
ASM86 MACRO ASSEMBLER
OPERATING INSTRUCTIONS

for SOS6-Based Systems

Order Number: 121628-003

Copyright@ 1980, 1982 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP intel iSBC MULTICHANNEL
CREDIT Intelevision iSBX MULTIMODULE
i inteligent Identifier iSXM Plug-A-Bubble
FICE inteligent Programming Library Manager PROMPT
ICE Intellec MeS RMXj80
iCS Intellink Megachassis RUPI
im iOSP MICROMAINFRAME System 2000
iMMX iPDS MULTI BUS UPI
Insite iRMX

A7;34/982/ 5K DO

REV. REVISION HISTORY DATE

-001 Original issue. 9/80

-002 Added information concerning invocation under 5/82
iRMX 86. Title change to ASM86.

-003 Added information concerning new controls for 9/82
iAPXl86 assembler. Revised description of assembler
controls. Revised list of error messages for iAPX 186
assembler.

iii

PREFACE

This manual is directed to those of you have read the ASM86 Language Reference
Manual, have coded your program, and are ready to run the ASM86 Macro
Assembler on an 8086-based system.

This manual instructs you in the use of the ASM86 Macro Assembler through the
use of the assembler controls. It is according to these controls, or assembler commands,
that the assembler creates an object file and a listing file.

Included in these pages are the error messages and how to recover from the condi­
tions that caused them. Also included are instructions for linking ~SM86 programs
to programs written in higher level languages (PLJM-86, FORTRAN-86, and
P ASCAL-86).

How to Use This Manual

The majority of this manual is a generic, operating system-independent document.
That is, the material you read there is true for all the operating systems that support
the ASM86 Macro Assembler. Naturally, there are certain differences between the
various operating systems. Material specific to invoking the assembler under a specific
operating system is given in Chapter 2.

Related Publications

For more information on the ASM86 language, the higher level languages with which
it can be linked, and the operating system, refer to the following manuals:

• An Introduction to ASM86, 121689

• ASM86 Language Reference Manual, 121703

• PL/M-86 User's Guide, 121636

• FORTRAN-86 User's Guide, 121570

• PASCAL-86 User's Guide, 121539

• lntellec Series III Microcomputer Development System Product Overview,
121575

• Intellec Series 111 Microcomputer Development System Console Operating
Instructions, 121609

ALTER Text Editor User's Guide, 121756

• iRMX 86 System Programmers Reference Manual, 142721

• iRMX 86 Human Interface Manual, 9803202

Notational Conventions

UPPER CA SE Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or lower­
case.

v

vi

italic

directory-name

filename

pathname

pathname1,
pathname2, ...

system-id

Vx.y

[]

{ }

{ } ...

[•...]

punctuation

(c r)

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the file­
name.

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory-name and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an operat­
ing system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other­
wise noted.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

CHAPTER 1 PAGE
BEFORE USING THE
ASM86 MACRO ASSEMBLER

CHAPTER 2
INVOKING THE
ASM86 MACRO ASSEMBLER
Series III Invocation (Standalone System) 2-1

Examples 2-1
Series III Invocation on NDS Network 2-2

Examples .. 2-2
iRMX 86 Invocation ... 2-3

Examples .. 2-3

CHAPTER 3
DEFINING ASSEMBLY CONDITIONS
(ASSEMBLER CONTROLS)
Specifying Controls .. .
Types of Controls
Description of Controls .. .

DATE .. .
DEBUG/NODEBUG .. .
EJECT .. .
ERRORPRINT /NOERRORPRINT
GEN/GENONLY/NOGEN
INCLUDE .. .
LIST/NOLIST .. .
MACRO/NOMACRO
MODl86
OBJECT /NOOBJECT
PAGELENGTH
PAGEWIDTH
PAGING/NOPAGING
PRINT /NOPRINT
SAVE/RESTORE
SYMBOLS/NOSYMBOLS
TITLE
TYPE/NOTYPE .. .
WORKFILES
XREF /NOXREF

Macro Calls and Control Recognition

CHAPTER 4
LISTING FILE AND ERRORPRINT FILE

3-1
3-1
3-3
3-3
3-3
3-4
3-4
3-4
3-6
3-6
3-7
3-7
3-8
3-8
3-8
3-9
3-9
3-9

3-10
3-11
3-11
3-11
3-12
3-12

The Listing File ... 4-1
Header .. 4-1
Body... 4-1

LOC ... 4-4
OBJ .. 4-4
EQUATE ... 4-6
INCLUDE Nesting Indicator 4-7
LINE .. 4-7
Macro Nesting Indicator 4-7
Source Text .. 4-7

CONTENTS I

PAGE
Symbol Table

Name
Type
Value
Attributes .. .
XREFS .. .

The Errorprint File

APPENDIX A
ERROR MESSAGES AND RECOVERY
Console Error Messages .. .

Control Errors
I/O Errors .. .
Others

Source File Error Messages
Macro Error Messages .. .
Control Error Messages

APPENDIX B
LINKING ASSEMBLY LANGUAGE AND
HIGHER LEVEL LANGUAGES

4-8
4-8
4-8
4-8

4-10
4-11
4-12

A-I
A-I
A-I
A-2
A-2

A-25
A-27

The Procedural Interface B-1
Passing Parameters on the 8086 B-1
Retrieving Parameters from the Stack B-1
Choosing a Method to Access Parameters B-2
Returning Values from Functions B-2
Register Conventions ... B-2

Models of Segmentation ... B-3
CGROUP and DGROUP B-3
The SMALL Model .. B-3
The COMPACT Model.. B-3
The MEDIUM Model... B-4
The LARGE Model.. B-4

Subsystems B-4
Templates , B-4

Using the Templates .. B-5
The SMALL Model of Segmentation B-6

Notes on the SMALL Model B-6
The COMPACT Model of Segmentation B-8

Notes on the COMPACT Model B-8
The MEDIUM Model of Segmentation B-I0

Notes on the MEDIUM Model B-1O
The LARGE Model of Segmentation' B-12

Notes on the LARGE Model B-12

APPENDIX C
RULES FOR SHORTENING CONTROLS

APPENDIX D
USING THE 8087 NUMERIC DATA
PROCESSOR AND THE 8087 EMULATOR
PROGRAMS

vii

TABLE

2-1

3-1

FIGURE

1-1
4-1

viii

TITLE PAGE

ASM86 Macro Assembler Parameters
(Rules of Thumb) 2-5

ASM86 Macro Assembler Controls
Summary .. 3-3

TITLE PAGE

ASM86 Macro Assembler Logical Files 1-2
The List File 4-2

TABLE

4-1
B-1

FIGURE

4-2
4-3

TABLES

TITLE PAGE

Symbol Table Information 4-12
Registers Used to Return Simple Values ... B-2

ILLUSTRATIONS

TITLE PAGE

Fields of Information in the List File 4-5
Fields of Information in the Symbol Table .. 4-9

CHAPTER 1
BEFORE USING THE

ASM86 MACRO ASSEMBLER

If this is the first time that you have used the ASM86 Macro Assembler, be sure
your system includes these items, as they are required for assembler operation:

• A Series III Development System or an iRMX 86 Application System with
Human Interface

• A console device, such as a CRT or TTY

• Appropriate operating system software

You may want to add a lineprinter and/or more disk drives to this configuration as
it represents the minimum configuration with which the assembler can be used. For
iRMX 86, you must have at least one mass storage device or directory to run ASM86.
Consult the console operating instructions for your system for further information.

Next, check that the ASM86 Macro Assembler is on a disk.

Have your- ASM86 Language Reference Manual nearby, as that document and this
one are interdependent. This manual assumes that you are familiar with the ASM86
language.

This manual instructs you in the use of the ASM86 Macro Assembler through the
use of its controls. The assembler creates an object file, listing file, and errorprint file
in accordance with these controls. See figure 1-1 for the logical files.

The listing file contains the source file, the expanded macro source code, the assem­
bler object code, a summary of assembly errors, if any, and a list of the symbols that
you have defined in your source program.

The ASM86 Macro Assembler is a multi-overlay assembler. The overlays are all
contained in one file: ASM86.86.

The assembler can reside on and be invoked from any disk.

During assembly, the ASM86 Macro Assembler creates six temporary files for its
own use. These files are given temporary names by the operating system and are
deleted at the end of assembly_

The files may be placed on any drive using the WORKFILES control. The default
condition places the files on the system's workfile drive.

1-1

Before Using the ASM86 Macro Assembler ASM86 Macro Assembler

ASM86

Figure 1-1. ASM86 Macro Assembler Logical Files 121624-1

1-2

CHAPTER 2
INVOKING THE ASM86 MACRO ASSEMBLER

To invoke the ASM86 Macro Assembler, enter the appropriate invocation line for
your operating system as described below. For a detailed discussion of assembly
controls and their place in the assembler invocation command, see Chapter 3, "Defin­
ing Assembly Conditions." Chapter 3 also explains how the assembler invocation
command can be continued on another line.

Series III Invocation (Standalone System)

If the system is at the ISIS level, the general form of the invocation line is:

If the system is already at the RUN level, the general form is:

) :::-~:;t:V85[::-~:~5:_~:=': __ e:::~:""O~5J

where

:Fn: represents disk drive device or directory number n. This may
be omitted if the file is on drive o.

sourcefile

controls

is the name of the file containing the ASM86 source module.

is an optional sequence of assembler controls (see
Chapter 3).

One or more blanks or tabs must separate the items of information in the invocation
line. A command line may be continued with an ampersand (&) that appears outside
of a quoted string. Anything following the ampersand on that line is ignored. The
invocation may end with a comment by preceding the comment with a semicolon (;).

Examples

I. Assume that the operating system and the assembler are on drive 0, and the
source file named GONZO.SRC is on drive l. In its simplest form, the
invocation command can be:

The assembler will use the default values of the control settings to write the
object module to the file :FI:GONZO.OBJ, and to write the print file to
:FI :GONZO.LST. The default writes the object and print files to the source file
drive, using the source file name with extensions OBJ and LST respectively.

2. Now assume that the assembler is on drive 7 and the source file FOOBAR.A86
is on drive 5. Furthermore, it is desired to write the listing to the file TMP on
drive 6, and write the object to drive 4. The listing should not be paged, should
have a width of 78 columns, and should include a cross-reference symbol table
listing. Debug information is desired in the object module. Additionally, all
temporary workfiles should be placed on drive 1.

2-1

In,oking the ASM86 Macro Assembler ASM86 Macro Assembler

2-2

The invocation line for this case can be:

Series III Invocation on NDS Network

Examples

1. If the Series III Development System is functioning as a workstation of an NDS
network, you must use ASSIGNments to associate directories with directory
specifiers. With the assembler in a file ASM86 and the source code in a file
GONZO.SRC in directory SOURCES.ASM, you would make the assignments:

':SS:::-N :=-:: --= ':3~8c

~S5:~~ ::-~: -: ~==-- 5= __ ~::5,~:V ~=\Z=.:~:

Then the invocation would be:

2. Now assume that the assembler is in the directory I A/CMPLRS.ASMBLR and
that the source file, termed FOOBAR.A86 is in the directory
I A/SRC.CODE. You want to write the listing to a file TMP in directory
IDA TA/LSTNGS and write the object to a filename FOOBAR.OBJ in direc­
tory IDATA/OBJ. You want the listing file to be not paged, to be 78 columns
wide, and to include a cross-reference symbol table listing. You want debug
information for the object module and want temporary workfiles to be created in
directory IDATA/WK.FLE.

You must use ASSIGNments to associate directories with directory specifiers as
shown below:

~ss::~~ :~~: -8 16 ~Y: ~:.~5V3_~

A5::~' :~2: --= I:" 5~=.==::
':SS::J, :"3: -C ::.,-:., =~~

A:S:=i~ :;:-4: = ~,:-:.. ~<.:- ~

ASS:0~ :C"s: ~= /DC.--~ _S--~:'S

You would invoke the assembler with the controls indicated by entering:

))

))

))

))

R'.N :"1 :ASM86 :F2::-=~E6R.C,85
PRC:"5: T ",P)
c.(;C"3:"CJBAR.Co",)
N:cI C~(78)
'" r (: C" 4 :)

ASM86 Macro Assembler Invoking the ASM86 Macro Assembler

iRMX 86 Invocation

where

directory

sourcepath

controls

is the portion of the pathname that identifies the device and
directories containing the file ASM86. If you omit directory,
the operating system automatically searches several directo­
ries for the file ASM86. The directories searched and the
order of search are iRMX 86 configuration parameters.

is the path name of the file containing the ASM source
module. The beginning portion of this pathname may consist
of a logical name enclosed in colons (such as :Fl:). This
indicates the place where the operating system starts its search
for the file. If you omit the logical name, the operating system
assumes that the file resides in the default directory (:$:).

is an optional sequence of controls as defined in Chapter 3.

You can use slashes (f) and up-arrows (/\) as separators between individual compo­
nents of the path name (except immediately after the logical name). The slash separa­
tor tells the operating system to search down one level in the directory tree for the
next component. The up-arrow tells the operating system to search up one level.

One or more blanks or tabs must separate the items of information in the invocation
line. You can continue a command line by entering an ampersand (&) outside of a
quoted string. The assembler ignores anything that follows the ampersand on that
line. You can end the invocation with a comment by placing a semicolon (;) before
the comment.

Examples

l. Assume that the assembler resides in a directory with logical name :LANG:;
furthermore, assume that : LANG: is one of the directories that the operating
system automatically searches. Also assume that a source file named
GONZO.SOURCE resides on a device or directory with logical name :FDO:. In­
its simplest form, the assembler invocation can be:

The assembler uses the default values of the control settings to write the object
module to the file :FDO:GONZO.OBJ and to write the print file to
:FDO:GONZO.LST. In the default case, the assembler writes the object and
print files to the source file device or directory using the source file name with
extensions OBJ and LST respectively.

2. Now assume that the assembler resides on a device or directory with logical name
:FDO: and is in a subdirectory named UTILITIES. Also assume that the source
file FOOBAR.A86 resides on a device or directory with logical name :FDI: and
is two levels down in the directory tree, residing in PROGRAMS/ASSEMBLY.
Furthermore, it is desired to write the listing to the file TMP on device or direc­
tory :WDl: and the object to device or directory :WFX2:. The listing should not

2-3

In,oking the ASM86 Macro Assembler ASM86 Macro Assembler

2-4

be paged, should have a width of 78 columns, and should include a cross­
reference symbol table listing. Debug information is wanted in the object module.
Additionally, all temporary workfiles should be placed in a directory with logical
name :JUNK:. The invocation line for this case can be:

Immediately after you enter the command line, the assembler sends its sign-on message
to the console:

system id 8 0 8 6 I 8 7 I 8 8 I 1 86M A C R 0 ASS E M B L E R J V x. Y

where

x.y is a number 2.0 or greater (the current version number of the
assembler).

When the assembly of your program is complete, the sign-off message and error
summary are sent to the console in this format:

ASSEMBLY COMPLETE, NO ERRORS FOUND

If the assembler detected errors, an error summary, such as this one, appears:

ASSEMBLY COMPLETE, 2 ERRORS FOUND

When fatal errors are detected by the assembler, source file processing is aborted and
an informative error message is sent to the console. Fatal errors and their
accompanying console messages are described in Appendix A.

It is likely that you will want, initially, to use the assembler in the default or automatic
mode of operation; that is, without specifying controls. As you gain experience in
using the assembler, the assembler controls described in Chapter 3 will enable you to
gain greater efficiency in developing your ASM86 Macro Assembly Language
programs.

There are some restrictions that you need to know about. Since these restrictions are
mostly quantitative, they are noted in table form (see table 2-1).

ASM86 Macro Assembler InYokiag the ASM86 Macro Assembler

Table 2-1. ASM86 Macro Assembler Parameters (Rules of Thumb)

Source File

Item Number

Characters/source line 255 (including CR/lF); if more are entered,
they are processed but not listed and an error
message noted.

Characters/I 0 31; if more are entered, they are ignored.

Symbols/module 1500 (approximately); relative to the length of
the name and type of symbol

Source lines/program No assembler-imposed limit
Cont. lines/statement No assembler-imposed limit
Characters/string 255 (including enclosing quotes)
Characters/classname 40

Dup nesting Up to 8 levels of nested parentheses

PROC/SEG nesting 16 (up to 16 total open at one time)

Items/PUBLIC, EXTRN, PURGE No assembler-imposed limits
Items/GROUP 36 segments per GROUP
Codemacro size 60 bytes (approximately) of assembler gener-

ated code

Items/storage Items cannot exceed 16; limited to 8 levels of
initialization-list nested parentheses.

SEGMENT size 65,536 bytes (641<)
Record limit 16 fields.
Record size 16 bits
Structure fields Up to 40 fields per structure

Internal

Item Number

Memory required 96K bytes (plus memory required for operat-
ing system)*

Intermediate file size
I File 1 X source file
S File About 30 bytes per symbol
X File 4 bytes per symbol reference
M File Varies according to GEN setting, number of

macros; about 2X source
L File About 1 X source
T File 1.5X source

*iRMX 86 requires an additional 19.1 K of dynamic memory.

2-5

CHAPTER 3
DEFINING ASSEMBLY CONDITIONS

(ASSEMBLER CONTROLS)

Specifying Controls

The assembler controls can be specified in the (invocation) command line and in the
source file. Controls in the invocation line follow the source file name, for example:

Controls in the source file are specified using control lines. A control line is any
source line with a dollar sign ($) in the first, or leftmost, column. There can be more
than one control on the line. The first control on the line may immediately follow the
dollar sign.

A control line is always terminated by the end-of-line character(s). Control lines
cannot be continued. Control lines may contain comments, which begin with an
unquoted semicolon (;) and continue for the remainder of the line.

Example

• PAGEWIDTH (80) PAGELENGTH (72)
.TITLE ('SECTION TWO') EJECT Section Two follows

Parameters to controls are specified in parentheses following the control name. If the
parameter is itself a list of items, the items are delimited by commas.

Example

• WORKFILES (device1, device2)

Blanks (or tabs) must separate controls and may be inserted adjacent to the other
delimiters. For example, the following three lines are equivalent.

NOOBJECT PAGEWIDTH(78) PRINT(:CO:)
t PRltlT (:CO: NOOBJECT PAGEWIDTH

NOPAGING
(78)

j comment
NOPAGING comment

tPRINT(:CO:)NOOBJECT PAGEWIDTH(78)NOPAGINGj comment

Types of Controls

Controls are classified as either PRIMARY or GENERAL. Primary controls are set
at the beginning of the assembly process and cannot be changed during the assembly.
Primary controls can only be specified in the invocation line and in the primary control
lines. Primary control lines are the source control lines that appear before the first
non-con,trol source line. Blank lines and comment lines are considered non-control
lines.

If a primary control is specified in the source file and in the invocation line, the
control condition specified in the invocation line is the one that takes effect. Within
the invocation line or the primary control lines, the last specification of a primary
control is used. For example, if the source contains:

.XREF DEBUG HOPAGING

.PRIHT(:LP:) PAGEWIDTH(132)

.PAGING

3-1

Defining Assembly Conditions ASM86 Macro Assembler

3-2

and the assembler is invoked by:

then the control settings are:

PRINT (to the default file MYFILE.LST)
NOOBJECT
NODEBUG
XREF
PAGING
PAGEWIDTH(132)

General controls may be specified in the invocation line and on control lines anywhere
in the source file. A general control either causes an immediate action (e.g., EJECT,
INCLUDE) or an immediate change of conditions (e.g., LIST, GEN). In the latter
case, the condition specified by the general control remains in effect until another
general control causes it to change. In either case, the immediacy of the result is
constrained to mean a general control takes effect at the end of the control line.
General controls specified in the invocation line take effect before the first source line
is read.

Some controls specify conditions that are either on or off (yes or no). The no condi­
tion is specified by adding the word NO to the front of the control name (e.g., XREF /
NOXREF).

All control names have two-letter abbreviations, with the exception of the negative
forms, which consist of NO plus the two-letter abbreviation of the positive command
(see table 3-1). For example, OBJECT /NOOBJECT are abbreviated OJ /NOOJ.

All primary and some general controls have default settings. These defaults are built
into the assembler and are used unless alternate settings are specified. Thus it is
necessary to use controls only if assembly conditions or actions different from the
defaults are required.

Controls and control parameters, in the invocation line or in source control lines, may
be typed as upper or lower case letters.

Table 3-1 lists all the controls and their abbreviations. The default settings are shown
where applicable. Following the table is a detailed discussion of each control and its
parameters.

ASM86 Macro Assembler Denning Assembly Conditions

Table 3-1. ASM86 Macro Assembler Controls Summary

Control Name Abbreviation

PRIMARY CONTROLS

DATE(d) DA
DEBUG/NODEBUG DB/NODB
ERRORPRINT[(file)]/NOERRORPRINT EP/NOEP
MACRO[(p)]/NOMACRO MR/NOMR
MOD186 M1
OBJECT[(file)]/NOOBJECT OJ/NOOJ
PAGELENGTH(n) PL
PAGEWIDTH(n) PW
PAGING/NOPAGING PI/NOPI
PRINT[(file)]/NOPRINT PR/NOPR
SYMBOLS/NOSYMBOLS SB/NOSB
TYPE/NOTYPE TY/NOTY
WORKFILES(d1 [,d2]) WF
XREF/NOXREF XR/NOXR

GENERAL CONTROLS

EJECT
GEN/GENONL Y /NOGEN
INCLUDE(file)
LIST /NOLIST
SAVE/RESTORE
TITLE(ttt)

Description of Controls

DATE

Type: Primary

Form: DATE(date)

Abbreviation: D A(date)

Default: System date

EJ
GE/GO/NOGE
IC
LI/NOLI
SA/RS
TT

Default

System date
NODEBUG
NOERRORPRINT
MACRO
8086 mode
OBJECT(sourcefile.OBJ)
PAGELENGTH(60)
PAGEWIDTH(120)
PAGING
PRINT(sourcefile.LST)
NOSYMBOLS
NOTYPE
WORKFILES(:WORK:,:WORK:)
NOXREF

-
GENONLY
-
LIST
-
module name

The DATE control is supplied only for compatibility with the 8080-based assemblers.
This control is processed; however, the date parameter is ignored. The date that
appears in the print file is set at the operating system level.

DEBUGjNODEBUG

Type: Primary

Form: DEBUG
NODEBUG

Abbreviation: DBjNODB

Default: NODEBUG

DEBUG specifies that local symbol information is to be put into the object file for
use in symbolic debugging.

3-3

Defining Assembly Conditions ASM86 Macro Assembler

3-4

NODEBUG specifies that no local symbol information is to be put into the object
file.

EJECI'

Type: General

Form: EJECT

Abbreviation: EJ

Default: none

EJECT specifies that the next line of the source listing is to begin on a new page.
Multiple ejects on a single control line are ignored. If either NOPAGING or NOLIST
is in effect, EJECT controls are ignored. EJECT is not allowed in the invocation line.

ERRORPRINT /NOERRORPRINT

Type: Primary

Form: ERRORPRINT
ERR ORPRINT(filename)
NOERRORPRINT

Abbreviation: EP IEP(filename) IN 0 EP

Default: NOERRORPRINT

ERRORPRINT specifies that a file containing a listing of all the source lines with
errors is to be created. Each line and its associated error message lines appear exactly
as in the print file. The header lines from the first page of the print file also appear,
unless the errorprint file is :CO:. Paging is not applied to the errorprint file. If
ERRORPRINT is specified without a filename parameter, the errorprint file is written
to:CO:.

NOERRORPRINT specifies that this error summary file not be created.

Note that it is not necessary to generate a print file in order to create an errorprnt
file; that is, ERRORPRINT and NOPRINT may be specified for the same
assembly.

GEN/GENONLY/NOGEN

Type: General

Form: GEN
GENONLY
NOGEN

Abbreviation: GE/GO INOGE

Default: GENONL Y

ASM86 Macro Assembler Dermiag Assembly ConditiODS

Since the macro scanner is character oriented, macro calls can occupy a portion of a
line, a whole line, or several lines. The expansions of macros may also occupy more
than one line, a whole line, or a part of a line. GEN, GENONL Y, and NOGEN
specify the mode of listing assembly source text, macro calls, and macro expansion
text in the print file. One and only one of these modes is in effect at any point in the
source listing.

Specifying the GEN control produces a listing that includes all source text, all macro
calls, and the expansion of every macro, i.e. the macro text. Expansions are indented
to the same column as the macro call and are printed on the line below the call. Since
GEN provides a complete trace of the macro call and expansion process, it is useful
for debugging macros and obtaining the most complete and continuous listing of a
source file. In programs containing many macro calls, however, GEN may produce
an inconveniently large amount of output. Note that horizontal tabs in macro call or
macro expansion lines are not expanded in GEN mode.

Specifying GENONL Y produces a listing that includes only source file non-macro
text, and the final resultant text of all macros called. GENONL Y omits the listing
of all macro calls. All object code generated inside any macro calls is listed.

Specifying NOGEN yields a listing that includes only the source file text. In other
words, NOGEN produces a listing that shows only the input to the macro processor.
Expansion lines resulting from macro calls contained in source lines are not listed
unless they contain errors. Object code (if any) from only the fitst expansion line is
listed with the line containing the call.

Line numbers are identical in GENONL Y and NOGEN. In the NOGEN mode, line
numbers will seem to skip where macros are found in the source file text. The number
of lines skipped is exactly equal to the number of lines that would have resulted had
GENONLY been specified. Thus, the numbered lines in a print file generated by
NOGEN correspond to the same numbered lines in the print file generated by
GENONLY.

Consider the example shown below, in which the macro FOO is called in each of the
three listing modes. The definition of the macro FOO contains three lines. Thus, a
call to FOO expands to four lines: the call line itself, and the three lines of the macro
expansion. Note that the call %FOO(4,5,6), in GENONLY, takes place on line 14.
Also, since the first line of the definition is on the same line as the call (i.e., no
intervening EOL), and this first line generates object code, this object code is listed
on the call line in NOGEN (line 19).

2 + 1 SHDGEH
3 I*DEFIHECFODCA,B,C»CDW %A

DW IB
DW %C
)

4 SGEH
5 %F~DC1J2J3)
6 + 1 DW %A

000 0 o 1 0 0 7 +2 1
8 + 1 DW XB

0002 0200 9 +2 2
1 0 + 1 DW XC

0004 0300 1 1 +2 3
1 2 + 1
1 3 + 1 SGEHDHLY

0006 040 0 14 +2 DW 4
0008 050 0 1 5 + 2 DW 5

3-5

DerIDing Assembly Coaditions ASM86 Macro Assembler

3-6

OOOA 0600

oooe 0700

INCLUDE

16 +2 DW 6
1 7 + 1
18 +1 .HOGEH
19 lFOO(7,8,9)
23

Type: General

Form: INCLUDE(filename)

Abbreviation: I C(filename)

Default: none

The INCLUDE control causes subsequent source lines to be input from the specified
file. Input will continue from this file until an end-of-file is detected. At that time,
input will be resumed from the file that was being processed when the INCLUDE
control was encountered. If INCLUDE appears in the invocation line, then the
included file is inserted before the main source file. An INCLUDE control need not
be the rightmost command in a control line; however, the INCLUDE does not take
effect until the end of the line. Thus, only one INCLUDE control is allowed per line.
No more than 64 combinations of macro calls and INCLUDE controls may be in
effect at the same time.

Note that if a file containing only control lines is INCLUDEd from the invocation
line or from a primary control line, then each line of this INCLUDEd file is a primary
control line, and the resumption of input from the main source file may continue the
primary control lines.

LIST /NOLIST

Type: General

Form: LIST
NOLIST

Abbreviation: LI/NOLI

Default: LIST

LIST specifies that the listing of the source program in the print file is to resume
with the next source line read.

NO LIST specifies that the listing of the source program in the print file, beginning
with the next source line read, is to be suppressed until the next occurrence, if any,
of a LIST control. However, all source lines containing errors, and the associated
error message lines, do appear under NOLIST.

Note that the LIST control cannot override the NOPRINT control.

ASM86 Macro Assembler Defining Assembly Conditions

MACRO jNOMACRO

Type: Primary

Form: MACRO
MACRO(mempercent)
NO MACRO

Abbreviation: MRjMR (mempercent)/NOMR

Default: MACRO

MACRO specifies that the macro processor language is to be recognized in the source
files and processed. Macros may appear anywhere in the source, including comments
and control lines. Macros may also appear in the invocation line with the following
two restrictions: the macro text must be at the end of the line after all controls; the
macro text is limited to a maximum of 212 characters. In effect, any occurrence of
the macro metacharacter in the source is considered a macro call. (Consult the ASM86
Language Reference Manual for a description of the macro language.)

NOMACRO specifies that the macro processor language not be recognized if it occurs
in the source. If macro calls occur, they will be scanned as normal assembly language
text, which will usually cause assembler errors.

The optional mempercent parameter for the MACRO control allows specification of
the amount of memory available to the macro processor. This parameter must be a
decimal number from zero to one hundred that signifies the percentage of memory
allocated to the macro processor. The rest of memory is allocated to the assembler
name table. THIS PARAMETER IS ONLY EFFECTIVE IN THE
INVOCATION LINE. It is ignored in the primary control lines.

If an assembler source program containing macros causes either error #313 (macro
space overflow) or error #906 (name table overflow), then using the memory percent
parameter may remedy the problem. In the case of macro space overflow, specify a
higher percentage for macros, such as MACRO(70). Conversely, in the case of name
table overflow, specify a lower percentage for macros, and thus a higher percentage
for the name table, such as MACRO(30). The defa~lt is about 40, depending on the
version of the assembler. If a particular source module causes both errors, then there
is no alternative but to divide it into smaller modules.

MOD186

Type: Primary

Form: MOD186

Abbreviation: M 1

Default: 8086 mode (i.e., not MODI86)

MOD186 specifies that the iAPX186 instruction set be recognized. The eleven names:
BOUND, ENTER, INS, INSB, INSW, LEAVE, OUTS, OUTSB, OUTSW, POPA,
and PUSHA, become predefined symbols.

The default state is 8086 instructions only. The above eleven names are then
available for user definition.

3-7

Denning Assembly Conditions ASM86 Macro Assembler

3-8

OBJECf /NOOBJECT

Type: Primary

Form: OBJECT
o BJECT(filename)
NOOBJECT

Abbreviation: OJ 10J(filename) /NOOJ

Default: 0 BJECT(sourcefile. 0 BJ)

OBJECT specifies that an object module is to be created during assembly and written
to the file specified. The default setting writes the object module to a file with the
same name and device as the source file~ but with extension .OBJ. Specifying OBJECT
without a filename parameter has the same effect as the default setting.

NOOBJECT specifies that an object module not be created.

PAGELENGTH

Type: Primary

Form: PAGE LENGTH (length)

Abbreviation: PL(length)

Default: PAGELENGTH(60)

P AGELENGTH specifies the number of printed lines per page in the print file. This
number includes any header lines on the page. The length parameter must be a non­
zero, unsigned decimal integer. The minimum pagelength is 20. P AGELENGTH is
meaningless if NOP AGING is in effect.

PAGEWIDTH

Type: Primary

Form: PAGEWIDTH(width)

Abbreviation: PW(width)

Default: PAGEWIDTH(l20)

PAGEWIDTH specifies the number of characters or columns per line in the print
(and errorprint) file. The width parameter must be a non-zero, unsigned decimal
integer. The minimum pagewidth is 60; maximum is 255. If the specified width is
greater than 255, width modulo 255 is used. Print lines longer than the specified
pagewidth are wrapped around to the next line in the print file.

ASM86 Macro Assembler Def"uriag Assembly Coaditioas

PAGING /NOPAGING

Type: Primary

Form: PAGING
NOPAGING

Abbreviation: PI/NOPI

Default: PAGING

PAGING specifies that the print file is to be formatted into pages. A header consist­
ing of the assembler name, the title, the date, and the page number begins each page.
The symbol table listing, if present, begins on a new page. Every page is initiated
with a formfeed character.

NOPAGING specifies that the print file not be formatted into pages. A single header
is printed at the beginning of the file. Four blank lines separate the symbol table
listing from the source listing.

PRINT /NOPRINT

Type: Primary

Form: PRINT
PRINT(filename)
NOPRINT

Abbreviation: PR/PR(filename)/NOPR

Default: PRINT(sourcefile.LST)

PRINT specifies that a source listing is to be created during assembly and written to
the file or device specified. The default setting writes the source listing to a file with
the same name and device as the source file, but with extension . LST. Specifying
PRINT without a filename parameter has the same effect as the default setting.

NOPRINT specifies that a source listing not be created.

SA VE/RESTORE

Type: General

Form: SAVE
RESTORE

Abbreviation: SA/RS

Default: none

SA VE specifies that the current setting of certain general controls is to be saved on
a stack. The current setting is that in effect at the beginning of the SA VE control
line.

RESTORE specifie~ that the most recently saved settings on the stack become the
current setting of the general controls.

3-9

Def"lIIiIIg Assembly Conditions ASM86 Macro Assembler

3-10

The maximum nesting level of SAVEs is eight.

SA VE and RESTORE are not allowed in the invocation line.

The controls whose settings are saved and restored are:

LIST /NOLIST
GEN/GENONLY/NOGEN

Typically SA VE and RESTORE are used with include files, where the control settings
are saved before an INCLUDE control switches the input source to another Hie and
then restored after the end of the INCLUDEd file. Alternatively, the SAVE and
RESTORE can be done in the INCLUDEd file itself, as the first and last lines
respectively.

In a similar manner, SAVE and RESTORE can be used to control the listing of
macros. For example, it may be desirable to establish a listing mode such that the
macro call and its result are listed (i.e., a combination of NOGEN and GENONL Y).
In other words, the call line is listed in NOGEN mode, whereas the expansion is
listed in GENONLY mode. The following example demonstrates one possible imple­
mentation. The macro BAZ SAVEs the control settings in effect at the call level, sets
the mode to GENONLY for its expansion listing, and RESTOREs the call level
settings upon completion. The call is made on line 26, and the expansion is listed on
lines 27-30.

0012 1400
0014 1EOO
0016 2800

23
24 SNOGEN
25 X*DEFINECBAZCD,E,F»(SSAVE GENONLY

DW XD
DW XE
DW XF
SRESTORE
)

26 XBAZC20,30,40)
27 +2 DW 20
28 +2 DW 30
29 +2 DW 40
30 +2 SRESTORE
32

SYMBOLS/NOSYMBOLS

Type: Primary

Form: SYMBOLS
NOSYMBOLS

Abbreviation: SB/NOSB

Default: NOSYMBOLS

SYMBOLS specifies that a symbol table listing is to be appended to the source listing
in the print file. The symbol table is an alphabetical list of all . source-defined
assembler identifiers and their attributes. Macro processor identifiers are not
included.

NOSYMBOLS specifies that a symbol table listing not be created.

Note that the SYMBOLS control cannot override the NOPRINT control.

ASM86 Macro Assembler Defining Assembly Conditions

TITLE

Type: General

Form: TITLE(title)

Abbreviation: TI(title)

Default: module name

TITLE specifies a character string to appear in a page header. The title parameter is
a sequence of printable ASCII characters. Unquoted parentheses in the string must
be balanced. In the invocation line, ampersands (&) and semicolons (;) must be
enclosed in quotes. The maximum length of a title string is 60 characters; however a
narrow pagewidth may restrict this further. Title strings are truncated on the right,
without error, to fit the pagewidth requirement.

In the primary controls area, the TITLE control functions as a primary control. That
is, a title specification in either the invocation line or primary control lines appears
on the first page of the print file. Any titles in the primary control lines are ignored
if a title is also specified in the invocation line.

After the primary control lines, the TITLE control functions as a general control. A
title specification appears in the page header of the next page after the title control
line. Note, however, that TITLE itself does not cause a new page to start. This must
be done with the EJECT control or via normal paging.

Once a title is specified, it appears on all subsequent pages until changed by another
TITLE controL In the absence of any TITLE controls, the module name specified in
the assembler NAME directive is used for the title string in page headers.

TYPE/NOTYPE

Type: Primary

Form: 1l{PE
NOTYPE

Abbreviation: TY /NOTY

Default: NOTYPE

TYPE specifies that information about the types of variables output in symbols records
is to be put in the object module. This information may be· used later for type
checking by LINK86, CREF86, or a symbolic debugger.

NOTYPE specifies that no type information is to be put in the object module.

WORKFILFS

Type: Primary

Form: WORKFILES(devicename [,devicename)

Abbreviation: WF(devicename(,devicename)

Default: WORKFILES(:WORK:,:WORK:)

3-11

Defluing Assembly Couclitions ASM86 Macro Assembler

3-12

WORKFILES specifies devices or logical names for devices or directories for storage
of assembler-created temporary work files. These intermediate files are deleted at the
end of assembly. (See table 2-1 for the size of these files.) The M, X, and S files are
placed on the first name in the parameter list; the T, I, and L files are placed on the
second device or directory listed. A single name may be specified as the parameter;
this is equivalent to specifying that name twice.

The definition of the : WORK: name used as the default is done at the operating
system level. The actual filenames assigned to these intermediate files are also
operating system dependent.

XREF /NOXREF

. Type: Primary

Form: XREF
NOXREF

Abbreviation: XR/NOXR

Default: NOXREF

XREF specifies that a symbol table listing including cross-reference line numbers is
to be appended to the source listing in the print file. The line numbers of lines where
a symbol is defined, referenced, or purged follow the symbol's attributes in the listing.

NOXREF specifies that cross-reference line numbers not be included in the symbol
table listing.

NOTE
The XREF control overrides the NOSYMBOLS control.
The NOXREF control does not override the SYMBOLS control.
The XREF control cannot override the NOPRINT control.

Macro Calls and Control Recognition

This section discusses the interaction of controls and macro processing.

Control lines are usually recognized and processed immediately when they appear in
the source file. Several situations arise in macro processing, however, that require
extension of this basic notion of control processing. It should be possible to generate
entire control lines or parts of control lines as the result of macro calls. It is particu­
larly important to provide for the conditional generation of control lines, especially
INCLUDEs. This requires that it be possible to enter a control line into a macro
definition (or in the body of an IF, WHILE, or REPEAT) and to delay the recogni­
tion and subsequent execution of the control line until the macro is called (or the IF,
WHILE, or REPEAT is expanded).

Such a mechanism is provided by linking the scanning of control lines to the two
scanning modes of the macro processor, the "normal" and "literal" scanning modes.
In "normal" scanning mode all macro calls are recognized and expanded. In "literal"
scanning mode all macro calls are not recognized, but are passed through as ordinary
strings of text. Some examples of the "literal" scanning mode are: the body of a
%*DEFINE function, the expansion of a user macro invoked by % *, inside the
% (. .•) function, etc. More examples follow.

ASM86 Macro Assembler Defining Assembly Conditions

Control lines scanned in "normal" mode are recognized and processed. Control lines
scanned in "literal" mode are not recognized. Since different portions of a line could
be scanned in different modes, the exact control recognition mode is determined by
the scanning mode when the control indicator, the $, is scanned. If the $ is scanned
in normal mode, the rest of the line is treated as a control line and processed as such.
If the $ is encountered when the macro processor is in "literal" mode, the $, as well
as the rest of the line, will be treated as ordinary text. Examples of the controls
encountered in each scanning mode follow.

It is important to note several items resulting from the way control lines are scanned.
First, the line feed (LF) at the end of a control line must be at the same nesting level
as the opening $ (i.e., no "ascending" calls are allowed). Second, a control line in a
macro adds one to the macro nesting level. Finally, if a macro error occurs inside a
control line, the traceback of macro nesting information includes an item for the
control, as a ~'call" to the $.

Examples

l. Defining a macro whose definition is INCLUDEd from a side file:

XDEFIHECFOO)C
SIHCLUDECfile1)
)

Since DEFINE is called normally (i.e., with % and not % *), the body of the
definition is scanned in "normal" mode. Consequently, the $INCLUDE control
line is recognized immediately, and Faa is defined as the contents of the
INCLUDE file (the contents of file 1 are read in and stored as the value of Faa).

2. Defining a macro that INCLUDEs a file when it is called:

X*DEFIHECFOO)C
SIHCLUDECfile2)
)

Here, Faa is defined literally, using %*DEFINE, so the $INCLUDE control
line itself becomes the definition of FOO. The result of calling FOO is the creation
of the INCLUDE control line, at which point the file is read.

3. Conditionally INCLUDE-ing one of two files:

XIFCcondition)THEH(
SIHCLUDECfi le3)
)ELSEC
SIHCLUDECfile4)
) F I

Both the THEN and ELSE clauses are scanned literally, and only one is expanded
(in this case the selected clause is expanded normally since %IF is used rather
than -%*IF). As a result, only one of the two files will be INCLUDEd. In this
situation, %*IF would not be usefuL

4. Defining a macro that generates a control:

X*DEFIHECPRIHTCX»(
SXXX()LIST
)

Because %*DEFINE is used, the control line is not processed at the point of
definition, but is delayed until the macro is actually called.

3-13

Denning AsselDbly Co_dolls

3-14

The macro call:

%PRIHT()

produces the control line:

$LIST

while:

%PRIHT(HO)

produces the control line:

$HOLIST

ASM86 Macro AsselDbier

The Listing File

CHAPTER 4
LISTING FILE AND ERRORPRINT FILE

The listing file, often called the list file or print file, provides you with information
on the assembly of your program. As a programming tool, it presents both assembler­
generated information and user-generated information.

The example in this chapter contains some of the most used features of the ASM86
assembly language; however, it does not cover all of them. Use this example to identify
where and how you might find information in the list file. As you use this chapter, it
is important to note that the primary purpose of this example is to illustrate the list
file; it is not intended as an example of excellent programming techniques.

Generally speaking, the listing file contains your program and object code
information along with any errors produced by the assembler.

Header

Header information is at the top of the page (see figure 4-1). It identifies the assem­
bler, the program title, the date, and the page number. The title is specified by the
TITLE control. If left unspecified, the default is the module name. The date is speci­
fied by the operating system. The console operating system instructions for your system
explains exactly how. The width of the page of the list file is set by the P AGEWIDTH
control; the length of the page (if PAGING has been specified) is set by the
PAGELENGTH control.

Additional headerlines display this information.

SERIES-III 8~86/87/88/186 MACRO ASSEMBLER X156 ASSEMBLY OF MODULg
MYPROG

OBJECT MODULE PLACED IN :F5:MYPROG.OBJ
ASSEMBLER INVOKED BY: ASM86X.86 :F5:MYPROG.AA6 PAGEWIDTH(~5) XRE

F EP

Beneath the headerlines is another line that prints out the names of the fields of
information. Strictly speaking, these are known as fields of information; in visual
terms it is easier to see them as columns. Because there is so much information, it is
helpful to think of it in these broad terms:

• Any information to the left of the line number is assembler generated.

• Any information to the right of the line number is user generated.

Figure 4-2 notes the fields of information in the list file.

Body

The body consists of columns of information typically organized as previously
described. A discussion of the specifics of the infprmation displayed follows.

These names identify the fields of information: LOC, the location counter; OBJ, the
object code; LINE, the line number; and SOURCE, the line of source code. They
appear in the following format:

LaC OBJ LINE SOURCE

4-1

Listing File and Errorprint File ASM86 Macro Assembler

4-2

HEADER INFORMATION

~------~/~ ~~--~
18~86/87/88/186 MACRO ASSEMBLER I MYPROG 107/14/82 PAGE 11

system-id 8"86/8087 /8U88 MACRO ASSEMBLER Vl.1 ASSEJvJ.BLY OF MODULE
11YPROG

OBJECT MODULE PLACED IN :F5:MYPROG.OBJ
ASSEMBLER INVOKED BY: ASM86X.86 :F5:MYPROG.A86 PAGEWIDTH(65) XRE

LOC OBJ

REG
-13800

0100

ST(2)
REAL
0002 []

C MACRO

~INDICATES A
CODEMACRO

kJ000 03

DEFINITION
CONTINUED BEYOND
THE FIRST LINE

kJ 001 05000000
0005 (2

~4
06000000
)

I,HJ0F 03
001" 0A

F EP

LINE

1
2
3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27

28

29

31.1

SOUR~E

COUNT EQU CX
IVAL EQU -800H
AR SIZE EQU 100H

ST2 87 EQU ST(2)
PI PI EQU 4.1416
PARAM 1 EQU [BP+2]
R17 RECORD SIGN:l, LOW7:
7

EXTRN PROCESS: NEAR, SYSTEf1:
FAR
PUBLIC H~IT

FLOAT STRUC
EXPONENT DB 0
MANTISSA 00 0

FLOAT

D

I NAME

CGROUP

DATA
INITIAL

INITIAL2

TOP

ENDS

CODEMACRO D7 VALUE:

R17 <0, VALUE>
ENOM

MYPROG 1-- GENERAL CONTROL
SPECIFICATION

GROUP CODE

SEGMENT PUBLIC IDATAI
FLOAT <3,5>

FLOAT 2 DUP

DB 3, 10

WOMBAT

«4,6»

/
ASSEMBLER

ERROR MESSAGE

*** ERROR #37 IN 30, UNDEFINED INSTRUCTION OR ILLEGAL VARIABLE DE
FIN I'rION
0011 414243

0311
0014 (10

0100
"300

(5
44010

31
32
33

STRNG DB 'ABC'
MESSAGE EQU STRNG
STUFF OW 10 DUP (1,3,5 DUP
(44H, 55H) ,5)

Figure 4-1. The List File

ASM86 Macro AssemItIer Listing File aDd Errorprint File

LOC OBJ

5500
)

0500
)

0118 0F00
911A 1801----
011E fA7
011F

tl000 (256
?1?1

r{
R

LINE SOURCE

RELOCATABLE
SYMBOL INDICATOR

34 ITOP
35 IITOP
36
37 ES BASE
38 DATA
39
40 EXTRA
41 ARRAY1

42 EXTRA
43

DW TOP
DD ITOP
07 87H
OW EXTRA
ENDS

SEGMENT
DW AR SIZE DUP (1)

ENDS

0160A:(j 44 AR1BX EQU ES:ARRAY1lBX+10]
45
46 CODE SEGMENT PUBLIC 'CODE'
47 ASSUME DS:DATA, CS:C

ODE
4-8

0000 R 49 OS BASE OW DATA
50

00fA2 51 INIT PROe FAR
0002 B9F600 52 t-tOV COUNT, AR SIZE -

0005 8BD9
00~7 26C7470A""F8
0000 E2~'8

000F CH

53
54
55
56
57
58

10
MOV

INITLOOP:MOV
LOOP
RET

INIT ENDP

BX, COUNT
AR1BX, IVAL

INITLOOP

3010 2E8E1E0000 R 59 START: MOV OS, OS BASE
0015 8E061F01 R 60 MOV ES, ES BASE
0019 9A0200---- R 61 CALL INIT
001E E80000 E 62 CALL PROCESS
0021 9A0000---- ~ 63 CALL SYSTEM

EXTERNAL SYMBOL: 64 + 1 $NOGEN NOGEN IS SAVED
65 I$SAVE ~

INDICATOR 66 $ INCLUDE (: F5: PYG) J..--INCLUDE CONTROL
0026 00 =1 67 DB 100H
*** ERROR #39 IN 67 (:F5:PYG, LINE 1), (PASS 2) VALUE WILL NOT FI
T IN STORAGE FIELD SPECIFIED

=1 68
I %*DEFINE (INC1 (NOUN, ADJ» (~ MACRO =1 69

=1
=1
=1
=1
=1
=1
=1
=1

;THIS %NOUN IS %ADJ) DEFINITION
70
71 $GEN r*::GEN IS SPECIFIED

72 1 %INC1 (EXAMPLE, SIMPLE) ~MACRO CALL
73 ~1 WITH PARAMETERS
74 +1 iTHIS %NOUN
75 +2 EXAMPLE IS %ADJ
76 +2 SIMPLE

INDICATES INCLUDE ~
EXPANSION AND

77 INDICATES A MACRO
EXTENSION LINE AND
THE NESTING LEVEL NESTING LEVEL

Figure 4-1. The List File (Cont'd.)

4-3

Listiag Fale and Errorpriat File ASM86 Macro Assembler

4-4

LOC OBJ LINE SOURCE

·78
79 +1 I $R"'STORE I· NOGEN IS RESTORED
80
81 CODE ENDS
82
83 MELLON ~UQ AR1BX

*** ERROR #1 IN 83 (LINE 72), SYNTAX ERROR

84
85 %INCl(MACRO,NOTEXPANDED)
87
88 END START

Figure 4-1. The List File (CoDt'd.)

LOC

The location counter is the hexadecimal number that represents the offset from the
beginning of the SEGMENT or STRUCTURE being assembled. In lines that gener­
ate object code, and for LABEL or PROC, the value is the one at the beginning of
the line. For ORG lines, the value shown is the new value.

rHH~2 51 INIT PRoe FAR

For any other line (such as the second or third line in a Dup construction), there is
no display, as shown in the following example:

lHH4 (10

01~~
~30~

(5
4400
5500

)
0500
)

33 STUFF OW 1~ DUP (1,3,5 DUP
(44H,55H) ,5)

If there is a ,----' in the LOC field, then an open or close SEGMENT or
STRUCTURE statement has been coded.

40 EXTRA SEGMENT

If the LOC area is blank, either a directive or a comment has been encountered by
ASM86.

47 ASSUME DS:DATA, CS:C

OBJ

The object code is the hexadecimal number that displays the object bytes generated
in the assembly. If there is ---- in this column, it indicates that segment base values
were assembled. To the right of the OBJ field of information can be found either an
R or an E or a blank area. R indicates that relocatable code has been generated; E

ASM86 Macro Assembler- Listing File and Errorprint File

system-id 8"86/8U87 /8U88 MACRO ASSEr-1BLEH VI. I ASSEMBLY OF' MODULE MYPROG
OBJECT MODULE PLACED IN 86EX.OBJ
ASSEMBLER INVOKED BY: ASM86.86 86EX XREF PW(80)

J Loe OB ""'---
HEG
-0B~0

tH00
i

NAMES OF FIELDS
OF INFORMATION

fHH"~
0001

C MACRO
f
:#

ASSEMBLER
GENERATED

0""0 03
0001 050001t'HH}
00"5 03
0006 0A

LIN' E

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

25

SOURCE

COUNT
I VAL
AR SIZE
R17

EXTRN
PUBLIC

EQU CX
EQU -800H
EQU 100H

ADDITIONAL
HEADER LINES

RECORD SIGN:l, LOw7:7

PROCESS:NEAR, SYSTEM:FAR
INIT

FLOAT STRUC
EXPONENT DB "
.M.A.."lT I SSA DD 0

FLOAT ENDS

NAME

CGROUP

CODEMACRO D7 VALUE:D
R17 <0, VALUE>
ENDM

MYPROG

GROUP CODE

DATA SEGMENT PUBLIC 'DATA'
INITIAL FLOAT <3,5>

TOP DB 3, 10

WOMBAT
*** ERROR #37,
tc:I007 414243

0007

LINE 125, UNDEFINED INSTRUCTION OR ILLEGAL VARIABLE DEFINITION

"""A (10
0100
03""

(5
440"
5500

)
0500
)

0HJE 0500
0110 0~01---­
-0114 07
IiH15

0000 (256
????

26 STRNG DB 'ABC'
27 MESSAGE EQU STRNG
28 DW 10 DuP (1,3,5 DUP(44H,55H),5)

USER
GENERATED

R • 29 ITOP DW TOP
R 3"-> IITOP DD ITOP

31 D7 87H
R 32 ES BASE DW EXTRA

33 DATA ENDS
34
35 Ex'rRA SEG.M.El'lT
36 ARRAYI DW AR SIZE DUP (?)

37 EXTRA ENDS

Figure 4-2. Fields of Information in the List File

4-5

Listiag File aad Errorprint File ASM86 Macro Asseodtler

that external code has been generated. An E takes pre.cedence over an R on lines with
both kinds of code. The following figure illustrates the location of the dashes and E
orR.

fHJl 5 8Ee61F01
e019 9Ae2e0----
00IE E80e00
0021 9Ae00e----

R
R
E
E.

60
~1
62
153

MOV'ES, ES BASE
CALL IN!T -
CALL PROCESS
CALL SYSTEM

Object code generated by Dups constructs has a special format. Whenever a DUP
field begins, a left parenthesis appears in the left column of the object field, followed
by the count in decimal numbers. The content bytes are presented left-justified on
the following lines, concluded with a right parenthesis in the leftmost column. These
bytes appear reversed here, since the listing has the low-order byte leftmost. For nested
DUPs, the left parenthesis, number, and right parenthesis are indented one column
for each nesting level, but the content bytes are never indented.

0014 C10

01""
"300

(S
4400
5500

1
0500
)

EQUATE

33 STUFF D~' 10 OUP' (1,3, S DUP
(448, 55H) ,5)

This field is not named in the listing file but is composed of one half of the LOC field
and one half of the OD] field. The information begins in column 3.

If you equate to a variable, label, or structure field, the equate field will contain the
hexadecimal offset of the symboL

e011 32 MESSAGE RQU STRNG

Variable or label equates can have segment override and indexing attributes here. A
colon after the offset signals an override; square brackets signal an indexing attribute.

44 ARIBX RQU ES:ARRAYI[BX+101

If you equate to a number, the field will contain the value' of the number.

IVAL EQU -8~0H

If you equate to a register, segment, group, external symbol, codemacro, or record
field, the equate field will contain REG, SEGMENT, GROUP, EXTRN, C MACRO,
or RFIELD.

REG I COUNT EQU CX

The field will also contain C MACRO to signal a codemacro definition.

CMACRO 1R

19
20

D
COOEMACRO D7 VAI .. UF.:

RI? <'01, VALUE>
F:NDM

ASM86 Macro AssemWer Listinc F1Ie Errorpriat Yde

Column 4 will contain a number sign (H) to indicate a record definition or the
continuation of a codemacro definition.

I 8 R17 RECORD SIGN:1, LOW7:

INCLUDE Nesting Indicator

The symbol = appears in column 23 when the line is part of an INCLUDEd file.
Column 24 contains the INCLUDE nesting level indicator. When the nesting level
exceeds 9, a * appears in this column.

=1 69 %*OEFINE (INCl(NOUN, AOJ»

LINE

The line number is the decimal number indicating each input line, starting from 1
and incrementing with every source line. If listing of the line is suppressed (i.e., by
NOLIST or NOGEN), the number increases by one anyway.

Macro Nesting Indicator

79 +1 $RESTORE
g9
81 COOE ENOS

The symbol + appears in column 32 when the line is part of a macro expansion.
Columns 33 and 34 contain the nesting level indicator of the macro, as shown in the
following example:

=1 72 %INC1(EXAMPLE,SIMPLE)
=1 73 +1
=1 74 +1 :THIS %NOUN
=1 75 +2 EXAMPLE IS %ADJ
=1 76. +2 SIMPLE

Source Text

The source text is a copy of the source line or macro-generated text, as selected by
the setting of the GEN/NOGEN/GENONLY control. For ease of reading in this
list file, tabs are expanded with sufficient numbers of blank spaces to place the
character (that you entered) immediately after the tab to column 1 modulo 8; this
means columns 9, 17, 25, etc. If the GEN listing mode is In effect, tabs are not
expanded on lines that contain macro calls or macro expansion lines. The source code
information remains within the column noted as SOURCE.

Errors are included in the list file following the line in which they occurred. They are
documented by error number, line number, (pass number if other than the first pass),
and error message. Appendix A details recovery from error conditions.

3~ WOMBAT
*** ERROR '37 IN 30, UNDEFINED INSTRUCTION OR ILLEGAL VARIABLE DE
FINITION
0011 414243 31 STRNG DB 'ABC'

4-7

Listing Fde and Errorprillt me ASM86 Macro Assembler

4-8

Symbol Table

The symbol table follows the listing of the source and object code (see figure 4-3). If
PAGING is in effect, the symbol table begins on a new page; otherwise, it is preceded
by four blank lines. Header information identifies the assembler, the title from the
last TITLE control, the date, and the page number. The listing itself is documented
as the SYMBOL TABLE LISTING. Beneath that title are the columns of
information:

NAME TYPE VALUE ATTRIBUTES

If the XREF control has been invoked, the symbol listing is headed by the title XREF
SYMBOL TABLE LISTING, and the columns of information are:

NAME TYPE VALUE ATTRIBUTES,XREFS

The list of symbols is organized in alphabetic order, using the ASCII ordering of
characters except for underscore, which comes first. Reserved names are not included
unless they were redefined in some way.

Name

The name of the symbol appears as it was entered: periods and spaces are added to
fill out the field if the name is too short. A name may be up to 31 characters long.

R17 ••• RECORD SIZE=l WIDTH=8 DEFAULT=e0A9H 8' 19

Type

This is the kind of symbol that you have defined and it may be any of these:

BYTE, WORD, DWORD, QWORD, TBYTE, ABS, STRUC for variables (V);
NEAR, FAR for labels (L) and procedures (P); NUMBER for numbers; REG for
registers; C MACRO for codemacros, ------- for an undefined symbol; --PURGED-­
for a symbol that has been purged and not redefined; and SEGMENT, STRUC,
RECORD, GROUP, or RFIELD for other fields or blocks of memory.

External symbols have the type that appears in the EXTRN statement. This area of
information may be shifted to accomodate the length of the name.

EXPONENT. V BYTE 0000H S FIELD 14.
EXTRA · · SEGMENT SIZE=CII200HPARA 37 4~#
FLOAT · · STRUC SIZE=0005H #FIELDS=2 13
IITOP · · V DWORD 011AH DATA 35.
INIT. · · P FAR 0002H SIZE=000EH CODE PUBLIC
INITIAL · V STRUC 0000H FLOAT DATA 27#
INITIAL2. V STRUC 0005H FLOAT (2) DATA 28#
INITLOOP. L NEAR 0007H CODE 54' 55
ITOP. · · V WORD 0118H DATA 34ft 35
IVAL. · · NU.MBER -0800H 2' 54
LOW7. R FIELD 00H R17 WIDTH=7 8'

Value

Variables and labels have their offset written as a hexadecimal number.

START • • L NEA~
STRNG • • V BYTE

0019H CODE 59# 88
0011H (3) DATA 31t 32

42
16t 27 28

11 51' 57 61

ASM86 Macro AsseIdIer ListiB& File and Errorprint Fale

B886/H7/88/186 MACRO ASSBMBLER MYPROG 07/14/82 PAGE 4
,)If

HEADERINFORMAnON
XREF SYMBOL TABLE LISTING

NAME TYPE VALUE ATTRIBU'i'ES, XREFS I----FIELDS OF INFORMATION

??SEG · · SEGMENT SIZE=~~~0H PARA PUBLIC
AR SIZE · NUMBER ~100H 31 41 52
A RlSX · · V WORD ltJ~kJAH ES: [BX] 44# 54
ARRAY1. · V WORD 0000H (256) EXTRA 41# 44
CGROUP. · GROUP CODE 24#
CODE. SEGMENT SIZE=~027H PARA PUBLIC 'CODE' 24# 46

47 81
COUNT · · REG CX 1# 52 53
D7. · · · C MACRO #DEFS=l 18 20# 36
DATA. · · SEGMENT SIZE=~121H PARA PUBLIC 'DATA' 261 38

47 49
DS BASE · V WORD 0000H CODE 49# 59
ES BASE · V WORD 011FH DATA 37# 60
EXPONENT. V BYTE 0000H S FIELD 14#
EXTRA · · SEGMEt~T SIZE=0200H PARA 37 40# 42
FLOAT · · S'l~RUC SIZE=0005H #FIELDS=2 13 16# 27 28
IITOP · • V DwORD 011AH DATA 35#
INIT. · · P FAR 01iJ02H SIZE=0kJ0EH CODE PUBLIC 11 51# 57 61
INITIAL · V STRUC 01iJ00H FLOAT DATA 27#
INITIAL2. V STRUC 0005H FLOAT (2) DATA 28# LIST
I NITLOOP. L NEAR 0k107H CODE 54# 55 OF
ITOP. · · V WORD 0118H DATA 34# 35 SYMBOLS I VAL. · · NUMBER -0801clH 2# 54
LOW7. · · R FIELD 0liJH R17 WIDTH=7 8#
[-1 ANT ISSA. V DWORD 01iJ01H S ~'IELD 15#
MELLON. · ------- --UNDEFINED-- 83
MESSAGE · V BYTE 01iJ11H (3) DATA 32#
PARA!"" 1 · ------- 0k102H [BP] 7#
PI PI · · NUMBER REAL 6#
PROCESS · L NEAR 01iJ01clH EXTRN 10# 62
R17 · · · RECORD SIZE=1 WIDTH=8 DEFAULT=0000H 8# 19
SIGN. · · R FIELD 07H R17 WIDTH=l 8#
ST2 87. · F STACK ST (2) 5#
START · · L NEAR 0i610H C0DE 59# 88
STRNG · · V BYTE 0011H (3) DATA 31# 32
S TUFE' · · V WORD 0014H (130) DATA 33#
SYSTEM. · L FAR 000k1H EXTRN 10# 63
TOP · · · V BYTE 00liJFH (2) DATA 29# 34
WOMBAT. · ------- --UNDEFINED-- 30

END OF SYMBOL TABLE LISTING

ASSEMBLY COMPLETE, 3 ERRORS FOUND

Figure 4-3. Fields of Information in the Symbol Table

4-9

IJstingVde aud Errorprint FUe ASM8(t Macro Assembler

4-10

External symbols always have the value of OOOOH as shown in the following example.

SYSTEM. • L FAR fJlHH~H EXTRN 18. li3

Numbers have the value of the number, not the offset, written as a hexadecimal
number (the value can be negative).

IVAL. • • NUMBER -~8rtJ0H 21 54

Structure fields have the offset, from the structure in which defined, written as a
hexadecimal number.

MANTISSA. V DWORD flfIrtJ1H S FIELD 1St

Record fields have the shift count for the record field as shown in the following
example.

SIGN ••• R FIELD rtJ7H RI7 WIDTH=l 8#

If the value is blank, you have coded one of these items: SEGMENT, GROUP,
STRUC, CMACRO, RECORD, or an undefined symbol.

07. • • • C MACRO
DATA. • • SEGMENT

#DEFS=I 18 2f1t 36
SIZE=(;lJ121H PARA PUBLIC 'DATA' 21), 3R

47 49

Symbols equated to registers have the register to which they are equat~d.

COUNT •• REG CX It 52 53

Attributes

If the symbol is a variable defined as an array, the item count appears as a
parenthesized decimal number.

TOP • • • V BYTE rtJrtJrtJFH (2) DATA 29# 34

If the symbol is a variable defined by a structure, the structure name is indicated.

INITIAL • V STRUC ~~flflH FLOAT DATA 27'

If your symbol type is a variable or label, the Attributes field contains the name of
the segment that contains the symbol definition.

If the symbol is a procedure, the size in bytes of the procedure is given.

INIT. • • P FAR ~0rtJ2H SIZE=~rtJrtJEH CODE PUBLIC 11 SIt 57 61

External symbols always have EXTRN in this field.

SYSTEM. • L FAR rtJfl0f1H EXTRN 1rtJt ~3

For numbers, the Attributes field contains RELOC if the number is relocatable.
Otherwise the field is blank.

For registers the Attributes field is blank.

ASM86 Macro Assembler Listing File and Errorprint File

If your symbol is a structure, the total size in bytes and the number of fields is given.

FLOAT • • STRUC SIZE=~e~5H tFIELDS=2 13 16ff 27 28

If the symbol is a record, the Attributes field indicates the number of bytes, the
number of bits (width) required for that record, and the default value .

..
R17 ••• RECORD SIZE=l WIDTH=8 DEFAULT=00~0H 8' 19

If the symbol is a structure field, the Attributes field contains SFIELD.

EXPONENT. V BYTE

If the symbol is a record field, the name of the record containing the field and the
number of bits required by the field are given.

SIGN ••• R FIELD ~7H R17 WIDTH=l 8t

If the symbol is a segment, this field indicates its total size in bytes, its relocatability,
its align type, and its classname.

CODE ••• SEGMENT SIZE=0027H PARA PUBLIC 'CODE' 24' 46
47 81

If the symbol is a group, this field lists all segments defined to be in the group.

CGROUP. • GROUP CODE 24.

For undefined symbols, --UNDEFINED-- appears in the Attributes field.

WOMBAT. • ------- --UNDEFINED-- 3e

Segment overrides and indexing registers associated with a symbol appear in the
Attributes field.

ARIBX • • V WORD e~0AH ES:[BX] 44# 54

For public symbols, PUBLIC appears after all other information in the Attributes
field.

XREFS

If the XREF control is in effect, the Attributes field for each entry in the symbol
table is followed by the line numbers where the symbol appears in the list file. A
number sign (#) follows line numbers where the symbol is defined. A line number
followed by a P indicates the symbol is PURGED on that line.

DS BASE • V ty.ORD
ES-BASE • V WORD

~e~eH CODE 491 59
e11FH DATA 37' 60

Table 4-1 summarizes the information that can be found and interpreted in the symbol
table.

4-11

Usting File and Errorprint File ASM86 Macro Assembler

4-12

Table 4-1. Symbol Table Information

Type Value Attributes

Variable
V BYTE offset (in hex) from 1. structure name, if V STRUC
V WORD segment or structure in 2. (item count), if any
V DWORD which it was defined 3. a. segment name
VaWORD b. SFIElD if structure field
VTBYTE 4. a. EXTRN if external
V STRUC b. PUBLIC or blank
Vn

VABS OOOOH EXTRN

Label or Procedure
L NEAR offset (in hex) from 1. Size = nnnH if procedure
L FAR segment in which it was 2. segment name
P NEAR defined 3. EXTRN, PUBLIC, or blank
P FAR

NUMBER value of number (in hex) RELOC, PUBLIC, or blank, REAL

REG register

SEGMENT 1. size = nnnnH or 64K
2. align type: PARA, PAGE, INPAGE,

BYTE,WORD
3. relocatability: blank, PUBLIC, ABS

MEMORY, STACK, COMMON
4. 'ctassname'

GROUP segment names or SEG: external
name in group

C MACRO #DEFS = nnn (decimal)

STRUC 1. size = nnnnH
2. # FIELDS = nn (decimal)

RECORD 1. size = n (# of bytes)
2. WIDTH = nn (# of bits)
3. DEFAULT = nnnnH

R FIELD shift count 1. record name
2. WIDTH = nn (# of bits)

Equate to any of the offset 1. segment register override XX:
above or to address 2. indexing registers [XX + YY]
expressions with 3. segment or group
colon (:)

F STACK ST (i)

The Errorprint File

If you selected ERRORPRINT as a control with assembler invocation, then all source
lines containing errors and the respective messages are sent to a file or a device or
directory (whichever you specified), as follows:

system id 8 0 8 6 I 8 7 I 8 8 I 1 86M A C R 0 ASS E M B L E R V 2 . 0 ASS E M B L Y 0 F MOD U L E BAD
OBJECT MODULE PLACED IN :F4:BAD.OBJ
ASSEMBLER INVOKED BY: ASM86.86 :F4:BAD.SRC ERRORPRINT(:F4:BAD.ERR)

ASM86 Macro Assembler Listing File and Errorprint File

LOC OBJ LINE SOURCE

0000 909090909.0 1 MOV AL, 100H
fff ERROR 12 IN 1, OPERANDS DO NOT MATCH THIS INSTRUCTION

If you selected the console device or directory as output for ERRORPRINT, or
specified no device or directory, the errors will appear on :CO: followed by the
standard assembler sign-off message. Here is how it looks on the console device:

system id 8 0 8 6 I 8 7 I 8 8 I 1 86M A C R 0 ASS E M B L E R, V 2 . 0
0000 909090909.0 1 MOV AL, 100H
fff ERROR 12 IN 1, OPERANDS DO NOT MATCH THIS INSTRUCTION

ASSEMBLY COMPLETE. NO WARNINGS, 1 ERROR

4-13

APPENDIX A
ERROR MESSAGES AND RECOVERY

Console Error Messages

Upon detecting certain catastrophic conditions, ASM86 will print an informative error
message to the console and abort processing. This type of fatal error handling is more
severe than the fatal errors that cause error messages with numbers in the 800's and
900's, in that no listing is produced. Assembly is terminated.

These errors fall into three broad classes: control errors, I/O errors, and "others."

Control Errors

Control errors are those found in the invocation line. Such errors are reported by a
message on the console. ASM86 is terminated and control is returned to the
operating system. The message appears as below:

ASM86 CONTROL ERROR
CON T R 0 L : control
PAR A MET E R : param
DEL I MIT E R : char
ERR 0 R : message

ASM86 TERMINATED

The PARAMETER and DELIMITER lines are only included when they are
necessary.

The possible error messages for control errors are:

BAD COMMAND
The control word given is not legal. Check for misspelling" or see the list of legal
controls in Chapter 3.

BAD DELIMITER
Where ASM86 expected to find a valid delimiter, it has found some other
character. Check to see that you use all the correct characters and that all the
parameters are entered correctly.

BAD PARAMETER
A parameter is out of bounds, or of the wrong type, or missing entirely. Check
for typographical errors or consult Chapter 3.

I/O Errors

I/O errors are reported in a similar manner:

ASM86 110 ERROR-
FILE: file type
F I LEN A ME: file name
ERR 0 R : operating system error number and brief description

ASM86 TERMINATED

A-I

Error Messages and Recoyery ASM86 Macro Assembler

A-2

The list of possible file types is:

SOURCE
PRINT
OBJECT
INCLUDE
ERRORPRINT
WORKFILE

For description of the error messages included in the I/O error indication, see the
appropriate console operating instructions.

Others

The ASM86 internal errors indicate that an internal consistency check has failed. A
likely cause is that one of the assembler's overlays was corrupted or that a hardware
failure occurred. If the problem persists, contact Intel Corporation via the Software
Problem Report in this manual.

These messages have the format:

* • • A S M 8 6 I H T E R HAL ERR 0 R: message

Be sure to include the exact text of the message in the problem report.

Source File Error Messages

In keeping with the high-level nature of a macro assembly language, ASM86 features
an advanced error-reporting mechanism. Some messages pinpoint the symbol,
character, or token at which the error was detected. Error messages are inserted into
the listing after the line on which they were detected.

Non-fatal errors have the following format:

• • * ERR 0 R , m, L I HE' n, message

where

m

n

message

is the error number.

is the number of the listing line in which the error occurred.
If the line is from an INCLUDE file, or if the number of the
line in the source file is different from n, then this will be
indicated by (filename, LINE i), where filename is the
INCLUDE file, and i is the source file line number.

is the English message corresponding to the error number. If
the error is detected in pass 2, the clause (PASS 2) precedes
the message. (MACRO) precedes the message for macro
errors; (CONTROL) precedes the message for control errors.

Errors numbered less than 800 are ordinary, non-fatal errors.
Assembly of the error line can usually be regarded as suspect,
but subsequent lines can be assembled correctly. If an error
occurs within a codemacro definition, a structure definition,
or record definition, the definition does not take place.

Errors numbered in the 800's are assembler errors. They should be reported to Intel
Corporation if they occur.

ASM86 Macro Assembler Error Messages and Recovery

Errors numbered in the 900's are fatal errors. They are marked by the line FATAL
ERROR preceding the message line. Assembly of the source code is halted. The
remainder of the program is scanned and listed, but not acted upon.

Errors that refer to characters in a particular line of the source file do so by printing
a pointer to the first character in the line that is not valid, for example:

***_· __________________________ ~t

The up-arrow or vertical bar points to the first incorrect character in the line.

A list of the error messages provided by ASM86, ordered by number, follows:

fffERROR '1 SYNTAX ERRDR

This message is preceded by a pointer to the character at which the syntax error was
detected.

Many times the syntax error will be at the character given in the error message. For
example:

ASSUME DS

gives a syntax error after DS, meaning a line is missing things at the end - in this
case, a colon followed by a segment name. More often, however, the assembler will
not detect the error until one or more characters later. For example:

AAA DB 0

gives a syntax error at DB. The error is that AAA is already defined as an instruction
(ASCII adjust for addition). The assembler interprets the line as an AAA instruction
with DB 0 as the operand field. Since the keyword DB is not a legal parameter, the
DB is flagged, even though AAA is the user's mistake.

ASM86 treats codemacro, register, and record names as unique syntactic entities;
thus, when you use these kinds of names improperly you will often get a syntax error.
For example:

SS EQU 7

is a syntax error since SS is a register name and thus is syntactically distinct from an
undefined symbol.

Some grammatical constructs are larger than single lines, for example, SEGMENT­
ENDS pairs, PROC-ENDP pairs, and CODEMACRO-ENDM pairs. You can thus
get syntax errors for lines that by themselves are syntactically correct, but are
misplaced within the program, for example:

FOO ENDS
BAZ ENDP
DATA SEGMENT

~ith no corresponding SEGMENT statement
with no corresponding PROC statement
within a codemacro

Note that you will get a syntax error at an END statement if you have SEGMENT
or PROC statements without corresponding ENDS or ENDP statements.

ASM86 will usually discard the rest of the line when it finds a syntax error. If the
error occurs within a codemacro definition, the assembler exits definition mode. This
will cause your ENDM statement to produce another syntax error, which will go
away when you fix the first error.

A-3

Error Messages and Recovery ASM86 Macro Assembler

A-4

···ERROR 12 OPERANDS DO NOT MATCH THIS INSTRUCTION

This error usually indicates that the type of one of the operands is inappropriate for
the instruction.

For example, the following sequence will generate error #2:

BAZ DW 0
MOV BL,BAZ

Since BAZ is a word variable, it cannot be moved into the byte register BL.

···ERROR '3 INSTRUCTION SIZE BIGGER THAN PASS 1
ESTIMATE

This error occurs when the instruction contains a forward reference, and the assem­
bler guesses too optimistically about how much code the forward reference will cause
the instruction to generate. There are several situations in which this happens:

1. The forward reference is a variable that requires a segment override prefix. For
forward references, you must explicitly code the override if the operand is in a
different segment:

Otherwise, the assembler will guess that it is not needed.

2. The forward reference is a FAR label. You must explicitly provide the type in
this case:

JUMP FAR PTR FWD_LABEL

Otherwise, the assembler will guess NEAR.

3. You have promised SHORT, or you have used an instruction that takes only
SHORT displacements. You must change your code not to use a SHORT jump.

···ERROR '4 INSUFFICIENT TYPE INFORMATION TO
DETERMINE CORRECT INSTRUCTION

This error occurs when one of the operands to an instruction is a register expression
that does not have a BYTE or WORD attribute attached to it. If one of the other
operands can identify the type, then no error is issued. For example:

MOV AX,[BX]
MOV [BX],OFFFEH
MOV BL,[DI+500]

are all correct because the AX and the OFFFEH indicate that WORD PTR[BX] is
intended, and the BL indicates that BYTE PTR[DI] is intended. However:

INC[BX]
MOV[BX],O

are both flagged. The 0 does not commit [BX] to being a BYTE or a WORD memory
location. You must specify' BYTE PTR[BX] or WORD PTR[BX] for both
instructions.

ASM86 Macro Assembler Error Messages and Recol'ery

ff*ERROR 15 OPERAND NOT REACHABLE FRO~ SEGMENT
REGISTERS

This error occurs when the ASSUME statement is used incorrectly. Every time you
reference a variable, the segment in which that variable occurs must be ASSUMEd
to be reachable from one of the segment registers.

For most programs, a single ASSUME statement at the top of the program for each
of the four segment registers CS, DS, ES, and SS will suffice.

If you want more than one segment to be reachable from the same segment register
at the same time, you must GROUP the segments together, and ASSUME the group
to be reachable.

*ffERROR 16 CANNOT JUMP NEAR TO A LABEL WITH A
DIFFERENT CS-ASSUME

This error detects the following inconsistency in your program: you demand a NEAR
jump to another section of code. NEAR jumps do not change the CS register. Yet
the other piece of code is expecting the CS register to have a different value from the
code from which you are jumping. You must either make aFAR jump, or change
your CS-assume so they are consistent.

fffERROR 17 NO CS-ASSUME IN EFFECT--NEAR LABEL
CANNOT BE DEFINED

The assembler must store the CS-ASSUME associated with each label. It needs this
in order to instruct the LINK program to generate the correct displacement for NEAR
jumps between different segments of the same group. For most programs, a single
ASSUME statement at the top of the code will suffice.

ff*ERROR 18 NO CS-ASSUME IN EFFECT--NEAR JUMP CANNOT
BE GENERATED

This is a special case of error 6: you are missing a CS-ASSUME.

fffERROR 19 DEFAULT SEGMENT CANNOT BE OVERRRIDDEN

The string imperatives that involve the DI register do not allow for an override of the
default ES register; thus the assembler requires the operand to the instruction to be
reachable from the ES register.

fffERROR 110 LABEL CANNOT BE USED AS A VARIABLE
(NO COLON ALLOWED)

This error occurs when you put a colon on the label to a storage initialization line,
for example:

FOO:DB 3

If your intention is to define FOO as a type label on the DB line, put the FOO: on a
line by itself above the DB.

A-5

Error Messages and Reco,ery ASM86 Macro Assembler

A-6

t.tERROR 111 ILLEGAL LABEL TO THIS DIRECTIVE
(NO COLON ALLOWED)

This error is reported when a label with a colon appears on a GROUP, PROC,
RECORD, SEGMENT, or STRUC directive. These directives call for a label without
a colon.

t.tERROR 112 THIS DIRECTIVE REQUIRES A LABEL
(WITHOUT A COLON)

This error is reported for a missing label to a GROUP, PROC, RECORD,
SEGMENT, or STRUC declarative.

tttERROR 113 THIS DIRECTIVE DOES NOT ACCEPT A LABEL
TO ITS LEFT

The ASSUME, CODEMACRO, EVEN, EXTRN, NAME, ORG, PURGE, and
PUBLIC directives cannot be labeled.

tttERROR 114 LABEL IS NOT REACHABLE FROM CS--WILL
NOT BE DEFINED

This happens when you have no ASSUME for CS, or when your CS-ASSUME is
for a segment other than the one you are assembling. For example, if FOO is a
segment:

ASSUME CS:FOO
BAZ SEGMENT
GORN PROC

is illegal- the assembler does not know what offset to generate for the label GORN,
since GORN's segment BAZ is not ASSUMEd to be in the CS register. To correct
this error, you can either provide an ASSUME CS:BAZ, or group FOO and BAZ
together, and ASSUME that CS contains the group, as follows:

FOOBAZ GROUP FOO, BAZ
ASSUME CS:FOOBAZ
BAZ SEGMENT
GORN PROC

tttERROR 115 ALREADY DEFINED SYMBOL, THIS
DEFINITION IGNORED

This message is preceded by a pointer to the previously defined symbol. This error is
given when a symbol has an illegal multiple definition.

tttERROR 116 ALREADY EQUATED SYMBOL, THIS
DEFINITION IGNORED

This message is preceded by a pointer to the previously equated symbol. This is
identical to case 15, except that the name has appeared EQUated to a forward
reference name that has not yet been resolved.

ASM86 Macro Assembler Error Messages and Recofery

***ERROR 117 ARITHMETIC OVERFLOW IH EXPRESSIOH OR
LOCATIOH COUHTER

This error is reported whenever a 17-bit calculation takes place whose answer is not
in the bounds -65,535 to 65,535. Notable particular instances of this include:

1. User expressions with large answers or intermediate values

2. Division by zero

3. Oversize constants

4. Overflow of the location counter

***ERROR 118 ILLEGAL CHARACTER IH HUMERIC COHSTANT

Numeric constants begin with decimal digits and are delimited by the first non-token
character (not alpha, numeric, /, @, or _). The set of legal characters for a constant
is determined by the base:

1. Base 2: 0, I, and the concluding B.

2. Base 8: 0-7, and the concluding 0 or Q.

3. Base 10: 0-9, and the optional concluding D.

4. Base 16: 0-9, A-F, and the concluding H.

***ERROR 119 ABSOLUTE, HOH-FORWARD-REFEREHCE,
SMALL-IHTEGER HUMBER REQUIRED

This error is reported in cases in which the absolute number expected cannot be
completely computed at pass 1 assembly time. A small-integer number is one that
can be represented in 17 bits or less (this range is from -65,535 to 65,535). Note
that this excludes relocatable numbers. The situation where this is required include:

1. A SEGMENT directive-with an AT

2. A DUP count

3. Widths and defaults in a RECORD definition

4. Range specifiers in a CODEMACRO definition

5. Initialization values in a CODEMACRO definition

f**ERROR 120 ADD~ESS EXPRESSION REQUIRED AS OPERAND
TO THIS OPERATOR

Some expression operatorlt don't make any sense if their operands are not address
expressions (see ASM86 Language Reference Manual for a discussion of address
expressions). These operators include segment override, OFFSET, bracket combina­
tion, subtraction with non-absolute minuend, SEG, TYPE; LENGTH, and SIZE
(except that SIZE can be applied to a structure-name or record-name).

***ERROR 121 ILLEGAL OPERANDS TO ADDITIOH DR
COMBINATION OPERATION

One of the operands to an addition or combination operation has to be either an
absolute number or an absolute register expression. Note that this error may occur if
the operation is subtraction; since if the right-hand operator is an absolute number it
is negated and then added.

A-7

Error Messages and Recovery ASM86 Macro Assembler

A-8

···ERROR #22 NEGATIVE NUMBER NOT ALLOWED IN THIS
CONTEXT

Certain contexts disallow negative numbers. They include:

1. SEGMENT declaratives with AT

2. DUP counts

···ERROR 123, 124 ILLEGAL USE OF REGISTER NAME
OUTSIDE OF BRACKETS

Inside of square brackets, a register can undergo arithmetic; the operations are
performed on the memory address represented by the bracketed expression. Outside
of the brackets, the arithmetic makes no sense and is flagged. For example:

JMP BX + 3

is illegal;

JMP[BX + 3]

is legal.

···ERROR 125 SHORT JUMP DISPLACEMENT DOES NOT FIT IN
A BYTE

This error occurs in situations where a parameter mismatch occurs in a user prepared
codemacro.

···ERROR 126, 127 TWO BASE OR TWO INDEX REGISTERS
BEING COMBINED

At most, one base register and one indexing register are supported in an indexing
expression.

···ERROR 128, 129, 130 BAD OPERANDS FOR RELATIONAL
OR SUBTRACTION OPERATION

Subtraction and relational operations are legal only if the right side is an absolute
number or if both sides match in relocation type and attributes. If neither of these
conditions hold, this error is reported.

···ERROR 131 ILLEGAL CHARACTER

This message is preceded by a pointer to the illegal character.

A character that is not accepted by ASM86 was found in the input file. Either it is
an unprintable ASCII character, in which case it is printed as an up arrow (t), or it
is printable but has no function in the assembly language. A likely cause of this error
is the occurrence of macro functions (triggered by %) in a file that is assembled with
the NOMACRO switch. Edit the file to remove the illegal character.

If an unprintable character occurs in a string or comment, the string or comment is
terminated, and processing continues with the next character. If an unprintable

ASM86 Macro Assembler Error Messages and Recovery

character occurs in a string, it will cause an error 43. Unprintable characters in strings
and comments will also usually cause a syntax error.

***ERRoR 132 INSTRUCTION OPERAND DOES NOT HAVE A
LEGAL TYPE

The only case in which this error should occur is if you use a structure, structure
field, record, or record field name by itself as an operand to an instruction.

***ERRoR 133 MORE ERRORS DETECTED, NOT REPORTED

After the ninth error on a given source line, this message is given and no more errors
are reported for the line. Normal reporting resumes on the next source line.

***ERROR 134 FORWARD-REFERENCE EQUATE CHAIN MAY NOT
RESOLVE TO A REGISTER OR CODEMACRo

Forward references to codemacros and registers are not supported.

***ERROR 135 CANNOT EQUATE TO EXPRESSIONS INVOLVING
FORWARD REFERENCES

You may equate to simple forward-reference names, or you may equate to e.xpres­
sions without forward references, but you cannot do both. For example:

FOo EQU BAZ +

BAZ EQU 5

is not allowed.

***ERROR 136 LABELS MAY NOT BE SUBSCRIPTED

Subscripts may not be used with labels.

***ERRoR 137 UNDEFINED INSTRUCTION DR ILLEGAL
VARIABLE DEFINITION

This error is reported when you give an undefined label, without a colon, at the begin­
ning of a line, in a context where it cannot be taken as a variable definition. Usually
this is just a misspelled instruction.

***ERRoR 138 UNDEFINED SYMBOL, ZERO USED

This error is reported when an undefined symbol occurs in an expression context. The
absolute number zero that is used in its place may cause other errors to occur.

1**ERRoR 139 VALUE WILL NOT FIT IN STORAGE FIELD
SPECIFIED

This error is issued for DB lines in which the absolute operand is not in the range
-255 to 255, for DW lines in which the absolute operand is not in the range -65,535

A-9

Error Messages and Recovery ASM86 Macro Assembler

A-lO

to 65,535, and for DD lines in which the absolute operand is not in the range
-4,294,967,295 to 4,294,967,295.

fffERROR 140 CANNOT HAVE A VARIABLE DR A LABEL IN A
DB, DQ, OR DT

This is another case where a symbol is of the wrong type for the context. Although
conversion to the offset number automatically occurs for DW, it does not occur for
DB, DQ, or DT - you must explicitly provide the OFFSET operator, and you must
be sure that the resulting number is absolute and, in the case of DB, small enough.

fffERROR 141 RELOCATABLE VALUE DOES NOT FIT IN ONE
BYTE

The only relocatable numbers acceptable as operands to DB (alone or within codema­
eros) are numbers to which HIGH or LOW have been applied.

fffERROR 142 STORAGE INITIALIZATION EXPRESSION IS OF
THE WRONG TYPE

The only kinds of expressions allowed in initialization lists (i.e., as operands to DB,
DW, DD, DQ, DT, record names, or structure names) are variables, labels, strings,
formals, and numbers. Other types will produce this error.

fffERROR 143 STRING TERMINATED BY END-OF-LINE OR
ILLEGAL CHARACTER

All strings must be completely contained on one line. The ampersand continuation
feature does not work in the middle of a string. The assembler will treat the string as
if you had inserted a quotation mark as the last character of your line. If a string
contains an illegal character (see error 31), the string will terminate at the illegal
character. An error 31 will appear also.

fffERROR 144 STRING LONGER THAN 2 CHARACTERS ALLOWED
ONLY IN DB

Outside of the DB context, all strings are treated as absolute numbers; hence, strings
of 3 or more characters are overflow quantities.

fffERROR 145 STRING CONSTANT CANNOT EXCEED 255
CHARACTERS

The string is ignored, which may also generate a syntax error.

fffERROR 146 DUP NESTING ALLOWED ONLY TO A DEPTH
OF 8

No reasonable program will ever run into this limitation. The kind of line that would
cause it is:

DW 2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(2 DUP(3 DUP(1234H»»»»)

ASM86 Macro Assembler Error Messages and Recoyery

···ERROR 147 PAREHTHESIS HESTIHG ALLOWED oHLY TO A
DEPTH OF' 8

An example of this error would be:

DW 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + 2) ») »)))

It is not likely that you will run into this limitation in any practical application.

·**ERRoR 148 ABSOLUTE, SMALL-IHTEGER oPERAHD
REQUIRED IN THIS EXPRESSION

Most expression operators require their operands to be absolute numbers that can be
represented in less than 17 bits. These operators include unary minus, divide, multi­
ply, AND, MOD, NEG, OR, SHL, SHR, and XOR.

·**ERRoR 149 CANNOT TAKE HIGH DR LOW OF' A PARAGRAPH
HUMBER

The only kind of relocatable number that can undergo HIGH or LOW is the offset.
The address of a segment does not accept HIGH or LOW.

·**ERRoR 150 OPERAND TO HIGH DR LOW MUST BE A
VARIABLE, LABEL, DR HUMBER

Other types of operands (e.g., segment names, structure names, or record names) are
disallowed.

··*ERRoR 151 ILLEGAL USE OF' A GROUP AS A SEGMENT
OVERRIDE

This error should occur only if you attempt to provide a segment override that is a
group name to an. expression that already has a segment override that is a group
name.

·**ERRoR 152 SEGMENT OVERRIDE MAY BE APPLIED ONLY TO
AN ADDRESS EXPRESSloH

For example, the expression DS:O is illegal. You must convert the number 0 into an
address expression. This can be accomplished via the PTR operator, e.g., DS:BYTE
PTRO.

··*ERRoR 153 LEF'T OPERAND TO SEGMENT OVERRIDE HAS AN
ILLEGAL TYPE

The left operand to the segment override (colon) operator must be either a segment
register, a segment name, a group name, or SEG of a variable or label.

·**ERRoR 154 LABEL MAY HOT HAVE INDEXING REGISTER

If the left operand to PTR is NEAR or FAR, then the right operand may not have
any indexing registers. Labels with indexing registers are not supported.

A-II

Error Messages and Recovery ASM86 Macro Assembler

A-12

·--ERROR '55 INVALID EXPRESSION IN SQUARE BRACKETS

The only kind of expression allowed in square brackets is an expression involving
registers and/or numbers. Address expressions and other constructs (e.g., record
names) are not allowed.

···ERRoR '56 VARIABLE AND SUBSCRIPT MAY NOT BOTH BE
RELoCATABLE

Example: if FOO and BAZ are both relocatable numbers, the expressions [BX +
FOO] and BAZ[BX] are both legal; the expression BAZ[BX + FOO] is not, since
it requires the addition of two relocatable quantities.

···ERRoR '57 OPERAND OF WIDTH MUST BE A RECORD OR
RECORD FIELD NAME

WIDTH of anything else has no meaning.

···ERRoR '58 OPERAND OF MASK MUST BE A RECORD FIELD
NAME

MASK of anything else has no meaning.

···ERRoR 159 OPERAND TO OFFSET MUST BE A VARIABLE DR
LABEL

OFFSET is an operator provided to allow you to convert variables or labels to
numbers. If you get this error message, you probably already have a number.

···ERRoR 160 OPERAND TO LENGTH CANNOT BE A LABEL

LENGTH is intended to give the number of units initialized at a variable definition.
Since labels are associated with instructions, not with storage initializations, LENGTH
does not apply.

···ERROR 161 OPERAND TO SIZE CANNOT BE A LABEL

SIZE is intended to give the number of bytes initialized at a variable definition. Since
labels are associated with instructions and with storage initializations, SIZE does not
apply.

···ERROR 162 LEFT OPERAND TO PTR CANNOT BE ZERO

Besides the usual keywords BYTE, WORD, DWORD, QWORD, TBYTE, NEAR,
and F AR,you can also give a numeric value as a left operand to PTR; e.g., 3 PTR
O. This creates a variable whose constituent unit size (i.e., TYPE) is the left operand.
However, 0 PTR 4 is illegal, since 0 as a constituent unit size makes no sense.

ASM86 Macro Assembler Error Messages and Recovery

···ERROR 163 LEFT OPERAND TO PTR IS OF INVALID TYPE

The only valid left operands to PTR are absolute numbers and the keywords BYTE,
WORD, DWORD, QWORD, TBYTE, NEAR, and FAR (which are synonyms for
1, 2, 4, 8, 10, -1, and - 2, respectively).

···ERROR 164 ILLEGAL NEGATIVE TYPE TO PTR, NEAR USED
INSTEAD

The only negative numbers allowed as the left operand to PTR are - 1 and - 2,
which are synonyms for NEAR and FAR. Other negative numbers are converted to
NEAR, and this message is issued.

···ERROR 165 INVALID RIGHT OPERAND TO PTR

Only variables, labels, numbers, and address or register expressions may appear to
the right of PTR.

···ERROR 166 CANNOT MAKE A SEGMENT REGISTER
OVERRIDDEN VARIABLE INTO A LABEL

This error occurs when you have a variable with a segment register override as the
right operand to PTR, and NEAR or FAR as the left operand. The resulting combi­
nation is illegal, since labels cannot be overridden.

···ERROR 167 CANNOT OVERRIDE A LABEL WITH A SEGMENT
REGISTER

This, like error 66, is an attempt to create a label with a segment register override.
In this case, the attempt is made via the override operator.

···ERROR 168 ILLEGAL OPERAND TO SEG OPERATOR

The operand to SEG as it appears in a GROUP or ASSUME statement must be a
variable or a label; i.e., it must have a segment associated with it.

···ERROR 169 OPERAND TO SEG HAS HO SEGMENT

The operand to SEG as it appears in an expression must be a variable or a label. If
not, it has no segment associated with it, and SEG therefore has no meaning.

···ERROR 170 RELOCATION OF LABEL TOO COMPLICATED

In practical programs, you should never see this error. An example of what it takes
to produce it is:

JMP GROUPNAME:SEGNAME:FOO

where Faa is a label in a segment whose offsets require relocation.

A-13

Error Messages aDd Recovery ASM86 Macro AsseDlbler

A-14

fffERROR 171 SOURCE LINE CANNOT EXCEED 255
CHARACTERS

The only effect of this mistake is that the excess characters are not listed. The line is
otherwise processed correctly.

fffERROR 172 ATTEMPT TO SHIFT A RELOCATABLE VALUE

This error results when a relocatable value is passed as an operand to an instruction
that shifts the operand. It does not make sense to shift a relocatable value.

fffERROR 173 CANNOT PUT A RELOCATABLE VALUE INTO A
RECORD OR MODRMFIELD

This error results when a relocatable value is passed as an operand to an instruction
whose codemacro squeezes the operand into a record field or a MODRM field. It
does not make sense to extract fields from relocatable values.

fffERROR 174 STARTING ADDRESS MUST BE A LABEL

The starting address of the program, given as an optional operand to the END state­
ment, is the point to which the loader of the program will jump. As such, it must be
a label (and not, for example, a variable or a number).

fffERROR 175 UNDEFINED RIGHT SIDE OF EQU

The left side will in this case remain undefined.

fffERROR 176 RIGHT SIDE OF EQU IS OF ILLEGAL TYPE

Only simple names and expressions are allowed on the right side of EQU. An example
of a wrong type is:

FOO EQU 'STRING'

fffERROR 177 CANNOT EQU SYMBOL TO ITSELF

The example:

FOO EQU FOO

is illegal.

fffERROR 178 CIRCULAR CHAIN OF EQUATES

An example is:

FOO EQU BAZ
BAZ EQU FOO

ASM86 Macro Assembler Error Messages and Recoyery

···ERROR 179 LEFT SIDE OF EQU ALREADY DEFINED, THIS
EQU IGNORED

Only previously undefined or purged names can appear to the left of EQU.

···ERROR 180 SYMBOL NOT DEFINED, CANNOT BE PURGED

If you get this message, the symbol was never defined or was already purged.

···ERROR 181 OPERAND TO ORG NOT IN THIS SEGMENT

The operand to ORG can be either an absolute number or a relocatable number. If
it is relocatable, it must be offset-relocatable from the segment currently being
assembled. Such a number is usually obtained by applying OFFSET to a variable or
label in the current segment; for example:

ORG OFFSET $+2

···ERROR 182 ILLEGAL FORWARD REFERENCE OF A
REGISTER

The only time this can happen is if you use EQU to give an alternate name to a
register, but use the alternate name somewhere above the EQU statement. This is
not allowed. You should always put EQUs to registers at the top of your program; in
fact, we recommend that you put all your EQUs at the top of your program.

···ERROR 183 ALIGH-TYPE DOES NOT MATCH ORIGINAL
SEGMENT DEFINITION

Each SEGMENT-ENDS pair for the same segment in your program must have the
same align-type. For example, you cannot specify one to be BYTE and the other to
be PARA. Note that if you leave the align-type off the first SEGMENT declaration,
that segment has align-type PARA. Therefore, all subsequent declarations of that
segment must have either no align-type or align-type PARA. It is always acceptable
to leave the align-type blank for subsequent SEGMENT declaratives - the align­
type given in the first declarative is used.

···ERROR 184 COMBINE-TYPE DOES NOT MATCH ORIGINAL
SEGMENT DEFINITION

Each SEGMENT-ENDS pair for the same segment in your program must have the
same combine-type. For example, you cannot specify the first one to be no combine­
type (private) and a subsequent one to be PUBLIC. It is always acceptable to leave
the combine-type blank for subsequent SEGMENT declaratives - the combine-type
given in the first declarative is used.

···ERROR 185 CLASS DOES NOT MATCH ORIGINAL SEGMENT
DEFINITION

Each SEGMENT-ENDS pair for the same segment in your program must have the
same classname. It is always acceptable to leave the classname blank for subsequent
declaratives - the classname given in the first declarative is used.

A-I5

Error Messages and Recovery ASM86 Macro Assembler

A-16

fffERROR '86 MISMATCHED LABEL ON ENDS OR ENDP

ENDS and ENDP require a label that matches the corresponding SEGMENT,
STRUCTURE and PROC declaratives. If this error .occurs, one of several things
could be wrong: a typographical error, or a missing ENDS or ENDP for a nested
SEGMENT or PROC, or an error in the corresponding SEGMENT, STRUC­
TURE, or PROC line. In the latter case this error will go away when the other error
is fixed.

fffERROR '87 CANNOT HAVE MORE THAN ONE NAME
DECLARATIVE

The first NAME declarative is honored and this one is ignored.

fffERROR '88 TEXT FOUND BEYOND END STATEMENT­
IGNORED

This is a warning - there are no ill effects. The extra text appears in the listing but
is not assembled.

fffERROR '89 PREMATURE END OF FILE (NO END
STATEMENT)

If your program is missing an ENDM, ENDS, or ENDP statement, the END state­
ment is syntactically invalid and is thus not recognized. This error message will follow
the syntax error message. This error will always occur if you get an error 312.

fffERROR '90 RECORD FIELD WIDTH MUST BE BETWEEN
AND 16 BITS

Zero-width record fields are disallowed. Widths greater than 16 make no sense, since
the containing record cannot exceed 16 bits.

fffERROR '91 RECORD WIDTH MAY NOT EXCEED 16 BITS

The record is not defined when this happens.

fffERROR 192 DEFAULT VALUE DOES NOT FIT INTO RECORD
FIELD

The default value for the record field is too large; the number of bits needed to repre­
sent the number is greater than the width of the field.

fffERROR '93 INVALID LEFT OPERAND TO DDT OPERATOR

fftERROR '94 RIGHT OPERAND TO DOT OPERATOR MUST BE
A RECORD FIELD

The dot operator is allowed in two contexts: (I) to select a structure field (normal
usage), and (2) as a shift operator inside codemacros. Error 94 applies to the second

ASM86 Macro Assembler Error Messages and Recovery

context, where the right operand to the dot operator must be a record field, repre­
senting the shift count. Error 116 covers errors in usage of the dot operator outside
of codemacros.

Error 93 happens when the left operand to the dot operator is not a formal parameter
(context 2, above), and it is not an address expression (context 1).

···ERRoR 196 CoDEMACRo NAME ALREADY DEFINED AS
SOMETHING OTHER THAN A CODEMACRO

It is legal to have multiple definitions of a codemacro. In that case, however, all
definitions of the symbol must be codemacro definitions. If the symbol has been
defined as anything else, it cannot be redefined as a codemacro, unless it is first
purged.

···ERRoR 197 TWO FORMALS WITH THE SAME NAME

Within a given codemacro definition, all formals must have a different name.

···ERRoR 198 CANNOT HAVE MORE THAN 7 FORMALS TO A
CoDEMACRo

This limitation is imposed by the internal codemacro coding formats.

···ERRoR 199 ILLEGAL SPECIFIER LETTER TO A CODEMACRO
FORMAL

The only specifier letters allowed are A, C, D, E, M, R, S, X, F, and T.

···ERRoR 1100 ILLEGAL MODIFIER LETTER TO A CoDEMACRO
FORMAL

The only modifier letters allowed are B, D, W, Q, T, and nothing.

···ERROR 1101 ILLEGAL EXTRA CHARACTERS AFTER
SPECIFIER AND MODIFIER

You have either made typographical error or have mistaken the syntax of
CODEMACRO lines.

···ERRoR 1102 ONLY A, D, R, S SPECIFIERS CAN TAKE
A RANGE

Range checking for codemacro matching is done only for parameters that are numbers
or registers.

···ERRoR 1103 FORMAL PARAMETER EXPECTED BUT NOT SEEN

In certain contexts in codemacros (i.e., RELB, RELW, SEGFIX, NOSEGFIX, and
MODRM), the only construct allowed is a formal parameter. If it is not seen, this
error is given.

A-I7

Error Messages and Recovery ASM86 Macro Assembler

A-I8

***ERROR '104 UNDEFINED OR FORWARD REFERENCE ILLEGAL
IN CODEMACRO

All numbers provided in a codemacro definition must be determined in pass 1.

***ERROR '105 ILLEGAL STORAGE INITIALIZATION
CONSTRUCT FOR A CODEMACRO

This error occurs when an operand to a storage initialization (DB, DW~ DD, DQ~
DT, or record initialization) is of illegal type; for example, a record name by itself as
an operand would produce this error.

*'*ERROR '106 INSTRUCTIONS HOT ALLOWED IN
CODEMACROS, USE IHITIALIZATIONS INSTEAD

This error results when you place an instruction (a codemacro call) within a codemacro
definition. For example:

CODEMACRO NOP
XCHG AX,AX
ENDM

is an error. You must hand-expand the codemacro with the appropria,te storage
initialization:

CODEMACRO NOP
DB 90H
ENDM

"'ERROR '107 NESTED ANGLE BRACKETS NOT ALLOWED

For example, the construct «0,1>,2> is flagged by this message.

't'ERROR '108 A NULL ENTRY IS LEGAL ONLY WITHIN
ANGLE BRACKETS

The line RECNAME <0" 1 > is legal within a record initialization - the default
value is used for the second field. However, outside of a record or structure
initialization context: DB 0,,1 the null entry is not permitted.

"'ERROR '109 DEFINITION TOO BIG FOR INTERNAL BUFFER

The internal storage limit for groups, records, and codemacros is 128 bytes. For groups,
this is a limit of 40 segments. For records, the limit cannot be reached (you will run
into the width limit before this one). The limit for codemacros is not easy to define;
a rough guess is that a codemacro that generates 60 bytes of object code is near the
limit. Structures have a limit of 40 fields.

"'ERROR '110 RECORD INITIALIZATION TOO COMPLICATED
FOR CODEMACRO ENCODING

The internal codemacro storage formats disallow a record initialization to produce
more than 15 bytes of internal code. What this means externally is complicated to

ASM86 Macro AsseInMet- Error Messages and Recovery

describe, but if none of your records has more than seven fields, you should never run
into this limit.

---ERROR 1112 TYPE IS ILLEGAL FOR PUBLIC SYMBOL

This message is preceded bya pointer to the symbol. Only variables, labels, and
numbers may be declared public. No subscripting or overrides are allowed.

-·-ERROR 1113 NO DEFINITIOH FOR PUBLIC SYMBOL

This message is preceded by a pointer to the symbol. A public symbol must be defined
within the program.

···ERROR 1114 CANNOT ASSUME AH UNDEFINED SEGMENT OR
GROUP

If a symbol is ASSUMEd into a segment register and is a forward reference, the
assembler always guesses that it is a segment. If the symbol is never defined, it is an
undefined segment. When a group statement lists only undefined elements the group
itself remains undefined. To assume an undefined group is not allowed.

···ERROR 1115 DUP COUNT MUST BE GREATER THAN ZERO

The repetition count of a DUP must be greater than O. If it is not, 1 will be used. It
is not unusual for this error to immediately follow error 22.

···ERROR 1116 RIGHT OPERAND TO DOT OPERATOR IS NOT
A STRUCTURE FIELD

The dot operator used outside a codemacro (see error 94) is legal only if the left
operand is an address expression and the right operand is a structure field.

···ERROR 1117 STRUCTURE WILL NOT BE DEFINED

Because of another error, the pending structure definition is not done. This error
appears at the ENDS statement for the structure.

···ERROR '118 TOO MANY OVERRIDING INITIALIZATIOHS

When using a structure to allocate and initialize storage, there are more overriding
expressions between angle brackets than there are fields in the structure. All extra
values at the right end of the list will be ignored, for example:

5 STRUC
i!l DB 0
b D 3
c DW 99H

5 EHDS

This is all right.

A-19

Error Messages aDd Recovery ASM86 Macro Assembler

A-20

baz s(2,5,OBBBH,93)

This is not. There are four overriding values and only three fields.

abc S(",SS)

This is also bad. Even though only one value appears, the commas force it into the
fourth position, and the structure has no fourth field.

***ERROR '119 STRUCTURE FIELD CANNOT BE OVERRIDDEN

Only structure fields initialized with

• A single expression

• A single question mark, or

• A single string

may be overridden.

***ERROR '120 OVERRIDING STRING TOO LARGE FOR FIELD

If a structure field is initialized with a single string, then it can be overridden with a
string that is less than or equal in length. If the overriding string is too long, then it
is truncated so that it will fit into the field; if it is too short, it will be padded out by
the necessary last characters from the initializing string.

*··ERROR '121 FORWARD REFERENCE NOT ALLOWED IN
STRUCTURE DEFINITION

A structure field may not be initialized by an expression containing a forward refer­
ence. Zero will be used as an initial value.

···ERROR '122 ILLEGAL USE OF STRUCTURE NAME

A structure name can appear as a storage initialization operator, as an operand of
the SIZE operator, or as a type in an EXTRN or LABEL statement. Any other use
of a structure name is illegal.

*·-ERROR '123 TOO MANY OVERRIDING RECORD VALUES

This error is similar to error 118, except that it is for records. The extra values at the
right end of the list (between angle brackets) will be ignored; the record will will be
formed with the remaining values.

···ERROR '124 FIELD MUST BE OVERRIDDEN WITH A STRING

If a DB structure field is initialized with a string longer than one character, then it
can be overridden only with a string, not an expression or question mark.

ASM86 Macro Assembler Error Messages and Recovery

IIIERROR '125 EVEN DIRECTIVE MAY NOT BE USED IN
BYTE-ALIGNED SEGMENT

In order to guarantee even address alignment, a segment containing an EVEN
directive must not be BYTE aligned.

IIIERROR 1126 PAGEWIDTH BELOW MINIMUM, SET TO 60

The minimum pagewidth value is 60. If a pagewidth value less than 60 is given, it is
increased to 60.

IIIERROR 1127 PAGELENGTH BELOW MINIMUM, SET TO 20

The minimum page length value is 20. If a value less than 20 is requested, it is
increased to 20.

IIIERROR 1128 ILLEGAL OR UNDEFINED GROUP ELEMENT

An item in the list in a GROUP statement must be a segment name and must eventu­
ally be defined. Any other item, in particular a group-name, is illegal. It is possible
for the SEG operator to return a group-name if the operand to SEG was defined with
EQU to have a group as its segment attribute; i.e.:

FOO
G

EQU A_GROUP:BYTE
GROUP SEG FOO

PTR 3

will cause this error (A _ GROUP is a previously defined group).

IIIERROR 1129 FWD-REF EQUATE CHAIN MAY NOT RESOLVE
TO F-STACK, LONG-INT, DR REAL NUMBER

Forward references to floating-point stack elements, long integers, or real numbers
are illegal.

IIIERROR 1130 INDEX FOR FLOATING-POINT STACK ELEMENT
MUST BE AN ABSOLUTE NUMBER

The index for a floating-point stack element must be a number or the result of an
expression that can be calculated or known at assembly time. The index cannot be
any form of relocatable quantity.

IIIERROR 1131 INDEX FOR FLOATING-POINT STACK ELEMENT
OUT-OF-RANGE

The index for the floating-point stack must be in the range 0 to 7, inclusive.

fllERROR '132 ILLEGAL USE OF LONG INTEGER CONSTANT
OR DECIMAL REAL NUMBER

The use of long integers (requiring more than 17 bits to represent) and decimal real
numbers in expressions is very restricted; this message appears for some cases when
a long integer or decimal real number is used illegally in an expression.

A-21

Error Messages and Recovery ASM86 Macro Assembler

A-22

···ERROR 1133 ILLEGAL OPERAND FOR UNARY MINUS DR NOT

Error 133 will occur whenever unary logical or mathematical negation is not permit­
ted. Such cases include (but are not limited to) hex-real numbers, for which negation
is disallowed, group or segment names, and labels.

···ERROR 1134 CANNOT USE A RELOCATABLE NUMBER FOR
DD, DG, DR DT INITIALIZATION

External absolute numbers cannot be used in these initializations because it is impos­
sible to determine at assembly-time how to sign-extend the number into the high­
order bytes. All other relocatable numbers are disallowed for the same reason. With
the exception of variables and labels, which are allowed in DD's, as long as they
require 4 bytes to represent (base and offset).

···ERROR 1135 HUMBER IS TOO LARGE FOR CONVERSION TO
PACKED-DECIMAL FORMAT

There are some 64-bit integer values that cannot be represented in packed-decimal
form. The approximate range of 64-bit binary numbers is ± 1.8*1019, whereas the
range of values that can be represented by the packed-decimal format is
approximately -1018 + 1 to 1018 - 1.

···ERROR 1136 TYPE OF R-FORMAT REAL MUST MATCH
STORAGE INITIALIZATION TYPE EXACTLY

The R-format Hex-real representation permits you to specify the exact bit pattern
you wish to store. The assembler will not allow you to specify the bit pattern for a
DWORD (4 bytes) and place this value in a QWORD (8 bytes), since the conversion
from 4 to 8 bytes would defeat the purpose of the R-format. Similarly, you may not
specify 8 bytes and try to force it into a DWORD.

·'·ERROR 1137 R-FORMAT REAL NUMBER INCORRECTLY
SPECIFIED

R-format numbers must conform to the following:

Single precision
Double precision
Temp-real values

4 bytes
8 bytes
10 bytes

8 or 9 digits
16 or 17 digits
20 or 21 digits

If the number of digits is odd, then the first digit must be a O.

"·ERROR 1138 INTEGER CONSTANT IS TOO LARGE

Only those values that can be represented in 64 bits can be stored internally.

·'·ERROR 1139 CANNOT USE A DECIMAL REAL NUMBER FOR
DB DR DW INITIALIZATION

No floating-point representation can fit into one byte or one word, 'so decimal real
numbers are not allowed in DB or DW statements.

ASM86 Macro Assembler Error Messages and Recovery

···ERROR ·1140 DECIMAL REAL NUMBER CANNOT BE
REPRESENTED IN THE INTERNAL FORM

This indicates an error in conversion from decimal to temp real, which implies that
the number is too large or too small to be represented in the temp-real format.

···ERROR 1141 DECIMAL REAL NUMBER CANNOT BE
CONVERTED TO THE STORAGE INITIALIZATION TYPE
SPECIFIED

The decimal real number stored internally in the temp-real format is either too large
or too small for conversion to single or double precision external representation.

···ERROR 1142 ILLEGAL OPERAND TO THIS OPERATOR

The THIS operator only accepts a type specifier or a small-integer absolute number
as an operand.

···ERROR 1143 CS-IP NOT INITIALIZED, REQUIRED FOR
MAIN MODULE

There is no CS-IP initialization in the END statement. This initialization, which
provides the starting address, is necessary for the main module.

···ERROR 1144 IDENTIFIER NOT A VARIABLE OR LABEL

An identifier that is not a variable or label is used as such in an END statement
initialization.

···ERROR 1145 IDENTIFIER MUST BE LABEL FOR A CS-IP
INITIALIZATION

The identifier used in the CS-IP initialization must be a label, either:

CS:label

or

label

would be legal. Check the definition of the indicated identifier.

···ERROR 1146 IDENTIFIER MUST BE A VARIABLE FOR
SS-SP INITIALIZATION

The correct form is SS:segname:variable, SS:groupname:variable or SS:segname.
Check to see that the indicated identifier is, indeed, a variable.

A-23

Error Messages and Recovery ASM86 Macro Assembler

A-24

fffERROR 1147 VARIABLE OR LABEL NOT ALLOWED WITH DS
INTIALIZATION

The use of variables or labels is not permitted. The only legal Iorms for DS initiali­
zation are DS:segname and DS:groupname.

fffERROR 1148 IDENTIFIER IS NOT A SEGMENT OR GROUP

The identifier in question is expected to be a segment or group name, but is not.

fffERROR 1149 INITIALIZATION OF ES IS NOT ALLOWED

You cannot initialize the ES register in the END statement.

fftERROR 1150 UNDEFINED SYMBOL IN INITIALIZATION

All identifiers must be defined before they are used in an initialization.

fftERROR 1151 NO NAME DIRECTIVE ENCOUNTERED,
DEFAULT MODULE NAME USED

Every module must contain the NAME directive to name the object module. If the
NAME directive is omitted, then the name ANONYMOUS is used.

fftERROR 1152 ILLEGAL DUPLICATE INITIALIZATION FOR
A SEGMENT REGISTER

There is more than one initialization in the END statement for the same segment
register.

fftERROR 1153 EXTERNAL NOT ALLOWED FOR
INITIALIZATION

Because the value of the external symbol cannot be known at assembly-time, the
initialization cannot be completed.

fffERROR 1154 SS INITIALIZATION WITH GROUP REQUIRES
A VARIABLE

As stated in the discussion of error # 146, the correct form for SS initialization is
SS:segname:variable, SS:groupname: variable, or SS:segname. You have left out the
variable.

fffERROR 1155 DUPLICATE PUBLIC DECLARATION FOR
SYMBOL-IGNORED

A symbol previously defined as Public is being declared Public again. The assembler
ignores such duplicate declarations.

ASM86 Macro AsselDbler Error Messages and Recovery

···ERROR '156 CANNOT PURGE REGISTER

A register name cannot be used in a purge directive. However, a symbol equated to
a register name can be purged.

···ERROR '157 iAPX186 INSTRUCTION REGUIRES SMOD186
CONTROL

The default state of the assembler is 8086 only mode. If assembling programs written
for the iAPXI86, use the primary control MODI86.

Macro Error Messages

Error messages with numbers in the 300's indicate macro call/expansion errors. Macro
errors are followed by a trace of the macro call/expansion stack. Each error is followed
by a series of lines that print out the nesting of macro calls, expansions, include files,
and so forth.

···ERROR '301 UNDEFINED MACRO NAME

The text following a metacharacter (%) is "not a recognized user function name or
built-in macro function. The reference is ignored and processing continues with the
character following the name.

···ERROR '302 ILLEGAL EXIT MACRO

The built-in macro EXIT is not valid in this context. The call is ignored. A call to
EXIT must allow an exit through a user function, or through the WHILE or REPEAT
built-in functions.

···ERROR '303 FATAL SYSTEM ERROR

Loss of hardware and/or software integrity was discovered by the macro processor.
Contact Intel Corporation.

···ERROR '304 ILLEGAL EXPREiSION

A numeric expression was required as a parameter to one of the built-in macros EV AL,
IF, WHILE, REPEAT, and SUBSTR. The built-in function call is aborted, and
processing continues with the character following the illegal expression.

···ERROR '305 MISSING "FI" IN "IF"

The IF built-in function did not have a FI terminator. The macro is processed
normally.

···ERROR '306 MISSING "THEN" IN "IF"

The IF built-in function did not have a THEN clause following the conditional
expression clause. The call to IF is aborted and processing continues at the point in
the string at which the error was discovered.

A-25

Error Messages and Recovery ASM86 Macro AsselDbier

A-26

···ERROR 1307 ILLEGAL ATTEMPT TO REDEFINE MACRO

It is illegal to have a built-in function name or a parameter name be redefined (with
the DEFINE or MATCH built-ins). Also, a user function cannot be redefined inside
an expansion of itself.

···ERROR 1308 MISSING IDENTIFIER IN DEFINE PATTERN

In a DEFINE, the occurrence of@ indicated that an identifier type delimiter followed.
It did not. The DEFINE is aborted and scanning continues from the point at which
the error was detected.

···ERROR 1309 MISSING BALANCED STRING

A balanced string, (•••) in a call to a built-in function is not present. The macro
function call is aborted and scanning continues from the point at which the error was
detected.

··-ERROR 1310 MISSING LIST ITEM

In a built-in function, a parenthesized parameter is missing. The macro function call
is aborted and scanning continues from the point at which the error was detected.

··-ERROR 1311 MISSING DELIMITER

A delimiter required by the scanning of a user-defined function is not present. The
macro function call is aborted and scanning continues from the point at which the
error was detected.

This error can occur only if a user function is defined with a call pattern containing
two adjacent delimiters. If the first delimiter is scanned, but is not immediately
followed by the second, this error is reported.

···ERROR 1312 PREMATURE EOF

The end of the input file occurred while the call to the macro was being scanned.
This usually occurs when a delimiter to a macro call is omitted, causing the macro
processor to scan to the end of the file searching for the missing delimiter. Note that
even if the closing delimiter of a macro call is given, if any preceding delimiters are
not given, this error may occur, since the macro processor searches for delimiters one
at a time.

···ERROR 1313 DYNAMIC STORAGE (MACROS DR ARGUMENTS)
OVERFLOW

Either a macro argument is too long (possibly because of a missing delimiter), or not
enough space is available because of the number and size of macro definitions. All
pending and active macros and INCLUDEs are popped and scanning continues in
the primary source file. (See also the discussion of the Macro control in Chapter 3 of
this manual.)

ASM86 Macro Assembler Error Messages and Recovery

···ERROR '314 MACRO STACK OVERFLOW

The macro context stack has overflowed. This stack is 64 deep and contains an entry
for each of the following items:

1. Every currently active input file (primary source plus currently nested
INCLUDEs).

2. Every pending macro call, that is, all calls to macros whose arguments are still
being scanned.

3. Every active macro call, that is, all macros whose values or bodies are currently
being read. Included in this category are various temporary strings used during
the expansion of some built-in macro functions.

The cause of this error is excessive recursion in macro calls, expansions, or
INCLUDEs. All pending and active macros and INCLUDEs are popped and scanning
continues in the primary source file.

···ERROR '315 INPUT STACK OVERFLOW

The input stack is used in conjunction with the macro stack to save pointers to strings
under analysis. The cause and recovery is the same as for macro stack overflow.

···ERROR '317 PATTERN TOO LONG

An element of a pattern, an identifier, or a delimiter, is longer than 31 characters, or
the total pattern is longer than 255 characters. The DEFINE is aborted and scanning
continues from the point at which the error was detected.

···ERROR '318 ILLEGAL METACHARACTER: "char"

The METACHAR built-in function has specified a character that cannot legally be
used as a metacharacter: a blank, letter, numeral, left or right parenthesis, or
asterisk. The current metacharacter remains unchanged.

···ERROR '319 UNBALANCED) IN ARGUMENT TO USER
DEFINED MACRO

During the scan of a user-defined macro, the parenthesis count went negative,
indicating an unmatched right parenthesis. The macro function call is aborted and
scanning continues from the point at which the error was detected.

···ERROR '320 ILLEGAL ASCENDING CALL

Ascending calls are not permitted in the macro language. If a call is not complete
when the end of a macro expansion is encountered, this message is issued and the call
is aborted. A macro call beginning inside the body of a user-defined or built-in macro
was incompletely contained inside that body, possibly because of a missing delimiter
for the macro call.

Control Error Messages

Control errors are announced when something is wrong with a control line in the
source fIle.

A-27

Error Messages and Recovery ASM86 Macro Assembler

A-28

***ERROR '401 BAD PARAMETER TO CONTROL

What appears to be the parameter to a control is not correctly formed. This may be
caused if the parameter has a missing right parenthesis or if parentheses are not
correctly nested, or it is out of bounds, or the wrong type, etc.

***ERROR '402 MORE THAN ONE INCLUDE CONTROL ON A
SINGLE LINE

ASM86 allows a maximum of one INCLUDE control on a single line. If more than
one INCLUDE control appears on a line, only the first (leftmost) is included, the
rest are ignored.

***ERROR '403 BAD DELIMITER IN COMMAND

When scanning a command line or the invocation line, ASM86 is either looking for
a letter (to start a control) or a left parenthesis (to start a parameter) or a right
parenthesis (to end a parameter). If some other character is encountered, then this
error is issued.

***ERROR '407 UNRECOGNIZED CONTROL OR MISPLACED
P RIM A R Y C 0 H T R 0 L: control-name

The indicated control is not recognized as an ASM86 control in this context. It may
be misspelled, mistyped, or incorrectly abbreviated.

A misplaced primary control is a likely cause of this error. Primary control lines must
be at the start of the source file, preceding all non-control lines (even commments
and blank lines).

***ERROR '408 NO TITLE FOR TITLE CONTROL

This error is issued if the title control has no parameter. The new title will be the
empty string.

***ERROR '409 NO PARAMETER ALLOWED WITH ABOVE
CONTROL

The following controls do not have parameters:

EJECT
SAVE
RESTORE
LIST
NOLIST
GENONLY
GEN
NOGEN

If one is included, then this error will be issued, and the parameter will be ignored.

ASM86 Macro Assembler Error Messages and Recoyery

fffERROR 1410 SAVE STACK OVERFLOW

The save stack has a depth of eight. If the program tries to save more than eight
levels, then this error message will be printed.

fffERROR 1411 SAVE STACK UNDERFLOW

A RESTORE command is encountered and there has been no corresponding SA VE
command.

fffERROR 1413 SAVE, RESTORE, AND EJECT ARE NOT
ALLOWED IN THE COMMAND LINE

Since these controls have no effect in the ASM86 command line, they are illegal
there.

fffERROR 1800 UNRECOGNIZED ERROR MESSAGE NUMBER

fffERROR 1802 INTERMEDIATE FILE READING
UNSYNCHRONIZED

fffERROR 1803 BAD OPERAND STACK RECORD

fffERROR 1804 BAD OPERAND STACK READ REQUEST

fffERROR 180S BAD OPERAND STACK POP REQUEST

f'fERROR 1806 PARSE STACK UNDERFLOW

f"ERROR 1807 AUXILIARY STACK UNDERFLOW

ft'ERROR 1808 BAD AUXILIARY STACK READ REQUEST

fffERROR 1809 BAD OPERAND STACK TYPE IN EXPRESSION

f'fERROR 1810 BAD STORAGE INITIALIZATIOH RECORD

"fERRORS 1812, 1813 INSTRUCTION OPERAND HAS
IMPOSSIBLE TYPE

fffERROR 1814 LISTING INTERMEDIATE FILE READING
UHSYHCHRONIZED

Error messages in the 800's should never occur. If you get one of these error messages,
and all the other errors in your program have been corrected, please notify Intel
Corporation via the Software Problem Report included in this manual.

ff'ERROR 1900 USER SYMBOL TABLE SPACE EXHAUSTED

You must either eliminate some symbols from your program, or break your program
into smaller modules.

A-29

Error Messages and Recovery ASM86 Macro Asselllbler

A-30

**·ERROR '901 PARSE STACK OVERFLOW

This error will be given only for grammatical entities far beyond the complication
seen in normal programs.

·*·ERROR '902 OVERFLOW IN OPERAND STACK-TOO MANY
ELEMENTS

This error typically occurs when a list of storage initialization elements is too long -:­
about 20 elements, depending on the complication of the last elements. You can correct
this by breaking your initialization up into several lines.

·**ERROR '903 OVERFLOW IN OPERAND STACK-ELEMENTS
TOO COMPLICATED

This error is similar to error 902. You should break your list of elements into several
lines.

·**ERROR '904 AUXILIARY STACK OVERFLOW

This error indicates that one of ASM86's minor stacks has overflowed. This can come
about through excessively complicated storage initialization operands, or by
excessively deep nesting of SEGMENTs and PROCs.

·**ERROR '905 INTERMEDIATE FILE BUFFER OVERFLOW

This error indicates that a single source line has generated an excessive amount of
information for pass 2 processing. In practice, the limit should be reached only for
lines with a gigantic number of errors - correcting the other errors should make this
one go away.

··*ERROR '906 USER NAME TABLE SPACE EXHAUSTED

This error indicates that the sum of the number of characters used to define the set
of symbols contained in a source file exceeds the assembler's capacity. Either use
shorter symbol names or break your program into smaller modules. (See also the
discussion of the Macro control in Chapter 3 of this manual.)

APPENDIX B
LINKING ASSEMBLY LANGUAGE

AND HIGHER LEVEL LANGUAGES

This appendix describes the data passing and data definition conventions used to link
assembly language programs to programs written in high-level languages. In short, it
explains how programs coded in ASM86 can communicate with programs coded in
such languages as PL/M-86, Pascal-86, or FORTRAN-86. Some of the information
provided may also be of interest to the assembly language "purist." For example, you
may want to use a high-level language procedural interface even if your entire program
is coded in assembly language. For more detailed information on each higher level
language, consult the user's guide for that language.

Examples are provided for the simple SMALL, COMPACT, MEDIUM, and LARGE
segmentation models, as well as for subsystems. Note that FORTRAN-86 supports
only the LARGE model, and Pascal-86 does not support the MEDIUM model.

The Procedural Interface

When you write assembly language procedures to be called by high-level language
code, and when you call high-level language procedures from assembly language, you
must conform to the procedural interface conventions used by high-level languages.
Simply put, the assembly language code that "talks to" high-level code must do what
high-level code expects it to do.

Passing Parameters on the 8086

All functional and procedural parameters are passed on the run-time stack. Byte,
word, and integer arguments (8-bit and 16-bit) are pushed onto the 8086 stack as
words. In the case of a byte argument, the value passed occupies the low-order byte
of the word pushed onto the stack; the high-order byte is undefined. Double-word
and long integer (32-bit) arguments are passed as two words.

Pointer parameters (addresses of variables and labels) are also pushed onto the stack.
Short pointers (offsets from segment register values) are passed as words on the stack,
while long pointers (complete base:offset addresses) are passed as two words: the base
word is pushed first, followed by the offset word.

The first seven real arguments are passed on the 8087 register stack with each
argument value occupying one 80-bit register. If there are more than seven real
argument values, the rest are passed on the 8086 stack.

Parameters are pushed onto the stack in left-to-right order (Pascal-86), or in the
order that they are seen in the call statement (PL/M-86 and FORTRAN-86). Since
the stack grows from higher locations to lower locations, the first argument occupies
the highest position on the stack. Because PL/M and FORTRAN parameters are
pushed onto the stack before the CALL instruction is executed, they are located above
the return address, which is also stored on the stack.

Retrieving Parameters from the Stack

A program written in assembly language and called from a high-level language may
access its parameters on the stack in either of two ways. One technique is to pop each
of the parameters off the stack and into either a register or a local variable. Another
met~od of accessing parameters passed on the run-time stack is to address them· using

B-1

Linking Assembly Language and Higber Level Languages ASM86 Macro Assembler

B-2

a BP-relative addressing mode. This is the technique used by high-level language
code. Establish SS:BP as a pointer to the same fixed offset as the data structure on
the stack containing the parameters, and then address the parameters using offsets
from BP.

Since high-level language procedures make heavy use of the BP register, assembly
language code used with high-level code must preserve the value of BP. When param­
eters are popped off the stack, BP may be preserved by simply not using this register.
However, since the "BP method" requires that BP be loaded with a new value, the
contents of BP must first be saved. The method used by high-level languages is to
first push its value (allowing you to safely load it with a new value), then restore its
old value with a pop before the procedure returns to its caller.

Choosing a Method to Access Parameters

The method you choose for accessing parameters depends on the nature of the proce­
dure you are writing. The pop method can be an effective optimization when all
parameters are popped into registers, since accessing registers is faster than accessing
memory. Consequently, the pop method should be considered first for short proce­
dures with few parameters.

If there are a number of parameters in your procedure, however, overhead for the
pop method (the sequence of POP instructions) can cancel the advantages gained
from register accessing. The pop method should not be used when register space is at
a premium, as in a procedure that does extensive calculations on temporary values
held in the registers. Another alternative is the BP method; its big advantage over the
pop method is that parameter values may be left unaltered and thus may be refer­
enced many times in the procedure.

Returning Values From Functions

A function is a procedure that returns a single value to its caller. PL/M-86 and
Pascal-86 functions return values in registers. Byte values are returned in AL, word
and integer values are returned in AX, and double-word and long integer values are
returned in DX:AX. Short pointers (offsets) are returned in BX, and long pointers
(base:offset) are returned in ES:BX.

Table B-1 summarizes the registers used to return simple variables for PL/M-86,
Pascal-86, and FOR TRAN-86.

Register

8086:
AL

AX

DX:AX

ES(sgmt)
BX(ofst)

BX(offst
only)

8087:
ST

Table B-1. Registers Used to Return Simple Values

PL/M-86 Type

BYTE

INTEGER,
WORD,or
SELECTOR

DWORD

POINTER (all
models except
SMALL RAM)

POINTER
(SMALL RAM)

REAL

Fortran-86 Type

INTEGER*1
LOGICAL*1

INTEGER*2
LOGICAL*2

INTEGER*4
LOG I CAL*4

REAL

Pascal-86 Type

CHAR, BOOLEAN, unsigned
subrange, or enumeration stored
in eight bits.

INTEGER, WORD, subrange,' or
enumeration stored in 16 bits.

LONGINT

Pointer (all models except
SMALL(-CONST IN DATA-»

Pointer (SMALL (-CONST IN
DATA-) model)

REAL, LONGREAL, TEMPREAL

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

Register Conventions

High-level languages expect procedures and functions to preserve the values of BP,
SS, and DS. In an assembly language procedure to be called from high-level language
code, you must ensure that the appropriate registers are preserved. Calling a high­
level language procedure from assembly languages destroys the AX, BX, CX, DX,
SI, D I, and ES registers.

Models of Segmentation

In PL/M-86 and Pascal-86, there are controls that specify how program segments
are to be combined and addressed in memory. These compile-time controls are called
models of segmentation. The model of segmentation you choose will determine what
you must put in your assembly language SEGMENT and GROUP statements. The
model will also affect the particulars of the procedural interface - for example,
whether long (base:offset) or short (offset) pointers should be passed as parameters.

CGROUP and DGROUP

The code for a SMALL program is stored in a segment named CODE, the data is
stored in the DATA segment, and the stack in the STACK segment. Two other
segments, CONST and MEMORY, are also available to hold data values. The CODE
segment makes up CGROUP, which has its base in the CS register. The DATA,
STACK, and MEMORY segments are all members of DGROUP, which has its base
in DS (with an identical copy in SS). The CONST segment is by default a member
of DGROUP. PL/M-86 and Pascal-86 allow you to put it in DGROUP by specifying
-CONST IN CODE-, however, though this makes all pointers in long {32-bits}.

The SMALL Model

The SMALL segmentation model is easily summarized: code in one physical segment,
data and stack in another. It is used for programs that require no more than 64K of
code and 64K of combined data and stack. The advantage of the SMALL model is
that all pointers are merely 16-bit offsets. CS is fixed, so a JMP or CALL needs only
to change IP. DS and SS are fixed - to the same value - so only an offset is needed
to specify the address of a variable or item on the stack. The SMALL model offers
the tightest code and fastest execution time of all the models.

The COMPACT Model

The COMPACT model of segmentation differs only slightly from the SMALL model.
The CODE segment still makes up CGROUP, but now DGROUP contains only the
DATA and CONST segments. (As in the SMALL case, the CONST segment is put
in CGROUP only if -CONST IN CODE- is specified.) The STACK and MEMORY
segments stand alone, outside of any group. As a result, these segments may occupy
a full 64K bytes of memory.

Because variables on the stack have a different base from those in the data region,
long pointers (base:offset) are used with the COMPACT model. This means that the
POINTER date type in PL/M-86 is a two-word address, and that means the @
operator refers to a long address. Long pointers passed as parameters on the stack
occupy two words, with the base part pushed first, followed by the offset part. They
allow high-level language code to address data anywhere in the physical memory
space.

B-3

LiDkiag AsselDbly Language and Higher Leyel Languages ASM86 Macro Assembler

B-4

The MEDIUM Model

In this model, DGROUP is exactly the same as it is in SMALL, containing the DATA,
STACK, CONST (by default), and MEMORY segments. There is no CGROUP,
however; each module produces its own, non-combinable code segment. Thus, the key
feature of the MEDIUM model is that it allows large amounts of program code,
while limiting the total DATA, STACK, CONST, and MEMORY segments to 64K.

Because each module produces its own code segment, inter-module calls use the long
form of the CALL instruction; that is, they change both CS and IP. Therefore, calls
to assembly language procedures should be declared as type FAR in the ASM86
EXTRN statement.

The LARGE Model

The LARGE model, which is the only model used by FORTRAN-86, allows for
large amounts of both code and data. In this model, all code and data segments are
non-combinable, and no groups are used. Constants are stored not with the DATA
segments but with the CODE segments, unless you specify -CONST IN DA T A-.
There is still only one STACK segment, with the stack combine-type.

The LARGE model requires that inter-module calls use the long form of the CALL
instruction, which saves both CS and IP in the return address. Because data refer­
ences across modules refer to different base locations, all address parameters for inter­
module calls should be long pointers. Each module has its own local data segment;
therefore, a procedure to be called from other modules must save the caller's DS
value, set up DS so that its own local variables can be addressed, and then, before
returning, restore the caller's DS value.

Subsystems

A subsystem as defined in PLfM-86 and Pascal-86 is a collection of tightly coupled,
logically related modules that obey the same model of segmentation. (A program can
be made up of one or more subsystems.) Within a subsystem, calls and data refer­
ences are long or short depending on the segmentation model chosen. Between
subsystems, all calls are long, and most data references require 32-bit pointers. Any
object that must be accessible to modules outside its subsystem must be exported
from its subsystem.

When you declare an object in high-level languages as being exported from a subsys­
tem, it must be declared public in ASM86 using the FAR attribute. In other words,
the assembly language module should be written as though it conforms to the LARGE
segmentation model.

Templates

The diagram that follow are ASM86 source module templates to be used with the
SMALL, COMPACT, MEDIUM, and LARGE models of segmentation.
(FORTRAN-86 uses the LARGE model only; Pascal does not support MEDIUM.)
These templates shQw the assembly language statements that make up the framework
of each of the modules.

ASM8(i Macro Assembler LiIIkiIIg AsseIUIy l.aJlcuge aad Higher Leye' Languages

Using the Templates

The templates are designed to be used in a "fill in the blanks" fashion .. The basic
statements to be copied into your source are capitalized. The italicized statements
are placeholders for text to be supplied by you. These statements are instructions to
you - they should not be copied into your source file.

Each template contains SEGMENT statements for all the other segments used by
HLL code. You may define additional segments, as when you extend the SMALL
model, and you may omit segments that you will not be using. If you omit a segment
belonging to a group, you must remember not to name this segment in the GROUP
statement. For example, you may be using the SMALL model and have no need for
the CONST and MEMORY segments. If these are omitted from your source module,
then the GROUP statement for DGROUP should only mention the DATA and
STACK segments:

DGROUP GROUP DATA, STACK

Below each template is a notes section, which briefly summarizes some of the
programming considerations associated with the model. You should keep these in
mind as you build your assembly language module from a particular template.

B-5

Linking AsselDbly Langage and Higher Level Languages ASM86 Macro AsselDbler

B-6

The Small Model of Segmentation

N A M E module-name

·CGROUP GROUP ·CODE
DGROUP GROUP CONSTS, DATA, STACK, MEMORY

ASSUME ·CS:CGROUP, DS:DGROUP, SS-DGROUP

CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here. (optional)

CONST ENDS

DATA SEGMENT PUBLIC 'DATA'

EXT R N external variables
Define program data here.

DATA ENDS

STACK SEGMENT STACK 'STACK'

Use a OW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

·COD£ SEGMENT PUBLIC 'CODE'

EXT R N external N EAR labels, such as procedure names
Put instruction statements here.

·CODE EHDS

END Optional start-address, for main module only.

For SMALL subsystems~ * = Subsystem Name (if subsystem is named) or Null String
(if subsystem is not named).

Notes on the SMALL . Model

• Total program code may be up to 64 bytes.

• Combined size of code, data, stack, and memory segments may be up to 64K
bytes.

• The segment registers do not change: CS holds the CGROUP base; DS and SS
both hold the DGROUP base.

• All procedures should be given type NEAR. (Note, however, that NEAR cannot
be used with subsystems or with public and external procedures.)

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a var­
iable's offset.

• All addresses are short pointers (offsets), except when -CONST IN CODE- is
used. Thus, the PL/M-86 POINTER data type and @ operator use a short (offset)
address, just like the WORD data type and dot (.) operator.

• Pascal-86 supports SMALL subsystems, PL/M-86 does not.

B-7

Linking AsselDbly Language and Higher Leyel Languages ASM86 Macro AsselDbler

B-8

The Compact Model of Segmentation

N A M E module-name

'CGROUP GROUP ·CODE
'DGROUP GROUP ·CONSTS, 'DATA

ASSUME CS:'CGROUP, DS:'DGROUP, SS:STACK

·CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here.

'CONST ENDS

'DATA SEGMENT PUBLIC

EXT R N external variables
Define program data here.

'DATA ENDS

(Optional)

'DATA'

STACK SEGMENT STACK 'STACK'

Use a DW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

'CODE SEGMENT PUBLIC 'CODE'

EXT R N external N EAR labels, such as procedure names
Put instruction statements here.

·CODE ENDS

END Optional start-address, for main module only.

For COMPACT subsystems, *=Subsystem Name (if subsystem is named) or Null
String (if subsystem is not named).

Notes on the COMPACT Model

• Total program code may be up to 64K bytes.

• Combined size of data and constant segments may be up to 64K bytes.

• The stack may be up to 64K bytes in size.

• Memory segments may be up to 64K bytes in size.

ASM86 Macro Assembler I.iDkiag Assembly Language and Higher Level Languages

• The segment registers do not change: CS holds the base of CGROUP; DS holds
the DGROUP base; and SS holds the base of the STACK segment. ES should
be used to access the MEMORY segment and for indirect references using long
pointers.

• All procedures should be given type NEAR. (Note that NEAR cannot be used
with subsystems or with public and external procedures.)

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a varia­
ble's offset.

• The PL/M-86 POINTER data type and @ operator use a long address.

• Both Pascal-86 and PL/M-86 support COMPACT subsystems.

B-9

Linking Assembly Language and Higher Level Languages ASM86 Macro Assembler

B-IO

The Medium Model of Segmentation

N A M E module-name

DGROUP GROUP CONSTS, DATA, STACK, MEMORY

ASSUME CS:CGROUP, DS:DGROUP, SS--DGROUP

CONST SEGMENT PUBLIC 'CONST'

Program constants may be put here.

CONST ENDS

DATA SEGMENT PUBLIC

EXT R N external variables
Define program data here.

DATA ENDS

STACK SEGMENT STACK

'DATA'

'STACK'

Use a OW statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment, above the other segments.

MEMORY ENDS

EXT R N external FAR labels, such as procedure names

·CODE SEGMENT 'CODE'

Put instructions here.

·CODE ENDS

END Optional start-address, for main module only

Notes on the MEDIUM Model

• Program code may exceed 64K bytes.

• Combined size of data, constant, stack, and memory segments must be less than
64K bytes.

• The DS and SS segment registers hold the base of DGROUP and do not change.
ES should be used for indirect references using long pointers.

• Local procedures may have type NEAR, but all pubic and external procedures
must have type FAR.

ASM86 Macro Assembler Linking Assembly Language and Higher Level Languages

• Offsets of variables are group-relative, so the group override operator (DGROUP:)
must be used with the OFFSET operator and when initializing a DW to a varia­
ble's offset.

• The PL/M-86 POINTER data type and @ operator use a long address.

• Pascal-86 and Fortran-86 do not support this model. PL/M-86 does not support
MEDIUM subsystems.

B-ll

linking Assembly Language and Higher Level Languages ASM86 Macro Assembler

B-12

The Large Model of Segmentation

N A M E module-name

ASSUME CS:CODE, DS:DATA, SS:STACK

EXT R N external variables

DATA SEGMENT 'DATA'

Use a D III statement here to add words to stack.

STACK ENDS

MEMORY SEGMENT MEMORY 'MEMORY'

This is a special data segment,above the other segment.

MEMORY ENDS

EXT R N external FAR labels, such as procedure names

CODE SEGMENT , COD E '

Put instruction statements here.

CODE ENDS

·CODE ENDS

END Optional start-address, for main module only.

Notes on the LARGE Model

• Program code may exceed 64K bytes.

• Program data may exceed 64K bytes.

• Stack may be up to 64K bytes in size.

• Memory segment may be up to 64K bytes in size.

• The SS segment register holds the base of the STACK segment and does not
change.

FORTRAN-86 supports only this module, but does not support LARGE subsys­
tems. (PLfM-86 and Pascal-86 do support LARGE subsystems.)

• The OS segment register holds the base of the local data segment; thus, its value
is different for each module. The previous value of DS should always be saved
when OS is reloaded, and later restored.

• Local procedures may have type NEAR, but all public and external procedures
must have type FAR.

• All pointers passed between modules must be long (base:offset) addresses. The
PLfM-86 POINTER data type and @ operator use a long address.

External variables use a different base than local variables. Thus, you must load
OS or ES with the appropriate segment base before addressing an external
variable.

• Large subsystem maps directly to the LARGE model.

APPENDIX C
RULES FOR SHORTENING . CONTROLS

Any of the controls mentioned in this book have a legal short form. This appendix
contains rules that can be used to shorten most of the controls found in Intel languages.
Here are the rules:

• If the control is a one-syllable word, use the first two characters.

• If the control is a polysyllabic word, but not a compound word, use the first
character from the first two syllables.

• If the control is a compound word, use the first character from each of the
compounding words; however,

• If the control begins with NO, NO cannot be shortened.

C-I

APPENDIX D
USING THE 8087 NUMERIC DATA PROCESSOR

AND THE 8087 EMULATOR PROGRAMS

This appendix is directed to the programmer who has an ASM86 Macro Assembly
Language program that makes use of numeric instructions. The program must meet
both of the following requirements:

1. It must include a declaration of the EXTERNAL FAR procedure INIT87.

2. It must execute a call to INIT87 before any numeric instruction is executed.

Assemble the program as usual with ASM86. Next, perform one of these LINK86
commands:

RuN ~;NK86<::ro9rm.ODJ>,E8087,E8087.~IE[TO<pro9"~.1"k)]

or

RuN LINK85<::"ogrrr.obJ> ,8C87.L:B[TO<progrm.lnr.)]

If your program uses floating-point instructions, but your system does not include an
8087 Numeric Data Processor (NDP), then you must use the 8087 Emulator. The
first of the preceding LINK86 commands will connect your program to E8087.LIB.
LINK86 will alter your code so that the numeric instructions will access the Emulator,
E8087, rather than the 8087 NDP. The Emulator library provides the following
services:

• The library satisfies the call to INIT87, which initializes interrupts 20 - 31 for
the Emulator. (You must reserve interrupt 16 as well if your program includes
an exception handler to process numerical errors.) INIT87 contains a FINIT
instruction that initializes the Emulator when it is executed.

• The object code will be altered so that the escape opcodes used by the 8087 NDP
will be replaced by the interrupt opcodes used by the Emulator.

When disassembling your Emulator-linked program, you may notice the change from
escape instructions to interrupt instructions. This is because a call to the Emulator
interrupts execution of the calling program, while the S087 executes those instruc­
tions as your program runs. When using the 8087 NDP, your program does not always
have to wait for numeric results before it can continue. You may also notice that the
list files show 8087 escape opcodes, even though you are using the Emulator, because
the list files are written at assembly-time, while the code changes are made later, at
link-time.

If your program makes use of numeric instructions and your system incorporates an
8087 NDP, then you will link your programs to SOS7.LIB. This library contains a
call to INIT87 that performs a FIN IT instruction that initializes the 80S7 NDP.

You may link your program's segments within the same classnames as the Emulator's
segments. To do so, use the following classnames for your segments:

SEGMENT
CODE
DATA
STACK

CLASSNAME
AQMCODE
AQMDATA
STACK

There are some restrictions upon linking PL/M-S6 programs and ASM86 Macro
Assembly Language programs with the 8087 Emulator. A version of the 8087
Emulator is available that satisfies the numeric requirements of PL/M-86 programs.

0.1

Using 8087 Programs ASM86 Macro Assembler

D-2

It is referred to as the partial 8087 Emulator, PE8087. Since the partial Emulator is
a subset of the full Emulator, PL/M-86 numeric instructions can be satisfied by either
Emulator. Assembly language programs, on the other hand, require the full Emulator.
Since you may not link both versions of the Emulator into tht; same program, you
must use the full Emulator if you intend to link PL/M-86 and ASM86 Macro
Assembly Language programs.

8087 Emulator Programs, using, D-l
8087 Numeric Data Processor, using, D-l

ASM86, see also Assembler, ASM86 Macro Assembler
Assembler, ASM86 Macro Assembler

before using, 1-1
calling, B-1
controls, 3-1

shortened form, C-l
summary of, 3-3

defaults, 3-2
errors, A-I
invoking, 1-1
parameters, 2-5

assembly language, ASM86, 1-1

body, 4-1

CGROUP, B-3

DATE (DA), 3-3
DEBUG (DB), 3-3
DGROUP, B-3

EJECT (EJ), 3-4
EQUATE,4-6

(CMACRO) codemacro, 4-6
with external symbol, 4-6
with group, 4-6
with label, 4-6
with number, 4-6
with record field, 4-6
with register, 4-6
with segment, 4-6
with structure field, 4-6
with variable, 4-6

error messages and recovery, A-I
console error messages, A-I
control error messages, A-I
I/O error messa'ges, A-I
Macro error messages, A-2
other error messages, A-2
source file error messages, A-2

ERRORPRINT (EP), 3-4

FORTRAN-86, linking to ASM, B-1

GEN (GE), 3-4
GENONLY (GO), 3-4

higher level languages, linking ASM to, 8-1

INDEX

INCLUDE (IC), 3-6
nesting indicator (+), 4-7

iRMX86 Operating System, 2-3

LINE,4-7
LIST (LI), 3-6
LOC field, list file, 4-4

with STRUCTURE, 4-4

MACRO (MR), 3-7
Dlempercent, 3-7
MOD186 (Ml), 3-7
Dlodels of segmentation, B-3

COMPACT, B-8
LARGE, B-12
MEDIUM, B-I0
SMALL,B-6

OBJECT (OJ), 3-8
operating systems

invoking the various, 2-1

PAGELENGTH (PL), 3-8
PAGEWIDTH (PW), 3-8
PAGING (PI), 3-9
parameters

accessing, B-2
passing, B-1
retrieving from stack, B-1

Pascal-86, linking to ASM, B-1
PL/M-86, linking to ASM, B-1
PRINT (PR), 3-9
procedural interface, for linking higher level languages

to ASM, B-1

register conventions, B-3
values returned to, B-2

RESTORE (RS), 3-9

SAVE (SA), 3-9
Series III Development System, Standalone, 2-1
Series III Development System, Workstation, 2-2
source text, 4-7
SYMBOLS (SB), 3-10

templates
for linking ASM to higher level languages, B-4

TYPE (TY), 3-11

WORKFILES (WF), 3-11

XREF (XR), 3-12

Index-l

ASMS6 Macro Assembler Operating Instructions for SOS6-Based Systems
12162S-003

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ___________ _

NAME ___ __ DATE ____________ _
TITLE __ _

COMPANY NAME/DEPARTMENT __ __
ADDRESS ___ __

CITY __________________________ _ STATE ______________ , ZIP CODE ________ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS .•.

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

I II I I NO POSTAGE

NECESSARY
IFMAILED

IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

