
ISIS-II 
8080/8085 MACRO ASSEMBLER 

OPERATOR'S MANUAL 

Manual Order Number: 9800292-04 Rev. D 

Copyright © 1977, 1979, 1980 Intel Corporation 
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I 



ii 

Additional copies of this manual or other Intel literature may be obtained from: 

Literature Department 
Intel Corporation 
3065 Bowers A venue 
Santa Clara, CA 95051 

The information in this document is subject to change without notice. 

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited 
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation 
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no 
commitment to update nor to keep current the information contained in this document. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in 
an Intel product. No other circuit patent licenses are implied. 

Intel software products are copyrighted by and shall remain the properly of Intel Corporation. Use, 
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 
7-104.9(a)(9). 

No part of this document may be copi~d or reproduced in any form or by any means without the prior 
written consent of Intel Corporation. 

The following are trademarks of Intel Corporation and may be used only to describe Intel products: 

ICE 
iCS 
Insite 
Intel 
Intelevision 
Intellec 

iSBC 
Library Manager 
MCS 
Megachassis 
Micromap 
Multibus 

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix. 

Multimodule 
PROMPT 
Promware 
RMX 
UPI 
"scope 

I A430/881/10K DO I 



• n PREFACEI 

This manual describes operating procedures for the ISIS-II SOSO/SOS5 Macro 
Assembler. The assembler translates SOSO/S085 assembly language source code into 
object code executable on the SOSO/S085 microprocessors. No discussion of 
assembly language or assembler directives is provided here, as these topics are 
covered in the document 

8080/8085 Assembly Language Programming Manua19S00301 

The ISIS-II assembler is invoked using the diskette operating system facility of 
Intel's Intellec Microcomputer Development System. Use of this facility is described 
in the document 

ISIS-II System User's Guide 9Soo306 

iii 





CHAPTER 1 
ASSEMBLER OVERVIEW 

PAGE 

ISIS-II Assembler Environment. . . . . . . . . . . . . . . . . .. 1-1 
Overlay and Nonoverlay Operating Modes ........ 1-1 
Symbol Table Size. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 

Input/Output Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
Source File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
Object File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
List File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
Symbol-Cross-Reference File. . . . . . . . . . . . . . . . . . .. 1-3 

Assembler Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-3 

CHAPTER 2 
ASSEMBLER CONTROLS 
Introduction to Assembler Controls ................ 2-1 

Primary and General Controls ................... 2-1 
Specifying Controls ............................ 2-1 
Summary of Controls. . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 

ISIS-II Assembler Controls ....................... 2-2 
ISIS-II Assembly-Time Command. . . . . . . . . . . . . .. 2-2 

Primary Controls ..................... ..... .. 2-3 
General Controls. . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-4 
Defaults .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-4 

ISIS-II Assembler Control Lines ................... 2-5 

CHAPTER 3 
ASSEMBLER OPERATION 
Activation Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-1 
Sample Assembly ......................... . . . . .. 3-1 
Reducing Assembly Time. . . . . . . . . . . . . . . . . . . . . . . .. 3-3 

CONTENTSI 

CHAPTER 4 PAGE 
LIST FILE FORMATS 
Assembly Listing Format. ........................ 4-1 

Page Header .................................. 4-1 
Title Line .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-1 
Column Heading. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-1 
Assembly Output Line ... . . . . . . . . . . . . . . . . . . . . .. 4-2 
Symbol Table Listing. . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 
Error Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 

Symbol-Cross-Reference Listing ................... 4-4 
Page Header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-4 
Cross-Reference Output Line ................... 4-4 

CHAPTERS 
PL/M LINKAGE CONVENTIONS 

CHAPTER 6 
RUNNING YOUR PROGRAM 

CHAPTER 7 
ERROR MESSAGES 
Error Detection and Reporting . . . . . . . . . . . . . . . . . . ... 7-1 
Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-1 

Source-File Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-1 
Run-Time Errors .............................. 7-2 
Assembler Control Error. . . . . . . . . . . . . . . . . . . . . .. 7-3 
ISIS-II Error Messages ......................... 7-3 

v 





CHAPTER 11 
ASSEMBLER OVERVIEW 

An assembler performs the clerical function of converting your assembly language 
program into machine-executable form. It accepts your source file and, depending 
on the output options selected, can produce an executable object file, a listing of the 
source and assembled code, and a symbol cross-reference listing. 

The ISIS-II 8080/8085 Macro Assembler (ASM80) runs under the Intel Systems Im­
plementation Supervisor (ISIS-II) and resides on the ISIS-II system diskette. Opera­
tion of the ISIS-II assember is the subject of this manual. 

Details for loading and controlling the ISIS-II assembler are given in Chapters 2 and 
3. List formats are shown in Chapter 4. Error messages issued by the assembler are 
listed in Chapter 7. Chapter 5 describes the linkage conventions for passing 
parameters from an assembly language program module to a PL/M module. The 
hardwarel software environment requirements are summarized below. 

ISIS-II Assembler Environment 
The ISIS-II assembler uses the following hardware: 

• Intellec system with 32K RAM memory (48K if source contains macros) 

• Console device (TIY or CRT) 

• Diskette unit 

• Line printer (if available) 

This assembler runs under ISIS-II, which includes the Locater, Linker, and Library 
Manager. 

Overlay and Nonoverlay Operating Modes 

The ISIS-II assembler can be run in either an overlay or nonoverlay mode. Overlay 
mode requires only 32K of Intellec memory and is selected by specifying the 
NOMACROFILE control (described in Chapter 2). This control can be specified 
only if your program does not include macros. 

If your program has macros, or if you want faster assemblies, specify the 
MACROFILE control. Your Intellec system must have a 48K memory in this case, 
but the assembler can run in nonoverlay mode. Specifying MACROFILE also adds 
the macro reserved symbols (MACRO, ENDM, LOCAL, REPT, IRP, IRPC, 
EXITM) to the list of reserved words. 

No matter how much Intellec memory you have, the assembler runs in overlay 
(slower) mode unless you specify MACROFILE. (NOMACROFILE is the default 
control.) Both modes use an optional overlay to create cross-reference listings. 

I-I 



Assembler Overview 8080/808S Assembler 

1-2 

Symbol Table Size 

In overlay mode with 32K of Intellec memory, you can generate slightly more than 
200 symbols. In nonoverlay mode with 48K of memory, you can have slightly more 
than 800 symbols. Each 16K memory increment adds 2000 symbols. 

Macro processing uses a small amount of memory (for storing actual parameters) 
that could otherwise be used for symbols. The size or number of macro definitions 
does not affect symbol table space, however, since macro definitions are stored in a 
diskette file. 

If you need more symbol table space, you can either add more Intellec memory or 
divide your program into smaller modules. 

Input/Output Files 

Source File 

The input to the ISIS-II assembler is a source file, which can contain three elements: 

• An 8080/8085 assembly language program, composed of instructions described 
in the 808018085 Assembly Language Programming Manual (9800301); 

• Assembler directives, described in the same manual; 

• Assembler control lines, described in the next chapter of this manual. 

Only the instructions in your assembly language program are translated into exe­
cutable object code. 

Object File 

The ISIS-II assembler creates its object file on a flexible diskette. 

The object file contains machine language instructions and data that can be loaded 
into memory for execution or interpretation. In addition, it contains control in­
formation governing the loading process (such as the starting address for program 
execution) . 

The assembler can produce object files in relocatable object code format. The object 
modules produced by the ISIS-II 8080/8085 assembler can be loaded and executed 
anywhere in memory if they don't interfere with other programs they need for pro­
per operation. The modules can also be linked to form a larger program. See the 
ISIS-II Systems User's Guide (9800306) for details. 

List File 

The list file is a formatted file designed to be output to a line printer or terminal. It 
includes listings of: 

• Your assembled object code; 

• Your source program; 

• A table of symbols and their values; 

• A summary of assembly errors. 
The formats of these listings are described in Chapter 4. 



8080/8085 Assembler Assembler Overview 

Symbol-Cross-Reference File 

During the first pass of the assembler, a file of symbol-cross-reference records is 
created, if requested. This diskette file is named ASXREF . TMP . 

In general, the assembler generates two types of symbol-cross-reference records: 
symbol-definition records and symbol-reference records. If a symbol appears as a 
name in a label field and the symbol is being defined (by SET, EQU, MACRO, or as 
a label), a symbol-definition record is produced. If the symbol is being redefined by 
SET or MACRO, it is considered a symbol definition. All other symbol occurrences 
are considered references and cause the assembler to generate a symbol-reference 
record each time the symbol appears. Symbol definition records are terminated by a 
pound sign (##) in the cross-reference listing. 

All symbols are cross referenced except dummy parameters and local labels appear­
ing in macro definitions (that is, all global user-defined symbols, macro names, and 
actual symbols replacing dummy parameters or local labels are cross referenced). 
When certain controls that suppress source listing are specified (NOLIST, NOGEN, 
NOCOND), symbols not listed are not cross referenced. 

The assembler calls on ISIS-II to load its cross-reference-generator program and 
ASXREF.TMP from the diskette. From the programmer's point of view, the opera­
tions required to produce the cross-reference listing are automatic (once the cross 
reference file has been requested). The format of the cross-reference listing is shown 
in Chapter 4. 

Assembler Files 
The ISIS-II assembler uses several files of its own, such as the intermediate cross­
reference file just mentioned. While you don't need to remember the names of these 
files, you must know where they reside to avoid diskette space conflict. 

The assembler root program (ASM80) and its overlays (ASM80.0Vn, where 
n=O, 1 ,2 ... ) must reside on the same diskette, but this diskette can be on any drive. 
The cross-reference generator (ASXREF) must reside on this diskette also. 

The intermediate cross-reference file (ASXREF. TMP) is written to the drive con­
taining your source file. The MACROFILE control determines where the in­
termediate macro file (ASMAC. TMP) is written; the default is the source file drive. 

The list and object files can be directed to any drive via assembler controls. The 
default sends these files to the source file drive. 

1-3 





CHAPTER 21 
~SEMBLER CONTROLS 

Introduction to Assembler Controls 
Assembler controls allow you to specify the input! output files or devices to be used 
by the assembler and whether list or object files (or portions of these files) are to be 
generated by the assembler. Controls can be specified at two levels: 

• In commands specified at assembly time 

• As control lines embedded throughout your source file 

The latter allows selective control over sections of your program. For example, you 
might want to suppress the assembly listing for certain sections of your program, or 
to cause page ejects at specific places. 

Primary and General Controls 

Controls are classified as primary and general. Both classes of controls can be set 
when the assembler is run or in source file control lines. However, source file control 
lines containing primary controls must be inserted before the first line of comments 
or source code. General controls can be respecified at any time. 

The ISIS-II assembler allows primary controls to be specified only once. This applies 
to controls specified in assembly-time command lines, to control lines embedded in 
your source code, or combinations of the two. 

Specifying Controls 

Controls can be specified using either upper-case or lower-case characters. 

If a control is specified incorrectly in an assembly-time command, the entire com­
mand is ignored and must be reentered. 

If a control is specified incorrectly in a source code control line, the incorrect control 
and all controls following it in the line are ignored. 

Summary of Controls 

The following list shows the controls available, their basic functions, and whether 
they are primary or general (PIG). Default controls are italicized. The remainder of 
this chapter describes each control in greater detail. 

Control PIG Function Area 

OBJECT INOOBJECT P Object File 
OEBUGINOOEBUG P Object File 
PRINT INOPRINT P Assembly Listing 
CONO INOCONO G Assembly Listing 
LlSTINOLIST G Assembly Listing 
SYMBOLS INOSYMBOLS P Assembly Listing 
XREF INOXREF P Cross-Reference Listing 
PAGING INOPAGING P listing Format 

2-1 



Assembler Controls 808O/808S Assembler 

2-2 

Control PIG Function Area 

flAGELENGTH (66) P Listing Format 

PAGEWIDTH (120) P Listing Format 

TITLE G Listing Format 

EJECT G Listing Format 

GEN/NOGEN G Macro List 

MACRODEBUG/NOMACRODEBUG P Macro List 

MACROFILE/NOMACROFILE P Macro Temporary File 

MOD85 P 8085 Switch 

SAVE G Stack Controls 

RESTORE G Fetch Controls 

INCLUDE G Library Function 

TTY/NOTTY P Teletypewriter Function 

In general, controls go into effect at the end of the control line. Exceptions occur for 
control lines that cause a transition between 'listing' and 'not listing' states. 

If the transition is caused by a change in the LIST INOLIST controls, the control 
line containing the LIST INOLIST is always printed. If a change in GEN/NOGEN 
causes the transition, the control line is not printed. If the control line contains both 
LIST INOLIST and GEN/NOGEN changes, the control line is printed. 

ISIS·II Assembler Controls 

ISIS-II Assembly-Time Command 

The ISIS-II Assembler for the 8080 or 8085 is invoked by calling the ISIS-II file 
ASM80. This call includes the name of your source file and any assembler controls 
you wish to specify. Items in the control list are separated by spaces. The call is 
terminated by a carriage return. 

-ASM80 file control-list 

The "file" in this format is your source file. This file (and files enclosed in paren­
theses as part of a control) can be a 1-6 character file name, a file name followed by 
a period and 1-3 character extension, an ISIS-II device name, or an ISIS-II device 
name followed by a file name and extension. (See the ISIS-II System User's 
Guide for details.) 

Examples: 

FILE20 
PROG.SRC 
:HR: 
:F1 :ASSMB.SRC 

(filename) 
(filename. extension) 
(:ISIS-II device name:) 
(:ISIS-II dev name:filename.ext) 

All control items specified must be spelled out in their entirety. 

Example: 

·ASM80 PROG.SRC DEBUG SYMBOLS XREF 



8080/8085 Assembler 

Primary Controls 

Control 

OBJECT(file) 

NOOBJECT 

MOD85 

DEBUG 

NODEBUG 

PRINT(file) 

NOPRINT 

SYMBOLS 

NOSYMBOLS 

XREF 

NOXREF 

MACROFILE(drive) 

NOMACROFILE 

PAGELENGTH(n) 

PAGEWIDTH(n) 

Effect 

An object code file is generated and is output to the 
specified diskette file. If this control is omitted, 
"OBJECT(file.OBJ)" is assumed, where "file" is the 
name of your source file; the file is directed to the same 
drive used for the source file. 

Object code generation is suppressed. 

The assembler assumes that BOBO code is being 
assembled unless the B085 instruction set is specified by 
this control. This assembler issues a warning if an B085 in­
struction is encountered in the 8080 mode. 

If an object file is requested, the symbol table is output to 
that file. DEBUG has no effect otherwise. 

The symbol table is not included in the object file. 

An assembly list file is generated and is output to the 
specified file. If this control is omitted, "PRINT(file.LST)" 
is assumed, where "file" is the name of your source code 
file; the file is directed to the name drive used for the 
source file. See general control LIST. 

The assembly output listing is suppressed. No file 
is specified for listing; therefore, no listing output is 
possible. 

If a list file is opened by PRINT, the symbol table is output 
to the list file. SYMBOLS has no effect otherwise. 

The symbol table is not included in the list file created by 
PRINT. 

A symbol-cross-reference file is requested. An 
intermediate file is output to ASXREF.TMP and the cross­
reference listing to the file created by PRINT. 

Symbol-cross-reference file generation is suppressed. 

The macro definition file is directed to the specified drive. 
If no drive is specified, the drive where the source file 
resides is used. Your Intellec system must have a 48K 
memory if MACROFILE is specified as the assembler runs 
in nonoverlay mode. MACROFILE also adds the macro 
reserved words (MACRO, LOCAL, etc.) to the reserved 
word list. 

No macro temporary files are created. If your source file 
contains macros, all definitions and calls cause errors. 
This control lets the assembler run on a 32K-memory 
Intellec system in overlay mode. 

Each listfile page is "n" lines long, where un" mustbe at 
least 12 and includes 3 blank lines at the top of the page, 3 
blank lines at the bottom of the page, and any page 
headings specified. If "n" is ~11, PAGELENGTH is set to 
12. The default value is 66. 

Note that 3 blank lines are issued to reach the next "top­
of- page" as opposed to issuing form feeds to reach the 
physical "top-of-form.' , 

Each list file line can be up to "nil characters long, where 
"n" must be in the range 72<n<132. Lines exceeding the 
page width are continued in column 25 of the following line 
(but lines >132 characters are truncated to 132). The 
default page width is 120. 

Assembler Controls 

2-3 



Assembler Controls 

Control 

PAGING 

NOPAGING 

MACRO DEBUG 

NOMACRODEBUG 

ITY 

NOTIY 

General Controls 

Control 

INClUDE(file) 

LIST 

NOLIST 

CONO 

NOCONO 

GEN 

NOGEN 

TITlE('string') 

EJECT 

SAVE 

RESTORE 

2-4 

Effect 

The assembler separates listing into pages with headers 
at each page break. 

The listing is not separated into pages. Headers are 
printed only once at the beginning of the listing. 

Assembler-generated macro symbols are output to the list 
and object files when the symbol table is output. 

Assembler-generated macro symbols are not output to 
the list and object files. 

Simulates form-feed for teletypewriter output. 

No teletypewriter output (form-feed simulation). 

Effect 

Subsequent source lines are input from a specified file 
until an end-of-file or nested INCLUDE is found. (Nesting 
may be four deep.) Following the end-of-file, input 
resumes from the file being processed when the IN­
CLUDE was encountered. The primary use of INCLUDE is 
to provide a macro library capability. 

All include lines have an "=" printed in column 19. After 
the initial INCLUDE, any nested INCLUDEs have their 
nesting level (1-4) printed in column 18. 

An assembly output listing is generated and sent to the 
file specified by the PRINT control. 

Assembly listing is suppressed, except lines containing 
errors. 

Conditionally-skipped source code is included in the 
assembly listing if LIST is selected. The conditional­
assembly directives are also listed. 

Listing of conditionally-skipped source code and 
conditional-assembly directives is suppressed. Listing of 
the EXITM directive is suppressed also. 

Macro expansion source text generated by macro calls is 
listed if LIST is selected. 

Macro expansion source text listing is suppressed. 

The specified string is printed in character positions 1-64 
of the second line of page headings. Strings longer than 
64 characters are truncated. 'String' must not be null. TI­
TLE remains in effect until another TITLE is encountered. 
The assembler inserts a blank line if TITLE is not 
specified. 

Spaces are skipped to the next top-of-form. The position 
of the next top-of-form is determined by PAGElENGTH, 
not by the physical top-of-form. 

The current settings of the LIST, COND, and GEN controls 
are stacked (but remain valid until explicitly changed). 
These controls can be stacked up to eight levels deep. 

The LIST, COND, and GEN control settings at the top of 
the stack are restored. 

8080/8085 Assembler 



808O/808S Assembler Assembler Controls 

Defaults 

The following defaults are assumed by the ISIS-II assembler if the corresponding 
controls are not selected: 

OBJECT(file.OBJ) 
NODEBUG 
PRINT(file. LSn 
LIST 
SYMBOLS 
COND 
GEN 
NOXREF 
NOMACRODEBUG 
NOMACROFILE 
PAGING 
PAGELENGTH(66) 
PAGEWIDTH(120) 

ISIS-II Assembler Control Lines 
The format for control lines embedded in source files to be processed by the ISIS-II 
assembler is 

$controllist 

where "$" must appear in column 1 and items in the control list are separated by 
spaces. 

Example: 

$L1ST DEBUG XREF MOD85 

Control lines containing primary controls must appear before the first statement in 
the source file, including comments. General control lines can be interspersed 
throughout the source file. 

A control line containing more than one control is scanned from left to right. If a 
control is specified incorrectly, it is ignored. All remaining controls on that line are 
also ignored. 

2-5 





CHAPTER 31 
ASSEMBLER OPERATION 

The ISIS-II SOSO/SOS5 Assembler resides on the ISIS-II system diskette. The 
assembler is loaded by calling ASMSO at the ISIS-II command level and specifying 
your source file along with any desired assembler controls (Chapter 2). All requested 
assembler operations are performed without further intervention once the assembly 
begins. 

Activation Sequence 
The following command activates and completes an ISIS-II assembly: 

-ASM80 PROG.SRC SYMBOLS NODEBUG 

Following the ISIS-II command prompt (-), you issue a command to assemble the 
file PROG.SRC. Be default, an assembly listing and object code file are requested 
and are output to PROG.LST and.PROG.OBI respectively. In addition, a symbol 
table listing is performed, but symbol table output to the object file is suppressed. 
Note that the same effect can be achieved with no control specification, since the 
controls specified are both defaults. 

The assembler sends out its sign-on message to the console device: 

ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 

After execution, the assembler issues a sign-off message and error summary: 

ASSEMBLY COMPLETE, NO ERRORS 

If XREF is selected, the sign-on message 

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE, V2.0 

is then issued on the console. 

Sample Assembly 
The following example illustrates a typical use of the ISIS-II assembler. A short pro-· 
gram (MBADD.SRC) is taken through all the steps needed to activate the assembler, 
obtain an object code file, and generate a symbol-cross-reference listing. The source 
program to be assembled is shown first, followed by the assembler activation se­
quence. The resulting assembly and symbol-cross-reference listings are also shown. 

The source code for program MBADD.SRC is as follows: 

$ TITLE('MULTIBYTE ADDITION PROGRAM') 
NAME MBADD 

LOAD MACRO OPD1,OPD2,CQUNT 
L1: LXI B,OPD1 ;;ADDRESSOF1STNO. TO Be 

LXI H,OPD2 ;;ADDRESS OF 2ND NO. TO HL 
LXI D,COUNT ;;LOOP CONTROL COUNT TO 0 
E.NDM 
CSEG 
PUBLIC NUM1,NUM2,NUM3 
EXTRN MAIN 

3-1 



Assembler Operation SOSO/S08S Assembler 

3-2 

CBASE EaU 
ORG 

START: LOAD 
XRA 

LOOP: LDAX 
ADC 
STAX 
OCR 
JZ 
INX 
INX 
JMP 

NUM1: DB 
DB 
DB 

NUM2: DB 
DB 
DB 

NUM3: DB 
END 

0100H 
CBASE 
NUM1,NUM2,NUM3 
A ;CLEAR ACCUMULATOR 
B ;LOAD BYTE OF 1ST NO. 
M ;ADD BYTE OF 2ND NO. 
B ;STORE RESULT 
o ;DONE IF REG 0=0 
MAIN ;RETURN TO MAIN PROGRAM 
B ;INCR BC TO NEXT BYTE 
H ;INCR HL TO NEXT BYTE 
LOOP ;ADD NEXT TWO BYTES 
O9OH ;1ST NUMBER 
OBAH 
084H 
08AH ;2ND NUMBER 
OAFH 
032H 
003H 
START 

Once loaded, the ISIS-II assembler performs its operations without further user in­
tervention. In this example, both assembly listing and object output are requested by 
default. The activation sequence is as follows: 

-ASMBO MBADD.SRC SYMBOLS XREF MACROFILE 

The source file is specified as MBADD.SRC. The PRINT control file defaults to 
MBADD.LST. The OBJECT control file defaults to MBADD.OBJ. A symbol­
cross-reference listing is also requested and macros are present. 

The assembly and cross-reference listings are shown below. For a detailed explana­
tion of each item in these listings, see Chapter 4. 

-ASM80 MADD.SRC SYMBOLS XREF MACROFILE 
ISIS-II 8080/8085 MACRO ASSEMBLER, V2.0 
MULTIBYTE ADDITION PROGRAM 

MBADD PAGE 1 

LOC OBJ LINE SOURCE STATEMENT 

1$ TITLE('MULTIBYTE ADDITION PROGRAM') 
2 NAME MBADD 
3 LOAD MACRO OPD1 ,OPD2,COUNT 
4L1: LXI B,OPD1 ;;ADDRESS OF 1ST NO. TO BC 
5 LXI H,OPD2 ;;ADDRESS OF 2ND NO. TO HL 
6 LXI D,COUNT ;;LOOP CONTROL COUNT TO D 
7 EN OM 
8 CSEG 
9 PUBLIC NUM1,NUM2,NUM3 

10 EXTRN MAIN 
0100 11 CBASE EaU 0100H 
0100 12 ORG CBASE 

13 START: LOAD NUM1,NUM2,NUM3 
0100 011601 C 14+ L1~ LXI B,NUM1 
0103 211901 C 15+ LXI H,NUM2 
0106 111C01 C 16+ LXI D,NUM3 
0109 AF 17 XRA A ;CLEAR ACCUMULATOR 
100A OA 18 LOOP: LDAX B ;LOAD BYTE OF 1ST NO. 
010B 8E 19 ADC M ;ADD BYTE OF 2ND NO. 
010C 02 20 STAX B ;STORE RESULT 
0100 15 21 OCR 0 ;OONE IF REG 0 = 0 
010E CAOOOO E 22 JZ MAIN ;RETURN TO MAIN PROGRAM 
0111 03 23 INX B ;INCR BC TO NEXT BYTE 
0112 23 24 INX H ;INCR HL TO NEXT BYTE 
0113 C30A01 C 25 JMP LOOP ;ADD NEXT TWO BYTES 
0116 90 26NUM1: DB O9OH ;1STNUMBER 



808O/808S Assembler Assembler Operation 

0117 BA 
0118 84 
0119 8A 
011A AF 
011B 32 
011C 03 
0100 

PUBLIC SYMBOLS 

27 
28 
29 NUM2: 
30 
31 
32 
33 

DB 
DB 
DB 
DB 
DB 
NUM3: 
END 

OBAH 
084H 
OSAH 
OAFH 
032H 
DB 
START 

NUM1 C 0116 NUM2 C 0119 NUM3 C 011C 

EXTERNAL SYMBOLS 
MAIN E 0000 

USER SYMBOLS 

;2NDNUMBER 

003H 

CBASE A 0100 L1 A 0100 LOOP C 010A MAIN E 0000 
NUM1 C 0116 NUM2 C 0119 NUM3 C 011C START A 0100 

ASSEMBLY COMPLETE, NO ERRORS 

Note that the "ASSEMBLY COMPLETE" message is also issued on the console, 
followed by the cross-reference sign-on message if a cross-reference listing has been 
requested. 

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE, V2.0 

SYMBOL 

CBASE 
L1 
LOAD 
LOOP 
MAIN 
MBADD 
NUM1 
NUM2 
NUM3 
START 

CROSS REFERENCE 

111 
41 
31 

181 
10 
2 
9 
9 
9 

131 

12 

13 
25 
22 

13 
13 
13 
33 

14 
15 
16 

CROSS REFERENCE COMPLETE 

261 
291 
321 

PAGE 1 

Control then returns to ISIS-II, which prompts for the next command with a hyphen 
(-). 

Reducing Assembly Time 
In the program debugging stage of project development, you can save an assembly 
pass by specifying NOOBJECf. If you want an error count, specifying NOPRINT 
with NOOBJECT yields an error count on the console as the only output. If you 
want just a listing of the lines in error, specify NO LIST and NOSYMBOLS. 

Assembly time can be decreased by minimizing operations requiring a lot of diskette 
activity. INCLUDEs always increase diskette activity. Control lines embedded in 
your source code cause increased overlay activity in overlay mode. Macro defini­
tions are stored on a diskette; heavy use of macro calls and nested macro definitions 
cause increased diskette activity. 

3-3 





CHAPTER 41 
LIST FILE FORMATS 

Assembly Listing Format 
The assembly list file is designed for output to a line printer or terminal. Unless 
otherwise specified, an output page consists of 66 lines, 120 characters wide, and in­
cludes three leading and three trailing blank lines, a page header, title line, column 
headings, and assembly output lines. If a listing line exceeds the right margin setting, 
it is continued in column 25 of the following line (unless the line exceeds 132 
characters, in which case those> 132 are truncated). 

The first line of the first page of a listing is an echo of the ISIS-II call to the 
assembler followed by the page header. 

If the NOPAGING assembler control is selected, the page header is followed by the 
title line and column headings, and finally the complete assembly listing with no ad­
ditional headers. 

Page Header 

Columns Description 

1-33 The string "ISIS-II 808018085 MACRO ASSEMBLER" 

34 Blank. 

35-38 The string "Vx.y" where "x" is the version and "y" is the release number. 

39-46 Blanks. 

47-52 Program module name from the NAME directive. 

53-64 Blanks. 

65-68 The string "PAGE" 

69 Blank. 

70-72 Three character positions containing the page number in decimal. 

Title Line 

Columns Description 

1-64 Program title as specified in TITLE assembler control. 

Column Heading 

Columns 

1-2 

3-5 

6-7 

8-10 

11-16 

17-19 

31-46 

Description 

Blanks. 

The string "LOC" 

Blanks. 

The string "OBJ" 

Blanks. 

The string "SEQ" 

The string "SOURCE STATEMENT" 

4-1 



List File Formats 808O/808S Assembler 

4-2 

Assembly Output Line 

Columns DeSCription 

1 Assembler error code. If the assembler encountered a syntax error in this 
source line, the appropriate error code appears in this column. Otherwise, 
this column is blank. If an error occurs in the present line, the following line 
will be blank except for a decimal sequence number in columns 3-6 en­
closed by parentheses. This sequence number is a pOinter to the previous 
line containing an error. The first error encountered in a program will be fol­
lowed by a line with a pOinter equal to zero. See Chapter 7 for error codes. 

2 Minus sign (-) indicates macro definition; otherwise blank. 

3-6 The address assigned to the first byte of the object code shown in columns 
8-9 of thi~ line is printed in hexadecimal. In addition, the result of the value­
generating assembler directives ORG, EQU, SET, and END will appear in 
this field. For END, the program start address value will appear in this field if 
specified; otherwise blank. 

7 Blank. 

8-9 The first byte of object code produced by the assembler for this source line 
is printed here in hexadecimal. If the source statement produces no object 
code (comments and assembler directives), this field is blank. 

10-11 Second byte of object code in hexadecimal. This field will be blank if the 
source statement generates only one byte of object code or no object code. 

12-13 Third byte of object code in hexadecimal, if generated; otherwise, blank. 

14-15 Fourth byte of object code in hexadecimal, if generated; otherwise, blank. 

16 Blank. 

17 Object code type. The relocatability of an operand is determined by the 
segment in which the operand lies, not by the segment that references the 
operand. Values are as follows: 

C = CODE - segment relocatable 
o = DATA - segment relocatable 
S = STACK - segment relocatable 
M = MEMORY - segment relocatable 
E = EXTERNAL 

For a discussion of relocatability, see the 8080/8085 Assembly Language 
Programming Manual. 

18 Blank if no nested source INCLUDE files; otherwise, the number 1-4 
indicating the level of nesting. 

19 Blank if not listing a source INCLUDE file; otherwise an "=" sign. 

20-23 Four character positions containing the source line number in decimal, 
right-justified and left blank-filled. 

24 Macro expansion flag. A "+ II in this column indicates that the source line 
was produced as a result of a macro expansion. Otherwise, this column will 
be blank. 

25-... Listing of assembler source text. This field terminates at column 72 for most 
output devices other than the line printer. For a line printer, this field ter­
minates at column 132. 

For DB and DW assembler directives containing a list of operands, the generated 
code for each operand is listed on a separate line. 

If a list line exceeds the specified page width, the source line continues starting at 
column 2S of the next line. 



8080/8085 Assembler ListFlleFormats 

Symbol Table Listing 

The listing of the assembled source code is optionally followed by the symbol 
table listing. If the NOSYMBOLS control is specified, the symbol table listing is 
suppressed. 

The assembler lists the symbol table in three sections: PUBLIC symbols, EXTER­
NAL symbols, and symbols defined by the user in the current assembly (including 
PUBLIC and EXTERNAL symbols). Each section of the symbol table is preceded 
by a title in columns 1-16 of the listing, as follows: 

PUBLIC SYMBOLS (Public Symbol Table) 
EXTERNAL SYMBOLS (External Symbol Table) 
USER SYMBOLS (User-Defined Symbol Table) 

The format of a symbol table output line is as follows: 

Columns Description 

1-6 Symbol names up to six characters, left-justified. 

7 Blank. 

8 Relocatability flag: absolute (A), relocatable CODE-segment (C), 
relocatable DATA-segment (D), external (E). 

9 Blank. 

10-13 Symbol value in hexadecimal. 

14-17 Blank. 

18-n Repeat pattern of columns 1-17 for additional symbols, where un" is the 
page width. 

Error Summary 

After listing the last line of the symbol table and spacing one line, the assembler lists 
an error summary line in the following format: 

Columns Description 

1-19 The string uASSEMBL Y COMPLETE" 

20-23 Number of errors. Four character positions containing the number of errors 
in the source encountered during assembly. This decimal number is right­
justified and left blank-filled. If there are no errors, the string "NO" is out­
put instead. 

24 Blank. 

25-30 The string "ERRORS" 

31 Blank. 

32 If the number of errors is not zero, the character "("; otherwise, blank. 

33-36 If the number of errors is not zero, these four character positions contain 
the sequence number (in decimal) of the last source line with an error; 
otherwise, blank. 

37 If the number of errors is not zero, the character ")"; otherwise, blank. 

4-3 



List File Formats 8080/8085 Assembler 

4-4 

Symbol-Cross-Reference Listing 
The assembler generates a file of symbol-cross-reference records during assembly 
pass 1 if the XREF assembler control is selected. This control is described in Chapter 
2. The actual symbol-cross-reference listing is generated by running the XREF utility 
program, using the ASXREF. TMP file created during pass 1 as input. The utility 
sorts symbols alphabetically before producing its listing. 

Page Header 

Columns Description 

1-40 The string "ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE" 

41 Blank. 

42-45 The string "Vx.y" where "x" is the version and "y" is the release number. 

46-64 Blanks. 

65-68 The string "PAGE" 

69 Blank. 

70-72 Three character positions containing the page number in decimal. 

Cross-Reference Output Line 

Columns Description 

1-6 For lines that start a new entry, this field contains the symbol itself; 
otherwise, blank. 

7 Blank. 

8-11 Sequence number of source line containing a reference to or definition of 
the current symbol entry. 

12 Blank if the source line contains a reference; "II" if the source line contains 
a definition. 

13-14 Blanks. 

15-68 Repetitions of format in columns 1-14. 

If no errors are found during the symbol-cross-reference listing, the message 

CROSS REFERENCE COMPLETE 

is issued following the listing. If an error is found, the listing terminates immediately. 



CHAPTER 5 
PL/M LINKAGE CONVENTIONS 

With the relocation feature, it is possible for an assembly language program module 
to call a procedure originally coded in PL/M. (PL/M procedures can also call 
assembly language modules.) 

Linkage between assembly language modules and PL/M procedures should follow 
the linkage conventions of PL/M. 

Formal parameters declared in a procedure definition are treated as locally-defined 
variables for the PL/M procedure. That is, each parameter is allocated storage se­
quentially in memory as if it were a variable local to the procedure. During pro­
cedure invocation, actual parameters are evaluated, and the results assigned to the 
corresponding formal parameters. Parameters are passed as follows: 

• A single BYTE parameter is passed in register C. A single ADDRESS parameter 
is passed in register B (high-order byte) and C (low-order byte). 

• If there are two parameters, the first is passed as described above; the second is 
passed in registers D (high-order byte, if any) and E (low-order byte). 

• When there are more than two parameters, the last two are passed as described 
above, and the remainder are passed via the stack. 

All actual parameters are copied into the locations of the formal parameters upon 
entry to the procedure. 

CPU registers are used to hold results returned by procedures which have the BYTE 
or ADDRESS attribute. In the case of a BYTE procedure, the value is returned in 
the accumulator, while an ADDRESS procedure returns the low-order byte in the L 
register and the high-order byte in the H register. 

5-1 





CHAPTER 61 
RUNNING YOUR PROGRAM 

Absolute Programs 
If your program was assembled using the ASEO location counter, you may be able 
to load and test your program on the Intellec development system immediately after 
it is assembled. Notice, however, that your program must include an ORO directive 
that will cause the program to load into a memory location that will not conflict with 
ISIS-II. (ORO 4000H loads your program well above ISIS-II.) If your program does 
not include such an ORO directive, it must be reassembled before you attempt to 
execute it. 

To execute your program, you need only enter its object file name in response to an 
ISIS-II prompt. For example, assume that your program's name is MYPROO. By 
default, its object file name is MYPROO.OBJ. Entering MYPROO.OBJ after an 
ISIS-II prompt loads the program and starts its execution. 

Program execution begins at the address specified as the operand of the END direc­
tive in the source program. If this address is missing or conflicts with ISIS-II, the 
program cannot be executed. 

Relocatable Programs 
Some portion of your program has been assembled in the relocatable mode if the 
program contains a CSEO or DSEO directive. Such programs are not directly exe­
cutable since some addresses are assembled relative to zero rather than any actual 
address. To resolve these addresses, you must submit your object file to the 
LOCATE program. LOCATE supplies absolute addresses for the relocatable ad­
dresses. Notice that you can supply absolute load addresses through the LOCATE 
program. These addresses override any ORO directives in your program. Also, you 
must be certain to locate your program so that is does not conflict with ISIS-II. 

If your program comprises a number of separately assembled modules, you must 
submit the object file to the LINK program before using LOCATE. The LINK pro­
gram binds together the separate modules and resolves any external addresses speci­
fed by EXTRN directives. 

The final product of LINK (if needed) and LOCATE is an absolute object program 
file. You can run this program as though it were assembled as an absolute program. 
Program execution begins at the address specified as the operand of an END direc­
tive in the source program. When the program comprises separately assembled 
modules, only one module may specify a start address in its END directive. If this 
address is missing or conflicts with ISIS-II, the program cannot be executed. 

6-1 





I 

I • n CHAPTER 71 
ERROR MESSAGES 

Error Detection and Reporting 
The assemblers detect and report three classes of errors: source-file errors (including 
control line errors), run-time errors, and assembler control syntax errors. 

Source-file errors are indicated in the assembly listing by single-letter codes listed in 
column 1 of the erroneous source statement. If multiple errors occur in the same 
statement, only the first error is reported. Each error is followed by a pointer to the 
previous erroneous line to ease finding errors. A summary of source-file errors is 
sent to the console and list devices. 

Run-time errors cause the assembly to terminate abnormally. An error message of 
the form: 

error type ERROR 

is sent to the console and list device (if listing is in progress) and control returns to 
ISIS-II. 

Assembler control errors in the assembler command are reported on the console 
device with the message: 

COMMAND ERROR 

ISIS-II errors are shown as numerical codes. These are listed at the end of this 
chapter and explained in more detail in the ISIS-II System User's Guide. 

Error Codes 

Source-File Errors 

Code Source 

B Balance error. Parentheses or quote marks are unbalanced. 

C Control line error. An illegal control has been specified in a control line or a 
primary control appears in Illegal context. The erroneous control and following 
controls on the same line are ignored. 

E Expression error. Ao expression has been constructed erroneously; usually a 
missing operator or delimiter. Also caused by adjacent operands with no 
separating operator. 

Illegal character. A statement contains an invalid ASCII character, or a 
specified number is illegal in the context of the number base in which it oc­
curs. Also issued if a carriage return character is not followed by a line-feed 
character. 

L Location counter error. The symbol being defined has been illegally forward 
referenced. The definition is made in all cases except macro definitions. This 
condition can be corrected by moving the definition to precede all references. 

7-1 



Error Messqes 80801808S Assembler 

7-2 

Code Source 

M Multiple definition. A symbol is illegally defined because of prior permanent 
definition. Only symbols defined by SET and MACRO are redefinable. All oc­
currences of the multiply-defined item are flagged. 

N Nesting error. Conditional assembly statements of macro body delimiters are 
improperly nested. 

o Opcode or operand illegal. An opcode or operand illegal in this particular 
device's instruction set causes a warning. 

P Phase error. Value of symbol being defined has changed between passes 1 
and 2 of assembly. caused by a forward reference of an operand in an ORG,IF, 
or OS directive. 

Q Questionable syntax. Invalid syntax, usually due to a missing opcode. 

R NAME directive was preceded by an instruction or another directive. 

U Undefined symbol. Symbol used has not been defined. 

V Value illegal. Value exceeds permissible range for this operation or is null. 

X Illegal operand. Specified operand is illegal for this operation. Possible use of 
register-type symbol in illegal field or use of nonregister type in a field requir­
ing register type. 

Run-Time Errors 

Message 

EOFERROR 

FILE ERROR 

MEMORY ERROR 

STACK ERROR 

TABLE ERROR 

Explanation 

End-of-file has been encountered before END directive or 
END was not terminated by a carriage-return. line-feed. 

An ISIS file name used in an assembly-time command or 
control line is illegal or missing. FollOwing this message, 1515-
II will report its own error number (see below). 

System has insufficient memory to execute assembler. 

Assembler internal stack has overflowed. Possible cause of 
error: 

1. Operators nested more than 16 deep; 

2. More than 8 operands in DB or OW list; 

3. More than 128 characters in an operand field (p.robably 
string too long); 

4. Macro or conditional assembly nesting greater than 8 
deep. 

5. INCLUDEs nested more than 4 deep. 

Assembler symbol or macro table has overflowed. More 
memory needed, or reduce number of symbols or macro 
definitions/calls. 



80801808S Assembler Error Messages 

Assembler Control Enor 

explanation lIesuge 

COMMAND ERROR Assembler console command line syntax is illegal, usually 
due to missing or illegal delimiter or missing parameter. The 
entire command line is ignored. 

ISIS-II Error Messages 

By convention, error numbers 1-99 are reserved for errors that originate in or 
are detected by the resident routines of ISIS; error numbers 101-199 are reserv­
ed for user programs; numbers 200-255 are used for errors encountered by 
nonresident system routines. In the following list an asterisk precedes fatal er­
rors. The other errors are generally nonfatal unless they are issued by the 
CONSOLE system call. 

o No error detected. 
* 1 Insufficient space in buffer area for a required buffer. 
2 AFIN does not specify an open file. 
3 Attempt to open more than six files simultaneously. 
4 megal filename specification. 
S megal or unrecognized device specification in filename. 
6 Attempt to write to a fde open for input. 

*7 Operation aborted; insufficient diskette space. 
8 Attempt to read from a file open for output. 
9 No more room in diskette directory. 

10 Filenames do not specify the same diskette. 
11 Cannot rename file; name already in use. 
12 Attempt to open a fde already open. 
13 No such file. 
14 Attempt to open for writing (output or update) or to delete or rename a 

write-protected file. 
* 15 Attempt to load into ISIS area or buffer area. 
* 16 Incorrect ISIS binary format. 

17 Attempt to rename or ddete a file not on diskette. 
18 Unrecognized system call. 
19 Attempt to seek in a file not on diskette. 
20 Attempt to seek backward past beginning of file. 
21 Attempt to rescan a file not line edited. 
22 Illegal ACCESS parameter to OPEN or access mode impossible for file 

specified (input mode for :LP:, for example). 
23 No filename specified for a diskette file. 
24 Input! output error on diskette (see below). 
2S Incorrect specification of echo file to OPEN. 
26 Incorrect SWID parameter in A TIRIB system call. 
27 Incorrect MODE parameter in SEEK system call. 
28 Null file extension. 

*29 End of file on console input. 
* 30 Drive not ready. 

31 Attempted seek on file open for output. 
32 Can't delete an open file. 
33 megal system call parameter. 
34 Bad RETSW parameter to LOAD. 
3S Attempt to extend a file opened for input by seeking past end-of -file. 

7-3 



Error Messages 

7-4 

8080/8085 Assembler 

When error number 24 occurs, an additional message is output to the console: 

FOCC= OOnn 

where nn has the following meanings: 

01 Deleted record. 
02 CRC error (data field). 
03 Invalid address mark. 
04 Seek error. 
08 Address error. 
OA CRC error (ID field). 
OE No address mark. 
OF Incorrect data address mark. 
10 Data overrun or data underrun. 
20 Write protect. 
40 Write error. 
80 Not ready. 



1818-118080/8085 Macro Assembler Operator's Manual 
9800292-04 

REQUEST FOR READER'S COMMENTS 

The Microcomputer Division Technical Publications Department attempts to provide documents that meet 
the needs of all Intel product users. This form lets you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is It at the right level? What other types of 
documents are needed? 

4. Old you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME ___________________________________________ DATE __________________ _ 

TITLE ___________________________________________________________________ __ 

COMPANYNAME/DEPARTMENT ________________________________________________ ~ 
ADDRESS ______________________________________________________________________________ __ 

CITY ______________________ _ STATE ___________ __ ZIP CODE ____________ _ 

Please check here If you require a written reply. 0 



WE'D LIKE YOUR COMMENTS .•• 

This document is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
Attn: Technical Publications MIS 6-2000 
3065 Bowers Avenue 
Santa Clara, CA 95051 

111111 NO POSTAGE 
NECESSARY 

IF MAILED 
IN U.S.A. 





INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


