
stays green on the main street until the decision rule is satisfied, we need a variable
MAINSCYCLESLENGTH that is involved in the decision rule.

The decision rule is as follows. The side street gets a green light if either of the
following two conditions is satisfied.

1. Two or more cars are waiting on the side street, and the main street has had the
green light for a period of time greater than or equal to the variable
MAINSCYCLESLENGTH.

2. One car is waiting on the side street, and the main street has had the green light
for a period of time equal to or greater than two times the variable
MAINSCYCLESLENGTH.

The system has one input and one output. The input is a signal that a car has arrived
on the side street since the last time we sampled the input. The variable
CARSS$WAITING contains the number of cars waiting on the side street. The out-

ICE-85

ICE-85 A Sample ICE-85 Session

put goes to the traffic light controller. We assume that sending the controller a 1
makes the light on the main street green and the light on the side street red; sending it
a 0 makes the light on the main street red and the light on the side street green. The
variable LIGHT$STATUS represents this output.

The program is initialized with constants and variables set as follows.

MAINSCYCLESLENGTH = 8 seconds (Declaration not shown on chart)
SIDESCYCLESLENGTH = 5 seconds (Declaration not shown on chart)
MAINSTIME =0 (Time since last change to MAIN GREEN, SIDE RED)
SIDESTIME = not set yet. (Time since last change to SIDE GREEN)
LIGHT$STATUS =1 (MAIN GREEN, SIDE RED)

CARSSWAITING =0

To simulate the sensor interrupt during the emulation of the program, press the ESC
key to halt emulation without losing the content of any processor registers. Then
enter the ICE-85 CALL command; in the example, user symbol I4 has been defined
to ICE-85 as a synonym for the interrupt procedure name SIDESSTREETSCAR, to
save keystrokes. Upon receiving the CALL command, ICE-85 saves the processor
register contents (including the program counter), emulates the called procedure in
its entirety, then restores the registers and continues emulating from the point where
the program was halted. The interrupt can occur at any point in program execution;
it is shown at the top of the flowchart for illustration only.

The effect of the interrupt routine is to increment CARSSWAITING by 1 each time
the routine is called.

The procedure DISPLAY (lines 19 - 38) displays the current light status with one of
two messages (declared in lines 7 and 8), then displays the number of seconds since
the last light change in either direction. DISPLAY uses a procedure (CO) to display
text characters; CO is a Monitor routine linked to the PL/M-80 program. DISPLAY
also uses a procedure (function) LAST brought in from the PL/M-80 library at link
time.

The procedure DELAY (Figure 3-3) produces a delay equal to .01 seconds times the
value of the calling parameter. Line 54 in the main program and line 44 in the CY-
CLE module contain identical calls to DELAY: CALL DELAY (100). This pro-
duces a one-second delay. DELAY is written in 8080/8085 Assembly language and
linked to the program as an external routine.

After each delay, MAINSTIME is incremented by 1 (line 55).

Line 56 contains the decision rule. If it is sastisfied, CYCLE is called. If not, control
reverts to the beginning of the DO FOREVER loop (line 52).

When CYCLE (lines 39 - 48) is activated, LIGHTS$STATUS is set to 0, producing
the ‘SIDE GREEN’ message when DISPLAY is called. After each one-second delay,
SIDESTIME is incremented until it exceeds SIDESCYCLESLENGTH (5 seconds).
After the timeout, LIGHT$STATUS, CARSSWAITING, and MAINSTIME are
restored to their initial values and execution continues with a display of ‘MAIN
GREEN’.

3-7

A Sample ICE-85 Session

‘ START ’

MAIN
PROGRAM
CARS WAITING =0

MAIN TIME = 0
LIGHT STATUS =1

(SEENOTE Y
BELOW)

RECEIVE YES
INTERRUPT
?

NO

SIDE STREET CAR

CARS WAITING =
CARS WAITING + 1

DISPLAY /

DISPLAY LIGHT
STATUS, TIME ELAPSED

DELAY }

DELAY PRESET
TIME INTERVAL

MAIN
PROGRAM

MAIN TIME =
MAIN TIME + 1

CARS WAITING
>=2
?

CARS WAITING = 1
?

MAINTIME
> = 2% MAIN
CYCLELENGTH
?

YES

MAINTIME
> = MAIN CYCLE
LENGTH

NO

cYCLE Y

LIGHT STATUS =0
SIDETIME = 0

- 3

/

DISPLAY SIDE TIME
SIDE TIM|
SIDETIME + 1

SIDE TIME

> = SIDECYCLE

LENGTH
?

NO

YES

NOTE: INTERRUPT PROCESSING CAN OCCUR AT ANY
POINT. PROGRAM EXECUTION CONTINUES FROM
THE POINT THE INTERRUPT OCCURRED.

Figure 3-1. Traffic Light Controller Program Flow Chart

463-12

3-8

ICE-85

ICE-85

A Sample ICE-85 Session

-t

O oot d W

10
11
12

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

13
14
15

16
17
18

S L Wt G

NNMNWWNDDNNDNNDDWWND W wNNNNDND =

Py

\S]

/* TRAFFIC LIGHT CONTROLLER PROGRAM */
/* THIS PROGRAM CONTAINS DELIBERATE ERRORS! */

CARS;

DO;
DECLARE (MAINSTIME, SIDESTIME) BYTE;
DECLARE MAINSCYCLESLENGTH BYTE DATA (8), SIDESCYCLESLENGTH BYTE DATA (5);
DECLARE CARS$WAITING BYTE;
DECLARE LIGHTS$SSTATUS BYTE;
DECLARE FOREVER LITERALLY 'WHILE 1°';
DECLARE MAINSGREENSMESSAGE(*) BYTE DATA ('MAIN GREEN, SIDE RED');
DECLARE SIDESGREENSMESSAGE (*) BYTE DATA('SIDE GREEN, MAIN RED');
DECLARE TIMESMESSAGE(*) BYTE DATA(' SECS SINCE LIGHT CHANGE');

/* FOLLOWING PROCEDURE COUNTS CARS WAITING */

SIDE$SSTREETSCAR: PROCEDURE;
SIDESTIME = SIDESTIME + 1;
END SIDES$STREETSCAR;

/* FOLLOWING PROCEDURE DISPLAYS LIGHT STATUS AND ELAPSED TIME */

DISPLAY: PROCEDURE (CYCLESTIME) ;
DECLARE I BYTE;
IF LIGHT$STATUS = 0 THEN
DO I = 0 TO LAST(SIDESGREENSMESSAGE) ;
CALL CO (SIDESGREENSMESSAGE(I));
END;
ELSE
DO I = 0 TO LAST(MAINSGREENSMESSAGE) ;
CALL CO(MAINSGREENSMESSAGE(I)):;

END;
CALL CO(ODH); /* CARRIAGE RETURN */
CALL CO(O0AH) ; /* LINE FEED */
CALL CO((CYCLESTIME / 10) OR 30H); /* TEN'S DIGIT */

CALL CO{ (CYCLE$TIME MOD 10) OR 30H);/* UNIT'S DIGIT *x/
DO I = 0 TO LAST(TIME$SMESSAGE) ;
CALL CO (TIMESMESSAGE(I));

END;
CALL CO(ODH); /* CARRIAGE RETURN */
CALL CO(0AH); /* LINE FEED */

END DISPLAY;
/* FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN */

DELAY: PROCEDURE (TIMESHUNDREDTHS) EXTERNAL;
DECLARE TIMESHUNDREDTHS BYTE;
END DELAY;

/* FOLLOWING PROCEDURE BORROWED FROM THE MONITOR */

CO: PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END CO;

Figure 3-2. CARSI Listing 46313A

3-9

A Sample ICE-85 Session ICE-85

/* FOLLOWING PROCEDURE PERFORMS THE LIGHT CHANGE CYCLE */

39 1 CYCLE: PROCEDURE;
40 2 LIGHTSSTATUS = 0; /* SIDE GREEN, MAIN RED */
41 2 SIDESTIME = 0;
42 2 DO WHILE SIDESTIME <= SIDESCYCLESLENGTH;
43 3 CALL DISPLAY (SIDESTIME) ;
44 3 CALL DELAY (100);
45 3 SIDESTIME = SIDESTIME + 1;
46 3 END;
47 2 LIGHTS$STATUS = 1; /* MAIN GREEN, SIDE RED */
48 2 END CYCLE;
/* MAIN PROGRAM -- EXECUTION BEGINS HERE */

49 1 LIGHTSSTATUS = 1; /* START WITH MAIN GREEN */
50 1 CARSSWAITING = 0;
51 1 MAINSTIME = 0;
52 1 DO FOREVER;
53 2 CALL DISPLAY (MAINSTIME);
54 2 CALL DELAY (100);
55 2 MAINSTIME = MAINSTIME + 1;
56 2 IF (CARSSWAITING >= 2) AND (MAINSTIME >= MAINSCYCLESLENGTH)

AND (CARSSWAITING = 1) AND (MAINTIME >= 2 * MAINSCYCLESLENGTH)

THEN
57 2 DO;
58 3 CALL CYCLE;
59 3 CARSSWAITING = 0;
60 3 MAINSTIME = O0;
61 3 END;
62 2 END;
63 1 END CARS;

Figure 3-2. CARSI Listing (Continued)

3-10

ICE-85

A Sample ICE-85 Session

SOURCE STATEMENT

; TIME DELAY SUBROUTINE -- 0.01 SEC TIMES ARGUMENT

LOC OBJ SEQ

1

2 ;

3 CSEG

4 PUBLIC
0000 79 5 DELAY: MOV
0001 O6FF 6 MVI
0003 48 7 LAB1: MOV
0004 OD 8 LAB2: DCR
0005 221A00 C 9 SHLD
0008 221A00 C 10 SHLD
000B 221A00 C 11 SHLD
000E 221A00 ol 12 SHLD
0011 00 13 NOP
0012 C20400 C 14 JINZ
0015 3D 15 DCR
0016 C20300 C 16 JINZ
0019 C9 17 RET

18 ;
0002 19 TEMP: DS

20 END

DELAY
A,C
B, 255
c,B

TEMP
TEMP
TEMP
TEMP
LAB2

LAB1

7

N N NE we Ne

-

ARGUMENT PASSED IN C REGISTER
DELAY PARAMETER

WASTE 14 CYCLES
DITTO
DITTO
DITTO
WASTE 4 CYCLES

DUMMY DATA STORAGE

Figure 3-3. DELAY Subroutine Listing

A Sample ICE-85 Session

3-12

A Debugging Session Using ICE-85

We will now step through an emulation using ICE-85 as a software debugging tool.
This exercise is divided into two parts. The first part isolates, identifies, and corrects
program errors contained in the CARSI1 program. The second part is a short exercise
of CARS?2 to verify the correction of the program errors found in CARSI.

1. Request a display of the memory map by entering the command:
MAP

This causes the display of the initial state of each of the thirty-two 2K memory
blocks. The ‘G’ denotes that the associated block is GUARDED. i.e., access to
any memory address in that block is an error condition. All blocks are initially
guarded.

2. Request a display of the I0 may by entering the command:
MAP 10

This causes the display of the initial state of each of the thirty-two 8-port
segments. The ‘“‘G’’ denotes that the associated segment is GUARDED, i.e., ac-
cess to any port in that segment is an error condition. All segments are initially
guarded.

3. Enter the following ‘“MAP ="’ commands:
a. MAP MEMORY 0 =INTELLECO

This provides access to ISIS-II reserved locations in block 0000 where ISIS-II
variables used by the CARS1 program are stored. The warning message notifies
you that you are mapping into the system area.

b. MAP MEMORY 3000 LENGTH 4K = INTELLEQ 7000
This provides 4K address locations for the CARS1 program code.
c. MAP F800=INTELLEC F800

This provides CARS1 access to the routine in MONITOR. Note that the term
“MEMORY?”’ is not mandatory in this command. “‘MEMORY”’ is the default
specification and can be omitted.

4. Review the effects of the above map commands by entering:
MAP

This causes the display of the updated map. ‘‘I’’ means Intellec. Note the
displacement of block 3000 into Intellec memory block 7000, and the displace-
ment of the succeeding block, 3800, into Intellec memory block 7800.

ICE-85

ICE-85

*; DISPLAY INITIAL MEMORY MAP

*

*MAP
SHARED
0000=G
2000=G
4000=G
6000=G
8000=G
A000=G
C000=G

E000=G
*

*

*, DISPIAY INITIAL I/O MAP

*

*MAP IO
00=G
20=G
40=G
60=G
80=G
A0=G
Co0=G
E0=G
*

*

0800=G
2800=G
4800=G
6800=G
8800=G
A800=G
C800=G
E800=G

08=G
28=G
48=G
68=G
88=G
A8=G
C8=G
E8=G

1000=G
3000=G
5000=G
7000=G
9000=G
B000=G
D000=G
F000=G

10=G
30=G
50=G
70=G
90=G
BO=G
D0=G
F0=G

A Sample ICE-85 Session

1800=G
3800=G
5800=G
7800=G
980 0=G
B800=G
D800=G
F800=G

18=G
38=G
58=G
78=G
98=G
B8=G
D8=G
F8=G

*; MAP MEMORY BLOCK 0 FOR ACCESS TO ISIS-II VARIABLES

*

*MAP MEMORY 0
WARN C1:MAPPING OVER SYSTEM

*

*¥; MAP SPACE FOR PROGRAM CODE

*

INTELLEC O

*MAP MEMORY 3000 LENGTH 4K = INTELLEC 7000

*

*; MAP BLOCK F800 FOR ACCESS TO MONITOR ROUTINE

*; NOTE THAT IS THE DEFAULT, AND CAN BE OMITTED

*
*MAP F8
*

*
*

00 =

0000

' MEMORY '

INTELLEC F800

0800=G
2800=G
4800=G
6800=G
8800=G
A800=G
C800=G
E800=G

1000=G
3000=1
5000=G
7000=G
9000=G
B000=G
D000=G
F000=G

; REVIEW EFFECTS OF MEMORY MAP COMMANDS

1800=G
3800=1 780
5800=G
7800=G
9800=G
B800=G
D800=G
F800=I F800

o

3-13

A Sample ICE-85 Session

3-14

5. Map IO ports into Intellec by entering the command:

MAP IO FO TO FF = INTELLEC

Note that no displacement is permitted. Review the updated IO may by enter-
ing:

MAPIO

. Load CARSI from the diskette in drive 0 (:FO:) into Intellec memory:

LOAD:F0:CARS1

. Define two user symbols:

DEFINE.START =PC

The current contents of the program counter (PC) contains the starting address
for CARSI. This sets START equal to the starting address.

DEFINE.I4 = .SIDE$STREET$CAR

This defines 14 as a synonym for SIDESSTREET$CAR. Therefore
SIDESSTREET$CAR can be called using I4 in the call in place of the longer
SIDESSTREET$CAR.

. Display the symbol table:

SYMBOL

Note that START is set to the starting address (36C3H) and that I4 and
SIDESSTREETS$CAR are set to the same address (3727H).

ICE-85

ICE-85

5

*; MAP HIGHEST TWO SEGMENTS OF I/O PORTS

*

*MAP IO FO TO FF = INTELLEC

*

*; REVIEW I/O MAP
*

18=G
38=G
58=G
78=G
98=G
B8=G
D8=G
F8=1

*MAP IO

00=G 08=G 10=G
20=G 28=G 30=G
40=G 48=G 50=G
60=G 68=G 70=G
80=G 88=G 90=G
A0=G A8=G BO=G
Co=G c8=G DO=G
E0=G E8=G FO=I
*

*

*; LOAD EMULATION PROGRAM, CARS1, CONTAINING ERRORS
*; TO BE IDENTIFIED AND CORRECTED

*

*LOAD :F0:CARS1
*

*

*; DEFINE TWO USER SYMBOLS FOR USE IN EMULATION

*
*DEFINE .START = PC

*DEFINE .I4 = SIDE$STREET$CAR

*

*

*; LOOK AT SYMBOL TABLE
*

*SYMBOL

.START=36C3H

.I14=3727H

MODULE ..CARS
.MEMORY=3889H
.MAINTIME=3883H
.SIDETIME=3884H

.MA INCYCLELENGTH=3680H
.SIDECYCLELENGTH=3681H
.CARSWA ITING=3885H
.LIGHTSTATUS=3886H
.MAINGREENMESSAGE=3682H
.SIDEGREENMESSAGE=3696H
. TIMEMESSAGE=36AAH
.SIDESTREETCAR=3727H
.DISPLAY=3735H
.CYCLETIME=3887H

. I=3888H

.CYCLE=37E%H

MODULE . .MODULE
.DELAY=3816H
.LAB1=3819H

.LAB2=381AH

. TEMP=3830H
*

*

A Sample ICE-85 Session

3-15

A Sample ICE-85 Session

3-16

11.

12.

13.
14.

15.

16.

. Initiate emulation by entering the command GO.
10.

Halt emulation after a few cycles by depressing the ESC key. Enter the
command:

CALL .14

This simulates an interrupt to enter a car on the side street. This call enters the
first car on the side street. Emulation continues automatically after the call has
been executed.

Let emulation continue until 18 seconds have elapsed. Then halt emulation via
the ESC key. Main cycle time (2*MAINSCYCLESTIME) has been exceeded
without a light change. This is a program error.

Enter the second car on the side street:
CALL .14
Depress ESC key after 22 seconds of emulation.
Still no light change.
Display the contents of CARSSWAITING:
BYTE .CARSSWAITING

The command BYTE operator causes the display of the contents of the byte
location specified by the parameter ‘operator’, in this case, CARSSWAITING.
Note that the address of CARSSWAITING is 3885H (see symbol table).
Therefore the display shows that CARS$WAITING = 0 (should be equal to 2).

Visually inspect statement 11 of the CARSSWAITING.LST listing. It contains
the wrong variable, SIDESTIME. It should be CARS$WAITING.

Check the address of SIDESTIME by entering the command:
SIDESTIME
The display contains the address of SIDESTIME, 3884H.

ICE-85

ICE-85

10

11

12

13

14

15

16

A Sample ICE-85 Session

*; PROGRAM IS NOW READY TO EMULATE, USING THE CURRENT PC
*; CONTENTS AS THE START ADDRESS, AND 'FOREVER' AS THE
*; DEFAULT HALTING CONDITION.

*

*GO

EMULATION BEGUN

(...)

EMULATION TERMINATED, PC=3824H

PROCESSING ABORTED

*

*; HALTED MANUALLY (ESC KEY) TO ENTER FIRST CAR.

*

*CALL .I4

EMULATION BEGUN

(...)

EMULATION TERMINATED, PC=3821H

PROCESSING ABORTED

*

*; STILL MAIN GREEN AFTER 18 SECONDS ELAPSED. SHOULD HAVE
*; CYCLED TO SIDE GREEN AT 16 SECONDS WITH ONE CAR WAITING.
*; ENTER SECOND CAR AND TEST.

*

*CALL .I4

EMULATION BEGUN

(...)

EMULATION TERMINATED, PC=381EH

PROCESSING ABORTED

*

*; STILL MAIN GREEN AFTER 22 SECONDS WITH TWO CARS WAITING.
*; CHECK CARS$WAITING; IT SHOULD BE EQUAL TO 2.

*

*BYTE.CARSS$SWAITING

3885H=00H

*

*; CARSSWAITING IS NOT BEING INCREMENTED. CHECK STATEMENT #11

*; OF THE PROGRAM LISTING (FIGURE 3-2). THIS IS WHERE CARSSWAITING
*; SHOULD BE INCREMENTED.

*

*; THE INTERRUPT ROUTINE IS INCREMENTING THE WRONG VARIABLE --

*; SIDESTIME INSTEAD OF CARS$SWAITING.

*

*

CHECK THE ADDRESS OF SIDESTIME.

~

*

* _SIDESTIME

3884H
*

*

3-17

A Sample ICE-85 Session

3-18

17.

18.

19.

20.

21.

Display the memory contents of statement 11 to statement 12 of CARSI to
determine which bytes contain the address:

BYTE ..CARS#11 TO (..CARS#12-1)

The command BYTE partition causes all of the bytes of object code generated
by statement 11 to be displayed. The second and third bytes (84H 38H)
displayed contain the address. The second byte contains the two low- order
digits of the address (84H) and the third byte contains the two high- order digits
(38H). Therefore the address is 3884H. This is the address of SIDESTIME (see
the symbol table). The entry ..CARS tells ICE-85 which module to search for
the statement number.

The above bytes should be changed to contain the address of
CARSSWAITING.

a. Therefore, enter the following command to get the address of
CARSSWAITING:

.CARSSWAITING
The display response (3885H) is the address of CARS$WAITING.

b. Next, enter the following command to change the address in statement 11 to
the address of CARS$WAITING:

WORD (..CARS#11 +1) = .CARSSWAITING

WORD (..CARS#11 + 1) in the above command references a 16-bit word
consisting of the second byte (..CARS#11 + 1) and the third byte
(..CARS#11 + 2) of statement 11.

c. Verify that the address has been changed correctly by entering the following
command:

BYTE ..CARS#11 TO (#12-1)
The display response shows that the address in statement 11 is now correct.
Enter the following command to restart CARSI:
GO FROM .START FOREVER
This command restores the initial start and halt condition.

After 3 seconds manually halt emulation via the ESC key and reenter the first
car with the following command:

CALL .14

Manually halt emulation via the ESC key after 17 seconds have elapsed. Enter
the following command to examine the contents of CARS$WAITING:

BYTE .CARSSWAITING

ICE-85

ICE-85

17

18

19

20

21

A Sample ICE-85 Session

*; DISPLAY MEMORY CONTENTS FROM STATEMENT #11 UP TO

*; STATEMENT #12 TO FIND THE BYTES WHERE THIS ADDRESS
*; IS STORED.
*

*BYTE ..CARS#11 TO (..CARS#12 - 1)
372BH=21H 84H 38H 34H
*

; THE MIDDLE TWO BYTES (84H 38H) ARE THE ADDRESS OF SIDESTIME.

*

*

*; REPLACE WITH THE ADDRESS OF CARSS$WAITING.
*

*; FIRST, CHECK THE ADDRESS OF CARS$WAITING.
*

* _CARSSWAITING

3885H

*

*; CHANGE SIDES$TIME TO CARSSWAITING IN INTERRUPT ROUTINE.
*

*WORD (..CARS#11 + 1) = .CARSSWAITING
*

*; VERIFY THAT THE CHANGE WAS MADE CORRECTLY.
*

*BYTE ..CARS#11 TO (..CARS#12 - 1)

372BH=21H 85H 38H 34H

*

*; CHANGE WAS MADE CORRECTLY. RESTART FROM .START.
*

*GO FROM .START FOREVER

EMULATION BEGUN

(..2)

EMULATION TERMINATED, PC=3821H

PROCESSING ABORTED
*

*

*; MAIN GREEN, 3 SECONDS ELAPSED. ENTER FIRST CAR AGAIN.
*

*CALL .I4

EMULATION BEGUN

(...
EMULATION TERMINATED, PC=3824H

' PROCESSING ABORTED

*

*; MAIN STILL GREEN AFTER 17 SECONDS. SHOULD HAVE CYCLED
*; AT 16 SECONDS WITH ONE CAR WAITING.
*

*; DOUBLE-CHECK CARSS$WAITING
*
*BYTE . CARSSWAITING

3885H=01H
*

3-19

A Sample ICE-85 Session

3-20

22

23.

24.

25.
26.

27.

28.

. CARSSWAITING incremented correctly, enter second car:
CALL .14

Halt emulation manually after 21 seconds. Still no light change, check contents
of CARS$WAITING again:
BYTE .CARSSWAITING

CARSSWAITING equal to 2, incrementing properly.

Since CARSSWAITING is incrementing correctly, enter the following
command to determine if CYCLE is ever executed:

GO TILL .CYCLE EXECUTED
Emulation should not halt.
Manually hélt emulation after 25 seconds.
Change to Single Step mode using automatic display.

a. Enter the following command to enable automatic display of call
instructions:

ENABLE DUMP CALL

b. Do single step beginning at statement 52, the beginning of the DO loop in
the Main program:
STEP FROM #52

In the display, P = PC, the starting address of the called routine; the re-
mainder of the display output can be ignored at this time.

Manually halt emulation with the ESC key. Note P = 3816H in the last line of
display above. 3816H is the start of the DELAY subroutine. Single stepping
through DELAY will take too much time.

Bypass DELAY. Start single stepping from statement 55. Statement 55
increments MAINSTIME.

STEP FROM ..CARS#55

ICE-85

ICE-85

22

23

24

25

26

27

28

A Sample ICE-85 Session

*; THAT IS CORRECT. ENTER A SECOND CAR.
*

*CALL .I4

EMULATION BEGUN

(...)

EMULATION TERMINATED, PC=381AH

PROCESSING ABORTED

*

*; STILL MAIN GREEN AFTER 21 SECONDS WITH TWO CARS WAITING.
*; SHOULD HAVE CYCLED. CHECK CARS$WAITING AGAIN.
*

*BYTE .CARS$WAITING

3885H=02H

*

*; CARSSWAITING IS INCREMENTING WITH EACH CAR.

*; IS CYCLE EVER EXECUTED?

*

*GO TILL .CYCLE EXECUTED

EMULATION BEGUN

(..)

EMULATION TERMINATED, PC=3824H

PROCESSING ABORTED

*

; MAIN STILL GREEN AT 25 SECONDS. CYCLE IS NOT EXECUTING.

%

*

*; TRY SINGLE-STEPPING FROM THE BEGINNING OF THE DO-LOOP

*; IN MAIN PROGRAM, AND DISPLAY ALL 'CALL' INSTRUCTIONS EXECUTED.

*

*ENABLE DUMP CALL

*STEP FROM ..CARS#52

EMULATION BEGUN
36D7-E-CD 36D8-R-35 36D9-R-37 3880-W-36 387F-W-DA

P=3735H S=387FH A=59H F=B4H B=FFH C=19H D=00H E=30H H=43H L=19H I=08H
377E-E-CD 377F-R-09 3780-R-F8 387E-W-37 387D-W-81

P=F809H S=387DH A-13H F=10H B=36H C=4DH D=00H E=30H H=36H L=82H I=08H
377E-E-CD 377F-R-09 3780-R-F8 387E-W-37 387D-W-81

P=F809H S=387DH A=13H F=14H B=36H C=41H D=00H E=30H H=36H L=83H I=08H

...

P=F809H S=387DH A=0DH F=10H B=36H C=0AH D=00H E=30H H=38H L=88H I=08H
36DC~-E-CD 36DD-R-16 36DE-R-38 3880-W-36 387F-W-DF

P=3816H S=387FH A=0AH F=10H B=36H C=64H D=00H E=30H H=38H L=88H I=08H
EMULATION TERMINATED, PC=381EH

PROCESSING ABORTED

*

*; CAN'T USE STEP. DELAY ROUTINE TAKES TOO LONG.
*

*; TRY STEPPING FROM THE NEXT STATEMENT AFTER THE RETURN FROM DELAY.
*

*STEP FROM ..CARS#55

EMULATION BEGUN
3709-E-CD 370A-R-65 370B-R-38 387C-W-37 387B-WOC

P=3865H S=387BH A=1AH F=54H B=FFH C=FFH D=00H E=30H H=00H L=10H I=08H
36D7-E-CD 36D8-R-35 36D9-R-37 387E-W-36 387D-W-DA

P=3735H S=387DH A=00H F=54H B=00H C=1AH D=00H E=1AH H=43H L=1AH I=08H
377E-E-CD 377F-R-09 3780-R-F8 387C-W-37 387B-W-81

P=F809H S=387BH A=13H F=10H B=36H C=4DH D=00H E=1AH H=36H L=82H I=08H

PROCESSING ABORTED
*

3-21

A Sample ICE-85 Session

3-22

29.

30.

31.

32.

33.

34.

35.

36.

37.

Manually halt single step after four automatic single step displays. Note P =
3735H in the fourth line of display above. 3735H is the address of DISPLAY
(see symbol table). Therefore CYCLE is not being executed. The IF statement
(statement 56) is not branching correctly.

Restart emulation:
GO FROM .START TILL ..CARS#56 EXECUTED

This command sets PC = START and specifies a halt on statement 56 (IF state-
ment).

After the halt on #56, set one of the test conditions of the IF statement:

BYTE .CARSSWAITING =1
BYTE .MAINSTIME = 2* (BYTE .MAIN$SCYCLESLENGTH)

Set up emulation to continue from statement 56 and to halt when statement 58
or 62 is executed:

GO TILL..CARS#58 E OR..CARS#62E

Note the use of E, an abbreviation for EXECUTED. When emulation halts,
look at the contents of the Previous Program Counter (PPC):

PPC

The display response is 3722H.

Display the address of the first byte location of object code for statement 62:
..CARS#62

The address of statement 62 is 3722H, the address contained in the PPC in step
32. Therefore CYCLE was not executed. The IF statement took the ‘‘false’’
branch although you set the condition to the ‘‘true’’ state in step 31 above.

Repeat steps 30-32 with the second IF condition:
GO FROM .START TILL ..CARS#56 EXECUTED
When emulation halts, set up the second IF condition:

BYTE .CARSSWAITING =2
BYTE .MAINSTIME = BYTE .MAIN$CYCLESTIME

Repeat test:
GO TILL ..CARS#58 E or ..CARS# 62 E
Display PPC:
PPC
Display contains 3722H.
Display the address of statement 62:

..CARS#62
Address of statement 62 is 3722H, the same as the contents of the PPC.
Therefore emulation bypassed CYCLE again. The IF statement failed to branch
correctly under either branch condition.

Visually examine the IF statement in detail. Notice the second line of the IF
statement is:

AND (CARSSWAITING = 1) AND (MAINSTIME>= 2* MAINSCYCLESLENGTH)

The line is incorrect, the first ““AND’’ should be ““OR’’. As stated, the IF condi-
tions contained in the first and second lines must both be true at the same time
for the IF statement to branch to CYCLE. This is impossible. The test will
always fail as stated. It must be one condition or the other. Therefore the AND
must be changed to OR. To make this correction, the source code in CARSI1
must be changed and CARSI1 recompiled. CARS2 is a recompilation of CARS1
with the necessary corrections.

ICE-85

ICE-85

29

30

31

32

33

34

35

36

37

A Sample ICE-85 Session

*; ADDRESS (P=3735H) IS THE BEGINNING OF DISPLAY. CYCLE NEVER EXECUTED.
*

*; TRY EMULATING FROM .START, HALTING RIGHT BEFORE THE DECISION POINT.
*; TEST THE 'IF' STATEMENT BY SETTING THE VALUES MANUALLY.

*

*GO FROM .START TILL ..CARS#56 EXECUTED

EMULATION BEGUN

EMULATION TERMINATED, PC=36EGH

*

*BYTE .CARSSWAITING = 1

*BYTE .MAINSTIME = 2% (BYTE .MAINSCYCLE$LENGTH)

; NOW TO EMULATE UNTIL CYCLE IS CALLED (STATEMENT #58) OR UNTIL THE
; END OF THE DO~-LOOP IN THE MAIN PROGRAM IS EXECUTED (STATEMENT #62),
; HALTING EMULATION ON EITHER CONDITION.

* % ¥ ¥ ¥

*GO TILL ..CARS#58 E OR ..CARS#62 E
EMULATION BEGUN

EMULATION TERMINATED, PC=36D3H

*

*; LOOK AT PREVIOUS PROGRAM COUNTER (PPC) .
*

*PPC

3722H

*

*; COMPARE WITH STATEMENT #62

*

*#62

3722H

*

*; WE BRANCHED AROUND THE CALL TO CYCLE. THE 'IF' CONDITION WAS NOT
*; SATISFIED. TRY THE ALTERNATE CONDITION.

*GO FROM .START TILL ..CARS #56 EXECUTED
EMULATION BEGUN

EMULATION TERMINATED, PC=36E6H

*

*BYTE .CARSSWAITING = 2

*BYTE .MAINSTIME = BYTE .MAINSCYCLES$LENGTH
*

*GO TILL ..CARS#58 E OR ..CARS#62 E
EMULATION BEGUN

EMULATION TERMINATED, PC=36D3H
*

*PPC

3722H

*

*#62

37228

*

*; SAME RESULT AS FOR ONE CAR. THE 'IF' TEST IS FAILING.
*

*

*; EXAMINE THE 'IF' TEST.

*

*; NOTE THAT THE 'IF' STATEMENT HAS 'AND' INSTEAD OF 'OR'.
*; MUST EXIT ICE-85, EDIT AND RECOMPILE PROGRAM.

*; FIXED PROGRAM IS CARS2.

*

»
¥
=
=]

3-23

A Sample ICE-85 Session ICE-85

/* TRAFFIC LIGHT CONTROLLER PROGRAM */

1 CARS;

DO;
DECLARE (MAINSTIME, SIDESTIME) BYTE;
DECLARE MAINSCYCLESLENGTH BYTE DATA(8), SIDESCYCLESLENGTH BYTE DA
DECLARE CARSSWAITING BYTE;
DECLARE LIGHTSSTATUS BYTE;
DECLARE FOREVER LITERALLY ‘WHILE 1';
DECLARE MAINSGREENSMESSAGE (*) BYTE DATA ('MAIN GREEN, SIDE RED');
DECLARE SIDESGREENSMESSAGE (*) BYTE DATA('SIDE GREEN, MAIN RED');
DECLARE TIMESMESSAGE (*) BYTE DATA(' SECS SINCE LIGHT CHANGE');

WO UL WN
P G G (PN

/* FOLLOWING PROCEDURE COUNTS CARS WAITING */

10 1 SIDESSTREETSCAR: PROCEDURE;
11 2 CARSSWAITING = CARSSWAITING + 1;
12 2 END SIDESSTREETSCAR;

/* FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN */

13 1 DELAY: PROCEDURE (TIMESHUNDREDTHS) EXTERNAL;
14 2 DECLARE TIMESHUNDREDTHS BYTE;
15 2 END DELAY;
/* FOLLOWING PROCEDURE BORROWED FROM THE MONITOR */
16 1 CO: PROCEDURE (CHAR) EXTERNAL;
17 2 DECLARE CHAR BYTE;
18 2 END CO;
/* FOLLOWING PROCEDURE DISPLAYS LIGHT STATUS AND ELAPSED TIME */

19 1 DISPLAY: PROCEDURE (CYCLESTIME) ;
20 2 DECLARE CYCLES$TIME BYTE;
21 2 DECLARE I BYTE;
22 2 IF LIGHTS$STATUS = 0 THEN
23 2 DO I = 0 TO LAST(SIDESGREENSMESSAGE) ;
24 3 CALL CO(SIDESGREENSMESSAGE (I));
25 3 END;

ELSE
26 2 DO I = 0 TO LAST(MAINSGREENSMESSAGE) ;
27 3 CALL CO(MAINSGREENSMESSAGE(I));
28 3 END;
29 2 CALL CO(ODH); /* CARRIAGE RETURN */
30 2 CALL CO (0AH); /* LINE FEED */
31 2 CALL CO((CYCLESTIME / 10) OR 30H); /* TEN'S DIGIT */
32 2 CALL CO((CYCLESTIME MOD 10) OR 30H);/* UNIT'S DIGIT *x/
33 2 DO I = 0 TO LAST(TIMESMESSAGE) ;
34 3 CALL CO (TIMESMESSAGE (I));
35 3 END;
36 2 CALL CO (ODH) ; /* CARRIAGE RETURN */
37 2 CALL CO (0AH); /* LINE FEED */
38 2 END DISPLAY;

Figure 3-4. CARS2 Program Listing

3-24

ICE-85

A Sample ICE-85 Session

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56

57
58
59
60
61
62

63

NN WWWWNhNDNN =

NN NDN= 2 - a

N WWwwwN

/* FOLLOWING PROCEDURE PERFORMS THE LIGHT CHANGE CYCLE */

CYCLE: PROCEDURE;
LIGHTSSTATUS = 0; /*
SIDESTIME =0;
DO WHILE SIDESTIME <= SIDES$CYCLESLENGTH;
CALL DISPLAY (SIDESTIME);
CALL DELAY (100);
SIDESTIME = SIDESTIME + 1;
END;
LIGHTS$STATUS = 1; /*
END CYCLE;

/* MAIN PROGRAM -- EXECUTION BEGINS HERE */

LIGHTS$STATUS = 1;
CARS$WAITING
MAINSTIME = 0;
DO FOREVER;

CALL DISPLAY (MAINSTIME);

CALL DELAY{100);

MAINSTIME = MAINSTIME + 1;

IF (CARSSWAITING >= 2) AND (MAINSTIME >=

/*

’
.
7

SIDE GREEN, MAIN RED *,

MAIN GREEN, SIDE RED ¥,

START WITH MAIN GREEN ‘?

MAINSCYCLESLENGTH)

OR (CARSSWAITING = 1) AND (MAINSTIME >= 2 * MAINSCYCLESLENGTE

THEN
DO;
CALL CYCLE;
CARSSWAITING = Q;
MAINSTIME = 0;
END;
END;

END CARS;

Figure 3-4. CARS2 Program Listing (Continued)

3-25

A Sample ICE-85 Session

3-26

The following steps are a brief emulation of CARS2 to verify that the program
changes made to CARS1 enable CARS2 to run properly.

1.

SNk e

Enter the same mapping commands as in CARS1.
Define 14 and START.

Load the corrected program.

Check the symbol table.

Start emulation from START and let CARS2 cycle for at least 20 cycles. Halt
CARS2 manually with the ESC key. Note that there was no signal light change
as no cars were entered on the side street.

Call I4 to enter one car on the side street. Allow emulation to continue for at

least 30 cycles. Notice that the side street signal turns green for 5 cycles and then
the main street turns green again.

ICE-85

ICE-85

*MAP 0 = INT O

WARN C1:MAPPING OVER SYSTEM
*MAP 3000 LEN 4K = INT 7000
*MAP F800 = INT F800

*MAP IO FO TO FF = INT

*

*LOAD :F0:CARS2

*

*DEFINE .I4 = .SIDE$STREETSCAR

*DEFINE .START = PC
*

*SYMBOL

.I4=3727H

. START=36C3H

MODULE ..CARS
.MEMORY=3889H
.MAINTIME=3883H
.SIDETIME=3884H
.MAINCYCLELENGTH=368 0H
.SIDECYCLELENGTH=3681H
.CARSWAITING=3885H
.LIGHTSTATUS=3886H
.MAINGREENMESSAGE=3682H
. SIDEGREENMESSAGE=3696H
. TIMEMES SAGE=36AAH
.SIDESTREETCAR=3727H
.DISPLAY=3735H
.CYCLETIME=3887H
.I=3888H

.CYCLE=37E9H

MODULE . .MODULE
.DELAY=3816H
.LAB1=3819H

.LAB2=381AH

.TEMP=3830H
*

*
*GO
EMULATION BEGUN

EMULATION TERMINATED, PC=3824H

PROCESSING ABORTED
*

*CALL .I4
EMULATION BEGUN

EMULATION TERMINATED, PC=3828H

PROCESSING ABORTED
*

*

A Sample ICE-85 Session

3-27

A Sample ICE-85 Session

3-28

7.

Halt emulation and call I4 to enter one car on the side street. Repeat for the
second car. Let emulation continue for at least 30 cycles and then halt manually.
Observe that the signal lights change in the proper sequence. In other words,
CARS?2 is sequencing correctly.

. Display the address of DELAY.

9. Start emulation from DELAY and halt when MAINSTIME is updated. Trace

10.

11.

data is being collected in the trace buffer during this interval.

Set the trace buffer pointer to the top of the buffer. The following steps print
the contents of the trace buffer in each of the print modes: instruction, frame,
and cycle.

Print the first twenty-five instructions contained in the buffer. Since no print
mode has been specified, the output is in the default mode, instruction format.
Since emulation started from DELAY, the trace buffer has been filled and refill-
ed a number of times by the DELAY subroutine. Therefore the first address in
the listing is not meaningful at this time.

ICE-85

ICE-85

10

11

*CALL .I4

EMULATION BEGUN
EMULATION TERMINATED, PC=3824H
PROCESSING ABORTED

*
*

*CALL .I4

EMULATION BEGUN

EMULATION TERMINATED,

PROCESSING ABORTED

*
*

* .DELAY

3816H
*

*

PC=381AH

*GO FROM .DELAY TILL .MAINTIME WRITTEN
EMULATION BEGUN
EMULATION TERMINATED, PC=36E3H

*
*

*OLDEST
*
*PRINT 25
ADDR
0001: 381A
0003: 381B
0013: 381E
0023: 3821
0033: 3824
0043: 3827
0045: 3828
0051: 381A
0053: 381B
0063: 381E
0073: 3821
0083: 3824
0093: 3827
0095: 3828
0101: 381A
0103: 381B
0113: 381E
0123: 3821
0133: 3824
0143: 3827
0145: 3828
0151: 381A
0153: 381B
0163: 381E
0173: 3821

*
*

INSTRUCTION ADDR-S—-DA

DCR C
SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ 381A
DCR C
SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ 381A
DCR C
SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ 381A
DCR C
SHL.D 3830
SHLD 3830
SHLD 3830

3830-w-88
3830-w-88
3830-w-88
3830-w-88

3830-w-88
3830-w-88
3830-w-88
3830-w-88

3830-w-88
3830-w-88
3830-w-88
3830-w-88

3830-w-88
3830-w-88
3830-w-88

ADDR-S-DA ADDR-S-DA ADDR-S-DA

3831-w-38
3831-W-38
3831-w-38
3831-w-38

3831-w-38
3831-wW-38
3831-w-38
3831-w-38

3831-W-38
3831-w~38
3831-W-38
3831-w-38

3831-w-38
3831-w-38
3831-w-38

A Sample ICE-8S5 Session

3-29

A Sample ICE-85 Session ICE-85

12. Move the buffer pointer to the end of the trace buffer.

13. Print the last twenty-five instructions stored in the buffer. Notice that each
instruction listed consists of a number of frames. For example the first instruc-
tion listed extends from frame address 0853 to 0862, ten frames. The total span
of frames covered by these twenty-five instructions are: 1020 - 0853 = 169
frames.

3-30

ICE-85

12

13

*NEWEST
*
*PRINT -25
ADDR
0853: 381B
0863: 381E
0873: 3821
0883: 3824
0893: 3827
0895: 3828
0901: 381A
0903: 381B
0913: 381E
0923: 3821
0933: 3824
0943: 3827
0945: 3828
0951: 381A
0953: 381B
0963: 381E
0973: 3821
0983: 3824
0993: 3827
0995: 3828
0999: 382B
1001: 382C
1005: 382F
1011: 36DF
1017: 36E2

*
*

INSTRUCTION ADDR-S-DA

SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ 381A
DCR C
SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ 381A
DCR C
SHLD 3830
SHLD 3830
SHLD 3830
SHLD 3830
NOP

JNZ

DCR A
JNZ

RET

LXI H, 3883

INR M

3830-w-88
3830-w-88
3830-w-88
3830-w-88

3830-w-88
3830-w-88
3830-w-88
3830-w-88

3830-wW-88
3830-w-88
3830-w-88
3830-w-88

3881~-R-DF

3883-R-03

ADDR-S-DA ADDR-S-~DA ADDR-S-DA

3831-w-38
3831-wW-38
3831-w-38
3831~-W-38

3831-w-38
3831-w-38
3831-w-38
3831-w-38

3831-w-38
3831-wW-38
3831-w-38
3831-wW-38

3882-R-36

3883-w-04

A Sample ICE-85 Session

3-31

A Sample ICE-85 Session

14. Change the print mode to CYCLES.

15. Print the last twenty-five cycles contained in the trace buffer. Notice that these
twenty-five cycles cover fifty frames of trace data.

3-32

ICE-85

ICE-85

14
15

*TRACE = CYCLES
*

*PRINT -25
ADDR-S-DA
0973: 3821-E-22
0975: 3822-R-30
0977: 3823-R-38
0979: 3830-w-88
0981: 3831-wW-38
0983: 3824-E-22
0985: 3825-R-30
0987: 3826-R-38
0989: 3830-W-88
0991: 3831-W-38
0993: 3827-E-00
0995: 3828-E~C2
0997: 3829-R-1A
0999: 382B-E-3D
1001: 382C-E-C2
1003: 382D-R-19
1005: 382F-E-C9
1007: 3881-R-DF
1009: 3882-R-36
1011: 36DF-E-21
1013: 36E0~-R-83
1015: 36E1-R-38
1017: 36E2-E-34
1019: 3883-R-03

1021: 3883-W-04
*

*
*

SD
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

RW
10
10
10
01
01
10
10
10
01
01
10
10
10
10
10
10
10
10
10
10
10
10
10
10
01

e Y Y e N S G S S G 4

A Sample ICE-85 Session

3-33

A Sample ICE-85 Session ICE-85

16. Change print mode to FRAMES.

17. Print the last twenty-five frames of trace data contained in the trace buffer.
18. Terminate program operation.

3-34

ICE-85 A Sample ICE-85 Session

16 *TRACE = FRAMES
*

17 *PRINT -25

A/D SDSDRWM
0997: 381A R 1 00 10 1
0998: 382B E 0 00 00 1
0999: 383D E 1 00 10 1
1000: 382C E 0 00 00 1
1001: 38C2 E 1 00 10 1
1002: 382D R 0 00 00 1
1003: 3819 R 1 00 10 1
1004: 382F E 0 00 00 1
1005: 38C9 E 1 00 10 1
1006: 3881 R 0 00 00 1
1007: 38DF R 1 00 10 1
1008: 3882 R 0 00 00 1
1009: 3836 R 1 00 10 1
1010: 36DF E 0 00 00 1
1011: 3621 E 1 00 10 1
1012: 36E0 R 0 00 00 1
1013: 3683 R 1 00 10 1
1014: 36E1 R 0 00 00 1
1015: 3638 R 1 00 10 1
1016: 36E2 E 0 00 00 1
1017: 3634 E 1 00 10 1
1018: 3883 R 0 00 00 1
1019: 3803 R 1 00 10 1
1020: 3883 W 0 00 00 1
1021: 3804 W 1 00 01 1
*
*
*

18 *EXIT

3-35

CHAPTER 4
ICE-85 METALANGUAGE

Introduction

The ICE-85 software provides you with an easy-to-use English language command
set for controlling ICE-85 execution in a variety of functional modes.

The ICE-85 commands enable you to:

* [Initialize the ICE-85 system, map your program to memory in your system or in
the Intellec Microcomputer Development System, and load your program from
a diskette file.

e Specify starting and stopping conditions for emulation.

s Execute real-time emulation of your software (and hardware).
e Execute single-step emulation.

e Specify conditions for trace data collection.

e Collect and display trace data on hardware conditions occurring during
emulation.

¢ Display and alter 8085 registers, memory locations, and 1/O ports.

e Copy the (modified) program from Intellec or user memory to a diskette file,
and exit the ICE-85 system.

An example of one complete ICE-85 command, in this case one of the forms of the
GO command, is shown in Figure 4-1. This command causes emulation to start and
specifies the conditions that will halt emulation. The command is made up of nine
separate mnemonic codes (character strings): GO, FROM, 0123H, TILL, LOCA-
TION, 0400, EXECUTED, OR, and SYO0. Each of these mnemonics provides a par-
ticular element of information necessary to inform ICE-85 of the specific command
functions to be executed. Table 4-1 defines the function of each of these mnemonics
as well as the match condition and the FROM and TILL clauses. This string of
mnemonics requests ICE-85 to ‘‘start emulation at memory location 0123H and to
continue emulation until either memory location 0400 is executed or until external
signal Sync 0 goes high”’. Every ICE-85 command is composed of one or more such
mnemonics.

GO FROM 0123H TILL LOCATION 0400 EXECUTED OR SY0
token1 token2 token3 token4 token5 token6 token? token8 tokeng
m— —— "/ -
FROM clause match condition

v

TILL clause (also GO- register)

v

GO command

Figure 4-1. Example of a GO Command

4-1

Metalanguage

Table 4-1. Definition of GO Command Functions

Token .
Number Name Function

1 GO Go command specifier; requests and initiates emulation.

2 FROM Indicates that the next token or expression is the
starting address for emulation.

3 0123H Starting address in hexadecimal radix.

2,3 FROM clause FROM 0123H causes the program counter (PC) to be
loaded with 0123H, the starting address for the emula-
tion.

4 TILL Indicates that breakpoint (halting) parameters are to
follow.

5 LOCATION Indicates that the address lines are to contain the
memory address given by the token or numerical ex-
pression that follows.

0400 The address of the specified memory LOCATION.

7 EXECUTED Match pattern for an instruction fetch.

5,6,7 match- Emulation is to halt if an instruction fetch is executed
condition from memory location 0400.

8 OR Indicates that a second halt parameter is to follow.

9 SY0 Halt emulation if the external synchronization line SY0
goes low.

4-9 TILL clause TILL LOCATION 0400 EXECUTED OR SY0 specifies that

the emulation is to halt under either of the conditions
given. This clause is also called the ‘GO-register’ in the
ICE-85 language.

Thus, the ICE-85 command language is composed of a unique character set and
vocabulary of mnemonics. The character set is used to construct mnemonics and in
turn, the mnemonics are used to construct ICE-85 commands.

This chapter presents a metalanguage that classifies and identifies both character
and mnemonic types. The metalanguage consists of a set of meta-terms. Each meta-
term is a class-name for a specific type of character or mnemonic and is always
shown in lower-case italics. Any character string not in lower-case italics is a specific
mnemonic or character. For example, the meta-term user-name refers to the entire
class of user names. The character string SAM is a particular user name.

As shown in Figure 4-1, all of the mnemonics are referred to as tokens. All ICE-85
mnemonics are divided into two classes: tokens and special tokens. Tokens en-
compass constants, keywords, symbols, and user names. Special tokens encompass
relational operators, arithmetic operators, and punctuation.

The remainder of this chapter is devoted to a presentation of the character and
mnemonic classes and the associated meta-terms that denote these classes. The meta-
notation used in this manual for command syntax is also presented. This chapter will
specify all primary meta-terms but will not present the entire set of meta-terms.
Chapter § will introduce additional meta-terms that represent special subsets of
tokens for use with particular commands. These additional meta-terms will be de-
fined using the primary meta-terms contained in this chapter along with any par-
ticular qualifications and restrictions involved in the command usage.

ICE-85

ICE-85

Character Set

The valid characters in the ICE-85 command language include upper and lower case
alphabetic ASCII characters A through Z and the set of digits 0 through 9. The
space serves as a delimiter for tokens, and carriage-return/line-feed characters are
also valid, delimiting command lines. A question mark, ?, @ sign, and $ sign are
also valid in user-defined names entered in the command language.

The algebraic operators + and - (binary and unary), the asterisk (*), and slash (/),
relational operators (=, <, >), the ampersand, semicolon, period, parentheses,

pound sign (#), and comma constitute the only other valid ASCII characters for
ICE-85: all other characters are treated as if a space was typed.

alphabetic characters:

ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopqgrstuvwxyz
numeric characters:

0123456789 (A BCDE F: hexadecimal characters)
special characters:

+=<=>8&).;*/#

This character set is used to construct the vocabulary that constitutes the command
language.

Tokens

A token in ICE-85 command language is roughly equivalent to a ‘word’ in the
English language. It consists of a string of alphanumeric characters that may be
augmented by a one or two special character prefix that serves as a token identifier .

‘Tokens are divided into the following types: keywords, user-names, and constants .

Examples are: REGISTERS, .START, ..MODULE, GROUP, 0400, 123AH.

Keywords

ICE-85 recognizes a general class of predefined tokens that are fixed in the com-
mand language. They provide three functions. Reference keywords are used to
specify locations having unique predefined functions. Command keywords specify
command type. Function keywords specify subfunctions within a command. The
following sections define and describe these keyword «lasses. Each class and
associated keyword set is presented in the following paragraphs. Appendix A con-
tains a listing of ICE-85 keywords and their abbreviations.

The reason for discussing the various classes and subsets here is to smooth the later
discussions of commands, where the class-names are used to show what elements
may appear in which commands.

Reference Keywords

The command language contains a set of system defined mnemonic tokens that are
used to address system objects. Each device such as the accumulator or register B is
assigned a specific mnemonic that is to be used to address and access the contents of
that device. These identifiers are called reference keywords. Reference keywords are

Metalanguage

Metalanguage

4-4

used in ICE-85 commands to refer to 8085 processor registers and flags, system
defined channel groups, emulation registers, memory locations, and blocks, 1/0
ports and synchronization lines.

The total set of reference keywords is subdivided by types. Each type is referenced
by a class name. For example, register-name denotes the set of 8085 8-bit registers.
A reference token is assigned to each element within the set and is always shown in

upper case. For example, ‘RB’ denotes the contents of the register B of the 8085 8-
bit register set.

Registers

All of the registers are assigned reference keywords for addressing. The registers are
composed of the following classes: 8085 8-bit registers, 8085 register pairs, 8085 1-
bit status flags and 8085 interrupt bits.

Type Class Name Keywords

8-bit registers register-name RA,RB,RC,RD,RE,RF,
RH,RL,OPCODE,CAUSE

The meta-term register-name is the name of the class of 8085 8-bit general purpose
work registers that provide a variety of functions such as storing 8-bit data values,
intermediate results of arithmetic operations, address pointers, and operation code
and status data.

Type Class Name Keywords

16-bit registers register-pair-name RBC,RDE,RHL,SP,PC,P SW,
UPPER,BUFFERSIZE, TIMER,HTIMER

The meta-term register-pair-name is the name of the class of 16-bit register pairs
that provide such functions as storing 16-bit values, maintaining the stack and pro-
gram pointers, and saving status information.

Type Class Name Keywords

Status flags flag-name CY,PY,ACY,Z-,SN

The meta-term flag-name is the class name of the set of five 1-bit condition flags
that carry conditions resulting from arithmetic and logical operations.

Type Class Name Keywords

Interrupt bits i-bit-name M5,M6,M7,IE 17,SID,SOD

The meta-term i-bit-name is the class name of the set of seven interrupt bits that are
used to mask, enable/disable, and sense interrupts and to input/output serial data.

ICE-85

ICE-85

System Defined Channel Groups

Type Class Name Keywords

Channel group s-group-name DMUX,ADDR,ADDRL,ADDRH,
DATA,STS,SD,
RW,MTH,
uo,u1,u2

The meta-term s-group-name is the class name of the set of twelve ICE-85 defined
groups of external probe and 8085 processor channels that are used to set breakpoint
and qualification registers.

Emulation Registers

The emulation registers consist of the breakpoint registers, qualification registers
and condition registers.

Type Class Name Keywords
Breakpoint registers break-reg BRO0,BR1,BR
Qualification registers qual-reg QRO0,QRt,QR
Condition registers cond-reg CRO0,CR1,CR2,CR3
GO register go-reg GR

Step register step-reg SR

The meta-term break-reg is the class name for the two breakpoint registers that are
used to halt emulation. The meta-term qual-reg is the set name for the two
qualification registers that control tracing. Each register is 42 bits long, one bit for
each of the eighteen probe channels and twenty-four processor channels (except
channel 43, MTH), and each bit can take any one of the three values 0, 1, or ‘“don’t
care’’. The initial setting of these registers is 42 ‘“don’t care’’ values. The meta-term
cond-reg is the set name for the four condition registers that are used to set the test
conditions that control emulation in the step mode. The meta-term go-reg refers to
the GO-register, an ICE-85 pseudo-register that controls the breaking of real-time
emulation. The meta-term step-reg refers to the STEP-register, an ICE-85 pseudo-
register that controls the stopping of single-stepping.

Synchronization Lines
Type Keywords
Sync SY0,SY1

ICE-85 can be synchronized with other ICE devices by means of two synchroniza-
tion lines: SYO, which synchronizes real-time emulation and SY1, which syn-
chronizes the trace. Both can be enabled or disabled for input or output or both.

Metalanguage

4-5

Metalanguage

Command Keywords
Type Keywords
Command token BASE,CALL,DEFINE,DISABLE

ENABLE,

EVALUATE ,EXECUTE,EXIT,GO,GROUP,ICALL
LIST,LOAD,MAP ,MOVE,

NEWEST,OLDEST,

PRINT,REMOVE,RESET, SAVE,STEP,
SUFFIX,SYMBOL,TRACE

These tokens are used as command verbs in that they specify the major func-
tion (action) to be executed as a result of the command.

Function Keywords

The function keywords are those tokens that are used as command modifiers. These
are used as objects of commands, state or mode specifiers, specifiers of operational
controls, and connectors.

Object Keywords
Type Keywords
Modifier ALL (print)

HARDWARE (reset)
DUMP (enable)
STOPTRACE (enable)

These ICE-85 keywords are used as command modifiers. For example, in the com-
mand “PRINT ALL”’, the print command is modified to print all of the current
contents of the trace buffer, as opposed to a single line, which is the default.

State or Mode Keywords
Type Keywords
State/Mode Y,Q,T,H,K,ASCII (base and radix)

CYCLE,FRAME,INSTRUCTION (trace mode)
SHARED,UNSHARED
GUARDED,USER,INTELLEC (map mode)
NOVERIFY

IN,OUT (sync lines)
NOLINES,NOSYMBOLS,NOCODE
(load/save mode)

These keywords specify state or mode requirements. For example ‘“TRACE = CY-
CLE” states that trace data is to be displayed in the cycle mode. “ENABLE SY0
OUT”’ states that the SYO output mode is to be enabled.

ICE-85

ICE-85

Metalanguage

Operational Control Keywords

Type Keywords

Op Control CALL,JUMP,RETURN (dump condition)
FROM (GO and STEP start address)
FOREVER (GO and STEP duration)
COUNT (STEP duration)
TILL (GO anbd STEP halting conditions)
ON
LOCATION,VALUE
EXECUTED,WRITTEN,READ,

INPUT,OUTPUT,HALT

(Breakpoint
state)

These keywords that specify operational conditions required. For example, “GO
FROM 0400H TILL LOCATION 0600H READ”’ states that emulation shall start
from memory location 0400 and will continue until memory location 0600H is read.

Connector Keywords

Type Keywords

connector AND (condition registers)
OR (condition registers, break
registers and synchronization lines)

These keywords connect multiple halting conditions for emulation or trace. For ex-
ample, ‘GO FROM 0400 TILL BR1 OR SY0’’ states that the emulation is to start at
0400 and to continue until a match on breakpoint register 1, occurs, OR SYO goes
low.

User Names

The command language permits the programmer and operator to employ symbolic
addressing through the use of user-generated tokens as opposed to system-generated
tokens (keywords). The language permits four types of user names: symbols,
module names, statement numbers, and group names.

Symbols

A symbol is a sequence of contiguous alphanumeric characters, prefixed by a period
(.), that references a location in a symbol table. The symbol has two uses. The
referenced table location always contains a number; it may be an address of an in-
struction or data value in a program module, or it may be used directly as a
numerical value (variable). In the first case, the symbol is an alternative method of
program addressing (symbolic as opposed to direct numeric addresses). In the se-
cond case, it provides a method for storing and retrieving data values symbolically
into/from the table itself.

4-7

Metalanguage

4-8

Symbols in the user-program symbol table may be entered, deleted, or referenced
through the ICE-85 command language. Symbols (names) must conform to
translator syntax: a sequence of one or more characters where the first character
must be a let ter, an at-sign (@), or a question mark (?), and the characters following
may be these or a numeral. However, ICE-85 truncates all symbols to 31 characters.
Thus two different symbols must be unique in the first 31 characters. In addition, to
refer to a symbol in ICE-85 command language, you must preface it with a period
(.); module names require two periods (..) and group names must have none. In-
terven ing spaces are allowed between a period and the symbol following but are not
part of the name.

Examples:

.VAR123.MSGXIZ..VOLUME.PRESSR.VARG666.SGNLTO
.@MYFLAG .?WHICHPATH -@WHATTIME?

The ICE-85 symbol table contains one or more modules; each has a name. When the
Intellec system is initialized with ICE-85 system software, a symbol table is establish-
ed in memory containing one ‘‘no-name’’ module with no symbols . Whenever a
user object module is loaded, its modules are loaded subsequent to the modules cur-
rently in the symbol table. Each module will contain the programmer-specified pro-
cedure names and variable names as symbols.

A reference such a *.X.Y’ means the first occurrence of the symbol Y that follows
the first occurrence of symbol X.

One use for this type of construction is to identify one of several instances of the
same symbol-name that actually refer to different variables because they were
declared local to two different procedures in a block structured program. For exam-
ple, suppose the program contains two procedures, named START and FINISH,
both of which have their own variable COUNT. Note that START and FINISH are
not module names . Now, you can reference the two instances of COUNT with the
two constructions.

.START.COUNT
.FINISH.COUNT

The keywords BYTE and WORD can precede a reference such as .X.Y, to obtain
the contents of the symbolic reference.)

You can define and add symbols either to the no-name table or to any module sym-
bol table currently in memory.

Module Names

ICE-85 permits multiple modules to reside in memory simultaneously, including the
‘no-name’ module. Moreover, the same symbol is permitted to occur in any or all of
the modules currently in memory. Therefore it may be necessary to prefix a symbol
with a module name to refer to the occurrence of that symbol in one particular
named module. If no module name is present, ICE-85 scans all modules, starting
with the no-name module and proceeding through the list of modules in the order in
which they were entered into memory. The first occurrence of the symbol is selected.

When used, the module name is prefixed to the symbol . The module name con-
forms to the same PL/M syntax as a symbol except that it is prefixed with a double
period (..).

ICE-85

ICE-85

As an example, consider the symbol .BEGIN in module .. MAINLOOP. The entire
reference to this occurrence of .BEGIN is:

..MAINLOOP.BEGIN

Statement Numbers

In the process of compiling a source module, the PL/M compiler generates a set of
(source) statement numbers , one for each source statement in the module. Each
statement number is linked to the absolute address of the first instruction generated
by the PL/M compiler for the associated source statement in the source program.
Each compiled program will contain a table of statement numbers and absolute ad-
dresses. Items (addresses) in the table are referenced by entering the associated state-
ment number.

The form of reference is
module-name # decimal-10
where:
is the ‘number’ sign; this designates the reference as a statement number .

decimal-10 is the (source) statement number (a numeric constant). The
default suffix of decimal-10 is always decimal.

For example:
..MAINLOOP#123

#123 is statement number #123 in the source program, ..MAINLOOP. This
reference would obtain the address of the first instruction generated by source state-
ment 123 of module .. MAINLOOP.

Statement numbers are an alternative to program addressing, as opposed to labels
in the program.

User Group Names

ICE-85 allows the user to define a set of symbolically-named groups to reference
subsets of the twenty-four 8085 processor channels and eighteen external probe
channels when setting breakpoints and clock qualifiers, and when examining trace
data.

The 18 external probe channels are numbered 1 to 18, and the 24 processor channels
are numbered 19 to 42.

For example, if external probes 8, 11, 5, 10, 1, 7, 15, and 2 are attached to port A of
in your system, you can define a group PORTS$A to contain these probes. Then,
when setting a breakpoint to match on a particular value on port A, when displaying
the trace data from port A, etc., you can use the group-name PORTSA.

The same channel may appear in any number of different groups, but a channel may
not appear more than once within a single group. All groups are limited to a max-
imum of 16 channels each.

A set of twelve groups are predefined by ICE-85, grouping the external probe and
8085 processor channels.

Metalanguage

Metalanguage

4-10

Constants

A constant is a token that represents a fixed numerical value (e.g., 24). ICE-85
recognizes two types of constants: numeric constants and masked constants.

Numeric Constants

A numeric constant consists of a sequence of numeric characters (digits) and op-
tionally a suffix to specify the constant’s radix. A numeric constant has the general
form:

digit(s) [radix]
where:
digit(s) : are a string of one or more valid numeric digits (0123456789ABC-
DEF). Legal digits for a given numeric constant depend upon the radix

specified.

radix : denotes the number base or representation for entering and displaying
numeric values. The following are the valid ICE-85 radix indicators:

Radix Number Base
Y Binary (base 2)
Q Octal (base 8)
T Decimal (base 10)
H Hexadecimal (base 16)
K Decimal multiple of 1024

*The letter O can be substituted for the letter Q to denote octal.

Examples of valid numeric constants:

10010011Y

737Q

2049T

1FA9H

2049 (using a radix previously specified)

Masked Constants

A masked constant is syntactically identical to a numeric constant except it may not
contain the “T”* or ‘‘K’’ suffixes and must contain one or more ‘“X’’ characters.
Each ¢“X’’ character represents a ‘don’t care’ digit (1, 3, or 4 bits depending upon
whether the radix is binary, octal, or hexadecimal). The radix, either explicit or im-
plicit (i.e., previously specified), must be binary, octal or hexadecimal. The follow-
ing are examples of masked constants :

10X1X01Y (binary - 2 don’t care bits shown explicitly)

3X4Q (octal - 3 don’t care bits implicit because each octal numeral
represents 3 bits; equivalent to 011 XXX100Y)

6FX1H (hexadecimal - 4 don’t care bits, implicit because each
hexadecimal numerical represents 4 bits; equivalent to
01101111 XXXX0001Y)

Typical use of a masked constant is to check for a match on specifically relevant bit
positions.

When the masked constant is applied in a match, the zero and ones are checked, but
the don’t-care bits are ignored. If all the corresponding zeros and ones in the two
numbers match, the match is successful.

ICE-85

ICE-85

Metalanguage

Special Tokens

The command language contains two special token sets that provide special func-
tions: operators and punctuation.

Operators
Type Class Name Operators
relational rel-op =, >, <=, 5=, <>
plus plus-op +, —, (binary and unary)
mult mult-op *, 1, MOD
Punctuation
Type Class Name Punctuation Characters
punctuation punct-op '&.,;)($CRLFSP

The use of punctuation characters are defined in those sections that define command
formats.

Numeric Expressions

A numeric expression is a construct of primaries and operators that evaluates to a
numeric value. ICE-85 also makes use of conditional expressions that evaluate to
‘true’ or ‘false’. However, when the term ‘expression’ is used with no qualifier in
this manual, a numeric expression is intended.

ICE-85 evaluates in a left-to-right scan modified by operator precedence for an
algebraic sequence in the form:

operand [operator operand]....

Operators

Operators are used in expressions and in commands. A summary of ICE-85
operators are shown below. The binary (arithmetic) operators are listed in their
order of precedence from highest precedence to lowest.

Type Operator Interpretation
Precedence () Controls order of evaluation
Binary MOD Modulo remainder

(Arithmetic) * Multiplication
/ Division
+ Addition
- Subtraction
MASK Bitwise AND
Relational = Is equal to
> Is greater than
< Is less than
<> Is not equal to
>= Is greater than or equal to
<= Is less than or equal to
Unary + Single positive quantity
- Negative quantity

4-11

Metalanguage

4-12

Operands

Operands are numerical values, or references that are evaluated to numerical
values. In an operand, all the bits in the machine (binary) version are set to zero or
one, giving a unique value. Masked constants , however, have one or more bits set
to ‘don’t care’ (represented by X), and thus represent a multivalued entity.

An operand has the general form:

[unary-op] | (exp)

numeric constant
statement number
[module-name] symbol
register name
pair-name

flag-name

i-bit-name

port-name

mem-desig address

where:

(exp): an operand whose value is the value of the parenthesized expression e.g.
(1+2+3) = 6 (operand value).

Expressions
An previously stated, every expression is of the form:
operand [operator operand]...

where each operand can be any type such as a numeric constant, symbol, register
name , etc.

The following examples illustrate typical expressions. The operands are indicated
by upper case alphabetic characters (A, B, C, ...) and can be of any valid operand
type. These examples also illustrate the ICE-85 evaluation of each expression. The
evaluation is accomplished by a left-to-right scan augmented by operator
precedence. Each expression enclosed in parenthesis is treated as an (exp) type
operand and is evaluated at that point. The examples show the resolution of each
expression into a single operand value, R (resultant).

1. A+B*C—> A+D—R
2. (A+B)*C—>D*C—=R

3. A+B*C/D—> A+E/D— A+F—R

4. (A+B)*C/D—~>E*C/D—~>F/D—R

5. A+B*C/DMODE — A+F/DMODE
- A+GMODE
- A+H—R

6. (A+B)*C/DMODE — F*C/DMODE
- G/DMODE
- MODE—R

7. A+B*C/ MOD E MASKF
- A+G/DMOD E MASK F
- A+I MASK F
- JMASKF
>R

ICE-85:

ICE-85

8. (A+B)*C/D MOD E MASK F

- G*C/D MOD E MASK F
- H/DMOD E MASK F

- IMODE MASK F

— JMASKF

—-R

Meta-Notation Used In The Manual

This manual employs a set of meta-notational symbols and conventions to describe
the structure of commands and other language constructs. Items 1 and 2 below
specify the use of meta-terms and tokens respectively. The features of this meta-
notation system are as follows:

1.

A lower-case italicized entry in the description of a command is the meta-term
for a set or class of tokens. To create an actual operable command, you must
enter a particular member of this class. For example, the lower-case entry:

break-register

means that the command will accept any of 3 tokens: BRO, BR1, or BR (which
means BRO and BR1)

Each class-name given in the syntax description of a command is explained in
the discusion of semantics that accompanies the command.

An upper-case entry is a token that must be used literally as given. A valid
abbreviation of that token may substitute for the full token as given. The token
may be a command word, or it may be a particular member of a class of
references. For example, the upper-case entry:

DEFINE
is a command word that must be used as given unless abreviated. The abbrevia-
tion DEF may be used in place of DEFINE. As another example, the upper-case
entry:

BR1
means breakpoint register 1 must be named as and where given.
A single-required entry is shown without any enclosures, whereas free options
or choices among restricted alternatives are specially denoted. For example, in

the following command syntax:

GROUP | group-name]

Metalanguage

the token GROUP is required. The significance of the brackets around group- ‘

name is explained in (5) below.

Where only one entry must be selected from a menu of two or more items, the
choices for the required entry are given in a vertical arrangement enclosed by
two vertical lines. For example:

TRACE = FRAME
CYCLE

INSTRUCTION

Indicates that FRAME or CYCLE or INSTRUCTION must be selected; the
tokens TRACE and = are required as given.

4-13

Metalanguage

4-14

An optional entry is enclosed in brackets []. Where a choice exists for an
optional entry, the choices are given in a vertical arrangement enclosed in
brackets. For example, in the command:

GROUP | group-name]

the entry group-name (signifying the class of channel-group names) is optional.
Omitting an optional entry usually alters the operation of the command, as ex-
plained under each command description.

A group of inclusive choices is given in vertical arrangement and enclosed in
braces . ““Inclusive’’ means that more than one of the items can be entered in
the same command, and items can appear in any order; no item can be used
twice. The menu of inclusive items represent an optional entry or entries. For
example:

ENABLE DUMP | partition
CALL
JUMP
RETURN

This notation indicates that none, one, or more that one choice of partition,
CALL, JUMP, and/or RETURN may be included in one command; if more
that one is used, the entries can be in any order.

To complete the example:
ENABLE DUMP RETURN CALL JUMP
is a valid command.
Where two or more choices are mutually exclusive, and as a group they
constitute one choice within an arrangement of inclusive entries, the mutually
exclusive items are given on one line separated by slashes (/). For example:
SAVE pathname | NOCODE / partition
NOSYMBOLS
NOLINES
This example indicates that the optional entries are the items NOLINES,

NOSYMBOLS, and either NOCODE or a memory partition; the entries can
appear in any order. NOCODE and partition are mutually exclusive.

Where mutually exclusive entries can be shown on one line, the following
shorthand notation can be used.

SUFFIX =Y/Q/T/H
This example is equivalent to

SUFFIX = | Y
Q

T

H
Where an entry can be repeated indefinitely at the user’s option, the syntax is
notated by enclosing the repeatable entry in brackets [| followed by three
periods (...). For example,

operand [operator operand]...

indicates that operator operand can be repeated as many times as desired.

ICE-85

ICE-85

10. Some entries can be repeated up to a fixed maximum number of repeats, rather

than indefinitely. The repeatable entries are enclosed in brackets [] followed by
...&n,

where:

&: denotes that the entries in the brackets may be repeated.
n: adecimal number that specifies the number of times the entries
enclosed within the brackets can be repeated.

In addition, some repeatable entries require a particular item separator to
precede each repeat after the first entry. When an item separator is required, it is
also enclosed in the brackets, preceding the repeatable entry. Note that the max-

imum number of entries is one more than the number of repeats given by the’

number, n.

Example:
| AND
TILL cond-reg OR cond-reg|...&3

In this example, up to four members of the class cond-reg can be named; each
of the second, third, and fourth registers must be preceded by a token AND or
OR.

Metalanguage

4-15

THE ICE-85 COMMAND LANGUAGE

CHAPTER 5

Chapter 5 contains discussions, examples, and syntax summaries for each of the
ICE-85 commands. The chapter begins with a summary of information on entering
commands at the console. The commands have been classified into eleven sections

for discussion; commands in a given section are related in function.

The following brief outline of Chapter 5 shows how the ICE-85 commands have

been classified for discussion.

Utility Commands Involving ISIS-II

Discussion

ICE85 Command
EXIT Command
LOAD Command
SAVE Command
LIST Command

Number Bases and Radix Commands

Discussion

SUFFIX Command
BASE Command
EVALUATE Command

Memory and I/0 Port Mapping Commands

Discussion

MAP Mode Command

MAP MEMORY Command
MAP 10 Command

Display MAP Status Command
RESET MAP Command

Hardware Register Commands

Discussion

Display Processor or Status Register Command
Set 8085 Processor Register Command

RESET HARDWARE Command
ENABLE/DISABLE TIMEOUT Command

Memory and Port Content Commands

Discussion

Display Memory and Port Contents Commands
Set Memory Contents Commands

Set Input/Output Port Contents Command

Symbol Table and Statement-Number Table Commands

Discussion

Display Symbol Table or Statement-Number Table Commands
DEFINE Symbol Command

Change Symbol Command

REMOVE Symbol Command

5-1

Command Language

5-2

Channel Group Commands

Discussion

DEFINE GROUP Command
Display GROUP Command
Change GROUP Command
REMOVE GROUP Command

Real-Time Emulation Control Commands

Discussion

GO Command

GR Command

Set Breakpoint Register Command

RESET Breakpoint Register Command

Display Real-time Emulation Controls Commands
ENABLE/DISABLE SYO OUT Commands

Trace Control Commands

Discussion

Set Trace Display Mode Command

MOVE, OLDEST, and NEWEST Commands
PRINT Command

Set Qualifier Register Command

RESET Qualifier Register Command

Display Trace Controls Commands
ENABLE/DISABLE Trace Factors Commands

Single-Step Emulation Control Commands

Discussion

Set Condition-Register Command

SR Command

STEP Command

Display Single-Step Controls Commands
ENABLE/DISABLE DUMP Command

External Call Commands

Discussion

CALL Command
ICALL Command
EXECUTE Command

ICE-85

ICE-85

Command Language

Table 5-1 lists the commands separately, in alphabetic order by command title. You
can use this table to find the section containing any command or command function
that you wish to locate.

Table 5- 1. ICE-85 Commands: Alphabetic Summary

Command Title

Change GROUP

Change Symbol

DEFINE GROUP

DEFINE Symbol

Display Emulation
Registers

Display GROUP

Display MAP
Status

Display Memory
and Port Contents

Display Processor
or Status Register

Display Radix

Display Symbol
Table or
Statement-
Number Table

Display Trace
Controls

Operations Included
in Command

Change channels assigned to
previously-defined user
group.

Change address or variable
value corresponding to a
previously-defined symbol.

Define a group-name and
assign a list of channels to it.

Define a symbol and assign it
a corresponding value
(typically an address).

Display the current settings of
the GO-register, breakpoint
registers, STEP-register, and
condition registers.

Display channels assigned to
one or more group names.

Display memory or |/O port
mapping.

Display contents of one or
more memory adresses or an
110 port.

Display contents of 8085 and
ICE-85 hardware registers.

Display current input or output
radix.

Display address or value from
symbol table corresponding to
a user-defined symbol.
Display address correspon-
ding to source program line
number.

Display current TRACE mode.
Display qualification register
setting.

Section where
discussed; page
of syntax
summary.

Channel Group Commands;
page 5-60.

Symbol Table and Statement-
Number Table Commands;
page 5-54.

Channel Group Commands;
page 5-59.

Symbol Table and Statement-
Number Table Commands;
page 5-53.

Real-Time Emulation Controfl
Commands; page 5-73.
Single-Step Emulation Com-
mands; page 5-99.

Channel Group Commands;
page 5-60.

Memory and 1/O Port Mapping
Commands; page 5-30.

Memory and Port Contents
Commands; page 5-46.

Hardware Register Com-
mands; page 5-36.

Number Bases and Radix
Commands; page 5-15.

Symbol Table and Statement-
Number Table Commands;
page 5-53.

Trace Control
page 5-88.

Commands;

Command Language

5-4

Table 5-1. ICE-85 Commands: Alphabetic Summary (Continued)

Command Title

ENABLE/
DISABLE

ENABLE/
DISABLE DUMP

EVALUATE

EXIT

External Call

GO

GR

ICE85

LIST

LOAD

MAP

MAP Mode

MOVE, OLDEST
NEWEST

PRINT

Operations Included
in Command

Enable or disable SY0 OUT,
SY1 IN, SY1 OUT,
STOPTRACE, or TIMEOUT

Enable or disable automatic
trace display after STEP.

Evaluate and display the
number entered, in the five
bases Y, Q, T, H, and ASCII.

Terminate emulation session,
return control to ISIS.

Emulate or execute an exter-
nal procedure.

Begin emulation, accepting
default halting and starting
conditions, or specifying new
ones.

Set conditions for halting
emulation.

Load ICE-85 software into ISIS-
I, transfer control to ICE-85
program.

Send ICE-85 output to
designated external device.

Load user program into
ICE-85.

Assign memory blocks or I/O
port segments to user system

or to Intellec system.

Set MAP mode as SHARED or
UNSHARED.
Move trace buffer pointer to

desired position.

Display trace data.

Section where
discussed; page
of syntax
summary.

Hardware Register
Commands; page 5-38.
Emulation Control Commands;
page 5-74.

Trace Control Commands;
page 5-88.

Single-Step Emulation Control
Commands; page 5-100.

Number Base and Radix Com-
mands; page 5-16.

Utility Commands Involv-
ing ISIS-Ii; page 5-9.

External Call Commands; page
5-103.

Real-Time Emulation Control
Commands; page 5-71.

Real-Time Emulation Control
Commands; page 5-72.

Utility Commands Involv-
ing ISIS-II; page 5-9.

Utility Commands Involv-
ing ISIS-II; page 5-11.

Utility Commands Involv-
ing ISIS-II; page 5-10.

Memory and Port Map-
ping Commands;
page 5-28, 5-29.

Memory and Port Map-
ping Commands;
page 5-27.

Trace Controls Commands;
page 5-85.

Trace Controls Commands;
page 5-86.

ICE-85

ICE-85

Command Language

Table 5-1. ICE-85 Commands: Alphabetic Summary (Continued)

Command Title

REMOVE GROUP

REMOVE Symbol

RESET

SAVE

Set Breakpoint
Register

Set Condition
Register

Set Input/Output
Port Contents

Set Memory
Contents

Set Processor
Register

Set Qualification

Register

Set Radix

Set TRACE Mode

SR

STEP

Operations Included
in Command

Delete one or more group
names.

Delete one or more user-
defined symbols from the
ICE-85 symbol table.

Restore breakpoint registers,
qualification registers, MAP,
ICE-85 HARDWARE, or RST 7.5
line to an initial state.

Save user program on
external device.

Set designated breakpoint
register to condition for
halting real-time emulation.

Set condition register to con-
dition for halting single- step
emulation.

Set contents of one |/O port.

Set the contents of one or
more memory locations.

Set content of 8085 register.

Set qualification register to
condition for enabling trace
data collection.

Set default input or output
radix:

Set mode for display of trace
data.

Set STEP-register with halting
conditions for single-step
emulation.

Begin single-step emulation,
setting start and halt condi-
tions.

Section where
discussed; page
of syntax
summary.

Channel Group Commands;
page 5-61.

Symbol Table and Statement-
Number Table Commands;
page 5-54.

Hardware Registers Com-
mands; page 5-37.

Memory and Port Mapping
Commands; page 5-30.
Real-Time Emulation control
Commands; page 5-74.

Trace Control Commands;
page 5-87.

Utility Commands Involv-
ing ISIS-II; page 5-11.

Real-Time Emuilation Control

Commands; page 5-73.

Single-Step Emulation Control
Commands; page 5-96.

Memory and Port Contents
Commands; page 5-48.

Memory and Port Contents
Commands; page 5-47.

Hardware Register Com-
mands; page 5-37.

Trace Controls Commands;
page 5-87.
Number Base and Radix Com-

mands; page 5-15.

Trace Control Commands;
page 5-84.

Single-Step Emulation Control
Commands; page 5-97.

Single-Step Emulation Control
Commands; page 5-98.

5-5

Command Language

5-6

Entering Commands At The Console

ICE-85 displays an asterisk prompt (*) at the left margin when it is ready to accept a
command from the console.

Each command is entered as a command line. The command line consists of one or
more input lines; the length of an input line is limited to the number of characters
that one line of the console display can contain.

ICE-85 recognizes the carriage return as the terminator for a command line. If it is
necessary to use more than one input line to enter a command, each intermediate in-
put line should end with an ampersand (&). When ICE-85 encounters the amper-
sand, it suppresses the interpretation of the command that would occur on en-
countering the carriage return that follows. After the carriage return is executed,
ICE-85 displays a double asterisk prompt (**) to acknowledge the continuation of
the command line.

Tokens in the command are separated by blanks, unless the construct requires
another form of separator. For example, tokens in a list are separated by commas;
in this case, blanks may be inserted for clarity but are not required.

Any input line may include comments. A semicolon (;) precedes the comments. The
comments must appear after any portion of the command that is on that input line;
in other words, if the first character in an input line is a semicolon (;), the entire in-
put line must consist of comments. Characters in a comment are not interpreted by
ICE-85, and are not stored internally. The main use of comments is to document an
emulation session while it is in progress.

Comiments may not be continued from input line to input line. If an ampersand is
used to continue a command line that also contains comments, the ampersand must
come before the comment. An ampersand that is embedded in a comment is ignored
by ICE-85.

You can use ISIS-II editing capabilities to correct errors in the current input line.
The line-editing characters are as follows.

Characters Result

RUBOUT Delete last character entered in input line. The deleted character is
echoed immediately. The RUBOUT function can be repeated,
deleting one character each time it is pressed.

CTRL X Delete entire input line. (CRTL Z gives the same result.)

CTRLR Display entire input line as entered so far. This is useful after a
RUBOUT, to review which characters have been deleted.

ESC Cancel entire command being entered.

CRTLP Input next character literally.

Carriage Return Terminate input line or command line.

Line Feed Terminate input line.

Once a line terminator (carriage return or line feed) has been entered, that line can
no longer be edited.

The dollar sign ($) is ignored by ICE-85. You can use it as a separator when you
want to combine two words into one token. For example, suppose you wanted to
combine the two system groups DATA and STS into one group for your use. Instead
of DATAANDSTS, you can use the $ character as a separator: DATASANDSSTS.

ICE-85

ICE-85

Command Language

Utility Commands Involving ISIS-II
The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. ICE-85 runs under

ISIS-II control, and can call upon ISIS-II for file management functions.

The following commands are included in this section:

Command Purpose Page

ICE85 Load ICE-85 program from diskette. 5-9

EXIT Return control to ISIS-II. 59

LLOAD Load user program into memory accessed by ICE-85. 5-10

SAVE Copy user program from memory onto diskette. 5-11

LIST Copy ICE-85 emulation output to printer or fite. 5-11
Discussion

ICE-85 commands can use ISIS-II pathnames to direct ISIS-II to a desired diskette
file or other output device.

For diskette files, the format of pathname is as follows.

:drive:filename

The entry :drive: stands for one of the references to ISIS diskette drives, as follows.

:FO: Diskette drive O

:F1: Diskettedrive 1

:F2: Diskette drive 2

:F3: Diskette drive 3

:F4:)

F 5,} Single-density drives on a double-density system

The entry filenamemust follow the second colon (after drive) without any interven-
ing spaces. A filename has the following components.

identifier[. extension |

The entry identifier is a name assigned by the user, and is made up of one to six
alphanumeric characters. The extension is an optional part of the filename, con-
sisting of one to three alphanumeric characters preceded by a single period. The ex-
tension must be used if it is present in the directory listing of the file on the diskette.
If used, the extension follows the identifier without any spaces. Some extensions
(e.g., .BAK, .LNK) are assigned by system processors; others can be assigned at the
desire of the user. An extension provides a second level of file identification; it can
be used to identify different versions of the same program, or to give supplemental
information about the file (e.g., author, data, version).

Fully compiled or assembled programs ready to run (emulate) do not have system-
assigned extensions, although they may have extensions assigned by the user.

For devices other than diskette files, the format of pathname is as follows.

:device:

5-7

Command Language

5-8

The following devices are commonly accessed in ICE-85 commands.

:Device: Output Device

:LP: Line printer

:HP: High-speed tape punch
‘TO: Teletypewriter printer
:CO: Console display

For more information on ISIS-II filenames and device codes, refer to the ISIS-II
System User’s Guide.

The ICE85 command, entered after an ISIS-II prompt, directs ISIS-II to load the
ICE-85 program from the specified diskette drive, into a reserved area in Intellec
memory. ICE-85 begins operation as soon as it is loaded, initializing its hardware
and program variables, and signaling readiness to accept ICE-85 commands by
displaying an asterisk prompt.

The EXIT command ends the emulation session and returns control to ISIS-1I. The
command halts all emulations and issues a hardware reset before exiting.

The LOAD command loads the object code from the named file and drive into the
areas of memory specified by the memory map. Modules are loaded in the order of
their appearance in the source file. If no qualifiers are included, the command also
loads the program symbol table and statement number table (for PL/M-80 pro-
grams) along with the program code. The symbols and statement numbers are plac-
ed in reserved areas of Intellec Shared memory. Symbols are grouped in the tables by
module, in the order that the modules are loaded into memory.

The command can include one or more modifiers to control what is to be loaded. If
NOCODE is included, the program code is omitted from the load. If NOLINE is in-
cluded, the program statement number table is not loaded. If NOSYMBOL is in-
cluded, the program symbol table is not loaded. Any combination of one, two, or
three modifiers may be included, although the command with all three modifiers
represents a ‘‘null’’ command. No modifier may be named twice in the same load
command.

The SAVE command copies the user program currently loaded from memory onto
the specified file and drive. If the diskette installed on the given drive does not have
the named file in its directory, ISIS-II creates the file and opens it for write. If no ex-
plicit drive number is given, drive O is assumed.

The command can include one or more modifiers to control what is to be saved. If
NOSYMBOL is included, the symbol table is not copied from memory to diskette. If
NOLINE is included, the statement number table (for PL/M-80 programs) is not
saved. The modifiers NOCODE and partitionare mutually exclusive: if one is used,
the other may not be included. If NOCODE is included, the program object code is
not copied to diskette. If partitionis included, only the code stored in the memory
addresses in the partition (range of addresses) are saved. When more than one
modifier is used, separate them with spaces. No modifier may be used twice in the
same SAVE command. The SAVE operation does not alter the program code, sym-
bol table, or statement number table in memory.

The LIST command saves a record of the emulation session, including high-volume
data such as trace data, on a hard-copy device or on a diskette file. Only one device
or file other than the console can be specified (active) at a given time.

The initial device is :CO:, output to the console. Other devices that can be specified
are a line printer (:LP:), high-speed paper tape punch (:HP:), and teletypewriter
printer (:TO:).

ICE-85

ICE-85

Command Language

Instead of a hard-copy device, a diskette file can be specified. If the output is to a
diskette file, the file is opened when the LIST command is invoked, and output is
stored from the beginning of the file, writing over any existing data. Specifying a
new file or device in a later LIST command closes any existing open file and avoids
over-writing any more data.

When LIST is in effect (with a device or file other than :CO:), all output from
ICE-85, including system prompts, commands, and error messages, is sent both to
the named device or file and to the console display. To restore output to the console
only (no other device), use the command LIST :CO:.

One additional command, the EXECUTE command, uses ISIS-II pathnames in its
syntax. This command is discussed under the External Call Commands, page 5-101.

ICE85 Command
:drive:1CE85
Example:
:F1:ICE85
:drive: The number of the diskette drive containing the ICE-85 software
diskette. The number is preceded by the letter F, and enclosed in col-
ons.
ICES8S The name of the ICE-85 program file under ISIS-II. The filename

follows the second colon without any intervening spaces.

EXIT Command
EXIT
Example:
EXIT
EXIT A command keyword that returns control from ICE-85 to ISIS-II.

59

Command Language

LOAD Command

NOSYMBOL

LOAD :drive: filename { NOCODE }

Examples:

NOLINE

LOAD :FO:TEST.VR1

LOAD :F1:MYPROG NOLINE

LOAD :F2:COUNT.ONE NOCODE NOLINE
- LOAD :F3:NEWCOD NOSYMBOL

LOAD

: drive:

filename

NOCODE
NOSYMBOL

NOLINE

A command keyword that loads the software on the given file and
drive into the combination of prototype and Intellec memory
specified by a previous MAP command.

The diskette drive (:FO:, :F1:, :F2:, or :F3:) that contains the target
file. If no drive is given, :FO: (drive 0) is the default.

The name of the desired program as compiled or assembled, linked,
and located. The filename follows the second colon with no in-
tervening spaces.

A modifier specifying that program code is not to be loaded.

A modifier specifying that the program symbol table is not to be
loaded.

A modifier specifying that the program line number table (for
PL/M-80 programs) is not to be loaded.

ICE-85

ICE-85 Command Language

SAVE Command

NOSYMBOL

SAVE : drive: filename { NOCODE / partition }
NOLINE

Examples:

SAVE :F1:TEST

SAVE :FO:MYPROG 0800 TO OFFF NOLINE
SAVE :F2:COUNT.TWO NOLINE NOSYMBOL
SAVE :F3:NEWSYM NOCODE NOLINE

SAVE The command keyword that directs ICE-85 to write the designated
software elements to the indicated file and drive.

: drive: The diskette drive (:FO:, :F1:, :F2:, :F3:) holding the diskette that is
to contain the saved software. If no explicit drive number is given,
drive O is the default.

filename The name of the file that is to receive the saved information. The

name of the file, including the extension if present, must follow the
rules for naming files under ISIS-II. The filename immediately
follows the second colon. If the filename does not exist on the
designated diskette, ISIS-II creates the file and opens it for write.

NOCODE A modifier specifying that program code is not to be saved.

partition A construct specifying a range of one or more contiguous locations
in memory; the contents of the specified locations are saved, but
code in other locations is not copied. Refer to the discussion under
the Memory Contents Commands (page 5-39) for the forms used to
specify memory partitions.

NOSYMBOL A modifier specifying that the symbol table is not to be saved to

diskette.

NOLINE A modifier specifying that the line number table (for PL/M-80
programs) is not to be saved.

LIST Command

(a) LIST :device:

(b) LIST :drive:filename
Examples:

LIST :LP:

LIST :CO:
LIST :F1:ICEFIL

LIST The command keyword directing all ICE-85 output to be sent to the
specified device or file, and to the console.

: device: An ISIS-II device code, indicating a hard-copy output device to
receive the output.

: drive: The diskette drive holding the diskette on which output is to be

written. If no explicit drive is given, drive 0 is assumed.

filename The name of the file on the target diskette. The filename
immediately follows the second colon, without intervening spaces.

Command Language

5-12

Number Bases and Radix Commands

ICE-85 commands and displays involve several different number bases (radixes).
This section describes the various radixes used by ICE-85, and the commands used
to control some of them. Most radixes are set by ICE-85 and cannot be changed, but
others are under your control.

This section gives details on the following commands.

Command Purpose Page
SUFFIX Set or display console input radix. 5-15
BASE Set or display console output radix. 5-15
EVALUATE Display numeric constant or expression in all five 5-16

possible output radixes.

Discussion

The commands given in detail in this section refer to the radixes used for console in-
put and console output. In addition to these two main contexts, this section reviews
the radixes used for the display of trace data and for the display of breakpoint and
qualifier register settings.

Console Input Radixes; SUFFIX Command

Any number entered from the console can include an explicit input radix. An ex-
plicit input radix consists of one of the following alphabet characters appended
directly to the number as entered.

Explicit Example Radix Specified
Radix
Y 1001Y Binary (base 2)
Q 11Q Octal (base 8)
T 9T Decimal (base 10)
H 9H Hexadecimal (base 16)
K 2K Multiple of 1024

The implicit input radix is the base used by ICE-85 to interpret numbers entered
from the console without an explicit radix. The initial implicit radix for most
numbers is hexadecimal (H).

To display the current implicit input radix, enter the command token SUFFIX
followed by a carriage return. The implicit input radix can be Y, Q, T, or H, as
defined earlier.

You can change the implicit input radix by entering a command with the form SUF-
FIX = X, where X is any of the characters Y, Q, T, or H. This SUFFIX command
can be used where several numbers are to be entered in the same radix.

Note that K (multiple of 1024) cannot be specified as an implicit input radix.
Numbers with explicit radix K are used mainly to refer to blocks of memory ad-
dresses for mapping; see the MAP commands for examples.

ICE-85

ICE-85 Command Language

For some kinds of entries from the console, the implicit input radix is always
decimal (T). Entries with implicit decimal radix are:

e Numbers entered after MOVE, PRINT, and COUNT keywords.
® Channel numbers.
¢ Program statement numbers.

An explicit radix always takes precedence over the implicit radix. If the digits in the
number entered cannot be interpreted in either the explicit or the implicit radix, an
error message is displayed.

Console Output Radixes; BASE Command

Numeric information such as addresses, memory and register contents, and data, is
displayed in the current console output radix. The console output radix can be one
of the following.

Output Radix Specified

Radix
Y Binary
Q Octal
T Decimal
H Hexadecimal

ASCII ASCII character for each byte

The initial output radix is hexadecimal (H).

To display the current console output radix, enter the command token BASE
followed by carriage return. The display consists of a single character, Y, Q, T, H,
or A (for ASCII).

You can change the console output radix by entering a command with the form
BASE = X, where X is one of the single characters Y, Q, T, or H, or the token
ASCII. Once the radix is set with a BASE command, it stays in effect until another
BASE command is entered.

The EVALUATE Command

The EVALUATE command handles the arithmetic computation involved in
translating from one radix to another. This command has the form EVALUATE X,
where X is any numeric constant or numeric expression. Upon receiving this com-
mand, ICE-85 evaluates any expression to a single number, and displays the result in
the four bases Y, Q, T, and H, and the corresponding ASCII characters, all on one
line. For ASCII, the characters are enclosed in single quotes (’); printing characters
are displayed (ASCII codes 20H through 7EH after bit 7 is masked off), while non-
printing characters are suppressed.

Here are three examples of the use of the EVALUATE command, with the display
produced by each one.

Example 1:
EVALUATE 123T
Display:

1111011Y 173Q 123T 7BH ‘r

5-13

Command Language

5-14

Example 2:
EVALUATE 4142H
Display:
100000101000010Y 40502Q 16706 T 4142H ‘AB’
Example 3:
EVALUATE FFH + 256T
Display:

111111111y 77Q 511T 1FFH £’

Note that the addition was performed first, then the result was displayed in the four
bases. The result contained only non-printing ASCII characters, displayed as empty
quotes.

Radixes Used in Trace Displays

Entries in the trace buffer are displayed in groups. Some groups are system-defined;
the radixes used for displaying these groups are also set by the system. If you define
any additional groups, they are also displayed as part of trace data, and you can
specify the group-radix to be used for each such group. Refer to the Group Com-
mands for more detail on system groups and user-defined groups.

System groups are displayed with the following radixes.

System Group Trace Display Radix

ADDR, ADDRL, H (Hexadecimal)
ADDRH, DATA

STS One-letter mnemonic (H=HALT, W=WRITTEN,
R=READ, E=EEXECUTED, O=OUTPUT, I=INPUT)

DMUX, SD, Y (Binary)

RW, MTH

The group-radix to be used for displaying a user-defined group in trace data is
specified by the IN-clause that is part of the DEFINE GROUP command. Group-
radixes can be one of the following.

Y Binary

Q Octal

T Decimal

H Hexadecimal

The default when no IN-clause is used is H (hexadecimal).

Radixes Used for Displaying Breakpoint and Qualifier Settings

When you enter a token representing one of the ICE-85 breakpoint or qualifier
registers, the setting of that register is displayed. The display includes any system
group or user-defined group having one or more care bits set; the setting of each
group is displayed as a binary masked or numeric constant. Refer to the Emulation
Commands, and to the Trace Commands for more details on breakpoint and
qualifier registers.

ICE-85

ICE-85

Command Language

Set or Display Console Input Radix Commands

SUFFIX

SUFFIX
Examples:

SUFFIX

SUFFIX

|[yrQ/iTiH|

SUFFIX

I =S 0

A command keyword referring to the implicit console input radix.
The token SUFFIX alone displays the current setting (Y, Q, T, or
H).

The assignment operator, indicating that the new setting is to
follow.

Binary radix.

Octal radix.
Decimal radix.
Hexadecimal radix.

Set or Display Console Output Radix Commands

BASE
BASE = |Y/Q/T/H/ASCl|
Examples:
BASE
BASE = Q
BASE A command keyword referring to the system console output radix.
The token BASE alone displays the current setting (Y, Q, T, H, or
A).
= The assignment operator, indicating that the new setting is to
follow.
Y Binary radix.
Q Octal radix.
T Decimal radix.
H Hexadecimal radix.
ASCII Each byte represented by its corresponding ASCII character,

without separators.

Command Language

5-16

EVALUATE Command

EVALUATE numeric
Examples:

EVALUATE 123T

EVALUATE 4142H

EVALUATE FFH + 256T

EVALUATE A command keyword that directs ICE-85 to evaluate the expression
and display the result in all four number bases and ASCII.

numeric A numeric expression or numeric constant .

Memory and 170 Port Mapping Commands

The commands in this section control the ICE-85 memory and I/O port maps.
ICE-85 uses these maps to determine what memory and 1/0 are installed on the pro-
totype system, and what memory and I/0 resources are being ‘‘borrowed’’ from the
Intellec system for testing purposes.

This section gives details on the following commands.

Command Purpose Page

Map Mode Identify Intellec memory to be borrowed as SHARED or 5-27
UNSHARED.

MAP Memory Assign up to 32 blocks of 2K locations per block segment 5-28

to USER, INTELLEC, or GUARDED status.

MAP IO Ports Assign up to 32 segments of eight /0 ports per segment 5-29
to USER, INTELLEC, or GUARDED status.

Display MAP Status Display status of one or more memory biocks, or of one 5-30
or more port segments, and display the current map
mode for Intellec memory.

RESET MAP Restore Intellec map mode to SHARED, and the status of 5-30
all memory blocks and port segments to GUARDED.

Discussion

Mapping Memory

ICE-85 can access program code loaded into user prototype memory, Intellec RAM
memory, or a combination of the two. A maximum of 64K addresses are accessible
with the addressing scheme used by the 8085 processor. If a combination is used, the
address spaces assigned in each memory do not overlap; a given address must be
assigned to either the prototype or to the Intellec system.

ICE-85

ICE-85

Command Language

Intellec memory comes in two configurations. The SHARED memory space is stan-
dard. An optional UNSHARED memory space can be installed. Either configura-
tion can include a maximum of 64K addresses. ICE-85 can access either the
SHARED or the UNSHARED Intellec RAM, but not a combination of the two.

MAXIMUM
OF

——————
4 MONITOR 2K FFFFH, F800H

VARIES.
— SYMBOLTABLE _ | XXXXH

[UPPER

AVAILABLE FOR
USER PROGRAM
CODE

64K 7000H

6FFFH

ICE-85 SOFTWARE
16K

l 3000H

2FFFH

ISIS SOFTWARE 12K

Y 0000H

Figure 5-1. Intellec Shared Memory Locations with 64K of RAM 46317

Intellec SHARED memory always contains the following system software and
dedicated locations. Refer to Figure 5-2 for a diagram of Intellec SHARED

memory.

Intellec
Monitor
(2K)

ISIS-I1
Software (12K)

ICE-85
Software (16K)

ICE-85
Workspace

and Symbol
Tables
(Amount varies)

The Intellec Monitor occupies locations F800H through
FFFFH in SHARED memory regardless of memory size as
installed. All references to addresses in this range are sent to the
Monitor ‘shadow’ PROM, and thus are unavailable to the
memory map.

ISIS-II software occupies the lowest 12K in Intellec SHARED
memory (addresses 0000H through 2FFFH).

The ICE-85 program occupies the 16K locations immediately
above the ISIS-II software (addresses 3000H through 6FFFH).

The workspace for ICE-85 variables and the symbol and
statement number tables occupy an area of SHARED memory
whose highest address is the highest permissible address in
installed memory that is below F800 (Monitor). In a 64K system,
the workspace and symbol tables occupy the contiguous memory
addresses just below the Monitor. In systems with less than 64K,
these items take up the highest locations in installed memory. The
amount of memory taken up by the workspace and tables varies.
The ICE-85 command UPPER displays the highest available ad-
dress below the workspace/table area.

The range of addresses from 7000H through the value of UPPER is available for
user program code.

5-17

Command Language

5-18

Intellec UNSHARED memory consists of up to 64K of RAM, installed in the In-
tellec chassis (or in an extender chassis) in addition to the UNSHARED memory
boards. When UNSHARED memory is to be used, all the RAM boards in both
SHARED and UNSHARED memories must be 32K or 64K in capacity. Intellec UN-
SHARED memory is restricted only by the Monitor locations (FS8OOH through
FFFFH; see Figure 5-1).

The ICE-85 memory map tells the system where to find the physical location cor-
responding to an address reference in the program code or in commands. ICE-85
treats most address references as logical addresses. The map translates any logical
address into its corresponding physical address, given that the addresses (logical and
physical) have been set in correspondence with a previous MAP command. Figure
5-3 diagrams the memory map operation. Some commands or command keywords
use physical addresses directly; such addresses always are referred to. Intellec
SHARED memory.

FFFH
‘ INTELLEC MONITOR A
FoooH | _LOCATIONS]
A
AVAILABLE FOR MAXIMUM
USER PROGRAM OF
CODE 64K
0000H ‘} Y
5-2. Intellec UNSHARED Memory 46318
PROTOTYPE
> MEMORY
(USER)
LOGICAL Plws'cs“\ 3
MEMORY ADDRESS INTELLEC
ADDRESS ——» >
(NUMBER) MAP UNSHARED MEMORY
| INTELLEC SHARED
PHYSICAL
ADDRESS ——»1 MEMORY
(NUMBER)
Figure 5-3. Memory Map Diagram 46319

ICE-85

ICE-85 Command Language

The address references shown in the diagram are simple numeric references. Sym-
bolic references and numeric expressions used as addresses are resolved into numeric
references by ICE-85 before the map is consulted.

The MAP Mode command tells ICE-85 to use either SHARED or UNSHARED In-
tellec memory for any addresses mapped to the Intellec system. The command has
the form MAP = X, where X is one of the two tokens SHARED or UNSHARED.
The initial mode is SHARED.

The MAP Memory command assigns blocks of logical addresses-to blocks of
physical locations either in the prototype or in the Intellec system. Each memory
block (logical and physical) contains 2K (2048 decimal) contiguous locations. Refer
to Table 5-2. A 64K system represents 32 blocks that can be mapped. You can map
only in terms of entire blocks; partial blocks cannot be mapped. Of course, an
ICE-85 command or program statement can reference a single address, or a range of
addresses that does not correspond to block boundaries, once the block or blocks

containing the referenced address has been mapped.

All memory blocks in the prototype and Intellec memories are initially GUARDED
(logically nonexistent). Any attempt to access a guarded location produces an error
message at the console. Guarded locations are write-protected in Interrogate mode;
if you refer to such a location in a command entered from the console, no access oc-
curs. During emulation, however, an attempted write to a guarded location will suc-
ceed before the error message is displayed. You can use the MAP Memory Com-
mand to reset any block to GUARDED.

Table 5-2. Memory Blocks for Mapping

Lowest Address High Address .
Block No. (block-name) Hex Decimal Range
K Hex

0 0K oH 7FFH 0 - 2047
1 2K 0800H OFFFH 2048 - 4095
2 4K 1000H 17FFH 4096 - 6143
3 6K 1800H 1FFFH 6144 - 8191
4 8K 2000H 27FFH 8192 - 10239
5 10K 2800H 2FFFH 10240 - 12287
6 12K 3000H 37FFH 12288 - 14335
7 14K 3800H 3FFFH 14336 - 16383
8 16K 4000H 47FFH 16384 - 18431
9 18K 4800H 4FFFH 18432 - 20479
10 20K 5000H 57FFH 20480 - 22527
" 22K 5800H 5FFFH 22528 - 24575
12 24K 6000H 67FFH 24576 - 26623
13 26K 6800H 6FFFH 26624 - 28671
14 28K 7000H 77FFH 28672 - 30719
15 30K 7800H 7FFFH 30720 - 32767
16 32K 8000H 87FFH 32768 - 34815
17 34K 8800H 8FFFH 34816 - 36863
18 36K 9000H 97FFH 36864 - 38911
19 38K 9800H 9FFFH 38912 - 40959
20 40K ACOOH A7FFH 40960 - 43007
21 42K A800H AFFFH 43008 - 45055
22 44K BOOOH B7FFH 45056 - 47103
23 46K B80OH BFFFH 47104 - 49151
24 48K 0000H C7FFH 49152 - 51199
25 50K C800H CFFFH 51200 - 53247
26 52K DOOOH D7FFH 53248 - 55295
27 54K D800H DFFFH 55296 - 57343
28 56K EO000H E7FFH 57344 - 59391
29 58K E800H EFFFH 59392 - 61439
30 60K FO0OH F7FFH 61440 - 63487
31 62K F800H FFFFH 63488 - 65535

5-19

Command Language

5-20

The details on using the MAP Memory command fall into three areas:

1. The ways to refer to blocks (block-name), and the number of contiguous blocks
to be mapped in a single MAP command.

2. The use of displacement with Intellec SHARED memory.
3. The NOVERIFY option for mapping to USER or INTELLEC.

One or more contiguous blocks can be mapped to the same memory state (GUARD-
ED, USER, or INTELLEC) in a single MAP command. To map a single block, use
a command with the form MAP block-name = X, where X is one of the tokens
GUARDED, USER or INTELLEC. (For now, we shall omit the required displace-
ment for Intellec SHARED memory, and the NOVERIFY option.)

The block-name is the lowest-numbered address in the desired block. Since each
block contains 2048 (decimal) addresses, all block-names are numbers that are
multiples of 2048 decimal. In hexadecimal radix, block-names are multiples of
0800H, starting with 0000H. However, the simplest way to refer to a block is to use
the explicit input radix K (multiple of 1024); any block-name is a number with the
form (n times 2K), or 2nK, where n is the block number given in Table 5-2
(0<n<31).

To map more than one contiguous block in one command, use a form of block- par-
titioninstead of a single block-name. The forms of block-partitionare as follows.

block-name TO block-name— 1
block-name TO high-address

block-name LENGTH number-of-addresses

The first two forms use the keyword TO. The block-name to the left of the keyword
TO represents the low address of the low block in the partition; the block-name is
specified as discussed above. The entry to the right of the keyword TO represents the
highest address in the high block in the partition. You can either look up the high-
addressin the high block by referring to Table 5-2, or you can use an expression with
the form (block-name — 1) and let ICE-85 calculate the high address. All the blocks
included in the range of addresses given by this form are mapped to the designated
memory state. For example, to map the lowest four blocks to USER (prototype)
memory, either of the following two commands can be used.

MAP 0000H TO 2000 — 1 = USER

MAP OK TO 1FFFH = USER

The third form of block-partition uses the keyword LENGTH. With this form, you
supply the low address in the range (the block-name of the lowest block, as before),
and (following LENGTH) the number of addresses in the range. The number of ad-
dresses includes the starting address, so that no additional calculation is required.
Morever, since each block contains exactly 2K addresses, the number given for
number-of-addresses is a multiple of 2K, and is identical in form to block-name.
Thus, to map the first four blocks to USER, you can use the following command.

MAP OK LENGTH 8K = USER

Any block is valid for mapping, including those dedicated to Monitor, ISIS-II, and
ICE-85. If you map into ISIS-II or ICE-85, a warning message is displayed, but the
map operation is carried out. You should not map into these areas unless your pro-
gram uses some specific Monitor or ISIS-II routines.

If the range of addresses given in a block-partition contains more than 64K loca-
tions, or if the express or implied high address is higher than 64K, an error is
displayed, and the MAP command is not executed.

ICE-85

ICE-85 Command Language

When a block or range of blocks is mapped as GUARDED, the block or blocks
become unavailable to ICE-85.

When the block or blocks are mapped to USER, the physical addresses in the pro-
totype memory are the same as the logical addresses in the program or command.
For example, if block OK (locations 0000H to 07FFH) are mapped to USER, any
reference to logical address 0100H is directed to physical location 0100H in the pro-
totype memory.

When the blocks are mapped to INTELLEC, the prevailing map mode determines
whether SHARED or UNSHARED memory is to be used. With UNSHARED
memory, physical addresses are the same as logical addresses. With SHARED
memory, physical addresses are generally not the same as the logical addresses. The
default is SHARED.

In SHARED Intellec memory, the lowest available address for user program code is
7000H; this is block 28K. Typically, user program code is located in low areas of
memory. Thus, for Intellec SHARED memory, logical addresses are less than
physical addresses; the difference is called the ‘displacement.’

When you are mapping into INTELLEC, you must specify the starting address in
Intellec memory that is to correspond to the lowest logical address in the block- par-
tition you wish to map. Subsequent logical address blocks are mapped to con-
tiguous physical blocks higher in Intellec memory; you do not need to specify
anything but the size of the partition of logical blocks.

For UNSHARED Intellec memory, the starting address (block-name) of the logical
blocks can be the same as the physical address in Intellec memory. For example, to
map the lowest block to Intellec UNSHARED memory, the following two com-
mands are valid when entered in the order shown.

MAP = UNSHARED

MAP 0K = INTELLEC 0K

For SHARED Intellec memory, physical blocks start with block 28K, as mentioned
earlier. Thus, to map the lowest logical block (0K) into the lowest available physical
block in Intellec SHARED memory, use one of the following commands.

MAP 0K = INTELLEC 28K

MAP 0000H = INTELLEC 7000H

When memory is mapped to USER or to INTELLEC, you may use the NOVERIFY
option. NOVERIFY suppresses write verification that normally is performed each
time the contents of a memory location are changed with an ICE-85 console com-
mand.

To display the current map mode, and the state (GUARDED, USER, or IN-
TELLECQC) of all 32 blocks, enter the command token MAP followed by a carriage
return. To display the status of a range of blocks, enter the token MAP followed by
the desired partition.

The RESET MAP command restores the map mode to SHARED, and the status of
all 32 memory blocks to GUARDED.

Figures 5-4, 5-5, and 5-6 illustrate three cases using the MAP command.

5-21

Command Language

rrpry _ NTELLECSHARED MEMORY USER MEMORY INTELLEC UNSHARED MEMORY
F800H MONITOR 2K
F7FFH ICE-85 VARIABLES
USER PROGRAM SYMBOL TABLES
opPER [— — T T T T T
(GUARDED)
(BLANK)
7000H N -
6FFFH 24K MAP MEM 24K=USER -
ICE-85 SOFTWARE
(GUARDED)
1800H
2FFFH aK MAP MEM 4K=USER -
ISIS-Il SOFTWARE - _
ol 2K MAP MEM 2K=USER
(GUARDED)
OH
MEMORY MAP
MEM 2K-2K USER - ALL PROGRAM CODE
K=MULTIPLE OF 1024 MEM 4K-4K USER < MAPPED TO USER
~ : MEM 24K=24K USER MEMORY: NO DISPLACEMENT
IS ALLOWED
Figure 5-4. Mapping Into User Memory 463-20
crern o NTELLECSHARED MEMORY USER MEMORY INTELLEC UNSHARED MEMORY
F800H MONITOR 2K
F7FFH 1CE-85 VARIABLES]
USER PROGRAM SYMBOL TABLES
wPPER § T T — 7
aaK MAP 26K=INT 44K -
I S
36K MAP MEM 24K=INT 36K <T] e
7000H
6FFFH
ICE-85 SOFTWARE 3000H
16K > MAP MEM 10K=USER 10K
MAP MEM 8K=USER 8K
2FFFH
1S1S-11 SOFTWARE
12K
OH

K=MULTIPLE OF 1024.

Figure 5-5. Mapping Into User and Shared Intellec Memory

MEMORY MAP
MEM 8K=8K USER
n B MEM 10K=10K USER
- MEM 24K=36K INT
Ea MEM 26K=44K INT

463-21

5-22

ICE-85 Command Language

R INTELLEC SHARED MEMORY USER MEMORY INTELLEC UNSHARED MEMORY
H ——
F80OH MONITOR 2K 1
F7FFH | ICE-S5VARIABLES ___ |
USER PROGRAM SYMBOL TABLES GUARDED
UPPER [— — — T — T 7
(GUARDED)]
MAP 26K LEN 4K = INT 44K 46K
— MAP MEM 24K = INT 24K 44K
28K : i (GUARDED)
24K j —»- MAP MEM 24K=INT 24K 24K
7000H
6FFFH
ICE-85 SOFTWARE
16K \
10K (GUARDED)
2FFFH 8K MAP 8K LEN 4K = USER
1SI1S-1l SOFTWARE
12K (GUARDED)
OH
MEMORY MAP
MEM 8K = 8K USER
PROGRAM CODE MAPPED TO
K MULTIPLE MEM 10K = 10K USER USER gosmonv:
OF 1024. MEM 28K = 46K INT NO DISPLACEMENT
- ALLOWED. PROGRAM CODE
MEM 26K = 44K INT MAPPED TO INTELLEC
“MEM 24K = 24K INT - UNSHARED MEMORY:
DISPLACEMENT ALLOWED.

Figure 5-6. Mapping Into User and Unshared Intellec Memory 463-22

Case I: Mapping into User Memory Only (Figure 5-4).

Commands:
MAP 2K TO 1800 -1 = USER NOVERIFY
MAP 24K = USER

User program (logical) address blocks 2K, 4K, and 24K are mapped into USER
(prototype) memory. Blocks 2K and 4K have read-after-write verification sup-
pressed.

Case II: Mapping into User and Shared Intellec Memory (Figure 5-5).

Commands:
MAP = SHARED
MAP 8K TO 3000H -1 = USER NOVERIFY
MAP 24K = INTELLEC 36K NOVERIFY
MAP 26K = INTELLEC 44K

Logical blocks 8K and 10K are mapped to prototype memory with verification sup-
pressed. Logical block 24K is mapped to Intellec shared memory, at physical block
36K, verification suppressed. Logical block 26K is mapped to Intellec shared
memory at logical block 44K.

Case II1: Mapping into User and Intellec Unshared Memory (Figure 5-6).

Commands:
MAP = UNSHARED
MAP 8K LENGTH 4K = USER
MAP 24K = INTELLEC 24K
MAP 26K LENGTH 4K = INTELLEC 44K

5-23

Command Language

5-24

Logical blocks 8K and 10K are mapped to user memory; no displacement is allowed.
Logical block 24K is mapped to physical block 24K in Intellec unshared memory.
Logical blocks 26K and 28K are mapped to Intellec unshared memory, at physical
blocks 44K and 46K respectively. With Intellec unshared memory, displacement is
optional.

In summary, the ICE-85 map is used to decode logical addresses into physical ad-
dress. Logical addresses correspond to the program and data locations in your pro-
gram as LOCATED; physical addresses correspond to the address space as seen in-
ternally by ICE-85

How does ICE-85 decide if an address reference in a command is a logical or
physical address? ICE-85 decides on the basis of the keyword that precedes the ad-
dress reference. Some keywords take logical addresses as ‘‘arguments’’ or
““parameters’’, while other keywords require (assume) physical addresses.

For reference, here are the ICE-85 command keywords that use address references.
They are classified according to the type of address used.

The tokens BYTE, WORD, CALL, FROM, TO, and LOCATION use logical ad-
dresses. The address reference that follows any one of these tokens is translated
through the memory map into its corresponding physical address in user or Intellec
memory. For example, suppose you map location 2000H from your program code
to address 7000H in Intellec SHARED memory. To refer to the content of this ad-
dress, you use the expression BYTE 2000H.

The tokens IBYTE, IWORD, and ICALL use physical addresses in Intellec
SHARED memory. The map is not used to translate the address, and the physical
location is always Intellec SHARED memory, even when the current MAP mode for
memory mapping is UNSHARED. For example, to refer to the content of address
7000H in Intellec SHARED memory, use the expression IBYTE 7000H.

Mapping Input/Output Ports

ICE-85 can access input/output ports in the prototype system, in the Intellec system,
or in a combination of the two. A maximum of 256 decimal ports can be accessed.

The map command for I/0 ports has the form:
MAP IO segment-partition= X
where X is one of the tokens GUARDED, USER, or INTELLEC.

Input/output ports are mapped in segments of eight ports each. Table 5-3 gives
details on the segments of ports for mapping.

The segment-name is the number of the lowest port in the desired port segment.
Segment names are multiples of 8H or 8T. To map a single port segment, the MAP
IO command has the simpler form:

MAP IO segment-name =X

The forms of segment-partition (range of port segments) resemble those given
above for block-partition. The three forms are as follows.

segment-name TO segment-name —1
segment-name TO high-port
segment-name LENGTH number-of-ports

ICE-85

ICE-85 Command Language

Table 5-3. Input-Output Port Segments for Mapping

Hex Range Decimal-Range
Segment- (segment-name) (segment-name)
Number Low High Low High
0 OH 7H oT 4
1 8H FH 8T 15T
2 10H 17H 16T 23T
3 18H 1FH 24T 31T
4 20H 27H 32T 39T
5 28H 2FH 407 477
6 30H 37H 48T 55T
7 38H 3FH 56T 63T
8 40H 47H 64T nT
9 48H 4FH 72T 797
10 50H 57H 80T 87T
1 58H 5FH 88T 95T
12 60H 67H 96T 103T
13 68H 7FH 1047 11T
14 70H 77H 1127 197
15 78H 7FH 120T 1277
16 80H 87H 128T 135T
17 88H 8FH 136T 143T
18 90H 97H 1447 1517
19 98H 9FH 152T 1597
20 AOH A7TH 160T 1677
21 A8H AFH 168T 175T
22 BOH B7H 1767 183T
23 B8H BFH 184T 1917
24 COoH C7H 1927 1997
25 C8H CFH 200T 2077
26 DOH D7H 208T 2157
27 D8H DFH 216T 223T
28 EOH E7H 224T 2317
29 E8H EFH 2327 2397
30 FOH F7H 2407 2477
31 F8H FFH 248T 2557

The first two forms use the keyword TO. The segment-name to the left of the
keyword TO represents the low port number in the low segment in the partition; as
discussed above, the segment name is a number with the form (ntimes 8H), where n
is the segment number from Table 5-3. The entry to the right of the keyword TO
represents the highest port number in the highest segment in the partition. You can
either look up the high-port in the high segment by referring to Table 5-3, or you
can use an expression with the form (segment-name- 1), and let ICE-85 calculate the
high port number. For example, to map the lowest 4 port segments (32 ports total) to
the user system, either of the two following commands may be used.

MAPOH TO 20H - 1 = USER
MAP OH TO 1FH = USER

The third form of segment-partition uses the keyword LENGTH. With this form,
you specify the low port in the range (the segment-name of the lowest segment, as
before), and (following the keyword LENGTH) the number of ports in the range.
The number of ports includes the starting port-number, so that no additional
calculation is required. Morever, since each segment contains 8 (H or T) ports, the
number given for number-of-portsis always a multiple of 8, and is thus identical in
form to segment-name. For example, to map the lowest four port segments to
USER, you can use the following command.

MAP IO OH LENGTH 32T = USER

5-25

Command Language

Displacement is not allowed with I/0 port segments; the logical port number always
equals the physical port number, both in USER and INTELLEC systems. The
NOVERIFY option is invalid with I/O ports, since data written to 1/0 ports is never
verified.

Figure 5-7 diagrams an example of mapping I/0 port segments to a combination of
USER and INTELLEC. The commands that produce this result might be:

MAP IO 18H LENGTH 16T = USER

MAP 10 40H = USER
MAP 10 60H =INTELLEC

To display the current status (GUARDED, USER, or INTELLEC) of all 32 I/O
port segments, enter the tokens MAP IO, followed by carriage return. To display
the status of a partition of port segments, use MAP 10 segment-partition.

The RESET MAP command restores all 32 I/O port segments to their initial
GUARDED status. ‘

ICE-85

40H

USERIO INTELLEC IO

A

10 MAP
10 60H = 60H INT -

(GUARDED) /

10 40H = 40H INT

(GUARDED)

> MAP 10 60H = INT

60H

—>- 10 20H = 20H INT A
10 18H = 18H INT

20H

\
MAP 10 40H = USER /
A

A

MAP 10 20H = USER -+

18H

MAP 10 18H = USER

A

\ y

Figure 5-7. 10 Port Segments Mapped to User and Intellec 46323

5-26

ICE-85

Command Language

MAP Mode Command
MAP [MEMORY] = |SHARED |
UNSHARED
Examples:

MAP MEMORY = SHARED

MAP = UNSHARED

MAP

MEMORY

SHARED

UNSHARED

A command keyword referring to some operation on the ICE-85
map that relates each address in the user program absolute code to
a location either in user memory or in Intellec memory.

A function keyword referring to the memory blocks used for
program code. It may be omitted from this command.

The assignment operator.

Refers to shared Intellec memory space. This memory space always
contains the system software (Monitor, ISIS-II, and ICE-85), an
ICE-85 system workspace, and the user symbol tables, in addition
to any code mapped into it. SHARED is the initial mode

A function keyword referring to unshared memory space in the
Intellec system. This space requires an additional memory board or
boards. When present, it is available for user program code only.

5-27

Command Language

5-28

MAP Memo'ry Command

MAP MEMORY block-partition = | GUARDED

Examples:

USER [NOVERIFY]
INTELLEC block-name [NOVERIFY]

MAP MEMORY 0000H TO OFFFH = GUARDED

MAP MEMORY 6K = USER

MAP 2000H TO 2FFFH = INTELLEC 4K NOVERIFY

MAP MEMORY 5000 LENGTH 4K = USER NOVERIFY

The command contains the following semantic elements.

MAP

MEMORY

block-partition

GUARDED

USER
INTELLEC

block-name

NOVERIFY

A command keyword that relates each address in the user
program absolute code to a location either in user memory or in
Intellec memory, and each input/output port to the user system
or to the Intellec system.

A function keyword indicating that program code is to be
mapped. (MEMORY is the default).

One or more contiguous blocks of memory addresses (2048
addesses per block).

The assignment operator.

The initial state of all memory blocks. Any reference to a
guarded address causes an error message. Guarded locations are
write-protected in interrogate mode, but not write-protected in
either real-time or single-step emulation.

Refers to locations in user prototype memory.

Refers to locations in Intellec memory (shared or unshared, as
specified in an earlier Map Mode command).

Gives the starting address in Intellec memory for the blocks of
contiguous memory identified in partition. The lowest block in
partition will be mapped to the block location given by block-
name, and succeeding blocks are mapped to contiguous memory
blocks above the first block.

A function keyword that suppresses the normal read-after-write
verification of data loaded into memory locations in user or In-
tellec memory.

ICE-85

ICE-85 Command Language

MAP I/0 Ports Command

GUARDED
USER
INTELLEC

MAP 10 segment-partition =

Examples:
MAP IO 00H TO 17H = INTELLEC
MAP 10 32T TO 63T = USER

MAP 10 88H LENGTH 16T = GUARDED

MAP A command keyword referring to the memory and 1/0 port
maps.
10 Command keyword designating the /O port map.

segment-partition One or more contiguous segments of I/0O ports. Each segment
contains eight ports.

GUARDED The initial state of all I/O port segments. Any reference to a
guarded port causes an error message. Guarded ports are write-
protected in interrogate mode, but not write-protected in either
real-time or single-step emulation.

USER Maps port segments in the partition to the user (prototype)
system.
INTELLEC Maps port segments in the partition to the Intellec system.

5-29

Command Language

5-30

Display MAP Status Command

MAP [MEMORY]} [block-partition]

MAP 10 [segment-partition]
Examples:

MAP

MAP MEMORY 0000

MAP MEMORY 0000 TO 07FF

MAP MEMORY 0000 LENGTH 2K

MAP IO

MAPI0 8

The command contains the following semantic elements.

MAP A command keyword calling for a display of the current setting
of the map for memory blocks or for input/output port
segments.

MEMORY A function keyword calling for a display of the memory block in
the partition. MEMORY is the default.

10 A function keyword calling for a display of the I/O port

segments in the partition.
block-partition One or more blocks of memory addresses.

segment-partition One or more segments of I/0 ports.

RESET MAP Command

RESET MAP
Example:

RESET MAP

RESET A command keyword that restores its object to its initial state, as
after an initial ICE-85 invocation.

MAP As the object of RESET, the token MAP causes all 32 memory
blocks and all 32 I/0 port segments to be reset to GUARDED, and
the mode for memory mapping to be reset to SHARED.

ICE-85

ICE-85

Command Language

Hardware Register Commands

This section presents the keywords used in ICE-85 to refer to the following types of
hardware registers and signals.

e 8085 Processor Registers
e ICE-85 Status Registers
e ICE-85 External Signals

The following commands that refer to hardware registers are discussed in this sec-
tion.

Command Purpose Page

Display Processor Display the current contents of any of the 8085 pro- 5-36
or Status Register cessor registers or ICE-85 status registers.

Set 8085 Processor Set (change) the contents of any of the writeable 8085 5-37
Register processor registers.
RESET Hardware Reset ICE-85 hardware to initial state; reset bit 5-37
RST-7.5 low.
ENABLE/DISABLE Enable or disable error message on absence of 8085 5-38
TIMEOUT READY or CLK signals.
Discussion

Tables 5-4 through 5-7 show the tokens to use to refer to any 8085 8-bit register, 16-
bit register pair, 1-bit status flag, or interrupt mask bit.

In the command syntaxes, the following meta-terms have been adopted to save
writing out the complete list of actual tokens.

Meta-term Class of tokens

processor-register Any of the 8085 registers, register pairs, status flags, or
interrupt bits.

register-name Any 8085 8-bit register (Table 5-4).
pair-name Any 8085 16-bit register pair (Table 5-5).
flag-name Any 8085 1-bit status flag (Table 5-6).
i-bit-name Any 8085 interrupt mask bit (Table 5-7).

To display the current contents of any of these registers or bits, enter the token for
the desired register followed by a carriage return. The current setting is displayed on
the next line, in the current output radix.

5-31

Command Language

Table 5-4. 8085 8-Bit Registers

register-name 8085 Register and Interpretation
RA Accumulator
RB Register B
RC Register C
RD Register D
RE Register E
RF Status flag register
RH Register H
RL Register L
Table 5-5. 8085 Register Pairs
pair-name 8085 Register Pair and Interpretation
RBC Register pair BC
RDE Register pair DE
RHL Register pair HL
SP Stack pointer
PC Program counter
Table 5-6. 8085 1-Bit Status Flags
flag-name Status Flag
CY Carry bit (bit 0 of RF)
PY Parity bit (bit 2 of RF)
ACY Auxiliary carry bit (bit 4 of RF)
z Zero bit (bit 6 of RF)
SN Sign bit (bit 7 of RF)
(Bit 3is always setto one)
Table 5-7. 8085 Interrupt Mask Bits
-bit-name Interpretation (Bit Number)
M5 RST-5.5 mask (bit 0)
M6 RST-6.5 mask (bit 1)
M7 RST-7.5 mask (bit 2)
IE Interrupt enabie (bit 3)
17 Interrupt 7.5 pending (read-only) (bit 6)
SID Serial input data (read-only) (input bit 7)
SOD Serial output data (write-only) (output bit 7)

5-32

ICE-85

ICE-85

Command Language

The command REGISTER displays eleven different values on one line. The values
are identified with single letters; here is an example:

(Command:)
REGISTER
(Display:)

P=FFOFH S=FFFEH A=00H F=00H B=00H C=00H D=00H E =00H H=00H L=00H |=00H

This display is interpreted as follows.

Identifier Element displayed

PC (program counter)

SP (stack pointer)

RA

RF (status flags)

RB

RC

RD

RE

RH

RL

Interrupt mask (byte formed by bits SID, 17, (16), (I5), IE, M7,
M6, and MS; MS5 is bit 0 and SID is bit 7. I5 and 16 are invalid
(always zero). The result is identical to that returned by the 8085
RIM instruction.)

S ImoQOwm»nT

To set (change) the content of one of the processor registers, use a command with
the form:

processor-register=X

where X is a numeric constant or numeric expression giving the desired new con-
tents. Note that interrupt bits I7 and SID are read-only bits, and cannot be set from
the console; any attempt to set a read-only register produces an error message.

Each of the registers that can be changed with this command has a definite size (16,
8, or 1 bits). If the new contents represent fewer bits than the destination register,
the bits are right-justified in the register, and the remaining bits in the register are set
to zero; in other words, ICE-85 assumes that the quantity represents the lowest-
order bits, and sets any unspecified high-order bits to zero.

If the new contents represent more bits than the register can hold, the least signifi-
cant bits of the quantity are loaded into the register, and the rest of the bits in the
quantity are ignored.

Table 5-8 shows the ICE-85 status registers, and the tokens used to refer to them. To
display the current content of any one of these registers, enter the token for that
register followed by carriage return. The content is displayed on the next line, in the
current output radix.

The meta-term status-register in a command syntax means any one of the eight
tokens for ICE-85 status registers.

Note that the ICE-85 status registers are all read-only registers, and cannot be set or
changed from the console.

5-33

ICE-85 Command Language

The RESET HARDWARE command is used to restore the ICE-85 and 8085 hard-
ware to the initial program load condition. One use for this command might be to
reset the hardware when reconfiguring (for example, moving the user plug from the
stand-alone adapter to the user system. The EXIT command includes the RESET
HARDWARE function.

The RESET I7 command causes the external interrupt line RST 7.5 to the 8085 to be
reset to zero (low).

TIMEOUT calls for ICE-85 to display an error message whenever either the 8085
READY signal or the 8085 CLK (clock) signal is absent. TIMEOUT is initially
enabled.

Table 5-8. ICE-85 Status Registers

Status-register ICE-85 Status Register and Interpretation

OPCODE Opcode fetched in last opcode-fetch cycle in trace data (8 bits,
read-only)
CAUSE Conditions that were true at the time of the last break in emulation

(read-only). The 8 bit values are:

Bit 0 on if breakpoint 0 matched

Bit 1 on if breakpoint 1 matched

Bit 2 on if SY0 caused break

Bit 3 on if guarded memory or I/O accessed
Bit 4 on if user aborted processing

Bit 5 on if timeout on HOLD

Bit 6 on if timeout on READY

Bit 7 on if no user Vcc (power supply voltage)

PPC Previous program counter; address of last instruction-fetch cycle in
trace data (16 bits, read-only).

PSW Program status word; accumulator in low byte, status flag register in
high byte (16 bits, read-only).

UPPER Highest location in Intellec memory available to map user memory
into (16 bits, read-only).

BUFFERSIZE Number of frames of valid trace data; initially zero, always between
zero and 1022 (16 bits, read-only).

TIMER Low 16 bits of 2- MHz emulation timer.

HTIMER High 16 bits of timer.

5-34

ICE-85 Command Language

Table 5-9 summarizes the operation of the external synchronization lines SY0 and
SY1. SYO0 is used to give hardware control of emulation; commands that enable and
disable SYO are discussed under the GO command. SY1 is used to control the collec-
tion of trace data; the commands that enable and disable SY1 are discussed under
Trace commands. The meta-term sync refers to either synchronization line.

Table 5-9. External Synchronization Lines

Sync IN ouT
SYo Enabled by GO or GR command. Enabled by ENABLE command.
Halts emulation when low. Driven low and held low by ICE-85
when emulation halts. Reset high
Driven low by external event. by external event. If external event
Reset high by external event. set SY0 OUT low, ICE-85 does not
hold itlow..
SY1 Enabled by ENABLE command. Enabled by ENABLE command.
Forces trace data collection by go- Set high when trace is running.
ing high.

Table 5-10 lists several other external signals presented on the ICE-85 Interface cable
module. These signals are not controllable with ICE-85 commands; they cannot be
set or displayed.

Table 5-10. Other External Signals

Signal Interpretation

MATCH 0/ Goes low when breakpoint register BRO matches.

MATCH 1/ Goes low when BR1 matches.
EMUL Goes high during emulation.
GND Common ground for external signals.

5-35

Command Language

5-36

Display Processor and Status Register Commands

register-name
pair-name
flag-name
i-bit-name
REGISTER
status-register

Examples:

RA

RBC

cY

M5
REGISTER
OPCODE

register-name Any one of the tokens RA, RB, RC, RD, RF, RF, RH, RL,
OPCODE, or CAUSE representing the 8085 and ICE-85 8-bit

registers (see Table 5-3).

pair-name Any one of the tokens RBC, RDE, RHL, SP, PC, PPC, PSW,
UPPER, or BUFFERSIZE representing 8085 and ICE-85 16-bit

register pairs (see Table 5-4).

flag-name Any one of the tokens CY, PY, ACY, Z, or SN representing 8085

1-bit status flags (see Table 5-5).

i-bit-name Any of the tokens MS, M6, M7, IE, 17, SID or SOD, representing

bits in the 8085 interrupt mask (see Table 5-6).

REGISTER A command keyword that displays the contents of registers PC,
SP, RA, RF, RB, RC, RD, RE, RH, RL, and a byte formed by the

interrupt bits given by i-bit-name above.

status-register Any of the tokens OPCODE, CAUSE, PPC, PSW, UPPER,
BUFFERSIZE, TIMER, or HTIMER, representing ICE-85 status

registers (see Table 5-8).

ICE-85

ICE-85 Command Language

Set Processor Register Command

processor-register = contents
EXAMPLES:

RA =00H

PC = 0800H
PC=PC+1

IE=CY

RBC = WORD .SAM

processor-register The keyword name of any of the writeable 8085 processor
registers, as follows:

8-bit registers (see Table 5-4).
16-bit registers (see Table 5-5).
Status bits (see Table 5-6).
Interrupt bits (see Table 5-7).

= The assignment operator.

contents A numeric-constantor numeric-expression.

RESET Hardware Commands

RESET I HARDWARE I
17
Examples:

RESET HARDWARE

RESET 17

RESET Command keyword restoring its object to a reset condition.

HARDWARE A function keyword restoring ICE-85 hardware to the reset
condition that occurs after the initial ICE-85 invocation.

17 A token specifying that the RST 7.5 interrupt line is to be reset
to zero (low).

5-37

Command Language

5-38

ENABLE/DISABLE TIMEOUT Commands

| ENABLE TIMEOUT
DISABLE
Examples:
ENABLE TIMEOUT
DISABLE TIMEQUT
ENABLE A command keyword that activates its object as a controlling
element in emulation or trace.
DISABLE A command keyword that cancels the effect of its object on
emulation or trace. :
TIMEOUT A function keyword that, when enabled, causes ICE-85 to

display an error message on the absence of either the 8085
READY signal or the 8085 CLK (clock) signal.

ICE-85

ICE-85 Command Language

Memory and Port Content Commands

The commands in this section give access to the content or current value stored in
designated memory locations or input/output ports. The commands discussed in
this section are as follows. The purpose of each command is indicated by its title.

Command Page

Display Memory and Port Contents 5-46

Set Memory Contents 5-47

Set Input/Output Port Contents 5-48
Discussion

Memory Content References

A memory content reference has the form:
mem-type address

The meta-term mem-type means one of the following ‘content-of’ modifiers for
memory locations.

BYTE The content of a single memory location. The address following
BYTE is treated as a logical address; the physical address whose
content is referenced is determined by look-up in the ICE-85
memory map (see Memory and 170 Port Mapping Commands,
page 5-16).

WORD The content of two adjacent bytes in memory. The most significant
byte is located in the high address of the address pair; the least
significant byte is stored in the low address of the pair. The address
following WORD is treated as a logical address; the ICE-85
memory map is consulted to find the physical address whose con-
tent is referenced.

IBYTE The content of a single memory location. The address following
IBYTE is always treated as a physical address in Intellec SHARED
memory; the ICE-85 memory map is not used.

IWORD The content of two adjacent bytes in memory. The most significant
byte is located in the high address of the address pair; the least
significant byte is stored in the low address of the pair. The address
following IWORD is always treated as a physical address in Intellec
SHARED memory; the ICE-85 memory map is not used.

NOTE

IBYTE and IWORD allow you to display any location in Intellec
SHARED memory, but do not allow you to change the content of any of
the reserved locations in Intellec SHARED memory (Monitor, ISIS-1I,
ICE-85). Non-reserved locations in Intellec SHARED memory can be
changed directly by using IBYTE or IWORD.

5-39

Command Language

5-40

The meta-term addressmeans one of the following types of entries.

numeric-constant A single number in any input-radix. ICE-85 treats all
numbers modulo 65532 (64K); thus any number represents
an address.

numeric- expression The forms for numeric expressions are presented in

Chapter 4. The result obtained when the expression is
evaluated becomes an address modulo 64K.

symbolic- reference The ICE-85 symbol table lists all symbols loaded with the
test program or defined by the user after program load.
Corresponding to each symbol is a number that can be us-
ed as an address.

statement-number- The ICE-85 statement number table gives the address of
reference the first instruction generated by the statement with the
designated number.

processor-register The name of one of the 8085 processor registers (refer to
Hardware Register commands, page ?). The content of
the named register becomes the address.

status-register The name of one of the ICE-85 status registers (see
Hardware Register commands). The content of the named
register becomes the address.

(mem-type address) A memory content reference with a form such as BYTE
(WORD 1000) represents an indirect reference. The con-
tent of the address or address-pair inside the parentheses is
treated as the address for the mem-type outside the paren-
theses.

To display the content of one or more locations in memory, enter the appropriate
memory content reference followed by a carriage return. We discuss the ways to
refer to a range of addresses later in this section. Here are some examples of display
commands that involve single addresses and pairs of addresses, using BYTE and
WORD.

For the following examples, assume these equalities and conditions:

-AA =1000H (Symbolic reference)

#56 = 2000H (Statement number reference)

Location 1000H contains 11H.

Location 1001H contains 22H

Location 2000H contains 33H

Location 2001H contains 44H
Note that the addresses 1000H, 1001H, 2000H, and 2001H are logical addresses. We
need not consider the physical addresses that actually contain the values shown,

since the ICE-85 memory map handles the conversion automatically for BYTE and
WORD.

The commands are shown as they would be entered. The terminating carriage return
is not shown. The content displayed by each command is shown on the next line, as
it is displayed by ICE-85.

*BYTE 1000H
1000H = 11H

*WORD 1000H
1000H = 2211H

ICE-85

ICE-85 Command Language

*BYTE .AA
1000H =11H

*BYTE .AA+1
1001H = 22H

*WORD #56
2000H = 4433H

To obtain the content of the bytes or words in a range of addresses, use a reference
of the form

mem-type partition

A partitioncan be a single address, or one of the following types of constructs.

addressTO address
addressLENGTH number-of-bytes(for BYTE or IBYTE)
addressLENGTH number-of-words{(for WORD or IWORD)

The first form of partition uses the keyword TO. The address on the right of the
keyword TO must be greater than the one to the left. With BYTE or IBYTE, this
form allows you to access the content of each location in the range; the range in-
cludes both the first and last address in the partition. With WORD or IWORD, the
first address is treated as the low address of the first address pair in the range; subse-
quent pairs of addresses are accessed until the second address is reached. If the se-
cond address is the low address of a pair, the word formed from the content of that
address and the next consecutive higher address is accessed; if the second address is
not the low address of a pair (that is, if it turns out to be the high address of a pair
already accessed in the range), the access halts after the last complete pair has been
accessed. Word-length accesses can begin on either an even-numbered or an odd-
numbered address.

The second and third forms of partition use the keyword LENGTH. The address
preceding the keyword LENGTH is the starting address in the range, as with the first
form (using TO). The number or expression following the keyword LENGTH gives
the number of addresses (when the controlling mem-typeis BYTE or IBYTE), or the
number of address pairs (for WORD or IWORD) in the range.

Here are two examples, using memory content references to display the contents of a
range of addresses and address pairs. The contents shown could represent a section
of program code.

BYTE 1000H TO 1010H
1000H=67H 43H 3FH 01H 32H 0BH 44H 01H 5EH 66H B5H 56H 03H 7BH 67H 39H
1010H=4DH

WORD 1000H LENGTH 10H
1000H=4367H 013FH 0B32H 0144H 665EH 56B5H 7B03H 3967H
1010H=014DH

5-41

Command Language

5-42

Setting Memory Contents

To assign a new content to a single address or address pair, use a command with the
form:

mem-type address = new-content

The meta-terms mem-type and address represent the types of entries discussed
earlier in this section.

The meta-term new-content represents one of the following types of entries (for
single address or address pairs; setting the content of ranges of address and address
pairs will be discussed later on).

numeric-constant A single number in any radix.

numeric-expression A numeric expression evaluated by ICE-85 to a single
number.

processor-register One of the 8085 processor registers listed in the Hardware
Register commands section of this chapter. The content of the
named register becomes the new content of the designated ad-
dress.

status-register One of the ICE-85 status registers listed with the Hardware
Register commands earlier in this chapter. The content of the
named register becomes the new content of the designated ad-
dress.

‘string’ A string of alphabetic characters enclosed in single quotes.
The ASCII value of each character in the string is treated as a
byte value. To include a single quote as a character in the str-
ing, enter it as a pair of single quotes (‘ ’).

mem-type address This form of new-content allows you to copy a byte or word
value from one address or address pair to another.

When a single address (byte) is to be set, ICE-85 treats the new-content as an 8-bit
quantity. If new-content has more than eight bits, the least significant eight bits in
the quantity are used as the new contents, and the other (higher) bits are lost. If new-
content has fewer than eight bits, the bit values in the quantity are right-justified
(placed in the low-order bits in the address), and the remaining (high) bits in the
locations are set to zeroes.

Here are some examples of setting byte contents. The first line of each example
shows the command that sets the new contents; the second line gives a command
that produces a display of the contents just set; the third line shows the resulting
display. The output radix is assumed to be H (hexadecimal).

*BYTE 1000H = FFH
*BYTE 1000H
1000H=FFH

*BYTE1010H =RA +1
*BYTE 1010H
1010H=F1H

*BYTE 1020H = FF11H
*BYTE 1020H
1020H=11H

*BYTE 1030H =1Y
*BYTE 1030H
1030H=01H

ICE-85

ICE-85 Command Language

*BYTE 1040H = ‘A’
*BYTE 1040H
1040H=41H

*BYTE 1050H = BYTE 1000H
*BYTE 1050H
1050H=FFH

You can change the radix used to display the contents, using the Set Radix command
(see Number Bases and Radix commands earlier in this chapter).

When a single address pair (word) is to be set, ICE-85 treats the new-content as a
pair of bytes. The least significant byte is loaded into the low address in the pair, and
the most significant byte is loaded into the high address in the pair. If new-content
has fewer than 16 bits, the bit values present are loaded starting with the low ad-
dress, and right-justified. The remaining (high) bits in the address pair are set to
zeroes. The following examples demonstrate some of the possibilities for setting ad-
dress pairs.

*WORD 1000H = 1122H
*WORD 1000H
1000H=1122H

*WORD 1010 = FFH
*WORD 1010H
1010H = 00FFH

*WORD 1030H = WORD 1000H
*WORD 1030H
1030H=1122H

The rules given above for numeric and ASCII values also apply when the new- con-
tent is of the form memtype.

A command of the form BYTE X = BYTE Y copies the content of address Y to the
content of address X. A command of the form WORD X = WORD Y copies the
content of address Y to location X, and the content of address (Y+1) to location
(X+1). A command of the form BYTE X = WORD Y copies the content of address
Y to location X; the content of location (X+1) is not changed. A command of the
form WORD X = BYTE Y copies the content of address Y to location X; the con-
tent of location (X+1) is set to a byte of zeroes.

The commands used to set a range of addresses or address pairs differ in some
details.

One way to set a range of addresses or address pairs is with a command of the form:
mem-type address = list of new-content values

With this form, the address on the left of the equals sign gives the starting location
(or low address of the starting pair), and the number of values in the list to the right
of the equals sign tells ICE-85 how many consecutive addresses or address pairs to
set. Consecutive locations or pairs starting with the one given are changed to the
values of the new-contents in the list, in left-to-right order.

S

5-43

Command Language

5-44

Here are some examples showing the use of this form of the set memory contents
command.

*BYTE 1000H = 11H, 22H, 33H, 44H, 55H, 66H
*BYTE 1000H LENGTH 6T
1000H=11H 22H 33H 44H 55H 66H

*WORD 2000H = FFFFH, ‘AB’, WORD 1000H
*WORD 2000H LENGTH 4T
2000H=FFFFH 0041H 0042H 2211H

Note in the last example that ICE-85 treats a string like ‘AB’ as a series of byte quan-
tities, not as a word made up of the two ASCII values. Each character in the string is
a one-byte new-content value.

To set a range of addresses or address pairs all to the same new value, use a com-
mand of the form:

mem-type partition = new-content

The forms of partition are discussed above in this section. All addresses or address
pairs in the partition are set to the single new-content. The following examples show
some of the possible results with this command form.

*BYTE 1000H TO 1005H = FFH
*BYTE 1000H LENGTH 5H
1000H=FFH FFH FFH FFH FFH

*WORD 2000H LENGTH 6T = AAOOH
*WORD 2000H TO 200AH
2000H=AA00H AAOOH AAO00OH AAOOH AAOOH AAO0OH

The last form of the set memory contents command sets the contents of each address
or address pair in a range (partition) to the corresponding new-content in a list of
values. This form is as follows.

mem-type partition= list of new-content values
This form combines the two forms first discussed above.

If the number of addresses or address pairs in the partition is equal to the number of
values in the new-content list, the addressed bytes or words are set to the correspon-
ding values in the list, in left-to-right order.

If the number of addresses or address pairs in the range is greater than the number
of new values in the list, the addresses or address pairs are filled with the values from
left-to-right, repeating the values in left-to-right order as necessary to fill all the
locations. The maximum number of bytes that can be repeated is 128. With more
than 128 bytes, the data is transferred but not repeated, and an error message is
displayed.

If the number of new values in the list is greater than the number of addresses or ad-
dress pairs in the partition, the lowest address or address pair in the range receives
the first value, and successive addresses or address pairs in the range receive values
in left-to-right order until all locations in the range have received values. The excess
values are then detected by ICE-85 as an error condition, and an error message is
displayed. The excess values are lost.

ICE-85

ICE-85 Command Language

Here are a few examples showing this form of command.

*BYTE 1000H TO 1005H = ‘ABCDEF’
*BYTE 1000H LENGTH 6T
1000H=41H 42H 43H 44H 45H 46H

*WORD 2000H LENGTH 6T =1122H, ‘AB’
*WORD 2000H TO 200AH
2000H=1122H 0041H 0042H 1122H 0041H 0042H

*BYTE 1000H TO 1002H = 11H, 22H, 33H, FFH

(An error message such as EXCESS VALUES is displayed.)
*BYTE 1000H LENGTH 4T

1000H=11H 22H 33H 44H

In the third example, note that the byte at location 1003H retains the value set in the
first example in the group of examples given (44H rather than the FFH given in the
command).

Port Content References

A reference to the content of an input/output port has the form:

PORT port-number

The keyword PORT is equivalent to the keyword BYTE used for memory contents.
The content of a single port is a one-byte value. In ICE-85, port numbers are map-
ped, but the logical port number is always the same as the physical port number. A
port-number is any entry of the types given above for address, except that the range
of port numbers is 00H to FFH (0T to 255T). Any reference to a port number out-
side this range produces an error message.

To display the current content of a port, enter the appropriate port content
reference, followed by a carriage return. The content is displayed in the prevailing
output radix.

To set the content of a single port, use a command of the form:

PORT port-number = new-content

The forms of new-content are as discussed earlier in this section. The value given is
treated as a byte quantity. If the value contains fewer than eight bits, it is right-
justified in the low bits of the port and the remaining (high) bits in the port are set to
zeroes. If the new-content has more than eight bits, the excess high-order bits in the
value are truncated, and the least significant eight bits in the value are used as the
content of the port.

One and only one port can be set in one command. A range or partition of ports can-
not be accessed, either for display or for setting new contents.

5-45

Command Language

5-46

Display Memory and Port Contents Commands

mem-type partition
PORT port-number
Examples:

BYTE 1000H
WORD .AATO .BB
IBYTE 1000H LENGTH 10H

IWORD 1000H
PORT 8H
mem-type One of the four ‘content-of’ keywords BYTE, WORD, IBYTE,
or IWORD, used with memory addresses.
partition One or more contiguous memory locations.
PORT The ‘content-of’ keyword for input/output ports.
port-number A numeric constant, numeric expression, or symbolic reference

representing a port number (range: 00H - FFH).

ICE-85

ICE-85 Command Language

Set Memory Contents Command

mem-type partition = new content [, new-content] ...

Examples:

BYTE 0800H = FFH

BYTE 7000H LENGTH 16T = 00H

BYTE 0800H TO 0805H = 12H, 34H, 56H, 78H, 9AH, BCH
WORD 70FFH = PC

WORD 7000H = PPC + 1

BYTE 0800H = ‘ABCDEF’

BYTE 0800H = IBYTE 4000H

WORD 7000H = WORD 4000H LENGTH 20H

BYTE #56 = FAH

mem-type One of the four memory ‘content-of’ modifiers BYTE, WORD,
IBYTE, or IWORD.
partition One or more contiguous locations in memory.

= The assignment operator.

new-content One of the following types of entries, to be used as the new
contents of the BYTE or WORD addresses:

numeric-constant
numeric-expression
processor-register
status-register
‘string

mem-type partition
PORT port-number

5-47

Command Language

5-48

Set Input/Output Port Contents Command

PORT port-number= new-content

Example:
PORT 8 = FFH
PORT The ‘content-of’ modifier for I/0 ports.
port-number A numeric-constant or numeric-expression in the range 00H to
FFH (0T to 255T).
new-content One of the following types of entries, to be used as the new

contents of the designated port:
numeric-constant
numeric-expression
processor-register
status-register
‘string’
PORT port-number
mem-type address

ICE-85

ICE-85 Command Language

Symbol Table and Statement-Number Table
Commands

ICE-85 maintains a symbol table and source program statement number table to
allow you to refer to memory addresses and other values by using symbolic

references and statement references in the ICE-85 commands.

This section gives details on the following commands.

Command Page

Display Symbol Table or Statement-number Table 5-53

DEFINE Symbol 5-53

Change Symbol 5-54

REMOVE Symbol 5-54
Discussion

The ICE-85 symbol table receives symbols from two sources; the symbol table
associated with the user program can be copied to the ICE-85 symbol table when the
program is loaded, and the user can define additional symbols for use during the
emulation session.

Corresponding to each symbol in the table is a number that you can interpret and
use either as an address or as a numeric value (variable or constant). The next few
paragraphs discuss the kinds of symbols that can appear in the table, and the inter-
pretation of the corresponding symbol table quantity (address or value).

Instruction and statement labels are loaded with the program code. The symbol
table gives the address of the instruction corresponding to the label.

A program variable is a symbol for a quantity that can have its value changed as a
result of an instruction in the program. Program variables are loaded with the pro-
gram code. The symbol table gives the address where the variable value is stored.

A program constant is a symbol for a label set to a constant value (for example, us-
ing the assembler directives EQU or SET). Program constants are loaded into the
symbol table when the program code is loaded. The symbol table gives the constant
value associated with the symbol.

A module name is the label of a simple DO block that is not nested in any other
block (for PL/M-80), or a label that is the object of a NAME directive (in 8080/8085
assembly language). A module name itself does not have a corresponding address
value in. the symbol table. However, symbols contained in a module are considered
to be ‘local’ to that module; ICE-85 thus allows you to reference multiple oc-
currences of the same symbol name in different modules, by using the module name
as a modifier in the symbolic reference.

The ICE-85 symbol table is organized to preserve any modular structure present in
the program. Initially (before any code is loaded), the symbol table consists of one
‘no-name’ module. Any symbols loaded or defined without a specific module name
are stored in the no-name module in the order they were loaded or defined. The no-
name module is always the first module in the symbol table. Following the no-name
module, named modules are stored in the symbol table in the order that the modules
were loaded into ICE-85. Symbols local to each named module are stored in the
order they appear in the module.

5-49

Command Language

5-50

In addition to the symbols stored when the program code is loaded, you can use the
DEFINE Symbol command to define new symbols for your use during the emula-
tion session. The rules for user-defined symbols are as follows..

The name of the new symbol (symbol-name) can be defined with a maximum of 122
characters. However, ICE-85 truncates each symbol-name to the first 31 characters.
Thus, to be different, two symbols must be unique in the first 31 characters.

The first character in the new symbol-name must be an alphabetic character, or one
of the two characters @ or ?. The remaining characters after the first can be these
characters or numeric digits.

You can specify the module that is to contain the new symbol you define. Symbols
defined without a module are placed in the no-name module at the head of the table,
in the order they were defined. Symbols defined with an existing module name are
placed in that module’s section of the table; the module named must already exist in
the table.

The new symbol name cannot duplicate a symbol name already present in the
module specified. You can, however, have two or more symbols of the same name in
different modules.

When you define a new symbol, you also specify the value corresponding to it in the
table. You can treat the value you assign as an address or as a numeric value for use
other than addressing.

The DEFINE Symbol command has the following form.

DEFINE symbolic-reference = address/value

The forms of symbolic-reference are shown in Table 5-11. The meaning of each
form is as follows. Not all forms can be used in a DEFINE Symbol command.

A simple symbolic-reference has the form .symbol-name . ICE-85 searches for this
form of reference starting with the first symbol in the no-name module. If the sym-
bol is not in the no-name module, ICE-85 searches through the named modules in
the order they were loaded, and takes the first occurrence of the symbol in the first
(earliest) module that contains it.

When you define a symbol without a module, it is placed in the no-name module.

The symbolic-reference can include a module-reference. The module reference im-
mediately precedes the symbol name; the module-name is identified by a prefix con-
sisting of a double period (. .). When you define a symbol with a module reference,
the symbol is added to the symbols under that module. A later reference to a symbol
with a module name restricts the search to that module.

A multiple symbolic reference has the form .symbol-name.symbol-name . This form
causes ICE-85 to search for the first occurrence of the first symbol-name that
follows the first occurrence of the second symbol-name . You cannot define a sym-
bol in terms of this form. This form can be used to identify a symbol that occurs in
several procedures that are themselves not modules, since procedure labels are
stored as symbols in the table in the order they appear in the program modules. For
example, if you have two symbols with the same name, say I1, one declared in pro-
cedure ADD and one in procedure SUB, you can guarantee access to the one in
ADD by using .ADD.I1.

ICE-85

ICE-85 Command Language

Table 5-11. Symbolic References and Statement References

Type of Meta-notation Example Display DEFINE Change REMOVE
Reference
Symbolic . symbol-name .ABC YES YES YES YES
Symbolic .. module.symbol-name ..MAIN.DEF YES YES,if YES YES
module is
already pre-
sentin
table.
Symbolic . symbol-name.symbol-name . XX.YY YES NO YES YES
Statement # statement-number #56 YES NO NO NO
Statement .. module# stmt- number ..MAIN#44 YES NO NO NO

The meta-term address/value as used in the DEFINE Symbol command means one
of the following types of entries.

numeric-constant A single number in any input-radix.
numeric-expression Any of the forms of numeric expressions given in Chapter 4.

processor-register The name of one of the 8085 processor registers (see
Hardware Register commands earlier in this chapter). The
content of the named register becomes the address or value
corresponding to the symbol.

status-register The name of one of the ICE-85 status registers (see Hardware
Register commands). The content of the named register
becomes the address or value corresponding to the symbol.

mem-type address A memory content reference using one of the keywords
BYTE, WORD, IBYTE, or IWORD. The content of the ad-
dress following the mem-type becomes the address of value
corresponding to the symbol.

symbolic-reference Any of the three forms of symbolic-reference shown in Table
5-11. The effect of this form is to establish one symbol as a
synonym for another symbol; referencing either symbol pro-
duces the same corresponding value.

Once a symbol has been defined or loaded, any reference to that symbol is
equivalent to supplying its corresponding address or value.

To display the value from the symbol table corresponding to any symbol, enter the
appropriate symbolic reference followed by a carriage return. ICE-85 displays the
symbol table value on the next line.

To display the entire ICE-85 symbol table, enter the command SYMBOL followed
by a carriage return. Symbols are displayed module by module, starting with the no-
name module. The address/value corresponding to each symbol is also displayed.

You can change the address/value corresponding to an existing symbol by entering
a command of the form:

symbolic-reference = address/value

5-51

Command Language

5-52

Any of the three forms of symbolic-reference shown in Table 5-11 can be used to
identify the symbol whose value is to be changed. The symbol must already exist as
referenced.

The forms of address/value are discussed earlier in this section. Any of these forms
may be used to change the value of an existing symbol.

Where multiple occurrences of the same symbol name exist in the table, the rules for
table search given earlier determine which of the several instances of the symbol is to
receive the new address/value.

To delete one or more symbols from the table, use a command of the form:
REMOVE list of symbolic-references

The symbolic-references in the list are separated by commas. ICE-85 searches the
table for each reference using the search rules given earlier, deleting the first oc-
currence of each symbol name that fits the type of reference given.

Note that deleting a symbol from the ICE-85 symbol table makes that symbol inac-
cessible to ICE-85, but does not affect the program code.

To delete the entire ICE-85 symbol table and the statement number table, enter the
command REMOVE SYMBOL.

ICE-85 also maintains a statement number table for user programs written in
PL/M-80 source code. The statement numbers are assigned by the PL/M-80 com-
piler. Corresponding to each source statement number in the table is the address of
the first instruction generated by that source statement.

Table 5-11 shows the forms used to refer to statement numbers in ICE-85. The
simplest form is the statement-number prefixed by a number sign (#). A module-
reference can precede the statement reference, since the statement number table
preserves any modular structure in the program. Thus, two modules compiled
separately can have the same statement numbers; the module reference tells ICE-85
which statement number to use.

To display the address corresponding to a statement-number, enter the appropriate
statement number reference followed by a carriage return.

ICE-85 does not allow you to change the address corresponding to any existing state-
ment number, to define any new statement numbers, or to delete (REMOVE) any
statement numbers.

ICE-85

ICE-85 Command Language

Display Symbol Table and Statement-Number
Table Commands

symbolic-reference
SYMBOL
statement-reference

Examples:

.ABC
..MAIN.DEF
XX YY
SYMBOL
#56
..MAIN#44

symbolic-reference Any of the forms given in Table 5-11. The address of value
corresponding to that symbol is displayed.

SYMBOL A command keyword calling for the display of the entire
ICE-85 symbol table, module by module.

statement-reference Any of the forms shown in Table 5-11. The first instruction
generated by the source statement with the number given is
displayed.

DEFINE Symbol Command

DEFINE symbolic-reference = address/value

Examples:

DEFINE .ABC = 1000H
DEFINE ..MAIN.DEF = PC
DEFINE .TEMP = .ABC +2

DEFINE A command keyword that tells ICE-85 to enter the new
symbol in the appropriate module table, and assign it the in-
itial value given.

symbolic-reference Any of the forms given in Table 5-11. The symbol defined
may not duplicate a symbol already in the module given.

= The assignment operator.
address/value One of the following types of entries:
numeric-constant
numeric-expression
processor-register
status-register
mem-type address
symbolic-reference

5-53

Command Language

5-54

Change Symbol Command

symbolic-reference = address/value
Examples:

-ABC = 2000H
..MAIN.DEF = AAFFH
.TEMP = .ABC +..MAIN.DEF

symbolic-reference Any of the forms shown in Table 5-11.
= The assignment operator.
address/value One of the following types of entries.
numeric-constant
numeric-expression
processor-register
Status-register
mem-type address

symbolic-reference

REMOVE Symbol Command

REMOVE symbolic-reference [, symbolic-reference | ...
REMOVE SYMBOL

Examples:

REMOVE .ABC
REMOVE ..MAIN.DEF, .TEMP

REMOVE SYMBOL

REMOVE A command keyword causing the symbols that follow to be
deleted from the ICE-85 symbol table.

symbolic-reference Any of the forms shown in Table 5-11. Several symbols can
be deleted with one command by entering the symbols to be
deleted as a list with the symbolic-references separated by
commas.

SYMBOL A keyword that (as the object of REMOVE) deletes all
symbols and statement numbers for all modules in the symbol
table.

ICE-85

ICE-85

Command Language

Channel Group Commands

Channel groups are used to control emulation breakpoints, trace data qualifiers,
and trace data display. Some groups are system-defined; system-defined groups can
be displayed and used in commands, but cannot be changed, removed, or defined.
The commands in this section allow you to define groups of your choosing, display
system-defined and user-defined groups, and change or delete any user-defined
group. In addition, this section defines several meta-terms that are also used in com-
mands discussed in other sections. The commands are as follows.

Command Page

DEFINE GROUP 5-59

Display GROUP 5-60

Change GROUP 5-60

REMOVE GROUP 5-61
Discussion

ICE-85 channels represent input signals from the 18 user probes and from the ad-
dress, data, and status lines of the 8085 emulation processor. Table 5-12 shows the
interpretation of the ICE-85 channels, and gives the system-defined group names
that refer to commonly-used groups of channels. Channel 43 (MTH) is set by
ICE-85, and is displayed as part of trace data.

ICE-85 maintains a pseudo-register called the Channel Status Register (CSR), that
contains the current value of channels 1 to 42, organized in terms of the system- and
user-defined groups.

Time slices available to ICE-85 to record the ‘current’ value of the channels are call-
ed frames . Each machine cycle is divided into two frames: the first frame is that
portion of the cycle when lines ADO to AD7 represent the low address byte; the se-
cond frame is the portion of the cycle when those lines represent a byte of data. The
‘current’ values of channels 1 to 42 on each frame are stored for the duration of that
frame in the CSR. The ‘current’ value of MTH (channel 43) is based on a breakpoint
match on the previous frame, as discussed below.

There are four ICE-85 match-registers, as follows.

BRO, BR1: Emulation breakpoint registers.
QRO, QR1: Trace qualifier registers.

Each of the match-registers contains 43 bits, duplicated as necessary to represent all
system- and user-defined groups. Using ICE-85 commands, you can specify a
match-value for any channel or channel group. The match-value of any bit can be 0
(zero), 1 (one), or X (don’t-care). The breakpoint registers are enabled by including
them in 2 GO or GR command; the qualifier registers are always enabled. ICE-85
compares the settings of the bits in the breakpoint and qualifier registers with the
state of the CSR, on every frame during real-time emulation. A match on an enabled
breakpoint register halts emulation; a match on a qualifier register enables trace
data collection.

5-55

Command Language

5-56

Table 5-12. User Probe Channels, 8085 Processor Channels and System-

Defined Group Names
System Channel- 8085 Trace
Group numbers Pinor Interpretation Radix
Name Signal
uo 1-8 User probe channels H
u1 9 -16 User probe channels H
u2 17, 18 User probe channels H
DMUX 19 ALE 1= ADO0 to AD7 are data Y
0= ADO to AD7 are low-order address
ADDR 20 - 35 ADO - AD7 Low-order address lines (DMUX=0) H
A8 - A15 High-order address lines
DATA 20 -27 ADO - AD7 DatalLines (DMUX=1) H
ADDRL 20 - 27 ADO - AD7 Low-order address lines (DMUX=0) H
ADDRH 28 - 35 A8 - A15 High-order address lines H
STS 36 SO0 Action IO/M S1 SO Mnemonic Mnemonic
37 S1 HALT 0 0 0 H
38 10/M WRITTEN 0 0 1 w
READ 0 1 0 R
EXECUTED 0 1 1 E
OUTPUT 1 0 1 O
INPUT 1 1 0 I
SD 39 SOD Serial output data line Y
40 SID Serial input data line
RW 41 WR WRline Y
42 RD RD line
MTH 43 MATCH O or 1= breakpoint register matched in Y
MATCH 1 previous frame (trace data only)

When a breakpoint register (enabled or not) matches the CSR on a given frame,
channel MTH of the CSR is set to 1 in the next frame.

When trace data is being collected, the CSR is copied to the trace data buffer after
each frame except for the first frame of the first instruction.

Details on the breakpoint registers is given in the section on Emulation Control com-
mands (page 5-62); qualifier registers are discussed in the section on Trace Control
Commands (page 5-75).

You can define channel groups in addition to the system-defined groups. A user
group can be defined, for example, to obtain a particular ordering of channels and
channel groups for display during trace data display or for specifying a match-
register setting.

Groups are composed in terms of the channels they contain and the order of the
channels from left to right as they are to be displayed or matched. The settings of
any channels are not part of the group definition.

The DEFINE GROUP command has the following form.

DEFINE GROUP group-name= channel-list [IN group-radix]

ICE-85

ICE-85

Command Language

A group-name must begin with an alphabetic character (A to Z), or with a special
character (@ or ?), followed by other alphabet characters and/or numerals (0 to 9),
up to a total of 31 characters. The group-namein the DEFINE command may not
duplicate any names defined earlier, including the system channel group names.
Once defined, a channel group-name may not be defined again, unless the group-
name has been deleted with a REMOVE GROUP command.

Channels in channel-list are specified in two ways.

1. By channel-number . ICE-85 hardware probes are numbered 1 to 18, and 8085
processor channels are numbered 19 through 42. Channel 43 is displayed as
part of trace data, but cannot be assigned to a user channel group (Table5-12).

2. By group-name . The channel-list can include system- or user-defined channel
group-names . When a group-name are included in the list (and thus in the
group being defined), in the order previously specified for the included group. If
a group-name is included in the list, the channels assigned to the included
group must not duplicate any other channels in the list.

When a group-name is part of the channel-list used to define another group, the
channels in the included group-name are assigned to the new group, but the name
of the included group is not retained as part of the definition of the new group.

Enter the channels and groups in the list in the left-to-right order that you wish them
to be displayed.

The group-radix given in the (optional) IN-clause tells ICE-85 what number base to
use when displaying the group later as part of trace data. The default group-radix is
hexadecimal. A group-radix is one of the following characters.

Y (binary)

Q (octal)

T (decimal)

H (hexadecimal)

In defining (or changing) groups, you should note the following limitations.

1. No group can contain more than 16 channels. If you attempt to assign more
than 16 channels to a group, an error message is displayed and no channels are
assigned.

2. You can define a maximum of 36 groups, if no group has more than eight
channels assigned to it. Groups with more than eight channels count as two
groups toward the total of 36.

3. The total of all channels assigned to user-defined groups may not exceed 103.

To display the channels assigned to any group-name , enter a command of the
following form, followed by a carriage return.

GROUP group-name
The display obtained by this command gives the group name, an equals sign, the list
of channels in left-to-right order as they were assigned, and an IN-clause giving the

output-radix specified when the group was last defined or changed.

The details of this command are discussed by use of examples. Suppose you have
defined a group as follows.

DEFINE GROUP PORTA =10,11,12

5-57

Command Language

5-58

Now, to display this group, enter the command:
GROUP PORTA

(Display:)
PORTA=10,11,12 INH

Note that since no group-radix was specified in the DEFINE command, ICE-85 us-
ed the default group-radix H (hexadecimal).

We can change our group to include a system-defined group.

GROUP PORTA = PORTA,DATAINY

GROUP PORTA
(Display:)
PORTA=10,11,12,27,26,25,24,23,22,21,20IN Y
Note that the channels in the system-defined group DATA were listed individually in

the display, and that the group-radix specified in the Change GROUP command
has been applied to our group.

To display several groups at once, use a command of the form:
GROUP group-list

The meta-term group-list means a list of system-defined and user-defined group-
names, separated by commas.

To display the channels assigned to all group-names, enter the command GROUP

(without a group-list). System-defined groups are displayed first, then user-defined
groups in the order they were defined.

One more example. Assume group PORTA has channels assigned as in the previous
example.

DEFINE GROUP LOOKSEE = PORTA,DMUXIN Q

GROUP LOOKSEE,PORTA
(Display:)

LOOKSEE=10,11,12,27,26,25,24,23,22,21,20,19 IN Q
PORTA=10,11,12,27,26,25,24,23,22,21,20IN Y
Note that the group-radix specified for LOOKSEE overrides the group-radix

specified for PORTA, without changing the earlier setting defined for PORTA
alone.

To change the channels assigned to a user-defined group-name, use a command of
the form:

GROUP group-name = channel-list [IN group-radix|]

ICE-85

ICE-85 ' Command Language

The meta-terms group-name, channel-list , and group-radix have the meanings
described above for the DEFINE GROUP command.

To delete any user-defined group, use a command of the form:
REMOVE GROUP group-list

The entry group-list is a list of one or more group-names separated by commas. All
the group-names in the list are removed. The settings of the channels in a deleted
group are not affected; particularly, if a group has been used to set a match-register,
the register setting is not affected by deleting the group-name . Where the same
channel has been assigned to two different group-names, deleting one of the groups
does not affect the group that remains.

The command REMOVE GROUP (without a channel-list) deletes all user-defined
channel group-names.

Note that you cannot define, change, or remove any of the system-defined channel
groups.

DEFINE GROUP Command

DEFINE GROUP group-name = channel-list [IN group-radix}]
Examples:

DEFINE GROUP INPUT$PROBE =5,3,4,2,18
DEFINE GROUP LOOKS$SEE =17,1,DATAIN Y
DEFINE GROUP CHECKOUT = INPUT$PROBE, 14, 13, ADDRH IN H

DEFINE Command keyword indicating that this is the first assignment of
channels to this group.

GROUP Function keyword identifying the next token as a channel group
name.

group-name The channel group name assigned by the user. The user name

may not duplicate a system group name, Or a user group name
previously defined.

= The assignment operator.

channel-list A list of channels and/or pre-defined channel group names,
separated by commas. The list can contain a maximum of 16
channels.

IN A function keyword introducing the group-radix for use when

this channel group is displayed as part of trace data. The IN-
clause is optional. (The default radix is hexadecimal.)

group-radix A single letter denoting a number base for for trace data display,
as follows:

Y Binary (base 2)

Q Octal (base 8)

T Decimal (base 10)

H Hexadecimal (base 16)

5-59

Command Language

Display GROUP Command

GROUP
Examples:

GROUP

[group-list]

GROUP PORTA
GROUP PORTA, DATA

GROUP

group-list

A command keyword calling for the display of the channels
assigned to one or more channel groups.

A list of system-defined and/or user-defined channel
group-names, separated by commas.

Change Group Command

GROUP group-name= channel-list [IN group-radix]

Examples:

GROUP INPUT$PROBES =16,14,12,10,8,4,2IN Y
GROUP MAINLINES =7,1,3,5,DATA,DMUX

GROUP MAINLINES =7,1,3,5,27,26,25,24,23,22,21,20,19
GROUP LOOKS$SEE = DATAIN H

GROUP

group-name

channel-list

IN

group-radix

Function keyword identifying the user name that follows as a
channel group name.

A channel group name previously defined by the user.
The assignment operator.

A list of channels and/or previously defined channel group
names, separated by commas.

A function keyword introducing the group-radix for use when
this channel group is displayed as part of trace data. The IN-
clause is optional. Hexadecimal is the default radix.

A single letter denoting a number base for trace data display, as
follows:

Y binary (base 2)

Q octal (base 8)

T decimal (base 10)

H hexadecimal (base 16)

ICE-85

Command Language ICE-85

REMOVE GROUP Command

REMOVE GROUP [group-list]
Examples:

REMOVE GROUP
REMOVE GROUP LOOKS$SEE
REMOVE GROUP LOOKS$SEE, MAINLINES, INPUT$PROBE

REMOVE A command keyword indicating that the user-defined group names
that follow are to be deleted as ICE-85 tokens.

GROUP A function keyword introducing the user-defined channel groups to
be deleted.

group-list A list of user-defined channel group names separated by commas.

If the command is entered without a group-list , the effect is to
delete all user-defined channel group names.

5-61

Command Language

5-62

Real-Time Emulation Control Commands

The emulation processor is the 8085 at the end of the ICE-85 Interface cable. During
real-time emulation, this processor performs the instructions in the user program
that has been mapped and loaded into the ICE-85 system. The operations of the
system under emulation can be monitored through the processor signals and user
probes. The commands in this section allow you to specify the starting address
where emulation is to begin, and to specify and display the software or hardware
conditions for halting emulation and returning control to the console for further
commands.

The commands in this section are as follows.

Command Purpose Page

GO command Begin real-time emulation. 5-71

GR command Enable or set and enable breakpoint registers to 572
halt emulation.

Display Emulation Controls Display GO-register and breakpoint register 5-73
settings.

Set Breakpoint-Register Set match condition for halting emulation. 573

RESET Breakpoint-Register Set breakpoint register to match on any condition. 5-74

ENABLE/DISABLE SYOOUT Enable or disable external signal SY0 as an output. 5-74

Discussion

The emulation control commands tell ICE-85 where to start emulation and when to
halt emulation.

To initialize for emulation, you map the locations in prototype and Intellec memory
that are to be accessible to ICE-85, and load your program code into mapped loca-
tions. After the code has been loaded, ICE-85 initializes for emulation as follows.

e The program counter (PC) is loaded with the address of the first executable
instruction in your program.

e The GO-register (GR) is set to FOREVER. The setting of GR identifies the

combination of factors that are enabled to halt emulation. The setting
FOREVER means no factors are enabled.

e All 42 bits in both breakpoint registers (BRO and BR1) are set to don’t-care. The
breakpoint registers contain match-settings of any of the 42 channels that are of
interest. A don’t-care bit in a breakpoint register matches either a zero or a one
in the corresponding channel.

Now you can begin emulation by entering the command GO, followed by a carriage
return. At the command GO, the following occurs.

e Emulation begins with the instruction at the address that is in PC; this is the first
executable instruction in your program after initialization.

s External signal EMUL is set high (1) to tell an external device that emulation is
occurring.

e Emulation continues until you press the ESC key, or until a fatal error occurs
(see Appendix B for error messages).

e The message EMULATION BEGUN is displayed at the console.

ICE-85

ICE-85 Command Language

Now, if you press the ESC key, the following happens.
e ICE-85 completes executing the current instruction.

e Emulation halts; the PC contains the address of the next instruction to be
executed.

e The message EMULATION TERMINATED, PC = nnnnH is displayed. The
value of PC displayed is the address of the next instruction to be executed.

® The message PROCESSING ABORTED is displayed, acknowledging the user
abort (ESC key).

This is the simplest case of starting and stopping emulation. When the GO-register is
set to FOREVER, you can enter the command GO to start emulation at the current
PC address, and press the ESC key to halt emulation.

Instead of starting wherever the PC happens to be, you may specify the address you
want for each GO command. There are two ways to do this. First, you can set the
PC directly to any desired address with a command of the form PC = address, then
enter the GO command to start emulation at that address. Second you can specify
the starting address as part of the GO command; this form of the GO command is as
follows.

GO [FROM address|

The meta-term addressmeans any one of the following types of entries.
numeric-constant A numeric in any input-radix .

numeric-expression A numeric expression is evaluated to give the address (see
Chapter 4 for the forms of numeric-expression and numeric-
constant).

status-register Any of the keywords for ICE-85 status registers shown in
Table 5-8. The content of the named register becomes the ad-
dress.

processor-register Any of the keywords for 8085 processor registers shown in
Tables 5-4 through 5-7. The content of the named register
becomes the address.

symbolic-reference Any of the three forms of symbolic reference shown in Table
5-11. The symbol table value corresponding to the named
symbol is used as the address.

(mem-type address) In the GO command, an address such as (WORD 1000)
causes the content of location 1000 to be used as the address.
Parentheses must be used to enclose this type of indirect
reference.

statement-reference Either of the forms of statement-reference shown in Table
5-11. The address of the first instruction generated by that
source program statement is the address used.

For example, to start emulation with the instruction at location 3000, you could
enter:

PC = 3000H
GO

Or, you could enter:
GO FROM 3000H

The effect is the same either way.

5-63

Command Language

5-64

Setting Breakpoint Registers

Instead of accepting the default halting condition FOREVER, you can specify that
either a match on one of the two breakpoint registers, or a low state on the external
signal SYO IN, is enabled to halt emulation.

The two breakpoint registers are named BRO and BR1. Each of the two breakpoint
registers contains 42 bits corresponding to the 18 user probe channels and the 24
8085 processor channels. The bits are duplicated as necessary to represent all the
system-defined and user-defined channel groups. (Refer to Table 5-11 for a descrip-
tion of the channels and system-defined groups.)

To use a breakpoint register to halt emulation, set the bits in the register to the
desired match value, then enable the register by including it in a GR (GO- Register)
command or in a TILL clause in the GO command itself.

Breakpoint register bits can be set to 0 (zero), 1 (one) or X (don’t-care). A don’t-
care bit matches either a zero or a one in its corresponding channel.

ICE-85 maintains a pseudo-register, the Channel Status Register (CSR), that con-
tains the current actual value of all the channels. The CSR is updated after every
frame during real-time emulation. Each machine cycle represents two frames: the
first frame is the interval of time when the 8085 lines ADO through AD7 represent
the low address byte, and the second frame is the succeeding interval when those
lines represent a byte of data. On each frame during emulation, ICE-85 compares
the breakpoint register settings with the CSR. If either breakpoint register matches
the CSR on a frame. the following occurs.

® Channel 43 (system group MTH) in the CSR is set to 1 in the frame following
the frame that matched.

e External signal MATCH 0/ or MATCH 1/ is set low, depending on whether
BRO or BR1 produced the match.

e If the breakpoint register that matched was enabled in the GR, emulation halts.
If a match with BRO caused the halt, bit 0 in ICE-85 status register CAUSE is set
to 1; if BR1 matched, CAUSE bit 1 is set to 1. (See Table 5-8).

Initially, both breakpoint registers are set to all don’t-care bits. This setting matches
all possible states of the CSR; if a breakpoint register is enabled with all bits set to
don’t-care, emulation halts immediately after the GO command is entered.

ICE-85 offers several ways to set the breakpoint registers. The simplest way is to use
a command with the form:

break-reg = mnemonic-match

The meta-term break-reg means either of the tokens BRO or BR1, or the token BR
to set both breakpoint registers to the same match setting.

The meta-term mnemonic-match means one of the forms shown in Table 5-13. The
entries in this table are explained in the following paragraphs.

For many applications, the channels of interest in controlling emulation are the ones
contained in system channel groups ADDR, DATA, DMUX, and STS (refer to
Table 5-12). The forms of mnemonic-match give you short and simple ways to
specify settings for these groups.

ICE-85

ICE-85 Command Language

Table 5-13. Mnemonic Match Conditions

System Channel Groups

Mnemonic-Match DMUX ADDR DATA sTS
HALT XY XXXXH XXH 000Y
[LOCATION] address 0 address XXH XXXY
[LOCATION] address status 0 address XXH status
[LOCATION] address-mask 0 address-mask XXH XXXY
[LOCATION] address-mask status 0 address-mask XXH status
VALUE data 1 XXXXH data XXXY
VALUE data status 1 XXXXH data status
VALUE data-mask 1 XXXXH data-mask XXXY
VALUE data-mask status 1 XXXXH data-mask status
NOTE: X = don’t-care digit in radix shown

Y = Dbinary radix

H = hexadecimal radix

0 = zero(any radix)

1 = one(any radix)

A command such as BRO = HALT resets all bits in the named register to don’t-care,
then sets the three bits in system group STS to zeros. This setting represents the 8085
HALT state. If the breakpoint register is now enabled with a command such as GR
= TILL BRO, and emulation is started with the GO command, emulation proceeds
until a HALT state occurs, causing the STS channels in the CSR to take the value
000Y. This matches the setting of BRO, and emulation halts. If no HALT state ever
occurs, emulation proceeds until some other factor halts it.

To match on an address, use one of the four forms of mnemonic-matchthat uses the
token LOCATION. The forms of addressare the ones discussed previously in this
section.

The meta-term address-maskis a masked-constant. A masked constant is a number
containing one or more don’t care digits. In binary radix, each X digit represents one
bit; in octal radix, each X digit stands for three adjacent bits; in hexadecimal radix,
each X digit represents four adjacent bits.

The meta-term status means one of the types of entries shown in Table 5-14. If no
statusis specified, the three bits in STS are set to don’t-care, and any action involv-
ing the address (or data, discussed later on) produces a match.

The token LOCATION may be omitted from the command. If neither LOCATION
nor VALUE is entered, LOCATION is assumed as the default, and the first value
given is treated as an address or address-mask.

To specify a match on a DATA value, use one of the forms of mnemonic-match
that include the token VALUE. The meta-term data is identical to address in the
forms it can take, but is a one-byte quantity. The meta-term data-mask is likewise
identical in form to address-mask , and the meta-term status has the same meaning
as that given above for LOCATION.

5-65

Command Language

5-66

Table 5-14. Status Group Bit Settings

Status STS Bits (Channels)

38 37 36
HALT 0 0 0
WRITTEN 0 0 1
READ 0 1 0
EXECUTED 0 1 1
OUTPUT 1 0 1
INPUT 1 1 0

Here are a few examples of setting breakpoint registers using LOCATION and
VALUE.

To match any access to location 3000H, you can enter:
BRO = LOCATION 3000H

Or you can simply enter:
BRO = 3000H

since the token LOCATION is the default.

To match on a memory write to location 3000H, you can enter:
BR1=LOCATION 3000H WRITTEN

To match on a memory read from any location in the range from 3000H to 30FFH,
you can enter:

BRO = LOCATION 30XXH READ

To match on any frame in which DATA value 11H occurs, enter:
BR1=VALUE 11H

To specify a match on any data value read from any input port, enter:
BRO = VALUE XXH INPUT

Two points to remember when using this form of the Set Breakpoint Register com-
mand are:

1. Anytime you use LOCATION, VALUE, or HALT, ICE-8S5 resets all 42 bits in
the named breakpoint register to don’t-care, then sets the DMUX, DATA, AD-
DR, and STS bits as specified.

2. An address match includes a match on DMUX = 0, and a data match includes
amatch on DMUX =1.

In addition to the command forms involving LOCATION, VALUE, and HALT,
ICE-85 offers two ways to set individual bits and specific groups directly. One way
to do this is to use as command of the form:

ON channel-list

meri
break-reg= nume CI

mask

ICE-85

ICE-85

Command Language

The meta-terms in this command form are as follows.

break-reg BRO or BR1, or BR to set both registers to the same match value.

numeric Commonly, a numeric-constant Or numeric-expression.
Generally, any of the forms of operand. See Chapter 4 for
details.

mask A masked-constant (see Chapter 4).

channel-list A list of channel numbers and/or channel group names,

separated by commas; see channel group commands earlier in
this chapter for details.

The channel list tells ICE-85 which bits in the register to set. If a channel group is in-
cluded in the list, the channels assigned to that group are set in the order they appear
in the group. ICE-85 ‘decomposes’ the included group into its channels, then inserts
those channels into the list at the place in the list where the group was named.

The channel list can contain a maximum of 16 channels.

The last (rightmost) channel bit in the list receives the value of the least significant
bit in the numeric or mask . Succeeding channel bits in the list are then set to cor-
responding bits in the numeric or mask in right-to-left order. If the number or mask
represents fewer bits than there are channels in the list, the rightmost channel bits in
the list are set to their corresponding bits in the numeric or mask, and the remaining
channel bits in the list are set to zero . If the numeric or mask contains more bits
than there are channels in the list, the channel bits are set from right-to-left until all
have received values; the extra leftmost bits are lost.

Any bits in the breakpoint register whose corresponding channels are not included in
the channel list are reset to don’t-care by this form of the Set Breakpoint Register
command.

For example, suppose you are monitoring two signals from your prototype with user
probe channels 1 and 2, and you want emulation to halt whenever both signals are
high (1) simultaneously. You can use the following command to set this condition
into BRO.

BRO=11Y ON 1,2

All the other bits in BRO except those corresponding to channels 1 and 2 are reset to
don’t-care as a result of this command.

The last form of the Set Breakpoint Register command differs from the two

previous forms in that it does not reset any other channels or groups to don’t-care.
The form is:

. numeric

break-reg channel-list = mask I

All the meta-terms in this form have been discussed previously.

With this form of the command, only the breakpoint register bits corresponding to
the channels in channel-list receive new values from the numeric or mask. Any
breakpoint bits (or groups) whose corresponding channels are not included in the
channel-list retain whatever setting they had before this form of the command was
entered.

5-67

Command Language

5-68

To reset some or all of the bits in a breakpoint register to don’t-care, use a command
with the form:

RESET break-reg [channel-list]

If channel-list is included in the command, only those bits corresponding to chan-
nels in the list are reset to don’t-care, and any other bits retain their previous set-
tings. If no channel list is given, all 42 bits are reset in whatever groups contain
them.

The external signal SYO can be enabled as an input and as an output. As an input,
SYO halts emulation when it is set low (0) by an external device. To enable SYO as a
halt factor (input), include it in one of the forms of the GR or GO command,
discussed later in this section. To enable SYO as an output, use the command
ENABLE SY0O OUT. Both SY0 IN and SYO OUT are initially disabled.

Setting The Go-Register

To enable a combination of BR0O, BR1, and SYO IN as a halt condition, you can use
a set GR command of the form:

GR = halt-go-condition

The meta-term halt-go-condition means any one of the types of entry shown in
Table 5-15. Table 5-15 gives all the forms of halt condition as they are to be entered,
including the token TILL where applicable. The table contains all valid combina-
tions of the halt factors.

Note that the entry TILL BR is equivalent to BRO OR BR1. You cannot specify a
match on BRO AND BR1 simultaneously. The entry OR SYO enables a halt on either
SYO high or a breakpoint match.

With the form of the set GR command just given, any breakpoint registers named
must have received their settings from previous commands. The following form of
the GR command can be used to set andenable one or both registers.

GR =TILL match [OR match] [OR SYO0]

The meta-term match means one of the following two forms of entries:

mnemonic-match Any of the forms shown in Table 5-13 and Table
5-14.

numericl ON channel-list Discussed above under Set Breakpoint
mask Register commands.

Both these forms have the same effect in the set GR command: the match given first
(after TILL) sets the designated bits in BRO, and any bits in that register not
specifically mentioned are reset to don’t-care; then the GR is set to show that BRO is
enabled. The second match(after OR) similarly sets and enables BR1. The entry OR
SYO was discussed above.

You can also enable BRO, BR1, and SYO IN by including them in a form of the GO
command. The form is:

GO [FROM address] [halt-go-condition]

ICE-85

ICE-85

Command Language

Table 5-15. Halt Conditions in the GO-Register (GR)

GO-Register

hait-go-condition BRO BRi BR SYO s?v%

FOREVER
TILL BRO E
TILL BR1 E

TILL BRO OR BR1
TILL BR

TILL SYO E
TILL BRO OR SY0 E
TILL BR1 OR SY0 E

TILL BRO OR BR1 ORSY0
TILL BROR SY0

NOTE:
E = enabled
blank = not enabled
BR = BR0 OR BR1 (logical OR)

Where address is as discussed previously, and halt-go-condition is one of the entries
(including the TILL) shown in Table 5-15. For example, the single GO command:

GO FROM 3000H TILL BRO OR SY0

has the same effect as the pair of commands:

GR=TILL BROORSY0
GO FROM 3000H

You can also set and enable one or both breakpoint registers, and/or enable SYO,
with a GO command of the form:

GO [FROMaddress] TILL match [OR match][OR SY0]
The first match sets and enables BRO; the second (if present) sets and enables BR1.

To display the current setting of the GO-register, enter the token GR followed by a
carriage return. The halt-go-condition currently in GR is displayed. For example,
suppose you had previously entered the command:

GO TILL LOCATION AOFFH READ OR SY0

Now, if you enter the command GR, the following is displayed.

TILL BRO OR SY0

Note that the setting of BRO is not part of the GO-register setting. To display the set-
ting of a breakpoint register, enter the name of the register followed by carriage
return. The display shows the setting of any system of user-defined groups that have
at least one care bit (0 or 1) set; the setting of each group is displayed as a masked

5-69

Command Language

5-70

binary number. To display the setting given above for BRO, enter the command BRO
followed by a carriage return. The display obtained is the following; the parenthe-
sized remarks are not part of the display.

BRO: (Remarks)
ADDRH=10100000
ADDR=1010000011111111 (AOFFH)

DATA=11111111

ADDRL=11111111

STS=010 (READ)
DMUX=0 (LOCATION)

Any don’t-care bits in the groups are displayed as X.

Emulation Timer

An emulation timer is enabled when trace data is being collected. The timer can be
used to determine how long it takes ICE-85 to emulate a given segment of code. The
timer is a 2-MHz clock (i.e., counts are intervals of 500 ns), derived from the crystal
on the Control board.

With trace enabled, the timer starts when the GO command is entered, starting
emulation. The timer starts counting at the first T3 state of the first instruction
emulated.

The timer is reset to 0 (before starting to count) when the GO command is entered
with a FROM clause. If you want to reset the timer without changing the current
program counter, enter a command such as GO FROM PC.

The timer continues counting until the first match on breakpoint BRO, halting at the
instant the match is made. The timer halts on the first match on BRO, whether or not
BRO has been enabled to halt emulation.

After emulation halts, you can display the value of the timer in the current output
radix. The display command TIMER displays the low 16 bits of the timer value; the
command HTIMER displays the high 16 bits of the timer value. The tokens TIMER
and HTIMER can also be used as keyword references in commands and expressions
(see Table 5-8).

One common use for the timer facility is to estimate the deviation from real-time
speed that occurs when ICE-85 emulates from Intellec memory. Each bus access in-
curs several wait states when Intellec shared or unshared memory is used for user
program code. System speed degradation under these conditions is not a constant
percentage, since each instruction takes a different number of cycles and number of
bus accesses.

With the timer, you can measure the real elapsed time required to emulate a given
code sequence. The elapsed time can then be compared to the calculated time based
on the number of clock states in each instruction and the speed of the system clock.
Note that code mapped to user runs at real-time; the timer value for code mapped to
prototype memory is the real-time value.

The ICE-85 timer requires an initial run to initialize its operation at the beginning of
emulation or after a RESET HARDWARE command. Thus, you should run the
timer for some short period at the start of the emulation session, and discard this
value. The timer is now initialized. Further, the timer is derived from the crystal on
the Control board; the longer the emulation timed, the closer to the accuracy of this
crystal the timer becomes.

ICE-85

ICE-85

Command Language

Although the timer may halt when emulation halts, accuracy is preserved only when
a match on BRO is used to halt the timer. Note that if BRO contains all don’t-care
bits as initialized, the timer halts immediately after emulation starts; under this con-
dition, the timer value is meaningless.

GO Command
1)) GO [FROM address] [halt-go-conditions]
(2) GO [FROM address] [TILL match [OR match] [OR SY0]]
Examples:
GO
GO FROM 3000H

GO FROM .START TILL BRO

GO FROM 3000H TILL LOCATION AOFF READ OR SY0
GO TILL LOCATION AOFFH READ OR 11Y ON 1,2

GO FROM #56 TILL BR

GO

FROM

address

halt-go-condition

TILL

match

numeric
mask

channel-list

OR SYO

Command keyword that starts emulation, subject to the
current start and halt conditions.

Keyword introducing a starting address.

One of the following types of entries, to be used as the
starting address for the emulation.

numeric-constant

numeric-expression

status-register

processor-register

symbolic-reference

statement-reference

(mem-type address)

One of the types of entry (FOREVER or TILL-clause) shown
in Table 5-15.

A keyword introducing one or more match or halt conditions.

One of the two following forms of breakpoint register match
settings.

(1) mnemonic-match (Table 5-13)

® |

numeric
mask

ON channel-list

A numeric-constantor numeric-expressiorn; (see Chapter 4).
A masked-constant (see Chapter 4).

A list of channel numbers and/or channel group names,
separated by commas.

Low state on external signai SYO OR breakpoint match
enabled to halt emulation.

5-71

Command Language

5-72

Set GO-Register (GR) Command

1) GR = halt-go-condition
(2) GR =TILL match [OR match][OR SYO0]
Examples:

GR=TILL BRO OR BR1

GR=TILL SY0

GR=TILL BRWITH SY0

GR=TILL LOCATION AOFFH READ

GR =TILL LOCATION AOFFH READOR11YON 1,2

GR

halt-go-condition

TILL

match

numeric
mask

channel-list

OR SYO

Command token referring to the GO-register (halting
conditions for real-time emulation).

One of the types of entry (FOREVER or TILL-clause) shown
in Table 5-15.

A keyword introducing one or more match or halt conditions.

—

One of the two following forms of breakpoint register match
settings.

(1) mnemonic-match (Table 5-12)

2 | ON channel-list

numericl
mask

A numeric-constant or numeric-expression; (see Chapter 4).
A masked-constant(see Chapter 4).

A list of channel numbers and/or channel group names,
separated by commas.

Low state on external signal SYO OR breakpoint match
enabled to halt emulation.

ICE-85

ICE-85 Command Language

Display Real-Time Emulation Registers Commands

GR
break-reg [channel-list)
Examples:
GR
BRO
BR1 31,32,DATA
BR
GR A command keyword that displays the content of the
GO-register (factors enabled to halt emulation).
break-reg One of the breakpoint registers BRO or BR1, to obtain a
display of the setting, or the token BR to display the settings
of both registers. The display includes only those groups that
have at least one care bit set (zero or one).
channel-list A list of channel numbers and/or channel group names,

separated by commas. When this entry is included, only the
settings of the bits corresponding to the channels in the list are
displayed.

Set Breakpoint Register Command

1) break-reg = match

2 break-reg channel-list = mask

numeric|

NOTE: Form (1) resets to don’t-care any channel bits in the register that
are not specified. Form (2) does not reset any channel bits that are
not included in the channel-list

Examples:
BR0O = LOCATION AOFFH READ
BR1=11YON1,2
BR0 1,2,STS =11000Y
break-reg The name of one of the breakpoint registers (BRO, BR1), or
BR to set both registers to the same match setting.
match One of the two following forms of breakpoint register match
settings.
(1) mnemonic-match (Table 5-12)
numeric .
) | mask I ON channel-list
numeric A numeric-constantor numeric-expressiomn, (see Chapter 4).
mask A masked-constant(see Chapter 4).
channel-list A list of channel numbers and/or channel group names,

separated by commas.

5-73

Command Language

5-74

RESET Breakpoint Register Command

RESET break-reg [channel-list)

Examples:
RESET BRO
RESET BR1 31,32,DATA
RESET BR
RESET Command keyword that resets its object to an initial state.
The reset state of any breakpoint register bit is X (don’t-care).
break-reg Either of the tokens BRO or BR1 to reset a single breakpoint
as named, or the token BR to reset both BRO and BR1.
channel-list A list of channel numbers and/or channel group names,

separated by commas. When this entry is included in the
RESET command, only the register bits in the list are reset,
and bits not mentioned retain their previous settings. If
channel-list is not included, all bits in the break-reg are reset
to don’t-care.

ENABLE/DISABLE SY0O OUT Commands

ENABLE SYOOUT
DISABLE SYO OUT

ENABLE SYOOUT Specifies that ICE-85 is to set external signal SYO low when
emulation halts, and hold it low until it is set high by an exter-
nal device.

DISABLE SYO OUT Restores SYO OUT to its initial condition.

ICE-85

ICE-85 Command Language

Trace Control Commands

ICE-85 can record the value of each of the channels in all system and user-defined
groups in a trace data buffer, during real-time emulation. The commands in this sec-
tion allow you to control the display of trace data, and specify conditions for en-
abling and disabling trace data collection during emulation.

The commands in this section are as follows.

Command Purpose Page

Set TRACE Display Mode Cause trace data to be displayed as frames, 5-84
cycles, orinstructions.

MOVE, OLDEST, NEWEST Set trace buffer pointer to entry to be 5-85
displayed.

PRINT Display one or more entries from the trace 5-86
buffer.

Set Qualifier Register Specify channel match setting to be recorded. 5-87

RESET Qualifier Register Reset channel match setting to match on every 5-87
frame.

Display TRACE Controls Display current TRACE Display mode, qualifier 588
register settings.

ENABLE/DISABLE Trace Enable or disable SY1 IN, SY1 OUT, and 5-88

Factors STOPTRACE.
Discussion

The ‘unit’ of emulation is the instruction . Each instruction executed represents one
or more machine cycles. Each cycle contains two frames: the first frame in each cy-
cle is the period of time during which the 8085 lines ADO through AD7 represent the
low address byte; the second frame in a cycle is the time period during which those
lines represent a byte of data. The frame is the ‘unit’ of trace data collection; trace
can be enabled or disabled on any given frame, or you can collect as many con-
secutive frames as the buffer will hold.

The buffer contains a maximum of 1022 frames, or 511 cycles, of trace data. Each
frame in the buffer contains the values of all the channels in all system-defined and
user-defined groups. The trace buffer pointer controls the display of data from the
buffer.

The buffer is cleared of data, and the buffer pointer reset to the ‘top’ (just before
earliest entry) after any command that changes the program counter. Commands
that change PC are the GO FROM and STEP FROM commands, and the Set Pro-
gram Counter command (PC = address). The buffer is initially empty.

During emulation (GO or STEP) any new trace data collected is appended to any
already in the buffer, and the most recent 1022 frames are retained in the buffer.
After the emulation halts, the buffer pointer is at the ‘bottom’ of the buffer, just
past the most recently collected frame.

5-75

Command Language

5-76

Trace Display Mode

The trace display mode controls the size of an entry to be displayed or located in the
trace buffer. An entry can be a frame, a cycle, or an instruction. The initial trace
display mode is INSTRUCTION. To set the trace display mode, use one of the
following commands.

TRACE = FRAME
TRACE =CYCLE
TRACE = INSTRUCTION

To display an entry from the buffer, move the pointer to the desired entry and enter
a PRINT command.

Moving The Buffer Pointer
The pointer movement commands are MOVE, OLDEST, and NEWEST.

The command OLDEST (followed by carriage return) moves the pointer to the top
of the buffer, in any trace display mode. The NEWEST command moves the pointer
to the bottom of the buffer.

The MOVE command has the following form:
MOVE [[+ | —] decimal]

The meta-term decimal means any numeric quantity; if no explicit input-radix is
given, ICE-85 assumes decimal radix. The value of decimal is the number of entries
between the current pointer position and the desired position. Movement in a plus
(+) direction is toward the bottom of the buffer; if neither (+) nor (-) is entered, a
downward movement is assumed as the default. Movement in a minus (—) direction
is toward the top of the buffer. The size of the move does not count the entry under
the pointer when the MOVE command is given.

For example, assuming FRAME mode, if the pointer is pointing at frame 100 and
you issue the command ‘MOVE 10’, the pointer is moved to point to frame 110.
Under the same initial conditions, if you issue the command ‘MOVE —10°, the
pointer is moved to point to frame 90. If decimal-number is larger than the number
of entries between the current pointer location and the bottom (for >+) or top (for
‘="), the pointer is moved only to the bottom or top, respectively. In short, you can-
not move the pointer outside the range of buffer locations.

If the MOVE command has no decimal number following it, ‘MOVE 1’ is executed.
The trace display mode in effect controls the size of each move. Under FRAME
mode, the command MOVE 10 moves down ten frames; under CYCLE, the same

command moves down ten cycles; under instruction, the same command moves
down ten instructions.

Displaying Trace Data

The PRINT command displays one or more entries from the buffer. This command
has the form:

PRINT [[+ / —] decimal}

The meta-term decimal was defined under the MOVE command.

ICE-85

ICE-85

Command Language

With (+4) or no sign, decimal entries lower (toward the bottom) than the current
pointer position are displayed. With (=), decimal entries above (toward the top) the
current pointer position are displayed. The command PRINT without a decimal
modifier is equivalent to PRINT 1 (one entry is displayed).

The PRINT command displays the number of entries requested, then moves the
pointer to point to the next entry just past the last one displayed. As an illustration,
the commands:

OLDEST
PRINT 10
PRINT 10

are equivalent to the commands

OLDEST
PRINT 20

The command PRINT ALL displays the entire trace buffer; PRINT ALL is
equivalent to the commands:

OLDEST
PRINT 1022

Figure 5-8 shows two instructions as they are displayed in each of the three trace
display modes. The headers shown are the ones displayed in the different modes.
The interpretation of the headers is given in Table 5-16.

Instruction Mode:

ADDR INSTRUCTION ADDR-S-DA ADDR-S-DA ADDR-S-DA ADDR-S-DA
1005: 382F RET 3881-R-DF 3882-R-36
1011: 36DF LXI H, 3883

Cycle Mode:
ADDR-S-DASD RW M
1005: 382F-E-C9 00 10 1
1007: 3881-R-DF 00 10 1
1009: 3882-R-36 00 10 1
1011: 36DF-E-21 00 10 1
1013: 36E0-R-83 00 10 1
1015: 36E1-R-38 00 10 1
Frame Mode:
A/D S DSD RW M
1004: 382F E 0 00 00 1
1005: 38C9 E 1 00 10 1
1006: 3881 R 0 00 00 1
1007: 38DF R 1 00 10 1
1008: 3882 R 0 00 00 1
1009: 3836 R 1 00 10 1
1010: 36DF E 0 00 00 1
1011: 3621t E 1 00 10 1
1012: 36E0C R 0 00 00 1
1013: 3683 R 1 00 10 1
1014: 36E1 R 0 00 00 1
1015: 3638 R 1 00 10 1

Figure 5-8. Trace Data Displays

5-717

Command Language

5-78

In INSTRUCTION mode, the frame number at the left of each line is the second
frame in the first cycle under that instruction. Each line of the display gives the ad-
dress of the instruction, the assembler mnemonic for the instruction executed, and
may show additional cycles (memory reads, for example) under the headers ADDR-
S-DA.

In CYCLE mode, the frame number at the left is the second frame in each cycle.
Each line contains the settings of the system (and user) groups produced by the cy-
cle. For example, the cycle displayed after frame number 1005 in Figure 5-8 shows
the opcode fetch for the RET instruction.

In FRAME mode, each line of the display is a frame as collected by ICE-85. Frames
where D (DMUX) = 0 are address frames; those with D = 1 show the byte of data ap-
pearing in the low-order byte of A/D. Thus, the complete opcode fetch shown on
one line of CYCLE mode takes two frames in FRAME mode; the corresponding
frames are 1004 and 1005.

Table 5-16. Trace Display Headers

Header Interpretation Radix

ADDR System group ADDR,; address channels 35 - 20, DMUX Hexadecimal
(ALE)=0.

INSTRUCTION Assembler mnemonic for instruction. None

DA System group DATA; data channels 27 - 20, DMUX Hexadecimal
(ALE)=1.

A/D Word formed from ADDRH, ADDRL when DMUX =0; Hexadecimal
ADDRH, DATA when DMUX =1.

S STS group (38 - 36), interpreted as follows. None
Display status gahansl;elsss
H HALT 0 0 0
w WRITTEN 0o o 1
R READ 0 1 0
E EXECUTED 0 1 1
o OUTPUT 1 0 1
1 INPUT 1 1 0

D System group DMUX. When DMUX = 1, DATA (27 - 20) Binary
group is valid; when DMUX = 0, ADDRL is valid.

SD System group SD; left bit = SID, right bit = SOD. Binary

RW System group RW; left bit = RD, right bit = WR. Binary

M System group MTH; M =1 if either breakpoint register Binary
matched in the previous frame.

user-groups Group-names defined by the user; each group-nameis group-radix
truncated to the number of digits in the display for that given by

group.

IN-clause, or
Hexadecimal
(default)

ICE-85

ICE-85 Command Language

INSTRUCTION mode is the initial mode. Only one mode can be in effect at a given
time.

INSTRUCTION mode is useful for displaying a series of instructions. CYCLE
mode is useful for displaying individual read and write operations. FRAME mode is
useful for identifying the particular frame where some event (such as a breakpoint
match) occurred.

Note that trace data is always collected as frames; cycles and instructions are
reconstructed from the frames collected by the ICE-85 program. As discussed later
on in this section, trace collection can be enabled or disabled on a frame-by-frame
basis. When individual frames rather than complete cycles or instructions are
recorded, the reconstruction of these frames into cycles or instructions may produce
a meaningless display.

Trace collection is initially enabled on every frame when emulation is running. The
trace factors that can be used to control trace are as follows.

Trace Control Factors

The qualifier registers QRO and QR1 are identical to the breakpoint registers BRO
and BR1 in structure. Initially, both qualifier registers are set to all don’t-care bits.
Both qualifier registers are always enabled to control trace. When either qualifier
register matches on a frame (subject to the other trace factors to be discussed), that
frame is recorded in the buffer. The initial setting of both qualifier registers (all bits
don’t-care) matches on every frame. Note that setting just one of the two qualifier
registers to contain some zero or one bits, without setting the other register, has no
effect; the register with all don’t-care bits still qualifies trace on every frame.

Each of the two qualifier registers contains 42 bits corresponding to the 18 user
probe channels and the 24 processor channels. The bits are duplicated as necessary
to represent all the system-defined and user-defined channel groups. (Refer to Table
5-12 for a description of the channels and system-defined groups.)

Qualifier register bits can be set to O (zero), 1 (one), or X (don’t-care). A don’t-care
bit matches either a zero or a one in its corresponding channel.

ICE-85 maintains a pseudo-register, the Channel Status Register (CSR), that con-
tains the current actual value of all the channels. The CSR is updated after every
frame during real-time emulation. Each machine cycle represents two frames: the
first frame is the interval of time when the 8085 lines ADO through AD7 represent
the low address byte, and the second frame is the succeeding interval when those
lines represent a byte of data. On each frame during emulation, ICE-85 compares
the qualifier register settings with the CSR. If either qualifier register matches the
CSR on a frame, that frame is récorded in the trace buffer.

ICE-85 offers several ways to set the qualifier registers. The simplest way is to use a
command with the form:

qual-reg = mnemonic-match

The meta-term qual-reg means either of the tokens QRO or QR1, or the token QR to
set both qualifier registers to the same match setting.

The meta-term mnemonic-match means one of the forms shown in Table 5-17. Thé
entries in this table are explained in the following paragraphs.

5-79

Command Language

5-80

For many applications, the channels of interest in controlling emulation are the ones
contained in system channel groups ADDR, DATA, DMUX, and STS (refer to
Table 5-12). The forms of mnemonic-match give you short and simple ways to
specify settings for these groups.

A command such as QRO = HALT resets all bits in the named register to don’t-care,

then sets the three bits in system group STS to zeroes. This setting represents the
8085 HALT state.

Table 5-17. Mnemonic Match Conditions

System Channel Groups

Mnemonic-Match DMUX ADDR DATA sTS
HALT XY XXXXH XXH 000Y
[LOCATION] address 0 address XXH XXXY
[LOCATION] address status 0 address XXH status
[LOCATION] address-mask 0 address-mask XXH XXXY
[LOCATION] address-mask status 0 address-mask XXH status
VALUE data 1 XXXXH data XXXY
VALUE data status 1 XXXXH data status
VALUE data-mask 1 XXXXH data-mask XXXY
VALUE data-mask status 1 XXXXH data-mask status

NOTE:

X =don’t-care digit in radix shown
Y = binary radix

H = hexadecimal radix

0 = zero (any radix)

1=o0ne (any radix)

Table 5-18. Status Group Bit Settings

Status STS Bits (Channels)
10/M(38) S1(37) S0(36)
HALT 0 0 0
WRITTEN 0 0 1
READ 0 1 0
EXECUTED 0 1 1
QUTPUT 1 0 1
INPUT 1 1 0

To match on an address, use one of the four forms of mnemonic-matchthat uses the
token LOCATION. The forms of address are the ones discussed previously in this
section.

The meta-term address-mask is a masked-constant. A masked constant is a number
containing one or more don’t-care digits. In binary radix, each X digit represents
one bit; in octal radix, each X digit stands for three adjacent bits; in hexadecimal
radix, each X digit represents four adjacent bits.

ICE-85

ICE-85 Command Language

The meta-term status means one of the types of entries shown in Table 5-18. If no
status is specified, the three bits in STS are set to don’t-care, and any action involv-
ing the address(or data, discussed later on) produces a match.

The token LOCATION may be omitted from the command. If neither LOCATION
nor VALUE is entered, LOCATION is assumed as the default, and the first value
given is treated as an address or address-mask.

To specify a match on a DATA value, use one of the forms of mnemonic-match
that include the token VALUE. The meta-term data is identical to address in the
forms it can take, but is a one-byte quantity. The meta-term data-mask is likewise
identical in form to address-mask , and the meta-term status is as shown in Table
5-17.

Here are a few examples of setting qualifier registers using LOCATION and
VALUE.

To match any access to location 3000H, you can enter:
QRO = LOCATION 3000H

Or you can simply enter:
QRO = 3000H

since the token LOCATION is the default.

To match one a memory write to location 3000H, you can enter:
QR1 = LOCATION 3000H WRITTEN

To match on a memory read from any location in the range from 3000H to 30FFH,
you can enter:

QRO = LOCATION 30XXH READ
To match on any frame in which DATA value 11H occurs, enter:
QR1=VALUE 11H
To specify a match on any data value read from any input port, enter:
QRO =VALUE XXH INPUT
Two points to remember when using this form of the Set Qualifier Register com

mand are: :

(1) Anytime you use LOCATION, VALUE, or HALT, ICE-85 resets all 42 bits in
the named qualifier register to don’t-care, then sets the DMUX, DATA,
ADDR, and STS bits as specified.

(2) An address match includes a match on DMUX = 0, and a data match includes
a match on DMUX = 1.

In addition to the command forms involving LOCATION, VALUE, and HALT,
ICE-85 offers two ways to set individual bits and specific groups directly. One way
to do this is to use a command of the form:

numeric

qual-reg = mask

l ON channel-list

5-81

Command Language

5-82

The meta-terms in this command form are as follows.
qual-reg QRO or QR1, or QR to set both registers to the same match value.

numeric Commonly, a numeric-constant or numeric-expression. Generally,
any of the forms of operand.See Chapter 4 for details.

mask A masked-constant (see Chapter 4).

channel-list A list of channel numbers and/or channel group names, separated
by commas; see channel group commands earlier in this chapter for
details.

The channel list tells ICE-85 which bits in the register to set. If a channel group is in-
cluded in the list, the channels assigned to that group are set in the order they appear
in the group. ICE-85 ‘decomposes’ the included group into its channels, then inserts
those channels into the list at the place in the list where the group was named.

The channel list can contain a maximum of 16 channels.
!

The last (rightmost) channel bit in the list receives the value of the least significant
bit in the numeric or mask . Succeeding channel bits in the list are then set to cor-
responding bits in the numeric or mask in right-to-left order. If the numeric or
mask represents fewer bits than there are channels in the list, the rightmost channel
bits in the list are set to their corresponding bits in the numeric or mask, and the re-
maining channel bits in the list are set to zero. If the numeric or mask contains more
bits than there are channels in the list, the channel bits are set from right-to-left until
all have received values; the extra leftmost bits are lost.

Any bits in the qualifier register whose corresponding channels are not included in
the channel list are reset to don’t-care by this form of the Set Qualifier Register
command.

For example, suppose you are monitoring two signals from your prototype with user
probe channels 1 and 2, and you want trace to run whenever both signals are high (1)
simultaneously. You can use the following command to set this condition into QRO.

QRO=11YON 1,2

All the other bits in QRO except those corresponding to channel 1 and 2 are reset to
don’t-care as a result of this command. Note that in order to record only those
frames in which the match on channels 1 and 2 occurs, QR1 must be set to some set-
ting other than don’t-care; setting both registers to the same match value also pro-
duces this result.

The last form of the Set Qualifier Register command differs from the two previous
forms in that it does not reset any other channels or groups to don’t-care. The form
is:

., _ | numeric
qual-reg channel-list = mask |

All the meta-terms in this form have been discussed previously.

With this form of the command, only the qualifier register bits corresponding to the
channels in channel-list receive new values from the numeric or mask. Any qualifier
bits (or groups) whose corresponding channels are not included in the channel-list
retain whatever setting they had before this form of the command was entered.

ICE-85

ICE-85

Command Language

To reset some or all of the bits in a qualifier register to don’t-care, use a command
with the form:

RESET qual-reg [channel-list]

If channel-list is included in the command, only those bits corresponding to chan-
nels in the list are reset to don’t-care, and any other bits retain their previous set-
tings. If no channel list is given, all 42 bits are reset in the qual-reg.

To summarize trace control as discussed so far, trace data is collected on any frame
when emulation is running AND either qualifier register matches.

The other two trace factors are STOPTRACE and SY1 IN. These two factors can be
combined to turn trace on and off, given that emulation is running and one of the
qualifier registers matches.

STOPTRACE is initially disabled. To enable this factor, use the command
ENABLE STOPTRACE. To disable it after it has been enabled, enter the command
DISABLE STOPTRACE. When STOPTRACE is enabled, a match on either of the
two breakpoint registers BRO or BR1, at any time during the emulation, halts trace
data collection. STOPTRACE halts trace until something else restarts it; in other

-words, trace halts when the breakpoint matches but does not restart on later frames,

even though the breakpoint does not match on those later frames. STOPTRACE
does not apply to single-stepping.

External signal SY1 can be enabled as an input to ICE-85 from an external device.
This trace factor is called SY1 IN. When SY1 IN is enabled, trace is forced by setting
SY1 high via the external source; emulation must be running, and one or both
qualifier registers must match, to allow SY1 IN to force trace. In other words, SY1
IN can force trace over STOPTRACE, but not over the lack of a qualifier register
match. SY1 IN is initially disabled. To enable this factor, enter ENABLE SY1 IN.
To disable it again, enter DISABLE SY1 IN.

Independent of SY1 IN, you can use the same signal as an output by entering the
command ENABLE SY1 OUT. SY1 OUT then is set high by ICE-85 whenever trace
data is being collected. To disable it again, enter DISABLE SY1 OUT. SY1 OUT is
not a factor in controlling trace.

The operation of the trace control factors can be summarized in the following logic
equation.

T=E-Q-[(ST+ST-B)+(S1+S1-S1H)]

NOTE

The instruction mode of trace is not guaranteed to work properly if you are
setting the QR with anything but don’t cares or if you are using an
oscillating SY1 when it is enabled.

Where:

= Logical AND (higher precedence than OR)
= Logical OR

= Trace data is collected.

= Emulation is running.

= One or both qualifier registers match on the frame.

= STOPTRACE is not enabled.

= STOPTRACE is enabled.

B_ = Neither breakpoint register has matched since emulation began.
S1 =SY1 INis not enabled.

S1 =SY1 INis enabled.

S1H = SY1 INis high.

nwom-—- + -
UJI_‘_'JO

5-83

Command Language ICE-85

Set TRACE Display Mode Command

TRACE = FRAME
CYCLE
INSTRUCTION
Examples:
TRACE = FRAME
TRACE = CYCLE
TRACE = INSTRUCTION
TRACE A command keyword indicating that the mode of display for
trace data is to be set.
FRAME A function keyword indicating that data in the trace buffer is to
be displayed frame by frame.
CYCLE A function keyword indicating that data in the trace buffer is to

be displayed by machine cycles. One machine cycle is equivalent
to two frames.

INSTRUCTION A function keyword indicating that data in the trace buffer is to

be displayed by instructions. Each instruction is equivalent to
one or more machine cycles.

5-84

ICE-85 Command Language

MOVE, OLDEST, and NEWEST Commands

MOVE [[+/ —] decimal]

OLDEST
NEWEST
Examples:
MOVE
MOVE +6
MOVE -11
OLDEST
NEWEST
MOVE A command keyword that moves the buffer pointer one or more
entries forward (toward the most recent entries) or backward
(toward the earliest entries). An entry is a frame, cycle, or in-
struction, depending on the TRACE mode in effect.
+ A unary operator specifying a forward movement. Plus is the
default.
- A unary operator specifying a backward movement.
decimal A number, evaluated in decimal radix (if no explicit suffix is
given), that gives the number of entries to be included in the
MOVE.
OLDEST A command keyword that moves the pointer to the earliest entry
in the buffer.
NEWEST A command keyword that moves the pointer to the latest entry
in the buffer.

5-85

Command Language

5-86

PRINT Command

(1) PRINT ALL
(2) PRINT [[+/~] decimal]

Examples:
PRINT
PRINT ALL
PRINT +5
PRINT 5
PRINT —-10

PRINT A command keyword calling for a display of one or more entries
from the trace data buffer. The entries are displayed as frames,
cycles, or instructions, depending on the current trace mode.

ALL A function keyword indicating that the entire trace buffer
contents are to be displayed.

+ A unary operator directing the display of decimal entries below
(entered later than) the current buffer pointer location. See
DISCUSSION for details. Plus is the default.

- A unary operator directing the display of decimal-number
entries above (entered earlier than) the current buffer pointer
location. See DISCUSSION for details.

decimal A numeric constant, evaluated in decimal suffix, giving the

number of entries to be displayed.

ICE-85

ICE-85 Command Language

Set Qualifier Register Command

(1) qual-reg = match
, numeric
(2) qual-reg channel-list = mask |

NOTE: Form (1) resets to don’t-care any channel bits in the register that are not
specified. Form (2) does not reset any channel bits that are not included in
the channel-list.

Examples:
QRO = LOCATION AOFFH READ

QR1=11YON 1,2
QR01,2,STS =11000Y

qual-reg The name of one of the qualifier registers (QR0O, QR1), or QR to
set both registers to the same match setting.

match One of the two following forms of qualifier register match
settings.

(1) mnemonic-match (Table 5-17)

© Ifn”a’;’lfml ON channel-list
numeric A numeric-constant or numeric-expression; (see Chapter 4).
mask A masked-constant (see Chapter 4).
channel-list A list of channel numbers and/or channel group names,

separated by commas.

RESET Qualifier Register Command

RESET qual-reg [channel-list]
Examples:

RESET QR11, 13,15

RESET QR
RESET Command keyword restoring its object tb a reset condition.
qual-reg QRO or QRI to reset one or more bits in a single qualification
register, or QR to reset one or more corresponding bits in both
qualification registers.
channel-list A list of channel group numbers (1 to 42), and/or channel group

names, separated by commas. When channel-list is included,
only the bits in the breakpoint or qualification register cor-
responding to the channels in the list are reset to ‘don’t-care’. If
no channel-list is included, all bits in the breakpoint or qualifica-
tion register are reset to ‘don’t-care’.

5-87

Command Language

5-88

Display Trace Controls Commands

TRACE

qual-reg [channel-list)

Examples:

TRACE
QRO
QRt, 31,32

TRACE

qual-reg

channel-list

A command keyword that displays the current TRACE mode (F
for FRAME, C for CYCLE, I for INSTRUCTION).

The name of one of the two qualification registers QRO or QR1,
to display the qualification setting of that register, or the token
QR to display the settings of both registers. The display includes
only those groups that have at least one care bit set.

A list of channels or channel group names, separated by
commas. When a channel-list is given, the settings of those
channels are displayed as a single masked number.

ENABLE/DISABLE Trace Factors Commands

| ENABLE
DISABLE

Examples:

SY1IN
SY10UT
STOPTRACE

ENABLE SY1 OUT
ENABLE STOPTRACE
DISABLE SY1 IN

ENABLE

DISABLE

SY10UT

SY1IN

STOPTRACE

A command keyword that activates its object as a controlling
factor for trace.

A command keyword that cancels the effect of its object on
trace.

A keyword clause that, when enabled, sets external
synchronization line SY1 high whenever trace is running.

Enables SY1 as an input to force trace when SY1 is set high by
an external source.

A function keyword that, when enabled, causes trace to stop
when either of the two breakpoint registers (BRO, BR1) has
matched the state of the 42 channels since emulation began.

ICE-85

ICE-85

Command Language

Single Step Emulation Control Commands

During single step emulation, the emulation processor performs the user program
instructions under the control of the single step commands. The commands in this
section permit you to specify the starting address where single stepping is to begin,
and to specify and display the control conditions for halting processing and return-
ing control to the console for further commands.

The commands in this section are as follows.

Command Purpose Page
Set Condition-Register Set match for halting single stepping. 5-96
SR command Enable or set and enable condition registers to 597

halt single stepping.

STEP command Begin single step emuiation. 5-98
Display Single Step Display STEP-register and condition register 5-99
Controls) settings.
ENABLE/DISABLE Enable or disable or enable automatic display. 5-100
DUMP
Discussion

The single step control commands tell ICE-85 where to start single step emulation
and where to halt single stepping.

To initialize for emulation, you map the locations in prototype and Intellec memory
that are to be accessible to ICE-85, and load your program code into mapped loca-
tions. After the code has been loaded, ICE-85 initializes for emulation as follows.

e The program counter (PC) is loaded with the address of the first executable
instruction in your program.

e The STEP-register (SR) is set to FOREVER. The setting of SR identifies the
combination of factors that are enabled to halt single stepping. The setting
FOREVER means no factors are enabled.

e The condition registers (CRO, CR1, CR2, and CR3) are cleared and disabled.

e The parameter, COUNT, that controls the maximum number of single steps to
be executed is ignored until loaded with a specific value.

¢ Automatic display is disabled.

Now you can begin single stepping by entering the command STEP, followed by a
carriage return. At the command STEP, the following occurs.

® Single stepping begins with the instruction at the address that is in the PC; this is
the first executable instruction in your program after initialization.

¢ Emulation will continue until you press the ESC key, or until a fatal error
occurs (see Appendix B for error messages).

Now, if you press the ESC key, the following happens.
e ICE-85 completes executing the current instruction.

e Emulation halts with PC set to the address of the next instruction to be
executed.

¢ The message EMULATION TERMINATED, PC = nnnnH is displayed. The
value of PC displayed is the address of the next instruction to be executed.

e The message PROCESSING ABORTED is displayed, acknowledging the user
abort (ESC key).

5-89

Command Language

5-90

This is the simplest case of starting and stopping of single stepping. Whenever the
STEP-register is set to FOREVER, you can enter the command STEP to start single
stepping at the current PC address, and press the ESC key to halt emulation.

Instead of starting single stepping at the address currently in the PC, you may
specify a new starting address. There are two ways to do this. You can set the PC
directly to any desired address with a command of the form PC = address, then
enter the STEP command to start emulation at that address. Or you can specify the
starting address as part of the STEP command; this form of the STEP command is
as follows.

STEP [FROM address]
The meta-term address means any one of the following types of entries.
numeric-constant A number in any input-radix.

numeric-expression A numeric expression is evaluated to give the address (see
Chapter 4 for the forms of numeric-expressionand numeric-
constant).

status-register Any of the keywords for ICE-85 status registers shown in
Table 5-8. The content of the named register becomes the ad-
dress.

processor-register Any of the keywords for 8085 processor registers shown in
Tables 5-4 through 5-7. The content of the named register
becomes the address.

symbolic-reference Any of the three forms of symbolic reference shown in Table
5-11. The symbol table value corresponding to the named
symbol is used as the address.

(mem-type address) In the STEP command, an address such as (WORD 1000)
causes the content of location 1000H to be used as the ad-
dress. The parentheses must be used to enclose this type of in-
direct reference.

Statement- Either of the forms of statement-reference shown in Table
reference 5-11. The address of the first instruction generated by that
source program statement is the address used.

For example, to start single stepping with the instruction at location 3000, you could
enter:

PC = 3000H
STEP

Or, you could enter:
STEP FROM 3000H
The effect is the same either way.

Instead of accepting the default halting condition FOREVER, you can specify that a
match on one or more of the condition registers is enabled to halt single stepping.

There are four condition registers, named CR0O, CR1, CR2, and CR3. Each register
can be loaded with a logical condition that can be used to halt stepping. To set a con-
dition register to halt stepping, enter a conditional expression that represents a

ICE-85

ICE-85 Command Language

desired-halt condition into the register with a set condition register command. Then
enablethe register by including it in a SR command or in a TILL clause in the STEP"
command itself.

Initially, all condition registers are set to don’t-care conditions. This setting does not
cause a halt.

ICE-85 provides several ways to set the condition registers. The simplest way is to
use the Set Condition-Register command. It has the form:

condition-register = conditional-expression

The Set Condition-Register command sets a condition registerto the conditional- ex-
pression given. One condition register can be set with one such command. Once a
condition register has been set, it can be enabled to control single-stepping by in-
cluding it in the STEP-register via a STEP or SR command. The Set Condition-
Register command does not affect the STEP-register.

The conditional-expression has the form:

content-reference relational-operator content-reference
numeric-constant
numeric-expression

Relational operators are as follows.
rel-op Meaning

= Is equal to

> Is greater than

< Is less than
>= Is greater than or equal to
<= Is less than or equal to
<> Is not equal to

The relational operator divides the conditional expression into a left side and a
right side.

The content-reference on the left side of the conditional expression can be any one
of the following.

* memory-type address
s PORT port-name
® processor-register

® status-register

The term content-reference was chosen to describe the left side of the conditional
expression to emphasize that if a symbolic reference is used, it must be preceded by a
‘content-of” memory-type (BYTE, WORD, IBYTE, or IWORD). The memory or
port address of a content-reference is evaluated only once, whereas the content of
the addressed element is evaluated (examined) each time the condition is tested. The
condition is tested after every instruction executed under STEP. A keyword
reference such as PC on the left side refers to the contents of the hardware element
(the program counter in this case) each time the condition is tested.

The right side of the conditional expression can be one of the following.
e Content-reference as described above.
e Numeric-constant

e Numeric-expression

5-91

Command Language

5-92

The right side can be a reference to any system- or user-defined element, with or
without a ‘content-of’ modifier. If the right side begins with a keyword, the entry
must be a content-reference (not an expression). In this case, the condition refers to
the current contents of the named element each time the condition is tested.

The right side can be a numeric expression . The expression must not begin with a
keyword reference. Masked constants cannot be used . The expression is evaluated
using the content of any reference as it stands at the time the condition is specified in
a Set Condition-Register, SR, or STEP command. The evaluated result is then
treated as a constant value; you cannot change the condition by later changing the
content of one of the right side references in the original expression.

To enable any combination of CRO, CR1, CR2, and/or CR3 as a halt condition, you
can use a SR (set STEP-Register) command of the form:

SR = halt-step-condition

The meta-term halt-step-condition means any one of the types of entry shown in
Table 5-19. This table gives all the forms of halt conditions as they are to be entered,
including the token TILL where applicable. The table contains all valid combina-
tions of the halt factors.

Table 5-19. Halt Conditions in the Step Register (SR)
STEP-Register

Halt Condition COUNT CR3 CR2 CR1 CRO

FOREVER
COUNTn [E]
COUNT nTILL CRO [E] E
COUNT n TILL CRO AND/OR CR1 [E] E E
COUNT n TILL CRO AND/OR CR2 [E] E E
COUNT n TILL CRO AND/OR CR1 AND/OR CR2 [E] E E E
COUNT n TILL CRO AND/OR CR3 [E] E E
COUNT n TILL CRO AND/OR CR1 AND/OR CR3 [E] E E E
COUNT n TILL CRO AND/OR CR2 AND/OR CR3 [E] E E E
COUNT n TILL CRO AND/OR CR1 AND/OR CR2 AND/OR CR3 [E] E E E E
COUNT nTILL CR1 (E] E
COUNT nTILL CR1 AND/ORCR2 [E] E E
COUNT nTILL CR1 AND/ORCR3 [E] E E
COUNT nTILL CR1 AND/ORCR2 AND/OR CR3 [E] E E E
COUNT nTILL CR2 (E] E
COUNT n TILL CR2 AND/OR CR3 [E] E E
COUNT N TILL CR3 [E] E
COUNT n TILL cond-exp [E] E
COUNT n TILL cond-exp AND/OR cond-exp [E] E E
COUNT n TILL cond-exp AND/OR cond-exp AND/OR

cond-exp [E] E E E
COUNT n TILL cond-exp AND/OR cond-exp AND/OR

cond-exp AND/OR cond-exp [E] E E E E
Note: E = ENABLED; blank = not enabled.

[E] = COUNT n is optional and may be omitted from any of the above halt conditions
in the table. In this event COUNT = FOREVER.

The SR command can specify one or more conditional expressions to be loaded into
the condition registers. The first such expression is loaded into CRO, and the second,
third, and fourth expressions (if present) are loaded into CR1, CR2, and CR3,
respectively. In a given SR command, you can specify either the CR’s to be enabled,
or the conditions to be loaded; the two forms cannot be combined in one SR com-
mand.

Each condition register holds a single conditional expression. AND takes
precedence over OR.

ICE-85

ICE-85

Command Language

The STEP-register includes both the COUNT clause and the TILL clause as halting
conditions for single-step emulation. With the SR command, you can change or
delete either or both of these clauses.

The initial state of the STEP-register is FOREVER. With this setting, the STEP
command starts single-stepping, and continues until the user presses the ESC key or
performs a hardware reset.

The COUNT clause establishes one condition for halting. The number n(following
COUNT) is evaluated to a decimal number; single-stepping halts after that number
of instructions has been executed, unless some other condition causes an earlier halt.
In other words, the COUNT condition is implicitly OR’d with any other conditions
given in the command. If STEP is entered with a TILL clause and no COUNT, then
COUNT is set to FOREVER.

The TILL clause can include up to four condition registers (as previously set) or up
to four conditional expressions. Each new TILL clause overrides any previous TILL
clauses. If a STEP command is entered without a TILL clause, the conditions
previously stored in the STEP-register are used. You cannot mix conditional expres-
sions and condition registers in the same TILL clause.

Each of the four condition registers (CRO, CR1, CR2, CR3) can contain a condi-
tional expression. When the state described by the combination of active condition
registers becomes true, with AND > OR in precedence, single-step emulation halts
after completing any instruction currently being executed.

Like the breakpoint registers used to control real-time emulation, each condition
register must be both set and enabled to control single-step emulation. The SR and
Set Condition-Register commands set the condition registers; the second form of the
STEP command (with TILL cond-reg) enables the condition registers it names; the
third form of the STEP command (with TILL cond-exp) both sets and enables one
or more condition registers.

The halt conditions shown in Table 5-19 may also be set through the use of the STEP
command. The STEP command causes ICE-85 to emulate your program at a single
step or several steps at a time. Additionally, any conditions given in COUNT and
TILL clauses are loaded into the STEP register for use by later STEP commands.

The operation of the STEP command parallels that of the GO command. The com-
mand can specify both a starting address and one or more halting conditions. Under
STEP, trace data can be displayed after each instruction; refer to the ENABLE
DUMP command for details on this feature of the STEP operation.

The STEP command has the general form:
STEP [FROM address] [halt-step-condition]

When the FROM clause is included, the value of address is loaded into the PC to
start the single-step emulation. If the FROM clause is omitted, the current value of
PC is used as the starting address.

The COUNT clause and any other conditions for halting single-step emulation
(FOREVER or TILL clause) constitute the STEP-register.

The initial state of the STEP-register is FOREVER. With this setting, the STEP
command starts single-stepping, and continues until the user presses the ESC key or
performs a hardware reset.

The STEP command can specify up to four condition registers to be enabled. Each
condition register holds a single conditional expression, as discussed previously.

5-93

Command Language

5-94

Another form of the STEP command gives one more more conditional expressions
to be loaded into the condition registers. The first such expression is loaded into
CRO, and the second, third, and fourth expressions (if present) are loaded into CR1,
CR2, and CR3 respectively. Any registers set with this form of the STEP command
are also enabled in the SR.

For example:

STEP FROM .START COUNT 33 TILL .CRT = 55 AND .PRT <.SAM OR WORD.AA
>FFFFH AND BYTE. SAVE < E2H

In this event, the contents of the condition registers are as follows:

CRO: .CRT =55

CR1: .PRT< .SAM

CR2: WORD.AA > FFFFH
CR3: BYTE.SAVE <E2H

The display STEP-register and display condition-register commands cause the
display of the current setting of the STEP register and the designated condition
register(s) respectively.

The SR and condition register display commands work exactly like the GR and
breakpoint register display commands. Suppose you set the STEP-register as
follows:

SR =COUNT 10 TILL PC=100 OR BYTE 1000 > AB

To display what you have done, enter the token SR followed by the carriage return.
You get the following display.

COUNT 10 TILL CR0O OR CR1
To get the full details, you must display CR0O and CR1.

*CRo0
PC=0100H

*CR1
BYTE 1000 > 00ABH

If you enter the token BR as a display command, both breakpoint register settings
are displayed, using the same format as for a single register.

By contrast, the condition registers must be displayed singly; the token CR is in-
valid.

You can enable the automatic display of register contents and trace data after each
instruction executed under single-step emulation. To enable this facility, use an
ENABLE DUMP command. The form of this command is:

partition
CALL
JUMP
RETURN

ENABLE DUMP

To disable this facility again, enter the command DISABLE DUMP.

ICE-85

ICE-85

Command Language

Under automatic display for single-step emulation, the trace data for the last in-
struction executed, and the contents of registers RA, RB, RC, RD, RE, RH, RL,
RF, PC, and SP are displayed after every single step. ENABLE DUMP turns this
facility on; DISABLE DUMP turns it off.

The optional entries following ENABLE DUMP are called selectors. As indicated
by the braces around them, each of the selectors may be used once in the command,
in any order, but none may be used twice. When DUMP is enabled with one or more
selectors, the information is displayed only when at least one selector was satisfied
by the last instruction (that is, the last instruction was a JUMP, CALL, or
RETURN, or the previous PC was between the bounds of partition).

Selectors from the previous ENABLE DUMP command are cleared by the next
ENABLE DUMP command, and thus are not cumulative from command to com-
mand. DISABLE DUMP also clears all selectors.

The command tokens ENABLE DUMP or DISABLE DUMP are required. Follow-
ing ENABLE DUMP, the selectors are optional.

Partition is specified in any of three formats, as follows.

expression (evaluates to a single address)

expression TO (range of addresses)
expression

expression (the first expression evaluates to the first address in the
LENGTH partition; the second expression gives the number of con-
expression tiguous address in the partition, including the first address.

Refer to the Memory Contents commands for more details on partition.

The CALL selector represents any of the following 8085 instructions.

CALL Call to routine

Ccondition Conditional call

PCHL Jump H and L indirect (move H and L to PC)
RSTn Restart

The JUMP selector represents any of the following 8085 instructions.

JMP Jump to address
Jcondition Conditional jump
PCHL Jump H and L indirect (move H and L to PC)

The RETURN selector represents any of the following 8085 instructions.

RET Return
Rcondition Conditional return

5-95

ICE-85

5-96

Set Condition-Register Command

Command Language

condition-register = conditional-expression

Examples:

CRO=BYTE.CTR >55

CR1=PC=1EDH

CR2 =WORD.AA <>FFFFH

condition-register

conditional-
expression

One of the four condition registers(CR0O, CR1, CR2, or
CR3) used to bring about a halt in single-step emula-
tion.

The assignment operator.

An expression involving a relational operator , that
‘evaluates’ to true or false. Single-stepping halts when
the conditional expression becomes true. See DISCUS-
SION for details on forming conditional expressions in
this command.

ICE-85 Command Language

SR Command (Set STEP-Register)

(1) SR= FOREVER

(2) SR= [COUNT expr-10] [TILL cond-reg [AND cond-reg]... &3]
OR

(3ySR= [COUNT expr-10] [TILL cond-exp [lAND cond—exp]... & 3]
OR

Examples:

SR =FOREVER

SR =COUNT 4

SR=COUNT33TILL BYTE.CTR > 55

SR = TILL CR0O AND CR1 OR CR2 AND CR3

SR =TILL PC=1EDH OR BYTE.CTR > 55 AND WORD.AA<FFH

SR A command keyword indicating that the STEP-register
setting is to be changed.

= The assignment operator.

FOREVER The initial setting of the STEP-register. When the
STEP-register is set to FOREVER, single-step emulation can
be halted only by external user abort (ESC key or hardware
reset).

COUNT A function keyword specifying a halt after expr-10
instructions have been executed. If COUNT is omitted, it is
implicitly set to FOREVER.

expr-10 A numeric constant or numeric expression representing the
maximum number of instructions to be emulated (executed)
under the current STEP command. The default radix for
evaluating expr-10 is decimal.

TILL A function keyword introducing one or more conditions for
halting single-step emulation (in addition to the COUNT
clause).

cond-reg One of the four condition-registers (CRO, CRI1, CR2, or

CR3) used to control single-step emulation.

AND Logical AND. Two conditions connected by AND must both
be true to halt single-step emulation.

OR Logical OR. When two conditions are connected by OR,
emulation halts when either condition becomes true.

. &3 A notational symbol indicating that cond-reg or cond-exp
can be repeated up to three times (a total of four conditions or
condition registers); separate conditions or condition registers
must be connected with AND or OR, where AND has
precedence over OR.

cond-exp A conditional expression. Emulation halts when the

condition becomes true. See DISCUSSION for details on for-
ming conditional expressions in STEP (and SR) commands.

5-97

Command Language

5-98

STEP Command

(1) STEP [FROM addr] [FOREVER]

(2) STEP [FROM addr] [COUNT expr-10] [TILL cond-reg [IAND
OR

cond—regﬂ.) .&3]

(3) STEP [FROM addr] [COUNT expr-10] [TILL cond-exp [IAND
OR

cond—exﬂ. . &3]

Examples:

STEP

STEP FROM 1FFFH

STEP FOREVER

STEP FROM 1FFFH FOREVER

STEP COUNT 4

STEP FROM .START COUNT 33 TILL BYTE .CTR > 55

STEP TILL CRO AND CR1 OR CR2 AND CR3

STEP TILL PC=1EDH OR BYTE.CTR > 55 AND WORD.AA<FFFFH FROM 1FFOH

STEP A command keyword that starts single-step emulation,
subject to the starting and stopping conditions given.

FROM A function keyword introducing the address where single-step
emulation is to begin.

addr A numeric constant, statement, or numeric expression that
evaluates to an address value, to be used as the starting ad-
dress for the single-step emulation.

FOREVER The initial setting of the STEP-register. When the
STEP-register is set to FOREVER, single-step emulation can
be halted only by external user abort (ESC key).

COUNT A function keyword specifying a halt after expr-10
instructions have been executed. If COUNT is omitted, it is
implicitly set to FOREVER.

expr-10 A numeric constant or numeric expression representing the
maximum number of instructions to be emulated (executed)
under the current STEP command. The default radix for
evaluating expr-10 is decimal.

TILL A function keyword introducing one or more conditions for
halting single-step emulation (in addition to the COUNT
clause).

cond-reg One of the four condition-registers (CRO, CR1, CR2, or

CR3) used to control single-step emulation.

AND Logical AND. Two conditions connected by AND must both
be true to halt single-step emulation.

OR Logical OR. When two conditions are connected by OR,
emulation halts when either condition becomes true.

ICE-85

ICE-85

...&3

cond-exp

Command Language

A notational symbol indicating that cond-reg or cond-exp
can be repeated up to three times (a total of four conditions or
condition registers); separate conditions or condition registers
must be connected with AND or OR, where AND has
precedence over OR.

A conditional expression. Emulation halts when the condition
becomes true. See DISCUSSION for details on forming con-
ditional expressions in STEP (and SR) commands.

Display STEP Register Commands

SR

condition-register

Examples:

SR
CRO

SR

condition-register

A command keyword that calls for a display of the content of
the STEP-register.

One of the four condition registers CR0O, CR1, CR2, or CR3,
causing the setting of that register to be displayed.

5-99

Command Language

ENABLE/DISABLE DUMP Command

ENABLE DUMP partition
CALL
JUMP
RETURN

DISABLE DUMP

Examples:

ENABLE DUMP

DISABLE DUMP

ENABLE DUMP 100H

ENABLE DUMP 100H TO 200H CALL JUMP RETURN
ENABLE DUMP RETURN CALL

ENABLE

DISABLE

DUMP

partition

CALL

JUMP

RETURN

A command keyword causing its object (in this case
automatic display after single-step emulation) to become ac-
tivated.

A command keyword that cancels the operation of its object.

A function keyword for the automatic display of trace
information after each step of a single-step emulation.

A memory address or a range of contiguous addresses. If
partition is included, the DUMP is enabled when an address
in the range specified is accessed.

A function keyword representing a class of instructions. If
CALL is included, DUMP is enabled when one of the instruc-
tions represented by CALL is executed.

A function keyword representing a class of instructions. If
JUMP is included, DUMP is enabled when one of the instruc-
tions represented by JUMP is executed.

A function keyword representing a class of instructions. If
RETURN is included, DUMP is enabled when one of the in-
structions represented by RETURN is executed.

ICE-85

ICE-85 Command Language

External Call Commands
The External Call commands emulate or execute procedures located in mapped or
unmapped memory. The three commands differ in the assumed location of the call-

ed procedure, and the conditions they establish for the return from the procedure.

This section gives details on the following commands.

Command Page

CALL 5-103

ICALL 5-103

EXECUTE 5-103
Discussion

The CALL command emulates the called procedure, using the ICE-85
microprocessor in the umbilical cable to execute the instructions. This command
saves the current value of PC, and continues emulation from that address upon
return from the procedure. The second and third parameters of the command are
word-type parameters. If these parameters are passed, registers BC and DE are used,
destroying their earlier contents.

Breakpoints activated prior to the CALL command can halt emulation of the called
procedure. Trace data is collected, subject to its normal controls.

CALL thus enables you to insert emulation of a selected procedure at any point; all
pre-specified controls and displays apply to that emulation and to the continuation
of normal emulation upon return.

A common use is to simulate an external interrupt n, using a command CALL 8*n.
One use for this command is to answer questions such as: ‘““What if a certain type of
interrupt were to occur here? Would correct parameters be passed and acted on cor-
rectly? Does control return correctly, with appropriate flags set?’’.

The ICALL command executes the called procedure, using the 8080 microprocessor
in the Intellec system. The starting address given by address lies in Intellec shared
memory; the memory map is not used to determine the location. The procedure
must be loaded separately from the rest of the user program code. One or two addi-
tional word-type parameters may be passed; if they are present, Intellec 8080
registers BC and DE are used to hold them.

The EXECUTE command loads and emulates the procedure in the file entered. Two
address parameters may be passed, as discussed above. The value returned by the
routine in register HL is displayed. The procedure called by EXECUTE must have
start address 6FOOH, and must lie between 6FO0OH and 6 FFFH.

Other differences between EXECUTE and CALL are as follows. Under EX-
ECUTE:

1. Breakpoints and trace are disabled before emulation begins, and are restored to
their earlier condition after this emulation returns.

2. All registers are automatically saved before the emulation is started, and are
automatically restored when the procedure returns.

3. Emulation is halted upon return from the procedure, rather than continuing as
under CALL.

5-101

Command Language

5-102

The EXECUTE command can be used to access peripheral chips in the user system,
by writing a procedure to read or write the appropriate memory or I/0 locations.

The meta-term address means one of the following types of entries.

numeric-constant

numeric-expression

symbolic-reference

statement-number-
reference

processor-register

status-register

(mem-type address)

A single number in any input-radix. ICE-85 treats all numbers
modulo 65532 (64K); thus any number represents an address.

The forms for numeric expressions are presented in Chapter
4. The result obtained when the expression is evaluated
becomes an address modulo 64K.

The ICE-85 symbol table lists all symbols loaded with the test
program or defined by the user after program load. Cor-
responding to each symbol is a number that can be used as an
address.

The ICE-85 statement number table gives the address of the
first instruction generated by the statement with the
designated number.

The name of one of the 8085 processor registers (refer to
Hardware Register commands, page 5-31).

The name of one of the ICE-85 status registers (see Hardware
Register commands). The content of the named register
becomes the address.

A memory content reference with a form such as BYTE
(WORD 1000) represents an indirect reference. The content
of the address or address-pair inside the parentheses is treated
as the address for the mem-type outside the parentheses.

ICE-85

ICE-85 Command Language

External Call Commands

1 CALL
1 ICALL address [(address|, address])]

(2) EXECUTE :drive:filename [(address|, address])]

Examples:

CALL 0500H

CALL 0500H (1000H)

CALL 0500H (1000H, 2000H)
ICALL F6FF (F710H, F7TFAH)
EXECUTE :F1:TEST

CALL A command keyword initiating a call to a procedure in user
(prototype) memory, to be emulated.

ICALL A command keyword initiating a call to a procedure in
Intellec memory, to be executed.

EXECUTE A command keyword initiating a call to a procedure from an
external file to be emulated, and halting emulation upon
return.

address A numeric-constant or numeric-expression that evaluates to
an address value, the starting address for the called pro-
cedure.

:drive: An ISIS-II diskette drive number enclosed in colons (see
Utility commands).

filename An ISIS-II diskette filename (see Utility commands). The file

must contain an absolute object file which cannot be a main
module.

5-103

APPENDIX A
ICE-85 KEYWORDS
AND THEIR ABBREVIATIONS

ACY ACY
ALL............. A
AND AND
ASCII......... ASC
BASE BAS
BR............. BR
BRO........... BRO
BRI BR1
BUFFERSIZE . . BUF
BYTE BYT
CALL CALL
CAUSE CAU
COUNT..... Ccouy,C
CRO........... CRO
CRIl........... CR1
CR2........... CR2
CR3........... CR3
CY............. Ccy
CYCLE CYC
DEFINE....... DEF
DISABLE DIS
DUMP DUM
ENABLE...... ENA
EVALUATE...EVA
EXECUTE..... EXE
EXECUTED . EXE,E
EXIT.......... EXI
FOREVER..... FOR
FRAME FRA
FROM FRO,F
GO G
GR............. GR
GROUP....... GRO
GUARDED ...GUA
H............... H
HALT HAL,H
HARDWARE .HAR
17
IBYTE IBYTE
ICALL...... ICALL
IE IE

INPUT INP
INSTRUCTION . INS
CTION......... INS
INTELLEC..... INT
I0O..........L. 10
IWORD....... IWO
JUMP JUM
LENGTH. ... LEN,L
LIST........... LIS
LOAD LOA
LOCATION ...LOC
1\ M5
Mé6............. M6
M7 ... M7
MAP MAP
MASK MAS
MEMORY MEM
MOD......... MOD
MODULEMOD
MOVE MOV,M
NEWEST .. .NEW,N
NOCODE NOC
NOLINE NOL
NOSYMBOLS. . NOS

NOVERIFY ... NOV’

OLDEST....OLD,O

ON ..., ON
OPCODE. OPC
OR............. OR
OUT........ OUT,0
OUTPUT ...OUT,O
PC PC
PORT......... POR
PPC PPC
PRINT....... PRILP
PSW.......... PSW
PY ..o PY
Qi Q,0
QR...ovnn. QR
QRO........... QRO
QRI........... QRI

RA.......... ... RA
RB............. RB
RBC RBC
RC............. RC
RD............. RD
RDE.......... RDE
RE RE
READ REA,R
REGISTER .. REG,R
REMOVE REM
RESET RES
RETURN...... RET
RF RF
RH RH
RHL.......... RHL
RL RL
SAVE SAV
SHARED. SHA
SID............ SID
SN ... SN
SOD SOD
SP.............. SpP
SR.............. SR
STEP STE,S

STOPTRACE ..STO
SUFFIXSUFFIX

SYO............ SYO
SYl............ SY1
SYMBOL...... SYM
TILL TIL
TIMEOUT..... TIM
TO ..voveenn.. TO
TRACE TRA
UNSHARED...UNS
UPPER UPP
USER USE
VALUE VAL
WORD WOR
WRITTEN .. WRI,W
Yoo Y
Z o Z

A-1

APPENDIX B
ICE-85 ERROR CONDITIONS
AND RECOVERY

Error conditions encountered by the ICE-85 module cause numbered error messages
to print on your console.

Since commands are read on a line-by-line basis, the ICE-85 module will not flag
any error until after an entire line has been entered. When the first command error is
found, (except for C-series errors), command processing stops and the offending
line has no further effect on any internal variables: all program values remain un-
changed.

The following list of error messages is not complete, but does cover most foreseeable
possibilities for field errors as opposed to factory maintenance diagnostic messages.
Some possible error numbers have no associated error or message. Also not included
here are many messages which can come from ISIS; these are explained in the ISIS
Operator’s Manual. Any of several different error messages might result from faulty
memory boards or connections.

In some rare cases, the error number may be printed without its associated message,
asin:

ERR80: ?

This means an Error 80 was detected but some other problem prevented the ICE-85
from printing the message. Usually it means file INSERT.ERR was not on the
diskette that you invoked ICE-85 from.

Error numbers up through 7F are specifically hardware problems. ‘C’ series errors
(CO through CF) cause warning messages to be issued but command processing is
not halted.

ERR10:RSLTS BLK INACCESSIBLE

A bus timeout was detected on an attempt to write the results block or an in-
correct installation of memory boards.

ERR 11:XMIT BLK INACCESSIBLE

A bus timeout was detected on an attempt to read the transmit block or an in-
correct installation of memory boards.

ERR 21:COMMAND NOT ALLOWED NOW
The command code in the parameter block cannot be processed at this time.

Possibly an attempt was made to read register or data status during an emula-
tion. Otherwise this error indicates a hardware failure.

ERR 30:PGM MEMORY FAILURE

Data read back from program memory did not agree with data written.

B-1

B-2

ERR 34:CABLE FAILURE
Cable diagnostic program detected a failure in the cable.

Check that the cable is oriented properly and connected properly at each end.

ERR 35:CONTROL CIRCUIT FAILURE

Control diagnostic program detected a failure in the control circuitry, or
found itself in an ambiguous situation.

An ICE-85 hardware error has been detected. The cause of the error is not
determinable. Try to reset the entire system.

ERR41:NO USER VCC
The user VCC is not present.

Power is off in the user system.

ERR 42:GUARDED ACCESS
Access was made to a guarded memory or 1/0 location.

In Interrogation mode, no read or write is done to a GUARDED location. In
Emulation, one or two (memory) cycles may have been executed before the
guarded state was invoked.

ERR 43:PROCESSOR NOT RUNNING
Either there is no clock or the READY line is still low.

ERR 80:SYNTAX ERROR

The word flagged is not one that is allowed in the current context.

ERR 81:INVALID TOKEN
The word flagged does not follow the rules for a well-formed token.

The line is ignored and you must re-enter your intended command. Check the
correctness of the syntax and variable-names used.

ERR 82:NO SUCH LINE NUMBER
The specified line number does not exist in the current module.

Perhaps it lies in another module or a different version of this one.

ERR 83:INAPPROPRIATE NUMBER

The value printed on the preceding line is not appropriate in the current con-
text.

Some contexts allow only certain numbers, as in the MAP command, e.g.
MAP 10 13 TO 17 is not permissible because IO blocks must start on multiples
of 8 in hexadecimal, e.g. 8, 10, 18, 20, ...

ERR 84:PARTITION BOUNDS ERROR

The partition values entered in a command are not correct. Either the left part
of the partition is greater than the right part or the values of the partition ex-
tremes are out of range in the current context.

ERR 85:ITEM ALREADY EXISTS

The symbol or group entered in a define command is currently defined in the
symbol table.

You may need to validate the current usage of this symbol in your program, or
perhaps merely use a different spelling to maintain the distinction.

ERR 86:ITEM DOES NOT EXIST
The item printed on the preceding line does not reside in the symbol table.

It may have been removed in an earlier test session, prior to saving the code, or
it may be in a change you haven’t inserted yet. Possibly you’ve loaded the
wrong version of your code.

ERR 87:DUPLICATE CHANNEL

The channel specified appears more than once in a channel list.

ERR 8F:NON-NULL STRING NEEDED
a null string was used where a non-null string is required.

Perhaps in initializing a memory partition, as in IBYTE 1 TO 5 = ¢, where
there is no character in the string between the single quotes.

ERR 90:MEMORY OVERFLOW

Memory requirements of all dynamic tables exceed the amount of memory
available.

In a 32K Intellec the symbol table can contain a maximum of about 900 two-
character symbols; fewer if they are more than two characters long. If some
symbols are no longer needed for debugging, use the REMOVE command to
make space. The code itself is unchanged by this.

ERR91:STACK OVERFLOW

This is probably due to an excessively complicated command, e.g. one with 20
parenthesis pairs.

ERR 92:COMMAND TOO LONG

Probably due to inordinate number of operators. Break it up into several
smaller commands. ‘

ERR 93:MODULE DOES NOT EXIST

Module specified does not exist in symbol table.

ERR 94:NON-CHANGEABLE ITEM

An attempt was made to change an item that may not be changed.

ERR 95:INVALID OBJECT FILE
File specified in a load command is not a valid object file.

Perhaps it is a text file, or a wrong extension such as PRGFIL.HEX or
PRGFIL.OBIJ for object file.

B-3

B-4

ERR 97:EXCESSIVE DATA

The amount of data attempted to be inserted into a partition exceeded the size
of the partition.

The ncells in the partition were filled with the first ndata items supplied, after
which the data given was ignored.
ERR 98:MORE THAN 16 CHANNELS

More than 16 channels specified in a channel list.

ERR 99:EXCESSIVE ITERATED DATA

The amount of data to be repeated throughout a range of memory exceeds the
size of the buffer allocated to hold such data.

The limit is 128 decimal, e.g.,
BYTE1TO 256T =IBYTE4TO 131T

will work, using the right side twice but
BYTE1TO 256T =IBYTE1TO131T

will fail, being too large.

ERR SA:TOO MANY GROUPS

Number of groups defined by user may not exceed 36.

ERR9B:TOO MANY CHANNELS

Number of channels defined by user may not exceed 103T.

ERR9C:UNSUITABLE EXECUTE FILE
The file referenced in an execute command either contains code that is out-of-
bounds for the execute command or it is a main module.

ERR9D:LINE TOO LONG

Command line was longer than 122 characters.

WARN CO:UNSATISFIED EXTERNALS

The program just loaded contains externals which were not satisfied at link
time. The program was correctly loaded except for references to the unresolv-
ed externals.

WARN C1:MAPPING OVER SYSTEM

The user has modified the map so that part of his address spaces includes
either the ISIS system software or the ICE-85 module software.

This can later cause erroneous operation and undesirable results.

WARN C2:INSERT MISSING

An attempt was made to initialize the device whose generic device code number
is printed on the previous line but no device responded. A generic device code
is the first of four consecutive device codes reserved for a specific type of
device, in this case the ICE-85 module hardware.

This means the ICE-85 module hardware is not installed correctly or the hard-
ware module that is installed is not an ICE-85.

WARN C3:MULTIPLE INSERT

Two diagnostic devices have the same device code.

ERR E7:ILLEGAL FILENAME
The filename specified does not conform to a well-formed ISIS filename.

See ISIS manual for valid formulation and device labels.

ERR E8:ILLEGAL DEVICE
Illegal or unrecognized device in filename.

An invalid device lable was used, e.g. :DO: instead of :CO:, or something
unrelated such as :PQ: see ISIS manual for valid list.

ERR E9:FILE OPEN FOR INPUT
Attempt to write to a file open for input.

E.g. SAVE :CI:, a file pre-defined as console input.

ERR EA:FILE ALREADY OPEN

Attempted to open a file that was already open

ERR FO:NO SUCH FILE
The file specified does not exist.

Possibly a wrong or missing device label, as in typing :F2:FILE when you
meant :F3:FILE, or a file missing due to forgetting to copy it onto a new disk.

ERR F1:WRITE-PROTECTED FILE
Attempt to open a write-protected file for the purposes of writing data into it.

One of the system files, ISIS.DIR, for example, you must use a different
name.

ERR F3:CHECKSUM ERROR

A checksum error in a hex object file was encountered during loading. Either a
wrong or damaged file needing re-creation.

ERR F9:ILLEGAL ACCESS

Attempt to open a read-only file for the purpose of storing data (e.g. specify-
ing :Cl: as the list device) or a write-only file as a source of data (e.g. :LP:ina
load command).

ERR FA:NO FILE NAME

No filename specified for a diskette file (e.g. no filename following :F1:).

ERR FD:*“DONE” TIMED OUT

The device whose device code is printed on the preceeding line was invoked but
failed to return done within five seconds.

Possibly a command requiring such a long time, some missing memory, or
perhaps a hardware problem.

B-5

B-6

ERR FE:“ACKNOWLEDGE"”’ TIMED OUT

The device whose device code number is printed on the preceding line was in-
voked but failed to acknowledge within 5 milliseconds.

Incomplete installation, faulty connections, or failed hardware.

ERR FF:NULL FILE EXTENSION

A file was specified so as to contain an extension, but no extension was
specified.

E.g. LOAD :F1:MYPROG.

with no extension typed after the period.

APPENDIX C
8085 CPU INSTRUCTIONS

oP oP oP oP OP orP
CODE| MNEMONIC |CODE}] MNEMONIC |CODE] MNEMONIC| |[CODE| MNEMONIC|CODE|MNEMONIC|CODE| MNEMONIC
00 NOP 2B DCX H 56 MOV DM 81 ADD C AC | XRA H D7 RST 2
01 LXI B,D16 | 2C INR L 57 MOV DA 82 ADD D AD | XRA L D8 RC

02 STAX B 2D DCR L 58 MOV EB 83 ADD E AE | XRA M D9 -

03 INX B 2E MVI L,D8 59 MOV EC 84 ADD H AF | XRA A DA | JC Adr
04 INR B 2F CMA 5A § MOV ED 85 ADD L BO | ORA B DB | IN D8
05 DCR B 30 SIM 5B MOV E,E 86 ADD M B1 ORA C DC | CC Adr
06 MVI B,D8 3 LXI SPD1s| 5C MOV EH 87 ADD A B2 ORA D DD | —

07 RLC 32 STA Adr 5D | MOV EL 88 ADC B B3 | ORA E DE | SBI D8
08 - 33 INX SP 5E MOV EM 89 ADC C B4 ORA H DF | RST 3
09 DAD B 34 INR M 5F MOV EA 8A ADC D B5 ORA L EO RPO

0A LDAXB 35 DCR M 60 MOV HB 8B ADC E B6 | ORA M E1l POP H
0B DCX B 36 MVI M,D8 61 MOV HC 8C | ADC H B7 ORA A E2 JPO Adr
ocC INR C 37 STC 62 MOV H,D 8D| ADC L B8 CMP B E3 XTHL
0D | DCR C 38 — 63 MOV HE 8E ADC M B9 CMP C E4 CPO Adr
OE MVE C,D8 39 DAD SP 64 MOV HH 8F ADC A BA | CMP D E5 PUSH H
OF RRC 3A LDA Adr 65 MOV H,L 8G| SuUB B BB | CMP E E6 ANl D8
10 - 3B DCX SP 66 MOV HM 91 suB C BC | CMP H E7 RST 4
11 LXt D,D16 | 3C INR A 67 MOV H,A 92 suB D BD | CMP L E8 RPE

12 STAXD 3D DCR A 68 MOV LB 93] SUB E BE | CMP M E9 PCHL

13 INX D 3E MVI A,D8 69 MOV LC 94 SUB H BF | CMP A EA | JPE Adr
14 INR D 3F cMC 6A | MOV L,D 95 SUB L Cco RNZ EB | XCHG

15 DCR D 40 MOV B,B 6B MOV L,E 96 SUB M C1 POP B EC | CPE Adr
16 MVl D,D8 41 MOV B,C 6C | MOV LH 97 SUB A Cc2 JNZ Adr | ED | —

17 RAL 42 MOV B,D 6D | MOV L,L 98 SBB B Cc3 JMP Adr | EE XRI D8
18 — 43 MOV B,E 6E MOV LM 99 SBB C C4 | CNZ Adr| EF RST 5
19 DAD D 44 MOV B,H 6F MOV LA 9A| SBB D C5 PUSH B Fo RP

1A | LDAXD 45 MOV B,L 70 MOV M B 9B SBB E C6 | ADI D8 F1 POP PSW
1B DCX D 46 MOV BM 71 MOV MC 9C SBB H Cc7 RST © F2 JP Adr
1C INR E 47 MOV B,A 72 | MOV MpD 9D| SBB L Cc8 RZ F3 [3]]

1D | DRC E 48 MOV C,B 73 MOV M,E 9E SBB M Cc9 RET Adr| F4 CP Adr
1E MVI E,D8 49 MOV C,C 74 MOV MH 9F SBB A CA |)2 F5 PUSH PSW
1F RAR 4A | MOV C,D 75 MOV M,L AO| ANA B CB | — F6 | ORI D8
20 RIM 4B MOV C,E 76 HLT Al ANA C CC | CZ Adr| F7 RST 6
21 LXI H,Dl16 | 4C MOV CH 77 MOV MA A2 ANA D CD | CALL Adr| F8 RM

22 SHLD Adr 4D MOV C,L 78 MOV AB A3| ANA E CE | ACI D8 F9 SPHL

23 INX H 4E MOV CM 79 MOV AC A4 ANA H CF RST 1 FA | IM Adr
24 INR H 4F MOV CA 7TA| MOV AD AS ANA L DO | RNC FB El

25 DCR H 50 MOV DB 7B MOV AE A6 ANA M D1 POP D FC | CM Adr
26 MVI H,D8 51 MOV D,C 7C MOV AH A7| ANA A D2 JNC Adr| FD | —

27 DAA 52 MOV D,D 7D:f MOV AL AB} XRA B D3 | OUT D8 FE | CPl D8
28 — 53 MOV DE 7E MOV AM A9| XRA C D4 | CNC Adr| FF RST 7
29 DAD H 54 MOV DH 7F MOV AA AA| XRA D D5 PUSH D

2A | LHLD Adr 55 MOV D,L 80 (ADD B AB{ XRA E D6 | SUI D8

D8 = constant, or logical/arithmetic expression that evaluates D16 = constant, or logical/arithmetic expression that evaluates

to an 8 bit data quantity. to a 16 bit data quantity

Adr = 16-bit address

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

INDEX

Accessory kit, 2-1

ACY, 44, 5-32

ADDR, 4-5, 5-56

Address, 5-40

ADDRH, 4-5, 5-56

ADRL, 4-5, 5-56

Algebraic operators, 4-3

ALL, 4-6, 5-86

Alphabetic characters, 4-3

Alphabetic summary table of ICE-85
commands, 5-3 thru 5-5

AND, 4-7

Automatic display, 5-100

BASE, 4-6, 5-15

Binary operators, 4-11
Block-name, 5-20
Block-partition, 5-20
break-reg, 4-5
Breakpoint registers, 4-5
BR, 4-5

BRO, 4-5

BR1, 4-5

BUFFERSIZE, 4-4, 5-34

CALL, 4-6, 4-7

CALL command, 5-101, 5-103

CALL selector, 5-95

Carriage return, 5-6

CARSI1 program listing, 3-9

CARS?2 program listing, 3-24

CAUSE, 44, 5-34

Change Group command, 5-3, 5-60

Change Symbol command, 5-3, 5-54

Channel group, 4-5

Channel group commands, 5-2, 5-55

Channel-list, 5-57

Channel Status Register (CSR), 5-55

Character set, 4-3

Command keywords, 4-6

Command-name, 4-6

Cond-reg, 4-5

Condition-expression, 5-96

Condition registers, 4-5, 5-96

Connector keywords, 4-7

Console input radixes, 5-12

Console output radix, 5-13

Constants, 4-10

Control board jumper pin
configuration, 2-2

COUNT, 4-7, 5-97

COUNT clause, 5-93

CRO, 4-5, 5-92, 5-96

CR1, 4-5, 5-92, 5-96

CR2, 4-5, 5-92, 5-96

CR3, 4-5, 5-92, 5-96

CTRLP, 5-6

CTRLR, 5-6

CRTL X, 5-6

CY, 44, 5-32
CYCLE, 4-6, 5-84
CYCLE mode, 5-76

DATA, 4-5, 5-56

DEFINE GROUP command, 5-3, 5-59

DEFINE Symbol command, 5-3, 5-50, 5-53

DELAY program listing, 3-10

Digits, 4-10

DISABLE, 4-6, 5-4

DISABLE DUMP command, 5-100

DISABLE SY0 OUT command, 5-74

DISABLE TIMEOUT command, 5-38

DISABLE Trace Factors command, 5-88

Display GROUP command, 5-3, 5-60

Display Memory and Port Contents
command, 3-4, 5-3, 5-46

Display Processor and Status Register
commands, 5-3, 5-36

Display Real-time Emulation Registers
commands, 5-3, 5-73, 5-99

Display Map status command, 5-3, 5-30

Display STEP Register commands, 5-99

Display Symbol Table and Statement-
Number Table commands, 5-3, 5-53

Display Trace Controls
command, 5-3, 5-88

DMUX, 4-5, 5-56

Dual auxiliary connector, 2-1

Dollar sign ($), 5-6

Double asterisk prompt, 5-6

DUMP, 4-6, 5-100

EMUL, 5-35

Emulation control commands, 3-4, 5-62
Emulation registers, 4-5, 5-62
ENABLE, 4-6

ENABLE DUMP command, 5-100
ENABLE SYO OUT command, 5-74
ENABLE TIMEOUT command, 5-38
ENABLE Trace Factors command, 5-88
Entering commands at the console, 5-6
ESC, 5-6

EVALUATE, 4-6

EVALUATE command, 5-4, 5-13, 5-16
EXECUTE, 4-6

EXECUTE command, 5-101, 5-103
EXECUTED, 4-7

EXIT, 4-6

EXIT command, 5-4, 5-9

Explicit input radix, 5-12

Explicit output radix, 5-13

Expr-10, 5-97

Expressions, 4-12

External call commands, 5-4, 5-101
External signal cables, 2-5

External trace module, 2-1

External synchronization lines, 5-35

Index-1

Index-2

Filename, 5-7
Flag-name, 4-4
FOREVER, 4-7, 597
FRAME, 4-6, 5-84
FRAME mode, 5-76
FROM, 4-1, 4-2, 4-7
Functional keywords, 4-6

Generalized Development Cycle With
ICE-85, 1-6

Generalized emulation session, 1-8

GND, 5-35

GO, 4-6

GO command, 4-1, 5-4, 5-71

GO command example, 4-1

Go-reg, 4-5, 5-72

GO register, 4-5, 5-72

GR, 4-5, 54, 5-72

GROUP, 4-6, 5-59

Group-names, 5-57

GUARDED, 4-6

HALT, 4-7

Halt condition in the GO register, 5-69

Halt conditions in the STEP register
(SR), 5-92

HARDWARE, 4-6

Hardware installation procedures, 2-2

Hardware register commands, 5-1, 5-31

I-bit-name, 4-4

ICALL, 4-6

ICALL command, 5-101, 5-103

ICES85 command, 5-4, 5-9

ICE-85 adapter socket, 2-1

ICE-85 cable terminal assembly, 2-1

ICE-85 command language, 4-2

ICE-85 commands, 5-3

ICE-85 components, 2-1

ICE-85 control board, 2-1

ICE-85 functional block diagram, 1-4

ICE-85 installation procedures, 2-1

ICE-85 memory map, 5-18

ICE-85 metalanguage, 4-1

ICE-85 module, 1-4

ICE-85 module and interface cable, 2-1

ICE-85 mnemonics, 4-2

ICE-85 program, -5

ICE-85 software, 5-17

ICE-85 symbol tables, 5-17

ICE-85 trace board, 2-1

ICE-85 workspace, 5-17

Ideal grounding arrangement, 2-6

IE, 4-4

Implicit input radix, 5-12

IN, 4-6

In-circuit emulator, 1-1

INPUT, 4-7, 5-80

Input lines, 5-6

Input/output port segments for
mapping, 5-25

Installing external signal cables, 2-5

Installation procedure for Intellec
Series I, 2-2

Installation procedure for Intellec
Series I1, 2-3

INSTRUCTION, 4-6, 5-84

INSTRUCTION mode, 5-76

INTELLEC, 4-6

Intellec memory, 5-17, 5-18

Intellec Monitor, 5-17

Intellec Series I, 2-2

Intellec Series I1, 2-3

Intellec text editor, 1-5

Interrupt bits, 4-4

Introduction to the ICE-85, 1-1

ISIS-II software, 5-17

17, 44, 5-32

JUMP, 4-7
JUMP selector, 5-95

Keywords, 4-3

Line editing characters, 5-6
Line feed, 5-6

Line number references, 3-3
LIST, 4-6

LIST command, 5-4, 5-11
LOAD, 4-6

Load command, 3-5, 5-4, 5-10
LOCATION, 4-7, 5-65

MAP, 4-6

MAP /0 Ports command, 5-4, 5-29

MAP Memory command, 5-4, 5-19, 5-28

MAP Mode command, 5-4, 5-19, 5-27

Mapping Input/Output, 5-24

Masked constants, 4-10

Match-registers, 5-55

Match0O, 5-35

Matchl, 5-35

Memory and I/0 port mapping
commands, 3-2, 5-1, 5-16

Memory blocks for mapping, 5-19

Memory and Port Contents
commands, 5-1, 5-39

Mem-type partition, 5-41

Metanotation used in the manual, 4-13

Mnemonic match condition, 5-65

Mode keywords, 4-6

Module names, 4-8

MOVE, 4-6

MOVE command, 5-4, 5-76, 5-85

MTH, 4-5, 5-56

Mult-op, 4-11

M5, 4-4, 5-32

M6, 4-4, 5-32

M7, 4-4, 5-32

NEWEST, 4-6

NEWEST command, 5-4, 5-85

NOCODE, 4-6, 5-8

NOLINES, 4-6, 5-8

NOSYMBOLS, 4-6, 5-8

NOVERIFY, 4-6

Number base, 4-10

Number bases and radix
commands, 5-1, 5-12

Numeric characters, 4-3
Numeric constant, 4-10
Numeric expressions, 4-11

Object keywords, 4-6

OLDEST, 4-6

OLDEST command, 5-4, 5-85
ON, 4-7

OPCODE, 44, 5-34

Operands, 4-12

Operational control keywords, 4-7
Operators, 4-11

OR, 4-7

OUT, 4-6

Partition, 5-41

Pathname, 5-7

PC, 4-4, 5-32

Plus-op, 4-11

Port content references, 5-45
Precedence, 4-11

PRINT, 4-6

- PRINT command, 5-4, 5-76, 5-86
Program constant, 5-49
Program variable, 5-49
Prototype memory, 5-18, 5-19
PSW, 44, 5-34

Punctuation, 4-11

PY, 44, 5-32

QR, 4-5

QRO, QR1, 4-5

Qual-reg, 4-5

Qualification registers, 4-5, 5-82, 5-87

RA, 44, 5-32
Radix, 4-10
Radixes used in trace displays, 5-14

Radixes used in displaying Breakpoint and

Qualifier settings, 5-14
RB, 44, 5-32
RBC, 4-4, 5-32
RC, 4-4, 5-32
RD, 44, 5-32
RDE, 4-4, 5-32
RE, 4-4, 5-32
READ, 4-7
Real-time emulation control
commands, 5-2, 5-62
Reference keywords, 4-3
Register-name, 4-4
Register-pair-name, 4-4
Registers, 4-4
Relational operator, 4-11
Rel-op, 4-11
REMOVE, 4-6
REMOVE GROUP command, 5-5, 5-61
REMOVE Symbol command, 5-4, 5-54
Required and optional hardware, 2-2
RESET, 4-6, 5-5
Reset Breakpoint Register command, 5-74
Reset Hardware command, 5-37
Reset Map command, 5-30
Reset qual-reg command, 5-87
RETURN, 4-7

RETURN selector, 5-95
RF, 44, 5-32

RH, 44, 5-32

RHL, 4-4, 5-32

RL, 4-4, 5-32
RUBOUT, 5-6

RW, 4-5, 5-56

Sample ICE-85 Emulation Session, 3-1

SAVE, 4-6

SAVE command 5-5, 5-11

S-group-name, 4-5

SD, 4-5, 5-56

Segment-name, 5-24

Segment-partition, 5-24

Set Breakpoint Register
command, 5-5, 5-73

Set Condition Register command, 5-5, 5-96

Set GO Register (GR) command, 5-72

Set Input/Output Port Contents
command, 5-5, 5-48

Set Memory Contents command, 5-5, 5-47

Set or Display Console Input Radix
commands, 5-15

Set or Display Console Qutput Radix
command, 5-15

Set Processor Register command, 5-5, 5-37

Set Qualifier Register command, 5-5, 5-87

Set Trace Display Mode
command, 5-5, 5-84

SHARED, 4-6

SHARED memory, 5-17

SID, 4-4, 5-32

Single-step emulation control
commands, 5-2, 5-89

SN, 4-4, 5-32

SOD, 4-4, 5-32

SP, 4-4, 5-32

Special characters, 4-3

Special tokens, 4-11

SR, 4-5

SR COMMAND, 5-5, 5-97

State keywords, 4-6

Statement numbers, 4-9

Status flags, 4-4

Status group bit settings, 5-80

STEP, 4-6, 5-90

STEP Command, 5-5, 5-90, 5-98

Step-reg, 4-5

Step register, 4-5, 5-93

STOPTRAUCE, 4-6, 5-88

STS, 4-5, 5-56

SUFFIX, 4-6, 5-15

SYMBOL, 4-6

Symbol table and statement number
commands, 5-1, 5-49

Symbolic references, 3-3, 4-7, 5-50

Symbolic references and statement number
references, 5-51

Symbols, 4-7

Sync cables, 2-1

Sync-line, 4-5

Synchronization lines, 4-5, 5-35

System defined channel groups, 5-56

System grounding, 2-5

Index-3

Index-4

System grounding for Intellec Series I, 2-6

System groups, 5-56
SYO, 4-5, 5-35
SY1, 4-5, 5-35

Terminators, 5-6

TILL, 4-7, 5-68

Tokens, 4-3

TRACE, 4-6, 5-76, 5-84, 5-88

Trace control commands, 5-2, 5-75

Trace display commands, 3-5

Trace display headers, 5-78

Traffic Light Controller program flow
chart, 3-8

Unary operators, 4-11
UNSHARED, 4-6

UNSHARED memory, 5-18, 5-19
UPPER, 4-4, 5-34

USER, 4-6

User names, 4-7

User group names, 4-9, 5-56
Utility commands, 5-1, 5-7
uo, 4-5, 5-56

Ul, 4-5, 5-56

U2, 4-5, 5-56

VALUE, 4-7, 5-65
WRITTEN, 4-7

Z,4-4,5-32

8-bit registers, 4-4

8085 CPU functional block diagram, 1-2

8085 interrupt mask, 5-32

8085 processor channels and system-
defined group names, 5-56

8085 1-bit registers, 5-32

8085 8-bit registers, 5-32

16-bit registers, 4-4, 5-32

NOTES

NOTES

intel SOFTWARE

PROBLEM REPORT

SUBMITTED BY: FOR INTERNAL USE ONLY
Name No. Fix Date
Company Date Vers/System
Address Notes
Phone Date
CHECK ONE ITEM IN EACH CATEGORY Machine Line System
Product Product Type O 4004/4040 0O Intellec
O Software O Monitor O Simulator 3 8008 O Timeshare Co.
O Manual O Assembler O Editor {18080
O Compiler 0O Utility O 3000 O In-House Computer
O O ‘

Exact Product/Manual Name

Version Number (If not known, give date of receipt)

PROBLEM:

REPLY:

PROBLEM DOCUMENTATION ATTACHED IS:

00 Output Listing

O Paper Tape Program Sou

WE'D LIKE YOUR COMMENTS. ..

This document is one of a series describing Intel software products. Your comments on the back of this
form will help us produce better software and manuals. Each reply will be carefully reviewed by the respon-
sible person. All comments and suggestions become the property of Intel Corporation.

First Class
Permit No. 1040
Santa Clara, CA

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation

3065 Bowers Avenue

Santa Clara, CA 95051

Attention: MCS Systems Marketing

- ® ICE-85 OPERATING INSTRUCTIONS
ln 98004638

REQUEST FOR READER’'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY. STATE ZIP CODE

Please check here if you require a written reply. [

WE'D LIKE YOUR COMMENTS. ..

This document is one of a series describing Intel products. Your comments on the back of this form will help

us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

First Class
Permit No. 1040
Santa Clara, CA

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Attention: MCD Technical Publications

'ntel®
- INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

