
8080/8085
FLOATING-POINT

ARITHMETIC LIBRARY
USER'S MANUAL

Manual Order Number: 9800452-03

Copyright © 1977, 1978, 1979 Intel Corporation

I Intel Corporation, 3065Bowers Avenue, Santa Clara, California 95051 I

II

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC Multimodule
ICI' Library Manager PROMPT
iCS MCS Prom ware
Insite Me!,!achassis RMX
Intel Micromap UPI
Intellec MuItibus I'Scope

and the combination of ICE, iCS, iSBC, MCS, or RMXand a numerical suffix.

I Printed in U.S.A./A-168/280;i-5~CpJ

PREFACEI

This manual describes Intel's 8080/8085 Floating-Point Arithmetic Library (FP AL)
and its use. FPAL extends the capabilities of programs written for the 8080 and 8085
microcomputers. You can incorporate various floating-point operations into your
8080/8085 assembly-language or PL/M-80 program using simple procedure calls.

The manual includes programming examples in both languages, but assumes you
already know how to use at least one of them. Programming information can be
found in the following manuals.

8080/8085 Assembly Language:

808018085 Assembly Language Programming Manual, 9800301

ISIS-II 808018085 Assembler Operator's Manual, 9800292

PL/M-80:

PLIM-80 Programming Manual, 9800268

ISIS-II PLIM-80 Compiler Operator's Manual, 9800300

iii

CHAPTER 1
INTRODUCTION

PAGE

What is FPAL? " I-I
Single-Precision Numbers. .. 1-2

Integer Format. .. 1-2
Floating-Point Format. .. 1-2

CHAPTER 2
FLOATING-POINT RECORD
PROCEDURES
FSET - Initialize Floating-Point Record 2-1
FRESET - Reset Error-Handling Procedure 2-3
FLOAD - Load F AC From Memory. 2-3
FSTOR - Store Number into Memory From FAC 2-3
FSTAT - Access Status Information 2-4
FERROR - Access Error Information 2-4

CHAPTER 3
ARITHMETIC PROCEDURES
FADD - Floating-Point Addition. 3-2
FSUB - Floating-Point Subtraction. 3-2
FMUL - Floating-Point Multiplication. 3-2
FDIV - Floating-Point Division " 3-3
FSQRT - Floating-Point Square Root " 3-3
FQFD2B - Decimal-to-Binary Conversion " 3-4
FQFB2D - Binary-to-Decimal Conversion " 3-5
FIXSD - Floating-Point to Integer Conversion " 3-6
FL TDS - Integer to Floating-Point Conversion " 3-6
FCMPR - Floating-Point Number Comparison " 3-7
FZTST - Compare FAC to Zero " 3-7
FNEG - Change Sign of F AC " 3-8
FCLR - Clear F AC to Zero " 3-8
FABS - Absolute Value ... " " 3-8

iv

CONTENTS I

PAGE

Sample Programs .. 3-8
8080 Assembly-Language Example 3-8
PL/M-80 Example. .. 3-10

CHAPTER 4
ERROR HANDLING
Error-Handling Operation 4-1
FERHND - Default Error Handler 4-1

Error During Arithmetic Operation 4-1
Error During FQFD2B Operation. 4-2
Error During FQFB2D Operation. 4-2
Error During FIXSD Operation " 4-2
Error During FCMPR Operation. 4-2
Error During FZTST, FNEG, or FABS Operation .. 4-2
Other Calls to FERHND 4-2

Sample.U ser Error Handlers .. 4-3
Assembly-Language Example 4-3
PL/M-80 Example 4-4

CHAPTERS
INTERFACE TO FP AL

APPENDIX A
FLOATING-POINT RECORD FORMAT

APPENDIXB
DEFINITIONS

APPENDIXC
SUMMARY OF FP AL PROCEDURES

ILLUSTRATIONS

FIGURE TITLE PAGE

2-1 Registers B, C Format for FSET 2-2
3-1 Control Block Format 3-4
A-I Floating-Point Record Format. A-I
A-2 Floating-Point Number Format in

Memory A-3
A-3 Integer Format in Memory. A-3

TABLES

TABLE TITLE PAGE

C-I FP AL Procedure Operation. C-I
C-2 FPAL Error-Handling Summary. C-2
C-3 FP AL Procedure Sizes. C-3

v

CHAPTER 11
INTRODUCTION

What is FPAL?

The Floating-Point Arithmetic Library (FP AL) contains basic floating-point
subroutines and functions (referred to generically as 'procedures'). The operations
provided are addition, subtraction, multiplication, division, value comparison,
negation, clearing to zero, absolute value, square root, conversion between decimal
and binary floating-point number representations, and conversion between floating­
point and 32-bit signed integer formats. All operations are single precision (positive
number range approximates 1.2 x 10-38 to 3.4 X 1038

). The single-precision format is
described below and in Appendix B.

In addition to these operations, a number of procedures are provided to deal with
the Floating-Point Record (FPR). This is a reserved, IS-byte work area used to col­
lect status and error information, and as an accumulator for intermediate results.
The procedures supporting the FPR perform FPR initialization, change error­
recovery options, check the contents of FPR fields, and pass numbers between the
FPR and memory.

The FP AL also includes a default error-handler subroutine. This subroutine is called
when an invalid number is used in a floating-point operation or if overflow,
underflow, or division by zero are not handled by an arithmetic subroutine. You
may also write your own error handler, so long as it conforms to the formats
described in this manual.

The FP AL can be used by assembly language or PL/M programs. The FP AL pro­
cedures reside in an ISIS-ll library (FPAL. LIB) in object code form. They are self
contained and can be used in component, OEM-board, or Intellec Microcomputer
Development System environments.

In general, the following steps must be observed to use the floating-point library:

1. An area of memory must be reserved for the Floating-Point Record (FPR).

2. If your program uses interrupts or if you create your own stack, the appropriate
amount of stack space must be allocated for use by FP AL, as described at the
the beginning of Chapter 3.

3. The names of the FP AL procedures you plan to use must be declared to be
'external' (using the EXTRN directive in the ISIS-ll SOSO/SOS5 assembly
language or the EXTERNAL attribute in PL/M-SO).

4. FPAL procedure references must be imbedded in, your source code where
appropriate.

5. The FP AL procedure used by your program must be linked to your object file.

All FP AL procedures are reentrant and conform to PL/M-SO linkage conventions.

If you plan to reference FP AL procedures in your program, your program cannot
use symbols that are reserved for FP AL. To avoid using these symbols inadver­
tently, do not use symbolic names beginning with a 'commercial at' sign (@) or
names whose seconq character is 'Q' or '?'.

1-1

Introduction

1-2

8080/8085 FP AL

Single-Precision Numbers

FP AL procedures operate on single-precision binary numbers, either in a 32-bit
integer format or in a 32-bit floating-point format.

Integer Format

The integer format recognized by FPAL is a positive or negative (two's complement)
32-bit binary number. The approximate range of this format is:

Decimal

+2.147x10"

+0

- 1

-2.147 X 10"

Floating-Point Format

Hexadecimal

7FFFFFFF

00000000

FFFFFFFF

80000000

As an introduction to the single-precision floating-point format, consider the
following representations of very small and very large decimal numbers. The
decimal number base is used here to simplify the example.

Fixed-Point

6,373,000,000

0.00074

Scientific Notation

6.373E + 9 (6.373 x 109
)

7.4E-4

The numbers in the two columns are equivalent. In the second column, the decimal
point has been 'floated.' The exponent 'E' indicates the number of positions the
decimal point was moved to the right or left to produce the abbreviated form shown.
The numbers could have been written just as easily as '6373E + 6' or '74E-5.'

The 32-bit, binary floating-point format recognized by FP AL consists of three
fields:

sign exponent fraction

1 bit 8 bits 23 bits

The 'sign' field contains a zero if the number is non-negative and a one if the
number is negative.

The 'exponent' field corresponds to the 'E' notation in the example above and
indicates the number of bit positions the integer form of the number must be shifted
to put it in the form' 1.nnn '. Except in the case of floating-point zero, the value
in the exponent field is offset by a bias of 27 - 1 (or 127); i.e., the stored exponent is
(2' - 1) larger than the true exponen t.

8080/8085 FP AL

The 'fraction' field contains the 23 bits to the right of the binary point. An implicit
one bit is assumed at the left of the binary point if the floating-point number is
nonzero.

Example:
Integer

00000001 (hexadecimal) o
Floating-Point

011111110000 ... 0000 ----........ -.....--
sign exp fraction

or, in hexadecimal:

3F800000

The following lists make additional comparisons between decimal, binary integer,
and binary floating-point representations. To save space, the internal binary
representation is shown in hexadecimal form.

Decimal Binary Integer Binary Floating-Point

0 00000000 (hex) 00000000 (hex)

00000001 3F800000

-1 FFFFFFFF BF800000

255 OOOOOOFF 437FOOOO

-255 FFFFFF01 C37FOOOO

*2.15x10" 7FFFFF80 (note 1) 4EFFFFFF

*3.40 x 10" 7F7FFFFF (note 2)

*1.17x10- lK 00800000 (note 3)

40490FDB (TI)

7FFFFFFF (+ infinity)

FFFFFFFF (-infinity)

• approximately

NOTES

1. This is the largest integer that can be converted to single-precision floating-point
retaining the exact value. Integer values within the interval IF FOOOOOO,
01000000] have exact single-precision floating-point representations. Integer
values outside this interval mayor may not be exact upon conversion, this con­
version being implemented according to the "round to even" rule as described
in Appendix B.

2. This is the largest number in the single-precision floating-point format.

3. This is the smallest positive number in the single-precision floating-point
format.

Introduction

1-3

CHAPTER 2
FLOATING-POINT RECORD

PROCEDURES

If you plan to use FPAL procedures, you must allocate 18 contiguous bytes of
memory for the Floating-Point Record (FPR). The FPR format is described in detail
in Appendix A. In general, it is divided into four fields:

• Status field (I byte).

• Error-Handler Address field (2 bytes). This is the address of the error recovery
subroutine.

• Error field (2 bytes).

• Floating-Point Accumulator, or FAC. This consists of a fraction field (II bytes)
and an exponent field (2 bytes).

The remainder of this chapter describes the procedures used to initialize and access
FPR fields. These procedures are:

FSET A subroutine to initialize the FPR.

FRESET A subroutine to reset the error-handling procedures and flags.

FLOAD A subroutine to load a floating-point number from memory into
the Floating-Point Accumulator (FAC) field of the FPR.

FSTOR A subroutine to store a floating-point number from the FAC
into memory.

FST AT A byte function that places the Status field of the FPR into the
8080 or 8085 accumulator.

FERROR An address function that places the Error field of the FPR into
8080 or 8085 registers Hand L.

The Floating-Point Record may be initialized and modified only by the procedures
described here. The FSET initialization subroutine must be called before any other
procedures are used; otherwise, the results are undefined.

The procedures described in this chapter save all 8080 or 8085 registers (except those
registers receiving results from the operation called).

FSET -Initialize Floating-Point Record

This subroutine completes initialization of the FPR. To initialize the FPR, you
must:

1. Push the address of the FPR onto the 8080 or 8085 stack;

2. Load register B with the error-handler indicator; load register C with the initial
value for the Error Field;

3. Load registers D and E with the address of a user-defined error-handler
subroutine, if necessary (see below);

4. Call FSET.

Before FSET is called, registers Band C should contain initial values as shown in
figure 2-1. The shaded bits shown in this figure are reserved for FP AL use and
should always be set to zero. Ones in these bit fields currently cause undefined
results.

2-1

Floating-Point Record Procedures 8080/8085 FP AL

2-2

REG B o REG C o

Figure 2-1. Registers B, C Format for FSET

The EH bit (register B) is interpreted as follows:

EH = 0 The default error handler (FERHND) is to be used;

EH = 1 Your own error handler is to be used and its address must be
found in registers D and E.

If EH = 0, registers D and E are ignored. If EH = 1, FSET loads the contents of
registers D and E into the Error-Handler Address field of the FPR.

NOTE

FSET always links an error handler named FERHND, whether you specify
your own error-handling subroutine or not. If your own subroutine has the
same name as the default subroutine, your error handler must appear
before FP AL in the link list to ensure that your FERHND is linked instead
of FPAL's.

LINK MYPROG.OBJ, FERHND.OBJ, FPAL.lIB ...

FSET also clears the FAC and Status fields to zero and loads the contents of register
C into the low-order byte of the Error field. See Appendix A for a detailed explana­
tion of the register C bits.

In addition, FSET uses the STKLN assembler directive to allocate 40 bytes of stack
for use by FP AL. This should be sufficient unless your program causes the FP AL
routines to require multiple copies of stack storage. This could occur because of
interrupt procedures which call FPAL, or because of user error handler recursion.
Your program must add 40 extra bytes to STKLN for each level of FP AL invoca­
tion. (If you create your own stack, the number of bytes needed by FP AL is,
likewise, (40+40n), where n is the number of FPAL invocation levels.)

Examples:

The following 8080/8085 assembly-language sequence initializes the FPR and sets all
bits in the Error field to zero. The example also assumes you are using the default
error handler.

LXI B,FPR ;REGS B,C POINT TO FPR
PUSH B ;PUSH FPR ADDRESS ONTO STACK
LXI B,O :USE DEFAULT ERROR HANDLER AND SET

;REG C (ERROR FIELD) TO ZEROS
CALL FSET ;INITIALIZE FPR

In PL/M-80, the same operations can be done with the statement

CALL FSET(.FPR,O,O);

8080/8085 FP AL Floating-Point Record Procedures

FRESET -Reset Error-Handling Procedure

This subroutine is used to change the contents of the Error field or to specify that a
different error handler be used. A common use of FRESET is to reset the five error
flags in bits 3 - 7 of the Error field's low-order byte.

FRESET uses registers Band C in the same way as FSET (figure 2-1). If bit 0 of
register B is one, registers D and E must contain the address of your error handler.
The shaded bits in figure 2-1 should always be set to zero.

The FAC and Status Fields are not affected by FRESET.

Examples:

The following SOSO/SOS5 assembly-language sequence clears the Error field mask
bits to zero and specifies a user-defined error handler whose symbolic address is
ERROR 1. (Registers Band C are initialized separately to show clearly the specifica­
tion of the error handler.)

LXI B,FPR ;REGS B,C POINT TO FPR
PUSH B ;PUSH FPR ADDRESS ONTO STACK
MVI B,1 ;USE ERROR HANDLER ADDRESSED IN D,E
MVI C,O ;CLEAR ERROR FIELD TO ZEROS
LXI D,ERROR1 ;POINTER TO ROUTINE ERROR1
CALL FRESET ;LOAD ERROR-RECOVERY INFORMATION

PL/M-SO statements to perform the same operation would be:

DECLARE
CALL

ERROR$FLAG LITERALLY '00000001 OOOOOOOOB';
FRESET (.FPR,ERROR$FLAG,.ERROR1);

FLOAD-Load FAC from Memory

This subroutine loads a floating-point number from memory into the floating-point
accumulator. FLOAD assumes that registers Band C contain the address of the
FPR and that registers D and E address the low-order byte of the 32-bit number in
memory.

Examples:

The following SOSO/SOS5 assembly-language sequence loads a number, whose sym­
bolic address is AUGEND, into the FAC.

LXI
LXI
CALL

B,FPR
D,AUGEND
FLOAD

;REGS B,C POINT TO FPR
;REGS D,E POINT TO 'AUGEND'
;LOAD AND UNPACK 'AUGEND'

In PL/M-SO, the same number is loaded by

CALL FLOAD(.FPR,.AUGEND);

FSTOR-Store Number into Memory from FAC

This subroutine stores the floating-point number in the FAC into memory. FSTOR
assumes that registers Band C contain the address of the FPR and that registers D
and E contain the address of the low-order byte of a 32-bit memory location.

2-3

Floating-Point Record Procedures 8080/8085 FP AL

2-4

Examples:

This 8080/8085 assembly-language example stores the contents of the FAC into the
memory location addressed by RESULT.

LXI
LXI
CALL

B,FPR
D,RESULT
FSTOR

;REGS B,C POINT TO FPR
;REGS D,E POINT TO 'RESULT'
;STORE FAC CONTENTS

The store is done in PL/M-80 by

CALL FSTOR(.FPR,.RESULT);

FSTAT -Access Status Information

This function is called to access the contents of the FPR's Status field. FSTAT
assumes the address of the FPR has been loaded into the Band C registers. When
FST AT is called, the contents of the Status field (one byte) are returned in the
accumulator (register A).

Examples:

In 8080/8085 assembly language, the Status field is loaded by

LXI
CALL

or, in PL/M-80,

B,FPR
FSTAT

;REGS B,C POINT TO FPR
;STATUS FIELD LOADED IN REG A

DECLARE STATFUN BYTE;
STATFUN = FSTAT (.FPR);

FERROR-Access Error Information

This function is called to access the contents of the FPR's Error field. It assumes the
address of the FPR has been loaded into the Band C registers. FERROR returns the
Error field contents (two bytes) to registers Hand L.

Examples:

This 8080/8085 assembly-language example loads the contents of the Status and Er­
ror fields into the accumulator (register A) and into registers Hand L, respectively.

LXI
CALL
CALL

B,FPR
FSTAT
FERROR

;REGS B,C POINT TO FPR
;STATUS FIELD LOADED INTO REG A
;ERROR INFO TO REGS H,L

In PL/M-80, the corresponding operations would be:

DECLARE STATFUN BYTE,
ERRFUN ADDRESS;

STATFUN = FSTAT (.FPR);
ERRFUN = FERROR (.FPR);

CHAPTER 31
ARITHMETIC PROCEDURES

This chapter describes the FP AL procedures for performing floating-point
'arithmetic.' These procedures are:

FADD

FSUB

FMUL

FDIV

FSQRT

FQFD2B

FQFB2D

FIXSD

FLTDS

FCMPR

FZTST

FNEG

FCLR

FABS

A subroutine to add floating-point numbers.

A subroutine to do floating-point subtraction.

A subroutine to multiply floating-point numbers.

A subroutine to do floating-point division.

A subroutine to compute the square root of a floating-point number.

A subroutine to convert a decimal floating-point number to binary.

A subroutine to convert a binary floating-point number to decimal.

A subroutine to convert a floating-point number to an integer.

A subroutine to convert an integer to a floating-point number.

A byte function to compare floating-point numbers.

A byte function to compare the FAC to zero.

A subroutine to negate (change) the sign of the FAC.

A subroutine to clear the FAC to zero.

A subroutine to set the FAC to its absolute value.

All of these subroutines assume that the B-C register pair contains the address of the
FPR. If a second operand, stored in memory, is needed to perform an operation, the
address of that operand's low-order byte is supplied in the D-E register pair.
FCMPR and FZTST return their results to register A; FIXSD stores a fixed-point
number into memory; FQFB2D stores a decimal floating-point number into
memory; the other subroutines leave their results in the FAC.

The procedures described in this chapter, with the exception of FQFD2B and
FQFB2D, save all 8080 or 8085 registers (except those registers receiving results from
the arithmetic operation called).

The FP AL routines do not have their own stacks, but use the stack of the calling
program. The FSET routine uses the STKLN assembler directive to allocate 40 bytes
of stack for use by FP AL. This should be sufficient unless your program causes the
FP AL routines to require multiple copies of stack storage. This could occur because
of interrupt procedures which call FP AL, or because of user error handler recur­
sion. Your program must add 40 extra bytes to STKLN for each level of FPAL
invocation. If you create your own stack, the number of stack bytes needed by
FPAL is, likewise, (40+40n), where n is the number of FPAL invocation levels.

Appendix C summarizes all FP AL procedures and the error conditions they can
return. Error handling is described in detail in Chapter 4.

NOTE

The FPR initialization subroutine (FSET) must be called before any of the
arithmetic procedures can be used; otherwise, the results are undefined.

3-1

Arithmetic Procedures 8080/8085 FP AL

3-2

FADD-Floating-Point Addition

This subroutine adds a floating-point number in memory to the number in the
Floating-Point Accumulator and leaves the sum in the FAC. FADD assumes that
registers Band C contain the address of the FPR and that registers 0 and E address
the low-order byte of the number in memory.

Examples:

808018085 assembly language:

LXI
LXI
CALL
LXI
CALL
LXI
CALL

PLIM-80:

B,FPR
D,AUGEND
FLOAD
D,ADDEND
FADD
D,SUM
FSTOR

; REGS B,C POINT TO FPR
; REGS D,E POINTTO 'AUGEND'
; LOAD 'AUGEND' INTO FAC
; REGS D,E POINT TO' ADDEND'
; ADD AUGEND AND ADDEND
; REGS D,E POINTTO 'SUM'
; STORE RESULT IN 'SUM'

CALL FLOAD(.FPR,.AUGEND);
CALL FADD(.FPR,.ADDEND);
CALL FSTOR(.FPR,.SUM);

FSUB-Floating-Point Subtraction

This subroutine subtracts a floating-point number in memory from the number in
the Floating-Point Accumulator and leaves the result in the FAC. FSUB assumes
that registers Band C contain the address of the FPR and that registers 0 and E ad­
dress the low-order byte of the number in memory.

Examples:

808018085 assembly language:

LXI
LXI
CALL
LXI
CALL
LXI
CALL

PLIM-80:

B,FPR
D,MINEND
FLOAD
D,SBHEND
FSUB
D,RESULT
FSTOR

; REGS B,C POINT TO FPR
; REGS D,E POINTTO MINUEND
; MINUEND LOADED INTO FAC
; REGS D,E POINTTO SUBTRAHEND
; SUBTRACT SUBTRAHEND FROM MINUEND
; REGS D,E POINT TO 'RESULT'
; STORE RESULT

CALL FLOAD(.FPR,.MINUEND);
CALL FSUB(.FPR,.SUBTRAHEND);
CALL FSTOR(.FPR,.RESULT);

F M U L-Floating-Point Multiplication

This subroutine multiplies the number in the Floating-Point Accumulator by a
floating-point number in memory and leaves the product in the FAC. FMUL
assumes that registers Band C contain the address of the FPR and that registers 0
and E address the low-order byte of the num ber in memory.

8080/8085 FP AL Arithmetic Procedures

Examples:

808018085 assembly language:

LXI
LXI
CALL
LXI
CALL
LXI
CALL

PLIM-80:

B,FPR
D,MPCAND
FLOAD
D,MPLIER
FMUL
D,PRODUCT
FSTOR

; REGS B,C POINT TO FPR
; REGS D,E POINTTO MULTIPLICAND
; MULTIPLICAND LOADED INTO FAC
; REGS D,E POINTTO MULTIPLIER
; PERFORM MULTIPLICATION
; REGS D,E POINT TO 'PRODUCT'
; STORE PRODUCT

CALL FLOAD(.FPR,.MULTIPLICAND);
CALL FMUL(.FPR,.MULTIPLlER);
CALL FSTOR(.FPR,.PRODUCT);

F D IV-Floating-Point Division

This subroutine divides the number in the Floating-Point Accumulator by a
floating-point number in memory and leaves the quotient in the FAC. FDIV
assumes that registers Band C contain the address of the FPR and that registers D
and E address the low-order byte of the number in memory.

Examples:

808018085 assembly language:

LXI
LXI
CALL
LXI
CALL
LXI
CALL

PLIM-80:

B,FPR
D,DVDEND
FLOAD
D,DIVSOR
FDIV
D,QUOTNT
FSTOR

; REGS B,C POINT TO FPR
; REGS D,E POINT TO DIVIDEND
; DIVIDEND LOADED INTO FAC
; REGS D,E POINT TO DIVISOR
; PERFORM DIVISION
; REGS D,E POINT TO 'QUOTNT'
; STORE QUOTIENT

CALL FLOAD(FPR ,.DIVIDEND);
CALL FDIV(.FPR,. DIVISOR);
CALL FSTOR(.FPR,.QUOTIENT);

FSQRT -Floating-Point Square Root

This subroutine takes the square root of the number in the Floating-Point
Accumulator and leaves the result in the FAC. FSQRT assumes that registers Band
C contain the address of the FPR.

Examples:

808018085 assembly language:

LXI B,FPR ; REGS B,C POINT TO FPR
LXI D,ARG ; REGS D,E POINT TO ARGUMENT
CALL FLOAD ; ARGUMENT LOADED INTO FAC
CALL FSQRT ; COMPUTE SQUARE ROOT
LXI D,RESULT ; REGS D,E POINT TO 'RESULT'
CALL FSTOR ; STORE SQUARE ROOT RESULT

3-3

Arithmetic Procedures 8080/8085 FP AL

3-4

PLIM-80:

CALL FLOAD(.FPR,.ARGUMENT);
CALL FSQRT(.FPR);
CALL FSTOR(.FPR,.RESULT);

FQF02B-Oecimal to Binary Conversion

This subroutine converts a decimal floating-point number in memory to a binary
floating-point number and loads it into the FAC. FQFD2B assumes that registers B
and C contain the address of the FPR and that registers D and E point to a 6-byte
control block in memory. The control block, in turn, points to the decimal number
to be converted. Before calling FQFD2B, you must define the control area and have
the necessary information loaded into it.

The formats of the control block and decimal number are shown in figure 3-1. In
this figure,

SIGN is the ASCII representation of '+' or '-'; FQFD2B assumes a '+ '
unless '-' is specified;

SCALE is a 16-bit, two's complement integer considered to be the exponent
of ten;

LENGTH is an unsigned byte integer specifying the number of digits in the
decimal number;

ADDRESS is a 16-bit address pointing to the first byte of the decimal number
to be converted;

are ASCII representations of decimal digits, and 'n' is the same as
LENGTH.

The value of the number represented by this record is:

Zero is represented by setting all digits to zero or by setting LENGTH to zero.

CONTROL BLOCK DECIMAL NUMBER

ADDRESS ~
I

LENGTH

t8 SCALE

SIGN
REGS D,E
POINTER ____ ..

Figure 3-1. Control Block Format

8080/8085 FP AL Arithmetic Procedures

Examples:

808018085 assembly language:

DSIGN:
DSCALE:
DLNGTH:
DADDR:

OS 1
OS 2
OS 1
OS 2

; DEFIN E CONTROL
; BLOCK

; PROGRAM MUST SCAN DECIMAL NUMBER AND LOAD NECESSARY
; INFORMATION INTO CONTROL BLOCK

PLIM-80:

LXI
LXI
CALL

B,FPR
D,DSIGN
FQFD2B

DECLARE CONTROL STRUCTURE(
SIGN BYTE,
SCALE ADDRESS,
SLENGTH BYTE,
STRING$PTR ADDRESS),

STRING (m) BYTE;

; REGS B,C POINT TO FPR
; REGS D,E POINT TO CONTROL BLOCK
; CONVERSION DONE, RESULT STORED
;IN FAC

/*WHERE m IS GREATER THAN OR EQUAL TO CONTROL.SLENGTH* /

/*PROGRAM MUST SCAN DECIMAL NUMBER AND LOAD NECESSARY* /
/*INFORMATION INTO CONTROL BLOCK* /

CALL FQFD2B(.FPR,.CONTROL);

FQFB2D-Binary to Decimal Conversion

This subroutine converts a binary floating-point number in the FAC to a decimal
floating-point number and stores the result in memory. FQFB2D assumes that
registers Band C contain the address of the FPR and that registers D and E point to
a control block in memory. The control block has the format shown in figure 3-1
and points, in turn, to the memory location where the converted number is to be
stored. At the time FQFB2D is called, you must also specify the contents of the
LENGTH and ADDRESS fields of the control block.

The LENGTH field specification determines the precision of the result. The first
digit (D 1) is nonzero unless the FAC contains zero.

Example:

808018085 assembly language:

; DEFINE STORAGE AS IN THE FQFD2B EXAMPLE ABOVE

DLNGTH
DADDR

SET
SET
LXI
LXI
CALL

10
FOC8H
B,FPR
D,DSIGN
FQFB2D

; LENGTH FIELD SPECIFIED
; ADDRESS FIELD SPECIFIED
; REGS B,C POINT TO FPR
; REGS D,E POINT TO CONTROL BLOCK
; CONVERSION DONE. RESULT STORED
; IN MEMORY

3-5

Arithmetic Procedures 8080/8085 FP AL

3-6

PLIM-80:

'"DECLARE CONTROL BLOCK STRUCTURE AS IN THE"'
'"FOFD2B EXAMPLE ABOVE"'

'" ASSIGN POINTER TO SOME STRING ARRAY"'
CONTROL.STRING$PTR = .STRING;

'" ASSIGN VALUE FOR LENGTH OF STRING·'
CONTROL.SLENGTH = 10;
CALL FOFB2D(.FPR, .CONTROL);

FIXSO-FloatingPoint to Integer Conversion

This subroutine converts the floating-point (real) number in the FAC to a fixed­
point (integer) number and stores the result in memory. This conversion is done with
truncation (for example, 1.9 is converted to 1 and -1.9 is converted to -1). FIXSD
assumes that registers Band C contain the address of the FPR and that registers D
and E address the low-order byte of a 4-byte storage location. The resulting integer
is stored in this location in two's complement format. See Appendix A, figure A-3.

Examples:

808018085 assembly language:

LXI
LXI
CALL
LXI
CALL

PLIM-80:

B,FPR
D,FLTNUM
FLOAD
D,FIXNUM
FIXSD

; REGS B,C POINT TO FPR
; REGS D,E POINTTO 'FLTNUM'
; LOAD FLOATING-POINT NUMBER
; ADDRESS FOR STORING RESULT
; DO CONVERSION AND STORE RESULT

CALL FLOAD(.FPR,.FP$NUMBER$ADDRESS);
CALL FIXSD(.FPR,.INTEGER$ADDRESS);

FL lOS-Integer to Floating-Point Conversion

This subroutine converts a fixed-point number (32-bit signed integer) in memory to a
floating-point number and loads the result into the Floating-Point Accumulator.
Conversion is done using unbiased rounding (see Appendix B). FL TDS assumes that
registers Band C point to the FPR and that registers D and E address the low-order
byte of a 32-bit two's complement integer.

Examples:

808018085 assembly language:

LXI
LXI
CALL

PLIM-80.·

B,FPR
D,FIXNUM
FLTDS

; REGS B,C POINT TO FPR
; REGS D,E POINT TO INTEGER
; CONVERT INTEGER TO FLOATING-POINT
; AND LOAD INTO FAC

CALL FL TDS(.FPR,.INTEGER$ADDRESS);

8080/8085 FP AL Arithmetic Procedures

FCMPR-Floating-Point Number Comparison

This function compares a number in the Floating-Point Accumulator to a floating­
point number in memory. The resulting Status field settings are returned to the
accumulator (register A). FCMPR assumes the Band C registers point to the FPR
and that registers D and E address the low-order byte of the number in memory.

If the comparison is successful, one of the following bit patterns is set in the Status
field and loaded into register A. ('U' means the bit is undefined and reserved for
FPAL use.)

100UUOOO

010UUOOO
001 UUOOO

Examples:

FAC = number in memory

FAC> number in memory
FAC < number in memory

8080/8085 assembly language:

LXI

LXI
CALL
LXI
CALL

PL/M-80:

B,FPR
D,FACNUM

FLOAD
D,MEMNUM
FCMPR

; REGS B,C POINT TO FPR
; REGS D,E POINT TO 'FACNUM'
; LOAD 'FACNUM' INTO FAC
; REGS D,E POINT TO 'MEMNUM'

; NUMBERS COMPARED, STATUS TO REG A

CALL FLOAD(.FPR,.FAC$NUMBER$ADDR);

STAT=FCMPR(.FPR,.MEMORY$NUMBER$ADDR);

FZTST -Compare FAC to Zero

This function compares the number in the Floating-Point Accumulator to zero and
returns the Status field to the accumulator (register A). FZTST assumes that
registers Band C address the FPR.

If the comparison is successful, one of the following bit patterns is set in the Status
field and returned to register A. ('U' means the bit is undefined and reserved for
FPAL use.)

100UUOOO
010UUOOO
001 UUOOO

Examples:

FAC=O

FAC>O
FAC<O

8080/8085 assembly language:

LXI
LXI
CALL
CALL

PL/M-80:

B,FPR
D,TSTNUM
FLOAD
FZTST

; REGS B,C POINT TO FPR
; REGS D,E POINT TO TEST NUMBER
; LOAD TEST NUMBER INTO FAC
; COMPARE NUMBER TO 0, STATUS TO REG A

CALL FLOAD(.FPR,.TEST$NUMBER$ADDR);
STAT = FZTST(.FPR);

3-7

Arithmetic Procedures 8080/8085 FP AL

3-8

FNEG-Change Sign of FAC

This subroutine negates (complements) the sign bit of the F AC if the contents of the
F AC are nonzero. A '1' bit is changed to '0' and vice-versa. If the number in the
F AC is zero, no action is taken. FNEG assumes that registers Band C address the
FPR.

Examples:

SOSOlSOS5 assembly language:

LXI
LXI

CALL
CALL

PLIM-SO:

B,FPR
D,NEGNUM

FLOAD
FNEG

; REGS B,C POINT TO FPR
; REGS D,E ADDRESS NUMBER WHOSE SIGN
; IS TO BE NEGATED
; LOAD 'NEGNUM'
; NEGATE SIGN OF 'NEGNUM'

CALL FLOAD(.FPR .. NEGATE$NUMBER$ADDR);
CALL FNEG(. FPR);

FCLR-Clear FAC to Zero

This subroutine clears the FAC by loading it with a floating-point zero (see Appen­
dix B). FCLR assumes the Band C registers point to the FPR.

Examples:

SOSOlSOS5 assembly language:

LXI
CALL

PLIM-SO:

B,FPR
FCLR

CALL FCLR(.FPR);

; REGS B,C POINT TO FPR
; THE FAC IS ZEROED

FABS-Absolute Value

This subroutine sets the floating-point number in the FAC to its absolute value, that
is, the sign bit is set to zero. F ABS assumes the Band C registers address the FPR.

Examples:

SOSOlSOS5 assembly language:

LXI
CALL

PLIM-SO:

B,FPR
FABS

CALL FABS(.FPR);

Sample Programs

; REGS B,C POINT TO FPR
; SIGN BIT SET TO ZERO

8080 Assembly-Language Example

The following assembly-language example computes the weighted inner product

IP=(A1 * B1 +A2* B2+A3* B3)/C1

8080/8085 FP AL Arithmetic Procedures

AI, A2, A3, BI, B2, B3, and CI represent addresses of floating-point numbers,
FPR is the address of the Floating-Point Register and IP is the address where the
result is to be stored.

First, we must reserve storage for the FPR and floating-point operands used in the
equation. This is done with 'OS' assembler directive.

FPR: ; DS 18
A1 : DS 4
81 : DS 4
A2: DS 4
82: DS 4
A3: DS 4
83: DS 4
C1 : DS 4
IP: DS 4

Next, we must declare the FPAL subroutines to be external using the 'EXTRN'
directive.

EXTRN FSET,FLOAD,FMUL,FADD,FDIV,FSTOR

The equation is then computed by the following sequence of loads and calls.
Remember that FSET must be called before all other subroutines.

LXI 8,FPR ; 8,C POINTS AT THE FPR
PUSH 8
LXI 8,0 ; DEFAULT ERROR HANDLER TO 8E USED
CALL FSET ; FPR IS INITIALIZED
LXI 8,FPR ; POINTERS TO FPR AND A1 ARE LOADED
LXI D,A1
CALL FLOAD ; A1 IS LOADED INTO THE FAC
LXI D,81 ; POINTER TO 81 IS LOADED
CALL FMUL ; A1 * 81 IS FORMED IN THE FAC
LXI D,IP ; POINTER TO IP IS LOADED
CALL FSTOR ; A1 * 81 STORED IN LOCATION ADDRESSED

; 8Y IP
LXI D,A2
CALL FLOAD ; A2 IS LOADED INTO THE FAC
LXI D,82
CALL FMUL ; A2 * 821S FORMED IN THE FAC
LXI D,IP
CALL FADD ; A1 * 81 + A2 * 821S FORMED IN THE FAC
CALL FSTOR ; A1 * 81 + A2 * 821S STORED IN IP
LXI D,A3
CALL FLOAD ; A31S LOADED INTO THE FAC
LXI D,83
CALL FMUL ; A3 * 83 IS FORMED IN THE FAC
LXI D,IP
CALL FADD ; A1 * 81 + A2 * 82 + A3 * 831S FORMED IN

; THE FAC
LXI D,C1
CALL FDIV ; (A1 * 81 + A2 * 82 + A3 * 83)/C1 IS FORMED

; IN THE FAC
LXI D,IP
CALL FSTOR ; (A1 * 81 + A2 * 82 + A3 * 83)/C1 IS STORED

; IN IP

3-9

Arithmetic Procedures 8080/8085 FP AL

3-10

This example assumes the default error handler (FERHND) is to be used. At the end
of the computation, you can check to sec whether any errors occurred by executing
the following code sequence:

CALL FERROR ; THE CUMULATIVE ERROR INDICATORS
; ARE RETURNED IN H,L

MOV A,L
ANI 11111000B ; MASK OFF THE OPTION BITS
JNZ HELP ; AT LEAST ONE ERROR OCCURRED

PL/M-80 Example

The following PL/M-80 example computes the same weighted inner product as the
assembly-language example:

IP=(A1 * B1 +A2* B2+A3* B3)/C1

AI, A2, A3, BI, B2, B3, and Cl represent addresses of floating-point numbers,
FPR is the address of the Floating-Point Register and IP is the address where the
result is to be stored.

We must first declare the FP AL subroutines used to be external procedures and
reserve the FPR memory area as an array. Declaring the operators to be arrays too
ensures that they will occupy contiguous locations in memory, thus allowing use of
the dot operator in calling the subroutines. For the sake of illustration, the FST AT
function is also included in this example.

I*DEFINE EXTERNAL PROCEDURES* I

FSET: PROCEDURE (FA,OP1,OP2) EXTERNAL;

END FSET:

FADD:

END FADD;

DECLARE(FA,OP1 ,OP2) ADDRESS;

PROCEDURE(FA,OA) EXTERNAL;
DECLARE(FA,OA) ADDRESS;

FDIV: PROCEDURE(FA,OA) EXTERNAL;

END FDIV;

FMUL:

END FMUL;

FLOAD:

END FLOAD;

FSTOR:

END FSTOR;

FSTAT:

END FSTAT;

DECLARE(FA,OA) ADDRESS;

PROCEDURE(FA,OA) EXTERNAL;
DECLARE(FA,OA) ADDRESS;

PROCEDURE(FA,OA) EXTERNAL;
DECLARE(FA,OA) ADDRESS;

PROCEDURE(FA,OA) EXTERNAL:
DECLARE(FA,OA) ADDRESS;

PROCEDURE(FA) BYTE EXTERNAL;
DECLARE(FA) ADDRESS;

/*DECLARE BYTE ARRAYS* I

8080/8085 FP AL

DECLARE FPR(18) BYTE,
A1(4) BYTE,
A2(4) BYTE,
A3(4) BYTE,
B1(4) BYTE,
B2(4) BYTE,
B3(4) BYTE,
C1(4) BYTE,
IP(4) BYTE,
STATUS BYTE;

/*IP COMPUTED BY FOLLOWING CALLS* /
/*FSET MUST BE CALLED FIRST* /

CALL FSET(.FPR,O,O);/*USE FERHND* /
CALL FLOAD(.FPR,.A1);
CALL FMUL(.FPR,.B1);
CALL FSTOR(.FPR,.IP);
CALL FLOAD(.FPR,.A2);
CALL FMUL(.FPR,.B2);
CALL FADD(.FPR,.IP);
CALL FSTOR(.FPR,.IP);
CALL FLOAD(.FPR,.A3);
CALL FMUL(.FPR,.B3);
CALL FADD(.FPR,.IP);
CALL FDIV(.FPR,.C1);
CALL FSTOR(.FPR,.IP);

/*RETURN STATUS FIELD* /

STATUS=FSTAT(. FPR);

Arithmetic Procedures

3-11

CHAPTER 41
ERROR HANDLING

Error-Handling Operation

When an error occurs during an FP AL operation, the following steps are taken:

1. The address of the FPR is pushed onto the 8080 or 8085 stack.

2. A code is placed in the B-C register pair indicating which procedure was
executing when the error was detected.

3. The error code bits in the FPR's Status field are set to indicate the type of error
detected.

4. The appropriate cumulative error bit in the FPR's Error field is set.

5. The error-handler subroutine is called.

The bit settings mentioned in steps 2, 3, and 4 are listed in Appendix C, Table C-2.

If the executing procedure required a second operand, that operand's address is in
the D-E register pair. Otherwise, the D-E register pair is ignored.

FERHND-Default Error Handler

This subroutine is the error handler supplied as part of the floating-point library.
You may also write your own error handler and load its address using the FSET or
FRESET subroutines (Chapter 2).

The operations performed by FERHND depend on the parameters passed to it by
the procedure detecting the error, and on the error code found in the Status field.
These operations are described in the following paragraphs and summarized in
Appendix C, Table C-2. Note that FERHND may find it necessary to update the er­
ror code (the three least significant bits in the Status field) to reflect the current true
status of the Floating-Point Accumulator.

Error During Arithmetic Operation

If FERHND was called during one of the four basic arithmetic operations (FADD,
FSUB, FMUL, FDIV) one of the following situations occurs:

• If underflow is indicated, the FAC is set to zero and the Status field is set to
'UUUUUOOO,' where 'U' means the bit setting is undefined.

• If overflow is indicated, the FAC is set to the largest or smallest representable
number (if the correct result was positive or negative, respectively). The Status
field is set to 'UUUUUOOO.'

• If division by zero was attempted, the FAC is set to an invalid number
representing an 'indefinite' result. The's' bit is zero, all exponent bits are one,
and all fraction bits are zero. The Status field is set to 'UUUUUI01.'

• If an invalid operand was encountered, no operation is performed and
FERHND returns to the calling subroutine.

• If none of these conditions holds, FERHND simply returns to the calling
subroutine.

4-1

Error Handling 8080/8085 FP AL

4-2

Error During FQFD2B Operation

The FQF02B procedure does not check for valid ASCII representations in the input
operand. If invalid data is used, no error conditions are reported, but the result is
undefined.

Overflow or underflow may occur during the conversion. In this case the error is
regarded as an arithmetic error and the error is handled as described in the preceding
section.

Error During FQFB2D Operation

As in the case of FQF02B, overflow or underflow errors may result from an
arithmetic operation within the conversion procedure. These errors are handled by
the arithmetic procedure involved.

If the F AC contains an invalid quantity when FQFB20 is called, this procedure
stores an asterisk (*) in the SIGN position of the decimal representation (see figure
3-1) and in digit positions O2 through On. One of the following codes is stored in the
first digit position (0 1):

+ if the FAC contains + INF

if the FAC contains -INF

'J if the F AC contains IN 0

o if the F AC contains -0

* if the FAC contains any other invalid quantity.

'INF' and 'INO' are defined in Appendix B.

Error During FIXSD Operation

If FERHNO is called by FIXSO, one of the following occurs:

• If overflow is indicated (number in FAC too large to be converted to a 32-bit
integer), the result is set to the largest positive or negative integer (if the number
in the FAC is positive or negative, respectively). The FPR remains unchanged
except that the Status field is set to 'UUUUUOOO.'

• If the number in the FAC is invalid, FERHNO simply returns. The integer
stored by FIXSO is undefined.

Error During FCMPR Operation

If FERHNO is called by FCMPR, at least one of the operands must be invalid. If the
operands are identical invalid bit patterns, the Status field is set to '1 OOUU 101.'
Otherwise, the Status field is 'OOOUUIOl.'

Error During FZTST, FNEG, or FABS Operation

If the calling procedure is FZTST, FNEG, or FABS, no operation is performed and
the error handler simply returns.

Other Calls to FERHND

If FERHNO is called from somewhere other than the floating-point procedures
listed above, the result is undefined.

8080/8085 FP AL Error Handling

Sample User Error Handlers
If you write your own handler and use FP AL arithmetic subroutines, be aware that
your error handler may be called recursively, and must therefore be reentrant. Since
FPAL does not have its own stack, you must allocate 40 bytes of your own program
stack for each level of recursion foreseen.

If you are writing your error handler in PL/M, it must be written and called with
three parameters (although the last parameter may actually be a dummy).

Assembly-Language Example
The following is an example of a reentrant error-recovery routine (ERREC). If the
calling program is FAOO, FSUB, FMUL, or FOIV, and if the error condition is
underflow, the result is set to zero. Otherwise, the error-recovery routine returns.

The address of the low-order byte of the Floating-Point Record is assumed to be on
the stack and the B-C register pair is assumed to contain the code indicating which
procedure called ERREC. If the procedure required two operands, the second
operand's address is assumed to be in the O-E register pair.

NAME
CSEG
PUBLIC
EXTRN

ERREC

ERREC
FCLR. FSTAT

; SAVE THE REGISTER CONTENTS

PUSH PSW
PUSH B
PUSH H

; MOVE THE ERROR CODE TO 'A'. LOAD THE POINTER TO THE FPR INTO
; B,C AND MOVE THE RETURN ADDRESS TO WHERE THE POINTER WAS

MOV A,C
PUSH D
LXI H,8
DAD SP
MOV E,M
INX H
MOV D.M
INX H
MOV C,M
INX H
MOV B,M
MOV M,D
DCX H
MOV M,E
POP D

; THE CODE SETTINGS IN 'A' DESIGNATE WHICH PROCEDURE CALLED
; THE ERROR RECOVERY ROUTINE

; A = 1 FADD
; A = 2 FSUB
; A=3 FMUL
; A=4 FDIV
; A= 5 FIXSD
; A=6 FCMPR

4-3

Error Handling 8080/8085 FPAL

4-4

; A= 7 FZTST
; A = 8 FNEG
; A=9 FABS
; A = 10 FSORT

; IF A = 1.2.3,4 AND IF THE ERROR CONDITION IS UNDERFLOW.
; SET THE RESULT TO ZERO. OTHERWISE. SIMPLY RETURN.

CPI 5
JNC DONE
CALL FSTAT
ANI 00000111 B
CPI 4
JNZ DONE
CALL FCLR

; RESTORE REGISTERS AND STACK

DONE: POP H
POP B
POP PSW
INX SP
INX SP
RET
END

PL/M-80 Example

The following code tells the FP AL that a user routine (USER$ERROR) is to be
called when an error is detected and loads the address of the error routine into the
FPR. If the calling procedure required two operands, the second operand's address
is passed as the third parameter of USER$ERROR.

DECLARE ERROR$FLAG LITERALLY '0000000100000000B';
CALL FSET(. FPR,ERROR$FLAG,. USER$ERROR);

The remainder of this example is code needed to print a message indicating which
procedure,was running when the error occurred.

WRITE

ENDWRITE;

PROCEDURE (AFT, BUFFER, COUNT, STATUS) EXTERNAL;
DECLARE (AFT, BUFFER, COUNT, STATUS) ADDRESS;

USER$ERROR: PROCEDURE (FPR, ERROR. ADDR);
DECLARE (FPR. ERROR, ADDR, STATUS) ADDRESS;

; DO CASE ERROR;

CALL WRITE (O,.('FADD ERROR ') ,11 ,.STATUS);
CALL WRITE (O,.('FSUB ERROR '),11 ,.STATUS);
CALL WRITE (O,.('FMUL ERROR '),11,.STATUS);
CALL WRITE (O,.('FDIV ERROR '),11 ,.STATUS);
CALL WRITE (O,.('FIXSD ERROR '),12,.STATUS);
CALL WRITE (O,.('FCMPR ERROR '),12,.STATUS):
CALL WRITE (O,.('FZTST ERROR '),12,.STATUS);
CALL WRITE (O,.('FNEG ERROR '),11,.STATUS);
CALL WRITE (O,.(,FABS ERROR '),11 .. STATUS);
CALL WRITE (O,.(,FSORT ERROR ').12,.STATUS);

END;
END USER$ERROR;

CHAPTER 51
INTERFACE TO FPAL

The FPAL procedures reside in object module form in the library FPAL.LIB on the
ISIS-II system diskette. You need only declare the names of the FPAL procedures
you use to be 'external' and call them when they are needed. When you have com­
pleted program development, you must link the necessary floating-point procedures
to your object module.

FP AL procedure names are declared to be external using the EXTRN directive in
assembly language or the EXTERNAL attribute in PL/M. The simplest way to do
this is to create a file containing external declarations for the FP AL procedures you
will be using, then incorporate this file into your source program using the IN­
CLUDE control in the 8080/8085 assembler or PL/M-80 compiler. For example,
you might imbed the INCLUDE control in your source code as follows:

$INCLUDE (:F1 :FPEXTN.SRC)

Since the FPAL procedures reside in an ISIS-II library, they can be linked quite
easily by linking the entire library. The linker then scans your program and links
only those procedures you need (those that satisfy external references). Linking is
done at the ISIS-II command level following successful assembly/compilation to
produce a relocatable 8080 or 8085 object module. The PL/M-80 library
(PLM80.LIB) must be linked.

Example:

-LINK :F1 :MYPROG.OBJ,FPAL.L1B,PLM80.L1B TO :F1 :MYPROG.LNK

You can also specify individually the FPAL procedures you want linked from
FP AL.LIB. If you choose to let the linker satisfy external references, you should be
sure you do not have external declarations for procedures you don't use. For exam­
ple, you would not want to create an 'include' file containing external declarations
for all FPAL procedures unless you plan to specify individual 'modules' at the time
you link FPAL.LIB, or intend to use all of them.

If your set of program modules includes PL/M-80 or 8080/8085 assembly language
modules that call FPAL routines and also includes other modules written in
FORTRAN-80 (none of which should call FPAL routines), you should link your
program modules together (after translating) using the three-step sequence given
below, rather than as illustrated in the example above. This is necessary to avoid
incorrect references to certain routines in the FORTRAN-80 run-time libraries that
have the same public names as routines in FPAL.LIB.

1. Link together your FORTRAN relocatable object program(s) and the support
libraries they need, including the FORTRAN-80 run-time libraries required for
your environment (refer to the ISIS-II FORTRAN-SO Compiler Operator's
Manual), but omitting PLM80.LIB. The LINK output from this step will
include a list of unresolved external names of routines in PLM80.LIB, and also
the unresolved external names of any PL/M or assembly language routines
called from your FORTRAN program(s). These can be ignored.

2. Link together your PL/M-80 or 8080/8085 assembly language relocatable
object program(s) and the support libraries they need, but again omitting
PLM80.LIB. The LINK output will again include a list of unresolved external
names of routines in PLM80.LIB, and also the unresolved external names of
any FORTRAN routines called from your PL/M or assembly language pro­
gram(s). These, again, can be ignored.

5-1

Interface to FP AL 8080/8085 FP AL

5-2

3. Link all modules together in this order if your main program is in FORTRAN:

(LINK output from step 1), (LINK output from step 2), PLM80.LIB

Or, link all modules in this order if your main program is in PL/M or assembly
language:

(LINK output from step 2), (LINK output from step 1), PLM80.LIB

The LINK output from this step will include messages that certain symbols
beginning with the letters "FQ" are multiply defined. These messages can be
ignored; the pre-linking steps (1 and 2) have ensured that the correct routines are
linked to the calling modules that need them.

Example:

Your main program is written in FORTRAN-80, uses FORTRAN intrinsic functions
(so that FPEF .LIB is needed), and is stored in relocatable object form in
FTNMN .OBJ. The main program calls two PL/M-80 subroutines that call FP AL
routines and also make ISIS-II system calls (so that SYSTEM.LIB is needed).
The object code for these subroutines is in PLMSB1.0BJ and PLMSB2.0BJ. You
want to run your programs under ISIS-II and use the software run-time package for
FORTRAN arithmetic. If all the Intel libraries are on drive 0 and all your own
program modules are on drive 1, you can use the following sequence of LINK
commands:

1. -LINK :F1 :FTNMN.OBJ,F80RUN.LlB,F80ISS.LlB, &
**FPEF.lIB,FPSOFT.lIB TO :F1 :FTNMN.LNK

2. -LINK :F1 :PLMSB1.0BJ,:F1 :PLMSB2.0BJ,FPAl.LlB, &
**SYSTEM.lIB TO :F1 :PLMSB.LNK

3. -LINK :F1 :FTNMN .LNK,:F1 :PLMSB.LNK,PLM80.LlB &
**TO :F1 :MYPROG.LNK

APPENDIX A
FLOATING-POINT RECORD FORMAT

The Floating-Point Record is allocated as shown in figure A-I.

FLOATING POINT
ACCUMULATOR

LOW ADDRESS
(POINTER)

S

ea

123

11S

17

e7 e6 eS

122 121 120

114 113 112

16 Is 14

e4 e3 e2 e1

119 11a 117 116

111 110 19 la

13 12 11 10

Figure A-I. Floating-Point Record Format

Status Field

} EXPONENT
FIELD

FRACTION FIELD
(11 BYTES)

Six bits are currently defined in the Status field. The setting of these bits depends on
the floating-point function performed. The undefined bits are reserved for FPAL
use.

The E, G, and L bits act as flags following a comparison (FCMPR, FZTST). A
number in the FAC is compared to a second number and

E = 1
G = 1
L = 1

if the FAC = second operand,
if the FAC > second operand,
if the FAC < second operand.

A-I

Floating-Point Record Format 8080/8085 FP AL

A-2.

The three Ee (error condition) bits indicate whether an error just occurred. The type
of error can be determined from these bit settings as follows:

Error Code Interpretation

000 No error

001 Attempted division by zero

010 Domain error (e.g., r-1f
011 Overflow

100 Underflow

101 Invalid number in FAC

110 Invalid number in memory

111 Currently undefined

Error-Handler Address Field

The Error-Handler Address field contains the address of the error-handler
subroutine. This may be the FPAL's default error handler, FERHND (described in
Chapter 4), or a routine of your own. In either case, the address is loaded into this
field by either the initialization subroutine (FSET) or the reset subroutine
(FRESET).

Error Field

The bits in the Error field are used to accumulate error statistics. Only five bits of
this field are used currently.

If any of the IE, DE, VE, ZE or DE bits is set, the error described below has oc­
curred at least once since the last time the respective bit was set to zero (by the FSET
or FRESET subroutine).

Bit Interpretation

IE Invalid operand

OE Overflow error

UE Underflow error

ZE Attempted division by zero

DE Domain error

The remaining three bits of the low-address byte are currently unused. Setting any of
these bits to one causes undefined results.

Floating-Point Accumulator

The Fraction and Exponent fields shown in figure A-I actually contain an unpacked
version of the format assumed for 32-bit floating-point numbers in memory (figure
A-2). The f23 (normalization) bit shown in figure A-I is implied in the packed for­
mat; f2)=O if the Exponent field is zero and otherwise fn=I. In both figures, 's' is the
'sign' bit.

8080/8085 FP AL Floating-Point Record Format

HIGH ADDRESS

LOW ADDRESS
(POINTER)

S

e1

115

17

ea

122

114

16

e7 e6

121 120

113 112

15 14

e5 e4 e3 e2

119 11a 117 116

111 110 19 la

13 f2 f1 fO

Figure A-2. Floating-Point Number Format in Memory

Two FP AL subroutines operate on 32-bit integers. FIXSD converts a floating-point
number in the FAC to an integer in memory. FL TDS converts an integer in memory
into a floating-point number in the FAC. The format of the 32-bit two's comple­
ment integer stored in memory is shown in figure A-3. In this figure, i32 (the high­
order bit) is the sign bit.

HIGH ADDRESS

LOW ADDRESS
(POINTER)

i32 I

Figure A-3. Integer Format in Memory

I i1

A-3

APPENDIX B I
DEFINITIONS

This appendix defines terms used elsewhere in the manual along with the formulas
used for rounding values and decoding exponent wraparound.

Floating-Point Zero

The word with all bits equal to zero is defined as the unique floating-point zero. No
other form for floating-point zero is provided by FP AL.

Invalid Numbers

All bit patterns are valid except those described here.

The first set of invalids are those whose exponent field is set to all ones. This set is
used for infinities, indefinites, pointers, etc. Infinities are defined as:

+ INF 's' bit = 0; all other bits = 1

-INF all bits=1

The indefinite form is:

INO 's' = 0; exponent bits all = 1; fraction bits = 0

A second set of bit patterns is currently defined as invalid. These are numbers whose
exponent field is zero with at least one other bit set to one.

Single-Precision Format

Single-precision formats in the Floating-Point Accumulator and 8080 or 8085
memory are as shown in figures A-I and A-2. The three fields within these formats
are:

s Sign bit. Sign-magnitude representation where s=O means positive and s= 1
means negative.

e Exponent bits. Except in the case of floating-point zero, the exponent is offset
by a bias of 27 - 1; i.e., the stored exponent is (27 - 1) larger than the true expo­
nent. All zeros and all ones in the exponent field are currently reserved for the
floating-point zero and the invalid numbers described above.

f Fraction bits. When the exponent is nonzero, an implicit one bit is assumed at
the left of the fraction; the binary point is between the assumed bit and the ex­
plicit fraction bit.

The number base for the FP AL is binary. The value of a given binary representation
(where 's' is the sign bit, 'e' is a binary exponent value, and 'f' is a binary fraction
value) can be formulated as:

s e-(2'-1)
(-1) ·2 ·(1.+.f) where e*"O and e *" FF

B-1

Definitions

B-2

8080/8085 FP AL

Rounding

If rounding is required to produce the final result of a floating-point operation
(which does not include FQFD2B and FQFB2D), the 'round to even' rule is used.
This rule returns the floating-point number closest to the true result. In the
ambiguous case, i.e., when two floating-point numbers are equally close to the true
result, the number with a zero in the least significant bit of the fraction is returned
(that is, the nearest 'even' number is returned).

Exponent Wraparound

When overflow or underflow occurs during FP AL operations, the correct fraction
results but the exponent is 'wrapped around.' This is consistent with the FP AL
development philosophy that no information should be lost and that you, the user,
should be able to decide what you want to do when an overflow lunderflow excep­
tion occurs.

A 'wrapped around' exponent is defined to be ew where the true (offset) exponent et
can be derived from ew by considering an expanded range of exponents and

on overflow

on underflow

et=ew + (3.2 6
- 2)

et=ew-(3' 2" - 2)

APPENDIX C
SUMMARY OF FPAL PROCEDURES

Basic Operation

Table C-l summarizes the input prerequisites of each FPAL procedure and the out­
put returned. FERHND is not listed since it is called by other procedures, not by the
user. Remember that FSET must be called before any other procedure.

Table C-l. FPAL Procedure Operation

FPAL B,C D,E Result
Operation Procedure Addresses Addresses Stored at

FABS FPR -- FAC FAC+-FAC

FADD FPR MEM FAC FAC+-FAC + MEM

FCLR FPR -- FAC FAC+-O

FCMPR FPR MEM REGA FAC MEM

FDIV FPR MEM FAC FAC+-FAC/MEM

FERROR FPR -- REGS H,L REGS H,L+-ERROR

FIXSD FPR MEM MEM MEMint+-FACfp

FLOAD FPR MEM FAC FAC+-MEM

FLTDS FPR MEM FAC FACfp+-MEMint

FMUL FPR MEM FAC FAC+-FAC'MEM

FNEG FPR -- FAC 0+-0
otherwise, change sign
of FAC

FQFB2D MEM Control MEM MEMdec+-FACbin
Block

FQFD2B FPR Control FAC FACbin+-MEMdec
Block

FRESET B(O)=Error User FPR ERROR+-B,C
Handler Bit Error ERR HAND ADDR+-D,E
C=Error Field Handler
Initialization

FSET B(O)=Error User FPR FAC+-O
Handler Bit Error ERROR+-B,C
C=Error Field Handler ERR HAND ADDR+-D,E
Initialization STATUS+-~

FSQRT FPR -- FAC FAC+-V FAC

FSTAT FPR -- REGA REG A+-STATUS

FSTOR FPR MEM MEM MEM+-FAC

FSUB FPR MEM FAC FAC+-FAC-MEM

FZTST FPR -- REGA FAC 0

Error Handling

Table C-2 lists the error codes set by the FPAL procedures. As was described in
Chapter 4, when an error occurs a code is placed in the B-C register pair indicating
which procedure was running when the error was detected, error codes are set in the

C-J

Summary of FP AL Procedures 8080/8085 FP AL

C-2

Status and Error fields of the FPR, and the error handler is called. The default error
handler may perform additional operations depending on which procedure was
executing.

In the case of an invalid number in the FAC, the Status field error bits and the IE bit
are 'preset' by FLOAD, rather than being set by an arithmetic procedure. The call to
FERHND comes from the arithmetic procedure, however.

Table C-2. FP AL Error-Handling Summary

FPAL
Status Error Bit Error Type FERHND Action

Procedure B,C

FABS 9 UUUUU101 IE FAG invalid. No operation; FERHND returns.

FADD 1 UUUUU011 OE Overflow. Set FAG to largest/smallest no.
(overflow positive/negative);
Status=U U U U UOOO.

UUUUU100 UE Underflow. FAG set to O.
Status set to UUUUUOOO.

UUUUU101 IE FAG invalid. No operation; FERHND returns.

UUUUU110 IE Invalid no. in No operation; FERHND returns.
memory.

FGLR - -- -- No error --
conditions.

FGMPR 6 OOOUU101 IE FAG invalid If operands identical, Status set to

OOOUU110 IE Invalid no. in
100UU101; otherwise Status is
OOOUU101.

memory

FDIV 4 UUUUUOO1 ZE Attempted FAG set to indefinite (s=O,
division by O. e=1, f=O); Status set to

UUUUU101; IE set.

Others Others Same as Same as FADD.
same same FADD.
as FADD. as FADD.

FERROR - -- -- No error --
conditions.

FIXSD 5 UUUUU011 OE FAG no. too Set memory to largest/smallest
large. integer from FAG (overflow positive/

negative); Status= UUUUUOOO.

UUUUU101 IE FAG invalid; No operation; FERHND returns.
integer . stored is
undefined.

FLOAD - UUUUU101 IE Number Not called.
loaded into
FAG is invalid.

FLTDS - -- -- No error --
conditions.

FMUL 3 Same as Same as Same as Same as FADD.
FADD. FADD. FADD.

FNEG 8 UUUUU101 IE FAG invalid. No operation; FERHND returns.

FQFB2D - UUUUU101 IE FAG invalid. Not called. Decimal record sign and

D2···D n set to*; D1set to:
'+' ifFAG=+ INF
'-' if FAG = -INF
'?' if FAG = IND
'0' if FAG =-0
,.' all other invalids.

FQFD2B - -- -- No error --
cond itions.

8080/8085 FP AL Summary of FP AL Procedures

Table C-2. FPAL Error-Handling Summary (Cont'd.)

FPAL
Status Error Bit Error Type FERHND Action Procedure B,C

FRESET - -- -- None, but if --
MA, UO, or
00 bits = 1,
results are
undefined.

FSET - -- -- Same as . --
FRESET.

FSQRT 10 UUUUU101 IE FAG invalid. No operation: FERHND returns.

UUUUU010 DE Domain error FAG set to indefinite (s=O,
(FAG e=1, f=O); Status set to
negative). UUUUU101; IE set.

FSTAT - -- -- No error --
conditions.

FSTOR - -- -- No error --
conditions.

FSUB 2 Same as Same as Same as Same as FADD.
FADD. FADD. FADD.

FZTST 7 UUUUU101 IE FAG invalid. No operation; FERHND returns.

Procedure Sizes

Table C-3 summarizes size information for each FPAL procedure (in bytes). These
absolute figures must be read against the context of FP AL operation as a whole,
however, as detailed in the notes following this table.

Table C-3. FP AL Procedure Sizes

FPAl Subroutines
Procedure Bytes linked

FABS 36 None

FADD/FSUB 463 FCLR, FLOAD, FNEG, Support Routi~~

FCLR 21 None

FCMPR 159 Support Routines

FDIV 342 Support Routines
-

FERHND 237 FCLR,FLOAD

FERROR 10 None

FIXSD 178 None

FLOAD 88 None

FLTDS 139 FCLR, Support Routines

FMUL 404 FCLR, Support Routines

FNEG 43 None

FOFB2D 1585 FADD, FABS, FMUL, FSTAT,
FDIV, FIXSD, FCMPR, FZTST

FOFD2B 725 FMUL, FNEG, FDIV, FLTDS

FRESET 42 FERHND

FSET 57 FERHND

FSORT 247 None

FSTAT 1 None

FSTOR 35 None

FZTST 56 None

Support Routines 259 None

C-3

Summary of FP AL Procedures 8080/8085 FP AL

C-4

NOTES

1. FSET must be used. Since it links in FERHND and FERHND links in FCLR
and FLOAD, the total space requirement for FSET is

FSET 57
FERHND 227
FCLR 21
FLOAD 88

393 bytes

Since FRESET links in the same subroutines as FSET, they need not be counted
again if FRESET is specified.

FRESET 40 bytes

2. A number of arithmetic procedures (FADD, FSUB, FDIV, FMUL, FCMPR,
and FL TDS) link in a set of FPAL support routines. These routines need be
linked and counted only once.

Support Routines 259 bytes

3. Calling FADD or FSUB causes both subroutines to be linked into your
program. These subroutines link in FCLR, FLOAD, and the support routines -
all of which have been previously counted. In addition, FNEG is linked, so that
the additional space requirement for FADD/FSUB becomes

FADD/FSUB 463
FNEG 43

506 bytes

4. FDIV and FCMPR link in only the FPAL support routines. FMUL and FLTDS
link in only the support routines and FCLR, both of which are already counted.
Thus, only the absolute count for these procedures need be considered.

5. FABS, FERROR, FIXSD, FST AT, FSTOR, and FZTST link in no other
procedures and only their absolute sizes need be considered.

6. FCLR, FERHND, FLOAD, and FNEG are all linked by other subroutines and
inc!uded in those subroutines' total byte count. They need not be counted again
if referenced separately.

Example:

To compute I = FIXSD (A *B), you must allow space for:

FSET ~3

FERHND
FLOAD
FMUL
FCLR

404

Support Routines 259
FIXSD 178

1234 bytes

Procedure Timing

When computing execution speeds of FPAL procedures, you must be even more
wary of absolutes than when computing size requirements. We could list the follow­
ing times for the basic arithmetic operations:

FADD 0.7 milliseconds
FSUB 0.7
FMUL 1.5
FDIV 3.6
FCMPR 0.3

8080/8085 FPAL Summary of FP AL Procedures

These figures are only approximations, however, and the actual figure for a given
operation depends on the operands involved. The following examples illustrate this
point.

Example 1

Operand 1: 40000000H

Operand 2: 40000000H

Procedure

FADD

FSUB

FMUL

FDIV

FCMPR

Example 2

Operand 1: 41C80000H

Operand 2: 41 FOOOOOH

Procedure

FADD

FSUB

FMUL

FDIV

FCMPR

Example 3

Operand 1: 41C8FFOOH

Operand 2: 41 FOFOFFH

Procedure

FADD

FSUB

FMUL

FDIV

FCMPR

Example 4

Operand 1: 3FFFFFFFH
Operand 2: 3FFFFFFEH

Procedure

FADD

FSUB

FMUL

FDIV

FCMPR

ms

0.69

0.79

1.48

3.79

0.33

ms

0.70

0.83

1.43

3.60

0.28

ms

0.66

0.83

1.54

3.60

0.28

ms

0.65

1.62

1.66

3.61

0.32

NOTE

The only reason FSUB appears to take longer than FADD in these examples
is that all operands are positive. On the average, both will take the same
time since they are simply different entry points into the same subroutine.

C-5

8080/8085 Floating-Point Arithmetic
Library User's Manual

9800452-03

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product u~ers. This form lets you participate directly In the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found In this manual.

2. Does the document cover the Information you expected or required? Please make suggestions for
Improvement.

3. Is this the right type of document for your needs? Is It at the right level? What other types of
documents are needed?

4. Old you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being th~ best rating.

NAME __ DATE ________________ __

TITLE
COMPANYNAME/DEPARTMENT __ __
ADDRESS __ _

CITY STATE ______ _ ZIP CODE ___________ _

Please check here If you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document Is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

" III NO POSTA(
NECESSAF

IF MAILE[

IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

