
inter

DEBUG-SS
USER'S MANUAL

Copyright © 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121758-003

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

AEDIT
BITBUS
BXP
COMMputer
CREDIT
i
I2ICE
iATC
ICE
iCS
iDBP

iDlS
iLBX
im
iMMX
Insite
intel
intelBOS
Intelevision
inteligent Identifier
inteligent Programming
Intellec

Intellink
iOSP
iPDS
iRMX
iSBC
iSBX
iSDM
iSXM
Library Manager
MCS
Megachassis

MICROMAINFRAME
MULTIBUS
MULTICHANNEL
MULTIMODULE
Plug-A-Bubble
PROMPT
Ripplemode
RMX/80
RUPI
SYSTEM 2000
UPI

A985/783/ 4K DO

REV. REVISION HISTORY DATE

-001 Original issue. 11/82

-002 Alter preface. 1/83

-003 Incorporate change package. 6/83

iii

PREFACE

This manual provides operating instructions for DEBUG-88, a symbolic debugger for
use with 8086/8088 programs executed on the Intellec Series IV Microcomputer
Development System.

Operation of this system requires version 1.0 or later of the iNDX operating system.

This manual has seven chapters and two appendixes:

• Chapter 1, "Introduction," introduces the DEBUG-88 symbolic debugger.

• Chapter 2, "Simplified Operation," presents easy to follow instructions for a
limited set of DEBUG-88 commands that you can enter to obtain quick "hands­
on" experience in using the debugger.

• Chapter 3, "Command Format Notation," describes the character set, editing
rules, classes of expressions, symbol names, operators and logical and semantic
rules employed by DEBUG-88.

• Chapter 4, "Utility Commands," describes the DEBUG-88 file management
commands.

• Chapter 5, "Execution Commands," describes the DEBUG-88 commands used
to transfer control between DEBUG-88 and user programs, to specify opera­
tional mode and to set breakpoints.

• Chapter 6, "Simple Commands," describes the remaining DEBUG-88 simple
commands, i.e., those used to set and display registers, flags, memory locations,
and the stack.

• Chapter 7, "Compound Commands," describes the DEBUG-88 commands that
allow nesting of other commands.

• Appendix A, "Error Messages," lists in numerical order the error messages that
are produced by improper use of DEBUG-88.

• Appendix B, "Example of a DEBUG Session," presents a log of a debug session
for a sample program.

Related Publications

For more information on the Series IV Microcomputer Development System, see the
following manuals:

Intellec Series IV Microcomputer Development System Overview, 121752

• Intellec Series IV Operating and Programming Guide, 121753

Intellec Series IV ISIS-IV User's Guide, 121880

Notational Conventions

UPPERCASE Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

v

Preface

vi

italic

filename

pathname

pathname1,
pathname2, ...

directory-name

system-id

Vx.y

[]

{ }

{ } ...

[, ...]

punctuation

< cr)

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a generic label placed on sample listings where an oper­
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be· printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackt.~~, in which case it is
optional. The items may be used in any order unless other­
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM8S(PRDGA,SRC,'9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

DEBUG-88

• f'

CHAPTER 1
INTRODUCfION

CHAPTER 2
SIMPLIFIED OPERATION

CHAPTER 3
COMMAND FORMAT NOTATION

PAGE
1-1

2-1

Command Categories 3-1
Invocation and the Utility Commands 3-1
Execution Commands 3-1
Simple Commands 3-1

Set/Display Commands 3-1
Symbol Manipulation Commands 3-2

Compound Commands .. 3-2
Character Set 3-2
Invoking DEBUG-88 ... 3-2
Entering Commands .. 3-2
Continuation Lines .. 3-3
Comments 3-3
Line Editing ... 3-3
Interrupting Program Execution 3-3
Error Conditions and Error Messages 3-3
Expressions .. 3-4
Operands 3-4

Numeric Constants 3-4
Command Keywords 3-5
Keyword References 3-5
Reserved Words 3-5
Abbreviation Rule ... 3-5
Memory References .. 3-5

Symbol Names, Symbolic References,
and Symbol Table Organization 3-6

Symbol Names 3-6
Modular Organization 3-7

Programming Languages and Modular
Organization ... 3-7

Accessing Symbols 3-7
Statement Number References 3-8

String Constants .. 3-8
Operators ... 3-9

Content Operators 3-11
Relational Operators 3-12
Arithmetic and Logical Semantic Rules 3-12

CONTENTS

CHAPTER 4 PAGE
UTILITY COMMANDS
D88 ... 4-1
LOAD .. 4-3
LIST ... 4-4
EXIT .. 4-5

CHAPTERS
EXECUTION COMMANDS
BRO, BRl, and BR .. 5-1
GR .. 5-3
GO .. 5-4
Specifying Operational Mode 5-5
CONTROL-D ... 5-5
STEP .. 5-5
PSTEP ... 5-6

CHAPTER 6
SIMPLE COMMANDS
DOMAIN .. 6-1
Display/Set Commands ;..................... 6-2
REGISTER ... 6-3
FLAG ... 6-5
STACK .. 6-7
DISPLAY MEMORy.. 6-8
PORT/WPORT .. 6-10
ASM ... 6-11
EVALUATE ... 6-12
RADIX .. 6-14
Symbol Manipulation Commands 6-15
SYMBOL .. 6-15
LINE .. 6-16
MODULE .. 6-17
DEFINE .. 6-18
REMOVE .. 6-19

CHAPTER 7
COMPOUND COMMANDS
IF .. 7-1
COUNT ... 7-3
REPEAT .. 7-5
Nesting Compound Commands 7-6

APPENDIX A
ERROR MESSAGES

APPENDIX B
EXAMPLE OF A DEBUG SESSION

vii

Contents DEBUG-88

TABLES

TABLE TITLE PAGE

3-1 ASCII Printing Characters and Codes 3-9
20H-7EH)

3-2 Operators ... 3-10
3-3 Content Operators 3-11

FIGURES

FIGURE TITLE PAGE

6-1 DEBUG-88 Symbol Table Structure 6-2

viii

CHAPTER 1
INTRODUCTION

DEBUG-88 provides symbolic debugging of user developed 8086/8088 programs. The
DEBUG-88 English language command set enables you to:

• Initialize DEBUG-88 and load your program's Symbol Names and Line Numbers
in the DEBUG-88 symbol table and clear all break registers.

• Set starting and stopping points for execution of your program.

• Execute your program in either continuous or single step mode.

Set, display and alter 8086/8088 Registers, Flags, Memory Locations and Stack
Content.

• Display the contents of Memory Locations as Disassembled Instructions.

• Search for and display User Defined Program Labels and Line Numbers.

1-1

CHAPTER 2
SIMPLIFIED OPERATION

This chapter presents easy to follow instructions that allow you to enter a simplified
subset of the full DEBUG-88 commands at the console exactly as they are shown in
the following examples. Subsequent chapters provide detailed explanations of the
complete DEBUG-88 command set. Those chapters will explain the full power and
flexibility available to you with DEBUG-88. Readers unfamiliar with the use of a
debugger should first master the simplified commands given in this chapter. After
you have become comfortable with the use of the simplified command set, proceed to
the later chapters. More sophisticated users may prefer to skip over this chapter and
instead go directly to the more detailed sections of this manual.

ENTRY

f LOAD IIname li

f

f F '- A G

f STACK 10

f

f ERC=value

f ER1=value

f

f

f S T E P

RESULT

Invokes DEBUG-88. System responds by sending the
following message to the console:

Series IV DEBUG 8088, Vx.y, where x, y is replaced
by the current version and level numbers of DEBUG.
The system prompt, an asterisk (*), now appears each
time DEBUG-88 requests you to enter a command.

Loads symbol names and line numbers for your
program. For name, enter the filename of your
program. Note that double quotes must surround the
filename.

Displays the present contents of all registers.

Displays the present contents of all flags.

Displays ten decimal words from the top of the stack.
Other integer values may be substituted for 10.

Displays the present values of both Break Registers
(BRO and BRI). Break registers hold a user program
address at which, when reached, user program ceases
and control returns to the debugger.

Sets Break Register 0 equal to the new value. value
can be an address or a symbol name, i.e., code address
not data port. Note: ensure that the breakpoint is at
an address that will be reached.

Sets Break Register 1 equal to the new value. value
can be an address or a symbol name. Note: ensure that
the breakpoint is at an address that will be reached.

Activates Break Register O.

Starts execution of your program. Execution termi­
nates when BRO is reached.

Executes your program in single step fashion.

2-1

Simplified Operation

2-2

(CONTROL-D)

Simultaneously
depress the
Control Key and
the D key

Suspends execution of your program and returns
control to DEBUG-88. Use this escape in case you fail
to reach a breakpoint.

A very useful routine is one that displays each successive memory location in disas­
sembled form, i.e., one that displays the Assembly Language Mnemonic Code for the
instruction.

• ASM CS:IP Display instructions as a mnemonic .

DEBUG-88

CHAPTER 3
COMMAND FORMAT NOTATION

Command Categories

Invocation and the Utility Commands

D88

EXIT

LIST

LOAD

Execution Commands

BR

GR

GO

STEP

PSTEP

Simple Commands

Set/Display Commands

FLAG

REGISTER

STACK

ASM

EVALUATE

EVALUATE SYMBOL

EVALUATE LINE

LINE

MODULE

Invoke DEBUG-88.

Unconditionally exit DEBUG-88.

Create an output listing of user-DEBUG-88
interaction.

Load user generated program code.

Set/Display the contents of one or more Break
Registers.

Set/Display the GO Register, activate Break Points.

Transfer control and execute user program.

Execute user program in Single Step Mode.

Execute user program in Single Step Mode and side
step any CALLs.

Set/Display the contents of one or more Flags.

Set/Display the contents of one or more Registers.

Set/Display the contents of the Stack.

Display memory as a disassembled instruction.

Evaluate the variable expression as an integer or a
pointer.

Compare the variable expression against user assigned
symbols and symbols created by the Define command.

Compare the variable expression against user assigned
line numbers.

Display all Line Numbers found in the load file.

Display all Module Names found in the load file.

3-1

Command Format Notation

3-2

SYMBOL

RADIX

Display all Symbols found in the unnamed module
created by the Define command and all symbols found
in the load file.

Establish a Radix (Numerical Base) to be used by
other commands. Display the current radix value.

Symbol Manipulation Commands

DEFINE

DOMAIN

REMOVE

Compound Commands

COUNT

IF

REPEAT

Character Set

Place a newly defined symbol in the Unnamed Module.

Set the module in which to begin a search for user
defined symbols.

Remove an existing user defined symbol from the
Unnamed Module.

Set up a loop to be executed, at most, the specified
number of times.

Provide for conditional execution of subsequent
commands.

Set up an infinite loop.

The valid character set for the DEBUG-88 command language consists of the ASCII
characters 20 hex to 7E hex, inclusive, shown in table 3-1.

In addition, the characters Return and Escape are accepted.

Tokens possessing meaning to DEBUG-88 consist of one or more valid characters.
Entering invalid characters results in Error Messages.

Invoking DEBUG-SS

To invoke DEBUG-88 enter the characters "D88." The system responds by output­
ting to the console the reply:

SERIES IV DEBUG-SS, Vxy

where

x and y represent the current version and level numbers of
DEBUG-88.

Entering Commands

Use your system console device to communicate interactively with DEBUG-88.
DEBUG-88 displays an asterisk (*) in the left margin as the system prompt. The
prompt indicates that DEBUG-88 is awaiting a user input. Each input line can contain
up to a maximum of 120 characters. Terminate each input by depressing RETURN.
The symbol < cr) will be used in this manual to represent the return key.

DEBUG-88

DEBUG-88 Command Format Notation

Continuation Lines

If you need to extend an input line, use the ampersand (&) as a line continuator.
Characters on a given line that are entered after (i.e., to the right of) the ampersand
are disregarded. Two consecutive asterisks (**) are used to designate the beginning
of a continuation line. For example:

• :'C "~='1 ::lvG3)

• ~:~L ,~Y32

is equivalent to

• GO "ROM B'uG3 TILL ,LAB2

Comments

Comments may be appended to any input command line. New users of DEBUG-88
will find that using comments significantly increases their understanding. To append
a command line, enter a semicolon (;) after the command. DEBUG-88 ignores all
characters that appear between the semicolon and the carriage return (RETURN).
It is also acceptable to enter a line that consists entirely of comments by entering a
semicolon as the first character of the line. Note that an ampersand following a
semicolon is treated as part of a comment and not as a line continuator. If on a given
command line you wish both to extend to a second line and to include comments on
the original line, be sure to enter the ampersand before (i.e., to the left of) the
semicolon.

Line Editing

. If while entering a command (or a comment) you strike an incorrect key, backspac­
ing the cursor (with the rubout key) over the entered character will erase that charac­
ter. With the cursor in the position you desire, simply strike the key for the correct
character.

Interrupting Program Execution

You can unconditionally escape from execution of the user program and return to
DEBUG-88 by simultaneously striking the Control key and the D key (CONTROL­
D). Striking CONTROL-C, on the other hand, provides an unconditional escape from
the user program to the operating system.

Error Conditions and Error Messages

Syntax errors that appear in a command line cause an error message to appear on
the console device. Error messages are in the form:

ERROR XX

where

XX is a decimal number that defines the error.

Refer to Appendix A for a numerical list of all DEBUG-88 error messages.

3-3

Command Format Notation

3-4

Expressions

Expressions are entered as arguments in command lines. The expressions specify either
numeric values or Boolean conditions. Each expression evaluates to a number that
can be either of two types-

• Pointer-a pair of sixteen bit unsigned integers separated by a colon. The first
(i.e. left) integer of the pair is the base address; the second is the displacement
from the base. .

• Word-a single sixteen bit unsigned integer. A word can be considered as a special
case of the pointer, i.e., one having a base equal to zero.

DEBUG-88 provides unsigned integer arithmetic. It does not provide signed arith­
metic. The arithmetic operations are performed on the offsets, with the result taking
as its base the base of the leftmost term.

The following are examples of typical expressions-

• Expressions that consist of only a single value:

3
OFFFFH

• Expressions that contain operands, operators and parentheses:

2 + 3
174/4
(127 + 44)/20
0100H + OOFFH

• Expressions that contain symbols:

.SYMBA - 2

.SYMBA + 3

Operands

You can reference the following types of operands-

• Numeric Constants

• Command Keywords

• Keyword References

• Memory References

• Port References

• Symbolic References

• Statement References

• String Constants

Numeric Constants

A numeric constant produces a fixed, unsigned, 16-bit integer value that consists of
the digits 0 through 9 and A through F (i.e., the supplementary hexadecimal digits).
Hexadecimal numbers starting with A-F require a prefix of 0 (zero) to distinguish
them from symbols. The suffix H that follows the digits indicates the hexadecimal
base. If on entering a digit you do not append an H (or an h), hexadecimal is still
assumed as a default condition unless a different base was explicitly set earlier. The
other bases (with corresponding suffixes shown in parenthesis) are: Decimal (T), Octal
(Q) and Binary (Y). Numerical constants that exceed the largest representable
16-bit unsigned value are truncated to the 16 least significant bits.

DEBUG-88

DEBUG-88 Command Format Notation

Table 3-1. ASCII Printing Characters and Codes (20H-7EH)

Character Hex Code Character Hex Code Character Hex Code

20 @ 40 \ 60 Space(SP)
I 21 A 41 a 61
" 22 B 42 b 62
23 C 43 c 63
$ 24 0 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66 , 27 G 47 9 67
(28 H 48 h 68
) 29 I 49 i 69
* 2A J 4A j 6A
+ 2B K 4B k 6B
, 2C L 4C I 6C
- 20 M 40 m 60

2E N 4E n 6E

b 2F 0 4F 0 6F
30 P 50 P 70

1 31 Q 51 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 y 59 Y 79

3A Z 5A z 7A
, 3B] 5B { 7B
< 3C I 5C I 7C
= 3D [50 } 70
> 3E 5E ,..." 7E
? 3F SF

Operators

Operators define the arithmetic or the operation to be performed on one or more
operands. Operators are of two types: unary-those that require only one operand,
and binary-those that require two operands. Table 3-2 summarizes the operators
and lists their precedence (order of operation) level. Operators are executed from
lowest numbered precedence to highest.

The Arithmetic Operators are Unary + and -, and Binary +, -, *, /, MOD, and

Unary + and -. Unary + is the default condition. Unary - produces the 2's
complement modulo 65536 (i.e., - N evaluates to 65536 - N). Unary - does not
apply to pointers.

Binary + and -. Binary + applies both to pointers and to words. When a word is
added to a pointer, the pointer displacement is summed with the word. This produces
a result in modulo 65536 form (i.e., bits above Bit 16 are dropped). Binary + does
not affect the base value of the pointer. When two pointers are added, the operation
is applied to the offsets and the result takes the base of the lefthand term.

Binary - applies both to pointers and to words. The result of the binary - operation
is the arithmetic difference of the two operands. When both operands are words, the
result is the two's complement of their difference, modulo 65536. A negative result
(i.e., - N) is treated as 65536 - N.

3-9

Command Format Notation

3-10

Table 3-2. Operators

Precedence Operator Operation Result Remarks

1 : a:b a:b

2 + +a a

- -a -a two's complement
ofa.

3 * a*b (a*b) mod 65536
a:b*x:y a:«b*y) mod 65536)

I alb (alb) Division by 0 is reported
a:b/x:y a:(b/y) as an error.

MOD aMODb aMODb Division by 0 is reported
a:b MOD x:y a:(b MOD y) as an error.

4 + a+b (a+b) mod 65536
a:b+x:y a:«b+y) mod 65536)

- a-b (a - b) mod 65536
a:b-x:y a:«b-y) mod 65536)

5 Content Operators See Table 3-3.

6 = a=b a=b
a:b=x:y a*16+b=x*16+y

> a>b a>b
a:b>x:y a*16+b>x*16+y

All comparisons are done
< a<b a<b on unsigned quantities. If

a:b<x:y a*16+b<x*16+y the comparison succeeds,
TRUE (FFh) is returned; if

<> a<>b a<>b not, FALSE (Oh) is
a:b<>x:y a*16+b<>x*16+y returned.

>= a>=b a>=b
a:b>=x:y a*16+b>=x*16+y

<= a<=b a<=b
a:b<=x:y a*16+b<=x*16+y

7 NOT NOTa bitwise one's
complement of a

8 AND aANDb bitwise ANDing of a
with b

9 OR aOR b bitwise ORing of a
with b

XOR aXORb bitwise eXclusive
ORing of a with b

NOTES:

1. The notation a:b denotes the construction of a pointer that uses the word a as the base and
the word b as the offset. The same thing happens for x:y.

2. In the column labelled "Operation," a, b, x and y represent unsigned 16-bit word quantities.
If a data item is of byte length (e.g., of data type BYTE, BOOLEAN, etc. is used instead of a
word), the byte is sign-extended with high order zeroes to make it of word length. If a pOinter
is used instead of a word, the pointer is converted into a word by discarding its base (e.g.,
0481 :02A5 becomes 02A5).

3. If a binary operator has one word operand and one pOinter operand, the word operand is
made into a pointer operand prior to the operation by using the word as the offset of a
pOinter whose base equals 0 (e.g., 5 becomes 0000:0005).

4. MOD is the Operation MOD, while mod indicates that the result is a number represented in
modulo fashion, with 65536 the modulus.

DEBUG-88

DEBUG-88 Command Format Notation

When a word is subtracted from a pointer, it is subtracted from the pointer displace­
ment only. The base of the pointer is not affected. The result of the operation is in
2's complement form. When a pointer is subtracted from another pointer, only the
offsets are subtracted and the result takes the base of the lefthand term. The result
is the 2's complement difference of the two displacements, modulo 65536.

Binary *, /, MOD and :. These operators apply only to word operands and produce
a word result. Binary * causes multiplication of word operands. If the result exceeds
the 16 bit maximum, the excessive high order bits are truncated.

Binary / causes the word on the left to be divided by the word on the right. The
result is the quotient only; any remainder is lost. Thus, 5/3 evaluates to l.

Binary MOD produces only the remainder of a division operation. Thus, 5 MOD 3
evaluates to 2.

The colon(:) causes the word on the left to be treated as a base value that will be
displaced by the word on the right. The base of the pointer is shifted one hexadecimal
position to the left (i.e., multiplied by 16) before the operation is carried out. Thus,
0481:22=4810 + 0022=04832.

When binary *, / and MOD are applied to two pointers, the operations are performed
on the offsets and the result takes the base of the leftmost term.

Content Operators

Content operators fetch the contents of one or more memory addresses. In an expres­
sion, content operators function as unary operators. Their precedence is directly below
that of binary subtraction (i.e., content operators are evaluated after subtraction but
before any relational operator). Table 3-3 defines the seven content operators .. VAR
refers to the address of variable VAR. If you enter .VAR, DEBUG-88 will return
the address of the variable. If you enter WORD .VAR, DEBUG-88 will return the
contents of the WORD pointed at by .VAR. You may consider that the single period
and double period prefixes (. and ..) signify the "address of " the operator that is
being requested or used.

The single exclamation mark (!) and double exclamation mark(!!) prefixes are used
to explicity dereference a symbol. Dereferencing means it is not to be considered a
reserved word. Thus, GO is a reserved word indicating a command. !GO is a user
defined symbol.

Table 3-3. Content Operators

Operator Content Returned

BYTE 1-byte unsigned integer value from the addressed location in user memory.
It is displayed in unsigned form.

WORD 2-byte unsigned integer value from the addressed location in user memory.
It is displayed in unsigned form.

SINTEGER Same as BYTE, but displayed in two's complement form.

BOOLEAN Same as BYTE, but displayed as a Boolean value (Le., TRUE if least signifi-
cant bit = 1; FALSE if it = O.

INTEGER 2-byte integer value from addressed location in user memory. It is displayed
in 2's complement form.

POINTER 4-byte pointer value from the addressed location in user memory.

PORT 1-byte value from addressed 8-bit I/O port.

WPORT 2-byte value from addressed 16-bit I/O port.

3-11

Command Format Notation

3-12

Relational Operators

The Relational Operators are: NOT, AND, OR XOR, =, >, <, <> (not equal),
> = and < =. The operators carry their usual Boolean definitions.

Arithmetic and Logical Semantic Rules

The semantic rules that govern the operators are summarized in Table 3-2. All opera­
tors result in a numerical value. For Boolean operations, the least significant bit (LSB)
of the result is tested. The LSB = 1 for TRUE results; the LSB = 0 for FALSE
results.

DEBUG-88

DEBUG-88 Command Format Notation

Command Keywords

Command keywords are system-reserved words that are used to designate the
command functions. Examples are LOAD, GO and STEP.

Keyword References

Keyword references are system-reserved words that are used to designate flags, regis­
ters, and memory. Case is unimportant in keywords; e.g., LOAD, LoAD, and load
all reference the same command.

Keyword references can be used in three ways-

• In an expression to be evaluated, e.g., RAX + 5

• Alone as an entry, e.g., RAX < cr)

• On the left side of an equal sign, e.g., RAX = 55H < cr). The Keyword Refer­
ence is assigned the new value represented by the right side of the equal sign.

If the value referenced occupies less than 16 bits, it is automatically right justified,
and the higher order bits are filled with zeroes. If the value exceeds 16 bits, the
higher order bits are truncated and lost.

Reserved Words

All system-reserved words are listed below. A name that does not appear in the list,
or that is not a valid abbreviation of one of these names as explained in the abbrevi­
ation rule stated below, is considered to be a user generated label.

A, AFL, AH, AL, AND, ASM, AX, BH, BL, BOOLEAN, BP, BR, BRO, BRl, BX,
BYTE, C, CFL, CH, CL, COUNT, CS, CX, DEFINE, DFL, DH, DI, DL,
DOMAIN, DS, DX, ELSE, END, ES, EVALUATE, EXIT, F, FLAG, FOREVER,
FROM, G, GO, GR, IF, IFL, INTEGER, IP, LENGTH, LINE, LIST, LOAD,
MOD, MODULE, NOSYMBOL, NOT, OFL, OR, ORIF, PFL, POINTER, PORT,
PS, PSTEP, R, RADIX, RAH, RAL, RAX, RBH, RBL, RBX, RCH, RCL, RCX,
RDH, RDL, RDX, REAL, REGISTER, REMOVE, REPEAT, RF, S, SFL, SI,
SINTEGER, SP, SREAL, SS, STACK, STEP, SYMBOL, T, TFL, THEN, TILL,
TO, TREAL, UNTIL, WHILE, WORD, WPORT, WS, XOR, ZFL.

Abbreviation Rule

Reserved Words can be abbreviated to, at least, their first three characters. Thus,
POI, POIN, POINT, POINTE all have the same meaning as the keyword POINTER.

Memory References

Memory locations are referenced according to their type. The format used to refer­
ence a memory location is-

type address

where

type is one of the following:

BYTE a one byte unsigned value located at memory
location address.

3-5

Command Format Notation

3-6

SINTEGER

INTEGER

WORD

POINTER

PORT

WPORT

BOOLEAN

a one byte signed integer.

a two byte integer value located at memory
locations address and address + 1. An
integer is displayed in two's complement
form.

a two byte integer value located at memory
locations address and address + 1. An
integer is displayed as a 16-bit unsigned
number.

a four byte pointer value (base and
displacement) located at address, address +
1, address + 2, and address + 3.

an 8-bit port value located at address.

a 16-bit port value located at address and
address + 1.

same as BYTE except it displays as either
TRUE (any odd number, i.e., LSB= 1) or
FALSE (any even number, i.e., LSB=O).

Symbol Names, Symbolic References,
and Symbol Table Organization

Symbol Names

A name that is not a reserved word, or a valid abbreviation of a reserved word, is
considered by DEBUG-88 to be a user defined symbol name. Symbol names are
composed of the valid DEBUG-88 character set with the following restrictions and
extensions:

• Only the upper case and lower case alphabetic letters and the characters _, $,
?, @ can be used as the initial character of a symbol name. Numbers cannot be
used as the initial character of a symbol name, although they may appear
anywhere else in a symbol name. Any other characters cannot be used in symbol
names.

• Case is not considered in defining a symbol name. Thus, DEBUG-88 considers
Vertex to be the same symbol as VERTEX or vertex.

• The dollar sign character ($) is disregarded by DEBUG-88. Thus, $VERTEX is
considered to be the same character as Vertex and as Ver$tex. The $ is therefore
useful as a separator for symbol names such as Main$Data, Duplicate$Data,
SumofSquares. Note that entering a space would result in DEBUG-88 defin­
ing more than one symbol. Thus, Main Data would be taken as two symbols,
Main and Data.

• Symbol names must have at least one significant character. $A, A$$, and $$A
are valid symbol names, while $$$ is not.

• The escape specifiers ., .. , !, !! can be used to create symbol names that might
otherwise conflict with reserved words. Thus, REGISTER and REG are reserved
words, while .REGISTER, .. REGISTER, !REGISTER and !!REGISTER are
all user defined symbol names.

• Symbol names should not exceed 40 characters in length, not including the $.

DEBUG-88 maintains a symbol table that contains all user defined symbol names
and a statement number table that contains all user defined line numbers. The symbols
and line numbers are loaded by the Load command. Additions to and deletions from

DEBUG-88

DEBUG-88 Command Format Notation

the unnamed module of the symbol table may be made via the Define and the Remove
commands, respectively. A symbol table value that represents either the address or
the numerical value is assigned to each symbol. The Symbol Type and the Value
assigned are:

Symbol Type

Instruction and Statement Label
Program Variables
Module Names

Modular Organization

Value

Address of the Instruction
Address of Variable
No Value Assigned

The Symbol Table is organized on a modular basis. Symbol names are stored under
the module in which they occur. The first entry in the Symbol Table is always the
Unnamed Module. The Unnamed Module does not correspond to a module of the
program being debugged. Rather, it contains any user defined symbol created via the
Define command. The Publics Module follows the Unnamed Module. The Publics
Module contains all public symbols in the system currently being debugged. Follow­
ing the Publics module, the user modules are loaded in the order in which they are
encountered. The symbols within a given module are likewise stored in the order in
which they occur. Refer to figure 6-1 for a graphic representation of a typical Symbol
table.

Programming Languages and Modular Organization

In PL/M-86 and PASCAL-86 programs, the module name is the label of a simple
DO block that is not nested in any other block. In Assembly language programs, a
module name is a label that is the object of a NAME directive. In FORTRAN-86,
module names are program names and subprogram names.

Accessing Symbols

Symbols are accessed via the module name (if used) and the symbol name. The format
is-

[.. module] .symbol ...

The module name is placed in brackets to indicate that it is optional. Note that module
names are designated as such by the two consecutive period prefix (..). Symbol names
are designated by a single period prefix (.). In searching for a symbol, the first occur­
rence of the symbol is always taken. The Unnamed Module is searched first. Then,
the User Modules are searched in the order in which they occur. Since symbol names
can occur more than once, you may need to use both a module name and a number
of symbol names to access a particular symbol. You can also use module names and
symbol names to speed up the accessing process. A typical example of the modules
and the symbols they contain is shown below.

Module

Unnamed
Module
Public Module
.. Blue
.. Green
.. Three
.. Bigmod

Symbol

.X.Y .Z .Zl .Y .R2.Y

.X.Y.Z.Z .Y

.X .Z .X .R23 .XX .X .T2 .X

.X.Z.Y.Z2

3-7

Command Format Notation

3-8

Assume you want to retrieve symbol X, which occurs in the module named Bigmod.
The symbol X occurs in three other modules. You can quickly and precisely reference
it as .. Bigmod .X. This designates the first occurrence of the symbol named X in
module Bigmod. If you failed to designate a module name, the unnamed module
would be searched for symbol X.

Next, assume you wish to retrieve the fourth occurrence of symbol X in module Three.
You could designate the entire reference as-

.. Three.X.Z.X .R23 .XX.X .T2.X

A shortcut method that would still designate the fourth occurrence of .X in module
Three would be-

.. Three .T2 .X

which requests the first occurrence of the symbol X occurring after symbol T2 in
module Three. Once you become familiar with this indexing technique, you will be
able to access symbol names quickly and succinctly. The symbols in the symbol table
invariably appear in the order in which they were declared in the source program.
Module names can be omitted if so desired.

Statement Number References

User program locations can also be referenced by their user line number. The state­
ment number table is organized in the same modular fashion as the symbol table.
The format for accessing the line number is:

[.. module] #statement number

where

statement number is an integer or an expression evaluating to an integer.
A default decimal radix is assumed if no explicit radix is
specified.

DEBUG-88 responds by returning a pointer value that is the absolute address of the
first instruction generated for the source statement.

Examples are:

#45 (line number 45)
.. TESTI #12H (line number 12 hexadecimal in module TEST!)

Line numbers are interpreted as decimal unless explicitly stated to be otherwise.

String Constants

Single quotes are used to designate a character string. Any ASCII character can be
placed within a string. Each character is assigned an 8-bit value, with the 7 low order
bits equal to the ASCII code for the character, and the highest order bit set to O.

Table 3-1 lists all printable ASCII characters and their corresponding hexadecimal
codes.

DEBUG-88

CHAPTER 4
UTILITY COMMANDS

DEBUG-88 Utility Commands provide file management capabilities. The Utility
Commands are D88, LOAD, LIST, and EXIT.

088 - Invoke DEBUG-SS

Entering D88 at the console invokes DEBUG-88.

Syntax

D88
W 0 R K SPA C E (ws-size) ...
HOSYMBOl ... < c r) [filename [arguments ...]] < c r)
HOlIHE
HOPUBlIC

where

WORKSPACE

ws-size

HOl I HE I HOSYMBOl
and HOP U B l I C
filename

causes ws-size bytes of storage to be allocated by
DEBUG-88 for symbol table space.

is a decimal integer that represents the workspace
size. If not specified, a default size of 10240 is
assumed. If ws-size exceeds 65535, it is truncated
to the 16 least significant bits.

are modifiers that affect the type of symbolic infor­
mation available to DEBUG-88.

is the user defined filename, with any arguments
required to invoke a given program under
DEBUG-88.

If more than one option is selected (e.g., WORKSPACE and NOSYMBOL), the
entries are separated by a space.

Abbreviations

WORKSP ACE can be abbreviated to WS, NOSYMBOL to NOS, NOLINE to
NOL, NOPUBLIC to NOP. Note that in the case of the invocation, only the abbre­
viations shown can be used.

Description

DEBUG-88 is invoked by entering D88 at the console. The optional WORKSPACE
parameter can be used to specify the number of bytes of storage to be reserved for
the DEBUG-88 symbol table. When no WORKSPACE is explicitly specified, the
default size of 10240 is assumed. The modifier NOLINE suppresses the loading of
line numbers. NOSYMBOL suppresses the loading of translator/assembler defined
symbols. Listing of any public symbols, however, is not suppressed by this modifier.
To suppress the listing of public symbols, you must use the NOPUBLIC modifier.
Suppressing the loading of any unneeded information conserves memory.

4-1

Utility Commands

Examples

4-2

1.

2.
3.

::;88 (cr)

D88 ",S (:;622) '<JS N2~ ,,=:; (c">

088 'L~S!HORKD:5r<!f.1ANDRv.86 (cr)

DEBUG-88

DEBUG-88 Utility Commands

LOAD - Load 8086/8088 Object Code

The Load command allows you to load 8086 object code.

Syntax

LOA D "filename"

where

filename

HOLIHE
HOSYMBOL
HOPUBLIC

< c ,.)

is the complete name of the file that contains your
object code. Extensions to file names are not
assumed. Any extension must be explicitly entered.

NOLINE, NOSYMBOL are modifiers that affect the type of symbolic infor­
mation available to DEBUG-88. and HOP U B L I C

If more than one option is selected, the entries are separated by a space.

Abbreviations

LOAD can be abbreviated to LOA, NOSYMBOL to NOS, NOSY, or NOSYM,
NOLINE to NOL, NOPUBLIC to NOP. Note that, unlike the invocation, the general
abbreviation rule pertains to Load and to all other DEBUG-88 commands. In subse­
quent examples, only a few of the possible abbreviations will be shown.

Description

The Load command allows DEBUG-88 to access the symbolic names and the line
numbers of user generated programs. Execution of the Load command loads the user
program code and places all user generated symbolic names and line numbers in the
DEBUG-88 symbol table (unless they are suppressed by the NOS, NOL or NOP
modifiers). All break registers are cleared of any previous values.

The modifier NOLINE suppresses the loading of line numbers. NOSYMBOL
suppresses the loading of translator/assembler defined symbols. Listing of public
symbols, however, is not suppressed. To suppress the listing of public symbols, you
must use the NOPUBLIC modifier. Suppressing of unneeded information conserves
memory.

Examples

1. • _Ct,~ " ",:Rk:'C:SK '-';"'f,,:R .. E5 11 (:r)

2. • _ = L.: I I ~ : :.. r : _ : , 2 C II "-. = 5 (c r)

3. • c..C...,;:; " ",;:;? ~~II ~=s ,,;;::D (cr)

4-3

Utility Commands

4-4

LIST - Create a Listing

The List command produces a listing of the DEBUG-88 console interaction on some
specified external device ..

Syntax

LIS T ["filename"] < c r)

where

filename

Abbreviations

is the name you give to your output log file.

LIST can be abbreviated to LIS.

Description

The List command produces a log of the DEBUG-88-console interaction. The log
file is given the name specified in the command. If you do not specify a filename, the
current log filename is displayed. If a log file currently exists and none is desired, the
null filename (" ") can be specified.

Examples

1. * LIST II/LOGDISK/LIST.LOG Il <cr)

This creates a log under the filename LOGDISK/LIST.LOG.

2. * LIS (cr)

3. * LIST 1111 <cr)

DEBUG-88

DEBUG-88 Utility Commands

EXIT - Exit DEBUG-SS

The Exit command causes you to exit from DEBUG-88.

Syntax

E X IT

Abbreviations

EXIT can be abbreviated to EXI.

Description

The Exit command causes an unconditional exit from DEBUG-88. Control is returned
to the operating system.

Examples

1. • EXIT <cr)

2. • EXI <cr)

4-5

CHAPTER 5
EXECUTION COMMANDS

This chapter describes the commands used to: transfer control between DEBUG-88
and the user program; specify the operational mode (single step or continuous); and,
set starting and stopping points for user program execution. Generally, when using
DEBUG-88 to check your program, you will want to execute particular program
segments, and then halt and return control to DEBUG-88 so you can check register,
memory or flag contents. The two break registers allow you to specify break points
for execution of your program.

DEBUG-88 has two break registers, BRO and BR 1. BR is used to represent both
break registers. Each break register can be set to an address in your program. The
function of the break register is to halt execution of the user program as the address
in the break register is about to be executed.

After the break registers have been set to the desired break address, they must be
explicitly activated. This is done by activating the GO register (GR). The GO
command is used to transfer control from DEBUG-88 to your program.

BRO, BR1 and BR - Display/Set Break Register

BRO, BR 1 and BR are used to display the contents of the break registers or to set
either or both break registers to a new address.

Syntax

BRO (cr)

BR1 (cr)

BR (cr)

expression
B ROo r B R 1 0 r B R· base and displacement (c r)

address

where

expression

base and
displacement

address

is an arithmetic expression that evaluates to an
integer.

is an address represented in base and displacement
form.

is an address.

The first three commands shown display the current contents of Break Register 0,
Break Register 1, or both Break Registers, respectively. The examples that follow set
the Break Registers to new values.

5-1

Execution Commands

5-2

Examples
1. f ER (cr)

This command displays the contents of both Break Registers.

2. f ER1 = CS:IP .. 5 (cr>

When the break register is followed by an equal sign and an expression, the break
address is set equal to the address of the expression or equal to the register base
and displacement to the right of the equal sign. Thus, in example 2, Break Regis­
ter 1 is set to the new value equal to the instruction pointer plus five. The instruc­
tion pointer is the Code Segment (CS) displaced by the Instruction Pointer (IP).

3. f ERO = .ADDR1 <cr)

This command sets Break Register 0 equal to address .ADDRI.

DEBUG-88

DEBUG-88 Execution Commands

GR - Display/Set the Go Register

Setting the GO register activates the Break Registers.

Syntax

Display the Go Register.

GR (cr)

Set the Go Register.

FOREVER
GR· TIL L breakaddress [0 R breakaddress]

TIL L breakregister [0 R breakregister]
(c r)

where

FOREVER disables all break points. Execution of the user program will
cease only if a halt instruction is encountered or if one of the
two escapes is used.

TIL L

breakaddress

breakregister

Abbreviations

causes user program execution to continue until the break
address is reached.

is an integer or a pointer that represents the break point.

is one of the Break Registers (BRO or BR 1) or both Break
Registers (BR).

TILL can be abbreviated to TIL or T, FOREVER to FOR.

Examples

1. t GR (cr>

This displays the contents of the GO register.

2. t GR = TILL BR1 (cr)

This activates BR 1 and deactivates BRO.

3. t GR = FOREVER <cr>

This deactivates both break registers. Execution of the user program continues
unless an escape code is used.

4. t GR = TIL CS:;P OR .. MOD1.SCANNER (cr)

This activates BRO (set to address pointed at by CS:IP) and BRI (set to the
address pointed at by symbol .SCANNER) in module .. MODI. Execution of the
user program continues until the first of the two break points is encountered.

5-3

Execution Commands

5-4

GO - Transfer Control and Execute User Program

The GO command transfers control from DEBUG-88 to the user program.

Syntax

FOREVER
G 0 FRO JII address TIL L breakaddress [0 R breakaddress]

TIL L breakregister [0 R breakregistet1

where

FROM

FOREVER

breakaddress and
breakregister

Abbreviations

specifies a starting address for user program
execution.

disables all break points.

specify the desired break points.

GO can be abbreviated to G, FROM to FRO or F, TILL to TIL or T, FOREVER
to FOR.

Description

The GO command transfers control from DEBUG-88 to the user program. If no
starting point is explicitly specified, the value of CS:IP is taken as the starting address.
Otherwise, FROM is used to specify either a single breakpoint or two breakpoints, of
which the first encountered is used. TILL is used to specify a single breakpoint,
TILL ... OR to specify two breakpoints. Specifying FOREVER disables all break­
points (i.e., user program execution goes on without interruption unless an escape
sequence is used).

Examples

1. * GO TILL .LAB4 <cr)

Control is transferred from DEBUG-88 to the user program. Execution of the
user program begins at the address pointed at by CS:IP. The user program is
executed until location .LAB4 is reached, at which point control is returned to
DEBUG-88.

2. * G FROM .LABEL1 TIL BRO OR BR1 <cr)

Control is transferred from DEBUG-88 to the user program. Execution begins
at address .LABELI. Execution continues until the address of Break Point 0 or
the address of Break Point 1 is reached.

DEBUG-88

DEBUG-88 Execution Commands

Specifying Operational Mode

Unless you explicitly designate otherwise, when control is transferred from
DEBUG-88 to the user program, that program executes in continuous mode. It is,
however, often useful to execute the user program instructions one at a time, i.e.,
after each instruction a break immediately occurs. Two DEBUG-88 commands are
available for this purpose-STEP and PSTEP. The difference between the two lies
in the manner in which they execute CALLs. STEP executes each instruction of a
CALL just as it does any other instruction. PSTEP executes CALLs in regular mode,
then returns to single step through the main line code.

CONTROL-D-Asynchronous Breakpoint Escape Code

The Escape Code, CONTROL-D, is used to terminate execution of the user program
unconditionally and then return control to DEBUG-88 command mode from the STEP
and PSTEP commands. At times, you may want to run your program without knowing
in advance where to set a breakpoint that will return control to DEBUG-88. In such
a case, or after using the FOREVER command, you must use the escape code to
return control to DEBUG-88. To escape, depress the Control key and the D key
simultaneously. The escape will not function if you have disabled keyboard interrupts.

STEP - Single Step Through All Instructions

Syntax

5 T E P [F ROM address] < c r)

where

address

Abbreviations

is the starting address.

STEP can be abbreviated to STE, FROM to FRO or F.

Description

The Step command initiates sequential single step execution of the user program.
Each instruction is displayed in disassembled form and the user is queried by a question
mark (?) that appears on the screen. If the user responds by entering a carriage
return, < cr) , the instruction is executed and the process is repeated for the next
instruction. If the user responds by entering the escape (CONTROL-D), the user is
returned to DEBUG-88 command mode. If the Step command is nested in a compound
command, interactive querying does not take place. Instead, the current instruction
is performed in single step mode and the next command in the compound command
is executed. You may explicitly designate a starting address by using FROM or you
may use the default starting address of CS:IP. In the case of CALLs, each instruction
of the CALL is executed. CALLs are treated no differently than other segments of
code.

Examples

1. *

Start single step execution with the address pointed at by .RCV in module .. Main.

5-5

Execution Commands

5-6

PSTEP - Single Step Through Main Line Code, Bypassing Calls

Syntax

PST E P [F ROM address] (c r)

where

address

Abbreviations

is a designated address.

PSTEP can be abbreviated to PS, FROM to FRO or F.

Description

The Pstep command initiates single step execution of the user program from a speci­
fied starting address or from the default starting address of CS:IP. Each instruction
is displayed in disassembled form and the user is queried by a question mark (?) that
appears on the screen. If the user responds by entering a carriage return, < cr > , the
command is executed and the process is repeated for the next instruction. If the user
responds by entering the escape (CONTROL-D), the user is returned to DEBUG-88
command mode. If the Step command is nested in a compound command, interactive
querying does not take place. Instead, the current instruction is performed in single
step mode and the next command in the compound command is then executed. PSTEP
checks whether the instruction about to be executed is a CALL instruction. For non­
CALL instructions, normal single step execution occurs. For a CALL, a breakpoint
is set at the instruction immediately after the CALL and control is returned to the
main line user code. Thus, CALLs are "side stepped." This is quite useful when a
code segment to be debugged contains numerous and/or lengthy CALLs known to
be error free. Using PSTEP rather than STEP significantly reduces debugging time.

Examples

1. I> PSTEP <cr)

Execute in single step mode, sidestepping CALLs starting at address CS:IP.

2. f PSTEP FROM .. MAIN.ReV <cr>

Execute in single step mode, sidestepping CALLs starting at location .RCV in
module .. MAIN.

DEBUG-88

CHAPTER 6
SIMPLE COMMANDS

The Simple Commands are those (other than the Utility Commands and the Execu­
tion Commands previously described) that do not allow nesting of other commands.
The majority of Simple Commands display or set registers, flags, memory locations
and the stack. Also included among the Simple Commands are the symbol manipu­
lation commands, the Radix, the Instruction Disassembly and the Domain command.

DOMAIN - Symbol Table Look Up

The Domain command sets the module in which to begin a search for user symbol
names.

Syntax

D 0 M A I H •• module name < c r)

where

module name

Abbreviations

is the user defined module name. Note that the double perio~
prefix (..) must be used to identify the symbol as a module
name.

DOMAIN can be abbreviated to DOM.

Description

The Domain command is introduced here because its use can greatly facilitate the
use of the other Simple Commands. DEBUG-88 assumes that all symbols that are not
DEBUG-88 reserved words are user defined objects. The Symbol Table lists all the
symbol entries in the order in which they are encountered in the user program. Figure
6-1 graphically explains the ordering of the Symbol Table. The table is broken down
into modules. The first module is always the unnamed module. Any symbol table
entries created using the Define command are placed in the unnamed module. All
public symbols are placed in the public module. If you specified the NOPUBLIC
parameter at invocation, the public module will contain no entries. The subsequent
modules are named for and correspond on a one-to-one basis with each module of
your program. To avoid having to search the entire symbol table from the beginning
when searching for a given symbol, use the Domain command. The Domain command
allows you to specify the module in which to begin the search. Thus, in example one,
entering the command DOMAIN .. MODK allows you to begin a search in Module
K, bypassing modules 1, 2, etc. Without the Domain command, all modules starting
at module 1 would be searched in sequence.

Examples

1. * DOMAIN .. MODK (cr)

Set the start of the symbol table search to module .. MODK.

6-1

Simple Commands

6-2

UNNAMED MODULE FIRST MODULE SEARCHED

PUBLICS MODULE SECOND MODULE SEARCHED

I 1 THIRD MODULE SEARCHED (IF DOMAIN COMMAND MOD1

MOD2

IS NOT SPECIFIED)

I MOD(K) t-- THIRD MODULE SEARCHED (IF DOMAIN COMMAND
IS SPECIFIED)

t MOD(N) r

Figure 6-1. DEBUG-88 Symbol Table Structure 121758-1

Display/Set Commands

The Display Commands allow you to display the contents of the registers, the flags,
memory locations and the stacks. Several entries can be placed on a single command
line by separating them with commas. Memory can be displayed in machine code
and in disassembled form. Set Commands are produced by placing an equal sign and
the value in the command line to the right of the keyword being set.

The Display Commands are:

Display Registers
Display Flags
Display Stack
Display Symbols
Display Lines
Display Modules
Display Memory
Display Disassembled Memory

The Set Commands are:

Set Register
Set Stack
Set Memory
Set Flag

DEBUG-88

DEBUG-88 Simple Commands

REGISTER - Display Contents of 8086/8088 Register

The Register command causes DEBUG-88 to display the contents of all 8086/8088
registers, or of a specified register or set of registers.

Syntax

REGISTER (cr)

register (c r >

where

register

Abbreviations

is any of the following entries:

8-bit registers-RAL, RAH, RBL, RBH, RCL, RCH, RDL,
RDH
or

16-bit registers-RAX, RBX, RCX, RDX, SP, BP, SI, DI,
SS, CS, DS, ES, IP, RF.

REGISTER can be abbreviated to REG.

The initial R of any register name may be omitted.

6-3

Simple Commands

6-4

REGISTER - Set Contents of 8086/8088 Register to a New
Value

The Register command causes DEBUG-88 to set the contents of all 8086/8088 regis­
ters, or of a specified register or set of registers.

Syntax

register = variable < c r)

where

register

variable

Abbreviations

is any of the following entries:

8-bit register-RAL, RAH, RBL, RBH, RCL, RCH, RDL,
RDH;

or

16-bit registers-RAX, RBX, RCX, RDX, SP, BP, SI, DI,
SS, CS, DS, ES, IP, RF.

is a pointer, an integer or a label.

Register can be abbreviated to REG. The initial R of any register name may be
omitted.

Description

The register is assigned the value of the variable on the right side of the equal sign.

Examples

1. * REG <cr>

The contents of all registers are displayed.

A X '" nnnnh BX '" nnnnh ex '"
C5 '" nnnnh 55 '" nnnnh D5 '"
I P '" nnnnh SP nnnnh 5 I
RF '" nnnnh BP '" nnnnh

nnnnh DX nnnnh
nnnnh ES '" nnnnh
nnnnh D I nnnnh

where

nnnn is replaced with the current hex value of the register in
question.

2. * RAX (cr>

Contents of the A register are displayed.

3. * AX <cr>

Contents of the A register are displayed.

4. * AX = 415h (cr)

The A register is assigned the value 415 hexadecimal.

DEBUG-88

DEBUG-88 Simple Commands

FLAG - Display Contents of 8086/8088 Flags

The Display Flags command displays the contents of all 8086/8088 flags or a set of
flags.

Syntax

FLAG
flag

where

flag

Abbreviations

is any of the one-bit status flags: CFL, PFL, AFL, ZFL, SFL,
TFL, IFL, DFL, OFL.

FLAG can be abbreviated to FLA.

Description

The value of one or more of the nine one-bit flags is displayed. Each flag can have a
value of either 0 or 1.

6-5

Simple Commands

6-6

FLAG - Set Contents of 8086/8088 Flags to a New Value

The Display Flags command sets the contents of all 8086/8088 flags or a set of flags.

Syntax

flag = variable

where

flag

Description

is any of the one-bit status flags: CFL, PFL, AFL, ZFL, SFL,
TFL, IDL, DFL, OFL.

The flag is assigned the one-bit value to the left of the equal sign.

Examples

1. •

The contents of all 9 flags are displayed.

2. • C r.... = J

The carry flag is assigned a value of O.

Note that flags and registers can be used to function as numbers in expressions.

DEBUG-88

DEBUG-88 Simple Commands

8T ACK - Display User Stack Contents

The Display Stack command displays the contents of the user's stack.

Syntax

5 T A C K nn (c r)

where

nn is an integer that defines the number of words to be displayed.

Abbreviations

ST ACK can be abbreviated to ST A.

Description

The stack is pointed at by SS:SP. The Display Stack command displays nn words,
starting from the top of the stack. If nn is not explicitly stated, a default value of 1 is
assumed.

Examples

1. •

Ten decimal words, starting from the top of the stack, are displayed.

6-7

Simple Commands

6-8

DISPLAY MEMORY
The Display Memory command displays the contents of one or more 8086/8088
memory locations in machine code form.

Syntax

memory-type address

where

memory-type

address

end address

n

Abbreviations

T 0 end-address < c r)
LENGTH n

is one of the following: BYTE, WORD, SINTEGER,
INTEGER, POINTER, BOOLEAN.

is the address in memory to be displayed, or the starting
address of the segment to be displayed.

is the ending address of the display.

is an integer that represents the number of memory locations
to be displayed. A decimal default radix is assumed.

BYTE can be abbreviated to BYT, WORD to WOR, SINTEGER to SIN, INTEGER
to INT, POINTER to POI, LENGTH to LEN.

Description

This command is used to display one or more memory locations or to set a memory
location to a new value. The memory types that can be displayed are BYTE,
SINTEGER, WORD, INTEGER, and POINTER.

Examples

1. •
BYTE CS:;P LENGTH 18 (cr)

18 bytes of memory starting at the instruction pointer are displayed.

2. • BY"T"E CS:IP=OA3 (cr)

The memory location specified by the instruction pointer is set equal to the value
A3 hex.

3. • WORD CS:IP (cr)

Displays one word of memory located at the instruction pointer.

It is also possible to display a series of memory locations.

4. • W8RD ,vecStart TC ,1/ecEnd (cr)

Displays the successive WORDs of memory starting at location . VecStart and
ending at . VecEnd.

NOTE

Fractional parts of a memory location are not displayed. Thus, in example
4 above, if . VecStart to . VecEnd occupied an odd number of bytes, the
byte at . VecEnd would not be displayed.

DEBUG-88

DEBUG-88 Simple Commands

5. *

Displays four successive WORDs of memory starting at location .Vecl.

6. Likewise, it is possible to assign new values to successive memory locations.

*

Assigns the byte of memory at location .A the value 5.

7. *

Assigns the byte of memory at location .A the value of the byte of memory at
location .B.

8. * wCRD .A LEN 2=5,6 (cr)

Assigns the two successive WORDs starting at memory location .A the values 5
and 6.

9. * WORD .A LEN 10=5,6,7 <cr)

Implicitly recognizes from the right side of the equation that the three constants
5,6,7 are to be used in cyclical fashion to assign new values to the 10 successive
words starting at location .A. Thus, WORD .A is set to 5 and the successive 9
words of memory are assigned the values 6,7,5,6,7,5,6,7,5.

10. * WORD .A= hard .B to Word .C (cr)

Assigns each WORD of memory starting at location .A the value of each succes­
sive WORD of memory starting at location WORD.B until WORD.C is reached.

11. * BY"7"E .A= Word .B to .C <cr)

Assigns each byte of memory starting at location .A the value of each successive
word starting at word .B until the WORD at .C is reached. Each successive
word, however, is truncated to a byte value during the assignment.

12. You may also intermix the use of expressions with LENGTH and TO to form
complicated assignments such as

* WORD .A=3,BvTE .E LEN 10 , 8, wORD .X TC .J <cr)

In this example, successive bytes of memory starting at location .A are assigned
the value 3, the value of the 10 successive bytes starting at location .B the value
8, and truncated values of each WORD of memory from location .X to location
.Y. The general rule governing assignments is that the left side of the equation
defines the type of memory location (e.g., WORD or BYTE) to be assigned a
value, and the right side of the equation determines the number of successive
memory locations to be assigned new values. One assignment is made for each
element on the right side of the equation. If the number of elements on the left
side of the assignment exceeds the number of elements explicitly designated on
the right side, the elements on the right side are assigned in cyclical fashion.

6-9

Simple Commands

6-10

PORT /WPORT - DisplaylSet Contents of One or More
1/0 Ports

PORT and WPORT are used to display the contents of one or more I/O ports or to
set the ports to new values.

Syntax

port-type address

where

port-type

address

end address

n

expression

Abbreviations

T 0 end-address - expression ... (c r)
LENGTH n _"

is one of the following:

PORT-an 8-bit port value located at address.
WPORT-a 16-bit port value located at address and address
+1.
is the port address or the starting port address. Its value must
be 0 to 65535.

is the address of the last port in the list.

is an integer that defines the number of ports.

is the value(s) that replaces the port(s).

PORT can be abbreviated to POR, WPORT to WPO, LENGTH to LEN.

Description

Entering PORT or WPORT and the address displays the port contents. To change
the contents to a new value, enter that value to the right of an equal sign. If more
than one port is to be displayed or changed, the TO or the LENGTH options should
be used.

Examples

1. * ~=~- :::'2 = 4' <cr)

The contents of the one byte PORT are set to 41.

2. *

The value of the Word Port is displayed.

DEBUG-88

DEBUG-88 Simple Commands

ASM - Display Contents of Memory as Disassembled
Instructions

The ASM command displays the contents of one or more memory locations as disas­
sembled instructions.

Syntax

AS M address

where

address

end-address

nn

Abbreviations

T 0 end-address
L E H G T H nn

(c r)

is the address in memory to be displayed, or the starting
address of a segment of memory to be displayed.

is the last address of memory to be displayed.

is an integer that represents the number of instructions to be
displayed. A default decimal radix is assumed.

ASM can be abbreviated to A, LENGTH to LEN.

Description

The ASM instruction allows you to display the contents of one or more user program
locations as disassembled instructions, i.e., they are displayed as mnemonic code. If
no starting address is specified, CS:IP is taken as a default address. If the LENGTH
parameter is used, a default decimal radix is assumed. If neither the TO or the
LENGTH options are specified (i.e., you enter ASM < cr)), ten (decimal) instruc­
tions starting at CS:IP are displayed.

Examples

1. f

Instructions from .LAB 1 to location .LAB2 are displayed as diassembled instruc­
tions.

2. f

Ten instructions, starting at location .LABL, are displayed as disassembled
instructions.

6-11

Simple Commands

6-12

EV ALUA TE - Evaluate Expressions

The Evaluate command allows you to evaluate an integer in five bases or to evaluate
a pointer as a symbol or as a line number.

Syntax

E V A L U ATE expression {SYMBOL}
{LINE}

where

expression

SYMBOL

LIN E

Abbreviations

is an integer or label treated as an integer.

is a modifier that causes DEBUG-88 to treat the expression
as a pointer to be compared against the addresses of symbol
names in the symbol table.

is a modifier that causes DEBUG-88 to treat the expression
as a pointer to be com pared against the addresses of line
numbers in the symbol table.

EVALUATE can be abbreviated to EVA, SYMBOL to SYM and LINE to LIN. Y,
Q, T and H represent the binary, octal, decimal and hexadecimal bases, respectively.

Description

The Evaluate command is to be used in three ways.

First (when no modifier is appended), it treats the variable expressions as an integer
and displays its value in five different bases: binary, octal, decimal, hexadecimal and
ASCII.

Second (when the modifier SYMBOL is appended), DEBUG-88 treats the variable
expression as a pointer. The symbol table is searched for the address of a symbol that
is equal to the pointer. If no equivalent is found, the closest symbol whose address is
less than the variable expression is taken. The address of the pointer, or the closest
address and its displacement from the pointer, is returned.

Third (when the modifier LINE is appended), DEBUG-88 treats the variable expres­
sion as a pointer. The symbol table is searched for the address of a line number that
is equal to the pointer. If no equivalent is found, the closest line number whose address
is less than the variable expression, is taken. The address of the pointer, or the closest
address and its displacement from the pointer, is returned.

Examples

1. f ~VA~UATE 22 <cr>

A default hexadecimal radix is assumed unless another radix is explicitly stated.

DEBUG-88 returns

)0000000000100010y· 00042q· 00034t • 0022H. II

This gives 22 in the binary, octal, decimal and hexadecimal radixes, and in the
equivalent ASCII character.

DEBUG-88

DEBUG-88 Simple Commands

2. * RADIX 10T <cr>

This sets the radix to decimal.

3. * EVALUATE 10 <cr>

DEBUG-88 returns

*0000000'()00001010y • 000012q • 00010t • OOOAh ...

ASCII characters not printable within a single space are shown as a period (.).

For examples 4 and 5 of EVALUATE SYMBOL and EVALUATE LINE, refer
to the sample symbol table shown below.

Sample Symbol/Line Number Table

4. *

Symbol/Line Number

.. x

.SYM

.VAR
#10
.. Y
#10
#20

EVA 212 + 3 SYM (cr)

Address

100
672
211
110
200
210
220

This command searches the symbol table for a symbol whose address = 212 +
3 =215 (hexadecimal default radix is assumed). Since no symbol has an address
of 215, the next lowest address of a symbol is taken. In the sample symbol table
above, the next lowest address of a symbol is 211.

DEBUG-88 returns

*0000:0215 X.VAR + 4.

This indicates that address 215 is 4 locations beyond the symbol V AR in
module X.

5. * EVA 212 + 3 LINE (cr)

This command searches the symbol table for a line number whose address = 212
+ 3 = 215 (current radix is assumed). Since no line number has an address of
215, the next lowest address of a line number is taken. In the sample line number
table above, the next lowest address of a line number is 210.

DEBUG-88 returns

*0000:0215 ... • Y110 + 5.

This indicates that address 215 is 5 locations beyond the line number lOin
module Y.

6-13

Simple Commands

6-14

RADIX - Establish a New Radix

The Radix command is used to establish a new radix.

Syntax

R A D I X [rb] < c r)

where

r

b

Abbreviations

is an integer used to designate the new radix. r must desig­
nate binary, octal, decimal or hexadecimal.

is the radix of r. bmust equal y, q, tor h (or Y, Q, T, or H) ..
If no radix is given, the existing radix is used.

RADIX can be abbreviated to RAD.

Description

The Radix command is used to establish a new radix. A decimal default radix is
assumed. After a new radix is set, it remains in effect until the radix command is
used again to establish another radix. Be sure to keep in mind what radix you have
established.

Examples
1. f RADIX 10t <cr>

The radix is set to decimal.

2. f RAD 1010y <cr>

This also sets the radix to decimal as 1010 binary = 10 decimal.

3. f RAD 16T <cr>

This re-establishes the radix to hexadecimal.

4. f RAD OA <cr)

Since no radix is stated in the command, the existing radix (which could be the
default radix of 16) is used. Assuming for the example that the default radix is
still in effect, the radix is set by this command to decimal.

Entering simply RADIX or RAD will display the current radix. The radix always
is displayed as a decimal number. •

5. f

f 1 0

This indicates the current radix is decimal.

DEBUG-88

DEBUG-88 Simple Commands

Symbol Manipulation Commands

SYMBOL - Display All Symbols

The Symbol command produces a listing of all module names and the names of all
symbols that are not line numbers.

Syntax

SYMBOL <cr)

Abbreviations

SYMBOL can be abbreviated to SYM.

Description •
The Symbol command produces a listing of all module names and all symbols that
are not line numbers.If NOSYMBOL (NOS) was specified at invocation or in the
Load command, only symbols in the unnamed module will be displayed.

Examples

1. f SIMBOL <cr>

2. f S{M <cr)

6-15

Simple Commands

6-16

LINE - Display All Line Numbers

The Line command produces a listing of all module names and all line numbers.

Syntax

LINE <cr)

Abbreviations

Line can be abbreviated to LIN.

Description

The Line command produces a listing of all module names and all line numbers. The
Line command will not work if NO LINE (NOL) was specified in the invocation or
in the Load cOlllJlland.

Examples

1. • LINE (cr)

2. • LiN (cr)

DEBUG-88

DEBUG-88 Simple Commands

MODULE - Display All Module Names

The Module command produces a listing of the names of all loaded modules.

Syntax

MODULE (cr)

Abbreviations

MODULE can be abbreviated to MOD.

Description

The Module command produces a listing of the names of all loaded modules. If the
NOPUBLIC (NOP) option was specified at invocation, the names of public modules
will not be listed by the Module command.

Examples
1. f MODULE <cr)

2. f MOD <cr)

6-17

Simple Commands

6-18

DEFINE - Create a Symbol Table Entry

The Define command creates a new symbol table entry and places it in the unnamed
module.

Syntax

D E F I H E .symbol = expression (c r)

where

. symbol

expression

Abbreviations

is the name being given to the new symbol.

is the value to which the symbol is being set equal.

DEFINE can be abbreviated to DEF.

Description

The Define command creates a new user symbol and places it in the unnamed module.
DEFINEd symbols always point to a WORD value. The pointer or symbol itself can
be used as a WORD, a BYTE, or a POINTER. Symbols are placed in the unnamed
module in the reverse order from which they were defined. This ensures that the
Remove command, (see next command), which is the complement of the Define
command, accesses the most recently defined values of a given symbol.

Examples
1. t

t

t

t

t

D E F

D E F
C E F

D E F
D E ~

A

V A R

X

Ii A R

A

< c

2 2
A <

A

V A R

r)

: 1 (c r)

c r)

< c r)

(c r)

The symbols, sequentially, take on the values

.A = 0:0

.VAR = 22:1

.X =.A = 0:0

.VAR = .A = 0:0

.A = .VAR = 0:0

DEBUG-88

DEBUG-88 Simple Commands

REMOVE - Delete an Entry From the Symbol Table

The Remove command deletes one or more previously defined symbol names from
the unnamed module.

Syntax

REM 0 V E .symbol name ...

where

. symbol name is a previously defined symbol in the unnamed module .

Abbreviations

REMOVE can be abbreviated to REM.

Description

The Remove command deletes one or more previously defined symbols from the
unnamed module. Commas are used to separate multiple entries in the command.
The entries are removed in the reverse order from which they were entered. This
ensures that the most recently defined value of a symbol is accessed first.

Examples

1. *

2. * REM .STA, .\JAR, .JAR3 <cr>

6-19

CHAPTER 71
COMPOUND COMMANDS·

DEBUG-88 has three compound commands-REPEAT, COUNT, and IF. These
commands allow you to set up program loops. By embedding the simple commands
within the loops, you can significantly increase the power of the debugger. Program
loops may be nested within other program loops. DEBUG-88 helps you to keep track
of the nesting level by indenting one position for each command entered.

IF - Conditional Execution

The IF command provides for conditional execution of subsequent commands based
upon the result of evaluating an expression.

Syntax

I F expression evaluation THE H (c r >
command (c r >

[0 R I F expression evaluation THE H (c r >]
[command (c r >]
[ELSE (cr>]
[commandj
END (cr>

Abbreviations

THEN can be abbreviated to THE, ORIF to ORI, ELSE to ELS.

where

expression evaluation is an expression that can be evaluated using Boolean
operations to produce a result that is either TRUE or
FALSE.

Description

The IF command allows you to set up program loops in which the DEBUG-88 simple
commands can be embedded. Execution of the simple commands is made conditional
upon the evaluation of an expression that is contained within the compound command
loop. The IF command consists of four parts: IF, ORIF, ELSE and END. The IF
and the END lines are mandatory; the ORIF and ELSE lines are optional. If the IF
line evaluates TRUE, the command following THEN is executed. If it evaluates
FALSE, and no ORIF and ELSE lines have been entered, the command following
END is executed. If you have entered an ORIF line, it is evaluated upon the IF line
evaluating FALSE. If the ORIF line evaluates TRUE, the command on the line
immediately below it is executed. If it evaluates FALSE, the command following
ELSE is executed. All IF commands must have an END line as their final line.

7-1

Compo_d Commands

7-2

Examples

1. • •
•
•
•
•
•

Symbol .A is evaluated to see if it equals O. If so, the user program is executed
until the instruction pointer reaches the first break register, BRO .. A is then tested
to see if it is equal to 1. If so, the user program is executed until BR 1, the other
break register, is reached. If .A is equal to neither 0 nor 1, single step execution
takes place. Additional commands must be entered to terminate single step
execution.

DEBUG-88

DEBUG-88 Compound Commands

COUNT - Specified Iteration

The Count command sets up a loop to be executed either the specified number of
times, or until an expression evaluation causes the loop to be exited early.

Syntax

C 0 U H T expression < c r)
command < c r)

[W H I L E expression evaluation < c r)]
[U H TIL expression evaluation < c r)]

EHD<cr)

where

expression is an expression that can be evaluated to produce an
integer.

expression evaluation is an expression that can be evaluated using Boolean
operations to produce a result that is either TRUE or
FALSE.

Abbreviations

COUNT can be abbreviated to C or COU, WHILE to WHI, UNTIL to UNT.

Description

The Count command sets up a specified iteration loop. Simple commands embedded
in the loop are executed the number of times specified by the expression that follows
COUNT or until an expression evaluation causes the loop to be exited early. Escapes
from the loop are provided by the use of optional WHILE and UNTIL lines.

Examples
1. ..

..

..

..

..

The loop is iterated either .ICount times (.ICount representing some positive
integer value) or until the instruction pointer (CS:IP) points to location DELAY,
whichever comes first.

2. .. C= .. N-- A=~:: .:=: ... 'i~ <c r
)

.. "r<_:: :5::;: < 1'-.::.",==:::: (cr)

.. 5~::;: <:,>

.. :: ~ =:: c:: r)

In this example, the loop is iterated either .ICount times or as long as the value
of the instruction remains less than the value of NEWCODE. Should CS:IP reach
a value not less than the value of NEWCODE (i.e., CS:IP >= NEWCODE),
the loop will be exited without regard to the number of iterations completed. If

7-3

Compound Commands

7-4

the WHILE option is used, execution of the loop continues so long as the expres­
sion on the WHILE line evaluates TRUE. Execution terminates before complete
iteration of the loop if, during any iteration, the expression evaluates FALSE.
The UNTIL option causes an early exit from the loop whenever the expression
that follows UNTIL evaluates TRUE.

3. *
f

f

f

C2UNT WORD. ICount <cr)
STEP <cr)

P<5'1 C5:!::J <c r)

END <cr)

A loop is set up to be iterated .ICount times. Within the loop, the instruction
located at the current value of CS:IP is displayed as a disassembled instruction.
Instructions are executed in single step mode.

DEBUG-88

DEBUG-88 Compound Commands

REPEAT - Unspecified Iteration

The Repeat command sets up an infinite loop. Escape from the loop must be provided
through the use of either the WHILE or the UNTIL operations.

Syntax

REPEAT (cr)

command (c r)
[{ W H I L E expression evaluation (c r) }]
[{ U N TIL expression evaluation (c r) }]
END (cr)

where

expression evaluation is an expression that can be evaluated using Boolean
operations to produce a result that is either TRUE or
FALSE.

Abbreviations

REPEAT can be abbreviated to REP, WHILE to WHI, UNTIL to UNT.

Description

The Repeat command sets up an infinite loop. Exit from the loop is provided through
evaluation of the WHILE or UNTIL lines. A FALSE result for the WHILE line or
a TRUE result for the UNTIL line will cause the loop to be exited.

Examples

1. f

f

it

it

it

The instruction pointed to by CS:IP is displayed in disassembled form until the
instruction pointer reaches .LAB5. The loop is then exited and control is returned
to DEBUG-88.

2. f RE:: <:r)
it ':S" :S:::: (C r >
it ,,'-:_E =s::::< . .s,<~~, (cr)

it E"D (cr)

The instruction pointed at by CS:IP is disassembled so long as CS:IP is less than
.BNDRY. When the value of CS:IP equals the address of .BNDRY, the loop is
exited and control is returned to DEBUG-88.

7-5

Compound Commands

7-6

Nesting Compound Commands

The· REPEAT, COUNT, and IF commands can be nested to prov"ide a variety of
control structure with increased flexibility. Each nested REPEAT or COUNT
command can contain its own exit clauses (WHILE or UNTIL). Each exit. clause
can terminate the loop that contains it, but has no effect on any outer loops or
commands.

As an example of nesting, assume you want to STEP through a program and display
each instruction in disassembled form, but skip the repetitive timeout routine
(.DEL.AY) that is called several times during program execution. One way of doing
this is shown below:

Examples

1. f

f

f

f

f

f

f

f

At each call to .DELA Y in the program, the displacement of the return address
for the call is pushed onto the stack. The keyword SP refers to the Stack Pointer,
and SS is the stack segment register. Therefore, SS:SP gives the address of the
top of the stack where the return address is stored. The commands IP = WORD
SS:SP and SP = SP + 2 load the return address back into IP and reset the
stack pointer just as if the return instruction at the end of .DELA Y had been
executed.

DEBUG-88

APPENDIX A
ERROR MESSAGES

This appendix contains a list of all the error messages that can be generated by
DEBUG-88. In the messages, italics indicate variables, i.e., the value is generated by
each specific appearance of the error message.

'WARHIHG 1~ Bad character; code • n.

A character not within DEBUG-88's character set was scanned. The character's hex
value in the ASCII collating sequence is n. This message is a warning only. The
offending character is ignored and processing resumes.

, WAR H I H G 2: T 0 ken too 1 0 n g: SSS •

The token named sss contains more than 128 characters. Since the longest allowable
non-string token length in the Series IV DEBUG-88 system is 40 characters in length
(in the case of user defined symbols), this error should occur only if a string of more
than 128 characters is entered.

'WARHIHG 3: Invalid integer digitCs).

An integer has been entered, without explicit radix overriding, and the integer contains
invalid digits for the current default input radix. For example, entering 1234 with the
current default radix set to 2 would generate this error.

'ERROR 1: Invalid RADIX argument n.

The expression argument to the Radix command must evaluate to 2, 4, 8, or 16. This
error indicates that n was not a valid entry.

'ERROR 2: Command i5 too complex.

The command entered is too complex (i.e., it is nested too deeply), thus causing an
error control stack overflow. To correct this error you must simplify the command.

'ERROR 3: Command i5 too complex.

The command entered is too complex (i.e., it is nested too deeply), thus causing code
generator stack overflow. To correct this error you must simplify the command.

'ERROR 4: Command i5 too complex.

The command entered is too complex (i.e., it is nested too deeply), thus causing parse
stack overflow. To correct this error you must simplify the command.

'ERROR 5: DEBUG-SS heap 5pace exhau5ted. n bytes
remain.

The space used by DEBUG-88 to manage its internal data structures has been
exhausted. The size of this space is controlled by the WORKSPACE parameter
specified in the invocation line for DEBUG-88.

'ERROR S: Divi5ion by zero attempted.

The evaluation of some arithmetic expression resulted in a division by zero.

A-I

Error Messages DEBUG-88

A-2

'ERROR 7: Load error nh.

This message indicates that Series IV system error n hexadecimal occurred during
an attempted program load. It is generated by the Load command or by the implicit
load command that is issued if a filename is specified in the invocation line.

'ERROR 8: No program loaded. Press <RETURN> to
execute anyway) <etl-D> otherwise.

This error is generated by the Step, Pstep and Go commands. It indicates that an
attempt was made to transfer control to a nonexistent user program. You are prompted
by the second sentence of the error message. If you wish to execute in spite of error,
depress RETURN; if not, depress Control-D.

, ERR 0 R 9: M e m 0 r y a c c e sse r r 0 rat ssss:nnnn .

A memory read or write error was detected when accessing memory location
ssss:nnnn.

'ERROR 10: Range specified with non~memory operand.

A range of "memory" was specified and one of the arguments was not a valid memory
address. For example, the command AX to DX =0 is in error since AX is not the
name of a memory address.

'ERROR 11: Asyntax error.

Indicates a syntax error. The circumflex (A) points to the end of the offending token.

, ERR 0 R 12: Una d d res 5 a b leo b j e c t f 0 u n din i n val i d
context.

An object un addressable by DEBUG-88 was encountered in a context that required
object addressability. For example, the command 0481: 1234 = 55 would generate
this error since 0481: 1234 is not addressable. The expression BYTE (0481: 1234) is
addressable however.

, ERR 0 R 1 3: U n e qua I ran gel i mit poi n t e r bas e s aaaa:bbbb
and cccc:dddd.

The starting and ending limits of any range specified in DEBUG-88 have the same
segment base. An example of an offending range is:

100:5 to 600:23

'ERROR 14: Attempt to copy more data in t 0 a
partition than will fit.

An attempt has been made to copy more data into a partition than will fit. This error
signifies that the number of elements in the right side of an assignment
statement exceeds the number of elements specified on its left side. For example,
Var5 length 4 = byte 0 to byte 2, 45, 33 is in error since the left side specifies four
locations whereas the right side lists five values.

, ERR 0 R 1 5: S y m b 0 I not f 0 U n d: ssss .

The symbol ssss was referenced by the user but could not be found in the symbol
table.

DEBUG-88

'ERROR 16: Module not found: ssss.

The module ssss was referenced by the user but was not found in the module table
for the currently loaded user program.

'ERROR 17: Line number not found: n.

Line number n was referenced by the user but was not found in the line number table
for the currently loaded user program.

'ERROR 18: Symbol table overflo~.

The symbol table has overflowed, i.e., the rule that the symbols from any given
module must fit into memory has been violated. More memory can be allocated to
DEBUG-88 by increasing the argument to the WORKSPACE parameter specified
in the invocation file.

'FATAL ERROR 1: Requested WORKSPACE size n exceeds
available space.

The amount of memory requested during invocation by the WORKSPACE parame­
ter exceeds the amount of free memory available to the system.

'FATAL ERROR 2: Error in invocation line.

An error was detected in the command used to invoke DEBUG-88. To prevent spurious
results, this error suppresses the loading of DEBUG-88.

'FATAL ERROR 3: UDI error nh.

System error n hexadecimal was detected while calling some operating system service.
The error was sufficiently serious to cause DEBUG-88 to exit to the operating system
unconditionally.

'INTERNAL ERROR n[~y]: Fat·al DEBUG 88 error. Contact
Intel field service.

This error requires the attention of Intel field service. If you receive this error message,
record the values of n, x, and yand report them to the field service office nearest you.

Error Messages

A-3

APPENDIX B
EXAMPLE OF A DEBUG SESSION

This appendix contains a log of a debug session for two user programs, the Towers of
Hanoi and the Hanoi Driver. You should examine the source code for these programs
first, then go to the log of the debug session. Doing this will show you how the
DEBUG-88 commands are used, and the results they produce.

B-1

Example of a DEBUG Session DEBUG-88

8986/7/8/186 MACRO ASSEMBLER Hanoi: The towers of Hanoi 02/26/81 PAGE

SERIES-IV 8986/8087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE HANOI
08JECT MODULE PLACED IN :F1:HANOI.OBJ
INVOCATION LINE CONTROLS: DEBUG

LOC OBJ

0000 3E204D6F766520
6469736320

000C 00
000D 2066726F6D20
0013 00
0014 20746F20
0018 00
01319 O!JD
001A 13A
0018 00

0004 []
0006[j
13008 []
000A []

0000 55
0001 8BEC

0003 8B460A
0006 0BC0
0008 7652

B-2

00fdA 50

000B 48
000C 513
00filD FF7608

LINE

1
2
3
4
5
6

=1 7
=1 8
=1 9
=1 113
=1 11
=1 12
=1 13
=1 14
=1 15
=1 16

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

49

513

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

SOURCE

+1 $print(:f1:hanoLlst) object(:f1:hanoi.obj)
+1 $title('Hanoi: The towers of Hanoi')

name Hanoi

+1 $include(:fl:group.inc)

;THIS IS THE GROUP DECLARATION FOR THE small MODEL IN PLM86

CGROUP GROUP CODE

DGROUP GROUP DATA, CONST, STACK

ASSUME CS:CGROUP, DS:DGROUP

+1 $NOLIST

let Hanoi(N,S,B,D) be
if N>0 then
$(Hanoi(N-l, S,D,B);

writeStr(") Move disc In from 'Ic' to 'Ic' .*N", N, s, D);
Hanoi(N-l, B,S,D)

$)

and Ma in () be
Hano i (5, 'S' " B' " 0')

Data segment pUblic 'data'

extrn WrCh:NEAR, WriteStr:NEAR, writeUnSignedInt:NEAR

; Data defInitions
Strl db ') Move dISC', 13

Str2 db , from', 13

Str3 db , to " 13

Str4 db 13,113,13

Data ends

Code segment pUblic 'code'

0 equ word ptr [BP+4]
B equ word ptr [BP+6]
S equ word ptr [BP+8]
N equ word ptr [BP+lfil]

pUbl ic Hanoi
Hanoi proc near

push BP create
mov BP,SP new context

mov ax,N return
or ax,ax if N<=0
jbe Exit_Hanoi

pUSh ax save N on stack

dec ax
push ax
push S call Hano i (

1

DEBUG-88 Example of a DEBUG Session

0010 FF7606 78 BUGl: push B N-l, S ,O,B)
0013 FF7604 79 BUG2: push 0
0016 E8E7FF 80 BUG3: call Hanoi

81
13019 801E00130 R 82 lea ox,strl
0010 53 83 push ox call WriteStr(
001E E80000 E 84 Labl: call WriteStr ref (' > Move disc , STC))

85
01321 8BF4 86 mov SI,SP
131323 8B04 87 mov ax, [S IJ retrieve N
13025 50 88 push ax call WriteUnSignedInt(N)
0026 E8001313 E 89 Lab2: call WriteUnSignedInt

90
0029 801E00130 R 91 lea DX,str2
01320 53 92 pusn ox call WriteStr(
13132E E80000 E 93 Lab3: call WriteStr ref (' from

,
STC))

94
0031 FF7608 95 push S
13034 E813iil00 E 96 call WrCh call WrCh(S)

97
13037 801E14130 R 98 lea ox,str3
003B 53 99 push ox call Wr i teStr (
003C E80000 E 1013 call WriteStr ref (' to , STC))

101
003F FE76134 102 push 0
13042 E8 13 13 13 13 E 1133 call WrCh call WrCh

1134
01345 801E190iil R 1135 lea ox,str4
01349 53 106 push ox call WriteStr(
004A E80000 E 107 call Wr i teStr ref (CR,LF, STC))

1138
131340 58 1139 pop ax destructively retrieve N
0134E 48 110 dec ax
13134F 513 111 Lab4: pUSh ax push N-l
131350 FF7606 112 pusl) B
0053 FF76138 113 push S
131356 FF76134 114 LabS: push 0
13059 E8A4FF 115 call Hanoi call Hanoi(N-l, B,S,OJ

116
005C 117 Exit Hano i:

-
1305C 50 118 pop BP
0050 C208013 119 ret 8

120
121 Hanoi endp
122
123 Code ends
124
125 end

ASSEMBLY COMPLETE, NO ERRORS FOUND

P /M-86 COMPILER Toe Towers of Hanoi drlver 02/26/81 PAGE

SERIES-IV PL/M-d6 Vl.0 COMPILATION OF MODULE HANOIORIVER
OBJECT MODULE PLACED IN :Fl:HANORV.OBJ
COMPILER INVOKED BY: PLM86.86 :Fl:HANORV.P86

1

2

5
6

7

1

1
2

2

$optiillize(3) aeoug
$title('Tne Towers of Hanoi driver')
HanoiOriver: do;

/* PEX */
DQEXIT: procedure(ZZl) external; declare (ZZl) word; end;
/* ENOPEX */

Hanoi: procedure(N,S,B,O) external;
declare N WORD,

(S,B,O) BYTE;
end Hano l;

I

B-3

Example of a DEBUG Session

B-4

8
9

1
1

call Hanoi(5,'S','B','D')i
call DqExit(~) i

1 end HanoiDr1veri

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
17 LINES READ
13 PROGRAM WARNINGS
o PROGRAM ERRORS

END OF PL/M-86 COMPILATION

CONSOL , :Fl:DEMON.LOG
088

iiHHCH
0000H
i3~0(6H

000AH

LOAD ":FJ.:HAtWRV.86" NOPUHLIC

LIST" :F1: LIS'LLOG"

KEG

FLAG

STACK 10

#5

ASM .LAB1 TO .LAB2

ASM .LAB3 LEN 5

DS, ES
(OS = ES)

RAX, RBX, RCX
AX <> oX

~VA (AX + BX) * (eX / 3 - 2)

RADIX HIT

EVA Hl

RAD 8T

EVA 13

EVA CS:IP LINE

BR0 = .BUG1
GR = TILL BR0
GO
ASM CS:IP

REPEAT
ASM CS: IP
UNTIL CS:IP = .BUG3
STEP fROM .BUG2
END

GO FROM .BUG1 TILL .BUG2

GO FROM .BUG3 &
TILL .LAB2 OR &
&

.LAB1

28D
~D

00
10D

iinvoke deouyger

iload user program, with nopubl1C modif1er

icredte log f1le

idisplay all reyisters

idisplay all flags

idisplay 10 words from the top of the stacK

idisplay memory address of line i5

iaisassembie from LAB1 to LAB2

idisassemble 5t lines from LAB3

id1splay OS, ES
iboolean expression

idisplay reg. AX,BX,CX
iboolean expression

ievaluate toe expression 1n 4 different base

iset default rad1x to decimal

ievaluate 10t

iset default radix to octal

ievaluate 13q

ievaluate CS:IP for matching line number

iset oreak point
iset GO-REG to activate oreak point
iexecute till break
idisassemble current cs:ip

,
ithis yroup of command will Change the
iflow of program to get around the
ibu9 on label BUG1 and BUG2

execute proyram until it encounter
first break point
note: continuation inserted

DEBUG-88

DEBUG-88 Example of a DEBUG Session

EVA .LAB2 SYMB

DEFINE .TEMP = 3
COUNT .TEMP
IF CS:IP = .LAB2 THEN
'90 command did not work ri9ht'
ORIP CS:IP = .LABI THEN
'everythln~ is fine'
END
END

Rt:MOVE .TEMl?

GO TILL .LAB4

REP
ASMCS:IP
UNTIL CS:IP .LAB5
STEP
END
.LAB5
! ! HANOI !LAB5

PSTEP FROM .LAB5

DOMAIN .• HANOI
EVA .HANOI SYMB

BYTE CS:IP LEN 18

WORD CS:IP LEN 10

POINTER 0 LEN 5 = 0

POI 0 LEN 5

EXIT
CONSOL , :VO:
ENDJOB

088
Serles IV DEBUG 8088, X008
*

;evaluate the address symbolically

;define new symbol into unnamed module
;bounded iteration - repeat 3 times

,
;result of this compound command
;Should be 'everything is fine'

;remove symbol

;execute until LAB4 is reached

;Lepeat until the condition is met

;execute by single step
;end of repeat compound command
; . LAB5 = C S : I P
;dereference tne symbol

;execute by single procedure step
;4 esc and 1 cr is inserted

;set default domain module
;ffiodule HANOI is the first module to De searched

;display range of byte quantltes

;dlsplay range of word quantites

;assign value to pointer address

;display range of pointer quantites

;exit from deougger

; invoke deouY':ler

*LOAD "/WORKOISt</HANDRV. 86" NOPUBLIC ;loa~ user program, with nopubllC ffiodlfier

*LIST "/LOGDISK/LIST.LOG"
*
*REG
>AX
>CS
>IP
>RF
*

41540
llB3h
I""'013n
0200h

BX
SS
SP
BP

4B43h
1219h
'HlE8h
2C96h

CX
OS
51

; create loy file

;display all reglsters
4305h DX 4E4Fh
1219h ES 5453h
53050 DI 00000

*FLAG ;display all flags
>CFL=0 PFL=0 AFL=0 ZFL=0 SFL=0 TPL=0 IFL=1 DFL=0 OFL=0
*
*5TACK 10 ;display 10 words from the top of toe stack
>[l21~:~H~8j FFFFh 0000n FFFPh 0000h FFFFn 0000n FFFFh 80000 1218h 00000
> [1219:08FCj 0800h 0D56h 0J000 00~0h FFFFh 0000h

*if 5
>1183:01"'31)

*ASM .LABI TO .LA82
> [l1B3: 003E] E8F902
> [l1B3: IHl41 J 8BF4
>[l1B3:0043] 8B04
> [1183:1""45) 50

*ASM .LA83 LEN 5

CALL
HOV
f10V
PUSH

;dis~lay memory aadress of line #5

;disassemDle from LABI to LAB2
A=033A
SI,SP
AX, [51)
AX

idisdssemDle 5t lines tram LAB3

8-5

Example of a DEBUG Session

> [1183: 13134E] EdE902
> [l1B3: 131351] FF76G8
> [11133: 01354] E8~100

>(l1B3:0057] 801E3413G
> (11B3: fiJ05B] 53
*
*OS, ES
> (OS] 1219h 5453n
*(OS = ES)
>FALSE

*RAX, RBX, RCX
>(AXj 4154h 4843h 43135h
*AX *> ax
>TRUE
*
*EVA (AX + BX) * (CX / 3 - 2)

CALL A=033A
PUSH [BP+0GfiJ8]
CALL A=fiJ108
LEA BX, [0034]
POSH BX

;oisplay OS, ES

; buolean expression

;display reg. AX,BX,CX

;boolean expression

>lfiJ10lfiJfiJ00131130011y 124043q = 43043t
;eva1uate the expression in 4 different base

A823n = #

*RADIX 1GT
*
*EVA 113
>0fiJ013U1301300fiJfiJl1310y
*
* RAD 8T
*
*EVA 13
> fiJ000000fiJGfiJ0131fiJl1y
*
*EVA CS:IP LINE

13130fiJ12q

00fiJfiJ13q

>11B3:fiJfiJ0G •• HANOIORIVER#l
*
*BR0 = .BOG1
*GR- = TILL BRfiJ
*GO
> (1183:013313] FF7606
*ASM CS:IP
> (l1B3:fiJ0313] FF76136
*
*tU.PEAT
• * ASM CS: IP
.*ONTIL CS:IP = .BUG3
.*STEP FROM .BUG2
.*END
> (l1B3:130313] FF7606
> [1183: 13036J E8E7FF
*
*GO FROM .BUG1 TILL .BUG2
> [1183:131333J FF7604
*
*GO FROM • BUG3 Ii<
**TILL .LA82
**&
**.LAB1

OR &

> [l1B3: GIBE] E8F902
*
*EVA .LAB2 SYMS
>1183:131346 = •. HANOI.LAB2
*
*DEFINE .TEMP = 3
* COUNT • TEMP
.*IF CS:IP = .LAB2 THEN

10t

llt

;set default radix to decimal

;evaluate 113t
01313Ah = ?

;set default radIx to octal

;eva1uate 13q
fiJ00Bl1 = ?

ieva1uate CS:IP for matching lIne number

;set break point
;set GO-REG to activate break pOint
;execute till break

PUSH (BP+013136]
iaisassemble current cS:ip

PUSH (BP+1313fiJ6]

;
;this group of command will Change the
;f1ow of program to get around the
;bug on label BUG1 and BUG2

PUSH (BP+G 1313 6]
CALL A=130213

PUSH [BP+0GG4]

;execute program until it encounter
;first break point
;note: continuation inserted

CALL A=033A

;eva1uate the address symbolically

;define new symbol into unnamed module
ibounded iteration - repeat 3 tImes

•• *'90 command Old not work right' ,
• .*ORIF CS:IP = .LAB1 THEN
• .*'everything is fine'
•• *END
.*END
>everything is fine
>everythlng is fine
>everything is fIne

*REMOVE .TEMP
*
*GO TILL .LAB4
> Muve disc 1 from S to B
>[l1B3:006F] 513

*
*REP

B-6

PUSH AX

iresult of this compound command
ishould be 'everything is fine'

iremove symbol

iexecute until LAB4 is reachea

;repeat until the condition is met

DEBUG-88

DEBUG-88 Example of a DEBUG Session

. * AS11 CS: IP

.*UNTIL CS:IP .LAB5

.*STEP
• *ENO
> [l1B3: 01c:l6F] 50
> [llB3:01370] FF7606
> [l1B3:0073] c'F7608
> [l1B3:0076] FF76134
*.LAB5
>11B3:0076
*! ! HANOI ! LAB5
> [1183:13076] 1373377q
*
*PSTEP FROM .LAB5
> [l1B3:01376] FF7604
>[11B3:0079] E8A4FF
> [llB3:007C] 50
> [l1B3:iil070] C20800
> [llB3:QJQJ7C] 50

*DOMAIN .• HANOI
*EVA .HANOI SYMB
>1183:13020 = .• HANOI.HANOI

i
iexecute by sinyle step
iend of repeat compound command

PlJSH AX
PUSH [HP+13006]
PUSH [BP+00138]
PUSH [BP+13004]

i • LA B 5 = C S: I P

ider~ference the symbol

iexecute by single procedure step
PUSH [BP+130134] ? $
CALL A=1313213? $
POP BP? $
RET 13QJ08? $
POP BP

i4 esc and 1 cr is inserted

iset default domaln module
iffiodule HANOI is the first module to be searched

*BYTE CS:IP LEN 18 idisplay range of oyte quantites
> [liB3:007C] 50 C2 08 130 55 8B EC 8A 136 56 00 F6 013 00 08 72]B??U?l??V?vPPXr
> (llB3: 008C] 133 E9 ?i

*WORO CS:IP LEN 10 idisplay range of word quantltes
> [l183:007C] 141135q 1300010q 105525q 105354q 053006q 17301313q 1503213q 071330q
> [llB3:013tlC] 164403q 00QJlllq
*
*POINTER 0 LEN 5 = 0 iassign value to pOlnter address

*POI 0 LEN 5 idisplay rdnge of pointer quantites
> [13000:013013] 0000:130130 00130:130130 13131313:01300 001313:001313 001313:130130

*EXIT iexit from debugger
>OE388 exit.

B-7

ASCII Character Code, 3-9
ASM,6-11
Asynchronous Breakpoint, 5-5

BR,5-1
BRO, 5-1
BR1, 5-1
Break Registers, 5-1
BOOLEAN, 3-6,6-7

CALLS, bypassing of, 5-6
Character Set, 3-2
Command Categories, 3-1
Command Format Notation, 3-1
Comments, Use of, 3-3
COMPOUND COMMANDS, 3-2

Nesting of, 7-6
Continuation Lines, 3-3
Conditional Execution,

see IF
Control, Transfer of

see GO
COUNT, 7-3

D88, see Invocation of DEBUG-88
DEFINE, 6-18
DISPLAY MEMORY, 6-8, 6-10
DOMAIN,6-1

Error Conditions, 3-3
Error Messages, 3-3, A-I thru A-3
EVALUATE,6-12
Escape Code, 5-5
Expression Evaluation

see EVALUATE
Expressions, 3-4
EXECUTION COMMANDS, 3-1, 5-1 thru 5-6
EXIT,4-5

FLAG, 6-5, 6-6

GO, 5-4
GO Register, 5-3
GR,5-3

IF, 7-1
Invocation, of DEBUG-88, 3-1, 3-2, 4-1
Iteration, Specified

see COUNT
Iteration, Unspecified

see REPEAT

LINE,6-16
Line Editing, 3-3
LIST,4-4

INDEX

Listing, how to create a, 4-4
LOAD,4-3

MODULE, 6-17
Modules, 3-7

NOLINE (NOL), 4-1
NOPUBLIC (NOP), 4-1
NOSYMBOL (NOS), 4-1

Operands, 3-4
Numeric Constants, 3-4
Command Keywords, 3-5
Keyword References, 3-5
Reserved Words, 3-5
Memory References, 3-5

Operational Mode, Specifying, 5-5
see STEP and PSTEP

Operators, 3-9, 3-10
Arithmetic and Logical Semantic Rules, 3-12
Content Operators, 3-11
Relational Operators, 3-12

Pointer, 3-4
POINTER,3-6,6-7
PORT/WPORT, 3-6,6-10
PSTEP, 5-6

RADIX, 6-14
REGISTER, 6-3,6-4
REMOVE,6-19
REPEAT,7-5

SIMPLE COMMANDS, 3-1
Display/Set Commands, 3-1, 6-2
Symbol Manipulation Commands, 3-2

Simplified Operation, 2-1
Single Step Operation

see STEP and PSTEP
SINTEGER, 3-6, 6-7
STACK,6-7
Statement Numbers, 3-8
STEP, 5-5
String Constants, 3-8
SYMBOL,6-15
Symbol Table Organization, 3-6
Symbolic References, 3-6

Utility Commands, 3-1, 4-1 thru 4-5

Word,3-4
WORD, 3-6, 6-7
WORKSPACE,4-1
WPORT, see PORT /WPORT

Index-l

intJ
REQUEST FOR READER'S COMMENTS

Debug-88 User's Manual
121758-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi­
cation. If you have any comments on the product that this publication describes, please contact your Intel repre­
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve­
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

---- ----------------------------------- ------,--- - ,----------------------,--------,--,---------

-,'-------,---,---,---------------,---- --------, ,- ----,---,-----,--'"

4. Did you have any difficulty understanding descriptions or wording? Where?

-- -------------"--------,, --"'-,,-------"'-----,---------,,--'''--,-,-,,-------,,-----,---,-----", --, -""-,--,,----------

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE

(COUNTRY)

DATE

- -------'''-,,-----

- "--"--,,,"--""--------

ZIP CODE __ _

WE'D LIKE YOUR COMMENTS 000

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I II NO POSTAGE

NECESSARY
IFMAILED

IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

