
A USER'S GUIDE TO
PROGRAM MANAGEMENT TOOLS

Order Number: 121958-001

Copyright © 1982 Intel Corporation
L..-_______ --II1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I~ ______ --I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP Insite
CREDIT intel

Intelevision
FICE Intellec
ICE Intellink
iCS iOSP
im iPDS
iMMX iRMX

iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
MICROMAINFRAME
MULTI BUS

MULTICHANNEL
MULTIMODULE
Plug-A-Bubble
PROMPT
RMX/80
RUPI
System 2000
UPI

A710/882/4K DD J
~---

REV. REVISION HISTORY DATE

-001 Original issue. 8/82

iii

PREFACE

This manual provides the instructions necessary to use Intel's Program Management
Tools (PMTs). These tools minimize the administrative overhead of managing a
software development project. PMTs work with the existing operating systems and
software tools to enable you to control, automate, and examine the evolution of
software projects. PMTs are essential on large multi-programmer development efforts
and extremely valuable on smaller software projects. PMTs automate the tedious
administrative functions associated with software development.

This manual is intended for both systems designers and application programmers. It
describes tools that aid in handling the complexities of program development and
maintenance for projects ranging from a single programmer with a half-dozen modules
to large, multi-programmer projects with hundreds of modules.

Chapter 1, "Getting Started with PMTs," presents an overview, describes the
environment, and summarizes a software methodology that fully uses the tools.

Chapter 2, "Program Construction (MAKE)," contains the instructions necessary to
invoke and execute the MAKE program that creates the generation of a new software
release.

Chapter 3, "Software Version Control System (SVCS)," contains the instructions
necessary to invoke and execute the SVCS program that provides control over software
changes and versions.

Appendix A, "Summary of MAKEjSVCS Commands and Prompts," provides an
easily accessed list of commands and prompts.

Appendix B, "Additional Information for the Series III User," provides more
information about using PMTs on a Series III development system.

Related Publications

For further information on the Series III, refer to the following publications:

• Intellec Series III Microcomputer Development System Product Overview,
121575

Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

Intellec Series III Microcomputer Development System Programmer's
Reference Manual, 121618

• ISIS-II User's Guide, 9800306

• ISIS-II Software Toolbox User's Guide, 121727

• Winchester Peripheral Chassis ISIS-II(W) Supplement, 121899

For more information on the NDS-II system, refer to the following manuals:

NDS-II ISIS-III(N) User's Guide, 121765

• NDS-II Network Development System Overview, 121761

NDS-II System Generation Instructions, 121763

• NDS-II Network Resource Manager Operating Instructions, 121883

v

vi

Notational Conventions

This manual adheres to the following conventions in describing the syntax of the
commands accepted by MAKE and SVCS:

UPPERCASE

italic

directory-name

filename

pathname

system-id

Vx.y

[]

{)-

L ..

[, ...]

punctuation

lnput llnes

< c r)

Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or lower­
case.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Is a generic label placed on sample listings where an
operating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surroun'ded by brackets, in which case it is
optional. The items may be used in any order unless other­
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

CHAPTER 1 PAGE
GETTING STARTED WITH PMTs
What Are Intel's Program Management Tools? 1-1
PMT Components ... 1-1

The MAKE Program ... 1-1
The SVCS Program ... 1-1

What Environment Is Needed? 1-2
Learning to Use MAKE and SVCS 1-2
Incorporating MAKE and SVCS into an

Existing Project 1-5
Starting with MAKE .. 1-6

Invoking MAKE .. 1-6
Constructing a MAKE File 1-6

Starting with SVCS .. 1-8
Invoking SVCS .. 1-8
GET Command ... 1-8

GET with Permission to Read 1-8
GET with Permission to Modify a Module 1-8

PUT Command 1-8
RETURN Command 1-9
SVCS Completion 1-9

SVCS Data Base Administration 1-9
ADMIN Command with CREATE Option 1-9
ADMIN Command with ADD Option 1-10
ADMIN Command with Delete Option 1-10
ADMIN Command with Add Option/

Initialized Source 1-10

CHAPTER 2
PROGRAM CONSTRUCTION (MAKE)
What Is MAKE? ... 2-1
MAKE Structure .. 2-2

Dependency File .. 2-2
Dependency Nodes .. 2-3
Task Lines .. 2-3
Macro Definitions .. 2-3

Substitution Macros 2-4
Enumeration Macros 2-4
Parameter Macros 2-4
Special Macros and Macro Constructors 2-5

Iteration Command 2-6
SVCS Access Definitions 2-7

Submit File .. 2-8
MAKE Invocation 2-8
MAKE Syntax ... 2-8
MAKE Command Options 2-9

TO submiLfile_name 2-9
GENALL ... 2-9
TARGET target name ... 2-10
PRINT/NOPRINT (list file name) 2-10

CONTENTS

PAGE
PARAMETERS 2-10
PAGELENGTH length .. 2-11
PAGEWIDTH width .. 2-11
PAGING/NOPAGING 2-11
ATTRIB/NOATTRIB ... 2-11

MAKE Files 2-12
Input File (MAKE File) .. 2-12
Output File (Submit File) 2-12
Listing File ... 2-12

Header Summary .. 2-12
Dependency File Listing 2-12
Dependency Graph Listing 2-12
File Summary 2-12

MAKE Error Messages ... 2-13
Fatal Command Errors ... 2-14

CHAPTER 3
SOFTW ARE VERSION CONTROL SYSTEM
(SVCS)
What Is SVCS? 3-1
SVCS Structure 3-1

Program Units ... 3-2
Module Units ... 3-2
System Units .. 3-2

Unit Classes ... 3-2
Variations ... 3-3

Optimal Use of SVCS 3-4
Major Functions of SVCS .. 3-4
SVCS Commands .. 3-4

GET ... 3-4
WRITE [(variant list)] 3-5
IDENTIFIER .. 3-5
HISTORY ... 3-5
COMMON .. 3-5

PUT .. 3-6
FROM file_name 3-6
WRITE [(variant list)] 3-6
IDENTIFIER 3-6
HISTORy... 3-7

RETURN .. 3-7
ADMIN ... 3-7

CREATE ... 3-7
ADD and DELETE ... 3-7
WRITEACCESS .. 3-8
DEFAULTACCESS ... 3-9
PRINT ... 3-9

SVCS Command Options ... 3-9
PROMPT /NOPROMPT 3-9
TIMEOUT /NOTIMEOUT 3-9

S.VCS Invocation ... 3-10

vii

SVCS Syntax .. .
SVCS Files

Data Base File
Auxiliary Files .. .
Retrieved Files

History Option .. .
Common Option

Stored Files
SVCS Error Messages

Command Errors .. .
Fatal Object/Source Interface Errors

SVCS Prompt Messages .. .

PAGE

3-10
3-12
3-12
3-12
3-12
3-13
3-13
3-13
3-14
3-14
3-15
3-16

TABLE TITLE PAGE

A-I Summary of MAKE Commands A-I
A-2 Summary of SVCS Commands A-I
A-3 Summary of SVCS Prompt Messages A-2

FIGURE TITLE PAGE

1-1 MAKE Dependency Graph 1-3
1-2 Sample MAKE File 1-4
1-3 A Sample of SVCS and MAKE 1-4

viii

CONTENTS (Cont'd.)

PAGE

APPENDIX A
SUMMARY OF MAKEjSVCS COMMANDS
AND PROMPTS

APPENDIX B
ADDITIONAL INFORMATION FOR THE
SERIES III USER
Series III Literature B-1
Hardware and Software Required B-1
System Resources .. B-1
Invocation Line .. B-1

TABLES

ILLUSTRA TIONS

FIGURE TITLE PAGE

2-1 Software Development File
Dependencies ... 2-1

3-1 Software Version Control 3-1

CHAPTER 1
GETTING STARTED WITH PMTs

What are Intel's Program Management Tools?

PMTs are a set of software tools designed to simplify and reduce the manual effort
required to manage the software development process. PMTs essentially:

• Act as programmable secretaries and eliminate the manual administrative tasks
of tracking program changes and managing module variants

Decrease overhead associated with software management

Control, automate, and examine the release of a product

PMT Components

The PMTs are independent programs that may be used either separately or together.
Two such programs presently exist: MAKE and the Software Version Control System
(SVCS).

The MAKE Program

MAKE is a tool that creates software generation procedures for constructing new
releases of software. Without MAKE, new releases of a software system are created
in one of two ways: One way is to perform the generation from the ground up,
compiling all source modules and linking all object modules using a submit file. This
method wastes considerable time on unnecessary compilations of modules that were
unchanged since the last generation. The second (and more common) approach is to
keep track of the modules that have been modified, and create a new and different
generation procedure for each release. This method saves compilation time, but
involves considerable administrative overhead, thereby compounding the chances of
human error.

With the MAKE facility, you can specify how the system is constructed and
automatically generate the appropriate minimal submit file. This reduces both unnec­
essary compiles and links, and the manual effort required to track changed modules.

MAKE provides you with the confidence that the program is constructed with the
latest source and object code without unnecessary processing.

The SVCS Program

SVCS is a tool that simplifies many of the module housekeeping tasks. SVCS provides
a means of tracking changes to program source code, maintaining variants of the
source and object modules for a program, and recording access to these modules in a
multi-programmer environment.

Because SVCS tracks source changes, you can print out the change history of a source
module showing the author and time of each creation and change.

Another important use of SVCS is to track different variants of a module. These
variants may represent different prototype releases or customized variants of software
for different end products. SVCS tracks source modules, include files, object modules,
link and load modules, and documentation (specifications, design documents, user
manuals).

1-1

Getting Started with PMTs A User's Guide to Program Management Tools

1-2

Incorporating MAKE and SVCS into existing software methodology is straightfor­
ward. These programs are designed to work with the existing operating system and
software utilities (editors, compilers, utilities), and require about the same learning
effort as the system functions (COPY, RENAME, ACCESS).

What Environment is Needed?

PMTs require an 8086/8088-based development system with 96K of user memory
(in addition to space used by the operating system).

PMTs are ideal in a networked environment, such as NDS-II (using ISIS-III(N))
where multi-programmer software control is essential; however, they are just as useful
on standalone winchester-based systems (using ISIS-II(W)).

Learning to Use MAKE and SVCS

This section shows you a very basic application of MAKE and SVCS. It has been
designed to familiarize you with the most elementary commands and methodology.
It further illustrates how easily MAKE and SVCS can be incorporated into an
existing software project.

To develop a basic learning environment, we describe a software development project
where two programmers are working on one part (e.g., an I/O subsystem) of a larger
multi-programmer project.

Some of the common administrative headaches we can eliminate for you by using
PMTs are

• Source contention-both programmers may attempt to make changes to a single
source module simultaneously.

• Variations-several versions of a given module may be active in different proto­
types, during various phases of debugging. A stable version may be used when
debugging the whole system; a less stable but more functional version may be
debugged independently.

• Generation-the latest version of some modules may need to go into each new
generation. Past versions of other modules may be needed also.

MAKE and SVCS provide solutions to these development problems. MAKE
automatically handles the software generation process; SVCS provides control to the
edit/translate/debug process. SVCS is also responsible for the control of the
variations of each module and for the control of the various pieces of the system.

Typically, these tools can be used in the development cycle in the following way:

1. A project data base is set up, using SVCS. SVCS provides administrative functions
to install source and object modules, define variants to modules, and define the
composition of modules.

2. A MAKE file is created to describe how the different pieces of the software
system fit together.

3. Once the data base and MAKE file are set up, administrative changes are usually
minimal. Day-to-day use of SVCS will be to check out and return modules, just
as you would a library book.

To make changes to a module, it is checked out with the SVCS GET command
with WRITE privilege. The file is then edited, using ALTER, CREDIT, or
another text editor.

A User's Guide to Program Management Tools Getting Started with PMTs

4. After one or more modules are checked out and edited, a new version or proto­
type is generated. This is done with one MAKE and (usually) one submit
command.

5. The new source and objects may be returned to the data base, using an SVCS
PUT command. (This process does not have to occur at this point since additional
changes and generations can take place.)

6. The new version is debugged and tested, using PSCOPE, ICE, or another debug­
ger. It is probable that several edit/debug-cycles will take place before returning
the changed modules to the SVCS data base.

7. When the modules are returned, SVCS automatically updates the change history
of the modules, recording who made the changes, what changed, when the changes
were made, and why.

8. The SVCS GET, edit, MAKE, debug, SVCS PUT cycle is repeated, with GETs
and PUTs being performed for each change, or perhaps just once a day. This
cycle depends on how many different programmers want to make modifications
to a given source module.

For simplicity, assume that the subsystem under development (IO.LNK) contains
four modules (READ.SRC, WRITE.SRC, DAT A.SRC, UTIL.SRC) that are
compiled and linkedJo form IO.LNK.

The subsystem module IO.LNK is dependent on (constructed from) four source files
(READ.SRC, WRITE.SRC, DATA.SRC, UTIL.SRC) that are in turn dependent
on their corresponding object files (READ.OBJ, WRITE.OBJ, DATA.OBJ,
UTIL.OBJ). This dependency is represented in figure 1-1 and specified by the user
in a MAKE file (e.g., IO.MKE). It is essential that the MAKE file be accurate and
complete to perform the correct generation. Figure 1-2 is an example of a MAKE
file for IO.LNK. Figure 1-3 shows some source SVCS and MAKE invocations
corresponding to the usage described previously.

c::::::J ~ OBJECT FILE

o ~ SOURCE FILE

IO.LNK
SUBSYSTEM

Figure 1-1. MAKE Dependency Graph

DEPENDENCY
NODES

121958-1

1-3

Getting Started with PMTs A User's Guide to Program Management Tools

1-4

SERIES-III MA~E. Vl.~ ~7/10/~2

MA~E INVOIO~D t3Y: :F1:MA~E.q" :Fl:IO.Ml\E PRINT(:F1:IO.LST)
S'JaMIT FILE: :Fl:IO.CSn

1
2
1 S IF 10. LN~ '> READ. OR,l • \,o,JR I TIL OfLl • DATA. 011.1 • UT I L. OBJ THEN
4 LIN~R~ READ.ORJ.WRITE.ORJ.nATA..ORJ.UTIL.08J TO IO.LN~

5 SEND
t:;
7 SIF READ.OBJ '> READ.SHe THE~
R PLM~t:; READ.SRC
9 SEND

1~

11 SIP WRITE.OBJ > WRITE.SRC THEN
12 PLMRt:; WRITE.SRC
13 SEND
14
15 SIP DATA.08J > DATA.SRe THEN
It:; PLMAt:; DATA.SRC
17 SEND
If!
19 SIF UTIL.OBJ > UTIL.SRC THEN
2~ PLMR~ UTIL.SRC
21 SEND
22

DEPENDENCY TREE

1 IO.LNK
2 READ.OB,l
1 READ.SRC
2 WRITE.OBJ
3 ~RITE.SRC

2 DATA.OBJ
3 DATA.SRC
2 UTIL.OBJ
3 UTIL.SRC

MA~E FILE SUMMA.RY
NUMBER OF LINES 22
NU~BER OF ERRORS ~

Figure 1-2. Sample MAKE File

RUN SVCS GET :F1: IO.DBCREAD) TO :F5:READ.SRC WRITE ID(JNS)
i a "get" with write permission

RUN ALTER :F5:READ.SRC
i make changes to source file

RUN SVCS PUT :F1: IO.DBCREAD) FROM :F5:BEAD.SRC ID(JNS)
i put the changed module back

RUN MAKE :F1: IO.DB.MKE
this creates the generation procedure

RUN SUBMIT :F1: IO.DB.CSD
i submit the generation procedure created by MAKE

RUN PSCOPE
i debug the load module

Figure 1-3. A Sample of SVCS and MAKE

A User's Guide to Program Management Tools Getting Started with PMTs

Incorporating MAKE and SVCS into an Existing Project

Changing development methodologies during a project has some inherent risks. Most
project leaders will choose not to abandon current conventions when a release date is
near. However, administrative headaches compound as the release data approaches;
MAKE and SVCS provide the relief needed at that stage of a project.

Some guidelines for including MAKE and SVCS into an ongoing project are listed
in this section. These guidelines should help you measure both the effort required and
the associated risk.

1. Converting submit files to MAKE files. The most common form of software
generation involves a prolific use of submit files. To alleviate the problem of
unnecessary compiles and links, submit files are usually edited for every new
generation. This is the effort that MAKE automates.

To adopt MAKE in the generation process, the complete set of submit files should
be converted to input files for MAKE. This means learning the command language
(Chapter 2) and converting the procedures. If the submit files were just a series
of compiles and links, learning the command language and converting the proce­
dures are very straightforward (use figure 1-2 as a reference). If the submit files
contain ISIS commands (COPY, DELETE, etc.) or ISIS Toolbox commands
(IF, THEN, GOTO, etc.), more thought may be required. (A MAKE file can
exploit some powerful macros; they just have to be learned.)

The important point, however, is that once this MAKE file is created, you are
finished with it. A MAKE file has to change only if the structure of the whole
system changes. Test the MAKE file (with the GENALL option) to see if it is
generating the correct submit file.

2. Setting up the SVCS data base. Installing source, object, include, link, and load
modules into an SVCS data base is repetitive work. It is quite straightforward
using the SVCS ADMIN commands (Chapter 3), but for a large system the
process may be lengthy. You should automate it by using a submit file. It should
take only a few hours to learn the syntax and create all the SVCS ADMIN
commands. The actual installation, if automated, will take about twice as long
as it would to copy each source and object from one file to another. (All SVCS
commands may be thought of as intelligent copy commands.)

3. Day-to-day use. Once the overhead of seUing up the SVCS data base and creat­
ing the MAKE file is done, the PMTs begin lowering the administrative burden.

For software generation, the MAKE, SUBMIT sequence should replace the
editing of submit files, the tracking down of latest versions, and the effort to
determine what modules have changed.

For making program changes, the SVCS GET, ALTER, SVCS PUT sequence
will replace the uncontrolled editing, copying, archiving, and disk-labeling of
software modules. This sequence will also reduce the problems caused by lack of
control, such as deleting the wrong versions, debugging the wrong versions, and
making simultaneous changes to modules.

Learning to use MAKE (day-to-day) is like using SUBMIT-the command is
very short, the options few. Learning how to use SVCS in a controlled manner is
slightly more complicated (due to its flexibility) and represents the only ongoing
investment in getting a large project converted to a new approach. To reduce the
confrontation of SVCS, SVCS prompts the user for any required command option
left off, rather than reporting an error. Learning SVCS is no more difficult than
learning the collection of utilities it replaces: COPY, ATTRIB, DELETE, etc.

The next sections provide a tutorial on getting started with MAKE and SVCS; they
cover the important and most frequently used commands and options. Chapters 2 and
3 serve as reference material for the whole command set.

1-5

Getting Started with PMTs A User's Guide to Program Management Tools

1-6

Starting with MAKE

MAKE takes an input file and generates an output (submit) file and a listing.

This section illustrates how you would construct a MAKE input file and invoke the
MAKE command.

Invoking MAKE

To activate MAKE processing, type:

The following message is then displayed:

system-id M A K E I V x.y

Constructing a MAKE File

The file to be constructed (usually a load module) is referred to as the target. Its
constituent files are known as dependency files. A MAKE file consists of a series of
dependency nodes.

A dollar sign must appear as the first non-blank (or tab) character on a MAKE
command line.

The format of each dependency node in a MAKE file is as follows:

S I F targeLfile) dependency_files THE N

task lines

SEND

where

targeLfile is the name of the file that is constructed by the task lines.

dependency_files are object or source files that are used to construct the target
(e.g., via a compile or link).

taslLlines designate what processing needs to be done to bring target
file up-to-date.

MAKE then looks at the characteristics (such as last-modify time and date) of the
named files and constructs a submit file with those user-specified task lines that are
needed to generate the up-to-date version of the target file.

Example I shows a complete MAKE file that states the dependency (shown in
figure 1-1) as well as the tasks to be executed if any of the dependencies are not
fulfilled. If the files in the dependency list are dependent on other files, those
dependencies are also declared.

A User's Guide to Program Management Tools Getting Started with PMTs

Example 1:

SIF IO.LNK) READ.OBJ)WRITE.OBJ)DATA.OBJ)UTIL.OBJ THEN
RUN LINK86 READ.OBJ)WRITE.OBJ)DATA.OBJ,UTIL.OBJ TO IO.LN'

SEN D

SIF READ.OBJ) READ.SRC THEN
RUN PLM86 READ.SRC

SEND

SIF WRITE.OBJ) WRITE.SRC THEN
RUN PLM86 WRITE.SRC

SEND

SIF DATA.OBJ) DATA.SRC THEN
RUN PLM86 DATA.SRC

SEN D

SIF UTIL.OBJ) UTIL.SRC THEN
RUN PLM86 UTIL.SRC

SEND

The first node of this file checks to see if IO.LNK is older than any of the .OBJ files.
If it is, MAKE places the task lines into the output file. The last four dependency
nodes compare the age of each source and corresponding object module. If the object
module is older than the source, MAKE also places those task lines in the output file
(submit file).

The resulting submit file contains the task lines exactly as MAKE reads them. Since
MAKE is dependent on the accuracy of this file, it is suggested that the PRINT
option be issued in a MAKE invocation so that you can verify the accuracy of the
dependency information.

After the dependency specifications are checked for accuracy, the output file is created.
This file is the submit file that consists of the appropriate task lines.

If MAKE detects an error in the dependency specification, it will place a message in
the listing file and report the number of errors in the sign-off message. The form of
the error message is

* * * ERR 0 R nnn I N LIN E 11/ , N EAR II tttil : message

where

nnn

11/

ttt

message

provides the error number.

provides the line number.

provides input text near where the error was detected.

provides an explanation of the error.

Chapter 2 contains more detailed information about MAKE and its more complex
commands. Of key importance are the macros that simplify the MAKE file (e.g.,
show how the four object files may be represented by a single identifier).

1-7

Getting Started with PMTs A User's Guide to Program Management Tools

1-8

Starting with SVCS

An SVCS data base contains all the modules that make up a software system. Normal
operation of SVCS will be to retrieve modules (GET) and replace modules (PUT or
RETURN). Some data base administrative commands (ADMIN) also handle the
addition and deletion of modules to the data base.

Invoking SVCS

SVCS invocations are fairly lengthy, involving several (logical) options. Wherever
possible, SVCS will prompt the user for missing options.

GET Command

The GET command is used to check out a module from the data base. The user can
issue the GET command to read information from the data base (e.g., to print a
listing or look at the change history) or to obtain write permission so that the module
can be modified.

GET with Permission to Read

The optional command given here retrieves a module from the data base. There is no
write privilege.

SVCS GET :f1:10.db(utll) TO :f5:utll.src <cr)

In this case, :f5:util.src is the name of the file that will receive the module copied out
of the data base.

GET with Permission to Modify a Module

The optional command given here requests write permission on the unit that is to be
retrieved from the data base.

SVCS GET :f1:1o.db(data) TO :f5:data.src WRITE ID(Jns) <cr)

If the ID portion of the command is left off, SVCS will prompt the user for an identi­
fication. The identifier is mandatory for write permission and is used by SVCS to
identify the person modifying the module.

PUT Command

The PUT command enables the user to return the modified module to the data base.

SVCS PUT :f1:1o.db(read) FROM :f5:read.src ID(Jns)
HISTORY (text) <cr)

where

text provides commentary as to why the module was changed

The user can either supply the history information in the command line or wait for
SVCS to prompt for it. The history option is required if the PUT command is for a
source module.

A User's Guide to Program Management Tools Getting Started with PMTs

If you attempt to issue the PUT command without having write permission, SVCS
will issue an error message.

RETURN Command

The RETURN command enables the user with write permission to return a module
to the data base without having modified it.

SVCS RETURN :f1:10.db (WRITE) ID(Jns) <cr)

SVCS Completion

When SVCS is completed, it will sign off

SVCS COMPLETED

You have now learned the basic commands to modify the units with a data base
controlled by SVCS. Chapter 3 contains more detailed information about SVCS and
its options.

SVCS Data Base Administration

Since modification of the data base is controlled, it is not necessary for the average
user to become familiar with the following section. Its purpose is to familiarize those
particular users having data base responsibility with the administrative functions
associated with a data base controlled by SVCS.

ADMIN Command with CREATE Option

The ADMIN command with the CREATE option permits an SVCS data base to be
created.

SVCS ADMIN IO.DB CREATE <cr)

This instruction sets up an empty data base. SVCS issues an error message if the
named data base already exists.

IMPORTANT

If you want the SVCS database to be publicly shared in an NDS-II environ­
ment, you MUST change the WORLD access rights of the database file
named with the ADMIN command. Do this immediately after you create it;
SVCS will automatically use the same access rights when it creates its auxil­
iary database files.

1-9

Getting Started with PMTs A User's Guide to Program Management Tools

1-10

ADMIN Command with ADD Option

The ADMIN command with the ADD option allows the administrator of the data
base to add units (modules) to the data base. These units are empty (a PUT command
stores its initial contents).

SVCS ADMIN IO.DB ADD (UNIT = READ,WRITE,DATA,UTIL> (cr)

This instruction adds four units (READ, WRITE, DATA, UTIL) to the data base,
IO.DB.

ADMIN Command with DELETE Option

The ADMIN command with the DELETE option allows the administrator of the
data base to delete units from the data base at any time.

SVCS ADMIN IO.DB DELETE (UNIT = READ,WRITE,DATA> (cr)

This instruction deletes three units (READ, WRITE, DATA) from the data base
IO.DB.

ADMIN Command with ADD Option / Initialized Source

This instruction allows the administrator of the data base to add units to the data
base and initialize the source.

SVCS ADMIN IO.DB ADD (UNIT = read FROM :f5:read.src> (cr)

These commands are used to provide basic adminstrative functions. Chapter 4 gives
a detail~d command description for those users with data base responsibility.

• ® CHAPTER 2
PROGRAM CONSTRUCTION (MAKE) n

This chapter presents a more in-depth presentation of MAKE. It provides you with
more detailed information on the structure of the MAKE file and invocation controls.

What Is MAKE?

The MAKE program is designed to generate a submit file that can be used to construct
the most current version of the requested software. The construction of the most
current software is based upon the dependency of one file upon another.

MAKE performs the following functions:

Parses the user-specified dependency file

Checks the relative ages of the specified files

Creates a submit file containing only the user-specified tasks necessary to
generate a new version of software.

MAKE begins processing the input file by checking the modification characteristics
and interrelationships of the files you select. Generally, linked object files are depend­
ent upon source files and a load module is dependent upon object modules. These
dependencies can best be represented by a dependency graph (see figure 2-1). At
each dependency node in the graph you can designate one or more tasks that need to
be accomplished to bring the file up-to-date. These tasks are typically compiles (to
bring the object file up-to-date with the source) and links (to bring the link or load
module up-to-date with the object files).

c::::::::> OBJECT FILE

o SOURCE FILE

PROGRAM
IO.LNK

Figure 2-1. Software Development File Dependencies 121958-2

2-1

Program Construction (MAKE) A User's Guide to Program Management Tools

2-2

Based upon the dependency data supplied by you and modification information in the
directory, MAKE automatically specifies which tasks need to be performed to gener­
ate the current or requested version of a program or program module. Thus, if an
include file is used by only five of the twenty modules used to construct an entire
program, modifications made to the include file would subsequently cause recompi­
lation of only those five modules. This process avoids costly recompilation of software
modules that have not been modified since the last time they were compiled and yet
assures you that the software created is current.

Make Structure

MAKE translates the user specified MAKE dependency file (containing the interre­
lationships between files and the set of tasks to be performed if the file dependencies
are not fulfilled) into the submit file that contains only those tasks required to create
the latest version of a program.

Dependency File

A dependency file consists of one or more MAKE commands. These commands are
either macro definitions, SVCS data base access definitions, or dependency nodes.
Each of these is explained in the following sections.

Each section of the dependency file contains the specifications of a node in the
dependency graph. Each node consists of the following:

• Target--indicates the files being constructed. If more than one target is speci­
fied, the oldest is used to compare modification attributes.

Dependency-indicates those files that are used for construction of the particular
target or targets.

Task-the set of program invocations and commands that are to be performed
for reconstruction of the target.

The following rules apply to the specifications in the dependency file:

1. A dollar sign ($) must appear as the first non-blank (or tab) character on a
MAKE command line (as opposed to task lines).

This character differentiates command lines (macro definitions, target/depend­
ency specifications, SVCS access definitions, and iteration commands) from task
lines (those lines that are passed through the submit file). Leading blanks and
tabs may be used to format the MAKE command lines since they are ignored by
MAKE.

2. A semi-colon (;) that is not enclosed by quotes (" ") can appear in a MAKE
command line, causing MAKE to ignore all characters appearing after the semi­
colon to the end of the line. This feature can be used to include comments in the
MAKE file.

3. Only task lines are placed in the submit file that MAKE generates.

4. A macro definition must appear before the macro is used.

The target, dependency, and task information is specified as a unit in such a sequence
that, following the specification of the target and dependency information, is a series
of zero or more task lines. Such a unit is referred to as a dependency node.

A User's Guide to Program Management Tools Program Construction (MAKE)

A MAKE dependency file consists of up to five types of constructs described as follows:

Dependency nodes

Task lines

Macro definitions

Iteration commands

SVCS access definitions

Dependency Nodes

The target/dependency specification (established at each dependency node) matches
up a target file (or list of target files) with a file (or list of files) on which it depends.
This specification takes the form of the keyword IF, followed by the target files,
followed by the special character) (meaning is older than), followed by the depend­
ency files, and then the keyword TH EN. This specification is followed by zero or
more task lines and finally, the keyword END. For example,

$IF READ.OBJ) READ.SRC THEN (cr)

task lines

$ END

If any dependency file within a dependency list has been modified more recently than
the target file (or the oldest of the target files at this node), the tasks are required
for updating the target and are placed in the submit file. Other circumstances that
also cause the tasks to be placed in the submit file are as follows:

If the target file does not exist, it is not an error. The intent of the tasks would
most likely be to construct the target regardless. This condition would cause the
task lines to be added to the submit file.

If one or more dependency files do not exist, one of the following outcomes occur.
If the files are targets in other dependency nodes, no error is generated, because
those files would be created at run time by the other dependency nodes. However,
if the files are not targets in other dependency nodes, an error is generated.

Task Lines

Task lines begin with any character other than a $ as the first non-blank (or tab)
character on the line.

These lines are not inspected except to perform macro substitution; they are token­
ized so that the macros can be found and replaced. The lines are, however, reconsti­
tuted if they are written to the submit file. Since these lines might then appear different
than those in the task lines, you may wish to indicate that the lines are to remain
exactly as they are (including spacing). This can be accomplished by placing quotes
(either single or double) around the line. MAKE would then strip away the quotes
and simply place the line in the submit file with no further modification and no macro
substitution.

Macro Definitions

A macro is a command that represents a string of frequently used instructions. Macro
definitions are MAKE command lines that define macros (string substitutions) to be
used throughout the remainder of the file. You define macros to add readability to
the MAKE file and/or to simplify the specification and modification of this file.

2-3

Program Construction (MAKE) A User's Guide to Program Management Tools

2-4

The syntax of a macro definition is as follows:

$ SET macro_name TO macro_specification

where

macro_name is the name of the macro.

macro_specification is either a substitution macro or an enumeration macro, as
described later.

A macro is used by naming it. The name must be preceded by the macro character
%. In order to distinguish a macro from the surrounding context, the macro name
can be delimited by a matching pair of either single or double quotation marks. For
example,

X"SOURCEDEVICE"FILE.SRC

references the macro named SOURCEDEVICE.

Substitution Macros. A substitution macro defines a string of text that is to replace
the macro reference whenever it occurs in either a MAKE command line or task line.
A string consists of all characters contained between a set of matching double or
single quotes.

A string is not inspected until it becomes the alternate input at the time of substitu­
tion (is invoked). Macro references can be nested in this way to a depth of 16 levels.

Example

$SET SOURCEDEVICE TO :F1:

or

$SET OPTIONS TO 'COMPACT OPTIMIZE(1)' DEBUG XREF

Enumeration Macros. An enumeration macro is used to specify a list of substitution
strings (such as filenames or fragments of filenames) that are to be referenced together
or iterated upon. The enumeration macro is extremely helpful for handling groups of
files that are treated in the same manner. The syntax of the enumeration macro is as
follows:

$ SET identifier TO C enumeration list)

Example

$SET FILES TO CREAD,WRITE,DATA,UTIL)

Parameter Macros. These macros are used with the parameters option to allow run
time specification of values within the dependency specification.

A User's Guide to Program Management Tools Program Construction (MAKE)

When MAKE is invoked, actual parameters are specified through the parameters
option. Within the dependency specification, there can be formal parameter refer­
ences (parameter macros) of the form %n, where n is a decimal digit (0-9). When
the dependency file is parsed, the actual parameters are substituted for the formal
parameters in the same manner as for substitution macros. The formal parameter %n
is then replaced by that element of the list of actual parameters specified in the
parameter option (%0 is replaced by the first list element, etc.). If there is no actual
parameter for the formal parameter, the replacement is performed using the null
string.

Specification of a MAKE dependeny file does not need to be tied to fixed device
numbers or directory names. Instead of specifying a file as

:F1 :DATA.SRC

it is far more flexible to specify it as

%ODATA.SRC

and to suppy it with the device number or directory name when MAKE is invoked.

Special Macros and Macro Constructors. These macros are useful for shorthand
specification of dependency nodes (target files, dependency file, task lines). They allow
a concise notation that is often more readable and maintainable than typing filenames
throughout. The macro constructor %ALL is used in conjunction with an enumera­
tion macro to specify a concatenation of all of the files specified by the list. The
special macros %TARGET and %DEPEND are shorthand specifications for the target
file list and the list of dependency files, respectively. References to % TARGET and
%DEPEND can only appear in task lines. However, references to %ALL are allowed
in target lists and dependency lists, as well as task lines.

%ALL. %ALL can be used in a target file list, a dependency file list, or a task line,
and is replaced by a concatenation of the enumeration macro elements (separated by
commas). A header (the characters preceding the enumeration macro reference, e.g.,
directory name) is concatenated to the beginning of each element and the trailer (the
characters following the enumeration macro reference, e.g., file extension) to the end
of each element. Therefore, the same enumeration list can be used for source and
object files' different directories.

Using %ALL in the following example:

$SET F1LES TO (READ,WRITE,DATA,UTIL)

the macro constructor %ALL(:FI :%"FILES".SRC) would be expanded as
:FI :READ.SRC,:FI :WRITE.SRC,:FI :DATA.SRC,:FI :UTIL.SRC, while the
constructor %ALL(%"FILES".OBJ) would be expanded as READ.OBJ,
WRITE.OBJ,DATA.OBJ,UTIL.OBJ.

This allows the user to maintain a file list in a single place and yet reference that list
in several different forms.

% TARGET. The %TARGET macro represents the target file list. It is replaced in
the input stream by the list of target file names (separated by commas) for the
dependency node in which it occurs.

2-5

Program Construction (MAKE) A User's Guide to Program Management Tools

2-6

%DEPEND. The %DEPEND macro represents the list of dependency files. It is
replaced by the list of dependency filenames for the dependency node in which it
occurs (separated by commas). It can only be used in task lines.

Using %TARGET and %DEPEND in the standard example:

SSET FILES TO (IIREADII,IIWRITEII,IIDATAII,IIUTILII)

S The root of the dependency graph
SIF IO.LNK) %ALL(%IIFILESII.OBJ) THEN

RUN LINK86 % DEPEND TO %TARGET BIND
SEND

S FOR IN %FILES
SIF %IIIII.OBJ) %IIIII.SRC THEN

RUN PLM86 % DEPEND OPTIMIZE(3) XREF
SEND

SEND

In the above case, the first task line is treated the same as

RUN LINK86 A.OBJ, ...

The second task line is treated the same as

RUN PLM86 A.SRC OPT ...

Iteration Command

The iteration command is useful in performing a set of MAKE commands over a
group of files. The command takes the form of the keyword FOR, followed by the
index macro (a name that should not be previously defined), followed by the keyword
IN, and a reference to an enumeration macro (generally a list of filenames).

This MAKE command and an END MAKE command line bracket a set of lines that
will be iterated over once for each element in the enumeration macro list. These lines
can be dependency nodes, macro definitions, or SVCS access definitions.

Example

Given the enumeration macro

SSET FILES TO (READ,WRITE,DATA,UTIL)

the iteration command would be

$FOR I IN %FILES
$IF %'I'.OBJ) %'I'.SRC THEN

PLM86 %'I'.SRC
SEN D

SEND

which is the same as

SIF READ.OBJ) READ.SRC THEN
PLM86 READ.SRC

$ END

A User's Guide to Program Management Tools Program Construction (MAKE)

SIF UTIL.OBJ) UTIL.SRC THEN
PLM86 UTIL.SRC

SEN D

and the iteration command

SFOR I IN XFILES
SSVCS X'I'.OBJ

SEND

is the same as

IO.DBCXI, ,OBJECT)

SSVCS READ.OBJ = IO.DBCREAD, ,OBJECT)

SSVCS UTIL.OBJ • IO.DBCUTIL, ,OBJECT)

SVCS Access Definitions

Within the dependency file is a special form of file reference called an SVCS refer­
ence. This is a reference to a particular module and variation within a SVCS data
l)ase and requires four pieces of information:

The name of the data base file

The name of the module

The variation

• The class of information (source, object, etc.)

Example

SSVCS READ.OBJ • IO.DBCREAD"OBJECT)

This access definition tells SVCS that all references to the file named READ.OB]
are really references to the object of unit READ in the data base named IO.DB.

In this reference, all fields except the data base name are optional, since SVCS
supports the concept of defaults.

When an SVCS file is referenced in a target or a dependency list, the modification
information is retrieved from the named data base where it is stored for each variant.
In this way, modification to one variant in the data base will not affect the
dependencies on the other variants.

The following is the same example used for special macros and macro conductors;
however, it includes SVCS access definitions and illustrates the use of many flavors
of macros and the macro constructor.

SSET FILES TO CREAD,WRITE,DATA,UTIL)
SSET VARIANT TO "V3.S 11

SFOR I IN XFILES
SSVCS XIIIII.OBJ • IO.DBCXI,XVARIANT,OBJECT)
SSVCS XIIIII.SRC • IO.DBCXI,XVARIANT,SOURCE)

SEND

2-7

Program Construction (MAKE) A User's Guide to Program Management Tools

2-8

The root of the dependency graph
SIF IO,LNK) XALL(X"FILES",OBJ) THEN

S SVCS get of object files
RUN LINK86 XDEPEND TO XTARGET

SEND

SFOR I IN XFILES
SIF X"I",OBJ) X"I",SRC THEN

S SVCS get of source file
RUN PLM86 XDEPEND OPTIMIZE(3) XREF
S SVCS put of object

$ END
SEND

Submit File

The submit file created by MAKE contains the tasks (as supplied by the user in the
dependency file) necessary to bring the target up-to-date.

Lines added to the submit file will not, in general, make any assumptions about the
command line format. These lines will be constructd from the task lines specified by
the user (with macros expanded). The following are additional rules concerning the
lines in this file:

• No line will exceed 78 characters in length (including the continuation character
and the carriage-return and line-feed).

If a line is to be continued, it will end with a space followed by the character &.
Due to expansion of macros, some lines may have to be broken up as continuation
lines.

MAKE Invocation

The form of the invocation as well as the method for passing a command line to the
program is host specific. The general invocation of MAKE is as follows:

M A K E file_name options

MAKE Syntax

The general syntax for the MAKE program is presented here for reference.

make_pgm .. I * the O.S. dependent specification of the executable object of the program MAKE
or MAKE.86 * I

command_tail • dependency_file [control_list

dependency_file • I * the o.S. dependent specification of the dependency file, created by the user,
to describe the construction of his program (see Chapter 1) * I

control_list • { control}

A User's Guide to Program Management Tools Program Construction (MAKE)

control • liTO II submiLfile_name
attrib_option
II G E N ALL II / * don't check dependencies, gen everything * /
II P AGE LEN G T H II II (II length II) II
II P AGE WID T H II II (II width II) II
page_option
II PAR A MET E R S II II (II argumenLlist II) II
prinLoption
II TAR GET II II (II targeLname II) II

attrib_option • II N 0 A T T RIB II
II A T T RIB II [,,(.. attrib_string II) II

prinLoption • II N 0 P R I N T II
II P R I N T II [II (II IisLfile_name II) II

page_option = II N 0 P A GIN G II
IIPAGING II

submiLfile_name • path_name .

attrib_string • / * an O.S. dependent invocation of the ISIS A TTRIB program * /

IisLfile_name • path_name .

path_name • / * an O.S. dependent file name * /

targeLname • / * the name of the root of the dependency tree that is to be made * /

argumenLlist = argument II I II

length • / * a non-zero, unsigned integer * /

width • / * a non-zero, unsigned integer * /

MAKE Command Options

MAKE accepts the following invocation command options.

TO submiLfile_name

The TO clause directs MAKE to write the submit file to the named file. The form of
the filename is object/source dependent. If the filename is omitted, the extension of
the input filename is changed to CSD to create the submit filename.

Example

MAKE IO.MKE TO IO.SUB

This clause would place the task lines into the file IO.SUB instead of IO.CSD.

GENALL

The GENALL (GA) option specifies that dependencies are not to be checked. If this
option is specified, MAKE assumes that all dependencies will fail and therefore puts
all of the user specified tasks into the submit file. This permits the user to run the
entire generation without relying on partial generations that may exist.

2-9

Program Construction (MAKE) A User's Guide to Program Management Tools

2-10

Example

MAKE IO.MKE GENALL

This option would result in all of the task lines in IO.MKE being placed into the
submit file IO.CSD (the default name) regardless of file modification characteristics.

TARGET target name

The TARGET (TG) option specifies the com plete name of a target file that specifies
a dependency node on one of the target lists in the dependency file. It instructs MAKE
to use that dependency node as the root of the dependency tree. This option enables
the user to specify that only part of the unit be created and the remainder ignored.
The default is to use the first dependency node specified in the file as the root.

Example

MAKE IO.MKE TARGET(READ.OBJ)

This option instructs MAKE to investigate that portion of the dependency graph
starting with READ.OB] as the target. In our example, READ.OB] would limit the
task lines to either compiling READ.SRC or no lines at all.

PRINT INOPRINT (list file name)

The PRINT jNOPRINT (PRjNOPR) option specifies the placement of the listing
file. If the optional list filename is omitted, the listing file is printed to a file with the
same name as the input file but with the extension changed to LST. The NOPRINT
command suppresses the generation of the listing file. NOPRINT is the default.

Examples

MAKE IO.MKE PRINT(IO.LST)

MAKE IO.MKE PRINT

Both options place a listing file into the file IO.LST.

PARAMETERS

The PARAMETERS (PAR) option matches actual parameters (specified in the
invocation line) with formal parameters (specified in the MAKE dependency file).

If there are more formal than actual parameters, the remaining formal parame­
ters have the value of the null string.

If there are more actual than formal parameters, the extra actual parameters are
ignored.

Example

SSET FILES TO (READ)WRITE)DATA)UTIL)
SIF IO.LNK > XALL(XOX'FILES'.OBJ) THEN

RUN LINK86 XDEPEND TO XTARGET
SEND

A User's Guide to Program Management Tools Program Construction (MAKE)

SFOR I IN XFILES
SIF XOX'I'.OBJ) XO'I'.SRC THEN

RUN PLM86 X'I'.SRC X1
SEN D

SEN D

The MAKE file EXAMPL.MKE has two parameter macros: %0, which specifies a
drive for the object files, and % 1, which specifies options for the compiles.

Invocation of MAKE to process this MAKE file would take the form

MAKE EXAMPL.MKE PARC:F1:,'COMPACT OPTIMIZE(1)')

which would substitute :Fl: for each occurrence of %0 and COMPACT
OPTIMIZE(l) FOR % l.

PAGELENGTH length

The PAGELENGTH (PL) option sets the maximum number of lines per page in the
listing file.

• The length specified must be an unsigned integer from 5 to 65,535.

If either the NOPAGING or NOPRINT option is being used, this option IS

ignored.

PAGEWWIDTH width

The PAGEWIDTH (PW) option sets the maximum number of bytes for a line in the
listing file.

The width specified must be an unsigned integer from 60 to 255.

If the NOPRINT option is being used, this option is ignored.

PAGING/NOPAGING

The PAGING/NOPAGING (PI/NOPI) option specifies that page ejecting and page
headers should or should not exist in the listing file at every page according to the
PAGELENGTH command.

ATTRIB/NOATTRIB

The ATTRIB/NOATTRIB (AT/NOAT) option permits the user to reset the
modification (dirty) bit for files that are in ISIS directories. The A TTRIB option
allows the user to state the name of the program that will perform the resetting. The
NOATTRIB option supresses the resetting of the modification bit. The default string
is ATTRIB.

NOTE

This modification bit is available only on ISIS-II(W), the winchester ISIS.
This option is ignored for all files that reside on the Network Resource
Manager (NRM) for systems on NDS-II.

2-11

Program Construction (MAKE) A User's Guide to Program Management Tools

2-12

MAKE FILES

Make opens an input file, an output file, and optionally a listing file.

Input File (MAKE File)

The input file is the file of dependency information specified by the user on the
command line.

Output File (Submit File)

The output file is always created. This file is the submit file that is built up of user­
specified tasks. The user can direct this file to a specified file by using the TO
command.

Listing File

The listing file contains a header summary, a dependency file listing, a dependency
graph listing, and a file summary.

This file is not constructed unless the user requests it through the PRINT
command.

Continuation lines in the listing are marked with a dash just to the left of the
continuation text.

• Only this file contains error messages resulting from improper specifications in
the dependency file.

Header Summary

The header symmary contains the name of the MAKE dependency file, the name of
the constructed submit file and a list of the controls specified by the user.

Dependency File Listing

This section of the listing contains the dependency file as specified by the user.

Dependency Graph Listing

This section of the listing contains a representation of the dependency graph with
levels of indention used to denote dependency. Each line, "representing a target, a
dependency, or both, have the following fields:

Depth-O digits) depth from the root (root is depth 1)

• Separator~{2 blanks)

Indentation-{ 4 (DEPTH-I) blanks)

Name-name of the target/dependency file at this node

• Separator--{blank,colon,blank) only if there are attributes

Attributes-attributes relating to this file

File Summary

The file summary lists the number of lines and number of errors within the MAKE
file.

If MAKE detects an error in the dependency specification, a message is placed in the
listing file.

A User's Guide to Program Management Tools Program Construction (MAKE)

Example

* * * ERR 0 R nnn I N LIN Ell/II tttll; m e 5 5 age

where

nnn

11/

ttt

message

provides the error number.

provides the line number.

provides the input text near where the error was detected.

provides an explanation of the error.

At program completion, MAKE will return the following completion code:

o if no errors were detected

2 if errors were detected

MAKE Error Messages

The following is a list of error messages generated by MAKE.

1. ENUMERATION MACRO REQUIRED IN XALL EXPANSION

2. UNEXPECTED END OF FILE ENCOUNTERED IN XALL
E X PAN S ION

3. UNEXPECTED END OF FILE ENCOUNTERED IN MACRO
DEFINITION

4. UNEXPECTED END OF FILE ENCOUNTERED IN FOR LOOP

5. UNEXPECTED END OF FILE ENCOUNTERED IN TASK LINE

6. UNEXPECTED END OF FILE ENCOUNTERED IN DEPENDENCY
SPEC

7. REFERENCED MACRO IS UNDECLARED

8. SET COMMAND REQUIRES A MACRO NAME

9. FOR STATEMENT REQUIRES AN ENUMERATION MACRO

10. MATCHING SINGLE OR DOUBLE QUOTE NOT FOUND

11. STRING LENGTH LIMIT IS 255 BYTES

12. 'TO' EXPECTED IN MACRO DEFINITION

2-13

Program Construction (MAKE) A User's Guide to Program Management Tools

2-14

13. 'IN' EXPECTED IN FOR STATEMENT

14. MAKE STATEMENT NOT ALLOWED IN TASK LINES

15. UNKNOWN MAKE COMMAND

'16. CONTINUATION OF A MAKE COMMAND EXPECTED, FIRST
CHAR MUST BE '$'

17. MAKE ERROR: MACRO STACK UNDERFLOW

An error in the MAKE program occurred. Please document it and report the
error to your Intel representative.

18. MACRO EXPANSION SUPPORTED TO A DEPTH OF 16

19. COMMA EXPECTED IN NAME LIST

20. 'THEN' REQUIRED IN DEPENDENCY SPECIFICATION

21. NAME USED IN TARGET OPTION NOT FOUND, FIRST
TARGET USED

Fatal Command Errors

The first fatal command error encountered causes MAK E to report the error to the
console and halt processing. Fatal errors result from either an illegal or unknown
option/option value in the invocation and are as follows:

UNKNOWN OPTION

ILLEGAL OPTION VALUE FOR OPTION:

DEPENDENCY FILE REQUIRED AS FIRST OPTION;

RESPECIFICATION OF OPTION NOT ALLOWED:

TOO MANY ARGUMENTS IN PARAMETERS OPTION

FATAL OBJECT/SOURCE CODE INTERFACE ERRORS

The fatal object/source code interface errors occur from calls to the operating system
that cannot be handled because of user error or lack of system resources. If the error
occurs during an I/O operation, the following will be displayed:

M A K E supervisor S Y 5 T E M CAL L ERR 0 R

F I L E: file name

A User's Guide to Program Management Tools Program Construction (MAKE)

ERR 0 R: object or source error message

MAKE TERMINATED

If the error occurs during an non-I/O system call, the message is as above without
the line containing the filename.

2-15

CHAPTER 3
SOFTWARE VERSION

CONTROL SYSTEM (SVCS)

This chapter presents a more in-depth presentation of SVCS. Its purpose is to provide
you with more detailed information on the structure of SVCS.

What Is SVCS?

SVCS allows you to set up a complete data base to manage software projects. SVCS
provides the capability to track changes to program source code, maintains variations
of the source and object code modules for a program, and controls access to these
modules in a multi-programmer environment. Essentially, you can group related
software modules, as well as variations of those modules, within a single data base.

SVCS automatically retains history information on every change to a software module,
including who made the change and when and why the change was made. It also
allows different versions of a module to be uniquely identified. This makes SVCS
well suited to applications that require customized software.

SVCS Structure

SVCS maintains a data base of units that may be checked out and either modified
or returned. An SVCS unit is a reference to a given data base and contains the
following constructs (see figure 3-1):

• Program units

• U nit classes

• Variations

CLASSES (

WORK

filename

UNITS ____ -r------..,
A{MODULE) Z{MODULE)

---------- r----------
SOURCE
OBJECT
CHANGE HISTORY
COMPOSITION

W~~~9 ~ ____

I V2.0
FOO L'--____ --'

OBJ (MODULE) r----------
SOURCE
OBJECT
CHANGE HISTORY
COMPOSITION

Figure 3-1. Software Version Control 121958-3

3-1

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-2

Program Units

Program units are an expression of the granularity of the data base. They represent
not just one piece of information (such as the text of a source module) but several
pieces of information concerning a single piece of the program that is being
developed.

Developing a program requires manipulation of several different fragments of that
program. These may include source files and their related object files, include files,
and linked objects (e.g., complete programs, overlays, and tasks). One of these
fragments is referred to as a unit within SVCS. A unit is not just one piece of infor­
mation, but is all information relating to a particular fragment of the program. The
majority of these will be module units that contain a piece of source (such as a
module), a related object file (if one exists), change history for the unit, and
optionally some composition information.

In addition to the source fragments, a project will need to keep track of the linked
objects (such as tasks, overlays, and complete programs) that are generated. Linked
objects are stored in system units that are identical to module units but do not store
any source.

Module Units

A module unit is a unit of source (either a source module or an include file). Within
a data base there can be any number of such units; however, the best use of the data
base would be to include only those sources that are related to form a logical subset
of the program being developed (refer to the section on optimal use of SVCS in this
chapter).

System Units

System units are the synthesis of one or more source modules created during the
construction of a program. Each of these units is usually the linkage of the objects
generated from the source modules by a translator or the linkage of several link files.
The units provide the following:

• A place to accumulate internal interface information

• A place to permit outside interface to the modules

• A place to store information that is useful for functional documentation of the
modules as a group

• A place to store generation information

SVCS makes no distinction between system units and module units. They are treated
in identical fashion. The distinction is made only through their usage.

Unit Classes

Each program unit has one to four or more classes of information associated with it.
For a module unit, these classes would be the source module, the object module that
results from compiling the source, the change history for the source, plus one class
for any related information, such as a list of include files that are used by the source,
or documentation describing either the module or the interface exported by the module.
For a system unit, the classes would be the same (without the source class).

A User's Guide to Program Management Tools Software Version Control System (SVCS)

SVCS predefines some of the characteristics of these classes, as defined below:

• Source (SO)-This class holds the source mod ule. It is generally present onl y for
module units.

• Object (OJ)-For a module unit, this class is the object that was generated from
the source module by some translator. For a system unit, it is the object module
that was generated from combining the object modules of several module units
or several system units.

• History (HT)-This class contains the who, what, when, and why of a source (or
object) change and is available to the programmer. It is logged automatically
every time a change is made to the source class of a unit. Changes to the history
information can be made any time, not just when the source module of an object
module is returned to the data base with a PUT command.

• Composition (CP)-his class can be used arbitrarily by the user. It is available
for any purpose that will help document the system. Typically, it might be used
to contain a list of unit names that are used for the construction of a particular
unit and/or the tasks required for construction. For a module unit, this list could
be a list of include files to document dependencies. For a system unit, this list
includes the names of the module units whose objects are to be linked together
to form the system object. Generation procedures, interface specifications, or
module documentation (as well as the MAKE file) could also be stored in this
class.

In summary, classes contain the information associated with a unit (module or system)
that is being either developed or maintained.

Variations

The variation (variant) mechanism allows the programmer to have copies (versions)
of the same unit that serve different developmental needs, markets, or end uses. SVCS
supports such development by allowing these different sources to be stored as varia­
tions on a single source. A variant represents different flavors of a system or conse­
quent version of a module. Each variation has its own name and its own share of the
classes. This enables all of the objects for the different variations to be stored in the
same data base.

The variation construct allows the programmer to have "shadow" copies of each unit
to fulfill various requirements of development and maintenance of the program. The
variations are called shadow copies because they do not actually take up separate
space in the data base, but are merged together, resulting in substantial space savings.
One history file (class) serves for all variations of a unit, as does one source file. This
technique enables the user to spin off a new variation from an old one at any time.

The names of the variations have no inherent meaning; thus they serve merely as a
means of identification. The variation construct can either be used as a version track­
ing mechanism or as a mechanism for tracking variations that are created to fulfill
special requirements of different end products.

For each unit, SVCS recognizes the default variant to be the current working version,
WORK. A GET command of a source module with no variant specified will retrieve
the WORK variant. Specifically, named variants may be retrieved, modified, and
returned, just like the current working version. Variants are created with the ADMIN
command and FROM existing variants.

3-3

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-4

Optimal Use of SVCS

Because the SVCS data base is built upon the existing file system, it is fragmented
into many files (depending on the number of units, classes, and variants). There will
be at least three files per unit in the data base plus one per variant. For large projects,
therefore, there will be many files, with potential for programmer contention
accessing the data base.

For this reason, it may be wise to break up a large project into more than one data
base. There is no penalty for having more than one data base in a project, especially
if they are broken along logical lines (nucleus, I/O system, application, or overlay
boundaries).

There is no physical limit to the number of units in a data base (other than those of
the file system). However, keeping the number of units and variants under 50 or 100
should limit the number of files (and lengthy disk access) and reduce programmer
contention for the data base.

It is recommended that SVCS data bases occupy entire NDS-II sub-directories, rather
than mix user-accessible files with SVCS-accessible files.

Major Functions of SVCS

SVCS allows you to perform the following functions on the data base:

• ADMIN function-allows you to create and delete units and unit variations. It
also allows you to manipulate attributes associated with the variants.

• GET function-allows you to retrieve a unit from the data base either to read or
to modify. Any variant and class of information for a unit is available to the GET
command.

• PUT function-lets you return a unit to the data base (with WRITE permission)
and have the unit's change history update. This allows you to get a source with
WRITE permission, edit it, and then return it to the data base. When PUT of
source occurs, information concerning the changes is automatically logged. At
this time, you can also request that commentary text about the change be placed
with the change history.

• RETURN function-enables you to return modification permission for a source
that was acquired from the data base with WRITE permission. This treats the
GET and RETURN transactions as though they never occurred (no record exists
in the change history). Both the GET and the PUT function act as intelligent
COPYs.

SVCS Commands

SVCS accepts the following commands for processing.

GET

The GET command is used to retrieve information from the data base.

This clause names the file that is to receive the information requested in the GET
command. It is not optional.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

Example

SVCS GET pgm.db(main) TO :f1 :main.src

The options associated with a GET command (WRITE, IDENTIFIER, HISTORY,
COMMON) are described as follows.

WRITE [(varian Llis t)]

The WRITE (WR) option requests write permission on the piece of information that
is to be retrieved (checked out) from the data base for the purpose of modification.

• Permission is granted if no one has it checked out and if the requester has write
permission on the data base.

• The optional variant list allows the requester to retrieve multiple variants at the
same time.

Example

SVCS GET pgm.db(main) TO :f1 :main.src WRITE

IDENTIFIER

The identifier (ID) clause is used to designate the person requesting the information
from the data base. It is required for WRITE permission.

If the ID is omitted on a GET command for WRITE permission, SVCS prompts
for it with ID:. The ID is used to identify who has the module.

• The ID entered in response to the above prompt will consist of all the characters
between the prompt and the carriage return.

Example

SVCS GET pgm.db(main) TO :f1 :main.!rc WRITE ID (Sheila)

HISTORY

In a GET command, the HISTORY (HT) option annotates the source code with the
information from the change history file.

• In a GET command, HT is valid only for the source class and only for read
permission so that your source file cannot be corrupted with history information.

• It allows the programmer to find out when, why, and by whom changes were
made to the source code.

Example

SVCS GET pgm.db(main) TO :f1 :main.!rc HISTORY

COMMON

The COMMON (CM) option directs SVCS to add lines to the retrieved source code
to delineate any lines that are common to all of the variants listed in the WRITE
option variant list and the variants requested by the GET command.

• It is valid only for the source class.

3-5

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-6

Example

SVCS GET pgm.db(main) TO :f1 :main.src &
WRITE (x119)v1.2) ID (user) COMMON

PUT

The PUT command enables you to return information to the data base that was
checked out for WRITE permission.

The PUT command is not valid if the requester did not check it out with WRITE
permission (verified through ID comparison).

When the PUT command fails, it is ignored.

The options associated with a PUT command (FROM, WRITE, IDENTIFIER,
HISTORY) are described as follows:

FROM file_name

The FROM clause places the named file into the data base.

• It is not valid if the piece of information specified is not checked out by the
person designated by the ID option.

Example

SVCS PUT pgm.db(main) FROM :f1 :maln.src

This command causes SVCS prompt for the ID and the history information as
explained below.

WRITE [(varian Llis t)]

The WRITE (WR) option is used as a counter-check for the GET command.

• If the variant list is not the same as specified in the GET command, the PUT
command fails.

• In general, the user will not choose to use this command but rather rely on the
default. The default is to use the list specified on the GET command.

Example

SVCS PUT pgm.db(maln) FROM :f1 :maln.src WRITE (X119)V1.2)

IDENTIFIER

The identifier (ID) option is used to designate the person replacing the information
into the data base.

• The options is used to verify that the person replacing the information in a PUT
command is the same person who checked it out.

• If the ID is not provided, SVCS prompts with ID:. The ID entered consists of all
the characters between the prompt and the carriage return.

• If the PUT command is used for the source class, the ID is logged with the date,
time, and optional data supplied by the user with the HISTORY option.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

Example

SVCS PUT pgm.dbCmain) FROM :f1 :main.src ID CAndy)

HISTORY

The HISTORY (HT) option allows the user to supply information about why the
file was modified.

It is terminated by the first non-quoted right parenthesis encountered.

The user-supplied information can be retrieved by either doing a GET command
of the history class associated with a unit or by using the HISTORY option on a
GET of the source class for a module unit.

• If the HISTORY option is omitted from a PUT command on a source class,
SVCS prompts for it with the prompt HISTORY:. This prompt is displayed at
the beginning of each line until a zero-length line is encountered (a line contain­
ing only a carriage return/line-feed).

RETURN

The RETURN (RT) command returns write permission for the designated variants.
This command is used if the programmer gets a file and then decides not to modify
it. As with the PUT command, the ID option is required and the WRITE option can
be specified. If the WRITE option is used, the variant list must match what was
specified in the GET command.

Example

SVCS RETURN pgm.dbCmain) ID CStu)

ADMIN

The ADMIN command allows SVCS to perform the various administrative functions
required for maintaining a data base.

The options associated with ADMIN (CREATE, ADD, DELETE,
WRITEACCESS, DEFAUL TACCESS, PRINT) are described as follows.

CREATE

The CREATE (CA) option permits the administrator of the data base to create a
dat base. If the file given as the data base name already exists, it is an error. SVCS
will then prompt, asking whether to overwrite the existing file or to simply abort. If
the named data base already exists, it is overwritten. Note that after creating a
database that is to be shared, be sure to change its world access rights so that others
may modify it.

Example

SVCS ADMIN pgm.db CREATE

ADD and DELETE

The ADD option permits the administrator of the data base to add either units or
variants to the data base at any time. Units added will automatically have all variants
defined for that data base.

3-7

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-8

Example

S V C S A DM IN P 9 m. db ADD (V A R I ANT - pro j A , pro j x , pro j 1)

SVCS ADMIN pgm.db ADD (UNIT-main,data,init)

This example adds three units (main, data and init) to the data base.

The DELETE (DL) option allows the administrator to delete units and variants from
the data base at any time.

Example

SVCS ADMIN pgm.db DELETE (VARIANT-projB)

Both the ADD and DELETE options allow the administrator to specify the creation
or deletion of one or more units (module and system) and one or more variants.

UNIT. A unit can either be created in the data base as empty (if the FROM
clause is not used) or with the source class file initialized to the contents of a
named file (if the FROM clause is used). It is created with an empty object class
file, a variant with the name WORK, and a history class file with an entry for
the creation. It has both read and write permission.

Example

SVCS ADMIN pgm.db ADD (UNIT - main FROM :f1 :main.src

This command adds the unit main while initializing it to the contents of the file
:f1 :main.src.

NOTE
The FROM clause initializes the WORK variant of the unit. All other
variants of the unit remain uninitialized. Thus the user should define units
before defining variants.

• VARIANT. When a variant is either created or deleted, the action occurs on the
entire data base. A variant is always created from an existing variant and has
the identical contents of that variant. In creation, the variant is stated in the
FROM clause. If not, it is created from the WORK variant. The variant is created
with write access enabled but with no associated default accesses.

WRITEACCESS

The WRITEACCESS (WA) option allows the administrator of the data base to allow
or disallow writing to a specified variant within the data base. Any GET command
requesting permission to write on a variant where write access is disallowed will fail.

Example

SVCS ADMIN pgm.db ADD(VARIANT - x119 FROM WORK) &
WRITEACCESS (x119-FALSE)

The preceding example shows that the administrator wishes to create a prototype
variant xl19 from the WORK variant with write access disallowed. By disallowing
write access, the owner of the data base has rendered the variant unmodifiable.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

DEFAULTACCESS

The DEF AUL TACCESS (DA) option allows the administrator of the data base to
set up default accesses to any variant in the data base.

• If the ID list is not specified, the specified variant becomes the default for all
identifiers that are not in any other variant default list.

The word NONE eliminates all identifiers from the list for that variant.

• The word ALL causes the specified variant to become the default for all identi­
fiers. This global default can be modified for individual users through further
DEFAUL T ACCESS definitions.

Identifiers in the ID list are stored with the variant in the data base file.

• An identifier will never appear on the default list of more than one variant of a
unit because if it is added to one list while on another, it is automatically deleted
from the old list.

Example

SVCS ADMI pgm.db DEFAULTACCESS (x119-ALL) &
DEFAULTACCESS (WORK-CHRISJELSAJMATTJERIC)

This command would direct all accesses to the data base in which the variant was
not named to the variant named xl19. The exception is that the default variant for
the four named programmers would be the one named WORK. In this way, all outside
references to the data base (generally from groups requiring prototypes) can be
directed without the outside groups needing to know specifics. At the same time, it
permits the programmers working on the program to use the default.

PRINT

The PRINT (PRI) option provides the user with a formatted directory of the data
base.

Example

SVCS ADMIN pgm.db PRINT (db.15t)

SVCS Command Options

The following options can be applied to any of the SVCS commands.

PROMPT INOPROMPT

The PROMPTjNOPROMPT (PROjNPRO) option tells SVCS whether to prompt
on certain error conditions or simply issue the error message and exit. The default
for this command is PROMPT.

TIMEOUT INOTIMEOUT

The TIMEOUT jNOTIMEOUT option establishes the defined period of time SVCS
will try to gain control of the data base before giving up and exiting to the command
level. Since more than one person may wish to access the data base at any time,
SVCS will pause and try again if another SVCS command is executing.

3-9

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-10

• The default time is 300 seconds.

TIMEOUT can override this default with a user-specified number of seconds.

NOTIMEOUT instructs SVCS to wait forever.

Example

TIMEOUT (30)

SVCS Invocation

The form of the invocation, as well as the method for passing a command line to the
program, is host specific. The general form of invocation is as follows:

I GET I S V C S PUT datB-base_spec options
RETURN
ADM I 1'1

SVCS Syntax

The general syntax for the SVCS program is presented here for reference.

S V C S _command • S V C S _pgm command_tail .

S V C S_pgm = / * the O.S. dependent specification of the executable object of the
program SVCS.86 * /

command_tail • command_type [common_options

command_type • "G E T" db_spec GET _options
" PUT" db_spec PUT _options
" RET URN" db_spec RET URN _options
" ADM I 1'1" db_spec ADM IN_options .

" (" [uniLname]

uniLname • identifier .

variant • identifier .

class • "S 0 U R C E "
"OBJECT"
"HISTORY"
"COMPOSITION"

GET _options • GET _option

[")" [class]

GET _option TO" filename

" ") [variant]
") "

.. W R I T E" [.. (.. varian L lis t ")"]
II I D" .. (" identifer ")"
"H I STORY"
"COMMON"

A User's Guide to Program Management Tools Software Version Control System (SVCS)

PUT _options • PUT _option ...

PUT _option '"' "F ROM" filename
" W R I T E" [.. (" varianLlist ")"
" I D" "(" identifer ")"
" HIS TOR Y" "(" history_string ")"

RET URN_options '"' RET URN_option .

RET URN _option '"' "W R I T E " " (.. varianLlist ")"
" I D" "(" identifier ")"

ADM IN_options '"' ADM IN_option

ADM I N _option '"' "C REA T E "
" ADD" "(" add_item ,,) ..
" DEL E T E" "(" delete_item ")"
.. P R I NT" "(" IisLfile_name ")"
access_options .

add_item • "U NIT" "." add_uniLlist
II V A R I ANT" ". II variant ["F ROM" variant]

delete_item • "U NIT" .. '"''' uniLlist
" V A R I ANT" "'"''' varianLlist •

uniLlist • uniLname "."

add_unit • uniLname [" FRO M" file_name

access_options • " W R I TEA C C E 5 5" "(" varianLassign ")"
" D E F A U L T ACe E 5 5" "(" variant ["= " id_spec] ")"

id_spec • "A L L "
IINONE"
id_list .

varianLassign • varianLlist "." boolean .

varian Llis t • variant

boolean • "T RUE "
"FALSE"

" " J

id_list • identifier "J"

file_name • I * O.S. dependent file name * I

identifier • I * an argument as defined by [2J * I

common_options • PRO M P T _option
TIM E 0 U T ---:option •

PRO M P T _option • .. PRO M P T ..
"NOPROMPT"

3-11

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-12

TIM E 0 U T _,option • II TIM E 0 U T II II (II num_seconds II) II
IINOTIMEOUTII

num_seconds • / * number of seconds to wait before timing out * /

SVCS Files

SVCS opens a number of different files depending on the options specified by the
user. The various files are described as follows.

Data Base File

The data base file is the heart of SVCS. It contains all of the information about the
various units, variants, classes, and access rights within the overall data base.

This file is generally centrally controlled during a software development process. Any
user can request permission to read the information within the file; however, if the
user wants to modify the data, he must have write access (as designated by the host
operating system). For write requests, the data base file acts as a lock, allowing only
one write request to be honored at anyone time. However, once that request has
control of the data base file, the user can open any of the other files seeking write
permission without fear or deadlock.

If the request to get control of the data base file fails because someone else is either
reading from or writing to that file, SVCS will wait a short time (approximately one
second) and then retry the request. SVCS will wait until that control is relinquished.
The amount of time that SVCS will wait for the data base can be controlled by the
TIMEOUT option as discussed in the summary of SVCS commands contained in
this chapter.

Auxiliary Files

The SVCS data base is not constructed as one large file but as a central data base
file that references several auxiliary files. These files contain information that is
specific to each unit. They have the same name as the data base file but with the
extension changed. The extension on these files is three characters long with one of
the characters being a decimal digit (0----9) and the remaining two being upper case
alphabetic. The extensions are allocated as needed and never reused. This allows for
archiving, deleting, and then restoring from the archives.

Retrieved Files

Either a retneved object or history file results in a straight copy of the auxiliary file
to the file specified in the TO command. These files are never encoded by SVCS.

A retrieved source class file or composition class (both are stored in an encoded
format) is decoded and then placed into the file specified by the user. For source, the
user is also able to specify either or both of two options (HISTORY and COMMON)
that will affect what is placed in the output file. The results of these options are
discussed in the following paragraphs.

A User's Guide to Program Management Tools Software Version Control System (SVCS)

History Option

If the history option is specified on a GET command, the history file is written to the
output file preceding the source file lines. It looks like a listing, which is why it cannot
be changed. Each line of the source file is preceded by a five-character change number
(representing the change that created that line and referencing one of the entries in
the change history) followed by a blank.

Example

I 1 07/141182
VARIANTS:
TEXT: INITIALIZED

I 2 07/30182 CHRIS
VARIANTS: WORK
TEXT: This change reflects corrections to the
third) fourth) and fifth lines.

1 This example shows the "result of using the
1 HISTORY option on a GET of source. The
2 first) second) and sixth lines show up as
2 the original lines (from when the file was
2 initialized), The other lines were changed
1 at a later time to correct errors.

Common Option

If the common option is specified on a GET command (valid only on a source class),
lines that are common to all variants in the variant list are preceded by the line shown
in the example.

Example

SVCS allows the user to GET more than
one variant at the same time. The

SSVCS COMMON
COMMON option can be used on such a
GET to delineate the lines that are
common to all variants. This example

SSVCS END COMMON
shows the result of just such a GET.
The third) fourth) and fifth lines are
common to all variants of the GET. The
other lines only exist in the main
variant of the GET.

Stored Files

A stored object or history file results in a straight copy to the auxiliary file from the
file specified in the FROM clause. These files are never encoded by SVCS.

A stored source class file or composition class file is compared against the lines in
the associated auxiliary file and merged in with those lines in an encoded format to
save space.

3-l3

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-14

If the file being stored was retrieved with the COMMON option, the lines inserted
to designate the common source are stripped out before the store actually takes place.

SVCS Error Messages

This section lists all the possible error messages associated with the SVCS program.

Command Errors

Command errors result from either an illegal or unknown option/option value in the
invocation line. SVCS prompts for respecification of the erroneous information if the
prompt option is in effect; otherwise, it merely displays the error message and exits.
There are messages that indicate internal errors; when one of these appears contact
your Intel representative.

The SVSC command error messages are as follows:

1. DATA BASE FILE REQUIRED

2. F I LEI S NOT A N S V C S D A TAB A S E F I L E: file_name

3. U N K NOW N V A R I ANT N A ME: variant

4. CANNOT DELETE THE WORK VARIANT

5. CAN NOT C REA T E, U NIT A L REA DYE X 1ST S: uniLname

6. CAN NOT C REA T E, V A R I ANT A L REA DYE X 1ST S: varianLname

7. Only 16 VARIANTS may be added in one ADMIN.
Please break up the SVCS invocation into several
invocations.

8. ADMIN not interactive, please respecify with
complete command

9. U N K NOW N V A R I ANT I N W R I TEL 1ST varianLname

10. FILE NOT CURRENTLY CHECKED OUT

1 1 • CAN NOT RET URN W R I T E PER MIS S ION, 0 W N E R I S owner_name

1 2. CAN NOT PUT F I L E, 0 W N E R I S owner_name

1 3. W R I TEA C C E S S NOT ALL 0 WED 0 N V A R I ANT: varianLname

A User's Guide to Program Management Tools Software Version Control System (SVCS)

1 4. D u P 1 i cat e 0 c cur e n ceo f v a ria n t : varian Lname
Occurrence in WRITE listing ignored.

15. SVCS INTERNAL ERROR #1
Please contact your Intel representative

16. SVCS DIRECTORY EXTENSIONS EXHAUSTED
Please contact your Intel representative

1 7. ILL EGA LOP T ION V A L U E FOR 0 P T ION: option_name

1 8. U N K NOW NUN I T N A ME: uniLname

19. ID OPTION REQUIRED

20. CANNOT PUT FILE, IT IS NOT CHECKED OUT

21. HISTORY OPTION REQUIRED

22. SVCS INTERNAL ERROR #2
Please contact your Intel representative

2 3. U N K NOW N 0 P T ION: option_name

24. INSUFFICIENT ROOM FOR LARGEST RECORD

25. INSUFFICIENT ROOM TO SYNCHRONIZE

2 6. R E QUE S TED F I LEI 5 C H E C KED 0 U T TO: id_name

Fatal Object/Source Interface Errors

These errors occur from calls to the operating system that cannot be handled because
of user error or lack of system resources. If the error occurs during an I/O operation,
the error message is as follows:

S V C S supervisor I / 0 ERR 0 R
F I L E: file_name
ERR 0 R: message
SVCS TERMINATED

If the error occurs during a non~I/O system call, the message will the same as the
preceding one without the line containing the filename.

3-15

Software Version Control System (SVCS) A User's Guide to Program Management Tools

3-16

SVCS Prompt Messages

If the PROMPT option is in effect, certain error conditions cause SVCS to prompt
the user for correct input. The following prompt messages are supported by SVCS:

A data base name is reqUired, please enter one.
DATA BASE:

An SVCS command is reqUired. The command choices are:
GET - to retrieve information from SVCS
PUT - to put information into SVCS
RETURN to return WRITE permission
ADMIN - to perform administrative functions on SVCS

Please enter one of these commands:

Unknown variant (variantSname), please respecify
VARIANT:

An identifier is reqUired for this operation. Please enter
your id
I D:

Please specify the name of the file that is to be copied to
IITO II FILE NAME:

A unit name is reqUired for this operation.
Please specify one
UN IT:

Pie a s e s p e c i f Y the n a m e 0 f the f i let hat i s t 0 b e cop i e d
from
IIFROM II FILE NAME:

A n e x p I a nat ion 0 f t his PUT i s r e qUi red for the mod i f i cat ion
history.
Please type in an appropriate entry
HISTORY:

APPENDIX A
SUMMARY OF MAKE/SVCS
COMMANDS AND PROMPTS

Table A-I. Summary of MAKE Commands

Command Explanation

TO Directs the writing of the submit file

GENALL (GA) Specifies that dependencies are not to be checked and
that everything is to be generated

TARGET (TG) Specifies the target file specified in a target list (results
in a partial generation)

PRINT (PR) Specifies placement of listing file

NOPRINT (NOPR) Suppresses generation of the listing file

PARAMETERS (PAR) Matches actual parameters with formal

PAGELENGTH (PL) Sets the number of lines per page for the listing file

PAGEWIDTH (PW) Sets the maximum number of bytes for a line in the
listing file

PAGING/NOPAGING Controls page ejecting and headers in the listing file
(PI/NOPI)

ATTRIB/NOATTRIB Permits the user to reset the modification bit of files in
(AT/NOAT) the ISIS directory

Table A-2. Summary of SVCS Commands

Command Explanation

GET Retrieves information from the data base

TO Names the file that is to receive the information

WRITE (WR) Requests write permission on information

IDENTIFIER (ID) Designates person requesting information

HISTORY (HT) Includes history information in the retrieved file

COMMON (CM) Allows for manipulation of common information

PUT Returns information (checked out with write permission)
to the data base

FROM Name of file to be copied into the data base

WRITE (WR) Countercheck for GET command

IDENTIFIER (ID) Verifies that the person replacing the information is the
same person who checked it out

HISTORY (HT) Designates why changes were made

RETURN (RT) Returns write permission for the designated variant

WRITE (WR) Same as for PUT

IDENTIFIER (ID) Same as for PUT

ADMIN Allows for the administrative functions associated with a
data base

CREATE (CA) Creates a data base

ADD Permits the adminstrator to add units or variants to the
data base

DELETE Permits the adminstrator to delete units or variants from
the data base

A-I

Summary of MAKEjSVCS Commands and Prompts A User's Guide to Program Management Tools

Table A-2. Summary of SVCS Commands (Cont'd.)

Command Explanation

WRITEACCESS (WA) Allows the administrator to allow/disallow writeaccess to
a given variant

DEFAULTACCESS(DA) Allows the administrator to establish default access to
any variant

PRINT (PRI) Provides formatted directory of the data base

These options apply to the GET, PUT, RETURN and ADMIN commands

PROMPT (PRO) Instructs SVCS as to whether to prompt or simply exit
NOPROMPT (NPRO) on error conditions

TIMEOUT Establishes time period SVCS will try to gain control of
data base before giving up

NOTIMEOUT Instructs SVCS to attempt to gain control without giving
up

Table A-3. Summary of SVCS Prompt Messages

Prompt Explanation

PLEASE ENTER ONE OF THESE SVCS command missing

GET Retrieve information

PUT Put information into SVCS

RETURN Return write permission

ADMIN Perform adminstrative functions on SVCS

DATA BASE: Data base name either missing or incorrect

UNIT: Unit name missing or incorrect

VARIANT: Variant name missing or incorrect

TO FILENAME: Filename where information is to be copied is
missing

FROM FILENAME: Filename that contains information to be put into
the data base is missing

ID: Identification of user is required

HISTORY: Explanation of change is required

A-2

APPENDIX B
ADDITIONAL INFORMATION
FOR THE SERIES III USER

This appendix contains information specific to the Intellec Series III Microcomputer
Development System. It covers the following subjects:

Series III literature

Hardware and software required

• System resources used by PMTs

System-specific examples of invocation lines and commands

Series III Literature

Information describing the general operation of the Series III is provided in the
following manuals:

• Intellec Series III Microcomputer Development Product Overview, 121575

• Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

• Intellec Series III Microcomputer System Programme's Reference Manual,
121618

Hardware and Software Required

To run the PMTs, the following hardware and software are required:

Intellec Series III development system (with RUN version l.5 or later)

• ISIS-II Operating System (version 4.1 or later)

• 8086-based Utilities

System Resources

The amount of memory available depends upon the amount of memory in your system.
The Series III can be expanded up to one megabyte of memory addressable by the
8086. PMTs require approximately 96K bytes. More memory must be added to
accommodate additional workspace and programs.

Invocation Line

To invoke PMTs in the 8086 execution environment of the Series III, preface the
invocation line with the RUN command. The ISIS-II operating system prompt is a
hyphen (-).

The general format of the MAKE invocation is

RUN MAKE

MAKE signs on with the following message:

S e r 1 e 5 - I I I M A K E , V x.y

B-1

Additional Information for the Series III User A User's Guide to Program Management Tools

The general format of the SVCS invocation is

RUN SVCE

SVCS signs on with the following message:

5 e r 1 e !!I - I I I 5 0 f t IN i!! reVer !!I 1 0 nCo n t r 0 1 5 Y !!I t e m J V x.y

8-2

• , ®
i

ADD, 1-9, 3-7
ADMIN, 1-5, 1-8, 1-9, 3-4, 3-7
ampersand, 3-8
AT/NOAT,2-11
ATTRIB/NOATTRIB,2-11
auxiliary files, 3-12, 3-13

classes, 3-1
command errors, 2-14, 3-14
command line, 1-6, 2-2, 2-3
COMMON option, 3-5, 3-13
compl(:tion code, 2-13
composition, 1-2, 3-3
continuation lines, 2-12, 3-8
CP,3-3
CREATE, 1-9,3-7

DA,3-9
data base, 1-2, 1-3, 1-5, 1-8, 1-9,3-1,3-2,3-12
DEFAULTACCESS, 3-9
DELETE, 1-10, 3-7, 3-8
dependency file, 1-6, 2-1, 2-2, 2-10, 2-12
dependency graph, 1-3,2-1,2-10, 2-12
dependency nodes, 1-3, 1-6, 2-1, 2-3, 2-6, 2-10, 2-12
DL,3-8
dollar sign, 1-6, 2-2, 2-3

END, 1-6, 2-3
environment, 1-2
error message

MAKE, 1-7,2-13
SVCS, 3-14

fatal command errors, 2-14, 3-15
FROM,3-6

GENALL, 1-5, 2-9
generation, 1-2
GET, 1-2, 1-8, 3-4, 3-6

history, 1-1, 1-3,3-3, 3-5, 3-7, 3-13
HT, 3-3, 3-5, 3-7

ID, 3-5, 3-6
IDENTIFIER, 3-5, 3-6
incorporating MAKE and SVCS, 1-5
input file, 2-12
invocation

MAKE, 1-6,2-8,2-11,2-13, B-1
SVCS, 1-8, 3-10, B-2

iteration commmand, 2-2, 2-6
ISIS-II, v, B-1
ISIS-II(W), v, 1-2, 2-11
ISIS-IlI(N), v, 1-2

listing file, 2-12

macro definitions, 2-2, 2-3, 2-6
MAKE, 1-1, 1-6,2-1
MAKE command line, 1-6
MAKE Command Options, 2-9
MAKE commands, 2-2, A-I
MAKE file, 1-3 thru 1-5, 1-6, 2-8, 2-12
module housekeeping, 1-1
module unit, 3-2

NDS-II, v, 1-2, 2-11
Network Resource Manager, 2-11
Notational Conventions, vi

object, 1-2, 3-3
object modules, 1-1
OJ,3-3
options, 3-9
output file, 1-7, 2-12

PAR, 2-10
PARAMETERS

actual, 2-1 °
formal,2-1O

PAGELENGTH,2-11
PAGEWIDTH,2-11
PAGING/NOPAGING,2-11
PI/NOPI,2-11
PL,2-11
PMTs, v, 1-1, B-1
PR/NOPR, 2-10
primary class, 3-2
PRINT, 1-7,2-12, 3-9
PRINT/NOPRINT, 2-10
PRO /NPRO, 3-9
programmable secretaries, 1-1
prompt, 3-7, 3-16
PROMPT /NOPROMPT, 3-9
PUT, 1-3, 1-8, 3-4, 3-6
PW,2-11

read, 1-8, 3-5
Related Publications, v
retrieved files, 3-12
RETURN, 1-8, 1-9, 3-4, 3-7
RUN, B-1

semi-colon, 2-2
Series III, v, B-1
shadow, 3-3
sign-off message, 1-9
SO, 3-3
software generation, 1-1, 1-5
software management, 1-1
source, 1-2, 3-2
source class, 3-2, 3-5
source contention, 1-2
source modules, 1-1, 3-2
submit file, 1-1, 1-5, 1-7, 2-2, 2-8, 2-12

INDEX

Index-l

Index

SVCS, 1-1, 1-8, 3-1
SVCS access definition, 2-6, 2-7
SVCS command line, 1-8
SVCS commands, 1-8, 3-4, 3-9, A-I
SVCS files, 3-12
SVCS prompts, 1-5,3-16, A-2
syntax

MAKE,2-8
SVCS, 3-10

system unit, 3-2

TARGET,2-10
target file, 1-6, 2-2
task lines, 1-6, 1-7,2-2,2-3

Index-2

A User's Guide to Program Management Tools

TIMEOUT /NOTIMEOUT, 3-9, 3-12
TO, 2-9
tracking changes, 1-1, 3-3

units, 3-1,3-2, 3-8

variants, 3-3, 3-8
variations, 1-2, 3-1, 3-3

WA,3-8
winchester disk, 1-2, 2-11
WORK, 3-3, 3-8
WR,3-6
WRITE, 1-2, 1-8, 3-4, 3-6
WRITEACCESS, 3-8

A User's Guide to Program Management T
121958

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel proc
users. This form lets you participate directly in the publication process. Your comments will help us correct 4

improve our publications. Please take a few minutes to respond.

Ploase restrict your comments to the usability, accuracy, readability, organization, and completeness of .
publication. If you have any comments on the product that this publication describes, please contact your II
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of .
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publicati
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) .. __________ _

NAME ___ __ DATE _________ _

TITLE __ _

COMPANYNAME/DEPARTMENT __ _
ADDRESS __ __

CITY ______________ _ STATE _________ _ ZIP CODE ___ _

(COUNTRY)

Please check here if you require a written reply. 0

fE'O LIKE YOUR COMMENTS ..•

lis document is one of a series describing Intel products. Your comments on the back of this form will
~Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
)mments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

