





































































































































































































FORTRAN-86

A logical expression involving .NOT. has the opposite value as its operand as shown

in table 7-6.

Table 7-6. Value of a Logical Expression with .NOT.

OP1 -NOT. OP1
.TRUE. .FALSE.
.FALSE. .TRUE.

In a logical expression with .AND., the result is . TRUE. only if both operands are
.TRUE., as shown in table 7-7.

Table 7-7. Value of a Logical Expression with .AND.

OP1 oP2 OP1.AND. OP2
.TRUE. .TRUE. .TRUE.
.TRUE. .FALSE. .FALSE.
.FALSE. .TRUE. .FALSE.
.FALSE. .FALSE. -FALSE.

In a logical expression with .OR., the result is .FALSE. only if both operands are
.FALSE., as shown in table 7-8.

Table 7-8. Value of a Logical Expression with .OR.

OP1 op2 OP1.0R.OP2
.TRUE. .TRUE. .TRUE.
.TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .TRUE.
.FALSE. .FALSE. .FALSE.

In a logical expression with .EQV ., the result is .TRUE. only if both operands are

logically the same, as shown in table 7-9.

Table 7-9. Value of a Logical Expression with .EQV.

oP1 oP2 OP1 .EQV.OP2
.TRUE. .TRUE. .TRUE.
.TRUE. .FALSE. .FALSE.
.FALSE. .TRUE. .FALSE.
.FALSE. .FALSE. .TRUE.

In a logical expression with .NEQV., the result is . TRUE. only if both operands are

logically different, as shown in table 7-10.

Table 7-10. Value of a Logical Expression with .NEQV.

oP1 OoP2 OP1.NEQV. OP2
.TRUE. .TRUE. -FALSE.
.TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .TRUE.
.FALSE. .FALSE. .FALSE.

Expressions




Expressions

7.6 Precedence of Operators

FORTRAN generally evaluates operators of higher precedence before operators of
lower precedence. When two operators have equal precedence, FORTRAN
evaluates the leftmost one first.

The use of parentheses overrides the normal rules of precedence. The part of the
expression enclosed in parentheses is evaluated first. With nested parentheses,
FORTRAN evaluates the innermost set first.

The following list shows the precedence of operators in decending order:

Parenthesized expressions

Concatenation: //

Exponentiation: **

Multiplication or Division: *, /

Addition or Subtraction (unary and binary): +,—
Relational Operators: .LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

Logical or .NOT.

Logical or .AND.

Logical or .OR.

Logical or .EQV.,.NEQV.

FORTRAN-86




FORTRAN-86

For example, FORTRAN interprets the expression
D .0R. A+ B .GE. C

as though you had written

D .OR. ((A + B) .GE. C)

The, only exception to the left-to-right rule is the case where two or more exponen-
tiation terms occur together. For example:

A *x B xx (

In this case, the compiler interprets the expression from right to left as though you
had written

A *x (B*xx()

Expressions

7-7



Expressions FORTRAN-86




FORTRAN-86

Expressions



CHAPTER 8
EXECUTABLE STATEMENTS

There are two categories of FORTRAN statements: nonexecutable and executable.
Nonexecutable statements define the characteristics or initial values of data, or
define program units. These statements are described in previous chapters.
Executable statements do calculations, control program execution, and read or write
data from external media. The executable statements for doing calculations and con-
trolling program execution are described in this chapter. The I/O statements are
described in Chapter 9, ‘‘Input and Output’’.

8.1 Assignment Statements

Assignment statements give values to variables, arrays, or array elements. There are
three kinds of assignment statements:

*  Arithmetic

® Logical

e Character

8.1.1 Arithmetic Assignment Statements

An arithmetic assignment statement resembles a conventional arithmetic formula.
Its syntax is

name = exp

where name is the name you give to a variable, array, or array element and exp is an
arithmetic expression. You read the ‘=’ as ‘is assigned the value’ rather than ‘is
equal to.” Therefore, the statement

I =1+1
is correct in FORTRAN.

Execution of an arithmetic assignment statement causes FORTRAN to evaluate exp
according to the rules for arithmetic expressions (see table 7-2). It then converts the
result to the type of name and assigns it to name. Table 8-1 shows this process for
different FORTRAN-86 data types. In table 8-1, the functions in the
‘CONVERSION’ column are the generic type conversion functions described in sec-
tion 6.1.2.2, ““Intrinsic Functions”’.

If the length of name is longer than the result of exp, FORTRAN converts the
length of result to the length of name while preserving its value.

sult depends on the data t
pe, a floating-point o
nd exp floating point
for n=1 if the result ¢

1In all other cases, 1 d integer assignment 1

r a description of floating-point exceptions and their hanc

8-1




Executable Statements FORTRAN-86

Table 8-1. Type Conversions in Arithmetic Assignment Statements

Type of .
Target Variable Type Conversisn
INTEGER INTEGER ; INT(exp)
oo NTERERR T ey
. INTRtexp)
N ER"4 . ~ INT4(exp)
REAL REAL REAL(exp)
REAL*4 ______REAL(exp)
o 1 ooetem
DOUBLE DOUBLE DBLE(exp)
PRECISION PRECISION
| rewpmea | vewerea | TREALew)

8.1.2 Character Assignment Statements

The character assignment statement assigns a character value to a character variable
or array element. Its syntax is

name = exp

where name is the name you give to a character variable or character array element
and exp is a character expression (see section 7.2).

The two sides of a character assignment statement can have different lengths. If
name is longer than the result of exp, FORTRAN pads the result on the right with
blanks. If name is shorter than the result of exp, FORTRAN truncates exp on the
right until it fits into name.

8.1.3 Logical Assignment Statements

The logical assignment statement assigns the value . TRUE. or .FALSE. to a logical
variable or array element. Its syntax is

name = exp

where name is the name you give to a logical variable or logical array element and
exp is a logical expression (see section 7.4).

8.2 IF Statements

An IF statement transfers control from one part of the program to another under
certain specified conditions. It can also provide alternative actions for the program
to perform if these conditions are not met. There are three basic IF constructs:

e Block IF
e Logical IF
e  Arithmetic IF

8.2.1 Block IF

A block IF construct is introduced by a block IF statement, and terminated by an
END IF statement. The intervening statements form the IF block, any number of
ELSE IF blocks, and at most one ELSE block, in that order. The first statement of

8-2



FORTRAN-86

Executable Statements

each of these blocks must be IF, ELSE IF, or EELSE statements, respectively; the
block is terminated by the next ELSE IF, ELSE, or END IF statement.

These blocks can be nested. For example, an IF block may contain another IF block,
which may contain another IF block, etc. These blocks can also be empty, meaning
that there need not be any executable statements between the first statement of a

block and its corresponding terminating statement.

You cannot transfer control into an IF, ELSE IF, or ELSE block from outside the

" IF block.

Figure 8-1 illustrates a possible nesting of IF, ELSE IF, and ELSE blocks.

IFeeoo
: IF BLOCK
ELSEIF e e
.
IFoeoeo *
. IF BLOCK
ENDIF =l

ELSE IF BLOCK

ELSE

IFeoeo

L]
ENDIF

.
ENDIF

IF o o ¢ eee——

iF
BLOCK

IF
BLOCK ELSE BLOCK

Figure 8-1. Nesting Levels of IF, ELSE IF, and ELSE BLOCKS

121570-6




Executable Statements

8.2.1.1 Block IF Statement

The block IF statement introduces an IF block and must be the first statement of
that block. Its syntax is

IF(exp) THEN

where exp is a logical expression(see section 7.4).

If the value of exp is true, FORTRAN executes the statements of the IF block. As
soon as an ELSE IF or ELSE statement on the same nesting level as the block IF is
encountered, control passes to the END IF statement of the block IF statement. If
exp is false, FORTRAN passes control to the first ELSE IF, ELSE, or END IF

statement on the same nesting level as the block IF statement.

Each block IF statement must have a corresponding END IF statement in the same
program unit.

8.2.1.2 ELSE IF Statement

The ELSE IF statement introduces an ELSE IF block and must be the first statement
in that block. Its syntax is

ELSE IF(exp) THEN

where exp is a logical expression.

If exp is true, execution continues with the first statement of the ELSE IF block. If
exp is false, FORTRAN passes control to the next ELSE IF, ELSE, or END IF
statement on the same nesting level as the ELSE IF statement.

An ELSE block must be immediately preceded by an IF or another ELSE IF block

of the same nesting level and is terminated by another ELSE IF, ELSE, or END IF
statement. No statement can reference the statement label of an ELSE IF statement.

8.2.1.3 ELSE Statement
An ELSE statement introduces an ELSE block. Its syntax is
ELSE

An ELSE block must be immediately preceded by an IF or ELSE IF block, and is
terminated by the END IF statement.

No statement can reference the statement label of an ELSE statement.

8.2.1.4 END IF Statement

The END IF statement terminates the last IF, ELSE IF, or ELSE block of a block IF
construct. Its syntax is

END IF

Each block IF statement must have a corresponding END IF statement.

FORTRAN-86



FORTRAN-86 Executable Statements

8.2.2 Logical IF Statement

The logical IF statement executes a statement in the program depending on the value
of a controlling expression. Its syntax is

1F (exp)stmt

where exp is a logical expression and stmt is any executable statement except a DO
or another IF statement.

If exp is true, FORTRAN executes stmt next. If it is false, FORTRAN executes the
statement following the logical IF and ignores stmt.

A function reference in the controlling logical expression can affect the operands in
stmt.

8.2.3 Arithmetic IF Statement

The arithmetic IF statement transfers control of the program to one of four possible
statements depending on the value of a controlling expression. Its syntax is

1fF(exp)st,s2,s3

where exp is any expression (see section 7.1) and s7, s2, and s3 are statement labels
of any executable statements in the same program unit as the arithmetic IF. The
same statement label can appear more than once .in the same arithmetic IF
statement.

If the value of exp is less than zero, control passes to the first statement listed. If exp
equals zero, control passes to the second statement. If exp is greater than zero, con-
trol passes to the third statement. If the result of exp is unordered (see Chapter 7),
control continues with the next executable statement following the arithmetic IF
statement.

8.3 DO Statement

Frequently, you will want to repeat a series of operations several times. Rather than
copy the statements that perform these operations many times, you can create a loop
that causes the program to perform the same statements over and over a specified
number of times. This is the concept of a DO loop. The DO statement introduces
and defines a DO loop. Its syntax is

DO stif,]var = el,e2[,e3]

where st/ is the statement label of an executable statement that is the last statement
in the DO.loop, var is an integer variable that acts as the index value of tlre DO loop,
and e?, €2, and e3 are integer expressions. In this format, e7 is the initial index
value, e2 is the loop termination value, and e3 is the optional loop increment/decre-
ment value. If you do not specify e3, the compiler assumes an increment of one. The
values of e? and e2 may be such that no iterations are performed. (See section
11.4.3, DO/66 DO/77 Controls for details.)

The last statement of a DO loop must not be an unconditional GO TO, assigned GO
TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or
DO statement. If the last statement of the DO loop is a logical IF statement, it can
contain any executable statement except a DO, block IF, ELSE IF, ELSE, END IF,
END, or another logical IF statement.

8-5



Executable Statements FORTRAN-86

DO loops can be nested. For example, a DO loop can contain another DO loop
which can contain another DO loop, etc. If a DO statement appears within the range
of another DO loop, the entire inner DO loop must be within the range of the outer
DO loop. DO loops can share the same last statement.

If a DO statement appears within an IF, ELSE IF, or ELSE block, the range of the
DO loop must be entirely within that block.

If a block IF statement is within the range of a DO loop, its corresponding END IF
statement must also be within the range of the DO loop.

Y ou cannot transfer program control into a DO loop.

8.4 CONTINUE Statement

The CONTINUE statement has no effect on program execution. Execution simply
continues with the next executable statement. I[ts syntax is

CONTINUE

8.5 CALL Statement

The CALL statement invokes a subroutine. The main program or any subprogram
can reference a subroutine using the CALL statement. Its syntax is

CALL name[(larg[,arg]...])]

where name is the name of the subroutine and each arg is an actual argument. The
actual arguments in the CALL statement must agree in order, number, type, and
length with the corresponding dummy argument list of the referenced subroutine.
(See section 6.1 for a complete description of subroutines and arguments.)

8.6 RETURN Statement

The RETURN statement transfers control back to the calling program unit. Its
syntax is

RETURN

The RETURN statement may appear only in FUNCTION or SUBROUTINE sub-
programs. These subprograms may have one or more RETURN statements, or none
at all. An END statement terminating such a program unit has the same effect as a
RETURN statement.

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, a
return value of the function must already have been defined.

When FORTRAN executes a RETURN statement, it terminates the association
between the dummy arguments of the procedure and the current actual arguments
(see section 6.1, ““‘Subroutines and Functions’’).



FORTRAN-86 Executable Statements

8.7 ASSIGN Statement

The ASSIGN statement is the only way you can assign a statement label to a
symbolic name. A GO TO statement or a format identifier in an 1/0 statement can
then reference this symbolic name. To use the symbolic name in another context,
you must redefine it with an integer value in an arithmetic assignment statement. Its
syntax is

ASSIGN st/ TO name

where stf is a statement label and name is an integer variable name. The statement
label must be the label of an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement. You cannot declare name to be of
length INTEGER*1.

8.8 GO TO Statements

The GO TO statements pass program control to another part of the program, either
conditionally or unconditionally. There are three GO TO statements:

Unconditional GO TO
Computed GO TO
Assigned GO TO

8.8.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to a specified statement. Its
syntax is

G0 TO st/

where st/ is a statement label of an executable statement in the same program unit as
the GO TO statement.

8.8.2 Computed GO TO Statement

The computed GO TO statement branches to one of several executable statements
based on the value of a controlling expression. Its syntax is

60 TO(sH[,stl]...)exp

where st/ is the statement label of an executable statement in the same program unit
as the computed GO TO statement and exp is an integer expression.

The same statement label can appear more than once in the same computed GO TO
statement. If exp has a value in the range 1 < exp < n(where n is the number of
statement labels in the list), control passes to the statement that corresponds to this
value. If exp is outside of this range, execution continues with the statement follow-
ing the GO TO and all the statement labels in the list are ignored.



Executable Statements FORTRAN-86

8.8.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to one of several executable
statements based on an integer variable name. You use it with the ASSIGN state-
ment. Its syntax is

G0 TO namel[(st/[,stl]...)]

wlrere name is an integer variable name and st/ is the statement label of an
executable statement in the same program unit as the assigned GO TO statement.
Before the assigned GO TO statement can be executed, an ASSIGN statement in the
same program unit must have defined the variable name with the value of a state-
ment label. i

The same statement label may appear more than once in the statement. If the paren-

thesized list of statement labels is present, the statement label assigned to name must
be one of the labels in the list.

8.9 Program Halt Statements

FORTRAN provides the following three statements for halting or terminating pro-
gram execution:

* PAUSE
e STOP
* END

For details on the END statement, see section 4.3.

8.9.1 PAUSE Statement

The PAUSE statement suspends program execution and allows execution to con-
tinue or terminate depending on an external signal. Its syntax is

PAUSE[msg]

where msg is either a string of not more than five digits or a character constant.
When the PAUSE statement is executed, a message in the form '

**x%*PROGRAM PAUSE. [msg]

is written to the file connected to Unit 6 (see section 14.5, “‘Preconnecting Files’’),
and program execution is suspended. By entering anything starting with ‘s’ (either
upper or lower case) on Unit §, the operator can cause execution of the program to

terminate; any other input causes execution to continue with the statement following
the PAUSE statement.

8.9.2 STOP Statement

The STOP statement terminates program execution from within a program. Its
syntax is

STOP [msg]

8-8



FORTRAN-86 Executable Statements

where msg is either a string of not more than five digits or a character constant.
When the STOP statement is executed, a message in the form

*xxPROGRAM STOP. [msg]

is written to the file connected to Unit 6 (see section 14.5), and program execution is
terminated.

The STOP statement is intended as a means to terminate program execution
abnormally, that is, to inform the operator of a special program-detected condition
that makes further execution undesirable or impossible. For normal program ter-
mination, execution of the END statement of the main program is preferred for
reasons of run-time efficiency.

8-9



CHAPTER 9
INPUT AND OUTPUT

FORTRAN input/output statements direct the transfer of data between the pro-
cessor and some external unit or within the processor itself. There are two categories
of statements, file handling and data transfer. The file-handling statements connect
and disconnect, position, and mark the end of files. The data-transfer statements
supply the external or internal unit and the list of input or output variables including
any necessary formatting information. This chapter describes each of these
statements. )

9.1 Records, Files and Units

9.1.1 Records

A record is a logically related set of values or characters. There are two types of
records, formatted and unformatted.

A formatted record is a sequence of ASCII printable characters. An unformatted
record is a sequence of values containing any desired combination of data types.
Only formatted and unformatted 1/0 statements, respectively, can read or write
these records.

9.1.2 Files

A file is a sequence of records. There are two kinds of files, exterrial and internal.

9.1.2.1 External Files

An external file is stored on an external unit, such as a line printer or flexible disk.
Y ou can access an external file in one of two ways, sequentially or directly.

A sequential-access file has the following characteristics:

¢ The file consists of a sequence of variable-length records.

* Therecords are all accessed in the same order as when they were created.
e Therecords are either all formatted or:all unformatted.

® You can read from or write to the files using only sequential-access 1/0
statements.

A direct-access file has the following characteristics:

e All therecords have the same length.

®*  Youcanread from or write to the file in any order.

®* Therecords are either all formatted or all unformatted.

e Youcanread from or write to the file using only direct-access 1/0 statements.

¢ Each record has a unique record number determined when the record was
created. You may not delete a record or change its number. You can rewrite an
existing record.

9-1




Input and Output

9-2

9.1.2.2 Internal files

An internal file is a character variable, character array, or character array element.
Using internal files, you can transfer and format data within processor memory.

An internal file has the following characteristics:
¢ Each record is a character variable or array element.

* The size of the file depends on the kinds of records in the file. If the file is a
character variable or array element, it is a single record whose length is that of
the variable or array element. If it is a character array, every record has the same
length as an array element in that array and the file has as many records as the
array has elements.

You cannot reference an internal file in a file-handling statement. You can use only
sequential-access, formatted [/O statements that do not specify list-directed
formatting. '

9.1.3 Units

A unit is a logical way of referring to a file. A unit can be connected or disconnected.
All 170 statements, except OPEN and CLOSE, must reference a unit connected to a
file.

You can connect a file to a unit using the OPEN statement and disconnect the file
using the CLOSE statement. Depending on the operating environment, some units
may be preconnected and you can reference them in 1/0 statements without first
using an OPEN statement. A preconnected file becomes connected the first time an
1/0 statement references it.

For example, in the Series-l11 operating system environment, the console output
device and console input device are always preconnected for unit numbers 6 and 5
respectively, but you can override these defaults by preconnecting the units explicitly
(see section 14.5).

A unit cannot be connected to more than one file at a time and vice versa. The only

way to refer to a disconnected file is by naming it in an OPEN statement. Con-
sequently, an unnamed file cannot be reconnected once it has been disconnected.

9.2 File-Handling Statements

FORTRAN provides five file-handling statements: OPEN, CLOSE, BACKSPACE,
REWIND, and ENDFILE. They are valid for external files only.

9.2.1 OPEN Statement

The OPEN statement can connect an existing file to a unit, create a preconnected
file, create a file and connect it to a unit, or change certain specifiers in an existing
file/unit connection. Its syntax is

OPEN (open-list)

FORTRAN-86



FORTRAN-86

Input and Output

where open-list is a list of specifiers separated by commas. The list of specifiers is:

[UNIT=]unit
10STAT=stname

Unit specifier
1/0 status specifier

ERR=st/ Error specifier
FILE=name File-name specifier
STATUS=stat File-status specifier
ACCESS=acc Access-method specifier
FORM=fmat Formatting specifier
RECL=reclen Record-length specifier
BLANK=bl/ank Blank ifi

The unit specifier, unit, must be present. All of the other specifiers are optional ex-
cept that if you connect a file for direct access, the record-length specifier must be
present. Some specifiers have default values. The following sections describe each of
the specifiers in detail.

9.2.1.1 Unit Specifier

The format of the unit specifier is
[UNIT=]unit

where unit is an integer value between 0 and 255 that identifies an external file. If
you omit the optional ‘“UNIT =", unit must be the first item in open-list.

Examples:

OPEN(UNIT=3)
OPEN(4)

9.2.1.2 I/0 Status Specifier

The format of the 1/0 status specifier is
I0STAT=stname

where stname is an integer variable or integer array-element name. The variable
must be either INTEGER*1 or INTEGER*2.

If no error occurs, executing an I/0 statement with this specifier causes stname to
be assigned a zero value. If an error does occur, stname is assigned an error message
number (see section 15.3, “‘Run-Time Errors’’).

Example:

OPEN(4,IOSTAT=ERRFLG)

9.2.1.3 Error Specifier

The format of the error specifier is
ERR=st/

where st/ is the statement label of an executable statement in the same program unit
as the 1/0 statement.

9-3



Input and Output

9-4

If an error occurs during execution of the 1/0 statement, the following steps occur:
1. The I/0 operation terminates.
2. The position of the file specified by the 170 statement becomes indeterminate.

3. If the 1/0 statement has an IOSTAT specifier, FORTRAN sets stname to
reflect the error condition.

4. Execution continues with the statement named by the ERR specifier. If you did
not specify ERR, a run-time error occurs.

Example:

OPEN(4,IOSTAT=ERRFLG, ERR=200)

9.2.1.4 File-Name Specifier

The format of the file-name specifier is
FILE=name

where name is the name of the file expressed as a character constant enclosed in
quotation marks or a variable. It must be a valid file name for the operating environ-
ment. If you omit FILE, the unit is connected to a scratch file (: WORK:) unless it
was previously associated with a specific file (i.e., in a preconnection). A filename
cannot be specified if STATUS = ‘SCRATCH’ is specified.

Example:

OPEN(UNIT=3,FILE="'MYPROG.FIL')

9.2.1.5 File-Status Specifier

The format of the file-status specifier is
STATUS =stat

where stat is a character expression evaluating to ‘OLD’, ‘NEW’, ‘SCRATCH’, or
‘UNKNOWN’. If you omit the STATUS specifier, the default value is UNKNOWN .

If you specify OLD or NEW, the FILE specifier must also be present or the file must
be preconnected.

When you specify SCRATCH, a temporary file is connected to the specified unit for
the duration of program execution or until you issue a CLOSE statement for the
same unit and then delete it. Y ou cannot specify SCRATCH with a named file.

If you specify UNKNOWN, the file status is environment-dependent. In the Series-111
environment, UNKNOWN is allowed only for a named file. In this case, it is
equivalent to OLD if the file exists and NEW if it does not.

Example:

OPEN(3,FILE='MYPROG.FIL',STATUS="NEW")

9.2.1.6 Access-Method Specifier

The format of the access-method specifier is

ACCESS=acc

FORTRAN-86



FORTRAN-86 Input and Output

where acc is a character expression evaluating to either ‘SEQUENTIAL’ or ‘DIRECT’
(see section 9.1.2.1). If you omit the ACCESS specifier, the default is SEQUENTIAL.

If the file already exists, the specified access method must match the characteristics
of that file. For example, iRMX 86 physical files are by definition sequential files
and must be opened for sequential access only. New files are created with the
specified access method. If the access method is D/IRECT, the record-length specifier
must be present in the specifier list.

Example:

OPEN(3,FILE='MYPROG',STATUS="NEW',
&ACCESS="'SEQUENTIAL")

9.2.1.7 Formatting Specifier
The format of the formatting specifier is
FORM=fmat

where fmat is a character expression evaluating to ‘FORMATTED’ or
‘UNFORMATTED’. 1f you omit the FORM specifier, the default is UNFORMATTED
if you connect the file for direct access and FORMATTED if you connect the file for
sequential access.

Example:

OPEN(3,FILE="'MYPROG.FIL',STATUS="NEW',
&ACCESS='SEQUENTIAL',FORM="'FORMATTED')

9.2.1.8 Record-Length Specifier
The format of the record-length specifier is

RECL=reclen

where reclen is a positive integer expression that evaluates to the length of each
record of the file being connected for direct access.

If you connect the file for formatted 170, reclen is the number of characters. If you
connect the file for unformatted I/0, reclen is the number of bytes.

You must include the RECL specifier in the OPEN statement when you connect the
file for direct access.

Example:

OPEN(3,FILE="'MYPROG.FIL',STATUS="NEW",
&ACCESS='DIRECT',FORM="FORMATTED',RECL=80)

9.2.1.9 Blank Specifier

The format of the blank specifier is

BLANK=blank



Input and Output

where blank is one of the character constants ‘NULL’ or ‘ZERO’. If you omit the
BLANK specifier, the default value is NULL .

If you specify NULL, FORTRAN ‘ignores all blanks in numeric formatted input
fields, except that a field of all blanks has the value zero. If you specify ZERO, all
blanks, except leading blanks, have the value zero.
You can use this specifier only for formatted 1/0.

Example:

OPEN(3,FILE="MYPROG.FIL',STATUS="NEW',
&FORM="'FORMATTED',BLANK="'ZERO')

9.2.1.11 Opening a Connected Unit

A unit is considered connected if it was referenced in a previous I/O statement
without an intervening CLOSE statement. You can specify an OPEN statement for
a unit already connected to a file.

If the file name specified by the OPEN statement is missing or is the same as that of
the connected file, the BLANK and CARRIAGE specifiers (and the RECL specifier
for sequential files) can differ from existing attributes, and result in changes to those
attributes.

If the file name specified by the OPEN statement is not the same as that of the con-
nected file, FORTRAN disconnects the previous file as if a CLOSE statement,
without STATUS specifier, were issued and opens the new one with the new
attributes.

FORTRAN-86




FORTRAN-86 Input and Output

If a file is already connected to a unit, you cannot specify an OPEN statement con-
necting that file to a different unit.

9.2.2 CLOSE Statement

The CLOSE statement disconnects a file from a unit. Its format is
CLOSE (close-list)

where close-list is the following list of specifiers separated by commas:

[UNIT=]unit Unit specifier
10STAT=stname 170 status specifier
ERR=st/ Error specifier
STATUS=stat File disposition specifier

The unit specifier must be present. All other specifiers are optional, and you can
only specify them once.

The IOSTAT and ERR specifiers have the same interpretations as for the OPEN
statement. (See sections 9.2.1.2and 9.2.1.3.)

9.2.2.1 Unit Specifier

The unit specifier has the same interpretation as in the OPEN statement. However,
execution of the CLOSE statement containing this specifier need not occur in the
same program unit as its corresponding OPEN statement. If the specified file does
not exist, CLOSE has no effect.

Once a CLOSE statement disconnects a unit, it can be reconnected to the same file
or a different file within the same program. Similarly, once a CLOSE statement
disconnects a file, it can be reconnected to the same or a different unit, so long as the
file still exists.

Example:

CLOSE(3,I0STAT=ERRFLG,ERR=100)

9.2.2.2 File-Disposition Specifier

The format of the file-disposition specifier is
STATUS=stat

where stat is a character expression evaluating to ‘KEEP’ or ‘DELETE’. If you omit
this specifier, the default value is DELETE for a file that previously had a status of
SCRATCH, and KEEP otherwise. You cannot specify KEEP for a file opened with
SCRATCH status.

If you specify KEEP for an existing file, the file continues to exist after FORTRAN
executes the CLOSE statement. KEEP has no other effect.

If you specify DELETE, the file ceases to exist after FORTRAN executes the CLOSE
statement.

9-7



Input and Output

9-8

Following normal program termination, FORTRAN closes all connected units and
deletes all those designated as scratch files.

Example:

CLOSE(4,ERR=100,STATUS="'KEEP"')

9.2,3 BACKSPACE Statement

The BACKSPACE statement causes the file pointer to move to the start of the
preceding record. The file must be connected for sequential access. The possible for-
mats are

BACKSPACEunit
BACKSPACE (arg-list)

where unit is an integer expression between 0 and 255 that identifies an external unit
and arg-list is a list of arguments separated by commas. The following is a list of the
arguments:

[UNIT=]unit External-unit specifier
I10STAT=stname 170 status specifier
ERR=st/ Error specifier

The external-unit specifier must be present but the other specifiers are optional.

If the file has no preceding record, the BACKSPACE statement has no effect. If the
last 1/0 statement was a READ past the end-of file, the file is repositioned to the
end of the file.

You cannot backspace over a record written using list-directed formatting.

Backspacing a file that is connected but does not exist is prohibited. Do not use the
BACKSPACE statement to manipulate iRMX 86 physical files such as :CI:, :CO:,
line printers, or other such files. FORTRAN-86 returns run-time errors in these
cases.

Examples:
BACKSPACE 3
BACKSPACE(3,ERR=100)

9.2.4 REWIND Statement

The REWIND statement causes the file pointer to move to the initial point of the
file. The file must be connected for sequential access. The possible formats are

REWIND unit
REWIND (arg-list)

where unit is an integer expression between 0 and 255 that identifies an external unit
and arg-list is a list of arguments separated by commas. The arg-/ist for REWIND
and the arg-list for BACKSPACE are the same.

If the file is positioned at its initial point, the REWIND statement has no effect.

REWIND 3
REWIND(3,IOSTAT=ERRFLG)

FORTRAN-86



FORTRAN-86 Input and Output

9.2.5 ENDFILE Statement

The ENDFILE statement causes the preceding record to become the last record of
the file. No further data-transfer 1/O statements can be executed without first
issuing a BACKSPACE or a REWIND statement. The file must be connected for
sequential access.

The possible formats are

ENDFILE unit
ENDFILE (arg-list)

where unit is an integer between 0 and 255 that identifies an external unit and arg-/ist
is a list of arguments. These arguments are the same as those for BACKSPACE and
REWIND.

Do not use the ENDFILE statement to manipulate iRMX 86 physical files such as
:CO:, :CI:, line printers, or other such files. FORTRAN-86 will return a run-time
error in such cases.

Examples:

ENDFILE &
ENDFILE(4,ERR=100)

9.3 Data-Transfer I/0 Statements

FORTRAN provides three data-transfer I/0 statements: READ, WRITE, and
PRINT.

9.3.1 READ Statement

The READ statement reads data from a specified unit. Its formats are

READ (ctilist) in-list]
READ f],in-list]

where ctl-list is a list of control information specifiers, in-/ist is a list of the variables
which are to receive the input data, and f is a format identifier, which is the same as
the FMT specifier in ct/-list.

The control-information specifiers are:

[UNIT=]unit Unit specifier

[FMT=)f Format specifier
REC=recno Record number specifier
I0STAT=stname 170 status specifier
ERR=st/ Error specifier

END=st/ End-of-file specifier

9.3.1.1 Control-Information List

The control-information list must contain a unit specifier. If you use the second
form of the READ statement, the unit is the default input unit.o

The list can contain only one of each of the other specifiers.

-The following sections describe the control list specifiers in detail.



Input and Output

9-10

Unit Specifier

The unit specifier has the form
[UNIT =]Junit

where unit is an integer value between 0 and 255 that identifies an external unit, an
asterisk (*) to specify the default input unit, or an internal file. For internal files,
ctl- list must contain a format identifier but must not contain a record number
specifier.

If you omit ‘UNIT=’, unit must be the first item in ct/-list.
Example:

READ(2)BILL,STAT

Format Specifier

If ctl-list contains a format specifier, the READ statement is a formatted 1/0 state-
ment. Otherwise, it is an unformatted 1/0 statement.

The format is

[FMT=)f

where f is one of the following:

e The label of a FORMAT statement in the same program unit as the READ
statement

* An integer variable assigned the label of a FORMAT statement in an ASSIGN
statement

e A character array name, character variable name, or character expression
containing a format specification

* An asterisk (*) specifying list-directed formatting (section 9.4.2)

If you omit ‘FMT=", the format specifier must be the second item in ct/-/ist and you
must omit ‘UNIT=" as well.

If you specify an asterisk (*) as f, ct/-list cannot contain a record number specifier.
If the unit is an internal file, the format specifier must also be present, but cannot be
an asterisk (*).

Examples:
READ(2,25)BILL,STAT
25 FORMAT....
READ 30,BILL,STAT
30 FORMAT....
ASSIGN 45 TO HORN
READ(2,HORN)BILL
45 FORMAT....
READ(2,*)BILL

FORTRAN-86



FORTRAN-86 Input and Output

Record-Number Specifier

If you connected the file for direct access, you must include the record-number
specifier in ctl-list. Its format is

REC=recno

where recno is a positive integer expression whose value is the number of the record
to be read.

Examples:

READ(3,REC=15)
READ(2,REC=J)

Input/Output Status Specifier

The 1/0 status specifier is essentially the same as for the OPEN statement (section
9.2.1.2). In addition, FORTRAN assigns the variable stname a negative value at
end-of-file.

Error Specifier

The error specifier has a similar interpretation as for the OPEN statement (section
9.2.1.3), with one difference: if the error is the result of an end-of-file condition, the
position of the file is defined as past the end-of-file marker; further 1/0O operations
except CLOSE, REWIND, or BACKSPACE are undefined.

End-Of-File Specifier

The format of the end-of-file specifier is
END=st/

where st/ is the label of an executable statement in the same program unit as the
READ statement.

When FORTRAN detects an end-of-file during a READ operation, processing pro-
cedes as for the error specifier except that execution continues with the statement
specified by END.

If you specify END, the file must be connected for sequential access.

Example:

READ(3,30,I0STAT=STFLG,ERR=100,END=300)BILL,STAT

9.3.1.2 Input List

The input list, in-list, identifies the items to be read. An item in in-list must be a
variable name, array name, or array element name. If you list an array name,
FORTRAN reads the entire array in normal array element ordering sequence. You
cannot list the name of an assumed-size dummy array in the input list.

9-11



Input and Output

9-12

9.3.1.3 Implied-DO List

An implied-DO list embedded in the READ statement allows you to use a range of
subscripts for input list array elements. For example, FORTRAN can read some of
the items in an array without your specifying each individual array element. The for-
mat of the implied-DO list is

(inlist,var=e1,e2,e3)

where var,e,e2 and e3 have the same interpretation as for the DO statement (sec-

tion 8.3) and /nlist is the list of input items described above. The list, in-list, may
contain additional implied-DO lists.

For READ statements, the DO variable var cannot appear as an item in /n-/ist.

Example:
C READ THE ODD ELEMENTS IN THE ARRAY 'TABLE'
DIMENSION TABLE(60)

READ (2,20) (TABLE(N),N=1,59,2)
20 FORMAT....

9.3.2 WRITE Statement
The WRITE statement outputs data to a specified unit. The format is
WRITE (cti-list) [out-list]

where ct/-list is a list of control-information specifiers and out-list is a list of the data
to be written. The control-information list is

[UNIT]unit Unit specifier

[FMT=]f Format specifier
REC=recno Record-number specifier
10STAT=stname 170 status specifier
ERR=st/ Error specifier

The control-list specifiers are analogous to those for READ (section 9.3.1.1). The
syntax of the output list, out-list, is similar to that of the in-list in the READ state-
ment, including the implied-DO option (sections 9.3.1.2 and 9.3.1.3). In addition,
an output list item may be an expression of any data type.

Examples:

WRITE(6,120)BILL,STAT
120 FORMAT....

WRITE(6,120,I0STAT=ERRFLG,ERR=200)
SBILL+1,STAT+1
120 FORMAT....

DIMENSION BILL(25),STAT(25)
C WRITE A DOUBLE COLUMN PRINTOUT OF THE
C FIRST ITEMS OF EACH ARRAY
WRITE(6,120) (BILL(H) ,STAT(H) ,H=1,10)
120 FORMAT(1X,A,5X,F4.3)

FORTRAN-86



FORTRAN-86 Input and Output

9.3.3 PRINT Statement

The PRINT statement outputs formatted data to the default output unit. Its format
is

PRINT f[,out-list]

where f is a format identifier and out-/ist is a list of the data to be written. The
format specifier f and out-/ist have the same meaning as in the WRITE statement.

Examples:

PRINT 50,BILL,HORN
50 FORMAT....

ASSIGN 50 TO STAT
PRINT STAT,BILL,HORN
50 FORMAT....

9.4 Formatted Data Transfer

The default for the FORM specifier in the OPEN statement is FORMATTED for
sequential-access files. During formatted data transfer, FORTRAN transfers data
with editing between the file and the 1/0 list. The editing is directed by some kind of
formatting specification. You can specify formats

e In FORMAT statements

e As values of character arrays, character variables, or other character
expressions

S

* Aslist-directed I/0 (see secqtion 9.4.2)

If the format specifier in a formatted 1/0O statement is an array or expression, its
value must be a valid format specification in its leftmost character or Hollerith posi-
tions. Any data following the right parenthesis that ends the format specification
has no affect on the format specification itself.

9.4.1 FORMAT Statement

The form of the FORMAT statement is

st FORMAT ({flist])

where st/ is a 1 to 5 digit statement label and flist is a format specification list whose
items are separated by commas. Each item in flist must be an edit descriptor or
another (imbedded) parenthesized flist.

You can specify a FORMAT statement with no flist only if the I/0 list is also empty.
There are two kinds of edit descriptors, repeatable and nonrepeatable. You repeat
an edit descriptor by prefixing it with a nonzero, unsigned integer constant called a

repeat specification. A repeat specification may also be present for an imbedded
flist.

913



Input and Output FORTRAN-86

Both the format specification and its corresponding 1/0 list are scanned from left to
right. Each item in the 1/0O-list corresponds to the next repeatable edit descriptor.
For example, if a repeatable edit descriptor is repeated five times, it corresponds to
five consecutive 1/0 list items. There is no corresponding I/O-list item for
nonrepeatable edit descriptors which take effect whenever they are encountered.

If an embedded flist is preceded by a repeat specification, flist is scanned that many
times before continuing to the next format item.

If a format-specification list ends before the 1/0 list ends, it reverts to the beginning
of the last imbedded flist in the FORMAT statement including its repeat specifica-
tion. If none is present, then it reverts to the beginning of the FORMAT statement.
Repeat specifications have the same effect as during the first pass through the for-
mat specification list. A new record is begun each time format reversion occurs.

9.4.1.1 Repeatable Edit Descriptors

Each repeatable edit descriptor generally consists of a letter indicating the type of
data involved and a number indicating the size of the data field; additional informa-
tion may specify how it will be divided. The repeatable edit descriptors are

Iw Integer descriptor
Fw.d Floating-point descriptor
Ew.d|[Ee] Floating-point descriptor
Dw.d Floating-point descriptor
Gw.d|[Ee] . Floating-point descriptor
Lw Logical descriptor

Alw] Alphanumeric descriptor

where

LLF,E,D, indicate the external type of data being edited
G,L,and A

w is a nonzero, unsigned integer constant
representing the width of the entire external field

d is an unsigned integer constant representing the
number of digits that follow the decimal point

e is a nonzero, unsigned integer constant
representing the number of digits of the exponent

The 1, F, D, E, and G edit descriptors are used for numeric data. E and G editing
allows output of floating-point numbers in scientific notation.

The following remarks apply to the I, F, D, E, and G edit descriptors.

® On input, leading blanks are not significant. Further blanks are treated
according to the setting of the nonrepeatable descriptors BN and BZ and the
value of the BLANK specifier in the OPEN statement.

e A decimal point in input data overrides the decimal-point location specified by a
descriptor. The input field may have more digits than are necessary for the value
of the data item to be approximated.

9-14



FORTRAN-86

*  Onoutput, FORTRAN right-justifies values. If necessary, the compiler fills the
field with blanks on the left.

®  On output, if the number of characters exceeds the field width w, or an
exponent has more than e digits, the entire field is filled with asterisks (¥*).

INTEGER Editing
An 1/0-list item matched with an Iw edit descriptor must be of type INTEGER. The
integer constant read or written always consists of at least one digit.

Examples:

PRINT 20, INTNUM
20 FORMAT(I5)

READ(3,20) INTNM1,INTNMZ, INTNM3
20 FORMAT(215,14)

F Descriptor Editing

An 1/0-list item matched with an Fw.d descriptor must have a floating-point data
type. If the input to this descriptor contains no decimal point, FORTRAN interprets
the rightmost d digits of the string as the fractional part of the input value.

On input, an exponent consisting of a signed integer constant or the letter E fol-
lowed by an optionally signed integer constant can follow the string of digits.

FORTRAN rounds output edited by the F descriptor to d fractional digits and can
modify it by an established scale factor. (See the description of the nonrepeatable
edit descriptor P.)

Examples:

READ(2,20)BILLN
20 FORMAT(F5.3)

DIMENSION TABLE(10)
PRINT 30,TABLE
30 FORMAT(5(F5.3,2X,F5.3))
C THE TABLE WILL PRINT IN TWO COLUMNS

E and D Descriptor Editing

An 1/0-list item matched with an Ew.d, Dw.d, or Ew.dEe descriptor must have a
floating-point data type. The exponent e has no effect on input data.

On output, the format of the output field for a scale factor of zero is
[sign][0].xIx2...xd exp
where sign is either a plus (+) or a minus (—) sign, x7...xd are the d most significant

digits of the value after rounding, and exp is a decimal exponent having one of the
forms found in table 9-1.

Input and Output

9-15



Input and Output

9-16

The scale factor, k (see the description of the nonrepeatable edit descriptor P), con-
trols decimal normalization. If —d < k <0, the number written will have exactly | k |
leading zeros and d— | k| significant digits following the decimal point. If 0 < k< d
+ 2, the number will have exactly k significant digits to the left of the decimal point
and d — k + 1 significant digits to the right of the decimal point. Other values of & are
illegal.

Examples:

READ(2,20)RLNUMB
20 FORMAT(E4.2)

WRITE(6,110)ROUT
190 FORMAT(E15.5E6)

Table 9-1. Output Forms of Exponents For D and E Editing

Edit Magnitude Form of
Descriptor of Exponent (exp) exponent (y=digit)
Ew.d |exp| <99 Exy,y,
99 < | exp | < 999 Y, ¥,V
Ew.d Ee | exp | <(10**e)-1 Exy y,...y,
Dw.d fexp|<99 D+y,y,
99< I exp l <999 *Y,Y,Y3
G Descriptor Editing

An 1/0 list item matched with a Gw.d or Gw.dEe must have a floating-point data
type.

On input, G descriptor editing is the same as F descriptor editing.
On output, editing depends on the magnitude of the value to be written. Let n be the
magnitude of the value. If n < 0.1 or n > 10¥*d, G editing is the same as E editing

with the current scale factor. If 0.1 < n < 10**d, the scale factor has no effect. Table
9-2 describes the editing in this case.

Table 9-2. G Editing for 0.1 < N < 10**d

FORTRAN-86

Magnitude
of Equivalent Conversion
Data
0.1<N<1 F(w—n).d, n(b)
1<N<10 F(w—n).(d-1), n{b)

L]
L d

10*"(d—-2) < N <10**(d-1)
10**(d-1) < N<10**d

F(w=n).1, n(b)
F(w-n).0, n(b)

where n =4 for Gw.d
e+2forGw.d Ee
b = blank




FORTRAN-86 Input and Output

LOGICAL Editing

An I/0-list item matched with an Lw descriptor must have a logical data type.

The input field includes optional blanks preceding an optional period followed by a
T (for TRUE) or F (for FALSE). These letters may be followed by additional
characters. For example, the logical constants . TRUE. and .FALSE. are acceptable
inputs.

The output field consists of the letters T and F based on the TRUE or FALSE value
of the internal data preceded by blanks, if necessary, to fill the output field.

Examples:
LOGICAL TRUTH

DIMENSION TRUTH(4)
READ(3,50) TRUTH(1) ,TRUTH(4)

50 FORMAT(2L6)
WRITE(6,80)TRUTH(1)

80 FORMAT(LT)

Alphanumeric Editing

An 1/0-list item matched with an A or Aw descriptor must have type
CHARACTER or be defined with Hollerith data. If you specify the field width, w,
the field consists of w characters. Otherwise, the number of characters in the field is
the length of the I/0O-list item.

With Aw editing, if w >/ength, the following are equivalent:

Aw and (w - length)X,Alength

If w < length, then the data is transferred according to the rules for character
assignment.

The following illustrates Aw editing. In these examples, b indicates a blank.

AS5to CHARACTER*3: ‘ABCDE’ becomes ‘CDE’

w>length
CHARACTER*3 to AS: ‘ABC’ becomes ‘bbABC’
A3 to CHARACTER¥*S: ‘ABC’ becomes ‘ABCbhb’

w<length
CHARACTER*5 to A3: ‘ABCDE’ becomes ‘ABC’

9-17



Input and Output FORTRAN-86

9.4.1.2 Nonrepeatable Edit Descriptors

The nonrepeatable edit descriptors are

‘cle2...cn” Literal-string descriptor
nHclc2...cn Hollerith-string descriptor

nX Record-position control descriptor
/ Record-termination descriptor

kP Scale-factor descriptor

BN Blank descriptor

BZ Blank d-e,scriitor
where apostrophe (’), H, X, slash (/), P, BN, BZ,—indicate the

kind of editing and each
¢ is any ASCII character
n is a nonzero, unsigned integer
constant
k is an optionally signed integer
constant representing a scale
factor
Apostrophe Editing

You use the apostrophe edit descriptor only for output. It causes FORTRAN to
write the characters enclosed in apostrophes literally. To indicate an apostrophe
within the character field, show it as two consecutive apostrophes.

The width of the field is the length of the character string.

9-18



FORTRAN-86 Input and Output

Example:

WRITE(7,100)ITSTNO
100 FORMAT('THIS IS TEST NUMBER',2X,I2)

H Descriptor Editing

The Hollerith edit descriptor is an alternate way to perform literal-string editing.
Like apostrophe editing, you can use it only for output. The nH descriptor causes
the compiler to write the n characters following the H.

Example:

WRITE(7,100) ITSTNO
100 FORMAT(1HT,19HTHIS IS TEST NUMBER,2X,I12)
C FIRST H DESCRIPTOR CAUSES A SKIP TO A NEW PAGE

X Descriptor Editing

The nX descriptor indicates that the next edit descriptor applies to the character n
positions from the current record position. On output, FORTRAN inserts n blanks
into the output record. No blanks are output if there are no more items in the 1/0
list.

Example:

WRITE(7,100)ITSTNO
100 FORMAT(1X,'THIS IS TEST NUMBER',2X,I2)
C FIRST X DESCRIPTOR CAUSES SINGLE SPACING
C BY INSERTING A BLANK AS THE FIRST
C CHARACTER OF THE RECORD

Slash Editing

The slash (/) edit descriptor acts as an end-of-record indicator.

On input, FORTRAN skips the remainder of the current record. If the file is posi-
tioned at the beginning of a record, FORTRAN skips the entire record.

On output, FORTRAN terminates the current record and begins a new record. You
can use the slash edit descriptor to write an empty record, a convenient way to pro-
vide blank lines on printed output.

The comma that normally separates FORMAT list items is not required before or
after a slash.

Example:

WRITE(7,100)
100 FORMAT (141, BILL AVERAGE'/)
C THIS SLASH CAUSES A BLANK LINE FOLLOWING
C THE HEADINGS TO BE WRITTEN
WRITE(7,150)BILL,AVG
150 FORMAT(1X,A12,4X,F4.3)

9-19



Input and Output FORTRAN-86

Scale Factor (P) Editing

The kP descriptor establishes a scale factor, k, which applies to certain subsequent
floating-point descriptors until a new scale factor is specified. You can use it with
the F, D, E, and G descriptors when editing floating-point numbers. If an F, D, E,
or G immediately follows the P, no intervening comma is necessary.

FORTRAN assumes a scale factor of zero at the beginning of an I/0 statement.
Once the kP descriptor changes it, the new scale factor remains in effect until you
assign another scale factor or until the end of the 1/0 statement.

On input, the scale factor has no effect if there is an exponent in the F, D, E, or G
input field. Otherwise, the effect is that the externally represented number equals the
internally represented number multiplied by 10**k. The same is true on output with
F editing.

On output with E or D editing, FORTRAN moves the decimal point k positions to
the right (left if negative) and reduces the exponent by k.

On output with G editing, FORTRAN suspends the effect of the scale factor as long
as the value is within the range of F editing. If not, the effect is the same as described
for E editing.

The output range of a significand printed in scientific notation is 0.1 to, but not
including, 1.0, with a scale factor of zero. Setting the scale factor to 1P changes this
range to 1.0 to 10.0. Changing the scale factor is useful for very small or very large
E-edited numbers, but generally not for F-edited numbers. You should reset the
scale factor as necessary for subsequent floating-point items.

Table 9-4 illustrates the use of the scale factor with E editing on output.

Table 9-4. Floating-Point Editing for Output with the Scale-Factor

Edit Descriptor P
Real
Number F6.2 E11.5 1PE10.4
4.32 4.32 0.43200 E + 01 4.3200E + 00
7255000.0 e 0.72550 E + 07 7.2550 E + 06
0.0065 0.01 0.65000 E — 02 6.5000 E ~ 03
BN and BZ Editing

You can use these two edit descriptors to specify the interpretation of blanks, other
than leading blanks, on input. If you specify BN, FORTRAN ignores all blanks,
except that it treats a field of all blanks as zero. If you specify BZ, FORTRAN treats
all blanks as zeros.

Unless you specify the BN or BZ descriptor, the BLANK specifier in the OPEN
statement determines the interpretation of blanks. Once BN or BZ has been
specified, the new specification remains in effect until changed again explicitly, or
until the end of the 170 statement.

9-20



FORTRAN-86 Input and Output

Example:

READ(2,50) INTNUM, FPNUM
50 FORMAT (BN, I5,5X,BZ,F7.4)

If the input values for this example are 160 and 160.0, where b is a blank, then the
variables will contain 10 and 100.0, respectively.

Dollar-
You use t ?’i$) edit descriptor for interactive 1/0O through a console ter-
minal. It ] inal cursor at the position immediately following the output

er than at the beginning of a new line. If the FORMAT

scanner encounters a dollar sign after processing the last output I/0O-list item, for-

Example:

PRINT25,BILL
25 FORMAT(A20,$)

9.4.2 List-Directed Formatting

List-directed formatting allows free-form formatted input and output. To specify
list-directed formatting, place an asterisk (*) in the format-specifier position of the
data-transfer statement’s control list. No FORMAT statement is necessary.

A list-directed file is an external file whose records contain values and value
separators. Each value can be

* A constant

e A null value

e A constant or null value prefixed by a repeat specifier in the form
rc
or
-

where r is-an unsigned, nonzero integer constant and ¢ is a value. The form r*c
is equivalent to r occurances of the value ¢. The form r* is equivalent to r suc-
cessive null values. Neither form can contain embedded blanks, except within
the valuec.

A value separator can be

e A comma, optionally preceded or followed by blanks
e  Asslash, optionally preceded by blanks )
®  One or more blanks between two values or following the last value

9-21



Input and Output

9-22

9.4.2.1 List-Directed Input

Execution of a list-directed READ statement begins a new record and formats each
input value according to the type of the corresponding input-list item and the width,
w, of the value as follows:

Equivalent Format
Type of Input Item Descriptors
CHARACTER*n Aw w<n

An, (w-n)X otherwise
Lw
Iw

Fw.0

DOUBLE PRECISION Fw.0
Fw.0

All values acceptable to these FORMAT specifications are acceptable for list-
directed formatting with a few exceptions:

* Since blanks are treated as separators, imbedded blanks are allowed only within
character strings.

®* An end-of-record specifier has the same effect as a blank except within a
character string, which is continued on the next record.

e Aninput LOGICAL value must contain neither commas nor slashes among the
optional characters following the T or F.

® An input character value consists of a string of characters enclosed by an
apostrophe at each end.

You represent an apostrophe within the character constant by two consecutive
apostrophes without intervening blanks or end-of-record. You can continue a
character constant from the end of one record to the beginning of the next record.
Although in list-directed formatting an end-of-record normally has the effect of a
blank, that does not apply in this case. The characters blank, comma, and slash can
appear within character constants. FORTRAN transfers a character string left-
justified, and blank fills or truncates them on the right if its width is not the same as
the width of the input-list item.

You can specify null values in one of two ways.

e By having no values between successive separators or preceding the first value
separator

e By specifying the r* form

An end-of-record following a value, a comma, or another end-of-record, with or
without separating blanks, does not imply a null value.

A null value has no effect on the corresponding input-list item. The item retains its
previous value or remains undefined, depending on its status before the null value is
encountered.

If you use a slash as a value separator during execution of a list-directed input state-
ment, execution of that input statement is terminated at that point. If there are addi-
tional items in the input list, they are treated as null values.

FORTRAN-86



FORTRAN-86 Input and Output

9.4.2.2 List-Directed Output

Execution of a list-directed WRITE (or PRINT) statement begins a new record and
formats the value of each output-list item by type as follows:

Equivalent Format
Type of Output Item ISeacriitons
CHARACTER*n A

LOGICAL*n 12

PRINT *,CH5,CH100,L1,I,X
is equivalent to

PRINT 100 CH5,CH100,L061,I,X
100 FORMAT(A,/,A,/,L2,113,1P,E25.15E4)

9.5 Unformatted Data Transfer

Only external units are allowed in data-transfer statements involving unformatted
data. The default for the form specifier in the OPEN statement is UNFORMATTED
for direct-access files. FORTRAN transfers data without editing between the current
record of the connected file and items on the 170 list. Exactly one record is read or
written.

The number of items in an input list must not exceed the number of values in the
record. The type of each value in the record must agree with the type of the
corresponding input list item. The item and its value must also agree in length.

On output, if the file is connected for direct access and the values in the output list
do not fill the record, the remainder of the record is undefined.

9-23



CHAPTER 10
EXAMPLES

This chapter gives example programs that illustrate FORTRAN-86 features. Each
program resides on a FORTRAN-86 software package product disk.

10.1 1/0 Examples

10.1.1 Program 1A (PROG1A.FTN)

The following example illustrates the use of direct access, unformatted 1/0. The
program first writes the digits 1 through 10 into the file LIST on drive :F1:. After

reading two distinct sections of that file, the program prints the digits 5 through 10
and 3 through 7 to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-1 lists PROG1A.FTN.

PROGRAM PROG1A
OPEN (1,FILE=':F1:LIST',ACCESS=*DIRECT',RECL=2)

DO 120 I=1,10
WRITE (1,REC=I) I
120 CONTINUE

DO 140 K=5, 10
READ (1,REC=K) I
c
C SEQUENTIAL, FORMATTED I/0 TO THE CONSOLE.
c
WRITE (6,130) I
130  FORMAT (I2)
140  CONTINUE

DO 160 J=3,7
READ (1,REC=J) I
c
C SEQUENTIAL, FORMATTED I/0 TO THE CONSOLE.
c
WRITE (6,150) I
150  FORMAT (I2)
160  CONTINUE

END

Figure 10-1. PROG1A.FTN—Direct Access, Unformatted I/0

10-1



Examples FORTRAN-86

10.1.2 Program 1B (PROG1B.FTN)

The following example illustrates the use of sequential access, formatted I/0O with
the console. The program asks for two inputs: your name and your social security
number prompting you for the correct format.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-2 lists PROGI1B.FTN.

- OO

50

60

70
80

90

100

PROGRAM PROG1B

CHARACTER#20 NAME
INTEGER®Y4 SSNUM

WRITE(6,10)

FORMAT('What is your name?'/,5x,'enter using A20 format ',$)
READ(5,20,ERR=70)NAME

FORMAT(A20)

WRITE(6,50)

FORMAT('What is your social security number?'/,5x,'enter as nnnnnannnn -,
&%)

READ(5,60,ERR=70)SSNUM

FORMAT(I9)

GOTO 90

WRITE(6,80)
FORMAT('Incorrect input...please enter again'//)

GOTO 5
CONTINUE

WRITE(6, 100)NAME,SSNUM
FORMAT('Name is: ',A20,/,'Social Security Number is: ';I9)

END

Figure 10-2. PROGlB.FTN—Sequential Access, Formatted 170

10-2



FORTRAN-86

Examples

10.1.3 Program 1C (PROG1C.FTN)

The following example illustrates the use of list-directed 1/O with the console. The
program initially asks for two inputs: the first of one character, the second of six.
Each input must be a quoted string. The program then prompts for you to re-enter
your original input using an appropriate delimiter (a comma, a space, or a return).
An input of ‘X’ will terminate the program.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-3 lists PROG1C.FTN.

10

20

PROGRAM PROG1C
CHARACTER®1 ANS1
CHARACTER®6 ANS2

WRITE(6,%) 'INPUT 1 CHARACTER - AN INPUT OF ''X'' WILL TERMINATE',
' THE PROGRAM®

READ(5,%) ANS1
IF (ANS1.EQ.'X') GO TO 20

WRITE(6,%*) 'THE CHARACTER YOU CHOSE IS: ', ANS1

WRITE(6,%*) 'INPUT 6 CHARACTERS®
READ(5,*) ANS2
WRITE(6,%) 'THE NEW CHARACTERS ARE: ', ANS2

WRITE(6,®%) 'NOW INPUT BOTH CHARACTERS. REMEMBER TO USE A DELIMITER',
' BETWEEN EACH CHARACTER ( IE., COMMA, SPACE, or RETURN)'

READ(S,*) ANS1,ANS2

WRITE(6,%*) 'YOUR TWO INPUTS ARE ', ANS1,', *,ANS2

GO TO 10

STOP
END

Figure 10-3. PROGI1C.FTN—List Dirzcted I/0

10-3



Examples

10.2 TEMPREAL Example

10.2.1 Program 2 (PROG2.FTN)

The following example illustrates the use of the TEMPREAL data type. This data
type is recommended for use as an intermediate result of double precision
arithmetic. The program asks for two real inputs prompting you for the correct
format. These inputs are used to fill an array with double precision values. Two
summations are calculated from this input: one double precision and one
TEMPREAL. The intermediate results are compared and their difference is printed
to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-4 lists PROG2.FTN.

FORTRAN-86

10

100

200

PROGRAM PROGZ2

DOUBLE PRECISION RARRAY,RTOTAL,RESULT,DPRES
TEMPREAL TMPRES

COMMON RTOTAL, RARRAY(500)

CALL GETDAT
DPRES = 0.0
TMPRES = 0.0

po 10, I = 1,500

DPRES = DPRES + RARRAY(I)/RTOTAL
TMPRES = TMPRES + RARRAY(I)/RTOTAL

CONTINUE

RESULT = TMPRES

PRINT 100, RESULT, DPRES
FORMAT ('RESULT = ', E26.20E2, ', D-P RESULT = ', E26.20E2)

RESULT = DPRES ~ RESULT

PRINT 200, RESULT
FORMAT ('DIFFERENCE = ', E13.5E4)

END

Figure 10-4. PROG2.FTN—TEMPREAL

10-4



FORTRAN-86 Examples

SUBROUTINE GETDAT

DOUBLE PRECISION RARRAY,RTOTAL,RVALUE,FACTOR
TEMPREAL TMPTOT
COMMON RTOTAL, RARRAY(500)

TMPTOT = 0.0

PRINT 100

100 FORMAT('ENTER STARTING VALUE BETWEEN 0.00 AND 4.00 IN F4.2 FORMAT')
READ 200, RVALUE

200 FORMAT(F4.2)
PRINT 300

300 FORMAT('ENTER MULTIPLICATIVE FACTOR BETWEEN 0.00 AND 4.00 IN F4.2 FORM'T'
READ 200, FACTOR

DO 10, I = 1, 500
RARRAY(I) = RVALUE
TMPTOT = TMPTOT + RVALUE
RVALUE = RVALUE * FACTOR
10 CONTINUE

RTOTAL = TMPTOT

END

Figure 10-4. PROG2.FTN—TEMPREAL (Cont’d.)

10-5



Examples

10-6

FORTRAN-86

10.3 SINTERRUPT Example

10.3.1 Program 3 (PROG3.FTN)

The following example illustrates the use of the SINTERRUPT control and the
SETINT intrinsic. This program initializes an 8253 interval timer on an
iISBC- 86/12A board to interrupt the host processor every ten milliseconds.

You must link this program with the run-time libraries listed in the system specific
appendix. Figure 10-5 lists PROG3.FTN.

PROGRAM PROG3

INTEGER®*1 CONTPT,CONTWD,CNTLOW,CNTHI,CNTREG
EXTERNAL TIMER

CALL SETINT (6,TIMER)
CONTPT #0D6H

CONTWD #030H
CALL OUTPUT (CONTPT,CONTWD)

CNTREG
CNTLOW
CNTHI

#0DOH
#0CH
#030H

LOAD THE LOW ORDER COUNTER BYTE.

aaOon

CALL OUTPUT (CNTREG,CNTLOW)

LOAD THE HIGH ORDER COUNTER BYTE.

ann

CALL OUTPUT (CNTREG,CNTHI)

ALWAYS TRUE TEST TO CONTINUE INTERRUPTS FOREVER.

aAO0

5 IF (1.NE.1) GO TO 10
GO TO S

10 END

$INTERRUPT

SUBROUTINE TIMER
INTEGER®1 CNTREG,CNTLOW,CNTHIL

CNTREG

= #0DOH
CNTLOW = #0OCH
CNTHI = #030H

CALL OUTPUT (CNTREG,CNTLOW)
CALL OUTPUT (CNTREG,CNTHI)

RETURN
END

Figure 10-5. PROG3.FTN—SINTERRUPT Control




FORTRAN-86 Examples

10.4 SREENTRANT Example

10.4.1 Program 4 (PROG4.FTN)

The following example illustrates the use of the SREENTRANT control to write a
recursive procedure. This program solves the Towers of Hanoi problem. A descrip-
tion of the problem is as follows:

There are three pegs labelled A, B, and C. Peg A holds a stack of discs
(number provided by operator). Pegs B and C have none. Each disc is of a
different size. The discs are ordered on Peg A by size, starting with the
largest on the bottom. The discs can be moved one at a time to any other
peg as long as no disc is placed on top of another disc that is smaller in size.
The object is to transfer the discs from Peg A to Peg C.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-6 lists PROG4.FTN.

PROGRAM PROGA

WRITE(6,100)

100 FORMAT('How many disks are to be moved from peg A to peg B: ',$)
READ(5,200)NUM
200 FORMAT(IS5)

CALL HANOI('A*,'B','C',NUM)
END
$REENTRANT

SUBRROUTINE HANOI(FROM,TO,BUFF,NUM)
CHARACTER®1 FROM,TO,BUFF

IF(NUM .EQ. O0) RETURN
CALL HANOI(FROM,BUFF,TO,NUM-1)

WRITE(6, 100)FROM, TO
100 FORMAT('Move a disk from peg ',A,' to peg ',A)

CALL HANOI(BUFF,TO,FROM,NUM~1)

END

Figure 10-6. PROG4.FTN—S$REENTRANT Control

10-7



Examples

10-8

10.5 Function Subprogram Example

10.5.1 Program 5 (PROG5.FTN)

The following example illustrates the use of a function subprogram by calculating
the area of a rectangle. The program asks you for two inputs: the height and the
width. Using these measurements, the program calculates the area and outputs the

result. to the console.

To execute this program, link it with the run-time libraries listed in the system

specific appendix. Figure 10-7 lists PROGS.FTN.

FORTRAN-86

s NeNe]

¢ X2 K¢l

aaan

s BeNe]

10
20
30
ho
50
60

PROGRAM GEO

REAL®*4Y HEIGHT,WIDTH,ANSW,AREA
CHARACTER®1 MORE

EXTERNAL AREA

INPUT THE DATA

WRITE(6,10)
READ(5,20)HEIGHT
WRITE(6,30)
READ(5,20)WIDTH
INVOKE THE AREA FUNCTION
ANSW=AREA(HEIGHT,WIDTH)
OUTPUT THE AREA AND CONTINUE
WRITE(6,40)ANSH
WRITE(6,50)
READ(5,60) MORE
IF(MORE.EQ. 'Y'.OR.MORE.EQ.'y') GOTO 5

FORMAT STATEMENTS

FORMAT(//'Enter the height of the rectangle ',$)
FORMAT(F10.5)

FORMAT( 'Enter the width of the rectangle ',$)
FORMAT('The area of the rectangle is ',F10.5)
FORMAT('Continue with another input? (Y or N) ',$)
FORMAT (A1)

END

REAL FUNCTION AREA(X,Y)
REAL®4 X, Y

AREA:=X#Y

RETURN
END

Figure 10-7. PROGS.FTN—Function Subprogram




CHAPTER 11
COMPILER CONTROLS

Compiler controls manipulate FORTRAN-86 compiler features, such as whether a
listing will be produced or whether an object file will be generated during compila-
tion. All controls have default values preset to their most common usage, so few
controls need to be specified for a typical compilation.

By default, the FORTRAN-86 compiler will produce two files:source.OBJ for the
object module with type records, and source.LST for the source listing including
error messages, where source is the filename (without extension) of the
FORTRAN-86 program text file.

11.1 Invoking the Compiler

The system specific appendix provides instructions and examples of compiler
invocation.

11.2 Kinds of Compiler Controls

Compiler controls fall into two main categories:

*  Primary controls precede the first line of a program or module, or are part of
the command line that calls the FORTRAN-86 compiler. Some primary controls
can be specified only once. Certain controls are considered initial primary con-
trols. They are PRINT/NOPRINT and OBJECT/NOOBJECT. They can be
specified only at the beginning of compilation (command line or before the first
module), but cannot be changed between modules. All other primary controls
can appear between modules.

* General controls are interspersed anywhere throughout your program source
code. Additionally, you can specify most general controls in the Series-III1 RUN
command line that calls the FORTRAN-86 compiler.

Table 11-1 lists the primary and general controls.
You can specify negation of most controls with the prefix NO. Table 11-2 shows the
compiler controls and their standard abbreviations. In this table, a plus sign (+)

after a control name signifies that you cannot negate the control.

Table 11-1. Types of Controls

Primary General
Category Controls Controls
Listing Content PRINT LIST
SYMBOLS CODE
XREF
Listing Format TITLE SUBTITLE
PAGEWIDTH EJECT
PAGELENGTH
Input Format DO66/DO77 INCLUDE
STORAGE FREEFORM
Obiject File OBJECT INTERRUPT
ERRORLIMIT REENTRANT
DEBUG
TYPE OVERLAP
Control Status IGNORE




Compiler Controls

11-2

Table 11-2. Controls and Their Abbreviations

FORTRAN-86

Control Abbreviation
CODE CcO
DEBUG DB

+ D066/DO077 none
+ EJECT EJ
ERRORLIMIT EL
FREEFORM FF
+IGNORE IN
+INCLUDE IC
+ INTERRUPT IT
LIST LI
OBJECT oJ
+ PAGELENGTH PL
+ PAGEWIDTH PW
PRINT PR
+ REENTRANT RE
+ STORAGE SR
+ SUBTITLE ST
SYMBOLS SB
+TITLE TT
XREF XR

11.3 Using Compiler Controls

Controls to the compiler govern the format, processing, and content of both the
input source file(s) and the output file(s). Certair controls override other controls
even if they are explicitly specified. This section describes the use of controls and
suggests which controls should be used during specific stages of program
development.

11.3.1 Listing Device or File Selection

The PRINT control governs the selection of the file and device to receive printed
output. To generate a listing that includes error messages and the source listing, use
the PRINT control to specify the listing file, or allow the default PRINT control to
send the listing to source .LST.

The NOPRINT control overrides all of the listing format controls described in
11.3.2, since it governs all printed output.

11.3.2 Controlling Listed Format and Content

If PRINT is active, the following controls govern the format and content of printed
output:

CODE/NOCODE

EJECT

LIST/NOLIST
SUBTITLEC( subtitle’)
SYMBOLS/NOSYMBOLS
TITLE( title’)
XREF/NOXREF

The default values specify listing of the source program without the assembly code

listing (NOCODE), and without the symbol-table listing (NOSYMBOLS).



FORTRAN-86 Compiler Controls

These default values assume the general case. If you need the assembly code listing
of portions of the source file, use the CODE control. If you need to supress certain
portions of the source listing, use NOLIST. Note that the NOLIST control does not
override the CODE control.

The SYMBOLS control directs the compiler to produce a symbol-table listing as
described in section 11.4.18. NOSYMBOLS (the default) suppresses this action and
NOPRINT overrides SYMBOLS.

Although paging is automatic, you can force a page eject on any line using the
EJECT control. An EJECT in a control line is ignored if the control line occurs in
an area governed by the NOLIST control. TITLE and SUBTITLE controls specify
titles and subtitles in the listing. If NOLIST is in effect, the subtitle is saved until
listing resumes with the LIST control. The compiler ignores all of these controls if
NOPRINT is active.

11.3.3 Source Selection and Processing

The INCLUDE control governs the selection and processing of source files. There is
only one primary source file but you can include other source files in the compilation
by specifying them in INCLUDE controls.

The INCLUDE control must be the rightmost (last) control on a source control line.
If controls are to the right of the INCLUDE control on a control line, the compiler
issues a non-fatal error message and ignores the control.

11.3.4 Object Selection and Content

The following controls govern selection of the file to hold the object module, and
the content of the object module:

DEBUG/NODEBUG
INTERRUPT(proc[=n][,...])
OBIJECT (file)/ NOOBJECT

The OBJECT control selects a file to receive the object module. The default file
name has the same root name as the source file, with the extension OBJ. For
example, if PROG1.SRC is the source file, PROG1.0BJ becomes the object file.
NOOBIJECT prevents the generation of an object module.

The INTERRUPT control enables you to compile specific procedures as interrupt
procedures. Interrupt handling is discussed in Appendix I.

The DEBUG control generates debug records in the object module that are used by
symbolic debuggers such as the ICE-86 emulator. The default value NODEBUG
suppresses the generation of debug records. NOOBJECT overrides DEBUG.

11.3.5 Use of Controls in Stages of Development

When you are compiling a program for the first time, use the default control settings
with the following exception:

¢ Use XREF to generate a symbol and cross reference listing to aid your initial
debugging effort.

11-3



Compiler Controls FORTRAN-86

As you develop and debug your program modules, you may use DEBUG to generate
debug records for symbolic debugging. Selected source statements can be main-
tained in a separate file and included with the source file by using the INCLUDE
control.

For quick compiling and error reporting, you can maximize compilation speed by
using default settings for all controls, with the following exception:

¢  Use NOPRINT to suppress printed output.

When preparing programs to test with the ICE-86 or ICE-88 emulators, use the
CODE control to list the pseudo-assembly instructions and addresses.

Use the NOLIST control to save listing space by not listing portions of the source
code that are already debugged. To make your listing more readable, use EJECT,
TITLE, and SUBTITLE. You can direct the final listing to a specific output file
using the OBJECT control.

114



FORTRAN-86

Compiler Controls

11.4 Control Definitions

11.4.1 CODE/NOCODE Controls

The CODE/NOCODE controls permit or prevent the listing of object code in
pseudo-assembly language.

Syntax: CODE
NOCODE

Abbreviation: CO/NOCO

Default: NOCODE
Type: General
Description:

The CODE control directs the compiler to produce a listing of the generated object
code in pseudo-assembly language (a form that resembles the 8086 assembly
language). This listing occurs only for portions of the source program where the
CODE control is active; listing stops when a NOCODE is encountered. The pseudo-
assembly listing is appended to the source listing in the listing file created by the
PRINT control (see section 11.4.14, PRINT/NOPRINT).

The NOCODE control prevents the generation of this listing. If you specify neither
control, the default is NOCODE.

The CODE control cannot create printed output if the NOPRINT control is in
effect.

For an example of a listing in pseudo-assembly language, see Chapter 13.

11-5



Compiler Controls FORTRAN-86

11.4.2 DEBUG/NODEBUG Controls

The DEBUG/NODEBUG controls generate debug records in the object module.

Syntax: DEBUG
NODEBUG

Abbreviation: DB/NODB

Default: NODEBUG
Type: Primary
Description:

If an object file has been requested, the DEBUG control specifies that the object
module will contain debug records. These records contain the name, data type, and
relative address of each symbol in the program, data type, and the statement number
and relative address of each source program statement. This information can later
be used for symbolic debugging of the source program using the ICE-86 emulator,
DEBUG 86, or PSCOPE.

The default-setting, NODEBUG, prevents generation of these records.

The compiler ignores the DEBUG control if the NOOBJECT control is in effect,
since the compiler will not generate an object module.

NOTE

Array subscript references for the debuggér must be written in reverse
order. For example, in order to display the array element A(3,5) in the
FORTRAN-86 program, you must use A(5,3) when communicating with
the debugger. This is due to the reverse ordering of arrays in FORTRAN
compared to other high-level languages. Intel debuggers are designed to
support all high-level languages.

11-6



FORTRAN-86 Compiler Controls

11.4.3 D0O66/D0O77 Controls

The DO66/DO77 controls specify that all DO-loops in a program must conform to
the ANSI 1966 or 1977 standard, respectively.

Syntax: D066
Do77

Abbreviation: none

Default: DO77
Type: Primary
Description:

D066 specifies that all DO-loops perform at least one iteration during execution,
conforming to the ANSI 1966 standard.

DO77 permits zero iterations of DO-loops, which conforms to the ANSI 1977
standard.



Compiler Controls FORTRAN-86

11.4.4 EJECT Control
The EJECT control forces the start of a new page of printed output.
Syntax: EJECT[Cnumber)]

Abbreviation: EJ

Default: paging as implied by the PAGELENGTH control
Type: General
Description:

The EJECT control terminates the printing of the current page and starts a new
page. The control line containing the EJECT control is the first line printed (follow-
ing the page heading) on the new page.

If you do not use the EJECT control, a page eject will occur automatically as
specified by the PAGELENGTH control.

The compiler ignores the EJECT control if the NOLIST or NOPRINT controls are
in effect, since the compiler will not produce any printed output.

The EJECT control does not apply to the CODE listing.

11-8



FORTRAN-86 Compiler Controls

11.4.5 ERRORLIMIT/NOERRORLIMIT Controls

The ERRORLIMIT/NOERRORLIMIT controls terminate compilation pre-
maturely after detecting a specified number of errors.

Syntax: ERRORLIMIT Chumber)
NOERRORLIMIT

Abbreviation: EL/NOEL

Default: NOERRORLIMIT
Type: Primary
Description:

The ERRORLIMIT control enables the user to specify the number of compiler-
detected errors which will cause the compiler to cease compilation before a normal
termination. The result of early termination can be incomplete PRINT listings, and
all other compiler output will be deleted as if NOOBJECT were in effect.

The NOERRORLIMIT control allows compilation to continue until the end of the
program regardless of the number of errors the compiler encounters.

11-9



Compiler Controls FORTRAN-86

11.4.6 FREEFORM/NOFREEFORM Controls

The FREEFORM/NOFREEFORM controls permit or prevent entry of FORTRAN
statements in a non-standard input format. (See section 3.3.1, Line Format for a
description of the FORTRAN-86 standard line format.)

Syntax: FREEFORM
NOFREEFORM

Abbreviation: FF/NOFF

Default: NOFREEFORM
Type: General
Description:

Program statements after the FREEFORM control may begin in position 2 instead
of position 7. Statement labels, continuation indicators (only the ampersand (&)),
and comment indicators (both the asterisk (*) and the letter C) must begin in posi-
tion 1. If a statement begins with any character except ‘C’, it may also start in
column 1.

NOFREEFORM causes the compiler to issue error messages for all lines not con-
forming to the standard FORTRAN input format. Specifically, comment indicators
(asterisk (*) and the letter C) belong in position 1, statement labels in positions 1-5,
continuation line indicators in position 6, and statements in positions 7-72.

11-10



FORTRAN-86 Compiler Controls

11.4.7 IGNORE Control

The IGNORE control allows specified general controls to be ignored by the
compiler.

Syntax: IGNORE (controll, ...])

Abbreviation: IN

Default: None
Type: Primary
Description:

The IGNORE control enables the user to specify certain general controls that will be
ignored during the current compilation. If not specified otherwise prior to the
appearance of the IGNORE control, the default settings for the specified controls
will apply.

11-11



Compiler Controls FORTRAN-86

11.4.8 INCLUDE Control
The INCLUDE control adds other source files as input to the compiler.
Syntax: INCLUDE (fite)

Abbreviation: IC

Default: no included files
Type: General
Description:

When the compiler encounters the INCLUDE control in the source file, it reads
from the other source file, file, until it reaches the end of that file. Then the compiler
resumes reading the source lines that follow the INCLUDE control line in the
original source file.

The INCLUDE control must be the rightmost control in the control line or the only
control in that line.

The included file itself may contain INCLUDE controls, but the nesting of included
files cannot exceed five (six included files).

The compiler always forces an end-of-line before reading from an included file.
END statements within INCLUDE files are ignored.

Y our file must be a valid filename or an error will occur.

11-12



FORTRAN-86

Compiler Controls

11.4.9 INTERRUPT Control
The INTERRUPT control designates procedures as interrupt procedures.
Syntax: INTERRUPT

Abbreviation: IT

Default: None
Type: General
Description:

The INTERRUPT control allows you to specify procedures to be compiled as 8086
interrupt procedures.

Whatever procedure immediately follows the INTERRUPT control will be compiled
with special prologue and epilogue code sequences so that it may be used to process
interrupts during execution. In order for this to happen, however, you must
associate each of your INTERRUPT procedures with the number of the interrupt it
is designed to handle. This is done dynamically at run-time using the SETINT built-
in procedure (see section 6.1.2.4).

11-13



Compiler Controls FORTRAN-86

11.4.10 LIST/NOLIST Controls

The LIST/NOLIST controls permit or prevent the listing of source lines.

Syntax: LIST
NOLIST

Abbreviation: LI/NOLI

Default: LIST
Type: General
Description:

The LIST control directs the compiler to begin or resume listing of the program with
the next source line.

The NOLIST control directs the compiler to stop listing the program until the next
occurrence, if any, of a LIST control.

When you, specify neither control, or when LIST is in effect, the compiler lists all
lines from the source file (or from a file read in with the INCLUDE control),

including control lines. When NOLIST is in effect, the compiler lists only source
lines associated with error messages.

The LIST control is ignored if the NOPRINT control is in effect.

The NOLIST control does affect the CODE control, which-directs the compiler to
produce a separate listing of the generated object code.

11-14



FORTRAN-86 Compiler Controls

11.4.11 OBJECT/NOOBJECT Controls
The OBJECT/NOOBIJECT controls specify that an object module is to be created
and the file name for that object module or prevent the creation of an object

module.

Syntax: O0BJECT[(filename) ]
NOOBJECT

Abbreviation: OJ/NOOIJ]

Default: OBIJECT (source.OBJ)
Type: Primary
Description:

The OBJECT control directs the compiler to produce an object module. You can
optionally specify a file for this object module by providing a legal filename ( with
optional device specifier) for file.

If you do not specify a file, or if you do not use the OBJECT control, the compiler
will still produce the object module and direct it to the same disk or device as the
source file, using filename source.0OBJ (where source is the root name of the pro-
gram text file).

The NOOBJECT control prevents the creation of an object module.

For details on the contents of the object modules, see Chapter 13, Compiler Qutput.

11-15



Compiler Controls

11-16

11.4.12 OVERLAP/NOOVERLAP Controls

The OVERLAP control enables porting of large programs to FORTRAN-86
without changes to the program logic.

Syntax: OVERLAP
NOOVERLAP

Abbreviation: OL/NOOL

Default: NOOVERLAP
Type: Module
Description:

The OVERLAP control allows compilation of subprograms where a dummy
variable or array element may be contained in more than one segment. OVERLAP
allows the program to invoke special out-of-line run-time procedures for every
reference to a dummy argument longer than one byte (except % VAL arguments).

Use this control only when the compiler requests it (compiler message F207), during
a compilation of a program that refers to the subprogram.

The control is necessary when one or more of the actual arguments passed to the
procedure has been allocated noncontiguous memory and requires special handling.
The OVERLAP control is most likely to be needed with very large COMMON
blocks, but also result from mixed-type EQUIVALENCE statements or odd-length
CHARACTER arrays exceeding 64K bytes in size. See the description of the com-
piler message (F206) in Chapter 15 for alternative actions.

With the NOOVERLAP control, all dummy arguments are accessed directly from
in-line instructions.

FORTRAN-86



FORTRAN-86 Compiler Controls

11.4.13 PAGELENGTH Control

The PAGELENGTH control specifies the maximum number of lines to appear on
each page of the PRINT file.

Syntax: PAGELENGTH (n)

Abbreviation: PL

Default: PAGELENGTH(60)
Type: Primary
Description:

The PAGELENGTH control enables the user to specify the maximum number of
lines to appear on each page of the program listing. The minimum length is 5, which
includes the four lines of each page heading. The maximum acceptable value for
PAGELENGTH is 255 lines per page.

11-17



Compiler Controls FORTRAN-86

11-18

11.4.14 PAGEWIDTH Control

The PAGEWIDTH control specifies the maximum number of characters to appear
on one line of the PRINT file.

Syntax: PAGEWIDTH(n)

Abbreviation: PW

Default: PAGEWIDTH(120)
Type: Primary
Description:

The PAGEWIDTH control enables the user to specify the maximum number of
characters to appear on one line of the program listing. The minimum width is 60.
The maximum acceptable value for PAGEWIDTH is 132.



FORTRAN-86 Compiler Controls

11.4.15 PRINT/NOPRINT Controls

The PRINT/NOPRINT controls permit or prevent printed output, or select the
device or file to receive printed output.

Syntax: PRINT[(filename)]
NOPRINT

Abbreviation: PR/NOPR

Default: PRINT(source.LST)
Type: Primary
Description:

The PRINT control directs the compiler to produce printer output (listings), and the
NOPRINT control stops the compiler from producing printed output. If you specify
neither control, the compiler will produce listings and put them in a file that has the
same name as the source input file, only with an LST extension. This new LST file
will be created on the same device used for the source file. For example, if your
source file is named progrm and it is on drive 1 (:Fl:progrm), and you use neither
control, or use only the simple PRINT control (the default), the compiler will create
the listing as :F1:progrm .LST.

If you specify a PRINT control with a file in parentheses, the compiler will put the
listings in the file or device named by file, which must be a legal filename for a file or
device.

If you specify the NOPRINT control, the compiler will not produce listings—even if

“you specify other controls, such as LIST or CODE. If the NOPRINT control is in
effect, the compiler will not produce any printed output. In addition, if you specify
NOPRINT, error messages will not appear on the console.

11-19



Compiler Controls FORTRAN-86

11-20

11.4.16 REENTRANT Control

The REENTRANT control indicates that a particular SUBROUTINE or
FUNCTION can call itself.

Syntax: REENTRANT

Abbreviation: RE

Default: none
Type: General
Description:

The REENTRANT control indicates that reentrant code be produced for the
specified FUNCTION or SUBROUTINE. That is, all local variables contained in
these subprograms will be dynamically allocated on the run- time stack and removed
ateach RETURN statement.



FORTRAN-86 Compiler Controls

11.4.17 STORAGE Control

The STORAGE control specifies default lengths, in bytes, applied to INTEGER
and/or LOGICAL data items.

Syntax: STORAGE(INTEGER~*intlen[, LOGICAL*/oglen])

or
STORAGE(LOGICAL*/oglen[, INTEGER*intlen])

Abbreviation: SR

Default: STORAGE(INTEGER*2,LOGICAL*1)
Type: Primary
Description:

The STORAGE control permits the user to specify the default lengths, in bytes,
applicable to INTEGER and/or LOGICAL data items that are not explicitly implied
by FORTRAN-86 type-statements or constant specifications.

Each length specification (int/en or loglen, above) may be 1, 2, or 4.

NOTE

The ANSI 1977 allocation requirements for ‘numeric storage units’ imply
STORAGE(INTEGER*4,LOGICAL*4).

11-21



Compiler Controls FORTRAN-86

11.4.18 SUBTITLE Control
The SUBTITLE control prints a subtitle on each page of printed output.
Syntax: SUBTITLE('text')

Abbreviation: ST

Default: SUBTITLE(* )
Type: General
Description:

The SUBTITLE control prints a subtitle on every page of printed output. To specify
a subtitle, supply a sequence of printable ASCII characters (a string) for text,
enclosed within single quotes.

The compiler places the subtitle text on the subtitle line of each page of listed output,
and truncates this subtitle on the right if necessary. You can specify a maximum
length of 60 characters, but a narrow pagewidth may restrict this number further.

When a SUBTITLE control appears before the first noncontrol line in the source
file, it puts the text on the first page and on all subsequent pages until the compiler
encounters another SUBTITLE control. A subsequent SUBTITLE control causes a
page eject, and the new text is put on the next page and on all following pages until
another SUBTITLE control appears in the source program.

If the NOLIST control is in effect, the compiler saves this text and this text appears
again as a subtitle when the listing resumes.

The SUBTITLE control does not apply to the CODE listing.

11-22



FORTRAN-86 Compiler Controls

11.4.19 SYMBOLS/NOSYMBOLS Controls

The SYMBOLS control provides a symbol-table listing of source program
identifiers.

Syntax: SYMBOLS
NOSYMBOLS

Abbreviation: SB/NOSB

Default: NOSYMBOLS
Type: Primary
Description:

The SYMBOLS control directs the compiler to produce a symbol-table listing of all
identifiers and labels in the source program. The compiler prints an entry for each
FORTRAN-86 constant, type, variable, argument, procedure, function, or label
that occurs in the source program, in alphabetical order. The compiler appends this
listing to the file that the PRINT control creates.

The NOSYMBOLS control prevents this symbol-table listing. The default setting is
NOSYMBOLS.

11-23



Compiler Controls

11-24

11.4.20 TITLE Control
The TITLE control prints a title on each page of printed output.
Syntax: TITLE (‘text’)

Abbreviation: TT

Default: module name
Type: Primary
Description:

The TITLE control prints a title on every page of printed output. To specify a title,
supply a sequence of printable ASCII characters (a string) for text, enclosed within
single quotes.

The compiler places the title text on the title line of each page of listed output, and
truncates the title on the right, if necessary. You can specify a maximum length of 60

“characters, but a narrow pagewidth may restrict this number further.

FORTRAN-86



FORTRAN-86 Compiler Controls

11.4.21 TYPE/NOTYPE Controls

The control directs the compiler to include type records in the object modules. This
allows link-time parameter type checking.

Syntax: TYPE
NOTYPE

Abbreviation: TY/NOTY

Default: TYPE
Type: Primary
Description:

This TYPE records included in the object modules describe attributes of symbols
used in the source program, and are used later for type checking by the linker. Type
records provide a mechanism of promoting type compatibility between
subprograms.

The TYPE control also enables internal type checking among multiple external
procedure references.

The NOTYPE control prevents the inclusion of type records in the object module,
and suppresses internal type checking.

NOTE

The type checking mechanism produces warning messages that are intended
for convenience in debugging new programs. These messages may be
ignored if you have observed the ANSI programming rules.

In particular, a valid array argument can produce a type-checking warning

if the corresponding actual argument is an array element, or an array with a
different dimension specification.

11-25



Compiler Controls

11-26

11.4.22 XREF/NOXREF Controls

The XREF/NOXREF controls permit or prevent a symbol and cross reference
listing of source program identifiers. The XREF control is equivalent to the
SYMBOLS control.

Syntax: XREF
NOXREF

Abbreviation: XR/NOXR

Default: NOXREF
Type: Primary
Description:

The XREF control directs the complier to produce an alphabetical listing of all the
symbols defined in the program and their attributes cross-referenced with numbers
of all the source statements that reference them. The compiler appends this listing to
the file that the PRINT control creates. (See PRINT/NOPRINT, section 11.4.15).
XREF is ignored when NOPRINT is used.

The NOXREF control prevents this symbol-table listing. The default setting is
NOXREF.

FORTRAN-86



CHAPTER 12
COMPILER OPERATION

You create a FORTRAN-86 program by typing instructions into a file using a text
editor and submitting the file to the FORTRAN-86 compiler. The compiler accepts
the source code for processing. A single object file results from this compilation.
After the linker and locater process the object file, the code is considered executable
object code, implying that your FORTRAN-86 program can be run.

Chapter 1 of this manual leads you through a complete program development
sequence, and the system specific appendix explains compiler invocation.

12.1 Input Files

You supply the name of the FORTRAN-86 source program in the invocation line.
You can also include other source files by using the INCLUDE control, as described
in section 11.4.8. These files must be standard operating system files containing the
text of FORTRAN-86 statements.

The FORTRAN-86 compiler expects a source file consisting of a sequence of
program units, i.e., BLOCK DATA subprograms, FUNCTION subprograms,
SUBROUTINE subprograms, and/or a main program. The compiler processes each
program unit independently. Comment lines and compiler control lines may appear
anywhere in program units, but the compiler assumes that any comments found
after an END statement belong to the next program unit.

Ordinarily, program text lines must be in the standard ANSI FORTRAN 77 format:
* Positions 1 through 5 contain the statement number.

* Position 6 indicates statement continuation.

e Positions 7 through 72 consist of the actual FORTRAN statement.

The FREEFORM control (see section 11.4.6). permits you to write source code in a
more convenient format for terminal entry following these guidelines:

e If the statement has a label, position 1 must contain the label number.

®  If the line is a continuation line, position 1 must contain an ampersand (&).

* If the line is a control line, position 1 must contain a dollar sign ($).

] Actuél ’statements can begin in position 2, or in position 1 if the first character is
not ‘C.

Comment lines are the same in both formats; the first character must be either a ‘C’
or an asterisk (*).

Once you have entered your source code into a text file, you can invoke the com-
piler, as described earlier, to process your program.

12.2 Output Files

The compiler produces two output files, unless you use specific controls to suppress
them: the object file and the listing file.

The listing file, or PRINT file, contains a listing of the source program and any
other printed output generated by the compiler as specified by the listing selection
controls described in Chapter 11. The object file contains the actual code in object

12-1




Compiler Operation

12-2

module format. The system can execute the object file after you use the linking and
locating facilities described in Chapter 14. The compiler output files are described in
greater detail in Chapter 13.

The listing file and the object file, unless changed by the PRINT or OBJECT con-
trols (see sections 11.4.14 and 11.4.11), have the same basic name as the source file,
with different extensions. The listing file has the extension LST and the object file
has the extension OBJ. The compiler creates both files if they do not exist, or
overwrites them if they do, on the same drive as the source file.

The system specific appendix provides examples,

12.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation. These files are designated :WORK:, so they do not
conflict with your files. See Chapter 13, ‘“‘Compiler Output’’, for more specific
information about FORTRAN-86 work files.

12.4 Compiler Messages
When you invoke the compiler, it displays the sign-on message
system FORTRAN-86 COMPILER, Vx.y

where system is the operating system, x is the compiler version number, and y is the
change number within the version.

When a compilation is finished, the compiler terminates with the message
m TOTAL ERRORS DETECTED

n TOTAL WARNINGS DETECTED

END OF FORTRAN-86 COMPILATION

Chapter 15 lists all of the compiler errors.

FORTRAN-86



CHAPTER 13
COMPILER OUTPUT

During compilation, the compiler produces a listing of the source program and an
object module. Compiler controls can affect both the listing and object files. These
controls are described in detail in Chapter 11. This chapter discusses the contents of
these files.

13.1 Program Listing

Unless you specified the NOPRINT control (see section 11.4.14) , the program
listing file is either the file you defined with a PRINT contro! or the default listing
file.

The listing file contains, minimally, a “sign-on’’ preface, any syntactic error
messages, a compilation summary, and a sign-off message. You modify the listing
by specifying different controls. If the LIST control is active, the compiler produces
a program source listing. If the CODE control is active, a pseudo-assembly language
listing of the source code is also created. If the SYMBOLS control is active, the
listing file includes a listing of all symbols used in the program. NOLIST and
NOCODE supress these listings, respectively.

If the NOPRINT control is active, no listing file is produced. Any error messages
appear on the system console (:CO:).

Paging occurs automatically during the source and symbol-table listings, but you
can force a page eject using the EJECT or SUBTITLE controls. The following sec-
tions describe each part of the listing file in detail.

13.1.1 Listing Preface

Each page of the listing file has a numbered page header identifying the compiler,
the subprogram currently being compiled, the date and time of the compilation, and
optionally, a title and subtitle. The compiler truncates the title and subtitle to 60
characters or less depending on the pagewidth setting. The page heading is followed
by two blank lines. The following is the FORTRAN-86 header:

system FORTRAN-86 COMPILER title date/time PAGEnnn
filename subtitle modulename

where System is the name of the development system, tit/e is the name you specified
in the TITLE control, subtit/e is the name you specified in the SUBTITLE control,
date/time is the running date and the starting time supplied and changeable by the
operating system, filename is the name of your source program, modulename is the
name of your (sub)program, and nnn is the number of pages in the PRINT file.

13.1.2 Source Listing

The source listing includes the source code of the module being compiled, any errors
detected during compilation, and optional symbol-table and pseudo-assembly
listings.



Compiler Output FORTRAN-86

Source lines appear as they do in the FORTRAN-86 input file with the following
additions:

Positions 1-4 contain a statement number for each FORTRAN-86 statement. The
compiler associates each FORTRAN statement printed or not with a unique state-
ment number, and prints it at the beginning of that statement. Error messages refer
to these statement numbers, not to statement labels coded as part of the
FORTRAN-86 program.

If an INCLUDE control inserted a line into the source code, an equal sign (=) and a
digit indicating the nesting level of the INCLUDE follow the statement number in
positions 5-6.

Position 7 contains a hyphen (-) if the compiler continued the line on another line
because of a PAGEWIDTH limitation.

The remainder of the listing line, beginning with position 8, contains the source code
as read (or added using the INCLUDE control) from the FORTRAN-86 text file.
However, any ASCII TAB characters are expanded to multiple blanks, as necessary,
to reach the next character position, which is a multiple of eight.

13.1.3 Symbol Listing

If you specified the SYMBOLS control, the compiler creates a listing with an entry
for each variable, array, function, subroutine and run-time procedure that appears
in the source program. These are in ASCII sequence by symbol name or statement
number you defined in the program. Each entry includes

* the source identifier (symbol)

* the kind (label, array, etc.)

¢ the data type (integer, logical, etc.)

* thelength in bytes

® the scope (external, common, etc.)

¢ the address relative to the beginning of the segment
¢ the statement number of its declaration

Additionally, the compiler produces a separate listing of run-time procedures
referenced in the program. The run-time procedure listing provides helpful support
for identifying critical areas for reducing program size. Each procedure name has
one or more modules associated with it, all of which are required to fulfill the func-
tion for which the first module was called. The user can identify these modules,
using the Run-Time Module Directory, and determine their sizes using the LINK86
map.

13.1.4 Pseudo-Assembly Language Listing

If you specified the CODE control, the compiler generates a pseudo-assembly
language equivalent of the compiler-generated object code. The list-formatting con-
trols TITLE, PAGEWIDTH, and PAGELENGTH apply to the CODE listing as
well as to the source listing.

The pseudo-assembly listing for each program unit always begins on a new page. A

comment line with the statement number of the corresponding source statement will
head the code resulting from each source statement.

13-2



FORTRAN-86 Compiler Output

The code listing conforms to standard assembly-language format of six columns of
information, although not all six of these columns will necessarily apply to every line
of the listing. The columns of information are

e Relocatable location counter (hexadecimal notation)
e Resultant binary code (hexadecimal notation)

e Label field

e  Symbolic operation code (mnemonic notation)

e Symbolic arguments

e Comment field

If you used the CODE control, the compiler generates the appropriate assembly
directives to declare local symbols and constants in the listing. An at-sign (@)
precedes compiler-generated labels, such as those which mark the beginning and
ending of a DO loop. A question mark (?) precedes source-program statement labels
to distinguish them from compiler-generated labels and numeric constants. Com-
ments appearing on PUSH and POP instructions indicate the stack depth associated
with the stack reference.

Figure 13-1 shows a portion of the pseudo-assembly listing for a sample
FORTRAN-86 program, along with the source lines from which it was generated.
13.1.5 Error-Message Listing

Error messages for your compiled FORTRAN-86 program appear after the source
listing. The compiler controls PAGEWIDTH, PAGELENGTH, and TITLE apply
to the error-message listing as well.

The format for the error messages is as follows:

[STATEMENT n][, NEAR symbol], errortype m: message

where errortype is either ERROR or WARNING, m is the specific error or warning
number, n is the internal number of the statement containing the error, symbo/ is a
pointer to the location of the error within the statement, and message is the actual
error message (see Chapter 15, ‘“‘Error Messages’’).

13.1.6 Compilation Summary

The compiler generates the following messages at the end of each program listing:

STORAGE REQUIREMENTS FOR MODULE module:

CODE AREA SIZE xxxxH yyyyD
VARIABLE AREA SIZE xxxxH yyyyD
MAXIMUM STACK SIZE xxxxH yyyyD
/1 xxxxH yyyyD
/commonname/ xxxxH yyyyD

mmm ERRORS DETECTED.

nnn WARNINGS DETECTED.

ENTRY POINT IS x.

[FLOATING POINT OPERATIONS WERE GENERATED.]
COMPILATION OF module status.

In this message, module is the name of the compiled module. The module size
appears in both hexadecimal, xxxx, and decimal, yyyy. The compiler differentiates

13-3



Compiler Output

13-4

between the number of errors, mmm, and the number of warnings, nnn, showing
both. The status of the compilation can be completed or aborted if the compiler
detected any errors.

13.1.7 Sign-off Message

The compiler prints the sign-off message, as described in section 12.5, at the end of
the listing.

13.2 Object Files

The FORTRAN-86 compiler outputs a file containing relocatable object modules.
By linking this file with the FORTRAN-86 run-time libraries and other relocatable
files, you can produce a single executable object module.

Each source file submitted to the compiler produces one object file. Each program
unit in the source file produces one object module in the object file. Object modules
have the same names as their respective program units. For a module of an unnamed
main program or BLOCK DATA subprogram, the compiler assigns the names,
@MAIN or @BLOCKDATA, respectively.

Each object module generated by the compiler will contain one each of the following
8086 segments:

¢ A CODE segment
¢ A DATA segment
¢ ASTACK segment

The CODE segment is named programname __CODE, and the DATA segment,
programname _DATA. (Multiple DATA segments are named programname
__DATAnR (where n=1, 2, ...). Each COMMON block is a separate segment named
@ commonname, with a single @ for blank COMMON.

Local arrays and COMMON blocks exceeding 64K bytes in size are allocated on
multiple, chained segments. The first such segment is named as described above;
each successive segment has the same name, but with the suffixes @OFLn (where
n=1,2,..).

The following class definitions appear for your convenience in case you want to
locate your program with absolute addresses:

* CODE - consisting of all CODE segments (including constants)

* DATA -consisting of all DATA segments

® STACK - consisting of the STACK segment

*  COMMON - consisting of all COMMON segments

You specify generation of object files using the OBJECT control (see section
11.4.11). The compiler will not produce an object file if you specify the NOOBJECT
control.

13.3 Work Files

The compiler temporarily allocates work files and deletes them when they are no
longer needed or at the termination of the compilation. Up to six work files can be
allocated. The system specific appendix provides examples.

FORTRAN-86



FORTRAN-86

Compiler Output

FORTRAN~86 COMPILER
tF1:PROG2.FTN

003F
o040
0045
o048
ooua
OO04F
oosy
0059

005A

005F
0062
0067
0068
006B
0070
0071

0077
007B
007F
0081
0084
0086
0089
008B
0090
0096
0098
009cC
009F
00AY4
00A9
00AA
00AF
00B2
00B7

00B8
00BC

0O0BF
ooCcHh
00C9
00CA
00CB
0o0cCC
00DO
00D2

00D7
00DC
O0E1

GENERATED CODE

FA CLI
2E8E163B00 MOV
BCOUOO MOV
8BEC MOV
2E8E1E3D00O MOV
9A00000000 CALL
9A00000000 CALL
FB STI
9A00000000 CALL
9BDI9EE FLDZ
9BDD1E00OO FSTP
9B WAIT
9BDY9EE FLDZ
9BDB3E1200 FSTP
9B WAIT
€C70610000100 MOV
€€000000:
8B061000 MOV
81F8F 401 CMP
7E03 JLE
E93B00O JMP
87D0 XCHG
B80800 MOV
FTEA IMUL
2E8E063900 MOV
9B26DD060000 FLD
87D8 XCHG
9B26DC3F FDIVR
9BDDD1 FST
9BDC060000 FADD
9BDD1E000O FSTP
9B WAIT
9BDB2E 1200 FLD
9BDEC 1 FADDP
9BDB3E 1200 FSTP
9B WAIT
7210:
FF061009 INC
E9BBFF JMP
€6000001:
9RDB2E 1200 FLD
9BDD1E080O FSTP
9B . WAIT
OE PUSH
07 POP
8D360000 LEA
B0OO6 MOV
9A00000000 CALL
9BDD06080D FLD
9A00000000 CALL
9BDD060000 FLD
Figure 13-1

SS,CS:@@STACK$FRAME

SP,@6STACK$OFFSET
BP, SP
DS,CS:68DATA$FRAME
INITFP
TQ_001
; STATEMENT
GETDAT
s STATEMENT
HE
DPRES HE 4
HEN
TMPRES s 7
I,1H
; STATEMENT
AX, I
AX, 1F4H
$+5H
66000001
DX, AX
AX, 8H
DX
ES,CS:8CONST+39H
ES:RTOTAL
BX, AX
ES:RARRAY[BX~-8H]; 7
@TOS+1H
DPRES HE 4
DPRES s 7
TMPRES ; 7
N
TMPRES
;s STATEMENT # 11
I
686000000
; STATEMENT # 12
TMPRES HE §
RESULT s 7
Ccs IR |
ES I |
S1,?100
AL, 6H
FQ_112
;s STATEMENT # 13
RESULT HE 4
FQ_320
DPRES ¢

. Sample Portion of a Code Listing

13-5



CHAPTER 14
LINKING, RELOCATING, AND
EXECUTING PROGRAMS

14.1 Introduction

Before you can execute your FORTRAN-86 program, you must link the object
modules and optionally locate them in memory. The compiled modules that make
up your final program need not be written in the same language. You can freely link
together programs written in FORTRAN-86, Pascal-86, PL/M-86 or assembly
language to make the most efficient use of language features. Additionally, some
built-in FORTRAN-86 functions reside in the run-time support libraries which you
must link with your object code before the program can be executed successfully.

Intel provides the utilities necessary for linking your program, locating it in
memory, and loading it for execution. These utilities are listed in the system specific
appendix.

The 8086-based linker and locater are described in detail in the /APX 86,88 Family
Utilities User’s Guide. This guide also provides an overview of 8086 memory
addressing techniques, definitions of segments, classes, and groups, discussions of
segment, class, and group combining, and descriptions of how the locator binds
segments to addresses. The utilities guide also descibes the mechanics of loading and
executing programs and the maintenance of program libraries using the 8086 resi-
dent library utility and the object-code print utility.

14.2 Memory Allocation

Each FORTRAN-86 compilation allocates the memory for the program unit in
several independent, relocatable segments. They are CODE, DATA, STACK, blank
COMMON, and named COMMON.

The CODE segment contains the executable object code for your FORTRAN-86
program. The compiler also places all data constants in the CODE segment. Format
specifications from FORMAT statements are also in this segment.

The compiler allocates memory in DATA segments for all local variables and arrays,
except those in subprograms compiled while the REENTRANT control is active.
The compiler places temporary storage for intermediate values and copies of argu-
ment addresses in the STACK segment.

The blank COMMON segment holds all variables and arrays in blank COMMON
blocks. For named COMMON blocks, the compiler allocates all variables and
arrays to separate COMMON segments corresponding to the names you supplied
for those COMMON blocks.

In addition to the FORTRAN-86 segments (CODE, DATA, STACK, and
COMMUON), the relocatable object module may contain other segments. These are
segments provided by the FORTRAN-86 run-time libraries and user modules
originally written in other languages.

14.3 Linking Object Modules

The 8086-based linker (LINK86) produces a single output module. While combining
modules, the linker adjusts all addresses to be relative to the beginning of the
segments in the new output module. The linker also searches libraries for modules

14-1




Linking, Relocating, and Executing Programs

14-2

that resolve external references in the modules being combined, and includes the new
modules in the output file. Throughout this process, the linker generates a link map,
and error messages for abnormal conditions.

The output module can be processed by the 8086-based locater (LOC86), which
assigns absolute memory locations to the code in the object module. The output file
from the locater can be passed again to the linker (LINK86) to be combined with
other modules into an expanded output module. The linked module may be executed
on the Series-11I or iRMX 86 operating system without locating if the BIND control
is used.

14.3.1 Use of Libraries

A library is a file containing object modules. It is created and maintained by the
library utility, LIB86. You use the libraries to build your programs by referring to
the object modules as external procedures in your programs and linking the libraries
to your programs.

The linker treats library files in a special manner. When you specify input modules
to the linker, the linker combines them while keeping track of all external references.
When a library file is included as input to the linker, the linker searches the library
for modules that satisfy these unresolved external references. This means that
libraries should be specified to the linker after the input primary modules. If a
module has an external reference to another module in the library, the linker
searches the library again to try to satisfy the reference. The process continues until
all external references are satisfied, or until the linker cannot find any more public
symbols to satisfy an external reference.

The library utility is.described in detail in the JAPX 86,88 Family Utilities User’s
Guide (121616).

14.3.2 Run-Time Support Libraries

Intel supplies libraries that provide run-time support for FORTRAN-86 modules.
The run-time support is divided into separate libraries so that you can link in the
appropriate libraries for your application. You do not have to maintain these
libraries using LIB86, since they are already supplied as libraries.

A list of all run-time libraries follows:

CEL87.LIB and EH87.LIB are required to support floating-point and error
handling functions.

F86RNO.LIB, F86RNI1.LIB, and F86RN2.LIB are required for any run-time
support. These libraries provide FORTRAN run-time support for 1/0, internal 170,
intrinsic functions, 32-bit integer arithmetic, character strings, and multiple segment
variables.

F86RN3.LIB and F86RN4.LIB are the default logical record system libraries. For
more information see the Run-Time Support iAPX 86,88 (121776).

RTNULL.LIB instead of F86RN3.LIB and F86RN4.LIB to resolve external
references when you do not use external I/0 or if you intend to provide your own
logical record interface.

8087.LIB is required to support floating-point arithmetic with the 8087 Numeric
Data Processor. When using the 8087 Emulator use the E8087 and the module
E8087.LIB instead of the 8087.LIB. If you are not performing any floating-point
arithmetic, use 87NULL.LIB.

FORTRAN-86



FORTRAN-86 Linking, Relocating, and Executing Programs

LARGE.LIB is required to execute FORTRAN-86 programs in the Series III
environment when using FS6RN3.LIB and F86RN4.LIB. Do not use LARGE.LIB if
you linked in RTNULL.LIB (for no run-time support), except when using your own
run-time support libraries that rely on the Universal Development System Interface
(UDI) or make UDI calls in the program.

URXLRG.LIB is required to execute FORTRAN-86 programs in an iRMX-86
environment. Do not use URXLRG.LIB if you linked in RTNULL.LIB (for no run-
time support), except when using your own run-time support libraries that rely on
the UDI, or if your program makes UDI calls.

WARNING I

The LINK86 program uses a temporary file with the name LINK.TMP. The
program writes this temporary file on the same drive that you specified for
the output file. If you already have a file with the same name, LINK.TMP,
on that drive, the linker will destroy your file.

14.3.3 Linking with Non-FORTRAN Procedures

The relocatable object modules produced by the FORTRAN-86 compiler are com-
patible with those generated by the Pascal-86 compiler, the PL/M-86 compiler, and
the 8086/8087/8088 Macro Assembler. You can link together modules written in
these iIAPX 86,88 family languages. This feature allows you to use FORTRAN-86 to
code those segments of your application to which the features of FORTRAN-86 are
particularly well suited: multidimensional arrays, formatted and direct access 1/0,
floating-point arithmetic, and/or FORTRAN-86 intrinsic functions. Other facets of
your programming task can be written in another language with no loss of
compatibility.

Pascal-86 subprograms must be linked to the first two Pascal-86 run-time libraries
before linking to FORTRAN-86 object files, as follows:

LINK86 PASMOD.OBJ, P86RNO.LIB, P86RN1.LIB, &
TO PASMOD.LNK NOPUBLICS EXCEPT names

where names are those names that are referenced by the FORTRAN program.

PASMOD.LNK is then used in the FORTRAN-86 LINK86 command in the same
way as FORTRAN-86 object files.

A one-LINK-step alternative:

LINK86 FTNMOD.OBJ, CEL87.LIB, F86RNO.LIB, F86RN1.LIB, &
F86RN2.LIB, PASMOD.OBJ, PB6RNO.LIB, P86RN1.LIB, &
F86RN3.LIB, F86RN4.LIB, 8087.LIB, etc

For more specific information about mixing FORTRAN-86 subprograms with
subprograms in other languages, see Appendix H of this manual.

14-3



Linking, Relocating, and Executing Programs FORTRAN-86

14.4 Locating Object Modules

The 8086-based locater (LOC86) binds locatable segments to absolute memory
addresses. The locater creates an absolute output module from a single input
module, generates a memory map that summarizes the results of address binding,
produces a symbol table that shows the addresses of certain symbols, detects any
errors that arise in the locating process, and filters locating information and
compiler-generated debugging information. The locating process is described in
detail in Chapter 3 of the IAPX 86,88 Family Utilities User’s Guide for 8086-Based
Development Systems .

The output module from the locater is a program that you can load and execute. The
system specific appendix provides examples.

The locator includes several controls that enable you to specify exactly where por-
tions of your program will be located in memory. These controls can be specified as
part of the command syntax to the locater. This section describes specific
considerations for locating FORTR AN-86 object modules.

The ORDER control allows you to dictate the sequence of segment types in memory.
The format of this control is

ORDER (segids)

where segids is some combination of the segment names CODE, DATA, /common-
name/ (for a named COMMON), // (for blank COMMON), and STACK. If you
do not specify the ORDER control, the system locates module segments sequentially
in memory in the following order: CODE, STACK, COMMON, and DATA; the
term COMMON means all COMMON segments in an arbitrary order.

The ORDER list can be partial; you need not list all module segments. In this case,
the locater takes all segments specified in the ORDER control in the order specified.
It takes the remaining segments in the default order, after the modules listed in the
ORDER control.

14.5 Preconnecting Files

FORTRAN-86 170 statements operate on device units that are connected to files on
a one-to-one basis. A unit-to-file connection can be made when the file is opened (by
the OPEN statement) or by preconnecting the unit to the file at run-time.

In the Series-III run-time environment, FORTRAN-86 provides the following
default preconnections:

Unit Device

5 console input

6 console output
other system work file

The system specific appendix provides examples for overriding the default pre-
connections. You can specify the UNIT load-time control at execution time. The
format of the UNIT control is

source (UNITn = path)

14-4



FORTRAN-86 Linking, Relocating, and Executing Programs

where source is the name of your relocated object code, n is a number between 0 and
255, and path is an operating environment filename. Note the following examples:

PROGRM (UNIT&4=:LP:) <cr>
PROGRM.LOC (UNIT1=:CI:,UNITO0=:C0:)<cr>

The preconnection feature applies to FORTRAN-86 programs that have been
compiled, linked, and optionally located to run in your system.

When preconnecting a file, the string UNITn may not contain spaces; i.e., UNIT7,
not UNIT 7.

14.6 Executing Programs

Your linked (and relocated) program can now be loaded and executed. Your
program file could also be used as input to the DEBUG-86 debugger.

To run correctly, a program must be complete, i.e., it must contain all the modules
necessary to rin. A program must contain modules from the run-time support
library described in section 14.3.2. The system specific appendix provides examples
of program execution.

14-5



CHAPTER 15
ERRORS AND WARNINGS

This chapter lists all the compiler and run-time error and warning messages. The
compiler makes a distinction between errors and warnings, since the latter produces
executable object code despite the diagnostic messages.

Operating system error messages can be found in the manuals listed in the system
specific appendix. LINK86, LOC86, LIB86, and OHS86 error messages can be found
in the IAPX 86,88 Family Utilities User’s Guide for 8086-Based Development
Systems .

15.1 Compiler Controls and the Error Listing

The compiler errors and warnings appear in the error message listing on the device
specified by the PRINT compiler control. If the NOPRINT control is active, the
compiler does not generate an error message listing. Specifying the LIST control
causes the compiler to produce a complete listing of the program code, including
statements associated with error messages. Using the NOLIST control, however,
causes the compiler to list only those statements where errors were detected.

Source program errors are usually not fatal. An error in your source code will be
logged in the error message listing and the compiler will continue to process your
source file, if possible. You can request that the compiler halt upon encountering
one or more errors using the ERRORLIMIT compiler control. See section 11.4.5 for
specifics about this option.

15.2 Compiler Error Messages

The FORTRAN-86 compiler can issue five kinds of error messages.
e  FORTRAN-86 source program errors

e  Compiler control errors

¢ Input/Output errors

¢ Insufficient memory errors

e Compiler failure errors

15.2.1 Error Format

A more detailed description of the error message listing format can be found in sec-
tion 13.1.5 of the Compiler Output chapter. Errors and warnings within
FORTRAN-86 source code are printed in this listing in this format:

STATEMENT n[, NEAR symbol], errortypem: message

where errortype is either error or a warning, m is the specific error or warning
number, n is the internal number of the statement containing the error, symbol is a
pointer to the location of the error within the statement, and message is the actual
€rror message.

The compiler summarizes source program error totals at the end of program listing
for each program unit, as described in section 13.1.6.




Errors and Warnings

15-2

15.2.2 Error Messages

The following lists the compiler error messages. Each line gives the number and
message for each error. If any message appears without a number, call your Intel
representative, since this indicates a compiler failure.

F001

F002
F003
FOO4
F005
F006
F0O07
F008
F009
FO010
FO11
F012
FO013
FO14
FO15
F016
F017
F018
FO19
F020
F021
F022
F023
F024

<element> NEEDED NEAR <source text>

<element> is required to complete a valid FORTRAN-86 statement or con-
trol. The rest of the statement is not compiled.

INCORRECTLY PLACED PRIMARY CONTROL
UNIMPLEMENTED GENERAL CONTROL
UNIMPLEMENTED PRIMARY CONTROL

INITIAL CONTROL CANNOT BE CHANGED

PARSING TERMINATED BEFORE END OF STATEMENT
UNSUPPORTED STATEMENT

DUPLICATE LABEL

STATEMENT ILLEGAL FOR BLOCK DATA

STATEMENT OUT OF ORDER

NAME ALREADY IN COMMON

NAME CANNOT BE IN COMMON

ARRAY NAME MUST HAVE DIMENSIONS

ONLY DUMMY ARGUMENTS CAN HAVE VARIABLE DIMENSIONS
NAME CANNOT BE AN ARRAY

DUPLICATE DIMENSION SPECIFICATION

NUMBER OF DIMENSIONS EXCEEDS SEVEN

ONLY LAST DIMENSION CAN BE STAR

LOWER BOUND CANNOT BE STAR

NAME CANNOT BE INITIALIZED

ILLEGAL NAME IN DATA EXPRESSION

CONSTANT IN DATA EXPRESSION MUST BE INTEGER
NAME IN CONSTANT LIST IS NOT A CONSTANT

NAME ILLEGAL FOR MEMORY ASSOCIATION

FORTRAN-86



FORTRAN-86

F025

F026
F027
F028
F029
F030
F031

F032
F033
F034
F035
F036
FO37
F038

FO039
FO40
FO41

FO42
FO43
FO44
FO45
FO46
FO47
FO48
F049
FO50
FO51

Errors and Warnings

CONSTANT EXPRESSIONS OF THIS DATA TYPE ARE NOT
SUPPORTED

NAME CANNOT BE A SYMBOLIC CONSTANT

DUPLICATE DEFINITION OF SYMBOLIC CONSTANT

RIGHT SIDE OF CONSTANT EXPRESSION IS NOT CONSTANT
DUPLICATE DEFINITION OF EXTERNAL PROCEDURE

NAME CANNOT BE AN EXTERNAL PROCEDURE

DUPLICATE DEFINITION OF INTRINSIC
PROCEDURE

NAME CANNOT BE AN INTRINSIC PROCEDURE
UNSUPPORTED STATEMENT

ALTERNATE RETURN NOT SUPPORTED

NAME IS ALREADY A DUMMY ARGUMENT

NAME CANNOT BE A DUMMY ARGUMENT

LABEL MISSING ON FORMAT STATEMENT

STATEMENT-FUNCTION DUMMY ARGUMENT MUST BE
A NAME

NAME ILLEGAL AS STATEMENT-FUNCTION
ARGUMENT

DUPLICATE DUMMY ARGUMENT OF STATEMENT
FUNCTION

STATEMENT-FUNCTION DUMMY ARGUMENT CANNOT
BE SUBSCRIPTED

ILLEGAL ASSIGNMENT TARGET

ILLEGAL USE OF NAME AS A FUNCTION

ILLEGAL USE OF NAME AS A SUBROUTINE

LENGTH EXPRESSION IS NOT AN INTEGER CONSTANT
EXPRESSION IS NOT CONSTANT

EXPRESSION IS NOT OF TYPE INTEGER

ILLEGAL OPERATOR OR CONSTRUCT

ALTERNATE RETURN IS NOT SUPPORTED

MISSING TERMINATION FOR A DO OR BLOCK IF
MISSING TERMINATION FOR A CONTAINED DO



Errors and Warnings FORTRAN-86

FO52 MISSING ENDIF FOR A CONTAINED BLOCK IF

FO54 TILLEGAL STATEMENT FOLLOWING LOGICAL IF

FO55 NO MATCHING BLOCK IF

FO56 ELSE OR ELSEIF FOLLOWING ELSE IS ILLEGAL

FO57 DO VARIABLE IS NOT AN INTEGER VARIABLE

FO58 END SPECIFIER ILLEGAL WITH WRITE OR DIRECT ACCESS
FO59 UNFORMATTED INTERNAL IO NOT ALLOWED

FO60 DIRECT ACCESS NOT ALLOWED FOR INTERNAL OR LIST
I0

F061 MISSING UNIT SPECIFIER
F062 MULTIPLE UNIT SPECIFIERS
F063 MULTIPLE FILE SPECIFIERS
FO64 MULTIPLE RECORD SPECIFIERS
FO065 MULTIPLE IOSTAT SPECIFIERS
FO66 MULTIPLE ERR SPECIFIERS
FO067 MULTIPLE END SPECIFIERS
FO68 INVALID STATUS SPECIFIER
FO069 MULTIPLE FILE SPECIFIERS
FO70 MULTIPLE RECL SPECIFIERS
FO71 INVALID STATUS SPECIFIER
FO72 MULTIPLE STATUS SPECIFIERS
FO73 INVALID ACCESS SPECIFIER
FO74 MULTIPLE ACCESS SPECIFIERS
FO75 INVALID FORM SPECIFIER
FO76 MULTIPLE FORM SPECIFIERS
FO77 INVALID BLANK SPECIFIER
FO78 MULTIPLE BLANK SPECIFIERS
FO79 INVALID CARRIAGE SPECIFIER
FO80 MULTIPLE CARRIAGE SPECIFIERS
FO81 WRONG NUMBER OF ARGUMENTS

15-4



FORTRAN-86

F082
F083
FO84
FO85
F086
FO87
F088
F089
F090
F091
F092
F093
F094
F095
F096
F097
F098
F099
F100
F101
F102
F103
F104
F105
F106
F107
F108
F109
F110
F111

Errors and Warnings

ARGUMENT MUST BE AN EXTERNAL PROCEDURE

TWO-BYTE RESULT FIELD NEEDED

DIMENSION VARIABLE NOT AN ARGUMENT OR IN COMMON
FORMAT SPECIFIER IS NOT A FORMAT LABEL

FOUR-BYTE FIELD LENGTH REQUIRED

TWO-BYTE FIELD LENGTH REQUIRED

DATA TYPE INTEGER OR LOGICAL REQUIRED

VARIABLE REFERENCE REQUIRED

DATA TYPE INTEGER REQUIRED

ARITHMETIC EXPRESSION REQUIRED

DATA TYPE LOGICAL REQUIRED

CHARACTER DATA TYPE REQUIRED

ILLEGAL USE OF PROCEDURE NAME

SUBSCRIPTS MISSING IN ARRAY REFERENCE

SUBSTRING ALLOWED WITH TYPE CHARACTER ONLY
INCORRECT NUMBER OF SUBSCRIPTS

THIS PROCEDURE CANNOT BE USED AS AN ACTUAL ARGUMENT
WRONG NUMBER OF ARGUMENTS

INCOMPATIBLE DATA TYPE

ARRAY SIZE IS UNKNOWN

RIGHT SIDE IS NOT A CHARACTER EXPRESSION
VARIABLE-LENGTH FUNCTION NOT ALLOWED
VARIABLE-LENGTH CHARACTER STRING NOT ALLOWED
LABEL IS NOT DEFINED AT AN EXECUTABLE STATEMENT
SUBSTRING FOR NONCHARACTER VARIABLE IS IGNORED
ILLEGAL SUBSTRING START IS ASSUMED 1

SUBSTRING END CANNOT BE LESS THAN SUBSTRING START
SUBSCRIPTS FOR NON-ARRAY IGNORED

WRONG NUMBER OF SUBSCRIPTS-FIRST ELEMENT ASSUMED

SUBSCRIPT VALUE IS LESS THAN LOW BOUND

15-5



Errors and Warnings

15-6

F112
F113
F114
F115
F116
F118

F119
F120

F121
F122
F151
F152
F153
F154
F155
F156
F157
F158
F159
F160
F161
F162
F163
F164
F165
F166
F167

SUBSCRIPT VALUE EXCEEDS UPPER BOUND

VARIABLE DIMENSION NOT ALLOWED

DUMMY ARGUMENTS ILLEGAL IN INTERRUPT PROCEDURE

ONLY SUBROUTINES AND FUNCTIONS CAN BE REENTRANT
INTERRUPT PROCEDURE MUST BE A SUBROUTINE

BUILTIN OPERAND MUST BE IN CONTIGUOUS STORAGE

The 8087 built-in functions STSW87, LDCW87, STCW87, SAV87, and
RST87, do not accept operands in noncontiguous storage. This is because
they translate directly into their corresponding 8087 machine instructions.
See error F206 for a description of how to avoid this problem.

THIS STATEMENT IS TOO COMPLEX

ONLY INTEGER AND LOGICAL SUPPORTED FOR VALUE
ARGUMENTS

UPPER BOUND IS LESS THAN LOWER BOUND

DUPLICATE TYPE SPECIFICATION IGNORED

END STATEMENT MISSING

END STATEMENT IN INCLUDE IGNORED

MAXIMUM PAGELENGTH IS 255

MINIMUM PAGELENGTH IS 5

MAXIMUM PAGEWIDTH IS 132

MINIMUM PAGEWIDTH IS 60

MORE DATA VARIABLES THAN DATA CONSTANTS

THIS STATEMENT IS TOO COMPLEX

ATTEMPT T0 DIVIDE BY 0

OVERFLOW IN CONSTANT DIVISION

THE LINE AT OR AFTER THIS STATEMENT IS TOO LONG
TOO MANY CHARACTERS IN STATEMENT

NONDIGIT IN STATEMENT-LABEL FIELD

FIRST LINE OF A STATEMENT IS A CONTINUATION LINE
MORE THAN 19 CONTINUATION LINES NOT SUPPORTED
LABEL PRESENT ON CONTINUATION LINE--LINE IGNORED

INVALID CHARACTER(S) IN SOURCE AT OR AFTER THIS
STATEMENT

FORTRAN-86



FORTRAN-86

F168
F169
F170
F171
F172
F173

F174
F175
F176
F177
F178
F179
F180
F181
F182
F183

F191
F192
F201
F202

F203

F204

F205

F206

Errors and Warnings

CONTROL NEAR 'XXX' CANNOT BE NEGATED

HOLLERITH STRING LONGER THAN 255--TRUNCATED ON RIGHT
ZERO-LENGTH HOLLERITH STRING ILLEGAL

STATEMENT ENDS BEFORE END OF HOLLERITH STRING

TOO MANY NESTED INCLUDE LEVELS

INTERRUPT NUMBER MUST BE BETWEEN 0 AND 255--LOW BYTE
USED

UNKNOWN CONTROL IN SOURCE PROGRAM NEAR

THE BLOCK CONTAINING THIS STATEMENT IS TOO COMPLEX
INTRINSIC HAS INCORRECT NUMBER OF OPERANDS

TYPES OF OPERANDS INCOMPATIBLE

TYPE OF ARGUMENT INCOMPATIBLE WITH INTRINSIC

MORE DATA CONSTANTS THAN DATA VARIABLES

THIS STATEMENT IS TOO COMPLEX

ASSIGN VARIABLE MUST BE AT LEAST TWO BYTES LONG
TYPES OF OPERANDS INCOMPATIBLE WITH OPERATION

PARAMETER TYPE MISMATCH WITH EARLIER INVOCATION OF
PROCEDURE

SOURCE FILENAME MISSING
UNKNOWN CONTROL IN COMMAND TAIL
TOO MANY NAMES TO SORT

EQUIVALENCE OF TWO ITEMS IN DIFFERENT COMMONS
IGNORED

EQUIVALENCE OF AN ITEM AT TWO DIFFERENT LOCATIONS
IGNORED

ATTEMPT TO EXTEND COMMON ON LEFT BY EQUIVALENCE
IGNORED

EQUIVALENCE LIST WITH FEWER THAN TWO LEGAL ELEMENTS
IGNORED

VARTABLE OR ARRAY ELEMENT ALLOCATED NONCONTIGUOUS
STORAGE

A variable or array element in the program overlaps a 64K-byte segment
boundary and therefore must be accessed by an out-of-line run-time
procedure when referenced in an executable statement.

This message is not an error or a program restriction. It is issued as an aid to
users who want to optimize their program performance.

15-7



Errors and Warnings

15-8

F207

F208

F209

F210
F211

F212
F213
F214
F215
F216
F217
F218

Special out-of-line handling can be avoided by redefining certain memory
sequences so that no single variable or array element overlaps 64K-segment
boundaries. To do this:

1. Do not mix data lengths in a numeric/logical COMMON block that
exceeds 65,520 (or 64K—16) bytes in length.

2. When a local CHARACTER array exceeds 64K bytes in length, the
element length should divide 65,520 evenly. (65,520 =24 x32x5x 7 x 13,
so an element length of any combination of these factors will avoid this
warning.)

3. If mixed data lengths, including odd-length CHARACTER types, are
necessary in a COMMON block that exceeds 65,520 bytes in length,
reorder the elements or add filler variables so that the 65,521st
(131,041st, etc.) byte coincides with the first bytk of a variable or array
element.

4. If the overlapping variable is the result of a mixed-length
EQUIVALENCE specification, change your program to avoid the need
for the mixed-length EQUIVALENCE specification.

OVERLAP ACTUAL ARGUMENT--SPECIAL COMPILATION
REQUIRED.

A variable or array element that has been allocated noncontiguous storage
(or an array containing such an element) has been used as an actual argu-
ment for a subroutine or function. Since variables in noncontiguous storage
require special handling by the compiler, the subroutine or function
indicated must be compiled using the OVERLAP control.

As an alternative to the OVERLAP control, you may redefine the calling
program’s actual arguments so that no single variable or array element
overlaps 64K-segment boundaries. For more information, see the
explanation of the compiler warning message F206.

CONSTANT/VARIABLE TYPE MISMATCH IN A DATA
STATEMENT--ENTRIES IGNORED

NONBLANK CHARACTERS FOLLOWING FORMAT SPECIFICATIONS
IGNORED

FORMAT DOES NOT BEGIN WITH '(!'

INVALID OR MISSING DELIMITER--',', *'/', ':', OR ')
NEEDED

UNRECOGNIZABLE FORMAT EDIT DESCRIPTOR FOUND

'-' NOT FOLLOWED BY AN INTEGER

A NEGATIVE INTEGER IS ALLOWED ONLY WITH 'P'

'B' REQUIRES A NONZERO POSITIVE INTEGER WIDTH
'I' REQUIRES A NONZERO POSITIVE INTEGER WIDTH
'I' REQUIRES A NONNEGATIVE INTEGER AFTER THE '.'
'Z' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

FORTRAN-86



FORTRAN-86

F219
F220
F221
F222
F223
F225
F226
F227
F228
F229

F230
F231
F232
F233

F234
F235
F236
F237
F238

F239
F240
F241
F242
F243
F244
F245

F246
F247

Errors and Warnings

‘L' REQUIRES NONZERO POSITIVE INTEGER WIDTH

'F' REQUIRES NONZERO POSITIVE INTEGER WIDTH

'F' REQUIRES '.' AFTER ITS WIDTH

‘F* REQUIRES NONNEGATIVE INTEGER AFTER THE *'.'

'D' REQUIRES '." AFTER ITS WIDTH

‘D' REQUIRES NONNEGATIVE INTEGER AFTER THE '.’

'E' REQUIRES NONZERO POSITIVE INTEGER WIDTH

'E' REQUIRES ‘.' AFTER ITS WIDTH

'E' REQUIRES NONNEGATIVE INTEGER AFTER THE '.'

'E' REQUIRES NONZERO POSITIVE INTEGER EXPONENT 'E'
FIELD

'6' REQUIRES NONZERO POSITIVE INTEGER WIDTH

‘6" REQUIRES '.' AFTER ITS WIDTH

'6' REQUIRES NONNEGATIVE INTEGER AFTER THE '.'
;?éLgEQUIRES NONZERO POSITIVE INTEGER EXPONENT 'E’

A SIGNED INTEGER CONSTANT MUST PRECEDE 'P'

A NONZERO POSITIVE INTEGER CONSTANT MUST PRECEDE 'X'
A NONZERO POSITIVE INTEGER CONSTANT MUST PRECEDE 'H'
CLOSING QUOTE MISSING FOR QUOTED STRING

'H' FORMAT SPECIFIES MORE CHARACTERS THAN ARE
AVAILABLE

DECIMAL PART LARGER THAN DESCRIPTOR FIELD WIDTH
ILLEGAL OR UNPRINTABLE FORMAT DESCRIPTOR FOUND
REPEAT NESTING EXCEEDS 3 LEVELS

ILLEGAL CHARACTER IN A QUOTED STRING

'P' FORMAT IS OUT OF RANGE

MORE LEFT PARENTHESES THAN RIGHT

INTEGER SPECIFIED IS OUT OF RANGE ALLOWED IN FORMAT
STATEMENTS

THE DECIMAL PART OF AN 'I' IS GREATER THAN ITS WIDTH

DECIMAL AND EXPONENT PARTS LARGER THAN DESCRIPTOR
FIELD WIDTH

15-9



Errors and Warnings FORTRAN-86

F251 TOO MANY PROCEDURE NAMES AND LABELS TO SORT

F252 MORE THAN 64K OF DATA OUTSIDE COMMON--64K USED

F253 CODE CROSSES 64K BOUNDARY AT OR AFTER THIS STATEMENT
F254 MORE THAN 64K OF CODE INCL. CONSTANTS--64K USED

F255 MORE THAN 64K OF STACK NEEDED--64K USED

F256 MORE THAN 64K OF PARAMETERS--64K USED

F257 TILLEGAL USE OF DATA STATEMENT IGNORED

F258 DATA CONSTANT EXCEEDS 255 BYTES

F259 TOO MANY ARGUMENTS FOR TYPE CHECKING

F261 TOO MANY ERRORS TO SORT

F271 CONSTANT CONTAINS AN ILLEGAL CHARACTER--BLANK
ASSUMED

F272 INTEGER CONSTANT WON'T FIT IN FOUR BYTES--TRUNCATED
ON LEFT

F273 LABEL IS GREATER THAN 99999--RIGHTMOST DIGITS
TRUNCATED

F274 NULL STRING IS ILLEGAL--*' ' ASSUMED

F275 QUOTED STRING LONGER THAN 255 CHARACTERS--TRUNCATED
ON RIGHT

F276 LABEL OF ZERO IS ILLEGAL
F277 NAME LONGER THAN 6 CHARACTERS--TRUNCATED ON RIGHT
F278 DIGIT STRING OF MORE THAN FIVE DIGITS IS ILLEGAL

F279 INCOMPATIBLE LENGTHS FOR SYMBOLIC AND ACTUAL
CONSTANT

F280 IMPLICIT RANGE INVALID--ONLY FIRST LETTER USED
F281 INCOMPATIBLE DATA TYPE AND LENGTH

F282 LETTER ALREADY GIVEN AN IMPLICIT TYPE

F283 SUBPROGRAM NAME IS ALREADY A SUBPROGRAM NAME
F284 SUBPROGRAM NAME IS ALREADY A COMMON NAME

F285 COMMON NAME IS ALREADY A SUBPROGRAM NAME

F286 LENGTH CANNOT BE STAR

F287 EXPLICIT LENGTH ILLEGAL--DEFAULT USED

F288 NAME CANNOT BE CHARACTER*(*)--CHARACTER*1 USED

15-10



FORTRAN-86 Errors and Warnings

F289 THE TYPE OF THIS INTRINSIC FUNCTION IS CHANGED TO
ITS DEFAULT

F290 LENGTH SPECIFICATION EXCEEDS 64K--DEFAULT USED
F291 OVER 49 OVERFLOW SEGMENTS ALLOCATED

15.2.3 Compiler Control Error Messages

If the FORTRAN-86 compiler detects an error in a compiler control (whether in a
control line embedded in source code or in the compiler invocation line), the com-
pilation may be halted. If this happens, the compiler issues an error message to both
the console and the list file. The form of the message is:

*xk*FORTRAN COMPILATION TERMINATED.

15.2.4 Compiler Failure Error Messages

Fatal compiler failure errors are internal FORTRAN-86 compiler errors that should
never occur. If you encounter one of these errors, please report it to Intel Corpora-
tion, 3065 Bowers Avenue, Santa Clara, California 95051, Attention: Software
Marketing Department.

The two errors falling into this category are:

208 COMPILER ERROR: AN OPERAND HAS A DISALLOWED FORM
214 COMPILER ERROR: SOME OPERATOR CANNOT GET OPERANDS INTO
AN ACCEPTABLE FORM

15.3 Run-Time Errors

Certain Series-III operating system errors may occur that are documented in the
Intellec Series-III Microcomputer Development System Console Operating
Instructions. Run-time errors that are unique to the FORTRAN-86 run-time
support software are described in this section.

A masked floating-point run-time error can occur without stopping the program.
When a run-time error other than a masked floating-point error occurs, the system
stops running the program, prints a run-time exception message, and returns control
to-the operating system.

There are three types of run-time exception messages: run-time system exceptions
(non-floating-point), floating point function exceptions (15.3.4), and floating-point
8087 exceptions (15.3.5).

Run-time system exception messages take the following form:
*x*x RUN-TIME type EXCEPTION code

*xx NEAR LOCATION hhhhi:hhhhHi
kx* JOB ABORTED.

15-11



Errors and Warnings FORTRAN-86

15-12

The type of the run-time exception can be one of the following types:
FORTRANI/0

170

OPERATING ENVIRONMENT

INTEGER ZERO DIVIDE

INTEGER OVERFLOW

RANGE

CHECK

For each type, the code is the hexadecimal exception code number for each message.
The hexadecimal locations hhhhH:hhhhH are the values in CS:IP after control

returns from the run-time system to the program. Each message is described in the
subsequent sections by type and by code number.

15.3.1 Input/Output Exceptions

If a FORTRAN-86 1/0 statement includes the ERR specifier in its control list, the
compiler transfers control to the statement designated by ERR when an error is
detected. The default error handler is not called in this case.

If you include the IOSTAT specifier in the control list of a FORTRAN-86 1/0 state-
ment, I/0 operations return a numerical code as well as the value of a symbol
designated by IOSTAT.

RUN-TIME FORTRAN I/0 EXCEPTION: 1200H

An invalid link sequence was specified for the run-time libraries.

RUN-TIME FORTRAN I/0 EXCEPTION: 1201H

Negative system error detected.

RUN-TIME FORTRAN I/0 EXCEPTION: 120EH

Output list specifies more values than can fit into a direct access record.

RUN-TIME FORTRAN I/0 EXCEPTION: 1210H

An initial left parenthesis is required to define a format statement.

RUN-TIME FORTRAN I/0 EXCEPTION: 1211H

Invalid delimiter was found in a FORMAT statement (expecting “,””, ¢*/”’, or *“)”’).
RUN-TIME FORTRAN I/0 EXCEPTION: 1212H

An unrecognizable edit descriptor was found in a FORMAT statement.

RUN-TIME FORTRAN I/0 EXCEPTION: 1213H

A nondigit followed a ‘‘-”’ in the FORMAT statement (note that ‘“-P’’ must be
“_IP)’).

RUN-TIME FORTRAN I/0 EXCEPTION: 1214H

Only P-format descriptor can follow a negative integer.



FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN I/0 EXCEPTION: 1215H

B-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1216H

I-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1217H

Iw.m-format descriptor must have a positive integer following the decimal point.
RUN-TIME FORTRAN I/0 EXCEPTION: 1218H

Z-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1219H

L-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 121AH

F-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 121BH

F-format descriptor must have a decimal point following the width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 121CH

F-format descriptor must have a nonnegative integer following the decimal point.
RUN-TIME FORTRAN I/0 EXCEPTION: 121DH

D-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 121EH

D-format descriptor must have a decimal point following the width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 121FH

D-format descriptor must have a nonnegative integer following the decimal point.
RUN-TIME FORTRAN I1/0 EXCEPTION: 1220H

E-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/Q0 EXCEPTION: 1221H

E-format descriptor must have a decimal point following the width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1222H

E-format descriptor must have a nonnegative integer following the decimal point.
RUN-TIME FORTRAN I/0 EXCEPTION: 1223H

E-format descriptor must have a positive integer following the E in the exponent
field.

15-13



Errors and Warnings FORTRAN-86

15-14

RUN-TIME FORTRAN I/0 EXCEPTION: 1224H

G-format descriptor must be followed by a positive integer width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1225H

G-format descriptor must have a decimal point following the width field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1226H

G-format descriptor must have a nonnegative integer following the decimal point.
RUN-TIME FORTRAN I/0 EXCEPTION: 1227H

G-format descriptor must have a positive integer following the E in the exponent
field.

RUN-TIME FORTRAN I/0 EXCEPTION: 1228H

A signed integer constant must precede P-format descriptor.

'RUN-TIME FORTRAN I/0 EXCEPTION: 1229H

A positive integer constant must precede X-format descriptor.
RUN-TIME FORTRAN I/0 EXCEPTION: 122AH

A positive integer constant must precede H-format descriptor.
RUN-TIME FORTRAN I/0 EXCEPTION: 1231H

The closing quote for a quoted string is missing.

RUN-TIME FORTRAN I/0 EXCEPTION: 1232H

H-format descriptor requires more characters than are available.
RUN-TIME FORTRAN I/0 EXCEPTION: 1233H

The width field must be greater than or equal to the decimal field of a floating-point
edit descriptor (E, G, D).

RUN-TIME FORTRAN I/O0 EXCEPTION: 1234H

A character in the FORMAT statement was found to be outside the set of characters
allowed for format edit descriptors.

RUN-TIME FORTRAN I/0 EXCEPTION: 1235H
The nesting of brackets in a FORMAT statement exceeds limit (3).
RUN-TIME FORTRAN I/0 EXCEPTION: 1236H
An illegal character was found within a quoted string.
RUN-TIME FORTRAN I/0 EXCEPTION: 1237H

The integer specified for P-format descriptor was out of range (-2¥*15,2¥*15-1).



FORTRAN-86

RUN-TIME FORTRAN I/0 EXCEPTION: 12394

Integer specified is out of range allowed by FORMAT statements.

RUN-TIME FORTRAN I/0 EXCEPTION: 1238H
More left parentheses than right.

RUN-TIME FORTRAN I/0 EXCEPTION: 123AH
Integer size greater than field width.

RUN-TIME FORTRAN I/0 EXCEPTION: 1240H
H-format descriptor not allowed on input.
RUN-TIME FORTRAN I1/0 EXCEPTION: 1241H
A logical data item was expected on input.
RUN-TIME FORTRAN I/0 EXCEPTION: 1242H
An integer data item was expected on input.
RUN-TIME FORTRAN I/0 EXCEPTION: 1243H
A floating-point data item was expected on input.
RUN-TIME FORTRAN I/0 EXCEPTION: 12&44H
An invalid logical data field was found on input.
RUN-TIME FORTRAN I/0 EXCEPTION: 1248H
An invalid hexadecimal data field was found on input.
RUN-TIME FORTRAN I1/0 EXCEPTION: 1249H
An invalid binary data field was found on input.

RUN-TIME FORTRAN I/0 EXCEPTION: 124AH

Errors and Warnings

A repeatable edit descriptor is missing, causing an infinite loop to occur in the pro-

cessing of a repeated FORMAT statement.

RUN-TIME FORTRAN I/0 EXCEPTION: 124BH

The scale of an input exponent is out of range.

RUN-TIME FORTRAN I/0 EXCEPTION: 124CH
Quoted string input is invalid.

RUN-TIME FORTRAN I/0 EXCEPTION: 1251H

End of file record was encountered with no END= specified.
RUN-TIME FORTRAN I/0 EXCEPTION: 1252H

An attempt was made to read or write beyond end of record.

15-15



Errors and Warnings FORTRAN-86

15-16

RUN-TIME FORTRAN I/0 EXCEPTION: 1254H

The data transfer mode is inconsistent with the file’s FORM attribute.
RUN-TIME FORTRAN I/0 EXCEPTION: 1255H

The data transfer mode is inconsistent with the file’s ACCESS attribute.
RUN-TIME FORTRAN I/0 EXCEPTION: 1256H

Syntax error in formatted binary or hexadecimal input field.
RUN-TIME FORTRAN 1/0 EXCEPTION: 1260H

Invalid delimiter in list directed input field.

RUN-TIME FORTRAN I/0 EXCEPTION: 1261H

Syntax error in list directed alphanumeric input field.

RUN-TIME FORTRAN I/0 EXCEPTION: 1262H

Syntax error in formatted/list directed logical input field.

RUN-TIME FORTRAN I/0 EXCEPTION: 1263H

Syntax error in formatted/list directed floating-point input field.
RUN-TIME FORTRAN I/0 EXCEPTION: 1264H

Syntax error in formatted/list directed integer input field.

RUN-TIME FORTRAN I/0 EXCEPTION: 1265H

Zero-valued repeat factor not allowed in list-directed input.
RUN-TIME FORTRAN I/0 EXCEPTION: 1270H

An attempt was made to append to an internal file.

RUN-TIME FORTRAN I/0 EXCEPTION: 1272H

The input data transfer conflicts with CARRIAGE= specifier.
RUN-TIME FORTRAN I/0 EXCEPTION: 1273H

The next 1/0 list element and repeatable edit descriptor do not match.
RUN-TIME FORTRAN I/0 EXCEPTION: 1274H

Invalid repeat specifier in FORMAT statement.

RUN-TIME FORTRAN I/0 EXCEPTION: 1275H

Expected repeatable edit descriptor is missing.

RUN-TIME FORTRAN I/0 EXCEPTION: 1276H

Recursion error- Attempt was made to perform I/0 on a file which is active on the
same unit.



FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN 1/0 EXCEPTION: 1282H

Attempt to read or write past the ENDFILE record.

RUN-TIME FORTRAN I/0 EXCEPTION: 12A1H

The string passed in the STATUS specifier of an OPEN statement is illegal.
RUN-TIME FORTRAN 1/0 EXCEPTION: 12A2H

The string passed in the ACCESS specifier of an OPEN statement is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A3H

The string passed in the FORM specifier of an OPEN statement is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A4H

The string passed in the BLANK specifier of an OPEN statement is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A5H

The string passed in the CARRIAGE specifier of an OPEN statement is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A6H

A FILE= specifier must be given in the OPEN statement when STATUS=‘NEW’.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A7H

A FILE= specifier must be given in the OPEN statement when STATUS=‘OLD"’.
RUN-TIME FORTRAN I/0 EXCEPTION: 12A8H

A FILE= specifier must not be given in the OPEN statement when
STATUS=‘SCRATCH’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12A9H

Of those attributes specified in the OPEN statement, only BLANK=,
CARRIAGE=, and/or RECL= can change for an existing file-unit connection.

RUN-TIME FORTRAN I/0 EXCEPTION: 12AAH
The integer value specified for RECL=in the OPEN statement must be positive.
RUN-TIME FORTRAN I/0 EXCEPTION: 12ABH

RECL= must not be specified in the OPEN statement when ACCESS=‘SEQUEN-
TIAL’ and FORM=‘UNFORMATTED’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12ACH
RECL= must be specified in the OPEN statement when ACCESS=‘DIRECT’.
RUN-TIME FORTRAN I/0 EXCEPTION: 12ADH

RECL= attribute of an existing connection must not be changed in the OPEN state-
ment unless ACCESS=‘SEQUENTIAL’ and FORM=‘FORMATTED’.

15-17



Errors and Warnings FORTRAN-86

RUN-TIME FORTRAN I/0 EXCEPTION: 12AEHM

BLANK= must not be specified in the OPEN statement for a new connection when
FORM=‘UNFORMATTED"’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12AFH

BLANK= must not be specified in the OPEN statement for an existing connection
when FORM=UNFORMATTED’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12B0H

CARRIAGE= must not be specified in the OPEN statement for a new connection
when FORM=‘UNFORMATTED’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12B1H

CARRIAGE= must not be specified in the OPEN statement for an existing connec-
tion when FORM="UNFORMATTED’.

RUN-TIME FORTRAN I/0 EXCEPTION: 12B2H
The file-unit does not exist.
RUN-TIME FORTRAN I/0 EXCEPTION: 12C1H

KEEP must not be specified for a file whose status prior to execution of the CLOSE
statement is SCRATCH.

RUN-TIME FORTRAN I/0 EXCEPTION: 12C2H
The string passed in the STATUS specifier of a CLOSE statement is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12D1H
The external unit specified by a BACKSPACE statement was not connected.
RUN-TIME FORTRAN 1/0 EXCEPTION: 12D2H

The external unit specified by a BACKSPACE statement was not connected for
sequential access.

RUN-TIME FORTRAN I1/0 EXCEPTION: 12D3H
Backspacing over records written using list-directed formatting is illegal.
RUN-TIME FORTRAN I/0 EXCEPTION: 12E1H
The external unit specified by a REWIND statement was not connected.
RUN-TIME FORTRAN I/0 EXCEPTION: 12EZ2H

The external unit specified by a REWIND statement was not connected for sequen-
tial access.

RUN-TIME FORTRAN I/0 EXCEPTION: 12F1H

The external unit specified by an ENDFILE statement was not connected.

15-18



FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN I/0 EXCEPTION: 12F2H

The external unit specified by an ENDFILE statement was not connected for
sequential access.

RUN-TIME I/0 EXCEPTION: 9102H

The end of file was encountered when illegal.

RUN-TIME 1/0 EXCEPTION: 9103H

The integer field on input does not conform to the decimal signed integer syntax.
RUN-TIME I/0 EXCEPTION: 9104H

The floating-point field on input does not conform to the run-time signed number
syntax.

RUN-TIME I/0 EXCEPTION: 9105H

The integer field on formatted input defined a signed integer which could not fit into
the INTEGER*2 range.

RUN-TIME I/0 EXCEPTION: 9106H

The integer field on formatted input defined a signed integer which could not fit into
the INTEGER*4 range.

RUN-TIME I/0 EXCEPTION: 9107H

The floating-point field on formatted input defined a signed number whose
magnitude was too large to fit into the TEMPREAL range.

RUN-TIME 1/0 EXCEPTION: 9108H

The floating-point field on formatted input defined a signed number whose
magnitude was too small to fit into the TEMPREAL range.

RUN-TIME I/0 EXCEPTION: 9109H

The integer field on formatted input defined a signed integer which could not fit into
INTEGER*1 range. :

15.3.2 Operating Environment Error

RUN-TIME EXCEPTION: 15004

Configurationrexception. Call your local Intel representative.

RUN-TIME EXCEPTION: 1501H

Command line preconnection facility has detected invalid preconnection syntax.
RUN-TIME EXCEPTION: 1502H

An attempt was made to open a file which should have not already existed.

15-19



Errors and Warnings

15-20

RUN-TIME EXCEPTION: 1503H
Configuration error. File not open for write access.
RUN-TIME EXCEPTION: 15044
Configuration error. File not open for read access.
RUN-TIME EXCEPTION: 1505H

More than six file’s descriptors were requested from the RTNULL descriptor
allocator.

RUN-TIME EXCEPTION: 1506H
Unformatted sequential record is inconsistent.
RUN-TIME EXCEPTION: 1507H

Seek out or range - Attempt to seek when offset (i.e., rec__len * rec__num
> (2**31)-1).

RUN-TIME EXCEPTION: 1508H

DIRECT record length too large (maximum allowable: formatted, 65,503,
unformatted, 65,503).

15.3.3 Integer Exceptions

RUN-TIME INTEGER EXCEPTION: 8000H -
8-bit, 16-bit, or 32-bit signed integer zero divide.
RUN-TIME INTEGER EXCEPTION: 8001H

8-bit, 16-bit, or 32-bit signed integer overflow.

15.3.4 Range and Check Exceptions
RUN-TIME EXCEPTION: 8017H

Compiler generated check exception (e.g., stack overflow).

15.3.5 Floating-Point Function Exceptions

Floating-point function error messages take the following form:

*x* RUN-TIME FLOATING-POINT function EXCEPTION status
kkx NEAR LOCATION hhhhhH
*xx JOB ABORTED

FORTRAN-86



FORTRAN-86

The function can be one of the following:

Errors and Warnings

SIN IRINT
CosS SINH
TAN COSH
ASIN TANH
ACOS SQRT
ATAN DIM
ATAN2 EXP
ALOG MOD
ALOG10 RMD
INT SIGN
AINT yrEx
ANINT yr*i
NINT MIN
RINT MAX

The status is the hexadecimal value of the 8087 STATUS register and the location
hhhhh is the 20-bit physical address of the location of the exception. The 8087
STATUS values are described in the 8086 Family User’s Manual Numerics Supple-
ment. General floating-point exceptions are discussed in the next section.

15.3.6 Floating-Point 8087 Exceptions

Floating-point error messages take the following form:

*x% RUN-TIME 8087 EXCEPTION status
*xx INSTR OPCODE op

k*%x MEMOP ADDRESS hhhhhH

**%x NEAR LOCATION hhhhhH

*x* JOB ABORTED.

The status is the hexadecimal value in the 8087 STATUS register. The op is the
hexadecimal value of the 8087 instruction opcode register. The hhhhhH is a
hexadecimal 20-bit physical address. The 8087 registers are described in the 8086
Family User’s Manual Numerics Supplement .

There are six possible 8087 floating-point, or exception conditions: invalid opera-
tion, denormalized operand, zero divide, overflow, underflow, and precision. Not
all exceptions are errors.

This section first discusses the meaning of the six types of exceptions, what condi-
tions cause them, and the actions performed when each exception occurs with the
corresponding exception controls unmasked. The 8086 Family User’s Manual
Numerics Supplement discusses the unmasked case.

Section 7.6 contains explanations of rounding, denormalized and unnormalized
numbers, unnormalized arithmetic, infinity arithmetic, and NaNs. These dis-
cussions should suffice for FORTRAN-86. users; however, if you are also writing
modules in other languages to interface with the 8087 chip or emulator, you may
wish to see the 8086 Family User’s Manual Numerics Supplement for a fuller
explanation of some topics.

NOTE

FORTRAN-86 presets the 8087 computation modes and exception masks
(explained in the 8086 Family User’s Manual Numerics Supplement) to the
following recommended settings:

¢ The infinity arithmetic mode is projective.
¢  The rounding mode is round-to-nearest.

15-21



Errors and Warnings

15-22

* The precision mode for intermediate results is 64 bits of precision.
¢  The denormal arithmetic mode is warning mode.

* All 8087 exception conditions are masked except invalid operation,
which is unmasked.

¢ The 8087 interrupt enable mask bit is zero (interrupt enabled).

You can change the computation modes and exception masks in a FORTRAN-86
program by using the 8087 control intrinsics (see section 6.1.2.3). The following dis-
cussions assume that you have not changed any of these settings. If you use any of
the functions SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, EXP, ALOG,
ALOGI10, SINH, COSH, TANH, y**x, y**i, NINT, ANINT, MOD, or RMD you
must not unmask the precision error and the precision exception bit in the 8087
STATUS word is undefined after the operation is completed.

Invalid Operation

An invalid operation exception occurs when either an operand is invalid for the
specified operation, or the operation itself is invalid. This exception generally

‘indicates a program error such as a reference to an uninitialized variable; so even if

you mask all other exceptions, it is reccommended that you leave Invalid Operation
unmasked. An Invalid Operation exception is signalled when any one of the follow-
ing conditions occurs:

¢ One or more of the operands is a Trapping NaN.

¢ One or more of the operands in the computation sequence was unnormalized or
denormalized, and the result cannot be guaranteed because significant informa-
tion was lost. (Not all operations on unnormalized or denormalized numbers
result in loss of significant information; those that do not will not signal Invalid
Operation.)

e Any of the following operations is attempted: infinity+infinity (in projective

mode), infinity-infinity, 0.0*infinity, infinity*0.0, infinity/infinity, 0.0/0.0,
normal number/unnormalized number, normal number/denormalized number
(in warning mode).

e In INT, NINT, or IRINT, the operand is too large to fit into the INTEGER
format (INTEGER*2 and INTEGER*4 only).

¢ In comparisons using any of the relational operators, .LT., .LE., .GT., or
.GE., the two operands are ‘‘unordered’’.

The invalid operation is a ‘‘before’’ error, so that when unmasked, the original
operands are available to the exception handler. ‘

‘The following are specific cases that cause invalid operation exceptions:

*  SQRT(x) where x is a negative number, a denormal number (in warning mode),
an unnormal number, or + infinity (in projective mode).

e SIN(x), COS(x), TAN(x) where x is + infinity, or |x| >263 and x is an
unnormal number.

* ARCSIN(x), ARCCOS(x) where x is * infinity, or |x|>2%3 and unnormal
number, or | x | >1.

¢ ARCTAN(x), EXP(x) | x | 22763 and an unnormal number.

* Jog (x), loglO(x) where x is a negative number, a denormal (in warning mode) or
unnormal number, or + infinity (in projective mode).

* exp(x) where x is + infinity (in projective mode), or |x|>2%3 and x is an
unnormal number.

e SINH(x), COSH(x), TANH(x) where x is an unnormal number and | x | 22763.

FORTRAN-86



FORTRAN-86 Errors.and Warnings

* =+ infinity **x, 0%*0, and x** + infinity (all in projective mode).

* —infinity **x unless x is an INTEGER whole number, + infinity **0, and 0**0
(all in affine mode).

® y**x where y is a negative number and x is not a whole number.

e y**; where i is a negative number, y is an unnormal number, and / cannot be
converted into a 32-bit integer.

*  AMOD(y,x), RMD(y,x) where y is + infinity and x is unnormal or denormal.

e ATAN2(y,x) where x and y are unnormal numbers and |y/x|>2"03, |x|=|
y | =0, or | x| =]y |=infinity.

* DIM(x,y) where x and y are infinite (in projective mode).

In some cases, an 8087 invalid exception is raised for valid operations. When not
masked (default), the run-time system intercepts the exception before the error
handler is invoked and causes program execution to continue normally. These cases
are:

e Any otherwise valid arithmetic or conversion operation involving a
non-Trapping NaN.

e A comparison between two unordered operands, neither one a Trapping NaN,
using the relational operators .EQ. and .NE. See section 7.7 for descriptions of
NaN’s and unordered relations.

If the invalid exception is masked at the time of the operation, then the same results
occur, but the exception flag is undefined.

Denormalized Operand

This exception arises when one or more of the operands is a denormalized number.
It can occur if a masked underflow exception has occurred in a previous operation.
It is never an error.

The unmasked denormalized exception implements ‘‘normalizing mode”
arithmetic. The run-time system intercepts these exceptions and takes action as
described in section 7.7.

Zero Divide

In a division operation, if the divisor is a normal zero and the dividend is a finite
nonzero number, then the zero divide exception occurs. If this exception is masked,
the result is infinity. If unmasked, an error occurs and the original operands are
available to the exception handler.

Zero divide occurs when an infinity is introduced by an operation that does not
overflow. Infinity is the exact answer of the zero divide. The following specific cases
result in operation exceptions:

e LOG(0)

s  LOGI10(0)

®  (0**x, wheré x is negative
s  0**i, where/ is negative

Overflow

If a rounded result is finite but its exponent is too large to represent in the result
floating-point format, the overflow exception occurs. If this exception is masked, an
overflow yields infinity, and the precision exception also occurs.

15-23



Errors and Warnings

15-24

For the operations EXP, SINH, COSH, y**x, and y**/, overflow is a ‘‘before”’
error. Consequently, when it is unmasked, the original operands are available to the
exception handler.

For the operations “*+°’, “*=’, ““*»_ < /> and DIM, overflow is an ‘‘after’’ error.
Consequently, when it is unmasked, a result with a wrapped exponent is available to
the exception handler.

Underflow

The underflow exception occurs when either of the following conditions arises:

* A rounded result has too small an exponent to be represented in the result
floating-point format without normalizing.

¢ Anintermediate product or quotient, where neither operand is a normal zero, is
indistinguishable from a normal zero. (This cannot occur with normalized
operands.)

If the Underflow exception is masked, the result is a correctly rounded denormalized
number or zero.

For the operations y**x and y**/, underflow is a ‘‘before’’ error. Consequently,
when it is unmasked, the original operands are available to the exception handler.

For the operations ‘‘+’°, ¢“=> <*» </ DIM, ATAN(y,x), AMOD, and RMD,
underflow is an ““after’’ error. Consequently, when it is unmasked, a result with a
wrapped exponent is available to the exception handler.

Precision

If the correctly rounded result of an operation is not the same as the unrounded
value, the precision exception occurs. If this exception is masked, no special action is
performed; the correctly rounded result is delivered.

FORTRAN-86



APPENDIX A
DIFFERENCES BETWEEN FORTRAN-86
AND OTHER VERSIONS OF FORTRAN

This appendix lists the differences between FORTRAN-86 and other versions of
FORTRAN. Specifically, the appendix describes the:

¢ Features of FORTRAN-86 that are not part of the American National
Standards Institute (ANSI) FORTRAN 77

e Deviations from the ANS-1978 Standard
¢ Features of FORTRAN-86 that are different from FORTRAN-80

The number that appears after each feature listed in sections A.1 and A.3 refers to
the section or chapter of this manual where the feature is described.

A.1 Extensions to FORTRAN 77

* Binary-, octal-, and hexadecimal-based INTEGER constants. (5.1.1)
INTEGER values with storage-unit lengths of 1 and 2 bytes. (5.1.1)
The TEMPREAL data type. (5.1.2)

A REAL*8 data type that is equivalent to the DOUBLE PRECISION data type.
(5.1.2.2)

LOGICAL values with storage unit lengths of 1 and 2 bytes. (5.1.3)
Values of different types and lengths within the same storage sequence. (5.10.1)
8087 intrinsics. (6.1.2.3) '

® The intrinsic functions INTI1, INT2, INT4, RINT, IRINT, IDRINT, and
TREAL. (6.1.2.2)

The RMD intrinsic function. (6.1.2.2)
The % VAL function. (6.1.2.6)
Bitwise Boolean operations. (7.5)

Implicit length extensions for INTEGER, REAL, or LOGICAL expressions in
assignment statements. (8.1.1)

A format descriptor to suppress a carriage return on a terminal output device at
the end of a record. (9.4.1.2)

Port-1/0 intrinsics for byte and word values. (6.1.1.1)
The B and Z edit descriptors in the FORMAT statement. (9.4.1.1)

The CARRIAGE specifier and the RECL specifier for sequential, formatted
access in an OPEN statement. (9)

Hollerith format specifications in INTEGER, REAL, LOGICAL, and
DOUBLE PRECISION arrays. Hollerith data-type constants. (Appendix F)

A.2 Deviations from the ANS-1978 Standard

COMPLEX data type, operations, and intrinsic functions are not supported.
The ENTRY and alternate return features are not supported.

The FORMAT edit descriptors T, TR, TL, S, SS, SP, Iw.m, and colon are not
supported.

The INQUIRE statement is not supported.



Differences Between FORTRAN-86 and Other Versions

A-2

REAL and DOUBLE PRECISION control expressions for DO and
computed GO TO are not supported.

The PARAMETER statement is restricted to simple constants of any data
type, or expressions of type INTEGER. Conversions between INTEGER and
floating-point constants are not supported.

IOSTAT variables must be of type INTEGER*2.

FORTRAN-86

Negative zeroes may appear on formatted floating-point output. This is an -

IEEE floating-point feature.

The FORTRAN-86 source line size is not limited to 72 characters; up to 132
source characters per line are accepted by the compiler. This feature is designed
te simplify program entry using a video terminal.

The DATA statement may not imply conversion between INTEGER and
floating-point constants.

A.3 Differences Between FORTRAN-80

and FORTRAN-86

DATA statements can appear anywhere after the specification statements.
2.2.1)

The DOUBLE PRECISION data type. (5.1.2.3)

The TEMPREAL data type. (5.1.2.4)

CHARACTER data-type functions and substrings. (5.4)
The PARAMETER statement. (5.3)

Lower and upper bounds for array dimensions. (5.4.1)
Generic intrinsic-function names. (6.1.2.2)

The intrinsic functions INT1, INT2, INT3, RINT, IRINT, IDRINT, RMD, and
TREAL. (6.1.2.2)

Statement functions. (6.1.2.4)

The % VAL function. (6.1.2.6)

The D and G edit descriptors. (9.4.1.1)

Port 1/0 intrinsics for byte and word values. (6.1.1.1)
8087 intrinsics (6.1.2.3)

New execution-environment interfaces. (Appendix I)
Changed OPEN-statement semantics. (9.2.1)

Revised error messages. (15)



APPENDIX B
PROCESSOR-DEPENDENT
FEATURES OF FORTRAN-86

The following FORTRAN-86 features are dependent on the 8086, 8087, and 8088
microprocessors on which FORTRAN-86 programs run. Following each entry is a
chapter or section reference wheré the feature is described in this manual.

¢ Equivalence of upper- and lower-case letters in the character set. (3.2.2)

¢ Values of different types and lengths within the same storage sequence. (5.10.1)
¢ Port-1/0 intrinsics for byte and word values. (6.1.1.1)

¢ Interrupt procedures with the INTERRUPT control. (11.4.9)

¢ The % VAL function. (6.1.2.6)

e 8087 control intrinsics. (6.1.2.3)

¢ Reentrant subprograms with the REENTRANT control. (11.4.15)

*  Unit preconnection. (14.5)

* The size and structure of storage allocation for variables. (Appendix G)

B-1



APPENDIX C
COMPILER CAPACITY

This appendix lists the limits imposed on FORTRAN-86 programs by either
FORTRANS-86 or its environment.

The compiler accepts up to 19 continuation lines.
An INTEGER*1 value must be within the range —128 to +127.
An INTEGER*2 value must be within the range —32,768 to +32,767.

An INTEGER*4 value must be within the range -—2,147,483,648 to
+2,147,483,647.

A REAL value must have magnitude approximately in the range | 1.2 * 10(:38) |
to | 3.4 * 1068)| .

A DOUBLE PRECISION value must have magnitude approximately in the
range | 3.4 * 10(308)| to | 1.8 *10(308) | .

A TEMPREAL value must have the magnitude approximately in the range | 3.4
* 10(-4932)| to ]1.2% 10(4932)| .

INTEGER operations addition, subtraction, multiplication, division, and
exponentiation are performed modulo 256 for two INTEGER*1 values, modulo
65,536 for two INTEGER*2 values and modulo 4,294,967,296 otherwise.

The compiler performs INTEGER assignment modulo 256, modulo 65,536, or
modulo 4,294,967,296 if the target variable has the data type INTEGER*1,
INTEGER¥*2, or INTEGER*4, respectively.

Subscript values are taken modulo 65,536 for arrays declared to be less than
65,536 bytes in length; otherwise modulo 4,294,967,296 applies.

C-1




APPENDIX D
LANGUAGE SUMMARY

This appendix summarizes the FORTRAN-86 statements, and special punctuation
symbols.

D.1 Statement Summary

ASSIGN Statement
Syntax: ASSIGN st/ TO name
Function: Assign a statement label stf to an integer variable name

Category: Executable

Assignment Statement

Syntax: name = exp

Function: Assign the value of an expression exp to a variable name
Type: Arithmetic, Logical, Character

Category: Executable

BACKSPACE Statement

Syntax: BACKSPACE unit
BACKSPACE arg-list

Function: Position file connected to unit before preceding record where unit is
the unit specifier and arg-/ist is

[UNIT=]unit unit specifier
10STAT=stname 170 status specifier
ERR=st/ error specifier

BACKSPACE is for sequential files only.

Category: Executable

BLOCK DATA Statement
Syntax: BLOCK DATA[name]
Function: Identify and optionally name a BLOCK DATA subprogram.

Category:  Nonexecutable

D-1



Language Summary FORTRAN-86

CALL Statement
Syntax: CALL name[(larg[,arg]...])]
Function: Call the subroutine, name with actual argument(s) arg .

Category:  Executable

CHARACTER Statement
Syntax: CHARACTER[*/en]name[*len][,name[*len]]...
Function: Specify name and /en for character type variable or array.

Category: Nonexecutable, specification, type

CLOSE Statement

Syntax: CLOSE (close-list)

Function: Close the file described by close-list, where close-list is
[UNIT=]unit unit specifier
10STAT=stname 170 status specifier
ERR=st/ error specifier
STATUS=stat file disposition specifier

Category: Executable

Comment Line

Syntax: The character ‘C’ or asterisk (*) in position 1; any other characters in
positions 2-72.

Function: Program documentation

Category: Nonexecutable

COMMON Statement
Syntax: COMMON([/name]/nlist|[,}/ name/nlist]...

Function: Name and define the contents of COMMON block(s), name. If name
is not specified, a blank COMMON is defined.

Category: Nonexecutable, specification

CONTINUE Statement
Syntax: CONTINUE
Function: No effect unless this is the terminal statement of a DO loop; then

action depends on the DO variable.

D-2



FORTRAN-86

DATA Statement
Syntax: DATA nlist/clist...
Function: Assign values in clist to the items in nfist.

Category:  Nonexecutable

DIMENSION Statement
Syntax: DIMENSION array(d)|[,array(d)]...
Function: Name array(s) and define dimension(s) d.

Category:  Nonexecutable, specification

DO Statement
Syntax: DO stif,lvar=et,e2[,e3]

Function: Define the beginning of DO loop and set up loop counters where

stl label of last (executable) statement in DO loop
var DO loop index variable

el initial loop index value

e2 loop termination value

e3 loop increment/decrement value

Category: Executable

DOUBLE PRECISION Statement
Syntax: DOUBLEPRECISION namef,name]...
Function: Specify name(s) for a double precision type variable or array.

Category: Nonexecutable, specification, type

ELSE Statement
Syntax: ELSE
Function: Provides alternate execution path from IF or ELSE IF.

Category: Executable, block IF

ELSE IF Statement
Syntax: ELSE IF(exp) THEN
Function: Continue execution if expression exp is TRUE.

Category: Executable, Block IF

Language Summary

D-3



Language Summary

END Statement

Syntax: END

Function: Terminate r_nain program; return from subprogram; mark end of
program unit.

Category: Executable

END IF Statement

Syntax: ENDIF

Function: Mark end of IF block; continue execution.

Category: Executable, block IF

ENDFILE Statement

Syntax: ENDFILE unit
ENDFILE (arg-list)

Function:  Write end-of-file record on file connected to unit where unit is the unit
specifier and arg-ist is
[UNIT=]unit unit specifier
10STAT=stname 1/0 status specifier
ERR=st/ error specifier
ENDFILE is for sequential files only.

Category: Executable

EQUIVALENCE Statement

Syntax: EQUIVALENCE (ntist) [, (nlist) ]...

Function: Allow entries in nlist to share the same storage area.

Category:  Nonexecutable, specification

EXTERNAL Statement

Syntax: EXTERNAL name[, name]...

Function: Allows the name of an external/dummy procedure name to be used as
an actual argument.

Category:  Nonexecutable, specification

D-4

FORTRAN-86



FORTRAN-86 Language Summary
FORMAT Statement
Syntax: stl FORMAT ([fiist])
Function: Specifies the format of formatted I/0 data where flist includes the
following repeatable and nonrepeatable edit descriptors
Repeatable Nonrepeatable
Iw integer ‘string’ literal
Fw.d real nHstring Hollerith
Ew.d[Ee] real nX record position
Dw.d real / record termination
Gw.d[Ee] real kP scale factor
Lw logical BN blank
Alw] alphanumeric BZ blank
Bw binary $ alternate-record
Zw hexadecimal termination
Category: Nonexecutable

FUNCTION Statement

Syntax: [type]FUNCTION name ([arg|,arg]...])

Function: Name the FUNCTION subprogram and define its type and dummy
argument(s).

Category: Nonexecutable

GO TO Statements

Syntax: 60 TO st/

60 TO (st,st...)exp
60 TO name[(st,st/]...)]

Function: Transfer control to statement labelled st/ or ASSIGNED to variable
name. The first branches unconditionally; the second branches based
on the value of the integer expression exp; the third branches uncondi-
tionally, but statement label corresponding to name must be included
in list.

Category: Executable

IF Statements

Syntax: I1F(exp)st,s2,s3
I1F (exp) stmt
I1F(exp) THEN

Function:  Transfer control to a specified statement or perform specified

action(s) based on the value of the expression exp. In the first format,
exp is an arithmetic expression and s7, s2, and s3 are statement
labels; control passes to:

sl if exp<0

s2 if exp=0
s3if exp>0

D-5



Language Summary

D-6

In the second format, the statement stmt is executed if the logical
expression is TRUE. Third format introduces IF block; statements

following IF-THEN are executed if logical expression is TRUE.

Category: Executable

IMPLICIT Statement

Syntax: IMPLICIT ntype(letllet]...) ...

Function: Define implicit typing for variable names whose first letter is /et or in

the range /et-let.

Category: Nonexecutable, specification
INTEGER Statement
Syntax: INTEGER[*/en]name[*len][name[*len]]...

Function: Define name to be of type integer with length /en.

Category: Nonexecutable, specification, type

INTRINSIC Statement
Syntax: INTRINSIC namel,name]...
Function: Allow intrinsic function(s) to be used as actual argument(s).

Category: Nonexecutable, specification

LOGICAL Statement
Syntax: LOGICAL[*/enlname[*len][,name[*len]]...
Function: Define name to be of type logical with length /en

Category: Nonexecutable, specification, type

OPEN Statement

Syntax: OPEN (open-list)

Function: Open the specified file with open-list consisting of the following:
[UNIT=]unit unit specifier
10STAT=stname 1/0 status specifier
ERR=st/ error specifier
FILE=fname filename specifier
STATUS =stat file status specifier
ACCESS=acc access method specifier
FORM=fmat formatting specifier
RECL=reclen record length specifier
BLANK=bInk blank specifier
CARRIAGE=car carriage control specifier

FORTRAN-86



FORTRAN-86 Language Summary

Category: Executable

PAUSE Statement
Syntax: PAUSE[msg]
Function: Halt program execution; resume under control of external signal; msg

is 1-5 digits or a character constant.

Category: Executable

PARAMETER Statement

Syntax: PARAMETER (name=exp...)

Function: Assigns a name to a constant expression exp.

Category: Nonexecutable, specification

PRINT Statement

Syntax: PRINT f[,outlist]

Function: Output items in outlist to preconnected unit in format specified by f.

Category: Executable

PROGRAM Statement
Syntax: PROGRAM name
Function: Optionally name main-program unit. If missing, the compiler will

assign @MAIN as the program name.

Category: Nonexecutable

READ Statement
Syntax: READ (cti-list) [inlist]
READ f[,inlist]
Function: Input items in inf/ist as directed by specified controls in ct/-list
[UNIT=]unit unit specifier
[FMT=]f format specifier
REC=recno record number specifier
10STAT=stname 170 status specifier
ERR=st/ error specifier
END=st/ end-of-file specifier

Second format is for preconnected units; f is the format specifier.

Category: Executable



Language Summary FORTRAN-86

REAL Statement
Syntax: REAL[*/en]name[*ien][, name|*len]]...
Function: Define name to be of type real with length /en.

Category: Nonexecutable, specification, type

RETURN Statement
Syntax: RETURN
Function: Return from FUNCTION or SUBROUTINE subprogram.

Category: Executable

REWIND Statement

Syntax: REWIND unit
REWIND (arg-list)

Function: Reposition file connected to unit at its initial point with arg-list

including:

[UNIT=]unit unit specifier
10STAT=stname 1/0 status specifier
ERR=st/ error spgcifier

REWIND is for sequential files only.

Category: Executable

SAVE Statement
Syntax: SAVE name [, namel]...
Function: Save data in name on return from subprogram.

Category: Nonexecutable, specification

- Statement Function Statement
Syntax: name (larg[,arg]...]) =exp
Function:,  Define function name

Category: Nonexecutable

STOP Statement
Syntax: STOP[msg]
Function: Terminate program execution, with optional message, msg.

Category:  Executable

D-8



FORTRAN-86 Language Summary

SUBROUTINE Statement
Syntax: SUBROUTINE name|([arg|,arg]...])]

Function: Define SUBROUTINE subprogram name with dummy argument(s)
arg.

Category: Nonexecutable

TEMPREAL Statement
Syntax: TEMPREAL name[,namel]...
Function: Define name to be of type tempreal.

Category:  Nonexecutable, specification, type

WRITE Statement

Syntax: WRITE (cti-list) [outlist]

Function: Output items in outlist as directed by controls in c¢t/-list including
[UNIT=]unit unit specifier
[FMT=]f format specifier
REC=recno record number specifier
I10STAT=stname 170 status specifier
ERR=st/ error specifier

D.2 Symbol Summary
Table D-1 lists the arithmetic operators and their meanings.

Table D-1. Arithmetic Operators

Operator Meaning
*% Exponentiation
/ Division
* Multiplication
+ Addition
- Subtraction

Table D-2 lists the relational operators and their meanings.

Table D-2. Relational Operators

Operator Meaning
.LT. Less Than
.LE. Less than or Equal To
.EQ. Equal To
.NE. Not Equal To
.GT. | Greater Than
.GE. Greater Than or Equal To




Language Summary

Table D-3 lists the logical operators and their meanings.

Table D-3. Logical Operators

FORTRAN-86

Operator Meaning

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction
EQV. Logical Equivalence

.NEQV. Logical Nonequivalence




APPENDIX E
CHARACTER SET AND
COLLATING SEQUENCE

ASCH FORTRAN-86 ]r ASCII FORTRAN-86
CHARACTER | HEX | cHARACTER || cHARACTER | HEX | CHARACTER
NUL 00 no 9 40 no
SOH 01 no A 4 yes
STX 02 no B 42 yes
ETX 03 no C 43 yes
EOT 04 . no D 44 yes
ENQ 05 no E 45 yes
ACK 06 no F 46 yes
BEL 07 no G 47 yes
BS 08 no H 48 yes
HT 09 no I 49 yes
LF 0A no J 4A yes
vT 0B no K 4B yes
FF oc no L AC yes
CR 0D no M 4D yes
SO 0E no N 4E yes
Sl OF no 0 AF yes
DLE 10 no P 50 yes
DCI 1 no Q 51 yes
DC2 12 no R 52 yes
DC3 13 no S 53 yes
DC4 14 no T 54 yes
NAK 15 no U 55 yes
SYN 16 no v 56 yes
ETB 17 no W 57 yes
CAN 18 no X 58 yes
EM 19 no Y 59 yes
sSuB 1A no Z 5A yes
ESC 1B no [ 5B no
FS 1C no \ 5C no
GS 1D no ] 5D no
RS 1E no AM 5E no
us 1F no - 5F yes
space 20 yes v 60 no
| 21 no a 61 yes
" 22 no b 62 yes
# 23 yes c 63 yes
$ 24 yes d 64 yes
% 25 no e 65 yes
& 26 no f 66 yes
! 27 yes g 67 yes
( 28 yes h 68 yes
) 29 yes i 69 yes
* 2A yes { 6A yes
+ 2B yes 6B yes
. 2C yes l 6C yes
- 2D yes m 6D yes
. 2E yes n 6E yes
/ 2F yes 0 6F yes
0 30 yes p 70 yes
1 3 yes q 7 yes
2 32 yes r 72 yes
3 33 yes S 73 yes
A 34 yes t 74 yes
5 35 yes u 75 yes
6 36 yes v 76 yes
7 37 yes " 77 yes
8 38 yes X 78 yes
9 39 yes y 79 yes
H 3A yes z 7A yes
; 3B no { 78 no
< 3C no | 7C no
= 3D yes 3 7D no
> 3E no o 7E no
? 3F no DEL 7F no

E-1



APPENDIX F
HOLLERITH DATA TYPE

This appendix describes the Hollerith data type that is a carryover from FORTRAN
66. The character data type provides better processing capability but the Hollerith
type has been retained for compatability.

F.1 Hollerith as a Data Type

Although Hollerith is a data type, a symbolic name cannot be of type Hollerith. You
identify Hollerith data (other than Hollerith constants) using an INTEGER,
floating-point (REAL, DOUBLE PRECISION, TEMPREAL), or LOGICAL type
name. You cannot use type CHARACTER.

You can define INTEGER, floating-point or LOGICAL items with a Hollerith
value using either DATA or READ statements. Equivalenced items become
associated with that Hollerith value also. When this definition occurs, the defined
item loses its INTEGER, floating-point, or LOGICAL characteristic.

F.2 Hollerith Constants

The format of a Hollerith constant is
nHh1h2...hn

where n is a nonzero, unsigned, integer constant and h is any representable
character. Blanks are significant in the character string following the H.

Hollerith constants can appear only in DATA statements and in the argument list of
CALL statements.

F.2.1 Hollerith Constants in DATA Statements

A Hollerith constant may appear in the clist of a DATA statement. The corre-
sponding argument in n/ist must be type INTEGER, floating-point, or LOGICAL.

For an argument of type INTEGER, floating-point or LOGICAL, the number of
characters n in the corresponding Hollerith constant must be less than or equal to g
(where g is the length of the argument in bytes). If n is less than g, the compiler
initializes the argument with the n Hollerith characters extended on the right with
g-n blank characters.

Each Hollerith character initializes exactly one variable or array element.

F.2.2 Hollerith Constants in CALL Statements

An actual argument in a CALL statement can be a Hollerith constant, as long as the
corresponding dummy argument has type INTEGER, floating-point, or LOGICAL.
This is an exception to the rule that actual and dummy arguments must agree in
type. The length of the dummy argument, however, must agree with the length of
the actual argument.

F-1



Hollerith Data Type

F.3 Hollerith Format Specification

A format specification can be an array name of type INTEGER, floating-point, or
LOGICAL. In this case, the leftmost characters of the specified entity must contain
Hollerith data constituting a legal format specification. Blank characters may
precede the format specification and data may follow the right parenthesis ending
the specification with no affect.

A Hollerith format specification must not contain an apostrophe edit descriptor or
an H edit descriptor.

F.4 ‘A’ Editing of Hollerith Data

You can use the Aw edit descriptor with Hollerith data if the corresponding 170 list
item has type INTEGER, floating-point, or LOGICAL.

Editing is the same as for Aw editing of character data, except that n is the maximum
number of characters that the system can store in the list item.

FORTRAN-86



APPENDIX G
RUN-TIME DATA REPRESENTATIONS

The FORTRAN-86 compiler determines the amount of storage needed at run time
for each data type, and the run-time support software allocates the storage when you
execute the FORTRAN program. This appendix describes the storage necessary for
each data type.

G.1 Storage Units

There are two types of storage units: numeric storage units and character storage
units. A numeric storage unit is one, two, four, or ten bytes depending on the length
of the specified data type. The standard length is four bytes. A character storage
unit is always one byte. A storage sequence is a consecutive series of either numeric
storage units or character storage units depending on the type of the data.

G.2 Data Types

FORTRAN-86 supports six types of data: INTEGER, REAL, DOUBLE
PRECISION, TEMPREAL, CHARACTER, and LOGICAL. Table G-I
summarizes the storage necessary for each data type.

Table G-1. Summary of Storage Units

Number Length
Data Type of of Bytes
Units Unit

INTEGER*1 1 1byte 1
INTEGER*2 1 2bytes 2
INTEGER*4 1 4bytes 4
REAL*4 1 4bytes 4
REAL*8 2 4bytes 8
DOUBLE 2 4bytes 8
PRECISION

TEMPREAL 1 10 bytes 10
LOGICAL*1 1 1byte 1
LOCIGAL*2 1 2bytes 2
LOGICAL*4 1 4 bytes 4
CHARACTER*n n 1byte n
(0<n<256)




APPENDIX H
LINKING TO SUBPROGRAMS
WRITTEN IN OTHER LANGUAGES

This appendix describes the calling conventions used by iAPX 86,88 family
languages. These calling conventions are standardized so that a program written in
FORTRAN-86 can communicate with procedures, subroutines, and subprograms
written in other iAPX 86,88 family languages.

NOTE

The information contained in this appendix is dependent on current
implementations of the FORTRAN-86, PL/M-86, and Pascal-86 compilers.
As such, it is subject to change with any new version of one of these com-
pilers. Programmers using this appendix are urged to carefully document
assumptions based on this information to enable upgrading to new versions
as they are released, if necessary. Any changes will be reflected in the
respective language user’s guides.

As a FORTRAN-86 programmer linking PL/M-86 or Pascal-86 procedures with
FORTRAN-86, you need to know the PL/M-86 and Pascal-86 data types that match
FORTRAN-86 data types and the order and number of arguments to supply for the
PL/M-86 or Pascal-86 parameters, described in section H.2. You must also know
how to link subprograms, as described in Chapter 14.

PL/M-86 and Pascal-86 procedures linking with FORTRAN-86 procedures must be
compiled under the LARGE model of segmentation.

As a FORTRAN-86 programmer calling 8086/8087/8088 Macro Assembly
Language subroutines, you need to know the calling conventions of the stack and
register usage and the corresponding data types, described in this appendix, in order
to write an assembly language subroutine that can pick up the data your
FORTRAN-86 program passes to it. The same information is necessary for a macro
assembly language programmer calling FORTRAN-86 subprograms. Refer to the
8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based Develop-
ment Systems, Appendix B, for more information about linking to the macro
assembly language programs and for examples of linking such programs to
PL/M-86 programs.

H.1 Introduction

A FORTRAN-86 program consists of a main program and any number of sub-
programs. Not all of these program units have to be written in FORTRAN-86. You
can choose the appropriate language for each subprogram as long as you link the
subprograms properly with LINK86, the 8086-based linker. Since the iAPX 86,88
family languages follow the same calling conventions, control will pass to a sub-
program called correctly. However, the called subprogram may not be able to deal
intelligently with the data passed to it, because different languages treat data struc-
tures differently.

NOTE

Subprogram is a term used in FORTRAN-86 referring to both subroutines
and functions. Procedure is the term used in both Pascal-86 and PL/M-86.
The assembly language term is subroutine. In this appendix, the word sub-
program denotes any entity written in any iAPX 86,88 language that can
call a FORTRAN-86 subroutine or function, or be called from a
FORTRAN-86 subprogram.



Linking to Subprograms Written in Other Languages

H-2

If you want to link your FORTRAN-86 application with a subprogram written in
Pascal-86 or PL/M-86, section H.2 should be sufficient for your needs. However, if
your main program is written in PL/M-86, you must also know how to initialize the
FORTRAN-86 run-time environment described in section H.5.

Writing assembly-language subprograms to be called from FORTRAN-86 programs
requires an understanding of this entire appendix.

H.2 Calling Sequence

The calling convention for the invocation of a subprogram is essentially the same for
FORTRAN-86, Pascal-86, and PL/M-86 (LARGE model of segmentation), for
most equivalent argument types. The arguments are pushed on the 8086 or 8087
stack in left-to-right order, and then the subprogram is invoked with an 8086
intersegment call instruction. If the subprogram is a function, the returned value is
delivered in predefined 8086 registers, on the top of the 8087 stack, or via an addi-
tional reference parameter on the 8086 stack, depending on the value’s data type.

You can see the pseudo-assembly listing of this sequence if you specify the CODE
control when compiling a FORTRAN-86 program that contains a reference to an
external subroutine or function.

The called subprogram has the responsibility of saving certain 8086 registers and
restoring them before returning to the caller. The subprogram also removes the
arguments from the stack. A pseudo-assembly listing (CODE control) of a
FORTRAN-86 SUBROUTINE or FUNCTION will illustrate these instruction
sequences, which are similar to those generated for Pascal-86 and PL/M-86
subprograms.

H.2.1 Arguments

There are two methods of passing arguments to other subprograms: by value and by
reference. The first method, by value, passes the actual value of the argument to the
subprogram. With the second method, by reference, the address of the argument is
passed to the subprogram, and the called subprogram must use the address to locate
the data associated with the argument. The called program must know which
method is being used for each argument.

In FORTRAN-86, arguments for subprograms are passed by reference on the 8086
stack. PL/M-86 subprograms linking with FORTRAN-86 must use long (double-
word) pointers to pass or accept arguments. Pascal-86 arguments must-be specified
as VAR parameters when communicating with standard FORTRAN-86
subprograms.

FORTRAN-86 provides the nonstandard % VAL function (see section 6.2.1.7)
that creates or accepts a value argument for certain simple data types. While the
% VAL method is useful for linking with existing non-FORTRAN subprograms, the
reference method is standard and strongly recommended to ensure software
portablilty.

In the following sections, arguments are assumed to be passed by reference unless
otherwise qualified. Pointers are always long (double words).

FORTRAN-86



HFORTRAN-86 Linking to Subprograms Written in Other Languages

H.2.2 Returned Values

The methods of returning values from function subprograms is consistent across
FORTRAN-86, PL/M-86, and Pascal-86 for all supported data types. The
following rules apply:

1. Allfloating-point data types are returned on the top of the 8087 stack.

2. A character string (FORTRAN only) is returned viaa CHARACTER argument
for the target location provided by the calling program. The calling sequence is
the same as that of a SUBROUTINE call with the target string location specified
as the first argument (see section H.2.3.4). The calling subprogram determines
the length of the returned string.

3. All other data types allowable as returned values are returned in 8086 registers
depending on their length: 1-byte values in AL, 2-byte values in AX, and 4-byte
values in DX/AX.

H.2.3 Data Types

Data-type compatibility between FORTRAN-86 and PL/M-86 or Pascal-86 varies
considerably due to the characteristics of these languages and their implementation.
ASM-86, having the weakest typing of all, can be considered to be fully compatible
with FORTRAN-86 as long as FORTRAN-86 data-type conventions are followed.

H.2.3.1 Floating-Point Data Types

FORTRAN-86’s REAL*4 is identical to REAL in both PL/M-86 and Pascal-86.
REAL*8, DOUBLE PRECISION, and TEMPREAL are supported in Pascal-86 but
not in PL/M-86. Floating-point values in ASM-86 must have data formats as
defined by the 8086,87 Family User’s Guide Numerics Supplement. In addition,
FORTRANS-86 distinguishes Trapping NaN’s from nontrapping NaN’s by the most
significant bit of the significand.

Use of the % VAL function with floating-point variables is not supported.

H.2.3.2 Integer Data Types

INTEGER*2 in FORTRAN-86 is equivalent to INTEGER in both PL/M-86 and
Pascal-86, and INTEGER*1 is compatible with Pascal-86 and with PL/M-86’s
BYTE subrange (—128...127) for positive values that are less than 128. INTEGER*4
is supported by Pascal-86 but not PL/M-86. INTEGER*4 is compatible with the
PL/M-86 DWORD for positive values, and LONGINT for Pascal-86. ASM-86 sub-
programs can support all FORTRAN INTEGER types when only signed operations
are used.

Any FORTRAN INTEGER type may be passed by value on the 8086 stack using the
% VAL function.

INTEGER data types used in bitwise boolean operations are compatible with
Pascal-86’s SET type, if the field lengths and bit sequences are carefully observed.
See the Pascal-86 User’s Guide for implementaion details.



Linking to Subprograms Written in Other Languages

H.2.3.3 Logical Data Types

With FORTRAN’s LOGICAL data types, only the least significant bit is relevent (0
for .FALSE., 1 for .TRUE.), and the remaining bits are undefined. LOGICAL*1 in
FORTRAN-86 is the same as PL/M-86’s BYTE data type used in boolean
expressions. While Pascal-86’s BOOLEAN type is fully acceptable to a
FORTRAN-86 subprogram as a LOGICAL*1 dummy argument or returned value,
the reverse is not supported.

The problem of passing or returning a LOGICAL*1 value to a Pascal-86 sub-
program is that Pascal-86 requires all high-order bits to be zero (see table H-1),
whereas these bits are unpredictable in FORTRAN-86. Use of INTEGER*1 contain-
ing the integer 0 (FALSE.) or 1 (.TRUE.) is a way to bypass this restriction.

All FORTRAN-86 LOGICAL data types may be passed using the % VAL function,
except that LOGICAL*4 must not be used with % VAL when linking with either
PL/M-86 or Pascal-86.

Table H-1. FORTRAN-86 Data Types and Their Equivalents in Pascal-86,
PL/M-86, and ASM-86

FORTRAN-86 Pascal-86 PL/M-86 ASM-86

REAL*4 REAL REAL DD (8087

single precision
REAL*8or DQ (8087
DOUBLE PRECISION double precision)
TEMPREAL DT (8087

extended precision)
INTEGER*1 [0...127] BYTE (1) DB (signed)
INTEGER*2 INTEGER INTEGER DW (signed)
INTEGER*4 DD (signed)
LOGICAL*1 BOOLEAN (2) BYTE (2) DB(2)
LOGICAL*2 DW (2)
LOGICAL*4 DD (2)
CHARACTER*n {array [1...n] of CHAR, {BYTE (n), {DB nDUP,

INTEGER? (2) INTEGER} (3) word} (3)

(1) Forvalues 0 through 127 only.
(2) Only rightmost significant bit; Remaining bits are undefined, except for Pascal-86, which
requires them to be zero.

(3) See sectionH.2.3.4

H.2.3.4 Character Data Types

FORTRAN-86 character-string arguments and returned values are passed in a
unique manner that is not directly supported by PL/M-86 or Pascal-86. Familiarity
with FORTRAN-86 conventions, however, will enable you to pass or accept
character strings to or from FORTRAN-86 subprograms.

A FORTRAN-86 character-string argument has two components: the address of the
string and its length. For each CHARACTER argument, a word containing the
string length is placed (by value) immediately after the corresponding string address

FORTRAN-86



FORTRAN-86 Linking to Subprograms Written in Other Languages

on the 8086 stack. Note that this description also applies to the argument inserted by
the compiler to receive the returned value of a CHARACTER function (see section
H.2.2). In both cases, the calling subprogram specifies the string length.

|

All FORTRAN arguments of type CHARACTER|[*n] are passed in the
same manner. CHARACTER*1 is not the same as PL/M-86’s BYTE or
Pascal-86’s CHAR.

Example:
A FORTRAN function is defined as follows:

CHARACTER*8 FUNCTION CHFUN(A)
CHARACTER*(*)A

A PL/M-86 program can invoke this function using the following procedure
declaration:

CHFUN: PROCEDURE (RES,RLEN,ARG,ALEN)EXTERNAL;
DECLARE (RES,ARG) POINTER;

DECLARE (RLEN,ALEN) INTEGER;

END;

In this example, the character strings pointed to by RES and ARG are BYTE arrays
whose lengths are specified by the caller in RLEN and ALEN, respectively. Note
that any string lengths defined in the function for arguments and returned values are
ignored.

Use of % VAL with character strings is not supported in FORTRAN-86.

H.2.3.5 Arrays and Structures as Arguments

FORTRAN-86 array arguments are fully compatible with those of PL/M-86 and
Pascal-86, as long as the component data types are compatible. The argument con-
sists of a long pointer (two words) on the 8086 stack. FORTR AN-86 has no structure
or record data type except for LARGE ARRAY support.

NOTE

For multidimensional arrays, FORTRAN dimensions are specified in
reverse sequence from those of Pascal-86 and PL/M-86.

Use of the % VAL function is not supported for arrays.

H.2.3.6 Procedures as Arguments

Procedure arguments are fully compatible between FORTRAN-86 and PL/M-86
(LARGE model). They are passed by reference using a long pointer (two words) on
the 8086 stack. Use of the % VAL function is not supported.

Procedure arguments cannot be passed between Pascal-86 and FORTRAN-86.



Linking to Subprograms Written in Other Languages

H-6

H.2.4 FurtherLinkage Considerations

FORTRAN-86 subprograms always assume that the 8087 stack is completely empty
on entry to the subprogram. On return it will contain at most one value: the returned
value, if floating-point, on the top of the stack. PL/M-86 programs must not call
FORTRAN-86 functions within floating-point expressions or parameter lists, since
PL/M-86 does not conform to this convention.

H.3 Register Usage

A FORTRAN-86 subprogram assumes that all 8086 and 8087 registers and flags are
volatile and need not be saved/restored before returning, except for the following:

e SSstack-segment register (never changed)

® CScode-segment register (restored by RETURN)

¢ DS data-segment register (saved on entry, restored on return)

e BP stack-base pointer (saved on entry, restored on return)

e  SP top-of-stack pointer (restored, and arguments deleted, on return)

The 8087 stack is assumed to be completely empty on entry, and will contain at most
one value on return (the returned value if floating-point).

Assembly-language subprograms called by FORTRAN-86 programs are expected to
conform to these FORTRAN-86 conventions. It is recommended that you compile
sample FORTRAN-86 subprograms with the CODE control as an illustration before
writing your ASM-86 subprogram.

H.4 Stack Usage

Each 8086 stack position holds one word. Arguments passed by reference normally
take two words, the segment address and offset. Character arguments require a third
word to pass the length (value). Arguments passed by value take one, two, four, or
five words, depending on the data length. One-byte arguments have an undefined
high-order byte.

Figure H-1 shows the 8086 stack layout for a FORTRAN-86 subprogram.

All the elements past the return address are pushed on the stack by the called pro-
gram, and need to be saved only when they are changed by the called subprogram.
The arguments are removed on return using the RET n instruction. See the
8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based Develop-
ment Systems for further details of stack management.

H.5 Initialization of the FORTRAN-86
Run-Time Environment

If your application program consists of a main program written in PL/M-86 or
ASM-86 and one or more subprograms written in FORTRAN-86, you must explic-
itly initialize FORTRAN-86’s run-time environment. FORTRAN-86 and Pascal-86
share the same environment.

Compiling a sample FORTRAN program using the CODE control illustrates this
initialization.

FORTRAN-86



FORTRAN-86

Linking to Subprograms Written in Other Languages

HIGH ADDRESS

STACK ..
POINTER ONYy SEGMENT ADDRESS
RETURN TO CEFSET
CALLER FIRST ARGUMENT (BY REFERENCE)
L -1
LENGTH* *LENGTH FOR CHARACTER
ARGUMENTS ONLY
L ]
.
L ]
SEGMENT ADDRESS
OFFSET | LAST ARGUMENT (BY REFERENCE)
LENGTH*
SEGMENT ADDRESS } RETURN ADDRESS (CS: OFFSET)
STACK >
POINTER ON SEGMENT ADDRESS OLD DATA SEGMENT (DS)
SUBPROGRAM
ENTRY SEGMENT ADDRESS OLD STACK BASE (BP)
~— N LOCAL VARIABLES (REENTRANT ONLY)
\_/__\ & TEMPORARY STORAGE
STACK
POINTER
DURING
SUBPROGRAM . TEMPORARY STORAGE
EXECUTION \/\
LOW ADDRESS

NOTE: REFERENCE ARGUMENTS CAN BE REPLACED BY ACTUAL VALUES WHEN USING
%VAL FUNCTION.

Figure H-1. 8086 Stack Layout During Execution of a FORTRAN-86
Subprogram

121570-7

Each main program must execute the following two instructions before invocation
of any FORTRAN-86 subprogram:

CALL INITFP
CALL TQ_001

Execution of your program is terminated using:

CALL TQ_999

The procedure TQ__001 initializes global I/0 tables and error-handling facilities for
both FORTRAN-86 and Pascal-86. If called more than once during program execu-
tion, TQ__001 will normally destroy the previous status of the I/0 system. TQ__999
closes FORTRAN-86 and Pascal-86 files, and halts execution of the program.

INITFP initializes the floating-point environment. If your application does not per-
form any floating-point operations, you should still include this call to allow for
future changes. See section 14.2.2 for a description of the libraries that resolve these
external references, and instructions on how to configure your object programs at

link time.

Figure H-2 lists a sample ASM-86 program that calls FORTRAN-86 subprograms.

H-7



Linking to Subprograms Written in Other Languages

FORTRAN-86

8086/,8087/8088 MACRO ASSEMBLER

ASMEX 09/01/80 PAGE 1

SERIES-III 8086/8087/8088 MACRO ASSEMBLER V1.0 ASSEMBLY OF MODULE ASMEX
OBJECT MODULE PLACED IN :F1:ASMEX.O0BJ

INVOCATION LINE CONTROLS:

LOC OBJ

0000
0002
0004
0008
000C
0010

0012
0014

0000 27

[}
(]
=
m

VOOV FWN -

+1

+1

PRINT(:F1:ASMEX.LST) OBJECT(:F1:ASMEX.O0BJ)

SOURCE
NAME  ASMEX

r
;This program demonstrates procedure linkage to FORTRAN-86,
;focusing on the parameter passing conventions.

;
;This procedure takes four arguments for four parameters:

;a character variable, an integer®2 value, an integer (or logical)

svariable, and an integer function.

;They are pushed onto the stack in that order.

;They must be popped at exit (with RET instruction).
H

;The prologue code saves BP, and points BP to the
;structure defined below. After prologue executes,
;stack looks like this:

high memory

o we ws we we we

~eeesccmemce—c—ce- (~~~SP, BP point to here
low memory

! (segment) i}
e~=ePARM1occeceox}
! (offset) {}-~=>argument A
: ~===PARM1ecceana- }
H ! (size) H
; ————— - ———————
3 ' PARM2 {~-~~>argument B
: e emcmm———————
H ! (segment) '}
H w~meaPARM3—cceeem— }--=>argument C
H i (offset) 1}
3 cemcmmenmmm—————
3 ! (segment) '
H ~wwePARMA e }~-~>argument FUNC
H ! (offset) H
5 e e ————
H i old PpsS H
3 mmm——— ~<~cewew-- }saved in prologue
H { old BP H
;
H
H

recommended)

$EJECT
;The required structure definition is:
H
DSA STRUC
OLD_BP DW ? ;Prologue code saves BP here.
OLD_DsS DW ? sPrologue code saves DS here.
RETURN DD ? sA double word for FAR procedures.
PARMA DD ? sPointer to code of FUNC functione.
PARM3 DD ? ;Pointer to integer or logical variable.
PARM2 DW ? ;A FORTRAN-86 Integer®2 value.
; (parameter passing with VAL is not
LEN DW ? ;A FORTRAN-86 Integer®2 variable. (Length)
PARM1 DD ? ; (Pointer to integer or logical value).
DSA ENDS

;Inside the subprogram, value arguments are accessed simply
;by using a structure reference, with BP as the base, and the
;jappropriate field name as the qualifier; example: [BPJ].PARM3.

1

sNOTE: The structure fields for the arguments are declared in

H reverse order in which they were pushed, due to the fact
that the 8086 stack grows towards low memorye.

;The saved value of BP and the return address must be declared
;in the structure, since these two items are pushed between the
;arguments and the spot pointed to by BP.

SUBPRG_DATA SEGMENT ;not combinable
A_LOCAL DB slocal variables go here
SUBPRG_DATA ENDS

-

Figure H-2. Sample ASM-86 Program




FORTRAN-86 Linking to Subprograms Written in Other Languages

8386/8087/8088 MACRO ASSEMBLER ASMEX 09/01/80 PAGE 2
LOC OBJ LINE SOURCE
- T4 SUBPRG_CODE SEGMENT ;jnot combinable
75
76 ;
17 ;SUBPRG does nothing except call the function PARM& and access
78 sjthe first three arguments. The prologue
79 jcode saves BP, and then copies SP to BP, allowing the value
80 jarguments to be picked up conveniently with the BP register.
81
82 PUBLIC SUBPRG
83 ASSUME CS:SUBPRG_CODE, DS:SUBPRG_DATA
0000 84 SUBPRG PROC FAR
0000 1E 85 PUSH DS ;Prologue code, preserve DS.
0001 S5 86 PUSH BP ;sPreserve BP for FORTRAN-86.
0002 8BEC 87 MOV BP,SP
0004 B8~w-- R 88 MOV AX, SUBPRG_DATA ;Address local data sege.
0007 BED8 89 MOV DS,AX ;with DS.
20
91 ;Call the function argument PARMA4,. Result is in the register(s).
92 31 byte => AL, 2 byte => AX, U byte => DX:AX.
93
0009 FF5C08 gA CALL [SI).PARMAY ;Indirect call to PARM4.
95
000C 8HUE12 96 Mov CX,[BP].LEN ;Length of PARM1 is at BP+12h.
000F CASE1YM 97 LES BX,[BP].PARMI sPtr. to PARM1 is at BP+14h.
0012 268A07 98 MOV AL,ES:[BX] ;First byte of PARM1.
0015 8B5610 99 MOV PX,[BP].PARM2 ;PARM2 is at BP+10h.
0018 CASEOC 100 LES BX,[BP].PARM3 ;Ptr. to PARM3 is at BP+0Ch.
001B 268A1F 101 MOV BL,ES:[BX] sAssume PARM1 is 1 byte (or 2 or 4).
102
001E SD 103 POP BP
001F 1F 10% POP DS
Q020 CA1000 105 RET 16 ;Return and pop 16 parameter bytes.
106
107 SUBPRG ENDP
———— 108 SUBPRG_CODE ENDS
109
110 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure H-2. Sample ASM-86 Program (Cont’d.)

H-9



APPENDIX 1
RUN-TIME INTERFACE

This appendix describes the run-time system supporting FORTRAN-86. It also
describes how to run your application object code on your target system and run-
time interrupt processing.

.1 Run-Time Support Overview

The run-time libraries map language-dependent operations into the operating system
format. Figure I-1 shows how your application program exists in your system with
the run-time libraries.

APPLICATION PROGRAM OBJECT CODE

RUN-TIME LIBRARIES

OPERATING SYSTEM

HARDWARE

121570-8
Figure I-1. Application Program and Run-Time Libraries in User System

1.1.1 Application Object Code Independence

In order to allow your application program developed in an Intel operating system
environment to run in your 8086-based target system without modification, a
Universal Development System Interface (UDI) has been provided. UDI is the
specification for handshaking between programs (including run-time libraries) and
operating systems. The specification includes calling conventions and data types that
are defined as the primitives described in the Run-Time Support Manual for
IAPX 86,88 Applications.

You must provide a library, using the UDI specification, that sits between the
application (including run-time libraries) and the operating system as in figure I1-2.

APPLICATION PROGRAM OBJECT CODE

upI T Tt 'l
spECIFicATiON | UD'LIBRARY

OPERATING SYSTEM

HARDWARE

Figure I-2. Use of UDI Library 1215709




Run-Time Interface

APPLICATION PROGRAM OBJECT CODE

RUN-TIME LIBRARIES J
- —_— e e c e - - - - T
| s
SPECIFICATION LARGE.LIB

SERIES-IIl OPERATING SYSTEM

SERIES-IIl HARDWARE

Figure I-3. UDI Libraries in Series III Development 121570-10

APPLICATION PROGRAM OBJECT CODE

RUN-TIME LIBRARIES

ubi _
SPECIFICATION

iRMX 86

OPERATING SYSTEM LIBRARY
URX LRG.LIB

iRMX 86 OPERATING SYSTEM

8086-BASED
TARGET SYSTEM

Figure I-4. UDI Libraries with iRMX 86 Operating System 121570-11

Figure I-3 shows the Series-11I Development System UDI Libraries. Figure 1-4 shows
the iRMX 86 UDI Libraries.

Note that both the run-time libraries and the application object code may make UDI
calls to the Series-111 operating system.

When you move your application from one operating system to another, link your
application program and run-time libraries to the UDI libraries to support the
operating system.

If you provide your own 8086-based operating system, you must write your own
UDI library for your operating system.

1.1.2 Low End Application

It is also possible to use a logical record interface instead of UDI for device drivers
or simple operating systems as shown in figure I-6. (See section 1.3 for details.)

FORTRAN-86



FORTRAN-86 Run-Time Interface

1.2 Run-Time Libraries

There are two types of run-time libraries: I/0 and numeric support.

1.2.1 1/0 Run-Time Libraries

The FORTRAN-86 1/0 Run-Time Libraries have the format F86RNx.LIB and
include:

F86RNO.LIB
F86RNI1.LIB  Formatting and 1/0 Libraries
F86RN2.LIB

F86RN3.LIB  Default Logical Record
F86RN4.LIB  System Libraries

1.2.2 Numerics Run-Time Libraries
The numerics libraries support the 8087 (8087.LIB) or the 8087 Emulator

(E8087.L1B). Common functions for high-level numerics processing are contained
in a separate library, CEL.LIB. In addition, 87ERH.LIB handles 8087 exceptions.

1.2.3 Summary

Figure 1-5 shows the run-time libraries and how they interface to the operating
system and hardware.

APPLICATION PROGRAM OBJECT CODE
NUMERICS
F86RNx.LIB RUN-TIME
LIBRARIES:
uD! g _
SPECIFICATION
UDILIBRARIES 8087.L1B OR
EB087.LIB
CEL.LIB
os. 87ERH.LIB
8086-BASED TARGET SYSTEM 5&‘7"-“0“ OR

Figure I-5. 170 and Numerics Run-Time Libraries in System 12157012

1.3 Logical Record Interface

For information on Logical Record Interface, see the Run-Time Support for
IAPX 86, 88, 121776.

1-3



Run-Time Interface

14

1.4 Run-Time Interrupt Processing

The discussion in this section does not apply to programs that run in an iRMX 86
environment. To implement run-time interrupt processing on an iRMX 86-based
system, your programs must invoke iRMX 86 system calls. Refer to the iIRMX 86
Nucleus Reference Manual for more information.

There are two interrupt pins on the 8086 processor: the ‘‘non-maskable interrupt’’
pin (NMI) and the ‘‘maskable interrupt’’ pin (INTR). The ‘‘non-maskable inter-
rupt’’ cannot be ignored by the processor, whereas the ‘‘maskable interrupt’’ can be
enabled or disabled.

Each ‘““maskable interrupt’’ has an interrupt number that designates the type of
interrupt. Interrupt numbers range from 0 to 255. Interrupt number 0 is reserved for
integer divide by zero errors. Interrupt numbers 1 through 3 are reserved for single
stepping, ‘‘non-maskable interrupts,’”’ and the INT instruction, respectively. Inter-
rupt number 4 is reserved for integer overflow, and integer number 5 is reserved for
compiler range checks. The run-time system uses interrupts 16 through 31. Interrupt
number 16 is reserved for emulated real arithmetic exceptions, and interrupt number
17 is reserved for other compiler checks. For interrupts reserved for the Series-III
system, see the Intellec Series III Microcomputer Development System
Programmer’s Reference Manual .

You can use any other interrupt numbers for your own procedures. However, if you
are overriding the default procedures associated with a specific number, you must
use that number for you procedure.

An interrupt occurs when the CPU receives a signal on its ‘“‘maskable interrupt’’ pin
from some peripheral device. The CPU only responds, however, if interrupts are
enabled. The ‘‘main program prologue’’ (code inserted by the compiler at the
beginning of the main program) enables interrupts.

If interrupts are enabled, the following actions take place:

1. The CPU issues an ‘‘acknowledge interrupt’’ signal and waits for the
interrupting device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.
Single stepping is disabled by clearing the TF flag.

5. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device.

You can specify FORTRAN-86 procedures as interrupt procedures using the
INTERRUPT control (11.4.10). You can assign an interrupt number to each inter-
rupt procedure using the SETINT built-in procedure (Chapter 6). These interrupt
numbers form an interrupt vector, that is, an absolutely-located array of entries
beginning at location 0. Thus, the nth entry is at location 4 times n, and contains the
address of the interrupt procedure associated with interrupt number n. Each entry is
a four-byte value containing a segment address and an offset.

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (IP register contents) are saved on the stack.

If an interrupt procedure terminates normally, the interrupt mechanism and
registers are reset to the condition that existed prior to the activation of the
procedure.

Figure I-6 shows the stack layout at the point where the procedure is activated.

FORTRAN-86



FORTRAN-86

Run-Time Interface

HIGHER
LOCATIONS FLAG REG.CONTENTS 2BYTES
- PRESENT
i RETURN SEGMENT ADDRESS REGARDLESS OF
5E PROGRAM SIZE
pad=
»3 RETURN OFFSET
«——= STACK POINTER
LOWER
LOCATIONS

N —

12157014

Figure I-6. 8086 Stack Layout When Interrupt Procedure Gains Control

.4.1 Interrupt Procedure Preface and

Epilogue

At the beginning of each interrupt procedure, before the usu